1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 
8 #define E810_OUT_PROP_DELAY_NS 1
9 
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
11 
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 	/* name    idx   func         chan */
14 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20 
21 /**
22  * ice_get_sma_config_e810t
23  * @hw: pointer to the hw struct
24  * @ptp_pins: pointer to the ptp_pin_desc struture
25  *
26  * Read the configuration of the SMA control logic and put it into the
27  * ptp_pin_desc structure
28  */
29 static int
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 	u8 data, i;
33 	int status;
34 
35 	/* Read initial pin state */
36 	status = ice_read_sma_ctrl_e810t(hw, &data);
37 	if (status)
38 		return status;
39 
40 	/* initialize with defaults */
41 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43 			 "%s", ice_pin_desc_e810t[i].name);
44 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 	}
48 
49 	/* Parse SMA1/UFL1 */
50 	switch (data & ICE_SMA1_MASK_E810T) {
51 	case ICE_SMA1_MASK_E810T:
52 	default:
53 		ptp_pins[SMA1].func = PTP_PF_NONE;
54 		ptp_pins[UFL1].func = PTP_PF_NONE;
55 		break;
56 	case ICE_SMA1_DIR_EN_E810T:
57 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 		ptp_pins[UFL1].func = PTP_PF_NONE;
59 		break;
60 	case ICE_SMA1_TX_EN_E810T:
61 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 		ptp_pins[UFL1].func = PTP_PF_NONE;
63 		break;
64 	case 0:
65 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 		break;
68 	}
69 
70 	/* Parse SMA2/UFL2 */
71 	switch (data & ICE_SMA2_MASK_E810T) {
72 	case ICE_SMA2_MASK_E810T:
73 	default:
74 		ptp_pins[SMA2].func = PTP_PF_NONE;
75 		ptp_pins[UFL2].func = PTP_PF_NONE;
76 		break;
77 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 		ptp_pins[UFL2].func = PTP_PF_NONE;
80 		break;
81 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 		ptp_pins[UFL2].func = PTP_PF_NONE;
84 		break;
85 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 		ptp_pins[SMA2].func = PTP_PF_NONE;
87 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 		break;
89 	case ICE_SMA2_DIR_EN_E810T:
90 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 		break;
93 	}
94 
95 	return 0;
96 }
97 
98 /**
99  * ice_ptp_set_sma_config_e810t
100  * @hw: pointer to the hw struct
101  * @ptp_pins: pointer to the ptp_pin_desc struture
102  *
103  * Set the configuration of the SMA control logic based on the configuration in
104  * num_pins parameter
105  */
106 static int
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 			     const struct ptp_pin_desc *ptp_pins)
109 {
110 	int status;
111 	u8 data;
112 
113 	/* SMA1 and UFL1 cannot be set to TX at the same time */
114 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 		return -EINVAL;
117 
118 	/* SMA2 and UFL2 cannot be set to RX at the same time */
119 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 		return -EINVAL;
122 
123 	/* Read initial pin state value */
124 	status = ice_read_sma_ctrl_e810t(hw, &data);
125 	if (status)
126 		return status;
127 
128 	/* Set the right sate based on the desired configuration */
129 	data &= ~ICE_SMA1_MASK_E810T;
130 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 		data |= ICE_SMA1_MASK_E810T;
134 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 		data |= ICE_SMA1_TX_EN_E810T;
138 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 		/* U.FL 1 TX will always enable SMA 1 RX */
141 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 		data |= ICE_SMA1_DIR_EN_E810T;
149 	}
150 
151 	data &= ~ICE_SMA2_MASK_E810T;
152 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 		data |= ICE_SMA2_MASK_E810T;
156 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 			ptp_pins[UFL2].func == PTP_PF_NONE) {
158 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 		data |= (ICE_SMA2_TX_EN_E810T |
160 			 ICE_SMA2_UFL2_RX_DIS_E810T);
161 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 		data |= (ICE_SMA2_DIR_EN_E810T |
169 			 ICE_SMA2_UFL2_RX_DIS_E810T);
170 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 		data |= ICE_SMA2_DIR_EN_E810T;
174 	}
175 
176 	return ice_write_sma_ctrl_e810t(hw, data);
177 }
178 
179 /**
180  * ice_ptp_set_sma_e810t
181  * @info: the driver's PTP info structure
182  * @pin: pin index in kernel structure
183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184  *
185  * Set the configuration of a single SMA pin
186  */
187 static int
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 		      enum ptp_pin_function func)
190 {
191 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 	struct ice_pf *pf = ptp_info_to_pf(info);
193 	struct ice_hw *hw = &pf->hw;
194 	int err;
195 
196 	if (pin < SMA1 || func > PTP_PF_PEROUT)
197 		return -EOPNOTSUPP;
198 
199 	err = ice_get_sma_config_e810t(hw, ptp_pins);
200 	if (err)
201 		return err;
202 
203 	/* Disable the same function on the other pin sharing the channel */
204 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 		ptp_pins[UFL1].func = PTP_PF_NONE;
206 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 		ptp_pins[SMA1].func = PTP_PF_NONE;
208 
209 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 		ptp_pins[UFL2].func = PTP_PF_NONE;
211 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 		ptp_pins[SMA2].func = PTP_PF_NONE;
213 
214 	/* Set up new pin function in the temp table */
215 	ptp_pins[pin].func = func;
216 
217 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219 
220 /**
221  * ice_verify_pin_e810t
222  * @info: the driver's PTP info structure
223  * @pin: Pin index
224  * @func: Assigned function
225  * @chan: Assigned channel
226  *
227  * Verify if pin supports requested pin function. If the Check pins consistency.
228  * Reconfigure the SMA logic attached to the given pin to enable its
229  * desired functionality
230  */
231 static int
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 		     enum ptp_pin_function func, unsigned int chan)
234 {
235 	/* Don't allow channel reassignment */
236 	if (chan != ice_pin_desc_e810t[pin].chan)
237 		return -EOPNOTSUPP;
238 
239 	/* Check if functions are properly assigned */
240 	switch (func) {
241 	case PTP_PF_NONE:
242 		break;
243 	case PTP_PF_EXTTS:
244 		if (pin == UFL1)
245 			return -EOPNOTSUPP;
246 		break;
247 	case PTP_PF_PEROUT:
248 		if (pin == UFL2 || pin == GNSS)
249 			return -EOPNOTSUPP;
250 		break;
251 	case PTP_PF_PHYSYNC:
252 		return -EOPNOTSUPP;
253 	}
254 
255 	return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257 
258 /**
259  * ice_set_tx_tstamp - Enable or disable Tx timestamping
260  * @pf: The PF pointer to search in
261  * @on: bool value for whether timestamps are enabled or disabled
262  */
263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
264 {
265 	struct ice_vsi *vsi;
266 	u32 val;
267 	u16 i;
268 
269 	vsi = ice_get_main_vsi(pf);
270 	if (!vsi)
271 		return;
272 
273 	/* Set the timestamp enable flag for all the Tx rings */
274 	ice_for_each_txq(vsi, i) {
275 		if (!vsi->tx_rings[i])
276 			continue;
277 		vsi->tx_rings[i]->ptp_tx = on;
278 	}
279 
280 	/* Configure the Tx timestamp interrupt */
281 	val = rd32(&pf->hw, PFINT_OICR_ENA);
282 	if (on)
283 		val |= PFINT_OICR_TSYN_TX_M;
284 	else
285 		val &= ~PFINT_OICR_TSYN_TX_M;
286 	wr32(&pf->hw, PFINT_OICR_ENA, val);
287 
288 	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
289 }
290 
291 /**
292  * ice_set_rx_tstamp - Enable or disable Rx timestamping
293  * @pf: The PF pointer to search in
294  * @on: bool value for whether timestamps are enabled or disabled
295  */
296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
297 {
298 	struct ice_vsi *vsi;
299 	u16 i;
300 
301 	vsi = ice_get_main_vsi(pf);
302 	if (!vsi)
303 		return;
304 
305 	/* Set the timestamp flag for all the Rx rings */
306 	ice_for_each_rxq(vsi, i) {
307 		if (!vsi->rx_rings[i])
308 			continue;
309 		vsi->rx_rings[i]->ptp_rx = on;
310 	}
311 
312 	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313 					       HWTSTAMP_FILTER_NONE;
314 }
315 
316 /**
317  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318  * @pf: Board private structure
319  * @ena: bool value to enable or disable time stamp
320  *
321  * This function will configure timestamping during PTP initialization
322  * and deinitialization
323  */
324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
325 {
326 	ice_set_tx_tstamp(pf, ena);
327 	ice_set_rx_tstamp(pf, ena);
328 }
329 
330 /**
331  * ice_get_ptp_clock_index - Get the PTP clock index
332  * @pf: the PF pointer
333  *
334  * Determine the clock index of the PTP clock associated with this device. If
335  * this is the PF controlling the clock, just use the local access to the
336  * clock device pointer.
337  *
338  * Otherwise, read from the driver shared parameters to determine the clock
339  * index value.
340  *
341  * Returns: the index of the PTP clock associated with this device, or -1 if
342  * there is no associated clock.
343  */
344 int ice_get_ptp_clock_index(struct ice_pf *pf)
345 {
346 	struct device *dev = ice_pf_to_dev(pf);
347 	enum ice_aqc_driver_params param_idx;
348 	struct ice_hw *hw = &pf->hw;
349 	u8 tmr_idx;
350 	u32 value;
351 	int err;
352 
353 	/* Use the ptp_clock structure if we're the main PF */
354 	if (pf->ptp.clock)
355 		return ptp_clock_index(pf->ptp.clock);
356 
357 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
358 	if (!tmr_idx)
359 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
360 	else
361 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
362 
363 	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
364 	if (err) {
365 		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366 			err, ice_aq_str(hw->adminq.sq_last_status));
367 		return -1;
368 	}
369 
370 	/* The PTP clock index is an integer, and will be between 0 and
371 	 * INT_MAX. The highest bit of the driver shared parameter is used to
372 	 * indicate whether or not the currently stored clock index is valid.
373 	 */
374 	if (!(value & PTP_SHARED_CLK_IDX_VALID))
375 		return -1;
376 
377 	return value & ~PTP_SHARED_CLK_IDX_VALID;
378 }
379 
380 /**
381  * ice_set_ptp_clock_index - Set the PTP clock index
382  * @pf: the PF pointer
383  *
384  * Set the PTP clock index for this device into the shared driver parameters,
385  * so that other PFs associated with this device can read it.
386  *
387  * If the PF is unable to store the clock index, it will log an error, but
388  * will continue operating PTP.
389  */
390 static void ice_set_ptp_clock_index(struct ice_pf *pf)
391 {
392 	struct device *dev = ice_pf_to_dev(pf);
393 	enum ice_aqc_driver_params param_idx;
394 	struct ice_hw *hw = &pf->hw;
395 	u8 tmr_idx;
396 	u32 value;
397 	int err;
398 
399 	if (!pf->ptp.clock)
400 		return;
401 
402 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
403 	if (!tmr_idx)
404 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
405 	else
406 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
407 
408 	value = (u32)ptp_clock_index(pf->ptp.clock);
409 	if (value > INT_MAX) {
410 		dev_err(dev, "PTP Clock index is too large to store\n");
411 		return;
412 	}
413 	value |= PTP_SHARED_CLK_IDX_VALID;
414 
415 	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
416 	if (err) {
417 		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418 			err, ice_aq_str(hw->adminq.sq_last_status));
419 	}
420 }
421 
422 /**
423  * ice_clear_ptp_clock_index - Clear the PTP clock index
424  * @pf: the PF pointer
425  *
426  * Clear the PTP clock index for this device. Must be called when
427  * unregistering the PTP clock, in order to ensure other PFs stop reporting
428  * a clock object that no longer exists.
429  */
430 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
431 {
432 	struct device *dev = ice_pf_to_dev(pf);
433 	enum ice_aqc_driver_params param_idx;
434 	struct ice_hw *hw = &pf->hw;
435 	u8 tmr_idx;
436 	int err;
437 
438 	/* Do not clear the index if we don't own the timer */
439 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
440 		return;
441 
442 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
443 	if (!tmr_idx)
444 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
445 	else
446 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
447 
448 	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
449 	if (err) {
450 		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451 			err, ice_aq_str(hw->adminq.sq_last_status));
452 	}
453 }
454 
455 /**
456  * ice_ptp_read_src_clk_reg - Read the source clock register
457  * @pf: Board private structure
458  * @sts: Optional parameter for holding a pair of system timestamps from
459  *       the system clock. Will be ignored if NULL is given.
460  */
461 static u64
462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
463 {
464 	struct ice_hw *hw = &pf->hw;
465 	u32 hi, lo, lo2;
466 	u8 tmr_idx;
467 
468 	tmr_idx = ice_get_ptp_src_clock_index(hw);
469 	/* Read the system timestamp pre PHC read */
470 	ptp_read_system_prets(sts);
471 
472 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
473 
474 	/* Read the system timestamp post PHC read */
475 	ptp_read_system_postts(sts);
476 
477 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
479 
480 	if (lo2 < lo) {
481 		/* if TIME_L rolled over read TIME_L again and update
482 		 * system timestamps
483 		 */
484 		ptp_read_system_prets(sts);
485 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486 		ptp_read_system_postts(sts);
487 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
488 	}
489 
490 	return ((u64)hi << 32) | lo;
491 }
492 
493 /**
494  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
495  * @cached_phc_time: recently cached copy of PHC time
496  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
497  *
498  * Hardware captures timestamps which contain only 32 bits of nominal
499  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
500  * Note that the captured timestamp values may be 40 bits, but the lower
501  * 8 bits are sub-nanoseconds and generally discarded.
502  *
503  * Extend the 32bit nanosecond timestamp using the following algorithm and
504  * assumptions:
505  *
506  * 1) have a recently cached copy of the PHC time
507  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
508  *    seconds) before or after the PHC time was captured.
509  * 3) calculate the delta between the cached time and the timestamp
510  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
511  *    captured after the PHC time. In this case, the full timestamp is just
512  *    the cached PHC time plus the delta.
513  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
514  *    timestamp was captured *before* the PHC time, i.e. because the PHC
515  *    cache was updated after the timestamp was captured by hardware. In this
516  *    case, the full timestamp is the cached time minus the inverse delta.
517  *
518  * This algorithm works even if the PHC time was updated after a Tx timestamp
519  * was requested, but before the Tx timestamp event was reported from
520  * hardware.
521  *
522  * This calculation primarily relies on keeping the cached PHC time up to
523  * date. If the timestamp was captured more than 2^31 nanoseconds after the
524  * PHC time, it is possible that the lower 32bits of PHC time have
525  * overflowed more than once, and we might generate an incorrect timestamp.
526  *
527  * This is prevented by (a) periodically updating the cached PHC time once
528  * a second, and (b) discarding any Tx timestamp packet if it has waited for
529  * a timestamp for more than one second.
530  */
531 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
532 {
533 	u32 delta, phc_time_lo;
534 	u64 ns;
535 
536 	/* Extract the lower 32 bits of the PHC time */
537 	phc_time_lo = (u32)cached_phc_time;
538 
539 	/* Calculate the delta between the lower 32bits of the cached PHC
540 	 * time and the in_tstamp value
541 	 */
542 	delta = (in_tstamp - phc_time_lo);
543 
544 	/* Do not assume that the in_tstamp is always more recent than the
545 	 * cached PHC time. If the delta is large, it indicates that the
546 	 * in_tstamp was taken in the past, and should be converted
547 	 * forward.
548 	 */
549 	if (delta > (U32_MAX / 2)) {
550 		/* reverse the delta calculation here */
551 		delta = (phc_time_lo - in_tstamp);
552 		ns = cached_phc_time - delta;
553 	} else {
554 		ns = cached_phc_time + delta;
555 	}
556 
557 	return ns;
558 }
559 
560 /**
561  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
562  * @pf: Board private structure
563  * @in_tstamp: Ingress/egress 40b timestamp value
564  *
565  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
566  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
567  *
568  *  *--------------------------------------------------------------*
569  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
570  *  *--------------------------------------------------------------*
571  *
572  * The low bit is an indicator of whether the timestamp is valid. The next
573  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
574  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
575  *
576  * It is assumed that the caller verifies the timestamp is valid prior to
577  * calling this function.
578  *
579  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
580  * time stored in the device private PTP structure as the basis for timestamp
581  * extension.
582  *
583  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
584  * algorithm.
585  */
586 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
587 {
588 	const u64 mask = GENMASK_ULL(31, 0);
589 	unsigned long discard_time;
590 
591 	/* Discard the hardware timestamp if the cached PHC time is too old */
592 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
593 	if (time_is_before_jiffies(discard_time)) {
594 		pf->ptp.tx_hwtstamp_discarded++;
595 		return 0;
596 	}
597 
598 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
599 				     (in_tstamp >> 8) & mask);
600 }
601 
602 /**
603  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
604  * @tx: the PTP Tx timestamp tracker to check
605  *
606  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
607  * to accept new timestamp requests.
608  *
609  * Assumes the tx->lock spinlock is already held.
610  */
611 static bool
612 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
613 {
614 	lockdep_assert_held(&tx->lock);
615 
616 	return tx->init && !tx->calibrating;
617 }
618 
619 /**
620  * ice_ptp_tx_tstamp - Process Tx timestamps for a port
621  * @tx: the PTP Tx timestamp tracker
622  *
623  * Process timestamps captured by the PHY associated with this port. To do
624  * this, loop over each index with a waiting skb.
625  *
626  * If a given index has a valid timestamp, perform the following steps:
627  *
628  * 1) check that the timestamp request is not stale
629  * 2) check that a timestamp is ready and available in the PHY memory bank
630  * 3) read and copy the timestamp out of the PHY register
631  * 4) unlock the index by clearing the associated in_use bit
632  * 5) check if the timestamp is stale, and discard if so
633  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
634  * 7) send this 64 bit timestamp to the stack
635  *
636  * Returns true if all timestamps were handled, and false if any slots remain
637  * without a timestamp.
638  *
639  * After looping, if we still have waiting SKBs, return false. This may cause
640  * us effectively poll even when not strictly necessary. We do this because
641  * it's possible a new timestamp was requested around the same time as the
642  * interrupt. In some cases hardware might not interrupt us again when the
643  * timestamp is captured.
644  *
645  * Note that we do not hold the tracking lock while reading the Tx timestamp.
646  * This is because reading the timestamp requires taking a mutex that might
647  * sleep.
648  *
649  * The only place where we set in_use is when a new timestamp is initiated
650  * with a slot index. This is only called in the hard xmit routine where an
651  * SKB has a request flag set. The only places where we clear this bit is this
652  * function, or during teardown when the Tx timestamp tracker is being
653  * removed. A timestamp index will never be re-used until the in_use bit for
654  * that index is cleared.
655  *
656  * If a Tx thread starts a new timestamp, we might not begin processing it
657  * right away but we will notice it at the end when we re-queue the task.
658  *
659  * If a Tx thread starts a new timestamp just after this function exits, the
660  * interrupt for that timestamp should re-trigger this function once
661  * a timestamp is ready.
662  *
663  * In cases where the PTP hardware clock was directly adjusted, some
664  * timestamps may not be able to safely use the timestamp extension math. In
665  * this case, software will set the stale bit for any outstanding Tx
666  * timestamps when the clock is adjusted. Then this function will discard
667  * those captured timestamps instead of sending them to the stack.
668  *
669  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
670  * to correctly extend the timestamp using the cached PHC time. It is
671  * extremely unlikely that a packet will ever take this long to timestamp. If
672  * we detect a Tx timestamp request that has waited for this long we assume
673  * the packet will never be sent by hardware and discard it without reading
674  * the timestamp register.
675  */
676 static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
677 {
678 	struct ice_ptp_port *ptp_port;
679 	bool more_timestamps;
680 	struct ice_pf *pf;
681 	struct ice_hw *hw;
682 	u64 tstamp_ready;
683 	int err;
684 	u8 idx;
685 
686 	if (!tx->init)
687 		return true;
688 
689 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
690 	pf = ptp_port_to_pf(ptp_port);
691 	hw = &pf->hw;
692 
693 	/* Read the Tx ready status first */
694 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
695 	if (err)
696 		return false;
697 
698 	for_each_set_bit(idx, tx->in_use, tx->len) {
699 		struct skb_shared_hwtstamps shhwtstamps = {};
700 		u8 phy_idx = idx + tx->offset;
701 		u64 raw_tstamp = 0, tstamp;
702 		bool drop_ts = false;
703 		struct sk_buff *skb;
704 
705 		/* Drop packets which have waited for more than 2 seconds */
706 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
707 			drop_ts = true;
708 
709 			/* Count the number of Tx timestamps that timed out */
710 			pf->ptp.tx_hwtstamp_timeouts++;
711 		}
712 
713 		/* Only read a timestamp from the PHY if its marked as ready
714 		 * by the tstamp_ready register. This avoids unnecessary
715 		 * reading of timestamps which are not yet valid. This is
716 		 * important as we must read all timestamps which are valid
717 		 * and only timestamps which are valid during each interrupt.
718 		 * If we do not, the hardware logic for generating a new
719 		 * interrupt can get stuck on some devices.
720 		 */
721 		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
722 			if (drop_ts)
723 				goto skip_ts_read;
724 
725 			continue;
726 		}
727 
728 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
729 
730 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
731 		if (err)
732 			continue;
733 
734 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
735 
736 		/* For PHYs which don't implement a proper timestamp ready
737 		 * bitmap, verify that the timestamp value is different
738 		 * from the last cached timestamp. If it is not, skip this for
739 		 * now assuming it hasn't yet been captured by hardware.
740 		 */
741 		if (!drop_ts && tx->verify_cached &&
742 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
743 			continue;
744 
745 		/* Discard any timestamp value without the valid bit set */
746 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
747 			drop_ts = true;
748 
749 skip_ts_read:
750 		spin_lock(&tx->lock);
751 		if (tx->verify_cached && raw_tstamp)
752 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
753 		clear_bit(idx, tx->in_use);
754 		skb = tx->tstamps[idx].skb;
755 		tx->tstamps[idx].skb = NULL;
756 		if (test_and_clear_bit(idx, tx->stale))
757 			drop_ts = true;
758 		spin_unlock(&tx->lock);
759 
760 		/* It is unlikely but possible that the SKB will have been
761 		 * flushed at this point due to link change or teardown.
762 		 */
763 		if (!skb)
764 			continue;
765 
766 		if (drop_ts) {
767 			dev_kfree_skb_any(skb);
768 			continue;
769 		}
770 
771 		/* Extend the timestamp using cached PHC time */
772 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
773 		if (tstamp) {
774 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
775 			ice_trace(tx_tstamp_complete, skb, idx);
776 		}
777 
778 		skb_tstamp_tx(skb, &shhwtstamps);
779 		dev_kfree_skb_any(skb);
780 	}
781 
782 	/* Check if we still have work to do. If so, re-queue this task to
783 	 * poll for remaining timestamps.
784 	 */
785 	spin_lock(&tx->lock);
786 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
787 	spin_unlock(&tx->lock);
788 
789 	return !more_timestamps;
790 }
791 
792 /**
793  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
794  * @tx: Tx tracking structure to initialize
795  *
796  * Assumes that the length has already been initialized. Do not call directly,
797  * use the ice_ptp_init_tx_* instead.
798  */
799 static int
800 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
801 {
802 	unsigned long *in_use, *stale;
803 	struct ice_tx_tstamp *tstamps;
804 
805 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
806 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
807 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
808 
809 	if (!tstamps || !in_use || !stale) {
810 		kfree(tstamps);
811 		bitmap_free(in_use);
812 		bitmap_free(stale);
813 
814 		return -ENOMEM;
815 	}
816 
817 	tx->tstamps = tstamps;
818 	tx->in_use = in_use;
819 	tx->stale = stale;
820 	tx->init = 1;
821 
822 	spin_lock_init(&tx->lock);
823 
824 	return 0;
825 }
826 
827 /**
828  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
829  * @pf: Board private structure
830  * @tx: the tracker to flush
831  *
832  * Called during teardown when a Tx tracker is being removed.
833  */
834 static void
835 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
836 {
837 	struct ice_hw *hw = &pf->hw;
838 	u64 tstamp_ready;
839 	int err;
840 	u8 idx;
841 
842 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
843 	if (err) {
844 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
845 			tx->block, err);
846 
847 		/* If we fail to read the Tx timestamp ready bitmap just
848 		 * skip clearing the PHY timestamps.
849 		 */
850 		tstamp_ready = 0;
851 	}
852 
853 	for_each_set_bit(idx, tx->in_use, tx->len) {
854 		u8 phy_idx = idx + tx->offset;
855 		struct sk_buff *skb;
856 
857 		/* In case this timestamp is ready, we need to clear it. */
858 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
859 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
860 
861 		spin_lock(&tx->lock);
862 		skb = tx->tstamps[idx].skb;
863 		tx->tstamps[idx].skb = NULL;
864 		clear_bit(idx, tx->in_use);
865 		clear_bit(idx, tx->stale);
866 		spin_unlock(&tx->lock);
867 
868 		/* Count the number of Tx timestamps flushed */
869 		pf->ptp.tx_hwtstamp_flushed++;
870 
871 		/* Free the SKB after we've cleared the bit */
872 		dev_kfree_skb_any(skb);
873 	}
874 }
875 
876 /**
877  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
878  * @tx: the tracker to mark
879  *
880  * Mark currently outstanding Tx timestamps as stale. This prevents sending
881  * their timestamp value to the stack. This is required to prevent extending
882  * the 40bit hardware timestamp incorrectly.
883  *
884  * This should be called when the PTP clock is modified such as after a set
885  * time request.
886  */
887 static void
888 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
889 {
890 	spin_lock(&tx->lock);
891 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
892 	spin_unlock(&tx->lock);
893 }
894 
895 /**
896  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
897  * @pf: Board private structure
898  * @tx: Tx tracking structure to release
899  *
900  * Free memory associated with the Tx timestamp tracker.
901  */
902 static void
903 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
904 {
905 	spin_lock(&tx->lock);
906 	tx->init = 0;
907 	spin_unlock(&tx->lock);
908 
909 	/* wait for potentially outstanding interrupt to complete */
910 	synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
911 
912 	ice_ptp_flush_tx_tracker(pf, tx);
913 
914 	kfree(tx->tstamps);
915 	tx->tstamps = NULL;
916 
917 	bitmap_free(tx->in_use);
918 	tx->in_use = NULL;
919 
920 	bitmap_free(tx->stale);
921 	tx->stale = NULL;
922 
923 	tx->len = 0;
924 }
925 
926 /**
927  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
928  * @pf: Board private structure
929  * @tx: the Tx tracking structure to initialize
930  * @port: the port this structure tracks
931  *
932  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
933  * the timestamp block is shared for all ports in the same quad. To avoid
934  * ports using the same timestamp index, logically break the block of
935  * registers into chunks based on the port number.
936  */
937 static int
938 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
939 {
940 	tx->block = port / ICE_PORTS_PER_QUAD;
941 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
942 	tx->len = INDEX_PER_PORT_E822;
943 	tx->verify_cached = 0;
944 
945 	return ice_ptp_alloc_tx_tracker(tx);
946 }
947 
948 /**
949  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
950  * @pf: Board private structure
951  * @tx: the Tx tracking structure to initialize
952  *
953  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
954  * port has its own block of timestamps, independent of the other ports.
955  */
956 static int
957 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
958 {
959 	tx->block = pf->hw.port_info->lport;
960 	tx->offset = 0;
961 	tx->len = INDEX_PER_PORT_E810;
962 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
963 	 * verify new timestamps against cached copy of the last read
964 	 * timestamp.
965 	 */
966 	tx->verify_cached = 1;
967 
968 	return ice_ptp_alloc_tx_tracker(tx);
969 }
970 
971 /**
972  * ice_ptp_update_cached_phctime - Update the cached PHC time values
973  * @pf: Board specific private structure
974  *
975  * This function updates the system time values which are cached in the PF
976  * structure and the Rx rings.
977  *
978  * This function must be called periodically to ensure that the cached value
979  * is never more than 2 seconds old.
980  *
981  * Note that the cached copy in the PF PTP structure is always updated, even
982  * if we can't update the copy in the Rx rings.
983  *
984  * Return:
985  * * 0 - OK, successfully updated
986  * * -EAGAIN - PF was busy, need to reschedule the update
987  */
988 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
989 {
990 	struct device *dev = ice_pf_to_dev(pf);
991 	unsigned long update_before;
992 	u64 systime;
993 	int i;
994 
995 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
996 	if (pf->ptp.cached_phc_time &&
997 	    time_is_before_jiffies(update_before)) {
998 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
999 
1000 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1001 			 jiffies_to_msecs(time_taken));
1002 		pf->ptp.late_cached_phc_updates++;
1003 	}
1004 
1005 	/* Read the current PHC time */
1006 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1007 
1008 	/* Update the cached PHC time stored in the PF structure */
1009 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1010 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1011 
1012 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1013 		return -EAGAIN;
1014 
1015 	ice_for_each_vsi(pf, i) {
1016 		struct ice_vsi *vsi = pf->vsi[i];
1017 		int j;
1018 
1019 		if (!vsi)
1020 			continue;
1021 
1022 		if (vsi->type != ICE_VSI_PF)
1023 			continue;
1024 
1025 		ice_for_each_rxq(vsi, j) {
1026 			if (!vsi->rx_rings[j])
1027 				continue;
1028 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1029 		}
1030 	}
1031 	clear_bit(ICE_CFG_BUSY, pf->state);
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1038  * @pf: Board specific private structure
1039  *
1040  * This function must be called when the cached PHC time is no longer valid,
1041  * such as after a time adjustment. It marks any currently outstanding Tx
1042  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1043  * rings.
1044  *
1045  * If updating the PHC time cannot be done immediately, a warning message is
1046  * logged and the work item is scheduled immediately to minimize the window
1047  * with a wrong cached timestamp.
1048  */
1049 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1050 {
1051 	struct device *dev = ice_pf_to_dev(pf);
1052 	int err;
1053 
1054 	/* Update the cached PHC time immediately if possible, otherwise
1055 	 * schedule the work item to execute soon.
1056 	 */
1057 	err = ice_ptp_update_cached_phctime(pf);
1058 	if (err) {
1059 		/* If another thread is updating the Rx rings, we won't
1060 		 * properly reset them here. This could lead to reporting of
1061 		 * invalid timestamps, but there isn't much we can do.
1062 		 */
1063 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1064 			 __func__);
1065 
1066 		/* Queue the work item to update the Rx rings when possible */
1067 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1068 					   msecs_to_jiffies(10));
1069 	}
1070 
1071 	/* Mark any outstanding timestamps as stale, since they might have
1072 	 * been captured in hardware before the time update. This could lead
1073 	 * to us extending them with the wrong cached value resulting in
1074 	 * incorrect timestamp values.
1075 	 */
1076 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1077 }
1078 
1079 /**
1080  * ice_ptp_read_time - Read the time from the device
1081  * @pf: Board private structure
1082  * @ts: timespec structure to hold the current time value
1083  * @sts: Optional parameter for holding a pair of system timestamps from
1084  *       the system clock. Will be ignored if NULL is given.
1085  *
1086  * This function reads the source clock registers and stores them in a timespec.
1087  * However, since the registers are 64 bits of nanoseconds, we must convert the
1088  * result to a timespec before we can return.
1089  */
1090 static void
1091 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1092 		  struct ptp_system_timestamp *sts)
1093 {
1094 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1095 
1096 	*ts = ns_to_timespec64(time_ns);
1097 }
1098 
1099 /**
1100  * ice_ptp_write_init - Set PHC time to provided value
1101  * @pf: Board private structure
1102  * @ts: timespec structure that holds the new time value
1103  *
1104  * Set the PHC time to the specified time provided in the timespec.
1105  */
1106 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1107 {
1108 	u64 ns = timespec64_to_ns(ts);
1109 	struct ice_hw *hw = &pf->hw;
1110 
1111 	return ice_ptp_init_time(hw, ns);
1112 }
1113 
1114 /**
1115  * ice_ptp_write_adj - Adjust PHC clock time atomically
1116  * @pf: Board private structure
1117  * @adj: Adjustment in nanoseconds
1118  *
1119  * Perform an atomic adjustment of the PHC time by the specified number of
1120  * nanoseconds.
1121  */
1122 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1123 {
1124 	struct ice_hw *hw = &pf->hw;
1125 
1126 	return ice_ptp_adj_clock(hw, adj);
1127 }
1128 
1129 /**
1130  * ice_base_incval - Get base timer increment value
1131  * @pf: Board private structure
1132  *
1133  * Look up the base timer increment value for this device. The base increment
1134  * value is used to define the nominal clock tick rate. This increment value
1135  * is programmed during device initialization. It is also used as the basis
1136  * for calculating adjustments using scaled_ppm.
1137  */
1138 static u64 ice_base_incval(struct ice_pf *pf)
1139 {
1140 	struct ice_hw *hw = &pf->hw;
1141 	u64 incval;
1142 
1143 	if (ice_is_e810(hw))
1144 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1145 	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1146 		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1147 	else
1148 		incval = UNKNOWN_INCVAL_E822;
1149 
1150 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1151 		incval);
1152 
1153 	return incval;
1154 }
1155 
1156 /**
1157  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1158  * @port: PTP port for which Tx FIFO is checked
1159  */
1160 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1161 {
1162 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1163 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1164 	struct ice_pf *pf;
1165 	struct ice_hw *hw;
1166 	u32 val, phy_sts;
1167 	int err;
1168 
1169 	pf = ptp_port_to_pf(port);
1170 	hw = &pf->hw;
1171 
1172 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1173 		return 0;
1174 
1175 	/* need to read FIFO state */
1176 	if (offs == 0 || offs == 1)
1177 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1178 					     &val);
1179 	else
1180 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1181 					     &val);
1182 
1183 	if (err) {
1184 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1185 			port->port_num, err);
1186 		return err;
1187 	}
1188 
1189 	if (offs & 0x1)
1190 		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1191 	else
1192 		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1193 
1194 	if (phy_sts & FIFO_EMPTY) {
1195 		port->tx_fifo_busy_cnt = FIFO_OK;
1196 		return 0;
1197 	}
1198 
1199 	port->tx_fifo_busy_cnt++;
1200 
1201 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1202 		port->tx_fifo_busy_cnt, port->port_num);
1203 
1204 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1205 		dev_dbg(ice_pf_to_dev(pf),
1206 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1207 			port->port_num, quad);
1208 		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1209 		port->tx_fifo_busy_cnt = FIFO_OK;
1210 		return 0;
1211 	}
1212 
1213 	return -EAGAIN;
1214 }
1215 
1216 /**
1217  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1218  * @work: Pointer to the kthread_work structure for this task
1219  *
1220  * Check whether hardware has completed measuring the Tx and Rx offset values
1221  * used to configure and enable vernier timestamp calibration.
1222  *
1223  * Once the offset in either direction is measured, configure the associated
1224  * registers with the calibrated offset values and enable timestamping. The Tx
1225  * and Rx directions are configured independently as soon as their associated
1226  * offsets are known.
1227  *
1228  * This function reschedules itself until both Tx and Rx calibration have
1229  * completed.
1230  */
1231 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1232 {
1233 	struct ice_ptp_port *port;
1234 	struct ice_pf *pf;
1235 	struct ice_hw *hw;
1236 	int tx_err;
1237 	int rx_err;
1238 
1239 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1240 	pf = ptp_port_to_pf(port);
1241 	hw = &pf->hw;
1242 
1243 	if (ice_is_reset_in_progress(pf->state)) {
1244 		/* wait for device driver to complete reset */
1245 		kthread_queue_delayed_work(pf->ptp.kworker,
1246 					   &port->ov_work,
1247 					   msecs_to_jiffies(100));
1248 		return;
1249 	}
1250 
1251 	tx_err = ice_ptp_check_tx_fifo(port);
1252 	if (!tx_err)
1253 		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1254 	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1255 	if (tx_err || rx_err) {
1256 		/* Tx and/or Rx offset not yet configured, try again later */
1257 		kthread_queue_delayed_work(pf->ptp.kworker,
1258 					   &port->ov_work,
1259 					   msecs_to_jiffies(100));
1260 		return;
1261 	}
1262 }
1263 
1264 /**
1265  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1266  * @ptp_port: PTP port to stop
1267  */
1268 static int
1269 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1270 {
1271 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1272 	u8 port = ptp_port->port_num;
1273 	struct ice_hw *hw = &pf->hw;
1274 	int err;
1275 
1276 	if (ice_is_e810(hw))
1277 		return 0;
1278 
1279 	mutex_lock(&ptp_port->ps_lock);
1280 
1281 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1282 
1283 	err = ice_stop_phy_timer_e822(hw, port, true);
1284 	if (err)
1285 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1286 			port, err);
1287 
1288 	mutex_unlock(&ptp_port->ps_lock);
1289 
1290 	return err;
1291 }
1292 
1293 /**
1294  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1295  * @ptp_port: PTP port for which the PHY start is set
1296  *
1297  * Start the PHY timestamping block, and initiate Vernier timestamping
1298  * calibration. If timestamping cannot be calibrated (such as if link is down)
1299  * then disable the timestamping block instead.
1300  */
1301 static int
1302 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1303 {
1304 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1305 	u8 port = ptp_port->port_num;
1306 	struct ice_hw *hw = &pf->hw;
1307 	int err;
1308 
1309 	if (ice_is_e810(hw))
1310 		return 0;
1311 
1312 	if (!ptp_port->link_up)
1313 		return ice_ptp_port_phy_stop(ptp_port);
1314 
1315 	mutex_lock(&ptp_port->ps_lock);
1316 
1317 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1318 
1319 	/* temporarily disable Tx timestamps while calibrating PHY offset */
1320 	spin_lock(&ptp_port->tx.lock);
1321 	ptp_port->tx.calibrating = true;
1322 	spin_unlock(&ptp_port->tx.lock);
1323 	ptp_port->tx_fifo_busy_cnt = 0;
1324 
1325 	/* Start the PHY timer in Vernier mode */
1326 	err = ice_start_phy_timer_e822(hw, port);
1327 	if (err)
1328 		goto out_unlock;
1329 
1330 	/* Enable Tx timestamps right away */
1331 	spin_lock(&ptp_port->tx.lock);
1332 	ptp_port->tx.calibrating = false;
1333 	spin_unlock(&ptp_port->tx.lock);
1334 
1335 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1336 
1337 out_unlock:
1338 	if (err)
1339 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1340 			port, err);
1341 
1342 	mutex_unlock(&ptp_port->ps_lock);
1343 
1344 	return err;
1345 }
1346 
1347 /**
1348  * ice_ptp_link_change - Reconfigure PTP after link status change
1349  * @pf: Board private structure
1350  * @port: Port for which the PHY start is set
1351  * @linkup: Link is up or down
1352  */
1353 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1354 {
1355 	struct ice_ptp_port *ptp_port;
1356 
1357 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1358 		return;
1359 
1360 	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1361 		return;
1362 
1363 	ptp_port = &pf->ptp.port;
1364 	if (WARN_ON_ONCE(ptp_port->port_num != port))
1365 		return;
1366 
1367 	/* Update cached link status for this port immediately */
1368 	ptp_port->link_up = linkup;
1369 
1370 	/* E810 devices do not need to reconfigure the PHY */
1371 	if (ice_is_e810(&pf->hw))
1372 		return;
1373 
1374 	ice_ptp_port_phy_restart(ptp_port);
1375 }
1376 
1377 /**
1378  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1379  * @pf: PF private structure
1380  * @ena: bool value to enable or disable interrupt
1381  * @threshold: Minimum number of packets at which intr is triggered
1382  *
1383  * Utility function to enable or disable Tx timestamp interrupt and threshold
1384  */
1385 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1386 {
1387 	struct ice_hw *hw = &pf->hw;
1388 	int err = 0;
1389 	int quad;
1390 	u32 val;
1391 
1392 	ice_ptp_reset_ts_memory(hw);
1393 
1394 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1395 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1396 					     &val);
1397 		if (err)
1398 			break;
1399 
1400 		if (ena) {
1401 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1402 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1403 			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1404 				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1405 		} else {
1406 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1407 		}
1408 
1409 		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1410 					      val);
1411 		if (err)
1412 			break;
1413 	}
1414 
1415 	if (err)
1416 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1417 			err);
1418 	return err;
1419 }
1420 
1421 /**
1422  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1423  * @pf: Board private structure
1424  */
1425 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1426 {
1427 	ice_ptp_port_phy_restart(&pf->ptp.port);
1428 }
1429 
1430 /**
1431  * ice_ptp_adjfine - Adjust clock increment rate
1432  * @info: the driver's PTP info structure
1433  * @scaled_ppm: Parts per million with 16-bit fractional field
1434  *
1435  * Adjust the frequency of the clock by the indicated scaled ppm from the
1436  * base frequency.
1437  */
1438 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1439 {
1440 	struct ice_pf *pf = ptp_info_to_pf(info);
1441 	struct ice_hw *hw = &pf->hw;
1442 	u64 incval;
1443 	int err;
1444 
1445 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1446 	err = ice_ptp_write_incval_locked(hw, incval);
1447 	if (err) {
1448 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1449 			err);
1450 		return -EIO;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  * ice_ptp_extts_work - Workqueue task function
1458  * @work: external timestamp work structure
1459  *
1460  * Service for PTP external clock event
1461  */
1462 static void ice_ptp_extts_work(struct kthread_work *work)
1463 {
1464 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1465 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1466 	struct ptp_clock_event event;
1467 	struct ice_hw *hw = &pf->hw;
1468 	u8 chan, tmr_idx;
1469 	u32 hi, lo;
1470 
1471 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1472 	/* Event time is captured by one of the two matched registers
1473 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1474 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1475 	 * Event is defined in GLTSYN_EVNT_0 register
1476 	 */
1477 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1478 		/* Check if channel is enabled */
1479 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1480 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1481 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1482 			event.timestamp = (((u64)hi) << 32) | lo;
1483 			event.type = PTP_CLOCK_EXTTS;
1484 			event.index = chan;
1485 
1486 			/* Fire event */
1487 			ptp_clock_event(pf->ptp.clock, &event);
1488 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1489 		}
1490 	}
1491 }
1492 
1493 /**
1494  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1495  * @pf: Board private structure
1496  * @ena: true to enable; false to disable
1497  * @chan: GPIO channel (0-3)
1498  * @gpio_pin: GPIO pin
1499  * @extts_flags: request flags from the ptp_extts_request.flags
1500  */
1501 static int
1502 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1503 		  unsigned int extts_flags)
1504 {
1505 	u32 func, aux_reg, gpio_reg, irq_reg;
1506 	struct ice_hw *hw = &pf->hw;
1507 	u8 tmr_idx;
1508 
1509 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1510 		return -EINVAL;
1511 
1512 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1513 
1514 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1515 
1516 	if (ena) {
1517 		/* Enable the interrupt */
1518 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1519 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1520 
1521 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1522 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1523 
1524 		/* set event level to requested edge */
1525 		if (extts_flags & PTP_FALLING_EDGE)
1526 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1527 		if (extts_flags & PTP_RISING_EDGE)
1528 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1529 
1530 		/* Write GPIO CTL reg.
1531 		 * 0x1 is input sampled by EVENT register(channel)
1532 		 * + num_in_channels * tmr_idx
1533 		 */
1534 		func = 1 + chan + (tmr_idx * 3);
1535 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1536 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1537 		pf->ptp.ext_ts_chan |= (1 << chan);
1538 	} else {
1539 		/* clear the values we set to reset defaults */
1540 		aux_reg = 0;
1541 		gpio_reg = 0;
1542 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1543 		if (!pf->ptp.ext_ts_chan)
1544 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1545 	}
1546 
1547 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1548 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1549 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1556  * @pf: Board private structure
1557  * @chan: GPIO channel (0-3)
1558  * @config: desired periodic clk configuration. NULL will disable channel
1559  * @store: If set to true the values will be stored
1560  *
1561  * Configure the internal clock generator modules to generate the clock wave of
1562  * specified period.
1563  */
1564 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1565 			      struct ice_perout_channel *config, bool store)
1566 {
1567 	u64 current_time, period, start_time, phase;
1568 	struct ice_hw *hw = &pf->hw;
1569 	u32 func, val, gpio_pin;
1570 	u8 tmr_idx;
1571 
1572 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1573 
1574 	/* 0. Reset mode & out_en in AUX_OUT */
1575 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1576 
1577 	/* If we're disabling the output, clear out CLKO and TGT and keep
1578 	 * output level low
1579 	 */
1580 	if (!config || !config->ena) {
1581 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1582 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1583 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1584 
1585 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1586 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1587 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1588 
1589 		/* Store the value if requested */
1590 		if (store)
1591 			memset(&pf->ptp.perout_channels[chan], 0,
1592 			       sizeof(struct ice_perout_channel));
1593 
1594 		return 0;
1595 	}
1596 	period = config->period;
1597 	start_time = config->start_time;
1598 	div64_u64_rem(start_time, period, &phase);
1599 	gpio_pin = config->gpio_pin;
1600 
1601 	/* 1. Write clkout with half of required period value */
1602 	if (period & 0x1) {
1603 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1604 		goto err;
1605 	}
1606 
1607 	period >>= 1;
1608 
1609 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1610 	 */
1611 #define MIN_PULSE 3
1612 	if (period <= MIN_PULSE || period > U32_MAX) {
1613 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1614 			MIN_PULSE * 2);
1615 		goto err;
1616 	}
1617 
1618 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1619 
1620 	/* Allow time for programming before start_time is hit */
1621 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1622 
1623 	/* if start time is in the past start the timer at the nearest second
1624 	 * maintaining phase
1625 	 */
1626 	if (start_time < current_time)
1627 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1628 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1629 
1630 	if (ice_is_e810(hw))
1631 		start_time -= E810_OUT_PROP_DELAY_NS;
1632 	else
1633 		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1634 
1635 	/* 2. Write TARGET time */
1636 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1637 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1638 
1639 	/* 3. Write AUX_OUT register */
1640 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1641 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1642 
1643 	/* 4. write GPIO CTL reg */
1644 	func = 8 + chan + (tmr_idx * 4);
1645 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1646 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1647 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1648 
1649 	/* Store the value if requested */
1650 	if (store) {
1651 		memcpy(&pf->ptp.perout_channels[chan], config,
1652 		       sizeof(struct ice_perout_channel));
1653 		pf->ptp.perout_channels[chan].start_time = phase;
1654 	}
1655 
1656 	return 0;
1657 err:
1658 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1659 	return -EFAULT;
1660 }
1661 
1662 /**
1663  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1664  * @pf: pointer to the PF structure
1665  *
1666  * Disable all currently configured clock outputs. This is necessary before
1667  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1668  * re-enable the clocks again.
1669  */
1670 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1671 {
1672 	uint i;
1673 
1674 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1675 		if (pf->ptp.perout_channels[i].ena)
1676 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1677 }
1678 
1679 /**
1680  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1681  * @pf: pointer to the PF structure
1682  *
1683  * Enable all currently configured clock outputs. Use this after
1684  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1685  * their configuration.
1686  */
1687 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1688 {
1689 	uint i;
1690 
1691 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1692 		if (pf->ptp.perout_channels[i].ena)
1693 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1694 					   false);
1695 }
1696 
1697 /**
1698  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1699  * @info: the driver's PTP info structure
1700  * @rq: The requested feature to change
1701  * @on: Enable/disable flag
1702  */
1703 static int
1704 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1705 			 struct ptp_clock_request *rq, int on)
1706 {
1707 	struct ice_pf *pf = ptp_info_to_pf(info);
1708 	struct ice_perout_channel clk_cfg = {0};
1709 	bool sma_pres = false;
1710 	unsigned int chan;
1711 	u32 gpio_pin;
1712 	int err;
1713 
1714 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1715 		sma_pres = true;
1716 
1717 	switch (rq->type) {
1718 	case PTP_CLK_REQ_PEROUT:
1719 		chan = rq->perout.index;
1720 		if (sma_pres) {
1721 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1722 				clk_cfg.gpio_pin = GPIO_20;
1723 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1724 				clk_cfg.gpio_pin = GPIO_22;
1725 			else
1726 				return -1;
1727 		} else if (ice_is_e810t(&pf->hw)) {
1728 			if (chan == 0)
1729 				clk_cfg.gpio_pin = GPIO_20;
1730 			else
1731 				clk_cfg.gpio_pin = GPIO_22;
1732 		} else if (chan == PPS_CLK_GEN_CHAN) {
1733 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1734 		} else {
1735 			clk_cfg.gpio_pin = chan;
1736 		}
1737 
1738 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1739 				   rq->perout.period.nsec);
1740 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1741 				       rq->perout.start.nsec);
1742 		clk_cfg.ena = !!on;
1743 
1744 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1745 		break;
1746 	case PTP_CLK_REQ_EXTTS:
1747 		chan = rq->extts.index;
1748 		if (sma_pres) {
1749 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1750 				gpio_pin = GPIO_21;
1751 			else
1752 				gpio_pin = GPIO_23;
1753 		} else if (ice_is_e810t(&pf->hw)) {
1754 			if (chan == 0)
1755 				gpio_pin = GPIO_21;
1756 			else
1757 				gpio_pin = GPIO_23;
1758 		} else {
1759 			gpio_pin = chan;
1760 		}
1761 
1762 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1763 					rq->extts.flags);
1764 		break;
1765 	default:
1766 		return -EOPNOTSUPP;
1767 	}
1768 
1769 	return err;
1770 }
1771 
1772 /**
1773  * ice_ptp_gettimex64 - Get the time of the clock
1774  * @info: the driver's PTP info structure
1775  * @ts: timespec64 structure to hold the current time value
1776  * @sts: Optional parameter for holding a pair of system timestamps from
1777  *       the system clock. Will be ignored if NULL is given.
1778  *
1779  * Read the device clock and return the correct value on ns, after converting it
1780  * into a timespec struct.
1781  */
1782 static int
1783 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1784 		   struct ptp_system_timestamp *sts)
1785 {
1786 	struct ice_pf *pf = ptp_info_to_pf(info);
1787 	struct ice_hw *hw = &pf->hw;
1788 
1789 	if (!ice_ptp_lock(hw)) {
1790 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1791 		return -EBUSY;
1792 	}
1793 
1794 	ice_ptp_read_time(pf, ts, sts);
1795 	ice_ptp_unlock(hw);
1796 
1797 	return 0;
1798 }
1799 
1800 /**
1801  * ice_ptp_settime64 - Set the time of the clock
1802  * @info: the driver's PTP info structure
1803  * @ts: timespec64 structure that holds the new time value
1804  *
1805  * Set the device clock to the user input value. The conversion from timespec
1806  * to ns happens in the write function.
1807  */
1808 static int
1809 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1810 {
1811 	struct ice_pf *pf = ptp_info_to_pf(info);
1812 	struct timespec64 ts64 = *ts;
1813 	struct ice_hw *hw = &pf->hw;
1814 	int err;
1815 
1816 	/* For Vernier mode, we need to recalibrate after new settime
1817 	 * Start with disabling timestamp block
1818 	 */
1819 	if (pf->ptp.port.link_up)
1820 		ice_ptp_port_phy_stop(&pf->ptp.port);
1821 
1822 	if (!ice_ptp_lock(hw)) {
1823 		err = -EBUSY;
1824 		goto exit;
1825 	}
1826 
1827 	/* Disable periodic outputs */
1828 	ice_ptp_disable_all_clkout(pf);
1829 
1830 	err = ice_ptp_write_init(pf, &ts64);
1831 	ice_ptp_unlock(hw);
1832 
1833 	if (!err)
1834 		ice_ptp_reset_cached_phctime(pf);
1835 
1836 	/* Reenable periodic outputs */
1837 	ice_ptp_enable_all_clkout(pf);
1838 
1839 	/* Recalibrate and re-enable timestamp block */
1840 	if (pf->ptp.port.link_up)
1841 		ice_ptp_port_phy_restart(&pf->ptp.port);
1842 exit:
1843 	if (err) {
1844 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1845 		return err;
1846 	}
1847 
1848 	return 0;
1849 }
1850 
1851 /**
1852  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1853  * @info: the driver's PTP info structure
1854  * @delta: Offset in nanoseconds to adjust the time by
1855  */
1856 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1857 {
1858 	struct timespec64 now, then;
1859 	int ret;
1860 
1861 	then = ns_to_timespec64(delta);
1862 	ret = ice_ptp_gettimex64(info, &now, NULL);
1863 	if (ret)
1864 		return ret;
1865 	now = timespec64_add(now, then);
1866 
1867 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1868 }
1869 
1870 /**
1871  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1872  * @info: the driver's PTP info structure
1873  * @delta: Offset in nanoseconds to adjust the time by
1874  */
1875 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1876 {
1877 	struct ice_pf *pf = ptp_info_to_pf(info);
1878 	struct ice_hw *hw = &pf->hw;
1879 	struct device *dev;
1880 	int err;
1881 
1882 	dev = ice_pf_to_dev(pf);
1883 
1884 	/* Hardware only supports atomic adjustments using signed 32-bit
1885 	 * integers. For any adjustment outside this range, perform
1886 	 * a non-atomic get->adjust->set flow.
1887 	 */
1888 	if (delta > S32_MAX || delta < S32_MIN) {
1889 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1890 		return ice_ptp_adjtime_nonatomic(info, delta);
1891 	}
1892 
1893 	if (!ice_ptp_lock(hw)) {
1894 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1895 		return -EBUSY;
1896 	}
1897 
1898 	/* Disable periodic outputs */
1899 	ice_ptp_disable_all_clkout(pf);
1900 
1901 	err = ice_ptp_write_adj(pf, delta);
1902 
1903 	/* Reenable periodic outputs */
1904 	ice_ptp_enable_all_clkout(pf);
1905 
1906 	ice_ptp_unlock(hw);
1907 
1908 	if (err) {
1909 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1910 		return err;
1911 	}
1912 
1913 	ice_ptp_reset_cached_phctime(pf);
1914 
1915 	return 0;
1916 }
1917 
1918 #ifdef CONFIG_ICE_HWTS
1919 /**
1920  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1921  * @device: Current device time
1922  * @system: System counter value read synchronously with device time
1923  * @ctx: Context provided by timekeeping code
1924  *
1925  * Read device and system (ART) clock simultaneously and return the corrected
1926  * clock values in ns.
1927  */
1928 static int
1929 ice_ptp_get_syncdevicetime(ktime_t *device,
1930 			   struct system_counterval_t *system,
1931 			   void *ctx)
1932 {
1933 	struct ice_pf *pf = (struct ice_pf *)ctx;
1934 	struct ice_hw *hw = &pf->hw;
1935 	u32 hh_lock, hh_art_ctl;
1936 	int i;
1937 
1938 	/* Get the HW lock */
1939 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1940 	if (hh_lock & PFHH_SEM_BUSY_M) {
1941 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1942 		return -EFAULT;
1943 	}
1944 
1945 	/* Start the ART and device clock sync sequence */
1946 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1947 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1948 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1949 
1950 #define MAX_HH_LOCK_TRIES 100
1951 
1952 	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1953 		/* Wait for sync to complete */
1954 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1955 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1956 			udelay(1);
1957 			continue;
1958 		} else {
1959 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1960 			u64 hh_ts;
1961 
1962 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1963 			/* Read ART time */
1964 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1965 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1966 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1967 			*system = convert_art_ns_to_tsc(hh_ts);
1968 			/* Read Device source clock time */
1969 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1970 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1971 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1972 			*device = ns_to_ktime(hh_ts);
1973 			break;
1974 		}
1975 	}
1976 	/* Release HW lock */
1977 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1978 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1979 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1980 
1981 	if (i == MAX_HH_LOCK_TRIES)
1982 		return -ETIMEDOUT;
1983 
1984 	return 0;
1985 }
1986 
1987 /**
1988  * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
1989  * @info: the driver's PTP info structure
1990  * @cts: The memory to fill the cross timestamp info
1991  *
1992  * Capture a cross timestamp between the ART and the device PTP hardware
1993  * clock. Fill the cross timestamp information and report it back to the
1994  * caller.
1995  *
1996  * This is only valid for E822 devices which have support for generating the
1997  * cross timestamp via PCIe PTM.
1998  *
1999  * In order to correctly correlate the ART timestamp back to the TSC time, the
2000  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2001  */
2002 static int
2003 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2004 			    struct system_device_crosststamp *cts)
2005 {
2006 	struct ice_pf *pf = ptp_info_to_pf(info);
2007 
2008 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2009 					     pf, NULL, cts);
2010 }
2011 #endif /* CONFIG_ICE_HWTS */
2012 
2013 /**
2014  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2015  * @pf: Board private structure
2016  * @ifr: ioctl data
2017  *
2018  * Copy the timestamping config to user buffer
2019  */
2020 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2021 {
2022 	struct hwtstamp_config *config;
2023 
2024 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2025 		return -EIO;
2026 
2027 	config = &pf->ptp.tstamp_config;
2028 
2029 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2030 		-EFAULT : 0;
2031 }
2032 
2033 /**
2034  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2035  * @pf: Board private structure
2036  * @config: hwtstamp settings requested or saved
2037  */
2038 static int
2039 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2040 {
2041 	switch (config->tx_type) {
2042 	case HWTSTAMP_TX_OFF:
2043 		ice_set_tx_tstamp(pf, false);
2044 		break;
2045 	case HWTSTAMP_TX_ON:
2046 		ice_set_tx_tstamp(pf, true);
2047 		break;
2048 	default:
2049 		return -ERANGE;
2050 	}
2051 
2052 	switch (config->rx_filter) {
2053 	case HWTSTAMP_FILTER_NONE:
2054 		ice_set_rx_tstamp(pf, false);
2055 		break;
2056 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2057 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2058 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2059 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2060 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2061 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2062 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2063 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2064 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2065 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2066 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2067 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2068 	case HWTSTAMP_FILTER_NTP_ALL:
2069 	case HWTSTAMP_FILTER_ALL:
2070 		ice_set_rx_tstamp(pf, true);
2071 		break;
2072 	default:
2073 		return -ERANGE;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2081  * @pf: Board private structure
2082  * @ifr: ioctl data
2083  *
2084  * Get the user config and store it
2085  */
2086 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2087 {
2088 	struct hwtstamp_config config;
2089 	int err;
2090 
2091 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2092 		return -EAGAIN;
2093 
2094 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2095 		return -EFAULT;
2096 
2097 	err = ice_ptp_set_timestamp_mode(pf, &config);
2098 	if (err)
2099 		return err;
2100 
2101 	/* Return the actual configuration set */
2102 	config = pf->ptp.tstamp_config;
2103 
2104 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2105 		-EFAULT : 0;
2106 }
2107 
2108 /**
2109  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2110  * @rx_ring: Ring to get the VSI info
2111  * @rx_desc: Receive descriptor
2112  * @skb: Particular skb to send timestamp with
2113  *
2114  * The driver receives a notification in the receive descriptor with timestamp.
2115  * The timestamp is in ns, so we must convert the result first.
2116  */
2117 void
2118 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2119 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2120 {
2121 	struct skb_shared_hwtstamps *hwtstamps;
2122 	u64 ts_ns, cached_time;
2123 	u32 ts_high;
2124 
2125 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2126 		return;
2127 
2128 	cached_time = READ_ONCE(rx_ring->cached_phctime);
2129 
2130 	/* Do not report a timestamp if we don't have a cached PHC time */
2131 	if (!cached_time)
2132 		return;
2133 
2134 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2135 	 * PHC value, rather than accessing the PF. This also allows us to
2136 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2137 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2138 	 * bits itself.
2139 	 */
2140 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2141 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2142 
2143 	hwtstamps = skb_hwtstamps(skb);
2144 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2145 	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2146 }
2147 
2148 /**
2149  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2150  * @pf: pointer to the PF structure
2151  * @info: PTP clock info structure
2152  *
2153  * Disable the OS access to the SMA pins. Called to clear out the OS
2154  * indications of pin support when we fail to setup the E810-T SMA control
2155  * register.
2156  */
2157 static void
2158 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2159 {
2160 	struct device *dev = ice_pf_to_dev(pf);
2161 
2162 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2163 
2164 	info->enable = NULL;
2165 	info->verify = NULL;
2166 	info->n_pins = 0;
2167 	info->n_ext_ts = 0;
2168 	info->n_per_out = 0;
2169 }
2170 
2171 /**
2172  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2173  * @pf: pointer to the PF structure
2174  * @info: PTP clock info structure
2175  *
2176  * Finish setting up the SMA pins by allocating pin_config, and setting it up
2177  * according to the current status of the SMA. On failure, disable all of the
2178  * extended SMA pin support.
2179  */
2180 static void
2181 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2182 {
2183 	struct device *dev = ice_pf_to_dev(pf);
2184 	int err;
2185 
2186 	/* Allocate memory for kernel pins interface */
2187 	info->pin_config = devm_kcalloc(dev, info->n_pins,
2188 					sizeof(*info->pin_config), GFP_KERNEL);
2189 	if (!info->pin_config) {
2190 		ice_ptp_disable_sma_pins_e810t(pf, info);
2191 		return;
2192 	}
2193 
2194 	/* Read current SMA status */
2195 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2196 	if (err)
2197 		ice_ptp_disable_sma_pins_e810t(pf, info);
2198 }
2199 
2200 /**
2201  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2202  * @pf: pointer to the PF instance
2203  * @info: PTP clock capabilities
2204  */
2205 static void
2206 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2207 {
2208 	info->n_per_out = N_PER_OUT_E810;
2209 
2210 	if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
2211 		info->n_ext_ts = N_EXT_TS_E810;
2212 
2213 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2214 		info->n_ext_ts = N_EXT_TS_E810;
2215 		info->n_pins = NUM_PTP_PINS_E810T;
2216 		info->verify = ice_verify_pin_e810t;
2217 
2218 		/* Complete setup of the SMA pins */
2219 		ice_ptp_setup_sma_pins_e810t(pf, info);
2220 	}
2221 }
2222 
2223 /**
2224  * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2225  * @pf: Board private structure
2226  * @info: PTP info to fill
2227  *
2228  * Assign functions to the PTP capabiltiies structure for E822 devices.
2229  * Functions which operate across all device families should be set directly
2230  * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2231  * devices.
2232  */
2233 static void
2234 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2235 {
2236 #ifdef CONFIG_ICE_HWTS
2237 	if (boot_cpu_has(X86_FEATURE_ART) &&
2238 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2239 		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2240 #endif /* CONFIG_ICE_HWTS */
2241 }
2242 
2243 /**
2244  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2245  * @pf: Board private structure
2246  * @info: PTP info to fill
2247  *
2248  * Assign functions to the PTP capabiltiies structure for E810 devices.
2249  * Functions which operate across all device families should be set directly
2250  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2251  * devices.
2252  */
2253 static void
2254 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2255 {
2256 	info->enable = ice_ptp_gpio_enable_e810;
2257 	ice_ptp_setup_pins_e810(pf, info);
2258 }
2259 
2260 /**
2261  * ice_ptp_set_caps - Set PTP capabilities
2262  * @pf: Board private structure
2263  */
2264 static void ice_ptp_set_caps(struct ice_pf *pf)
2265 {
2266 	struct ptp_clock_info *info = &pf->ptp.info;
2267 	struct device *dev = ice_pf_to_dev(pf);
2268 
2269 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2270 		 dev_driver_string(dev), dev_name(dev));
2271 	info->owner = THIS_MODULE;
2272 	info->max_adj = 999999999;
2273 	info->adjtime = ice_ptp_adjtime;
2274 	info->adjfine = ice_ptp_adjfine;
2275 	info->gettimex64 = ice_ptp_gettimex64;
2276 	info->settime64 = ice_ptp_settime64;
2277 
2278 	if (ice_is_e810(&pf->hw))
2279 		ice_ptp_set_funcs_e810(pf, info);
2280 	else
2281 		ice_ptp_set_funcs_e822(pf, info);
2282 }
2283 
2284 /**
2285  * ice_ptp_create_clock - Create PTP clock device for userspace
2286  * @pf: Board private structure
2287  *
2288  * This function creates a new PTP clock device. It only creates one if we
2289  * don't already have one. Will return error if it can't create one, but success
2290  * if we already have a device. Should be used by ice_ptp_init to create clock
2291  * initially, and prevent global resets from creating new clock devices.
2292  */
2293 static long ice_ptp_create_clock(struct ice_pf *pf)
2294 {
2295 	struct ptp_clock_info *info;
2296 	struct ptp_clock *clock;
2297 	struct device *dev;
2298 
2299 	/* No need to create a clock device if we already have one */
2300 	if (pf->ptp.clock)
2301 		return 0;
2302 
2303 	ice_ptp_set_caps(pf);
2304 
2305 	info = &pf->ptp.info;
2306 	dev = ice_pf_to_dev(pf);
2307 
2308 	/* Attempt to register the clock before enabling the hardware. */
2309 	clock = ptp_clock_register(info, dev);
2310 	if (IS_ERR(clock))
2311 		return PTR_ERR(clock);
2312 
2313 	pf->ptp.clock = clock;
2314 
2315 	return 0;
2316 }
2317 
2318 /**
2319  * ice_ptp_request_ts - Request an available Tx timestamp index
2320  * @tx: the PTP Tx timestamp tracker to request from
2321  * @skb: the SKB to associate with this timestamp request
2322  */
2323 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2324 {
2325 	u8 idx;
2326 
2327 	spin_lock(&tx->lock);
2328 
2329 	/* Check that this tracker is accepting new timestamp requests */
2330 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2331 		spin_unlock(&tx->lock);
2332 		return -1;
2333 	}
2334 
2335 	/* Find and set the first available index */
2336 	idx = find_first_zero_bit(tx->in_use, tx->len);
2337 	if (idx < tx->len) {
2338 		/* We got a valid index that no other thread could have set. Store
2339 		 * a reference to the skb and the start time to allow discarding old
2340 		 * requests.
2341 		 */
2342 		set_bit(idx, tx->in_use);
2343 		clear_bit(idx, tx->stale);
2344 		tx->tstamps[idx].start = jiffies;
2345 		tx->tstamps[idx].skb = skb_get(skb);
2346 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2347 		ice_trace(tx_tstamp_request, skb, idx);
2348 	}
2349 
2350 	spin_unlock(&tx->lock);
2351 
2352 	/* return the appropriate PHY timestamp register index, -1 if no
2353 	 * indexes were available.
2354 	 */
2355 	if (idx >= tx->len)
2356 		return -1;
2357 	else
2358 		return idx + tx->offset;
2359 }
2360 
2361 /**
2362  * ice_ptp_process_ts - Process the PTP Tx timestamps
2363  * @pf: Board private structure
2364  *
2365  * Returns true if timestamps are processed.
2366  */
2367 bool ice_ptp_process_ts(struct ice_pf *pf)
2368 {
2369 	return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2370 }
2371 
2372 static void ice_ptp_periodic_work(struct kthread_work *work)
2373 {
2374 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2375 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2376 	int err;
2377 
2378 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2379 		return;
2380 
2381 	err = ice_ptp_update_cached_phctime(pf);
2382 
2383 	/* Run twice a second or reschedule if phc update failed */
2384 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2385 				   msecs_to_jiffies(err ? 10 : 500));
2386 }
2387 
2388 /**
2389  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2390  * @pf: Board private structure
2391  */
2392 void ice_ptp_reset(struct ice_pf *pf)
2393 {
2394 	struct ice_ptp *ptp = &pf->ptp;
2395 	struct ice_hw *hw = &pf->hw;
2396 	struct timespec64 ts;
2397 	int err, itr = 1;
2398 	u64 time_diff;
2399 
2400 	if (test_bit(ICE_PFR_REQ, pf->state))
2401 		goto pfr;
2402 
2403 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2404 		goto reset_ts;
2405 
2406 	err = ice_ptp_init_phc(hw);
2407 	if (err)
2408 		goto err;
2409 
2410 	/* Acquire the global hardware lock */
2411 	if (!ice_ptp_lock(hw)) {
2412 		err = -EBUSY;
2413 		goto err;
2414 	}
2415 
2416 	/* Write the increment time value to PHY and LAN */
2417 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2418 	if (err) {
2419 		ice_ptp_unlock(hw);
2420 		goto err;
2421 	}
2422 
2423 	/* Write the initial Time value to PHY and LAN using the cached PHC
2424 	 * time before the reset and time difference between stopping and
2425 	 * starting the clock.
2426 	 */
2427 	if (ptp->cached_phc_time) {
2428 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2429 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2430 	} else {
2431 		ts = ktime_to_timespec64(ktime_get_real());
2432 	}
2433 	err = ice_ptp_write_init(pf, &ts);
2434 	if (err) {
2435 		ice_ptp_unlock(hw);
2436 		goto err;
2437 	}
2438 
2439 	/* Release the global hardware lock */
2440 	ice_ptp_unlock(hw);
2441 
2442 	if (!ice_is_e810(hw)) {
2443 		/* Enable quad interrupts */
2444 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2445 		if (err)
2446 			goto err;
2447 	}
2448 
2449 reset_ts:
2450 	/* Restart the PHY timestamping block */
2451 	ice_ptp_reset_phy_timestamping(pf);
2452 
2453 pfr:
2454 	/* Init Tx structures */
2455 	if (ice_is_e810(&pf->hw)) {
2456 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2457 	} else {
2458 		kthread_init_delayed_work(&ptp->port.ov_work,
2459 					  ice_ptp_wait_for_offsets);
2460 		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2461 					   ptp->port.port_num);
2462 	}
2463 	if (err)
2464 		goto err;
2465 
2466 	set_bit(ICE_FLAG_PTP, pf->flags);
2467 
2468 	/* Start periodic work going */
2469 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2470 
2471 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2472 	return;
2473 
2474 err:
2475 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2476 }
2477 
2478 /**
2479  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2480  * @pf: Board private structure
2481  */
2482 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2483 {
2484 	struct ice_ptp *ptp = &pf->ptp;
2485 	u8 src_tmr;
2486 
2487 	clear_bit(ICE_FLAG_PTP, pf->flags);
2488 
2489 	/* Disable timestamping for both Tx and Rx */
2490 	ice_ptp_cfg_timestamp(pf, false);
2491 
2492 	kthread_cancel_delayed_work_sync(&ptp->work);
2493 	kthread_cancel_work_sync(&ptp->extts_work);
2494 
2495 	if (test_bit(ICE_PFR_REQ, pf->state))
2496 		return;
2497 
2498 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2499 
2500 	/* Disable periodic outputs */
2501 	ice_ptp_disable_all_clkout(pf);
2502 
2503 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2504 
2505 	/* Disable source clock */
2506 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2507 
2508 	/* Acquire PHC and system timer to restore after reset */
2509 	ptp->reset_time = ktime_get_real_ns();
2510 }
2511 
2512 /**
2513  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2514  * @pf: Board private structure
2515  *
2516  * Setup and initialize a PTP clock device that represents the device hardware
2517  * clock. Save the clock index for other functions connected to the same
2518  * hardware resource.
2519  */
2520 static int ice_ptp_init_owner(struct ice_pf *pf)
2521 {
2522 	struct ice_hw *hw = &pf->hw;
2523 	struct timespec64 ts;
2524 	int err, itr = 1;
2525 
2526 	err = ice_ptp_init_phc(hw);
2527 	if (err) {
2528 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2529 			err);
2530 		return err;
2531 	}
2532 
2533 	/* Acquire the global hardware lock */
2534 	if (!ice_ptp_lock(hw)) {
2535 		err = -EBUSY;
2536 		goto err_exit;
2537 	}
2538 
2539 	/* Write the increment time value to PHY and LAN */
2540 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2541 	if (err) {
2542 		ice_ptp_unlock(hw);
2543 		goto err_exit;
2544 	}
2545 
2546 	ts = ktime_to_timespec64(ktime_get_real());
2547 	/* Write the initial Time value to PHY and LAN */
2548 	err = ice_ptp_write_init(pf, &ts);
2549 	if (err) {
2550 		ice_ptp_unlock(hw);
2551 		goto err_exit;
2552 	}
2553 
2554 	/* Release the global hardware lock */
2555 	ice_ptp_unlock(hw);
2556 
2557 	if (!ice_is_e810(hw)) {
2558 		/* Enable quad interrupts */
2559 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2560 		if (err)
2561 			goto err_exit;
2562 	}
2563 
2564 	/* Ensure we have a clock device */
2565 	err = ice_ptp_create_clock(pf);
2566 	if (err)
2567 		goto err_clk;
2568 
2569 	/* Store the PTP clock index for other PFs */
2570 	ice_set_ptp_clock_index(pf);
2571 
2572 	return 0;
2573 
2574 err_clk:
2575 	pf->ptp.clock = NULL;
2576 err_exit:
2577 	return err;
2578 }
2579 
2580 /**
2581  * ice_ptp_init_work - Initialize PTP work threads
2582  * @pf: Board private structure
2583  * @ptp: PF PTP structure
2584  */
2585 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2586 {
2587 	struct kthread_worker *kworker;
2588 
2589 	/* Initialize work functions */
2590 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2591 	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2592 
2593 	/* Allocate a kworker for handling work required for the ports
2594 	 * connected to the PTP hardware clock.
2595 	 */
2596 	kworker = kthread_create_worker(0, "ice-ptp-%s",
2597 					dev_name(ice_pf_to_dev(pf)));
2598 	if (IS_ERR(kworker))
2599 		return PTR_ERR(kworker);
2600 
2601 	ptp->kworker = kworker;
2602 
2603 	/* Start periodic work going */
2604 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2605 
2606 	return 0;
2607 }
2608 
2609 /**
2610  * ice_ptp_init_port - Initialize PTP port structure
2611  * @pf: Board private structure
2612  * @ptp_port: PTP port structure
2613  */
2614 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2615 {
2616 	mutex_init(&ptp_port->ps_lock);
2617 
2618 	if (ice_is_e810(&pf->hw))
2619 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2620 
2621 	kthread_init_delayed_work(&ptp_port->ov_work,
2622 				  ice_ptp_wait_for_offsets);
2623 	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2624 }
2625 
2626 /**
2627  * ice_ptp_init - Initialize PTP hardware clock support
2628  * @pf: Board private structure
2629  *
2630  * Set up the device for interacting with the PTP hardware clock for all
2631  * functions, both the function that owns the clock hardware, and the
2632  * functions connected to the clock hardware.
2633  *
2634  * The clock owner will allocate and register a ptp_clock with the
2635  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2636  * items used for asynchronous work such as Tx timestamps and periodic work.
2637  */
2638 void ice_ptp_init(struct ice_pf *pf)
2639 {
2640 	struct ice_ptp *ptp = &pf->ptp;
2641 	struct ice_hw *hw = &pf->hw;
2642 	int err;
2643 
2644 	/* If this function owns the clock hardware, it must allocate and
2645 	 * configure the PTP clock device to represent it.
2646 	 */
2647 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2648 		err = ice_ptp_init_owner(pf);
2649 		if (err)
2650 			goto err;
2651 	}
2652 
2653 	ptp->port.port_num = hw->pf_id;
2654 	err = ice_ptp_init_port(pf, &ptp->port);
2655 	if (err)
2656 		goto err;
2657 
2658 	/* Start the PHY timestamping block */
2659 	ice_ptp_reset_phy_timestamping(pf);
2660 
2661 	set_bit(ICE_FLAG_PTP, pf->flags);
2662 	err = ice_ptp_init_work(pf, ptp);
2663 	if (err)
2664 		goto err;
2665 
2666 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2667 	return;
2668 
2669 err:
2670 	/* If we registered a PTP clock, release it */
2671 	if (pf->ptp.clock) {
2672 		ptp_clock_unregister(ptp->clock);
2673 		pf->ptp.clock = NULL;
2674 	}
2675 	clear_bit(ICE_FLAG_PTP, pf->flags);
2676 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2677 }
2678 
2679 /**
2680  * ice_ptp_release - Disable the driver/HW support and unregister the clock
2681  * @pf: Board private structure
2682  *
2683  * This function handles the cleanup work required from the initialization by
2684  * clearing out the important information and unregistering the clock
2685  */
2686 void ice_ptp_release(struct ice_pf *pf)
2687 {
2688 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2689 		return;
2690 
2691 	/* Disable timestamping for both Tx and Rx */
2692 	ice_ptp_cfg_timestamp(pf, false);
2693 
2694 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2695 
2696 	clear_bit(ICE_FLAG_PTP, pf->flags);
2697 
2698 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2699 
2700 	ice_ptp_port_phy_stop(&pf->ptp.port);
2701 	mutex_destroy(&pf->ptp.port.ps_lock);
2702 	if (pf->ptp.kworker) {
2703 		kthread_destroy_worker(pf->ptp.kworker);
2704 		pf->ptp.kworker = NULL;
2705 	}
2706 
2707 	if (!pf->ptp.clock)
2708 		return;
2709 
2710 	/* Disable periodic outputs */
2711 	ice_ptp_disable_all_clkout(pf);
2712 
2713 	ice_clear_ptp_clock_index(pf);
2714 	ptp_clock_unregister(pf->ptp.clock);
2715 	pf->ptp.clock = NULL;
2716 
2717 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2718 }
2719