1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_trace.h" 7 8 #define E810_OUT_PROP_DELAY_NS 1 9 10 #define UNKNOWN_INCVAL_E822 0x100000000ULL 11 12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = { 13 /* name idx func chan */ 14 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, 15 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, 16 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, 17 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, 18 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, 19 }; 20 21 /** 22 * ice_get_sma_config_e810t 23 * @hw: pointer to the hw struct 24 * @ptp_pins: pointer to the ptp_pin_desc struture 25 * 26 * Read the configuration of the SMA control logic and put it into the 27 * ptp_pin_desc structure 28 */ 29 static int 30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) 31 { 32 u8 data, i; 33 int status; 34 35 /* Read initial pin state */ 36 status = ice_read_sma_ctrl_e810t(hw, &data); 37 if (status) 38 return status; 39 40 /* initialize with defaults */ 41 for (i = 0; i < NUM_PTP_PINS_E810T; i++) { 42 snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), 43 "%s", ice_pin_desc_e810t[i].name); 44 ptp_pins[i].index = ice_pin_desc_e810t[i].index; 45 ptp_pins[i].func = ice_pin_desc_e810t[i].func; 46 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; 47 } 48 49 /* Parse SMA1/UFL1 */ 50 switch (data & ICE_SMA1_MASK_E810T) { 51 case ICE_SMA1_MASK_E810T: 52 default: 53 ptp_pins[SMA1].func = PTP_PF_NONE; 54 ptp_pins[UFL1].func = PTP_PF_NONE; 55 break; 56 case ICE_SMA1_DIR_EN_E810T: 57 ptp_pins[SMA1].func = PTP_PF_PEROUT; 58 ptp_pins[UFL1].func = PTP_PF_NONE; 59 break; 60 case ICE_SMA1_TX_EN_E810T: 61 ptp_pins[SMA1].func = PTP_PF_EXTTS; 62 ptp_pins[UFL1].func = PTP_PF_NONE; 63 break; 64 case 0: 65 ptp_pins[SMA1].func = PTP_PF_EXTTS; 66 ptp_pins[UFL1].func = PTP_PF_PEROUT; 67 break; 68 } 69 70 /* Parse SMA2/UFL2 */ 71 switch (data & ICE_SMA2_MASK_E810T) { 72 case ICE_SMA2_MASK_E810T: 73 default: 74 ptp_pins[SMA2].func = PTP_PF_NONE; 75 ptp_pins[UFL2].func = PTP_PF_NONE; 76 break; 77 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 78 ptp_pins[SMA2].func = PTP_PF_EXTTS; 79 ptp_pins[UFL2].func = PTP_PF_NONE; 80 break; 81 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 82 ptp_pins[SMA2].func = PTP_PF_PEROUT; 83 ptp_pins[UFL2].func = PTP_PF_NONE; 84 break; 85 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): 86 ptp_pins[SMA2].func = PTP_PF_NONE; 87 ptp_pins[UFL2].func = PTP_PF_EXTTS; 88 break; 89 case ICE_SMA2_DIR_EN_E810T: 90 ptp_pins[SMA2].func = PTP_PF_PEROUT; 91 ptp_pins[UFL2].func = PTP_PF_EXTTS; 92 break; 93 } 94 95 return 0; 96 } 97 98 /** 99 * ice_ptp_set_sma_config_e810t 100 * @hw: pointer to the hw struct 101 * @ptp_pins: pointer to the ptp_pin_desc struture 102 * 103 * Set the configuration of the SMA control logic based on the configuration in 104 * num_pins parameter 105 */ 106 static int 107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw, 108 const struct ptp_pin_desc *ptp_pins) 109 { 110 int status; 111 u8 data; 112 113 /* SMA1 and UFL1 cannot be set to TX at the same time */ 114 if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 115 ptp_pins[UFL1].func == PTP_PF_PEROUT) 116 return -EINVAL; 117 118 /* SMA2 and UFL2 cannot be set to RX at the same time */ 119 if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 120 ptp_pins[UFL2].func == PTP_PF_EXTTS) 121 return -EINVAL; 122 123 /* Read initial pin state value */ 124 status = ice_read_sma_ctrl_e810t(hw, &data); 125 if (status) 126 return status; 127 128 /* Set the right sate based on the desired configuration */ 129 data &= ~ICE_SMA1_MASK_E810T; 130 if (ptp_pins[SMA1].func == PTP_PF_NONE && 131 ptp_pins[UFL1].func == PTP_PF_NONE) { 132 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); 133 data |= ICE_SMA1_MASK_E810T; 134 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 135 ptp_pins[UFL1].func == PTP_PF_NONE) { 136 dev_info(ice_hw_to_dev(hw), "SMA1 RX"); 137 data |= ICE_SMA1_TX_EN_E810T; 138 } else if (ptp_pins[SMA1].func == PTP_PF_NONE && 139 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 140 /* U.FL 1 TX will always enable SMA 1 RX */ 141 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 142 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 143 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 144 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 145 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 146 ptp_pins[UFL1].func == PTP_PF_NONE) { 147 dev_info(ice_hw_to_dev(hw), "SMA1 TX"); 148 data |= ICE_SMA1_DIR_EN_E810T; 149 } 150 151 data &= ~ICE_SMA2_MASK_E810T; 152 if (ptp_pins[SMA2].func == PTP_PF_NONE && 153 ptp_pins[UFL2].func == PTP_PF_NONE) { 154 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); 155 data |= ICE_SMA2_MASK_E810T; 156 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 157 ptp_pins[UFL2].func == PTP_PF_NONE) { 158 dev_info(ice_hw_to_dev(hw), "SMA2 RX"); 159 data |= (ICE_SMA2_TX_EN_E810T | 160 ICE_SMA2_UFL2_RX_DIS_E810T); 161 } else if (ptp_pins[SMA2].func == PTP_PF_NONE && 162 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 163 dev_info(ice_hw_to_dev(hw), "UFL2 RX"); 164 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); 165 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 166 ptp_pins[UFL2].func == PTP_PF_NONE) { 167 dev_info(ice_hw_to_dev(hw), "SMA2 TX"); 168 data |= (ICE_SMA2_DIR_EN_E810T | 169 ICE_SMA2_UFL2_RX_DIS_E810T); 170 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 171 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 172 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); 173 data |= ICE_SMA2_DIR_EN_E810T; 174 } 175 176 return ice_write_sma_ctrl_e810t(hw, data); 177 } 178 179 /** 180 * ice_ptp_set_sma_e810t 181 * @info: the driver's PTP info structure 182 * @pin: pin index in kernel structure 183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) 184 * 185 * Set the configuration of a single SMA pin 186 */ 187 static int 188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, 189 enum ptp_pin_function func) 190 { 191 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; 192 struct ice_pf *pf = ptp_info_to_pf(info); 193 struct ice_hw *hw = &pf->hw; 194 int err; 195 196 if (pin < SMA1 || func > PTP_PF_PEROUT) 197 return -EOPNOTSUPP; 198 199 err = ice_get_sma_config_e810t(hw, ptp_pins); 200 if (err) 201 return err; 202 203 /* Disable the same function on the other pin sharing the channel */ 204 if (pin == SMA1 && ptp_pins[UFL1].func == func) 205 ptp_pins[UFL1].func = PTP_PF_NONE; 206 if (pin == UFL1 && ptp_pins[SMA1].func == func) 207 ptp_pins[SMA1].func = PTP_PF_NONE; 208 209 if (pin == SMA2 && ptp_pins[UFL2].func == func) 210 ptp_pins[UFL2].func = PTP_PF_NONE; 211 if (pin == UFL2 && ptp_pins[SMA2].func == func) 212 ptp_pins[SMA2].func = PTP_PF_NONE; 213 214 /* Set up new pin function in the temp table */ 215 ptp_pins[pin].func = func; 216 217 return ice_ptp_set_sma_config_e810t(hw, ptp_pins); 218 } 219 220 /** 221 * ice_verify_pin_e810t 222 * @info: the driver's PTP info structure 223 * @pin: Pin index 224 * @func: Assigned function 225 * @chan: Assigned channel 226 * 227 * Verify if pin supports requested pin function. If the Check pins consistency. 228 * Reconfigure the SMA logic attached to the given pin to enable its 229 * desired functionality 230 */ 231 static int 232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, 233 enum ptp_pin_function func, unsigned int chan) 234 { 235 /* Don't allow channel reassignment */ 236 if (chan != ice_pin_desc_e810t[pin].chan) 237 return -EOPNOTSUPP; 238 239 /* Check if functions are properly assigned */ 240 switch (func) { 241 case PTP_PF_NONE: 242 break; 243 case PTP_PF_EXTTS: 244 if (pin == UFL1) 245 return -EOPNOTSUPP; 246 break; 247 case PTP_PF_PEROUT: 248 if (pin == UFL2 || pin == GNSS) 249 return -EOPNOTSUPP; 250 break; 251 case PTP_PF_PHYSYNC: 252 return -EOPNOTSUPP; 253 } 254 255 return ice_ptp_set_sma_e810t(info, pin, func); 256 } 257 258 /** 259 * ice_set_tx_tstamp - Enable or disable Tx timestamping 260 * @pf: The PF pointer to search in 261 * @on: bool value for whether timestamps are enabled or disabled 262 */ 263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) 264 { 265 struct ice_vsi *vsi; 266 u32 val; 267 u16 i; 268 269 vsi = ice_get_main_vsi(pf); 270 if (!vsi) 271 return; 272 273 /* Set the timestamp enable flag for all the Tx rings */ 274 ice_for_each_txq(vsi, i) { 275 if (!vsi->tx_rings[i]) 276 continue; 277 vsi->tx_rings[i]->ptp_tx = on; 278 } 279 280 /* Configure the Tx timestamp interrupt */ 281 val = rd32(&pf->hw, PFINT_OICR_ENA); 282 if (on) 283 val |= PFINT_OICR_TSYN_TX_M; 284 else 285 val &= ~PFINT_OICR_TSYN_TX_M; 286 wr32(&pf->hw, PFINT_OICR_ENA, val); 287 288 pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 289 } 290 291 /** 292 * ice_set_rx_tstamp - Enable or disable Rx timestamping 293 * @pf: The PF pointer to search in 294 * @on: bool value for whether timestamps are enabled or disabled 295 */ 296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) 297 { 298 struct ice_vsi *vsi; 299 u16 i; 300 301 vsi = ice_get_main_vsi(pf); 302 if (!vsi) 303 return; 304 305 /* Set the timestamp flag for all the Rx rings */ 306 ice_for_each_rxq(vsi, i) { 307 if (!vsi->rx_rings[i]) 308 continue; 309 vsi->rx_rings[i]->ptp_rx = on; 310 } 311 312 pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : 313 HWTSTAMP_FILTER_NONE; 314 } 315 316 /** 317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit 318 * @pf: Board private structure 319 * @ena: bool value to enable or disable time stamp 320 * 321 * This function will configure timestamping during PTP initialization 322 * and deinitialization 323 */ 324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) 325 { 326 ice_set_tx_tstamp(pf, ena); 327 ice_set_rx_tstamp(pf, ena); 328 } 329 330 /** 331 * ice_get_ptp_clock_index - Get the PTP clock index 332 * @pf: the PF pointer 333 * 334 * Determine the clock index of the PTP clock associated with this device. If 335 * this is the PF controlling the clock, just use the local access to the 336 * clock device pointer. 337 * 338 * Otherwise, read from the driver shared parameters to determine the clock 339 * index value. 340 * 341 * Returns: the index of the PTP clock associated with this device, or -1 if 342 * there is no associated clock. 343 */ 344 int ice_get_ptp_clock_index(struct ice_pf *pf) 345 { 346 struct device *dev = ice_pf_to_dev(pf); 347 enum ice_aqc_driver_params param_idx; 348 struct ice_hw *hw = &pf->hw; 349 u8 tmr_idx; 350 u32 value; 351 int err; 352 353 /* Use the ptp_clock structure if we're the main PF */ 354 if (pf->ptp.clock) 355 return ptp_clock_index(pf->ptp.clock); 356 357 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 358 if (!tmr_idx) 359 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 360 else 361 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 362 363 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); 364 if (err) { 365 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", 366 err, ice_aq_str(hw->adminq.sq_last_status)); 367 return -1; 368 } 369 370 /* The PTP clock index is an integer, and will be between 0 and 371 * INT_MAX. The highest bit of the driver shared parameter is used to 372 * indicate whether or not the currently stored clock index is valid. 373 */ 374 if (!(value & PTP_SHARED_CLK_IDX_VALID)) 375 return -1; 376 377 return value & ~PTP_SHARED_CLK_IDX_VALID; 378 } 379 380 /** 381 * ice_set_ptp_clock_index - Set the PTP clock index 382 * @pf: the PF pointer 383 * 384 * Set the PTP clock index for this device into the shared driver parameters, 385 * so that other PFs associated with this device can read it. 386 * 387 * If the PF is unable to store the clock index, it will log an error, but 388 * will continue operating PTP. 389 */ 390 static void ice_set_ptp_clock_index(struct ice_pf *pf) 391 { 392 struct device *dev = ice_pf_to_dev(pf); 393 enum ice_aqc_driver_params param_idx; 394 struct ice_hw *hw = &pf->hw; 395 u8 tmr_idx; 396 u32 value; 397 int err; 398 399 if (!pf->ptp.clock) 400 return; 401 402 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 403 if (!tmr_idx) 404 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 405 else 406 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 407 408 value = (u32)ptp_clock_index(pf->ptp.clock); 409 if (value > INT_MAX) { 410 dev_err(dev, "PTP Clock index is too large to store\n"); 411 return; 412 } 413 value |= PTP_SHARED_CLK_IDX_VALID; 414 415 err = ice_aq_set_driver_param(hw, param_idx, value, NULL); 416 if (err) { 417 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", 418 err, ice_aq_str(hw->adminq.sq_last_status)); 419 } 420 } 421 422 /** 423 * ice_clear_ptp_clock_index - Clear the PTP clock index 424 * @pf: the PF pointer 425 * 426 * Clear the PTP clock index for this device. Must be called when 427 * unregistering the PTP clock, in order to ensure other PFs stop reporting 428 * a clock object that no longer exists. 429 */ 430 static void ice_clear_ptp_clock_index(struct ice_pf *pf) 431 { 432 struct device *dev = ice_pf_to_dev(pf); 433 enum ice_aqc_driver_params param_idx; 434 struct ice_hw *hw = &pf->hw; 435 u8 tmr_idx; 436 int err; 437 438 /* Do not clear the index if we don't own the timer */ 439 if (!hw->func_caps.ts_func_info.src_tmr_owned) 440 return; 441 442 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 443 if (!tmr_idx) 444 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 445 else 446 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 447 448 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); 449 if (err) { 450 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", 451 err, ice_aq_str(hw->adminq.sq_last_status)); 452 } 453 } 454 455 /** 456 * ice_ptp_read_src_clk_reg - Read the source clock register 457 * @pf: Board private structure 458 * @sts: Optional parameter for holding a pair of system timestamps from 459 * the system clock. Will be ignored if NULL is given. 460 */ 461 static u64 462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) 463 { 464 struct ice_hw *hw = &pf->hw; 465 u32 hi, lo, lo2; 466 u8 tmr_idx; 467 468 tmr_idx = ice_get_ptp_src_clock_index(hw); 469 /* Read the system timestamp pre PHC read */ 470 ptp_read_system_prets(sts); 471 472 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 473 474 /* Read the system timestamp post PHC read */ 475 ptp_read_system_postts(sts); 476 477 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 478 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 479 480 if (lo2 < lo) { 481 /* if TIME_L rolled over read TIME_L again and update 482 * system timestamps 483 */ 484 ptp_read_system_prets(sts); 485 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 486 ptp_read_system_postts(sts); 487 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 488 } 489 490 return ((u64)hi << 32) | lo; 491 } 492 493 /** 494 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b 495 * @cached_phc_time: recently cached copy of PHC time 496 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value 497 * 498 * Hardware captures timestamps which contain only 32 bits of nominal 499 * nanoseconds, as opposed to the 64bit timestamps that the stack expects. 500 * Note that the captured timestamp values may be 40 bits, but the lower 501 * 8 bits are sub-nanoseconds and generally discarded. 502 * 503 * Extend the 32bit nanosecond timestamp using the following algorithm and 504 * assumptions: 505 * 506 * 1) have a recently cached copy of the PHC time 507 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 508 * seconds) before or after the PHC time was captured. 509 * 3) calculate the delta between the cached time and the timestamp 510 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was 511 * captured after the PHC time. In this case, the full timestamp is just 512 * the cached PHC time plus the delta. 513 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the 514 * timestamp was captured *before* the PHC time, i.e. because the PHC 515 * cache was updated after the timestamp was captured by hardware. In this 516 * case, the full timestamp is the cached time minus the inverse delta. 517 * 518 * This algorithm works even if the PHC time was updated after a Tx timestamp 519 * was requested, but before the Tx timestamp event was reported from 520 * hardware. 521 * 522 * This calculation primarily relies on keeping the cached PHC time up to 523 * date. If the timestamp was captured more than 2^31 nanoseconds after the 524 * PHC time, it is possible that the lower 32bits of PHC time have 525 * overflowed more than once, and we might generate an incorrect timestamp. 526 * 527 * This is prevented by (a) periodically updating the cached PHC time once 528 * a second, and (b) discarding any Tx timestamp packet if it has waited for 529 * a timestamp for more than one second. 530 */ 531 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) 532 { 533 u32 delta, phc_time_lo; 534 u64 ns; 535 536 /* Extract the lower 32 bits of the PHC time */ 537 phc_time_lo = (u32)cached_phc_time; 538 539 /* Calculate the delta between the lower 32bits of the cached PHC 540 * time and the in_tstamp value 541 */ 542 delta = (in_tstamp - phc_time_lo); 543 544 /* Do not assume that the in_tstamp is always more recent than the 545 * cached PHC time. If the delta is large, it indicates that the 546 * in_tstamp was taken in the past, and should be converted 547 * forward. 548 */ 549 if (delta > (U32_MAX / 2)) { 550 /* reverse the delta calculation here */ 551 delta = (phc_time_lo - in_tstamp); 552 ns = cached_phc_time - delta; 553 } else { 554 ns = cached_phc_time + delta; 555 } 556 557 return ns; 558 } 559 560 /** 561 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds 562 * @pf: Board private structure 563 * @in_tstamp: Ingress/egress 40b timestamp value 564 * 565 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal 566 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. 567 * 568 * *--------------------------------------------------------------* 569 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | 570 * *--------------------------------------------------------------* 571 * 572 * The low bit is an indicator of whether the timestamp is valid. The next 573 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, 574 * and the remaining 32 bits are the lower 32 bits of the PHC timer. 575 * 576 * It is assumed that the caller verifies the timestamp is valid prior to 577 * calling this function. 578 * 579 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC 580 * time stored in the device private PTP structure as the basis for timestamp 581 * extension. 582 * 583 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension 584 * algorithm. 585 */ 586 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) 587 { 588 const u64 mask = GENMASK_ULL(31, 0); 589 unsigned long discard_time; 590 591 /* Discard the hardware timestamp if the cached PHC time is too old */ 592 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 593 if (time_is_before_jiffies(discard_time)) { 594 pf->ptp.tx_hwtstamp_discarded++; 595 return 0; 596 } 597 598 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, 599 (in_tstamp >> 8) & mask); 600 } 601 602 /** 603 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps 604 * @tx: the PTP Tx timestamp tracker to check 605 * 606 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready 607 * to accept new timestamp requests. 608 * 609 * Assumes the tx->lock spinlock is already held. 610 */ 611 static bool 612 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) 613 { 614 lockdep_assert_held(&tx->lock); 615 616 return tx->init && !tx->calibrating; 617 } 618 619 /** 620 * ice_ptp_tx_tstamp - Process Tx timestamps for a port 621 * @tx: the PTP Tx timestamp tracker 622 * 623 * Process timestamps captured by the PHY associated with this port. To do 624 * this, loop over each index with a waiting skb. 625 * 626 * If a given index has a valid timestamp, perform the following steps: 627 * 628 * 1) check that the timestamp request is not stale 629 * 2) check that a timestamp is ready and available in the PHY memory bank 630 * 3) read and copy the timestamp out of the PHY register 631 * 4) unlock the index by clearing the associated in_use bit 632 * 5) check if the timestamp is stale, and discard if so 633 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value 634 * 7) send this 64 bit timestamp to the stack 635 * 636 * Returns true if all timestamps were handled, and false if any slots remain 637 * without a timestamp. 638 * 639 * After looping, if we still have waiting SKBs, return false. This may cause 640 * us effectively poll even when not strictly necessary. We do this because 641 * it's possible a new timestamp was requested around the same time as the 642 * interrupt. In some cases hardware might not interrupt us again when the 643 * timestamp is captured. 644 * 645 * Note that we do not hold the tracking lock while reading the Tx timestamp. 646 * This is because reading the timestamp requires taking a mutex that might 647 * sleep. 648 * 649 * The only place where we set in_use is when a new timestamp is initiated 650 * with a slot index. This is only called in the hard xmit routine where an 651 * SKB has a request flag set. The only places where we clear this bit is this 652 * function, or during teardown when the Tx timestamp tracker is being 653 * removed. A timestamp index will never be re-used until the in_use bit for 654 * that index is cleared. 655 * 656 * If a Tx thread starts a new timestamp, we might not begin processing it 657 * right away but we will notice it at the end when we re-queue the task. 658 * 659 * If a Tx thread starts a new timestamp just after this function exits, the 660 * interrupt for that timestamp should re-trigger this function once 661 * a timestamp is ready. 662 * 663 * In cases where the PTP hardware clock was directly adjusted, some 664 * timestamps may not be able to safely use the timestamp extension math. In 665 * this case, software will set the stale bit for any outstanding Tx 666 * timestamps when the clock is adjusted. Then this function will discard 667 * those captured timestamps instead of sending them to the stack. 668 * 669 * If a Tx packet has been waiting for more than 2 seconds, it is not possible 670 * to correctly extend the timestamp using the cached PHC time. It is 671 * extremely unlikely that a packet will ever take this long to timestamp. If 672 * we detect a Tx timestamp request that has waited for this long we assume 673 * the packet will never be sent by hardware and discard it without reading 674 * the timestamp register. 675 */ 676 static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) 677 { 678 struct ice_ptp_port *ptp_port; 679 bool more_timestamps; 680 struct ice_pf *pf; 681 struct ice_hw *hw; 682 u64 tstamp_ready; 683 int err; 684 u8 idx; 685 686 if (!tx->init) 687 return true; 688 689 ptp_port = container_of(tx, struct ice_ptp_port, tx); 690 pf = ptp_port_to_pf(ptp_port); 691 hw = &pf->hw; 692 693 /* Read the Tx ready status first */ 694 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); 695 if (err) 696 return false; 697 698 for_each_set_bit(idx, tx->in_use, tx->len) { 699 struct skb_shared_hwtstamps shhwtstamps = {}; 700 u8 phy_idx = idx + tx->offset; 701 u64 raw_tstamp = 0, tstamp; 702 bool drop_ts = false; 703 struct sk_buff *skb; 704 705 /* Drop packets which have waited for more than 2 seconds */ 706 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { 707 drop_ts = true; 708 709 /* Count the number of Tx timestamps that timed out */ 710 pf->ptp.tx_hwtstamp_timeouts++; 711 } 712 713 /* Only read a timestamp from the PHY if its marked as ready 714 * by the tstamp_ready register. This avoids unnecessary 715 * reading of timestamps which are not yet valid. This is 716 * important as we must read all timestamps which are valid 717 * and only timestamps which are valid during each interrupt. 718 * If we do not, the hardware logic for generating a new 719 * interrupt can get stuck on some devices. 720 */ 721 if (!(tstamp_ready & BIT_ULL(phy_idx))) { 722 if (drop_ts) 723 goto skip_ts_read; 724 725 continue; 726 } 727 728 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 729 730 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); 731 if (err) 732 continue; 733 734 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 735 736 /* For PHYs which don't implement a proper timestamp ready 737 * bitmap, verify that the timestamp value is different 738 * from the last cached timestamp. If it is not, skip this for 739 * now assuming it hasn't yet been captured by hardware. 740 */ 741 if (!drop_ts && tx->verify_cached && 742 raw_tstamp == tx->tstamps[idx].cached_tstamp) 743 continue; 744 745 /* Discard any timestamp value without the valid bit set */ 746 if (!(raw_tstamp & ICE_PTP_TS_VALID)) 747 drop_ts = true; 748 749 skip_ts_read: 750 spin_lock(&tx->lock); 751 if (tx->verify_cached && raw_tstamp) 752 tx->tstamps[idx].cached_tstamp = raw_tstamp; 753 clear_bit(idx, tx->in_use); 754 skb = tx->tstamps[idx].skb; 755 tx->tstamps[idx].skb = NULL; 756 if (test_and_clear_bit(idx, tx->stale)) 757 drop_ts = true; 758 spin_unlock(&tx->lock); 759 760 /* It is unlikely but possible that the SKB will have been 761 * flushed at this point due to link change or teardown. 762 */ 763 if (!skb) 764 continue; 765 766 if (drop_ts) { 767 dev_kfree_skb_any(skb); 768 continue; 769 } 770 771 /* Extend the timestamp using cached PHC time */ 772 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 773 if (tstamp) { 774 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 775 ice_trace(tx_tstamp_complete, skb, idx); 776 } 777 778 skb_tstamp_tx(skb, &shhwtstamps); 779 dev_kfree_skb_any(skb); 780 } 781 782 /* Check if we still have work to do. If so, re-queue this task to 783 * poll for remaining timestamps. 784 */ 785 spin_lock(&tx->lock); 786 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); 787 spin_unlock(&tx->lock); 788 789 return !more_timestamps; 790 } 791 792 /** 793 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps 794 * @tx: Tx tracking structure to initialize 795 * 796 * Assumes that the length has already been initialized. Do not call directly, 797 * use the ice_ptp_init_tx_* instead. 798 */ 799 static int 800 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) 801 { 802 unsigned long *in_use, *stale; 803 struct ice_tx_tstamp *tstamps; 804 805 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); 806 in_use = bitmap_zalloc(tx->len, GFP_KERNEL); 807 stale = bitmap_zalloc(tx->len, GFP_KERNEL); 808 809 if (!tstamps || !in_use || !stale) { 810 kfree(tstamps); 811 bitmap_free(in_use); 812 bitmap_free(stale); 813 814 return -ENOMEM; 815 } 816 817 tx->tstamps = tstamps; 818 tx->in_use = in_use; 819 tx->stale = stale; 820 tx->init = 1; 821 822 spin_lock_init(&tx->lock); 823 824 return 0; 825 } 826 827 /** 828 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker 829 * @pf: Board private structure 830 * @tx: the tracker to flush 831 * 832 * Called during teardown when a Tx tracker is being removed. 833 */ 834 static void 835 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 836 { 837 struct ice_hw *hw = &pf->hw; 838 u64 tstamp_ready; 839 int err; 840 u8 idx; 841 842 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); 843 if (err) { 844 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", 845 tx->block, err); 846 847 /* If we fail to read the Tx timestamp ready bitmap just 848 * skip clearing the PHY timestamps. 849 */ 850 tstamp_ready = 0; 851 } 852 853 for_each_set_bit(idx, tx->in_use, tx->len) { 854 u8 phy_idx = idx + tx->offset; 855 struct sk_buff *skb; 856 857 /* In case this timestamp is ready, we need to clear it. */ 858 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) 859 ice_clear_phy_tstamp(hw, tx->block, phy_idx); 860 861 spin_lock(&tx->lock); 862 skb = tx->tstamps[idx].skb; 863 tx->tstamps[idx].skb = NULL; 864 clear_bit(idx, tx->in_use); 865 clear_bit(idx, tx->stale); 866 spin_unlock(&tx->lock); 867 868 /* Count the number of Tx timestamps flushed */ 869 pf->ptp.tx_hwtstamp_flushed++; 870 871 /* Free the SKB after we've cleared the bit */ 872 dev_kfree_skb_any(skb); 873 } 874 } 875 876 /** 877 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale 878 * @tx: the tracker to mark 879 * 880 * Mark currently outstanding Tx timestamps as stale. This prevents sending 881 * their timestamp value to the stack. This is required to prevent extending 882 * the 40bit hardware timestamp incorrectly. 883 * 884 * This should be called when the PTP clock is modified such as after a set 885 * time request. 886 */ 887 static void 888 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) 889 { 890 spin_lock(&tx->lock); 891 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); 892 spin_unlock(&tx->lock); 893 } 894 895 /** 896 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker 897 * @pf: Board private structure 898 * @tx: Tx tracking structure to release 899 * 900 * Free memory associated with the Tx timestamp tracker. 901 */ 902 static void 903 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 904 { 905 spin_lock(&tx->lock); 906 tx->init = 0; 907 spin_unlock(&tx->lock); 908 909 /* wait for potentially outstanding interrupt to complete */ 910 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 911 912 ice_ptp_flush_tx_tracker(pf, tx); 913 914 kfree(tx->tstamps); 915 tx->tstamps = NULL; 916 917 bitmap_free(tx->in_use); 918 tx->in_use = NULL; 919 920 bitmap_free(tx->stale); 921 tx->stale = NULL; 922 923 tx->len = 0; 924 } 925 926 /** 927 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps 928 * @pf: Board private structure 929 * @tx: the Tx tracking structure to initialize 930 * @port: the port this structure tracks 931 * 932 * Initialize the Tx timestamp tracker for this port. For generic MAC devices, 933 * the timestamp block is shared for all ports in the same quad. To avoid 934 * ports using the same timestamp index, logically break the block of 935 * registers into chunks based on the port number. 936 */ 937 static int 938 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) 939 { 940 tx->block = port / ICE_PORTS_PER_QUAD; 941 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822; 942 tx->len = INDEX_PER_PORT_E822; 943 tx->verify_cached = 0; 944 945 return ice_ptp_alloc_tx_tracker(tx); 946 } 947 948 /** 949 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps 950 * @pf: Board private structure 951 * @tx: the Tx tracking structure to initialize 952 * 953 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each 954 * port has its own block of timestamps, independent of the other ports. 955 */ 956 static int 957 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) 958 { 959 tx->block = pf->hw.port_info->lport; 960 tx->offset = 0; 961 tx->len = INDEX_PER_PORT_E810; 962 /* The E810 PHY does not provide a timestamp ready bitmap. Instead, 963 * verify new timestamps against cached copy of the last read 964 * timestamp. 965 */ 966 tx->verify_cached = 1; 967 968 return ice_ptp_alloc_tx_tracker(tx); 969 } 970 971 /** 972 * ice_ptp_update_cached_phctime - Update the cached PHC time values 973 * @pf: Board specific private structure 974 * 975 * This function updates the system time values which are cached in the PF 976 * structure and the Rx rings. 977 * 978 * This function must be called periodically to ensure that the cached value 979 * is never more than 2 seconds old. 980 * 981 * Note that the cached copy in the PF PTP structure is always updated, even 982 * if we can't update the copy in the Rx rings. 983 * 984 * Return: 985 * * 0 - OK, successfully updated 986 * * -EAGAIN - PF was busy, need to reschedule the update 987 */ 988 static int ice_ptp_update_cached_phctime(struct ice_pf *pf) 989 { 990 struct device *dev = ice_pf_to_dev(pf); 991 unsigned long update_before; 992 u64 systime; 993 int i; 994 995 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 996 if (pf->ptp.cached_phc_time && 997 time_is_before_jiffies(update_before)) { 998 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; 999 1000 dev_warn(dev, "%u msecs passed between update to cached PHC time\n", 1001 jiffies_to_msecs(time_taken)); 1002 pf->ptp.late_cached_phc_updates++; 1003 } 1004 1005 /* Read the current PHC time */ 1006 systime = ice_ptp_read_src_clk_reg(pf, NULL); 1007 1008 /* Update the cached PHC time stored in the PF structure */ 1009 WRITE_ONCE(pf->ptp.cached_phc_time, systime); 1010 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); 1011 1012 if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) 1013 return -EAGAIN; 1014 1015 ice_for_each_vsi(pf, i) { 1016 struct ice_vsi *vsi = pf->vsi[i]; 1017 int j; 1018 1019 if (!vsi) 1020 continue; 1021 1022 if (vsi->type != ICE_VSI_PF) 1023 continue; 1024 1025 ice_for_each_rxq(vsi, j) { 1026 if (!vsi->rx_rings[j]) 1027 continue; 1028 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); 1029 } 1030 } 1031 clear_bit(ICE_CFG_BUSY, pf->state); 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update 1038 * @pf: Board specific private structure 1039 * 1040 * This function must be called when the cached PHC time is no longer valid, 1041 * such as after a time adjustment. It marks any currently outstanding Tx 1042 * timestamps as stale and updates the cached PHC time for both the PF and Rx 1043 * rings. 1044 * 1045 * If updating the PHC time cannot be done immediately, a warning message is 1046 * logged and the work item is scheduled immediately to minimize the window 1047 * with a wrong cached timestamp. 1048 */ 1049 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) 1050 { 1051 struct device *dev = ice_pf_to_dev(pf); 1052 int err; 1053 1054 /* Update the cached PHC time immediately if possible, otherwise 1055 * schedule the work item to execute soon. 1056 */ 1057 err = ice_ptp_update_cached_phctime(pf); 1058 if (err) { 1059 /* If another thread is updating the Rx rings, we won't 1060 * properly reset them here. This could lead to reporting of 1061 * invalid timestamps, but there isn't much we can do. 1062 */ 1063 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", 1064 __func__); 1065 1066 /* Queue the work item to update the Rx rings when possible */ 1067 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 1068 msecs_to_jiffies(10)); 1069 } 1070 1071 /* Mark any outstanding timestamps as stale, since they might have 1072 * been captured in hardware before the time update. This could lead 1073 * to us extending them with the wrong cached value resulting in 1074 * incorrect timestamp values. 1075 */ 1076 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); 1077 } 1078 1079 /** 1080 * ice_ptp_read_time - Read the time from the device 1081 * @pf: Board private structure 1082 * @ts: timespec structure to hold the current time value 1083 * @sts: Optional parameter for holding a pair of system timestamps from 1084 * the system clock. Will be ignored if NULL is given. 1085 * 1086 * This function reads the source clock registers and stores them in a timespec. 1087 * However, since the registers are 64 bits of nanoseconds, we must convert the 1088 * result to a timespec before we can return. 1089 */ 1090 static void 1091 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, 1092 struct ptp_system_timestamp *sts) 1093 { 1094 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); 1095 1096 *ts = ns_to_timespec64(time_ns); 1097 } 1098 1099 /** 1100 * ice_ptp_write_init - Set PHC time to provided value 1101 * @pf: Board private structure 1102 * @ts: timespec structure that holds the new time value 1103 * 1104 * Set the PHC time to the specified time provided in the timespec. 1105 */ 1106 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) 1107 { 1108 u64 ns = timespec64_to_ns(ts); 1109 struct ice_hw *hw = &pf->hw; 1110 1111 return ice_ptp_init_time(hw, ns); 1112 } 1113 1114 /** 1115 * ice_ptp_write_adj - Adjust PHC clock time atomically 1116 * @pf: Board private structure 1117 * @adj: Adjustment in nanoseconds 1118 * 1119 * Perform an atomic adjustment of the PHC time by the specified number of 1120 * nanoseconds. 1121 */ 1122 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) 1123 { 1124 struct ice_hw *hw = &pf->hw; 1125 1126 return ice_ptp_adj_clock(hw, adj); 1127 } 1128 1129 /** 1130 * ice_base_incval - Get base timer increment value 1131 * @pf: Board private structure 1132 * 1133 * Look up the base timer increment value for this device. The base increment 1134 * value is used to define the nominal clock tick rate. This increment value 1135 * is programmed during device initialization. It is also used as the basis 1136 * for calculating adjustments using scaled_ppm. 1137 */ 1138 static u64 ice_base_incval(struct ice_pf *pf) 1139 { 1140 struct ice_hw *hw = &pf->hw; 1141 u64 incval; 1142 1143 if (ice_is_e810(hw)) 1144 incval = ICE_PTP_NOMINAL_INCVAL_E810; 1145 else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) 1146 incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); 1147 else 1148 incval = UNKNOWN_INCVAL_E822; 1149 1150 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", 1151 incval); 1152 1153 return incval; 1154 } 1155 1156 /** 1157 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state 1158 * @port: PTP port for which Tx FIFO is checked 1159 */ 1160 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) 1161 { 1162 int quad = port->port_num / ICE_PORTS_PER_QUAD; 1163 int offs = port->port_num % ICE_PORTS_PER_QUAD; 1164 struct ice_pf *pf; 1165 struct ice_hw *hw; 1166 u32 val, phy_sts; 1167 int err; 1168 1169 pf = ptp_port_to_pf(port); 1170 hw = &pf->hw; 1171 1172 if (port->tx_fifo_busy_cnt == FIFO_OK) 1173 return 0; 1174 1175 /* need to read FIFO state */ 1176 if (offs == 0 || offs == 1) 1177 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, 1178 &val); 1179 else 1180 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, 1181 &val); 1182 1183 if (err) { 1184 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", 1185 port->port_num, err); 1186 return err; 1187 } 1188 1189 if (offs & 0x1) 1190 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; 1191 else 1192 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; 1193 1194 if (phy_sts & FIFO_EMPTY) { 1195 port->tx_fifo_busy_cnt = FIFO_OK; 1196 return 0; 1197 } 1198 1199 port->tx_fifo_busy_cnt++; 1200 1201 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", 1202 port->tx_fifo_busy_cnt, port->port_num); 1203 1204 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { 1205 dev_dbg(ice_pf_to_dev(pf), 1206 "Port %d Tx FIFO still not empty; resetting quad %d\n", 1207 port->port_num, quad); 1208 ice_ptp_reset_ts_memory_quad_e822(hw, quad); 1209 port->tx_fifo_busy_cnt = FIFO_OK; 1210 return 0; 1211 } 1212 1213 return -EAGAIN; 1214 } 1215 1216 /** 1217 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets 1218 * @work: Pointer to the kthread_work structure for this task 1219 * 1220 * Check whether hardware has completed measuring the Tx and Rx offset values 1221 * used to configure and enable vernier timestamp calibration. 1222 * 1223 * Once the offset in either direction is measured, configure the associated 1224 * registers with the calibrated offset values and enable timestamping. The Tx 1225 * and Rx directions are configured independently as soon as their associated 1226 * offsets are known. 1227 * 1228 * This function reschedules itself until both Tx and Rx calibration have 1229 * completed. 1230 */ 1231 static void ice_ptp_wait_for_offsets(struct kthread_work *work) 1232 { 1233 struct ice_ptp_port *port; 1234 struct ice_pf *pf; 1235 struct ice_hw *hw; 1236 int tx_err; 1237 int rx_err; 1238 1239 port = container_of(work, struct ice_ptp_port, ov_work.work); 1240 pf = ptp_port_to_pf(port); 1241 hw = &pf->hw; 1242 1243 if (ice_is_reset_in_progress(pf->state)) { 1244 /* wait for device driver to complete reset */ 1245 kthread_queue_delayed_work(pf->ptp.kworker, 1246 &port->ov_work, 1247 msecs_to_jiffies(100)); 1248 return; 1249 } 1250 1251 tx_err = ice_ptp_check_tx_fifo(port); 1252 if (!tx_err) 1253 tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num); 1254 rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num); 1255 if (tx_err || rx_err) { 1256 /* Tx and/or Rx offset not yet configured, try again later */ 1257 kthread_queue_delayed_work(pf->ptp.kworker, 1258 &port->ov_work, 1259 msecs_to_jiffies(100)); 1260 return; 1261 } 1262 } 1263 1264 /** 1265 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port 1266 * @ptp_port: PTP port to stop 1267 */ 1268 static int 1269 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) 1270 { 1271 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1272 u8 port = ptp_port->port_num; 1273 struct ice_hw *hw = &pf->hw; 1274 int err; 1275 1276 if (ice_is_e810(hw)) 1277 return 0; 1278 1279 mutex_lock(&ptp_port->ps_lock); 1280 1281 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1282 1283 err = ice_stop_phy_timer_e822(hw, port, true); 1284 if (err) 1285 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", 1286 port, err); 1287 1288 mutex_unlock(&ptp_port->ps_lock); 1289 1290 return err; 1291 } 1292 1293 /** 1294 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping 1295 * @ptp_port: PTP port for which the PHY start is set 1296 * 1297 * Start the PHY timestamping block, and initiate Vernier timestamping 1298 * calibration. If timestamping cannot be calibrated (such as if link is down) 1299 * then disable the timestamping block instead. 1300 */ 1301 static int 1302 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) 1303 { 1304 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1305 u8 port = ptp_port->port_num; 1306 struct ice_hw *hw = &pf->hw; 1307 int err; 1308 1309 if (ice_is_e810(hw)) 1310 return 0; 1311 1312 if (!ptp_port->link_up) 1313 return ice_ptp_port_phy_stop(ptp_port); 1314 1315 mutex_lock(&ptp_port->ps_lock); 1316 1317 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1318 1319 /* temporarily disable Tx timestamps while calibrating PHY offset */ 1320 spin_lock(&ptp_port->tx.lock); 1321 ptp_port->tx.calibrating = true; 1322 spin_unlock(&ptp_port->tx.lock); 1323 ptp_port->tx_fifo_busy_cnt = 0; 1324 1325 /* Start the PHY timer in Vernier mode */ 1326 err = ice_start_phy_timer_e822(hw, port); 1327 if (err) 1328 goto out_unlock; 1329 1330 /* Enable Tx timestamps right away */ 1331 spin_lock(&ptp_port->tx.lock); 1332 ptp_port->tx.calibrating = false; 1333 spin_unlock(&ptp_port->tx.lock); 1334 1335 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); 1336 1337 out_unlock: 1338 if (err) 1339 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", 1340 port, err); 1341 1342 mutex_unlock(&ptp_port->ps_lock); 1343 1344 return err; 1345 } 1346 1347 /** 1348 * ice_ptp_link_change - Reconfigure PTP after link status change 1349 * @pf: Board private structure 1350 * @port: Port for which the PHY start is set 1351 * @linkup: Link is up or down 1352 */ 1353 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) 1354 { 1355 struct ice_ptp_port *ptp_port; 1356 1357 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1358 return; 1359 1360 if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS)) 1361 return; 1362 1363 ptp_port = &pf->ptp.port; 1364 if (WARN_ON_ONCE(ptp_port->port_num != port)) 1365 return; 1366 1367 /* Update cached link status for this port immediately */ 1368 ptp_port->link_up = linkup; 1369 1370 /* E810 devices do not need to reconfigure the PHY */ 1371 if (ice_is_e810(&pf->hw)) 1372 return; 1373 1374 ice_ptp_port_phy_restart(ptp_port); 1375 } 1376 1377 /** 1378 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt 1379 * @pf: PF private structure 1380 * @ena: bool value to enable or disable interrupt 1381 * @threshold: Minimum number of packets at which intr is triggered 1382 * 1383 * Utility function to enable or disable Tx timestamp interrupt and threshold 1384 */ 1385 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) 1386 { 1387 struct ice_hw *hw = &pf->hw; 1388 int err = 0; 1389 int quad; 1390 u32 val; 1391 1392 ice_ptp_reset_ts_memory(hw); 1393 1394 for (quad = 0; quad < ICE_MAX_QUAD; quad++) { 1395 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1396 &val); 1397 if (err) 1398 break; 1399 1400 if (ena) { 1401 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1402 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; 1403 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & 1404 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); 1405 } else { 1406 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1407 } 1408 1409 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1410 val); 1411 if (err) 1412 break; 1413 } 1414 1415 if (err) 1416 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", 1417 err); 1418 return err; 1419 } 1420 1421 /** 1422 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block 1423 * @pf: Board private structure 1424 */ 1425 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) 1426 { 1427 ice_ptp_port_phy_restart(&pf->ptp.port); 1428 } 1429 1430 /** 1431 * ice_ptp_adjfine - Adjust clock increment rate 1432 * @info: the driver's PTP info structure 1433 * @scaled_ppm: Parts per million with 16-bit fractional field 1434 * 1435 * Adjust the frequency of the clock by the indicated scaled ppm from the 1436 * base frequency. 1437 */ 1438 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 1439 { 1440 struct ice_pf *pf = ptp_info_to_pf(info); 1441 struct ice_hw *hw = &pf->hw; 1442 u64 incval; 1443 int err; 1444 1445 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); 1446 err = ice_ptp_write_incval_locked(hw, incval); 1447 if (err) { 1448 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", 1449 err); 1450 return -EIO; 1451 } 1452 1453 return 0; 1454 } 1455 1456 /** 1457 * ice_ptp_extts_work - Workqueue task function 1458 * @work: external timestamp work structure 1459 * 1460 * Service for PTP external clock event 1461 */ 1462 static void ice_ptp_extts_work(struct kthread_work *work) 1463 { 1464 struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); 1465 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 1466 struct ptp_clock_event event; 1467 struct ice_hw *hw = &pf->hw; 1468 u8 chan, tmr_idx; 1469 u32 hi, lo; 1470 1471 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1472 /* Event time is captured by one of the two matched registers 1473 * GLTSYN_EVNT_L: 32 LSB of sampled time event 1474 * GLTSYN_EVNT_H: 32 MSB of sampled time event 1475 * Event is defined in GLTSYN_EVNT_0 register 1476 */ 1477 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { 1478 /* Check if channel is enabled */ 1479 if (pf->ptp.ext_ts_irq & (1 << chan)) { 1480 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); 1481 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); 1482 event.timestamp = (((u64)hi) << 32) | lo; 1483 event.type = PTP_CLOCK_EXTTS; 1484 event.index = chan; 1485 1486 /* Fire event */ 1487 ptp_clock_event(pf->ptp.clock, &event); 1488 pf->ptp.ext_ts_irq &= ~(1 << chan); 1489 } 1490 } 1491 } 1492 1493 /** 1494 * ice_ptp_cfg_extts - Configure EXTTS pin and channel 1495 * @pf: Board private structure 1496 * @ena: true to enable; false to disable 1497 * @chan: GPIO channel (0-3) 1498 * @gpio_pin: GPIO pin 1499 * @extts_flags: request flags from the ptp_extts_request.flags 1500 */ 1501 static int 1502 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, 1503 unsigned int extts_flags) 1504 { 1505 u32 func, aux_reg, gpio_reg, irq_reg; 1506 struct ice_hw *hw = &pf->hw; 1507 u8 tmr_idx; 1508 1509 if (chan > (unsigned int)pf->ptp.info.n_ext_ts) 1510 return -EINVAL; 1511 1512 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1513 1514 irq_reg = rd32(hw, PFINT_OICR_ENA); 1515 1516 if (ena) { 1517 /* Enable the interrupt */ 1518 irq_reg |= PFINT_OICR_TSYN_EVNT_M; 1519 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; 1520 1521 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) 1522 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) 1523 1524 /* set event level to requested edge */ 1525 if (extts_flags & PTP_FALLING_EDGE) 1526 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; 1527 if (extts_flags & PTP_RISING_EDGE) 1528 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; 1529 1530 /* Write GPIO CTL reg. 1531 * 0x1 is input sampled by EVENT register(channel) 1532 * + num_in_channels * tmr_idx 1533 */ 1534 func = 1 + chan + (tmr_idx * 3); 1535 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & 1536 GLGEN_GPIO_CTL_PIN_FUNC_M); 1537 pf->ptp.ext_ts_chan |= (1 << chan); 1538 } else { 1539 /* clear the values we set to reset defaults */ 1540 aux_reg = 0; 1541 gpio_reg = 0; 1542 pf->ptp.ext_ts_chan &= ~(1 << chan); 1543 if (!pf->ptp.ext_ts_chan) 1544 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; 1545 } 1546 1547 wr32(hw, PFINT_OICR_ENA, irq_reg); 1548 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); 1549 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave 1556 * @pf: Board private structure 1557 * @chan: GPIO channel (0-3) 1558 * @config: desired periodic clk configuration. NULL will disable channel 1559 * @store: If set to true the values will be stored 1560 * 1561 * Configure the internal clock generator modules to generate the clock wave of 1562 * specified period. 1563 */ 1564 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, 1565 struct ice_perout_channel *config, bool store) 1566 { 1567 u64 current_time, period, start_time, phase; 1568 struct ice_hw *hw = &pf->hw; 1569 u32 func, val, gpio_pin; 1570 u8 tmr_idx; 1571 1572 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1573 1574 /* 0. Reset mode & out_en in AUX_OUT */ 1575 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); 1576 1577 /* If we're disabling the output, clear out CLKO and TGT and keep 1578 * output level low 1579 */ 1580 if (!config || !config->ena) { 1581 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); 1582 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); 1583 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); 1584 1585 val = GLGEN_GPIO_CTL_PIN_DIR_M; 1586 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; 1587 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1588 1589 /* Store the value if requested */ 1590 if (store) 1591 memset(&pf->ptp.perout_channels[chan], 0, 1592 sizeof(struct ice_perout_channel)); 1593 1594 return 0; 1595 } 1596 period = config->period; 1597 start_time = config->start_time; 1598 div64_u64_rem(start_time, period, &phase); 1599 gpio_pin = config->gpio_pin; 1600 1601 /* 1. Write clkout with half of required period value */ 1602 if (period & 0x1) { 1603 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); 1604 goto err; 1605 } 1606 1607 period >>= 1; 1608 1609 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick 1610 */ 1611 #define MIN_PULSE 3 1612 if (period <= MIN_PULSE || period > U32_MAX) { 1613 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", 1614 MIN_PULSE * 2); 1615 goto err; 1616 } 1617 1618 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); 1619 1620 /* Allow time for programming before start_time is hit */ 1621 current_time = ice_ptp_read_src_clk_reg(pf, NULL); 1622 1623 /* if start time is in the past start the timer at the nearest second 1624 * maintaining phase 1625 */ 1626 if (start_time < current_time) 1627 start_time = div64_u64(current_time + NSEC_PER_SEC - 1, 1628 NSEC_PER_SEC) * NSEC_PER_SEC + phase; 1629 1630 if (ice_is_e810(hw)) 1631 start_time -= E810_OUT_PROP_DELAY_NS; 1632 else 1633 start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); 1634 1635 /* 2. Write TARGET time */ 1636 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); 1637 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); 1638 1639 /* 3. Write AUX_OUT register */ 1640 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; 1641 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); 1642 1643 /* 4. write GPIO CTL reg */ 1644 func = 8 + chan + (tmr_idx * 4); 1645 val = GLGEN_GPIO_CTL_PIN_DIR_M | 1646 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); 1647 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1648 1649 /* Store the value if requested */ 1650 if (store) { 1651 memcpy(&pf->ptp.perout_channels[chan], config, 1652 sizeof(struct ice_perout_channel)); 1653 pf->ptp.perout_channels[chan].start_time = phase; 1654 } 1655 1656 return 0; 1657 err: 1658 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); 1659 return -EFAULT; 1660 } 1661 1662 /** 1663 * ice_ptp_disable_all_clkout - Disable all currently configured outputs 1664 * @pf: pointer to the PF structure 1665 * 1666 * Disable all currently configured clock outputs. This is necessary before 1667 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to 1668 * re-enable the clocks again. 1669 */ 1670 static void ice_ptp_disable_all_clkout(struct ice_pf *pf) 1671 { 1672 uint i; 1673 1674 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1675 if (pf->ptp.perout_channels[i].ena) 1676 ice_ptp_cfg_clkout(pf, i, NULL, false); 1677 } 1678 1679 /** 1680 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs 1681 * @pf: pointer to the PF structure 1682 * 1683 * Enable all currently configured clock outputs. Use this after 1684 * ice_ptp_disable_all_clkout to reconfigure the output signals according to 1685 * their configuration. 1686 */ 1687 static void ice_ptp_enable_all_clkout(struct ice_pf *pf) 1688 { 1689 uint i; 1690 1691 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1692 if (pf->ptp.perout_channels[i].ena) 1693 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], 1694 false); 1695 } 1696 1697 /** 1698 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC 1699 * @info: the driver's PTP info structure 1700 * @rq: The requested feature to change 1701 * @on: Enable/disable flag 1702 */ 1703 static int 1704 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, 1705 struct ptp_clock_request *rq, int on) 1706 { 1707 struct ice_pf *pf = ptp_info_to_pf(info); 1708 struct ice_perout_channel clk_cfg = {0}; 1709 bool sma_pres = false; 1710 unsigned int chan; 1711 u32 gpio_pin; 1712 int err; 1713 1714 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 1715 sma_pres = true; 1716 1717 switch (rq->type) { 1718 case PTP_CLK_REQ_PEROUT: 1719 chan = rq->perout.index; 1720 if (sma_pres) { 1721 if (chan == ice_pin_desc_e810t[SMA1].chan) 1722 clk_cfg.gpio_pin = GPIO_20; 1723 else if (chan == ice_pin_desc_e810t[SMA2].chan) 1724 clk_cfg.gpio_pin = GPIO_22; 1725 else 1726 return -1; 1727 } else if (ice_is_e810t(&pf->hw)) { 1728 if (chan == 0) 1729 clk_cfg.gpio_pin = GPIO_20; 1730 else 1731 clk_cfg.gpio_pin = GPIO_22; 1732 } else if (chan == PPS_CLK_GEN_CHAN) { 1733 clk_cfg.gpio_pin = PPS_PIN_INDEX; 1734 } else { 1735 clk_cfg.gpio_pin = chan; 1736 } 1737 1738 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + 1739 rq->perout.period.nsec); 1740 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + 1741 rq->perout.start.nsec); 1742 clk_cfg.ena = !!on; 1743 1744 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); 1745 break; 1746 case PTP_CLK_REQ_EXTTS: 1747 chan = rq->extts.index; 1748 if (sma_pres) { 1749 if (chan < ice_pin_desc_e810t[SMA2].chan) 1750 gpio_pin = GPIO_21; 1751 else 1752 gpio_pin = GPIO_23; 1753 } else if (ice_is_e810t(&pf->hw)) { 1754 if (chan == 0) 1755 gpio_pin = GPIO_21; 1756 else 1757 gpio_pin = GPIO_23; 1758 } else { 1759 gpio_pin = chan; 1760 } 1761 1762 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, 1763 rq->extts.flags); 1764 break; 1765 default: 1766 return -EOPNOTSUPP; 1767 } 1768 1769 return err; 1770 } 1771 1772 /** 1773 * ice_ptp_gettimex64 - Get the time of the clock 1774 * @info: the driver's PTP info structure 1775 * @ts: timespec64 structure to hold the current time value 1776 * @sts: Optional parameter for holding a pair of system timestamps from 1777 * the system clock. Will be ignored if NULL is given. 1778 * 1779 * Read the device clock and return the correct value on ns, after converting it 1780 * into a timespec struct. 1781 */ 1782 static int 1783 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, 1784 struct ptp_system_timestamp *sts) 1785 { 1786 struct ice_pf *pf = ptp_info_to_pf(info); 1787 struct ice_hw *hw = &pf->hw; 1788 1789 if (!ice_ptp_lock(hw)) { 1790 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); 1791 return -EBUSY; 1792 } 1793 1794 ice_ptp_read_time(pf, ts, sts); 1795 ice_ptp_unlock(hw); 1796 1797 return 0; 1798 } 1799 1800 /** 1801 * ice_ptp_settime64 - Set the time of the clock 1802 * @info: the driver's PTP info structure 1803 * @ts: timespec64 structure that holds the new time value 1804 * 1805 * Set the device clock to the user input value. The conversion from timespec 1806 * to ns happens in the write function. 1807 */ 1808 static int 1809 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) 1810 { 1811 struct ice_pf *pf = ptp_info_to_pf(info); 1812 struct timespec64 ts64 = *ts; 1813 struct ice_hw *hw = &pf->hw; 1814 int err; 1815 1816 /* For Vernier mode, we need to recalibrate after new settime 1817 * Start with disabling timestamp block 1818 */ 1819 if (pf->ptp.port.link_up) 1820 ice_ptp_port_phy_stop(&pf->ptp.port); 1821 1822 if (!ice_ptp_lock(hw)) { 1823 err = -EBUSY; 1824 goto exit; 1825 } 1826 1827 /* Disable periodic outputs */ 1828 ice_ptp_disable_all_clkout(pf); 1829 1830 err = ice_ptp_write_init(pf, &ts64); 1831 ice_ptp_unlock(hw); 1832 1833 if (!err) 1834 ice_ptp_reset_cached_phctime(pf); 1835 1836 /* Reenable periodic outputs */ 1837 ice_ptp_enable_all_clkout(pf); 1838 1839 /* Recalibrate and re-enable timestamp block */ 1840 if (pf->ptp.port.link_up) 1841 ice_ptp_port_phy_restart(&pf->ptp.port); 1842 exit: 1843 if (err) { 1844 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); 1845 return err; 1846 } 1847 1848 return 0; 1849 } 1850 1851 /** 1852 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment 1853 * @info: the driver's PTP info structure 1854 * @delta: Offset in nanoseconds to adjust the time by 1855 */ 1856 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) 1857 { 1858 struct timespec64 now, then; 1859 int ret; 1860 1861 then = ns_to_timespec64(delta); 1862 ret = ice_ptp_gettimex64(info, &now, NULL); 1863 if (ret) 1864 return ret; 1865 now = timespec64_add(now, then); 1866 1867 return ice_ptp_settime64(info, (const struct timespec64 *)&now); 1868 } 1869 1870 /** 1871 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta 1872 * @info: the driver's PTP info structure 1873 * @delta: Offset in nanoseconds to adjust the time by 1874 */ 1875 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) 1876 { 1877 struct ice_pf *pf = ptp_info_to_pf(info); 1878 struct ice_hw *hw = &pf->hw; 1879 struct device *dev; 1880 int err; 1881 1882 dev = ice_pf_to_dev(pf); 1883 1884 /* Hardware only supports atomic adjustments using signed 32-bit 1885 * integers. For any adjustment outside this range, perform 1886 * a non-atomic get->adjust->set flow. 1887 */ 1888 if (delta > S32_MAX || delta < S32_MIN) { 1889 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); 1890 return ice_ptp_adjtime_nonatomic(info, delta); 1891 } 1892 1893 if (!ice_ptp_lock(hw)) { 1894 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); 1895 return -EBUSY; 1896 } 1897 1898 /* Disable periodic outputs */ 1899 ice_ptp_disable_all_clkout(pf); 1900 1901 err = ice_ptp_write_adj(pf, delta); 1902 1903 /* Reenable periodic outputs */ 1904 ice_ptp_enable_all_clkout(pf); 1905 1906 ice_ptp_unlock(hw); 1907 1908 if (err) { 1909 dev_err(dev, "PTP failed to adjust time, err %d\n", err); 1910 return err; 1911 } 1912 1913 ice_ptp_reset_cached_phctime(pf); 1914 1915 return 0; 1916 } 1917 1918 #ifdef CONFIG_ICE_HWTS 1919 /** 1920 * ice_ptp_get_syncdevicetime - Get the cross time stamp info 1921 * @device: Current device time 1922 * @system: System counter value read synchronously with device time 1923 * @ctx: Context provided by timekeeping code 1924 * 1925 * Read device and system (ART) clock simultaneously and return the corrected 1926 * clock values in ns. 1927 */ 1928 static int 1929 ice_ptp_get_syncdevicetime(ktime_t *device, 1930 struct system_counterval_t *system, 1931 void *ctx) 1932 { 1933 struct ice_pf *pf = (struct ice_pf *)ctx; 1934 struct ice_hw *hw = &pf->hw; 1935 u32 hh_lock, hh_art_ctl; 1936 int i; 1937 1938 /* Get the HW lock */ 1939 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1940 if (hh_lock & PFHH_SEM_BUSY_M) { 1941 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); 1942 return -EFAULT; 1943 } 1944 1945 /* Start the ART and device clock sync sequence */ 1946 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1947 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; 1948 wr32(hw, GLHH_ART_CTL, hh_art_ctl); 1949 1950 #define MAX_HH_LOCK_TRIES 100 1951 1952 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { 1953 /* Wait for sync to complete */ 1954 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1955 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { 1956 udelay(1); 1957 continue; 1958 } else { 1959 u32 hh_ts_lo, hh_ts_hi, tmr_idx; 1960 u64 hh_ts; 1961 1962 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 1963 /* Read ART time */ 1964 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); 1965 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); 1966 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1967 *system = convert_art_ns_to_tsc(hh_ts); 1968 /* Read Device source clock time */ 1969 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); 1970 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); 1971 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1972 *device = ns_to_ktime(hh_ts); 1973 break; 1974 } 1975 } 1976 /* Release HW lock */ 1977 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1978 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; 1979 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); 1980 1981 if (i == MAX_HH_LOCK_TRIES) 1982 return -ETIMEDOUT; 1983 1984 return 0; 1985 } 1986 1987 /** 1988 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp 1989 * @info: the driver's PTP info structure 1990 * @cts: The memory to fill the cross timestamp info 1991 * 1992 * Capture a cross timestamp between the ART and the device PTP hardware 1993 * clock. Fill the cross timestamp information and report it back to the 1994 * caller. 1995 * 1996 * This is only valid for E822 devices which have support for generating the 1997 * cross timestamp via PCIe PTM. 1998 * 1999 * In order to correctly correlate the ART timestamp back to the TSC time, the 2000 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. 2001 */ 2002 static int 2003 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, 2004 struct system_device_crosststamp *cts) 2005 { 2006 struct ice_pf *pf = ptp_info_to_pf(info); 2007 2008 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, 2009 pf, NULL, cts); 2010 } 2011 #endif /* CONFIG_ICE_HWTS */ 2012 2013 /** 2014 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config 2015 * @pf: Board private structure 2016 * @ifr: ioctl data 2017 * 2018 * Copy the timestamping config to user buffer 2019 */ 2020 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2021 { 2022 struct hwtstamp_config *config; 2023 2024 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2025 return -EIO; 2026 2027 config = &pf->ptp.tstamp_config; 2028 2029 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 2030 -EFAULT : 0; 2031 } 2032 2033 /** 2034 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode 2035 * @pf: Board private structure 2036 * @config: hwtstamp settings requested or saved 2037 */ 2038 static int 2039 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) 2040 { 2041 switch (config->tx_type) { 2042 case HWTSTAMP_TX_OFF: 2043 ice_set_tx_tstamp(pf, false); 2044 break; 2045 case HWTSTAMP_TX_ON: 2046 ice_set_tx_tstamp(pf, true); 2047 break; 2048 default: 2049 return -ERANGE; 2050 } 2051 2052 switch (config->rx_filter) { 2053 case HWTSTAMP_FILTER_NONE: 2054 ice_set_rx_tstamp(pf, false); 2055 break; 2056 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2057 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2058 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2059 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2060 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2061 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2062 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2063 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2064 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2065 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2066 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2067 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2068 case HWTSTAMP_FILTER_NTP_ALL: 2069 case HWTSTAMP_FILTER_ALL: 2070 ice_set_rx_tstamp(pf, true); 2071 break; 2072 default: 2073 return -ERANGE; 2074 } 2075 2076 return 0; 2077 } 2078 2079 /** 2080 * ice_ptp_set_ts_config - ioctl interface to control the timestamping 2081 * @pf: Board private structure 2082 * @ifr: ioctl data 2083 * 2084 * Get the user config and store it 2085 */ 2086 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2087 { 2088 struct hwtstamp_config config; 2089 int err; 2090 2091 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2092 return -EAGAIN; 2093 2094 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2095 return -EFAULT; 2096 2097 err = ice_ptp_set_timestamp_mode(pf, &config); 2098 if (err) 2099 return err; 2100 2101 /* Return the actual configuration set */ 2102 config = pf->ptp.tstamp_config; 2103 2104 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2105 -EFAULT : 0; 2106 } 2107 2108 /** 2109 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp 2110 * @rx_ring: Ring to get the VSI info 2111 * @rx_desc: Receive descriptor 2112 * @skb: Particular skb to send timestamp with 2113 * 2114 * The driver receives a notification in the receive descriptor with timestamp. 2115 * The timestamp is in ns, so we must convert the result first. 2116 */ 2117 void 2118 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, 2119 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) 2120 { 2121 struct skb_shared_hwtstamps *hwtstamps; 2122 u64 ts_ns, cached_time; 2123 u32 ts_high; 2124 2125 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) 2126 return; 2127 2128 cached_time = READ_ONCE(rx_ring->cached_phctime); 2129 2130 /* Do not report a timestamp if we don't have a cached PHC time */ 2131 if (!cached_time) 2132 return; 2133 2134 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached 2135 * PHC value, rather than accessing the PF. This also allows us to 2136 * simply pass the upper 32bits of nanoseconds directly. Calling 2137 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these 2138 * bits itself. 2139 */ 2140 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); 2141 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); 2142 2143 hwtstamps = skb_hwtstamps(skb); 2144 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2145 hwtstamps->hwtstamp = ns_to_ktime(ts_ns); 2146 } 2147 2148 /** 2149 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins 2150 * @pf: pointer to the PF structure 2151 * @info: PTP clock info structure 2152 * 2153 * Disable the OS access to the SMA pins. Called to clear out the OS 2154 * indications of pin support when we fail to setup the E810-T SMA control 2155 * register. 2156 */ 2157 static void 2158 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 2159 { 2160 struct device *dev = ice_pf_to_dev(pf); 2161 2162 dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); 2163 2164 info->enable = NULL; 2165 info->verify = NULL; 2166 info->n_pins = 0; 2167 info->n_ext_ts = 0; 2168 info->n_per_out = 0; 2169 } 2170 2171 /** 2172 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins 2173 * @pf: pointer to the PF structure 2174 * @info: PTP clock info structure 2175 * 2176 * Finish setting up the SMA pins by allocating pin_config, and setting it up 2177 * according to the current status of the SMA. On failure, disable all of the 2178 * extended SMA pin support. 2179 */ 2180 static void 2181 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 2182 { 2183 struct device *dev = ice_pf_to_dev(pf); 2184 int err; 2185 2186 /* Allocate memory for kernel pins interface */ 2187 info->pin_config = devm_kcalloc(dev, info->n_pins, 2188 sizeof(*info->pin_config), GFP_KERNEL); 2189 if (!info->pin_config) { 2190 ice_ptp_disable_sma_pins_e810t(pf, info); 2191 return; 2192 } 2193 2194 /* Read current SMA status */ 2195 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); 2196 if (err) 2197 ice_ptp_disable_sma_pins_e810t(pf, info); 2198 } 2199 2200 /** 2201 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs 2202 * @pf: pointer to the PF instance 2203 * @info: PTP clock capabilities 2204 */ 2205 static void 2206 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) 2207 { 2208 info->n_per_out = N_PER_OUT_E810; 2209 2210 if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) 2211 info->n_ext_ts = N_EXT_TS_E810; 2212 2213 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 2214 info->n_ext_ts = N_EXT_TS_E810; 2215 info->n_pins = NUM_PTP_PINS_E810T; 2216 info->verify = ice_verify_pin_e810t; 2217 2218 /* Complete setup of the SMA pins */ 2219 ice_ptp_setup_sma_pins_e810t(pf, info); 2220 } 2221 } 2222 2223 /** 2224 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support 2225 * @pf: Board private structure 2226 * @info: PTP info to fill 2227 * 2228 * Assign functions to the PTP capabiltiies structure for E822 devices. 2229 * Functions which operate across all device families should be set directly 2230 * in ice_ptp_set_caps. Only add functions here which are distinct for E822 2231 * devices. 2232 */ 2233 static void 2234 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) 2235 { 2236 #ifdef CONFIG_ICE_HWTS 2237 if (boot_cpu_has(X86_FEATURE_ART) && 2238 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) 2239 info->getcrosststamp = ice_ptp_getcrosststamp_e822; 2240 #endif /* CONFIG_ICE_HWTS */ 2241 } 2242 2243 /** 2244 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support 2245 * @pf: Board private structure 2246 * @info: PTP info to fill 2247 * 2248 * Assign functions to the PTP capabiltiies structure for E810 devices. 2249 * Functions which operate across all device families should be set directly 2250 * in ice_ptp_set_caps. Only add functions here which are distinct for e810 2251 * devices. 2252 */ 2253 static void 2254 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) 2255 { 2256 info->enable = ice_ptp_gpio_enable_e810; 2257 ice_ptp_setup_pins_e810(pf, info); 2258 } 2259 2260 /** 2261 * ice_ptp_set_caps - Set PTP capabilities 2262 * @pf: Board private structure 2263 */ 2264 static void ice_ptp_set_caps(struct ice_pf *pf) 2265 { 2266 struct ptp_clock_info *info = &pf->ptp.info; 2267 struct device *dev = ice_pf_to_dev(pf); 2268 2269 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", 2270 dev_driver_string(dev), dev_name(dev)); 2271 info->owner = THIS_MODULE; 2272 info->max_adj = 999999999; 2273 info->adjtime = ice_ptp_adjtime; 2274 info->adjfine = ice_ptp_adjfine; 2275 info->gettimex64 = ice_ptp_gettimex64; 2276 info->settime64 = ice_ptp_settime64; 2277 2278 if (ice_is_e810(&pf->hw)) 2279 ice_ptp_set_funcs_e810(pf, info); 2280 else 2281 ice_ptp_set_funcs_e822(pf, info); 2282 } 2283 2284 /** 2285 * ice_ptp_create_clock - Create PTP clock device for userspace 2286 * @pf: Board private structure 2287 * 2288 * This function creates a new PTP clock device. It only creates one if we 2289 * don't already have one. Will return error if it can't create one, but success 2290 * if we already have a device. Should be used by ice_ptp_init to create clock 2291 * initially, and prevent global resets from creating new clock devices. 2292 */ 2293 static long ice_ptp_create_clock(struct ice_pf *pf) 2294 { 2295 struct ptp_clock_info *info; 2296 struct ptp_clock *clock; 2297 struct device *dev; 2298 2299 /* No need to create a clock device if we already have one */ 2300 if (pf->ptp.clock) 2301 return 0; 2302 2303 ice_ptp_set_caps(pf); 2304 2305 info = &pf->ptp.info; 2306 dev = ice_pf_to_dev(pf); 2307 2308 /* Attempt to register the clock before enabling the hardware. */ 2309 clock = ptp_clock_register(info, dev); 2310 if (IS_ERR(clock)) 2311 return PTR_ERR(clock); 2312 2313 pf->ptp.clock = clock; 2314 2315 return 0; 2316 } 2317 2318 /** 2319 * ice_ptp_request_ts - Request an available Tx timestamp index 2320 * @tx: the PTP Tx timestamp tracker to request from 2321 * @skb: the SKB to associate with this timestamp request 2322 */ 2323 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 2324 { 2325 u8 idx; 2326 2327 spin_lock(&tx->lock); 2328 2329 /* Check that this tracker is accepting new timestamp requests */ 2330 if (!ice_ptp_is_tx_tracker_up(tx)) { 2331 spin_unlock(&tx->lock); 2332 return -1; 2333 } 2334 2335 /* Find and set the first available index */ 2336 idx = find_first_zero_bit(tx->in_use, tx->len); 2337 if (idx < tx->len) { 2338 /* We got a valid index that no other thread could have set. Store 2339 * a reference to the skb and the start time to allow discarding old 2340 * requests. 2341 */ 2342 set_bit(idx, tx->in_use); 2343 clear_bit(idx, tx->stale); 2344 tx->tstamps[idx].start = jiffies; 2345 tx->tstamps[idx].skb = skb_get(skb); 2346 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2347 ice_trace(tx_tstamp_request, skb, idx); 2348 } 2349 2350 spin_unlock(&tx->lock); 2351 2352 /* return the appropriate PHY timestamp register index, -1 if no 2353 * indexes were available. 2354 */ 2355 if (idx >= tx->len) 2356 return -1; 2357 else 2358 return idx + tx->offset; 2359 } 2360 2361 /** 2362 * ice_ptp_process_ts - Process the PTP Tx timestamps 2363 * @pf: Board private structure 2364 * 2365 * Returns true if timestamps are processed. 2366 */ 2367 bool ice_ptp_process_ts(struct ice_pf *pf) 2368 { 2369 return ice_ptp_tx_tstamp(&pf->ptp.port.tx); 2370 } 2371 2372 static void ice_ptp_periodic_work(struct kthread_work *work) 2373 { 2374 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); 2375 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 2376 int err; 2377 2378 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2379 return; 2380 2381 err = ice_ptp_update_cached_phctime(pf); 2382 2383 /* Run twice a second or reschedule if phc update failed */ 2384 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 2385 msecs_to_jiffies(err ? 10 : 500)); 2386 } 2387 2388 /** 2389 * ice_ptp_reset - Initialize PTP hardware clock support after reset 2390 * @pf: Board private structure 2391 */ 2392 void ice_ptp_reset(struct ice_pf *pf) 2393 { 2394 struct ice_ptp *ptp = &pf->ptp; 2395 struct ice_hw *hw = &pf->hw; 2396 struct timespec64 ts; 2397 int err, itr = 1; 2398 u64 time_diff; 2399 2400 if (test_bit(ICE_PFR_REQ, pf->state)) 2401 goto pfr; 2402 2403 if (!hw->func_caps.ts_func_info.src_tmr_owned) 2404 goto reset_ts; 2405 2406 err = ice_ptp_init_phc(hw); 2407 if (err) 2408 goto err; 2409 2410 /* Acquire the global hardware lock */ 2411 if (!ice_ptp_lock(hw)) { 2412 err = -EBUSY; 2413 goto err; 2414 } 2415 2416 /* Write the increment time value to PHY and LAN */ 2417 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2418 if (err) { 2419 ice_ptp_unlock(hw); 2420 goto err; 2421 } 2422 2423 /* Write the initial Time value to PHY and LAN using the cached PHC 2424 * time before the reset and time difference between stopping and 2425 * starting the clock. 2426 */ 2427 if (ptp->cached_phc_time) { 2428 time_diff = ktime_get_real_ns() - ptp->reset_time; 2429 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); 2430 } else { 2431 ts = ktime_to_timespec64(ktime_get_real()); 2432 } 2433 err = ice_ptp_write_init(pf, &ts); 2434 if (err) { 2435 ice_ptp_unlock(hw); 2436 goto err; 2437 } 2438 2439 /* Release the global hardware lock */ 2440 ice_ptp_unlock(hw); 2441 2442 if (!ice_is_e810(hw)) { 2443 /* Enable quad interrupts */ 2444 err = ice_ptp_tx_ena_intr(pf, true, itr); 2445 if (err) 2446 goto err; 2447 } 2448 2449 reset_ts: 2450 /* Restart the PHY timestamping block */ 2451 ice_ptp_reset_phy_timestamping(pf); 2452 2453 pfr: 2454 /* Init Tx structures */ 2455 if (ice_is_e810(&pf->hw)) { 2456 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); 2457 } else { 2458 kthread_init_delayed_work(&ptp->port.ov_work, 2459 ice_ptp_wait_for_offsets); 2460 err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, 2461 ptp->port.port_num); 2462 } 2463 if (err) 2464 goto err; 2465 2466 set_bit(ICE_FLAG_PTP, pf->flags); 2467 2468 /* Start periodic work going */ 2469 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2470 2471 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); 2472 return; 2473 2474 err: 2475 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); 2476 } 2477 2478 /** 2479 * ice_ptp_prepare_for_reset - Prepare PTP for reset 2480 * @pf: Board private structure 2481 */ 2482 void ice_ptp_prepare_for_reset(struct ice_pf *pf) 2483 { 2484 struct ice_ptp *ptp = &pf->ptp; 2485 u8 src_tmr; 2486 2487 clear_bit(ICE_FLAG_PTP, pf->flags); 2488 2489 /* Disable timestamping for both Tx and Rx */ 2490 ice_ptp_cfg_timestamp(pf, false); 2491 2492 kthread_cancel_delayed_work_sync(&ptp->work); 2493 kthread_cancel_work_sync(&ptp->extts_work); 2494 2495 if (test_bit(ICE_PFR_REQ, pf->state)) 2496 return; 2497 2498 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2499 2500 /* Disable periodic outputs */ 2501 ice_ptp_disable_all_clkout(pf); 2502 2503 src_tmr = ice_get_ptp_src_clock_index(&pf->hw); 2504 2505 /* Disable source clock */ 2506 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); 2507 2508 /* Acquire PHC and system timer to restore after reset */ 2509 ptp->reset_time = ktime_get_real_ns(); 2510 } 2511 2512 /** 2513 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device 2514 * @pf: Board private structure 2515 * 2516 * Setup and initialize a PTP clock device that represents the device hardware 2517 * clock. Save the clock index for other functions connected to the same 2518 * hardware resource. 2519 */ 2520 static int ice_ptp_init_owner(struct ice_pf *pf) 2521 { 2522 struct ice_hw *hw = &pf->hw; 2523 struct timespec64 ts; 2524 int err, itr = 1; 2525 2526 err = ice_ptp_init_phc(hw); 2527 if (err) { 2528 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", 2529 err); 2530 return err; 2531 } 2532 2533 /* Acquire the global hardware lock */ 2534 if (!ice_ptp_lock(hw)) { 2535 err = -EBUSY; 2536 goto err_exit; 2537 } 2538 2539 /* Write the increment time value to PHY and LAN */ 2540 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2541 if (err) { 2542 ice_ptp_unlock(hw); 2543 goto err_exit; 2544 } 2545 2546 ts = ktime_to_timespec64(ktime_get_real()); 2547 /* Write the initial Time value to PHY and LAN */ 2548 err = ice_ptp_write_init(pf, &ts); 2549 if (err) { 2550 ice_ptp_unlock(hw); 2551 goto err_exit; 2552 } 2553 2554 /* Release the global hardware lock */ 2555 ice_ptp_unlock(hw); 2556 2557 if (!ice_is_e810(hw)) { 2558 /* Enable quad interrupts */ 2559 err = ice_ptp_tx_ena_intr(pf, true, itr); 2560 if (err) 2561 goto err_exit; 2562 } 2563 2564 /* Ensure we have a clock device */ 2565 err = ice_ptp_create_clock(pf); 2566 if (err) 2567 goto err_clk; 2568 2569 /* Store the PTP clock index for other PFs */ 2570 ice_set_ptp_clock_index(pf); 2571 2572 return 0; 2573 2574 err_clk: 2575 pf->ptp.clock = NULL; 2576 err_exit: 2577 return err; 2578 } 2579 2580 /** 2581 * ice_ptp_init_work - Initialize PTP work threads 2582 * @pf: Board private structure 2583 * @ptp: PF PTP structure 2584 */ 2585 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) 2586 { 2587 struct kthread_worker *kworker; 2588 2589 /* Initialize work functions */ 2590 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); 2591 kthread_init_work(&ptp->extts_work, ice_ptp_extts_work); 2592 2593 /* Allocate a kworker for handling work required for the ports 2594 * connected to the PTP hardware clock. 2595 */ 2596 kworker = kthread_create_worker(0, "ice-ptp-%s", 2597 dev_name(ice_pf_to_dev(pf))); 2598 if (IS_ERR(kworker)) 2599 return PTR_ERR(kworker); 2600 2601 ptp->kworker = kworker; 2602 2603 /* Start periodic work going */ 2604 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * ice_ptp_init_port - Initialize PTP port structure 2611 * @pf: Board private structure 2612 * @ptp_port: PTP port structure 2613 */ 2614 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) 2615 { 2616 mutex_init(&ptp_port->ps_lock); 2617 2618 if (ice_is_e810(&pf->hw)) 2619 return ice_ptp_init_tx_e810(pf, &ptp_port->tx); 2620 2621 kthread_init_delayed_work(&ptp_port->ov_work, 2622 ice_ptp_wait_for_offsets); 2623 return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); 2624 } 2625 2626 /** 2627 * ice_ptp_init - Initialize PTP hardware clock support 2628 * @pf: Board private structure 2629 * 2630 * Set up the device for interacting with the PTP hardware clock for all 2631 * functions, both the function that owns the clock hardware, and the 2632 * functions connected to the clock hardware. 2633 * 2634 * The clock owner will allocate and register a ptp_clock with the 2635 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work 2636 * items used for asynchronous work such as Tx timestamps and periodic work. 2637 */ 2638 void ice_ptp_init(struct ice_pf *pf) 2639 { 2640 struct ice_ptp *ptp = &pf->ptp; 2641 struct ice_hw *hw = &pf->hw; 2642 int err; 2643 2644 /* If this function owns the clock hardware, it must allocate and 2645 * configure the PTP clock device to represent it. 2646 */ 2647 if (hw->func_caps.ts_func_info.src_tmr_owned) { 2648 err = ice_ptp_init_owner(pf); 2649 if (err) 2650 goto err; 2651 } 2652 2653 ptp->port.port_num = hw->pf_id; 2654 err = ice_ptp_init_port(pf, &ptp->port); 2655 if (err) 2656 goto err; 2657 2658 /* Start the PHY timestamping block */ 2659 ice_ptp_reset_phy_timestamping(pf); 2660 2661 set_bit(ICE_FLAG_PTP, pf->flags); 2662 err = ice_ptp_init_work(pf, ptp); 2663 if (err) 2664 goto err; 2665 2666 dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); 2667 return; 2668 2669 err: 2670 /* If we registered a PTP clock, release it */ 2671 if (pf->ptp.clock) { 2672 ptp_clock_unregister(ptp->clock); 2673 pf->ptp.clock = NULL; 2674 } 2675 clear_bit(ICE_FLAG_PTP, pf->flags); 2676 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); 2677 } 2678 2679 /** 2680 * ice_ptp_release - Disable the driver/HW support and unregister the clock 2681 * @pf: Board private structure 2682 * 2683 * This function handles the cleanup work required from the initialization by 2684 * clearing out the important information and unregistering the clock 2685 */ 2686 void ice_ptp_release(struct ice_pf *pf) 2687 { 2688 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2689 return; 2690 2691 /* Disable timestamping for both Tx and Rx */ 2692 ice_ptp_cfg_timestamp(pf, false); 2693 2694 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2695 2696 clear_bit(ICE_FLAG_PTP, pf->flags); 2697 2698 kthread_cancel_delayed_work_sync(&pf->ptp.work); 2699 2700 ice_ptp_port_phy_stop(&pf->ptp.port); 2701 mutex_destroy(&pf->ptp.port.ps_lock); 2702 if (pf->ptp.kworker) { 2703 kthread_destroy_worker(pf->ptp.kworker); 2704 pf->ptp.kworker = NULL; 2705 } 2706 2707 if (!pf->ptp.clock) 2708 return; 2709 2710 /* Disable periodic outputs */ 2711 ice_ptp_disable_all_clkout(pf); 2712 2713 ice_clear_ptp_clock_index(pf); 2714 ptp_clock_unregister(pf->ptp.clock); 2715 pf->ptp.clock = NULL; 2716 2717 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); 2718 } 2719