1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_trace.h" 7 8 #define E810_OUT_PROP_DELAY_NS 1 9 10 #define UNKNOWN_INCVAL_E822 0x100000000ULL 11 12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = { 13 /* name idx func chan */ 14 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, 15 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, 16 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, 17 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, 18 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, 19 }; 20 21 /** 22 * ice_get_sma_config_e810t 23 * @hw: pointer to the hw struct 24 * @ptp_pins: pointer to the ptp_pin_desc struture 25 * 26 * Read the configuration of the SMA control logic and put it into the 27 * ptp_pin_desc structure 28 */ 29 static int 30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) 31 { 32 u8 data, i; 33 int status; 34 35 /* Read initial pin state */ 36 status = ice_read_sma_ctrl_e810t(hw, &data); 37 if (status) 38 return status; 39 40 /* initialize with defaults */ 41 for (i = 0; i < NUM_PTP_PINS_E810T; i++) { 42 snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), 43 "%s", ice_pin_desc_e810t[i].name); 44 ptp_pins[i].index = ice_pin_desc_e810t[i].index; 45 ptp_pins[i].func = ice_pin_desc_e810t[i].func; 46 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; 47 } 48 49 /* Parse SMA1/UFL1 */ 50 switch (data & ICE_SMA1_MASK_E810T) { 51 case ICE_SMA1_MASK_E810T: 52 default: 53 ptp_pins[SMA1].func = PTP_PF_NONE; 54 ptp_pins[UFL1].func = PTP_PF_NONE; 55 break; 56 case ICE_SMA1_DIR_EN_E810T: 57 ptp_pins[SMA1].func = PTP_PF_PEROUT; 58 ptp_pins[UFL1].func = PTP_PF_NONE; 59 break; 60 case ICE_SMA1_TX_EN_E810T: 61 ptp_pins[SMA1].func = PTP_PF_EXTTS; 62 ptp_pins[UFL1].func = PTP_PF_NONE; 63 break; 64 case 0: 65 ptp_pins[SMA1].func = PTP_PF_EXTTS; 66 ptp_pins[UFL1].func = PTP_PF_PEROUT; 67 break; 68 } 69 70 /* Parse SMA2/UFL2 */ 71 switch (data & ICE_SMA2_MASK_E810T) { 72 case ICE_SMA2_MASK_E810T: 73 default: 74 ptp_pins[SMA2].func = PTP_PF_NONE; 75 ptp_pins[UFL2].func = PTP_PF_NONE; 76 break; 77 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 78 ptp_pins[SMA2].func = PTP_PF_EXTTS; 79 ptp_pins[UFL2].func = PTP_PF_NONE; 80 break; 81 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 82 ptp_pins[SMA2].func = PTP_PF_PEROUT; 83 ptp_pins[UFL2].func = PTP_PF_NONE; 84 break; 85 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): 86 ptp_pins[SMA2].func = PTP_PF_NONE; 87 ptp_pins[UFL2].func = PTP_PF_EXTTS; 88 break; 89 case ICE_SMA2_DIR_EN_E810T: 90 ptp_pins[SMA2].func = PTP_PF_PEROUT; 91 ptp_pins[UFL2].func = PTP_PF_EXTTS; 92 break; 93 } 94 95 return 0; 96 } 97 98 /** 99 * ice_ptp_set_sma_config_e810t 100 * @hw: pointer to the hw struct 101 * @ptp_pins: pointer to the ptp_pin_desc struture 102 * 103 * Set the configuration of the SMA control logic based on the configuration in 104 * num_pins parameter 105 */ 106 static int 107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw, 108 const struct ptp_pin_desc *ptp_pins) 109 { 110 int status; 111 u8 data; 112 113 /* SMA1 and UFL1 cannot be set to TX at the same time */ 114 if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 115 ptp_pins[UFL1].func == PTP_PF_PEROUT) 116 return -EINVAL; 117 118 /* SMA2 and UFL2 cannot be set to RX at the same time */ 119 if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 120 ptp_pins[UFL2].func == PTP_PF_EXTTS) 121 return -EINVAL; 122 123 /* Read initial pin state value */ 124 status = ice_read_sma_ctrl_e810t(hw, &data); 125 if (status) 126 return status; 127 128 /* Set the right sate based on the desired configuration */ 129 data &= ~ICE_SMA1_MASK_E810T; 130 if (ptp_pins[SMA1].func == PTP_PF_NONE && 131 ptp_pins[UFL1].func == PTP_PF_NONE) { 132 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); 133 data |= ICE_SMA1_MASK_E810T; 134 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 135 ptp_pins[UFL1].func == PTP_PF_NONE) { 136 dev_info(ice_hw_to_dev(hw), "SMA1 RX"); 137 data |= ICE_SMA1_TX_EN_E810T; 138 } else if (ptp_pins[SMA1].func == PTP_PF_NONE && 139 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 140 /* U.FL 1 TX will always enable SMA 1 RX */ 141 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 142 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 143 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 144 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 145 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 146 ptp_pins[UFL1].func == PTP_PF_NONE) { 147 dev_info(ice_hw_to_dev(hw), "SMA1 TX"); 148 data |= ICE_SMA1_DIR_EN_E810T; 149 } 150 151 data &= ~ICE_SMA2_MASK_E810T; 152 if (ptp_pins[SMA2].func == PTP_PF_NONE && 153 ptp_pins[UFL2].func == PTP_PF_NONE) { 154 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); 155 data |= ICE_SMA2_MASK_E810T; 156 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 157 ptp_pins[UFL2].func == PTP_PF_NONE) { 158 dev_info(ice_hw_to_dev(hw), "SMA2 RX"); 159 data |= (ICE_SMA2_TX_EN_E810T | 160 ICE_SMA2_UFL2_RX_DIS_E810T); 161 } else if (ptp_pins[SMA2].func == PTP_PF_NONE && 162 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 163 dev_info(ice_hw_to_dev(hw), "UFL2 RX"); 164 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); 165 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 166 ptp_pins[UFL2].func == PTP_PF_NONE) { 167 dev_info(ice_hw_to_dev(hw), "SMA2 TX"); 168 data |= (ICE_SMA2_DIR_EN_E810T | 169 ICE_SMA2_UFL2_RX_DIS_E810T); 170 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 171 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 172 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); 173 data |= ICE_SMA2_DIR_EN_E810T; 174 } 175 176 return ice_write_sma_ctrl_e810t(hw, data); 177 } 178 179 /** 180 * ice_ptp_set_sma_e810t 181 * @info: the driver's PTP info structure 182 * @pin: pin index in kernel structure 183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) 184 * 185 * Set the configuration of a single SMA pin 186 */ 187 static int 188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, 189 enum ptp_pin_function func) 190 { 191 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; 192 struct ice_pf *pf = ptp_info_to_pf(info); 193 struct ice_hw *hw = &pf->hw; 194 int err; 195 196 if (pin < SMA1 || func > PTP_PF_PEROUT) 197 return -EOPNOTSUPP; 198 199 err = ice_get_sma_config_e810t(hw, ptp_pins); 200 if (err) 201 return err; 202 203 /* Disable the same function on the other pin sharing the channel */ 204 if (pin == SMA1 && ptp_pins[UFL1].func == func) 205 ptp_pins[UFL1].func = PTP_PF_NONE; 206 if (pin == UFL1 && ptp_pins[SMA1].func == func) 207 ptp_pins[SMA1].func = PTP_PF_NONE; 208 209 if (pin == SMA2 && ptp_pins[UFL2].func == func) 210 ptp_pins[UFL2].func = PTP_PF_NONE; 211 if (pin == UFL2 && ptp_pins[SMA2].func == func) 212 ptp_pins[SMA2].func = PTP_PF_NONE; 213 214 /* Set up new pin function in the temp table */ 215 ptp_pins[pin].func = func; 216 217 return ice_ptp_set_sma_config_e810t(hw, ptp_pins); 218 } 219 220 /** 221 * ice_verify_pin_e810t 222 * @info: the driver's PTP info structure 223 * @pin: Pin index 224 * @func: Assigned function 225 * @chan: Assigned channel 226 * 227 * Verify if pin supports requested pin function. If the Check pins consistency. 228 * Reconfigure the SMA logic attached to the given pin to enable its 229 * desired functionality 230 */ 231 static int 232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, 233 enum ptp_pin_function func, unsigned int chan) 234 { 235 /* Don't allow channel reassignment */ 236 if (chan != ice_pin_desc_e810t[pin].chan) 237 return -EOPNOTSUPP; 238 239 /* Check if functions are properly assigned */ 240 switch (func) { 241 case PTP_PF_NONE: 242 break; 243 case PTP_PF_EXTTS: 244 if (pin == UFL1) 245 return -EOPNOTSUPP; 246 break; 247 case PTP_PF_PEROUT: 248 if (pin == UFL2 || pin == GNSS) 249 return -EOPNOTSUPP; 250 break; 251 case PTP_PF_PHYSYNC: 252 return -EOPNOTSUPP; 253 } 254 255 return ice_ptp_set_sma_e810t(info, pin, func); 256 } 257 258 /** 259 * ice_set_tx_tstamp - Enable or disable Tx timestamping 260 * @pf: The PF pointer to search in 261 * @on: bool value for whether timestamps are enabled or disabled 262 */ 263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) 264 { 265 struct ice_vsi *vsi; 266 u32 val; 267 u16 i; 268 269 vsi = ice_get_main_vsi(pf); 270 if (!vsi) 271 return; 272 273 /* Set the timestamp enable flag for all the Tx rings */ 274 ice_for_each_txq(vsi, i) { 275 if (!vsi->tx_rings[i]) 276 continue; 277 vsi->tx_rings[i]->ptp_tx = on; 278 } 279 280 /* Configure the Tx timestamp interrupt */ 281 val = rd32(&pf->hw, PFINT_OICR_ENA); 282 if (on) 283 val |= PFINT_OICR_TSYN_TX_M; 284 else 285 val &= ~PFINT_OICR_TSYN_TX_M; 286 wr32(&pf->hw, PFINT_OICR_ENA, val); 287 288 pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 289 } 290 291 /** 292 * ice_set_rx_tstamp - Enable or disable Rx timestamping 293 * @pf: The PF pointer to search in 294 * @on: bool value for whether timestamps are enabled or disabled 295 */ 296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) 297 { 298 struct ice_vsi *vsi; 299 u16 i; 300 301 vsi = ice_get_main_vsi(pf); 302 if (!vsi) 303 return; 304 305 /* Set the timestamp flag for all the Rx rings */ 306 ice_for_each_rxq(vsi, i) { 307 if (!vsi->rx_rings[i]) 308 continue; 309 vsi->rx_rings[i]->ptp_rx = on; 310 } 311 312 pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : 313 HWTSTAMP_FILTER_NONE; 314 } 315 316 /** 317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit 318 * @pf: Board private structure 319 * @ena: bool value to enable or disable time stamp 320 * 321 * This function will configure timestamping during PTP initialization 322 * and deinitialization 323 */ 324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) 325 { 326 ice_set_tx_tstamp(pf, ena); 327 ice_set_rx_tstamp(pf, ena); 328 } 329 330 /** 331 * ice_get_ptp_clock_index - Get the PTP clock index 332 * @pf: the PF pointer 333 * 334 * Determine the clock index of the PTP clock associated with this device. If 335 * this is the PF controlling the clock, just use the local access to the 336 * clock device pointer. 337 * 338 * Otherwise, read from the driver shared parameters to determine the clock 339 * index value. 340 * 341 * Returns: the index of the PTP clock associated with this device, or -1 if 342 * there is no associated clock. 343 */ 344 int ice_get_ptp_clock_index(struct ice_pf *pf) 345 { 346 struct device *dev = ice_pf_to_dev(pf); 347 enum ice_aqc_driver_params param_idx; 348 struct ice_hw *hw = &pf->hw; 349 u8 tmr_idx; 350 u32 value; 351 int err; 352 353 /* Use the ptp_clock structure if we're the main PF */ 354 if (pf->ptp.clock) 355 return ptp_clock_index(pf->ptp.clock); 356 357 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 358 if (!tmr_idx) 359 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 360 else 361 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 362 363 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); 364 if (err) { 365 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", 366 err, ice_aq_str(hw->adminq.sq_last_status)); 367 return -1; 368 } 369 370 /* The PTP clock index is an integer, and will be between 0 and 371 * INT_MAX. The highest bit of the driver shared parameter is used to 372 * indicate whether or not the currently stored clock index is valid. 373 */ 374 if (!(value & PTP_SHARED_CLK_IDX_VALID)) 375 return -1; 376 377 return value & ~PTP_SHARED_CLK_IDX_VALID; 378 } 379 380 /** 381 * ice_set_ptp_clock_index - Set the PTP clock index 382 * @pf: the PF pointer 383 * 384 * Set the PTP clock index for this device into the shared driver parameters, 385 * so that other PFs associated with this device can read it. 386 * 387 * If the PF is unable to store the clock index, it will log an error, but 388 * will continue operating PTP. 389 */ 390 static void ice_set_ptp_clock_index(struct ice_pf *pf) 391 { 392 struct device *dev = ice_pf_to_dev(pf); 393 enum ice_aqc_driver_params param_idx; 394 struct ice_hw *hw = &pf->hw; 395 u8 tmr_idx; 396 u32 value; 397 int err; 398 399 if (!pf->ptp.clock) 400 return; 401 402 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 403 if (!tmr_idx) 404 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 405 else 406 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 407 408 value = (u32)ptp_clock_index(pf->ptp.clock); 409 if (value > INT_MAX) { 410 dev_err(dev, "PTP Clock index is too large to store\n"); 411 return; 412 } 413 value |= PTP_SHARED_CLK_IDX_VALID; 414 415 err = ice_aq_set_driver_param(hw, param_idx, value, NULL); 416 if (err) { 417 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", 418 err, ice_aq_str(hw->adminq.sq_last_status)); 419 } 420 } 421 422 /** 423 * ice_clear_ptp_clock_index - Clear the PTP clock index 424 * @pf: the PF pointer 425 * 426 * Clear the PTP clock index for this device. Must be called when 427 * unregistering the PTP clock, in order to ensure other PFs stop reporting 428 * a clock object that no longer exists. 429 */ 430 static void ice_clear_ptp_clock_index(struct ice_pf *pf) 431 { 432 struct device *dev = ice_pf_to_dev(pf); 433 enum ice_aqc_driver_params param_idx; 434 struct ice_hw *hw = &pf->hw; 435 u8 tmr_idx; 436 int err; 437 438 /* Do not clear the index if we don't own the timer */ 439 if (!hw->func_caps.ts_func_info.src_tmr_owned) 440 return; 441 442 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 443 if (!tmr_idx) 444 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; 445 else 446 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; 447 448 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); 449 if (err) { 450 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", 451 err, ice_aq_str(hw->adminq.sq_last_status)); 452 } 453 } 454 455 /** 456 * ice_ptp_read_src_clk_reg - Read the source clock register 457 * @pf: Board private structure 458 * @sts: Optional parameter for holding a pair of system timestamps from 459 * the system clock. Will be ignored if NULL is given. 460 */ 461 static u64 462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) 463 { 464 struct ice_hw *hw = &pf->hw; 465 u32 hi, lo, lo2; 466 u8 tmr_idx; 467 468 tmr_idx = ice_get_ptp_src_clock_index(hw); 469 /* Read the system timestamp pre PHC read */ 470 ptp_read_system_prets(sts); 471 472 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 473 474 /* Read the system timestamp post PHC read */ 475 ptp_read_system_postts(sts); 476 477 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 478 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 479 480 if (lo2 < lo) { 481 /* if TIME_L rolled over read TIME_L again and update 482 * system timestamps 483 */ 484 ptp_read_system_prets(sts); 485 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 486 ptp_read_system_postts(sts); 487 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 488 } 489 490 return ((u64)hi << 32) | lo; 491 } 492 493 /** 494 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b 495 * @cached_phc_time: recently cached copy of PHC time 496 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value 497 * 498 * Hardware captures timestamps which contain only 32 bits of nominal 499 * nanoseconds, as opposed to the 64bit timestamps that the stack expects. 500 * Note that the captured timestamp values may be 40 bits, but the lower 501 * 8 bits are sub-nanoseconds and generally discarded. 502 * 503 * Extend the 32bit nanosecond timestamp using the following algorithm and 504 * assumptions: 505 * 506 * 1) have a recently cached copy of the PHC time 507 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 508 * seconds) before or after the PHC time was captured. 509 * 3) calculate the delta between the cached time and the timestamp 510 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was 511 * captured after the PHC time. In this case, the full timestamp is just 512 * the cached PHC time plus the delta. 513 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the 514 * timestamp was captured *before* the PHC time, i.e. because the PHC 515 * cache was updated after the timestamp was captured by hardware. In this 516 * case, the full timestamp is the cached time minus the inverse delta. 517 * 518 * This algorithm works even if the PHC time was updated after a Tx timestamp 519 * was requested, but before the Tx timestamp event was reported from 520 * hardware. 521 * 522 * This calculation primarily relies on keeping the cached PHC time up to 523 * date. If the timestamp was captured more than 2^31 nanoseconds after the 524 * PHC time, it is possible that the lower 32bits of PHC time have 525 * overflowed more than once, and we might generate an incorrect timestamp. 526 * 527 * This is prevented by (a) periodically updating the cached PHC time once 528 * a second, and (b) discarding any Tx timestamp packet if it has waited for 529 * a timestamp for more than one second. 530 */ 531 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) 532 { 533 u32 delta, phc_time_lo; 534 u64 ns; 535 536 /* Extract the lower 32 bits of the PHC time */ 537 phc_time_lo = (u32)cached_phc_time; 538 539 /* Calculate the delta between the lower 32bits of the cached PHC 540 * time and the in_tstamp value 541 */ 542 delta = (in_tstamp - phc_time_lo); 543 544 /* Do not assume that the in_tstamp is always more recent than the 545 * cached PHC time. If the delta is large, it indicates that the 546 * in_tstamp was taken in the past, and should be converted 547 * forward. 548 */ 549 if (delta > (U32_MAX / 2)) { 550 /* reverse the delta calculation here */ 551 delta = (phc_time_lo - in_tstamp); 552 ns = cached_phc_time - delta; 553 } else { 554 ns = cached_phc_time + delta; 555 } 556 557 return ns; 558 } 559 560 /** 561 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds 562 * @pf: Board private structure 563 * @in_tstamp: Ingress/egress 40b timestamp value 564 * 565 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal 566 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. 567 * 568 * *--------------------------------------------------------------* 569 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | 570 * *--------------------------------------------------------------* 571 * 572 * The low bit is an indicator of whether the timestamp is valid. The next 573 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, 574 * and the remaining 32 bits are the lower 32 bits of the PHC timer. 575 * 576 * It is assumed that the caller verifies the timestamp is valid prior to 577 * calling this function. 578 * 579 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC 580 * time stored in the device private PTP structure as the basis for timestamp 581 * extension. 582 * 583 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension 584 * algorithm. 585 */ 586 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) 587 { 588 const u64 mask = GENMASK_ULL(31, 0); 589 unsigned long discard_time; 590 591 /* Discard the hardware timestamp if the cached PHC time is too old */ 592 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 593 if (time_is_before_jiffies(discard_time)) { 594 pf->ptp.tx_hwtstamp_discarded++; 595 return 0; 596 } 597 598 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, 599 (in_tstamp >> 8) & mask); 600 } 601 602 /** 603 * ice_ptp_tx_tstamp - Process Tx timestamps for a port 604 * @tx: the PTP Tx timestamp tracker 605 * 606 * Process timestamps captured by the PHY associated with this port. To do 607 * this, loop over each index with a waiting skb. 608 * 609 * If a given index has a valid timestamp, perform the following steps: 610 * 611 * 1) copy the timestamp out of the PHY register 612 * 4) clear the timestamp valid bit in the PHY register 613 * 5) unlock the index by clearing the associated in_use bit. 614 * 2) extend the 40b timestamp value to get a 64bit timestamp 615 * 3) send that timestamp to the stack 616 * 617 * After looping, if we still have waiting SKBs, return true. This may cause us 618 * effectively poll even when not strictly necessary. We do this because it's 619 * possible a new timestamp was requested around the same time as the interrupt. 620 * In some cases hardware might not interrupt us again when the timestamp is 621 * captured. 622 * 623 * Note that we only take the tracking lock when clearing the bit and when 624 * checking if we need to re-queue this task. The only place where bits can be 625 * set is the hard xmit routine where an SKB has a request flag set. The only 626 * places where we clear bits are this work function, or the periodic cleanup 627 * thread. If the cleanup thread clears a bit we're processing we catch it 628 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread 629 * starts a new timestamp, we might not begin processing it right away but we 630 * will notice it at the end when we re-queue the task. If a Tx thread starts 631 * a new timestamp just after this function exits without re-queuing, 632 * the interrupt when the timestamp finishes should trigger. Avoiding holding 633 * the lock for the entire function is important in order to ensure that Tx 634 * threads do not get blocked while waiting for the lock. 635 */ 636 static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) 637 { 638 struct ice_ptp_port *ptp_port; 639 bool ts_handled = true; 640 struct ice_pf *pf; 641 u8 idx; 642 643 if (!tx->init) 644 return false; 645 646 ptp_port = container_of(tx, struct ice_ptp_port, tx); 647 pf = ptp_port_to_pf(ptp_port); 648 649 for_each_set_bit(idx, tx->in_use, tx->len) { 650 struct skb_shared_hwtstamps shhwtstamps = {}; 651 u8 phy_idx = idx + tx->quad_offset; 652 u64 raw_tstamp, tstamp; 653 struct sk_buff *skb; 654 int err; 655 656 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 657 658 err = ice_read_phy_tstamp(&pf->hw, tx->quad, phy_idx, 659 &raw_tstamp); 660 if (err) 661 continue; 662 663 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 664 665 /* Check if the timestamp is invalid or stale */ 666 if (!(raw_tstamp & ICE_PTP_TS_VALID) || 667 raw_tstamp == tx->tstamps[idx].cached_tstamp) 668 continue; 669 670 /* The timestamp is valid, so we'll go ahead and clear this 671 * index and then send the timestamp up to the stack. 672 */ 673 spin_lock(&tx->lock); 674 tx->tstamps[idx].cached_tstamp = raw_tstamp; 675 clear_bit(idx, tx->in_use); 676 skb = tx->tstamps[idx].skb; 677 tx->tstamps[idx].skb = NULL; 678 spin_unlock(&tx->lock); 679 680 /* it's (unlikely but) possible we raced with the cleanup 681 * thread for discarding old timestamp requests. 682 */ 683 if (!skb) 684 continue; 685 686 /* Extend the timestamp using cached PHC time */ 687 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 688 if (tstamp) { 689 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 690 ice_trace(tx_tstamp_complete, skb, idx); 691 } 692 693 skb_tstamp_tx(skb, &shhwtstamps); 694 dev_kfree_skb_any(skb); 695 } 696 697 /* Check if we still have work to do. If so, re-queue this task to 698 * poll for remaining timestamps. 699 */ 700 spin_lock(&tx->lock); 701 if (!bitmap_empty(tx->in_use, tx->len)) 702 ts_handled = false; 703 spin_unlock(&tx->lock); 704 705 return ts_handled; 706 } 707 708 /** 709 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps 710 * @tx: Tx tracking structure to initialize 711 * 712 * Assumes that the length has already been initialized. Do not call directly, 713 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. 714 */ 715 static int 716 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) 717 { 718 tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); 719 if (!tx->tstamps) 720 return -ENOMEM; 721 722 tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); 723 if (!tx->in_use) { 724 kfree(tx->tstamps); 725 tx->tstamps = NULL; 726 return -ENOMEM; 727 } 728 729 spin_lock_init(&tx->lock); 730 731 tx->init = 1; 732 733 return 0; 734 } 735 736 /** 737 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker 738 * @pf: Board private structure 739 * @tx: the tracker to flush 740 */ 741 static void 742 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 743 { 744 u8 idx; 745 746 for (idx = 0; idx < tx->len; idx++) { 747 u8 phy_idx = idx + tx->quad_offset; 748 749 spin_lock(&tx->lock); 750 if (tx->tstamps[idx].skb) { 751 dev_kfree_skb_any(tx->tstamps[idx].skb); 752 tx->tstamps[idx].skb = NULL; 753 pf->ptp.tx_hwtstamp_flushed++; 754 } 755 clear_bit(idx, tx->in_use); 756 spin_unlock(&tx->lock); 757 758 /* Clear any potential residual timestamp in the PHY block */ 759 if (!pf->hw.reset_ongoing) 760 ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); 761 } 762 } 763 764 /** 765 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker 766 * @pf: Board private structure 767 * @tx: Tx tracking structure to release 768 * 769 * Free memory associated with the Tx timestamp tracker. 770 */ 771 static void 772 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 773 { 774 tx->init = 0; 775 776 ice_ptp_flush_tx_tracker(pf, tx); 777 778 kfree(tx->tstamps); 779 tx->tstamps = NULL; 780 781 bitmap_free(tx->in_use); 782 tx->in_use = NULL; 783 784 tx->len = 0; 785 } 786 787 /** 788 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps 789 * @pf: Board private structure 790 * @tx: the Tx tracking structure to initialize 791 * @port: the port this structure tracks 792 * 793 * Initialize the Tx timestamp tracker for this port. For generic MAC devices, 794 * the timestamp block is shared for all ports in the same quad. To avoid 795 * ports using the same timestamp index, logically break the block of 796 * registers into chunks based on the port number. 797 */ 798 static int 799 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) 800 { 801 tx->quad = port / ICE_PORTS_PER_QUAD; 802 tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT; 803 tx->len = INDEX_PER_PORT; 804 805 return ice_ptp_alloc_tx_tracker(tx); 806 } 807 808 /** 809 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps 810 * @pf: Board private structure 811 * @tx: the Tx tracking structure to initialize 812 * 813 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each 814 * port has its own block of timestamps, independent of the other ports. 815 */ 816 static int 817 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) 818 { 819 tx->quad = pf->hw.port_info->lport; 820 tx->quad_offset = 0; 821 tx->len = INDEX_PER_QUAD; 822 823 return ice_ptp_alloc_tx_tracker(tx); 824 } 825 826 /** 827 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped 828 * @pf: pointer to the PF struct 829 * @tx: PTP Tx tracker to clean up 830 * 831 * Loop through the Tx timestamp requests and see if any of them have been 832 * waiting for a long time. Discard any SKBs that have been waiting for more 833 * than 2 seconds. This is long enough to be reasonably sure that the 834 * timestamp will never be captured. This might happen if the packet gets 835 * discarded before it reaches the PHY timestamping block. 836 */ 837 static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx) 838 { 839 struct ice_hw *hw = &pf->hw; 840 u8 idx; 841 842 if (!tx->init) 843 return; 844 845 for_each_set_bit(idx, tx->in_use, tx->len) { 846 struct sk_buff *skb; 847 u64 raw_tstamp; 848 849 /* Check if this SKB has been waiting for too long */ 850 if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) 851 continue; 852 853 /* Read tstamp to be able to use this register again */ 854 ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset, 855 &raw_tstamp); 856 857 spin_lock(&tx->lock); 858 skb = tx->tstamps[idx].skb; 859 tx->tstamps[idx].skb = NULL; 860 clear_bit(idx, tx->in_use); 861 spin_unlock(&tx->lock); 862 863 /* Count the number of Tx timestamps which have timed out */ 864 pf->ptp.tx_hwtstamp_timeouts++; 865 866 /* Free the SKB after we've cleared the bit */ 867 dev_kfree_skb_any(skb); 868 } 869 } 870 871 /** 872 * ice_ptp_update_cached_phctime - Update the cached PHC time values 873 * @pf: Board specific private structure 874 * 875 * This function updates the system time values which are cached in the PF 876 * structure and the Rx rings. 877 * 878 * This function must be called periodically to ensure that the cached value 879 * is never more than 2 seconds old. 880 * 881 * Note that the cached copy in the PF PTP structure is always updated, even 882 * if we can't update the copy in the Rx rings. 883 * 884 * Return: 885 * * 0 - OK, successfully updated 886 * * -EAGAIN - PF was busy, need to reschedule the update 887 */ 888 static int ice_ptp_update_cached_phctime(struct ice_pf *pf) 889 { 890 struct device *dev = ice_pf_to_dev(pf); 891 unsigned long update_before; 892 u64 systime; 893 int i; 894 895 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 896 if (pf->ptp.cached_phc_time && 897 time_is_before_jiffies(update_before)) { 898 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; 899 900 dev_warn(dev, "%u msecs passed between update to cached PHC time\n", 901 jiffies_to_msecs(time_taken)); 902 pf->ptp.late_cached_phc_updates++; 903 } 904 905 /* Read the current PHC time */ 906 systime = ice_ptp_read_src_clk_reg(pf, NULL); 907 908 /* Update the cached PHC time stored in the PF structure */ 909 WRITE_ONCE(pf->ptp.cached_phc_time, systime); 910 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); 911 912 if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) 913 return -EAGAIN; 914 915 ice_for_each_vsi(pf, i) { 916 struct ice_vsi *vsi = pf->vsi[i]; 917 int j; 918 919 if (!vsi) 920 continue; 921 922 if (vsi->type != ICE_VSI_PF) 923 continue; 924 925 ice_for_each_rxq(vsi, j) { 926 if (!vsi->rx_rings[j]) 927 continue; 928 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); 929 } 930 } 931 clear_bit(ICE_CFG_BUSY, pf->state); 932 933 return 0; 934 } 935 936 /** 937 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update 938 * @pf: Board specific private structure 939 * 940 * This function must be called when the cached PHC time is no longer valid, 941 * such as after a time adjustment. It discards any outstanding Tx timestamps, 942 * and updates the cached PHC time for both the PF and Rx rings. If updating 943 * the PHC time cannot be done immediately, a warning message is logged and 944 * the work item is scheduled. 945 * 946 * These steps are required in order to ensure that we do not accidentally 947 * report a timestamp extended by the wrong PHC cached copy. Note that we 948 * do not directly update the cached timestamp here because it is possible 949 * this might produce an error when ICE_CFG_BUSY is set. If this occurred, we 950 * would have to try again. During that time window, timestamps might be 951 * requested and returned with an invalid extension. Thus, on failure to 952 * immediately update the cached PHC time we would need to zero the value 953 * anyways. For this reason, we just zero the value immediately and queue the 954 * update work item. 955 */ 956 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) 957 { 958 struct device *dev = ice_pf_to_dev(pf); 959 int err; 960 961 /* Update the cached PHC time immediately if possible, otherwise 962 * schedule the work item to execute soon. 963 */ 964 err = ice_ptp_update_cached_phctime(pf); 965 if (err) { 966 /* If another thread is updating the Rx rings, we won't 967 * properly reset them here. This could lead to reporting of 968 * invalid timestamps, but there isn't much we can do. 969 */ 970 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", 971 __func__); 972 973 /* Queue the work item to update the Rx rings when possible */ 974 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 975 msecs_to_jiffies(10)); 976 } 977 978 /* Flush any outstanding Tx timestamps */ 979 ice_ptp_flush_tx_tracker(pf, &pf->ptp.port.tx); 980 } 981 982 /** 983 * ice_ptp_read_time - Read the time from the device 984 * @pf: Board private structure 985 * @ts: timespec structure to hold the current time value 986 * @sts: Optional parameter for holding a pair of system timestamps from 987 * the system clock. Will be ignored if NULL is given. 988 * 989 * This function reads the source clock registers and stores them in a timespec. 990 * However, since the registers are 64 bits of nanoseconds, we must convert the 991 * result to a timespec before we can return. 992 */ 993 static void 994 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, 995 struct ptp_system_timestamp *sts) 996 { 997 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); 998 999 *ts = ns_to_timespec64(time_ns); 1000 } 1001 1002 /** 1003 * ice_ptp_write_init - Set PHC time to provided value 1004 * @pf: Board private structure 1005 * @ts: timespec structure that holds the new time value 1006 * 1007 * Set the PHC time to the specified time provided in the timespec. 1008 */ 1009 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) 1010 { 1011 u64 ns = timespec64_to_ns(ts); 1012 struct ice_hw *hw = &pf->hw; 1013 1014 return ice_ptp_init_time(hw, ns); 1015 } 1016 1017 /** 1018 * ice_ptp_write_adj - Adjust PHC clock time atomically 1019 * @pf: Board private structure 1020 * @adj: Adjustment in nanoseconds 1021 * 1022 * Perform an atomic adjustment of the PHC time by the specified number of 1023 * nanoseconds. 1024 */ 1025 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) 1026 { 1027 struct ice_hw *hw = &pf->hw; 1028 1029 return ice_ptp_adj_clock(hw, adj); 1030 } 1031 1032 /** 1033 * ice_base_incval - Get base timer increment value 1034 * @pf: Board private structure 1035 * 1036 * Look up the base timer increment value for this device. The base increment 1037 * value is used to define the nominal clock tick rate. This increment value 1038 * is programmed during device initialization. It is also used as the basis 1039 * for calculating adjustments using scaled_ppm. 1040 */ 1041 static u64 ice_base_incval(struct ice_pf *pf) 1042 { 1043 struct ice_hw *hw = &pf->hw; 1044 u64 incval; 1045 1046 if (ice_is_e810(hw)) 1047 incval = ICE_PTP_NOMINAL_INCVAL_E810; 1048 else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) 1049 incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); 1050 else 1051 incval = UNKNOWN_INCVAL_E822; 1052 1053 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", 1054 incval); 1055 1056 return incval; 1057 } 1058 1059 /** 1060 * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad 1061 * @pf: The PF private data structure 1062 * @quad: The quad (0-4) 1063 */ 1064 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad) 1065 { 1066 struct ice_hw *hw = &pf->hw; 1067 1068 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); 1069 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); 1070 } 1071 1072 /** 1073 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state 1074 * @port: PTP port for which Tx FIFO is checked 1075 */ 1076 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) 1077 { 1078 int quad = port->port_num / ICE_PORTS_PER_QUAD; 1079 int offs = port->port_num % ICE_PORTS_PER_QUAD; 1080 struct ice_pf *pf; 1081 struct ice_hw *hw; 1082 u32 val, phy_sts; 1083 int err; 1084 1085 pf = ptp_port_to_pf(port); 1086 hw = &pf->hw; 1087 1088 if (port->tx_fifo_busy_cnt == FIFO_OK) 1089 return 0; 1090 1091 /* need to read FIFO state */ 1092 if (offs == 0 || offs == 1) 1093 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, 1094 &val); 1095 else 1096 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, 1097 &val); 1098 1099 if (err) { 1100 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", 1101 port->port_num, err); 1102 return err; 1103 } 1104 1105 if (offs & 0x1) 1106 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; 1107 else 1108 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; 1109 1110 if (phy_sts & FIFO_EMPTY) { 1111 port->tx_fifo_busy_cnt = FIFO_OK; 1112 return 0; 1113 } 1114 1115 port->tx_fifo_busy_cnt++; 1116 1117 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", 1118 port->tx_fifo_busy_cnt, port->port_num); 1119 1120 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { 1121 dev_dbg(ice_pf_to_dev(pf), 1122 "Port %d Tx FIFO still not empty; resetting quad %d\n", 1123 port->port_num, quad); 1124 ice_ptp_reset_ts_memory_quad(pf, quad); 1125 port->tx_fifo_busy_cnt = FIFO_OK; 1126 return 0; 1127 } 1128 1129 return -EAGAIN; 1130 } 1131 1132 /** 1133 * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid 1134 * @port: the PTP port to check 1135 * 1136 * Checks whether the Tx offset for the PHY associated with this port is 1137 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is 1138 * not. 1139 */ 1140 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port) 1141 { 1142 struct ice_pf *pf = ptp_port_to_pf(port); 1143 struct device *dev = ice_pf_to_dev(pf); 1144 struct ice_hw *hw = &pf->hw; 1145 u32 val; 1146 int err; 1147 1148 err = ice_ptp_check_tx_fifo(port); 1149 if (err) 1150 return err; 1151 1152 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS, 1153 &val); 1154 if (err) { 1155 dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n", 1156 port->port_num, err); 1157 return -EAGAIN; 1158 } 1159 1160 if (!(val & P_REG_TX_OV_STATUS_OV_M)) 1161 return -EAGAIN; 1162 1163 return 0; 1164 } 1165 1166 /** 1167 * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid 1168 * @port: the PTP port to check 1169 * 1170 * Checks whether the Rx offset for the PHY associated with this port is 1171 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is 1172 * not. 1173 */ 1174 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port) 1175 { 1176 struct ice_pf *pf = ptp_port_to_pf(port); 1177 struct device *dev = ice_pf_to_dev(pf); 1178 struct ice_hw *hw = &pf->hw; 1179 int err; 1180 u32 val; 1181 1182 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS, 1183 &val); 1184 if (err) { 1185 dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n", 1186 port->port_num, err); 1187 return err; 1188 } 1189 1190 if (!(val & P_REG_RX_OV_STATUS_OV_M)) 1191 return -EAGAIN; 1192 1193 return 0; 1194 } 1195 1196 /** 1197 * ice_ptp_check_offset_valid - Check port offset valid bit 1198 * @port: Port for which offset valid bit is checked 1199 * 1200 * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the 1201 * offset is not ready. 1202 */ 1203 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port) 1204 { 1205 int tx_err, rx_err; 1206 1207 /* always check both Tx and Rx offset validity */ 1208 tx_err = ice_ptp_check_tx_offset_valid(port); 1209 rx_err = ice_ptp_check_rx_offset_valid(port); 1210 1211 if (tx_err || rx_err) 1212 return -EAGAIN; 1213 1214 return 0; 1215 } 1216 1217 /** 1218 * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets 1219 * @work: Pointer to the kthread_work structure for this task 1220 * 1221 * Check whether both the Tx and Rx offsets are valid for enabling the vernier 1222 * calibration. 1223 * 1224 * Once we have valid offsets from hardware, update the total Tx and Rx 1225 * offsets, and exit bypass mode. This enables more precise timestamps using 1226 * the extra data measured during the vernier calibration process. 1227 */ 1228 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work) 1229 { 1230 struct ice_ptp_port *port; 1231 int err; 1232 struct device *dev; 1233 struct ice_pf *pf; 1234 struct ice_hw *hw; 1235 1236 port = container_of(work, struct ice_ptp_port, ov_work.work); 1237 pf = ptp_port_to_pf(port); 1238 hw = &pf->hw; 1239 dev = ice_pf_to_dev(pf); 1240 1241 if (ice_is_reset_in_progress(pf->state)) 1242 return; 1243 1244 if (ice_ptp_check_offset_valid(port)) { 1245 /* Offsets not ready yet, try again later */ 1246 kthread_queue_delayed_work(pf->ptp.kworker, 1247 &port->ov_work, 1248 msecs_to_jiffies(100)); 1249 return; 1250 } 1251 1252 /* Offsets are valid, so it is safe to exit bypass mode */ 1253 err = ice_phy_exit_bypass_e822(hw, port->port_num); 1254 if (err) { 1255 dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n", 1256 port->port_num, err); 1257 return; 1258 } 1259 } 1260 1261 /** 1262 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port 1263 * @ptp_port: PTP port to stop 1264 */ 1265 static int 1266 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) 1267 { 1268 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1269 u8 port = ptp_port->port_num; 1270 struct ice_hw *hw = &pf->hw; 1271 int err; 1272 1273 if (ice_is_e810(hw)) 1274 return 0; 1275 1276 mutex_lock(&ptp_port->ps_lock); 1277 1278 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1279 1280 err = ice_stop_phy_timer_e822(hw, port, true); 1281 if (err) 1282 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", 1283 port, err); 1284 1285 mutex_unlock(&ptp_port->ps_lock); 1286 1287 return err; 1288 } 1289 1290 /** 1291 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping 1292 * @ptp_port: PTP port for which the PHY start is set 1293 * 1294 * Start the PHY timestamping block, and initiate Vernier timestamping 1295 * calibration. If timestamping cannot be calibrated (such as if link is down) 1296 * then disable the timestamping block instead. 1297 */ 1298 static int 1299 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) 1300 { 1301 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1302 u8 port = ptp_port->port_num; 1303 struct ice_hw *hw = &pf->hw; 1304 int err; 1305 1306 if (ice_is_e810(hw)) 1307 return 0; 1308 1309 if (!ptp_port->link_up) 1310 return ice_ptp_port_phy_stop(ptp_port); 1311 1312 mutex_lock(&ptp_port->ps_lock); 1313 1314 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1315 1316 /* temporarily disable Tx timestamps while calibrating PHY offset */ 1317 ptp_port->tx.calibrating = true; 1318 ptp_port->tx_fifo_busy_cnt = 0; 1319 1320 /* Start the PHY timer in bypass mode */ 1321 err = ice_start_phy_timer_e822(hw, port, true); 1322 if (err) 1323 goto out_unlock; 1324 1325 /* Enable Tx timestamps right away */ 1326 ptp_port->tx.calibrating = false; 1327 1328 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); 1329 1330 out_unlock: 1331 if (err) 1332 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", 1333 port, err); 1334 1335 mutex_unlock(&ptp_port->ps_lock); 1336 1337 return err; 1338 } 1339 1340 /** 1341 * ice_ptp_link_change - Set or clear port registers for timestamping 1342 * @pf: Board private structure 1343 * @port: Port for which the PHY start is set 1344 * @linkup: Link is up or down 1345 */ 1346 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) 1347 { 1348 struct ice_ptp_port *ptp_port; 1349 1350 if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 1351 return 0; 1352 1353 if (port >= ICE_NUM_EXTERNAL_PORTS) 1354 return -EINVAL; 1355 1356 ptp_port = &pf->ptp.port; 1357 if (ptp_port->port_num != port) 1358 return -EINVAL; 1359 1360 /* Update cached link err for this port immediately */ 1361 ptp_port->link_up = linkup; 1362 1363 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 1364 /* PTP is not setup */ 1365 return -EAGAIN; 1366 1367 return ice_ptp_port_phy_restart(ptp_port); 1368 } 1369 1370 /** 1371 * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads 1372 * @pf: The PF private data structure 1373 */ 1374 static void ice_ptp_reset_ts_memory(struct ice_pf *pf) 1375 { 1376 int quad; 1377 1378 quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD; 1379 ice_ptp_reset_ts_memory_quad(pf, quad); 1380 } 1381 1382 /** 1383 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt 1384 * @pf: PF private structure 1385 * @ena: bool value to enable or disable interrupt 1386 * @threshold: Minimum number of packets at which intr is triggered 1387 * 1388 * Utility function to enable or disable Tx timestamp interrupt and threshold 1389 */ 1390 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) 1391 { 1392 struct ice_hw *hw = &pf->hw; 1393 int err = 0; 1394 int quad; 1395 u32 val; 1396 1397 ice_ptp_reset_ts_memory(pf); 1398 1399 for (quad = 0; quad < ICE_MAX_QUAD; quad++) { 1400 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1401 &val); 1402 if (err) 1403 break; 1404 1405 if (ena) { 1406 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1407 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; 1408 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & 1409 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); 1410 } else { 1411 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; 1412 } 1413 1414 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, 1415 val); 1416 if (err) 1417 break; 1418 } 1419 1420 if (err) 1421 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", 1422 err); 1423 return err; 1424 } 1425 1426 /** 1427 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block 1428 * @pf: Board private structure 1429 */ 1430 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) 1431 { 1432 ice_ptp_port_phy_restart(&pf->ptp.port); 1433 } 1434 1435 /** 1436 * ice_ptp_adjfine - Adjust clock increment rate 1437 * @info: the driver's PTP info structure 1438 * @scaled_ppm: Parts per million with 16-bit fractional field 1439 * 1440 * Adjust the frequency of the clock by the indicated scaled ppm from the 1441 * base frequency. 1442 */ 1443 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 1444 { 1445 struct ice_pf *pf = ptp_info_to_pf(info); 1446 struct ice_hw *hw = &pf->hw; 1447 u64 incval, diff; 1448 int neg_adj = 0; 1449 int err; 1450 1451 incval = ice_base_incval(pf); 1452 1453 if (scaled_ppm < 0) { 1454 neg_adj = 1; 1455 scaled_ppm = -scaled_ppm; 1456 } 1457 1458 diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm, 1459 1000000ULL << 16); 1460 if (neg_adj) 1461 incval -= diff; 1462 else 1463 incval += diff; 1464 1465 err = ice_ptp_write_incval_locked(hw, incval); 1466 if (err) { 1467 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", 1468 err); 1469 return -EIO; 1470 } 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * ice_ptp_extts_work - Workqueue task function 1477 * @work: external timestamp work structure 1478 * 1479 * Service for PTP external clock event 1480 */ 1481 static void ice_ptp_extts_work(struct kthread_work *work) 1482 { 1483 struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); 1484 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 1485 struct ptp_clock_event event; 1486 struct ice_hw *hw = &pf->hw; 1487 u8 chan, tmr_idx; 1488 u32 hi, lo; 1489 1490 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1491 /* Event time is captured by one of the two matched registers 1492 * GLTSYN_EVNT_L: 32 LSB of sampled time event 1493 * GLTSYN_EVNT_H: 32 MSB of sampled time event 1494 * Event is defined in GLTSYN_EVNT_0 register 1495 */ 1496 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { 1497 /* Check if channel is enabled */ 1498 if (pf->ptp.ext_ts_irq & (1 << chan)) { 1499 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); 1500 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); 1501 event.timestamp = (((u64)hi) << 32) | lo; 1502 event.type = PTP_CLOCK_EXTTS; 1503 event.index = chan; 1504 1505 /* Fire event */ 1506 ptp_clock_event(pf->ptp.clock, &event); 1507 pf->ptp.ext_ts_irq &= ~(1 << chan); 1508 } 1509 } 1510 } 1511 1512 /** 1513 * ice_ptp_cfg_extts - Configure EXTTS pin and channel 1514 * @pf: Board private structure 1515 * @ena: true to enable; false to disable 1516 * @chan: GPIO channel (0-3) 1517 * @gpio_pin: GPIO pin 1518 * @extts_flags: request flags from the ptp_extts_request.flags 1519 */ 1520 static int 1521 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, 1522 unsigned int extts_flags) 1523 { 1524 u32 func, aux_reg, gpio_reg, irq_reg; 1525 struct ice_hw *hw = &pf->hw; 1526 u8 tmr_idx; 1527 1528 if (chan > (unsigned int)pf->ptp.info.n_ext_ts) 1529 return -EINVAL; 1530 1531 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1532 1533 irq_reg = rd32(hw, PFINT_OICR_ENA); 1534 1535 if (ena) { 1536 /* Enable the interrupt */ 1537 irq_reg |= PFINT_OICR_TSYN_EVNT_M; 1538 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; 1539 1540 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) 1541 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) 1542 1543 /* set event level to requested edge */ 1544 if (extts_flags & PTP_FALLING_EDGE) 1545 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; 1546 if (extts_flags & PTP_RISING_EDGE) 1547 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; 1548 1549 /* Write GPIO CTL reg. 1550 * 0x1 is input sampled by EVENT register(channel) 1551 * + num_in_channels * tmr_idx 1552 */ 1553 func = 1 + chan + (tmr_idx * 3); 1554 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & 1555 GLGEN_GPIO_CTL_PIN_FUNC_M); 1556 pf->ptp.ext_ts_chan |= (1 << chan); 1557 } else { 1558 /* clear the values we set to reset defaults */ 1559 aux_reg = 0; 1560 gpio_reg = 0; 1561 pf->ptp.ext_ts_chan &= ~(1 << chan); 1562 if (!pf->ptp.ext_ts_chan) 1563 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; 1564 } 1565 1566 wr32(hw, PFINT_OICR_ENA, irq_reg); 1567 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); 1568 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave 1575 * @pf: Board private structure 1576 * @chan: GPIO channel (0-3) 1577 * @config: desired periodic clk configuration. NULL will disable channel 1578 * @store: If set to true the values will be stored 1579 * 1580 * Configure the internal clock generator modules to generate the clock wave of 1581 * specified period. 1582 */ 1583 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, 1584 struct ice_perout_channel *config, bool store) 1585 { 1586 u64 current_time, period, start_time, phase; 1587 struct ice_hw *hw = &pf->hw; 1588 u32 func, val, gpio_pin; 1589 u8 tmr_idx; 1590 1591 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1592 1593 /* 0. Reset mode & out_en in AUX_OUT */ 1594 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); 1595 1596 /* If we're disabling the output, clear out CLKO and TGT and keep 1597 * output level low 1598 */ 1599 if (!config || !config->ena) { 1600 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); 1601 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); 1602 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); 1603 1604 val = GLGEN_GPIO_CTL_PIN_DIR_M; 1605 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; 1606 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1607 1608 /* Store the value if requested */ 1609 if (store) 1610 memset(&pf->ptp.perout_channels[chan], 0, 1611 sizeof(struct ice_perout_channel)); 1612 1613 return 0; 1614 } 1615 period = config->period; 1616 start_time = config->start_time; 1617 div64_u64_rem(start_time, period, &phase); 1618 gpio_pin = config->gpio_pin; 1619 1620 /* 1. Write clkout with half of required period value */ 1621 if (period & 0x1) { 1622 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); 1623 goto err; 1624 } 1625 1626 period >>= 1; 1627 1628 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick 1629 */ 1630 #define MIN_PULSE 3 1631 if (period <= MIN_PULSE || period > U32_MAX) { 1632 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", 1633 MIN_PULSE * 2); 1634 goto err; 1635 } 1636 1637 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); 1638 1639 /* Allow time for programming before start_time is hit */ 1640 current_time = ice_ptp_read_src_clk_reg(pf, NULL); 1641 1642 /* if start time is in the past start the timer at the nearest second 1643 * maintaining phase 1644 */ 1645 if (start_time < current_time) 1646 start_time = div64_u64(current_time + NSEC_PER_SEC - 1, 1647 NSEC_PER_SEC) * NSEC_PER_SEC + phase; 1648 1649 if (ice_is_e810(hw)) 1650 start_time -= E810_OUT_PROP_DELAY_NS; 1651 else 1652 start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); 1653 1654 /* 2. Write TARGET time */ 1655 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); 1656 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); 1657 1658 /* 3. Write AUX_OUT register */ 1659 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; 1660 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); 1661 1662 /* 4. write GPIO CTL reg */ 1663 func = 8 + chan + (tmr_idx * 4); 1664 val = GLGEN_GPIO_CTL_PIN_DIR_M | 1665 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); 1666 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1667 1668 /* Store the value if requested */ 1669 if (store) { 1670 memcpy(&pf->ptp.perout_channels[chan], config, 1671 sizeof(struct ice_perout_channel)); 1672 pf->ptp.perout_channels[chan].start_time = phase; 1673 } 1674 1675 return 0; 1676 err: 1677 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); 1678 return -EFAULT; 1679 } 1680 1681 /** 1682 * ice_ptp_disable_all_clkout - Disable all currently configured outputs 1683 * @pf: pointer to the PF structure 1684 * 1685 * Disable all currently configured clock outputs. This is necessary before 1686 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to 1687 * re-enable the clocks again. 1688 */ 1689 static void ice_ptp_disable_all_clkout(struct ice_pf *pf) 1690 { 1691 uint i; 1692 1693 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1694 if (pf->ptp.perout_channels[i].ena) 1695 ice_ptp_cfg_clkout(pf, i, NULL, false); 1696 } 1697 1698 /** 1699 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs 1700 * @pf: pointer to the PF structure 1701 * 1702 * Enable all currently configured clock outputs. Use this after 1703 * ice_ptp_disable_all_clkout to reconfigure the output signals according to 1704 * their configuration. 1705 */ 1706 static void ice_ptp_enable_all_clkout(struct ice_pf *pf) 1707 { 1708 uint i; 1709 1710 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1711 if (pf->ptp.perout_channels[i].ena) 1712 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], 1713 false); 1714 } 1715 1716 /** 1717 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC 1718 * @info: the driver's PTP info structure 1719 * @rq: The requested feature to change 1720 * @on: Enable/disable flag 1721 */ 1722 static int 1723 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, 1724 struct ptp_clock_request *rq, int on) 1725 { 1726 struct ice_pf *pf = ptp_info_to_pf(info); 1727 struct ice_perout_channel clk_cfg = {0}; 1728 bool sma_pres = false; 1729 unsigned int chan; 1730 u32 gpio_pin; 1731 int err; 1732 1733 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 1734 sma_pres = true; 1735 1736 switch (rq->type) { 1737 case PTP_CLK_REQ_PEROUT: 1738 chan = rq->perout.index; 1739 if (sma_pres) { 1740 if (chan == ice_pin_desc_e810t[SMA1].chan) 1741 clk_cfg.gpio_pin = GPIO_20; 1742 else if (chan == ice_pin_desc_e810t[SMA2].chan) 1743 clk_cfg.gpio_pin = GPIO_22; 1744 else 1745 return -1; 1746 } else if (ice_is_e810t(&pf->hw)) { 1747 if (chan == 0) 1748 clk_cfg.gpio_pin = GPIO_20; 1749 else 1750 clk_cfg.gpio_pin = GPIO_22; 1751 } else if (chan == PPS_CLK_GEN_CHAN) { 1752 clk_cfg.gpio_pin = PPS_PIN_INDEX; 1753 } else { 1754 clk_cfg.gpio_pin = chan; 1755 } 1756 1757 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + 1758 rq->perout.period.nsec); 1759 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + 1760 rq->perout.start.nsec); 1761 clk_cfg.ena = !!on; 1762 1763 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); 1764 break; 1765 case PTP_CLK_REQ_EXTTS: 1766 chan = rq->extts.index; 1767 if (sma_pres) { 1768 if (chan < ice_pin_desc_e810t[SMA2].chan) 1769 gpio_pin = GPIO_21; 1770 else 1771 gpio_pin = GPIO_23; 1772 } else if (ice_is_e810t(&pf->hw)) { 1773 if (chan == 0) 1774 gpio_pin = GPIO_21; 1775 else 1776 gpio_pin = GPIO_23; 1777 } else { 1778 gpio_pin = chan; 1779 } 1780 1781 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, 1782 rq->extts.flags); 1783 break; 1784 default: 1785 return -EOPNOTSUPP; 1786 } 1787 1788 return err; 1789 } 1790 1791 /** 1792 * ice_ptp_gettimex64 - Get the time of the clock 1793 * @info: the driver's PTP info structure 1794 * @ts: timespec64 structure to hold the current time value 1795 * @sts: Optional parameter for holding a pair of system timestamps from 1796 * the system clock. Will be ignored if NULL is given. 1797 * 1798 * Read the device clock and return the correct value on ns, after converting it 1799 * into a timespec struct. 1800 */ 1801 static int 1802 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, 1803 struct ptp_system_timestamp *sts) 1804 { 1805 struct ice_pf *pf = ptp_info_to_pf(info); 1806 struct ice_hw *hw = &pf->hw; 1807 1808 if (!ice_ptp_lock(hw)) { 1809 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); 1810 return -EBUSY; 1811 } 1812 1813 ice_ptp_read_time(pf, ts, sts); 1814 ice_ptp_unlock(hw); 1815 1816 return 0; 1817 } 1818 1819 /** 1820 * ice_ptp_settime64 - Set the time of the clock 1821 * @info: the driver's PTP info structure 1822 * @ts: timespec64 structure that holds the new time value 1823 * 1824 * Set the device clock to the user input value. The conversion from timespec 1825 * to ns happens in the write function. 1826 */ 1827 static int 1828 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) 1829 { 1830 struct ice_pf *pf = ptp_info_to_pf(info); 1831 struct timespec64 ts64 = *ts; 1832 struct ice_hw *hw = &pf->hw; 1833 int err; 1834 1835 /* For Vernier mode, we need to recalibrate after new settime 1836 * Start with disabling timestamp block 1837 */ 1838 if (pf->ptp.port.link_up) 1839 ice_ptp_port_phy_stop(&pf->ptp.port); 1840 1841 if (!ice_ptp_lock(hw)) { 1842 err = -EBUSY; 1843 goto exit; 1844 } 1845 1846 /* Disable periodic outputs */ 1847 ice_ptp_disable_all_clkout(pf); 1848 1849 err = ice_ptp_write_init(pf, &ts64); 1850 ice_ptp_unlock(hw); 1851 1852 if (!err) 1853 ice_ptp_reset_cached_phctime(pf); 1854 1855 /* Reenable periodic outputs */ 1856 ice_ptp_enable_all_clkout(pf); 1857 1858 /* Recalibrate and re-enable timestamp block */ 1859 if (pf->ptp.port.link_up) 1860 ice_ptp_port_phy_restart(&pf->ptp.port); 1861 exit: 1862 if (err) { 1863 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); 1864 return err; 1865 } 1866 1867 return 0; 1868 } 1869 1870 /** 1871 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment 1872 * @info: the driver's PTP info structure 1873 * @delta: Offset in nanoseconds to adjust the time by 1874 */ 1875 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) 1876 { 1877 struct timespec64 now, then; 1878 int ret; 1879 1880 then = ns_to_timespec64(delta); 1881 ret = ice_ptp_gettimex64(info, &now, NULL); 1882 if (ret) 1883 return ret; 1884 now = timespec64_add(now, then); 1885 1886 return ice_ptp_settime64(info, (const struct timespec64 *)&now); 1887 } 1888 1889 /** 1890 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta 1891 * @info: the driver's PTP info structure 1892 * @delta: Offset in nanoseconds to adjust the time by 1893 */ 1894 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) 1895 { 1896 struct ice_pf *pf = ptp_info_to_pf(info); 1897 struct ice_hw *hw = &pf->hw; 1898 struct device *dev; 1899 int err; 1900 1901 dev = ice_pf_to_dev(pf); 1902 1903 /* Hardware only supports atomic adjustments using signed 32-bit 1904 * integers. For any adjustment outside this range, perform 1905 * a non-atomic get->adjust->set flow. 1906 */ 1907 if (delta > S32_MAX || delta < S32_MIN) { 1908 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); 1909 return ice_ptp_adjtime_nonatomic(info, delta); 1910 } 1911 1912 if (!ice_ptp_lock(hw)) { 1913 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); 1914 return -EBUSY; 1915 } 1916 1917 /* Disable periodic outputs */ 1918 ice_ptp_disable_all_clkout(pf); 1919 1920 err = ice_ptp_write_adj(pf, delta); 1921 1922 /* Reenable periodic outputs */ 1923 ice_ptp_enable_all_clkout(pf); 1924 1925 ice_ptp_unlock(hw); 1926 1927 if (err) { 1928 dev_err(dev, "PTP failed to adjust time, err %d\n", err); 1929 return err; 1930 } 1931 1932 ice_ptp_reset_cached_phctime(pf); 1933 1934 return 0; 1935 } 1936 1937 #ifdef CONFIG_ICE_HWTS 1938 /** 1939 * ice_ptp_get_syncdevicetime - Get the cross time stamp info 1940 * @device: Current device time 1941 * @system: System counter value read synchronously with device time 1942 * @ctx: Context provided by timekeeping code 1943 * 1944 * Read device and system (ART) clock simultaneously and return the corrected 1945 * clock values in ns. 1946 */ 1947 static int 1948 ice_ptp_get_syncdevicetime(ktime_t *device, 1949 struct system_counterval_t *system, 1950 void *ctx) 1951 { 1952 struct ice_pf *pf = (struct ice_pf *)ctx; 1953 struct ice_hw *hw = &pf->hw; 1954 u32 hh_lock, hh_art_ctl; 1955 int i; 1956 1957 /* Get the HW lock */ 1958 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1959 if (hh_lock & PFHH_SEM_BUSY_M) { 1960 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); 1961 return -EFAULT; 1962 } 1963 1964 /* Start the ART and device clock sync sequence */ 1965 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1966 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; 1967 wr32(hw, GLHH_ART_CTL, hh_art_ctl); 1968 1969 #define MAX_HH_LOCK_TRIES 100 1970 1971 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { 1972 /* Wait for sync to complete */ 1973 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 1974 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { 1975 udelay(1); 1976 continue; 1977 } else { 1978 u32 hh_ts_lo, hh_ts_hi, tmr_idx; 1979 u64 hh_ts; 1980 1981 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 1982 /* Read ART time */ 1983 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); 1984 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); 1985 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1986 *system = convert_art_ns_to_tsc(hh_ts); 1987 /* Read Device source clock time */ 1988 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); 1989 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); 1990 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 1991 *device = ns_to_ktime(hh_ts); 1992 break; 1993 } 1994 } 1995 /* Release HW lock */ 1996 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 1997 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; 1998 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); 1999 2000 if (i == MAX_HH_LOCK_TRIES) 2001 return -ETIMEDOUT; 2002 2003 return 0; 2004 } 2005 2006 /** 2007 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp 2008 * @info: the driver's PTP info structure 2009 * @cts: The memory to fill the cross timestamp info 2010 * 2011 * Capture a cross timestamp between the ART and the device PTP hardware 2012 * clock. Fill the cross timestamp information and report it back to the 2013 * caller. 2014 * 2015 * This is only valid for E822 devices which have support for generating the 2016 * cross timestamp via PCIe PTM. 2017 * 2018 * In order to correctly correlate the ART timestamp back to the TSC time, the 2019 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. 2020 */ 2021 static int 2022 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, 2023 struct system_device_crosststamp *cts) 2024 { 2025 struct ice_pf *pf = ptp_info_to_pf(info); 2026 2027 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, 2028 pf, NULL, cts); 2029 } 2030 #endif /* CONFIG_ICE_HWTS */ 2031 2032 /** 2033 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config 2034 * @pf: Board private structure 2035 * @ifr: ioctl data 2036 * 2037 * Copy the timestamping config to user buffer 2038 */ 2039 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2040 { 2041 struct hwtstamp_config *config; 2042 2043 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2044 return -EIO; 2045 2046 config = &pf->ptp.tstamp_config; 2047 2048 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 2049 -EFAULT : 0; 2050 } 2051 2052 /** 2053 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode 2054 * @pf: Board private structure 2055 * @config: hwtstamp settings requested or saved 2056 */ 2057 static int 2058 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) 2059 { 2060 switch (config->tx_type) { 2061 case HWTSTAMP_TX_OFF: 2062 ice_set_tx_tstamp(pf, false); 2063 break; 2064 case HWTSTAMP_TX_ON: 2065 ice_set_tx_tstamp(pf, true); 2066 break; 2067 default: 2068 return -ERANGE; 2069 } 2070 2071 switch (config->rx_filter) { 2072 case HWTSTAMP_FILTER_NONE: 2073 ice_set_rx_tstamp(pf, false); 2074 break; 2075 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2076 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2077 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2078 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2079 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2080 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2081 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2082 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2083 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2084 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2085 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2086 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2087 case HWTSTAMP_FILTER_NTP_ALL: 2088 case HWTSTAMP_FILTER_ALL: 2089 ice_set_rx_tstamp(pf, true); 2090 break; 2091 default: 2092 return -ERANGE; 2093 } 2094 2095 return 0; 2096 } 2097 2098 /** 2099 * ice_ptp_set_ts_config - ioctl interface to control the timestamping 2100 * @pf: Board private structure 2101 * @ifr: ioctl data 2102 * 2103 * Get the user config and store it 2104 */ 2105 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2106 { 2107 struct hwtstamp_config config; 2108 int err; 2109 2110 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2111 return -EAGAIN; 2112 2113 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2114 return -EFAULT; 2115 2116 err = ice_ptp_set_timestamp_mode(pf, &config); 2117 if (err) 2118 return err; 2119 2120 /* Return the actual configuration set */ 2121 config = pf->ptp.tstamp_config; 2122 2123 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2124 -EFAULT : 0; 2125 } 2126 2127 /** 2128 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp 2129 * @rx_ring: Ring to get the VSI info 2130 * @rx_desc: Receive descriptor 2131 * @skb: Particular skb to send timestamp with 2132 * 2133 * The driver receives a notification in the receive descriptor with timestamp. 2134 * The timestamp is in ns, so we must convert the result first. 2135 */ 2136 void 2137 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, 2138 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) 2139 { 2140 struct skb_shared_hwtstamps *hwtstamps; 2141 u64 ts_ns, cached_time; 2142 u32 ts_high; 2143 2144 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) 2145 return; 2146 2147 cached_time = READ_ONCE(rx_ring->cached_phctime); 2148 2149 /* Do not report a timestamp if we don't have a cached PHC time */ 2150 if (!cached_time) 2151 return; 2152 2153 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached 2154 * PHC value, rather than accessing the PF. This also allows us to 2155 * simply pass the upper 32bits of nanoseconds directly. Calling 2156 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these 2157 * bits itself. 2158 */ 2159 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); 2160 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); 2161 2162 hwtstamps = skb_hwtstamps(skb); 2163 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2164 hwtstamps->hwtstamp = ns_to_ktime(ts_ns); 2165 } 2166 2167 /** 2168 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins 2169 * @pf: pointer to the PF structure 2170 * @info: PTP clock info structure 2171 * 2172 * Disable the OS access to the SMA pins. Called to clear out the OS 2173 * indications of pin support when we fail to setup the E810-T SMA control 2174 * register. 2175 */ 2176 static void 2177 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 2178 { 2179 struct device *dev = ice_pf_to_dev(pf); 2180 2181 dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); 2182 2183 info->enable = NULL; 2184 info->verify = NULL; 2185 info->n_pins = 0; 2186 info->n_ext_ts = 0; 2187 info->n_per_out = 0; 2188 } 2189 2190 /** 2191 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins 2192 * @pf: pointer to the PF structure 2193 * @info: PTP clock info structure 2194 * 2195 * Finish setting up the SMA pins by allocating pin_config, and setting it up 2196 * according to the current status of the SMA. On failure, disable all of the 2197 * extended SMA pin support. 2198 */ 2199 static void 2200 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 2201 { 2202 struct device *dev = ice_pf_to_dev(pf); 2203 int err; 2204 2205 /* Allocate memory for kernel pins interface */ 2206 info->pin_config = devm_kcalloc(dev, info->n_pins, 2207 sizeof(*info->pin_config), GFP_KERNEL); 2208 if (!info->pin_config) { 2209 ice_ptp_disable_sma_pins_e810t(pf, info); 2210 return; 2211 } 2212 2213 /* Read current SMA status */ 2214 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); 2215 if (err) 2216 ice_ptp_disable_sma_pins_e810t(pf, info); 2217 } 2218 2219 /** 2220 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs 2221 * @pf: pointer to the PF instance 2222 * @info: PTP clock capabilities 2223 */ 2224 static void 2225 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) 2226 { 2227 info->n_per_out = N_PER_OUT_E810; 2228 2229 if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) 2230 info->n_ext_ts = N_EXT_TS_E810; 2231 2232 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 2233 info->n_ext_ts = N_EXT_TS_E810; 2234 info->n_pins = NUM_PTP_PINS_E810T; 2235 info->verify = ice_verify_pin_e810t; 2236 2237 /* Complete setup of the SMA pins */ 2238 ice_ptp_setup_sma_pins_e810t(pf, info); 2239 } 2240 } 2241 2242 /** 2243 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support 2244 * @pf: Board private structure 2245 * @info: PTP info to fill 2246 * 2247 * Assign functions to the PTP capabiltiies structure for E822 devices. 2248 * Functions which operate across all device families should be set directly 2249 * in ice_ptp_set_caps. Only add functions here which are distinct for E822 2250 * devices. 2251 */ 2252 static void 2253 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) 2254 { 2255 #ifdef CONFIG_ICE_HWTS 2256 if (boot_cpu_has(X86_FEATURE_ART) && 2257 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) 2258 info->getcrosststamp = ice_ptp_getcrosststamp_e822; 2259 #endif /* CONFIG_ICE_HWTS */ 2260 } 2261 2262 /** 2263 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support 2264 * @pf: Board private structure 2265 * @info: PTP info to fill 2266 * 2267 * Assign functions to the PTP capabiltiies structure for E810 devices. 2268 * Functions which operate across all device families should be set directly 2269 * in ice_ptp_set_caps. Only add functions here which are distinct for e810 2270 * devices. 2271 */ 2272 static void 2273 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) 2274 { 2275 info->enable = ice_ptp_gpio_enable_e810; 2276 ice_ptp_setup_pins_e810(pf, info); 2277 } 2278 2279 /** 2280 * ice_ptp_set_caps - Set PTP capabilities 2281 * @pf: Board private structure 2282 */ 2283 static void ice_ptp_set_caps(struct ice_pf *pf) 2284 { 2285 struct ptp_clock_info *info = &pf->ptp.info; 2286 struct device *dev = ice_pf_to_dev(pf); 2287 2288 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", 2289 dev_driver_string(dev), dev_name(dev)); 2290 info->owner = THIS_MODULE; 2291 info->max_adj = 999999999; 2292 info->adjtime = ice_ptp_adjtime; 2293 info->adjfine = ice_ptp_adjfine; 2294 info->gettimex64 = ice_ptp_gettimex64; 2295 info->settime64 = ice_ptp_settime64; 2296 2297 if (ice_is_e810(&pf->hw)) 2298 ice_ptp_set_funcs_e810(pf, info); 2299 else 2300 ice_ptp_set_funcs_e822(pf, info); 2301 } 2302 2303 /** 2304 * ice_ptp_create_clock - Create PTP clock device for userspace 2305 * @pf: Board private structure 2306 * 2307 * This function creates a new PTP clock device. It only creates one if we 2308 * don't already have one. Will return error if it can't create one, but success 2309 * if we already have a device. Should be used by ice_ptp_init to create clock 2310 * initially, and prevent global resets from creating new clock devices. 2311 */ 2312 static long ice_ptp_create_clock(struct ice_pf *pf) 2313 { 2314 struct ptp_clock_info *info; 2315 struct ptp_clock *clock; 2316 struct device *dev; 2317 2318 /* No need to create a clock device if we already have one */ 2319 if (pf->ptp.clock) 2320 return 0; 2321 2322 ice_ptp_set_caps(pf); 2323 2324 info = &pf->ptp.info; 2325 dev = ice_pf_to_dev(pf); 2326 2327 /* Attempt to register the clock before enabling the hardware. */ 2328 clock = ptp_clock_register(info, dev); 2329 if (IS_ERR(clock)) 2330 return PTR_ERR(clock); 2331 2332 pf->ptp.clock = clock; 2333 2334 return 0; 2335 } 2336 2337 /** 2338 * ice_ptp_request_ts - Request an available Tx timestamp index 2339 * @tx: the PTP Tx timestamp tracker to request from 2340 * @skb: the SKB to associate with this timestamp request 2341 */ 2342 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 2343 { 2344 u8 idx; 2345 2346 /* Check if this tracker is initialized */ 2347 if (!tx->init || tx->calibrating) 2348 return -1; 2349 2350 spin_lock(&tx->lock); 2351 /* Find and set the first available index */ 2352 idx = find_first_zero_bit(tx->in_use, tx->len); 2353 if (idx < tx->len) { 2354 /* We got a valid index that no other thread could have set. Store 2355 * a reference to the skb and the start time to allow discarding old 2356 * requests. 2357 */ 2358 set_bit(idx, tx->in_use); 2359 tx->tstamps[idx].start = jiffies; 2360 tx->tstamps[idx].skb = skb_get(skb); 2361 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2362 ice_trace(tx_tstamp_request, skb, idx); 2363 } 2364 2365 spin_unlock(&tx->lock); 2366 2367 /* return the appropriate PHY timestamp register index, -1 if no 2368 * indexes were available. 2369 */ 2370 if (idx >= tx->len) 2371 return -1; 2372 else 2373 return idx + tx->quad_offset; 2374 } 2375 2376 /** 2377 * ice_ptp_process_ts - Process the PTP Tx timestamps 2378 * @pf: Board private structure 2379 * 2380 * Returns true if timestamps are processed. 2381 */ 2382 bool ice_ptp_process_ts(struct ice_pf *pf) 2383 { 2384 if (pf->ptp.port.tx.init) 2385 return ice_ptp_tx_tstamp(&pf->ptp.port.tx); 2386 2387 return false; 2388 } 2389 2390 static void ice_ptp_periodic_work(struct kthread_work *work) 2391 { 2392 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); 2393 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 2394 int err; 2395 2396 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2397 return; 2398 2399 err = ice_ptp_update_cached_phctime(pf); 2400 2401 ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx); 2402 2403 /* Run twice a second or reschedule if phc update failed */ 2404 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 2405 msecs_to_jiffies(err ? 10 : 500)); 2406 } 2407 2408 /** 2409 * ice_ptp_reset - Initialize PTP hardware clock support after reset 2410 * @pf: Board private structure 2411 */ 2412 void ice_ptp_reset(struct ice_pf *pf) 2413 { 2414 struct ice_ptp *ptp = &pf->ptp; 2415 struct ice_hw *hw = &pf->hw; 2416 struct timespec64 ts; 2417 int err, itr = 1; 2418 u64 time_diff; 2419 2420 if (test_bit(ICE_PFR_REQ, pf->state)) 2421 goto pfr; 2422 2423 if (!hw->func_caps.ts_func_info.src_tmr_owned) 2424 goto reset_ts; 2425 2426 err = ice_ptp_init_phc(hw); 2427 if (err) 2428 goto err; 2429 2430 /* Acquire the global hardware lock */ 2431 if (!ice_ptp_lock(hw)) { 2432 err = -EBUSY; 2433 goto err; 2434 } 2435 2436 /* Write the increment time value to PHY and LAN */ 2437 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2438 if (err) { 2439 ice_ptp_unlock(hw); 2440 goto err; 2441 } 2442 2443 /* Write the initial Time value to PHY and LAN using the cached PHC 2444 * time before the reset and time difference between stopping and 2445 * starting the clock. 2446 */ 2447 if (ptp->cached_phc_time) { 2448 time_diff = ktime_get_real_ns() - ptp->reset_time; 2449 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); 2450 } else { 2451 ts = ktime_to_timespec64(ktime_get_real()); 2452 } 2453 err = ice_ptp_write_init(pf, &ts); 2454 if (err) { 2455 ice_ptp_unlock(hw); 2456 goto err; 2457 } 2458 2459 /* Release the global hardware lock */ 2460 ice_ptp_unlock(hw); 2461 2462 if (!ice_is_e810(hw)) { 2463 /* Enable quad interrupts */ 2464 err = ice_ptp_tx_ena_intr(pf, true, itr); 2465 if (err) 2466 goto err; 2467 } 2468 2469 reset_ts: 2470 /* Restart the PHY timestamping block */ 2471 ice_ptp_reset_phy_timestamping(pf); 2472 2473 pfr: 2474 /* Init Tx structures */ 2475 if (ice_is_e810(&pf->hw)) { 2476 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); 2477 } else { 2478 kthread_init_delayed_work(&ptp->port.ov_work, 2479 ice_ptp_wait_for_offset_valid); 2480 err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, 2481 ptp->port.port_num); 2482 } 2483 if (err) 2484 goto err; 2485 2486 set_bit(ICE_FLAG_PTP, pf->flags); 2487 2488 /* Start periodic work going */ 2489 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2490 2491 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); 2492 return; 2493 2494 err: 2495 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); 2496 } 2497 2498 /** 2499 * ice_ptp_prepare_for_reset - Prepare PTP for reset 2500 * @pf: Board private structure 2501 */ 2502 void ice_ptp_prepare_for_reset(struct ice_pf *pf) 2503 { 2504 struct ice_ptp *ptp = &pf->ptp; 2505 u8 src_tmr; 2506 2507 clear_bit(ICE_FLAG_PTP, pf->flags); 2508 2509 /* Disable timestamping for both Tx and Rx */ 2510 ice_ptp_cfg_timestamp(pf, false); 2511 2512 kthread_cancel_delayed_work_sync(&ptp->work); 2513 kthread_cancel_work_sync(&ptp->extts_work); 2514 2515 if (test_bit(ICE_PFR_REQ, pf->state)) 2516 return; 2517 2518 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2519 2520 /* Disable periodic outputs */ 2521 ice_ptp_disable_all_clkout(pf); 2522 2523 src_tmr = ice_get_ptp_src_clock_index(&pf->hw); 2524 2525 /* Disable source clock */ 2526 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); 2527 2528 /* Acquire PHC and system timer to restore after reset */ 2529 ptp->reset_time = ktime_get_real_ns(); 2530 } 2531 2532 /** 2533 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device 2534 * @pf: Board private structure 2535 * 2536 * Setup and initialize a PTP clock device that represents the device hardware 2537 * clock. Save the clock index for other functions connected to the same 2538 * hardware resource. 2539 */ 2540 static int ice_ptp_init_owner(struct ice_pf *pf) 2541 { 2542 struct ice_hw *hw = &pf->hw; 2543 struct timespec64 ts; 2544 int err, itr = 1; 2545 2546 err = ice_ptp_init_phc(hw); 2547 if (err) { 2548 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", 2549 err); 2550 return err; 2551 } 2552 2553 /* Acquire the global hardware lock */ 2554 if (!ice_ptp_lock(hw)) { 2555 err = -EBUSY; 2556 goto err_exit; 2557 } 2558 2559 /* Write the increment time value to PHY and LAN */ 2560 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2561 if (err) { 2562 ice_ptp_unlock(hw); 2563 goto err_exit; 2564 } 2565 2566 ts = ktime_to_timespec64(ktime_get_real()); 2567 /* Write the initial Time value to PHY and LAN */ 2568 err = ice_ptp_write_init(pf, &ts); 2569 if (err) { 2570 ice_ptp_unlock(hw); 2571 goto err_exit; 2572 } 2573 2574 /* Release the global hardware lock */ 2575 ice_ptp_unlock(hw); 2576 2577 if (!ice_is_e810(hw)) { 2578 /* Enable quad interrupts */ 2579 err = ice_ptp_tx_ena_intr(pf, true, itr); 2580 if (err) 2581 goto err_exit; 2582 } 2583 2584 /* Ensure we have a clock device */ 2585 err = ice_ptp_create_clock(pf); 2586 if (err) 2587 goto err_clk; 2588 2589 /* Store the PTP clock index for other PFs */ 2590 ice_set_ptp_clock_index(pf); 2591 2592 return 0; 2593 2594 err_clk: 2595 pf->ptp.clock = NULL; 2596 err_exit: 2597 return err; 2598 } 2599 2600 /** 2601 * ice_ptp_init_work - Initialize PTP work threads 2602 * @pf: Board private structure 2603 * @ptp: PF PTP structure 2604 */ 2605 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) 2606 { 2607 struct kthread_worker *kworker; 2608 2609 /* Initialize work functions */ 2610 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); 2611 kthread_init_work(&ptp->extts_work, ice_ptp_extts_work); 2612 2613 /* Allocate a kworker for handling work required for the ports 2614 * connected to the PTP hardware clock. 2615 */ 2616 kworker = kthread_create_worker(0, "ice-ptp-%s", 2617 dev_name(ice_pf_to_dev(pf))); 2618 if (IS_ERR(kworker)) 2619 return PTR_ERR(kworker); 2620 2621 ptp->kworker = kworker; 2622 2623 /* Start periodic work going */ 2624 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2625 2626 return 0; 2627 } 2628 2629 /** 2630 * ice_ptp_init_port - Initialize PTP port structure 2631 * @pf: Board private structure 2632 * @ptp_port: PTP port structure 2633 */ 2634 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) 2635 { 2636 mutex_init(&ptp_port->ps_lock); 2637 2638 if (ice_is_e810(&pf->hw)) 2639 return ice_ptp_init_tx_e810(pf, &ptp_port->tx); 2640 2641 kthread_init_delayed_work(&ptp_port->ov_work, 2642 ice_ptp_wait_for_offset_valid); 2643 return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); 2644 } 2645 2646 /** 2647 * ice_ptp_init - Initialize PTP hardware clock support 2648 * @pf: Board private structure 2649 * 2650 * Set up the device for interacting with the PTP hardware clock for all 2651 * functions, both the function that owns the clock hardware, and the 2652 * functions connected to the clock hardware. 2653 * 2654 * The clock owner will allocate and register a ptp_clock with the 2655 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work 2656 * items used for asynchronous work such as Tx timestamps and periodic work. 2657 */ 2658 void ice_ptp_init(struct ice_pf *pf) 2659 { 2660 struct ice_ptp *ptp = &pf->ptp; 2661 struct ice_hw *hw = &pf->hw; 2662 int err; 2663 2664 /* If this function owns the clock hardware, it must allocate and 2665 * configure the PTP clock device to represent it. 2666 */ 2667 if (hw->func_caps.ts_func_info.src_tmr_owned) { 2668 err = ice_ptp_init_owner(pf); 2669 if (err) 2670 goto err; 2671 } 2672 2673 ptp->port.port_num = hw->pf_id; 2674 err = ice_ptp_init_port(pf, &ptp->port); 2675 if (err) 2676 goto err; 2677 2678 /* Start the PHY timestamping block */ 2679 ice_ptp_reset_phy_timestamping(pf); 2680 2681 set_bit(ICE_FLAG_PTP, pf->flags); 2682 err = ice_ptp_init_work(pf, ptp); 2683 if (err) 2684 goto err; 2685 2686 dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); 2687 return; 2688 2689 err: 2690 /* If we registered a PTP clock, release it */ 2691 if (pf->ptp.clock) { 2692 ptp_clock_unregister(ptp->clock); 2693 pf->ptp.clock = NULL; 2694 } 2695 clear_bit(ICE_FLAG_PTP, pf->flags); 2696 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); 2697 } 2698 2699 /** 2700 * ice_ptp_release - Disable the driver/HW support and unregister the clock 2701 * @pf: Board private structure 2702 * 2703 * This function handles the cleanup work required from the initialization by 2704 * clearing out the important information and unregistering the clock 2705 */ 2706 void ice_ptp_release(struct ice_pf *pf) 2707 { 2708 if (!test_bit(ICE_FLAG_PTP, pf->flags)) 2709 return; 2710 2711 /* Disable timestamping for both Tx and Rx */ 2712 ice_ptp_cfg_timestamp(pf, false); 2713 2714 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2715 2716 clear_bit(ICE_FLAG_PTP, pf->flags); 2717 2718 kthread_cancel_delayed_work_sync(&pf->ptp.work); 2719 2720 ice_ptp_port_phy_stop(&pf->ptp.port); 2721 mutex_destroy(&pf->ptp.port.ps_lock); 2722 if (pf->ptp.kworker) { 2723 kthread_destroy_worker(pf->ptp.kworker); 2724 pf->ptp.kworker = NULL; 2725 } 2726 2727 if (!pf->ptp.clock) 2728 return; 2729 2730 /* Disable periodic outputs */ 2731 ice_ptp_disable_all_clkout(pf); 2732 2733 ice_clear_ptp_clock_index(pf); 2734 ptp_clock_unregister(pf->ptp.clock); 2735 pf->ptp.clock = NULL; 2736 2737 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); 2738 } 2739