1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include <linux/delay.h> 5 #include "ice_common.h" 6 #include "ice_ptp_hw.h" 7 #include "ice_ptp_consts.h" 8 #include "ice_cgu_regs.h" 9 10 /* Low level functions for interacting with and managing the device clock used 11 * for the Precision Time Protocol. 12 * 13 * The ice hardware represents the current time using three registers: 14 * 15 * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R 16 * +---------------+ +---------------+ +---------------+ 17 * | 32 bits | | 32 bits | | 32 bits | 18 * +---------------+ +---------------+ +---------------+ 19 * 20 * The registers are incremented every clock tick using a 40bit increment 21 * value defined over two registers: 22 * 23 * GLTSYN_INCVAL_H GLTSYN_INCVAL_L 24 * +---------------+ +---------------+ 25 * | 8 bit s | | 32 bits | 26 * +---------------+ +---------------+ 27 * 28 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L 29 * registers every clock source tick. Depending on the specific device 30 * configuration, the clock source frequency could be one of a number of 31 * values. 32 * 33 * For E810 devices, the increment frequency is 812.5 MHz 34 * 35 * For E822 devices the clock can be derived from different sources, and the 36 * increment has an effective frequency of one of the following: 37 * - 823.4375 MHz 38 * - 783.36 MHz 39 * - 796.875 MHz 40 * - 816 MHz 41 * - 830.078125 MHz 42 * - 783.36 MHz 43 * 44 * The hardware captures timestamps in the PHY for incoming packets, and for 45 * outgoing packets on request. To support this, the PHY maintains a timer 46 * that matches the lower 64 bits of the global source timer. 47 * 48 * In order to ensure that the PHY timers and the source timer are equivalent, 49 * shadow registers are used to prepare the desired initial values. A special 50 * sync command is issued to trigger copying from the shadow registers into 51 * the appropriate source and PHY registers simultaneously. 52 * 53 * The driver supports devices which have different PHYs with subtly different 54 * mechanisms to program and control the timers. We divide the devices into 55 * families named after the first major device, E810 and similar devices, and 56 * E822 and similar devices. 57 * 58 * - E822 based devices have additional support for fine grained Vernier 59 * calibration which requires significant setup 60 * - The layout of timestamp data in the PHY register blocks is different 61 * - The way timer synchronization commands are issued is different. 62 * 63 * To support this, very low level functions have an e810 or e822 suffix 64 * indicating what type of device they work on. Higher level abstractions for 65 * tasks that can be done on both devices do not have the suffix and will 66 * correctly look up the appropriate low level function when running. 67 * 68 * Functions which only make sense on a single device family may not have 69 * a suitable generic implementation 70 */ 71 72 /** 73 * ice_get_ptp_src_clock_index - determine source clock index 74 * @hw: pointer to HW struct 75 * 76 * Determine the source clock index currently in use, based on device 77 * capabilities reported during initialization. 78 */ 79 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw) 80 { 81 return hw->func_caps.ts_func_info.tmr_index_assoc; 82 } 83 84 /** 85 * ice_ptp_read_src_incval - Read source timer increment value 86 * @hw: pointer to HW struct 87 * 88 * Read the increment value of the source timer and return it. 89 */ 90 static u64 ice_ptp_read_src_incval(struct ice_hw *hw) 91 { 92 u32 lo, hi; 93 u8 tmr_idx; 94 95 tmr_idx = ice_get_ptp_src_clock_index(hw); 96 97 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); 98 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); 99 100 return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo; 101 } 102 103 /** 104 * ice_ptp_src_cmd - Prepare source timer for a timer command 105 * @hw: pointer to HW structure 106 * @cmd: Timer command 107 * 108 * Prepare the source timer for an upcoming timer sync command. 109 */ 110 static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) 111 { 112 u32 cmd_val; 113 u8 tmr_idx; 114 115 tmr_idx = ice_get_ptp_src_clock_index(hw); 116 cmd_val = tmr_idx << SEL_CPK_SRC; 117 118 switch (cmd) { 119 case INIT_TIME: 120 cmd_val |= GLTSYN_CMD_INIT_TIME; 121 break; 122 case INIT_INCVAL: 123 cmd_val |= GLTSYN_CMD_INIT_INCVAL; 124 break; 125 case ADJ_TIME: 126 cmd_val |= GLTSYN_CMD_ADJ_TIME; 127 break; 128 case ADJ_TIME_AT_TIME: 129 cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME; 130 break; 131 case READ_TIME: 132 cmd_val |= GLTSYN_CMD_READ_TIME; 133 break; 134 } 135 136 wr32(hw, GLTSYN_CMD, cmd_val); 137 } 138 139 /** 140 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands 141 * @hw: pointer to HW struct 142 * 143 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the 144 * write immediately. This triggers the hardware to begin executing all of the 145 * source and PHY timer commands synchronously. 146 */ 147 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw) 148 { 149 wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD); 150 ice_flush(hw); 151 } 152 153 /* E822 family functions 154 * 155 * The following functions operate on the E822 family of devices. 156 */ 157 158 /** 159 * ice_fill_phy_msg_e822 - Fill message data for a PHY register access 160 * @msg: the PHY message buffer to fill in 161 * @port: the port to access 162 * @offset: the register offset 163 */ 164 static void 165 ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) 166 { 167 int phy_port, phy, quadtype; 168 169 phy_port = port % ICE_PORTS_PER_PHY; 170 phy = port / ICE_PORTS_PER_PHY; 171 quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE; 172 173 if (quadtype == 0) { 174 msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port); 175 msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port); 176 } else { 177 msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port); 178 msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port); 179 } 180 181 if (phy == 0) 182 msg->dest_dev = rmn_0; 183 else if (phy == 1) 184 msg->dest_dev = rmn_1; 185 else 186 msg->dest_dev = rmn_2; 187 } 188 189 /** 190 * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register 191 * @low_addr: the low address to check 192 * @high_addr: on return, contains the high address of the 64bit register 193 * 194 * Checks if the provided low address is one of the known 64bit PHY values 195 * represented as two 32bit registers. If it is, return the appropriate high 196 * register offset to use. 197 */ 198 static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) 199 { 200 switch (low_addr) { 201 case P_REG_PAR_PCS_TX_OFFSET_L: 202 *high_addr = P_REG_PAR_PCS_TX_OFFSET_U; 203 return true; 204 case P_REG_PAR_PCS_RX_OFFSET_L: 205 *high_addr = P_REG_PAR_PCS_RX_OFFSET_U; 206 return true; 207 case P_REG_PAR_TX_TIME_L: 208 *high_addr = P_REG_PAR_TX_TIME_U; 209 return true; 210 case P_REG_PAR_RX_TIME_L: 211 *high_addr = P_REG_PAR_RX_TIME_U; 212 return true; 213 case P_REG_TOTAL_TX_OFFSET_L: 214 *high_addr = P_REG_TOTAL_TX_OFFSET_U; 215 return true; 216 case P_REG_TOTAL_RX_OFFSET_L: 217 *high_addr = P_REG_TOTAL_RX_OFFSET_U; 218 return true; 219 case P_REG_UIX66_10G_40G_L: 220 *high_addr = P_REG_UIX66_10G_40G_U; 221 return true; 222 case P_REG_UIX66_25G_100G_L: 223 *high_addr = P_REG_UIX66_25G_100G_U; 224 return true; 225 case P_REG_TX_CAPTURE_L: 226 *high_addr = P_REG_TX_CAPTURE_U; 227 return true; 228 case P_REG_RX_CAPTURE_L: 229 *high_addr = P_REG_RX_CAPTURE_U; 230 return true; 231 case P_REG_TX_TIMER_INC_PRE_L: 232 *high_addr = P_REG_TX_TIMER_INC_PRE_U; 233 return true; 234 case P_REG_RX_TIMER_INC_PRE_L: 235 *high_addr = P_REG_RX_TIMER_INC_PRE_U; 236 return true; 237 default: 238 return false; 239 } 240 } 241 242 /** 243 * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register 244 * @low_addr: the low address to check 245 * @high_addr: on return, contains the high address of the 40bit value 246 * 247 * Checks if the provided low address is one of the known 40bit PHY values 248 * split into two registers with the lower 8 bits in the low register and the 249 * upper 32 bits in the high register. If it is, return the appropriate high 250 * register offset to use. 251 */ 252 static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) 253 { 254 switch (low_addr) { 255 case P_REG_TIMETUS_L: 256 *high_addr = P_REG_TIMETUS_U; 257 return true; 258 case P_REG_PAR_RX_TUS_L: 259 *high_addr = P_REG_PAR_RX_TUS_U; 260 return true; 261 case P_REG_PAR_TX_TUS_L: 262 *high_addr = P_REG_PAR_TX_TUS_U; 263 return true; 264 case P_REG_PCS_RX_TUS_L: 265 *high_addr = P_REG_PCS_RX_TUS_U; 266 return true; 267 case P_REG_PCS_TX_TUS_L: 268 *high_addr = P_REG_PCS_TX_TUS_U; 269 return true; 270 case P_REG_DESK_PAR_RX_TUS_L: 271 *high_addr = P_REG_DESK_PAR_RX_TUS_U; 272 return true; 273 case P_REG_DESK_PAR_TX_TUS_L: 274 *high_addr = P_REG_DESK_PAR_TX_TUS_U; 275 return true; 276 case P_REG_DESK_PCS_RX_TUS_L: 277 *high_addr = P_REG_DESK_PCS_RX_TUS_U; 278 return true; 279 case P_REG_DESK_PCS_TX_TUS_L: 280 *high_addr = P_REG_DESK_PCS_TX_TUS_U; 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 /** 288 * ice_read_phy_reg_e822 - Read a PHY register 289 * @hw: pointer to the HW struct 290 * @port: PHY port to read from 291 * @offset: PHY register offset to read 292 * @val: on return, the contents read from the PHY 293 * 294 * Read a PHY register for the given port over the device sideband queue. 295 */ 296 int 297 ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) 298 { 299 struct ice_sbq_msg_input msg = {0}; 300 int err; 301 302 ice_fill_phy_msg_e822(&msg, port, offset); 303 msg.opcode = ice_sbq_msg_rd; 304 305 err = ice_sbq_rw_reg(hw, &msg); 306 if (err) { 307 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", 308 err); 309 return err; 310 } 311 312 *val = msg.data; 313 314 return 0; 315 } 316 317 /** 318 * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers 319 * @hw: pointer to the HW struct 320 * @port: PHY port to read from 321 * @low_addr: offset of the lower register to read from 322 * @val: on return, the contents of the 64bit value from the PHY registers 323 * 324 * Reads the two registers associated with a 64bit value and returns it in the 325 * val pointer. The offset always specifies the lower register offset to use. 326 * The high offset is looked up. This function only operates on registers 327 * known to be two parts of a 64bit value. 328 */ 329 static int 330 ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) 331 { 332 u32 low, high; 333 u16 high_addr; 334 int err; 335 336 /* Only operate on registers known to be split into two 32bit 337 * registers. 338 */ 339 if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { 340 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", 341 low_addr); 342 return -EINVAL; 343 } 344 345 err = ice_read_phy_reg_e822(hw, port, low_addr, &low); 346 if (err) { 347 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d", 348 low_addr, err); 349 return err; 350 } 351 352 err = ice_read_phy_reg_e822(hw, port, high_addr, &high); 353 if (err) { 354 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d", 355 high_addr, err); 356 return err; 357 } 358 359 *val = (u64)high << 32 | low; 360 361 return 0; 362 } 363 364 /** 365 * ice_write_phy_reg_e822 - Write a PHY register 366 * @hw: pointer to the HW struct 367 * @port: PHY port to write to 368 * @offset: PHY register offset to write 369 * @val: The value to write to the register 370 * 371 * Write a PHY register for the given port over the device sideband queue. 372 */ 373 int 374 ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) 375 { 376 struct ice_sbq_msg_input msg = {0}; 377 int err; 378 379 ice_fill_phy_msg_e822(&msg, port, offset); 380 msg.opcode = ice_sbq_msg_wr; 381 msg.data = val; 382 383 err = ice_sbq_rw_reg(hw, &msg); 384 if (err) { 385 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", 386 err); 387 return err; 388 } 389 390 return 0; 391 } 392 393 /** 394 * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY 395 * @hw: pointer to the HW struct 396 * @port: port to write to 397 * @low_addr: offset of the low register 398 * @val: 40b value to write 399 * 400 * Write the provided 40b value to the two associated registers by splitting 401 * it up into two chunks, the lower 8 bits and the upper 32 bits. 402 */ 403 static int 404 ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) 405 { 406 u32 low, high; 407 u16 high_addr; 408 int err; 409 410 /* Only operate on registers known to be split into a lower 8 bit 411 * register and an upper 32 bit register. 412 */ 413 if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) { 414 ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n", 415 low_addr); 416 return -EINVAL; 417 } 418 419 low = (u32)(val & P_REG_40B_LOW_M); 420 high = (u32)(val >> P_REG_40B_HIGH_S); 421 422 err = ice_write_phy_reg_e822(hw, port, low_addr, low); 423 if (err) { 424 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", 425 low_addr, err); 426 return err; 427 } 428 429 err = ice_write_phy_reg_e822(hw, port, high_addr, high); 430 if (err) { 431 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", 432 high_addr, err); 433 return err; 434 } 435 436 return 0; 437 } 438 439 /** 440 * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers 441 * @hw: pointer to the HW struct 442 * @port: PHY port to read from 443 * @low_addr: offset of the lower register to read from 444 * @val: the contents of the 64bit value to write to PHY 445 * 446 * Write the 64bit value to the two associated 32bit PHY registers. The offset 447 * is always specified as the lower register, and the high address is looked 448 * up. This function only operates on registers known to be two parts of 449 * a 64bit value. 450 */ 451 static int 452 ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) 453 { 454 u32 low, high; 455 u16 high_addr; 456 int err; 457 458 /* Only operate on registers known to be split into two 32bit 459 * registers. 460 */ 461 if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { 462 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", 463 low_addr); 464 return -EINVAL; 465 } 466 467 low = lower_32_bits(val); 468 high = upper_32_bits(val); 469 470 err = ice_write_phy_reg_e822(hw, port, low_addr, low); 471 if (err) { 472 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", 473 low_addr, err); 474 return err; 475 } 476 477 err = ice_write_phy_reg_e822(hw, port, high_addr, high); 478 if (err) { 479 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", 480 high_addr, err); 481 return err; 482 } 483 484 return 0; 485 } 486 487 /** 488 * ice_fill_quad_msg_e822 - Fill message data for quad register access 489 * @msg: the PHY message buffer to fill in 490 * @quad: the quad to access 491 * @offset: the register offset 492 * 493 * Fill a message buffer for accessing a register in a quad shared between 494 * multiple PHYs. 495 */ 496 static void 497 ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset) 498 { 499 u32 addr; 500 501 msg->dest_dev = rmn_0; 502 503 if ((quad % ICE_NUM_QUAD_TYPE) == 0) 504 addr = Q_0_BASE + offset; 505 else 506 addr = Q_1_BASE + offset; 507 508 msg->msg_addr_low = lower_16_bits(addr); 509 msg->msg_addr_high = upper_16_bits(addr); 510 } 511 512 /** 513 * ice_read_quad_reg_e822 - Read a PHY quad register 514 * @hw: pointer to the HW struct 515 * @quad: quad to read from 516 * @offset: quad register offset to read 517 * @val: on return, the contents read from the quad 518 * 519 * Read a quad register over the device sideband queue. Quad registers are 520 * shared between multiple PHYs. 521 */ 522 int 523 ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) 524 { 525 struct ice_sbq_msg_input msg = {0}; 526 int err; 527 528 if (quad >= ICE_MAX_QUAD) 529 return -EINVAL; 530 531 ice_fill_quad_msg_e822(&msg, quad, offset); 532 msg.opcode = ice_sbq_msg_rd; 533 534 err = ice_sbq_rw_reg(hw, &msg); 535 if (err) { 536 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", 537 err); 538 return err; 539 } 540 541 *val = msg.data; 542 543 return 0; 544 } 545 546 /** 547 * ice_write_quad_reg_e822 - Write a PHY quad register 548 * @hw: pointer to the HW struct 549 * @quad: quad to write to 550 * @offset: quad register offset to write 551 * @val: The value to write to the register 552 * 553 * Write a quad register over the device sideband queue. Quad registers are 554 * shared between multiple PHYs. 555 */ 556 int 557 ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) 558 { 559 struct ice_sbq_msg_input msg = {0}; 560 int err; 561 562 if (quad >= ICE_MAX_QUAD) 563 return -EINVAL; 564 565 ice_fill_quad_msg_e822(&msg, quad, offset); 566 msg.opcode = ice_sbq_msg_wr; 567 msg.data = val; 568 569 err = ice_sbq_rw_reg(hw, &msg); 570 if (err) { 571 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", 572 err); 573 return err; 574 } 575 576 return 0; 577 } 578 579 /** 580 * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block 581 * @hw: pointer to the HW struct 582 * @quad: the quad to read from 583 * @idx: the timestamp index to read 584 * @tstamp: on return, the 40bit timestamp value 585 * 586 * Read a 40bit timestamp value out of the two associated registers in the 587 * quad memory block that is shared between the internal PHYs of the E822 588 * family of devices. 589 */ 590 static int 591 ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) 592 { 593 u16 lo_addr, hi_addr; 594 u32 lo, hi; 595 int err; 596 597 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); 598 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); 599 600 err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo); 601 if (err) { 602 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", 603 err); 604 return err; 605 } 606 607 err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi); 608 if (err) { 609 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", 610 err); 611 return err; 612 } 613 614 /* For E822 based internal PHYs, the timestamp is reported with the 615 * lower 8 bits in the low register, and the upper 32 bits in the high 616 * register. 617 */ 618 *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M); 619 620 return 0; 621 } 622 623 /** 624 * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block 625 * @hw: pointer to the HW struct 626 * @quad: the quad to read from 627 * @idx: the timestamp index to reset 628 * 629 * Clear a timestamp, resetting its valid bit, from the PHY quad block that is 630 * shared between the internal PHYs on the E822 devices. 631 */ 632 static int 633 ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx) 634 { 635 u16 lo_addr, hi_addr; 636 int err; 637 638 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); 639 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); 640 641 err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0); 642 if (err) { 643 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", 644 err); 645 return err; 646 } 647 648 err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0); 649 if (err) { 650 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", 651 err); 652 return err; 653 } 654 655 return 0; 656 } 657 658 /** 659 * ice_read_cgu_reg_e822 - Read a CGU register 660 * @hw: pointer to the HW struct 661 * @addr: Register address to read 662 * @val: storage for register value read 663 * 664 * Read the contents of a register of the Clock Generation Unit. Only 665 * applicable to E822 devices. 666 */ 667 static int 668 ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val) 669 { 670 struct ice_sbq_msg_input cgu_msg; 671 int err; 672 673 cgu_msg.opcode = ice_sbq_msg_rd; 674 cgu_msg.dest_dev = cgu; 675 cgu_msg.msg_addr_low = addr; 676 cgu_msg.msg_addr_high = 0x0; 677 678 err = ice_sbq_rw_reg(hw, &cgu_msg); 679 if (err) { 680 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n", 681 addr, err); 682 return err; 683 } 684 685 *val = cgu_msg.data; 686 687 return err; 688 } 689 690 /** 691 * ice_write_cgu_reg_e822 - Write a CGU register 692 * @hw: pointer to the HW struct 693 * @addr: Register address to write 694 * @val: value to write into the register 695 * 696 * Write the specified value to a register of the Clock Generation Unit. Only 697 * applicable to E822 devices. 698 */ 699 static int 700 ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val) 701 { 702 struct ice_sbq_msg_input cgu_msg; 703 int err; 704 705 cgu_msg.opcode = ice_sbq_msg_wr; 706 cgu_msg.dest_dev = cgu; 707 cgu_msg.msg_addr_low = addr; 708 cgu_msg.msg_addr_high = 0x0; 709 cgu_msg.data = val; 710 711 err = ice_sbq_rw_reg(hw, &cgu_msg); 712 if (err) { 713 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n", 714 addr, err); 715 return err; 716 } 717 718 return err; 719 } 720 721 /** 722 * ice_clk_freq_str - Convert time_ref_freq to string 723 * @clk_freq: Clock frequency 724 * 725 * Convert the specified TIME_REF clock frequency to a string. 726 */ 727 static const char *ice_clk_freq_str(u8 clk_freq) 728 { 729 switch ((enum ice_time_ref_freq)clk_freq) { 730 case ICE_TIME_REF_FREQ_25_000: 731 return "25 MHz"; 732 case ICE_TIME_REF_FREQ_122_880: 733 return "122.88 MHz"; 734 case ICE_TIME_REF_FREQ_125_000: 735 return "125 MHz"; 736 case ICE_TIME_REF_FREQ_153_600: 737 return "153.6 MHz"; 738 case ICE_TIME_REF_FREQ_156_250: 739 return "156.25 MHz"; 740 case ICE_TIME_REF_FREQ_245_760: 741 return "245.76 MHz"; 742 default: 743 return "Unknown"; 744 } 745 } 746 747 /** 748 * ice_clk_src_str - Convert time_ref_src to string 749 * @clk_src: Clock source 750 * 751 * Convert the specified clock source to its string name. 752 */ 753 static const char *ice_clk_src_str(u8 clk_src) 754 { 755 switch ((enum ice_clk_src)clk_src) { 756 case ICE_CLK_SRC_TCX0: 757 return "TCX0"; 758 case ICE_CLK_SRC_TIME_REF: 759 return "TIME_REF"; 760 default: 761 return "Unknown"; 762 } 763 } 764 765 /** 766 * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit 767 * @hw: pointer to the HW struct 768 * @clk_freq: Clock frequency to program 769 * @clk_src: Clock source to select (TIME_REF, or TCX0) 770 * 771 * Configure the Clock Generation Unit with the desired clock frequency and 772 * time reference, enabling the PLL which drives the PTP hardware clock. 773 */ 774 static int 775 ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq, 776 enum ice_clk_src clk_src) 777 { 778 union tspll_ro_bwm_lf bwm_lf; 779 union nac_cgu_dword19 dw19; 780 union nac_cgu_dword22 dw22; 781 union nac_cgu_dword24 dw24; 782 union nac_cgu_dword9 dw9; 783 int err; 784 785 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) { 786 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n", 787 clk_freq); 788 return -EINVAL; 789 } 790 791 if (clk_src >= NUM_ICE_CLK_SRC) { 792 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n", 793 clk_src); 794 return -EINVAL; 795 } 796 797 if (clk_src == ICE_CLK_SRC_TCX0 && 798 clk_freq != ICE_TIME_REF_FREQ_25_000) { 799 dev_warn(ice_hw_to_dev(hw), 800 "TCX0 only supports 25 MHz frequency\n"); 801 return -EINVAL; 802 } 803 804 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val); 805 if (err) 806 return err; 807 808 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); 809 if (err) 810 return err; 811 812 err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); 813 if (err) 814 return err; 815 816 /* Log the current clock configuration */ 817 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", 818 dw24.field.ts_pll_enable ? "enabled" : "disabled", 819 ice_clk_src_str(dw24.field.time_ref_sel), 820 ice_clk_freq_str(dw9.field.time_ref_freq_sel), 821 bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); 822 823 /* Disable the PLL before changing the clock source or frequency */ 824 if (dw24.field.ts_pll_enable) { 825 dw24.field.ts_pll_enable = 0; 826 827 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); 828 if (err) 829 return err; 830 } 831 832 /* Set the frequency */ 833 dw9.field.time_ref_freq_sel = clk_freq; 834 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val); 835 if (err) 836 return err; 837 838 /* Configure the TS PLL feedback divisor */ 839 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val); 840 if (err) 841 return err; 842 843 dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div; 844 dw19.field.tspll_ndivratio = 1; 845 846 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val); 847 if (err) 848 return err; 849 850 /* Configure the TS PLL post divisor */ 851 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val); 852 if (err) 853 return err; 854 855 dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div; 856 dw22.field.time1588clk_sel_div2 = 0; 857 858 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val); 859 if (err) 860 return err; 861 862 /* Configure the TS PLL pre divisor and clock source */ 863 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); 864 if (err) 865 return err; 866 867 dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div; 868 dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div; 869 dw24.field.time_ref_sel = clk_src; 870 871 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); 872 if (err) 873 return err; 874 875 /* Finally, enable the PLL */ 876 dw24.field.ts_pll_enable = 1; 877 878 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); 879 if (err) 880 return err; 881 882 /* Wait to verify if the PLL locks */ 883 usleep_range(1000, 5000); 884 885 err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); 886 if (err) 887 return err; 888 889 if (!bwm_lf.field.plllock_true_lock_cri) { 890 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n"); 891 return -EBUSY; 892 } 893 894 /* Log the current clock configuration */ 895 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", 896 dw24.field.ts_pll_enable ? "enabled" : "disabled", 897 ice_clk_src_str(dw24.field.time_ref_sel), 898 ice_clk_freq_str(dw9.field.time_ref_freq_sel), 899 bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); 900 901 return 0; 902 } 903 904 /** 905 * ice_init_cgu_e822 - Initialize CGU with settings from firmware 906 * @hw: pointer to the HW structure 907 * 908 * Initialize the Clock Generation Unit of the E822 device. 909 */ 910 static int ice_init_cgu_e822(struct ice_hw *hw) 911 { 912 struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info; 913 union tspll_cntr_bist_settings cntr_bist; 914 int err; 915 916 err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, 917 &cntr_bist.val); 918 if (err) 919 return err; 920 921 /* Disable sticky lock detection so lock err reported is accurate */ 922 cntr_bist.field.i_plllock_sel_0 = 0; 923 cntr_bist.field.i_plllock_sel_1 = 0; 924 925 err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, 926 cntr_bist.val); 927 if (err) 928 return err; 929 930 /* Configure the CGU PLL using the parameters from the function 931 * capabilities. 932 */ 933 err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref, 934 (enum ice_clk_src)ts_info->clk_src); 935 if (err) 936 return err; 937 938 return 0; 939 } 940 941 /** 942 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration 943 * @hw: pointer to the HW struct 944 * 945 * Set the window length used for the vernier port calibration process. 946 */ 947 static int ice_ptp_set_vernier_wl(struct ice_hw *hw) 948 { 949 u8 port; 950 951 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { 952 int err; 953 954 err = ice_write_phy_reg_e822(hw, port, P_REG_WL, 955 PTP_VERNIER_WL); 956 if (err) { 957 ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n", 958 port, err); 959 return err; 960 } 961 } 962 963 return 0; 964 } 965 966 /** 967 * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization 968 * @hw: pointer to HW struct 969 * 970 * Perform PHC initialization steps specific to E822 devices. 971 */ 972 static int ice_ptp_init_phc_e822(struct ice_hw *hw) 973 { 974 int err; 975 u32 regval; 976 977 /* Enable reading switch and PHY registers over the sideband queue */ 978 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1) 979 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2) 980 regval = rd32(hw, PF_SB_REM_DEV_CTL); 981 regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ | 982 PF_SB_REM_DEV_CTL_PHY0); 983 wr32(hw, PF_SB_REM_DEV_CTL, regval); 984 985 /* Initialize the Clock Generation Unit */ 986 err = ice_init_cgu_e822(hw); 987 if (err) 988 return err; 989 990 /* Set window length for all the ports */ 991 return ice_ptp_set_vernier_wl(hw); 992 } 993 994 /** 995 * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time 996 * @hw: pointer to the HW struct 997 * @time: Time to initialize the PHY port clocks to 998 * 999 * Program the PHY port registers with a new initial time value. The port 1000 * clock will be initialized once the driver issues an INIT_TIME sync 1001 * command. The time value is the upper 32 bits of the PHY timer, usually in 1002 * units of nominal nanoseconds. 1003 */ 1004 static int 1005 ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time) 1006 { 1007 u64 phy_time; 1008 u8 port; 1009 int err; 1010 1011 /* The time represents the upper 32 bits of the PHY timer, so we need 1012 * to shift to account for this when programming. 1013 */ 1014 phy_time = (u64)time << 32; 1015 1016 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { 1017 /* Tx case */ 1018 err = ice_write_64b_phy_reg_e822(hw, port, 1019 P_REG_TX_TIMER_INC_PRE_L, 1020 phy_time); 1021 if (err) 1022 goto exit_err; 1023 1024 /* Rx case */ 1025 err = ice_write_64b_phy_reg_e822(hw, port, 1026 P_REG_RX_TIMER_INC_PRE_L, 1027 phy_time); 1028 if (err) 1029 goto exit_err; 1030 } 1031 1032 return 0; 1033 1034 exit_err: 1035 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", 1036 port, err); 1037 1038 return err; 1039 } 1040 1041 /** 1042 * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust 1043 * @hw: pointer to HW struct 1044 * @port: Port number to be programmed 1045 * @time: time in cycles to adjust the port Tx and Rx clocks 1046 * 1047 * Program the port for an atomic adjustment by writing the Tx and Rx timer 1048 * registers. The atomic adjustment won't be completed until the driver issues 1049 * an ADJ_TIME command. 1050 * 1051 * Note that time is not in units of nanoseconds. It is in clock time 1052 * including the lower sub-nanosecond portion of the port timer. 1053 * 1054 * Negative adjustments are supported using 2s complement arithmetic. 1055 */ 1056 int 1057 ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time) 1058 { 1059 u32 l_time, u_time; 1060 int err; 1061 1062 l_time = lower_32_bits(time); 1063 u_time = upper_32_bits(time); 1064 1065 /* Tx case */ 1066 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, 1067 l_time); 1068 if (err) 1069 goto exit_err; 1070 1071 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U, 1072 u_time); 1073 if (err) 1074 goto exit_err; 1075 1076 /* Rx case */ 1077 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, 1078 l_time); 1079 if (err) 1080 goto exit_err; 1081 1082 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U, 1083 u_time); 1084 if (err) 1085 goto exit_err; 1086 1087 return 0; 1088 1089 exit_err: 1090 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", 1091 port, err); 1092 return err; 1093 } 1094 1095 /** 1096 * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment 1097 * @hw: pointer to HW struct 1098 * @adj: adjustment in nanoseconds 1099 * 1100 * Prepare the PHY ports for an atomic time adjustment by programming the PHY 1101 * Tx and Rx port registers. The actual adjustment is completed by issuing an 1102 * ADJ_TIME or ADJ_TIME_AT_TIME sync command. 1103 */ 1104 static int 1105 ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) 1106 { 1107 s64 cycles; 1108 u8 port; 1109 1110 /* The port clock supports adjustment of the sub-nanosecond portion of 1111 * the clock. We shift the provided adjustment in nanoseconds to 1112 * calculate the appropriate adjustment to program into the PHY ports. 1113 */ 1114 if (adj > 0) 1115 cycles = (s64)adj << 32; 1116 else 1117 cycles = -(((s64)-adj) << 32); 1118 1119 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { 1120 int err; 1121 1122 err = ice_ptp_prep_port_adj_e822(hw, port, cycles); 1123 if (err) 1124 return err; 1125 } 1126 1127 return 0; 1128 } 1129 1130 /** 1131 * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment 1132 * @hw: pointer to HW struct 1133 * @incval: new increment value to prepare 1134 * 1135 * Prepare each of the PHY ports for a new increment value by programming the 1136 * port's TIMETUS registers. The new increment value will be updated after 1137 * issuing an INIT_INCVAL command. 1138 */ 1139 static int 1140 ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval) 1141 { 1142 int err; 1143 u8 port; 1144 1145 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { 1146 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, 1147 incval); 1148 if (err) 1149 goto exit_err; 1150 } 1151 1152 return 0; 1153 1154 exit_err: 1155 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", 1156 port, err); 1157 1158 return err; 1159 } 1160 1161 /** 1162 * ice_ptp_read_port_capture - Read a port's local time capture 1163 * @hw: pointer to HW struct 1164 * @port: Port number to read 1165 * @tx_ts: on return, the Tx port time capture 1166 * @rx_ts: on return, the Rx port time capture 1167 * 1168 * Read the port's Tx and Rx local time capture values. 1169 * 1170 * Note this has no equivalent for the E810 devices. 1171 */ 1172 static int 1173 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) 1174 { 1175 int err; 1176 1177 /* Tx case */ 1178 err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts); 1179 if (err) { 1180 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", 1181 err); 1182 return err; 1183 } 1184 1185 ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n", 1186 (unsigned long long)*tx_ts); 1187 1188 /* Rx case */ 1189 err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts); 1190 if (err) { 1191 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", 1192 err); 1193 return err; 1194 } 1195 1196 ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n", 1197 (unsigned long long)*rx_ts); 1198 1199 return 0; 1200 } 1201 1202 /** 1203 * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command 1204 * @hw: pointer to HW struct 1205 * @port: Port to which cmd has to be sent 1206 * @cmd: Command to be sent to the port 1207 * 1208 * Prepare the requested port for an upcoming timer sync command. 1209 * 1210 * Note there is no equivalent of this operation on E810, as that device 1211 * always handles all external PHYs internally. 1212 */ 1213 static int 1214 ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) 1215 { 1216 u32 cmd_val, val; 1217 u8 tmr_idx; 1218 int err; 1219 1220 tmr_idx = ice_get_ptp_src_clock_index(hw); 1221 cmd_val = tmr_idx << SEL_PHY_SRC; 1222 switch (cmd) { 1223 case INIT_TIME: 1224 cmd_val |= PHY_CMD_INIT_TIME; 1225 break; 1226 case INIT_INCVAL: 1227 cmd_val |= PHY_CMD_INIT_INCVAL; 1228 break; 1229 case ADJ_TIME: 1230 cmd_val |= PHY_CMD_ADJ_TIME; 1231 break; 1232 case READ_TIME: 1233 cmd_val |= PHY_CMD_READ_TIME; 1234 break; 1235 case ADJ_TIME_AT_TIME: 1236 cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME; 1237 break; 1238 } 1239 1240 /* Tx case */ 1241 /* Read, modify, write */ 1242 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val); 1243 if (err) { 1244 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n", 1245 err); 1246 return err; 1247 } 1248 1249 /* Modify necessary bits only and perform write */ 1250 val &= ~TS_CMD_MASK; 1251 val |= cmd_val; 1252 1253 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val); 1254 if (err) { 1255 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", 1256 err); 1257 return err; 1258 } 1259 1260 /* Rx case */ 1261 /* Read, modify, write */ 1262 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val); 1263 if (err) { 1264 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n", 1265 err); 1266 return err; 1267 } 1268 1269 /* Modify necessary bits only and perform write */ 1270 val &= ~TS_CMD_MASK; 1271 val |= cmd_val; 1272 1273 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val); 1274 if (err) { 1275 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", 1276 err); 1277 return err; 1278 } 1279 1280 return 0; 1281 } 1282 1283 /** 1284 * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command 1285 * @hw: pointer to the HW struct 1286 * @cmd: timer command to prepare 1287 * 1288 * Prepare all ports connected to this device for an upcoming timer sync 1289 * command. 1290 */ 1291 static int 1292 ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) 1293 { 1294 u8 port; 1295 1296 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { 1297 int err; 1298 1299 err = ice_ptp_one_port_cmd(hw, port, cmd); 1300 if (err) 1301 return err; 1302 } 1303 1304 return 0; 1305 } 1306 1307 /* E822 Vernier calibration functions 1308 * 1309 * The following functions are used as part of the vernier calibration of 1310 * a port. This calibration increases the precision of the timestamps on the 1311 * port. 1312 */ 1313 1314 /** 1315 * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode 1316 * @hw: pointer to HW struct 1317 * @port: the port to read from 1318 * @link_out: if non-NULL, holds link speed on success 1319 * @fec_out: if non-NULL, holds FEC algorithm on success 1320 * 1321 * Read the serdes data for the PHY port and extract the link speed and FEC 1322 * algorithm. 1323 */ 1324 static int 1325 ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, 1326 enum ice_ptp_link_spd *link_out, 1327 enum ice_ptp_fec_mode *fec_out) 1328 { 1329 enum ice_ptp_link_spd link; 1330 enum ice_ptp_fec_mode fec; 1331 u32 serdes; 1332 int err; 1333 1334 err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes); 1335 if (err) { 1336 ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n"); 1337 return err; 1338 } 1339 1340 /* Determine the FEC algorithm */ 1341 fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes); 1342 1343 serdes &= P_REG_LINK_SPEED_SERDES_M; 1344 1345 /* Determine the link speed */ 1346 if (fec == ICE_PTP_FEC_MODE_RS_FEC) { 1347 switch (serdes) { 1348 case ICE_PTP_SERDES_25G: 1349 link = ICE_PTP_LNK_SPD_25G_RS; 1350 break; 1351 case ICE_PTP_SERDES_50G: 1352 link = ICE_PTP_LNK_SPD_50G_RS; 1353 break; 1354 case ICE_PTP_SERDES_100G: 1355 link = ICE_PTP_LNK_SPD_100G_RS; 1356 break; 1357 default: 1358 return -EIO; 1359 } 1360 } else { 1361 switch (serdes) { 1362 case ICE_PTP_SERDES_1G: 1363 link = ICE_PTP_LNK_SPD_1G; 1364 break; 1365 case ICE_PTP_SERDES_10G: 1366 link = ICE_PTP_LNK_SPD_10G; 1367 break; 1368 case ICE_PTP_SERDES_25G: 1369 link = ICE_PTP_LNK_SPD_25G; 1370 break; 1371 case ICE_PTP_SERDES_40G: 1372 link = ICE_PTP_LNK_SPD_40G; 1373 break; 1374 case ICE_PTP_SERDES_50G: 1375 link = ICE_PTP_LNK_SPD_50G; 1376 break; 1377 default: 1378 return -EIO; 1379 } 1380 } 1381 1382 if (link_out) 1383 *link_out = link; 1384 if (fec_out) 1385 *fec_out = fec; 1386 1387 return 0; 1388 } 1389 1390 /** 1391 * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp 1392 * @hw: pointer to HW struct 1393 * @port: to configure the quad for 1394 */ 1395 static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) 1396 { 1397 enum ice_ptp_link_spd link_spd; 1398 int err; 1399 u32 val; 1400 u8 quad; 1401 1402 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL); 1403 if (err) { 1404 ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n", 1405 err); 1406 return; 1407 } 1408 1409 quad = port / ICE_PORTS_PER_QUAD; 1410 1411 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); 1412 if (err) { 1413 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n", 1414 err); 1415 return; 1416 } 1417 1418 if (link_spd >= ICE_PTP_LNK_SPD_40G) 1419 val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; 1420 else 1421 val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; 1422 1423 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); 1424 if (err) { 1425 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n", 1426 err); 1427 return; 1428 } 1429 } 1430 1431 /** 1432 * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822 1433 * @hw: pointer to the HW structure 1434 * @port: the port to configure 1435 * 1436 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC 1437 * hardware clock time units (TUs). That is, determine the number of TUs per 1438 * serdes unit interval, and program the UIX registers with this conversion. 1439 * 1440 * This conversion is used as part of the calibration process when determining 1441 * the additional error of a timestamp vs the real time of transmission or 1442 * receipt of the packet. 1443 * 1444 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers 1445 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks. 1446 * 1447 * To calculate the conversion ratio, we use the following facts: 1448 * 1449 * a) the clock frequency in Hz (cycles per second) 1450 * b) the number of TUs per cycle (the increment value of the clock) 1451 * c) 1 second per 1 billion nanoseconds 1452 * d) the duration of 66 UIs in nanoseconds 1453 * 1454 * Given these facts, we can use the following table to work out what ratios 1455 * to multiply in order to get the number of TUs per 66 UIs: 1456 * 1457 * cycles | 1 second | incval (TUs) | nanoseconds 1458 * -------+--------------+--------------+------------- 1459 * second | 1 billion ns | cycle | 66 UIs 1460 * 1461 * To perform the multiplication using integers without too much loss of 1462 * precision, we can take use the following equation: 1463 * 1464 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion) 1465 * 1466 * We scale up to using 6600 UI instead of 66 in order to avoid fractional 1467 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns) 1468 * 1469 * The increment value has a maximum expected range of about 34 bits, while 1470 * the frequency value is about 29 bits. Multiplying these values shouldn't 1471 * overflow the 64 bits. However, we must then further multiply them again by 1472 * the Serdes unit interval duration. To avoid overflow here, we split the 1473 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and 1474 * a divide by 390,625,000. This does lose some precision, but avoids 1475 * miscalculation due to arithmetic overflow. 1476 */ 1477 static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) 1478 { 1479 u64 cur_freq, clk_incval, tu_per_sec, uix; 1480 int err; 1481 1482 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); 1483 clk_incval = ice_ptp_read_src_incval(hw); 1484 1485 /* Calculate TUs per second divided by 256 */ 1486 tu_per_sec = (cur_freq * clk_incval) >> 8; 1487 1488 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */ 1489 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */ 1490 1491 /* Program the 10Gb/40Gb conversion ratio */ 1492 uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000); 1493 1494 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L, 1495 uix); 1496 if (err) { 1497 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n", 1498 err); 1499 return err; 1500 } 1501 1502 /* Program the 25Gb/100Gb conversion ratio */ 1503 uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000); 1504 1505 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L, 1506 uix); 1507 if (err) { 1508 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n", 1509 err); 1510 return err; 1511 } 1512 1513 return 0; 1514 } 1515 1516 /** 1517 * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle 1518 * @hw: pointer to the HW struct 1519 * @port: port to configure 1520 * 1521 * Configure the number of TUs for the PAR and PCS clocks used as part of the 1522 * timestamp calibration process. This depends on the link speed, as the PHY 1523 * uses different markers depending on the speed. 1524 * 1525 * 1Gb/10Gb/25Gb: 1526 * - Tx/Rx PAR/PCS markers 1527 * 1528 * 25Gb RS: 1529 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers 1530 * 1531 * 40Gb/50Gb: 1532 * - Tx/Rx PAR/PCS markers 1533 * - Rx Deskew PAR/PCS markers 1534 * 1535 * 50G RS and 100GB RS: 1536 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers 1537 * - Rx Deskew PAR/PCS markers 1538 * - Tx PAR/PCS markers 1539 * 1540 * To calculate the conversion, we use the PHC clock frequency (cycles per 1541 * second), the increment value (TUs per cycle), and the related PHY clock 1542 * frequency to calculate the TUs per unit of the PHY link clock. The 1543 * following table shows how the units convert: 1544 * 1545 * cycles | TUs | second 1546 * -------+-------+-------- 1547 * second | cycle | cycles 1548 * 1549 * For each conversion register, look up the appropriate frequency from the 1550 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program 1551 * this to the appropriate register, preparing hardware to perform timestamp 1552 * calibration to calculate the total Tx or Rx offset to adjust the timestamp 1553 * in order to calibrate for the internal PHY delays. 1554 * 1555 * Note that the increment value ranges up to ~34 bits, and the clock 1556 * frequency is ~29 bits, so multiplying them together should fit within the 1557 * 64 bit arithmetic. 1558 */ 1559 static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) 1560 { 1561 u64 cur_freq, clk_incval, tu_per_sec, phy_tus; 1562 enum ice_ptp_link_spd link_spd; 1563 enum ice_ptp_fec_mode fec_mode; 1564 int err; 1565 1566 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); 1567 if (err) 1568 return err; 1569 1570 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); 1571 clk_incval = ice_ptp_read_src_incval(hw); 1572 1573 /* Calculate TUs per cycle of the PHC clock */ 1574 tu_per_sec = cur_freq * clk_incval; 1575 1576 /* For each PHY conversion register, look up the appropriate link 1577 * speed frequency and determine the TUs per that clock's cycle time. 1578 * Split this into a high and low value and then program the 1579 * appropriate register. If that link speed does not use the 1580 * associated register, write zeros to clear it instead. 1581 */ 1582 1583 /* P_REG_PAR_TX_TUS */ 1584 if (e822_vernier[link_spd].tx_par_clk) 1585 phy_tus = div_u64(tu_per_sec, 1586 e822_vernier[link_spd].tx_par_clk); 1587 else 1588 phy_tus = 0; 1589 1590 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L, 1591 phy_tus); 1592 if (err) 1593 return err; 1594 1595 /* P_REG_PAR_RX_TUS */ 1596 if (e822_vernier[link_spd].rx_par_clk) 1597 phy_tus = div_u64(tu_per_sec, 1598 e822_vernier[link_spd].rx_par_clk); 1599 else 1600 phy_tus = 0; 1601 1602 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L, 1603 phy_tus); 1604 if (err) 1605 return err; 1606 1607 /* P_REG_PCS_TX_TUS */ 1608 if (e822_vernier[link_spd].tx_pcs_clk) 1609 phy_tus = div_u64(tu_per_sec, 1610 e822_vernier[link_spd].tx_pcs_clk); 1611 else 1612 phy_tus = 0; 1613 1614 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L, 1615 phy_tus); 1616 if (err) 1617 return err; 1618 1619 /* P_REG_PCS_RX_TUS */ 1620 if (e822_vernier[link_spd].rx_pcs_clk) 1621 phy_tus = div_u64(tu_per_sec, 1622 e822_vernier[link_spd].rx_pcs_clk); 1623 else 1624 phy_tus = 0; 1625 1626 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L, 1627 phy_tus); 1628 if (err) 1629 return err; 1630 1631 /* P_REG_DESK_PAR_TX_TUS */ 1632 if (e822_vernier[link_spd].tx_desk_rsgb_par) 1633 phy_tus = div_u64(tu_per_sec, 1634 e822_vernier[link_spd].tx_desk_rsgb_par); 1635 else 1636 phy_tus = 0; 1637 1638 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L, 1639 phy_tus); 1640 if (err) 1641 return err; 1642 1643 /* P_REG_DESK_PAR_RX_TUS */ 1644 if (e822_vernier[link_spd].rx_desk_rsgb_par) 1645 phy_tus = div_u64(tu_per_sec, 1646 e822_vernier[link_spd].rx_desk_rsgb_par); 1647 else 1648 phy_tus = 0; 1649 1650 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L, 1651 phy_tus); 1652 if (err) 1653 return err; 1654 1655 /* P_REG_DESK_PCS_TX_TUS */ 1656 if (e822_vernier[link_spd].tx_desk_rsgb_pcs) 1657 phy_tus = div_u64(tu_per_sec, 1658 e822_vernier[link_spd].tx_desk_rsgb_pcs); 1659 else 1660 phy_tus = 0; 1661 1662 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L, 1663 phy_tus); 1664 if (err) 1665 return err; 1666 1667 /* P_REG_DESK_PCS_RX_TUS */ 1668 if (e822_vernier[link_spd].rx_desk_rsgb_pcs) 1669 phy_tus = div_u64(tu_per_sec, 1670 e822_vernier[link_spd].rx_desk_rsgb_pcs); 1671 else 1672 phy_tus = 0; 1673 1674 return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L, 1675 phy_tus); 1676 } 1677 1678 /** 1679 * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port 1680 * @hw: pointer to the HW struct 1681 * @link_spd: the Link speed to calculate for 1682 * 1683 * Calculate the fixed offset due to known static latency data. 1684 */ 1685 static u64 1686 ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) 1687 { 1688 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; 1689 1690 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); 1691 clk_incval = ice_ptp_read_src_incval(hw); 1692 1693 /* Calculate TUs per second */ 1694 tu_per_sec = cur_freq * clk_incval; 1695 1696 /* Calculate number of TUs to add for the fixed Tx latency. Since the 1697 * latency measurement is in 1/100th of a nanosecond, we need to 1698 * multiply by tu_per_sec and then divide by 1e11. This calculation 1699 * overflows 64 bit integer arithmetic, so break it up into two 1700 * divisions by 1e4 first then by 1e7. 1701 */ 1702 fixed_offset = div_u64(tu_per_sec, 10000); 1703 fixed_offset *= e822_vernier[link_spd].tx_fixed_delay; 1704 fixed_offset = div_u64(fixed_offset, 10000000); 1705 1706 return fixed_offset; 1707 } 1708 1709 /** 1710 * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset 1711 * @hw: pointer to the HW struct 1712 * @port: the PHY port to configure 1713 * 1714 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to 1715 * adjust Tx timestamps by. This is calculated by combining some known static 1716 * latency along with the Vernier offset computations done by hardware. 1717 * 1718 * This function must be called only after the offset registers are valid, 1719 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY 1720 * has measured the offset. 1721 * 1722 * To avoid overflow, when calculating the offset based on the known static 1723 * latency values, we use measurements in 1/100th of a nanosecond, and divide 1724 * the TUs per second up front. This avoids overflow while allowing 1725 * calculation of the adjustment using integer arithmetic. 1726 */ 1727 static int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) 1728 { 1729 enum ice_ptp_link_spd link_spd; 1730 enum ice_ptp_fec_mode fec_mode; 1731 u64 total_offset, val; 1732 int err; 1733 1734 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); 1735 if (err) 1736 return err; 1737 1738 total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); 1739 1740 /* Read the first Vernier offset from the PHY register and add it to 1741 * the total offset. 1742 */ 1743 if (link_spd == ICE_PTP_LNK_SPD_1G || 1744 link_spd == ICE_PTP_LNK_SPD_10G || 1745 link_spd == ICE_PTP_LNK_SPD_25G || 1746 link_spd == ICE_PTP_LNK_SPD_25G_RS || 1747 link_spd == ICE_PTP_LNK_SPD_40G || 1748 link_spd == ICE_PTP_LNK_SPD_50G) { 1749 err = ice_read_64b_phy_reg_e822(hw, port, 1750 P_REG_PAR_PCS_TX_OFFSET_L, 1751 &val); 1752 if (err) 1753 return err; 1754 1755 total_offset += val; 1756 } 1757 1758 /* For Tx, we only need to use the second Vernier offset for 1759 * multi-lane link speeds with RS-FEC. The lanes will always be 1760 * aligned. 1761 */ 1762 if (link_spd == ICE_PTP_LNK_SPD_50G_RS || 1763 link_spd == ICE_PTP_LNK_SPD_100G_RS) { 1764 err = ice_read_64b_phy_reg_e822(hw, port, 1765 P_REG_PAR_TX_TIME_L, 1766 &val); 1767 if (err) 1768 return err; 1769 1770 total_offset += val; 1771 } 1772 1773 /* Now that the total offset has been calculated, program it to the 1774 * PHY and indicate that the Tx offset is ready. After this, 1775 * timestamps will be enabled. 1776 */ 1777 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, 1778 total_offset); 1779 if (err) 1780 return err; 1781 1782 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); 1783 if (err) 1784 return err; 1785 1786 return 0; 1787 } 1788 1789 /** 1790 * ice_phy_cfg_fixed_tx_offset_e822 - Configure Tx offset for bypass mode 1791 * @hw: pointer to the HW struct 1792 * @port: the PHY port to configure 1793 * 1794 * Calculate and program the fixed Tx offset, and indicate that the offset is 1795 * ready. This can be used when operating in bypass mode. 1796 */ 1797 static int 1798 ice_phy_cfg_fixed_tx_offset_e822(struct ice_hw *hw, u8 port) 1799 { 1800 enum ice_ptp_link_spd link_spd; 1801 enum ice_ptp_fec_mode fec_mode; 1802 u64 total_offset; 1803 int err; 1804 1805 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); 1806 if (err) 1807 return err; 1808 1809 total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); 1810 1811 /* Program the fixed Tx offset into the P_REG_TOTAL_TX_OFFSET_L 1812 * register, then indicate that the Tx offset is ready. After this, 1813 * timestamps will be enabled. 1814 * 1815 * Note that this skips including the more precise offsets generated 1816 * by the Vernier calibration. 1817 */ 1818 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, 1819 total_offset); 1820 if (err) 1821 return err; 1822 1823 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); 1824 if (err) 1825 return err; 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx 1832 * @hw: pointer to the HW struct 1833 * @port: the PHY port to adjust for 1834 * @link_spd: the current link speed of the PHY 1835 * @fec_mode: the current FEC mode of the PHY 1836 * @pmd_adj: on return, the amount to adjust the Rx total offset by 1837 * 1838 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY. 1839 * This varies by link speed and FEC mode. The value calculated accounts for 1840 * various delays caused when receiving a packet. 1841 */ 1842 static int 1843 ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, 1844 enum ice_ptp_link_spd link_spd, 1845 enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj) 1846 { 1847 u64 cur_freq, clk_incval, tu_per_sec, mult, adj; 1848 u8 pmd_align; 1849 u32 val; 1850 int err; 1851 1852 err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val); 1853 if (err) { 1854 ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n", 1855 err); 1856 return err; 1857 } 1858 1859 pmd_align = (u8)val; 1860 1861 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); 1862 clk_incval = ice_ptp_read_src_incval(hw); 1863 1864 /* Calculate TUs per second */ 1865 tu_per_sec = cur_freq * clk_incval; 1866 1867 /* The PMD alignment adjustment measurement depends on the link speed, 1868 * and whether FEC is enabled. For each link speed, the alignment 1869 * adjustment is calculated by dividing a value by the length of 1870 * a Time Unit in nanoseconds. 1871 * 1872 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8 1873 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33) 1874 * 10G w/FEC: align * 0.1 * 32/33 1875 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33) 1876 * 25G w/FEC: align * 0.4 * 32/33 1877 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33) 1878 * 40G w/FEC: align * 0.1 * 32/33 1879 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33) 1880 * 50G w/FEC: align * 0.8 * 32/33 1881 * 1882 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33. 1883 * 1884 * To allow for calculating this value using integer arithmetic, we 1885 * instead start with the number of TUs per second, (inverse of the 1886 * length of a Time Unit in nanoseconds), multiply by a value based 1887 * on the PMD alignment register, and then divide by the right value 1888 * calculated based on the table above. To avoid integer overflow this 1889 * division is broken up into a step of dividing by 125 first. 1890 */ 1891 if (link_spd == ICE_PTP_LNK_SPD_1G) { 1892 if (pmd_align == 4) 1893 mult = 10; 1894 else 1895 mult = (pmd_align + 6) % 10; 1896 } else if (link_spd == ICE_PTP_LNK_SPD_10G || 1897 link_spd == ICE_PTP_LNK_SPD_25G || 1898 link_spd == ICE_PTP_LNK_SPD_40G || 1899 link_spd == ICE_PTP_LNK_SPD_50G) { 1900 /* If Clause 74 FEC, always calculate PMD adjust */ 1901 if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74) 1902 mult = pmd_align; 1903 else 1904 mult = 0; 1905 } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS || 1906 link_spd == ICE_PTP_LNK_SPD_50G_RS || 1907 link_spd == ICE_PTP_LNK_SPD_100G_RS) { 1908 if (pmd_align < 17) 1909 mult = pmd_align + 40; 1910 else 1911 mult = pmd_align; 1912 } else { 1913 ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n", 1914 link_spd); 1915 mult = 0; 1916 } 1917 1918 /* In some cases, there's no need to adjust for the PMD alignment */ 1919 if (!mult) { 1920 *pmd_adj = 0; 1921 return 0; 1922 } 1923 1924 /* Calculate the adjustment by multiplying TUs per second by the 1925 * appropriate multiplier and divisor. To avoid overflow, we first 1926 * divide by 125, and then handle remaining divisor based on the link 1927 * speed pmd_adj_divisor value. 1928 */ 1929 adj = div_u64(tu_per_sec, 125); 1930 adj *= mult; 1931 adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor); 1932 1933 /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx 1934 * cycle count is necessary. 1935 */ 1936 if (link_spd == ICE_PTP_LNK_SPD_25G_RS) { 1937 u64 cycle_adj; 1938 u8 rx_cycle; 1939 1940 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT, 1941 &val); 1942 if (err) { 1943 ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n", 1944 err); 1945 return err; 1946 } 1947 1948 rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M; 1949 if (rx_cycle) { 1950 mult = (4 - rx_cycle) * 40; 1951 1952 cycle_adj = div_u64(tu_per_sec, 125); 1953 cycle_adj *= mult; 1954 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); 1955 1956 adj += cycle_adj; 1957 } 1958 } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) { 1959 u64 cycle_adj; 1960 u8 rx_cycle; 1961 1962 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT, 1963 &val); 1964 if (err) { 1965 ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n", 1966 err); 1967 return err; 1968 } 1969 1970 rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M; 1971 if (rx_cycle) { 1972 mult = rx_cycle * 40; 1973 1974 cycle_adj = div_u64(tu_per_sec, 125); 1975 cycle_adj *= mult; 1976 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); 1977 1978 adj += cycle_adj; 1979 } 1980 } 1981 1982 /* Return the calculated adjustment */ 1983 *pmd_adj = adj; 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port 1990 * @hw: pointer to HW struct 1991 * @link_spd: The Link speed to calculate for 1992 * 1993 * Determine the fixed Rx latency for a given link speed. 1994 */ 1995 static u64 1996 ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) 1997 { 1998 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; 1999 2000 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); 2001 clk_incval = ice_ptp_read_src_incval(hw); 2002 2003 /* Calculate TUs per second */ 2004 tu_per_sec = cur_freq * clk_incval; 2005 2006 /* Calculate number of TUs to add for the fixed Rx latency. Since the 2007 * latency measurement is in 1/100th of a nanosecond, we need to 2008 * multiply by tu_per_sec and then divide by 1e11. This calculation 2009 * overflows 64 bit integer arithmetic, so break it up into two 2010 * divisions by 1e4 first then by 1e7. 2011 */ 2012 fixed_offset = div_u64(tu_per_sec, 10000); 2013 fixed_offset *= e822_vernier[link_spd].rx_fixed_delay; 2014 fixed_offset = div_u64(fixed_offset, 10000000); 2015 2016 return fixed_offset; 2017 } 2018 2019 /** 2020 * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset 2021 * @hw: pointer to the HW struct 2022 * @port: the PHY port to configure 2023 * 2024 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to 2025 * adjust Rx timestamps by. This combines calculations from the Vernier offset 2026 * measurements taken in hardware with some data about known fixed delay as 2027 * well as adjusting for multi-lane alignment delay. 2028 * 2029 * This function must be called only after the offset registers are valid, 2030 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY 2031 * has measured the offset. 2032 * 2033 * To avoid overflow, when calculating the offset based on the known static 2034 * latency values, we use measurements in 1/100th of a nanosecond, and divide 2035 * the TUs per second up front. This avoids overflow while allowing 2036 * calculation of the adjustment using integer arithmetic. 2037 */ 2038 static int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) 2039 { 2040 enum ice_ptp_link_spd link_spd; 2041 enum ice_ptp_fec_mode fec_mode; 2042 u64 total_offset, pmd, val; 2043 int err; 2044 2045 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); 2046 if (err) 2047 return err; 2048 2049 total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); 2050 2051 /* Read the first Vernier offset from the PHY register and add it to 2052 * the total offset. 2053 */ 2054 err = ice_read_64b_phy_reg_e822(hw, port, 2055 P_REG_PAR_PCS_RX_OFFSET_L, 2056 &val); 2057 if (err) 2058 return err; 2059 2060 total_offset += val; 2061 2062 /* For Rx, all multi-lane link speeds include a second Vernier 2063 * calibration, because the lanes might not be aligned. 2064 */ 2065 if (link_spd == ICE_PTP_LNK_SPD_40G || 2066 link_spd == ICE_PTP_LNK_SPD_50G || 2067 link_spd == ICE_PTP_LNK_SPD_50G_RS || 2068 link_spd == ICE_PTP_LNK_SPD_100G_RS) { 2069 err = ice_read_64b_phy_reg_e822(hw, port, 2070 P_REG_PAR_RX_TIME_L, 2071 &val); 2072 if (err) 2073 return err; 2074 2075 total_offset += val; 2076 } 2077 2078 /* In addition, Rx must account for the PMD alignment */ 2079 err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd); 2080 if (err) 2081 return err; 2082 2083 /* For RS-FEC, this adjustment adds delay, but for other modes, it 2084 * subtracts delay. 2085 */ 2086 if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC) 2087 total_offset += pmd; 2088 else 2089 total_offset -= pmd; 2090 2091 /* Now that the total offset has been calculated, program it to the 2092 * PHY and indicate that the Rx offset is ready. After this, 2093 * timestamps will be enabled. 2094 */ 2095 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, 2096 total_offset); 2097 if (err) 2098 return err; 2099 2100 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); 2101 if (err) 2102 return err; 2103 2104 return 0; 2105 } 2106 2107 /** 2108 * ice_phy_cfg_fixed_rx_offset_e822 - Configure fixed Rx offset for bypass mode 2109 * @hw: pointer to the HW struct 2110 * @port: the PHY port to configure 2111 * 2112 * Calculate and program the fixed Rx offset, and indicate that the offset is 2113 * ready. This can be used when operating in bypass mode. 2114 */ 2115 static int 2116 ice_phy_cfg_fixed_rx_offset_e822(struct ice_hw *hw, u8 port) 2117 { 2118 enum ice_ptp_link_spd link_spd; 2119 enum ice_ptp_fec_mode fec_mode; 2120 u64 total_offset; 2121 int err; 2122 2123 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); 2124 if (err) 2125 return err; 2126 2127 total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); 2128 2129 /* Program the fixed Rx offset into the P_REG_TOTAL_RX_OFFSET_L 2130 * register, then indicate that the Rx offset is ready. After this, 2131 * timestamps will be enabled. 2132 * 2133 * Note that this skips including the more precise offsets generated 2134 * by Vernier calibration. 2135 */ 2136 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, 2137 total_offset); 2138 if (err) 2139 return err; 2140 2141 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); 2142 if (err) 2143 return err; 2144 2145 return 0; 2146 } 2147 2148 /** 2149 * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time 2150 * @hw: pointer to the HW struct 2151 * @port: the PHY port to read 2152 * @phy_time: on return, the 64bit PHY timer value 2153 * @phc_time: on return, the lower 64bits of PHC time 2154 * 2155 * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC 2156 * timer values. 2157 */ 2158 static int 2159 ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, 2160 u64 *phc_time) 2161 { 2162 u64 tx_time, rx_time; 2163 u32 zo, lo; 2164 u8 tmr_idx; 2165 int err; 2166 2167 tmr_idx = ice_get_ptp_src_clock_index(hw); 2168 2169 /* Prepare the PHC timer for a READ_TIME capture command */ 2170 ice_ptp_src_cmd(hw, READ_TIME); 2171 2172 /* Prepare the PHY timer for a READ_TIME capture command */ 2173 err = ice_ptp_one_port_cmd(hw, port, READ_TIME); 2174 if (err) 2175 return err; 2176 2177 /* Issue the sync to start the READ_TIME capture */ 2178 ice_ptp_exec_tmr_cmd(hw); 2179 2180 /* Read the captured PHC time from the shadow time registers */ 2181 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); 2182 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); 2183 *phc_time = (u64)lo << 32 | zo; 2184 2185 /* Read the captured PHY time from the PHY shadow registers */ 2186 err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time); 2187 if (err) 2188 return err; 2189 2190 /* If the PHY Tx and Rx timers don't match, log a warning message. 2191 * Note that this should not happen in normal circumstances since the 2192 * driver always programs them together. 2193 */ 2194 if (tx_time != rx_time) 2195 dev_warn(ice_hw_to_dev(hw), 2196 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", 2197 port, (unsigned long long)tx_time, 2198 (unsigned long long)rx_time); 2199 2200 *phy_time = tx_time; 2201 2202 return 0; 2203 } 2204 2205 /** 2206 * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer 2207 * @hw: pointer to the HW struct 2208 * @port: the PHY port to synchronize 2209 * 2210 * Perform an adjustment to ensure that the PHY and PHC timers are in sync. 2211 * This is done by issuing a READ_TIME command which triggers a simultaneous 2212 * read of the PHY timer and PHC timer. Then we use the difference to 2213 * calculate an appropriate 2s complement addition to add to the PHY timer in 2214 * order to ensure it reads the same value as the primary PHC timer. 2215 */ 2216 static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) 2217 { 2218 u64 phc_time, phy_time, difference; 2219 int err; 2220 2221 if (!ice_ptp_lock(hw)) { 2222 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); 2223 return -EBUSY; 2224 } 2225 2226 err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); 2227 if (err) 2228 goto err_unlock; 2229 2230 /* Calculate the amount required to add to the port time in order for 2231 * it to match the PHC time. 2232 * 2233 * Note that the port adjustment is done using 2s complement 2234 * arithmetic. This is convenient since it means that we can simply 2235 * calculate the difference between the PHC time and the port time, 2236 * and it will be interpreted correctly. 2237 */ 2238 difference = phc_time - phy_time; 2239 2240 err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference); 2241 if (err) 2242 goto err_unlock; 2243 2244 err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME); 2245 if (err) 2246 goto err_unlock; 2247 2248 /* Issue the sync to activate the time adjustment */ 2249 ice_ptp_exec_tmr_cmd(hw); 2250 2251 /* Re-capture the timer values to flush the command registers and 2252 * verify that the time was properly adjusted. 2253 */ 2254 err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); 2255 if (err) 2256 goto err_unlock; 2257 2258 dev_info(ice_hw_to_dev(hw), 2259 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", 2260 port, (unsigned long long)phy_time, 2261 (unsigned long long)phc_time); 2262 2263 ice_ptp_unlock(hw); 2264 2265 return 0; 2266 2267 err_unlock: 2268 ice_ptp_unlock(hw); 2269 return err; 2270 } 2271 2272 /** 2273 * ice_stop_phy_timer_e822 - Stop the PHY clock timer 2274 * @hw: pointer to the HW struct 2275 * @port: the PHY port to stop 2276 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS 2277 * 2278 * Stop the clock of a PHY port. This must be done as part of the flow to 2279 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is 2280 * initialized or when link speed changes. 2281 */ 2282 int 2283 ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) 2284 { 2285 int err; 2286 u32 val; 2287 2288 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0); 2289 if (err) 2290 return err; 2291 2292 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0); 2293 if (err) 2294 return err; 2295 2296 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); 2297 if (err) 2298 return err; 2299 2300 val &= ~P_REG_PS_START_M; 2301 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2302 if (err) 2303 return err; 2304 2305 val &= ~P_REG_PS_ENA_CLK_M; 2306 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2307 if (err) 2308 return err; 2309 2310 if (soft_reset) { 2311 val |= P_REG_PS_SFT_RESET_M; 2312 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2313 if (err) 2314 return err; 2315 } 2316 2317 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); 2318 2319 return 0; 2320 } 2321 2322 /** 2323 * ice_start_phy_timer_e822 - Start the PHY clock timer 2324 * @hw: pointer to the HW struct 2325 * @port: the PHY port to start 2326 * @bypass: if true, start the PHY in bypass mode 2327 * 2328 * Start the clock of a PHY port. This must be done as part of the flow to 2329 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is 2330 * initialized or when link speed changes. 2331 * 2332 * Bypass mode enables timestamps immediately without waiting for Vernier 2333 * calibration to complete. Hardware will still continue taking Vernier 2334 * measurements on Tx or Rx of packets, but they will not be applied to 2335 * timestamps. Use ice_phy_exit_bypass_e822 to exit bypass mode once hardware 2336 * has completed offset calculation. 2337 */ 2338 int 2339 ice_start_phy_timer_e822(struct ice_hw *hw, u8 port, bool bypass) 2340 { 2341 u32 lo, hi, val; 2342 u64 incval; 2343 u8 tmr_idx; 2344 int err; 2345 2346 tmr_idx = ice_get_ptp_src_clock_index(hw); 2347 2348 err = ice_stop_phy_timer_e822(hw, port, false); 2349 if (err) 2350 return err; 2351 2352 ice_phy_cfg_lane_e822(hw, port); 2353 2354 err = ice_phy_cfg_uix_e822(hw, port); 2355 if (err) 2356 return err; 2357 2358 err = ice_phy_cfg_parpcs_e822(hw, port); 2359 if (err) 2360 return err; 2361 2362 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); 2363 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); 2364 incval = (u64)hi << 32 | lo; 2365 2366 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); 2367 if (err) 2368 return err; 2369 2370 err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); 2371 if (err) 2372 return err; 2373 2374 ice_ptp_exec_tmr_cmd(hw); 2375 2376 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); 2377 if (err) 2378 return err; 2379 2380 val |= P_REG_PS_SFT_RESET_M; 2381 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2382 if (err) 2383 return err; 2384 2385 val |= P_REG_PS_START_M; 2386 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2387 if (err) 2388 return err; 2389 2390 val &= ~P_REG_PS_SFT_RESET_M; 2391 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2392 if (err) 2393 return err; 2394 2395 err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); 2396 if (err) 2397 return err; 2398 2399 ice_ptp_exec_tmr_cmd(hw); 2400 2401 val |= P_REG_PS_ENA_CLK_M; 2402 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2403 if (err) 2404 return err; 2405 2406 val |= P_REG_PS_LOAD_OFFSET_M; 2407 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2408 if (err) 2409 return err; 2410 2411 ice_ptp_exec_tmr_cmd(hw); 2412 2413 err = ice_sync_phy_timer_e822(hw, port); 2414 if (err) 2415 return err; 2416 2417 if (bypass) { 2418 val |= P_REG_PS_BYPASS_MODE_M; 2419 /* Enter BYPASS mode, enabling timestamps immediately. */ 2420 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2421 if (err) 2422 return err; 2423 2424 /* Program the fixed Tx offset */ 2425 err = ice_phy_cfg_fixed_tx_offset_e822(hw, port); 2426 if (err) 2427 return err; 2428 2429 /* Program the fixed Rx offset */ 2430 err = ice_phy_cfg_fixed_rx_offset_e822(hw, port); 2431 if (err) 2432 return err; 2433 } 2434 2435 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); 2436 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_phy_exit_bypass_e822 - Exit bypass mode, after vernier calculations 2442 * @hw: pointer to the HW struct 2443 * @port: the PHY port to configure 2444 * 2445 * After hardware finishes vernier calculations for the Tx and Rx offset, this 2446 * function can be used to exit bypass mode by updating the total Tx and Rx 2447 * offsets, and then disabling bypass. This will enable hardware to include 2448 * the more precise offset calibrations, increasing precision of the generated 2449 * timestamps. 2450 * 2451 * This cannot be done until hardware has measured the offsets, which requires 2452 * waiting until at least one packet has been sent and received by the device. 2453 */ 2454 int ice_phy_exit_bypass_e822(struct ice_hw *hw, u8 port) 2455 { 2456 int err; 2457 u32 val; 2458 2459 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &val); 2460 if (err) { 2461 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n", 2462 port, err); 2463 return err; 2464 } 2465 2466 if (!(val & P_REG_TX_OV_STATUS_OV_M)) { 2467 ice_debug(hw, ICE_DBG_PTP, "Tx offset is not yet valid for port %u\n", 2468 port); 2469 return -EBUSY; 2470 } 2471 2472 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &val); 2473 if (err) { 2474 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n", 2475 port, err); 2476 return err; 2477 } 2478 2479 if (!(val & P_REG_TX_OV_STATUS_OV_M)) { 2480 ice_debug(hw, ICE_DBG_PTP, "Rx offset is not yet valid for port %u\n", 2481 port); 2482 return -EBUSY; 2483 } 2484 2485 err = ice_phy_cfg_tx_offset_e822(hw, port); 2486 if (err) { 2487 ice_debug(hw, ICE_DBG_PTP, "Failed to program total Tx offset for port %u, err %d\n", 2488 port, err); 2489 return err; 2490 } 2491 2492 err = ice_phy_cfg_rx_offset_e822(hw, port); 2493 if (err) { 2494 ice_debug(hw, ICE_DBG_PTP, "Failed to program total Rx offset for port %u, err %d\n", 2495 port, err); 2496 return err; 2497 } 2498 2499 /* Exit bypass mode now that the offset has been updated */ 2500 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); 2501 if (err) { 2502 ice_debug(hw, ICE_DBG_PTP, "Failed to read P_REG_PS for port %u, err %d\n", 2503 port, err); 2504 return err; 2505 } 2506 2507 if (!(val & P_REG_PS_BYPASS_MODE_M)) 2508 ice_debug(hw, ICE_DBG_PTP, "Port %u not in bypass mode\n", 2509 port); 2510 2511 val &= ~P_REG_PS_BYPASS_MODE_M; 2512 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); 2513 if (err) { 2514 ice_debug(hw, ICE_DBG_PTP, "Failed to disable bypass for port %u, err %d\n", 2515 port, err); 2516 return err; 2517 } 2518 2519 dev_info(ice_hw_to_dev(hw), "Exiting bypass mode on PHY port %u\n", 2520 port); 2521 2522 return 0; 2523 } 2524 2525 /* E810 functions 2526 * 2527 * The following functions operate on the E810 series devices which use 2528 * a separate external PHY. 2529 */ 2530 2531 /** 2532 * ice_read_phy_reg_e810 - Read register from external PHY on E810 2533 * @hw: pointer to the HW struct 2534 * @addr: the address to read from 2535 * @val: On return, the value read from the PHY 2536 * 2537 * Read a register from the external PHY on the E810 device. 2538 */ 2539 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val) 2540 { 2541 struct ice_sbq_msg_input msg = {0}; 2542 int err; 2543 2544 msg.msg_addr_low = lower_16_bits(addr); 2545 msg.msg_addr_high = upper_16_bits(addr); 2546 msg.opcode = ice_sbq_msg_rd; 2547 msg.dest_dev = rmn_0; 2548 2549 err = ice_sbq_rw_reg(hw, &msg); 2550 if (err) { 2551 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", 2552 err); 2553 return err; 2554 } 2555 2556 *val = msg.data; 2557 2558 return 0; 2559 } 2560 2561 /** 2562 * ice_write_phy_reg_e810 - Write register on external PHY on E810 2563 * @hw: pointer to the HW struct 2564 * @addr: the address to writem to 2565 * @val: the value to write to the PHY 2566 * 2567 * Write a value to a register of the external PHY on the E810 device. 2568 */ 2569 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) 2570 { 2571 struct ice_sbq_msg_input msg = {0}; 2572 int err; 2573 2574 msg.msg_addr_low = lower_16_bits(addr); 2575 msg.msg_addr_high = upper_16_bits(addr); 2576 msg.opcode = ice_sbq_msg_wr; 2577 msg.dest_dev = rmn_0; 2578 msg.data = val; 2579 2580 err = ice_sbq_rw_reg(hw, &msg); 2581 if (err) { 2582 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", 2583 err); 2584 return err; 2585 } 2586 2587 return 0; 2588 } 2589 2590 /** 2591 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW 2592 * @hw: pointer to the HW struct 2593 * @idx: the timestamp index to read 2594 * @hi: 8 bit timestamp high value 2595 * @lo: 32 bit timestamp low value 2596 * 2597 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the 2598 * timestamp block of the external PHY on the E810 device using the low latency 2599 * timestamp read. 2600 */ 2601 static int 2602 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo) 2603 { 2604 u32 val; 2605 u8 i; 2606 2607 /* Write TS index to read to the PF register so the FW can read it */ 2608 val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS; 2609 wr32(hw, PF_SB_ATQBAL, val); 2610 2611 /* Read the register repeatedly until the FW provides us the TS */ 2612 for (i = TS_LL_READ_RETRIES; i > 0; i--) { 2613 val = rd32(hw, PF_SB_ATQBAL); 2614 2615 /* When the bit is cleared, the TS is ready in the register */ 2616 if (!(FIELD_GET(TS_LL_READ_TS, val))) { 2617 /* High 8 bit value of the TS is on the bits 16:23 */ 2618 *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val); 2619 2620 /* Read the low 32 bit value and set the TS valid bit */ 2621 *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID; 2622 return 0; 2623 } 2624 2625 udelay(10); 2626 } 2627 2628 /* FW failed to provide the TS in time */ 2629 ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); 2630 return -EINVAL; 2631 } 2632 2633 /** 2634 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq 2635 * @hw: pointer to the HW struct 2636 * @lport: the lport to read from 2637 * @idx: the timestamp index to read 2638 * @hi: 8 bit timestamp high value 2639 * @lo: 32 bit timestamp low value 2640 * 2641 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the 2642 * timestamp block of the external PHY on the E810 device using sideband queue. 2643 */ 2644 static int 2645 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi, 2646 u32 *lo) 2647 { 2648 u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); 2649 u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); 2650 u32 lo_val, hi_val; 2651 int err; 2652 2653 err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val); 2654 if (err) { 2655 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", 2656 err); 2657 return err; 2658 } 2659 2660 err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val); 2661 if (err) { 2662 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", 2663 err); 2664 return err; 2665 } 2666 2667 *lo = lo_val; 2668 *hi = (u8)hi_val; 2669 2670 return 0; 2671 } 2672 2673 /** 2674 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY 2675 * @hw: pointer to the HW struct 2676 * @lport: the lport to read from 2677 * @idx: the timestamp index to read 2678 * @tstamp: on return, the 40bit timestamp value 2679 * 2680 * Read a 40bit timestamp value out of the timestamp block of the external PHY 2681 * on the E810 device. 2682 */ 2683 static int 2684 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) 2685 { 2686 u32 lo = 0; 2687 u8 hi = 0; 2688 int err; 2689 2690 if (hw->dev_caps.ts_dev_info.ts_ll_read) 2691 err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo); 2692 else 2693 err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo); 2694 2695 if (err) 2696 return err; 2697 2698 /* For E810 devices, the timestamp is reported with the lower 32 bits 2699 * in the low register, and the upper 8 bits in the high register. 2700 */ 2701 *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M); 2702 2703 return 0; 2704 } 2705 2706 /** 2707 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY 2708 * @hw: pointer to the HW struct 2709 * @lport: the lport to read from 2710 * @idx: the timestamp index to reset 2711 * 2712 * Clear a timestamp, resetting its valid bit, from the timestamp block of the 2713 * external PHY on the E810 device. 2714 */ 2715 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) 2716 { 2717 u32 lo_addr, hi_addr; 2718 int err; 2719 2720 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); 2721 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); 2722 2723 err = ice_write_phy_reg_e810(hw, lo_addr, 0); 2724 if (err) { 2725 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", 2726 err); 2727 return err; 2728 } 2729 2730 err = ice_write_phy_reg_e810(hw, hi_addr, 0); 2731 if (err) { 2732 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", 2733 err); 2734 return err; 2735 } 2736 2737 return 0; 2738 } 2739 2740 /** 2741 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY 2742 * @hw: pointer to HW struct 2743 * 2744 * Enable the timesync PTP functionality for the external PHY connected to 2745 * this function. 2746 */ 2747 int ice_ptp_init_phy_e810(struct ice_hw *hw) 2748 { 2749 u8 tmr_idx; 2750 int err; 2751 2752 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2753 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx), 2754 GLTSYN_ENA_TSYN_ENA_M); 2755 if (err) 2756 ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n", 2757 err); 2758 2759 return err; 2760 } 2761 2762 /** 2763 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization 2764 * @hw: pointer to HW struct 2765 * 2766 * Perform E810-specific PTP hardware clock initialization steps. 2767 */ 2768 static int ice_ptp_init_phc_e810(struct ice_hw *hw) 2769 { 2770 /* Ensure synchronization delay is zero */ 2771 wr32(hw, GLTSYN_SYNC_DLAY, 0); 2772 2773 /* Initialize the PHY */ 2774 return ice_ptp_init_phy_e810(hw); 2775 } 2776 2777 /** 2778 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time 2779 * @hw: Board private structure 2780 * @time: Time to initialize the PHY port clock to 2781 * 2782 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the 2783 * initial clock time. The time will not actually be programmed until the 2784 * driver issues an INIT_TIME command. 2785 * 2786 * The time value is the upper 32 bits of the PHY timer, usually in units of 2787 * nominal nanoseconds. 2788 */ 2789 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time) 2790 { 2791 u8 tmr_idx; 2792 int err; 2793 2794 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2795 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0); 2796 if (err) { 2797 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n", 2798 err); 2799 return err; 2800 } 2801 2802 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time); 2803 if (err) { 2804 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n", 2805 err); 2806 return err; 2807 } 2808 2809 return 0; 2810 } 2811 2812 /** 2813 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment 2814 * @hw: pointer to HW struct 2815 * @adj: adjustment value to program 2816 * 2817 * Prepare the PHY port for an atomic adjustment by programming the PHY 2818 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment 2819 * is completed by issuing an ADJ_TIME sync command. 2820 * 2821 * The adjustment value only contains the portion used for the upper 32bits of 2822 * the PHY timer, usually in units of nominal nanoseconds. Negative 2823 * adjustments are supported using 2s complement arithmetic. 2824 */ 2825 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) 2826 { 2827 u8 tmr_idx; 2828 int err; 2829 2830 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2831 2832 /* Adjustments are represented as signed 2's complement values in 2833 * nanoseconds. Sub-nanosecond adjustment is not supported. 2834 */ 2835 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0); 2836 if (err) { 2837 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n", 2838 err); 2839 return err; 2840 } 2841 2842 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj); 2843 if (err) { 2844 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n", 2845 err); 2846 return err; 2847 } 2848 2849 return 0; 2850 } 2851 2852 /** 2853 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change 2854 * @hw: pointer to HW struct 2855 * @incval: The new 40bit increment value to prepare 2856 * 2857 * Prepare the PHY port for a new increment value by programming the PHY 2858 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is 2859 * completed by issuing an INIT_INCVAL command. 2860 */ 2861 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) 2862 { 2863 u32 high, low; 2864 u8 tmr_idx; 2865 int err; 2866 2867 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2868 low = lower_32_bits(incval); 2869 high = upper_32_bits(incval); 2870 2871 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low); 2872 if (err) { 2873 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n", 2874 err); 2875 return err; 2876 } 2877 2878 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high); 2879 if (err) { 2880 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n", 2881 err); 2882 return err; 2883 } 2884 2885 return 0; 2886 } 2887 2888 /** 2889 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command 2890 * @hw: pointer to HW struct 2891 * @cmd: Command to be sent to the port 2892 * 2893 * Prepare the external PHYs connected to this device for a timer sync 2894 * command. 2895 */ 2896 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) 2897 { 2898 u32 cmd_val, val; 2899 int err; 2900 2901 switch (cmd) { 2902 case INIT_TIME: 2903 cmd_val = GLTSYN_CMD_INIT_TIME; 2904 break; 2905 case INIT_INCVAL: 2906 cmd_val = GLTSYN_CMD_INIT_INCVAL; 2907 break; 2908 case ADJ_TIME: 2909 cmd_val = GLTSYN_CMD_ADJ_TIME; 2910 break; 2911 case READ_TIME: 2912 cmd_val = GLTSYN_CMD_READ_TIME; 2913 break; 2914 case ADJ_TIME_AT_TIME: 2915 cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; 2916 break; 2917 } 2918 2919 /* Read, modify, write */ 2920 err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val); 2921 if (err) { 2922 ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err); 2923 return err; 2924 } 2925 2926 /* Modify necessary bits only and perform write */ 2927 val &= ~TS_CMD_MASK_E810; 2928 val |= cmd_val; 2929 2930 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val); 2931 if (err) { 2932 ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err); 2933 return err; 2934 } 2935 2936 return 0; 2937 } 2938 2939 /* Device agnostic functions 2940 * 2941 * The following functions implement shared behavior common to both E822 and 2942 * E810 devices, possibly calling a device specific implementation where 2943 * necessary. 2944 */ 2945 2946 /** 2947 * ice_ptp_lock - Acquire PTP global semaphore register lock 2948 * @hw: pointer to the HW struct 2949 * 2950 * Acquire the global PTP hardware semaphore lock. Returns true if the lock 2951 * was acquired, false otherwise. 2952 * 2953 * The PFTSYN_SEM register sets the busy bit on read, returning the previous 2954 * value. If software sees the busy bit cleared, this means that this function 2955 * acquired the lock (and the busy bit is now set). If software sees the busy 2956 * bit set, it means that another function acquired the lock. 2957 * 2958 * Software must clear the busy bit with a write to release the lock for other 2959 * functions when done. 2960 */ 2961 bool ice_ptp_lock(struct ice_hw *hw) 2962 { 2963 u32 hw_lock; 2964 int i; 2965 2966 #define MAX_TRIES 5 2967 2968 for (i = 0; i < MAX_TRIES; i++) { 2969 hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 2970 hw_lock = hw_lock & PFTSYN_SEM_BUSY_M; 2971 if (!hw_lock) 2972 break; 2973 2974 /* Somebody is holding the lock */ 2975 usleep_range(10000, 20000); 2976 } 2977 2978 return !hw_lock; 2979 } 2980 2981 /** 2982 * ice_ptp_unlock - Release PTP global semaphore register lock 2983 * @hw: pointer to the HW struct 2984 * 2985 * Release the global PTP hardware semaphore lock. This is done by writing to 2986 * the PFTSYN_SEM register. 2987 */ 2988 void ice_ptp_unlock(struct ice_hw *hw) 2989 { 2990 wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0); 2991 } 2992 2993 /** 2994 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command 2995 * @hw: pointer to HW struct 2996 * @cmd: the command to issue 2997 * 2998 * Prepare the source timer and PHY timers and then trigger the requested 2999 * command. This causes the shadow registers previously written in preparation 3000 * for the command to be synchronously applied to both the source and PHY 3001 * timers. 3002 */ 3003 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) 3004 { 3005 int err; 3006 3007 /* First, prepare the source timer */ 3008 ice_ptp_src_cmd(hw, cmd); 3009 3010 /* Next, prepare the ports */ 3011 if (ice_is_e810(hw)) 3012 err = ice_ptp_port_cmd_e810(hw, cmd); 3013 else 3014 err = ice_ptp_port_cmd_e822(hw, cmd); 3015 if (err) { 3016 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n", 3017 cmd, err); 3018 return err; 3019 } 3020 3021 /* Write the sync command register to drive both source and PHY timer 3022 * commands synchronously 3023 */ 3024 ice_ptp_exec_tmr_cmd(hw); 3025 3026 return 0; 3027 } 3028 3029 /** 3030 * ice_ptp_init_time - Initialize device time to provided value 3031 * @hw: pointer to HW struct 3032 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H) 3033 * 3034 * Initialize the device to the specified time provided. This requires a three 3035 * step process: 3036 * 3037 * 1) write the new init time to the source timer shadow registers 3038 * 2) write the new init time to the PHY timer shadow registers 3039 * 3) issue an init_time timer command to synchronously switch both the source 3040 * and port timers to the new init time value at the next clock cycle. 3041 */ 3042 int ice_ptp_init_time(struct ice_hw *hw, u64 time) 3043 { 3044 u8 tmr_idx; 3045 int err; 3046 3047 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3048 3049 /* Source timers */ 3050 wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time)); 3051 wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time)); 3052 wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0); 3053 3054 /* PHY timers */ 3055 /* Fill Rx and Tx ports and send msg to PHY */ 3056 if (ice_is_e810(hw)) 3057 err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF); 3058 else 3059 err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF); 3060 if (err) 3061 return err; 3062 3063 return ice_ptp_tmr_cmd(hw, INIT_TIME); 3064 } 3065 3066 /** 3067 * ice_ptp_write_incval - Program PHC with new increment value 3068 * @hw: pointer to HW struct 3069 * @incval: Source timer increment value per clock cycle 3070 * 3071 * Program the PHC with a new increment value. This requires a three-step 3072 * process: 3073 * 3074 * 1) Write the increment value to the source timer shadow registers 3075 * 2) Write the increment value to the PHY timer shadow registers 3076 * 3) Issue an INIT_INCVAL timer command to synchronously switch both the 3077 * source and port timers to the new increment value at the next clock 3078 * cycle. 3079 */ 3080 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) 3081 { 3082 u8 tmr_idx; 3083 int err; 3084 3085 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3086 3087 /* Shadow Adjust */ 3088 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval)); 3089 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval)); 3090 3091 if (ice_is_e810(hw)) 3092 err = ice_ptp_prep_phy_incval_e810(hw, incval); 3093 else 3094 err = ice_ptp_prep_phy_incval_e822(hw, incval); 3095 if (err) 3096 return err; 3097 3098 return ice_ptp_tmr_cmd(hw, INIT_INCVAL); 3099 } 3100 3101 /** 3102 * ice_ptp_write_incval_locked - Program new incval while holding semaphore 3103 * @hw: pointer to HW struct 3104 * @incval: Source timer increment value per clock cycle 3105 * 3106 * Program a new PHC incval while holding the PTP semaphore. 3107 */ 3108 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval) 3109 { 3110 int err; 3111 3112 if (!ice_ptp_lock(hw)) 3113 return -EBUSY; 3114 3115 err = ice_ptp_write_incval(hw, incval); 3116 3117 ice_ptp_unlock(hw); 3118 3119 return err; 3120 } 3121 3122 /** 3123 * ice_ptp_adj_clock - Adjust PHC clock time atomically 3124 * @hw: pointer to HW struct 3125 * @adj: Adjustment in nanoseconds 3126 * 3127 * Perform an atomic adjustment of the PHC time by the specified number of 3128 * nanoseconds. This requires a three-step process: 3129 * 3130 * 1) Write the adjustment to the source timer shadow registers 3131 * 2) Write the adjustment to the PHY timer shadow registers 3132 * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to 3133 * both the source and port timers at the next clock cycle. 3134 */ 3135 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) 3136 { 3137 u8 tmr_idx; 3138 int err; 3139 3140 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3141 3142 /* Write the desired clock adjustment into the GLTSYN_SHADJ register. 3143 * For an ADJ_TIME command, this set of registers represents the value 3144 * to add to the clock time. It supports subtraction by interpreting 3145 * the value as a 2's complement integer. 3146 */ 3147 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0); 3148 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj); 3149 3150 if (ice_is_e810(hw)) 3151 err = ice_ptp_prep_phy_adj_e810(hw, adj); 3152 else 3153 err = ice_ptp_prep_phy_adj_e822(hw, adj); 3154 if (err) 3155 return err; 3156 3157 return ice_ptp_tmr_cmd(hw, ADJ_TIME); 3158 } 3159 3160 /** 3161 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block 3162 * @hw: pointer to the HW struct 3163 * @block: the block to read from 3164 * @idx: the timestamp index to read 3165 * @tstamp: on return, the 40bit timestamp value 3166 * 3167 * Read a 40bit timestamp value out of the timestamp block. For E822 devices, 3168 * the block is the quad to read from. For E810 devices, the block is the 3169 * logical port to read from. 3170 */ 3171 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) 3172 { 3173 if (ice_is_e810(hw)) 3174 return ice_read_phy_tstamp_e810(hw, block, idx, tstamp); 3175 else 3176 return ice_read_phy_tstamp_e822(hw, block, idx, tstamp); 3177 } 3178 3179 /** 3180 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block 3181 * @hw: pointer to the HW struct 3182 * @block: the block to read from 3183 * @idx: the timestamp index to reset 3184 * 3185 * Clear a timestamp, resetting its valid bit, from the timestamp block. For 3186 * E822 devices, the block is the quad to clear from. For E810 devices, the 3187 * block is the logical port to clear from. 3188 */ 3189 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx) 3190 { 3191 if (ice_is_e810(hw)) 3192 return ice_clear_phy_tstamp_e810(hw, block, idx); 3193 else 3194 return ice_clear_phy_tstamp_e822(hw, block, idx); 3195 } 3196 3197 /* E810T SMA functions 3198 * 3199 * The following functions operate specifically on E810T hardware and are used 3200 * to access the extended GPIOs available. 3201 */ 3202 3203 /** 3204 * ice_get_pca9575_handle 3205 * @hw: pointer to the hw struct 3206 * @pca9575_handle: GPIO controller's handle 3207 * 3208 * Find and return the GPIO controller's handle in the netlist. 3209 * When found - the value will be cached in the hw structure and following calls 3210 * will return cached value 3211 */ 3212 static int 3213 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle) 3214 { 3215 struct ice_aqc_get_link_topo *cmd; 3216 struct ice_aq_desc desc; 3217 int status; 3218 u8 idx; 3219 3220 /* If handle was read previously return cached value */ 3221 if (hw->io_expander_handle) { 3222 *pca9575_handle = hw->io_expander_handle; 3223 return 0; 3224 } 3225 3226 /* If handle was not detected read it from the netlist */ 3227 cmd = &desc.params.get_link_topo; 3228 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 3229 3230 /* Set node type to GPIO controller */ 3231 cmd->addr.topo_params.node_type_ctx = 3232 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & 3233 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL); 3234 3235 #define SW_PCA9575_SFP_TOPO_IDX 2 3236 #define SW_PCA9575_QSFP_TOPO_IDX 1 3237 3238 /* Check if the SW IO expander controlling SMA exists in the netlist. */ 3239 if (hw->device_id == ICE_DEV_ID_E810C_SFP) 3240 idx = SW_PCA9575_SFP_TOPO_IDX; 3241 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP) 3242 idx = SW_PCA9575_QSFP_TOPO_IDX; 3243 else 3244 return -EOPNOTSUPP; 3245 3246 cmd->addr.topo_params.index = idx; 3247 3248 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 3249 if (status) 3250 return -EOPNOTSUPP; 3251 3252 /* Verify if we found the right IO expander type */ 3253 if (desc.params.get_link_topo.node_part_num != 3254 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575) 3255 return -EOPNOTSUPP; 3256 3257 /* If present save the handle and return it */ 3258 hw->io_expander_handle = 3259 le16_to_cpu(desc.params.get_link_topo.addr.handle); 3260 *pca9575_handle = hw->io_expander_handle; 3261 3262 return 0; 3263 } 3264 3265 /** 3266 * ice_read_sma_ctrl_e810t 3267 * @hw: pointer to the hw struct 3268 * @data: pointer to data to be read from the GPIO controller 3269 * 3270 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the 3271 * PCA9575 expander, so only bits 3-7 in data are valid. 3272 */ 3273 int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data) 3274 { 3275 int status; 3276 u16 handle; 3277 u8 i; 3278 3279 status = ice_get_pca9575_handle(hw, &handle); 3280 if (status) 3281 return status; 3282 3283 *data = 0; 3284 3285 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { 3286 bool pin; 3287 3288 status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, 3289 &pin, NULL); 3290 if (status) 3291 break; 3292 *data |= (u8)(!pin) << i; 3293 } 3294 3295 return status; 3296 } 3297 3298 /** 3299 * ice_write_sma_ctrl_e810t 3300 * @hw: pointer to the hw struct 3301 * @data: data to be written to the GPIO controller 3302 * 3303 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 3304 * of the PCA9575 expander, so only bits 3-7 in data are valid. 3305 */ 3306 int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data) 3307 { 3308 int status; 3309 u16 handle; 3310 u8 i; 3311 3312 status = ice_get_pca9575_handle(hw, &handle); 3313 if (status) 3314 return status; 3315 3316 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { 3317 bool pin; 3318 3319 pin = !(data & (1 << i)); 3320 status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, 3321 pin, NULL); 3322 if (status) 3323 break; 3324 } 3325 3326 return status; 3327 } 3328 3329 /** 3330 * ice_read_pca9575_reg_e810t 3331 * @hw: pointer to the hw struct 3332 * @offset: GPIO controller register offset 3333 * @data: pointer to data to be read from the GPIO controller 3334 * 3335 * Read the register from the GPIO controller 3336 */ 3337 int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data) 3338 { 3339 struct ice_aqc_link_topo_addr link_topo; 3340 __le16 addr; 3341 u16 handle; 3342 int err; 3343 3344 memset(&link_topo, 0, sizeof(link_topo)); 3345 3346 err = ice_get_pca9575_handle(hw, &handle); 3347 if (err) 3348 return err; 3349 3350 link_topo.handle = cpu_to_le16(handle); 3351 link_topo.topo_params.node_type_ctx = 3352 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, 3353 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED); 3354 3355 addr = cpu_to_le16((u16)offset); 3356 3357 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL); 3358 } 3359 3360 /** 3361 * ice_is_pca9575_present 3362 * @hw: pointer to the hw struct 3363 * 3364 * Check if the SW IO expander is present in the netlist 3365 */ 3366 bool ice_is_pca9575_present(struct ice_hw *hw) 3367 { 3368 u16 handle = 0; 3369 int status; 3370 3371 if (!ice_is_e810t(hw)) 3372 return false; 3373 3374 status = ice_get_pca9575_handle(hw, &handle); 3375 3376 return !status && handle; 3377 } 3378 3379 /** 3380 * ice_ptp_init_phc - Initialize PTP hardware clock 3381 * @hw: pointer to the HW struct 3382 * 3383 * Perform the steps required to initialize the PTP hardware clock. 3384 */ 3385 int ice_ptp_init_phc(struct ice_hw *hw) 3386 { 3387 u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3388 3389 /* Enable source clocks */ 3390 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); 3391 3392 /* Clear event err indications for auxiliary pins */ 3393 (void)rd32(hw, GLTSYN_STAT(src_idx)); 3394 3395 if (ice_is_e810(hw)) 3396 return ice_ptp_init_phc_e810(hw); 3397 else 3398 return ice_ptp_init_phc_e822(hw); 3399 } 3400