1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_trace.h" 7 8 #define E810_OUT_PROP_DELAY_NS 1 9 10 #define UNKNOWN_INCVAL_E822 0x100000000ULL 11 12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = { 13 /* name idx func chan */ 14 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, 15 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, 16 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, 17 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, 18 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, 19 }; 20 21 /** 22 * ice_get_sma_config_e810t 23 * @hw: pointer to the hw struct 24 * @ptp_pins: pointer to the ptp_pin_desc struture 25 * 26 * Read the configuration of the SMA control logic and put it into the 27 * ptp_pin_desc structure 28 */ 29 static int 30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) 31 { 32 u8 data, i; 33 int status; 34 35 /* Read initial pin state */ 36 status = ice_read_sma_ctrl_e810t(hw, &data); 37 if (status) 38 return status; 39 40 /* initialize with defaults */ 41 for (i = 0; i < NUM_PTP_PINS_E810T; i++) { 42 snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), 43 "%s", ice_pin_desc_e810t[i].name); 44 ptp_pins[i].index = ice_pin_desc_e810t[i].index; 45 ptp_pins[i].func = ice_pin_desc_e810t[i].func; 46 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; 47 } 48 49 /* Parse SMA1/UFL1 */ 50 switch (data & ICE_SMA1_MASK_E810T) { 51 case ICE_SMA1_MASK_E810T: 52 default: 53 ptp_pins[SMA1].func = PTP_PF_NONE; 54 ptp_pins[UFL1].func = PTP_PF_NONE; 55 break; 56 case ICE_SMA1_DIR_EN_E810T: 57 ptp_pins[SMA1].func = PTP_PF_PEROUT; 58 ptp_pins[UFL1].func = PTP_PF_NONE; 59 break; 60 case ICE_SMA1_TX_EN_E810T: 61 ptp_pins[SMA1].func = PTP_PF_EXTTS; 62 ptp_pins[UFL1].func = PTP_PF_NONE; 63 break; 64 case 0: 65 ptp_pins[SMA1].func = PTP_PF_EXTTS; 66 ptp_pins[UFL1].func = PTP_PF_PEROUT; 67 break; 68 } 69 70 /* Parse SMA2/UFL2 */ 71 switch (data & ICE_SMA2_MASK_E810T) { 72 case ICE_SMA2_MASK_E810T: 73 default: 74 ptp_pins[SMA2].func = PTP_PF_NONE; 75 ptp_pins[UFL2].func = PTP_PF_NONE; 76 break; 77 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 78 ptp_pins[SMA2].func = PTP_PF_EXTTS; 79 ptp_pins[UFL2].func = PTP_PF_NONE; 80 break; 81 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 82 ptp_pins[SMA2].func = PTP_PF_PEROUT; 83 ptp_pins[UFL2].func = PTP_PF_NONE; 84 break; 85 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): 86 ptp_pins[SMA2].func = PTP_PF_NONE; 87 ptp_pins[UFL2].func = PTP_PF_EXTTS; 88 break; 89 case ICE_SMA2_DIR_EN_E810T: 90 ptp_pins[SMA2].func = PTP_PF_PEROUT; 91 ptp_pins[UFL2].func = PTP_PF_EXTTS; 92 break; 93 } 94 95 return 0; 96 } 97 98 /** 99 * ice_ptp_set_sma_config_e810t 100 * @hw: pointer to the hw struct 101 * @ptp_pins: pointer to the ptp_pin_desc struture 102 * 103 * Set the configuration of the SMA control logic based on the configuration in 104 * num_pins parameter 105 */ 106 static int 107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw, 108 const struct ptp_pin_desc *ptp_pins) 109 { 110 int status; 111 u8 data; 112 113 /* SMA1 and UFL1 cannot be set to TX at the same time */ 114 if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 115 ptp_pins[UFL1].func == PTP_PF_PEROUT) 116 return -EINVAL; 117 118 /* SMA2 and UFL2 cannot be set to RX at the same time */ 119 if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 120 ptp_pins[UFL2].func == PTP_PF_EXTTS) 121 return -EINVAL; 122 123 /* Read initial pin state value */ 124 status = ice_read_sma_ctrl_e810t(hw, &data); 125 if (status) 126 return status; 127 128 /* Set the right sate based on the desired configuration */ 129 data &= ~ICE_SMA1_MASK_E810T; 130 if (ptp_pins[SMA1].func == PTP_PF_NONE && 131 ptp_pins[UFL1].func == PTP_PF_NONE) { 132 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); 133 data |= ICE_SMA1_MASK_E810T; 134 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 135 ptp_pins[UFL1].func == PTP_PF_NONE) { 136 dev_info(ice_hw_to_dev(hw), "SMA1 RX"); 137 data |= ICE_SMA1_TX_EN_E810T; 138 } else if (ptp_pins[SMA1].func == PTP_PF_NONE && 139 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 140 /* U.FL 1 TX will always enable SMA 1 RX */ 141 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 142 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 143 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 144 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 145 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 146 ptp_pins[UFL1].func == PTP_PF_NONE) { 147 dev_info(ice_hw_to_dev(hw), "SMA1 TX"); 148 data |= ICE_SMA1_DIR_EN_E810T; 149 } 150 151 data &= ~ICE_SMA2_MASK_E810T; 152 if (ptp_pins[SMA2].func == PTP_PF_NONE && 153 ptp_pins[UFL2].func == PTP_PF_NONE) { 154 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); 155 data |= ICE_SMA2_MASK_E810T; 156 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 157 ptp_pins[UFL2].func == PTP_PF_NONE) { 158 dev_info(ice_hw_to_dev(hw), "SMA2 RX"); 159 data |= (ICE_SMA2_TX_EN_E810T | 160 ICE_SMA2_UFL2_RX_DIS_E810T); 161 } else if (ptp_pins[SMA2].func == PTP_PF_NONE && 162 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 163 dev_info(ice_hw_to_dev(hw), "UFL2 RX"); 164 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); 165 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 166 ptp_pins[UFL2].func == PTP_PF_NONE) { 167 dev_info(ice_hw_to_dev(hw), "SMA2 TX"); 168 data |= (ICE_SMA2_DIR_EN_E810T | 169 ICE_SMA2_UFL2_RX_DIS_E810T); 170 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 171 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 172 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); 173 data |= ICE_SMA2_DIR_EN_E810T; 174 } 175 176 return ice_write_sma_ctrl_e810t(hw, data); 177 } 178 179 /** 180 * ice_ptp_set_sma_e810t 181 * @info: the driver's PTP info structure 182 * @pin: pin index in kernel structure 183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) 184 * 185 * Set the configuration of a single SMA pin 186 */ 187 static int 188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, 189 enum ptp_pin_function func) 190 { 191 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; 192 struct ice_pf *pf = ptp_info_to_pf(info); 193 struct ice_hw *hw = &pf->hw; 194 int err; 195 196 if (pin < SMA1 || func > PTP_PF_PEROUT) 197 return -EOPNOTSUPP; 198 199 err = ice_get_sma_config_e810t(hw, ptp_pins); 200 if (err) 201 return err; 202 203 /* Disable the same function on the other pin sharing the channel */ 204 if (pin == SMA1 && ptp_pins[UFL1].func == func) 205 ptp_pins[UFL1].func = PTP_PF_NONE; 206 if (pin == UFL1 && ptp_pins[SMA1].func == func) 207 ptp_pins[SMA1].func = PTP_PF_NONE; 208 209 if (pin == SMA2 && ptp_pins[UFL2].func == func) 210 ptp_pins[UFL2].func = PTP_PF_NONE; 211 if (pin == UFL2 && ptp_pins[SMA2].func == func) 212 ptp_pins[SMA2].func = PTP_PF_NONE; 213 214 /* Set up new pin function in the temp table */ 215 ptp_pins[pin].func = func; 216 217 return ice_ptp_set_sma_config_e810t(hw, ptp_pins); 218 } 219 220 /** 221 * ice_verify_pin_e810t 222 * @info: the driver's PTP info structure 223 * @pin: Pin index 224 * @func: Assigned function 225 * @chan: Assigned channel 226 * 227 * Verify if pin supports requested pin function. If the Check pins consistency. 228 * Reconfigure the SMA logic attached to the given pin to enable its 229 * desired functionality 230 */ 231 static int 232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, 233 enum ptp_pin_function func, unsigned int chan) 234 { 235 /* Don't allow channel reassignment */ 236 if (chan != ice_pin_desc_e810t[pin].chan) 237 return -EOPNOTSUPP; 238 239 /* Check if functions are properly assigned */ 240 switch (func) { 241 case PTP_PF_NONE: 242 break; 243 case PTP_PF_EXTTS: 244 if (pin == UFL1) 245 return -EOPNOTSUPP; 246 break; 247 case PTP_PF_PEROUT: 248 if (pin == UFL2 || pin == GNSS) 249 return -EOPNOTSUPP; 250 break; 251 case PTP_PF_PHYSYNC: 252 return -EOPNOTSUPP; 253 } 254 255 return ice_ptp_set_sma_e810t(info, pin, func); 256 } 257 258 /** 259 * ice_set_tx_tstamp - Enable or disable Tx timestamping 260 * @pf: The PF pointer to search in 261 * @on: bool value for whether timestamps are enabled or disabled 262 */ 263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) 264 { 265 struct ice_vsi *vsi; 266 u32 val; 267 u16 i; 268 269 vsi = ice_get_main_vsi(pf); 270 if (!vsi) 271 return; 272 273 /* Set the timestamp enable flag for all the Tx rings */ 274 ice_for_each_txq(vsi, i) { 275 if (!vsi->tx_rings[i]) 276 continue; 277 vsi->tx_rings[i]->ptp_tx = on; 278 } 279 280 /* Configure the Tx timestamp interrupt */ 281 val = rd32(&pf->hw, PFINT_OICR_ENA); 282 if (on) 283 val |= PFINT_OICR_TSYN_TX_M; 284 else 285 val &= ~PFINT_OICR_TSYN_TX_M; 286 wr32(&pf->hw, PFINT_OICR_ENA, val); 287 288 pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 289 } 290 291 /** 292 * ice_set_rx_tstamp - Enable or disable Rx timestamping 293 * @pf: The PF pointer to search in 294 * @on: bool value for whether timestamps are enabled or disabled 295 */ 296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) 297 { 298 struct ice_vsi *vsi; 299 u16 i; 300 301 vsi = ice_get_main_vsi(pf); 302 if (!vsi) 303 return; 304 305 /* Set the timestamp flag for all the Rx rings */ 306 ice_for_each_rxq(vsi, i) { 307 if (!vsi->rx_rings[i]) 308 continue; 309 vsi->rx_rings[i]->ptp_rx = on; 310 } 311 312 pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : 313 HWTSTAMP_FILTER_NONE; 314 } 315 316 /** 317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit 318 * @pf: Board private structure 319 * @ena: bool value to enable or disable time stamp 320 * 321 * This function will configure timestamping during PTP initialization 322 * and deinitialization 323 */ 324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) 325 { 326 ice_set_tx_tstamp(pf, ena); 327 ice_set_rx_tstamp(pf, ena); 328 } 329 330 /** 331 * ice_get_ptp_clock_index - Get the PTP clock index 332 * @pf: the PF pointer 333 * 334 * Determine the clock index of the PTP clock associated with this device. If 335 * this is the PF controlling the clock, just use the local access to the 336 * clock device pointer. 337 * 338 * Otherwise, read from the driver shared parameters to determine the clock 339 * index value. 340 * 341 * Returns: the index of the PTP clock associated with this device, or -1 if 342 * there is no associated clock. 343 */ 344 int ice_get_ptp_clock_index(struct ice_pf *pf) 345 { 346 struct device *dev = ice_pf_to_dev(pf); 347 enum ice_aqc_driver_params param_idx; 348 struct ice_hw *hw = &pf->hw; 349 u8 tmr_idx; 350 u32 value; 351 int err; 352 353 /* Use the ptp_clock structure if we're the main PF */ 354 if (pf->ptp.clock) 355 return ptp_clock_index(pf->ptp.clock); 356 357 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 358 if (!tmr_idx) 359 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 360 else 361 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 362 363 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); 364 if (err) { 365 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", 366 err, ice_aq_str(hw->adminq.sq_last_status)); 367 return -1; 368 } 369 370 /* The PTP clock index is an integer, and will be between 0 and 371 * INT_MAX. The highest bit of the driver shared parameter is used to 372 * indicate whether or not the currently stored clock index is valid. 373 */ 374 if (!(value & PTP_SHARED_CLK_IDX_VALID)) 375 return -1; 376 377 return value & ~PTP_SHARED_CLK_IDX_VALID; 378 } 379 380 /** 381 * ice_set_ptp_clock_index - Set the PTP clock index 382 * @pf: the PF pointer 383 * 384 * Set the PTP clock index for this device into the shared driver parameters, 385 * so that other PFs associated with this device can read it. 386 * 387 * If the PF is unable to store the clock index, it will log an error, but 388 * will continue operating PTP. 389 */ 390 static void ice_set_ptp_clock_index(struct ice_pf *pf) 391 { 392 struct device *dev = ice_pf_to_dev(pf); 393 enum ice_aqc_driver_params param_idx; 394 struct ice_hw *hw = &pf->hw; 395 u8 tmr_idx; 396 u32 value; 397 int err; 398 399 if (!pf->ptp.clock) 400 return; 401 402 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 403 if (!tmr_idx) 404 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 405 else 406 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 407 408 value = (u32)ptp_clock_index(pf->ptp.clock); 409 if (value > INT_MAX) { 410 dev_err(dev, "PTP Clock index is too large to store\n"); 411 return; 412 } 413 value |= PTP_SHARED_CLK_IDX_VALID; 414 415 err = ice_aq_set_driver_param(hw, param_idx, value, NULL); 416 if (err) { 417 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", 418 err, ice_aq_str(hw->adminq.sq_last_status)); 419 } 420 } 421 422 /** 423 * ice_clear_ptp_clock_index - Clear the PTP clock index 424 * @pf: the PF pointer 425 * 426 * Clear the PTP clock index for this device. Must be called when 427 * unregistering the PTP clock, in order to ensure other PFs stop reporting 428 * a clock object that no longer exists. 429 */ 430 static void ice_clear_ptp_clock_index(struct ice_pf *pf) 431 { 432 struct device *dev = ice_pf_to_dev(pf); 433 enum ice_aqc_driver_params param_idx; 434 struct ice_hw *hw = &pf->hw; 435 u8 tmr_idx; 436 int err; 437 438 /* Do not clear the index if we don't own the timer */ 439 if (!hw->func_caps.ts_func_info.src_tmr_owned) 440 return; 441 442 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 443 if (!tmr_idx) 444 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 445 else 446 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 447 448 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); 449 if (err) { 450 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", 451 err, ice_aq_str(hw->adminq.sq_last_status)); 452 } 453 } 454 455 /** 456 * ice_ptp_read_src_clk_reg - Read the source clock register 457 * @pf: Board private structure 458 * @sts: Optional parameter for holding a pair of system timestamps from 459 * the system clock. Will be ignored if NULL is given. 460 */ 461 static u64 462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) 463 { 464 struct ice_hw *hw = &pf->hw; 465 u32 hi, lo, lo2; 466 u8 tmr_idx; 467 468 tmr_idx = ice_get_ptp_src_clock_index(hw); 469 /* Read the system timestamp pre PHC read */ 470 ptp_read_system_prets(sts); 471 472 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 473 474 /* Read the system timestamp post PHC read */ 475 ptp_read_system_postts(sts); 476 477 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 478 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 479 480 if (lo2 < lo) { 481 /* if TIME_L rolled over read TIME_L again and update 482 * system timestamps 483 */ 484 ptp_read_system_prets(sts); 485 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 486 ptp_read_system_postts(sts); 487 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 488 } 489 490 return ((u64)hi << 32) | lo; 491 } 492 493 /** 494 * ice_ptp_update_cached_phctime - Update the cached PHC time values 495 * @pf: Board specific private structure 496 * 497 * This function updates the system time values which are cached in the PF 498 * structure and the Rx rings. 499 * 500 * This function must be called periodically to ensure that the cached value 501 * is never more than 2 seconds old. It must also be called whenever the PHC 502 * time has been changed. 503 */ 504 static void ice_ptp_update_cached_phctime(struct ice_pf *pf) 505 { 506 u64 systime; 507 int i; 508 509 /* Read the current PHC time */ 510 systime = ice_ptp_read_src_clk_reg(pf, NULL); 511 512 /* Update the cached PHC time stored in the PF structure */ 513 WRITE_ONCE(pf->ptp.cached_phc_time, systime); 514 515 ice_for_each_vsi(pf, i) { 516 struct ice_vsi *vsi = pf->vsi[i]; 517 int j; 518 519 if (!vsi) 520 continue; 521 522 if (vsi->type != ICE_VSI_PF) 523 continue; 524 525 ice_for_each_rxq(vsi, j) { 526 if (!vsi->rx_rings[j]) 527 continue; 528 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); 529 } 530 } 531 } 532 533 /** 534 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b 535 * @cached_phc_time: recently cached copy of PHC time 536 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value 537 * 538 * Hardware captures timestamps which contain only 32 bits of nominal 539 * nanoseconds, as opposed to the 64bit timestamps that the stack expects. 540 * Note that the captured timestamp values may be 40 bits, but the lower 541 * 8 bits are sub-nanoseconds and generally discarded. 542 * 543 * Extend the 32bit nanosecond timestamp using the following algorithm and 544 * assumptions: 545 * 546 * 1) have a recently cached copy of the PHC time 547 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 548 * seconds) before or after the PHC time was captured. 549 * 3) calculate the delta between the cached time and the timestamp 550 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was 551 * captured after the PHC time. In this case, the full timestamp is just 552 * the cached PHC time plus the delta. 553 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the 554 * timestamp was captured *before* the PHC time, i.e. because the PHC 555 * cache was updated after the timestamp was captured by hardware. In this 556 * case, the full timestamp is the cached time minus the inverse delta. 557 * 558 * This algorithm works even if the PHC time was updated after a Tx timestamp 559 * was requested, but before the Tx timestamp event was reported from 560 * hardware. 561 * 562 * This calculation primarily relies on keeping the cached PHC time up to 563 * date. If the timestamp was captured more than 2^31 nanoseconds after the 564 * PHC time, it is possible that the lower 32bits of PHC time have 565 * overflowed more than once, and we might generate an incorrect timestamp. 566 * 567 * This is prevented by (a) periodically updating the cached PHC time once 568 * a second, and (b) discarding any Tx timestamp packet if it has waited for 569 * a timestamp for more than one second. 570 */ 571 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) 572 { 573 u32 delta, phc_time_lo; 574 u64 ns; 575 576 /* Extract the lower 32 bits of the PHC time */ 577 phc_time_lo = (u32)cached_phc_time; 578 579 /* Calculate the delta between the lower 32bits of the cached PHC 580 * time and the in_tstamp value 581 */ 582 delta = (in_tstamp - phc_time_lo); 583 584 /* Do not assume that the in_tstamp is always more recent than the 585 * cached PHC time. If the delta is large, it indicates that the 586 * in_tstamp was taken in the past, and should be converted 587 * forward. 588 */ 589 if (delta > (U32_MAX / 2)) { 590 /* reverse the delta calculation here */ 591 delta = (phc_time_lo - in_tstamp); 592 ns = cached_phc_time - delta; 593 } else { 594 ns = cached_phc_time + delta; 595 } 596 597 return ns; 598 } 599 600 /** 601 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds 602 * @pf: Board private structure 603 * @in_tstamp: Ingress/egress 40b timestamp value 604 * 605 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal 606 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. 607 * 608 * *--------------------------------------------------------------* 609 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | 610 * *--------------------------------------------------------------* 611 * 612 * The low bit is an indicator of whether the timestamp is valid. The next 613 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, 614 * and the remaining 32 bits are the lower 32 bits of the PHC timer. 615 * 616 * It is assumed that the caller verifies the timestamp is valid prior to 617 * calling this function. 618 * 619 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC 620 * time stored in the device private PTP structure as the basis for timestamp 621 * extension. 622 * 623 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension 624 * algorithm. 625 */ 626 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) 627 { 628 const u64 mask = GENMASK_ULL(31, 0); 629 630 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, 631 (in_tstamp >> 8) & mask); 632 } 633 634 /** 635 * ice_ptp_read_time - Read the time from the device 636 * @pf: Board private structure 637 * @ts: timespec structure to hold the current time value 638 * @sts: Optional parameter for holding a pair of system timestamps from 639 * the system clock. Will be ignored if NULL is given. 640 * 641 * This function reads the source clock registers and stores them in a timespec. 642 * However, since the registers are 64 bits of nanoseconds, we must convert the 643 * result to a timespec before we can return. 644 */ 645 static void 646 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, 647 struct ptp_system_timestamp *sts) 648 { 649 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); 650 651 *ts = ns_to_timespec64(time_ns); 652 } 653 654 /** 655 * ice_ptp_write_init - Set PHC time to provided value 656 * @pf: Board private structure 657 * @ts: timespec structure that holds the new time value 658 * 659 * Set the PHC time to the specified time provided in the timespec. 660 */ 661 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) 662 { 663 u64 ns = timespec64_to_ns(ts); 664 struct ice_hw *hw = &pf->hw; 665 666 return ice_ptp_init_time(hw, ns); 667 } 668 669 /** 670 * ice_ptp_write_adj - Adjust PHC clock time atomically 671 * @pf: Board private structure 672 * @adj: Adjustment in nanoseconds 673 * 674 * Perform an atomic adjustment of the PHC time by the specified number of 675 * nanoseconds. 676 */ 677 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) 678 { 679 struct ice_hw *hw = &pf->hw; 680 681 return ice_ptp_adj_clock(hw, adj); 682 } 683 684 /** 685 * ice_base_incval - Get base timer increment value 686 * @pf: Board private structure 687 * 688 * Look up the base timer increment value for this device. The base increment 689 * value is used to define the nominal clock tick rate. This increment value 690 * is programmed during device initialization. It is also used as the basis 691 * for calculating adjustments using scaled_ppm. 692 */ 693 static u64 ice_base_incval(struct ice_pf *pf) 694 { 695 struct ice_hw *hw = &pf->hw; 696 u64 incval; 697 698 if (ice_is_e810(hw)) 699 incval = ICE_PTP_NOMINAL_INCVAL_E810; 700 else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) 701 incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); 702 else 703 incval = UNKNOWN_INCVAL_E822; 704 705 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", 706 incval); 707 708 return incval; 709 } 710 711 /** 712 * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad 713 * @pf: The PF private data structure 714 * @quad: The quad (0-4) 715 */ 716 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad) 717 { 718 struct ice_hw *hw = &pf->hw; 719 720 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); 721 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); 722 } 723 724 /** 725 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state 726 * @port: PTP port for which Tx FIFO is checked 727 */ 728 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) 729 { 730 int quad = port->port_num / ICE_PORTS_PER_QUAD; 731 int offs = port->port_num % ICE_PORTS_PER_QUAD; 732 struct ice_pf *pf; 733 struct ice_hw *hw; 734 u32 val, phy_sts; 735 int err; 736 737 pf = ptp_port_to_pf(port); 738 hw = &pf->hw; 739 740 if (port->tx_fifo_busy_cnt == FIFO_OK) 741 return 0; 742 743 /* need to read FIFO state */ 744 if (offs == 0 || offs == 1) 745 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, 746 &val); 747 else 748 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, 749 &val); 750 751 if (err) { 752 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", 753 port->port_num, err); 754 return err; 755 } 756 757 if (offs & 0x1) 758 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; 759 else 760 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; 761 762 if (phy_sts & FIFO_EMPTY) { 763 port->tx_fifo_busy_cnt = FIFO_OK; 764 return 0; 765 } 766 767 port->tx_fifo_busy_cnt++; 768 769 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", 770 port->tx_fifo_busy_cnt, port->port_num); 771 772 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { 773 dev_dbg(ice_pf_to_dev(pf), 774 "Port %d Tx FIFO still not empty; resetting quad %d\n", 775 port->port_num, quad); 776 ice_ptp_reset_ts_memory_quad(pf, quad); 777 port->tx_fifo_busy_cnt = FIFO_OK; 778 return 0; 779 } 780 781 return -EAGAIN; 782 } 783 784 /** 785 * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid 786 * @port: the PTP port to check 787 * 788 * Checks whether the Tx offset for the PHY associated with this port is 789 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is 790 * not. 791 */ 792 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port) 793 { 794 struct ice_pf *pf = ptp_port_to_pf(port); 795 struct device *dev = ice_pf_to_dev(pf); 796 struct ice_hw *hw = &pf->hw; 797 u32 val; 798 int err; 799 800 err = ice_ptp_check_tx_fifo(port); 801 if (err) 802 return err; 803 804 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS, 805 &val); 806 if (err) { 807 dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n", 808 port->port_num, err); 809 return -EAGAIN; 810 } 811 812 if (!(val & P_REG_TX_OV_STATUS_OV_M)) 813 return -EAGAIN; 814 815 return 0; 816 } 817 818 /** 819 * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid 820 * @port: the PTP port to check 821 * 822 * Checks whether the Rx offset for the PHY associated with this port is 823 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is 824 * not. 825 */ 826 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port) 827 { 828 struct ice_pf *pf = ptp_port_to_pf(port); 829 struct device *dev = ice_pf_to_dev(pf); 830 struct ice_hw *hw = &pf->hw; 831 int err; 832 u32 val; 833 834 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS, 835 &val); 836 if (err) { 837 dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n", 838 port->port_num, err); 839 return err; 840 } 841 842 if (!(val & P_REG_RX_OV_STATUS_OV_M)) 843 return -EAGAIN; 844 845 return 0; 846 } 847 848 /** 849 * ice_ptp_check_offset_valid - Check port offset valid bit 850 * @port: Port for which offset valid bit is checked 851 * 852 * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the 853 * offset is not ready. 854 */ 855 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port) 856 { 857 int tx_err, rx_err; 858 859 /* always check both Tx and Rx offset validity */ 860 tx_err = ice_ptp_check_tx_offset_valid(port); 861 rx_err = ice_ptp_check_rx_offset_valid(port); 862 863 if (tx_err || rx_err) 864 return -EAGAIN; 865 866 return 0; 867 } 868 869 /** 870 * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets 871 * @work: Pointer to the kthread_work structure for this task 872 * 873 * Check whether both the Tx and Rx offsets are valid for enabling the vernier 874 * calibration. 875 * 876 * Once we have valid offsets from hardware, update the total Tx and Rx 877 * offsets, and exit bypass mode. This enables more precise timestamps using 878 * the extra data measured during the vernier calibration process. 879 */ 880 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work) 881 { 882 struct ice_ptp_port *port; 883 int err; 884 struct device *dev; 885 struct ice_pf *pf; 886 struct ice_hw *hw; 887 888 port = container_of(work, struct ice_ptp_port, ov_work.work); 889 pf = ptp_port_to_pf(port); 890 hw = &pf->hw; 891 dev = ice_pf_to_dev(pf); 892 893 if (ice_ptp_check_offset_valid(port)) { 894 /* Offsets not ready yet, try again later */ 895 kthread_queue_delayed_work(pf->ptp.kworker, 896 &port->ov_work, 897 msecs_to_jiffies(100)); 898 return; 899 } 900 901 /* Offsets are valid, so it is safe to exit bypass mode */ 902 err = ice_phy_exit_bypass_e822(hw, port->port_num); 903 if (err) { 904 dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n", 905 port->port_num, err); 906 return; 907 } 908 } 909 910 /** 911 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port 912 * @ptp_port: PTP port to stop 913 */ 914 static int 915 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) 916 { 917 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 918 u8 port = ptp_port->port_num; 919 struct ice_hw *hw = &pf->hw; 920 int err; 921 922 if (ice_is_e810(hw)) 923 return 0; 924 925 mutex_lock(&ptp_port->ps_lock); 926 927 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 928 929 err = ice_stop_phy_timer_e822(hw, port, true); 930 if (err) 931 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", 932 port, err); 933 934 mutex_unlock(&ptp_port->ps_lock); 935 936 return err; 937 } 938 939 /** 940 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping 941 * @ptp_port: PTP port for which the PHY start is set 942 * 943 * Start the PHY timestamping block, and initiate Vernier timestamping 944 * calibration. If timestamping cannot be calibrated (such as if link is down) 945 * then disable the timestamping block instead. 946 */ 947 static int 948 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) 949 { 950 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 951 u8 port = ptp_port->port_num; 952 struct ice_hw *hw = &pf->hw; 953 int err; 954 955 if (ice_is_e810(hw)) 956 return 0; 957 958 if (!ptp_port->link_up) 959 return ice_ptp_port_phy_stop(ptp_port); 960 961 mutex_lock(&ptp_port->ps_lock); 962 963 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 964 965 /* temporarily disable Tx timestamps while calibrating PHY offset */ 966 ptp_port->tx.calibrating = true; 967 ptp_port->tx_fifo_busy_cnt = 0; 968 969 /* Start the PHY timer in bypass mode */ 970 err = ice_start_phy_timer_e822(hw, port, true); 971 if (err) 972 goto out_unlock; 973 974 /* Enable Tx timestamps right away */ 975 ptp_port->tx.calibrating = false; 976 977 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); 978 979 out_unlock: 980 if (err) 981 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", 982 port, err); 983 984 mutex_unlock(&ptp_port->ps_lock); 985 986 return err; 987 } 988 989 /** 990 * ice_ptp_link_change - Set or clear port registers for timestamping 991 * @pf: Board private structure 992 * @port: Port for which the PHY start is set 993 * @linkup: Link is up or down 994 */ 995 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) 996 { 997 struct ice_ptp_port *ptp_port; 998 999 if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 1000 return 0; 1001 1002 if (port >= ICE_NUM_EXTERNAL_PORTS) 1003 return -EINVAL; 1004 1005 ptp_port = &pf->ptp.port; 1006 if (ptp_port->port_num != port) 1007 return -EINVAL; 1008 1009 /* Update cached link err for this port immediately */ 1010 ptp_port->link_up = linkup; 1011 1012 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1013 /* PTP is not setup */ 1014 return -EAGAIN; 1015 1016 return ice_ptp_port_phy_restart(ptp_port); 1017 } 1018 1019 /** 1020 * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads 1021 * @pf: The PF private data structure 1022 */ 1023 static void ice_ptp_reset_ts_memory(struct ice_pf *pf) 1024 { 1025 int quad; 1026 1027 quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD; 1028 ice_ptp_reset_ts_memory_quad(pf, quad); 1029 } 1030 1031 /** 1032 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt 1033 * @pf: PF private structure 1034 * @ena: bool value to enable or disable interrupt 1035 * @threshold: Minimum number of packets at which intr is triggered 1036 * 1037 * Utility function to enable or disable Tx timestamp interrupt and threshold 1038 */ 1039 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) 1040 { 1041 struct ice_hw *hw = &pf->hw; 1042 int err = 0; 1043 int quad; 1044 u32 val; 1045 1046 ice_ptp_reset_ts_memory(pf); 1047 1048 for (quad = 0; quad < ICE_MAX_QUAD; quad++) { 1049 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1050 &val); 1051 if (err) 1052 break; 1053 1054 if (ena) { 1055 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1056 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; 1057 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & 1058 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); 1059 } else { 1060 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1061 } 1062 1063 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1064 val); 1065 if (err) 1066 break; 1067 } 1068 1069 if (err) 1070 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", 1071 err); 1072 return err; 1073 } 1074 1075 /** 1076 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block 1077 * @pf: Board private structure 1078 */ 1079 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) 1080 { 1081 ice_ptp_port_phy_restart(&pf->ptp.port); 1082 } 1083 1084 /** 1085 * ice_ptp_adjfine - Adjust clock increment rate 1086 * @info: the driver's PTP info structure 1087 * @scaled_ppm: Parts per million with 16-bit fractional field 1088 * 1089 * Adjust the frequency of the clock by the indicated scaled ppm from the 1090 * base frequency. 1091 */ 1092 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 1093 { 1094 struct ice_pf *pf = ptp_info_to_pf(info); 1095 u64 freq, divisor = 1000000ULL; 1096 struct ice_hw *hw = &pf->hw; 1097 s64 incval, diff; 1098 int neg_adj = 0; 1099 int err; 1100 1101 incval = ice_base_incval(pf); 1102 1103 if (scaled_ppm < 0) { 1104 neg_adj = 1; 1105 scaled_ppm = -scaled_ppm; 1106 } 1107 1108 while ((u64)scaled_ppm > div64_u64(U64_MAX, incval)) { 1109 /* handle overflow by scaling down the scaled_ppm and 1110 * the divisor, losing some precision 1111 */ 1112 scaled_ppm >>= 2; 1113 divisor >>= 2; 1114 } 1115 1116 freq = (incval * (u64)scaled_ppm) >> 16; 1117 diff = div_u64(freq, divisor); 1118 1119 if (neg_adj) 1120 incval -= diff; 1121 else 1122 incval += diff; 1123 1124 err = ice_ptp_write_incval_locked(hw, incval); 1125 if (err) { 1126 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", 1127 err); 1128 return -EIO; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /** 1135 * ice_ptp_extts_work - Workqueue task function 1136 * @work: external timestamp work structure 1137 * 1138 * Service for PTP external clock event 1139 */ 1140 static void ice_ptp_extts_work(struct kthread_work *work) 1141 { 1142 struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); 1143 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 1144 struct ptp_clock_event event; 1145 struct ice_hw *hw = &pf->hw; 1146 u8 chan, tmr_idx; 1147 u32 hi, lo; 1148 1149 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1150 /* Event time is captured by one of the two matched registers 1151 * GLTSYN_EVNT_L: 32 LSB of sampled time event 1152 * GLTSYN_EVNT_H: 32 MSB of sampled time event 1153 * Event is defined in GLTSYN_EVNT_0 register 1154 */ 1155 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { 1156 /* Check if channel is enabled */ 1157 if (pf->ptp.ext_ts_irq & (1 << chan)) { 1158 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); 1159 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); 1160 event.timestamp = (((u64)hi) << 32) | lo; 1161 event.type = PTP_CLOCK_EXTTS; 1162 event.index = chan; 1163 1164 /* Fire event */ 1165 ptp_clock_event(pf->ptp.clock, &event); 1166 pf->ptp.ext_ts_irq &= ~(1 << chan); 1167 } 1168 } 1169 } 1170 1171 /** 1172 * ice_ptp_cfg_extts - Configure EXTTS pin and channel 1173 * @pf: Board private structure 1174 * @ena: true to enable; false to disable 1175 * @chan: GPIO channel (0-3) 1176 * @gpio_pin: GPIO pin 1177 * @extts_flags: request flags from the ptp_extts_request.flags 1178 */ 1179 static int 1180 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, 1181 unsigned int extts_flags) 1182 { 1183 u32 func, aux_reg, gpio_reg, irq_reg; 1184 struct ice_hw *hw = &pf->hw; 1185 u8 tmr_idx; 1186 1187 if (chan > (unsigned int)pf->ptp.info.n_ext_ts) 1188 return -EINVAL; 1189 1190 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1191 1192 irq_reg = rd32(hw, PFINT_OICR_ENA); 1193 1194 if (ena) { 1195 /* Enable the interrupt */ 1196 irq_reg |= PFINT_OICR_TSYN_EVNT_M; 1197 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; 1198 1199 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) 1200 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) 1201 1202 /* set event level to requested edge */ 1203 if (extts_flags & PTP_FALLING_EDGE) 1204 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; 1205 if (extts_flags & PTP_RISING_EDGE) 1206 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; 1207 1208 /* Write GPIO CTL reg. 1209 * 0x1 is input sampled by EVENT register(channel) 1210 * + num_in_channels * tmr_idx 1211 */ 1212 func = 1 + chan + (tmr_idx * 3); 1213 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & 1214 GLGEN_GPIO_CTL_PIN_FUNC_M); 1215 pf->ptp.ext_ts_chan |= (1 << chan); 1216 } else { 1217 /* clear the values we set to reset defaults */ 1218 aux_reg = 0; 1219 gpio_reg = 0; 1220 pf->ptp.ext_ts_chan &= ~(1 << chan); 1221 if (!pf->ptp.ext_ts_chan) 1222 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; 1223 } 1224 1225 wr32(hw, PFINT_OICR_ENA, irq_reg); 1226 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); 1227 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave 1234 * @pf: Board private structure 1235 * @chan: GPIO channel (0-3) 1236 * @config: desired periodic clk configuration. NULL will disable channel 1237 * @store: If set to true the values will be stored 1238 * 1239 * Configure the internal clock generator modules to generate the clock wave of 1240 * specified period. 1241 */ 1242 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, 1243 struct ice_perout_channel *config, bool store) 1244 { 1245 u64 current_time, period, start_time, phase; 1246 struct ice_hw *hw = &pf->hw; 1247 u32 func, val, gpio_pin; 1248 u8 tmr_idx; 1249 1250 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1251 1252 /* 0. Reset mode & out_en in AUX_OUT */ 1253 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); 1254 1255 /* If we're disabling the output, clear out CLKO and TGT and keep 1256 * output level low 1257 */ 1258 if (!config || !config->ena) { 1259 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); 1260 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); 1261 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); 1262 1263 val = GLGEN_GPIO_CTL_PIN_DIR_M; 1264 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; 1265 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1266 1267 /* Store the value if requested */ 1268 if (store) 1269 memset(&pf->ptp.perout_channels[chan], 0, 1270 sizeof(struct ice_perout_channel)); 1271 1272 return 0; 1273 } 1274 period = config->period; 1275 start_time = config->start_time; 1276 div64_u64_rem(start_time, period, &phase); 1277 gpio_pin = config->gpio_pin; 1278 1279 /* 1. Write clkout with half of required period value */ 1280 if (period & 0x1) { 1281 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); 1282 goto err; 1283 } 1284 1285 period >>= 1; 1286 1287 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick 1288 */ 1289 #define MIN_PULSE 3 1290 if (period <= MIN_PULSE || period > U32_MAX) { 1291 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", 1292 MIN_PULSE * 2); 1293 goto err; 1294 } 1295 1296 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); 1297 1298 /* Allow time for programming before start_time is hit */ 1299 current_time = ice_ptp_read_src_clk_reg(pf, NULL); 1300 1301 /* if start time is in the past start the timer at the nearest second 1302 * maintaining phase 1303 */ 1304 if (start_time < current_time) 1305 start_time = div64_u64(current_time + NSEC_PER_SEC - 1, 1306 NSEC_PER_SEC) * NSEC_PER_SEC + phase; 1307 1308 if (ice_is_e810(hw)) 1309 start_time -= E810_OUT_PROP_DELAY_NS; 1310 else 1311 start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); 1312 1313 /* 2. Write TARGET time */ 1314 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); 1315 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); 1316 1317 /* 3. Write AUX_OUT register */ 1318 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; 1319 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); 1320 1321 /* 4. write GPIO CTL reg */ 1322 func = 8 + chan + (tmr_idx * 4); 1323 val = GLGEN_GPIO_CTL_PIN_DIR_M | 1324 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); 1325 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1326 1327 /* Store the value if requested */ 1328 if (store) { 1329 memcpy(&pf->ptp.perout_channels[chan], config, 1330 sizeof(struct ice_perout_channel)); 1331 pf->ptp.perout_channels[chan].start_time = phase; 1332 } 1333 1334 return 0; 1335 err: 1336 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); 1337 return -EFAULT; 1338 } 1339 1340 /** 1341 * ice_ptp_disable_all_clkout - Disable all currently configured outputs 1342 * @pf: pointer to the PF structure 1343 * 1344 * Disable all currently configured clock outputs. This is necessary before 1345 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to 1346 * re-enable the clocks again. 1347 */ 1348 static void ice_ptp_disable_all_clkout(struct ice_pf *pf) 1349 { 1350 uint i; 1351 1352 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1353 if (pf->ptp.perout_channels[i].ena) 1354 ice_ptp_cfg_clkout(pf, i, NULL, false); 1355 } 1356 1357 /** 1358 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs 1359 * @pf: pointer to the PF structure 1360 * 1361 * Enable all currently configured clock outputs. Use this after 1362 * ice_ptp_disable_all_clkout to reconfigure the output signals according to 1363 * their configuration. 1364 */ 1365 static void ice_ptp_enable_all_clkout(struct ice_pf *pf) 1366 { 1367 uint i; 1368 1369 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1370 if (pf->ptp.perout_channels[i].ena) 1371 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], 1372 false); 1373 } 1374 1375 /** 1376 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC 1377 * @info: the driver's PTP info structure 1378 * @rq: The requested feature to change 1379 * @on: Enable/disable flag 1380 */ 1381 static int 1382 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, 1383 struct ptp_clock_request *rq, int on) 1384 { 1385 struct ice_pf *pf = ptp_info_to_pf(info); 1386 struct ice_perout_channel clk_cfg = {0}; 1387 bool sma_pres = false; 1388 unsigned int chan; 1389 u32 gpio_pin; 1390 int err; 1391 1392 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 1393 sma_pres = true; 1394 1395 switch (rq->type) { 1396 case PTP_CLK_REQ_PEROUT: 1397 chan = rq->perout.index; 1398 if (sma_pres) { 1399 if (chan == ice_pin_desc_e810t[SMA1].chan) 1400 clk_cfg.gpio_pin = GPIO_20; 1401 else if (chan == ice_pin_desc_e810t[SMA2].chan) 1402 clk_cfg.gpio_pin = GPIO_22; 1403 else 1404 return -1; 1405 } else if (ice_is_e810t(&pf->hw)) { 1406 if (chan == 0) 1407 clk_cfg.gpio_pin = GPIO_20; 1408 else 1409 clk_cfg.gpio_pin = GPIO_22; 1410 } else if (chan == PPS_CLK_GEN_CHAN) { 1411 clk_cfg.gpio_pin = PPS_PIN_INDEX; 1412 } else { 1413 clk_cfg.gpio_pin = chan; 1414 } 1415 1416 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + 1417 rq->perout.period.nsec); 1418 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + 1419 rq->perout.start.nsec); 1420 clk_cfg.ena = !!on; 1421 1422 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); 1423 break; 1424 case PTP_CLK_REQ_EXTTS: 1425 chan = rq->extts.index; 1426 if (sma_pres) { 1427 if (chan < ice_pin_desc_e810t[SMA2].chan) 1428 gpio_pin = GPIO_21; 1429 else 1430 gpio_pin = GPIO_23; 1431 } else if (ice_is_e810t(&pf->hw)) { 1432 if (chan == 0) 1433 gpio_pin = GPIO_21; 1434 else 1435 gpio_pin = GPIO_23; 1436 } else { 1437 gpio_pin = chan; 1438 } 1439 1440 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, 1441 rq->extts.flags); 1442 break; 1443 default: 1444 return -EOPNOTSUPP; 1445 } 1446 1447 return err; 1448 } 1449 1450 /** 1451 * ice_ptp_gettimex64 - Get the time of the clock 1452 * @info: the driver's PTP info structure 1453 * @ts: timespec64 structure to hold the current time value 1454 * @sts: Optional parameter for holding a pair of system timestamps from 1455 * the system clock. Will be ignored if NULL is given. 1456 * 1457 * Read the device clock and return the correct value on ns, after converting it 1458 * into a timespec struct. 1459 */ 1460 static int 1461 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, 1462 struct ptp_system_timestamp *sts) 1463 { 1464 struct ice_pf *pf = ptp_info_to_pf(info); 1465 struct ice_hw *hw = &pf->hw; 1466 1467 if (!ice_ptp_lock(hw)) { 1468 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); 1469 return -EBUSY; 1470 } 1471 1472 ice_ptp_read_time(pf, ts, sts); 1473 ice_ptp_unlock(hw); 1474 1475 return 0; 1476 } 1477 1478 /** 1479 * ice_ptp_settime64 - Set the time of the clock 1480 * @info: the driver's PTP info structure 1481 * @ts: timespec64 structure that holds the new time value 1482 * 1483 * Set the device clock to the user input value. The conversion from timespec 1484 * to ns happens in the write function. 1485 */ 1486 static int 1487 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) 1488 { 1489 struct ice_pf *pf = ptp_info_to_pf(info); 1490 struct timespec64 ts64 = *ts; 1491 struct ice_hw *hw = &pf->hw; 1492 int err; 1493 1494 /* For Vernier mode, we need to recalibrate after new settime 1495 * Start with disabling timestamp block 1496 */ 1497 if (pf->ptp.port.link_up) 1498 ice_ptp_port_phy_stop(&pf->ptp.port); 1499 1500 if (!ice_ptp_lock(hw)) { 1501 err = -EBUSY; 1502 goto exit; 1503 } 1504 1505 /* Disable periodic outputs */ 1506 ice_ptp_disable_all_clkout(pf); 1507 1508 err = ice_ptp_write_init(pf, &ts64); 1509 ice_ptp_unlock(hw); 1510 1511 if (!err) 1512 ice_ptp_update_cached_phctime(pf); 1513 1514 /* Reenable periodic outputs */ 1515 ice_ptp_enable_all_clkout(pf); 1516 1517 /* Recalibrate and re-enable timestamp block */ 1518 if (pf->ptp.port.link_up) 1519 ice_ptp_port_phy_restart(&pf->ptp.port); 1520 exit: 1521 if (err) { 1522 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); 1523 return err; 1524 } 1525 1526 return 0; 1527 } 1528 1529 /** 1530 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment 1531 * @info: the driver's PTP info structure 1532 * @delta: Offset in nanoseconds to adjust the time by 1533 */ 1534 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) 1535 { 1536 struct timespec64 now, then; 1537 int ret; 1538 1539 then = ns_to_timespec64(delta); 1540 ret = ice_ptp_gettimex64(info, &now, NULL); 1541 if (ret) 1542 return ret; 1543 now = timespec64_add(now, then); 1544 1545 return ice_ptp_settime64(info, (const struct timespec64 *)&now); 1546 } 1547 1548 /** 1549 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta 1550 * @info: the driver's PTP info structure 1551 * @delta: Offset in nanoseconds to adjust the time by 1552 */ 1553 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) 1554 { 1555 struct ice_pf *pf = ptp_info_to_pf(info); 1556 struct ice_hw *hw = &pf->hw; 1557 struct device *dev; 1558 int err; 1559 1560 dev = ice_pf_to_dev(pf); 1561 1562 /* Hardware only supports atomic adjustments using signed 32-bit 1563 * integers. For any adjustment outside this range, perform 1564 * a non-atomic get->adjust->set flow. 1565 */ 1566 if (delta > S32_MAX || delta < S32_MIN) { 1567 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); 1568 return ice_ptp_adjtime_nonatomic(info, delta); 1569 } 1570 1571 if (!ice_ptp_lock(hw)) { 1572 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); 1573 return -EBUSY; 1574 } 1575 1576 /* Disable periodic outputs */ 1577 ice_ptp_disable_all_clkout(pf); 1578 1579 err = ice_ptp_write_adj(pf, delta); 1580 1581 /* Reenable periodic outputs */ 1582 ice_ptp_enable_all_clkout(pf); 1583 1584 ice_ptp_unlock(hw); 1585 1586 if (err) { 1587 dev_err(dev, "PTP failed to adjust time, err %d\n", err); 1588 return err; 1589 } 1590 1591 ice_ptp_update_cached_phctime(pf); 1592 1593 return 0; 1594 } 1595 1596 #ifdef CONFIG_ICE_HWTS 1597 /** 1598 * ice_ptp_get_syncdevicetime - Get the cross time stamp info 1599 * @device: Current device time 1600 * @system: System counter value read synchronously with device time 1601 * @ctx: Context provided by timekeeping code 1602 * 1603 * Read device and system (ART) clock simultaneously and return the corrected 1604 * clock values in ns. 1605 */ 1606 static int 1607 ice_ptp_get_syncdevicetime(ktime_t *device, 1608 struct system_counterval_t *system, 1609 void *ctx) 1610 { 1611 struct ice_pf *pf = (struct ice_pf *)ctx; 1612 struct ice_hw *hw = &pf->hw; 1613 u32 hh_lock, hh_art_ctl; 1614 int i; 1615 1616 /* Get the HW lock */ 1617 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1618 if (hh_lock & PFHH_SEM_BUSY_M) { 1619 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); 1620 return -EFAULT; 1621 } 1622 1623 /* Start the ART and device clock sync sequence */ 1624 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1625 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; 1626 wr32(hw, GLHH_ART_CTL, hh_art_ctl); 1627 1628 #define MAX_HH_LOCK_TRIES 100 1629 1630 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { 1631 /* Wait for sync to complete */ 1632 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1633 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { 1634 udelay(1); 1635 continue; 1636 } else { 1637 u32 hh_ts_lo, hh_ts_hi, tmr_idx; 1638 u64 hh_ts; 1639 1640 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 1641 /* Read ART time */ 1642 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); 1643 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); 1644 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1645 *system = convert_art_ns_to_tsc(hh_ts); 1646 /* Read Device source clock time */ 1647 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); 1648 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); 1649 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1650 *device = ns_to_ktime(hh_ts); 1651 break; 1652 } 1653 } 1654 /* Release HW lock */ 1655 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1656 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; 1657 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); 1658 1659 if (i == MAX_HH_LOCK_TRIES) 1660 return -ETIMEDOUT; 1661 1662 return 0; 1663 } 1664 1665 /** 1666 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp 1667 * @info: the driver's PTP info structure 1668 * @cts: The memory to fill the cross timestamp info 1669 * 1670 * Capture a cross timestamp between the ART and the device PTP hardware 1671 * clock. Fill the cross timestamp information and report it back to the 1672 * caller. 1673 * 1674 * This is only valid for E822 devices which have support for generating the 1675 * cross timestamp via PCIe PTM. 1676 * 1677 * In order to correctly correlate the ART timestamp back to the TSC time, the 1678 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. 1679 */ 1680 static int 1681 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, 1682 struct system_device_crosststamp *cts) 1683 { 1684 struct ice_pf *pf = ptp_info_to_pf(info); 1685 1686 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, 1687 pf, NULL, cts); 1688 } 1689 #endif /* CONFIG_ICE_HWTS */ 1690 1691 /** 1692 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config 1693 * @pf: Board private structure 1694 * @ifr: ioctl data 1695 * 1696 * Copy the timestamping config to user buffer 1697 */ 1698 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 1699 { 1700 struct hwtstamp_config *config; 1701 1702 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1703 return -EIO; 1704 1705 config = &pf->ptp.tstamp_config; 1706 1707 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 1708 -EFAULT : 0; 1709 } 1710 1711 /** 1712 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode 1713 * @pf: Board private structure 1714 * @config: hwtstamp settings requested or saved 1715 */ 1716 static int 1717 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) 1718 { 1719 switch (config->tx_type) { 1720 case HWTSTAMP_TX_OFF: 1721 ice_set_tx_tstamp(pf, false); 1722 break; 1723 case HWTSTAMP_TX_ON: 1724 ice_set_tx_tstamp(pf, true); 1725 break; 1726 default: 1727 return -ERANGE; 1728 } 1729 1730 switch (config->rx_filter) { 1731 case HWTSTAMP_FILTER_NONE: 1732 ice_set_rx_tstamp(pf, false); 1733 break; 1734 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1735 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1736 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1737 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1738 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1739 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1740 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1741 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1742 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1743 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1744 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1745 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1746 case HWTSTAMP_FILTER_NTP_ALL: 1747 case HWTSTAMP_FILTER_ALL: 1748 ice_set_rx_tstamp(pf, true); 1749 break; 1750 default: 1751 return -ERANGE; 1752 } 1753 1754 return 0; 1755 } 1756 1757 /** 1758 * ice_ptp_set_ts_config - ioctl interface to control the timestamping 1759 * @pf: Board private structure 1760 * @ifr: ioctl data 1761 * 1762 * Get the user config and store it 1763 */ 1764 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 1765 { 1766 struct hwtstamp_config config; 1767 int err; 1768 1769 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1770 return -EAGAIN; 1771 1772 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1773 return -EFAULT; 1774 1775 err = ice_ptp_set_timestamp_mode(pf, &config); 1776 if (err) 1777 return err; 1778 1779 /* Return the actual configuration set */ 1780 config = pf->ptp.tstamp_config; 1781 1782 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1783 -EFAULT : 0; 1784 } 1785 1786 /** 1787 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp 1788 * @rx_ring: Ring to get the VSI info 1789 * @rx_desc: Receive descriptor 1790 * @skb: Particular skb to send timestamp with 1791 * 1792 * The driver receives a notification in the receive descriptor with timestamp. 1793 * The timestamp is in ns, so we must convert the result first. 1794 */ 1795 void 1796 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, 1797 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) 1798 { 1799 u32 ts_high; 1800 u64 ts_ns; 1801 1802 /* Populate timesync data into skb */ 1803 if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) { 1804 struct skb_shared_hwtstamps *hwtstamps; 1805 1806 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific 1807 * cached PHC value, rather than accessing the PF. This also 1808 * allows us to simply pass the upper 32bits of nanoseconds 1809 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as 1810 * it would just discard these bits itself. 1811 */ 1812 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); 1813 ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high); 1814 1815 hwtstamps = skb_hwtstamps(skb); 1816 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1817 hwtstamps->hwtstamp = ns_to_ktime(ts_ns); 1818 } 1819 } 1820 1821 /** 1822 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins 1823 * @pf: pointer to the PF structure 1824 * @info: PTP clock info structure 1825 * 1826 * Disable the OS access to the SMA pins. Called to clear out the OS 1827 * indications of pin support when we fail to setup the E810-T SMA control 1828 * register. 1829 */ 1830 static void 1831 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 1832 { 1833 struct device *dev = ice_pf_to_dev(pf); 1834 1835 dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); 1836 1837 info->enable = NULL; 1838 info->verify = NULL; 1839 info->n_pins = 0; 1840 info->n_ext_ts = 0; 1841 info->n_per_out = 0; 1842 } 1843 1844 /** 1845 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins 1846 * @pf: pointer to the PF structure 1847 * @info: PTP clock info structure 1848 * 1849 * Finish setting up the SMA pins by allocating pin_config, and setting it up 1850 * according to the current status of the SMA. On failure, disable all of the 1851 * extended SMA pin support. 1852 */ 1853 static void 1854 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 1855 { 1856 struct device *dev = ice_pf_to_dev(pf); 1857 int err; 1858 1859 /* Allocate memory for kernel pins interface */ 1860 info->pin_config = devm_kcalloc(dev, info->n_pins, 1861 sizeof(*info->pin_config), GFP_KERNEL); 1862 if (!info->pin_config) { 1863 ice_ptp_disable_sma_pins_e810t(pf, info); 1864 return; 1865 } 1866 1867 /* Read current SMA status */ 1868 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); 1869 if (err) 1870 ice_ptp_disable_sma_pins_e810t(pf, info); 1871 } 1872 1873 /** 1874 * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs 1875 * @pf: pointer to the PF instance 1876 * @info: PTP clock capabilities 1877 */ 1878 static void 1879 ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 1880 { 1881 /* Check if SMA controller is in the netlist */ 1882 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) && 1883 !ice_is_pca9575_present(&pf->hw)) 1884 ice_clear_feature_support(pf, ICE_F_SMA_CTRL); 1885 1886 if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 1887 info->n_ext_ts = N_EXT_TS_E810_NO_SMA; 1888 info->n_per_out = N_PER_OUT_E810T_NO_SMA; 1889 return; 1890 } 1891 1892 info->n_per_out = N_PER_OUT_E810T; 1893 info->n_ext_ts = N_EXT_TS_E810; 1894 info->n_pins = NUM_PTP_PINS_E810T; 1895 info->verify = ice_verify_pin_e810t; 1896 1897 /* Complete setup of the SMA pins */ 1898 ice_ptp_setup_sma_pins_e810t(pf, info); 1899 } 1900 1901 /** 1902 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs 1903 * @info: PTP clock capabilities 1904 */ 1905 static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info) 1906 { 1907 info->n_per_out = N_PER_OUT_E810; 1908 info->n_ext_ts = N_EXT_TS_E810; 1909 } 1910 1911 /** 1912 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support 1913 * @pf: Board private structure 1914 * @info: PTP info to fill 1915 * 1916 * Assign functions to the PTP capabiltiies structure for E822 devices. 1917 * Functions which operate across all device families should be set directly 1918 * in ice_ptp_set_caps. Only add functions here which are distinct for E822 1919 * devices. 1920 */ 1921 static void 1922 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) 1923 { 1924 #ifdef CONFIG_ICE_HWTS 1925 if (boot_cpu_has(X86_FEATURE_ART) && 1926 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) 1927 info->getcrosststamp = ice_ptp_getcrosststamp_e822; 1928 #endif /* CONFIG_ICE_HWTS */ 1929 } 1930 1931 /** 1932 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support 1933 * @pf: Board private structure 1934 * @info: PTP info to fill 1935 * 1936 * Assign functions to the PTP capabiltiies structure for E810 devices. 1937 * Functions which operate across all device families should be set directly 1938 * in ice_ptp_set_caps. Only add functions here which are distinct for e810 1939 * devices. 1940 */ 1941 static void 1942 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) 1943 { 1944 info->enable = ice_ptp_gpio_enable_e810; 1945 1946 if (ice_is_e810t(&pf->hw)) 1947 ice_ptp_setup_pins_e810t(pf, info); 1948 else 1949 ice_ptp_setup_pins_e810(info); 1950 } 1951 1952 /** 1953 * ice_ptp_set_caps - Set PTP capabilities 1954 * @pf: Board private structure 1955 */ 1956 static void ice_ptp_set_caps(struct ice_pf *pf) 1957 { 1958 struct ptp_clock_info *info = &pf->ptp.info; 1959 struct device *dev = ice_pf_to_dev(pf); 1960 1961 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", 1962 dev_driver_string(dev), dev_name(dev)); 1963 info->owner = THIS_MODULE; 1964 info->max_adj = 999999999; 1965 info->adjtime = ice_ptp_adjtime; 1966 info->adjfine = ice_ptp_adjfine; 1967 info->gettimex64 = ice_ptp_gettimex64; 1968 info->settime64 = ice_ptp_settime64; 1969 1970 if (ice_is_e810(&pf->hw)) 1971 ice_ptp_set_funcs_e810(pf, info); 1972 else 1973 ice_ptp_set_funcs_e822(pf, info); 1974 } 1975 1976 /** 1977 * ice_ptp_create_clock - Create PTP clock device for userspace 1978 * @pf: Board private structure 1979 * 1980 * This function creates a new PTP clock device. It only creates one if we 1981 * don't already have one. Will return error if it can't create one, but success 1982 * if we already have a device. Should be used by ice_ptp_init to create clock 1983 * initially, and prevent global resets from creating new clock devices. 1984 */ 1985 static long ice_ptp_create_clock(struct ice_pf *pf) 1986 { 1987 struct ptp_clock_info *info; 1988 struct ptp_clock *clock; 1989 struct device *dev; 1990 1991 /* No need to create a clock device if we already have one */ 1992 if (pf->ptp.clock) 1993 return 0; 1994 1995 ice_ptp_set_caps(pf); 1996 1997 info = &pf->ptp.info; 1998 dev = ice_pf_to_dev(pf); 1999 2000 /* Attempt to register the clock before enabling the hardware. */ 2001 clock = ptp_clock_register(info, dev); 2002 if (IS_ERR(clock)) 2003 return PTR_ERR(clock); 2004 2005 pf->ptp.clock = clock; 2006 2007 return 0; 2008 } 2009 2010 /** 2011 * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port 2012 * @work: pointer to the kthread_work struct 2013 * 2014 * Process timestamps captured by the PHY associated with this port. To do 2015 * this, loop over each index with a waiting skb. 2016 * 2017 * If a given index has a valid timestamp, perform the following steps: 2018 * 2019 * 1) copy the timestamp out of the PHY register 2020 * 4) clear the timestamp valid bit in the PHY register 2021 * 5) unlock the index by clearing the associated in_use bit. 2022 * 2) extend the 40b timestamp value to get a 64bit timestamp 2023 * 3) send that timestamp to the stack 2024 * 2025 * After looping, if we still have waiting SKBs, then re-queue the work. This 2026 * may cause us effectively poll even when not strictly necessary. We do this 2027 * because it's possible a new timestamp was requested around the same time as 2028 * the interrupt. In some cases hardware might not interrupt us again when the 2029 * timestamp is captured. 2030 * 2031 * Note that we only take the tracking lock when clearing the bit and when 2032 * checking if we need to re-queue this task. The only place where bits can be 2033 * set is the hard xmit routine where an SKB has a request flag set. The only 2034 * places where we clear bits are this work function, or the periodic cleanup 2035 * thread. If the cleanup thread clears a bit we're processing we catch it 2036 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread 2037 * starts a new timestamp, we might not begin processing it right away but we 2038 * will notice it at the end when we re-queue the work item. If a Tx thread 2039 * starts a new timestamp just after this function exits without re-queuing, 2040 * the interrupt when the timestamp finishes should trigger. Avoiding holding 2041 * the lock for the entire function is important in order to ensure that Tx 2042 * threads do not get blocked while waiting for the lock. 2043 */ 2044 static void ice_ptp_tx_tstamp_work(struct kthread_work *work) 2045 { 2046 struct ice_ptp_port *ptp_port; 2047 struct ice_ptp_tx *tx; 2048 struct ice_pf *pf; 2049 struct ice_hw *hw; 2050 u8 idx; 2051 2052 tx = container_of(work, struct ice_ptp_tx, work); 2053 if (!tx->init) 2054 return; 2055 2056 ptp_port = container_of(tx, struct ice_ptp_port, tx); 2057 pf = ptp_port_to_pf(ptp_port); 2058 hw = &pf->hw; 2059 2060 for_each_set_bit(idx, tx->in_use, tx->len) { 2061 struct skb_shared_hwtstamps shhwtstamps = {}; 2062 u8 phy_idx = idx + tx->quad_offset; 2063 u64 raw_tstamp, tstamp; 2064 struct sk_buff *skb; 2065 int err; 2066 2067 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 2068 2069 err = ice_read_phy_tstamp(hw, tx->quad, phy_idx, 2070 &raw_tstamp); 2071 if (err) 2072 continue; 2073 2074 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 2075 2076 /* Check if the timestamp is invalid or stale */ 2077 if (!(raw_tstamp & ICE_PTP_TS_VALID) || 2078 raw_tstamp == tx->tstamps[idx].cached_tstamp) 2079 continue; 2080 2081 /* The timestamp is valid, so we'll go ahead and clear this 2082 * index and then send the timestamp up to the stack. 2083 */ 2084 spin_lock(&tx->lock); 2085 tx->tstamps[idx].cached_tstamp = raw_tstamp; 2086 clear_bit(idx, tx->in_use); 2087 skb = tx->tstamps[idx].skb; 2088 tx->tstamps[idx].skb = NULL; 2089 spin_unlock(&tx->lock); 2090 2091 /* it's (unlikely but) possible we raced with the cleanup 2092 * thread for discarding old timestamp requests. 2093 */ 2094 if (!skb) 2095 continue; 2096 2097 /* Extend the timestamp using cached PHC time */ 2098 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 2099 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 2100 2101 ice_trace(tx_tstamp_complete, skb, idx); 2102 2103 skb_tstamp_tx(skb, &shhwtstamps); 2104 dev_kfree_skb_any(skb); 2105 } 2106 2107 /* Check if we still have work to do. If so, re-queue this task to 2108 * poll for remaining timestamps. 2109 */ 2110 spin_lock(&tx->lock); 2111 if (!bitmap_empty(tx->in_use, tx->len)) 2112 kthread_queue_work(pf->ptp.kworker, &tx->work); 2113 spin_unlock(&tx->lock); 2114 } 2115 2116 /** 2117 * ice_ptp_request_ts - Request an available Tx timestamp index 2118 * @tx: the PTP Tx timestamp tracker to request from 2119 * @skb: the SKB to associate with this timestamp request 2120 */ 2121 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 2122 { 2123 u8 idx; 2124 2125 /* Check if this tracker is initialized */ 2126 if (!tx->init || tx->calibrating) 2127 return -1; 2128 2129 spin_lock(&tx->lock); 2130 /* Find and set the first available index */ 2131 idx = find_first_zero_bit(tx->in_use, tx->len); 2132 if (idx < tx->len) { 2133 /* We got a valid index that no other thread could have set. Store 2134 * a reference to the skb and the start time to allow discarding old 2135 * requests. 2136 */ 2137 set_bit(idx, tx->in_use); 2138 tx->tstamps[idx].start = jiffies; 2139 tx->tstamps[idx].skb = skb_get(skb); 2140 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2141 ice_trace(tx_tstamp_request, skb, idx); 2142 } 2143 2144 spin_unlock(&tx->lock); 2145 2146 /* return the appropriate PHY timestamp register index, -1 if no 2147 * indexes were available. 2148 */ 2149 if (idx >= tx->len) 2150 return -1; 2151 else 2152 return idx + tx->quad_offset; 2153 } 2154 2155 /** 2156 * ice_ptp_process_ts - Spawn kthread work to handle timestamps 2157 * @pf: Board private structure 2158 * 2159 * Queue work required to process the PTP Tx timestamps outside of interrupt 2160 * context. 2161 */ 2162 void ice_ptp_process_ts(struct ice_pf *pf) 2163 { 2164 if (pf->ptp.port.tx.init) 2165 kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work); 2166 } 2167 2168 /** 2169 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps 2170 * @tx: Tx tracking structure to initialize 2171 * 2172 * Assumes that the length has already been initialized. Do not call directly, 2173 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. 2174 */ 2175 static int 2176 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) 2177 { 2178 tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); 2179 if (!tx->tstamps) 2180 return -ENOMEM; 2181 2182 tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); 2183 if (!tx->in_use) { 2184 kfree(tx->tstamps); 2185 tx->tstamps = NULL; 2186 return -ENOMEM; 2187 } 2188 2189 spin_lock_init(&tx->lock); 2190 kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work); 2191 2192 tx->init = 1; 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker 2199 * @pf: Board private structure 2200 * @tx: the tracker to flush 2201 */ 2202 static void 2203 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 2204 { 2205 u8 idx; 2206 2207 for (idx = 0; idx < tx->len; idx++) { 2208 u8 phy_idx = idx + tx->quad_offset; 2209 2210 spin_lock(&tx->lock); 2211 if (tx->tstamps[idx].skb) { 2212 dev_kfree_skb_any(tx->tstamps[idx].skb); 2213 tx->tstamps[idx].skb = NULL; 2214 } 2215 clear_bit(idx, tx->in_use); 2216 spin_unlock(&tx->lock); 2217 2218 /* Clear any potential residual timestamp in the PHY block */ 2219 if (!pf->hw.reset_ongoing) 2220 ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); 2221 } 2222 } 2223 2224 /** 2225 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker 2226 * @pf: Board private structure 2227 * @tx: Tx tracking structure to release 2228 * 2229 * Free memory associated with the Tx timestamp tracker. 2230 */ 2231 static void 2232 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 2233 { 2234 tx->init = 0; 2235 2236 kthread_cancel_work_sync(&tx->work); 2237 2238 ice_ptp_flush_tx_tracker(pf, tx); 2239 2240 kfree(tx->tstamps); 2241 tx->tstamps = NULL; 2242 2243 bitmap_free(tx->in_use); 2244 tx->in_use = NULL; 2245 2246 tx->len = 0; 2247 } 2248 2249 /** 2250 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps 2251 * @pf: Board private structure 2252 * @tx: the Tx tracking structure to initialize 2253 * @port: the port this structure tracks 2254 * 2255 * Initialize the Tx timestamp tracker for this port. For generic MAC devices, 2256 * the timestamp block is shared for all ports in the same quad. To avoid 2257 * ports using the same timestamp index, logically break the block of 2258 * registers into chunks based on the port number. 2259 */ 2260 static int 2261 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) 2262 { 2263 tx->quad = port / ICE_PORTS_PER_QUAD; 2264 tx->quad_offset = tx->quad * INDEX_PER_PORT; 2265 tx->len = INDEX_PER_PORT; 2266 2267 return ice_ptp_alloc_tx_tracker(tx); 2268 } 2269 2270 /** 2271 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps 2272 * @pf: Board private structure 2273 * @tx: the Tx tracking structure to initialize 2274 * 2275 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each 2276 * port has its own block of timestamps, independent of the other ports. 2277 */ 2278 static int 2279 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) 2280 { 2281 tx->quad = pf->hw.port_info->lport; 2282 tx->quad_offset = 0; 2283 tx->len = INDEX_PER_QUAD; 2284 2285 return ice_ptp_alloc_tx_tracker(tx); 2286 } 2287 2288 /** 2289 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped 2290 * @tx: PTP Tx tracker to clean up 2291 * 2292 * Loop through the Tx timestamp requests and see if any of them have been 2293 * waiting for a long time. Discard any SKBs that have been waiting for more 2294 * than 2 seconds. This is long enough to be reasonably sure that the 2295 * timestamp will never be captured. This might happen if the packet gets 2296 * discarded before it reaches the PHY timestamping block. 2297 */ 2298 static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx) 2299 { 2300 u8 idx; 2301 2302 if (!tx->init) 2303 return; 2304 2305 for_each_set_bit(idx, tx->in_use, tx->len) { 2306 struct sk_buff *skb; 2307 2308 /* Check if this SKB has been waiting for too long */ 2309 if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) 2310 continue; 2311 2312 spin_lock(&tx->lock); 2313 skb = tx->tstamps[idx].skb; 2314 tx->tstamps[idx].skb = NULL; 2315 clear_bit(idx, tx->in_use); 2316 spin_unlock(&tx->lock); 2317 2318 /* Free the SKB after we've cleared the bit */ 2319 dev_kfree_skb_any(skb); 2320 } 2321 } 2322 2323 static void ice_ptp_periodic_work(struct kthread_work *work) 2324 { 2325 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); 2326 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 2327 2328 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2329 return; 2330 2331 ice_ptp_update_cached_phctime(pf); 2332 2333 ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx); 2334 2335 /* Run twice a second */ 2336 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 2337 msecs_to_jiffies(500)); 2338 } 2339 2340 /** 2341 * ice_ptp_reset - Initialize PTP hardware clock support after reset 2342 * @pf: Board private structure 2343 */ 2344 void ice_ptp_reset(struct ice_pf *pf) 2345 { 2346 struct ice_ptp *ptp = &pf->ptp; 2347 struct ice_hw *hw = &pf->hw; 2348 struct timespec64 ts; 2349 int err, itr = 1; 2350 u64 time_diff; 2351 2352 if (test_bit(ICE_PFR_REQ, pf->state)) 2353 goto pfr; 2354 2355 if (!hw->func_caps.ts_func_info.src_tmr_owned) 2356 goto reset_ts; 2357 2358 err = ice_ptp_init_phc(hw); 2359 if (err) 2360 goto err; 2361 2362 /* Acquire the global hardware lock */ 2363 if (!ice_ptp_lock(hw)) { 2364 err = -EBUSY; 2365 goto err; 2366 } 2367 2368 /* Write the increment time value to PHY and LAN */ 2369 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2370 if (err) { 2371 ice_ptp_unlock(hw); 2372 goto err; 2373 } 2374 2375 /* Write the initial Time value to PHY and LAN using the cached PHC 2376 * time before the reset and time difference between stopping and 2377 * starting the clock. 2378 */ 2379 if (ptp->cached_phc_time) { 2380 time_diff = ktime_get_real_ns() - ptp->reset_time; 2381 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); 2382 } else { 2383 ts = ktime_to_timespec64(ktime_get_real()); 2384 } 2385 err = ice_ptp_write_init(pf, &ts); 2386 if (err) { 2387 ice_ptp_unlock(hw); 2388 goto err; 2389 } 2390 2391 /* Release the global hardware lock */ 2392 ice_ptp_unlock(hw); 2393 2394 if (!ice_is_e810(hw)) { 2395 /* Enable quad interrupts */ 2396 err = ice_ptp_tx_ena_intr(pf, true, itr); 2397 if (err) 2398 goto err; 2399 } 2400 2401 reset_ts: 2402 /* Restart the PHY timestamping block */ 2403 ice_ptp_reset_phy_timestamping(pf); 2404 2405 pfr: 2406 /* Init Tx structures */ 2407 if (ice_is_e810(&pf->hw)) { 2408 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); 2409 } else { 2410 kthread_init_delayed_work(&ptp->port.ov_work, 2411 ice_ptp_wait_for_offset_valid); 2412 err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, 2413 ptp->port.port_num); 2414 } 2415 if (err) 2416 goto err; 2417 2418 set_bit(ICE_FLAG_PTP, pf->flags); 2419 2420 /* Start periodic work going */ 2421 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2422 2423 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); 2424 return; 2425 2426 err: 2427 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); 2428 } 2429 2430 /** 2431 * ice_ptp_prepare_for_reset - Prepare PTP for reset 2432 * @pf: Board private structure 2433 */ 2434 void ice_ptp_prepare_for_reset(struct ice_pf *pf) 2435 { 2436 struct ice_ptp *ptp = &pf->ptp; 2437 u8 src_tmr; 2438 2439 clear_bit(ICE_FLAG_PTP, pf->flags); 2440 2441 /* Disable timestamping for both Tx and Rx */ 2442 ice_ptp_cfg_timestamp(pf, false); 2443 2444 kthread_cancel_delayed_work_sync(&ptp->work); 2445 kthread_cancel_work_sync(&ptp->extts_work); 2446 2447 if (test_bit(ICE_PFR_REQ, pf->state)) 2448 return; 2449 2450 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2451 2452 /* Disable periodic outputs */ 2453 ice_ptp_disable_all_clkout(pf); 2454 2455 src_tmr = ice_get_ptp_src_clock_index(&pf->hw); 2456 2457 /* Disable source clock */ 2458 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); 2459 2460 /* Acquire PHC and system timer to restore after reset */ 2461 ptp->reset_time = ktime_get_real_ns(); 2462 } 2463 2464 /** 2465 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device 2466 * @pf: Board private structure 2467 * 2468 * Setup and initialize a PTP clock device that represents the device hardware 2469 * clock. Save the clock index for other functions connected to the same 2470 * hardware resource. 2471 */ 2472 static int ice_ptp_init_owner(struct ice_pf *pf) 2473 { 2474 struct ice_hw *hw = &pf->hw; 2475 struct timespec64 ts; 2476 int err, itr = 1; 2477 2478 err = ice_ptp_init_phc(hw); 2479 if (err) { 2480 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", 2481 err); 2482 return err; 2483 } 2484 2485 /* Acquire the global hardware lock */ 2486 if (!ice_ptp_lock(hw)) { 2487 err = -EBUSY; 2488 goto err_exit; 2489 } 2490 2491 /* Write the increment time value to PHY and LAN */ 2492 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2493 if (err) { 2494 ice_ptp_unlock(hw); 2495 goto err_exit; 2496 } 2497 2498 ts = ktime_to_timespec64(ktime_get_real()); 2499 /* Write the initial Time value to PHY and LAN */ 2500 err = ice_ptp_write_init(pf, &ts); 2501 if (err) { 2502 ice_ptp_unlock(hw); 2503 goto err_exit; 2504 } 2505 2506 /* Release the global hardware lock */ 2507 ice_ptp_unlock(hw); 2508 2509 if (!ice_is_e810(hw)) { 2510 /* Enable quad interrupts */ 2511 err = ice_ptp_tx_ena_intr(pf, true, itr); 2512 if (err) 2513 goto err_exit; 2514 } 2515 2516 /* Ensure we have a clock device */ 2517 err = ice_ptp_create_clock(pf); 2518 if (err) 2519 goto err_clk; 2520 2521 /* Store the PTP clock index for other PFs */ 2522 ice_set_ptp_clock_index(pf); 2523 2524 return 0; 2525 2526 err_clk: 2527 pf->ptp.clock = NULL; 2528 err_exit: 2529 return err; 2530 } 2531 2532 /** 2533 * ice_ptp_init_work - Initialize PTP work threads 2534 * @pf: Board private structure 2535 * @ptp: PF PTP structure 2536 */ 2537 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) 2538 { 2539 struct kthread_worker *kworker; 2540 2541 /* Initialize work functions */ 2542 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); 2543 kthread_init_work(&ptp->extts_work, ice_ptp_extts_work); 2544 2545 /* Allocate a kworker for handling work required for the ports 2546 * connected to the PTP hardware clock. 2547 */ 2548 kworker = kthread_create_worker(0, "ice-ptp-%s", 2549 dev_name(ice_pf_to_dev(pf))); 2550 if (IS_ERR(kworker)) 2551 return PTR_ERR(kworker); 2552 2553 ptp->kworker = kworker; 2554 2555 /* Start periodic work going */ 2556 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2557 2558 return 0; 2559 } 2560 2561 /** 2562 * ice_ptp_init_port - Initialize PTP port structure 2563 * @pf: Board private structure 2564 * @ptp_port: PTP port structure 2565 */ 2566 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) 2567 { 2568 mutex_init(&ptp_port->ps_lock); 2569 2570 if (ice_is_e810(&pf->hw)) 2571 return ice_ptp_init_tx_e810(pf, &ptp_port->tx); 2572 2573 kthread_init_delayed_work(&ptp_port->ov_work, 2574 ice_ptp_wait_for_offset_valid); 2575 return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); 2576 } 2577 2578 /** 2579 * ice_ptp_init - Initialize PTP hardware clock support 2580 * @pf: Board private structure 2581 * 2582 * Set up the device for interacting with the PTP hardware clock for all 2583 * functions, both the function that owns the clock hardware, and the 2584 * functions connected to the clock hardware. 2585 * 2586 * The clock owner will allocate and register a ptp_clock with the 2587 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work 2588 * items used for asynchronous work such as Tx timestamps and periodic work. 2589 */ 2590 void ice_ptp_init(struct ice_pf *pf) 2591 { 2592 struct ice_ptp *ptp = &pf->ptp; 2593 struct ice_hw *hw = &pf->hw; 2594 int err; 2595 2596 /* If this function owns the clock hardware, it must allocate and 2597 * configure the PTP clock device to represent it. 2598 */ 2599 if (hw->func_caps.ts_func_info.src_tmr_owned) { 2600 err = ice_ptp_init_owner(pf); 2601 if (err) 2602 goto err; 2603 } 2604 2605 ptp->port.port_num = hw->pf_id; 2606 err = ice_ptp_init_port(pf, &ptp->port); 2607 if (err) 2608 goto err; 2609 2610 /* Start the PHY timestamping block */ 2611 ice_ptp_reset_phy_timestamping(pf); 2612 2613 set_bit(ICE_FLAG_PTP, pf->flags); 2614 err = ice_ptp_init_work(pf, ptp); 2615 if (err) 2616 goto err; 2617 2618 dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); 2619 return; 2620 2621 err: 2622 /* If we registered a PTP clock, release it */ 2623 if (pf->ptp.clock) { 2624 ptp_clock_unregister(ptp->clock); 2625 pf->ptp.clock = NULL; 2626 } 2627 clear_bit(ICE_FLAG_PTP, pf->flags); 2628 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); 2629 } 2630 2631 /** 2632 * ice_ptp_release - Disable the driver/HW support and unregister the clock 2633 * @pf: Board private structure 2634 * 2635 * This function handles the cleanup work required from the initialization by 2636 * clearing out the important information and unregistering the clock 2637 */ 2638 void ice_ptp_release(struct ice_pf *pf) 2639 { 2640 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2641 return; 2642 2643 /* Disable timestamping for both Tx and Rx */ 2644 ice_ptp_cfg_timestamp(pf, false); 2645 2646 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2647 2648 clear_bit(ICE_FLAG_PTP, pf->flags); 2649 2650 kthread_cancel_delayed_work_sync(&pf->ptp.work); 2651 2652 ice_ptp_port_phy_stop(&pf->ptp.port); 2653 mutex_destroy(&pf->ptp.port.ps_lock); 2654 if (pf->ptp.kworker) { 2655 kthread_destroy_worker(pf->ptp.kworker); 2656 pf->ptp.kworker = NULL; 2657 } 2658 2659 if (!pf->ptp.clock) 2660 return; 2661 2662 /* Disable periodic outputs */ 2663 ice_ptp_disable_all_clkout(pf); 2664 2665 ice_clear_ptp_clock_index(pf); 2666 ptp_clock_unregister(pf->ptp.clock); 2667 pf->ptp.clock = NULL; 2668 2669 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); 2670 } 2671