1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_sched.h"
5 
6 /**
7  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
8  * @pi: port information structure
9  * @info: Scheduler element information from firmware
10  *
11  * This function inserts the root node of the scheduling tree topology
12  * to the SW DB.
13  */
14 static int
15 ice_sched_add_root_node(struct ice_port_info *pi,
16 			struct ice_aqc_txsched_elem_data *info)
17 {
18 	struct ice_sched_node *root;
19 	struct ice_hw *hw;
20 
21 	if (!pi)
22 		return -EINVAL;
23 
24 	hw = pi->hw;
25 
26 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
27 	if (!root)
28 		return -ENOMEM;
29 
30 	/* coverity[suspicious_sizeof] */
31 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 				      sizeof(*root), GFP_KERNEL);
33 	if (!root->children) {
34 		devm_kfree(ice_hw_to_dev(hw), root);
35 		return -ENOMEM;
36 	}
37 
38 	memcpy(&root->info, info, sizeof(*info));
39 	pi->root = root;
40 	return 0;
41 }
42 
43 /**
44  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46  * @teid: node TEID to search
47  *
48  * This function searches for a node matching the TEID in the scheduling tree
49  * from the SW DB. The search is recursive and is restricted by the number of
50  * layers it has searched through; stopping at the max supported layer.
51  *
52  * This function needs to be called when holding the port_info->sched_lock
53  */
54 struct ice_sched_node *
55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 	u16 i;
58 
59 	/* The TEID is same as that of the start_node */
60 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 		return start_node;
62 
63 	/* The node has no children or is at the max layer */
64 	if (!start_node->num_children ||
65 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 		return NULL;
68 
69 	/* Check if TEID matches to any of the children nodes */
70 	for (i = 0; i < start_node->num_children; i++)
71 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 			return start_node->children[i];
73 
74 	/* Search within each child's sub-tree */
75 	for (i = 0; i < start_node->num_children; i++) {
76 		struct ice_sched_node *tmp;
77 
78 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 						  teid);
80 		if (tmp)
81 			return tmp;
82 	}
83 
84 	return NULL;
85 }
86 
87 /**
88  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89  * @hw: pointer to the HW struct
90  * @cmd_opc: cmd opcode
91  * @elems_req: number of elements to request
92  * @buf: pointer to buffer
93  * @buf_size: buffer size in bytes
94  * @elems_resp: returns total number of elements response
95  * @cd: pointer to command details structure or NULL
96  *
97  * This function sends a scheduling elements cmd (cmd_opc)
98  */
99 static int
100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 			    u16 elems_req, void *buf, u16 buf_size,
102 			    u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 	struct ice_aqc_sched_elem_cmd *cmd;
105 	struct ice_aq_desc desc;
106 	int status;
107 
108 	cmd = &desc.params.sched_elem_cmd;
109 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 	cmd->num_elem_req = cpu_to_le16(elems_req);
111 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 	if (!status && elems_resp)
114 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
115 
116 	return status;
117 }
118 
119 /**
120  * ice_aq_query_sched_elems - query scheduler elements
121  * @hw: pointer to the HW struct
122  * @elems_req: number of elements to query
123  * @buf: pointer to buffer
124  * @buf_size: buffer size in bytes
125  * @elems_ret: returns total number of elements returned
126  * @cd: pointer to command details structure or NULL
127  *
128  * Query scheduling elements (0x0404)
129  */
130 int
131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 			 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 					   elems_req, (void *)buf, buf_size,
137 					   elems_ret, cd);
138 }
139 
140 /**
141  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142  * @pi: port information structure
143  * @layer: Scheduler layer of the node
144  * @info: Scheduler element information from firmware
145  *
146  * This function inserts a scheduler node to the SW DB.
147  */
148 int
149 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
150 		   struct ice_aqc_txsched_elem_data *info)
151 {
152 	struct ice_aqc_txsched_elem_data elem;
153 	struct ice_sched_node *parent;
154 	struct ice_sched_node *node;
155 	struct ice_hw *hw;
156 	int status;
157 
158 	if (!pi)
159 		return -EINVAL;
160 
161 	hw = pi->hw;
162 
163 	/* A valid parent node should be there */
164 	parent = ice_sched_find_node_by_teid(pi->root,
165 					     le32_to_cpu(info->parent_teid));
166 	if (!parent) {
167 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
168 			  le32_to_cpu(info->parent_teid));
169 		return -EINVAL;
170 	}
171 
172 	/* query the current node information from FW before adding it
173 	 * to the SW DB
174 	 */
175 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
176 	if (status)
177 		return status;
178 
179 	node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
180 	if (!node)
181 		return -ENOMEM;
182 	if (hw->max_children[layer]) {
183 		/* coverity[suspicious_sizeof] */
184 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
185 					      hw->max_children[layer],
186 					      sizeof(*node), GFP_KERNEL);
187 		if (!node->children) {
188 			devm_kfree(ice_hw_to_dev(hw), node);
189 			return -ENOMEM;
190 		}
191 	}
192 
193 	node->in_use = true;
194 	node->parent = parent;
195 	node->tx_sched_layer = layer;
196 	parent->children[parent->num_children++] = node;
197 	node->info = elem;
198 	return 0;
199 }
200 
201 /**
202  * ice_aq_delete_sched_elems - delete scheduler elements
203  * @hw: pointer to the HW struct
204  * @grps_req: number of groups to delete
205  * @buf: pointer to buffer
206  * @buf_size: buffer size in bytes
207  * @grps_del: returns total number of elements deleted
208  * @cd: pointer to command details structure or NULL
209  *
210  * Delete scheduling elements (0x040F)
211  */
212 static int
213 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
214 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
215 			  u16 *grps_del, struct ice_sq_cd *cd)
216 {
217 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
218 					   grps_req, (void *)buf, buf_size,
219 					   grps_del, cd);
220 }
221 
222 /**
223  * ice_sched_remove_elems - remove nodes from HW
224  * @hw: pointer to the HW struct
225  * @parent: pointer to the parent node
226  * @num_nodes: number of nodes
227  * @node_teids: array of node teids to be deleted
228  *
229  * This function remove nodes from HW
230  */
231 static int
232 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
233 		       u16 num_nodes, u32 *node_teids)
234 {
235 	struct ice_aqc_delete_elem *buf;
236 	u16 i, num_groups_removed = 0;
237 	u16 buf_size;
238 	int status;
239 
240 	buf_size = struct_size(buf, teid, num_nodes);
241 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
242 	if (!buf)
243 		return -ENOMEM;
244 
245 	buf->hdr.parent_teid = parent->info.node_teid;
246 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
247 	for (i = 0; i < num_nodes; i++)
248 		buf->teid[i] = cpu_to_le32(node_teids[i]);
249 
250 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
251 					   &num_groups_removed, NULL);
252 	if (status || num_groups_removed != 1)
253 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
254 			  hw->adminq.sq_last_status);
255 
256 	devm_kfree(ice_hw_to_dev(hw), buf);
257 	return status;
258 }
259 
260 /**
261  * ice_sched_get_first_node - get the first node of the given layer
262  * @pi: port information structure
263  * @parent: pointer the base node of the subtree
264  * @layer: layer number
265  *
266  * This function retrieves the first node of the given layer from the subtree
267  */
268 static struct ice_sched_node *
269 ice_sched_get_first_node(struct ice_port_info *pi,
270 			 struct ice_sched_node *parent, u8 layer)
271 {
272 	return pi->sib_head[parent->tc_num][layer];
273 }
274 
275 /**
276  * ice_sched_get_tc_node - get pointer to TC node
277  * @pi: port information structure
278  * @tc: TC number
279  *
280  * This function returns the TC node pointer
281  */
282 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
283 {
284 	u8 i;
285 
286 	if (!pi || !pi->root)
287 		return NULL;
288 	for (i = 0; i < pi->root->num_children; i++)
289 		if (pi->root->children[i]->tc_num == tc)
290 			return pi->root->children[i];
291 	return NULL;
292 }
293 
294 /**
295  * ice_free_sched_node - Free a Tx scheduler node from SW DB
296  * @pi: port information structure
297  * @node: pointer to the ice_sched_node struct
298  *
299  * This function frees up a node from SW DB as well as from HW
300  *
301  * This function needs to be called with the port_info->sched_lock held
302  */
303 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
304 {
305 	struct ice_sched_node *parent;
306 	struct ice_hw *hw = pi->hw;
307 	u8 i, j;
308 
309 	/* Free the children before freeing up the parent node
310 	 * The parent array is updated below and that shifts the nodes
311 	 * in the array. So always pick the first child if num children > 0
312 	 */
313 	while (node->num_children)
314 		ice_free_sched_node(pi, node->children[0]);
315 
316 	/* Leaf, TC and root nodes can't be deleted by SW */
317 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
318 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
319 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
320 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
321 		u32 teid = le32_to_cpu(node->info.node_teid);
322 
323 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
324 	}
325 	parent = node->parent;
326 	/* root has no parent */
327 	if (parent) {
328 		struct ice_sched_node *p;
329 
330 		/* update the parent */
331 		for (i = 0; i < parent->num_children; i++)
332 			if (parent->children[i] == node) {
333 				for (j = i + 1; j < parent->num_children; j++)
334 					parent->children[j - 1] =
335 						parent->children[j];
336 				parent->num_children--;
337 				break;
338 			}
339 
340 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
341 		while (p) {
342 			if (p->sibling == node) {
343 				p->sibling = node->sibling;
344 				break;
345 			}
346 			p = p->sibling;
347 		}
348 
349 		/* update the sibling head if head is getting removed */
350 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
351 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
352 				node->sibling;
353 	}
354 
355 	/* leaf nodes have no children */
356 	if (node->children)
357 		devm_kfree(ice_hw_to_dev(hw), node->children);
358 	devm_kfree(ice_hw_to_dev(hw), node);
359 }
360 
361 /**
362  * ice_aq_get_dflt_topo - gets default scheduler topology
363  * @hw: pointer to the HW struct
364  * @lport: logical port number
365  * @buf: pointer to buffer
366  * @buf_size: buffer size in bytes
367  * @num_branches: returns total number of queue to port branches
368  * @cd: pointer to command details structure or NULL
369  *
370  * Get default scheduler topology (0x400)
371  */
372 static int
373 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
374 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
375 		     u8 *num_branches, struct ice_sq_cd *cd)
376 {
377 	struct ice_aqc_get_topo *cmd;
378 	struct ice_aq_desc desc;
379 	int status;
380 
381 	cmd = &desc.params.get_topo;
382 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
383 	cmd->port_num = lport;
384 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
385 	if (!status && num_branches)
386 		*num_branches = cmd->num_branches;
387 
388 	return status;
389 }
390 
391 /**
392  * ice_aq_add_sched_elems - adds scheduling element
393  * @hw: pointer to the HW struct
394  * @grps_req: the number of groups that are requested to be added
395  * @buf: pointer to buffer
396  * @buf_size: buffer size in bytes
397  * @grps_added: returns total number of groups added
398  * @cd: pointer to command details structure or NULL
399  *
400  * Add scheduling elements (0x0401)
401  */
402 static int
403 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
404 		       struct ice_aqc_add_elem *buf, u16 buf_size,
405 		       u16 *grps_added, struct ice_sq_cd *cd)
406 {
407 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
408 					   grps_req, (void *)buf, buf_size,
409 					   grps_added, cd);
410 }
411 
412 /**
413  * ice_aq_cfg_sched_elems - configures scheduler elements
414  * @hw: pointer to the HW struct
415  * @elems_req: number of elements to configure
416  * @buf: pointer to buffer
417  * @buf_size: buffer size in bytes
418  * @elems_cfgd: returns total number of elements configured
419  * @cd: pointer to command details structure or NULL
420  *
421  * Configure scheduling elements (0x0403)
422  */
423 static int
424 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
425 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
426 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
427 {
428 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
429 					   elems_req, (void *)buf, buf_size,
430 					   elems_cfgd, cd);
431 }
432 
433 /**
434  * ice_aq_move_sched_elems - move scheduler elements
435  * @hw: pointer to the HW struct
436  * @grps_req: number of groups to move
437  * @buf: pointer to buffer
438  * @buf_size: buffer size in bytes
439  * @grps_movd: returns total number of groups moved
440  * @cd: pointer to command details structure or NULL
441  *
442  * Move scheduling elements (0x0408)
443  */
444 static int
445 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
446 			struct ice_aqc_move_elem *buf, u16 buf_size,
447 			u16 *grps_movd, struct ice_sq_cd *cd)
448 {
449 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
450 					   grps_req, (void *)buf, buf_size,
451 					   grps_movd, cd);
452 }
453 
454 /**
455  * ice_aq_suspend_sched_elems - suspend scheduler elements
456  * @hw: pointer to the HW struct
457  * @elems_req: number of elements to suspend
458  * @buf: pointer to buffer
459  * @buf_size: buffer size in bytes
460  * @elems_ret: returns total number of elements suspended
461  * @cd: pointer to command details structure or NULL
462  *
463  * Suspend scheduling elements (0x0409)
464  */
465 static int
466 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
467 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
468 {
469 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
470 					   elems_req, (void *)buf, buf_size,
471 					   elems_ret, cd);
472 }
473 
474 /**
475  * ice_aq_resume_sched_elems - resume scheduler elements
476  * @hw: pointer to the HW struct
477  * @elems_req: number of elements to resume
478  * @buf: pointer to buffer
479  * @buf_size: buffer size in bytes
480  * @elems_ret: returns total number of elements resumed
481  * @cd: pointer to command details structure or NULL
482  *
483  * resume scheduling elements (0x040A)
484  */
485 static int
486 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
487 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
488 {
489 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
490 					   elems_req, (void *)buf, buf_size,
491 					   elems_ret, cd);
492 }
493 
494 /**
495  * ice_aq_query_sched_res - query scheduler resource
496  * @hw: pointer to the HW struct
497  * @buf_size: buffer size in bytes
498  * @buf: pointer to buffer
499  * @cd: pointer to command details structure or NULL
500  *
501  * Query scheduler resource allocation (0x0412)
502  */
503 static int
504 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
505 		       struct ice_aqc_query_txsched_res_resp *buf,
506 		       struct ice_sq_cd *cd)
507 {
508 	struct ice_aq_desc desc;
509 
510 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
511 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
512 }
513 
514 /**
515  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
516  * @hw: pointer to the HW struct
517  * @num_nodes: number of nodes
518  * @node_teids: array of node teids to be suspended or resumed
519  * @suspend: true means suspend / false means resume
520  *
521  * This function suspends or resumes HW nodes
522  */
523 static int
524 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
525 			       bool suspend)
526 {
527 	u16 i, buf_size, num_elem_ret = 0;
528 	__le32 *buf;
529 	int status;
530 
531 	buf_size = sizeof(*buf) * num_nodes;
532 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
533 	if (!buf)
534 		return -ENOMEM;
535 
536 	for (i = 0; i < num_nodes; i++)
537 		buf[i] = cpu_to_le32(node_teids[i]);
538 
539 	if (suspend)
540 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
541 						    buf_size, &num_elem_ret,
542 						    NULL);
543 	else
544 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
545 						   buf_size, &num_elem_ret,
546 						   NULL);
547 	if (status || num_elem_ret != num_nodes)
548 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
549 
550 	devm_kfree(ice_hw_to_dev(hw), buf);
551 	return status;
552 }
553 
554 /**
555  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
556  * @hw: pointer to the HW struct
557  * @vsi_handle: VSI handle
558  * @tc: TC number
559  * @new_numqs: number of queues
560  */
561 static int
562 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
563 {
564 	struct ice_vsi_ctx *vsi_ctx;
565 	struct ice_q_ctx *q_ctx;
566 
567 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
568 	if (!vsi_ctx)
569 		return -EINVAL;
570 	/* allocate LAN queue contexts */
571 	if (!vsi_ctx->lan_q_ctx[tc]) {
572 		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
573 						      new_numqs,
574 						      sizeof(*q_ctx),
575 						      GFP_KERNEL);
576 		if (!vsi_ctx->lan_q_ctx[tc])
577 			return -ENOMEM;
578 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579 		return 0;
580 	}
581 	/* num queues are increased, update the queue contexts */
582 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584 
585 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
586 				     sizeof(*q_ctx), GFP_KERNEL);
587 		if (!q_ctx)
588 			return -ENOMEM;
589 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
590 		       prev_num * sizeof(*q_ctx));
591 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
592 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
593 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
594 	}
595 	return 0;
596 }
597 
598 /**
599  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
600  * @hw: pointer to the HW struct
601  * @vsi_handle: VSI handle
602  * @tc: TC number
603  * @new_numqs: number of queues
604  */
605 static int
606 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
607 {
608 	struct ice_vsi_ctx *vsi_ctx;
609 	struct ice_q_ctx *q_ctx;
610 
611 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
612 	if (!vsi_ctx)
613 		return -EINVAL;
614 	/* allocate RDMA queue contexts */
615 	if (!vsi_ctx->rdma_q_ctx[tc]) {
616 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
617 						       new_numqs,
618 						       sizeof(*q_ctx),
619 						       GFP_KERNEL);
620 		if (!vsi_ctx->rdma_q_ctx[tc])
621 			return -ENOMEM;
622 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
623 		return 0;
624 	}
625 	/* num queues are increased, update the queue contexts */
626 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
627 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
628 
629 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
630 				     sizeof(*q_ctx), GFP_KERNEL);
631 		if (!q_ctx)
632 			return -ENOMEM;
633 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
634 		       prev_num * sizeof(*q_ctx));
635 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
636 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
637 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
638 	}
639 	return 0;
640 }
641 
642 /**
643  * ice_aq_rl_profile - performs a rate limiting task
644  * @hw: pointer to the HW struct
645  * @opcode: opcode for add, query, or remove profile(s)
646  * @num_profiles: the number of profiles
647  * @buf: pointer to buffer
648  * @buf_size: buffer size in bytes
649  * @num_processed: number of processed add or remove profile(s) to return
650  * @cd: pointer to command details structure
651  *
652  * RL profile function to add, query, or remove profile(s)
653  */
654 static int
655 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
656 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
657 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
658 {
659 	struct ice_aqc_rl_profile *cmd;
660 	struct ice_aq_desc desc;
661 	int status;
662 
663 	cmd = &desc.params.rl_profile;
664 
665 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
666 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
667 	cmd->num_profiles = cpu_to_le16(num_profiles);
668 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
669 	if (!status && num_processed)
670 		*num_processed = le16_to_cpu(cmd->num_processed);
671 	return status;
672 }
673 
674 /**
675  * ice_aq_add_rl_profile - adds rate limiting profile(s)
676  * @hw: pointer to the HW struct
677  * @num_profiles: the number of profile(s) to be add
678  * @buf: pointer to buffer
679  * @buf_size: buffer size in bytes
680  * @num_profiles_added: total number of profiles added to return
681  * @cd: pointer to command details structure
682  *
683  * Add RL profile (0x0410)
684  */
685 static int
686 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
687 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
688 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
689 {
690 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
691 				 buf, buf_size, num_profiles_added, cd);
692 }
693 
694 /**
695  * ice_aq_remove_rl_profile - removes RL profile(s)
696  * @hw: pointer to the HW struct
697  * @num_profiles: the number of profile(s) to remove
698  * @buf: pointer to buffer
699  * @buf_size: buffer size in bytes
700  * @num_profiles_removed: total number of profiles removed to return
701  * @cd: pointer to command details structure or NULL
702  *
703  * Remove RL profile (0x0415)
704  */
705 static int
706 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
707 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
708 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
709 {
710 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
711 				 num_profiles, buf, buf_size,
712 				 num_profiles_removed, cd);
713 }
714 
715 /**
716  * ice_sched_del_rl_profile - remove RL profile
717  * @hw: pointer to the HW struct
718  * @rl_info: rate limit profile information
719  *
720  * If the profile ID is not referenced anymore, it removes profile ID with
721  * its associated parameters from HW DB,and locally. The caller needs to
722  * hold scheduler lock.
723  */
724 static int
725 ice_sched_del_rl_profile(struct ice_hw *hw,
726 			 struct ice_aqc_rl_profile_info *rl_info)
727 {
728 	struct ice_aqc_rl_profile_elem *buf;
729 	u16 num_profiles_removed;
730 	u16 num_profiles = 1;
731 	int status;
732 
733 	if (rl_info->prof_id_ref != 0)
734 		return -EBUSY;
735 
736 	/* Safe to remove profile ID */
737 	buf = &rl_info->profile;
738 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
739 					  &num_profiles_removed, NULL);
740 	if (status || num_profiles_removed != num_profiles)
741 		return -EIO;
742 
743 	/* Delete stale entry now */
744 	list_del(&rl_info->list_entry);
745 	devm_kfree(ice_hw_to_dev(hw), rl_info);
746 	return status;
747 }
748 
749 /**
750  * ice_sched_clear_rl_prof - clears RL prof entries
751  * @pi: port information structure
752  *
753  * This function removes all RL profile from HW as well as from SW DB.
754  */
755 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
756 {
757 	u16 ln;
758 
759 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
760 		struct ice_aqc_rl_profile_info *rl_prof_elem;
761 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
762 
763 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
764 					 &pi->rl_prof_list[ln], list_entry) {
765 			struct ice_hw *hw = pi->hw;
766 			int status;
767 
768 			rl_prof_elem->prof_id_ref = 0;
769 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
770 			if (status) {
771 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
772 				/* On error, free mem required */
773 				list_del(&rl_prof_elem->list_entry);
774 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
775 			}
776 		}
777 	}
778 }
779 
780 /**
781  * ice_sched_clear_agg - clears the aggregator related information
782  * @hw: pointer to the hardware structure
783  *
784  * This function removes aggregator list and free up aggregator related memory
785  * previously allocated.
786  */
787 void ice_sched_clear_agg(struct ice_hw *hw)
788 {
789 	struct ice_sched_agg_info *agg_info;
790 	struct ice_sched_agg_info *atmp;
791 
792 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
793 		struct ice_sched_agg_vsi_info *agg_vsi_info;
794 		struct ice_sched_agg_vsi_info *vtmp;
795 
796 		list_for_each_entry_safe(agg_vsi_info, vtmp,
797 					 &agg_info->agg_vsi_list, list_entry) {
798 			list_del(&agg_vsi_info->list_entry);
799 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
800 		}
801 		list_del(&agg_info->list_entry);
802 		devm_kfree(ice_hw_to_dev(hw), agg_info);
803 	}
804 }
805 
806 /**
807  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
808  * @pi: port information structure
809  *
810  * This function removes all the nodes from HW as well as from SW DB.
811  */
812 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
813 {
814 	if (!pi)
815 		return;
816 	/* remove RL profiles related lists */
817 	ice_sched_clear_rl_prof(pi);
818 	if (pi->root) {
819 		ice_free_sched_node(pi, pi->root);
820 		pi->root = NULL;
821 	}
822 }
823 
824 /**
825  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
826  * @pi: port information structure
827  *
828  * Cleanup scheduling elements from SW DB
829  */
830 void ice_sched_clear_port(struct ice_port_info *pi)
831 {
832 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
833 		return;
834 
835 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
836 	mutex_lock(&pi->sched_lock);
837 	ice_sched_clear_tx_topo(pi);
838 	mutex_unlock(&pi->sched_lock);
839 	mutex_destroy(&pi->sched_lock);
840 }
841 
842 /**
843  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
844  * @hw: pointer to the HW struct
845  *
846  * Cleanup scheduling elements from SW DB for all the ports
847  */
848 void ice_sched_cleanup_all(struct ice_hw *hw)
849 {
850 	if (!hw)
851 		return;
852 
853 	if (hw->layer_info) {
854 		devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
855 		hw->layer_info = NULL;
856 	}
857 
858 	ice_sched_clear_port(hw->port_info);
859 
860 	hw->num_tx_sched_layers = 0;
861 	hw->num_tx_sched_phys_layers = 0;
862 	hw->flattened_layers = 0;
863 	hw->max_cgds = 0;
864 }
865 
866 /**
867  * ice_sched_add_elems - add nodes to HW and SW DB
868  * @pi: port information structure
869  * @tc_node: pointer to the branch node
870  * @parent: pointer to the parent node
871  * @layer: layer number to add nodes
872  * @num_nodes: number of nodes
873  * @num_nodes_added: pointer to num nodes added
874  * @first_node_teid: if new nodes are added then return the TEID of first node
875  *
876  * This function add nodes to HW as well as to SW DB for a given layer
877  */
878 static int
879 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
880 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
881 		    u16 *num_nodes_added, u32 *first_node_teid)
882 {
883 	struct ice_sched_node *prev, *new_node;
884 	struct ice_aqc_add_elem *buf;
885 	u16 i, num_groups_added = 0;
886 	struct ice_hw *hw = pi->hw;
887 	size_t buf_size;
888 	int status = 0;
889 	u32 teid;
890 
891 	buf_size = struct_size(buf, generic, num_nodes);
892 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
893 	if (!buf)
894 		return -ENOMEM;
895 
896 	buf->hdr.parent_teid = parent->info.node_teid;
897 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
898 	for (i = 0; i < num_nodes; i++) {
899 		buf->generic[i].parent_teid = parent->info.node_teid;
900 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
901 		buf->generic[i].data.valid_sections =
902 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
903 			ICE_AQC_ELEM_VALID_EIR;
904 		buf->generic[i].data.generic = 0;
905 		buf->generic[i].data.cir_bw.bw_profile_idx =
906 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
907 		buf->generic[i].data.cir_bw.bw_alloc =
908 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
909 		buf->generic[i].data.eir_bw.bw_profile_idx =
910 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
911 		buf->generic[i].data.eir_bw.bw_alloc =
912 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
913 	}
914 
915 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
916 					&num_groups_added, NULL);
917 	if (status || num_groups_added != 1) {
918 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
919 			  hw->adminq.sq_last_status);
920 		devm_kfree(ice_hw_to_dev(hw), buf);
921 		return -EIO;
922 	}
923 
924 	*num_nodes_added = num_nodes;
925 	/* add nodes to the SW DB */
926 	for (i = 0; i < num_nodes; i++) {
927 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
928 		if (status) {
929 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
930 				  status);
931 			break;
932 		}
933 
934 		teid = le32_to_cpu(buf->generic[i].node_teid);
935 		new_node = ice_sched_find_node_by_teid(parent, teid);
936 		if (!new_node) {
937 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
938 			break;
939 		}
940 
941 		new_node->sibling = NULL;
942 		new_node->tc_num = tc_node->tc_num;
943 
944 		/* add it to previous node sibling pointer */
945 		/* Note: siblings are not linked across branches */
946 		prev = ice_sched_get_first_node(pi, tc_node, layer);
947 		if (prev && prev != new_node) {
948 			while (prev->sibling)
949 				prev = prev->sibling;
950 			prev->sibling = new_node;
951 		}
952 
953 		/* initialize the sibling head */
954 		if (!pi->sib_head[tc_node->tc_num][layer])
955 			pi->sib_head[tc_node->tc_num][layer] = new_node;
956 
957 		if (i == 0)
958 			*first_node_teid = teid;
959 	}
960 
961 	devm_kfree(ice_hw_to_dev(hw), buf);
962 	return status;
963 }
964 
965 /**
966  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
967  * @pi: port information structure
968  * @tc_node: pointer to TC node
969  * @parent: pointer to parent node
970  * @layer: layer number to add nodes
971  * @num_nodes: number of nodes to be added
972  * @first_node_teid: pointer to the first node TEID
973  * @num_nodes_added: pointer to number of nodes added
974  *
975  * Add nodes into specific HW layer.
976  */
977 static int
978 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
979 				struct ice_sched_node *tc_node,
980 				struct ice_sched_node *parent, u8 layer,
981 				u16 num_nodes, u32 *first_node_teid,
982 				u16 *num_nodes_added)
983 {
984 	u16 max_child_nodes;
985 
986 	*num_nodes_added = 0;
987 
988 	if (!num_nodes)
989 		return 0;
990 
991 	if (!parent || layer < pi->hw->sw_entry_point_layer)
992 		return -EINVAL;
993 
994 	/* max children per node per layer */
995 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
996 
997 	/* current number of children + required nodes exceed max children */
998 	if ((parent->num_children + num_nodes) > max_child_nodes) {
999 		/* Fail if the parent is a TC node */
1000 		if (parent == tc_node)
1001 			return -EIO;
1002 		return -ENOSPC;
1003 	}
1004 
1005 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1006 				   num_nodes_added, first_node_teid);
1007 }
1008 
1009 /**
1010  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1011  * @pi: port information structure
1012  * @tc_node: pointer to TC node
1013  * @parent: pointer to parent node
1014  * @layer: layer number to add nodes
1015  * @num_nodes: number of nodes to be added
1016  * @first_node_teid: pointer to the first node TEID
1017  * @num_nodes_added: pointer to number of nodes added
1018  *
1019  * This function add nodes to a given layer.
1020  */
1021 static int
1022 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1023 			     struct ice_sched_node *tc_node,
1024 			     struct ice_sched_node *parent, u8 layer,
1025 			     u16 num_nodes, u32 *first_node_teid,
1026 			     u16 *num_nodes_added)
1027 {
1028 	u32 *first_teid_ptr = first_node_teid;
1029 	u16 new_num_nodes = num_nodes;
1030 	int status = 0;
1031 
1032 	*num_nodes_added = 0;
1033 	while (*num_nodes_added < num_nodes) {
1034 		u16 max_child_nodes, num_added = 0;
1035 		/* cppcheck-suppress unusedVariable */
1036 		u32 temp;
1037 
1038 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1039 							 layer,	new_num_nodes,
1040 							 first_teid_ptr,
1041 							 &num_added);
1042 		if (!status)
1043 			*num_nodes_added += num_added;
1044 		/* added more nodes than requested ? */
1045 		if (*num_nodes_added > num_nodes) {
1046 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1047 				  *num_nodes_added);
1048 			status = -EIO;
1049 			break;
1050 		}
1051 		/* break if all the nodes are added successfully */
1052 		if (!status && (*num_nodes_added == num_nodes))
1053 			break;
1054 		/* break if the error is not max limit */
1055 		if (status && status != -ENOSPC)
1056 			break;
1057 		/* Exceeded the max children */
1058 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1059 		/* utilize all the spaces if the parent is not full */
1060 		if (parent->num_children < max_child_nodes) {
1061 			new_num_nodes = max_child_nodes - parent->num_children;
1062 		} else {
1063 			/* This parent is full, try the next sibling */
1064 			parent = parent->sibling;
1065 			/* Don't modify the first node TEID memory if the
1066 			 * first node was added already in the above call.
1067 			 * Instead send some temp memory for all other
1068 			 * recursive calls.
1069 			 */
1070 			if (num_added)
1071 				first_teid_ptr = &temp;
1072 
1073 			new_num_nodes = num_nodes - *num_nodes_added;
1074 		}
1075 	}
1076 	return status;
1077 }
1078 
1079 /**
1080  * ice_sched_get_qgrp_layer - get the current queue group layer number
1081  * @hw: pointer to the HW struct
1082  *
1083  * This function returns the current queue group layer number
1084  */
1085 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1086 {
1087 	/* It's always total layers - 1, the array is 0 relative so -2 */
1088 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1089 }
1090 
1091 /**
1092  * ice_sched_get_vsi_layer - get the current VSI layer number
1093  * @hw: pointer to the HW struct
1094  *
1095  * This function returns the current VSI layer number
1096  */
1097 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1098 {
1099 	/* Num Layers       VSI layer
1100 	 *     9               6
1101 	 *     7               4
1102 	 *     5 or less       sw_entry_point_layer
1103 	 */
1104 	/* calculate the VSI layer based on number of layers. */
1105 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1106 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1107 
1108 		if (layer > hw->sw_entry_point_layer)
1109 			return layer;
1110 	}
1111 	return hw->sw_entry_point_layer;
1112 }
1113 
1114 /**
1115  * ice_sched_get_agg_layer - get the current aggregator layer number
1116  * @hw: pointer to the HW struct
1117  *
1118  * This function returns the current aggregator layer number
1119  */
1120 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1121 {
1122 	/* Num Layers       aggregator layer
1123 	 *     9               4
1124 	 *     7 or less       sw_entry_point_layer
1125 	 */
1126 	/* calculate the aggregator layer based on number of layers. */
1127 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1128 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1129 
1130 		if (layer > hw->sw_entry_point_layer)
1131 			return layer;
1132 	}
1133 	return hw->sw_entry_point_layer;
1134 }
1135 
1136 /**
1137  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1138  * @pi: port information structure
1139  *
1140  * This function removes the leaf node that was created by the FW
1141  * during initialization
1142  */
1143 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1144 {
1145 	struct ice_sched_node *node;
1146 
1147 	node = pi->root;
1148 	while (node) {
1149 		if (!node->num_children)
1150 			break;
1151 		node = node->children[0];
1152 	}
1153 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1154 		u32 teid = le32_to_cpu(node->info.node_teid);
1155 		int status;
1156 
1157 		/* remove the default leaf node */
1158 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1159 		if (!status)
1160 			ice_free_sched_node(pi, node);
1161 	}
1162 }
1163 
1164 /**
1165  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1166  * @pi: port information structure
1167  *
1168  * This function frees all the nodes except root and TC that were created by
1169  * the FW during initialization
1170  */
1171 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1172 {
1173 	struct ice_sched_node *node;
1174 
1175 	ice_rm_dflt_leaf_node(pi);
1176 
1177 	/* remove the default nodes except TC and root nodes */
1178 	node = pi->root;
1179 	while (node) {
1180 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1181 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1182 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1183 			ice_free_sched_node(pi, node);
1184 			break;
1185 		}
1186 
1187 		if (!node->num_children)
1188 			break;
1189 		node = node->children[0];
1190 	}
1191 }
1192 
1193 /**
1194  * ice_sched_init_port - Initialize scheduler by querying information from FW
1195  * @pi: port info structure for the tree to cleanup
1196  *
1197  * This function is the initial call to find the total number of Tx scheduler
1198  * resources, default topology created by firmware and storing the information
1199  * in SW DB.
1200  */
1201 int ice_sched_init_port(struct ice_port_info *pi)
1202 {
1203 	struct ice_aqc_get_topo_elem *buf;
1204 	struct ice_hw *hw;
1205 	u8 num_branches;
1206 	u16 num_elems;
1207 	int status;
1208 	u8 i, j;
1209 
1210 	if (!pi)
1211 		return -EINVAL;
1212 	hw = pi->hw;
1213 
1214 	/* Query the Default Topology from FW */
1215 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1216 	if (!buf)
1217 		return -ENOMEM;
1218 
1219 	/* Query default scheduling tree topology */
1220 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1221 				      &num_branches, NULL);
1222 	if (status)
1223 		goto err_init_port;
1224 
1225 	/* num_branches should be between 1-8 */
1226 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1227 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1228 			  num_branches);
1229 		status = -EINVAL;
1230 		goto err_init_port;
1231 	}
1232 
1233 	/* get the number of elements on the default/first branch */
1234 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1235 
1236 	/* num_elems should always be between 1-9 */
1237 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1238 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1239 			  num_elems);
1240 		status = -EINVAL;
1241 		goto err_init_port;
1242 	}
1243 
1244 	/* If the last node is a leaf node then the index of the queue group
1245 	 * layer is two less than the number of elements.
1246 	 */
1247 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1248 	    ICE_AQC_ELEM_TYPE_LEAF)
1249 		pi->last_node_teid =
1250 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1251 	else
1252 		pi->last_node_teid =
1253 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1254 
1255 	/* Insert the Tx Sched root node */
1256 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1257 	if (status)
1258 		goto err_init_port;
1259 
1260 	/* Parse the default tree and cache the information */
1261 	for (i = 0; i < num_branches; i++) {
1262 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1263 
1264 		/* Skip root element as already inserted */
1265 		for (j = 1; j < num_elems; j++) {
1266 			/* update the sw entry point */
1267 			if (buf[0].generic[j].data.elem_type ==
1268 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1269 				hw->sw_entry_point_layer = j;
1270 
1271 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1272 			if (status)
1273 				goto err_init_port;
1274 		}
1275 	}
1276 
1277 	/* Remove the default nodes. */
1278 	if (pi->root)
1279 		ice_sched_rm_dflt_nodes(pi);
1280 
1281 	/* initialize the port for handling the scheduler tree */
1282 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1283 	mutex_init(&pi->sched_lock);
1284 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1285 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1286 
1287 err_init_port:
1288 	if (status && pi->root) {
1289 		ice_free_sched_node(pi, pi->root);
1290 		pi->root = NULL;
1291 	}
1292 
1293 	kfree(buf);
1294 	return status;
1295 }
1296 
1297 /**
1298  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1299  * @hw: pointer to the HW struct
1300  *
1301  * query FW for allocated scheduler resources and store in HW struct
1302  */
1303 int ice_sched_query_res_alloc(struct ice_hw *hw)
1304 {
1305 	struct ice_aqc_query_txsched_res_resp *buf;
1306 	__le16 max_sibl;
1307 	int status = 0;
1308 	u16 i;
1309 
1310 	if (hw->layer_info)
1311 		return status;
1312 
1313 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1314 	if (!buf)
1315 		return -ENOMEM;
1316 
1317 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1318 	if (status)
1319 		goto sched_query_out;
1320 
1321 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1322 	hw->num_tx_sched_phys_layers =
1323 		le16_to_cpu(buf->sched_props.phys_levels);
1324 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1325 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1326 
1327 	/* max sibling group size of current layer refers to the max children
1328 	 * of the below layer node.
1329 	 * layer 1 node max children will be layer 2 max sibling group size
1330 	 * layer 2 node max children will be layer 3 max sibling group size
1331 	 * and so on. This array will be populated from root (index 0) to
1332 	 * qgroup layer 7. Leaf node has no children.
1333 	 */
1334 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1335 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1336 		hw->max_children[i] = le16_to_cpu(max_sibl);
1337 	}
1338 
1339 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1340 				      (hw->num_tx_sched_layers *
1341 				       sizeof(*hw->layer_info)),
1342 				      GFP_KERNEL);
1343 	if (!hw->layer_info) {
1344 		status = -ENOMEM;
1345 		goto sched_query_out;
1346 	}
1347 
1348 sched_query_out:
1349 	devm_kfree(ice_hw_to_dev(hw), buf);
1350 	return status;
1351 }
1352 
1353 /**
1354  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1355  * @hw: pointer to the HW struct
1356  *
1357  * Determine the PSM clock frequency and store in HW struct
1358  */
1359 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1360 {
1361 	u32 val, clk_src;
1362 
1363 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1364 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1365 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1366 
1367 #define PSM_CLK_SRC_367_MHZ 0x0
1368 #define PSM_CLK_SRC_416_MHZ 0x1
1369 #define PSM_CLK_SRC_446_MHZ 0x2
1370 #define PSM_CLK_SRC_390_MHZ 0x3
1371 
1372 	switch (clk_src) {
1373 	case PSM_CLK_SRC_367_MHZ:
1374 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1375 		break;
1376 	case PSM_CLK_SRC_416_MHZ:
1377 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1378 		break;
1379 	case PSM_CLK_SRC_446_MHZ:
1380 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1381 		break;
1382 	case PSM_CLK_SRC_390_MHZ:
1383 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1384 		break;
1385 	default:
1386 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1387 			  clk_src);
1388 		/* fall back to a safe default */
1389 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1390 	}
1391 }
1392 
1393 /**
1394  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1395  * @hw: pointer to the HW struct
1396  * @base: pointer to the base node
1397  * @node: pointer to the node to search
1398  *
1399  * This function checks whether a given node is part of the base node
1400  * subtree or not
1401  */
1402 static bool
1403 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1404 			       struct ice_sched_node *node)
1405 {
1406 	u8 i;
1407 
1408 	for (i = 0; i < base->num_children; i++) {
1409 		struct ice_sched_node *child = base->children[i];
1410 
1411 		if (node == child)
1412 			return true;
1413 
1414 		if (child->tx_sched_layer > node->tx_sched_layer)
1415 			return false;
1416 
1417 		/* this recursion is intentional, and wouldn't
1418 		 * go more than 8 calls
1419 		 */
1420 		if (ice_sched_find_node_in_subtree(hw, child, node))
1421 			return true;
1422 	}
1423 	return false;
1424 }
1425 
1426 /**
1427  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1428  * @pi: port information structure
1429  * @vsi_node: software VSI handle
1430  * @qgrp_node: first queue group node identified for scanning
1431  * @owner: LAN or RDMA
1432  *
1433  * This function retrieves a free LAN or RDMA queue group node by scanning
1434  * qgrp_node and its siblings for the queue group with the fewest number
1435  * of queues currently assigned.
1436  */
1437 static struct ice_sched_node *
1438 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1439 			struct ice_sched_node *vsi_node,
1440 			struct ice_sched_node *qgrp_node, u8 owner)
1441 {
1442 	struct ice_sched_node *min_qgrp;
1443 	u8 min_children;
1444 
1445 	if (!qgrp_node)
1446 		return qgrp_node;
1447 	min_children = qgrp_node->num_children;
1448 	if (!min_children)
1449 		return qgrp_node;
1450 	min_qgrp = qgrp_node;
1451 	/* scan all queue groups until find a node which has less than the
1452 	 * minimum number of children. This way all queue group nodes get
1453 	 * equal number of shares and active. The bandwidth will be equally
1454 	 * distributed across all queues.
1455 	 */
1456 	while (qgrp_node) {
1457 		/* make sure the qgroup node is part of the VSI subtree */
1458 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1459 			if (qgrp_node->num_children < min_children &&
1460 			    qgrp_node->owner == owner) {
1461 				/* replace the new min queue group node */
1462 				min_qgrp = qgrp_node;
1463 				min_children = min_qgrp->num_children;
1464 				/* break if it has no children, */
1465 				if (!min_children)
1466 					break;
1467 			}
1468 		qgrp_node = qgrp_node->sibling;
1469 	}
1470 	return min_qgrp;
1471 }
1472 
1473 /**
1474  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1475  * @pi: port information structure
1476  * @vsi_handle: software VSI handle
1477  * @tc: branch number
1478  * @owner: LAN or RDMA
1479  *
1480  * This function retrieves a free LAN or RDMA queue group node
1481  */
1482 struct ice_sched_node *
1483 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1484 			   u8 owner)
1485 {
1486 	struct ice_sched_node *vsi_node, *qgrp_node;
1487 	struct ice_vsi_ctx *vsi_ctx;
1488 	u16 max_children;
1489 	u8 qgrp_layer;
1490 
1491 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1492 	max_children = pi->hw->max_children[qgrp_layer];
1493 
1494 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1495 	if (!vsi_ctx)
1496 		return NULL;
1497 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1498 	/* validate invalid VSI ID */
1499 	if (!vsi_node)
1500 		return NULL;
1501 
1502 	/* get the first queue group node from VSI sub-tree */
1503 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1504 	while (qgrp_node) {
1505 		/* make sure the qgroup node is part of the VSI subtree */
1506 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1507 			if (qgrp_node->num_children < max_children &&
1508 			    qgrp_node->owner == owner)
1509 				break;
1510 		qgrp_node = qgrp_node->sibling;
1511 	}
1512 
1513 	/* Select the best queue group */
1514 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1515 }
1516 
1517 /**
1518  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1519  * @pi: pointer to the port information structure
1520  * @tc_node: pointer to the TC node
1521  * @vsi_handle: software VSI handle
1522  *
1523  * This function retrieves a VSI node for a given VSI ID from a given
1524  * TC branch
1525  */
1526 static struct ice_sched_node *
1527 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1528 		       u16 vsi_handle)
1529 {
1530 	struct ice_sched_node *node;
1531 	u8 vsi_layer;
1532 
1533 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1534 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1535 
1536 	/* Check whether it already exists */
1537 	while (node) {
1538 		if (node->vsi_handle == vsi_handle)
1539 			return node;
1540 		node = node->sibling;
1541 	}
1542 
1543 	return node;
1544 }
1545 
1546 /**
1547  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1548  * @pi: pointer to the port information structure
1549  * @tc_node: pointer to the TC node
1550  * @agg_id: aggregator ID
1551  *
1552  * This function retrieves an aggregator node for a given aggregator ID from
1553  * a given TC branch
1554  */
1555 static struct ice_sched_node *
1556 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1557 		       u32 agg_id)
1558 {
1559 	struct ice_sched_node *node;
1560 	struct ice_hw *hw = pi->hw;
1561 	u8 agg_layer;
1562 
1563 	if (!hw)
1564 		return NULL;
1565 	agg_layer = ice_sched_get_agg_layer(hw);
1566 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1567 
1568 	/* Check whether it already exists */
1569 	while (node) {
1570 		if (node->agg_id == agg_id)
1571 			return node;
1572 		node = node->sibling;
1573 	}
1574 
1575 	return node;
1576 }
1577 
1578 /**
1579  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1580  * @hw: pointer to the HW struct
1581  * @num_qs: number of queues
1582  * @num_nodes: num nodes array
1583  *
1584  * This function calculates the number of VSI child nodes based on the
1585  * number of queues.
1586  */
1587 static void
1588 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1589 {
1590 	u16 num = num_qs;
1591 	u8 i, qgl, vsil;
1592 
1593 	qgl = ice_sched_get_qgrp_layer(hw);
1594 	vsil = ice_sched_get_vsi_layer(hw);
1595 
1596 	/* calculate num nodes from queue group to VSI layer */
1597 	for (i = qgl; i > vsil; i--) {
1598 		/* round to the next integer if there is a remainder */
1599 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1600 
1601 		/* need at least one node */
1602 		num_nodes[i] = num ? num : 1;
1603 	}
1604 }
1605 
1606 /**
1607  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1608  * @pi: port information structure
1609  * @vsi_handle: software VSI handle
1610  * @tc_node: pointer to the TC node
1611  * @num_nodes: pointer to the num nodes that needs to be added per layer
1612  * @owner: node owner (LAN or RDMA)
1613  *
1614  * This function adds the VSI child nodes to tree. It gets called for
1615  * LAN and RDMA separately.
1616  */
1617 static int
1618 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1619 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1620 			      u8 owner)
1621 {
1622 	struct ice_sched_node *parent, *node;
1623 	struct ice_hw *hw = pi->hw;
1624 	u32 first_node_teid;
1625 	u16 num_added = 0;
1626 	u8 i, qgl, vsil;
1627 	int status;
1628 
1629 	qgl = ice_sched_get_qgrp_layer(hw);
1630 	vsil = ice_sched_get_vsi_layer(hw);
1631 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1632 	for (i = vsil + 1; i <= qgl; i++) {
1633 		if (!parent)
1634 			return -EIO;
1635 
1636 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1637 						      num_nodes[i],
1638 						      &first_node_teid,
1639 						      &num_added);
1640 		if (status || num_nodes[i] != num_added)
1641 			return -EIO;
1642 
1643 		/* The newly added node can be a new parent for the next
1644 		 * layer nodes
1645 		 */
1646 		if (num_added) {
1647 			parent = ice_sched_find_node_by_teid(tc_node,
1648 							     first_node_teid);
1649 			node = parent;
1650 			while (node) {
1651 				node->owner = owner;
1652 				node = node->sibling;
1653 			}
1654 		} else {
1655 			parent = parent->children[0];
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1664  * @pi: pointer to the port info structure
1665  * @tc_node: pointer to TC node
1666  * @num_nodes: pointer to num nodes array
1667  *
1668  * This function calculates the number of supported nodes needed to add this
1669  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1670  * layers
1671  */
1672 static void
1673 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1674 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1675 {
1676 	struct ice_sched_node *node;
1677 	u8 vsil;
1678 	int i;
1679 
1680 	vsil = ice_sched_get_vsi_layer(pi->hw);
1681 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1682 		/* Add intermediate nodes if TC has no children and
1683 		 * need at least one node for VSI
1684 		 */
1685 		if (!tc_node->num_children || i == vsil) {
1686 			num_nodes[i]++;
1687 		} else {
1688 			/* If intermediate nodes are reached max children
1689 			 * then add a new one.
1690 			 */
1691 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1692 			/* scan all the siblings */
1693 			while (node) {
1694 				if (node->num_children < pi->hw->max_children[i])
1695 					break;
1696 				node = node->sibling;
1697 			}
1698 
1699 			/* tree has one intermediate node to add this new VSI.
1700 			 * So no need to calculate supported nodes for below
1701 			 * layers.
1702 			 */
1703 			if (node)
1704 				break;
1705 			/* all the nodes are full, allocate a new one */
1706 			num_nodes[i]++;
1707 		}
1708 }
1709 
1710 /**
1711  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1712  * @pi: port information structure
1713  * @vsi_handle: software VSI handle
1714  * @tc_node: pointer to TC node
1715  * @num_nodes: pointer to num nodes array
1716  *
1717  * This function adds the VSI supported nodes into Tx tree including the
1718  * VSI, its parent and intermediate nodes in below layers
1719  */
1720 static int
1721 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1722 				struct ice_sched_node *tc_node, u16 *num_nodes)
1723 {
1724 	struct ice_sched_node *parent = tc_node;
1725 	u32 first_node_teid;
1726 	u16 num_added = 0;
1727 	u8 i, vsil;
1728 	int status;
1729 
1730 	if (!pi)
1731 		return -EINVAL;
1732 
1733 	vsil = ice_sched_get_vsi_layer(pi->hw);
1734 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1735 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1736 						      i, num_nodes[i],
1737 						      &first_node_teid,
1738 						      &num_added);
1739 		if (status || num_nodes[i] != num_added)
1740 			return -EIO;
1741 
1742 		/* The newly added node can be a new parent for the next
1743 		 * layer nodes
1744 		 */
1745 		if (num_added)
1746 			parent = ice_sched_find_node_by_teid(tc_node,
1747 							     first_node_teid);
1748 		else
1749 			parent = parent->children[0];
1750 
1751 		if (!parent)
1752 			return -EIO;
1753 
1754 		if (i == vsil)
1755 			parent->vsi_handle = vsi_handle;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /**
1762  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1763  * @pi: port information structure
1764  * @vsi_handle: software VSI handle
1765  * @tc: TC number
1766  *
1767  * This function adds a new VSI into scheduler tree
1768  */
1769 static int
1770 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1771 {
1772 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1773 	struct ice_sched_node *tc_node;
1774 
1775 	tc_node = ice_sched_get_tc_node(pi, tc);
1776 	if (!tc_node)
1777 		return -EINVAL;
1778 
1779 	/* calculate number of supported nodes needed for this VSI */
1780 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1781 
1782 	/* add VSI supported nodes to TC subtree */
1783 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1784 					       num_nodes);
1785 }
1786 
1787 /**
1788  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1789  * @pi: port information structure
1790  * @vsi_handle: software VSI handle
1791  * @tc: TC number
1792  * @new_numqs: new number of max queues
1793  * @owner: owner of this subtree
1794  *
1795  * This function updates the VSI child nodes based on the number of queues
1796  */
1797 static int
1798 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1799 				 u8 tc, u16 new_numqs, u8 owner)
1800 {
1801 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1802 	struct ice_sched_node *vsi_node;
1803 	struct ice_sched_node *tc_node;
1804 	struct ice_vsi_ctx *vsi_ctx;
1805 	struct ice_hw *hw = pi->hw;
1806 	u16 prev_numqs;
1807 	int status = 0;
1808 
1809 	tc_node = ice_sched_get_tc_node(pi, tc);
1810 	if (!tc_node)
1811 		return -EIO;
1812 
1813 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1814 	if (!vsi_node)
1815 		return -EIO;
1816 
1817 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1818 	if (!vsi_ctx)
1819 		return -EINVAL;
1820 
1821 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1822 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1823 	else
1824 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1825 	/* num queues are not changed or less than the previous number */
1826 	if (new_numqs <= prev_numqs)
1827 		return status;
1828 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1829 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1830 		if (status)
1831 			return status;
1832 	} else {
1833 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1834 		if (status)
1835 			return status;
1836 	}
1837 
1838 	if (new_numqs)
1839 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1840 	/* Keep the max number of queue configuration all the time. Update the
1841 	 * tree only if number of queues > previous number of queues. This may
1842 	 * leave some extra nodes in the tree if number of queues < previous
1843 	 * number but that wouldn't harm anything. Removing those extra nodes
1844 	 * may complicate the code if those nodes are part of SRL or
1845 	 * individually rate limited.
1846 	 */
1847 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1848 					       new_num_nodes, owner);
1849 	if (status)
1850 		return status;
1851 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1852 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1853 	else
1854 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1855 
1856 	return 0;
1857 }
1858 
1859 /**
1860  * ice_sched_cfg_vsi - configure the new/existing VSI
1861  * @pi: port information structure
1862  * @vsi_handle: software VSI handle
1863  * @tc: TC number
1864  * @maxqs: max number of queues
1865  * @owner: LAN or RDMA
1866  * @enable: TC enabled or disabled
1867  *
1868  * This function adds/updates VSI nodes based on the number of queues. If TC is
1869  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1870  * disabled then suspend the VSI if it is not already.
1871  */
1872 int
1873 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1874 		  u8 owner, bool enable)
1875 {
1876 	struct ice_sched_node *vsi_node, *tc_node;
1877 	struct ice_vsi_ctx *vsi_ctx;
1878 	struct ice_hw *hw = pi->hw;
1879 	int status = 0;
1880 
1881 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1882 	tc_node = ice_sched_get_tc_node(pi, tc);
1883 	if (!tc_node)
1884 		return -EINVAL;
1885 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1886 	if (!vsi_ctx)
1887 		return -EINVAL;
1888 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1889 
1890 	/* suspend the VSI if TC is not enabled */
1891 	if (!enable) {
1892 		if (vsi_node && vsi_node->in_use) {
1893 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1894 
1895 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1896 								true);
1897 			if (!status)
1898 				vsi_node->in_use = false;
1899 		}
1900 		return status;
1901 	}
1902 
1903 	/* TC is enabled, if it is a new VSI then add it to the tree */
1904 	if (!vsi_node) {
1905 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1906 		if (status)
1907 			return status;
1908 
1909 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1910 		if (!vsi_node)
1911 			return -EIO;
1912 
1913 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1914 		vsi_node->in_use = true;
1915 		/* invalidate the max queues whenever VSI gets added first time
1916 		 * into the scheduler tree (boot or after reset). We need to
1917 		 * recreate the child nodes all the time in these cases.
1918 		 */
1919 		vsi_ctx->sched.max_lanq[tc] = 0;
1920 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1921 	}
1922 
1923 	/* update the VSI child nodes */
1924 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1925 						  owner);
1926 	if (status)
1927 		return status;
1928 
1929 	/* TC is enabled, resume the VSI if it is in the suspend state */
1930 	if (!vsi_node->in_use) {
1931 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1932 
1933 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1934 		if (!status)
1935 			vsi_node->in_use = true;
1936 	}
1937 
1938 	return status;
1939 }
1940 
1941 /**
1942  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1943  * @pi: port information structure
1944  * @vsi_handle: software VSI handle
1945  *
1946  * This function removes single aggregator VSI info entry from
1947  * aggregator list.
1948  */
1949 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1950 {
1951 	struct ice_sched_agg_info *agg_info;
1952 	struct ice_sched_agg_info *atmp;
1953 
1954 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1955 				 list_entry) {
1956 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1957 		struct ice_sched_agg_vsi_info *vtmp;
1958 
1959 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1960 					 &agg_info->agg_vsi_list, list_entry)
1961 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1962 				list_del(&agg_vsi_info->list_entry);
1963 				devm_kfree(ice_hw_to_dev(pi->hw),
1964 					   agg_vsi_info);
1965 				return;
1966 			}
1967 	}
1968 }
1969 
1970 /**
1971  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1972  * @node: pointer to the sub-tree node
1973  *
1974  * This function checks for a leaf node presence in a given sub-tree node.
1975  */
1976 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1977 {
1978 	u8 i;
1979 
1980 	for (i = 0; i < node->num_children; i++)
1981 		if (ice_sched_is_leaf_node_present(node->children[i]))
1982 			return true;
1983 	/* check for a leaf node */
1984 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1985 }
1986 
1987 /**
1988  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1989  * @pi: port information structure
1990  * @vsi_handle: software VSI handle
1991  * @owner: LAN or RDMA
1992  *
1993  * This function removes the VSI and its LAN or RDMA children nodes from the
1994  * scheduler tree.
1995  */
1996 static int
1997 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1998 {
1999 	struct ice_vsi_ctx *vsi_ctx;
2000 	int status = -EINVAL;
2001 	u8 i;
2002 
2003 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2004 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2005 		return status;
2006 	mutex_lock(&pi->sched_lock);
2007 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2008 	if (!vsi_ctx)
2009 		goto exit_sched_rm_vsi_cfg;
2010 
2011 	ice_for_each_traffic_class(i) {
2012 		struct ice_sched_node *vsi_node, *tc_node;
2013 		u8 j = 0;
2014 
2015 		tc_node = ice_sched_get_tc_node(pi, i);
2016 		if (!tc_node)
2017 			continue;
2018 
2019 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2020 		if (!vsi_node)
2021 			continue;
2022 
2023 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2024 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2025 			status = -EBUSY;
2026 			goto exit_sched_rm_vsi_cfg;
2027 		}
2028 		while (j < vsi_node->num_children) {
2029 			if (vsi_node->children[j]->owner == owner) {
2030 				ice_free_sched_node(pi, vsi_node->children[j]);
2031 
2032 				/* reset the counter again since the num
2033 				 * children will be updated after node removal
2034 				 */
2035 				j = 0;
2036 			} else {
2037 				j++;
2038 			}
2039 		}
2040 		/* remove the VSI if it has no children */
2041 		if (!vsi_node->num_children) {
2042 			ice_free_sched_node(pi, vsi_node);
2043 			vsi_ctx->sched.vsi_node[i] = NULL;
2044 
2045 			/* clean up aggregator related VSI info if any */
2046 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2047 		}
2048 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2049 			vsi_ctx->sched.max_lanq[i] = 0;
2050 		else
2051 			vsi_ctx->sched.max_rdmaq[i] = 0;
2052 	}
2053 	status = 0;
2054 
2055 exit_sched_rm_vsi_cfg:
2056 	mutex_unlock(&pi->sched_lock);
2057 	return status;
2058 }
2059 
2060 /**
2061  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2062  * @pi: port information structure
2063  * @vsi_handle: software VSI handle
2064  *
2065  * This function clears the VSI and its LAN children nodes from scheduler tree
2066  * for all TCs.
2067  */
2068 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2069 {
2070 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2071 }
2072 
2073 /**
2074  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2075  * @pi: port information structure
2076  * @vsi_handle: software VSI handle
2077  *
2078  * This function clears the VSI and its RDMA children nodes from scheduler tree
2079  * for all TCs.
2080  */
2081 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2082 {
2083 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2084 }
2085 
2086 /**
2087  * ice_get_agg_info - get the aggregator ID
2088  * @hw: pointer to the hardware structure
2089  * @agg_id: aggregator ID
2090  *
2091  * This function validates aggregator ID. The function returns info if
2092  * aggregator ID is present in list otherwise it returns null.
2093  */
2094 static struct ice_sched_agg_info *
2095 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2096 {
2097 	struct ice_sched_agg_info *agg_info;
2098 
2099 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2100 		if (agg_info->agg_id == agg_id)
2101 			return agg_info;
2102 
2103 	return NULL;
2104 }
2105 
2106 /**
2107  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2108  * @hw: pointer to the HW struct
2109  * @node: pointer to a child node
2110  * @num_nodes: num nodes count array
2111  *
2112  * This function walks through the aggregator subtree to find a free parent
2113  * node
2114  */
2115 static struct ice_sched_node *
2116 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2117 			      u16 *num_nodes)
2118 {
2119 	u8 l = node->tx_sched_layer;
2120 	u8 vsil, i;
2121 
2122 	vsil = ice_sched_get_vsi_layer(hw);
2123 
2124 	/* Is it VSI parent layer ? */
2125 	if (l == vsil - 1)
2126 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2127 
2128 	/* We have intermediate nodes. Let's walk through the subtree. If the
2129 	 * intermediate node has space to add a new node then clear the count
2130 	 */
2131 	if (node->num_children < hw->max_children[l])
2132 		num_nodes[l] = 0;
2133 	/* The below recursive call is intentional and wouldn't go more than
2134 	 * 2 or 3 iterations.
2135 	 */
2136 
2137 	for (i = 0; i < node->num_children; i++) {
2138 		struct ice_sched_node *parent;
2139 
2140 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2141 						       num_nodes);
2142 		if (parent)
2143 			return parent;
2144 	}
2145 
2146 	return NULL;
2147 }
2148 
2149 /**
2150  * ice_sched_update_parent - update the new parent in SW DB
2151  * @new_parent: pointer to a new parent node
2152  * @node: pointer to a child node
2153  *
2154  * This function removes the child from the old parent and adds it to a new
2155  * parent
2156  */
2157 static void
2158 ice_sched_update_parent(struct ice_sched_node *new_parent,
2159 			struct ice_sched_node *node)
2160 {
2161 	struct ice_sched_node *old_parent;
2162 	u8 i, j;
2163 
2164 	old_parent = node->parent;
2165 
2166 	/* update the old parent children */
2167 	for (i = 0; i < old_parent->num_children; i++)
2168 		if (old_parent->children[i] == node) {
2169 			for (j = i + 1; j < old_parent->num_children; j++)
2170 				old_parent->children[j - 1] =
2171 					old_parent->children[j];
2172 			old_parent->num_children--;
2173 			break;
2174 		}
2175 
2176 	/* now move the node to a new parent */
2177 	new_parent->children[new_parent->num_children++] = node;
2178 	node->parent = new_parent;
2179 	node->info.parent_teid = new_parent->info.node_teid;
2180 }
2181 
2182 /**
2183  * ice_sched_move_nodes - move child nodes to a given parent
2184  * @pi: port information structure
2185  * @parent: pointer to parent node
2186  * @num_items: number of child nodes to be moved
2187  * @list: pointer to child node teids
2188  *
2189  * This function move the child nodes to a given parent.
2190  */
2191 static int
2192 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2193 		     u16 num_items, u32 *list)
2194 {
2195 	struct ice_aqc_move_elem *buf;
2196 	struct ice_sched_node *node;
2197 	u16 i, grps_movd = 0;
2198 	struct ice_hw *hw;
2199 	int status = 0;
2200 	u16 buf_len;
2201 
2202 	hw = pi->hw;
2203 
2204 	if (!parent || !num_items)
2205 		return -EINVAL;
2206 
2207 	/* Does parent have enough space */
2208 	if (parent->num_children + num_items >
2209 	    hw->max_children[parent->tx_sched_layer])
2210 		return -ENOSPC;
2211 
2212 	buf_len = struct_size(buf, teid, 1);
2213 	buf = kzalloc(buf_len, GFP_KERNEL);
2214 	if (!buf)
2215 		return -ENOMEM;
2216 
2217 	for (i = 0; i < num_items; i++) {
2218 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2219 		if (!node) {
2220 			status = -EINVAL;
2221 			goto move_err_exit;
2222 		}
2223 
2224 		buf->hdr.src_parent_teid = node->info.parent_teid;
2225 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2226 		buf->teid[0] = node->info.node_teid;
2227 		buf->hdr.num_elems = cpu_to_le16(1);
2228 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2229 						 &grps_movd, NULL);
2230 		if (status && grps_movd != 1) {
2231 			status = -EIO;
2232 			goto move_err_exit;
2233 		}
2234 
2235 		/* update the SW DB */
2236 		ice_sched_update_parent(parent, node);
2237 	}
2238 
2239 move_err_exit:
2240 	kfree(buf);
2241 	return status;
2242 }
2243 
2244 /**
2245  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2246  * @pi: port information structure
2247  * @vsi_handle: software VSI handle
2248  * @agg_id: aggregator ID
2249  * @tc: TC number
2250  *
2251  * This function moves a VSI to an aggregator node or its subtree.
2252  * Intermediate nodes may be created if required.
2253  */
2254 static int
2255 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2256 			  u8 tc)
2257 {
2258 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2259 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2260 	u32 first_node_teid, vsi_teid;
2261 	u16 num_nodes_added;
2262 	u8 aggl, vsil, i;
2263 	int status;
2264 
2265 	tc_node = ice_sched_get_tc_node(pi, tc);
2266 	if (!tc_node)
2267 		return -EIO;
2268 
2269 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2270 	if (!agg_node)
2271 		return -ENOENT;
2272 
2273 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2274 	if (!vsi_node)
2275 		return -ENOENT;
2276 
2277 	/* Is this VSI already part of given aggregator? */
2278 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2279 		return 0;
2280 
2281 	aggl = ice_sched_get_agg_layer(pi->hw);
2282 	vsil = ice_sched_get_vsi_layer(pi->hw);
2283 
2284 	/* set intermediate node count to 1 between aggregator and VSI layers */
2285 	for (i = aggl + 1; i < vsil; i++)
2286 		num_nodes[i] = 1;
2287 
2288 	/* Check if the aggregator subtree has any free node to add the VSI */
2289 	for (i = 0; i < agg_node->num_children; i++) {
2290 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2291 						       agg_node->children[i],
2292 						       num_nodes);
2293 		if (parent)
2294 			goto move_nodes;
2295 	}
2296 
2297 	/* add new nodes */
2298 	parent = agg_node;
2299 	for (i = aggl + 1; i < vsil; i++) {
2300 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2301 						      num_nodes[i],
2302 						      &first_node_teid,
2303 						      &num_nodes_added);
2304 		if (status || num_nodes[i] != num_nodes_added)
2305 			return -EIO;
2306 
2307 		/* The newly added node can be a new parent for the next
2308 		 * layer nodes
2309 		 */
2310 		if (num_nodes_added)
2311 			parent = ice_sched_find_node_by_teid(tc_node,
2312 							     first_node_teid);
2313 		else
2314 			parent = parent->children[0];
2315 
2316 		if (!parent)
2317 			return -EIO;
2318 	}
2319 
2320 move_nodes:
2321 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2322 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2323 }
2324 
2325 /**
2326  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2327  * @pi: port information structure
2328  * @agg_info: aggregator info
2329  * @tc: traffic class number
2330  * @rm_vsi_info: true or false
2331  *
2332  * This function move all the VSI(s) to the default aggregator and delete
2333  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2334  * caller holds the scheduler lock.
2335  */
2336 static int
2337 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2338 			     struct ice_sched_agg_info *agg_info, u8 tc,
2339 			     bool rm_vsi_info)
2340 {
2341 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2342 	struct ice_sched_agg_vsi_info *tmp;
2343 	int status = 0;
2344 
2345 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2346 				 list_entry) {
2347 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2348 
2349 		/* Move VSI to default aggregator */
2350 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2351 			continue;
2352 
2353 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2354 						   ICE_DFLT_AGG_ID, tc);
2355 		if (status)
2356 			break;
2357 
2358 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2359 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2360 			list_del(&agg_vsi_info->list_entry);
2361 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2362 		}
2363 	}
2364 
2365 	return status;
2366 }
2367 
2368 /**
2369  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2370  * @pi: port information structure
2371  * @node: node pointer
2372  *
2373  * This function checks whether the aggregator is attached with any VSI or not.
2374  */
2375 static bool
2376 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2377 {
2378 	u8 vsil, i;
2379 
2380 	vsil = ice_sched_get_vsi_layer(pi->hw);
2381 	if (node->tx_sched_layer < vsil - 1) {
2382 		for (i = 0; i < node->num_children; i++)
2383 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2384 				return true;
2385 		return false;
2386 	} else {
2387 		return node->num_children ? true : false;
2388 	}
2389 }
2390 
2391 /**
2392  * ice_sched_rm_agg_cfg - remove the aggregator node
2393  * @pi: port information structure
2394  * @agg_id: aggregator ID
2395  * @tc: TC number
2396  *
2397  * This function removes the aggregator node and intermediate nodes if any
2398  * from the given TC
2399  */
2400 static int
2401 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2402 {
2403 	struct ice_sched_node *tc_node, *agg_node;
2404 	struct ice_hw *hw = pi->hw;
2405 
2406 	tc_node = ice_sched_get_tc_node(pi, tc);
2407 	if (!tc_node)
2408 		return -EIO;
2409 
2410 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2411 	if (!agg_node)
2412 		return -ENOENT;
2413 
2414 	/* Can't remove the aggregator node if it has children */
2415 	if (ice_sched_is_agg_inuse(pi, agg_node))
2416 		return -EBUSY;
2417 
2418 	/* need to remove the whole subtree if aggregator node is the
2419 	 * only child.
2420 	 */
2421 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2422 		struct ice_sched_node *parent = agg_node->parent;
2423 
2424 		if (!parent)
2425 			return -EIO;
2426 
2427 		if (parent->num_children > 1)
2428 			break;
2429 
2430 		agg_node = parent;
2431 	}
2432 
2433 	ice_free_sched_node(pi, agg_node);
2434 	return 0;
2435 }
2436 
2437 /**
2438  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2439  * @pi: port information structure
2440  * @agg_info: aggregator ID
2441  * @tc: TC number
2442  * @rm_vsi_info: bool value true or false
2443  *
2444  * This function removes aggregator reference to VSI of given TC. It removes
2445  * the aggregator configuration completely for requested TC. The caller needs
2446  * to hold the scheduler lock.
2447  */
2448 static int
2449 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2450 		  u8 tc, bool rm_vsi_info)
2451 {
2452 	int status = 0;
2453 
2454 	/* If nothing to remove - return success */
2455 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2456 		goto exit_rm_agg_cfg_tc;
2457 
2458 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2459 	if (status)
2460 		goto exit_rm_agg_cfg_tc;
2461 
2462 	/* Delete aggregator node(s) */
2463 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2464 	if (status)
2465 		goto exit_rm_agg_cfg_tc;
2466 
2467 	clear_bit(tc, agg_info->tc_bitmap);
2468 exit_rm_agg_cfg_tc:
2469 	return status;
2470 }
2471 
2472 /**
2473  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2474  * @pi: port information structure
2475  * @agg_id: aggregator ID
2476  * @tc_bitmap: 8 bits TC bitmap
2477  *
2478  * Save aggregator TC bitmap. This function needs to be called with scheduler
2479  * lock held.
2480  */
2481 static int
2482 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2483 		       unsigned long *tc_bitmap)
2484 {
2485 	struct ice_sched_agg_info *agg_info;
2486 
2487 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2488 	if (!agg_info)
2489 		return -EINVAL;
2490 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2491 		    ICE_MAX_TRAFFIC_CLASS);
2492 	return 0;
2493 }
2494 
2495 /**
2496  * ice_sched_add_agg_cfg - create an aggregator node
2497  * @pi: port information structure
2498  * @agg_id: aggregator ID
2499  * @tc: TC number
2500  *
2501  * This function creates an aggregator node and intermediate nodes if required
2502  * for the given TC
2503  */
2504 static int
2505 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2506 {
2507 	struct ice_sched_node *parent, *agg_node, *tc_node;
2508 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2509 	struct ice_hw *hw = pi->hw;
2510 	u32 first_node_teid;
2511 	u16 num_nodes_added;
2512 	int status = 0;
2513 	u8 i, aggl;
2514 
2515 	tc_node = ice_sched_get_tc_node(pi, tc);
2516 	if (!tc_node)
2517 		return -EIO;
2518 
2519 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2520 	/* Does Agg node already exist ? */
2521 	if (agg_node)
2522 		return status;
2523 
2524 	aggl = ice_sched_get_agg_layer(hw);
2525 
2526 	/* need one node in Agg layer */
2527 	num_nodes[aggl] = 1;
2528 
2529 	/* Check whether the intermediate nodes have space to add the
2530 	 * new aggregator. If they are full, then SW needs to allocate a new
2531 	 * intermediate node on those layers
2532 	 */
2533 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2534 		parent = ice_sched_get_first_node(pi, tc_node, i);
2535 
2536 		/* scan all the siblings */
2537 		while (parent) {
2538 			if (parent->num_children < hw->max_children[i])
2539 				break;
2540 			parent = parent->sibling;
2541 		}
2542 
2543 		/* all the nodes are full, reserve one for this layer */
2544 		if (!parent)
2545 			num_nodes[i]++;
2546 	}
2547 
2548 	/* add the aggregator node */
2549 	parent = tc_node;
2550 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2551 		if (!parent)
2552 			return -EIO;
2553 
2554 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2555 						      num_nodes[i],
2556 						      &first_node_teid,
2557 						      &num_nodes_added);
2558 		if (status || num_nodes[i] != num_nodes_added)
2559 			return -EIO;
2560 
2561 		/* The newly added node can be a new parent for the next
2562 		 * layer nodes
2563 		 */
2564 		if (num_nodes_added) {
2565 			parent = ice_sched_find_node_by_teid(tc_node,
2566 							     first_node_teid);
2567 			/* register aggregator ID with the aggregator node */
2568 			if (parent && i == aggl)
2569 				parent->agg_id = agg_id;
2570 		} else {
2571 			parent = parent->children[0];
2572 		}
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /**
2579  * ice_sched_cfg_agg - configure aggregator node
2580  * @pi: port information structure
2581  * @agg_id: aggregator ID
2582  * @agg_type: aggregator type queue, VSI, or aggregator group
2583  * @tc_bitmap: bits TC bitmap
2584  *
2585  * It registers a unique aggregator node into scheduler services. It
2586  * allows a user to register with a unique ID to track it's resources.
2587  * The aggregator type determines if this is a queue group, VSI group
2588  * or aggregator group. It then creates the aggregator node(s) for requested
2589  * TC(s) or removes an existing aggregator node including its configuration
2590  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2591  * resources and remove aggregator ID.
2592  * This function needs to be called with scheduler lock held.
2593  */
2594 static int
2595 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2596 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2597 {
2598 	struct ice_sched_agg_info *agg_info;
2599 	struct ice_hw *hw = pi->hw;
2600 	int status = 0;
2601 	u8 tc;
2602 
2603 	agg_info = ice_get_agg_info(hw, agg_id);
2604 	if (!agg_info) {
2605 		/* Create new entry for new aggregator ID */
2606 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2607 					GFP_KERNEL);
2608 		if (!agg_info)
2609 			return -ENOMEM;
2610 
2611 		agg_info->agg_id = agg_id;
2612 		agg_info->agg_type = agg_type;
2613 		agg_info->tc_bitmap[0] = 0;
2614 
2615 		/* Initialize the aggregator VSI list head */
2616 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2617 
2618 		/* Add new entry in aggregator list */
2619 		list_add(&agg_info->list_entry, &hw->agg_list);
2620 	}
2621 	/* Create aggregator node(s) for requested TC(s) */
2622 	ice_for_each_traffic_class(tc) {
2623 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2624 			/* Delete aggregator cfg TC if it exists previously */
2625 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2626 			if (status)
2627 				break;
2628 			continue;
2629 		}
2630 
2631 		/* Check if aggregator node for TC already exists */
2632 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2633 			continue;
2634 
2635 		/* Create new aggregator node for TC */
2636 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2637 		if (status)
2638 			break;
2639 
2640 		/* Save aggregator node's TC information */
2641 		set_bit(tc, agg_info->tc_bitmap);
2642 	}
2643 
2644 	return status;
2645 }
2646 
2647 /**
2648  * ice_cfg_agg - config aggregator node
2649  * @pi: port information structure
2650  * @agg_id: aggregator ID
2651  * @agg_type: aggregator type queue, VSI, or aggregator group
2652  * @tc_bitmap: bits TC bitmap
2653  *
2654  * This function configures aggregator node(s).
2655  */
2656 int
2657 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2658 	    u8 tc_bitmap)
2659 {
2660 	unsigned long bitmap = tc_bitmap;
2661 	int status;
2662 
2663 	mutex_lock(&pi->sched_lock);
2664 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2665 	if (!status)
2666 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2667 	mutex_unlock(&pi->sched_lock);
2668 	return status;
2669 }
2670 
2671 /**
2672  * ice_get_agg_vsi_info - get the aggregator ID
2673  * @agg_info: aggregator info
2674  * @vsi_handle: software VSI handle
2675  *
2676  * The function returns aggregator VSI info based on VSI handle. This function
2677  * needs to be called with scheduler lock held.
2678  */
2679 static struct ice_sched_agg_vsi_info *
2680 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2681 {
2682 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2683 
2684 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2685 		if (agg_vsi_info->vsi_handle == vsi_handle)
2686 			return agg_vsi_info;
2687 
2688 	return NULL;
2689 }
2690 
2691 /**
2692  * ice_get_vsi_agg_info - get the aggregator info of VSI
2693  * @hw: pointer to the hardware structure
2694  * @vsi_handle: Sw VSI handle
2695  *
2696  * The function returns aggregator info of VSI represented via vsi_handle. The
2697  * VSI has in this case a different aggregator than the default one. This
2698  * function needs to be called with scheduler lock held.
2699  */
2700 static struct ice_sched_agg_info *
2701 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2702 {
2703 	struct ice_sched_agg_info *agg_info;
2704 
2705 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2706 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2707 
2708 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2709 		if (agg_vsi_info)
2710 			return agg_info;
2711 	}
2712 	return NULL;
2713 }
2714 
2715 /**
2716  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2717  * @pi: port information structure
2718  * @agg_id: aggregator ID
2719  * @vsi_handle: software VSI handle
2720  * @tc_bitmap: TC bitmap of enabled TC(s)
2721  *
2722  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2723  * lock held.
2724  */
2725 static int
2726 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2727 			   unsigned long *tc_bitmap)
2728 {
2729 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2730 	struct ice_sched_agg_info *agg_info;
2731 
2732 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2733 	if (!agg_info)
2734 		return -EINVAL;
2735 	/* check if entry already exist */
2736 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2737 	if (!agg_vsi_info)
2738 		return -EINVAL;
2739 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2740 		    ICE_MAX_TRAFFIC_CLASS);
2741 	return 0;
2742 }
2743 
2744 /**
2745  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2746  * @pi: port information structure
2747  * @agg_id: aggregator ID
2748  * @vsi_handle: software VSI handle
2749  * @tc_bitmap: TC bitmap of enabled TC(s)
2750  *
2751  * This function moves VSI to a new or default aggregator node. If VSI is
2752  * already associated to the aggregator node then no operation is performed on
2753  * the tree. This function needs to be called with scheduler lock held.
2754  */
2755 static int
2756 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2757 			   u16 vsi_handle, unsigned long *tc_bitmap)
2758 {
2759 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2760 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2761 	struct ice_hw *hw = pi->hw;
2762 	int status = 0;
2763 	u8 tc;
2764 
2765 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2766 		return -EINVAL;
2767 	agg_info = ice_get_agg_info(hw, agg_id);
2768 	if (!agg_info)
2769 		return -EINVAL;
2770 	/* If the VSI is already part of another aggregator then update
2771 	 * its VSI info list
2772 	 */
2773 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2774 	if (old_agg_info && old_agg_info != agg_info) {
2775 		struct ice_sched_agg_vsi_info *vtmp;
2776 
2777 		list_for_each_entry_safe(old_agg_vsi_info, vtmp,
2778 					 &old_agg_info->agg_vsi_list,
2779 					 list_entry)
2780 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
2781 				break;
2782 	}
2783 
2784 	/* check if entry already exist */
2785 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2786 	if (!agg_vsi_info) {
2787 		/* Create new entry for VSI under aggregator list */
2788 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2789 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2790 		if (!agg_vsi_info)
2791 			return -EINVAL;
2792 
2793 		/* add VSI ID into the aggregator list */
2794 		agg_vsi_info->vsi_handle = vsi_handle;
2795 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2796 	}
2797 	/* Move VSI node to new aggregator node for requested TC(s) */
2798 	ice_for_each_traffic_class(tc) {
2799 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2800 			continue;
2801 
2802 		/* Move VSI to new aggregator */
2803 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2804 		if (status)
2805 			break;
2806 
2807 		set_bit(tc, agg_vsi_info->tc_bitmap);
2808 		if (old_agg_vsi_info)
2809 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2810 	}
2811 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2812 		list_del(&old_agg_vsi_info->list_entry);
2813 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2814 	}
2815 	return status;
2816 }
2817 
2818 /**
2819  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2820  * @pi: port information structure
2821  *
2822  * This function removes unused rate limit profiles from the HW and
2823  * SW DB. The caller needs to hold scheduler lock.
2824  */
2825 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2826 {
2827 	u16 ln;
2828 
2829 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2830 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2831 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2832 
2833 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2834 					 &pi->rl_prof_list[ln], list_entry) {
2835 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2836 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2837 		}
2838 	}
2839 }
2840 
2841 /**
2842  * ice_sched_update_elem - update element
2843  * @hw: pointer to the HW struct
2844  * @node: pointer to node
2845  * @info: node info to update
2846  *
2847  * Update the HW DB, and local SW DB of node. Update the scheduling
2848  * parameters of node from argument info data buffer (Info->data buf) and
2849  * returns success or error on config sched element failure. The caller
2850  * needs to hold scheduler lock.
2851  */
2852 static int
2853 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2854 		      struct ice_aqc_txsched_elem_data *info)
2855 {
2856 	struct ice_aqc_txsched_elem_data buf;
2857 	u16 elem_cfgd = 0;
2858 	u16 num_elems = 1;
2859 	int status;
2860 
2861 	buf = *info;
2862 	/* Parent TEID is reserved field in this aq call */
2863 	buf.parent_teid = 0;
2864 	/* Element type is reserved field in this aq call */
2865 	buf.data.elem_type = 0;
2866 	/* Flags is reserved field in this aq call */
2867 	buf.data.flags = 0;
2868 
2869 	/* Update HW DB */
2870 	/* Configure element node */
2871 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2872 					&elem_cfgd, NULL);
2873 	if (status || elem_cfgd != num_elems) {
2874 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2875 		return -EIO;
2876 	}
2877 
2878 	/* Config success case */
2879 	/* Now update local SW DB */
2880 	/* Only copy the data portion of info buffer */
2881 	node->info.data = info->data;
2882 	return status;
2883 }
2884 
2885 /**
2886  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2887  * @hw: pointer to the HW struct
2888  * @node: sched node to configure
2889  * @rl_type: rate limit type CIR, EIR, or shared
2890  * @bw_alloc: BW weight/allocation
2891  *
2892  * This function configures node element's BW allocation.
2893  */
2894 static int
2895 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2896 			    enum ice_rl_type rl_type, u16 bw_alloc)
2897 {
2898 	struct ice_aqc_txsched_elem_data buf;
2899 	struct ice_aqc_txsched_elem *data;
2900 
2901 	buf = node->info;
2902 	data = &buf.data;
2903 	if (rl_type == ICE_MIN_BW) {
2904 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2905 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2906 	} else if (rl_type == ICE_MAX_BW) {
2907 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2908 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2909 	} else {
2910 		return -EINVAL;
2911 	}
2912 
2913 	/* Configure element */
2914 	return ice_sched_update_elem(hw, node, &buf);
2915 }
2916 
2917 /**
2918  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2919  * @pi: port information structure
2920  * @agg_id: aggregator ID
2921  * @vsi_handle: software VSI handle
2922  * @tc_bitmap: TC bitmap of enabled TC(s)
2923  *
2924  * Move or associate VSI to a new or default aggregator node.
2925  */
2926 int
2927 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2928 		    u8 tc_bitmap)
2929 {
2930 	unsigned long bitmap = tc_bitmap;
2931 	int status;
2932 
2933 	mutex_lock(&pi->sched_lock);
2934 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2935 					    (unsigned long *)&bitmap);
2936 	if (!status)
2937 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2938 						    (unsigned long *)&bitmap);
2939 	mutex_unlock(&pi->sched_lock);
2940 	return status;
2941 }
2942 
2943 /**
2944  * ice_set_clear_cir_bw - set or clear CIR BW
2945  * @bw_t_info: bandwidth type information structure
2946  * @bw: bandwidth in Kbps - Kilo bits per sec
2947  *
2948  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2949  */
2950 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2951 {
2952 	if (bw == ICE_SCHED_DFLT_BW) {
2953 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2954 		bw_t_info->cir_bw.bw = 0;
2955 	} else {
2956 		/* Save type of BW information */
2957 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2958 		bw_t_info->cir_bw.bw = bw;
2959 	}
2960 }
2961 
2962 /**
2963  * ice_set_clear_eir_bw - set or clear EIR BW
2964  * @bw_t_info: bandwidth type information structure
2965  * @bw: bandwidth in Kbps - Kilo bits per sec
2966  *
2967  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2968  */
2969 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2970 {
2971 	if (bw == ICE_SCHED_DFLT_BW) {
2972 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2973 		bw_t_info->eir_bw.bw = 0;
2974 	} else {
2975 		/* EIR BW and Shared BW profiles are mutually exclusive and
2976 		 * hence only one of them may be set for any given element.
2977 		 * First clear earlier saved shared BW information.
2978 		 */
2979 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2980 		bw_t_info->shared_bw = 0;
2981 		/* save EIR BW information */
2982 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2983 		bw_t_info->eir_bw.bw = bw;
2984 	}
2985 }
2986 
2987 /**
2988  * ice_set_clear_shared_bw - set or clear shared BW
2989  * @bw_t_info: bandwidth type information structure
2990  * @bw: bandwidth in Kbps - Kilo bits per sec
2991  *
2992  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2993  */
2994 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2995 {
2996 	if (bw == ICE_SCHED_DFLT_BW) {
2997 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2998 		bw_t_info->shared_bw = 0;
2999 	} else {
3000 		/* EIR BW and Shared BW profiles are mutually exclusive and
3001 		 * hence only one of them may be set for any given element.
3002 		 * First clear earlier saved EIR BW information.
3003 		 */
3004 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3005 		bw_t_info->eir_bw.bw = 0;
3006 		/* save shared BW information */
3007 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3008 		bw_t_info->shared_bw = bw;
3009 	}
3010 }
3011 
3012 /**
3013  * ice_sched_save_vsi_bw - save VSI node's BW information
3014  * @pi: port information structure
3015  * @vsi_handle: sw VSI handle
3016  * @tc: traffic class
3017  * @rl_type: rate limit type min, max, or shared
3018  * @bw: bandwidth in Kbps - Kilo bits per sec
3019  *
3020  * Save BW information of VSI type node for post replay use.
3021  */
3022 static int
3023 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3024 		      enum ice_rl_type rl_type, u32 bw)
3025 {
3026 	struct ice_vsi_ctx *vsi_ctx;
3027 
3028 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3029 		return -EINVAL;
3030 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3031 	if (!vsi_ctx)
3032 		return -EINVAL;
3033 	switch (rl_type) {
3034 	case ICE_MIN_BW:
3035 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3036 		break;
3037 	case ICE_MAX_BW:
3038 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3039 		break;
3040 	case ICE_SHARED_BW:
3041 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3042 		break;
3043 	default:
3044 		return -EINVAL;
3045 	}
3046 	return 0;
3047 }
3048 
3049 /**
3050  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3051  * @hw: pointer to the HW struct
3052  * @bw: bandwidth in Kbps
3053  *
3054  * This function calculates the wakeup parameter of RL profile.
3055  */
3056 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3057 {
3058 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3059 	s32 wakeup_f_int;
3060 	u16 wakeup = 0;
3061 
3062 	/* Get the wakeup integer value */
3063 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3064 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3065 	if (wakeup_int > 63) {
3066 		wakeup = (u16)((1 << 15) | wakeup_int);
3067 	} else {
3068 		/* Calculate fraction value up to 4 decimals
3069 		 * Convert Integer value to a constant multiplier
3070 		 */
3071 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3072 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3073 					   hw->psm_clk_freq, bytes_per_sec);
3074 
3075 		/* Get Fraction value */
3076 		wakeup_f = wakeup_a - wakeup_b;
3077 
3078 		/* Round up the Fractional value via Ceil(Fractional value) */
3079 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3080 			wakeup_f += 1;
3081 
3082 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3083 					       ICE_RL_PROF_MULTIPLIER);
3084 		wakeup |= (u16)(wakeup_int << 9);
3085 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3086 	}
3087 
3088 	return wakeup;
3089 }
3090 
3091 /**
3092  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3093  * @hw: pointer to the HW struct
3094  * @bw: bandwidth in Kbps
3095  * @profile: profile parameters to return
3096  *
3097  * This function converts the BW to profile structure format.
3098  */
3099 static int
3100 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3101 			   struct ice_aqc_rl_profile_elem *profile)
3102 {
3103 	s64 bytes_per_sec, ts_rate, mv_tmp;
3104 	int status = -EINVAL;
3105 	bool found = false;
3106 	s32 encode = 0;
3107 	s64 mv = 0;
3108 	s32 i;
3109 
3110 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3111 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3112 		return status;
3113 
3114 	/* Bytes per second from Kbps */
3115 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3116 
3117 	/* encode is 6 bits but really useful are 5 bits */
3118 	for (i = 0; i < 64; i++) {
3119 		u64 pow_result = BIT_ULL(i);
3120 
3121 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3122 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3123 		if (ts_rate <= 0)
3124 			continue;
3125 
3126 		/* Multiplier value */
3127 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3128 				    ts_rate);
3129 
3130 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3131 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3132 
3133 		/* First multiplier value greater than the given
3134 		 * accuracy bytes
3135 		 */
3136 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3137 			encode = i;
3138 			found = true;
3139 			break;
3140 		}
3141 	}
3142 	if (found) {
3143 		u16 wm;
3144 
3145 		wm = ice_sched_calc_wakeup(hw, bw);
3146 		profile->rl_multiply = cpu_to_le16(mv);
3147 		profile->wake_up_calc = cpu_to_le16(wm);
3148 		profile->rl_encode = cpu_to_le16(encode);
3149 		status = 0;
3150 	} else {
3151 		status = -ENOENT;
3152 	}
3153 
3154 	return status;
3155 }
3156 
3157 /**
3158  * ice_sched_add_rl_profile - add RL profile
3159  * @pi: port information structure
3160  * @rl_type: type of rate limit BW - min, max, or shared
3161  * @bw: bandwidth in Kbps - Kilo bits per sec
3162  * @layer_num: specifies in which layer to create profile
3163  *
3164  * This function first checks the existing list for corresponding BW
3165  * parameter. If it exists, it returns the associated profile otherwise
3166  * it creates a new rate limit profile for requested BW, and adds it to
3167  * the HW DB and local list. It returns the new profile or null on error.
3168  * The caller needs to hold the scheduler lock.
3169  */
3170 static struct ice_aqc_rl_profile_info *
3171 ice_sched_add_rl_profile(struct ice_port_info *pi,
3172 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3173 {
3174 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3175 	u16 profiles_added = 0, num_profiles = 1;
3176 	struct ice_aqc_rl_profile_elem *buf;
3177 	struct ice_hw *hw;
3178 	u8 profile_type;
3179 	int status;
3180 
3181 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3182 		return NULL;
3183 	switch (rl_type) {
3184 	case ICE_MIN_BW:
3185 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3186 		break;
3187 	case ICE_MAX_BW:
3188 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3189 		break;
3190 	case ICE_SHARED_BW:
3191 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3192 		break;
3193 	default:
3194 		return NULL;
3195 	}
3196 
3197 	if (!pi)
3198 		return NULL;
3199 	hw = pi->hw;
3200 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3201 			    list_entry)
3202 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3203 		    profile_type && rl_prof_elem->bw == bw)
3204 			/* Return existing profile ID info */
3205 			return rl_prof_elem;
3206 
3207 	/* Create new profile ID */
3208 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3209 				    GFP_KERNEL);
3210 
3211 	if (!rl_prof_elem)
3212 		return NULL;
3213 
3214 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3215 	if (status)
3216 		goto exit_add_rl_prof;
3217 
3218 	rl_prof_elem->bw = bw;
3219 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3220 	rl_prof_elem->profile.level = layer_num + 1;
3221 	rl_prof_elem->profile.flags = profile_type;
3222 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3223 
3224 	/* Create new entry in HW DB */
3225 	buf = &rl_prof_elem->profile;
3226 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3227 				       &profiles_added, NULL);
3228 	if (status || profiles_added != num_profiles)
3229 		goto exit_add_rl_prof;
3230 
3231 	/* Good entry - add in the list */
3232 	rl_prof_elem->prof_id_ref = 0;
3233 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3234 	return rl_prof_elem;
3235 
3236 exit_add_rl_prof:
3237 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3238 	return NULL;
3239 }
3240 
3241 /**
3242  * ice_sched_cfg_node_bw_lmt - configure node sched params
3243  * @hw: pointer to the HW struct
3244  * @node: sched node to configure
3245  * @rl_type: rate limit type CIR, EIR, or shared
3246  * @rl_prof_id: rate limit profile ID
3247  *
3248  * This function configures node element's BW limit.
3249  */
3250 static int
3251 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3252 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3253 {
3254 	struct ice_aqc_txsched_elem_data buf;
3255 	struct ice_aqc_txsched_elem *data;
3256 
3257 	buf = node->info;
3258 	data = &buf.data;
3259 	switch (rl_type) {
3260 	case ICE_MIN_BW:
3261 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3262 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3263 		break;
3264 	case ICE_MAX_BW:
3265 		/* EIR BW and Shared BW profiles are mutually exclusive and
3266 		 * hence only one of them may be set for any given element
3267 		 */
3268 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3269 			return -EIO;
3270 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3271 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3272 		break;
3273 	case ICE_SHARED_BW:
3274 		/* Check for removing shared BW */
3275 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3276 			/* remove shared profile */
3277 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3278 			data->srl_id = 0; /* clear SRL field */
3279 
3280 			/* enable back EIR to default profile */
3281 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3282 			data->eir_bw.bw_profile_idx =
3283 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3284 			break;
3285 		}
3286 		/* EIR BW and Shared BW profiles are mutually exclusive and
3287 		 * hence only one of them may be set for any given element
3288 		 */
3289 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3290 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3291 			    ICE_SCHED_DFLT_RL_PROF_ID))
3292 			return -EIO;
3293 		/* EIR BW is set to default, disable it */
3294 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3295 		/* Okay to enable shared BW now */
3296 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3297 		data->srl_id = cpu_to_le16(rl_prof_id);
3298 		break;
3299 	default:
3300 		/* Unknown rate limit type */
3301 		return -EINVAL;
3302 	}
3303 
3304 	/* Configure element */
3305 	return ice_sched_update_elem(hw, node, &buf);
3306 }
3307 
3308 /**
3309  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3310  * @node: sched node
3311  * @rl_type: rate limit type
3312  *
3313  * If existing profile matches, it returns the corresponding rate
3314  * limit profile ID, otherwise it returns an invalid ID as error.
3315  */
3316 static u16
3317 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3318 			      enum ice_rl_type rl_type)
3319 {
3320 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3321 	struct ice_aqc_txsched_elem *data;
3322 
3323 	data = &node->info.data;
3324 	switch (rl_type) {
3325 	case ICE_MIN_BW:
3326 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3327 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3328 		break;
3329 	case ICE_MAX_BW:
3330 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3331 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3332 		break;
3333 	case ICE_SHARED_BW:
3334 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3335 			rl_prof_id = le16_to_cpu(data->srl_id);
3336 		break;
3337 	default:
3338 		break;
3339 	}
3340 
3341 	return rl_prof_id;
3342 }
3343 
3344 /**
3345  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3346  * @pi: port information structure
3347  * @rl_type: type of rate limit BW - min, max, or shared
3348  * @layer_index: layer index
3349  *
3350  * This function returns requested profile creation layer.
3351  */
3352 static u8
3353 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3354 			    u8 layer_index)
3355 {
3356 	struct ice_hw *hw = pi->hw;
3357 
3358 	if (layer_index >= hw->num_tx_sched_layers)
3359 		return ICE_SCHED_INVAL_LAYER_NUM;
3360 	switch (rl_type) {
3361 	case ICE_MIN_BW:
3362 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3363 			return layer_index;
3364 		break;
3365 	case ICE_MAX_BW:
3366 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3367 			return layer_index;
3368 		break;
3369 	case ICE_SHARED_BW:
3370 		/* if current layer doesn't support SRL profile creation
3371 		 * then try a layer up or down.
3372 		 */
3373 		if (hw->layer_info[layer_index].max_srl_profiles)
3374 			return layer_index;
3375 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3376 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3377 			return layer_index + 1;
3378 		else if (layer_index > 0 &&
3379 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3380 			return layer_index - 1;
3381 		break;
3382 	default:
3383 		break;
3384 	}
3385 	return ICE_SCHED_INVAL_LAYER_NUM;
3386 }
3387 
3388 /**
3389  * ice_sched_get_srl_node - get shared rate limit node
3390  * @node: tree node
3391  * @srl_layer: shared rate limit layer
3392  *
3393  * This function returns SRL node to be used for shared rate limit purpose.
3394  * The caller needs to hold scheduler lock.
3395  */
3396 static struct ice_sched_node *
3397 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3398 {
3399 	if (srl_layer > node->tx_sched_layer)
3400 		return node->children[0];
3401 	else if (srl_layer < node->tx_sched_layer)
3402 		/* Node can't be created without a parent. It will always
3403 		 * have a valid parent except root node.
3404 		 */
3405 		return node->parent;
3406 	else
3407 		return node;
3408 }
3409 
3410 /**
3411  * ice_sched_rm_rl_profile - remove RL profile ID
3412  * @pi: port information structure
3413  * @layer_num: layer number where profiles are saved
3414  * @profile_type: profile type like EIR, CIR, or SRL
3415  * @profile_id: profile ID to remove
3416  *
3417  * This function removes rate limit profile from layer 'layer_num' of type
3418  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3419  * scheduler lock.
3420  */
3421 static int
3422 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3423 			u16 profile_id)
3424 {
3425 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3426 	int status = 0;
3427 
3428 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3429 		return -EINVAL;
3430 	/* Check the existing list for RL profile */
3431 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3432 			    list_entry)
3433 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3434 		    profile_type &&
3435 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3436 		    profile_id) {
3437 			if (rl_prof_elem->prof_id_ref)
3438 				rl_prof_elem->prof_id_ref--;
3439 
3440 			/* Remove old profile ID from database */
3441 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3442 			if (status && status != -EBUSY)
3443 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3444 			break;
3445 		}
3446 	if (status == -EBUSY)
3447 		status = 0;
3448 	return status;
3449 }
3450 
3451 /**
3452  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3453  * @pi: port information structure
3454  * @node: pointer to node structure
3455  * @rl_type: rate limit type min, max, or shared
3456  * @layer_num: layer number where RL profiles are saved
3457  *
3458  * This function configures node element's BW rate limit profile ID of
3459  * type CIR, EIR, or SRL to default. This function needs to be called
3460  * with the scheduler lock held.
3461  */
3462 static int
3463 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3464 			   struct ice_sched_node *node,
3465 			   enum ice_rl_type rl_type, u8 layer_num)
3466 {
3467 	struct ice_hw *hw;
3468 	u8 profile_type;
3469 	u16 rl_prof_id;
3470 	u16 old_id;
3471 	int status;
3472 
3473 	hw = pi->hw;
3474 	switch (rl_type) {
3475 	case ICE_MIN_BW:
3476 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3477 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3478 		break;
3479 	case ICE_MAX_BW:
3480 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3481 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3482 		break;
3483 	case ICE_SHARED_BW:
3484 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3485 		/* No SRL is configured for default case */
3486 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3487 		break;
3488 	default:
3489 		return -EINVAL;
3490 	}
3491 	/* Save existing RL prof ID for later clean up */
3492 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3493 	/* Configure BW scheduling parameters */
3494 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3495 	if (status)
3496 		return status;
3497 
3498 	/* Remove stale RL profile ID */
3499 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3500 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3501 		return 0;
3502 
3503 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3504 }
3505 
3506 /**
3507  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3508  * @pi: port information structure
3509  * @node: pointer to node structure
3510  * @layer_num: layer number where rate limit profiles are saved
3511  * @rl_type: rate limit type min, max, or shared
3512  * @bw: bandwidth value
3513  *
3514  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3515  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3516  * them may be set for any given element. This function needs to be called
3517  * with the scheduler lock held.
3518  */
3519 static int
3520 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3521 			   struct ice_sched_node *node,
3522 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3523 {
3524 	if (rl_type == ICE_SHARED_BW) {
3525 		/* SRL node passed in this case, it may be different node */
3526 		if (bw == ICE_SCHED_DFLT_BW)
3527 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3528 			 * enables EIR to default. EIR is not set in this
3529 			 * case, so no additional action is required.
3530 			 */
3531 			return 0;
3532 
3533 		/* SRL being configured, set EIR to default here.
3534 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3535 		 * configures SRL
3536 		 */
3537 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3538 						  layer_num);
3539 	} else if (rl_type == ICE_MAX_BW &&
3540 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3541 		/* Remove Shared profile. Set default shared BW call
3542 		 * removes shared profile for a node.
3543 		 */
3544 		return ice_sched_set_node_bw_dflt(pi, node,
3545 						  ICE_SHARED_BW,
3546 						  layer_num);
3547 	}
3548 	return 0;
3549 }
3550 
3551 /**
3552  * ice_sched_set_node_bw - set node's bandwidth
3553  * @pi: port information structure
3554  * @node: tree node
3555  * @rl_type: rate limit type min, max, or shared
3556  * @bw: bandwidth in Kbps - Kilo bits per sec
3557  * @layer_num: layer number
3558  *
3559  * This function adds new profile corresponding to requested BW, configures
3560  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3561  * ID from local database. The caller needs to hold scheduler lock.
3562  */
3563 static int
3564 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3565 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3566 {
3567 	struct ice_aqc_rl_profile_info *rl_prof_info;
3568 	struct ice_hw *hw = pi->hw;
3569 	u16 old_id, rl_prof_id;
3570 	int status = -EINVAL;
3571 
3572 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3573 	if (!rl_prof_info)
3574 		return status;
3575 
3576 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3577 
3578 	/* Save existing RL prof ID for later clean up */
3579 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3580 	/* Configure BW scheduling parameters */
3581 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3582 	if (status)
3583 		return status;
3584 
3585 	/* New changes has been applied */
3586 	/* Increment the profile ID reference count */
3587 	rl_prof_info->prof_id_ref++;
3588 
3589 	/* Check for old ID removal */
3590 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3591 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3592 		return 0;
3593 
3594 	return ice_sched_rm_rl_profile(pi, layer_num,
3595 				       rl_prof_info->profile.flags &
3596 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3597 }
3598 
3599 /**
3600  * ice_sched_set_node_bw_lmt - set node's BW limit
3601  * @pi: port information structure
3602  * @node: tree node
3603  * @rl_type: rate limit type min, max, or shared
3604  * @bw: bandwidth in Kbps - Kilo bits per sec
3605  *
3606  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3607  * EIR, or SRL. The caller needs to hold scheduler lock.
3608  */
3609 static int
3610 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3611 			  enum ice_rl_type rl_type, u32 bw)
3612 {
3613 	struct ice_sched_node *cfg_node = node;
3614 	int status;
3615 
3616 	struct ice_hw *hw;
3617 	u8 layer_num;
3618 
3619 	if (!pi)
3620 		return -EINVAL;
3621 	hw = pi->hw;
3622 	/* Remove unused RL profile IDs from HW and SW DB */
3623 	ice_sched_rm_unused_rl_prof(pi);
3624 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3625 						node->tx_sched_layer);
3626 	if (layer_num >= hw->num_tx_sched_layers)
3627 		return -EINVAL;
3628 
3629 	if (rl_type == ICE_SHARED_BW) {
3630 		/* SRL node may be different */
3631 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3632 		if (!cfg_node)
3633 			return -EIO;
3634 	}
3635 	/* EIR BW and Shared BW profiles are mutually exclusive and
3636 	 * hence only one of them may be set for any given element
3637 	 */
3638 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3639 					    bw);
3640 	if (status)
3641 		return status;
3642 	if (bw == ICE_SCHED_DFLT_BW)
3643 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3644 						  layer_num);
3645 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3646 }
3647 
3648 /**
3649  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3650  * @pi: port information structure
3651  * @node: pointer to node structure
3652  * @rl_type: rate limit type min, max, or shared
3653  *
3654  * This function configures node element's BW rate limit profile ID of
3655  * type CIR, EIR, or SRL to default. This function needs to be called
3656  * with the scheduler lock held.
3657  */
3658 static int
3659 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3660 			       struct ice_sched_node *node,
3661 			       enum ice_rl_type rl_type)
3662 {
3663 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3664 					 ICE_SCHED_DFLT_BW);
3665 }
3666 
3667 /**
3668  * ice_sched_validate_srl_node - Check node for SRL applicability
3669  * @node: sched node to configure
3670  * @sel_layer: selected SRL layer
3671  *
3672  * This function checks if the SRL can be applied to a selected layer node on
3673  * behalf of the requested node (first argument). This function needs to be
3674  * called with scheduler lock held.
3675  */
3676 static int
3677 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3678 {
3679 	/* SRL profiles are not available on all layers. Check if the
3680 	 * SRL profile can be applied to a node above or below the
3681 	 * requested node. SRL configuration is possible only if the
3682 	 * selected layer's node has single child.
3683 	 */
3684 	if (sel_layer == node->tx_sched_layer ||
3685 	    ((sel_layer == node->tx_sched_layer + 1) &&
3686 	    node->num_children == 1) ||
3687 	    ((sel_layer == node->tx_sched_layer - 1) &&
3688 	    (node->parent && node->parent->num_children == 1)))
3689 		return 0;
3690 
3691 	return -EIO;
3692 }
3693 
3694 /**
3695  * ice_sched_save_q_bw - save queue node's BW information
3696  * @q_ctx: queue context structure
3697  * @rl_type: rate limit type min, max, or shared
3698  * @bw: bandwidth in Kbps - Kilo bits per sec
3699  *
3700  * Save BW information of queue type node for post replay use.
3701  */
3702 static int
3703 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3704 {
3705 	switch (rl_type) {
3706 	case ICE_MIN_BW:
3707 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3708 		break;
3709 	case ICE_MAX_BW:
3710 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3711 		break;
3712 	case ICE_SHARED_BW:
3713 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3714 		break;
3715 	default:
3716 		return -EINVAL;
3717 	}
3718 	return 0;
3719 }
3720 
3721 /**
3722  * ice_sched_set_q_bw_lmt - sets queue BW limit
3723  * @pi: port information structure
3724  * @vsi_handle: sw VSI handle
3725  * @tc: traffic class
3726  * @q_handle: software queue handle
3727  * @rl_type: min, max, or shared
3728  * @bw: bandwidth in Kbps
3729  *
3730  * This function sets BW limit of queue scheduling node.
3731  */
3732 static int
3733 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3734 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3735 {
3736 	struct ice_sched_node *node;
3737 	struct ice_q_ctx *q_ctx;
3738 	int status = -EINVAL;
3739 
3740 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3741 		return -EINVAL;
3742 	mutex_lock(&pi->sched_lock);
3743 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3744 	if (!q_ctx)
3745 		goto exit_q_bw_lmt;
3746 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3747 	if (!node) {
3748 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3749 		goto exit_q_bw_lmt;
3750 	}
3751 
3752 	/* Return error if it is not a leaf node */
3753 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3754 		goto exit_q_bw_lmt;
3755 
3756 	/* SRL bandwidth layer selection */
3757 	if (rl_type == ICE_SHARED_BW) {
3758 		u8 sel_layer; /* selected layer */
3759 
3760 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3761 							node->tx_sched_layer);
3762 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3763 			status = -EINVAL;
3764 			goto exit_q_bw_lmt;
3765 		}
3766 		status = ice_sched_validate_srl_node(node, sel_layer);
3767 		if (status)
3768 			goto exit_q_bw_lmt;
3769 	}
3770 
3771 	if (bw == ICE_SCHED_DFLT_BW)
3772 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3773 	else
3774 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3775 
3776 	if (!status)
3777 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3778 
3779 exit_q_bw_lmt:
3780 	mutex_unlock(&pi->sched_lock);
3781 	return status;
3782 }
3783 
3784 /**
3785  * ice_cfg_q_bw_lmt - configure queue BW limit
3786  * @pi: port information structure
3787  * @vsi_handle: sw VSI handle
3788  * @tc: traffic class
3789  * @q_handle: software queue handle
3790  * @rl_type: min, max, or shared
3791  * @bw: bandwidth in Kbps
3792  *
3793  * This function configures BW limit of queue scheduling node.
3794  */
3795 int
3796 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3797 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3798 {
3799 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3800 				      bw);
3801 }
3802 
3803 /**
3804  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3805  * @pi: port information structure
3806  * @vsi_handle: sw VSI handle
3807  * @tc: traffic class
3808  * @q_handle: software queue handle
3809  * @rl_type: min, max, or shared
3810  *
3811  * This function configures BW default limit of queue scheduling node.
3812  */
3813 int
3814 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3815 		      u16 q_handle, enum ice_rl_type rl_type)
3816 {
3817 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3818 				      ICE_SCHED_DFLT_BW);
3819 }
3820 
3821 /**
3822  * ice_sched_get_node_by_id_type - get node from ID type
3823  * @pi: port information structure
3824  * @id: identifier
3825  * @agg_type: type of aggregator
3826  * @tc: traffic class
3827  *
3828  * This function returns node identified by ID of type aggregator, and
3829  * based on traffic class (TC). This function needs to be called with
3830  * the scheduler lock held.
3831  */
3832 static struct ice_sched_node *
3833 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3834 			      enum ice_agg_type agg_type, u8 tc)
3835 {
3836 	struct ice_sched_node *node = NULL;
3837 
3838 	switch (agg_type) {
3839 	case ICE_AGG_TYPE_VSI: {
3840 		struct ice_vsi_ctx *vsi_ctx;
3841 		u16 vsi_handle = (u16)id;
3842 
3843 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3844 			break;
3845 		/* Get sched_vsi_info */
3846 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3847 		if (!vsi_ctx)
3848 			break;
3849 		node = vsi_ctx->sched.vsi_node[tc];
3850 		break;
3851 	}
3852 
3853 	case ICE_AGG_TYPE_AGG: {
3854 		struct ice_sched_node *tc_node;
3855 
3856 		tc_node = ice_sched_get_tc_node(pi, tc);
3857 		if (tc_node)
3858 			node = ice_sched_get_agg_node(pi, tc_node, id);
3859 		break;
3860 	}
3861 
3862 	default:
3863 		break;
3864 	}
3865 
3866 	return node;
3867 }
3868 
3869 /**
3870  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3871  * @pi: port information structure
3872  * @id: ID (software VSI handle or AGG ID)
3873  * @agg_type: aggregator type (VSI or AGG type node)
3874  * @tc: traffic class
3875  * @rl_type: min or max
3876  * @bw: bandwidth in Kbps
3877  *
3878  * This function sets BW limit of VSI or Aggregator scheduling node
3879  * based on TC information from passed in argument BW.
3880  */
3881 int
3882 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3883 				 enum ice_agg_type agg_type, u8 tc,
3884 				 enum ice_rl_type rl_type, u32 bw)
3885 {
3886 	struct ice_sched_node *node;
3887 	int status = -EINVAL;
3888 
3889 	if (!pi)
3890 		return status;
3891 
3892 	if (rl_type == ICE_UNKNOWN_BW)
3893 		return status;
3894 
3895 	mutex_lock(&pi->sched_lock);
3896 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3897 	if (!node) {
3898 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3899 		goto exit_set_node_bw_lmt_per_tc;
3900 	}
3901 	if (bw == ICE_SCHED_DFLT_BW)
3902 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3903 	else
3904 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3905 
3906 exit_set_node_bw_lmt_per_tc:
3907 	mutex_unlock(&pi->sched_lock);
3908 	return status;
3909 }
3910 
3911 /**
3912  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3913  * @pi: port information structure
3914  * @vsi_handle: software VSI handle
3915  * @tc: traffic class
3916  * @rl_type: min or max
3917  * @bw: bandwidth in Kbps
3918  *
3919  * This function configures BW limit of VSI scheduling node based on TC
3920  * information.
3921  */
3922 int
3923 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3924 			  enum ice_rl_type rl_type, u32 bw)
3925 {
3926 	int status;
3927 
3928 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3929 						  ICE_AGG_TYPE_VSI,
3930 						  tc, rl_type, bw);
3931 	if (!status) {
3932 		mutex_lock(&pi->sched_lock);
3933 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3934 		mutex_unlock(&pi->sched_lock);
3935 	}
3936 	return status;
3937 }
3938 
3939 /**
3940  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
3941  * @pi: port information structure
3942  * @vsi_handle: software VSI handle
3943  * @tc: traffic class
3944  * @rl_type: min or max
3945  *
3946  * This function configures default BW limit of VSI scheduling node based on TC
3947  * information.
3948  */
3949 int
3950 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3951 			       enum ice_rl_type rl_type)
3952 {
3953 	int status;
3954 
3955 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3956 						  ICE_AGG_TYPE_VSI,
3957 						  tc, rl_type,
3958 						  ICE_SCHED_DFLT_BW);
3959 	if (!status) {
3960 		mutex_lock(&pi->sched_lock);
3961 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3962 					       ICE_SCHED_DFLT_BW);
3963 		mutex_unlock(&pi->sched_lock);
3964 	}
3965 	return status;
3966 }
3967 
3968 /**
3969  * ice_cfg_rl_burst_size - Set burst size value
3970  * @hw: pointer to the HW struct
3971  * @bytes: burst size in bytes
3972  *
3973  * This function configures/set the burst size to requested new value. The new
3974  * burst size value is used for future rate limit calls. It doesn't change the
3975  * existing or previously created RL profiles.
3976  */
3977 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
3978 {
3979 	u16 burst_size_to_prog;
3980 
3981 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
3982 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
3983 		return -EINVAL;
3984 	if (ice_round_to_num(bytes, 64) <=
3985 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
3986 		/* 64 byte granularity case */
3987 		/* Disable MSB granularity bit */
3988 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
3989 		/* round number to nearest 64 byte granularity */
3990 		bytes = ice_round_to_num(bytes, 64);
3991 		/* The value is in 64 byte chunks */
3992 		burst_size_to_prog |= (u16)(bytes / 64);
3993 	} else {
3994 		/* k bytes granularity case */
3995 		/* Enable MSB granularity bit */
3996 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
3997 		/* round number to nearest 1024 granularity */
3998 		bytes = ice_round_to_num(bytes, 1024);
3999 		/* check rounding doesn't go beyond allowed */
4000 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4001 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4002 		/* The value is in k bytes */
4003 		burst_size_to_prog |= (u16)(bytes / 1024);
4004 	}
4005 	hw->max_burst_size = burst_size_to_prog;
4006 	return 0;
4007 }
4008 
4009 /**
4010  * ice_sched_replay_node_prio - re-configure node priority
4011  * @hw: pointer to the HW struct
4012  * @node: sched node to configure
4013  * @priority: priority value
4014  *
4015  * This function configures node element's priority value. It
4016  * needs to be called with scheduler lock held.
4017  */
4018 static int
4019 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4020 			   u8 priority)
4021 {
4022 	struct ice_aqc_txsched_elem_data buf;
4023 	struct ice_aqc_txsched_elem *data;
4024 	int status;
4025 
4026 	buf = node->info;
4027 	data = &buf.data;
4028 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4029 	data->generic = priority;
4030 
4031 	/* Configure element */
4032 	status = ice_sched_update_elem(hw, node, &buf);
4033 	return status;
4034 }
4035 
4036 /**
4037  * ice_sched_replay_node_bw - replay node(s) BW
4038  * @hw: pointer to the HW struct
4039  * @node: sched node to configure
4040  * @bw_t_info: BW type information
4041  *
4042  * This function restores node's BW from bw_t_info. The caller needs
4043  * to hold the scheduler lock.
4044  */
4045 static int
4046 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4047 			 struct ice_bw_type_info *bw_t_info)
4048 {
4049 	struct ice_port_info *pi = hw->port_info;
4050 	int status = -EINVAL;
4051 	u16 bw_alloc;
4052 
4053 	if (!node)
4054 		return status;
4055 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4056 		return 0;
4057 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4058 		status = ice_sched_replay_node_prio(hw, node,
4059 						    bw_t_info->generic);
4060 		if (status)
4061 			return status;
4062 	}
4063 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4064 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4065 						   bw_t_info->cir_bw.bw);
4066 		if (status)
4067 			return status;
4068 	}
4069 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4070 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4071 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4072 						     bw_alloc);
4073 		if (status)
4074 			return status;
4075 	}
4076 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4077 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4078 						   bw_t_info->eir_bw.bw);
4079 		if (status)
4080 			return status;
4081 	}
4082 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4083 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4084 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4085 						     bw_alloc);
4086 		if (status)
4087 			return status;
4088 	}
4089 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4090 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4091 						   bw_t_info->shared_bw);
4092 	return status;
4093 }
4094 
4095 /**
4096  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4097  * @pi: port info struct
4098  * @tc_bitmap: 8 bits TC bitmap to check
4099  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4100  *
4101  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4102  * may be missing, it returns enabled TCs. This function needs to be called with
4103  * scheduler lock held.
4104  */
4105 static void
4106 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4107 			    unsigned long *tc_bitmap,
4108 			    unsigned long *ena_tc_bitmap)
4109 {
4110 	u8 tc;
4111 
4112 	/* Some TC(s) may be missing after reset, adjust for replay */
4113 	ice_for_each_traffic_class(tc)
4114 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4115 		    (ice_sched_get_tc_node(pi, tc)))
4116 			set_bit(tc, ena_tc_bitmap);
4117 }
4118 
4119 /**
4120  * ice_sched_replay_agg - recreate aggregator node(s)
4121  * @hw: pointer to the HW struct
4122  *
4123  * This function recreate aggregator type nodes which are not replayed earlier.
4124  * It also replay aggregator BW information. These aggregator nodes are not
4125  * associated with VSI type node yet.
4126  */
4127 void ice_sched_replay_agg(struct ice_hw *hw)
4128 {
4129 	struct ice_port_info *pi = hw->port_info;
4130 	struct ice_sched_agg_info *agg_info;
4131 
4132 	mutex_lock(&pi->sched_lock);
4133 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4134 		/* replay aggregator (re-create aggregator node) */
4135 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4136 				  ICE_MAX_TRAFFIC_CLASS)) {
4137 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4138 			int status;
4139 
4140 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4141 			ice_sched_get_ena_tc_bitmap(pi,
4142 						    agg_info->replay_tc_bitmap,
4143 						    replay_bitmap);
4144 			status = ice_sched_cfg_agg(hw->port_info,
4145 						   agg_info->agg_id,
4146 						   ICE_AGG_TYPE_AGG,
4147 						   replay_bitmap);
4148 			if (status) {
4149 				dev_info(ice_hw_to_dev(hw),
4150 					 "Replay agg id[%d] failed\n",
4151 					 agg_info->agg_id);
4152 				/* Move on to next one */
4153 				continue;
4154 			}
4155 		}
4156 	mutex_unlock(&pi->sched_lock);
4157 }
4158 
4159 /**
4160  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4161  * @hw: pointer to the HW struct
4162  *
4163  * This function initialize aggregator(s) TC bitmap to zero. A required
4164  * preinit step for replaying aggregators.
4165  */
4166 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4167 {
4168 	struct ice_port_info *pi = hw->port_info;
4169 	struct ice_sched_agg_info *agg_info;
4170 
4171 	mutex_lock(&pi->sched_lock);
4172 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4173 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4174 
4175 		agg_info->tc_bitmap[0] = 0;
4176 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4177 				    list_entry)
4178 			agg_vsi_info->tc_bitmap[0] = 0;
4179 	}
4180 	mutex_unlock(&pi->sched_lock);
4181 }
4182 
4183 /**
4184  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4185  * @hw: pointer to the HW struct
4186  * @vsi_handle: software VSI handle
4187  *
4188  * This function replays aggregator node, VSI to aggregator type nodes, and
4189  * their node bandwidth information. This function needs to be called with
4190  * scheduler lock held.
4191  */
4192 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4193 {
4194 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4195 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4196 	struct ice_port_info *pi = hw->port_info;
4197 	struct ice_sched_agg_info *agg_info;
4198 	int status;
4199 
4200 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4201 	if (!ice_is_vsi_valid(hw, vsi_handle))
4202 		return -EINVAL;
4203 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4204 	if (!agg_info)
4205 		return 0; /* Not present in list - default Agg case */
4206 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4207 	if (!agg_vsi_info)
4208 		return 0; /* Not present in list - default Agg case */
4209 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4210 				    replay_bitmap);
4211 	/* Replay aggregator node associated to vsi_handle */
4212 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4213 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4214 	if (status)
4215 		return status;
4216 
4217 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4218 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4219 				    replay_bitmap);
4220 	/* Move this VSI (vsi_handle) to above aggregator */
4221 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4222 					  replay_bitmap);
4223 }
4224 
4225 /**
4226  * ice_replay_vsi_agg - replay VSI to aggregator node
4227  * @hw: pointer to the HW struct
4228  * @vsi_handle: software VSI handle
4229  *
4230  * This function replays association of VSI to aggregator type nodes, and
4231  * node bandwidth information.
4232  */
4233 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4234 {
4235 	struct ice_port_info *pi = hw->port_info;
4236 	int status;
4237 
4238 	mutex_lock(&pi->sched_lock);
4239 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4240 	mutex_unlock(&pi->sched_lock);
4241 	return status;
4242 }
4243 
4244 /**
4245  * ice_sched_replay_q_bw - replay queue type node BW
4246  * @pi: port information structure
4247  * @q_ctx: queue context structure
4248  *
4249  * This function replays queue type node bandwidth. This function needs to be
4250  * called with scheduler lock held.
4251  */
4252 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4253 {
4254 	struct ice_sched_node *q_node;
4255 
4256 	/* Following also checks the presence of node in tree */
4257 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4258 	if (!q_node)
4259 		return -EINVAL;
4260 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4261 }
4262