xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision 8aaaf2f3af2ae212428f4db1af34214225f5cec3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 
7 #define E810_OUT_PROP_DELAY_NS 1
8 
9 #define UNKNOWN_INCVAL_E822 0x100000000ULL
10 
11 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
12 	/* name    idx   func         chan */
13 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
14 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
15 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
16 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
17 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
18 };
19 
20 /**
21  * ice_get_sma_config_e810t
22  * @hw: pointer to the hw struct
23  * @ptp_pins: pointer to the ptp_pin_desc struture
24  *
25  * Read the configuration of the SMA control logic and put it into the
26  * ptp_pin_desc structure
27  */
28 static int
29 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
30 {
31 	u8 data, i;
32 	int status;
33 
34 	/* Read initial pin state */
35 	status = ice_read_sma_ctrl_e810t(hw, &data);
36 	if (status)
37 		return status;
38 
39 	/* initialize with defaults */
40 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
41 		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
42 			 "%s", ice_pin_desc_e810t[i].name);
43 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
44 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
45 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
46 	}
47 
48 	/* Parse SMA1/UFL1 */
49 	switch (data & ICE_SMA1_MASK_E810T) {
50 	case ICE_SMA1_MASK_E810T:
51 	default:
52 		ptp_pins[SMA1].func = PTP_PF_NONE;
53 		ptp_pins[UFL1].func = PTP_PF_NONE;
54 		break;
55 	case ICE_SMA1_DIR_EN_E810T:
56 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
57 		ptp_pins[UFL1].func = PTP_PF_NONE;
58 		break;
59 	case ICE_SMA1_TX_EN_E810T:
60 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
61 		ptp_pins[UFL1].func = PTP_PF_NONE;
62 		break;
63 	case 0:
64 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
65 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
66 		break;
67 	}
68 
69 	/* Parse SMA2/UFL2 */
70 	switch (data & ICE_SMA2_MASK_E810T) {
71 	case ICE_SMA2_MASK_E810T:
72 	default:
73 		ptp_pins[SMA2].func = PTP_PF_NONE;
74 		ptp_pins[UFL2].func = PTP_PF_NONE;
75 		break;
76 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
77 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
78 		ptp_pins[UFL2].func = PTP_PF_NONE;
79 		break;
80 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
81 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
82 		ptp_pins[UFL2].func = PTP_PF_NONE;
83 		break;
84 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
85 		ptp_pins[SMA2].func = PTP_PF_NONE;
86 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
87 		break;
88 	case ICE_SMA2_DIR_EN_E810T:
89 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
90 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
91 		break;
92 	}
93 
94 	return 0;
95 }
96 
97 /**
98  * ice_ptp_set_sma_config_e810t
99  * @hw: pointer to the hw struct
100  * @ptp_pins: pointer to the ptp_pin_desc struture
101  *
102  * Set the configuration of the SMA control logic based on the configuration in
103  * num_pins parameter
104  */
105 static int
106 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
107 			     const struct ptp_pin_desc *ptp_pins)
108 {
109 	int status;
110 	u8 data;
111 
112 	/* SMA1 and UFL1 cannot be set to TX at the same time */
113 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
114 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
115 		return -EINVAL;
116 
117 	/* SMA2 and UFL2 cannot be set to RX at the same time */
118 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
119 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
120 		return -EINVAL;
121 
122 	/* Read initial pin state value */
123 	status = ice_read_sma_ctrl_e810t(hw, &data);
124 	if (status)
125 		return status;
126 
127 	/* Set the right sate based on the desired configuration */
128 	data &= ~ICE_SMA1_MASK_E810T;
129 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
130 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
131 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
132 		data |= ICE_SMA1_MASK_E810T;
133 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
134 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
135 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
136 		data |= ICE_SMA1_TX_EN_E810T;
137 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
138 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
139 		/* U.FL 1 TX will always enable SMA 1 RX */
140 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
141 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
142 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
143 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
144 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
145 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
146 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
147 		data |= ICE_SMA1_DIR_EN_E810T;
148 	}
149 
150 	data &= ~ICE_SMA2_MASK_E810T;
151 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
152 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
153 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
154 		data |= ICE_SMA2_MASK_E810T;
155 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
156 			ptp_pins[UFL2].func == PTP_PF_NONE) {
157 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
158 		data |= (ICE_SMA2_TX_EN_E810T |
159 			 ICE_SMA2_UFL2_RX_DIS_E810T);
160 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
161 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
162 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
163 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
164 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
165 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
166 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
167 		data |= (ICE_SMA2_DIR_EN_E810T |
168 			 ICE_SMA2_UFL2_RX_DIS_E810T);
169 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
170 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
171 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
172 		data |= ICE_SMA2_DIR_EN_E810T;
173 	}
174 
175 	return ice_write_sma_ctrl_e810t(hw, data);
176 }
177 
178 /**
179  * ice_ptp_set_sma_e810t
180  * @info: the driver's PTP info structure
181  * @pin: pin index in kernel structure
182  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
183  *
184  * Set the configuration of a single SMA pin
185  */
186 static int
187 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
188 		      enum ptp_pin_function func)
189 {
190 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
191 	struct ice_pf *pf = ptp_info_to_pf(info);
192 	struct ice_hw *hw = &pf->hw;
193 	int err;
194 
195 	if (pin < SMA1 || func > PTP_PF_PEROUT)
196 		return -EOPNOTSUPP;
197 
198 	err = ice_get_sma_config_e810t(hw, ptp_pins);
199 	if (err)
200 		return err;
201 
202 	/* Disable the same function on the other pin sharing the channel */
203 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
204 		ptp_pins[UFL1].func = PTP_PF_NONE;
205 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
206 		ptp_pins[SMA1].func = PTP_PF_NONE;
207 
208 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
209 		ptp_pins[UFL2].func = PTP_PF_NONE;
210 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
211 		ptp_pins[SMA2].func = PTP_PF_NONE;
212 
213 	/* Set up new pin function in the temp table */
214 	ptp_pins[pin].func = func;
215 
216 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
217 }
218 
219 /**
220  * ice_verify_pin_e810t
221  * @info: the driver's PTP info structure
222  * @pin: Pin index
223  * @func: Assigned function
224  * @chan: Assigned channel
225  *
226  * Verify if pin supports requested pin function. If the Check pins consistency.
227  * Reconfigure the SMA logic attached to the given pin to enable its
228  * desired functionality
229  */
230 static int
231 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
232 		     enum ptp_pin_function func, unsigned int chan)
233 {
234 	/* Don't allow channel reassignment */
235 	if (chan != ice_pin_desc_e810t[pin].chan)
236 		return -EOPNOTSUPP;
237 
238 	/* Check if functions are properly assigned */
239 	switch (func) {
240 	case PTP_PF_NONE:
241 		break;
242 	case PTP_PF_EXTTS:
243 		if (pin == UFL1)
244 			return -EOPNOTSUPP;
245 		break;
246 	case PTP_PF_PEROUT:
247 		if (pin == UFL2 || pin == GNSS)
248 			return -EOPNOTSUPP;
249 		break;
250 	case PTP_PF_PHYSYNC:
251 		return -EOPNOTSUPP;
252 	}
253 
254 	return ice_ptp_set_sma_e810t(info, pin, func);
255 }
256 
257 /**
258  * ice_set_tx_tstamp - Enable or disable Tx timestamping
259  * @pf: The PF pointer to search in
260  * @on: bool value for whether timestamps are enabled or disabled
261  */
262 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
263 {
264 	struct ice_vsi *vsi;
265 	u32 val;
266 	u16 i;
267 
268 	vsi = ice_get_main_vsi(pf);
269 	if (!vsi)
270 		return;
271 
272 	/* Set the timestamp enable flag for all the Tx rings */
273 	ice_for_each_txq(vsi, i) {
274 		if (!vsi->tx_rings[i])
275 			continue;
276 		vsi->tx_rings[i]->ptp_tx = on;
277 	}
278 
279 	/* Configure the Tx timestamp interrupt */
280 	val = rd32(&pf->hw, PFINT_OICR_ENA);
281 	if (on)
282 		val |= PFINT_OICR_TSYN_TX_M;
283 	else
284 		val &= ~PFINT_OICR_TSYN_TX_M;
285 	wr32(&pf->hw, PFINT_OICR_ENA, val);
286 
287 	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
288 }
289 
290 /**
291  * ice_set_rx_tstamp - Enable or disable Rx timestamping
292  * @pf: The PF pointer to search in
293  * @on: bool value for whether timestamps are enabled or disabled
294  */
295 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
296 {
297 	struct ice_vsi *vsi;
298 	u16 i;
299 
300 	vsi = ice_get_main_vsi(pf);
301 	if (!vsi)
302 		return;
303 
304 	/* Set the timestamp flag for all the Rx rings */
305 	ice_for_each_rxq(vsi, i) {
306 		if (!vsi->rx_rings[i])
307 			continue;
308 		vsi->rx_rings[i]->ptp_rx = on;
309 	}
310 
311 	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
312 					       HWTSTAMP_FILTER_NONE;
313 }
314 
315 /**
316  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
317  * @pf: Board private structure
318  * @ena: bool value to enable or disable time stamp
319  *
320  * This function will configure timestamping during PTP initialization
321  * and deinitialization
322  */
323 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
324 {
325 	ice_set_tx_tstamp(pf, ena);
326 	ice_set_rx_tstamp(pf, ena);
327 }
328 
329 /**
330  * ice_get_ptp_clock_index - Get the PTP clock index
331  * @pf: the PF pointer
332  *
333  * Determine the clock index of the PTP clock associated with this device. If
334  * this is the PF controlling the clock, just use the local access to the
335  * clock device pointer.
336  *
337  * Otherwise, read from the driver shared parameters to determine the clock
338  * index value.
339  *
340  * Returns: the index of the PTP clock associated with this device, or -1 if
341  * there is no associated clock.
342  */
343 int ice_get_ptp_clock_index(struct ice_pf *pf)
344 {
345 	struct device *dev = ice_pf_to_dev(pf);
346 	enum ice_aqc_driver_params param_idx;
347 	struct ice_hw *hw = &pf->hw;
348 	u8 tmr_idx;
349 	u32 value;
350 	int err;
351 
352 	/* Use the ptp_clock structure if we're the main PF */
353 	if (pf->ptp.clock)
354 		return ptp_clock_index(pf->ptp.clock);
355 
356 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
357 	if (!tmr_idx)
358 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
359 	else
360 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
361 
362 	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
363 	if (err) {
364 		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
365 			err, ice_aq_str(hw->adminq.sq_last_status));
366 		return -1;
367 	}
368 
369 	/* The PTP clock index is an integer, and will be between 0 and
370 	 * INT_MAX. The highest bit of the driver shared parameter is used to
371 	 * indicate whether or not the currently stored clock index is valid.
372 	 */
373 	if (!(value & PTP_SHARED_CLK_IDX_VALID))
374 		return -1;
375 
376 	return value & ~PTP_SHARED_CLK_IDX_VALID;
377 }
378 
379 /**
380  * ice_set_ptp_clock_index - Set the PTP clock index
381  * @pf: the PF pointer
382  *
383  * Set the PTP clock index for this device into the shared driver parameters,
384  * so that other PFs associated with this device can read it.
385  *
386  * If the PF is unable to store the clock index, it will log an error, but
387  * will continue operating PTP.
388  */
389 static void ice_set_ptp_clock_index(struct ice_pf *pf)
390 {
391 	struct device *dev = ice_pf_to_dev(pf);
392 	enum ice_aqc_driver_params param_idx;
393 	struct ice_hw *hw = &pf->hw;
394 	u8 tmr_idx;
395 	u32 value;
396 	int err;
397 
398 	if (!pf->ptp.clock)
399 		return;
400 
401 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
402 	if (!tmr_idx)
403 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
404 	else
405 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
406 
407 	value = (u32)ptp_clock_index(pf->ptp.clock);
408 	if (value > INT_MAX) {
409 		dev_err(dev, "PTP Clock index is too large to store\n");
410 		return;
411 	}
412 	value |= PTP_SHARED_CLK_IDX_VALID;
413 
414 	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
415 	if (err) {
416 		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
417 			err, ice_aq_str(hw->adminq.sq_last_status));
418 	}
419 }
420 
421 /**
422  * ice_clear_ptp_clock_index - Clear the PTP clock index
423  * @pf: the PF pointer
424  *
425  * Clear the PTP clock index for this device. Must be called when
426  * unregistering the PTP clock, in order to ensure other PFs stop reporting
427  * a clock object that no longer exists.
428  */
429 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
430 {
431 	struct device *dev = ice_pf_to_dev(pf);
432 	enum ice_aqc_driver_params param_idx;
433 	struct ice_hw *hw = &pf->hw;
434 	u8 tmr_idx;
435 	int err;
436 
437 	/* Do not clear the index if we don't own the timer */
438 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
439 		return;
440 
441 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
442 	if (!tmr_idx)
443 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
444 	else
445 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
446 
447 	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
448 	if (err) {
449 		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
450 			err, ice_aq_str(hw->adminq.sq_last_status));
451 	}
452 }
453 
454 /**
455  * ice_ptp_read_src_clk_reg - Read the source clock register
456  * @pf: Board private structure
457  * @sts: Optional parameter for holding a pair of system timestamps from
458  *       the system clock. Will be ignored if NULL is given.
459  */
460 static u64
461 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
462 {
463 	struct ice_hw *hw = &pf->hw;
464 	u32 hi, lo, lo2;
465 	u8 tmr_idx;
466 
467 	tmr_idx = ice_get_ptp_src_clock_index(hw);
468 	/* Read the system timestamp pre PHC read */
469 	ptp_read_system_prets(sts);
470 
471 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
472 
473 	/* Read the system timestamp post PHC read */
474 	ptp_read_system_postts(sts);
475 
476 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
477 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
478 
479 	if (lo2 < lo) {
480 		/* if TIME_L rolled over read TIME_L again and update
481 		 * system timestamps
482 		 */
483 		ptp_read_system_prets(sts);
484 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
485 		ptp_read_system_postts(sts);
486 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
487 	}
488 
489 	return ((u64)hi << 32) | lo;
490 }
491 
492 /**
493  * ice_ptp_update_cached_phctime - Update the cached PHC time values
494  * @pf: Board specific private structure
495  *
496  * This function updates the system time values which are cached in the PF
497  * structure and the Rx rings.
498  *
499  * This function must be called periodically to ensure that the cached value
500  * is never more than 2 seconds old. It must also be called whenever the PHC
501  * time has been changed.
502  */
503 static void ice_ptp_update_cached_phctime(struct ice_pf *pf)
504 {
505 	u64 systime;
506 	int i;
507 
508 	/* Read the current PHC time */
509 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
510 
511 	/* Update the cached PHC time stored in the PF structure */
512 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
513 
514 	ice_for_each_vsi(pf, i) {
515 		struct ice_vsi *vsi = pf->vsi[i];
516 		int j;
517 
518 		if (!vsi)
519 			continue;
520 
521 		if (vsi->type != ICE_VSI_PF)
522 			continue;
523 
524 		ice_for_each_rxq(vsi, j) {
525 			if (!vsi->rx_rings[j])
526 				continue;
527 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
528 		}
529 	}
530 }
531 
532 /**
533  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
534  * @cached_phc_time: recently cached copy of PHC time
535  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
536  *
537  * Hardware captures timestamps which contain only 32 bits of nominal
538  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
539  * Note that the captured timestamp values may be 40 bits, but the lower
540  * 8 bits are sub-nanoseconds and generally discarded.
541  *
542  * Extend the 32bit nanosecond timestamp using the following algorithm and
543  * assumptions:
544  *
545  * 1) have a recently cached copy of the PHC time
546  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
547  *    seconds) before or after the PHC time was captured.
548  * 3) calculate the delta between the cached time and the timestamp
549  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
550  *    captured after the PHC time. In this case, the full timestamp is just
551  *    the cached PHC time plus the delta.
552  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
553  *    timestamp was captured *before* the PHC time, i.e. because the PHC
554  *    cache was updated after the timestamp was captured by hardware. In this
555  *    case, the full timestamp is the cached time minus the inverse delta.
556  *
557  * This algorithm works even if the PHC time was updated after a Tx timestamp
558  * was requested, but before the Tx timestamp event was reported from
559  * hardware.
560  *
561  * This calculation primarily relies on keeping the cached PHC time up to
562  * date. If the timestamp was captured more than 2^31 nanoseconds after the
563  * PHC time, it is possible that the lower 32bits of PHC time have
564  * overflowed more than once, and we might generate an incorrect timestamp.
565  *
566  * This is prevented by (a) periodically updating the cached PHC time once
567  * a second, and (b) discarding any Tx timestamp packet if it has waited for
568  * a timestamp for more than one second.
569  */
570 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
571 {
572 	u32 delta, phc_time_lo;
573 	u64 ns;
574 
575 	/* Extract the lower 32 bits of the PHC time */
576 	phc_time_lo = (u32)cached_phc_time;
577 
578 	/* Calculate the delta between the lower 32bits of the cached PHC
579 	 * time and the in_tstamp value
580 	 */
581 	delta = (in_tstamp - phc_time_lo);
582 
583 	/* Do not assume that the in_tstamp is always more recent than the
584 	 * cached PHC time. If the delta is large, it indicates that the
585 	 * in_tstamp was taken in the past, and should be converted
586 	 * forward.
587 	 */
588 	if (delta > (U32_MAX / 2)) {
589 		/* reverse the delta calculation here */
590 		delta = (phc_time_lo - in_tstamp);
591 		ns = cached_phc_time - delta;
592 	} else {
593 		ns = cached_phc_time + delta;
594 	}
595 
596 	return ns;
597 }
598 
599 /**
600  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
601  * @pf: Board private structure
602  * @in_tstamp: Ingress/egress 40b timestamp value
603  *
604  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
605  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
606  *
607  *  *--------------------------------------------------------------*
608  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
609  *  *--------------------------------------------------------------*
610  *
611  * The low bit is an indicator of whether the timestamp is valid. The next
612  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
613  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
614  *
615  * It is assumed that the caller verifies the timestamp is valid prior to
616  * calling this function.
617  *
618  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
619  * time stored in the device private PTP structure as the basis for timestamp
620  * extension.
621  *
622  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
623  * algorithm.
624  */
625 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
626 {
627 	const u64 mask = GENMASK_ULL(31, 0);
628 
629 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
630 				     (in_tstamp >> 8) & mask);
631 }
632 
633 /**
634  * ice_ptp_read_time - Read the time from the device
635  * @pf: Board private structure
636  * @ts: timespec structure to hold the current time value
637  * @sts: Optional parameter for holding a pair of system timestamps from
638  *       the system clock. Will be ignored if NULL is given.
639  *
640  * This function reads the source clock registers and stores them in a timespec.
641  * However, since the registers are 64 bits of nanoseconds, we must convert the
642  * result to a timespec before we can return.
643  */
644 static void
645 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
646 		  struct ptp_system_timestamp *sts)
647 {
648 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
649 
650 	*ts = ns_to_timespec64(time_ns);
651 }
652 
653 /**
654  * ice_ptp_write_init - Set PHC time to provided value
655  * @pf: Board private structure
656  * @ts: timespec structure that holds the new time value
657  *
658  * Set the PHC time to the specified time provided in the timespec.
659  */
660 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
661 {
662 	u64 ns = timespec64_to_ns(ts);
663 	struct ice_hw *hw = &pf->hw;
664 
665 	return ice_ptp_init_time(hw, ns);
666 }
667 
668 /**
669  * ice_ptp_write_adj - Adjust PHC clock time atomically
670  * @pf: Board private structure
671  * @adj: Adjustment in nanoseconds
672  *
673  * Perform an atomic adjustment of the PHC time by the specified number of
674  * nanoseconds.
675  */
676 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
677 {
678 	struct ice_hw *hw = &pf->hw;
679 
680 	return ice_ptp_adj_clock(hw, adj);
681 }
682 
683 /**
684  * ice_base_incval - Get base timer increment value
685  * @pf: Board private structure
686  *
687  * Look up the base timer increment value for this device. The base increment
688  * value is used to define the nominal clock tick rate. This increment value
689  * is programmed during device initialization. It is also used as the basis
690  * for calculating adjustments using scaled_ppm.
691  */
692 static u64 ice_base_incval(struct ice_pf *pf)
693 {
694 	struct ice_hw *hw = &pf->hw;
695 	u64 incval;
696 
697 	if (ice_is_e810(hw))
698 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
699 	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
700 		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
701 	else
702 		incval = UNKNOWN_INCVAL_E822;
703 
704 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
705 		incval);
706 
707 	return incval;
708 }
709 
710 /**
711  * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
712  * @pf: The PF private data structure
713  * @quad: The quad (0-4)
714  */
715 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
716 {
717 	struct ice_hw *hw = &pf->hw;
718 
719 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
720 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
721 }
722 
723 /**
724  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
725  * @port: PTP port for which Tx FIFO is checked
726  */
727 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
728 {
729 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
730 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
731 	struct ice_pf *pf;
732 	struct ice_hw *hw;
733 	u32 val, phy_sts;
734 	int err;
735 
736 	pf = ptp_port_to_pf(port);
737 	hw = &pf->hw;
738 
739 	if (port->tx_fifo_busy_cnt == FIFO_OK)
740 		return 0;
741 
742 	/* need to read FIFO state */
743 	if (offs == 0 || offs == 1)
744 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
745 					     &val);
746 	else
747 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
748 					     &val);
749 
750 	if (err) {
751 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
752 			port->port_num, err);
753 		return err;
754 	}
755 
756 	if (offs & 0x1)
757 		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
758 	else
759 		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
760 
761 	if (phy_sts & FIFO_EMPTY) {
762 		port->tx_fifo_busy_cnt = FIFO_OK;
763 		return 0;
764 	}
765 
766 	port->tx_fifo_busy_cnt++;
767 
768 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
769 		port->tx_fifo_busy_cnt, port->port_num);
770 
771 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
772 		dev_dbg(ice_pf_to_dev(pf),
773 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
774 			port->port_num, quad);
775 		ice_ptp_reset_ts_memory_quad(pf, quad);
776 		port->tx_fifo_busy_cnt = FIFO_OK;
777 		return 0;
778 	}
779 
780 	return -EAGAIN;
781 }
782 
783 /**
784  * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
785  * @port: the PTP port to check
786  *
787  * Checks whether the Tx offset for the PHY associated with this port is
788  * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
789  * not.
790  */
791 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
792 {
793 	struct ice_pf *pf = ptp_port_to_pf(port);
794 	struct device *dev = ice_pf_to_dev(pf);
795 	struct ice_hw *hw = &pf->hw;
796 	u32 val;
797 	int err;
798 
799 	err = ice_ptp_check_tx_fifo(port);
800 	if (err)
801 		return err;
802 
803 	err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
804 				    &val);
805 	if (err) {
806 		dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
807 			port->port_num, err);
808 		return -EAGAIN;
809 	}
810 
811 	if (!(val & P_REG_TX_OV_STATUS_OV_M))
812 		return -EAGAIN;
813 
814 	return 0;
815 }
816 
817 /**
818  * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
819  * @port: the PTP port to check
820  *
821  * Checks whether the Rx offset for the PHY associated with this port is
822  * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
823  * not.
824  */
825 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
826 {
827 	struct ice_pf *pf = ptp_port_to_pf(port);
828 	struct device *dev = ice_pf_to_dev(pf);
829 	struct ice_hw *hw = &pf->hw;
830 	int err;
831 	u32 val;
832 
833 	err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
834 				    &val);
835 	if (err) {
836 		dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
837 			port->port_num, err);
838 		return err;
839 	}
840 
841 	if (!(val & P_REG_RX_OV_STATUS_OV_M))
842 		return -EAGAIN;
843 
844 	return 0;
845 }
846 
847 /**
848  * ice_ptp_check_offset_valid - Check port offset valid bit
849  * @port: Port for which offset valid bit is checked
850  *
851  * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
852  * offset is not ready.
853  */
854 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
855 {
856 	int tx_err, rx_err;
857 
858 	/* always check both Tx and Rx offset validity */
859 	tx_err = ice_ptp_check_tx_offset_valid(port);
860 	rx_err = ice_ptp_check_rx_offset_valid(port);
861 
862 	if (tx_err || rx_err)
863 		return -EAGAIN;
864 
865 	return 0;
866 }
867 
868 /**
869  * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
870  * @work: Pointer to the kthread_work structure for this task
871  *
872  * Check whether both the Tx and Rx offsets are valid for enabling the vernier
873  * calibration.
874  *
875  * Once we have valid offsets from hardware, update the total Tx and Rx
876  * offsets, and exit bypass mode. This enables more precise timestamps using
877  * the extra data measured during the vernier calibration process.
878  */
879 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
880 {
881 	struct ice_ptp_port *port;
882 	int err;
883 	struct device *dev;
884 	struct ice_pf *pf;
885 	struct ice_hw *hw;
886 
887 	port = container_of(work, struct ice_ptp_port, ov_work.work);
888 	pf = ptp_port_to_pf(port);
889 	hw = &pf->hw;
890 	dev = ice_pf_to_dev(pf);
891 
892 	if (ice_ptp_check_offset_valid(port)) {
893 		/* Offsets not ready yet, try again later */
894 		kthread_queue_delayed_work(pf->ptp.kworker,
895 					   &port->ov_work,
896 					   msecs_to_jiffies(100));
897 		return;
898 	}
899 
900 	/* Offsets are valid, so it is safe to exit bypass mode */
901 	err = ice_phy_exit_bypass_e822(hw, port->port_num);
902 	if (err) {
903 		dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
904 			 port->port_num, err);
905 		return;
906 	}
907 }
908 
909 /**
910  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
911  * @ptp_port: PTP port to stop
912  */
913 static int
914 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
915 {
916 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
917 	u8 port = ptp_port->port_num;
918 	struct ice_hw *hw = &pf->hw;
919 	int err;
920 
921 	if (ice_is_e810(hw))
922 		return 0;
923 
924 	mutex_lock(&ptp_port->ps_lock);
925 
926 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
927 
928 	err = ice_stop_phy_timer_e822(hw, port, true);
929 	if (err)
930 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
931 			port, err);
932 
933 	mutex_unlock(&ptp_port->ps_lock);
934 
935 	return err;
936 }
937 
938 /**
939  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
940  * @ptp_port: PTP port for which the PHY start is set
941  *
942  * Start the PHY timestamping block, and initiate Vernier timestamping
943  * calibration. If timestamping cannot be calibrated (such as if link is down)
944  * then disable the timestamping block instead.
945  */
946 static int
947 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
948 {
949 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
950 	u8 port = ptp_port->port_num;
951 	struct ice_hw *hw = &pf->hw;
952 	int err;
953 
954 	if (ice_is_e810(hw))
955 		return 0;
956 
957 	if (!ptp_port->link_up)
958 		return ice_ptp_port_phy_stop(ptp_port);
959 
960 	mutex_lock(&ptp_port->ps_lock);
961 
962 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
963 
964 	/* temporarily disable Tx timestamps while calibrating PHY offset */
965 	ptp_port->tx.calibrating = true;
966 	ptp_port->tx_fifo_busy_cnt = 0;
967 
968 	/* Start the PHY timer in bypass mode */
969 	err = ice_start_phy_timer_e822(hw, port, true);
970 	if (err)
971 		goto out_unlock;
972 
973 	/* Enable Tx timestamps right away */
974 	ptp_port->tx.calibrating = false;
975 
976 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
977 
978 out_unlock:
979 	if (err)
980 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
981 			port, err);
982 
983 	mutex_unlock(&ptp_port->ps_lock);
984 
985 	return err;
986 }
987 
988 /**
989  * ice_ptp_link_change - Set or clear port registers for timestamping
990  * @pf: Board private structure
991  * @port: Port for which the PHY start is set
992  * @linkup: Link is up or down
993  */
994 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
995 {
996 	struct ice_ptp_port *ptp_port;
997 
998 	if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
999 		return 0;
1000 
1001 	if (port >= ICE_NUM_EXTERNAL_PORTS)
1002 		return -EINVAL;
1003 
1004 	ptp_port = &pf->ptp.port;
1005 	if (ptp_port->port_num != port)
1006 		return -EINVAL;
1007 
1008 	/* Update cached link err for this port immediately */
1009 	ptp_port->link_up = linkup;
1010 
1011 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1012 		/* PTP is not setup */
1013 		return -EAGAIN;
1014 
1015 	return ice_ptp_port_phy_restart(ptp_port);
1016 }
1017 
1018 /**
1019  * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
1020  * @pf: The PF private data structure
1021  */
1022 static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
1023 {
1024 	int quad;
1025 
1026 	quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
1027 	ice_ptp_reset_ts_memory_quad(pf, quad);
1028 }
1029 
1030 /**
1031  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1032  * @pf: PF private structure
1033  * @ena: bool value to enable or disable interrupt
1034  * @threshold: Minimum number of packets at which intr is triggered
1035  *
1036  * Utility function to enable or disable Tx timestamp interrupt and threshold
1037  */
1038 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1039 {
1040 	struct ice_hw *hw = &pf->hw;
1041 	int err = 0;
1042 	int quad;
1043 	u32 val;
1044 
1045 	ice_ptp_reset_ts_memory(pf);
1046 
1047 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1048 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1049 					     &val);
1050 		if (err)
1051 			break;
1052 
1053 		if (ena) {
1054 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1055 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1056 			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1057 				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1058 		} else {
1059 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1060 		}
1061 
1062 		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1063 					      val);
1064 		if (err)
1065 			break;
1066 	}
1067 
1068 	if (err)
1069 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1070 			err);
1071 	return err;
1072 }
1073 
1074 /**
1075  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1076  * @pf: Board private structure
1077  */
1078 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1079 {
1080 	ice_ptp_port_phy_restart(&pf->ptp.port);
1081 }
1082 
1083 /**
1084  * ice_ptp_adjfine - Adjust clock increment rate
1085  * @info: the driver's PTP info structure
1086  * @scaled_ppm: Parts per million with 16-bit fractional field
1087  *
1088  * Adjust the frequency of the clock by the indicated scaled ppm from the
1089  * base frequency.
1090  */
1091 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1092 {
1093 	struct ice_pf *pf = ptp_info_to_pf(info);
1094 	u64 freq, divisor = 1000000ULL;
1095 	struct ice_hw *hw = &pf->hw;
1096 	s64 incval, diff;
1097 	int neg_adj = 0;
1098 	int err;
1099 
1100 	incval = ice_base_incval(pf);
1101 
1102 	if (scaled_ppm < 0) {
1103 		neg_adj = 1;
1104 		scaled_ppm = -scaled_ppm;
1105 	}
1106 
1107 	while ((u64)scaled_ppm > div64_u64(U64_MAX, incval)) {
1108 		/* handle overflow by scaling down the scaled_ppm and
1109 		 * the divisor, losing some precision
1110 		 */
1111 		scaled_ppm >>= 2;
1112 		divisor >>= 2;
1113 	}
1114 
1115 	freq = (incval * (u64)scaled_ppm) >> 16;
1116 	diff = div_u64(freq, divisor);
1117 
1118 	if (neg_adj)
1119 		incval -= diff;
1120 	else
1121 		incval += diff;
1122 
1123 	err = ice_ptp_write_incval_locked(hw, incval);
1124 	if (err) {
1125 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1126 			err);
1127 		return -EIO;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  * ice_ptp_extts_work - Workqueue task function
1135  * @work: external timestamp work structure
1136  *
1137  * Service for PTP external clock event
1138  */
1139 static void ice_ptp_extts_work(struct kthread_work *work)
1140 {
1141 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1142 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1143 	struct ptp_clock_event event;
1144 	struct ice_hw *hw = &pf->hw;
1145 	u8 chan, tmr_idx;
1146 	u32 hi, lo;
1147 
1148 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1149 	/* Event time is captured by one of the two matched registers
1150 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1151 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1152 	 * Event is defined in GLTSYN_EVNT_0 register
1153 	 */
1154 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1155 		/* Check if channel is enabled */
1156 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1157 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1158 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1159 			event.timestamp = (((u64)hi) << 32) | lo;
1160 			event.type = PTP_CLOCK_EXTTS;
1161 			event.index = chan;
1162 
1163 			/* Fire event */
1164 			ptp_clock_event(pf->ptp.clock, &event);
1165 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1166 		}
1167 	}
1168 }
1169 
1170 /**
1171  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1172  * @pf: Board private structure
1173  * @ena: true to enable; false to disable
1174  * @chan: GPIO channel (0-3)
1175  * @gpio_pin: GPIO pin
1176  * @extts_flags: request flags from the ptp_extts_request.flags
1177  */
1178 static int
1179 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1180 		  unsigned int extts_flags)
1181 {
1182 	u32 func, aux_reg, gpio_reg, irq_reg;
1183 	struct ice_hw *hw = &pf->hw;
1184 	u8 tmr_idx;
1185 
1186 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1187 		return -EINVAL;
1188 
1189 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1190 
1191 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1192 
1193 	if (ena) {
1194 		/* Enable the interrupt */
1195 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1196 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1197 
1198 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1199 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1200 
1201 		/* set event level to requested edge */
1202 		if (extts_flags & PTP_FALLING_EDGE)
1203 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1204 		if (extts_flags & PTP_RISING_EDGE)
1205 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1206 
1207 		/* Write GPIO CTL reg.
1208 		 * 0x1 is input sampled by EVENT register(channel)
1209 		 * + num_in_channels * tmr_idx
1210 		 */
1211 		func = 1 + chan + (tmr_idx * 3);
1212 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1213 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1214 		pf->ptp.ext_ts_chan |= (1 << chan);
1215 	} else {
1216 		/* clear the values we set to reset defaults */
1217 		aux_reg = 0;
1218 		gpio_reg = 0;
1219 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1220 		if (!pf->ptp.ext_ts_chan)
1221 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1222 	}
1223 
1224 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1225 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1226 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1233  * @pf: Board private structure
1234  * @chan: GPIO channel (0-3)
1235  * @config: desired periodic clk configuration. NULL will disable channel
1236  * @store: If set to true the values will be stored
1237  *
1238  * Configure the internal clock generator modules to generate the clock wave of
1239  * specified period.
1240  */
1241 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1242 			      struct ice_perout_channel *config, bool store)
1243 {
1244 	u64 current_time, period, start_time, phase;
1245 	struct ice_hw *hw = &pf->hw;
1246 	u32 func, val, gpio_pin;
1247 	u8 tmr_idx;
1248 
1249 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1250 
1251 	/* 0. Reset mode & out_en in AUX_OUT */
1252 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1253 
1254 	/* If we're disabling the output, clear out CLKO and TGT and keep
1255 	 * output level low
1256 	 */
1257 	if (!config || !config->ena) {
1258 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1259 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1260 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1261 
1262 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1263 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1264 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1265 
1266 		/* Store the value if requested */
1267 		if (store)
1268 			memset(&pf->ptp.perout_channels[chan], 0,
1269 			       sizeof(struct ice_perout_channel));
1270 
1271 		return 0;
1272 	}
1273 	period = config->period;
1274 	start_time = config->start_time;
1275 	div64_u64_rem(start_time, period, &phase);
1276 	gpio_pin = config->gpio_pin;
1277 
1278 	/* 1. Write clkout with half of required period value */
1279 	if (period & 0x1) {
1280 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1281 		goto err;
1282 	}
1283 
1284 	period >>= 1;
1285 
1286 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1287 	 */
1288 #define MIN_PULSE 3
1289 	if (period <= MIN_PULSE || period > U32_MAX) {
1290 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1291 			MIN_PULSE * 2);
1292 		goto err;
1293 	}
1294 
1295 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1296 
1297 	/* Allow time for programming before start_time is hit */
1298 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1299 
1300 	/* if start time is in the past start the timer at the nearest second
1301 	 * maintaining phase
1302 	 */
1303 	if (start_time < current_time)
1304 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1305 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1306 
1307 	if (ice_is_e810(hw))
1308 		start_time -= E810_OUT_PROP_DELAY_NS;
1309 	else
1310 		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1311 
1312 	/* 2. Write TARGET time */
1313 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1314 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1315 
1316 	/* 3. Write AUX_OUT register */
1317 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1318 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1319 
1320 	/* 4. write GPIO CTL reg */
1321 	func = 8 + chan + (tmr_idx * 4);
1322 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1323 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1324 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1325 
1326 	/* Store the value if requested */
1327 	if (store) {
1328 		memcpy(&pf->ptp.perout_channels[chan], config,
1329 		       sizeof(struct ice_perout_channel));
1330 		pf->ptp.perout_channels[chan].start_time = phase;
1331 	}
1332 
1333 	return 0;
1334 err:
1335 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1336 	return -EFAULT;
1337 }
1338 
1339 /**
1340  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1341  * @pf: pointer to the PF structure
1342  *
1343  * Disable all currently configured clock outputs. This is necessary before
1344  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1345  * re-enable the clocks again.
1346  */
1347 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1348 {
1349 	uint i;
1350 
1351 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1352 		if (pf->ptp.perout_channels[i].ena)
1353 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1354 }
1355 
1356 /**
1357  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1358  * @pf: pointer to the PF structure
1359  *
1360  * Enable all currently configured clock outputs. Use this after
1361  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1362  * their configuration.
1363  */
1364 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1365 {
1366 	uint i;
1367 
1368 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1369 		if (pf->ptp.perout_channels[i].ena)
1370 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1371 					   false);
1372 }
1373 
1374 /**
1375  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1376  * @info: the driver's PTP info structure
1377  * @rq: The requested feature to change
1378  * @on: Enable/disable flag
1379  */
1380 static int
1381 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1382 			 struct ptp_clock_request *rq, int on)
1383 {
1384 	struct ice_pf *pf = ptp_info_to_pf(info);
1385 	struct ice_perout_channel clk_cfg = {0};
1386 	bool sma_pres = false;
1387 	unsigned int chan;
1388 	u32 gpio_pin;
1389 	int err;
1390 
1391 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1392 		sma_pres = true;
1393 
1394 	switch (rq->type) {
1395 	case PTP_CLK_REQ_PEROUT:
1396 		chan = rq->perout.index;
1397 		if (sma_pres) {
1398 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1399 				clk_cfg.gpio_pin = GPIO_20;
1400 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1401 				clk_cfg.gpio_pin = GPIO_22;
1402 			else
1403 				return -1;
1404 		} else if (ice_is_e810t(&pf->hw)) {
1405 			if (chan == 0)
1406 				clk_cfg.gpio_pin = GPIO_20;
1407 			else
1408 				clk_cfg.gpio_pin = GPIO_22;
1409 		} else if (chan == PPS_CLK_GEN_CHAN) {
1410 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1411 		} else {
1412 			clk_cfg.gpio_pin = chan;
1413 		}
1414 
1415 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1416 				   rq->perout.period.nsec);
1417 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1418 				       rq->perout.start.nsec);
1419 		clk_cfg.ena = !!on;
1420 
1421 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1422 		break;
1423 	case PTP_CLK_REQ_EXTTS:
1424 		chan = rq->extts.index;
1425 		if (sma_pres) {
1426 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1427 				gpio_pin = GPIO_21;
1428 			else
1429 				gpio_pin = GPIO_23;
1430 		} else if (ice_is_e810t(&pf->hw)) {
1431 			if (chan == 0)
1432 				gpio_pin = GPIO_21;
1433 			else
1434 				gpio_pin = GPIO_23;
1435 		} else {
1436 			gpio_pin = chan;
1437 		}
1438 
1439 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1440 					rq->extts.flags);
1441 		break;
1442 	default:
1443 		return -EOPNOTSUPP;
1444 	}
1445 
1446 	return err;
1447 }
1448 
1449 /**
1450  * ice_ptp_gettimex64 - Get the time of the clock
1451  * @info: the driver's PTP info structure
1452  * @ts: timespec64 structure to hold the current time value
1453  * @sts: Optional parameter for holding a pair of system timestamps from
1454  *       the system clock. Will be ignored if NULL is given.
1455  *
1456  * Read the device clock and return the correct value on ns, after converting it
1457  * into a timespec struct.
1458  */
1459 static int
1460 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1461 		   struct ptp_system_timestamp *sts)
1462 {
1463 	struct ice_pf *pf = ptp_info_to_pf(info);
1464 	struct ice_hw *hw = &pf->hw;
1465 
1466 	if (!ice_ptp_lock(hw)) {
1467 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1468 		return -EBUSY;
1469 	}
1470 
1471 	ice_ptp_read_time(pf, ts, sts);
1472 	ice_ptp_unlock(hw);
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * ice_ptp_settime64 - Set the time of the clock
1479  * @info: the driver's PTP info structure
1480  * @ts: timespec64 structure that holds the new time value
1481  *
1482  * Set the device clock to the user input value. The conversion from timespec
1483  * to ns happens in the write function.
1484  */
1485 static int
1486 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1487 {
1488 	struct ice_pf *pf = ptp_info_to_pf(info);
1489 	struct timespec64 ts64 = *ts;
1490 	struct ice_hw *hw = &pf->hw;
1491 	int err;
1492 
1493 	/* For Vernier mode, we need to recalibrate after new settime
1494 	 * Start with disabling timestamp block
1495 	 */
1496 	if (pf->ptp.port.link_up)
1497 		ice_ptp_port_phy_stop(&pf->ptp.port);
1498 
1499 	if (!ice_ptp_lock(hw)) {
1500 		err = -EBUSY;
1501 		goto exit;
1502 	}
1503 
1504 	/* Disable periodic outputs */
1505 	ice_ptp_disable_all_clkout(pf);
1506 
1507 	err = ice_ptp_write_init(pf, &ts64);
1508 	ice_ptp_unlock(hw);
1509 
1510 	if (!err)
1511 		ice_ptp_update_cached_phctime(pf);
1512 
1513 	/* Reenable periodic outputs */
1514 	ice_ptp_enable_all_clkout(pf);
1515 
1516 	/* Recalibrate and re-enable timestamp block */
1517 	if (pf->ptp.port.link_up)
1518 		ice_ptp_port_phy_restart(&pf->ptp.port);
1519 exit:
1520 	if (err) {
1521 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1522 		return err;
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 /**
1529  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1530  * @info: the driver's PTP info structure
1531  * @delta: Offset in nanoseconds to adjust the time by
1532  */
1533 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1534 {
1535 	struct timespec64 now, then;
1536 
1537 	then = ns_to_timespec64(delta);
1538 	ice_ptp_gettimex64(info, &now, NULL);
1539 	now = timespec64_add(now, then);
1540 
1541 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1542 }
1543 
1544 /**
1545  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1546  * @info: the driver's PTP info structure
1547  * @delta: Offset in nanoseconds to adjust the time by
1548  */
1549 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1550 {
1551 	struct ice_pf *pf = ptp_info_to_pf(info);
1552 	struct ice_hw *hw = &pf->hw;
1553 	struct device *dev;
1554 	int err;
1555 
1556 	dev = ice_pf_to_dev(pf);
1557 
1558 	/* Hardware only supports atomic adjustments using signed 32-bit
1559 	 * integers. For any adjustment outside this range, perform
1560 	 * a non-atomic get->adjust->set flow.
1561 	 */
1562 	if (delta > S32_MAX || delta < S32_MIN) {
1563 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1564 		return ice_ptp_adjtime_nonatomic(info, delta);
1565 	}
1566 
1567 	if (!ice_ptp_lock(hw)) {
1568 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1569 		return -EBUSY;
1570 	}
1571 
1572 	/* Disable periodic outputs */
1573 	ice_ptp_disable_all_clkout(pf);
1574 
1575 	err = ice_ptp_write_adj(pf, delta);
1576 
1577 	/* Reenable periodic outputs */
1578 	ice_ptp_enable_all_clkout(pf);
1579 
1580 	ice_ptp_unlock(hw);
1581 
1582 	if (err) {
1583 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1584 		return err;
1585 	}
1586 
1587 	ice_ptp_update_cached_phctime(pf);
1588 
1589 	return 0;
1590 }
1591 
1592 #ifdef CONFIG_ICE_HWTS
1593 /**
1594  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1595  * @device: Current device time
1596  * @system: System counter value read synchronously with device time
1597  * @ctx: Context provided by timekeeping code
1598  *
1599  * Read device and system (ART) clock simultaneously and return the corrected
1600  * clock values in ns.
1601  */
1602 static int
1603 ice_ptp_get_syncdevicetime(ktime_t *device,
1604 			   struct system_counterval_t *system,
1605 			   void *ctx)
1606 {
1607 	struct ice_pf *pf = (struct ice_pf *)ctx;
1608 	struct ice_hw *hw = &pf->hw;
1609 	u32 hh_lock, hh_art_ctl;
1610 	int i;
1611 
1612 	/* Get the HW lock */
1613 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1614 	if (hh_lock & PFHH_SEM_BUSY_M) {
1615 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1616 		return -EFAULT;
1617 	}
1618 
1619 	/* Start the ART and device clock sync sequence */
1620 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1621 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1622 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1623 
1624 #define MAX_HH_LOCK_TRIES 100
1625 
1626 	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1627 		/* Wait for sync to complete */
1628 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1629 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1630 			udelay(1);
1631 			continue;
1632 		} else {
1633 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1634 			u64 hh_ts;
1635 
1636 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1637 			/* Read ART time */
1638 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1639 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1640 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1641 			*system = convert_art_ns_to_tsc(hh_ts);
1642 			/* Read Device source clock time */
1643 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1644 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1645 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1646 			*device = ns_to_ktime(hh_ts);
1647 			break;
1648 		}
1649 	}
1650 	/* Release HW lock */
1651 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1652 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1653 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1654 
1655 	if (i == MAX_HH_LOCK_TRIES)
1656 		return -ETIMEDOUT;
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
1663  * @info: the driver's PTP info structure
1664  * @cts: The memory to fill the cross timestamp info
1665  *
1666  * Capture a cross timestamp between the ART and the device PTP hardware
1667  * clock. Fill the cross timestamp information and report it back to the
1668  * caller.
1669  *
1670  * This is only valid for E822 devices which have support for generating the
1671  * cross timestamp via PCIe PTM.
1672  *
1673  * In order to correctly correlate the ART timestamp back to the TSC time, the
1674  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
1675  */
1676 static int
1677 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
1678 			    struct system_device_crosststamp *cts)
1679 {
1680 	struct ice_pf *pf = ptp_info_to_pf(info);
1681 
1682 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
1683 					     pf, NULL, cts);
1684 }
1685 #endif /* CONFIG_ICE_HWTS */
1686 
1687 /**
1688  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
1689  * @pf: Board private structure
1690  * @ifr: ioctl data
1691  *
1692  * Copy the timestamping config to user buffer
1693  */
1694 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
1695 {
1696 	struct hwtstamp_config *config;
1697 
1698 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1699 		return -EIO;
1700 
1701 	config = &pf->ptp.tstamp_config;
1702 
1703 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1704 		-EFAULT : 0;
1705 }
1706 
1707 /**
1708  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
1709  * @pf: Board private structure
1710  * @config: hwtstamp settings requested or saved
1711  */
1712 static int
1713 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
1714 {
1715 	switch (config->tx_type) {
1716 	case HWTSTAMP_TX_OFF:
1717 		ice_set_tx_tstamp(pf, false);
1718 		break;
1719 	case HWTSTAMP_TX_ON:
1720 		ice_set_tx_tstamp(pf, true);
1721 		break;
1722 	default:
1723 		return -ERANGE;
1724 	}
1725 
1726 	switch (config->rx_filter) {
1727 	case HWTSTAMP_FILTER_NONE:
1728 		ice_set_rx_tstamp(pf, false);
1729 		break;
1730 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1731 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1732 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1733 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1734 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1735 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1736 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1737 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1738 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1739 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1740 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1741 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1742 	case HWTSTAMP_FILTER_NTP_ALL:
1743 	case HWTSTAMP_FILTER_ALL:
1744 		ice_set_rx_tstamp(pf, true);
1745 		break;
1746 	default:
1747 		return -ERANGE;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 /**
1754  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
1755  * @pf: Board private structure
1756  * @ifr: ioctl data
1757  *
1758  * Get the user config and store it
1759  */
1760 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
1761 {
1762 	struct hwtstamp_config config;
1763 	int err;
1764 
1765 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1766 		return -EAGAIN;
1767 
1768 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1769 		return -EFAULT;
1770 
1771 	err = ice_ptp_set_timestamp_mode(pf, &config);
1772 	if (err)
1773 		return err;
1774 
1775 	/* Return the actual configuration set */
1776 	config = pf->ptp.tstamp_config;
1777 
1778 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1779 		-EFAULT : 0;
1780 }
1781 
1782 /**
1783  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
1784  * @rx_ring: Ring to get the VSI info
1785  * @rx_desc: Receive descriptor
1786  * @skb: Particular skb to send timestamp with
1787  *
1788  * The driver receives a notification in the receive descriptor with timestamp.
1789  * The timestamp is in ns, so we must convert the result first.
1790  */
1791 void
1792 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
1793 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
1794 {
1795 	u32 ts_high;
1796 	u64 ts_ns;
1797 
1798 	/* Populate timesync data into skb */
1799 	if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
1800 		struct skb_shared_hwtstamps *hwtstamps;
1801 
1802 		/* Use ice_ptp_extend_32b_ts directly, using the ring-specific
1803 		 * cached PHC value, rather than accessing the PF. This also
1804 		 * allows us to simply pass the upper 32bits of nanoseconds
1805 		 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
1806 		 * it would just discard these bits itself.
1807 		 */
1808 		ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
1809 		ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
1810 
1811 		hwtstamps = skb_hwtstamps(skb);
1812 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1813 		hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
1814 	}
1815 }
1816 
1817 /**
1818  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
1819  * @pf: pointer to the PF structure
1820  * @info: PTP clock info structure
1821  *
1822  * Disable the OS access to the SMA pins. Called to clear out the OS
1823  * indications of pin support when we fail to setup the E810-T SMA control
1824  * register.
1825  */
1826 static void
1827 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1828 {
1829 	struct device *dev = ice_pf_to_dev(pf);
1830 
1831 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
1832 
1833 	info->enable = NULL;
1834 	info->verify = NULL;
1835 	info->n_pins = 0;
1836 	info->n_ext_ts = 0;
1837 	info->n_per_out = 0;
1838 }
1839 
1840 /**
1841  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
1842  * @pf: pointer to the PF structure
1843  * @info: PTP clock info structure
1844  *
1845  * Finish setting up the SMA pins by allocating pin_config, and setting it up
1846  * according to the current status of the SMA. On failure, disable all of the
1847  * extended SMA pin support.
1848  */
1849 static void
1850 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1851 {
1852 	struct device *dev = ice_pf_to_dev(pf);
1853 	int err;
1854 
1855 	/* Allocate memory for kernel pins interface */
1856 	info->pin_config = devm_kcalloc(dev, info->n_pins,
1857 					sizeof(*info->pin_config), GFP_KERNEL);
1858 	if (!info->pin_config) {
1859 		ice_ptp_disable_sma_pins_e810t(pf, info);
1860 		return;
1861 	}
1862 
1863 	/* Read current SMA status */
1864 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
1865 	if (err)
1866 		ice_ptp_disable_sma_pins_e810t(pf, info);
1867 }
1868 
1869 /**
1870  * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs
1871  * @pf: pointer to the PF instance
1872  * @info: PTP clock capabilities
1873  */
1874 static void
1875 ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1876 {
1877 	/* Check if SMA controller is in the netlist */
1878 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) &&
1879 	    !ice_is_pca9575_present(&pf->hw))
1880 		ice_clear_feature_support(pf, ICE_F_SMA_CTRL);
1881 
1882 	if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1883 		info->n_ext_ts = N_EXT_TS_E810_NO_SMA;
1884 		info->n_per_out = N_PER_OUT_E810T_NO_SMA;
1885 		return;
1886 	}
1887 
1888 	info->n_per_out = N_PER_OUT_E810T;
1889 	info->n_ext_ts = N_EXT_TS_E810;
1890 	info->n_pins = NUM_PTP_PINS_E810T;
1891 	info->verify = ice_verify_pin_e810t;
1892 
1893 	/* Complete setup of the SMA pins */
1894 	ice_ptp_setup_sma_pins_e810t(pf, info);
1895 }
1896 
1897 /**
1898  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
1899  * @info: PTP clock capabilities
1900  */
1901 static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info)
1902 {
1903 	info->n_per_out = N_PER_OUT_E810;
1904 	info->n_ext_ts = N_EXT_TS_E810;
1905 }
1906 
1907 /**
1908  * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
1909  * @pf: Board private structure
1910  * @info: PTP info to fill
1911  *
1912  * Assign functions to the PTP capabiltiies structure for E822 devices.
1913  * Functions which operate across all device families should be set directly
1914  * in ice_ptp_set_caps. Only add functions here which are distinct for E822
1915  * devices.
1916  */
1917 static void
1918 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
1919 {
1920 #ifdef CONFIG_ICE_HWTS
1921 	if (boot_cpu_has(X86_FEATURE_ART) &&
1922 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
1923 		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
1924 #endif /* CONFIG_ICE_HWTS */
1925 }
1926 
1927 /**
1928  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
1929  * @pf: Board private structure
1930  * @info: PTP info to fill
1931  *
1932  * Assign functions to the PTP capabiltiies structure for E810 devices.
1933  * Functions which operate across all device families should be set directly
1934  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
1935  * devices.
1936  */
1937 static void
1938 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1939 {
1940 	info->enable = ice_ptp_gpio_enable_e810;
1941 
1942 	if (ice_is_e810t(&pf->hw))
1943 		ice_ptp_setup_pins_e810t(pf, info);
1944 	else
1945 		ice_ptp_setup_pins_e810(info);
1946 }
1947 
1948 /**
1949  * ice_ptp_set_caps - Set PTP capabilities
1950  * @pf: Board private structure
1951  */
1952 static void ice_ptp_set_caps(struct ice_pf *pf)
1953 {
1954 	struct ptp_clock_info *info = &pf->ptp.info;
1955 	struct device *dev = ice_pf_to_dev(pf);
1956 
1957 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
1958 		 dev_driver_string(dev), dev_name(dev));
1959 	info->owner = THIS_MODULE;
1960 	info->max_adj = 999999999;
1961 	info->adjtime = ice_ptp_adjtime;
1962 	info->adjfine = ice_ptp_adjfine;
1963 	info->gettimex64 = ice_ptp_gettimex64;
1964 	info->settime64 = ice_ptp_settime64;
1965 
1966 	if (ice_is_e810(&pf->hw))
1967 		ice_ptp_set_funcs_e810(pf, info);
1968 	else
1969 		ice_ptp_set_funcs_e822(pf, info);
1970 }
1971 
1972 /**
1973  * ice_ptp_create_clock - Create PTP clock device for userspace
1974  * @pf: Board private structure
1975  *
1976  * This function creates a new PTP clock device. It only creates one if we
1977  * don't already have one. Will return error if it can't create one, but success
1978  * if we already have a device. Should be used by ice_ptp_init to create clock
1979  * initially, and prevent global resets from creating new clock devices.
1980  */
1981 static long ice_ptp_create_clock(struct ice_pf *pf)
1982 {
1983 	struct ptp_clock_info *info;
1984 	struct ptp_clock *clock;
1985 	struct device *dev;
1986 
1987 	/* No need to create a clock device if we already have one */
1988 	if (pf->ptp.clock)
1989 		return 0;
1990 
1991 	ice_ptp_set_caps(pf);
1992 
1993 	info = &pf->ptp.info;
1994 	dev = ice_pf_to_dev(pf);
1995 
1996 	/* Attempt to register the clock before enabling the hardware. */
1997 	clock = ptp_clock_register(info, dev);
1998 	if (IS_ERR(clock))
1999 		return PTR_ERR(clock);
2000 
2001 	pf->ptp.clock = clock;
2002 
2003 	return 0;
2004 }
2005 
2006 /**
2007  * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
2008  * @work: pointer to the kthread_work struct
2009  *
2010  * Process timestamps captured by the PHY associated with this port. To do
2011  * this, loop over each index with a waiting skb.
2012  *
2013  * If a given index has a valid timestamp, perform the following steps:
2014  *
2015  * 1) copy the timestamp out of the PHY register
2016  * 4) clear the timestamp valid bit in the PHY register
2017  * 5) unlock the index by clearing the associated in_use bit.
2018  * 2) extend the 40b timestamp value to get a 64bit timestamp
2019  * 3) send that timestamp to the stack
2020  *
2021  * After looping, if we still have waiting SKBs, then re-queue the work. This
2022  * may cause us effectively poll even when not strictly necessary. We do this
2023  * because it's possible a new timestamp was requested around the same time as
2024  * the interrupt. In some cases hardware might not interrupt us again when the
2025  * timestamp is captured.
2026  *
2027  * Note that we only take the tracking lock when clearing the bit and when
2028  * checking if we need to re-queue this task. The only place where bits can be
2029  * set is the hard xmit routine where an SKB has a request flag set. The only
2030  * places where we clear bits are this work function, or the periodic cleanup
2031  * thread. If the cleanup thread clears a bit we're processing we catch it
2032  * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
2033  * starts a new timestamp, we might not begin processing it right away but we
2034  * will notice it at the end when we re-queue the work item. If a Tx thread
2035  * starts a new timestamp just after this function exits without re-queuing,
2036  * the interrupt when the timestamp finishes should trigger. Avoiding holding
2037  * the lock for the entire function is important in order to ensure that Tx
2038  * threads do not get blocked while waiting for the lock.
2039  */
2040 static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
2041 {
2042 	struct ice_ptp_port *ptp_port;
2043 	struct ice_ptp_tx *tx;
2044 	struct ice_pf *pf;
2045 	struct ice_hw *hw;
2046 	u8 idx;
2047 
2048 	tx = container_of(work, struct ice_ptp_tx, work);
2049 	if (!tx->init)
2050 		return;
2051 
2052 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
2053 	pf = ptp_port_to_pf(ptp_port);
2054 	hw = &pf->hw;
2055 
2056 	for_each_set_bit(idx, tx->in_use, tx->len) {
2057 		struct skb_shared_hwtstamps shhwtstamps = {};
2058 		u8 phy_idx = idx + tx->quad_offset;
2059 		u64 raw_tstamp, tstamp;
2060 		struct sk_buff *skb;
2061 		int err;
2062 
2063 		err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
2064 					  &raw_tstamp);
2065 		if (err)
2066 			continue;
2067 
2068 		/* Check if the timestamp is invalid or stale */
2069 		if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
2070 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
2071 			continue;
2072 
2073 		/* The timestamp is valid, so we'll go ahead and clear this
2074 		 * index and then send the timestamp up to the stack.
2075 		 */
2076 		spin_lock(&tx->lock);
2077 		tx->tstamps[idx].cached_tstamp = raw_tstamp;
2078 		clear_bit(idx, tx->in_use);
2079 		skb = tx->tstamps[idx].skb;
2080 		tx->tstamps[idx].skb = NULL;
2081 		spin_unlock(&tx->lock);
2082 
2083 		/* it's (unlikely but) possible we raced with the cleanup
2084 		 * thread for discarding old timestamp requests.
2085 		 */
2086 		if (!skb)
2087 			continue;
2088 
2089 		/* Extend the timestamp using cached PHC time */
2090 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
2091 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
2092 
2093 		skb_tstamp_tx(skb, &shhwtstamps);
2094 		dev_kfree_skb_any(skb);
2095 	}
2096 
2097 	/* Check if we still have work to do. If so, re-queue this task to
2098 	 * poll for remaining timestamps.
2099 	 */
2100 	spin_lock(&tx->lock);
2101 	if (!bitmap_empty(tx->in_use, tx->len))
2102 		kthread_queue_work(pf->ptp.kworker, &tx->work);
2103 	spin_unlock(&tx->lock);
2104 }
2105 
2106 /**
2107  * ice_ptp_request_ts - Request an available Tx timestamp index
2108  * @tx: the PTP Tx timestamp tracker to request from
2109  * @skb: the SKB to associate with this timestamp request
2110  */
2111 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2112 {
2113 	u8 idx;
2114 
2115 	/* Check if this tracker is initialized */
2116 	if (!tx->init || tx->calibrating)
2117 		return -1;
2118 
2119 	spin_lock(&tx->lock);
2120 	/* Find and set the first available index */
2121 	idx = find_first_zero_bit(tx->in_use, tx->len);
2122 	if (idx < tx->len) {
2123 		/* We got a valid index that no other thread could have set. Store
2124 		 * a reference to the skb and the start time to allow discarding old
2125 		 * requests.
2126 		 */
2127 		set_bit(idx, tx->in_use);
2128 		tx->tstamps[idx].start = jiffies;
2129 		tx->tstamps[idx].skb = skb_get(skb);
2130 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2131 	}
2132 
2133 	spin_unlock(&tx->lock);
2134 
2135 	/* return the appropriate PHY timestamp register index, -1 if no
2136 	 * indexes were available.
2137 	 */
2138 	if (idx >= tx->len)
2139 		return -1;
2140 	else
2141 		return idx + tx->quad_offset;
2142 }
2143 
2144 /**
2145  * ice_ptp_process_ts - Spawn kthread work to handle timestamps
2146  * @pf: Board private structure
2147  *
2148  * Queue work required to process the PTP Tx timestamps outside of interrupt
2149  * context.
2150  */
2151 void ice_ptp_process_ts(struct ice_pf *pf)
2152 {
2153 	if (pf->ptp.port.tx.init)
2154 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
2155 }
2156 
2157 /**
2158  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
2159  * @tx: Tx tracking structure to initialize
2160  *
2161  * Assumes that the length has already been initialized. Do not call directly,
2162  * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
2163  */
2164 static int
2165 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
2166 {
2167 	tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
2168 	if (!tx->tstamps)
2169 		return -ENOMEM;
2170 
2171 	tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
2172 	if (!tx->in_use) {
2173 		kfree(tx->tstamps);
2174 		tx->tstamps = NULL;
2175 		return -ENOMEM;
2176 	}
2177 
2178 	spin_lock_init(&tx->lock);
2179 	kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
2180 
2181 	tx->init = 1;
2182 
2183 	return 0;
2184 }
2185 
2186 /**
2187  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
2188  * @pf: Board private structure
2189  * @tx: the tracker to flush
2190  */
2191 static void
2192 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
2193 {
2194 	u8 idx;
2195 
2196 	for (idx = 0; idx < tx->len; idx++) {
2197 		u8 phy_idx = idx + tx->quad_offset;
2198 
2199 		spin_lock(&tx->lock);
2200 		if (tx->tstamps[idx].skb) {
2201 			dev_kfree_skb_any(tx->tstamps[idx].skb);
2202 			tx->tstamps[idx].skb = NULL;
2203 		}
2204 		clear_bit(idx, tx->in_use);
2205 		spin_unlock(&tx->lock);
2206 
2207 		/* Clear any potential residual timestamp in the PHY block */
2208 		if (!pf->hw.reset_ongoing)
2209 			ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
2210 	}
2211 }
2212 
2213 /**
2214  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
2215  * @pf: Board private structure
2216  * @tx: Tx tracking structure to release
2217  *
2218  * Free memory associated with the Tx timestamp tracker.
2219  */
2220 static void
2221 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
2222 {
2223 	tx->init = 0;
2224 
2225 	kthread_cancel_work_sync(&tx->work);
2226 
2227 	ice_ptp_flush_tx_tracker(pf, tx);
2228 
2229 	kfree(tx->tstamps);
2230 	tx->tstamps = NULL;
2231 
2232 	bitmap_free(tx->in_use);
2233 	tx->in_use = NULL;
2234 
2235 	tx->len = 0;
2236 }
2237 
2238 /**
2239  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
2240  * @pf: Board private structure
2241  * @tx: the Tx tracking structure to initialize
2242  * @port: the port this structure tracks
2243  *
2244  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
2245  * the timestamp block is shared for all ports in the same quad. To avoid
2246  * ports using the same timestamp index, logically break the block of
2247  * registers into chunks based on the port number.
2248  */
2249 static int
2250 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
2251 {
2252 	tx->quad = port / ICE_PORTS_PER_QUAD;
2253 	tx->quad_offset = tx->quad * INDEX_PER_PORT;
2254 	tx->len = INDEX_PER_PORT;
2255 
2256 	return ice_ptp_alloc_tx_tracker(tx);
2257 }
2258 
2259 /**
2260  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
2261  * @pf: Board private structure
2262  * @tx: the Tx tracking structure to initialize
2263  *
2264  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
2265  * port has its own block of timestamps, independent of the other ports.
2266  */
2267 static int
2268 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
2269 {
2270 	tx->quad = pf->hw.port_info->lport;
2271 	tx->quad_offset = 0;
2272 	tx->len = INDEX_PER_QUAD;
2273 
2274 	return ice_ptp_alloc_tx_tracker(tx);
2275 }
2276 
2277 /**
2278  * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
2279  * @tx: PTP Tx tracker to clean up
2280  *
2281  * Loop through the Tx timestamp requests and see if any of them have been
2282  * waiting for a long time. Discard any SKBs that have been waiting for more
2283  * than 2 seconds. This is long enough to be reasonably sure that the
2284  * timestamp will never be captured. This might happen if the packet gets
2285  * discarded before it reaches the PHY timestamping block.
2286  */
2287 static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx)
2288 {
2289 	u8 idx;
2290 
2291 	if (!tx->init)
2292 		return;
2293 
2294 	for_each_set_bit(idx, tx->in_use, tx->len) {
2295 		struct sk_buff *skb;
2296 
2297 		/* Check if this SKB has been waiting for too long */
2298 		if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
2299 			continue;
2300 
2301 		spin_lock(&tx->lock);
2302 		skb = tx->tstamps[idx].skb;
2303 		tx->tstamps[idx].skb = NULL;
2304 		clear_bit(idx, tx->in_use);
2305 		spin_unlock(&tx->lock);
2306 
2307 		/* Free the SKB after we've cleared the bit */
2308 		dev_kfree_skb_any(skb);
2309 	}
2310 }
2311 
2312 static void ice_ptp_periodic_work(struct kthread_work *work)
2313 {
2314 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2315 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2316 
2317 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2318 		return;
2319 
2320 	ice_ptp_update_cached_phctime(pf);
2321 
2322 	ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx);
2323 
2324 	/* Run twice a second */
2325 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2326 				   msecs_to_jiffies(500));
2327 }
2328 
2329 /**
2330  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2331  * @pf: Board private structure
2332  */
2333 void ice_ptp_reset(struct ice_pf *pf)
2334 {
2335 	struct ice_ptp *ptp = &pf->ptp;
2336 	struct ice_hw *hw = &pf->hw;
2337 	struct timespec64 ts;
2338 	int err, itr = 1;
2339 	u64 time_diff;
2340 
2341 	if (test_bit(ICE_PFR_REQ, pf->state))
2342 		goto pfr;
2343 
2344 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2345 		goto reset_ts;
2346 
2347 	err = ice_ptp_init_phc(hw);
2348 	if (err)
2349 		goto err;
2350 
2351 	/* Acquire the global hardware lock */
2352 	if (!ice_ptp_lock(hw)) {
2353 		err = -EBUSY;
2354 		goto err;
2355 	}
2356 
2357 	/* Write the increment time value to PHY and LAN */
2358 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2359 	if (err) {
2360 		ice_ptp_unlock(hw);
2361 		goto err;
2362 	}
2363 
2364 	/* Write the initial Time value to PHY and LAN using the cached PHC
2365 	 * time before the reset and time difference between stopping and
2366 	 * starting the clock.
2367 	 */
2368 	if (ptp->cached_phc_time) {
2369 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2370 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2371 	} else {
2372 		ts = ktime_to_timespec64(ktime_get_real());
2373 	}
2374 	err = ice_ptp_write_init(pf, &ts);
2375 	if (err) {
2376 		ice_ptp_unlock(hw);
2377 		goto err;
2378 	}
2379 
2380 	/* Release the global hardware lock */
2381 	ice_ptp_unlock(hw);
2382 
2383 	if (!ice_is_e810(hw)) {
2384 		/* Enable quad interrupts */
2385 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2386 		if (err)
2387 			goto err;
2388 	}
2389 
2390 reset_ts:
2391 	/* Restart the PHY timestamping block */
2392 	ice_ptp_reset_phy_timestamping(pf);
2393 
2394 pfr:
2395 	/* Init Tx structures */
2396 	if (ice_is_e810(&pf->hw)) {
2397 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2398 	} else {
2399 		kthread_init_delayed_work(&ptp->port.ov_work,
2400 					  ice_ptp_wait_for_offset_valid);
2401 		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2402 					   ptp->port.port_num);
2403 	}
2404 	if (err)
2405 		goto err;
2406 
2407 	set_bit(ICE_FLAG_PTP, pf->flags);
2408 
2409 	/* Start periodic work going */
2410 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2411 
2412 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2413 	return;
2414 
2415 err:
2416 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2417 }
2418 
2419 /**
2420  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2421  * @pf: Board private structure
2422  */
2423 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2424 {
2425 	struct ice_ptp *ptp = &pf->ptp;
2426 	u8 src_tmr;
2427 
2428 	clear_bit(ICE_FLAG_PTP, pf->flags);
2429 
2430 	/* Disable timestamping for both Tx and Rx */
2431 	ice_ptp_cfg_timestamp(pf, false);
2432 
2433 	kthread_cancel_delayed_work_sync(&ptp->work);
2434 	kthread_cancel_work_sync(&ptp->extts_work);
2435 
2436 	if (test_bit(ICE_PFR_REQ, pf->state))
2437 		return;
2438 
2439 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2440 
2441 	/* Disable periodic outputs */
2442 	ice_ptp_disable_all_clkout(pf);
2443 
2444 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2445 
2446 	/* Disable source clock */
2447 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2448 
2449 	/* Acquire PHC and system timer to restore after reset */
2450 	ptp->reset_time = ktime_get_real_ns();
2451 }
2452 
2453 /**
2454  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2455  * @pf: Board private structure
2456  *
2457  * Setup and initialize a PTP clock device that represents the device hardware
2458  * clock. Save the clock index for other functions connected to the same
2459  * hardware resource.
2460  */
2461 static int ice_ptp_init_owner(struct ice_pf *pf)
2462 {
2463 	struct ice_hw *hw = &pf->hw;
2464 	struct timespec64 ts;
2465 	int err, itr = 1;
2466 
2467 	err = ice_ptp_init_phc(hw);
2468 	if (err) {
2469 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2470 			err);
2471 		return err;
2472 	}
2473 
2474 	/* Acquire the global hardware lock */
2475 	if (!ice_ptp_lock(hw)) {
2476 		err = -EBUSY;
2477 		goto err_exit;
2478 	}
2479 
2480 	/* Write the increment time value to PHY and LAN */
2481 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2482 	if (err) {
2483 		ice_ptp_unlock(hw);
2484 		goto err_exit;
2485 	}
2486 
2487 	ts = ktime_to_timespec64(ktime_get_real());
2488 	/* Write the initial Time value to PHY and LAN */
2489 	err = ice_ptp_write_init(pf, &ts);
2490 	if (err) {
2491 		ice_ptp_unlock(hw);
2492 		goto err_exit;
2493 	}
2494 
2495 	/* Release the global hardware lock */
2496 	ice_ptp_unlock(hw);
2497 
2498 	if (!ice_is_e810(hw)) {
2499 		/* Enable quad interrupts */
2500 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2501 		if (err)
2502 			goto err_exit;
2503 	}
2504 
2505 	/* Ensure we have a clock device */
2506 	err = ice_ptp_create_clock(pf);
2507 	if (err)
2508 		goto err_clk;
2509 
2510 	/* Store the PTP clock index for other PFs */
2511 	ice_set_ptp_clock_index(pf);
2512 
2513 	return 0;
2514 
2515 err_clk:
2516 	pf->ptp.clock = NULL;
2517 err_exit:
2518 	return err;
2519 }
2520 
2521 /**
2522  * ice_ptp_init_work - Initialize PTP work threads
2523  * @pf: Board private structure
2524  * @ptp: PF PTP structure
2525  */
2526 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2527 {
2528 	struct kthread_worker *kworker;
2529 
2530 	/* Initialize work functions */
2531 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2532 	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2533 
2534 	/* Allocate a kworker for handling work required for the ports
2535 	 * connected to the PTP hardware clock.
2536 	 */
2537 	kworker = kthread_create_worker(0, "ice-ptp-%s",
2538 					dev_name(ice_pf_to_dev(pf)));
2539 	if (IS_ERR(kworker))
2540 		return PTR_ERR(kworker);
2541 
2542 	ptp->kworker = kworker;
2543 
2544 	/* Start periodic work going */
2545 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2546 
2547 	return 0;
2548 }
2549 
2550 /**
2551  * ice_ptp_init_port - Initialize PTP port structure
2552  * @pf: Board private structure
2553  * @ptp_port: PTP port structure
2554  */
2555 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2556 {
2557 	mutex_init(&ptp_port->ps_lock);
2558 
2559 	if (ice_is_e810(&pf->hw))
2560 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2561 
2562 	kthread_init_delayed_work(&ptp_port->ov_work,
2563 				  ice_ptp_wait_for_offset_valid);
2564 	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2565 }
2566 
2567 /**
2568  * ice_ptp_init - Initialize PTP hardware clock support
2569  * @pf: Board private structure
2570  *
2571  * Set up the device for interacting with the PTP hardware clock for all
2572  * functions, both the function that owns the clock hardware, and the
2573  * functions connected to the clock hardware.
2574  *
2575  * The clock owner will allocate and register a ptp_clock with the
2576  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2577  * items used for asynchronous work such as Tx timestamps and periodic work.
2578  */
2579 void ice_ptp_init(struct ice_pf *pf)
2580 {
2581 	struct ice_ptp *ptp = &pf->ptp;
2582 	struct ice_hw *hw = &pf->hw;
2583 	int err;
2584 
2585 	/* If this function owns the clock hardware, it must allocate and
2586 	 * configure the PTP clock device to represent it.
2587 	 */
2588 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2589 		err = ice_ptp_init_owner(pf);
2590 		if (err)
2591 			goto err;
2592 	}
2593 
2594 	ptp->port.port_num = hw->pf_id;
2595 	err = ice_ptp_init_port(pf, &ptp->port);
2596 	if (err)
2597 		goto err;
2598 
2599 	/* Start the PHY timestamping block */
2600 	ice_ptp_reset_phy_timestamping(pf);
2601 
2602 	set_bit(ICE_FLAG_PTP, pf->flags);
2603 	err = ice_ptp_init_work(pf, ptp);
2604 	if (err)
2605 		goto err;
2606 
2607 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2608 	return;
2609 
2610 err:
2611 	/* If we registered a PTP clock, release it */
2612 	if (pf->ptp.clock) {
2613 		ptp_clock_unregister(ptp->clock);
2614 		pf->ptp.clock = NULL;
2615 	}
2616 	clear_bit(ICE_FLAG_PTP, pf->flags);
2617 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2618 }
2619 
2620 /**
2621  * ice_ptp_release - Disable the driver/HW support and unregister the clock
2622  * @pf: Board private structure
2623  *
2624  * This function handles the cleanup work required from the initialization by
2625  * clearing out the important information and unregistering the clock
2626  */
2627 void ice_ptp_release(struct ice_pf *pf)
2628 {
2629 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2630 		return;
2631 
2632 	/* Disable timestamping for both Tx and Rx */
2633 	ice_ptp_cfg_timestamp(pf, false);
2634 
2635 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2636 
2637 	clear_bit(ICE_FLAG_PTP, pf->flags);
2638 
2639 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2640 
2641 	ice_ptp_port_phy_stop(&pf->ptp.port);
2642 	mutex_destroy(&pf->ptp.port.ps_lock);
2643 	if (pf->ptp.kworker) {
2644 		kthread_destroy_worker(pf->ptp.kworker);
2645 		pf->ptp.kworker = NULL;
2646 	}
2647 
2648 	if (!pf->ptp.clock)
2649 		return;
2650 
2651 	/* Disable periodic outputs */
2652 	ice_ptp_disable_all_clkout(pf);
2653 
2654 	ice_clear_ptp_clock_index(pf);
2655 	ptp_clock_unregister(pf->ptp.clock);
2656 	pf->ptp.clock = NULL;
2657 
2658 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2659 }
2660