1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 7 #define E810_OUT_PROP_DELAY_NS 1 8 9 #define UNKNOWN_INCVAL_E822 0x100000000ULL 10 11 static const struct ptp_pin_desc ice_pin_desc_e810t[] = { 12 /* name idx func chan */ 13 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, 14 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, 15 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, 16 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, 17 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, 18 }; 19 20 /** 21 * ice_get_sma_config_e810t 22 * @hw: pointer to the hw struct 23 * @ptp_pins: pointer to the ptp_pin_desc struture 24 * 25 * Read the configuration of the SMA control logic and put it into the 26 * ptp_pin_desc structure 27 */ 28 static int 29 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) 30 { 31 u8 data, i; 32 int status; 33 34 /* Read initial pin state */ 35 status = ice_read_sma_ctrl_e810t(hw, &data); 36 if (status) 37 return status; 38 39 /* initialize with defaults */ 40 for (i = 0; i < NUM_PTP_PINS_E810T; i++) { 41 snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), 42 "%s", ice_pin_desc_e810t[i].name); 43 ptp_pins[i].index = ice_pin_desc_e810t[i].index; 44 ptp_pins[i].func = ice_pin_desc_e810t[i].func; 45 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; 46 } 47 48 /* Parse SMA1/UFL1 */ 49 switch (data & ICE_SMA1_MASK_E810T) { 50 case ICE_SMA1_MASK_E810T: 51 default: 52 ptp_pins[SMA1].func = PTP_PF_NONE; 53 ptp_pins[UFL1].func = PTP_PF_NONE; 54 break; 55 case ICE_SMA1_DIR_EN_E810T: 56 ptp_pins[SMA1].func = PTP_PF_PEROUT; 57 ptp_pins[UFL1].func = PTP_PF_NONE; 58 break; 59 case ICE_SMA1_TX_EN_E810T: 60 ptp_pins[SMA1].func = PTP_PF_EXTTS; 61 ptp_pins[UFL1].func = PTP_PF_NONE; 62 break; 63 case 0: 64 ptp_pins[SMA1].func = PTP_PF_EXTTS; 65 ptp_pins[UFL1].func = PTP_PF_PEROUT; 66 break; 67 } 68 69 /* Parse SMA2/UFL2 */ 70 switch (data & ICE_SMA2_MASK_E810T) { 71 case ICE_SMA2_MASK_E810T: 72 default: 73 ptp_pins[SMA2].func = PTP_PF_NONE; 74 ptp_pins[UFL2].func = PTP_PF_NONE; 75 break; 76 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 77 ptp_pins[SMA2].func = PTP_PF_EXTTS; 78 ptp_pins[UFL2].func = PTP_PF_NONE; 79 break; 80 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 81 ptp_pins[SMA2].func = PTP_PF_PEROUT; 82 ptp_pins[UFL2].func = PTP_PF_NONE; 83 break; 84 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): 85 ptp_pins[SMA2].func = PTP_PF_NONE; 86 ptp_pins[UFL2].func = PTP_PF_EXTTS; 87 break; 88 case ICE_SMA2_DIR_EN_E810T: 89 ptp_pins[SMA2].func = PTP_PF_PEROUT; 90 ptp_pins[UFL2].func = PTP_PF_EXTTS; 91 break; 92 } 93 94 return 0; 95 } 96 97 /** 98 * ice_ptp_set_sma_config_e810t 99 * @hw: pointer to the hw struct 100 * @ptp_pins: pointer to the ptp_pin_desc struture 101 * 102 * Set the configuration of the SMA control logic based on the configuration in 103 * num_pins parameter 104 */ 105 static int 106 ice_ptp_set_sma_config_e810t(struct ice_hw *hw, 107 const struct ptp_pin_desc *ptp_pins) 108 { 109 int status; 110 u8 data; 111 112 /* SMA1 and UFL1 cannot be set to TX at the same time */ 113 if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 114 ptp_pins[UFL1].func == PTP_PF_PEROUT) 115 return -EINVAL; 116 117 /* SMA2 and UFL2 cannot be set to RX at the same time */ 118 if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 119 ptp_pins[UFL2].func == PTP_PF_EXTTS) 120 return -EINVAL; 121 122 /* Read initial pin state value */ 123 status = ice_read_sma_ctrl_e810t(hw, &data); 124 if (status) 125 return status; 126 127 /* Set the right sate based on the desired configuration */ 128 data &= ~ICE_SMA1_MASK_E810T; 129 if (ptp_pins[SMA1].func == PTP_PF_NONE && 130 ptp_pins[UFL1].func == PTP_PF_NONE) { 131 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); 132 data |= ICE_SMA1_MASK_E810T; 133 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 134 ptp_pins[UFL1].func == PTP_PF_NONE) { 135 dev_info(ice_hw_to_dev(hw), "SMA1 RX"); 136 data |= ICE_SMA1_TX_EN_E810T; 137 } else if (ptp_pins[SMA1].func == PTP_PF_NONE && 138 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 139 /* U.FL 1 TX will always enable SMA 1 RX */ 140 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 141 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 142 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 143 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 144 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 145 ptp_pins[UFL1].func == PTP_PF_NONE) { 146 dev_info(ice_hw_to_dev(hw), "SMA1 TX"); 147 data |= ICE_SMA1_DIR_EN_E810T; 148 } 149 150 data &= ~ICE_SMA2_MASK_E810T; 151 if (ptp_pins[SMA2].func == PTP_PF_NONE && 152 ptp_pins[UFL2].func == PTP_PF_NONE) { 153 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); 154 data |= ICE_SMA2_MASK_E810T; 155 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 156 ptp_pins[UFL2].func == PTP_PF_NONE) { 157 dev_info(ice_hw_to_dev(hw), "SMA2 RX"); 158 data |= (ICE_SMA2_TX_EN_E810T | 159 ICE_SMA2_UFL2_RX_DIS_E810T); 160 } else if (ptp_pins[SMA2].func == PTP_PF_NONE && 161 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 162 dev_info(ice_hw_to_dev(hw), "UFL2 RX"); 163 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); 164 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 165 ptp_pins[UFL2].func == PTP_PF_NONE) { 166 dev_info(ice_hw_to_dev(hw), "SMA2 TX"); 167 data |= (ICE_SMA2_DIR_EN_E810T | 168 ICE_SMA2_UFL2_RX_DIS_E810T); 169 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 170 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 171 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); 172 data |= ICE_SMA2_DIR_EN_E810T; 173 } 174 175 return ice_write_sma_ctrl_e810t(hw, data); 176 } 177 178 /** 179 * ice_ptp_set_sma_e810t 180 * @info: the driver's PTP info structure 181 * @pin: pin index in kernel structure 182 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) 183 * 184 * Set the configuration of a single SMA pin 185 */ 186 static int 187 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, 188 enum ptp_pin_function func) 189 { 190 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; 191 struct ice_pf *pf = ptp_info_to_pf(info); 192 struct ice_hw *hw = &pf->hw; 193 int err; 194 195 if (pin < SMA1 || func > PTP_PF_PEROUT) 196 return -EOPNOTSUPP; 197 198 err = ice_get_sma_config_e810t(hw, ptp_pins); 199 if (err) 200 return err; 201 202 /* Disable the same function on the other pin sharing the channel */ 203 if (pin == SMA1 && ptp_pins[UFL1].func == func) 204 ptp_pins[UFL1].func = PTP_PF_NONE; 205 if (pin == UFL1 && ptp_pins[SMA1].func == func) 206 ptp_pins[SMA1].func = PTP_PF_NONE; 207 208 if (pin == SMA2 && ptp_pins[UFL2].func == func) 209 ptp_pins[UFL2].func = PTP_PF_NONE; 210 if (pin == UFL2 && ptp_pins[SMA2].func == func) 211 ptp_pins[SMA2].func = PTP_PF_NONE; 212 213 /* Set up new pin function in the temp table */ 214 ptp_pins[pin].func = func; 215 216 return ice_ptp_set_sma_config_e810t(hw, ptp_pins); 217 } 218 219 /** 220 * ice_verify_pin_e810t 221 * @info: the driver's PTP info structure 222 * @pin: Pin index 223 * @func: Assigned function 224 * @chan: Assigned channel 225 * 226 * Verify if pin supports requested pin function. If the Check pins consistency. 227 * Reconfigure the SMA logic attached to the given pin to enable its 228 * desired functionality 229 */ 230 static int 231 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, 232 enum ptp_pin_function func, unsigned int chan) 233 { 234 /* Don't allow channel reassignment */ 235 if (chan != ice_pin_desc_e810t[pin].chan) 236 return -EOPNOTSUPP; 237 238 /* Check if functions are properly assigned */ 239 switch (func) { 240 case PTP_PF_NONE: 241 break; 242 case PTP_PF_EXTTS: 243 if (pin == UFL1) 244 return -EOPNOTSUPP; 245 break; 246 case PTP_PF_PEROUT: 247 if (pin == UFL2 || pin == GNSS) 248 return -EOPNOTSUPP; 249 break; 250 case PTP_PF_PHYSYNC: 251 return -EOPNOTSUPP; 252 } 253 254 return ice_ptp_set_sma_e810t(info, pin, func); 255 } 256 257 /** 258 * ice_set_tx_tstamp - Enable or disable Tx timestamping 259 * @pf: The PF pointer to search in 260 * @on: bool value for whether timestamps are enabled or disabled 261 */ 262 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) 263 { 264 struct ice_vsi *vsi; 265 u32 val; 266 u16 i; 267 268 vsi = ice_get_main_vsi(pf); 269 if (!vsi) 270 return; 271 272 /* Set the timestamp enable flag for all the Tx rings */ 273 ice_for_each_txq(vsi, i) { 274 if (!vsi->tx_rings[i]) 275 continue; 276 vsi->tx_rings[i]->ptp_tx = on; 277 } 278 279 /* Configure the Tx timestamp interrupt */ 280 val = rd32(&pf->hw, PFINT_OICR_ENA); 281 if (on) 282 val |= PFINT_OICR_TSYN_TX_M; 283 else 284 val &= ~PFINT_OICR_TSYN_TX_M; 285 wr32(&pf->hw, PFINT_OICR_ENA, val); 286 287 pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 288 } 289 290 /** 291 * ice_set_rx_tstamp - Enable or disable Rx timestamping 292 * @pf: The PF pointer to search in 293 * @on: bool value for whether timestamps are enabled or disabled 294 */ 295 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) 296 { 297 struct ice_vsi *vsi; 298 u16 i; 299 300 vsi = ice_get_main_vsi(pf); 301 if (!vsi) 302 return; 303 304 /* Set the timestamp flag for all the Rx rings */ 305 ice_for_each_rxq(vsi, i) { 306 if (!vsi->rx_rings[i]) 307 continue; 308 vsi->rx_rings[i]->ptp_rx = on; 309 } 310 311 pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : 312 HWTSTAMP_FILTER_NONE; 313 } 314 315 /** 316 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit 317 * @pf: Board private structure 318 * @ena: bool value to enable or disable time stamp 319 * 320 * This function will configure timestamping during PTP initialization 321 * and deinitialization 322 */ 323 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) 324 { 325 ice_set_tx_tstamp(pf, ena); 326 ice_set_rx_tstamp(pf, ena); 327 } 328 329 /** 330 * ice_get_ptp_clock_index - Get the PTP clock index 331 * @pf: the PF pointer 332 * 333 * Determine the clock index of the PTP clock associated with this device. If 334 * this is the PF controlling the clock, just use the local access to the 335 * clock device pointer. 336 * 337 * Otherwise, read from the driver shared parameters to determine the clock 338 * index value. 339 * 340 * Returns: the index of the PTP clock associated with this device, or -1 if 341 * there is no associated clock. 342 */ 343 int ice_get_ptp_clock_index(struct ice_pf *pf) 344 { 345 struct device *dev = ice_pf_to_dev(pf); 346 enum ice_aqc_driver_params param_idx; 347 struct ice_hw *hw = &pf->hw; 348 u8 tmr_idx; 349 u32 value; 350 int err; 351 352 /* Use the ptp_clock structure if we're the main PF */ 353 if (pf->ptp.clock) 354 return ptp_clock_index(pf->ptp.clock); 355 356 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 357 if (!tmr_idx) 358 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 359 else 360 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 361 362 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); 363 if (err) { 364 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", 365 err, ice_aq_str(hw->adminq.sq_last_status)); 366 return -1; 367 } 368 369 /* The PTP clock index is an integer, and will be between 0 and 370 * INT_MAX. The highest bit of the driver shared parameter is used to 371 * indicate whether or not the currently stored clock index is valid. 372 */ 373 if (!(value & PTP_SHARED_CLK_IDX_VALID)) 374 return -1; 375 376 return value & ~PTP_SHARED_CLK_IDX_VALID; 377 } 378 379 /** 380 * ice_set_ptp_clock_index - Set the PTP clock index 381 * @pf: the PF pointer 382 * 383 * Set the PTP clock index for this device into the shared driver parameters, 384 * so that other PFs associated with this device can read it. 385 * 386 * If the PF is unable to store the clock index, it will log an error, but 387 * will continue operating PTP. 388 */ 389 static void ice_set_ptp_clock_index(struct ice_pf *pf) 390 { 391 struct device *dev = ice_pf_to_dev(pf); 392 enum ice_aqc_driver_params param_idx; 393 struct ice_hw *hw = &pf->hw; 394 u8 tmr_idx; 395 u32 value; 396 int err; 397 398 if (!pf->ptp.clock) 399 return; 400 401 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 402 if (!tmr_idx) 403 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 404 else 405 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 406 407 value = (u32)ptp_clock_index(pf->ptp.clock); 408 if (value > INT_MAX) { 409 dev_err(dev, "PTP Clock index is too large to store\n"); 410 return; 411 } 412 value |= PTP_SHARED_CLK_IDX_VALID; 413 414 err = ice_aq_set_driver_param(hw, param_idx, value, NULL); 415 if (err) { 416 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", 417 err, ice_aq_str(hw->adminq.sq_last_status)); 418 } 419 } 420 421 /** 422 * ice_clear_ptp_clock_index - Clear the PTP clock index 423 * @pf: the PF pointer 424 * 425 * Clear the PTP clock index for this device. Must be called when 426 * unregistering the PTP clock, in order to ensure other PFs stop reporting 427 * a clock object that no longer exists. 428 */ 429 static void ice_clear_ptp_clock_index(struct ice_pf *pf) 430 { 431 struct device *dev = ice_pf_to_dev(pf); 432 enum ice_aqc_driver_params param_idx; 433 struct ice_hw *hw = &pf->hw; 434 u8 tmr_idx; 435 int err; 436 437 /* Do not clear the index if we don't own the timer */ 438 if (!hw->func_caps.ts_func_info.src_tmr_owned) 439 return; 440 441 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 442 if (!tmr_idx) 443 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 444 else 445 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 446 447 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); 448 if (err) { 449 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", 450 err, ice_aq_str(hw->adminq.sq_last_status)); 451 } 452 } 453 454 /** 455 * ice_ptp_read_src_clk_reg - Read the source clock register 456 * @pf: Board private structure 457 * @sts: Optional parameter for holding a pair of system timestamps from 458 * the system clock. Will be ignored if NULL is given. 459 */ 460 static u64 461 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) 462 { 463 struct ice_hw *hw = &pf->hw; 464 u32 hi, lo, lo2; 465 u8 tmr_idx; 466 467 tmr_idx = ice_get_ptp_src_clock_index(hw); 468 /* Read the system timestamp pre PHC read */ 469 ptp_read_system_prets(sts); 470 471 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 472 473 /* Read the system timestamp post PHC read */ 474 ptp_read_system_postts(sts); 475 476 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 477 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 478 479 if (lo2 < lo) { 480 /* if TIME_L rolled over read TIME_L again and update 481 * system timestamps 482 */ 483 ptp_read_system_prets(sts); 484 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 485 ptp_read_system_postts(sts); 486 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 487 } 488 489 return ((u64)hi << 32) | lo; 490 } 491 492 /** 493 * ice_ptp_update_cached_phctime - Update the cached PHC time values 494 * @pf: Board specific private structure 495 * 496 * This function updates the system time values which are cached in the PF 497 * structure and the Rx rings. 498 * 499 * This function must be called periodically to ensure that the cached value 500 * is never more than 2 seconds old. It must also be called whenever the PHC 501 * time has been changed. 502 */ 503 static void ice_ptp_update_cached_phctime(struct ice_pf *pf) 504 { 505 u64 systime; 506 int i; 507 508 /* Read the current PHC time */ 509 systime = ice_ptp_read_src_clk_reg(pf, NULL); 510 511 /* Update the cached PHC time stored in the PF structure */ 512 WRITE_ONCE(pf->ptp.cached_phc_time, systime); 513 514 ice_for_each_vsi(pf, i) { 515 struct ice_vsi *vsi = pf->vsi[i]; 516 int j; 517 518 if (!vsi) 519 continue; 520 521 if (vsi->type != ICE_VSI_PF) 522 continue; 523 524 ice_for_each_rxq(vsi, j) { 525 if (!vsi->rx_rings[j]) 526 continue; 527 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); 528 } 529 } 530 } 531 532 /** 533 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b 534 * @cached_phc_time: recently cached copy of PHC time 535 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value 536 * 537 * Hardware captures timestamps which contain only 32 bits of nominal 538 * nanoseconds, as opposed to the 64bit timestamps that the stack expects. 539 * Note that the captured timestamp values may be 40 bits, but the lower 540 * 8 bits are sub-nanoseconds and generally discarded. 541 * 542 * Extend the 32bit nanosecond timestamp using the following algorithm and 543 * assumptions: 544 * 545 * 1) have a recently cached copy of the PHC time 546 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 547 * seconds) before or after the PHC time was captured. 548 * 3) calculate the delta between the cached time and the timestamp 549 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was 550 * captured after the PHC time. In this case, the full timestamp is just 551 * the cached PHC time plus the delta. 552 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the 553 * timestamp was captured *before* the PHC time, i.e. because the PHC 554 * cache was updated after the timestamp was captured by hardware. In this 555 * case, the full timestamp is the cached time minus the inverse delta. 556 * 557 * This algorithm works even if the PHC time was updated after a Tx timestamp 558 * was requested, but before the Tx timestamp event was reported from 559 * hardware. 560 * 561 * This calculation primarily relies on keeping the cached PHC time up to 562 * date. If the timestamp was captured more than 2^31 nanoseconds after the 563 * PHC time, it is possible that the lower 32bits of PHC time have 564 * overflowed more than once, and we might generate an incorrect timestamp. 565 * 566 * This is prevented by (a) periodically updating the cached PHC time once 567 * a second, and (b) discarding any Tx timestamp packet if it has waited for 568 * a timestamp for more than one second. 569 */ 570 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) 571 { 572 u32 delta, phc_time_lo; 573 u64 ns; 574 575 /* Extract the lower 32 bits of the PHC time */ 576 phc_time_lo = (u32)cached_phc_time; 577 578 /* Calculate the delta between the lower 32bits of the cached PHC 579 * time and the in_tstamp value 580 */ 581 delta = (in_tstamp - phc_time_lo); 582 583 /* Do not assume that the in_tstamp is always more recent than the 584 * cached PHC time. If the delta is large, it indicates that the 585 * in_tstamp was taken in the past, and should be converted 586 * forward. 587 */ 588 if (delta > (U32_MAX / 2)) { 589 /* reverse the delta calculation here */ 590 delta = (phc_time_lo - in_tstamp); 591 ns = cached_phc_time - delta; 592 } else { 593 ns = cached_phc_time + delta; 594 } 595 596 return ns; 597 } 598 599 /** 600 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds 601 * @pf: Board private structure 602 * @in_tstamp: Ingress/egress 40b timestamp value 603 * 604 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal 605 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. 606 * 607 * *--------------------------------------------------------------* 608 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | 609 * *--------------------------------------------------------------* 610 * 611 * The low bit is an indicator of whether the timestamp is valid. The next 612 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, 613 * and the remaining 32 bits are the lower 32 bits of the PHC timer. 614 * 615 * It is assumed that the caller verifies the timestamp is valid prior to 616 * calling this function. 617 * 618 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC 619 * time stored in the device private PTP structure as the basis for timestamp 620 * extension. 621 * 622 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension 623 * algorithm. 624 */ 625 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) 626 { 627 const u64 mask = GENMASK_ULL(31, 0); 628 629 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, 630 (in_tstamp >> 8) & mask); 631 } 632 633 /** 634 * ice_ptp_read_time - Read the time from the device 635 * @pf: Board private structure 636 * @ts: timespec structure to hold the current time value 637 * @sts: Optional parameter for holding a pair of system timestamps from 638 * the system clock. Will be ignored if NULL is given. 639 * 640 * This function reads the source clock registers and stores them in a timespec. 641 * However, since the registers are 64 bits of nanoseconds, we must convert the 642 * result to a timespec before we can return. 643 */ 644 static void 645 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, 646 struct ptp_system_timestamp *sts) 647 { 648 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); 649 650 *ts = ns_to_timespec64(time_ns); 651 } 652 653 /** 654 * ice_ptp_write_init - Set PHC time to provided value 655 * @pf: Board private structure 656 * @ts: timespec structure that holds the new time value 657 * 658 * Set the PHC time to the specified time provided in the timespec. 659 */ 660 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) 661 { 662 u64 ns = timespec64_to_ns(ts); 663 struct ice_hw *hw = &pf->hw; 664 665 return ice_ptp_init_time(hw, ns); 666 } 667 668 /** 669 * ice_ptp_write_adj - Adjust PHC clock time atomically 670 * @pf: Board private structure 671 * @adj: Adjustment in nanoseconds 672 * 673 * Perform an atomic adjustment of the PHC time by the specified number of 674 * nanoseconds. 675 */ 676 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) 677 { 678 struct ice_hw *hw = &pf->hw; 679 680 return ice_ptp_adj_clock(hw, adj); 681 } 682 683 /** 684 * ice_base_incval - Get base timer increment value 685 * @pf: Board private structure 686 * 687 * Look up the base timer increment value for this device. The base increment 688 * value is used to define the nominal clock tick rate. This increment value 689 * is programmed during device initialization. It is also used as the basis 690 * for calculating adjustments using scaled_ppm. 691 */ 692 static u64 ice_base_incval(struct ice_pf *pf) 693 { 694 struct ice_hw *hw = &pf->hw; 695 u64 incval; 696 697 if (ice_is_e810(hw)) 698 incval = ICE_PTP_NOMINAL_INCVAL_E810; 699 else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) 700 incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); 701 else 702 incval = UNKNOWN_INCVAL_E822; 703 704 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", 705 incval); 706 707 return incval; 708 } 709 710 /** 711 * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad 712 * @pf: The PF private data structure 713 * @quad: The quad (0-4) 714 */ 715 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad) 716 { 717 struct ice_hw *hw = &pf->hw; 718 719 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); 720 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); 721 } 722 723 /** 724 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state 725 * @port: PTP port for which Tx FIFO is checked 726 */ 727 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) 728 { 729 int quad = port->port_num / ICE_PORTS_PER_QUAD; 730 int offs = port->port_num % ICE_PORTS_PER_QUAD; 731 struct ice_pf *pf; 732 struct ice_hw *hw; 733 u32 val, phy_sts; 734 int err; 735 736 pf = ptp_port_to_pf(port); 737 hw = &pf->hw; 738 739 if (port->tx_fifo_busy_cnt == FIFO_OK) 740 return 0; 741 742 /* need to read FIFO state */ 743 if (offs == 0 || offs == 1) 744 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, 745 &val); 746 else 747 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, 748 &val); 749 750 if (err) { 751 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", 752 port->port_num, err); 753 return err; 754 } 755 756 if (offs & 0x1) 757 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; 758 else 759 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; 760 761 if (phy_sts & FIFO_EMPTY) { 762 port->tx_fifo_busy_cnt = FIFO_OK; 763 return 0; 764 } 765 766 port->tx_fifo_busy_cnt++; 767 768 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", 769 port->tx_fifo_busy_cnt, port->port_num); 770 771 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { 772 dev_dbg(ice_pf_to_dev(pf), 773 "Port %d Tx FIFO still not empty; resetting quad %d\n", 774 port->port_num, quad); 775 ice_ptp_reset_ts_memory_quad(pf, quad); 776 port->tx_fifo_busy_cnt = FIFO_OK; 777 return 0; 778 } 779 780 return -EAGAIN; 781 } 782 783 /** 784 * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid 785 * @port: the PTP port to check 786 * 787 * Checks whether the Tx offset for the PHY associated with this port is 788 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is 789 * not. 790 */ 791 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port) 792 { 793 struct ice_pf *pf = ptp_port_to_pf(port); 794 struct device *dev = ice_pf_to_dev(pf); 795 struct ice_hw *hw = &pf->hw; 796 u32 val; 797 int err; 798 799 err = ice_ptp_check_tx_fifo(port); 800 if (err) 801 return err; 802 803 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS, 804 &val); 805 if (err) { 806 dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n", 807 port->port_num, err); 808 return -EAGAIN; 809 } 810 811 if (!(val & P_REG_TX_OV_STATUS_OV_M)) 812 return -EAGAIN; 813 814 return 0; 815 } 816 817 /** 818 * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid 819 * @port: the PTP port to check 820 * 821 * Checks whether the Rx offset for the PHY associated with this port is 822 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is 823 * not. 824 */ 825 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port) 826 { 827 struct ice_pf *pf = ptp_port_to_pf(port); 828 struct device *dev = ice_pf_to_dev(pf); 829 struct ice_hw *hw = &pf->hw; 830 int err; 831 u32 val; 832 833 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS, 834 &val); 835 if (err) { 836 dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n", 837 port->port_num, err); 838 return err; 839 } 840 841 if (!(val & P_REG_RX_OV_STATUS_OV_M)) 842 return -EAGAIN; 843 844 return 0; 845 } 846 847 /** 848 * ice_ptp_check_offset_valid - Check port offset valid bit 849 * @port: Port for which offset valid bit is checked 850 * 851 * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the 852 * offset is not ready. 853 */ 854 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port) 855 { 856 int tx_err, rx_err; 857 858 /* always check both Tx and Rx offset validity */ 859 tx_err = ice_ptp_check_tx_offset_valid(port); 860 rx_err = ice_ptp_check_rx_offset_valid(port); 861 862 if (tx_err || rx_err) 863 return -EAGAIN; 864 865 return 0; 866 } 867 868 /** 869 * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets 870 * @work: Pointer to the kthread_work structure for this task 871 * 872 * Check whether both the Tx and Rx offsets are valid for enabling the vernier 873 * calibration. 874 * 875 * Once we have valid offsets from hardware, update the total Tx and Rx 876 * offsets, and exit bypass mode. This enables more precise timestamps using 877 * the extra data measured during the vernier calibration process. 878 */ 879 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work) 880 { 881 struct ice_ptp_port *port; 882 int err; 883 struct device *dev; 884 struct ice_pf *pf; 885 struct ice_hw *hw; 886 887 port = container_of(work, struct ice_ptp_port, ov_work.work); 888 pf = ptp_port_to_pf(port); 889 hw = &pf->hw; 890 dev = ice_pf_to_dev(pf); 891 892 if (ice_ptp_check_offset_valid(port)) { 893 /* Offsets not ready yet, try again later */ 894 kthread_queue_delayed_work(pf->ptp.kworker, 895 &port->ov_work, 896 msecs_to_jiffies(100)); 897 return; 898 } 899 900 /* Offsets are valid, so it is safe to exit bypass mode */ 901 err = ice_phy_exit_bypass_e822(hw, port->port_num); 902 if (err) { 903 dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n", 904 port->port_num, err); 905 return; 906 } 907 } 908 909 /** 910 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port 911 * @ptp_port: PTP port to stop 912 */ 913 static int 914 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) 915 { 916 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 917 u8 port = ptp_port->port_num; 918 struct ice_hw *hw = &pf->hw; 919 int err; 920 921 if (ice_is_e810(hw)) 922 return 0; 923 924 mutex_lock(&ptp_port->ps_lock); 925 926 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 927 928 err = ice_stop_phy_timer_e822(hw, port, true); 929 if (err) 930 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", 931 port, err); 932 933 mutex_unlock(&ptp_port->ps_lock); 934 935 return err; 936 } 937 938 /** 939 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping 940 * @ptp_port: PTP port for which the PHY start is set 941 * 942 * Start the PHY timestamping block, and initiate Vernier timestamping 943 * calibration. If timestamping cannot be calibrated (such as if link is down) 944 * then disable the timestamping block instead. 945 */ 946 static int 947 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) 948 { 949 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 950 u8 port = ptp_port->port_num; 951 struct ice_hw *hw = &pf->hw; 952 int err; 953 954 if (ice_is_e810(hw)) 955 return 0; 956 957 if (!ptp_port->link_up) 958 return ice_ptp_port_phy_stop(ptp_port); 959 960 mutex_lock(&ptp_port->ps_lock); 961 962 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 963 964 /* temporarily disable Tx timestamps while calibrating PHY offset */ 965 ptp_port->tx.calibrating = true; 966 ptp_port->tx_fifo_busy_cnt = 0; 967 968 /* Start the PHY timer in bypass mode */ 969 err = ice_start_phy_timer_e822(hw, port, true); 970 if (err) 971 goto out_unlock; 972 973 /* Enable Tx timestamps right away */ 974 ptp_port->tx.calibrating = false; 975 976 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); 977 978 out_unlock: 979 if (err) 980 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", 981 port, err); 982 983 mutex_unlock(&ptp_port->ps_lock); 984 985 return err; 986 } 987 988 /** 989 * ice_ptp_link_change - Set or clear port registers for timestamping 990 * @pf: Board private structure 991 * @port: Port for which the PHY start is set 992 * @linkup: Link is up or down 993 */ 994 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) 995 { 996 struct ice_ptp_port *ptp_port; 997 998 if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 999 return 0; 1000 1001 if (port >= ICE_NUM_EXTERNAL_PORTS) 1002 return -EINVAL; 1003 1004 ptp_port = &pf->ptp.port; 1005 if (ptp_port->port_num != port) 1006 return -EINVAL; 1007 1008 /* Update cached link err for this port immediately */ 1009 ptp_port->link_up = linkup; 1010 1011 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1012 /* PTP is not setup */ 1013 return -EAGAIN; 1014 1015 return ice_ptp_port_phy_restart(ptp_port); 1016 } 1017 1018 /** 1019 * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads 1020 * @pf: The PF private data structure 1021 */ 1022 static void ice_ptp_reset_ts_memory(struct ice_pf *pf) 1023 { 1024 int quad; 1025 1026 quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD; 1027 ice_ptp_reset_ts_memory_quad(pf, quad); 1028 } 1029 1030 /** 1031 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt 1032 * @pf: PF private structure 1033 * @ena: bool value to enable or disable interrupt 1034 * @threshold: Minimum number of packets at which intr is triggered 1035 * 1036 * Utility function to enable or disable Tx timestamp interrupt and threshold 1037 */ 1038 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) 1039 { 1040 struct ice_hw *hw = &pf->hw; 1041 int err = 0; 1042 int quad; 1043 u32 val; 1044 1045 ice_ptp_reset_ts_memory(pf); 1046 1047 for (quad = 0; quad < ICE_MAX_QUAD; quad++) { 1048 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1049 &val); 1050 if (err) 1051 break; 1052 1053 if (ena) { 1054 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1055 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; 1056 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & 1057 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); 1058 } else { 1059 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1060 } 1061 1062 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1063 val); 1064 if (err) 1065 break; 1066 } 1067 1068 if (err) 1069 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", 1070 err); 1071 return err; 1072 } 1073 1074 /** 1075 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block 1076 * @pf: Board private structure 1077 */ 1078 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) 1079 { 1080 ice_ptp_port_phy_restart(&pf->ptp.port); 1081 } 1082 1083 /** 1084 * ice_ptp_adjfine - Adjust clock increment rate 1085 * @info: the driver's PTP info structure 1086 * @scaled_ppm: Parts per million with 16-bit fractional field 1087 * 1088 * Adjust the frequency of the clock by the indicated scaled ppm from the 1089 * base frequency. 1090 */ 1091 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 1092 { 1093 struct ice_pf *pf = ptp_info_to_pf(info); 1094 u64 freq, divisor = 1000000ULL; 1095 struct ice_hw *hw = &pf->hw; 1096 s64 incval, diff; 1097 int neg_adj = 0; 1098 int err; 1099 1100 incval = ice_base_incval(pf); 1101 1102 if (scaled_ppm < 0) { 1103 neg_adj = 1; 1104 scaled_ppm = -scaled_ppm; 1105 } 1106 1107 while ((u64)scaled_ppm > div64_u64(U64_MAX, incval)) { 1108 /* handle overflow by scaling down the scaled_ppm and 1109 * the divisor, losing some precision 1110 */ 1111 scaled_ppm >>= 2; 1112 divisor >>= 2; 1113 } 1114 1115 freq = (incval * (u64)scaled_ppm) >> 16; 1116 diff = div_u64(freq, divisor); 1117 1118 if (neg_adj) 1119 incval -= diff; 1120 else 1121 incval += diff; 1122 1123 err = ice_ptp_write_incval_locked(hw, incval); 1124 if (err) { 1125 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", 1126 err); 1127 return -EIO; 1128 } 1129 1130 return 0; 1131 } 1132 1133 /** 1134 * ice_ptp_extts_work - Workqueue task function 1135 * @work: external timestamp work structure 1136 * 1137 * Service for PTP external clock event 1138 */ 1139 static void ice_ptp_extts_work(struct kthread_work *work) 1140 { 1141 struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); 1142 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 1143 struct ptp_clock_event event; 1144 struct ice_hw *hw = &pf->hw; 1145 u8 chan, tmr_idx; 1146 u32 hi, lo; 1147 1148 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1149 /* Event time is captured by one of the two matched registers 1150 * GLTSYN_EVNT_L: 32 LSB of sampled time event 1151 * GLTSYN_EVNT_H: 32 MSB of sampled time event 1152 * Event is defined in GLTSYN_EVNT_0 register 1153 */ 1154 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { 1155 /* Check if channel is enabled */ 1156 if (pf->ptp.ext_ts_irq & (1 << chan)) { 1157 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); 1158 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); 1159 event.timestamp = (((u64)hi) << 32) | lo; 1160 event.type = PTP_CLOCK_EXTTS; 1161 event.index = chan; 1162 1163 /* Fire event */ 1164 ptp_clock_event(pf->ptp.clock, &event); 1165 pf->ptp.ext_ts_irq &= ~(1 << chan); 1166 } 1167 } 1168 } 1169 1170 /** 1171 * ice_ptp_cfg_extts - Configure EXTTS pin and channel 1172 * @pf: Board private structure 1173 * @ena: true to enable; false to disable 1174 * @chan: GPIO channel (0-3) 1175 * @gpio_pin: GPIO pin 1176 * @extts_flags: request flags from the ptp_extts_request.flags 1177 */ 1178 static int 1179 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, 1180 unsigned int extts_flags) 1181 { 1182 u32 func, aux_reg, gpio_reg, irq_reg; 1183 struct ice_hw *hw = &pf->hw; 1184 u8 tmr_idx; 1185 1186 if (chan > (unsigned int)pf->ptp.info.n_ext_ts) 1187 return -EINVAL; 1188 1189 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1190 1191 irq_reg = rd32(hw, PFINT_OICR_ENA); 1192 1193 if (ena) { 1194 /* Enable the interrupt */ 1195 irq_reg |= PFINT_OICR_TSYN_EVNT_M; 1196 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; 1197 1198 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) 1199 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) 1200 1201 /* set event level to requested edge */ 1202 if (extts_flags & PTP_FALLING_EDGE) 1203 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; 1204 if (extts_flags & PTP_RISING_EDGE) 1205 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; 1206 1207 /* Write GPIO CTL reg. 1208 * 0x1 is input sampled by EVENT register(channel) 1209 * + num_in_channels * tmr_idx 1210 */ 1211 func = 1 + chan + (tmr_idx * 3); 1212 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & 1213 GLGEN_GPIO_CTL_PIN_FUNC_M); 1214 pf->ptp.ext_ts_chan |= (1 << chan); 1215 } else { 1216 /* clear the values we set to reset defaults */ 1217 aux_reg = 0; 1218 gpio_reg = 0; 1219 pf->ptp.ext_ts_chan &= ~(1 << chan); 1220 if (!pf->ptp.ext_ts_chan) 1221 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; 1222 } 1223 1224 wr32(hw, PFINT_OICR_ENA, irq_reg); 1225 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); 1226 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); 1227 1228 return 0; 1229 } 1230 1231 /** 1232 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave 1233 * @pf: Board private structure 1234 * @chan: GPIO channel (0-3) 1235 * @config: desired periodic clk configuration. NULL will disable channel 1236 * @store: If set to true the values will be stored 1237 * 1238 * Configure the internal clock generator modules to generate the clock wave of 1239 * specified period. 1240 */ 1241 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, 1242 struct ice_perout_channel *config, bool store) 1243 { 1244 u64 current_time, period, start_time, phase; 1245 struct ice_hw *hw = &pf->hw; 1246 u32 func, val, gpio_pin; 1247 u8 tmr_idx; 1248 1249 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1250 1251 /* 0. Reset mode & out_en in AUX_OUT */ 1252 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); 1253 1254 /* If we're disabling the output, clear out CLKO and TGT and keep 1255 * output level low 1256 */ 1257 if (!config || !config->ena) { 1258 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); 1259 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); 1260 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); 1261 1262 val = GLGEN_GPIO_CTL_PIN_DIR_M; 1263 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; 1264 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1265 1266 /* Store the value if requested */ 1267 if (store) 1268 memset(&pf->ptp.perout_channels[chan], 0, 1269 sizeof(struct ice_perout_channel)); 1270 1271 return 0; 1272 } 1273 period = config->period; 1274 start_time = config->start_time; 1275 div64_u64_rem(start_time, period, &phase); 1276 gpio_pin = config->gpio_pin; 1277 1278 /* 1. Write clkout with half of required period value */ 1279 if (period & 0x1) { 1280 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); 1281 goto err; 1282 } 1283 1284 period >>= 1; 1285 1286 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick 1287 */ 1288 #define MIN_PULSE 3 1289 if (period <= MIN_PULSE || period > U32_MAX) { 1290 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", 1291 MIN_PULSE * 2); 1292 goto err; 1293 } 1294 1295 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); 1296 1297 /* Allow time for programming before start_time is hit */ 1298 current_time = ice_ptp_read_src_clk_reg(pf, NULL); 1299 1300 /* if start time is in the past start the timer at the nearest second 1301 * maintaining phase 1302 */ 1303 if (start_time < current_time) 1304 start_time = div64_u64(current_time + NSEC_PER_SEC - 1, 1305 NSEC_PER_SEC) * NSEC_PER_SEC + phase; 1306 1307 if (ice_is_e810(hw)) 1308 start_time -= E810_OUT_PROP_DELAY_NS; 1309 else 1310 start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); 1311 1312 /* 2. Write TARGET time */ 1313 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); 1314 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); 1315 1316 /* 3. Write AUX_OUT register */ 1317 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; 1318 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); 1319 1320 /* 4. write GPIO CTL reg */ 1321 func = 8 + chan + (tmr_idx * 4); 1322 val = GLGEN_GPIO_CTL_PIN_DIR_M | 1323 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); 1324 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1325 1326 /* Store the value if requested */ 1327 if (store) { 1328 memcpy(&pf->ptp.perout_channels[chan], config, 1329 sizeof(struct ice_perout_channel)); 1330 pf->ptp.perout_channels[chan].start_time = phase; 1331 } 1332 1333 return 0; 1334 err: 1335 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); 1336 return -EFAULT; 1337 } 1338 1339 /** 1340 * ice_ptp_disable_all_clkout - Disable all currently configured outputs 1341 * @pf: pointer to the PF structure 1342 * 1343 * Disable all currently configured clock outputs. This is necessary before 1344 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to 1345 * re-enable the clocks again. 1346 */ 1347 static void ice_ptp_disable_all_clkout(struct ice_pf *pf) 1348 { 1349 uint i; 1350 1351 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1352 if (pf->ptp.perout_channels[i].ena) 1353 ice_ptp_cfg_clkout(pf, i, NULL, false); 1354 } 1355 1356 /** 1357 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs 1358 * @pf: pointer to the PF structure 1359 * 1360 * Enable all currently configured clock outputs. Use this after 1361 * ice_ptp_disable_all_clkout to reconfigure the output signals according to 1362 * their configuration. 1363 */ 1364 static void ice_ptp_enable_all_clkout(struct ice_pf *pf) 1365 { 1366 uint i; 1367 1368 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1369 if (pf->ptp.perout_channels[i].ena) 1370 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], 1371 false); 1372 } 1373 1374 /** 1375 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC 1376 * @info: the driver's PTP info structure 1377 * @rq: The requested feature to change 1378 * @on: Enable/disable flag 1379 */ 1380 static int 1381 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, 1382 struct ptp_clock_request *rq, int on) 1383 { 1384 struct ice_pf *pf = ptp_info_to_pf(info); 1385 struct ice_perout_channel clk_cfg = {0}; 1386 bool sma_pres = false; 1387 unsigned int chan; 1388 u32 gpio_pin; 1389 int err; 1390 1391 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 1392 sma_pres = true; 1393 1394 switch (rq->type) { 1395 case PTP_CLK_REQ_PEROUT: 1396 chan = rq->perout.index; 1397 if (sma_pres) { 1398 if (chan == ice_pin_desc_e810t[SMA1].chan) 1399 clk_cfg.gpio_pin = GPIO_20; 1400 else if (chan == ice_pin_desc_e810t[SMA2].chan) 1401 clk_cfg.gpio_pin = GPIO_22; 1402 else 1403 return -1; 1404 } else if (ice_is_e810t(&pf->hw)) { 1405 if (chan == 0) 1406 clk_cfg.gpio_pin = GPIO_20; 1407 else 1408 clk_cfg.gpio_pin = GPIO_22; 1409 } else if (chan == PPS_CLK_GEN_CHAN) { 1410 clk_cfg.gpio_pin = PPS_PIN_INDEX; 1411 } else { 1412 clk_cfg.gpio_pin = chan; 1413 } 1414 1415 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + 1416 rq->perout.period.nsec); 1417 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + 1418 rq->perout.start.nsec); 1419 clk_cfg.ena = !!on; 1420 1421 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); 1422 break; 1423 case PTP_CLK_REQ_EXTTS: 1424 chan = rq->extts.index; 1425 if (sma_pres) { 1426 if (chan < ice_pin_desc_e810t[SMA2].chan) 1427 gpio_pin = GPIO_21; 1428 else 1429 gpio_pin = GPIO_23; 1430 } else if (ice_is_e810t(&pf->hw)) { 1431 if (chan == 0) 1432 gpio_pin = GPIO_21; 1433 else 1434 gpio_pin = GPIO_23; 1435 } else { 1436 gpio_pin = chan; 1437 } 1438 1439 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, 1440 rq->extts.flags); 1441 break; 1442 default: 1443 return -EOPNOTSUPP; 1444 } 1445 1446 return err; 1447 } 1448 1449 /** 1450 * ice_ptp_gettimex64 - Get the time of the clock 1451 * @info: the driver's PTP info structure 1452 * @ts: timespec64 structure to hold the current time value 1453 * @sts: Optional parameter for holding a pair of system timestamps from 1454 * the system clock. Will be ignored if NULL is given. 1455 * 1456 * Read the device clock and return the correct value on ns, after converting it 1457 * into a timespec struct. 1458 */ 1459 static int 1460 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, 1461 struct ptp_system_timestamp *sts) 1462 { 1463 struct ice_pf *pf = ptp_info_to_pf(info); 1464 struct ice_hw *hw = &pf->hw; 1465 1466 if (!ice_ptp_lock(hw)) { 1467 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); 1468 return -EBUSY; 1469 } 1470 1471 ice_ptp_read_time(pf, ts, sts); 1472 ice_ptp_unlock(hw); 1473 1474 return 0; 1475 } 1476 1477 /** 1478 * ice_ptp_settime64 - Set the time of the clock 1479 * @info: the driver's PTP info structure 1480 * @ts: timespec64 structure that holds the new time value 1481 * 1482 * Set the device clock to the user input value. The conversion from timespec 1483 * to ns happens in the write function. 1484 */ 1485 static int 1486 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) 1487 { 1488 struct ice_pf *pf = ptp_info_to_pf(info); 1489 struct timespec64 ts64 = *ts; 1490 struct ice_hw *hw = &pf->hw; 1491 int err; 1492 1493 /* For Vernier mode, we need to recalibrate after new settime 1494 * Start with disabling timestamp block 1495 */ 1496 if (pf->ptp.port.link_up) 1497 ice_ptp_port_phy_stop(&pf->ptp.port); 1498 1499 if (!ice_ptp_lock(hw)) { 1500 err = -EBUSY; 1501 goto exit; 1502 } 1503 1504 /* Disable periodic outputs */ 1505 ice_ptp_disable_all_clkout(pf); 1506 1507 err = ice_ptp_write_init(pf, &ts64); 1508 ice_ptp_unlock(hw); 1509 1510 if (!err) 1511 ice_ptp_update_cached_phctime(pf); 1512 1513 /* Reenable periodic outputs */ 1514 ice_ptp_enable_all_clkout(pf); 1515 1516 /* Recalibrate and re-enable timestamp block */ 1517 if (pf->ptp.port.link_up) 1518 ice_ptp_port_phy_restart(&pf->ptp.port); 1519 exit: 1520 if (err) { 1521 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); 1522 return err; 1523 } 1524 1525 return 0; 1526 } 1527 1528 /** 1529 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment 1530 * @info: the driver's PTP info structure 1531 * @delta: Offset in nanoseconds to adjust the time by 1532 */ 1533 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) 1534 { 1535 struct timespec64 now, then; 1536 int ret; 1537 1538 then = ns_to_timespec64(delta); 1539 ret = ice_ptp_gettimex64(info, &now, NULL); 1540 if (ret) 1541 return ret; 1542 now = timespec64_add(now, then); 1543 1544 return ice_ptp_settime64(info, (const struct timespec64 *)&now); 1545 } 1546 1547 /** 1548 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta 1549 * @info: the driver's PTP info structure 1550 * @delta: Offset in nanoseconds to adjust the time by 1551 */ 1552 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) 1553 { 1554 struct ice_pf *pf = ptp_info_to_pf(info); 1555 struct ice_hw *hw = &pf->hw; 1556 struct device *dev; 1557 int err; 1558 1559 dev = ice_pf_to_dev(pf); 1560 1561 /* Hardware only supports atomic adjustments using signed 32-bit 1562 * integers. For any adjustment outside this range, perform 1563 * a non-atomic get->adjust->set flow. 1564 */ 1565 if (delta > S32_MAX || delta < S32_MIN) { 1566 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); 1567 return ice_ptp_adjtime_nonatomic(info, delta); 1568 } 1569 1570 if (!ice_ptp_lock(hw)) { 1571 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); 1572 return -EBUSY; 1573 } 1574 1575 /* Disable periodic outputs */ 1576 ice_ptp_disable_all_clkout(pf); 1577 1578 err = ice_ptp_write_adj(pf, delta); 1579 1580 /* Reenable periodic outputs */ 1581 ice_ptp_enable_all_clkout(pf); 1582 1583 ice_ptp_unlock(hw); 1584 1585 if (err) { 1586 dev_err(dev, "PTP failed to adjust time, err %d\n", err); 1587 return err; 1588 } 1589 1590 ice_ptp_update_cached_phctime(pf); 1591 1592 return 0; 1593 } 1594 1595 #ifdef CONFIG_ICE_HWTS 1596 /** 1597 * ice_ptp_get_syncdevicetime - Get the cross time stamp info 1598 * @device: Current device time 1599 * @system: System counter value read synchronously with device time 1600 * @ctx: Context provided by timekeeping code 1601 * 1602 * Read device and system (ART) clock simultaneously and return the corrected 1603 * clock values in ns. 1604 */ 1605 static int 1606 ice_ptp_get_syncdevicetime(ktime_t *device, 1607 struct system_counterval_t *system, 1608 void *ctx) 1609 { 1610 struct ice_pf *pf = (struct ice_pf *)ctx; 1611 struct ice_hw *hw = &pf->hw; 1612 u32 hh_lock, hh_art_ctl; 1613 int i; 1614 1615 /* Get the HW lock */ 1616 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1617 if (hh_lock & PFHH_SEM_BUSY_M) { 1618 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); 1619 return -EFAULT; 1620 } 1621 1622 /* Start the ART and device clock sync sequence */ 1623 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1624 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; 1625 wr32(hw, GLHH_ART_CTL, hh_art_ctl); 1626 1627 #define MAX_HH_LOCK_TRIES 100 1628 1629 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { 1630 /* Wait for sync to complete */ 1631 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1632 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { 1633 udelay(1); 1634 continue; 1635 } else { 1636 u32 hh_ts_lo, hh_ts_hi, tmr_idx; 1637 u64 hh_ts; 1638 1639 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 1640 /* Read ART time */ 1641 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); 1642 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); 1643 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1644 *system = convert_art_ns_to_tsc(hh_ts); 1645 /* Read Device source clock time */ 1646 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); 1647 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); 1648 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1649 *device = ns_to_ktime(hh_ts); 1650 break; 1651 } 1652 } 1653 /* Release HW lock */ 1654 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1655 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; 1656 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); 1657 1658 if (i == MAX_HH_LOCK_TRIES) 1659 return -ETIMEDOUT; 1660 1661 return 0; 1662 } 1663 1664 /** 1665 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp 1666 * @info: the driver's PTP info structure 1667 * @cts: The memory to fill the cross timestamp info 1668 * 1669 * Capture a cross timestamp between the ART and the device PTP hardware 1670 * clock. Fill the cross timestamp information and report it back to the 1671 * caller. 1672 * 1673 * This is only valid for E822 devices which have support for generating the 1674 * cross timestamp via PCIe PTM. 1675 * 1676 * In order to correctly correlate the ART timestamp back to the TSC time, the 1677 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. 1678 */ 1679 static int 1680 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, 1681 struct system_device_crosststamp *cts) 1682 { 1683 struct ice_pf *pf = ptp_info_to_pf(info); 1684 1685 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, 1686 pf, NULL, cts); 1687 } 1688 #endif /* CONFIG_ICE_HWTS */ 1689 1690 /** 1691 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config 1692 * @pf: Board private structure 1693 * @ifr: ioctl data 1694 * 1695 * Copy the timestamping config to user buffer 1696 */ 1697 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 1698 { 1699 struct hwtstamp_config *config; 1700 1701 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1702 return -EIO; 1703 1704 config = &pf->ptp.tstamp_config; 1705 1706 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 1707 -EFAULT : 0; 1708 } 1709 1710 /** 1711 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode 1712 * @pf: Board private structure 1713 * @config: hwtstamp settings requested or saved 1714 */ 1715 static int 1716 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) 1717 { 1718 switch (config->tx_type) { 1719 case HWTSTAMP_TX_OFF: 1720 ice_set_tx_tstamp(pf, false); 1721 break; 1722 case HWTSTAMP_TX_ON: 1723 ice_set_tx_tstamp(pf, true); 1724 break; 1725 default: 1726 return -ERANGE; 1727 } 1728 1729 switch (config->rx_filter) { 1730 case HWTSTAMP_FILTER_NONE: 1731 ice_set_rx_tstamp(pf, false); 1732 break; 1733 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1734 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1735 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1736 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1737 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1738 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1739 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1740 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1741 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1742 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1743 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1744 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1745 case HWTSTAMP_FILTER_NTP_ALL: 1746 case HWTSTAMP_FILTER_ALL: 1747 ice_set_rx_tstamp(pf, true); 1748 break; 1749 default: 1750 return -ERANGE; 1751 } 1752 1753 return 0; 1754 } 1755 1756 /** 1757 * ice_ptp_set_ts_config - ioctl interface to control the timestamping 1758 * @pf: Board private structure 1759 * @ifr: ioctl data 1760 * 1761 * Get the user config and store it 1762 */ 1763 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 1764 { 1765 struct hwtstamp_config config; 1766 int err; 1767 1768 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1769 return -EAGAIN; 1770 1771 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1772 return -EFAULT; 1773 1774 err = ice_ptp_set_timestamp_mode(pf, &config); 1775 if (err) 1776 return err; 1777 1778 /* Return the actual configuration set */ 1779 config = pf->ptp.tstamp_config; 1780 1781 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1782 -EFAULT : 0; 1783 } 1784 1785 /** 1786 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp 1787 * @rx_ring: Ring to get the VSI info 1788 * @rx_desc: Receive descriptor 1789 * @skb: Particular skb to send timestamp with 1790 * 1791 * The driver receives a notification in the receive descriptor with timestamp. 1792 * The timestamp is in ns, so we must convert the result first. 1793 */ 1794 void 1795 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, 1796 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) 1797 { 1798 u32 ts_high; 1799 u64 ts_ns; 1800 1801 /* Populate timesync data into skb */ 1802 if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) { 1803 struct skb_shared_hwtstamps *hwtstamps; 1804 1805 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific 1806 * cached PHC value, rather than accessing the PF. This also 1807 * allows us to simply pass the upper 32bits of nanoseconds 1808 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as 1809 * it would just discard these bits itself. 1810 */ 1811 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); 1812 ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high); 1813 1814 hwtstamps = skb_hwtstamps(skb); 1815 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1816 hwtstamps->hwtstamp = ns_to_ktime(ts_ns); 1817 } 1818 } 1819 1820 /** 1821 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins 1822 * @pf: pointer to the PF structure 1823 * @info: PTP clock info structure 1824 * 1825 * Disable the OS access to the SMA pins. Called to clear out the OS 1826 * indications of pin support when we fail to setup the E810-T SMA control 1827 * register. 1828 */ 1829 static void 1830 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 1831 { 1832 struct device *dev = ice_pf_to_dev(pf); 1833 1834 dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); 1835 1836 info->enable = NULL; 1837 info->verify = NULL; 1838 info->n_pins = 0; 1839 info->n_ext_ts = 0; 1840 info->n_per_out = 0; 1841 } 1842 1843 /** 1844 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins 1845 * @pf: pointer to the PF structure 1846 * @info: PTP clock info structure 1847 * 1848 * Finish setting up the SMA pins by allocating pin_config, and setting it up 1849 * according to the current status of the SMA. On failure, disable all of the 1850 * extended SMA pin support. 1851 */ 1852 static void 1853 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 1854 { 1855 struct device *dev = ice_pf_to_dev(pf); 1856 int err; 1857 1858 /* Allocate memory for kernel pins interface */ 1859 info->pin_config = devm_kcalloc(dev, info->n_pins, 1860 sizeof(*info->pin_config), GFP_KERNEL); 1861 if (!info->pin_config) { 1862 ice_ptp_disable_sma_pins_e810t(pf, info); 1863 return; 1864 } 1865 1866 /* Read current SMA status */ 1867 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); 1868 if (err) 1869 ice_ptp_disable_sma_pins_e810t(pf, info); 1870 } 1871 1872 /** 1873 * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs 1874 * @pf: pointer to the PF instance 1875 * @info: PTP clock capabilities 1876 */ 1877 static void 1878 ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 1879 { 1880 /* Check if SMA controller is in the netlist */ 1881 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) && 1882 !ice_is_pca9575_present(&pf->hw)) 1883 ice_clear_feature_support(pf, ICE_F_SMA_CTRL); 1884 1885 if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 1886 info->n_ext_ts = N_EXT_TS_E810_NO_SMA; 1887 info->n_per_out = N_PER_OUT_E810T_NO_SMA; 1888 return; 1889 } 1890 1891 info->n_per_out = N_PER_OUT_E810T; 1892 info->n_ext_ts = N_EXT_TS_E810; 1893 info->n_pins = NUM_PTP_PINS_E810T; 1894 info->verify = ice_verify_pin_e810t; 1895 1896 /* Complete setup of the SMA pins */ 1897 ice_ptp_setup_sma_pins_e810t(pf, info); 1898 } 1899 1900 /** 1901 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs 1902 * @info: PTP clock capabilities 1903 */ 1904 static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info) 1905 { 1906 info->n_per_out = N_PER_OUT_E810; 1907 info->n_ext_ts = N_EXT_TS_E810; 1908 } 1909 1910 /** 1911 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support 1912 * @pf: Board private structure 1913 * @info: PTP info to fill 1914 * 1915 * Assign functions to the PTP capabiltiies structure for E822 devices. 1916 * Functions which operate across all device families should be set directly 1917 * in ice_ptp_set_caps. Only add functions here which are distinct for E822 1918 * devices. 1919 */ 1920 static void 1921 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) 1922 { 1923 #ifdef CONFIG_ICE_HWTS 1924 if (boot_cpu_has(X86_FEATURE_ART) && 1925 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) 1926 info->getcrosststamp = ice_ptp_getcrosststamp_e822; 1927 #endif /* CONFIG_ICE_HWTS */ 1928 } 1929 1930 /** 1931 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support 1932 * @pf: Board private structure 1933 * @info: PTP info to fill 1934 * 1935 * Assign functions to the PTP capabiltiies structure for E810 devices. 1936 * Functions which operate across all device families should be set directly 1937 * in ice_ptp_set_caps. Only add functions here which are distinct for e810 1938 * devices. 1939 */ 1940 static void 1941 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) 1942 { 1943 info->enable = ice_ptp_gpio_enable_e810; 1944 1945 if (ice_is_e810t(&pf->hw)) 1946 ice_ptp_setup_pins_e810t(pf, info); 1947 else 1948 ice_ptp_setup_pins_e810(info); 1949 } 1950 1951 /** 1952 * ice_ptp_set_caps - Set PTP capabilities 1953 * @pf: Board private structure 1954 */ 1955 static void ice_ptp_set_caps(struct ice_pf *pf) 1956 { 1957 struct ptp_clock_info *info = &pf->ptp.info; 1958 struct device *dev = ice_pf_to_dev(pf); 1959 1960 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", 1961 dev_driver_string(dev), dev_name(dev)); 1962 info->owner = THIS_MODULE; 1963 info->max_adj = 999999999; 1964 info->adjtime = ice_ptp_adjtime; 1965 info->adjfine = ice_ptp_adjfine; 1966 info->gettimex64 = ice_ptp_gettimex64; 1967 info->settime64 = ice_ptp_settime64; 1968 1969 if (ice_is_e810(&pf->hw)) 1970 ice_ptp_set_funcs_e810(pf, info); 1971 else 1972 ice_ptp_set_funcs_e822(pf, info); 1973 } 1974 1975 /** 1976 * ice_ptp_create_clock - Create PTP clock device for userspace 1977 * @pf: Board private structure 1978 * 1979 * This function creates a new PTP clock device. It only creates one if we 1980 * don't already have one. Will return error if it can't create one, but success 1981 * if we already have a device. Should be used by ice_ptp_init to create clock 1982 * initially, and prevent global resets from creating new clock devices. 1983 */ 1984 static long ice_ptp_create_clock(struct ice_pf *pf) 1985 { 1986 struct ptp_clock_info *info; 1987 struct ptp_clock *clock; 1988 struct device *dev; 1989 1990 /* No need to create a clock device if we already have one */ 1991 if (pf->ptp.clock) 1992 return 0; 1993 1994 ice_ptp_set_caps(pf); 1995 1996 info = &pf->ptp.info; 1997 dev = ice_pf_to_dev(pf); 1998 1999 /* Attempt to register the clock before enabling the hardware. */ 2000 clock = ptp_clock_register(info, dev); 2001 if (IS_ERR(clock)) 2002 return PTR_ERR(clock); 2003 2004 pf->ptp.clock = clock; 2005 2006 return 0; 2007 } 2008 2009 /** 2010 * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port 2011 * @work: pointer to the kthread_work struct 2012 * 2013 * Process timestamps captured by the PHY associated with this port. To do 2014 * this, loop over each index with a waiting skb. 2015 * 2016 * If a given index has a valid timestamp, perform the following steps: 2017 * 2018 * 1) copy the timestamp out of the PHY register 2019 * 4) clear the timestamp valid bit in the PHY register 2020 * 5) unlock the index by clearing the associated in_use bit. 2021 * 2) extend the 40b timestamp value to get a 64bit timestamp 2022 * 3) send that timestamp to the stack 2023 * 2024 * After looping, if we still have waiting SKBs, then re-queue the work. This 2025 * may cause us effectively poll even when not strictly necessary. We do this 2026 * because it's possible a new timestamp was requested around the same time as 2027 * the interrupt. In some cases hardware might not interrupt us again when the 2028 * timestamp is captured. 2029 * 2030 * Note that we only take the tracking lock when clearing the bit and when 2031 * checking if we need to re-queue this task. The only place where bits can be 2032 * set is the hard xmit routine where an SKB has a request flag set. The only 2033 * places where we clear bits are this work function, or the periodic cleanup 2034 * thread. If the cleanup thread clears a bit we're processing we catch it 2035 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread 2036 * starts a new timestamp, we might not begin processing it right away but we 2037 * will notice it at the end when we re-queue the work item. If a Tx thread 2038 * starts a new timestamp just after this function exits without re-queuing, 2039 * the interrupt when the timestamp finishes should trigger. Avoiding holding 2040 * the lock for the entire function is important in order to ensure that Tx 2041 * threads do not get blocked while waiting for the lock. 2042 */ 2043 static void ice_ptp_tx_tstamp_work(struct kthread_work *work) 2044 { 2045 struct ice_ptp_port *ptp_port; 2046 struct ice_ptp_tx *tx; 2047 struct ice_pf *pf; 2048 struct ice_hw *hw; 2049 u8 idx; 2050 2051 tx = container_of(work, struct ice_ptp_tx, work); 2052 if (!tx->init) 2053 return; 2054 2055 ptp_port = container_of(tx, struct ice_ptp_port, tx); 2056 pf = ptp_port_to_pf(ptp_port); 2057 hw = &pf->hw; 2058 2059 for_each_set_bit(idx, tx->in_use, tx->len) { 2060 struct skb_shared_hwtstamps shhwtstamps = {}; 2061 u8 phy_idx = idx + tx->quad_offset; 2062 u64 raw_tstamp, tstamp; 2063 struct sk_buff *skb; 2064 int err; 2065 2066 err = ice_read_phy_tstamp(hw, tx->quad, phy_idx, 2067 &raw_tstamp); 2068 if (err) 2069 continue; 2070 2071 /* Check if the timestamp is invalid or stale */ 2072 if (!(raw_tstamp & ICE_PTP_TS_VALID) || 2073 raw_tstamp == tx->tstamps[idx].cached_tstamp) 2074 continue; 2075 2076 /* The timestamp is valid, so we'll go ahead and clear this 2077 * index and then send the timestamp up to the stack. 2078 */ 2079 spin_lock(&tx->lock); 2080 tx->tstamps[idx].cached_tstamp = raw_tstamp; 2081 clear_bit(idx, tx->in_use); 2082 skb = tx->tstamps[idx].skb; 2083 tx->tstamps[idx].skb = NULL; 2084 spin_unlock(&tx->lock); 2085 2086 /* it's (unlikely but) possible we raced with the cleanup 2087 * thread for discarding old timestamp requests. 2088 */ 2089 if (!skb) 2090 continue; 2091 2092 /* Extend the timestamp using cached PHC time */ 2093 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 2094 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 2095 2096 skb_tstamp_tx(skb, &shhwtstamps); 2097 dev_kfree_skb_any(skb); 2098 } 2099 2100 /* Check if we still have work to do. If so, re-queue this task to 2101 * poll for remaining timestamps. 2102 */ 2103 spin_lock(&tx->lock); 2104 if (!bitmap_empty(tx->in_use, tx->len)) 2105 kthread_queue_work(pf->ptp.kworker, &tx->work); 2106 spin_unlock(&tx->lock); 2107 } 2108 2109 /** 2110 * ice_ptp_request_ts - Request an available Tx timestamp index 2111 * @tx: the PTP Tx timestamp tracker to request from 2112 * @skb: the SKB to associate with this timestamp request 2113 */ 2114 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 2115 { 2116 u8 idx; 2117 2118 /* Check if this tracker is initialized */ 2119 if (!tx->init || tx->calibrating) 2120 return -1; 2121 2122 spin_lock(&tx->lock); 2123 /* Find and set the first available index */ 2124 idx = find_first_zero_bit(tx->in_use, tx->len); 2125 if (idx < tx->len) { 2126 /* We got a valid index that no other thread could have set. Store 2127 * a reference to the skb and the start time to allow discarding old 2128 * requests. 2129 */ 2130 set_bit(idx, tx->in_use); 2131 tx->tstamps[idx].start = jiffies; 2132 tx->tstamps[idx].skb = skb_get(skb); 2133 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2134 } 2135 2136 spin_unlock(&tx->lock); 2137 2138 /* return the appropriate PHY timestamp register index, -1 if no 2139 * indexes were available. 2140 */ 2141 if (idx >= tx->len) 2142 return -1; 2143 else 2144 return idx + tx->quad_offset; 2145 } 2146 2147 /** 2148 * ice_ptp_process_ts - Spawn kthread work to handle timestamps 2149 * @pf: Board private structure 2150 * 2151 * Queue work required to process the PTP Tx timestamps outside of interrupt 2152 * context. 2153 */ 2154 void ice_ptp_process_ts(struct ice_pf *pf) 2155 { 2156 if (pf->ptp.port.tx.init) 2157 kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work); 2158 } 2159 2160 /** 2161 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps 2162 * @tx: Tx tracking structure to initialize 2163 * 2164 * Assumes that the length has already been initialized. Do not call directly, 2165 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. 2166 */ 2167 static int 2168 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) 2169 { 2170 tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); 2171 if (!tx->tstamps) 2172 return -ENOMEM; 2173 2174 tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); 2175 if (!tx->in_use) { 2176 kfree(tx->tstamps); 2177 tx->tstamps = NULL; 2178 return -ENOMEM; 2179 } 2180 2181 spin_lock_init(&tx->lock); 2182 kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work); 2183 2184 tx->init = 1; 2185 2186 return 0; 2187 } 2188 2189 /** 2190 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker 2191 * @pf: Board private structure 2192 * @tx: the tracker to flush 2193 */ 2194 static void 2195 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 2196 { 2197 u8 idx; 2198 2199 for (idx = 0; idx < tx->len; idx++) { 2200 u8 phy_idx = idx + tx->quad_offset; 2201 2202 spin_lock(&tx->lock); 2203 if (tx->tstamps[idx].skb) { 2204 dev_kfree_skb_any(tx->tstamps[idx].skb); 2205 tx->tstamps[idx].skb = NULL; 2206 } 2207 clear_bit(idx, tx->in_use); 2208 spin_unlock(&tx->lock); 2209 2210 /* Clear any potential residual timestamp in the PHY block */ 2211 if (!pf->hw.reset_ongoing) 2212 ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); 2213 } 2214 } 2215 2216 /** 2217 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker 2218 * @pf: Board private structure 2219 * @tx: Tx tracking structure to release 2220 * 2221 * Free memory associated with the Tx timestamp tracker. 2222 */ 2223 static void 2224 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 2225 { 2226 tx->init = 0; 2227 2228 kthread_cancel_work_sync(&tx->work); 2229 2230 ice_ptp_flush_tx_tracker(pf, tx); 2231 2232 kfree(tx->tstamps); 2233 tx->tstamps = NULL; 2234 2235 bitmap_free(tx->in_use); 2236 tx->in_use = NULL; 2237 2238 tx->len = 0; 2239 } 2240 2241 /** 2242 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps 2243 * @pf: Board private structure 2244 * @tx: the Tx tracking structure to initialize 2245 * @port: the port this structure tracks 2246 * 2247 * Initialize the Tx timestamp tracker for this port. For generic MAC devices, 2248 * the timestamp block is shared for all ports in the same quad. To avoid 2249 * ports using the same timestamp index, logically break the block of 2250 * registers into chunks based on the port number. 2251 */ 2252 static int 2253 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) 2254 { 2255 tx->quad = port / ICE_PORTS_PER_QUAD; 2256 tx->quad_offset = tx->quad * INDEX_PER_PORT; 2257 tx->len = INDEX_PER_PORT; 2258 2259 return ice_ptp_alloc_tx_tracker(tx); 2260 } 2261 2262 /** 2263 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps 2264 * @pf: Board private structure 2265 * @tx: the Tx tracking structure to initialize 2266 * 2267 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each 2268 * port has its own block of timestamps, independent of the other ports. 2269 */ 2270 static int 2271 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) 2272 { 2273 tx->quad = pf->hw.port_info->lport; 2274 tx->quad_offset = 0; 2275 tx->len = INDEX_PER_QUAD; 2276 2277 return ice_ptp_alloc_tx_tracker(tx); 2278 } 2279 2280 /** 2281 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped 2282 * @tx: PTP Tx tracker to clean up 2283 * 2284 * Loop through the Tx timestamp requests and see if any of them have been 2285 * waiting for a long time. Discard any SKBs that have been waiting for more 2286 * than 2 seconds. This is long enough to be reasonably sure that the 2287 * timestamp will never be captured. This might happen if the packet gets 2288 * discarded before it reaches the PHY timestamping block. 2289 */ 2290 static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx) 2291 { 2292 u8 idx; 2293 2294 if (!tx->init) 2295 return; 2296 2297 for_each_set_bit(idx, tx->in_use, tx->len) { 2298 struct sk_buff *skb; 2299 2300 /* Check if this SKB has been waiting for too long */ 2301 if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) 2302 continue; 2303 2304 spin_lock(&tx->lock); 2305 skb = tx->tstamps[idx].skb; 2306 tx->tstamps[idx].skb = NULL; 2307 clear_bit(idx, tx->in_use); 2308 spin_unlock(&tx->lock); 2309 2310 /* Free the SKB after we've cleared the bit */ 2311 dev_kfree_skb_any(skb); 2312 } 2313 } 2314 2315 static void ice_ptp_periodic_work(struct kthread_work *work) 2316 { 2317 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); 2318 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 2319 2320 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2321 return; 2322 2323 ice_ptp_update_cached_phctime(pf); 2324 2325 ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx); 2326 2327 /* Run twice a second */ 2328 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 2329 msecs_to_jiffies(500)); 2330 } 2331 2332 /** 2333 * ice_ptp_reset - Initialize PTP hardware clock support after reset 2334 * @pf: Board private structure 2335 */ 2336 void ice_ptp_reset(struct ice_pf *pf) 2337 { 2338 struct ice_ptp *ptp = &pf->ptp; 2339 struct ice_hw *hw = &pf->hw; 2340 struct timespec64 ts; 2341 int err, itr = 1; 2342 u64 time_diff; 2343 2344 if (test_bit(ICE_PFR_REQ, pf->state)) 2345 goto pfr; 2346 2347 if (!hw->func_caps.ts_func_info.src_tmr_owned) 2348 goto reset_ts; 2349 2350 err = ice_ptp_init_phc(hw); 2351 if (err) 2352 goto err; 2353 2354 /* Acquire the global hardware lock */ 2355 if (!ice_ptp_lock(hw)) { 2356 err = -EBUSY; 2357 goto err; 2358 } 2359 2360 /* Write the increment time value to PHY and LAN */ 2361 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2362 if (err) { 2363 ice_ptp_unlock(hw); 2364 goto err; 2365 } 2366 2367 /* Write the initial Time value to PHY and LAN using the cached PHC 2368 * time before the reset and time difference between stopping and 2369 * starting the clock. 2370 */ 2371 if (ptp->cached_phc_time) { 2372 time_diff = ktime_get_real_ns() - ptp->reset_time; 2373 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); 2374 } else { 2375 ts = ktime_to_timespec64(ktime_get_real()); 2376 } 2377 err = ice_ptp_write_init(pf, &ts); 2378 if (err) { 2379 ice_ptp_unlock(hw); 2380 goto err; 2381 } 2382 2383 /* Release the global hardware lock */ 2384 ice_ptp_unlock(hw); 2385 2386 if (!ice_is_e810(hw)) { 2387 /* Enable quad interrupts */ 2388 err = ice_ptp_tx_ena_intr(pf, true, itr); 2389 if (err) 2390 goto err; 2391 } 2392 2393 reset_ts: 2394 /* Restart the PHY timestamping block */ 2395 ice_ptp_reset_phy_timestamping(pf); 2396 2397 pfr: 2398 /* Init Tx structures */ 2399 if (ice_is_e810(&pf->hw)) { 2400 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); 2401 } else { 2402 kthread_init_delayed_work(&ptp->port.ov_work, 2403 ice_ptp_wait_for_offset_valid); 2404 err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, 2405 ptp->port.port_num); 2406 } 2407 if (err) 2408 goto err; 2409 2410 set_bit(ICE_FLAG_PTP, pf->flags); 2411 2412 /* Start periodic work going */ 2413 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2414 2415 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); 2416 return; 2417 2418 err: 2419 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); 2420 } 2421 2422 /** 2423 * ice_ptp_prepare_for_reset - Prepare PTP for reset 2424 * @pf: Board private structure 2425 */ 2426 void ice_ptp_prepare_for_reset(struct ice_pf *pf) 2427 { 2428 struct ice_ptp *ptp = &pf->ptp; 2429 u8 src_tmr; 2430 2431 clear_bit(ICE_FLAG_PTP, pf->flags); 2432 2433 /* Disable timestamping for both Tx and Rx */ 2434 ice_ptp_cfg_timestamp(pf, false); 2435 2436 kthread_cancel_delayed_work_sync(&ptp->work); 2437 kthread_cancel_work_sync(&ptp->extts_work); 2438 2439 if (test_bit(ICE_PFR_REQ, pf->state)) 2440 return; 2441 2442 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2443 2444 /* Disable periodic outputs */ 2445 ice_ptp_disable_all_clkout(pf); 2446 2447 src_tmr = ice_get_ptp_src_clock_index(&pf->hw); 2448 2449 /* Disable source clock */ 2450 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); 2451 2452 /* Acquire PHC and system timer to restore after reset */ 2453 ptp->reset_time = ktime_get_real_ns(); 2454 } 2455 2456 /** 2457 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device 2458 * @pf: Board private structure 2459 * 2460 * Setup and initialize a PTP clock device that represents the device hardware 2461 * clock. Save the clock index for other functions connected to the same 2462 * hardware resource. 2463 */ 2464 static int ice_ptp_init_owner(struct ice_pf *pf) 2465 { 2466 struct ice_hw *hw = &pf->hw; 2467 struct timespec64 ts; 2468 int err, itr = 1; 2469 2470 err = ice_ptp_init_phc(hw); 2471 if (err) { 2472 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", 2473 err); 2474 return err; 2475 } 2476 2477 /* Acquire the global hardware lock */ 2478 if (!ice_ptp_lock(hw)) { 2479 err = -EBUSY; 2480 goto err_exit; 2481 } 2482 2483 /* Write the increment time value to PHY and LAN */ 2484 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2485 if (err) { 2486 ice_ptp_unlock(hw); 2487 goto err_exit; 2488 } 2489 2490 ts = ktime_to_timespec64(ktime_get_real()); 2491 /* Write the initial Time value to PHY and LAN */ 2492 err = ice_ptp_write_init(pf, &ts); 2493 if (err) { 2494 ice_ptp_unlock(hw); 2495 goto err_exit; 2496 } 2497 2498 /* Release the global hardware lock */ 2499 ice_ptp_unlock(hw); 2500 2501 if (!ice_is_e810(hw)) { 2502 /* Enable quad interrupts */ 2503 err = ice_ptp_tx_ena_intr(pf, true, itr); 2504 if (err) 2505 goto err_exit; 2506 } 2507 2508 /* Ensure we have a clock device */ 2509 err = ice_ptp_create_clock(pf); 2510 if (err) 2511 goto err_clk; 2512 2513 /* Store the PTP clock index for other PFs */ 2514 ice_set_ptp_clock_index(pf); 2515 2516 return 0; 2517 2518 err_clk: 2519 pf->ptp.clock = NULL; 2520 err_exit: 2521 return err; 2522 } 2523 2524 /** 2525 * ice_ptp_init_work - Initialize PTP work threads 2526 * @pf: Board private structure 2527 * @ptp: PF PTP structure 2528 */ 2529 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) 2530 { 2531 struct kthread_worker *kworker; 2532 2533 /* Initialize work functions */ 2534 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); 2535 kthread_init_work(&ptp->extts_work, ice_ptp_extts_work); 2536 2537 /* Allocate a kworker for handling work required for the ports 2538 * connected to the PTP hardware clock. 2539 */ 2540 kworker = kthread_create_worker(0, "ice-ptp-%s", 2541 dev_name(ice_pf_to_dev(pf))); 2542 if (IS_ERR(kworker)) 2543 return PTR_ERR(kworker); 2544 2545 ptp->kworker = kworker; 2546 2547 /* Start periodic work going */ 2548 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2549 2550 return 0; 2551 } 2552 2553 /** 2554 * ice_ptp_init_port - Initialize PTP port structure 2555 * @pf: Board private structure 2556 * @ptp_port: PTP port structure 2557 */ 2558 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) 2559 { 2560 mutex_init(&ptp_port->ps_lock); 2561 2562 if (ice_is_e810(&pf->hw)) 2563 return ice_ptp_init_tx_e810(pf, &ptp_port->tx); 2564 2565 kthread_init_delayed_work(&ptp_port->ov_work, 2566 ice_ptp_wait_for_offset_valid); 2567 return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); 2568 } 2569 2570 /** 2571 * ice_ptp_init - Initialize PTP hardware clock support 2572 * @pf: Board private structure 2573 * 2574 * Set up the device for interacting with the PTP hardware clock for all 2575 * functions, both the function that owns the clock hardware, and the 2576 * functions connected to the clock hardware. 2577 * 2578 * The clock owner will allocate and register a ptp_clock with the 2579 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work 2580 * items used for asynchronous work such as Tx timestamps and periodic work. 2581 */ 2582 void ice_ptp_init(struct ice_pf *pf) 2583 { 2584 struct ice_ptp *ptp = &pf->ptp; 2585 struct ice_hw *hw = &pf->hw; 2586 int err; 2587 2588 /* If this function owns the clock hardware, it must allocate and 2589 * configure the PTP clock device to represent it. 2590 */ 2591 if (hw->func_caps.ts_func_info.src_tmr_owned) { 2592 err = ice_ptp_init_owner(pf); 2593 if (err) 2594 goto err; 2595 } 2596 2597 ptp->port.port_num = hw->pf_id; 2598 err = ice_ptp_init_port(pf, &ptp->port); 2599 if (err) 2600 goto err; 2601 2602 /* Start the PHY timestamping block */ 2603 ice_ptp_reset_phy_timestamping(pf); 2604 2605 set_bit(ICE_FLAG_PTP, pf->flags); 2606 err = ice_ptp_init_work(pf, ptp); 2607 if (err) 2608 goto err; 2609 2610 dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); 2611 return; 2612 2613 err: 2614 /* If we registered a PTP clock, release it */ 2615 if (pf->ptp.clock) { 2616 ptp_clock_unregister(ptp->clock); 2617 pf->ptp.clock = NULL; 2618 } 2619 clear_bit(ICE_FLAG_PTP, pf->flags); 2620 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); 2621 } 2622 2623 /** 2624 * ice_ptp_release - Disable the driver/HW support and unregister the clock 2625 * @pf: Board private structure 2626 * 2627 * This function handles the cleanup work required from the initialization by 2628 * clearing out the important information and unregistering the clock 2629 */ 2630 void ice_ptp_release(struct ice_pf *pf) 2631 { 2632 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2633 return; 2634 2635 /* Disable timestamping for both Tx and Rx */ 2636 ice_ptp_cfg_timestamp(pf, false); 2637 2638 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2639 2640 clear_bit(ICE_FLAG_PTP, pf->flags); 2641 2642 kthread_cancel_delayed_work_sync(&pf->ptp.work); 2643 2644 ice_ptp_port_phy_stop(&pf->ptp.port); 2645 mutex_destroy(&pf->ptp.port.ps_lock); 2646 if (pf->ptp.kworker) { 2647 kthread_destroy_worker(pf->ptp.kworker); 2648 pf->ptp.kworker = NULL; 2649 } 2650 2651 if (!pf->ptp.clock) 2652 return; 2653 2654 /* Disable periodic outputs */ 2655 ice_ptp_disable_all_clkout(pf); 2656 2657 ice_clear_ptp_clock_index(pf); 2658 ptp_clock_unregister(pf->ptp.clock); 2659 pf->ptp.clock = NULL; 2660 2661 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); 2662 } 2663