1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_sched.h"
5 
6 /**
7  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
8  * @pi: port information structure
9  * @info: Scheduler element information from firmware
10  *
11  * This function inserts the root node of the scheduling tree topology
12  * to the SW DB.
13  */
14 static enum ice_status
15 ice_sched_add_root_node(struct ice_port_info *pi,
16 			struct ice_aqc_txsched_elem_data *info)
17 {
18 	struct ice_sched_node *root;
19 	struct ice_hw *hw;
20 
21 	if (!pi)
22 		return ICE_ERR_PARAM;
23 
24 	hw = pi->hw;
25 
26 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
27 	if (!root)
28 		return ICE_ERR_NO_MEMORY;
29 
30 	/* coverity[suspicious_sizeof] */
31 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 				      sizeof(*root), GFP_KERNEL);
33 	if (!root->children) {
34 		devm_kfree(ice_hw_to_dev(hw), root);
35 		return ICE_ERR_NO_MEMORY;
36 	}
37 
38 	memcpy(&root->info, info, sizeof(*info));
39 	pi->root = root;
40 	return 0;
41 }
42 
43 /**
44  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46  * @teid: node TEID to search
47  *
48  * This function searches for a node matching the TEID in the scheduling tree
49  * from the SW DB. The search is recursive and is restricted by the number of
50  * layers it has searched through; stopping at the max supported layer.
51  *
52  * This function needs to be called when holding the port_info->sched_lock
53  */
54 struct ice_sched_node *
55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 	u16 i;
58 
59 	/* The TEID is same as that of the start_node */
60 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 		return start_node;
62 
63 	/* The node has no children or is at the max layer */
64 	if (!start_node->num_children ||
65 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 		return NULL;
68 
69 	/* Check if TEID matches to any of the children nodes */
70 	for (i = 0; i < start_node->num_children; i++)
71 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 			return start_node->children[i];
73 
74 	/* Search within each child's sub-tree */
75 	for (i = 0; i < start_node->num_children; i++) {
76 		struct ice_sched_node *tmp;
77 
78 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 						  teid);
80 		if (tmp)
81 			return tmp;
82 	}
83 
84 	return NULL;
85 }
86 
87 /**
88  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89  * @hw: pointer to the HW struct
90  * @cmd_opc: cmd opcode
91  * @elems_req: number of elements to request
92  * @buf: pointer to buffer
93  * @buf_size: buffer size in bytes
94  * @elems_resp: returns total number of elements response
95  * @cd: pointer to command details structure or NULL
96  *
97  * This function sends a scheduling elements cmd (cmd_opc)
98  */
99 static enum ice_status
100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 			    u16 elems_req, void *buf, u16 buf_size,
102 			    u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 	struct ice_aqc_sched_elem_cmd *cmd;
105 	struct ice_aq_desc desc;
106 	enum ice_status status;
107 
108 	cmd = &desc.params.sched_elem_cmd;
109 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 	cmd->num_elem_req = cpu_to_le16(elems_req);
111 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 	if (!status && elems_resp)
114 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
115 
116 	return status;
117 }
118 
119 /**
120  * ice_aq_query_sched_elems - query scheduler elements
121  * @hw: pointer to the HW struct
122  * @elems_req: number of elements to query
123  * @buf: pointer to buffer
124  * @buf_size: buffer size in bytes
125  * @elems_ret: returns total number of elements returned
126  * @cd: pointer to command details structure or NULL
127  *
128  * Query scheduling elements (0x0404)
129  */
130 enum ice_status
131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 			 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 					   elems_req, (void *)buf, buf_size,
137 					   elems_ret, cd);
138 }
139 
140 /**
141  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142  * @pi: port information structure
143  * @layer: Scheduler layer of the node
144  * @info: Scheduler element information from firmware
145  *
146  * This function inserts a scheduler node to the SW DB.
147  */
148 enum ice_status
149 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
150 		   struct ice_aqc_txsched_elem_data *info)
151 {
152 	struct ice_aqc_txsched_elem_data elem;
153 	struct ice_sched_node *parent;
154 	struct ice_sched_node *node;
155 	enum ice_status status;
156 	struct ice_hw *hw;
157 
158 	if (!pi)
159 		return ICE_ERR_PARAM;
160 
161 	hw = pi->hw;
162 
163 	/* A valid parent node should be there */
164 	parent = ice_sched_find_node_by_teid(pi->root,
165 					     le32_to_cpu(info->parent_teid));
166 	if (!parent) {
167 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
168 			  le32_to_cpu(info->parent_teid));
169 		return ICE_ERR_PARAM;
170 	}
171 
172 	/* query the current node information from FW before adding it
173 	 * to the SW DB
174 	 */
175 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
176 	if (status)
177 		return status;
178 
179 	node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
180 	if (!node)
181 		return ICE_ERR_NO_MEMORY;
182 	if (hw->max_children[layer]) {
183 		/* coverity[suspicious_sizeof] */
184 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
185 					      hw->max_children[layer],
186 					      sizeof(*node), GFP_KERNEL);
187 		if (!node->children) {
188 			devm_kfree(ice_hw_to_dev(hw), node);
189 			return ICE_ERR_NO_MEMORY;
190 		}
191 	}
192 
193 	node->in_use = true;
194 	node->parent = parent;
195 	node->tx_sched_layer = layer;
196 	parent->children[parent->num_children++] = node;
197 	node->info = elem;
198 	return 0;
199 }
200 
201 /**
202  * ice_aq_delete_sched_elems - delete scheduler elements
203  * @hw: pointer to the HW struct
204  * @grps_req: number of groups to delete
205  * @buf: pointer to buffer
206  * @buf_size: buffer size in bytes
207  * @grps_del: returns total number of elements deleted
208  * @cd: pointer to command details structure or NULL
209  *
210  * Delete scheduling elements (0x040F)
211  */
212 static enum ice_status
213 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
214 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
215 			  u16 *grps_del, struct ice_sq_cd *cd)
216 {
217 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
218 					   grps_req, (void *)buf, buf_size,
219 					   grps_del, cd);
220 }
221 
222 /**
223  * ice_sched_remove_elems - remove nodes from HW
224  * @hw: pointer to the HW struct
225  * @parent: pointer to the parent node
226  * @num_nodes: number of nodes
227  * @node_teids: array of node teids to be deleted
228  *
229  * This function remove nodes from HW
230  */
231 static enum ice_status
232 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
233 		       u16 num_nodes, u32 *node_teids)
234 {
235 	struct ice_aqc_delete_elem *buf;
236 	u16 i, num_groups_removed = 0;
237 	enum ice_status status;
238 	u16 buf_size;
239 
240 	buf_size = struct_size(buf, teid, num_nodes);
241 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
242 	if (!buf)
243 		return ICE_ERR_NO_MEMORY;
244 
245 	buf->hdr.parent_teid = parent->info.node_teid;
246 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
247 	for (i = 0; i < num_nodes; i++)
248 		buf->teid[i] = cpu_to_le32(node_teids[i]);
249 
250 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
251 					   &num_groups_removed, NULL);
252 	if (status || num_groups_removed != 1)
253 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
254 			  hw->adminq.sq_last_status);
255 
256 	devm_kfree(ice_hw_to_dev(hw), buf);
257 	return status;
258 }
259 
260 /**
261  * ice_sched_get_first_node - get the first node of the given layer
262  * @pi: port information structure
263  * @parent: pointer the base node of the subtree
264  * @layer: layer number
265  *
266  * This function retrieves the first node of the given layer from the subtree
267  */
268 static struct ice_sched_node *
269 ice_sched_get_first_node(struct ice_port_info *pi,
270 			 struct ice_sched_node *parent, u8 layer)
271 {
272 	return pi->sib_head[parent->tc_num][layer];
273 }
274 
275 /**
276  * ice_sched_get_tc_node - get pointer to TC node
277  * @pi: port information structure
278  * @tc: TC number
279  *
280  * This function returns the TC node pointer
281  */
282 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
283 {
284 	u8 i;
285 
286 	if (!pi || !pi->root)
287 		return NULL;
288 	for (i = 0; i < pi->root->num_children; i++)
289 		if (pi->root->children[i]->tc_num == tc)
290 			return pi->root->children[i];
291 	return NULL;
292 }
293 
294 /**
295  * ice_free_sched_node - Free a Tx scheduler node from SW DB
296  * @pi: port information structure
297  * @node: pointer to the ice_sched_node struct
298  *
299  * This function frees up a node from SW DB as well as from HW
300  *
301  * This function needs to be called with the port_info->sched_lock held
302  */
303 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
304 {
305 	struct ice_sched_node *parent;
306 	struct ice_hw *hw = pi->hw;
307 	u8 i, j;
308 
309 	/* Free the children before freeing up the parent node
310 	 * The parent array is updated below and that shifts the nodes
311 	 * in the array. So always pick the first child if num children > 0
312 	 */
313 	while (node->num_children)
314 		ice_free_sched_node(pi, node->children[0]);
315 
316 	/* Leaf, TC and root nodes can't be deleted by SW */
317 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
318 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
319 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
320 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
321 		u32 teid = le32_to_cpu(node->info.node_teid);
322 
323 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
324 	}
325 	parent = node->parent;
326 	/* root has no parent */
327 	if (parent) {
328 		struct ice_sched_node *p;
329 
330 		/* update the parent */
331 		for (i = 0; i < parent->num_children; i++)
332 			if (parent->children[i] == node) {
333 				for (j = i + 1; j < parent->num_children; j++)
334 					parent->children[j - 1] =
335 						parent->children[j];
336 				parent->num_children--;
337 				break;
338 			}
339 
340 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
341 		while (p) {
342 			if (p->sibling == node) {
343 				p->sibling = node->sibling;
344 				break;
345 			}
346 			p = p->sibling;
347 		}
348 
349 		/* update the sibling head if head is getting removed */
350 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
351 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
352 				node->sibling;
353 	}
354 
355 	/* leaf nodes have no children */
356 	if (node->children)
357 		devm_kfree(ice_hw_to_dev(hw), node->children);
358 	devm_kfree(ice_hw_to_dev(hw), node);
359 }
360 
361 /**
362  * ice_aq_get_dflt_topo - gets default scheduler topology
363  * @hw: pointer to the HW struct
364  * @lport: logical port number
365  * @buf: pointer to buffer
366  * @buf_size: buffer size in bytes
367  * @num_branches: returns total number of queue to port branches
368  * @cd: pointer to command details structure or NULL
369  *
370  * Get default scheduler topology (0x400)
371  */
372 static enum ice_status
373 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
374 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
375 		     u8 *num_branches, struct ice_sq_cd *cd)
376 {
377 	struct ice_aqc_get_topo *cmd;
378 	struct ice_aq_desc desc;
379 	enum ice_status status;
380 
381 	cmd = &desc.params.get_topo;
382 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
383 	cmd->port_num = lport;
384 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
385 	if (!status && num_branches)
386 		*num_branches = cmd->num_branches;
387 
388 	return status;
389 }
390 
391 /**
392  * ice_aq_add_sched_elems - adds scheduling element
393  * @hw: pointer to the HW struct
394  * @grps_req: the number of groups that are requested to be added
395  * @buf: pointer to buffer
396  * @buf_size: buffer size in bytes
397  * @grps_added: returns total number of groups added
398  * @cd: pointer to command details structure or NULL
399  *
400  * Add scheduling elements (0x0401)
401  */
402 static enum ice_status
403 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
404 		       struct ice_aqc_add_elem *buf, u16 buf_size,
405 		       u16 *grps_added, struct ice_sq_cd *cd)
406 {
407 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
408 					   grps_req, (void *)buf, buf_size,
409 					   grps_added, cd);
410 }
411 
412 /**
413  * ice_aq_cfg_sched_elems - configures scheduler elements
414  * @hw: pointer to the HW struct
415  * @elems_req: number of elements to configure
416  * @buf: pointer to buffer
417  * @buf_size: buffer size in bytes
418  * @elems_cfgd: returns total number of elements configured
419  * @cd: pointer to command details structure or NULL
420  *
421  * Configure scheduling elements (0x0403)
422  */
423 static enum ice_status
424 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
425 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
426 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
427 {
428 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
429 					   elems_req, (void *)buf, buf_size,
430 					   elems_cfgd, cd);
431 }
432 
433 /**
434  * ice_aq_suspend_sched_elems - suspend scheduler elements
435  * @hw: pointer to the HW struct
436  * @elems_req: number of elements to suspend
437  * @buf: pointer to buffer
438  * @buf_size: buffer size in bytes
439  * @elems_ret: returns total number of elements suspended
440  * @cd: pointer to command details structure or NULL
441  *
442  * Suspend scheduling elements (0x0409)
443  */
444 static enum ice_status
445 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
446 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
447 {
448 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
449 					   elems_req, (void *)buf, buf_size,
450 					   elems_ret, cd);
451 }
452 
453 /**
454  * ice_aq_resume_sched_elems - resume scheduler elements
455  * @hw: pointer to the HW struct
456  * @elems_req: number of elements to resume
457  * @buf: pointer to buffer
458  * @buf_size: buffer size in bytes
459  * @elems_ret: returns total number of elements resumed
460  * @cd: pointer to command details structure or NULL
461  *
462  * resume scheduling elements (0x040A)
463  */
464 static enum ice_status
465 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
466 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
467 {
468 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
469 					   elems_req, (void *)buf, buf_size,
470 					   elems_ret, cd);
471 }
472 
473 /**
474  * ice_aq_query_sched_res - query scheduler resource
475  * @hw: pointer to the HW struct
476  * @buf_size: buffer size in bytes
477  * @buf: pointer to buffer
478  * @cd: pointer to command details structure or NULL
479  *
480  * Query scheduler resource allocation (0x0412)
481  */
482 static enum ice_status
483 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
484 		       struct ice_aqc_query_txsched_res_resp *buf,
485 		       struct ice_sq_cd *cd)
486 {
487 	struct ice_aq_desc desc;
488 
489 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
490 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
491 }
492 
493 /**
494  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
495  * @hw: pointer to the HW struct
496  * @num_nodes: number of nodes
497  * @node_teids: array of node teids to be suspended or resumed
498  * @suspend: true means suspend / false means resume
499  *
500  * This function suspends or resumes HW nodes
501  */
502 static enum ice_status
503 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
504 			       bool suspend)
505 {
506 	u16 i, buf_size, num_elem_ret = 0;
507 	enum ice_status status;
508 	__le32 *buf;
509 
510 	buf_size = sizeof(*buf) * num_nodes;
511 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
512 	if (!buf)
513 		return ICE_ERR_NO_MEMORY;
514 
515 	for (i = 0; i < num_nodes; i++)
516 		buf[i] = cpu_to_le32(node_teids[i]);
517 
518 	if (suspend)
519 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
520 						    buf_size, &num_elem_ret,
521 						    NULL);
522 	else
523 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
524 						   buf_size, &num_elem_ret,
525 						   NULL);
526 	if (status || num_elem_ret != num_nodes)
527 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
528 
529 	devm_kfree(ice_hw_to_dev(hw), buf);
530 	return status;
531 }
532 
533 /**
534  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
535  * @hw: pointer to the HW struct
536  * @vsi_handle: VSI handle
537  * @tc: TC number
538  * @new_numqs: number of queues
539  */
540 static enum ice_status
541 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
542 {
543 	struct ice_vsi_ctx *vsi_ctx;
544 	struct ice_q_ctx *q_ctx;
545 
546 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
547 	if (!vsi_ctx)
548 		return ICE_ERR_PARAM;
549 	/* allocate LAN queue contexts */
550 	if (!vsi_ctx->lan_q_ctx[tc]) {
551 		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
552 						      new_numqs,
553 						      sizeof(*q_ctx),
554 						      GFP_KERNEL);
555 		if (!vsi_ctx->lan_q_ctx[tc])
556 			return ICE_ERR_NO_MEMORY;
557 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
558 		return 0;
559 	}
560 	/* num queues are increased, update the queue contexts */
561 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
562 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
563 
564 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
565 				     sizeof(*q_ctx), GFP_KERNEL);
566 		if (!q_ctx)
567 			return ICE_ERR_NO_MEMORY;
568 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
569 		       prev_num * sizeof(*q_ctx));
570 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
571 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
572 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
573 	}
574 	return 0;
575 }
576 
577 /**
578  * ice_aq_rl_profile - performs a rate limiting task
579  * @hw: pointer to the HW struct
580  * @opcode: opcode for add, query, or remove profile(s)
581  * @num_profiles: the number of profiles
582  * @buf: pointer to buffer
583  * @buf_size: buffer size in bytes
584  * @num_processed: number of processed add or remove profile(s) to return
585  * @cd: pointer to command details structure
586  *
587  * RL profile function to add, query, or remove profile(s)
588  */
589 static enum ice_status
590 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
591 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
592 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
593 {
594 	struct ice_aqc_rl_profile *cmd;
595 	struct ice_aq_desc desc;
596 	enum ice_status status;
597 
598 	cmd = &desc.params.rl_profile;
599 
600 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
601 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
602 	cmd->num_profiles = cpu_to_le16(num_profiles);
603 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
604 	if (!status && num_processed)
605 		*num_processed = le16_to_cpu(cmd->num_processed);
606 	return status;
607 }
608 
609 /**
610  * ice_aq_add_rl_profile - adds rate limiting profile(s)
611  * @hw: pointer to the HW struct
612  * @num_profiles: the number of profile(s) to be add
613  * @buf: pointer to buffer
614  * @buf_size: buffer size in bytes
615  * @num_profiles_added: total number of profiles added to return
616  * @cd: pointer to command details structure
617  *
618  * Add RL profile (0x0410)
619  */
620 static enum ice_status
621 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
622 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
623 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
624 {
625 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
626 				 buf, buf_size, num_profiles_added, cd);
627 }
628 
629 /**
630  * ice_aq_remove_rl_profile - removes RL profile(s)
631  * @hw: pointer to the HW struct
632  * @num_profiles: the number of profile(s) to remove
633  * @buf: pointer to buffer
634  * @buf_size: buffer size in bytes
635  * @num_profiles_removed: total number of profiles removed to return
636  * @cd: pointer to command details structure or NULL
637  *
638  * Remove RL profile (0x0415)
639  */
640 static enum ice_status
641 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
642 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
643 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
644 {
645 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
646 				 num_profiles, buf, buf_size,
647 				 num_profiles_removed, cd);
648 }
649 
650 /**
651  * ice_sched_del_rl_profile - remove RL profile
652  * @hw: pointer to the HW struct
653  * @rl_info: rate limit profile information
654  *
655  * If the profile ID is not referenced anymore, it removes profile ID with
656  * its associated parameters from HW DB,and locally. The caller needs to
657  * hold scheduler lock.
658  */
659 static enum ice_status
660 ice_sched_del_rl_profile(struct ice_hw *hw,
661 			 struct ice_aqc_rl_profile_info *rl_info)
662 {
663 	struct ice_aqc_rl_profile_elem *buf;
664 	u16 num_profiles_removed;
665 	enum ice_status status;
666 	u16 num_profiles = 1;
667 
668 	if (rl_info->prof_id_ref != 0)
669 		return ICE_ERR_IN_USE;
670 
671 	/* Safe to remove profile ID */
672 	buf = &rl_info->profile;
673 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
674 					  &num_profiles_removed, NULL);
675 	if (status || num_profiles_removed != num_profiles)
676 		return ICE_ERR_CFG;
677 
678 	/* Delete stale entry now */
679 	list_del(&rl_info->list_entry);
680 	devm_kfree(ice_hw_to_dev(hw), rl_info);
681 	return status;
682 }
683 
684 /**
685  * ice_sched_clear_rl_prof - clears RL prof entries
686  * @pi: port information structure
687  *
688  * This function removes all RL profile from HW as well as from SW DB.
689  */
690 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
691 {
692 	u16 ln;
693 
694 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
695 		struct ice_aqc_rl_profile_info *rl_prof_elem;
696 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
697 
698 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
699 					 &pi->rl_prof_list[ln], list_entry) {
700 			struct ice_hw *hw = pi->hw;
701 			enum ice_status status;
702 
703 			rl_prof_elem->prof_id_ref = 0;
704 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
705 			if (status) {
706 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
707 				/* On error, free mem required */
708 				list_del(&rl_prof_elem->list_entry);
709 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
710 			}
711 		}
712 	}
713 }
714 
715 /**
716  * ice_sched_clear_agg - clears the aggregator related information
717  * @hw: pointer to the hardware structure
718  *
719  * This function removes aggregator list and free up aggregator related memory
720  * previously allocated.
721  */
722 void ice_sched_clear_agg(struct ice_hw *hw)
723 {
724 	struct ice_sched_agg_info *agg_info;
725 	struct ice_sched_agg_info *atmp;
726 
727 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
728 		struct ice_sched_agg_vsi_info *agg_vsi_info;
729 		struct ice_sched_agg_vsi_info *vtmp;
730 
731 		list_for_each_entry_safe(agg_vsi_info, vtmp,
732 					 &agg_info->agg_vsi_list, list_entry) {
733 			list_del(&agg_vsi_info->list_entry);
734 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
735 		}
736 		list_del(&agg_info->list_entry);
737 		devm_kfree(ice_hw_to_dev(hw), agg_info);
738 	}
739 }
740 
741 /**
742  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
743  * @pi: port information structure
744  *
745  * This function removes all the nodes from HW as well as from SW DB.
746  */
747 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
748 {
749 	if (!pi)
750 		return;
751 	/* remove RL profiles related lists */
752 	ice_sched_clear_rl_prof(pi);
753 	if (pi->root) {
754 		ice_free_sched_node(pi, pi->root);
755 		pi->root = NULL;
756 	}
757 }
758 
759 /**
760  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
761  * @pi: port information structure
762  *
763  * Cleanup scheduling elements from SW DB
764  */
765 void ice_sched_clear_port(struct ice_port_info *pi)
766 {
767 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
768 		return;
769 
770 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
771 	mutex_lock(&pi->sched_lock);
772 	ice_sched_clear_tx_topo(pi);
773 	mutex_unlock(&pi->sched_lock);
774 	mutex_destroy(&pi->sched_lock);
775 }
776 
777 /**
778  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
779  * @hw: pointer to the HW struct
780  *
781  * Cleanup scheduling elements from SW DB for all the ports
782  */
783 void ice_sched_cleanup_all(struct ice_hw *hw)
784 {
785 	if (!hw)
786 		return;
787 
788 	if (hw->layer_info) {
789 		devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
790 		hw->layer_info = NULL;
791 	}
792 
793 	ice_sched_clear_port(hw->port_info);
794 
795 	hw->num_tx_sched_layers = 0;
796 	hw->num_tx_sched_phys_layers = 0;
797 	hw->flattened_layers = 0;
798 	hw->max_cgds = 0;
799 }
800 
801 /**
802  * ice_sched_add_elems - add nodes to HW and SW DB
803  * @pi: port information structure
804  * @tc_node: pointer to the branch node
805  * @parent: pointer to the parent node
806  * @layer: layer number to add nodes
807  * @num_nodes: number of nodes
808  * @num_nodes_added: pointer to num nodes added
809  * @first_node_teid: if new nodes are added then return the TEID of first node
810  *
811  * This function add nodes to HW as well as to SW DB for a given layer
812  */
813 static enum ice_status
814 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
815 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
816 		    u16 *num_nodes_added, u32 *first_node_teid)
817 {
818 	struct ice_sched_node *prev, *new_node;
819 	struct ice_aqc_add_elem *buf;
820 	u16 i, num_groups_added = 0;
821 	enum ice_status status = 0;
822 	struct ice_hw *hw = pi->hw;
823 	size_t buf_size;
824 	u32 teid;
825 
826 	buf_size = struct_size(buf, generic, num_nodes);
827 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
828 	if (!buf)
829 		return ICE_ERR_NO_MEMORY;
830 
831 	buf->hdr.parent_teid = parent->info.node_teid;
832 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
833 	for (i = 0; i < num_nodes; i++) {
834 		buf->generic[i].parent_teid = parent->info.node_teid;
835 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
836 		buf->generic[i].data.valid_sections =
837 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
838 			ICE_AQC_ELEM_VALID_EIR;
839 		buf->generic[i].data.generic = 0;
840 		buf->generic[i].data.cir_bw.bw_profile_idx =
841 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
842 		buf->generic[i].data.cir_bw.bw_alloc =
843 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
844 		buf->generic[i].data.eir_bw.bw_profile_idx =
845 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
846 		buf->generic[i].data.eir_bw.bw_alloc =
847 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
848 	}
849 
850 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
851 					&num_groups_added, NULL);
852 	if (status || num_groups_added != 1) {
853 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
854 			  hw->adminq.sq_last_status);
855 		devm_kfree(ice_hw_to_dev(hw), buf);
856 		return ICE_ERR_CFG;
857 	}
858 
859 	*num_nodes_added = num_nodes;
860 	/* add nodes to the SW DB */
861 	for (i = 0; i < num_nodes; i++) {
862 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
863 		if (status) {
864 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
865 				  status);
866 			break;
867 		}
868 
869 		teid = le32_to_cpu(buf->generic[i].node_teid);
870 		new_node = ice_sched_find_node_by_teid(parent, teid);
871 		if (!new_node) {
872 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
873 			break;
874 		}
875 
876 		new_node->sibling = NULL;
877 		new_node->tc_num = tc_node->tc_num;
878 
879 		/* add it to previous node sibling pointer */
880 		/* Note: siblings are not linked across branches */
881 		prev = ice_sched_get_first_node(pi, tc_node, layer);
882 		if (prev && prev != new_node) {
883 			while (prev->sibling)
884 				prev = prev->sibling;
885 			prev->sibling = new_node;
886 		}
887 
888 		/* initialize the sibling head */
889 		if (!pi->sib_head[tc_node->tc_num][layer])
890 			pi->sib_head[tc_node->tc_num][layer] = new_node;
891 
892 		if (i == 0)
893 			*first_node_teid = teid;
894 	}
895 
896 	devm_kfree(ice_hw_to_dev(hw), buf);
897 	return status;
898 }
899 
900 /**
901  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
902  * @pi: port information structure
903  * @tc_node: pointer to TC node
904  * @parent: pointer to parent node
905  * @layer: layer number to add nodes
906  * @num_nodes: number of nodes to be added
907  * @first_node_teid: pointer to the first node TEID
908  * @num_nodes_added: pointer to number of nodes added
909  *
910  * This function add nodes to a given layer.
911  */
912 static enum ice_status
913 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
914 			     struct ice_sched_node *tc_node,
915 			     struct ice_sched_node *parent, u8 layer,
916 			     u16 num_nodes, u32 *first_node_teid,
917 			     u16 *num_nodes_added)
918 {
919 	u32 *first_teid_ptr = first_node_teid;
920 	u16 new_num_nodes, max_child_nodes;
921 	enum ice_status status = 0;
922 	struct ice_hw *hw = pi->hw;
923 	u16 num_added = 0;
924 	u32 temp;
925 
926 	*num_nodes_added = 0;
927 
928 	if (!num_nodes)
929 		return status;
930 
931 	if (!parent || layer < hw->sw_entry_point_layer)
932 		return ICE_ERR_PARAM;
933 
934 	/* max children per node per layer */
935 	max_child_nodes = hw->max_children[parent->tx_sched_layer];
936 
937 	/* current number of children + required nodes exceed max children ? */
938 	if ((parent->num_children + num_nodes) > max_child_nodes) {
939 		/* Fail if the parent is a TC node */
940 		if (parent == tc_node)
941 			return ICE_ERR_CFG;
942 
943 		/* utilize all the spaces if the parent is not full */
944 		if (parent->num_children < max_child_nodes) {
945 			new_num_nodes = max_child_nodes - parent->num_children;
946 			/* this recursion is intentional, and wouldn't
947 			 * go more than 2 calls
948 			 */
949 			status = ice_sched_add_nodes_to_layer(pi, tc_node,
950 							      parent, layer,
951 							      new_num_nodes,
952 							      first_node_teid,
953 							      &num_added);
954 			if (status)
955 				return status;
956 
957 			*num_nodes_added += num_added;
958 		}
959 		/* Don't modify the first node TEID memory if the first node was
960 		 * added already in the above call. Instead send some temp
961 		 * memory for all other recursive calls.
962 		 */
963 		if (num_added)
964 			first_teid_ptr = &temp;
965 
966 		new_num_nodes = num_nodes - num_added;
967 
968 		/* This parent is full, try the next sibling */
969 		parent = parent->sibling;
970 
971 		/* this recursion is intentional, for 1024 queues
972 		 * per VSI, it goes max of 16 iterations.
973 		 * 1024 / 8 = 128 layer 8 nodes
974 		 * 128 /8 = 16 (add 8 nodes per iteration)
975 		 */
976 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
977 						      layer, new_num_nodes,
978 						      first_teid_ptr,
979 						      &num_added);
980 		*num_nodes_added += num_added;
981 		return status;
982 	}
983 
984 	status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
985 				     num_nodes_added, first_node_teid);
986 	return status;
987 }
988 
989 /**
990  * ice_sched_get_qgrp_layer - get the current queue group layer number
991  * @hw: pointer to the HW struct
992  *
993  * This function returns the current queue group layer number
994  */
995 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
996 {
997 	/* It's always total layers - 1, the array is 0 relative so -2 */
998 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
999 }
1000 
1001 /**
1002  * ice_sched_get_vsi_layer - get the current VSI layer number
1003  * @hw: pointer to the HW struct
1004  *
1005  * This function returns the current VSI layer number
1006  */
1007 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1008 {
1009 	/* Num Layers       VSI layer
1010 	 *     9               6
1011 	 *     7               4
1012 	 *     5 or less       sw_entry_point_layer
1013 	 */
1014 	/* calculate the VSI layer based on number of layers. */
1015 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1016 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1017 
1018 		if (layer > hw->sw_entry_point_layer)
1019 			return layer;
1020 	}
1021 	return hw->sw_entry_point_layer;
1022 }
1023 
1024 /**
1025  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1026  * @pi: port information structure
1027  *
1028  * This function removes the leaf node that was created by the FW
1029  * during initialization
1030  */
1031 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1032 {
1033 	struct ice_sched_node *node;
1034 
1035 	node = pi->root;
1036 	while (node) {
1037 		if (!node->num_children)
1038 			break;
1039 		node = node->children[0];
1040 	}
1041 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1042 		u32 teid = le32_to_cpu(node->info.node_teid);
1043 		enum ice_status status;
1044 
1045 		/* remove the default leaf node */
1046 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1047 		if (!status)
1048 			ice_free_sched_node(pi, node);
1049 	}
1050 }
1051 
1052 /**
1053  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1054  * @pi: port information structure
1055  *
1056  * This function frees all the nodes except root and TC that were created by
1057  * the FW during initialization
1058  */
1059 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1060 {
1061 	struct ice_sched_node *node;
1062 
1063 	ice_rm_dflt_leaf_node(pi);
1064 
1065 	/* remove the default nodes except TC and root nodes */
1066 	node = pi->root;
1067 	while (node) {
1068 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1069 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1070 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1071 			ice_free_sched_node(pi, node);
1072 			break;
1073 		}
1074 
1075 		if (!node->num_children)
1076 			break;
1077 		node = node->children[0];
1078 	}
1079 }
1080 
1081 /**
1082  * ice_sched_init_port - Initialize scheduler by querying information from FW
1083  * @pi: port info structure for the tree to cleanup
1084  *
1085  * This function is the initial call to find the total number of Tx scheduler
1086  * resources, default topology created by firmware and storing the information
1087  * in SW DB.
1088  */
1089 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1090 {
1091 	struct ice_aqc_get_topo_elem *buf;
1092 	enum ice_status status;
1093 	struct ice_hw *hw;
1094 	u8 num_branches;
1095 	u16 num_elems;
1096 	u8 i, j;
1097 
1098 	if (!pi)
1099 		return ICE_ERR_PARAM;
1100 	hw = pi->hw;
1101 
1102 	/* Query the Default Topology from FW */
1103 	buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1104 	if (!buf)
1105 		return ICE_ERR_NO_MEMORY;
1106 
1107 	/* Query default scheduling tree topology */
1108 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1109 				      &num_branches, NULL);
1110 	if (status)
1111 		goto err_init_port;
1112 
1113 	/* num_branches should be between 1-8 */
1114 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1115 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1116 			  num_branches);
1117 		status = ICE_ERR_PARAM;
1118 		goto err_init_port;
1119 	}
1120 
1121 	/* get the number of elements on the default/first branch */
1122 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1123 
1124 	/* num_elems should always be between 1-9 */
1125 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1126 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1127 			  num_elems);
1128 		status = ICE_ERR_PARAM;
1129 		goto err_init_port;
1130 	}
1131 
1132 	/* If the last node is a leaf node then the index of the queue group
1133 	 * layer is two less than the number of elements.
1134 	 */
1135 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1136 	    ICE_AQC_ELEM_TYPE_LEAF)
1137 		pi->last_node_teid =
1138 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1139 	else
1140 		pi->last_node_teid =
1141 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1142 
1143 	/* Insert the Tx Sched root node */
1144 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1145 	if (status)
1146 		goto err_init_port;
1147 
1148 	/* Parse the default tree and cache the information */
1149 	for (i = 0; i < num_branches; i++) {
1150 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1151 
1152 		/* Skip root element as already inserted */
1153 		for (j = 1; j < num_elems; j++) {
1154 			/* update the sw entry point */
1155 			if (buf[0].generic[j].data.elem_type ==
1156 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1157 				hw->sw_entry_point_layer = j;
1158 
1159 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1160 			if (status)
1161 				goto err_init_port;
1162 		}
1163 	}
1164 
1165 	/* Remove the default nodes. */
1166 	if (pi->root)
1167 		ice_sched_rm_dflt_nodes(pi);
1168 
1169 	/* initialize the port for handling the scheduler tree */
1170 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1171 	mutex_init(&pi->sched_lock);
1172 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1173 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1174 
1175 err_init_port:
1176 	if (status && pi->root) {
1177 		ice_free_sched_node(pi, pi->root);
1178 		pi->root = NULL;
1179 	}
1180 
1181 	devm_kfree(ice_hw_to_dev(hw), buf);
1182 	return status;
1183 }
1184 
1185 /**
1186  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1187  * @hw: pointer to the HW struct
1188  *
1189  * query FW for allocated scheduler resources and store in HW struct
1190  */
1191 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1192 {
1193 	struct ice_aqc_query_txsched_res_resp *buf;
1194 	enum ice_status status = 0;
1195 	__le16 max_sibl;
1196 	u16 i;
1197 
1198 	if (hw->layer_info)
1199 		return status;
1200 
1201 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1202 	if (!buf)
1203 		return ICE_ERR_NO_MEMORY;
1204 
1205 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1206 	if (status)
1207 		goto sched_query_out;
1208 
1209 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1210 	hw->num_tx_sched_phys_layers =
1211 		le16_to_cpu(buf->sched_props.phys_levels);
1212 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1213 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1214 
1215 	/* max sibling group size of current layer refers to the max children
1216 	 * of the below layer node.
1217 	 * layer 1 node max children will be layer 2 max sibling group size
1218 	 * layer 2 node max children will be layer 3 max sibling group size
1219 	 * and so on. This array will be populated from root (index 0) to
1220 	 * qgroup layer 7. Leaf node has no children.
1221 	 */
1222 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1223 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1224 		hw->max_children[i] = le16_to_cpu(max_sibl);
1225 	}
1226 
1227 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1228 				      (hw->num_tx_sched_layers *
1229 				       sizeof(*hw->layer_info)),
1230 				      GFP_KERNEL);
1231 	if (!hw->layer_info) {
1232 		status = ICE_ERR_NO_MEMORY;
1233 		goto sched_query_out;
1234 	}
1235 
1236 sched_query_out:
1237 	devm_kfree(ice_hw_to_dev(hw), buf);
1238 	return status;
1239 }
1240 
1241 /**
1242  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1243  * @hw: pointer to the HW struct
1244  * @base: pointer to the base node
1245  * @node: pointer to the node to search
1246  *
1247  * This function checks whether a given node is part of the base node
1248  * subtree or not
1249  */
1250 static bool
1251 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1252 			       struct ice_sched_node *node)
1253 {
1254 	u8 i;
1255 
1256 	for (i = 0; i < base->num_children; i++) {
1257 		struct ice_sched_node *child = base->children[i];
1258 
1259 		if (node == child)
1260 			return true;
1261 
1262 		if (child->tx_sched_layer > node->tx_sched_layer)
1263 			return false;
1264 
1265 		/* this recursion is intentional, and wouldn't
1266 		 * go more than 8 calls
1267 		 */
1268 		if (ice_sched_find_node_in_subtree(hw, child, node))
1269 			return true;
1270 	}
1271 	return false;
1272 }
1273 
1274 /**
1275  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1276  * @pi: port information structure
1277  * @vsi_node: software VSI handle
1278  * @qgrp_node: first queue group node identified for scanning
1279  * @owner: LAN or RDMA
1280  *
1281  * This function retrieves a free LAN or RDMA queue group node by scanning
1282  * qgrp_node and its siblings for the queue group with the fewest number
1283  * of queues currently assigned.
1284  */
1285 static struct ice_sched_node *
1286 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1287 			struct ice_sched_node *vsi_node,
1288 			struct ice_sched_node *qgrp_node, u8 owner)
1289 {
1290 	struct ice_sched_node *min_qgrp;
1291 	u8 min_children;
1292 
1293 	if (!qgrp_node)
1294 		return qgrp_node;
1295 	min_children = qgrp_node->num_children;
1296 	if (!min_children)
1297 		return qgrp_node;
1298 	min_qgrp = qgrp_node;
1299 	/* scan all queue groups until find a node which has less than the
1300 	 * minimum number of children. This way all queue group nodes get
1301 	 * equal number of shares and active. The bandwidth will be equally
1302 	 * distributed across all queues.
1303 	 */
1304 	while (qgrp_node) {
1305 		/* make sure the qgroup node is part of the VSI subtree */
1306 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1307 			if (qgrp_node->num_children < min_children &&
1308 			    qgrp_node->owner == owner) {
1309 				/* replace the new min queue group node */
1310 				min_qgrp = qgrp_node;
1311 				min_children = min_qgrp->num_children;
1312 				/* break if it has no children, */
1313 				if (!min_children)
1314 					break;
1315 			}
1316 		qgrp_node = qgrp_node->sibling;
1317 	}
1318 	return min_qgrp;
1319 }
1320 
1321 /**
1322  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1323  * @pi: port information structure
1324  * @vsi_handle: software VSI handle
1325  * @tc: branch number
1326  * @owner: LAN or RDMA
1327  *
1328  * This function retrieves a free LAN or RDMA queue group node
1329  */
1330 struct ice_sched_node *
1331 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1332 			   u8 owner)
1333 {
1334 	struct ice_sched_node *vsi_node, *qgrp_node;
1335 	struct ice_vsi_ctx *vsi_ctx;
1336 	u16 max_children;
1337 	u8 qgrp_layer;
1338 
1339 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1340 	max_children = pi->hw->max_children[qgrp_layer];
1341 
1342 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1343 	if (!vsi_ctx)
1344 		return NULL;
1345 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1346 	/* validate invalid VSI ID */
1347 	if (!vsi_node)
1348 		return NULL;
1349 
1350 	/* get the first queue group node from VSI sub-tree */
1351 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1352 	while (qgrp_node) {
1353 		/* make sure the qgroup node is part of the VSI subtree */
1354 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1355 			if (qgrp_node->num_children < max_children &&
1356 			    qgrp_node->owner == owner)
1357 				break;
1358 		qgrp_node = qgrp_node->sibling;
1359 	}
1360 
1361 	/* Select the best queue group */
1362 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1363 }
1364 
1365 /**
1366  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1367  * @hw: pointer to the HW struct
1368  * @tc_node: pointer to the TC node
1369  * @vsi_handle: software VSI handle
1370  *
1371  * This function retrieves a VSI node for a given VSI ID from a given
1372  * TC branch
1373  */
1374 static struct ice_sched_node *
1375 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node,
1376 		       u16 vsi_handle)
1377 {
1378 	struct ice_sched_node *node;
1379 	u8 vsi_layer;
1380 
1381 	vsi_layer = ice_sched_get_vsi_layer(hw);
1382 	node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer);
1383 
1384 	/* Check whether it already exists */
1385 	while (node) {
1386 		if (node->vsi_handle == vsi_handle)
1387 			return node;
1388 		node = node->sibling;
1389 	}
1390 
1391 	return node;
1392 }
1393 
1394 /**
1395  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1396  * @hw: pointer to the HW struct
1397  * @num_qs: number of queues
1398  * @num_nodes: num nodes array
1399  *
1400  * This function calculates the number of VSI child nodes based on the
1401  * number of queues.
1402  */
1403 static void
1404 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1405 {
1406 	u16 num = num_qs;
1407 	u8 i, qgl, vsil;
1408 
1409 	qgl = ice_sched_get_qgrp_layer(hw);
1410 	vsil = ice_sched_get_vsi_layer(hw);
1411 
1412 	/* calculate num nodes from queue group to VSI layer */
1413 	for (i = qgl; i > vsil; i--) {
1414 		/* round to the next integer if there is a remainder */
1415 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1416 
1417 		/* need at least one node */
1418 		num_nodes[i] = num ? num : 1;
1419 	}
1420 }
1421 
1422 /**
1423  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1424  * @pi: port information structure
1425  * @vsi_handle: software VSI handle
1426  * @tc_node: pointer to the TC node
1427  * @num_nodes: pointer to the num nodes that needs to be added per layer
1428  * @owner: node owner (LAN or RDMA)
1429  *
1430  * This function adds the VSI child nodes to tree. It gets called for
1431  * LAN and RDMA separately.
1432  */
1433 static enum ice_status
1434 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1435 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1436 			      u8 owner)
1437 {
1438 	struct ice_sched_node *parent, *node;
1439 	struct ice_hw *hw = pi->hw;
1440 	enum ice_status status;
1441 	u32 first_node_teid;
1442 	u16 num_added = 0;
1443 	u8 i, qgl, vsil;
1444 
1445 	qgl = ice_sched_get_qgrp_layer(hw);
1446 	vsil = ice_sched_get_vsi_layer(hw);
1447 	parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1448 	for (i = vsil + 1; i <= qgl; i++) {
1449 		if (!parent)
1450 			return ICE_ERR_CFG;
1451 
1452 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1453 						      num_nodes[i],
1454 						      &first_node_teid,
1455 						      &num_added);
1456 		if (status || num_nodes[i] != num_added)
1457 			return ICE_ERR_CFG;
1458 
1459 		/* The newly added node can be a new parent for the next
1460 		 * layer nodes
1461 		 */
1462 		if (num_added) {
1463 			parent = ice_sched_find_node_by_teid(tc_node,
1464 							     first_node_teid);
1465 			node = parent;
1466 			while (node) {
1467 				node->owner = owner;
1468 				node = node->sibling;
1469 			}
1470 		} else {
1471 			parent = parent->children[0];
1472 		}
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1480  * @hw: pointer to the HW struct
1481  * @tc_node: pointer to TC node
1482  * @num_nodes: pointer to num nodes array
1483  *
1484  * This function calculates the number of supported nodes needed to add this
1485  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1486  * layers
1487  */
1488 static void
1489 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw,
1490 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1491 {
1492 	struct ice_sched_node *node;
1493 	u8 vsil;
1494 	int i;
1495 
1496 	vsil = ice_sched_get_vsi_layer(hw);
1497 	for (i = vsil; i >= hw->sw_entry_point_layer; i--)
1498 		/* Add intermediate nodes if TC has no children and
1499 		 * need at least one node for VSI
1500 		 */
1501 		if (!tc_node->num_children || i == vsil) {
1502 			num_nodes[i]++;
1503 		} else {
1504 			/* If intermediate nodes are reached max children
1505 			 * then add a new one.
1506 			 */
1507 			node = ice_sched_get_first_node(hw->port_info, tc_node,
1508 							(u8)i);
1509 			/* scan all the siblings */
1510 			while (node) {
1511 				if (node->num_children < hw->max_children[i])
1512 					break;
1513 				node = node->sibling;
1514 			}
1515 
1516 			/* tree has one intermediate node to add this new VSI.
1517 			 * So no need to calculate supported nodes for below
1518 			 * layers.
1519 			 */
1520 			if (node)
1521 				break;
1522 			/* all the nodes are full, allocate a new one */
1523 			num_nodes[i]++;
1524 		}
1525 }
1526 
1527 /**
1528  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1529  * @pi: port information structure
1530  * @vsi_handle: software VSI handle
1531  * @tc_node: pointer to TC node
1532  * @num_nodes: pointer to num nodes array
1533  *
1534  * This function adds the VSI supported nodes into Tx tree including the
1535  * VSI, its parent and intermediate nodes in below layers
1536  */
1537 static enum ice_status
1538 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1539 				struct ice_sched_node *tc_node, u16 *num_nodes)
1540 {
1541 	struct ice_sched_node *parent = tc_node;
1542 	enum ice_status status;
1543 	u32 first_node_teid;
1544 	u16 num_added = 0;
1545 	u8 i, vsil;
1546 
1547 	if (!pi)
1548 		return ICE_ERR_PARAM;
1549 
1550 	vsil = ice_sched_get_vsi_layer(pi->hw);
1551 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1552 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1553 						      i, num_nodes[i],
1554 						      &first_node_teid,
1555 						      &num_added);
1556 		if (status || num_nodes[i] != num_added)
1557 			return ICE_ERR_CFG;
1558 
1559 		/* The newly added node can be a new parent for the next
1560 		 * layer nodes
1561 		 */
1562 		if (num_added)
1563 			parent = ice_sched_find_node_by_teid(tc_node,
1564 							     first_node_teid);
1565 		else
1566 			parent = parent->children[0];
1567 
1568 		if (!parent)
1569 			return ICE_ERR_CFG;
1570 
1571 		if (i == vsil)
1572 			parent->vsi_handle = vsi_handle;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1580  * @pi: port information structure
1581  * @vsi_handle: software VSI handle
1582  * @tc: TC number
1583  *
1584  * This function adds a new VSI into scheduler tree
1585  */
1586 static enum ice_status
1587 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1588 {
1589 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1590 	struct ice_sched_node *tc_node;
1591 	struct ice_hw *hw = pi->hw;
1592 
1593 	tc_node = ice_sched_get_tc_node(pi, tc);
1594 	if (!tc_node)
1595 		return ICE_ERR_PARAM;
1596 
1597 	/* calculate number of supported nodes needed for this VSI */
1598 	ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes);
1599 
1600 	/* add VSI supported nodes to TC subtree */
1601 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1602 					       num_nodes);
1603 }
1604 
1605 /**
1606  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1607  * @pi: port information structure
1608  * @vsi_handle: software VSI handle
1609  * @tc: TC number
1610  * @new_numqs: new number of max queues
1611  * @owner: owner of this subtree
1612  *
1613  * This function updates the VSI child nodes based on the number of queues
1614  */
1615 static enum ice_status
1616 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1617 				 u8 tc, u16 new_numqs, u8 owner)
1618 {
1619 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1620 	struct ice_sched_node *vsi_node;
1621 	struct ice_sched_node *tc_node;
1622 	struct ice_vsi_ctx *vsi_ctx;
1623 	enum ice_status status = 0;
1624 	struct ice_hw *hw = pi->hw;
1625 	u16 prev_numqs;
1626 
1627 	tc_node = ice_sched_get_tc_node(pi, tc);
1628 	if (!tc_node)
1629 		return ICE_ERR_CFG;
1630 
1631 	vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1632 	if (!vsi_node)
1633 		return ICE_ERR_CFG;
1634 
1635 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1636 	if (!vsi_ctx)
1637 		return ICE_ERR_PARAM;
1638 
1639 	prev_numqs = vsi_ctx->sched.max_lanq[tc];
1640 	/* num queues are not changed or less than the previous number */
1641 	if (new_numqs <= prev_numqs)
1642 		return status;
1643 	status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1644 	if (status)
1645 		return status;
1646 
1647 	if (new_numqs)
1648 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1649 	/* Keep the max number of queue configuration all the time. Update the
1650 	 * tree only if number of queues > previous number of queues. This may
1651 	 * leave some extra nodes in the tree if number of queues < previous
1652 	 * number but that wouldn't harm anything. Removing those extra nodes
1653 	 * may complicate the code if those nodes are part of SRL or
1654 	 * individually rate limited.
1655 	 */
1656 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1657 					       new_num_nodes, owner);
1658 	if (status)
1659 		return status;
1660 	vsi_ctx->sched.max_lanq[tc] = new_numqs;
1661 
1662 	return 0;
1663 }
1664 
1665 /**
1666  * ice_sched_cfg_vsi - configure the new/existing VSI
1667  * @pi: port information structure
1668  * @vsi_handle: software VSI handle
1669  * @tc: TC number
1670  * @maxqs: max number of queues
1671  * @owner: LAN or RDMA
1672  * @enable: TC enabled or disabled
1673  *
1674  * This function adds/updates VSI nodes based on the number of queues. If TC is
1675  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1676  * disabled then suspend the VSI if it is not already.
1677  */
1678 enum ice_status
1679 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1680 		  u8 owner, bool enable)
1681 {
1682 	struct ice_sched_node *vsi_node, *tc_node;
1683 	struct ice_vsi_ctx *vsi_ctx;
1684 	enum ice_status status = 0;
1685 	struct ice_hw *hw = pi->hw;
1686 
1687 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1688 	tc_node = ice_sched_get_tc_node(pi, tc);
1689 	if (!tc_node)
1690 		return ICE_ERR_PARAM;
1691 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1692 	if (!vsi_ctx)
1693 		return ICE_ERR_PARAM;
1694 	vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1695 
1696 	/* suspend the VSI if TC is not enabled */
1697 	if (!enable) {
1698 		if (vsi_node && vsi_node->in_use) {
1699 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1700 
1701 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1702 								true);
1703 			if (!status)
1704 				vsi_node->in_use = false;
1705 		}
1706 		return status;
1707 	}
1708 
1709 	/* TC is enabled, if it is a new VSI then add it to the tree */
1710 	if (!vsi_node) {
1711 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1712 		if (status)
1713 			return status;
1714 
1715 		vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1716 		if (!vsi_node)
1717 			return ICE_ERR_CFG;
1718 
1719 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1720 		vsi_node->in_use = true;
1721 		/* invalidate the max queues whenever VSI gets added first time
1722 		 * into the scheduler tree (boot or after reset). We need to
1723 		 * recreate the child nodes all the time in these cases.
1724 		 */
1725 		vsi_ctx->sched.max_lanq[tc] = 0;
1726 	}
1727 
1728 	/* update the VSI child nodes */
1729 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1730 						  owner);
1731 	if (status)
1732 		return status;
1733 
1734 	/* TC is enabled, resume the VSI if it is in the suspend state */
1735 	if (!vsi_node->in_use) {
1736 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1737 
1738 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1739 		if (!status)
1740 			vsi_node->in_use = true;
1741 	}
1742 
1743 	return status;
1744 }
1745 
1746 /**
1747  * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1748  * @pi: port information structure
1749  * @vsi_handle: software VSI handle
1750  *
1751  * This function removes single aggregator VSI info entry from
1752  * aggregator list.
1753  */
1754 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1755 {
1756 	struct ice_sched_agg_info *agg_info;
1757 	struct ice_sched_agg_info *atmp;
1758 
1759 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1760 				 list_entry) {
1761 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1762 		struct ice_sched_agg_vsi_info *vtmp;
1763 
1764 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1765 					 &agg_info->agg_vsi_list, list_entry)
1766 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1767 				list_del(&agg_vsi_info->list_entry);
1768 				devm_kfree(ice_hw_to_dev(pi->hw),
1769 					   agg_vsi_info);
1770 				return;
1771 			}
1772 	}
1773 }
1774 
1775 /**
1776  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1777  * @node: pointer to the sub-tree node
1778  *
1779  * This function checks for a leaf node presence in a given sub-tree node.
1780  */
1781 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1782 {
1783 	u8 i;
1784 
1785 	for (i = 0; i < node->num_children; i++)
1786 		if (ice_sched_is_leaf_node_present(node->children[i]))
1787 			return true;
1788 	/* check for a leaf node */
1789 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1790 }
1791 
1792 /**
1793  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1794  * @pi: port information structure
1795  * @vsi_handle: software VSI handle
1796  * @owner: LAN or RDMA
1797  *
1798  * This function removes the VSI and its LAN or RDMA children nodes from the
1799  * scheduler tree.
1800  */
1801 static enum ice_status
1802 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1803 {
1804 	enum ice_status status = ICE_ERR_PARAM;
1805 	struct ice_vsi_ctx *vsi_ctx;
1806 	u8 i;
1807 
1808 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
1809 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
1810 		return status;
1811 	mutex_lock(&pi->sched_lock);
1812 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1813 	if (!vsi_ctx)
1814 		goto exit_sched_rm_vsi_cfg;
1815 
1816 	ice_for_each_traffic_class(i) {
1817 		struct ice_sched_node *vsi_node, *tc_node;
1818 		u8 j = 0;
1819 
1820 		tc_node = ice_sched_get_tc_node(pi, i);
1821 		if (!tc_node)
1822 			continue;
1823 
1824 		vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle);
1825 		if (!vsi_node)
1826 			continue;
1827 
1828 		if (ice_sched_is_leaf_node_present(vsi_node)) {
1829 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
1830 			status = ICE_ERR_IN_USE;
1831 			goto exit_sched_rm_vsi_cfg;
1832 		}
1833 		while (j < vsi_node->num_children) {
1834 			if (vsi_node->children[j]->owner == owner) {
1835 				ice_free_sched_node(pi, vsi_node->children[j]);
1836 
1837 				/* reset the counter again since the num
1838 				 * children will be updated after node removal
1839 				 */
1840 				j = 0;
1841 			} else {
1842 				j++;
1843 			}
1844 		}
1845 		/* remove the VSI if it has no children */
1846 		if (!vsi_node->num_children) {
1847 			ice_free_sched_node(pi, vsi_node);
1848 			vsi_ctx->sched.vsi_node[i] = NULL;
1849 
1850 			/* clean up aggregator related VSI info if any */
1851 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
1852 		}
1853 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
1854 			vsi_ctx->sched.max_lanq[i] = 0;
1855 	}
1856 	status = 0;
1857 
1858 exit_sched_rm_vsi_cfg:
1859 	mutex_unlock(&pi->sched_lock);
1860 	return status;
1861 }
1862 
1863 /**
1864  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
1865  * @pi: port information structure
1866  * @vsi_handle: software VSI handle
1867  *
1868  * This function clears the VSI and its LAN children nodes from scheduler tree
1869  * for all TCs.
1870  */
1871 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
1872 {
1873 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
1874 }
1875 
1876 /**
1877  * ice_sched_rm_unused_rl_prof - remove unused RL profile
1878  * @pi: port information structure
1879  *
1880  * This function removes unused rate limit profiles from the HW and
1881  * SW DB. The caller needs to hold scheduler lock.
1882  */
1883 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
1884 {
1885 	u16 ln;
1886 
1887 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
1888 		struct ice_aqc_rl_profile_info *rl_prof_elem;
1889 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
1890 
1891 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
1892 					 &pi->rl_prof_list[ln], list_entry) {
1893 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
1894 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
1895 		}
1896 	}
1897 }
1898 
1899 /**
1900  * ice_sched_update_elem - update element
1901  * @hw: pointer to the HW struct
1902  * @node: pointer to node
1903  * @info: node info to update
1904  *
1905  * Update the HW DB, and local SW DB of node. Update the scheduling
1906  * parameters of node from argument info data buffer (Info->data buf) and
1907  * returns success or error on config sched element failure. The caller
1908  * needs to hold scheduler lock.
1909  */
1910 static enum ice_status
1911 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
1912 		      struct ice_aqc_txsched_elem_data *info)
1913 {
1914 	struct ice_aqc_txsched_elem_data buf;
1915 	enum ice_status status;
1916 	u16 elem_cfgd = 0;
1917 	u16 num_elems = 1;
1918 
1919 	buf = *info;
1920 	/* Parent TEID is reserved field in this aq call */
1921 	buf.parent_teid = 0;
1922 	/* Element type is reserved field in this aq call */
1923 	buf.data.elem_type = 0;
1924 	/* Flags is reserved field in this aq call */
1925 	buf.data.flags = 0;
1926 
1927 	/* Update HW DB */
1928 	/* Configure element node */
1929 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
1930 					&elem_cfgd, NULL);
1931 	if (status || elem_cfgd != num_elems) {
1932 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
1933 		return ICE_ERR_CFG;
1934 	}
1935 
1936 	/* Config success case */
1937 	/* Now update local SW DB */
1938 	/* Only copy the data portion of info buffer */
1939 	node->info.data = info->data;
1940 	return status;
1941 }
1942 
1943 /**
1944  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
1945  * @hw: pointer to the HW struct
1946  * @node: sched node to configure
1947  * @rl_type: rate limit type CIR, EIR, or shared
1948  * @bw_alloc: BW weight/allocation
1949  *
1950  * This function configures node element's BW allocation.
1951  */
1952 static enum ice_status
1953 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
1954 			    enum ice_rl_type rl_type, u16 bw_alloc)
1955 {
1956 	struct ice_aqc_txsched_elem_data buf;
1957 	struct ice_aqc_txsched_elem *data;
1958 	enum ice_status status;
1959 
1960 	buf = node->info;
1961 	data = &buf.data;
1962 	if (rl_type == ICE_MIN_BW) {
1963 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
1964 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1965 	} else if (rl_type == ICE_MAX_BW) {
1966 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
1967 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1968 	} else {
1969 		return ICE_ERR_PARAM;
1970 	}
1971 
1972 	/* Configure element */
1973 	status = ice_sched_update_elem(hw, node, &buf);
1974 	return status;
1975 }
1976 
1977 /**
1978  * ice_set_clear_cir_bw - set or clear CIR BW
1979  * @bw_t_info: bandwidth type information structure
1980  * @bw: bandwidth in Kbps - Kilo bits per sec
1981  *
1982  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
1983  */
1984 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
1985 {
1986 	if (bw == ICE_SCHED_DFLT_BW) {
1987 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1988 		bw_t_info->cir_bw.bw = 0;
1989 	} else {
1990 		/* Save type of BW information */
1991 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1992 		bw_t_info->cir_bw.bw = bw;
1993 	}
1994 }
1995 
1996 /**
1997  * ice_set_clear_eir_bw - set or clear EIR BW
1998  * @bw_t_info: bandwidth type information structure
1999  * @bw: bandwidth in Kbps - Kilo bits per sec
2000  *
2001  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2002  */
2003 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2004 {
2005 	if (bw == ICE_SCHED_DFLT_BW) {
2006 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2007 		bw_t_info->eir_bw.bw = 0;
2008 	} else {
2009 		/* EIR BW and Shared BW profiles are mutually exclusive and
2010 		 * hence only one of them may be set for any given element.
2011 		 * First clear earlier saved shared BW information.
2012 		 */
2013 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2014 		bw_t_info->shared_bw = 0;
2015 		/* save EIR BW information */
2016 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2017 		bw_t_info->eir_bw.bw = bw;
2018 	}
2019 }
2020 
2021 /**
2022  * ice_set_clear_shared_bw - set or clear shared BW
2023  * @bw_t_info: bandwidth type information structure
2024  * @bw: bandwidth in Kbps - Kilo bits per sec
2025  *
2026  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2027  */
2028 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2029 {
2030 	if (bw == ICE_SCHED_DFLT_BW) {
2031 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2032 		bw_t_info->shared_bw = 0;
2033 	} else {
2034 		/* EIR BW and Shared BW profiles are mutually exclusive and
2035 		 * hence only one of them may be set for any given element.
2036 		 * First clear earlier saved EIR BW information.
2037 		 */
2038 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2039 		bw_t_info->eir_bw.bw = 0;
2040 		/* save shared BW information */
2041 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2042 		bw_t_info->shared_bw = bw;
2043 	}
2044 }
2045 
2046 /**
2047  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
2048  * @bw: bandwidth in Kbps
2049  *
2050  * This function calculates the wakeup parameter of RL profile.
2051  */
2052 static u16 ice_sched_calc_wakeup(s32 bw)
2053 {
2054 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
2055 	s32 wakeup_f_int;
2056 	u16 wakeup = 0;
2057 
2058 	/* Get the wakeup integer value */
2059 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2060 	wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec);
2061 	if (wakeup_int > 63) {
2062 		wakeup = (u16)((1 << 15) | wakeup_int);
2063 	} else {
2064 		/* Calculate fraction value up to 4 decimals
2065 		 * Convert Integer value to a constant multiplier
2066 		 */
2067 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
2068 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
2069 					   ICE_RL_PROF_FREQUENCY,
2070 				      bytes_per_sec);
2071 
2072 		/* Get Fraction value */
2073 		wakeup_f = wakeup_a - wakeup_b;
2074 
2075 		/* Round up the Fractional value via Ceil(Fractional value) */
2076 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
2077 			wakeup_f += 1;
2078 
2079 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
2080 					       ICE_RL_PROF_MULTIPLIER);
2081 		wakeup |= (u16)(wakeup_int << 9);
2082 		wakeup |= (u16)(0x1ff & wakeup_f_int);
2083 	}
2084 
2085 	return wakeup;
2086 }
2087 
2088 /**
2089  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
2090  * @bw: bandwidth in Kbps
2091  * @profile: profile parameters to return
2092  *
2093  * This function converts the BW to profile structure format.
2094  */
2095 static enum ice_status
2096 ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile)
2097 {
2098 	enum ice_status status = ICE_ERR_PARAM;
2099 	s64 bytes_per_sec, ts_rate, mv_tmp;
2100 	bool found = false;
2101 	s32 encode = 0;
2102 	s64 mv = 0;
2103 	s32 i;
2104 
2105 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
2106 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
2107 		return status;
2108 
2109 	/* Bytes per second from Kbps */
2110 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2111 
2112 	/* encode is 6 bits but really useful are 5 bits */
2113 	for (i = 0; i < 64; i++) {
2114 		u64 pow_result = BIT_ULL(i);
2115 
2116 		ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY,
2117 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
2118 		if (ts_rate <= 0)
2119 			continue;
2120 
2121 		/* Multiplier value */
2122 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
2123 				    ts_rate);
2124 
2125 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
2126 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
2127 
2128 		/* First multiplier value greater than the given
2129 		 * accuracy bytes
2130 		 */
2131 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
2132 			encode = i;
2133 			found = true;
2134 			break;
2135 		}
2136 	}
2137 	if (found) {
2138 		u16 wm;
2139 
2140 		wm = ice_sched_calc_wakeup(bw);
2141 		profile->rl_multiply = cpu_to_le16(mv);
2142 		profile->wake_up_calc = cpu_to_le16(wm);
2143 		profile->rl_encode = cpu_to_le16(encode);
2144 		status = 0;
2145 	} else {
2146 		status = ICE_ERR_DOES_NOT_EXIST;
2147 	}
2148 
2149 	return status;
2150 }
2151 
2152 /**
2153  * ice_sched_add_rl_profile - add RL profile
2154  * @pi: port information structure
2155  * @rl_type: type of rate limit BW - min, max, or shared
2156  * @bw: bandwidth in Kbps - Kilo bits per sec
2157  * @layer_num: specifies in which layer to create profile
2158  *
2159  * This function first checks the existing list for corresponding BW
2160  * parameter. If it exists, it returns the associated profile otherwise
2161  * it creates a new rate limit profile for requested BW, and adds it to
2162  * the HW DB and local list. It returns the new profile or null on error.
2163  * The caller needs to hold the scheduler lock.
2164  */
2165 static struct ice_aqc_rl_profile_info *
2166 ice_sched_add_rl_profile(struct ice_port_info *pi,
2167 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2168 {
2169 	struct ice_aqc_rl_profile_info *rl_prof_elem;
2170 	u16 profiles_added = 0, num_profiles = 1;
2171 	struct ice_aqc_rl_profile_elem *buf;
2172 	enum ice_status status;
2173 	struct ice_hw *hw;
2174 	u8 profile_type;
2175 
2176 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2177 		return NULL;
2178 	switch (rl_type) {
2179 	case ICE_MIN_BW:
2180 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2181 		break;
2182 	case ICE_MAX_BW:
2183 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2184 		break;
2185 	case ICE_SHARED_BW:
2186 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2187 		break;
2188 	default:
2189 		return NULL;
2190 	}
2191 
2192 	if (!pi)
2193 		return NULL;
2194 	hw = pi->hw;
2195 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2196 			    list_entry)
2197 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2198 		    profile_type && rl_prof_elem->bw == bw)
2199 			/* Return existing profile ID info */
2200 			return rl_prof_elem;
2201 
2202 	/* Create new profile ID */
2203 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
2204 				    GFP_KERNEL);
2205 
2206 	if (!rl_prof_elem)
2207 		return NULL;
2208 
2209 	status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile);
2210 	if (status)
2211 		goto exit_add_rl_prof;
2212 
2213 	rl_prof_elem->bw = bw;
2214 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
2215 	rl_prof_elem->profile.level = layer_num + 1;
2216 	rl_prof_elem->profile.flags = profile_type;
2217 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
2218 
2219 	/* Create new entry in HW DB */
2220 	buf = &rl_prof_elem->profile;
2221 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
2222 				       &profiles_added, NULL);
2223 	if (status || profiles_added != num_profiles)
2224 		goto exit_add_rl_prof;
2225 
2226 	/* Good entry - add in the list */
2227 	rl_prof_elem->prof_id_ref = 0;
2228 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
2229 	return rl_prof_elem;
2230 
2231 exit_add_rl_prof:
2232 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
2233 	return NULL;
2234 }
2235 
2236 /**
2237  * ice_sched_cfg_node_bw_lmt - configure node sched params
2238  * @hw: pointer to the HW struct
2239  * @node: sched node to configure
2240  * @rl_type: rate limit type CIR, EIR, or shared
2241  * @rl_prof_id: rate limit profile ID
2242  *
2243  * This function configures node element's BW limit.
2244  */
2245 static enum ice_status
2246 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
2247 			  enum ice_rl_type rl_type, u16 rl_prof_id)
2248 {
2249 	struct ice_aqc_txsched_elem_data buf;
2250 	struct ice_aqc_txsched_elem *data;
2251 
2252 	buf = node->info;
2253 	data = &buf.data;
2254 	switch (rl_type) {
2255 	case ICE_MIN_BW:
2256 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2257 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2258 		break;
2259 	case ICE_MAX_BW:
2260 		/* EIR BW and Shared BW profiles are mutually exclusive and
2261 		 * hence only one of them may be set for any given element
2262 		 */
2263 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2264 			return ICE_ERR_CFG;
2265 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2266 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2267 		break;
2268 	case ICE_SHARED_BW:
2269 		/* Check for removing shared BW */
2270 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
2271 			/* remove shared profile */
2272 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
2273 			data->srl_id = 0; /* clear SRL field */
2274 
2275 			/* enable back EIR to default profile */
2276 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2277 			data->eir_bw.bw_profile_idx =
2278 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
2279 			break;
2280 		}
2281 		/* EIR BW and Shared BW profiles are mutually exclusive and
2282 		 * hence only one of them may be set for any given element
2283 		 */
2284 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
2285 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
2286 			    ICE_SCHED_DFLT_RL_PROF_ID))
2287 			return ICE_ERR_CFG;
2288 		/* EIR BW is set to default, disable it */
2289 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
2290 		/* Okay to enable shared BW now */
2291 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
2292 		data->srl_id = cpu_to_le16(rl_prof_id);
2293 		break;
2294 	default:
2295 		/* Unknown rate limit type */
2296 		return ICE_ERR_PARAM;
2297 	}
2298 
2299 	/* Configure element */
2300 	return ice_sched_update_elem(hw, node, &buf);
2301 }
2302 
2303 /**
2304  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
2305  * @node: sched node
2306  * @rl_type: rate limit type
2307  *
2308  * If existing profile matches, it returns the corresponding rate
2309  * limit profile ID, otherwise it returns an invalid ID as error.
2310  */
2311 static u16
2312 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
2313 			      enum ice_rl_type rl_type)
2314 {
2315 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
2316 	struct ice_aqc_txsched_elem *data;
2317 
2318 	data = &node->info.data;
2319 	switch (rl_type) {
2320 	case ICE_MIN_BW:
2321 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
2322 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
2323 		break;
2324 	case ICE_MAX_BW:
2325 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
2326 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
2327 		break;
2328 	case ICE_SHARED_BW:
2329 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2330 			rl_prof_id = le16_to_cpu(data->srl_id);
2331 		break;
2332 	default:
2333 		break;
2334 	}
2335 
2336 	return rl_prof_id;
2337 }
2338 
2339 /**
2340  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
2341  * @pi: port information structure
2342  * @rl_type: type of rate limit BW - min, max, or shared
2343  * @layer_index: layer index
2344  *
2345  * This function returns requested profile creation layer.
2346  */
2347 static u8
2348 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
2349 			    u8 layer_index)
2350 {
2351 	struct ice_hw *hw = pi->hw;
2352 
2353 	if (layer_index >= hw->num_tx_sched_layers)
2354 		return ICE_SCHED_INVAL_LAYER_NUM;
2355 	switch (rl_type) {
2356 	case ICE_MIN_BW:
2357 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
2358 			return layer_index;
2359 		break;
2360 	case ICE_MAX_BW:
2361 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
2362 			return layer_index;
2363 		break;
2364 	case ICE_SHARED_BW:
2365 		/* if current layer doesn't support SRL profile creation
2366 		 * then try a layer up or down.
2367 		 */
2368 		if (hw->layer_info[layer_index].max_srl_profiles)
2369 			return layer_index;
2370 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
2371 			 hw->layer_info[layer_index + 1].max_srl_profiles)
2372 			return layer_index + 1;
2373 		else if (layer_index > 0 &&
2374 			 hw->layer_info[layer_index - 1].max_srl_profiles)
2375 			return layer_index - 1;
2376 		break;
2377 	default:
2378 		break;
2379 	}
2380 	return ICE_SCHED_INVAL_LAYER_NUM;
2381 }
2382 
2383 /**
2384  * ice_sched_get_srl_node - get shared rate limit node
2385  * @node: tree node
2386  * @srl_layer: shared rate limit layer
2387  *
2388  * This function returns SRL node to be used for shared rate limit purpose.
2389  * The caller needs to hold scheduler lock.
2390  */
2391 static struct ice_sched_node *
2392 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
2393 {
2394 	if (srl_layer > node->tx_sched_layer)
2395 		return node->children[0];
2396 	else if (srl_layer < node->tx_sched_layer)
2397 		/* Node can't be created without a parent. It will always
2398 		 * have a valid parent except root node.
2399 		 */
2400 		return node->parent;
2401 	else
2402 		return node;
2403 }
2404 
2405 /**
2406  * ice_sched_rm_rl_profile - remove RL profile ID
2407  * @pi: port information structure
2408  * @layer_num: layer number where profiles are saved
2409  * @profile_type: profile type like EIR, CIR, or SRL
2410  * @profile_id: profile ID to remove
2411  *
2412  * This function removes rate limit profile from layer 'layer_num' of type
2413  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
2414  * scheduler lock.
2415  */
2416 static enum ice_status
2417 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
2418 			u16 profile_id)
2419 {
2420 	struct ice_aqc_rl_profile_info *rl_prof_elem;
2421 	enum ice_status status = 0;
2422 
2423 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2424 		return ICE_ERR_PARAM;
2425 	/* Check the existing list for RL profile */
2426 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2427 			    list_entry)
2428 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2429 		    profile_type &&
2430 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
2431 		    profile_id) {
2432 			if (rl_prof_elem->prof_id_ref)
2433 				rl_prof_elem->prof_id_ref--;
2434 
2435 			/* Remove old profile ID from database */
2436 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
2437 			if (status && status != ICE_ERR_IN_USE)
2438 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
2439 			break;
2440 		}
2441 	if (status == ICE_ERR_IN_USE)
2442 		status = 0;
2443 	return status;
2444 }
2445 
2446 /**
2447  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
2448  * @pi: port information structure
2449  * @node: pointer to node structure
2450  * @rl_type: rate limit type min, max, or shared
2451  * @layer_num: layer number where RL profiles are saved
2452  *
2453  * This function configures node element's BW rate limit profile ID of
2454  * type CIR, EIR, or SRL to default. This function needs to be called
2455  * with the scheduler lock held.
2456  */
2457 static enum ice_status
2458 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
2459 			   struct ice_sched_node *node,
2460 			   enum ice_rl_type rl_type, u8 layer_num)
2461 {
2462 	enum ice_status status;
2463 	struct ice_hw *hw;
2464 	u8 profile_type;
2465 	u16 rl_prof_id;
2466 	u16 old_id;
2467 
2468 	hw = pi->hw;
2469 	switch (rl_type) {
2470 	case ICE_MIN_BW:
2471 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2472 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2473 		break;
2474 	case ICE_MAX_BW:
2475 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2476 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2477 		break;
2478 	case ICE_SHARED_BW:
2479 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2480 		/* No SRL is configured for default case */
2481 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
2482 		break;
2483 	default:
2484 		return ICE_ERR_PARAM;
2485 	}
2486 	/* Save existing RL prof ID for later clean up */
2487 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2488 	/* Configure BW scheduling parameters */
2489 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2490 	if (status)
2491 		return status;
2492 
2493 	/* Remove stale RL profile ID */
2494 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
2495 	    old_id == ICE_SCHED_INVAL_PROF_ID)
2496 		return 0;
2497 
2498 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
2499 }
2500 
2501 /**
2502  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
2503  * @pi: port information structure
2504  * @node: pointer to node structure
2505  * @layer_num: layer number where rate limit profiles are saved
2506  * @rl_type: rate limit type min, max, or shared
2507  * @bw: bandwidth value
2508  *
2509  * This function prepares node element's bandwidth to SRL or EIR exclusively.
2510  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
2511  * them may be set for any given element. This function needs to be called
2512  * with the scheduler lock held.
2513  */
2514 static enum ice_status
2515 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
2516 			   struct ice_sched_node *node,
2517 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
2518 {
2519 	if (rl_type == ICE_SHARED_BW) {
2520 		/* SRL node passed in this case, it may be different node */
2521 		if (bw == ICE_SCHED_DFLT_BW)
2522 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
2523 			 * enables EIR to default. EIR is not set in this
2524 			 * case, so no additional action is required.
2525 			 */
2526 			return 0;
2527 
2528 		/* SRL being configured, set EIR to default here.
2529 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
2530 		 * configures SRL
2531 		 */
2532 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
2533 						  layer_num);
2534 	} else if (rl_type == ICE_MAX_BW &&
2535 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
2536 		/* Remove Shared profile. Set default shared BW call
2537 		 * removes shared profile for a node.
2538 		 */
2539 		return ice_sched_set_node_bw_dflt(pi, node,
2540 						  ICE_SHARED_BW,
2541 						  layer_num);
2542 	}
2543 	return 0;
2544 }
2545 
2546 /**
2547  * ice_sched_set_node_bw - set node's bandwidth
2548  * @pi: port information structure
2549  * @node: tree node
2550  * @rl_type: rate limit type min, max, or shared
2551  * @bw: bandwidth in Kbps - Kilo bits per sec
2552  * @layer_num: layer number
2553  *
2554  * This function adds new profile corresponding to requested BW, configures
2555  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
2556  * ID from local database. The caller needs to hold scheduler lock.
2557  */
2558 static enum ice_status
2559 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
2560 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2561 {
2562 	struct ice_aqc_rl_profile_info *rl_prof_info;
2563 	enum ice_status status = ICE_ERR_PARAM;
2564 	struct ice_hw *hw = pi->hw;
2565 	u16 old_id, rl_prof_id;
2566 
2567 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
2568 	if (!rl_prof_info)
2569 		return status;
2570 
2571 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
2572 
2573 	/* Save existing RL prof ID for later clean up */
2574 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2575 	/* Configure BW scheduling parameters */
2576 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2577 	if (status)
2578 		return status;
2579 
2580 	/* New changes has been applied */
2581 	/* Increment the profile ID reference count */
2582 	rl_prof_info->prof_id_ref++;
2583 
2584 	/* Check for old ID removal */
2585 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
2586 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
2587 		return 0;
2588 
2589 	return ice_sched_rm_rl_profile(pi, layer_num,
2590 				       rl_prof_info->profile.flags &
2591 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
2592 }
2593 
2594 /**
2595  * ice_sched_set_node_bw_lmt - set node's BW limit
2596  * @pi: port information structure
2597  * @node: tree node
2598  * @rl_type: rate limit type min, max, or shared
2599  * @bw: bandwidth in Kbps - Kilo bits per sec
2600  *
2601  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
2602  * EIR, or SRL. The caller needs to hold scheduler lock.
2603  */
2604 static enum ice_status
2605 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
2606 			  enum ice_rl_type rl_type, u32 bw)
2607 {
2608 	struct ice_sched_node *cfg_node = node;
2609 	enum ice_status status;
2610 
2611 	struct ice_hw *hw;
2612 	u8 layer_num;
2613 
2614 	if (!pi)
2615 		return ICE_ERR_PARAM;
2616 	hw = pi->hw;
2617 	/* Remove unused RL profile IDs from HW and SW DB */
2618 	ice_sched_rm_unused_rl_prof(pi);
2619 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
2620 						node->tx_sched_layer);
2621 	if (layer_num >= hw->num_tx_sched_layers)
2622 		return ICE_ERR_PARAM;
2623 
2624 	if (rl_type == ICE_SHARED_BW) {
2625 		/* SRL node may be different */
2626 		cfg_node = ice_sched_get_srl_node(node, layer_num);
2627 		if (!cfg_node)
2628 			return ICE_ERR_CFG;
2629 	}
2630 	/* EIR BW and Shared BW profiles are mutually exclusive and
2631 	 * hence only one of them may be set for any given element
2632 	 */
2633 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
2634 					    bw);
2635 	if (status)
2636 		return status;
2637 	if (bw == ICE_SCHED_DFLT_BW)
2638 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
2639 						  layer_num);
2640 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
2641 }
2642 
2643 /**
2644  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
2645  * @pi: port information structure
2646  * @node: pointer to node structure
2647  * @rl_type: rate limit type min, max, or shared
2648  *
2649  * This function configures node element's BW rate limit profile ID of
2650  * type CIR, EIR, or SRL to default. This function needs to be called
2651  * with the scheduler lock held.
2652  */
2653 static enum ice_status
2654 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
2655 			       struct ice_sched_node *node,
2656 			       enum ice_rl_type rl_type)
2657 {
2658 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
2659 					 ICE_SCHED_DFLT_BW);
2660 }
2661 
2662 /**
2663  * ice_sched_validate_srl_node - Check node for SRL applicability
2664  * @node: sched node to configure
2665  * @sel_layer: selected SRL layer
2666  *
2667  * This function checks if the SRL can be applied to a selected layer node on
2668  * behalf of the requested node (first argument). This function needs to be
2669  * called with scheduler lock held.
2670  */
2671 static enum ice_status
2672 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
2673 {
2674 	/* SRL profiles are not available on all layers. Check if the
2675 	 * SRL profile can be applied to a node above or below the
2676 	 * requested node. SRL configuration is possible only if the
2677 	 * selected layer's node has single child.
2678 	 */
2679 	if (sel_layer == node->tx_sched_layer ||
2680 	    ((sel_layer == node->tx_sched_layer + 1) &&
2681 	    node->num_children == 1) ||
2682 	    ((sel_layer == node->tx_sched_layer - 1) &&
2683 	    (node->parent && node->parent->num_children == 1)))
2684 		return 0;
2685 
2686 	return ICE_ERR_CFG;
2687 }
2688 
2689 /**
2690  * ice_sched_save_q_bw - save queue node's BW information
2691  * @q_ctx: queue context structure
2692  * @rl_type: rate limit type min, max, or shared
2693  * @bw: bandwidth in Kbps - Kilo bits per sec
2694  *
2695  * Save BW information of queue type node for post replay use.
2696  */
2697 static enum ice_status
2698 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
2699 {
2700 	switch (rl_type) {
2701 	case ICE_MIN_BW:
2702 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
2703 		break;
2704 	case ICE_MAX_BW:
2705 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
2706 		break;
2707 	case ICE_SHARED_BW:
2708 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
2709 		break;
2710 	default:
2711 		return ICE_ERR_PARAM;
2712 	}
2713 	return 0;
2714 }
2715 
2716 /**
2717  * ice_sched_set_q_bw_lmt - sets queue BW limit
2718  * @pi: port information structure
2719  * @vsi_handle: sw VSI handle
2720  * @tc: traffic class
2721  * @q_handle: software queue handle
2722  * @rl_type: min, max, or shared
2723  * @bw: bandwidth in Kbps
2724  *
2725  * This function sets BW limit of queue scheduling node.
2726  */
2727 static enum ice_status
2728 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2729 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2730 {
2731 	enum ice_status status = ICE_ERR_PARAM;
2732 	struct ice_sched_node *node;
2733 	struct ice_q_ctx *q_ctx;
2734 
2735 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2736 		return ICE_ERR_PARAM;
2737 	mutex_lock(&pi->sched_lock);
2738 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
2739 	if (!q_ctx)
2740 		goto exit_q_bw_lmt;
2741 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2742 	if (!node) {
2743 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
2744 		goto exit_q_bw_lmt;
2745 	}
2746 
2747 	/* Return error if it is not a leaf node */
2748 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
2749 		goto exit_q_bw_lmt;
2750 
2751 	/* SRL bandwidth layer selection */
2752 	if (rl_type == ICE_SHARED_BW) {
2753 		u8 sel_layer; /* selected layer */
2754 
2755 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
2756 							node->tx_sched_layer);
2757 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
2758 			status = ICE_ERR_PARAM;
2759 			goto exit_q_bw_lmt;
2760 		}
2761 		status = ice_sched_validate_srl_node(node, sel_layer);
2762 		if (status)
2763 			goto exit_q_bw_lmt;
2764 	}
2765 
2766 	if (bw == ICE_SCHED_DFLT_BW)
2767 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
2768 	else
2769 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
2770 
2771 	if (!status)
2772 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
2773 
2774 exit_q_bw_lmt:
2775 	mutex_unlock(&pi->sched_lock);
2776 	return status;
2777 }
2778 
2779 /**
2780  * ice_cfg_q_bw_lmt - configure queue BW limit
2781  * @pi: port information structure
2782  * @vsi_handle: sw VSI handle
2783  * @tc: traffic class
2784  * @q_handle: software queue handle
2785  * @rl_type: min, max, or shared
2786  * @bw: bandwidth in Kbps
2787  *
2788  * This function configures BW limit of queue scheduling node.
2789  */
2790 enum ice_status
2791 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2792 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2793 {
2794 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2795 				      bw);
2796 }
2797 
2798 /**
2799  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
2800  * @pi: port information structure
2801  * @vsi_handle: sw VSI handle
2802  * @tc: traffic class
2803  * @q_handle: software queue handle
2804  * @rl_type: min, max, or shared
2805  *
2806  * This function configures BW default limit of queue scheduling node.
2807  */
2808 enum ice_status
2809 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2810 		      u16 q_handle, enum ice_rl_type rl_type)
2811 {
2812 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2813 				      ICE_SCHED_DFLT_BW);
2814 }
2815 
2816 /**
2817  * ice_cfg_rl_burst_size - Set burst size value
2818  * @hw: pointer to the HW struct
2819  * @bytes: burst size in bytes
2820  *
2821  * This function configures/set the burst size to requested new value. The new
2822  * burst size value is used for future rate limit calls. It doesn't change the
2823  * existing or previously created RL profiles.
2824  */
2825 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
2826 {
2827 	u16 burst_size_to_prog;
2828 
2829 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
2830 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
2831 		return ICE_ERR_PARAM;
2832 	if (ice_round_to_num(bytes, 64) <=
2833 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
2834 		/* 64 byte granularity case */
2835 		/* Disable MSB granularity bit */
2836 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
2837 		/* round number to nearest 64 byte granularity */
2838 		bytes = ice_round_to_num(bytes, 64);
2839 		/* The value is in 64 byte chunks */
2840 		burst_size_to_prog |= (u16)(bytes / 64);
2841 	} else {
2842 		/* k bytes granularity case */
2843 		/* Enable MSB granularity bit */
2844 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
2845 		/* round number to nearest 1024 granularity */
2846 		bytes = ice_round_to_num(bytes, 1024);
2847 		/* check rounding doesn't go beyond allowed */
2848 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
2849 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
2850 		/* The value is in k bytes */
2851 		burst_size_to_prog |= (u16)(bytes / 1024);
2852 	}
2853 	hw->max_burst_size = burst_size_to_prog;
2854 	return 0;
2855 }
2856 
2857 /**
2858  * ice_sched_replay_node_prio - re-configure node priority
2859  * @hw: pointer to the HW struct
2860  * @node: sched node to configure
2861  * @priority: priority value
2862  *
2863  * This function configures node element's priority value. It
2864  * needs to be called with scheduler lock held.
2865  */
2866 static enum ice_status
2867 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
2868 			   u8 priority)
2869 {
2870 	struct ice_aqc_txsched_elem_data buf;
2871 	struct ice_aqc_txsched_elem *data;
2872 	enum ice_status status;
2873 
2874 	buf = node->info;
2875 	data = &buf.data;
2876 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
2877 	data->generic = priority;
2878 
2879 	/* Configure element */
2880 	status = ice_sched_update_elem(hw, node, &buf);
2881 	return status;
2882 }
2883 
2884 /**
2885  * ice_sched_replay_node_bw - replay node(s) BW
2886  * @hw: pointer to the HW struct
2887  * @node: sched node to configure
2888  * @bw_t_info: BW type information
2889  *
2890  * This function restores node's BW from bw_t_info. The caller needs
2891  * to hold the scheduler lock.
2892  */
2893 static enum ice_status
2894 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
2895 			 struct ice_bw_type_info *bw_t_info)
2896 {
2897 	struct ice_port_info *pi = hw->port_info;
2898 	enum ice_status status = ICE_ERR_PARAM;
2899 	u16 bw_alloc;
2900 
2901 	if (!node)
2902 		return status;
2903 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
2904 		return 0;
2905 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
2906 		status = ice_sched_replay_node_prio(hw, node,
2907 						    bw_t_info->generic);
2908 		if (status)
2909 			return status;
2910 	}
2911 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
2912 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
2913 						   bw_t_info->cir_bw.bw);
2914 		if (status)
2915 			return status;
2916 	}
2917 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
2918 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
2919 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
2920 						     bw_alloc);
2921 		if (status)
2922 			return status;
2923 	}
2924 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
2925 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
2926 						   bw_t_info->eir_bw.bw);
2927 		if (status)
2928 			return status;
2929 	}
2930 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
2931 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
2932 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
2933 						     bw_alloc);
2934 		if (status)
2935 			return status;
2936 	}
2937 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
2938 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
2939 						   bw_t_info->shared_bw);
2940 	return status;
2941 }
2942 
2943 /**
2944  * ice_sched_replay_q_bw - replay queue type node BW
2945  * @pi: port information structure
2946  * @q_ctx: queue context structure
2947  *
2948  * This function replays queue type node bandwidth. This function needs to be
2949  * called with scheduler lock held.
2950  */
2951 enum ice_status
2952 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
2953 {
2954 	struct ice_sched_node *q_node;
2955 
2956 	/* Following also checks the presence of node in tree */
2957 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2958 	if (!q_node)
2959 		return ICE_ERR_PARAM;
2960 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
2961 }
2962