1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 
7 /**
8  * ice_set_tx_tstamp - Enable or disable Tx timestamping
9  * @pf: The PF pointer to search in
10  * @on: bool value for whether timestamps are enabled or disabled
11  */
12 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
13 {
14 	struct ice_vsi *vsi;
15 	u32 val;
16 	u16 i;
17 
18 	vsi = ice_get_main_vsi(pf);
19 	if (!vsi)
20 		return;
21 
22 	/* Set the timestamp enable flag for all the Tx rings */
23 	ice_for_each_rxq(vsi, i) {
24 		if (!vsi->tx_rings[i])
25 			continue;
26 		vsi->tx_rings[i]->ptp_tx = on;
27 	}
28 
29 	/* Configure the Tx timestamp interrupt */
30 	val = rd32(&pf->hw, PFINT_OICR_ENA);
31 	if (on)
32 		val |= PFINT_OICR_TSYN_TX_M;
33 	else
34 		val &= ~PFINT_OICR_TSYN_TX_M;
35 	wr32(&pf->hw, PFINT_OICR_ENA, val);
36 }
37 
38 /**
39  * ice_set_rx_tstamp - Enable or disable Rx timestamping
40  * @pf: The PF pointer to search in
41  * @on: bool value for whether timestamps are enabled or disabled
42  */
43 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
44 {
45 	struct ice_vsi *vsi;
46 	u16 i;
47 
48 	vsi = ice_get_main_vsi(pf);
49 	if (!vsi)
50 		return;
51 
52 	/* Set the timestamp flag for all the Rx rings */
53 	ice_for_each_rxq(vsi, i) {
54 		if (!vsi->rx_rings[i])
55 			continue;
56 		vsi->rx_rings[i]->ptp_rx = on;
57 	}
58 }
59 
60 /**
61  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
62  * @pf: Board private structure
63  * @ena: bool value to enable or disable time stamp
64  *
65  * This function will configure timestamping during PTP initialization
66  * and deinitialization
67  */
68 static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
69 {
70 	ice_set_tx_tstamp(pf, ena);
71 	ice_set_rx_tstamp(pf, ena);
72 
73 	if (ena) {
74 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
75 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
76 	} else {
77 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
78 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
79 	}
80 }
81 
82 /**
83  * ice_get_ptp_clock_index - Get the PTP clock index
84  * @pf: the PF pointer
85  *
86  * Determine the clock index of the PTP clock associated with this device. If
87  * this is the PF controlling the clock, just use the local access to the
88  * clock device pointer.
89  *
90  * Otherwise, read from the driver shared parameters to determine the clock
91  * index value.
92  *
93  * Returns: the index of the PTP clock associated with this device, or -1 if
94  * there is no associated clock.
95  */
96 int ice_get_ptp_clock_index(struct ice_pf *pf)
97 {
98 	struct device *dev = ice_pf_to_dev(pf);
99 	enum ice_aqc_driver_params param_idx;
100 	struct ice_hw *hw = &pf->hw;
101 	u8 tmr_idx;
102 	u32 value;
103 	int err;
104 
105 	/* Use the ptp_clock structure if we're the main PF */
106 	if (pf->ptp.clock)
107 		return ptp_clock_index(pf->ptp.clock);
108 
109 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
110 	if (!tmr_idx)
111 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
112 	else
113 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
114 
115 	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
116 	if (err) {
117 		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
118 			err, ice_aq_str(hw->adminq.sq_last_status));
119 		return -1;
120 	}
121 
122 	/* The PTP clock index is an integer, and will be between 0 and
123 	 * INT_MAX. The highest bit of the driver shared parameter is used to
124 	 * indicate whether or not the currently stored clock index is valid.
125 	 */
126 	if (!(value & PTP_SHARED_CLK_IDX_VALID))
127 		return -1;
128 
129 	return value & ~PTP_SHARED_CLK_IDX_VALID;
130 }
131 
132 /**
133  * ice_set_ptp_clock_index - Set the PTP clock index
134  * @pf: the PF pointer
135  *
136  * Set the PTP clock index for this device into the shared driver parameters,
137  * so that other PFs associated with this device can read it.
138  *
139  * If the PF is unable to store the clock index, it will log an error, but
140  * will continue operating PTP.
141  */
142 static void ice_set_ptp_clock_index(struct ice_pf *pf)
143 {
144 	struct device *dev = ice_pf_to_dev(pf);
145 	enum ice_aqc_driver_params param_idx;
146 	struct ice_hw *hw = &pf->hw;
147 	u8 tmr_idx;
148 	u32 value;
149 	int err;
150 
151 	if (!pf->ptp.clock)
152 		return;
153 
154 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
155 	if (!tmr_idx)
156 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
157 	else
158 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
159 
160 	value = (u32)ptp_clock_index(pf->ptp.clock);
161 	if (value > INT_MAX) {
162 		dev_err(dev, "PTP Clock index is too large to store\n");
163 		return;
164 	}
165 	value |= PTP_SHARED_CLK_IDX_VALID;
166 
167 	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
168 	if (err) {
169 		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
170 			err, ice_aq_str(hw->adminq.sq_last_status));
171 	}
172 }
173 
174 /**
175  * ice_clear_ptp_clock_index - Clear the PTP clock index
176  * @pf: the PF pointer
177  *
178  * Clear the PTP clock index for this device. Must be called when
179  * unregistering the PTP clock, in order to ensure other PFs stop reporting
180  * a clock object that no longer exists.
181  */
182 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
183 {
184 	struct device *dev = ice_pf_to_dev(pf);
185 	enum ice_aqc_driver_params param_idx;
186 	struct ice_hw *hw = &pf->hw;
187 	u8 tmr_idx;
188 	int err;
189 
190 	/* Do not clear the index if we don't own the timer */
191 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
192 		return;
193 
194 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
195 	if (!tmr_idx)
196 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
197 	else
198 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
199 
200 	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
201 	if (err) {
202 		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
203 			err, ice_aq_str(hw->adminq.sq_last_status));
204 	}
205 }
206 
207 /**
208  * ice_ptp_read_src_clk_reg - Read the source clock register
209  * @pf: Board private structure
210  * @sts: Optional parameter for holding a pair of system timestamps from
211  *       the system clock. Will be ignored if NULL is given.
212  */
213 static u64
214 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
215 {
216 	struct ice_hw *hw = &pf->hw;
217 	u32 hi, lo, lo2;
218 	u8 tmr_idx;
219 
220 	tmr_idx = ice_get_ptp_src_clock_index(hw);
221 	/* Read the system timestamp pre PHC read */
222 	if (sts)
223 		ptp_read_system_prets(sts);
224 
225 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
226 
227 	/* Read the system timestamp post PHC read */
228 	if (sts)
229 		ptp_read_system_postts(sts);
230 
231 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
232 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
233 
234 	if (lo2 < lo) {
235 		/* if TIME_L rolled over read TIME_L again and update
236 		 * system timestamps
237 		 */
238 		if (sts)
239 			ptp_read_system_prets(sts);
240 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
241 		if (sts)
242 			ptp_read_system_postts(sts);
243 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
244 	}
245 
246 	return ((u64)hi << 32) | lo;
247 }
248 
249 /**
250  * ice_ptp_update_cached_phctime - Update the cached PHC time values
251  * @pf: Board specific private structure
252  *
253  * This function updates the system time values which are cached in the PF
254  * structure and the Rx rings.
255  *
256  * This function must be called periodically to ensure that the cached value
257  * is never more than 2 seconds old. It must also be called whenever the PHC
258  * time has been changed.
259  */
260 static void ice_ptp_update_cached_phctime(struct ice_pf *pf)
261 {
262 	u64 systime;
263 	int i;
264 
265 	/* Read the current PHC time */
266 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
267 
268 	/* Update the cached PHC time stored in the PF structure */
269 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
270 
271 	ice_for_each_vsi(pf, i) {
272 		struct ice_vsi *vsi = pf->vsi[i];
273 		int j;
274 
275 		if (!vsi)
276 			continue;
277 
278 		if (vsi->type != ICE_VSI_PF)
279 			continue;
280 
281 		ice_for_each_rxq(vsi, j) {
282 			if (!vsi->rx_rings[j])
283 				continue;
284 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
285 		}
286 	}
287 }
288 
289 /**
290  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
291  * @cached_phc_time: recently cached copy of PHC time
292  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
293  *
294  * Hardware captures timestamps which contain only 32 bits of nominal
295  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
296  * Note that the captured timestamp values may be 40 bits, but the lower
297  * 8 bits are sub-nanoseconds and generally discarded.
298  *
299  * Extend the 32bit nanosecond timestamp using the following algorithm and
300  * assumptions:
301  *
302  * 1) have a recently cached copy of the PHC time
303  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
304  *    seconds) before or after the PHC time was captured.
305  * 3) calculate the delta between the cached time and the timestamp
306  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
307  *    captured after the PHC time. In this case, the full timestamp is just
308  *    the cached PHC time plus the delta.
309  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
310  *    timestamp was captured *before* the PHC time, i.e. because the PHC
311  *    cache was updated after the timestamp was captured by hardware. In this
312  *    case, the full timestamp is the cached time minus the inverse delta.
313  *
314  * This algorithm works even if the PHC time was updated after a Tx timestamp
315  * was requested, but before the Tx timestamp event was reported from
316  * hardware.
317  *
318  * This calculation primarily relies on keeping the cached PHC time up to
319  * date. If the timestamp was captured more than 2^31 nanoseconds after the
320  * PHC time, it is possible that the lower 32bits of PHC time have
321  * overflowed more than once, and we might generate an incorrect timestamp.
322  *
323  * This is prevented by (a) periodically updating the cached PHC time once
324  * a second, and (b) discarding any Tx timestamp packet if it has waited for
325  * a timestamp for more than one second.
326  */
327 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
328 {
329 	u32 delta, phc_time_lo;
330 	u64 ns;
331 
332 	/* Extract the lower 32 bits of the PHC time */
333 	phc_time_lo = (u32)cached_phc_time;
334 
335 	/* Calculate the delta between the lower 32bits of the cached PHC
336 	 * time and the in_tstamp value
337 	 */
338 	delta = (in_tstamp - phc_time_lo);
339 
340 	/* Do not assume that the in_tstamp is always more recent than the
341 	 * cached PHC time. If the delta is large, it indicates that the
342 	 * in_tstamp was taken in the past, and should be converted
343 	 * forward.
344 	 */
345 	if (delta > (U32_MAX / 2)) {
346 		/* reverse the delta calculation here */
347 		delta = (phc_time_lo - in_tstamp);
348 		ns = cached_phc_time - delta;
349 	} else {
350 		ns = cached_phc_time + delta;
351 	}
352 
353 	return ns;
354 }
355 
356 /**
357  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
358  * @pf: Board private structure
359  * @in_tstamp: Ingress/egress 40b timestamp value
360  *
361  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
362  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
363  *
364  *  *--------------------------------------------------------------*
365  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
366  *  *--------------------------------------------------------------*
367  *
368  * The low bit is an indicator of whether the timestamp is valid. The next
369  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
370  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
371  *
372  * It is assumed that the caller verifies the timestamp is valid prior to
373  * calling this function.
374  *
375  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
376  * time stored in the device private PTP structure as the basis for timestamp
377  * extension.
378  *
379  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
380  * algorithm.
381  */
382 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
383 {
384 	const u64 mask = GENMASK_ULL(31, 0);
385 
386 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
387 				     (in_tstamp >> 8) & mask);
388 }
389 
390 /**
391  * ice_ptp_read_time - Read the time from the device
392  * @pf: Board private structure
393  * @ts: timespec structure to hold the current time value
394  * @sts: Optional parameter for holding a pair of system timestamps from
395  *       the system clock. Will be ignored if NULL is given.
396  *
397  * This function reads the source clock registers and stores them in a timespec.
398  * However, since the registers are 64 bits of nanoseconds, we must convert the
399  * result to a timespec before we can return.
400  */
401 static void
402 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
403 		  struct ptp_system_timestamp *sts)
404 {
405 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
406 
407 	*ts = ns_to_timespec64(time_ns);
408 }
409 
410 /**
411  * ice_ptp_write_init - Set PHC time to provided value
412  * @pf: Board private structure
413  * @ts: timespec structure that holds the new time value
414  *
415  * Set the PHC time to the specified time provided in the timespec.
416  */
417 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
418 {
419 	u64 ns = timespec64_to_ns(ts);
420 	struct ice_hw *hw = &pf->hw;
421 
422 	return ice_ptp_init_time(hw, ns);
423 }
424 
425 /**
426  * ice_ptp_write_adj - Adjust PHC clock time atomically
427  * @pf: Board private structure
428  * @adj: Adjustment in nanoseconds
429  *
430  * Perform an atomic adjustment of the PHC time by the specified number of
431  * nanoseconds.
432  */
433 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
434 {
435 	struct ice_hw *hw = &pf->hw;
436 
437 	return ice_ptp_adj_clock(hw, adj);
438 }
439 
440 /**
441  * ice_ptp_adjfine - Adjust clock increment rate
442  * @info: the driver's PTP info structure
443  * @scaled_ppm: Parts per million with 16-bit fractional field
444  *
445  * Adjust the frequency of the clock by the indicated scaled ppm from the
446  * base frequency.
447  */
448 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
449 {
450 	struct ice_pf *pf = ptp_info_to_pf(info);
451 	u64 freq, divisor = 1000000ULL;
452 	struct ice_hw *hw = &pf->hw;
453 	s64 incval, diff;
454 	int neg_adj = 0;
455 	int err;
456 
457 	incval = ICE_PTP_NOMINAL_INCVAL_E810;
458 
459 	if (scaled_ppm < 0) {
460 		neg_adj = 1;
461 		scaled_ppm = -scaled_ppm;
462 	}
463 
464 	while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) {
465 		/* handle overflow by scaling down the scaled_ppm and
466 		 * the divisor, losing some precision
467 		 */
468 		scaled_ppm >>= 2;
469 		divisor >>= 2;
470 	}
471 
472 	freq = (incval * (u64)scaled_ppm) >> 16;
473 	diff = div_u64(freq, divisor);
474 
475 	if (neg_adj)
476 		incval -= diff;
477 	else
478 		incval += diff;
479 
480 	err = ice_ptp_write_incval_locked(hw, incval);
481 	if (err) {
482 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
483 			err);
484 		return -EIO;
485 	}
486 
487 	return 0;
488 }
489 
490 /**
491  * ice_ptp_gettimex64 - Get the time of the clock
492  * @info: the driver's PTP info structure
493  * @ts: timespec64 structure to hold the current time value
494  * @sts: Optional parameter for holding a pair of system timestamps from
495  *       the system clock. Will be ignored if NULL is given.
496  *
497  * Read the device clock and return the correct value on ns, after converting it
498  * into a timespec struct.
499  */
500 static int
501 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
502 		   struct ptp_system_timestamp *sts)
503 {
504 	struct ice_pf *pf = ptp_info_to_pf(info);
505 	struct ice_hw *hw = &pf->hw;
506 
507 	if (!ice_ptp_lock(hw)) {
508 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
509 		return -EBUSY;
510 	}
511 
512 	ice_ptp_read_time(pf, ts, sts);
513 	ice_ptp_unlock(hw);
514 
515 	return 0;
516 }
517 
518 /**
519  * ice_ptp_settime64 - Set the time of the clock
520  * @info: the driver's PTP info structure
521  * @ts: timespec64 structure that holds the new time value
522  *
523  * Set the device clock to the user input value. The conversion from timespec
524  * to ns happens in the write function.
525  */
526 static int
527 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
528 {
529 	struct ice_pf *pf = ptp_info_to_pf(info);
530 	struct timespec64 ts64 = *ts;
531 	struct ice_hw *hw = &pf->hw;
532 	int err;
533 
534 	if (!ice_ptp_lock(hw)) {
535 		err = -EBUSY;
536 		goto exit;
537 	}
538 
539 	err = ice_ptp_write_init(pf, &ts64);
540 	ice_ptp_unlock(hw);
541 
542 	if (!err)
543 		ice_ptp_update_cached_phctime(pf);
544 
545 exit:
546 	if (err) {
547 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
548 		return err;
549 	}
550 
551 	return 0;
552 }
553 
554 /**
555  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
556  * @info: the driver's PTP info structure
557  * @delta: Offset in nanoseconds to adjust the time by
558  */
559 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
560 {
561 	struct timespec64 now, then;
562 
563 	then = ns_to_timespec64(delta);
564 	ice_ptp_gettimex64(info, &now, NULL);
565 	now = timespec64_add(now, then);
566 
567 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
568 }
569 
570 /**
571  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
572  * @info: the driver's PTP info structure
573  * @delta: Offset in nanoseconds to adjust the time by
574  */
575 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
576 {
577 	struct ice_pf *pf = ptp_info_to_pf(info);
578 	struct ice_hw *hw = &pf->hw;
579 	struct device *dev;
580 	int err;
581 
582 	dev = ice_pf_to_dev(pf);
583 
584 	/* Hardware only supports atomic adjustments using signed 32-bit
585 	 * integers. For any adjustment outside this range, perform
586 	 * a non-atomic get->adjust->set flow.
587 	 */
588 	if (delta > S32_MAX || delta < S32_MIN) {
589 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
590 		return ice_ptp_adjtime_nonatomic(info, delta);
591 	}
592 
593 	if (!ice_ptp_lock(hw)) {
594 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
595 		return -EBUSY;
596 	}
597 
598 	err = ice_ptp_write_adj(pf, delta);
599 
600 	ice_ptp_unlock(hw);
601 
602 	if (err) {
603 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
604 		return err;
605 	}
606 
607 	ice_ptp_update_cached_phctime(pf);
608 
609 	return 0;
610 }
611 
612 /**
613  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
614  * @pf: Board private structure
615  * @ifr: ioctl data
616  *
617  * Copy the timestamping config to user buffer
618  */
619 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
620 {
621 	struct hwtstamp_config *config;
622 
623 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
624 		return -EIO;
625 
626 	config = &pf->ptp.tstamp_config;
627 
628 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
629 		-EFAULT : 0;
630 }
631 
632 /**
633  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
634  * @pf: Board private structure
635  * @config: hwtstamp settings requested or saved
636  */
637 static int
638 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
639 {
640 	/* Reserved for future extensions. */
641 	if (config->flags)
642 		return -EINVAL;
643 
644 	switch (config->tx_type) {
645 	case HWTSTAMP_TX_OFF:
646 		ice_set_tx_tstamp(pf, false);
647 		break;
648 	case HWTSTAMP_TX_ON:
649 		ice_set_tx_tstamp(pf, true);
650 		break;
651 	default:
652 		return -ERANGE;
653 	}
654 
655 	switch (config->rx_filter) {
656 	case HWTSTAMP_FILTER_NONE:
657 		ice_set_rx_tstamp(pf, false);
658 		break;
659 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
660 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
661 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
662 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
663 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
664 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
665 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
666 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
667 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
668 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
669 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
670 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
671 	case HWTSTAMP_FILTER_NTP_ALL:
672 	case HWTSTAMP_FILTER_ALL:
673 		config->rx_filter = HWTSTAMP_FILTER_ALL;
674 		ice_set_rx_tstamp(pf, true);
675 		break;
676 	default:
677 		return -ERANGE;
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
685  * @pf: Board private structure
686  * @ifr: ioctl data
687  *
688  * Get the user config and store it
689  */
690 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
691 {
692 	struct hwtstamp_config config;
693 	int err;
694 
695 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
696 		return -EAGAIN;
697 
698 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
699 		return -EFAULT;
700 
701 	err = ice_ptp_set_timestamp_mode(pf, &config);
702 	if (err)
703 		return err;
704 
705 	/* Save these settings for future reference */
706 	pf->ptp.tstamp_config = config;
707 
708 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
709 		-EFAULT : 0;
710 }
711 
712 /**
713  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
714  * @rx_ring: Ring to get the VSI info
715  * @rx_desc: Receive descriptor
716  * @skb: Particular skb to send timestamp with
717  *
718  * The driver receives a notification in the receive descriptor with timestamp.
719  * The timestamp is in ns, so we must convert the result first.
720  */
721 void
722 ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring,
723 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
724 {
725 	u32 ts_high;
726 	u64 ts_ns;
727 
728 	/* Populate timesync data into skb */
729 	if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
730 		struct skb_shared_hwtstamps *hwtstamps;
731 
732 		/* Use ice_ptp_extend_32b_ts directly, using the ring-specific
733 		 * cached PHC value, rather than accessing the PF. This also
734 		 * allows us to simply pass the upper 32bits of nanoseconds
735 		 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
736 		 * it would just discard these bits itself.
737 		 */
738 		ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
739 		ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
740 
741 		hwtstamps = skb_hwtstamps(skb);
742 		memset(hwtstamps, 0, sizeof(*hwtstamps));
743 		hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
744 	}
745 }
746 
747 /**
748  * ice_ptp_set_caps - Set PTP capabilities
749  * @pf: Board private structure
750  */
751 static void ice_ptp_set_caps(struct ice_pf *pf)
752 {
753 	struct ptp_clock_info *info = &pf->ptp.info;
754 	struct device *dev = ice_pf_to_dev(pf);
755 
756 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
757 		 dev_driver_string(dev), dev_name(dev));
758 	info->owner = THIS_MODULE;
759 	info->max_adj = 999999999;
760 	info->adjtime = ice_ptp_adjtime;
761 	info->adjfine = ice_ptp_adjfine;
762 	info->gettimex64 = ice_ptp_gettimex64;
763 	info->settime64 = ice_ptp_settime64;
764 }
765 
766 /**
767  * ice_ptp_create_clock - Create PTP clock device for userspace
768  * @pf: Board private structure
769  *
770  * This function creates a new PTP clock device. It only creates one if we
771  * don't already have one. Will return error if it can't create one, but success
772  * if we already have a device. Should be used by ice_ptp_init to create clock
773  * initially, and prevent global resets from creating new clock devices.
774  */
775 static long ice_ptp_create_clock(struct ice_pf *pf)
776 {
777 	struct ptp_clock_info *info;
778 	struct ptp_clock *clock;
779 	struct device *dev;
780 
781 	/* No need to create a clock device if we already have one */
782 	if (pf->ptp.clock)
783 		return 0;
784 
785 	ice_ptp_set_caps(pf);
786 
787 	info = &pf->ptp.info;
788 	dev = ice_pf_to_dev(pf);
789 
790 	/* Attempt to register the clock before enabling the hardware. */
791 	clock = ptp_clock_register(info, dev);
792 	if (IS_ERR(clock))
793 		return PTR_ERR(clock);
794 
795 	pf->ptp.clock = clock;
796 
797 	return 0;
798 }
799 
800 /**
801  * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
802  * @work: pointer to the kthread_work struct
803  *
804  * Process timestamps captured by the PHY associated with this port. To do
805  * this, loop over each index with a waiting skb.
806  *
807  * If a given index has a valid timestamp, perform the following steps:
808  *
809  * 1) copy the timestamp out of the PHY register
810  * 4) clear the timestamp valid bit in the PHY register
811  * 5) unlock the index by clearing the associated in_use bit.
812  * 2) extend the 40b timestamp value to get a 64bit timestamp
813  * 3) send that timestamp to the stack
814  *
815  * After looping, if we still have waiting SKBs, then re-queue the work. This
816  * may cause us effectively poll even when not strictly necessary. We do this
817  * because it's possible a new timestamp was requested around the same time as
818  * the interrupt. In some cases hardware might not interrupt us again when the
819  * timestamp is captured.
820  *
821  * Note that we only take the tracking lock when clearing the bit and when
822  * checking if we need to re-queue this task. The only place where bits can be
823  * set is the hard xmit routine where an SKB has a request flag set. The only
824  * places where we clear bits are this work function, or the periodic cleanup
825  * thread. If the cleanup thread clears a bit we're processing we catch it
826  * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
827  * starts a new timestamp, we might not begin processing it right away but we
828  * will notice it at the end when we re-queue the work item. If a Tx thread
829  * starts a new timestamp just after this function exits without re-queuing,
830  * the interrupt when the timestamp finishes should trigger. Avoiding holding
831  * the lock for the entire function is important in order to ensure that Tx
832  * threads do not get blocked while waiting for the lock.
833  */
834 static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
835 {
836 	struct ice_ptp_port *ptp_port;
837 	struct ice_ptp_tx *tx;
838 	struct ice_pf *pf;
839 	struct ice_hw *hw;
840 	u8 idx;
841 
842 	tx = container_of(work, struct ice_ptp_tx, work);
843 	if (!tx->init)
844 		return;
845 
846 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
847 	pf = ptp_port_to_pf(ptp_port);
848 	hw = &pf->hw;
849 
850 	for_each_set_bit(idx, tx->in_use, tx->len) {
851 		struct skb_shared_hwtstamps shhwtstamps = {};
852 		u8 phy_idx = idx + tx->quad_offset;
853 		u64 raw_tstamp, tstamp;
854 		struct sk_buff *skb;
855 		int err;
856 
857 		err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
858 					  &raw_tstamp);
859 		if (err)
860 			continue;
861 
862 		/* Check if the timestamp is valid */
863 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
864 			continue;
865 
866 		/* clear the timestamp register, so that it won't show valid
867 		 * again when re-used.
868 		 */
869 		ice_clear_phy_tstamp(hw, tx->quad, phy_idx);
870 
871 		/* The timestamp is valid, so we'll go ahead and clear this
872 		 * index and then send the timestamp up to the stack.
873 		 */
874 		spin_lock(&tx->lock);
875 		clear_bit(idx, tx->in_use);
876 		skb = tx->tstamps[idx].skb;
877 		tx->tstamps[idx].skb = NULL;
878 		spin_unlock(&tx->lock);
879 
880 		/* it's (unlikely but) possible we raced with the cleanup
881 		 * thread for discarding old timestamp requests.
882 		 */
883 		if (!skb)
884 			continue;
885 
886 		/* Extend the timestamp using cached PHC time */
887 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
888 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
889 
890 		skb_tstamp_tx(skb, &shhwtstamps);
891 		dev_kfree_skb_any(skb);
892 	}
893 
894 	/* Check if we still have work to do. If so, re-queue this task to
895 	 * poll for remaining timestamps.
896 	 */
897 	spin_lock(&tx->lock);
898 	if (!bitmap_empty(tx->in_use, tx->len))
899 		kthread_queue_work(pf->ptp.kworker, &tx->work);
900 	spin_unlock(&tx->lock);
901 }
902 
903 /**
904  * ice_ptp_request_ts - Request an available Tx timestamp index
905  * @tx: the PTP Tx timestamp tracker to request from
906  * @skb: the SKB to associate with this timestamp request
907  */
908 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
909 {
910 	u8 idx;
911 
912 	/* Check if this tracker is initialized */
913 	if (!tx->init)
914 		return -1;
915 
916 	spin_lock(&tx->lock);
917 	/* Find and set the first available index */
918 	idx = find_first_zero_bit(tx->in_use, tx->len);
919 	if (idx < tx->len) {
920 		/* We got a valid index that no other thread could have set. Store
921 		 * a reference to the skb and the start time to allow discarding old
922 		 * requests.
923 		 */
924 		set_bit(idx, tx->in_use);
925 		tx->tstamps[idx].start = jiffies;
926 		tx->tstamps[idx].skb = skb_get(skb);
927 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
928 	}
929 
930 	spin_unlock(&tx->lock);
931 
932 	/* return the appropriate PHY timestamp register index, -1 if no
933 	 * indexes were available.
934 	 */
935 	if (idx >= tx->len)
936 		return -1;
937 	else
938 		return idx + tx->quad_offset;
939 }
940 
941 /**
942  * ice_ptp_process_ts - Spawn kthread work to handle timestamps
943  * @pf: Board private structure
944  *
945  * Queue work required to process the PTP Tx timestamps outside of interrupt
946  * context.
947  */
948 void ice_ptp_process_ts(struct ice_pf *pf)
949 {
950 	if (pf->ptp.port.tx.init)
951 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
952 }
953 
954 /**
955  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
956  * @tx: Tx tracking structure to initialize
957  *
958  * Assumes that the length has already been initialized. Do not call directly,
959  * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
960  */
961 static int
962 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
963 {
964 	tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
965 	if (!tx->tstamps)
966 		return -ENOMEM;
967 
968 	tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
969 	if (!tx->in_use) {
970 		kfree(tx->tstamps);
971 		tx->tstamps = NULL;
972 		return -ENOMEM;
973 	}
974 
975 	spin_lock_init(&tx->lock);
976 	kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
977 
978 	tx->init = 1;
979 
980 	return 0;
981 }
982 
983 /**
984  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
985  * @pf: Board private structure
986  * @tx: the tracker to flush
987  */
988 static void
989 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
990 {
991 	u8 idx;
992 
993 	for (idx = 0; idx < tx->len; idx++) {
994 		u8 phy_idx = idx + tx->quad_offset;
995 
996 		/* Clear any potential residual timestamp in the PHY block */
997 		if (!pf->hw.reset_ongoing)
998 			ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
999 
1000 		if (tx->tstamps[idx].skb) {
1001 			dev_kfree_skb_any(tx->tstamps[idx].skb);
1002 			tx->tstamps[idx].skb = NULL;
1003 		}
1004 	}
1005 }
1006 
1007 /**
1008  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
1009  * @pf: Board private structure
1010  * @tx: Tx tracking structure to release
1011  *
1012  * Free memory associated with the Tx timestamp tracker.
1013  */
1014 static void
1015 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1016 {
1017 	tx->init = 0;
1018 
1019 	kthread_cancel_work_sync(&tx->work);
1020 
1021 	ice_ptp_flush_tx_tracker(pf, tx);
1022 
1023 	kfree(tx->tstamps);
1024 	tx->tstamps = NULL;
1025 
1026 	kfree(tx->in_use);
1027 	tx->in_use = NULL;
1028 
1029 	tx->len = 0;
1030 }
1031 
1032 /**
1033  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1034  * @pf: Board private structure
1035  * @tx: the Tx tracking structure to initialize
1036  *
1037  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1038  * port has its own block of timestamps, independent of the other ports.
1039  */
1040 static int
1041 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1042 {
1043 	tx->quad = pf->hw.port_info->lport;
1044 	tx->quad_offset = 0;
1045 	tx->len = INDEX_PER_QUAD;
1046 
1047 	return ice_ptp_alloc_tx_tracker(tx);
1048 }
1049 
1050 /**
1051  * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
1052  * @tx: PTP Tx tracker to clean up
1053  *
1054  * Loop through the Tx timestamp requests and see if any of them have been
1055  * waiting for a long time. Discard any SKBs that have been waiting for more
1056  * than 2 seconds. This is long enough to be reasonably sure that the
1057  * timestamp will never be captured. This might happen if the packet gets
1058  * discarded before it reaches the PHY timestamping block.
1059  */
1060 static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx)
1061 {
1062 	u8 idx;
1063 
1064 	if (!tx->init)
1065 		return;
1066 
1067 	for_each_set_bit(idx, tx->in_use, tx->len) {
1068 		struct sk_buff *skb;
1069 
1070 		/* Check if this SKB has been waiting for too long */
1071 		if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
1072 			continue;
1073 
1074 		spin_lock(&tx->lock);
1075 		skb = tx->tstamps[idx].skb;
1076 		tx->tstamps[idx].skb = NULL;
1077 		clear_bit(idx, tx->in_use);
1078 		spin_unlock(&tx->lock);
1079 
1080 		/* Free the SKB after we've cleared the bit */
1081 		dev_kfree_skb_any(skb);
1082 	}
1083 }
1084 
1085 static void ice_ptp_periodic_work(struct kthread_work *work)
1086 {
1087 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
1088 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1089 
1090 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1091 		return;
1092 
1093 	ice_ptp_update_cached_phctime(pf);
1094 
1095 	ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx);
1096 
1097 	/* Run twice a second */
1098 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
1099 				   msecs_to_jiffies(500));
1100 }
1101 
1102 /**
1103  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
1104  * @pf: Board private structure
1105  *
1106  * Setup and initialize a PTP clock device that represents the device hardware
1107  * clock. Save the clock index for other functions connected to the same
1108  * hardware resource.
1109  */
1110 static int ice_ptp_init_owner(struct ice_pf *pf)
1111 {
1112 	struct device *dev = ice_pf_to_dev(pf);
1113 	struct ice_hw *hw = &pf->hw;
1114 	struct timespec64 ts;
1115 	u8 src_idx;
1116 	int err;
1117 
1118 	wr32(hw, GLTSYN_SYNC_DLAY, 0);
1119 
1120 	/* Clear some HW residue and enable source clock */
1121 	src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1122 
1123 	/* Enable source clocks */
1124 	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
1125 
1126 	/* Enable PHY time sync */
1127 	err = ice_ptp_init_phy_e810(hw);
1128 	if (err)
1129 		goto err_exit;
1130 
1131 	/* Clear event status indications for auxiliary pins */
1132 	(void)rd32(hw, GLTSYN_STAT(src_idx));
1133 
1134 	/* Acquire the global hardware lock */
1135 	if (!ice_ptp_lock(hw)) {
1136 		err = -EBUSY;
1137 		goto err_exit;
1138 	}
1139 
1140 	/* Write the increment time value to PHY and LAN */
1141 	err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810);
1142 	if (err) {
1143 		ice_ptp_unlock(hw);
1144 		goto err_exit;
1145 	}
1146 
1147 	ts = ktime_to_timespec64(ktime_get_real());
1148 	/* Write the initial Time value to PHY and LAN */
1149 	err = ice_ptp_write_init(pf, &ts);
1150 	if (err) {
1151 		ice_ptp_unlock(hw);
1152 		goto err_exit;
1153 	}
1154 
1155 	/* Release the global hardware lock */
1156 	ice_ptp_unlock(hw);
1157 
1158 	/* Ensure we have a clock device */
1159 	err = ice_ptp_create_clock(pf);
1160 	if (err)
1161 		goto err_clk;
1162 
1163 	/* Store the PTP clock index for other PFs */
1164 	ice_set_ptp_clock_index(pf);
1165 
1166 	return 0;
1167 
1168 err_clk:
1169 	pf->ptp.clock = NULL;
1170 err_exit:
1171 	dev_err(dev, "PTP failed to register clock, err %d\n", err);
1172 
1173 	return err;
1174 }
1175 
1176 /**
1177  * ice_ptp_init - Initialize the PTP support after device probe or reset
1178  * @pf: Board private structure
1179  *
1180  * This function sets device up for PTP support. The first time it is run, it
1181  * will create a clock device. It does not create a clock device if one
1182  * already exists. It also reconfigures the device after a reset.
1183  */
1184 void ice_ptp_init(struct ice_pf *pf)
1185 {
1186 	struct device *dev = ice_pf_to_dev(pf);
1187 	struct kthread_worker *kworker;
1188 	struct ice_hw *hw = &pf->hw;
1189 	int err;
1190 
1191 	/* PTP is currently only supported on E810 devices */
1192 	if (!ice_is_e810(hw))
1193 		return;
1194 
1195 	/* Check if this PF owns the source timer */
1196 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
1197 		err = ice_ptp_init_owner(pf);
1198 		if (err)
1199 			return;
1200 	}
1201 
1202 	/* Disable timestamping for both Tx and Rx */
1203 	ice_ptp_cfg_timestamp(pf, false);
1204 
1205 	/* Initialize the PTP port Tx timestamp tracker */
1206 	ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx);
1207 
1208 	/* Initialize work functions */
1209 	kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work);
1210 
1211 	/* Allocate a kworker for handling work required for the ports
1212 	 * connected to the PTP hardware clock.
1213 	 */
1214 	kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev));
1215 	if (IS_ERR(kworker)) {
1216 		err = PTR_ERR(kworker);
1217 		goto err_kworker;
1218 	}
1219 	pf->ptp.kworker = kworker;
1220 
1221 	set_bit(ICE_FLAG_PTP, pf->flags);
1222 
1223 	/* Start periodic work going */
1224 	kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0);
1225 
1226 	dev_info(dev, "PTP init successful\n");
1227 	return;
1228 
1229 err_kworker:
1230 	/* If we registered a PTP clock, release it */
1231 	if (pf->ptp.clock) {
1232 		ptp_clock_unregister(pf->ptp.clock);
1233 		pf->ptp.clock = NULL;
1234 	}
1235 	dev_err(dev, "PTP failed %d\n", err);
1236 }
1237 
1238 /**
1239  * ice_ptp_release - Disable the driver/HW support and unregister the clock
1240  * @pf: Board private structure
1241  *
1242  * This function handles the cleanup work required from the initialization by
1243  * clearing out the important information and unregistering the clock
1244  */
1245 void ice_ptp_release(struct ice_pf *pf)
1246 {
1247 	/* Disable timestamping for both Tx and Rx */
1248 	ice_ptp_cfg_timestamp(pf, false);
1249 
1250 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
1251 
1252 	clear_bit(ICE_FLAG_PTP, pf->flags);
1253 
1254 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
1255 
1256 	if (pf->ptp.kworker) {
1257 		kthread_destroy_worker(pf->ptp.kworker);
1258 		pf->ptp.kworker = NULL;
1259 	}
1260 
1261 	if (!pf->ptp.clock)
1262 		return;
1263 
1264 	ice_clear_ptp_clock_index(pf);
1265 	ptp_clock_unregister(pf->ptp.clock);
1266 	pf->ptp.clock = NULL;
1267 
1268 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
1269 }
1270