1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 
7 #define E810_OUT_PROP_DELAY_NS 1
8 
9 /**
10  * ice_set_tx_tstamp - Enable or disable Tx timestamping
11  * @pf: The PF pointer to search in
12  * @on: bool value for whether timestamps are enabled or disabled
13  */
14 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
15 {
16 	struct ice_vsi *vsi;
17 	u32 val;
18 	u16 i;
19 
20 	vsi = ice_get_main_vsi(pf);
21 	if (!vsi)
22 		return;
23 
24 	/* Set the timestamp enable flag for all the Tx rings */
25 	ice_for_each_txq(vsi, i) {
26 		if (!vsi->tx_rings[i])
27 			continue;
28 		vsi->tx_rings[i]->ptp_tx = on;
29 	}
30 
31 	/* Configure the Tx timestamp interrupt */
32 	val = rd32(&pf->hw, PFINT_OICR_ENA);
33 	if (on)
34 		val |= PFINT_OICR_TSYN_TX_M;
35 	else
36 		val &= ~PFINT_OICR_TSYN_TX_M;
37 	wr32(&pf->hw, PFINT_OICR_ENA, val);
38 }
39 
40 /**
41  * ice_set_rx_tstamp - Enable or disable Rx timestamping
42  * @pf: The PF pointer to search in
43  * @on: bool value for whether timestamps are enabled or disabled
44  */
45 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
46 {
47 	struct ice_vsi *vsi;
48 	u16 i;
49 
50 	vsi = ice_get_main_vsi(pf);
51 	if (!vsi)
52 		return;
53 
54 	/* Set the timestamp flag for all the Rx rings */
55 	ice_for_each_rxq(vsi, i) {
56 		if (!vsi->rx_rings[i])
57 			continue;
58 		vsi->rx_rings[i]->ptp_rx = on;
59 	}
60 }
61 
62 /**
63  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
64  * @pf: Board private structure
65  * @ena: bool value to enable or disable time stamp
66  *
67  * This function will configure timestamping during PTP initialization
68  * and deinitialization
69  */
70 static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
71 {
72 	ice_set_tx_tstamp(pf, ena);
73 	ice_set_rx_tstamp(pf, ena);
74 
75 	if (ena) {
76 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
77 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
78 	} else {
79 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
80 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
81 	}
82 }
83 
84 /**
85  * ice_get_ptp_clock_index - Get the PTP clock index
86  * @pf: the PF pointer
87  *
88  * Determine the clock index of the PTP clock associated with this device. If
89  * this is the PF controlling the clock, just use the local access to the
90  * clock device pointer.
91  *
92  * Otherwise, read from the driver shared parameters to determine the clock
93  * index value.
94  *
95  * Returns: the index of the PTP clock associated with this device, or -1 if
96  * there is no associated clock.
97  */
98 int ice_get_ptp_clock_index(struct ice_pf *pf)
99 {
100 	struct device *dev = ice_pf_to_dev(pf);
101 	enum ice_aqc_driver_params param_idx;
102 	struct ice_hw *hw = &pf->hw;
103 	u8 tmr_idx;
104 	u32 value;
105 	int err;
106 
107 	/* Use the ptp_clock structure if we're the main PF */
108 	if (pf->ptp.clock)
109 		return ptp_clock_index(pf->ptp.clock);
110 
111 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
112 	if (!tmr_idx)
113 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
114 	else
115 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
116 
117 	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
118 	if (err) {
119 		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
120 			err, ice_aq_str(hw->adminq.sq_last_status));
121 		return -1;
122 	}
123 
124 	/* The PTP clock index is an integer, and will be between 0 and
125 	 * INT_MAX. The highest bit of the driver shared parameter is used to
126 	 * indicate whether or not the currently stored clock index is valid.
127 	 */
128 	if (!(value & PTP_SHARED_CLK_IDX_VALID))
129 		return -1;
130 
131 	return value & ~PTP_SHARED_CLK_IDX_VALID;
132 }
133 
134 /**
135  * ice_set_ptp_clock_index - Set the PTP clock index
136  * @pf: the PF pointer
137  *
138  * Set the PTP clock index for this device into the shared driver parameters,
139  * so that other PFs associated with this device can read it.
140  *
141  * If the PF is unable to store the clock index, it will log an error, but
142  * will continue operating PTP.
143  */
144 static void ice_set_ptp_clock_index(struct ice_pf *pf)
145 {
146 	struct device *dev = ice_pf_to_dev(pf);
147 	enum ice_aqc_driver_params param_idx;
148 	struct ice_hw *hw = &pf->hw;
149 	u8 tmr_idx;
150 	u32 value;
151 	int err;
152 
153 	if (!pf->ptp.clock)
154 		return;
155 
156 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
157 	if (!tmr_idx)
158 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
159 	else
160 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
161 
162 	value = (u32)ptp_clock_index(pf->ptp.clock);
163 	if (value > INT_MAX) {
164 		dev_err(dev, "PTP Clock index is too large to store\n");
165 		return;
166 	}
167 	value |= PTP_SHARED_CLK_IDX_VALID;
168 
169 	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
170 	if (err) {
171 		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
172 			err, ice_aq_str(hw->adminq.sq_last_status));
173 	}
174 }
175 
176 /**
177  * ice_clear_ptp_clock_index - Clear the PTP clock index
178  * @pf: the PF pointer
179  *
180  * Clear the PTP clock index for this device. Must be called when
181  * unregistering the PTP clock, in order to ensure other PFs stop reporting
182  * a clock object that no longer exists.
183  */
184 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
185 {
186 	struct device *dev = ice_pf_to_dev(pf);
187 	enum ice_aqc_driver_params param_idx;
188 	struct ice_hw *hw = &pf->hw;
189 	u8 tmr_idx;
190 	int err;
191 
192 	/* Do not clear the index if we don't own the timer */
193 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
194 		return;
195 
196 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
197 	if (!tmr_idx)
198 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
199 	else
200 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
201 
202 	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
203 	if (err) {
204 		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
205 			err, ice_aq_str(hw->adminq.sq_last_status));
206 	}
207 }
208 
209 /**
210  * ice_ptp_read_src_clk_reg - Read the source clock register
211  * @pf: Board private structure
212  * @sts: Optional parameter for holding a pair of system timestamps from
213  *       the system clock. Will be ignored if NULL is given.
214  */
215 static u64
216 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
217 {
218 	struct ice_hw *hw = &pf->hw;
219 	u32 hi, lo, lo2;
220 	u8 tmr_idx;
221 
222 	tmr_idx = ice_get_ptp_src_clock_index(hw);
223 	/* Read the system timestamp pre PHC read */
224 	ptp_read_system_prets(sts);
225 
226 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
227 
228 	/* Read the system timestamp post PHC read */
229 	ptp_read_system_postts(sts);
230 
231 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
232 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
233 
234 	if (lo2 < lo) {
235 		/* if TIME_L rolled over read TIME_L again and update
236 		 * system timestamps
237 		 */
238 		ptp_read_system_prets(sts);
239 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
240 		ptp_read_system_postts(sts);
241 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
242 	}
243 
244 	return ((u64)hi << 32) | lo;
245 }
246 
247 /**
248  * ice_ptp_update_cached_phctime - Update the cached PHC time values
249  * @pf: Board specific private structure
250  *
251  * This function updates the system time values which are cached in the PF
252  * structure and the Rx rings.
253  *
254  * This function must be called periodically to ensure that the cached value
255  * is never more than 2 seconds old. It must also be called whenever the PHC
256  * time has been changed.
257  */
258 static void ice_ptp_update_cached_phctime(struct ice_pf *pf)
259 {
260 	u64 systime;
261 	int i;
262 
263 	/* Read the current PHC time */
264 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
265 
266 	/* Update the cached PHC time stored in the PF structure */
267 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
268 
269 	ice_for_each_vsi(pf, i) {
270 		struct ice_vsi *vsi = pf->vsi[i];
271 		int j;
272 
273 		if (!vsi)
274 			continue;
275 
276 		if (vsi->type != ICE_VSI_PF)
277 			continue;
278 
279 		ice_for_each_rxq(vsi, j) {
280 			if (!vsi->rx_rings[j])
281 				continue;
282 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
283 		}
284 	}
285 }
286 
287 /**
288  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
289  * @cached_phc_time: recently cached copy of PHC time
290  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
291  *
292  * Hardware captures timestamps which contain only 32 bits of nominal
293  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
294  * Note that the captured timestamp values may be 40 bits, but the lower
295  * 8 bits are sub-nanoseconds and generally discarded.
296  *
297  * Extend the 32bit nanosecond timestamp using the following algorithm and
298  * assumptions:
299  *
300  * 1) have a recently cached copy of the PHC time
301  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
302  *    seconds) before or after the PHC time was captured.
303  * 3) calculate the delta between the cached time and the timestamp
304  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
305  *    captured after the PHC time. In this case, the full timestamp is just
306  *    the cached PHC time plus the delta.
307  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
308  *    timestamp was captured *before* the PHC time, i.e. because the PHC
309  *    cache was updated after the timestamp was captured by hardware. In this
310  *    case, the full timestamp is the cached time minus the inverse delta.
311  *
312  * This algorithm works even if the PHC time was updated after a Tx timestamp
313  * was requested, but before the Tx timestamp event was reported from
314  * hardware.
315  *
316  * This calculation primarily relies on keeping the cached PHC time up to
317  * date. If the timestamp was captured more than 2^31 nanoseconds after the
318  * PHC time, it is possible that the lower 32bits of PHC time have
319  * overflowed more than once, and we might generate an incorrect timestamp.
320  *
321  * This is prevented by (a) periodically updating the cached PHC time once
322  * a second, and (b) discarding any Tx timestamp packet if it has waited for
323  * a timestamp for more than one second.
324  */
325 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
326 {
327 	u32 delta, phc_time_lo;
328 	u64 ns;
329 
330 	/* Extract the lower 32 bits of the PHC time */
331 	phc_time_lo = (u32)cached_phc_time;
332 
333 	/* Calculate the delta between the lower 32bits of the cached PHC
334 	 * time and the in_tstamp value
335 	 */
336 	delta = (in_tstamp - phc_time_lo);
337 
338 	/* Do not assume that the in_tstamp is always more recent than the
339 	 * cached PHC time. If the delta is large, it indicates that the
340 	 * in_tstamp was taken in the past, and should be converted
341 	 * forward.
342 	 */
343 	if (delta > (U32_MAX / 2)) {
344 		/* reverse the delta calculation here */
345 		delta = (phc_time_lo - in_tstamp);
346 		ns = cached_phc_time - delta;
347 	} else {
348 		ns = cached_phc_time + delta;
349 	}
350 
351 	return ns;
352 }
353 
354 /**
355  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
356  * @pf: Board private structure
357  * @in_tstamp: Ingress/egress 40b timestamp value
358  *
359  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
360  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
361  *
362  *  *--------------------------------------------------------------*
363  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
364  *  *--------------------------------------------------------------*
365  *
366  * The low bit is an indicator of whether the timestamp is valid. The next
367  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
368  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
369  *
370  * It is assumed that the caller verifies the timestamp is valid prior to
371  * calling this function.
372  *
373  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
374  * time stored in the device private PTP structure as the basis for timestamp
375  * extension.
376  *
377  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
378  * algorithm.
379  */
380 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
381 {
382 	const u64 mask = GENMASK_ULL(31, 0);
383 
384 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
385 				     (in_tstamp >> 8) & mask);
386 }
387 
388 /**
389  * ice_ptp_read_time - Read the time from the device
390  * @pf: Board private structure
391  * @ts: timespec structure to hold the current time value
392  * @sts: Optional parameter for holding a pair of system timestamps from
393  *       the system clock. Will be ignored if NULL is given.
394  *
395  * This function reads the source clock registers and stores them in a timespec.
396  * However, since the registers are 64 bits of nanoseconds, we must convert the
397  * result to a timespec before we can return.
398  */
399 static void
400 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
401 		  struct ptp_system_timestamp *sts)
402 {
403 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
404 
405 	*ts = ns_to_timespec64(time_ns);
406 }
407 
408 /**
409  * ice_ptp_write_init - Set PHC time to provided value
410  * @pf: Board private structure
411  * @ts: timespec structure that holds the new time value
412  *
413  * Set the PHC time to the specified time provided in the timespec.
414  */
415 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
416 {
417 	u64 ns = timespec64_to_ns(ts);
418 	struct ice_hw *hw = &pf->hw;
419 
420 	return ice_ptp_init_time(hw, ns);
421 }
422 
423 /**
424  * ice_ptp_write_adj - Adjust PHC clock time atomically
425  * @pf: Board private structure
426  * @adj: Adjustment in nanoseconds
427  *
428  * Perform an atomic adjustment of the PHC time by the specified number of
429  * nanoseconds.
430  */
431 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
432 {
433 	struct ice_hw *hw = &pf->hw;
434 
435 	return ice_ptp_adj_clock(hw, adj);
436 }
437 
438 /**
439  * ice_ptp_adjfine - Adjust clock increment rate
440  * @info: the driver's PTP info structure
441  * @scaled_ppm: Parts per million with 16-bit fractional field
442  *
443  * Adjust the frequency of the clock by the indicated scaled ppm from the
444  * base frequency.
445  */
446 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
447 {
448 	struct ice_pf *pf = ptp_info_to_pf(info);
449 	u64 freq, divisor = 1000000ULL;
450 	struct ice_hw *hw = &pf->hw;
451 	s64 incval, diff;
452 	int neg_adj = 0;
453 	int err;
454 
455 	incval = ICE_PTP_NOMINAL_INCVAL_E810;
456 
457 	if (scaled_ppm < 0) {
458 		neg_adj = 1;
459 		scaled_ppm = -scaled_ppm;
460 	}
461 
462 	while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) {
463 		/* handle overflow by scaling down the scaled_ppm and
464 		 * the divisor, losing some precision
465 		 */
466 		scaled_ppm >>= 2;
467 		divisor >>= 2;
468 	}
469 
470 	freq = (incval * (u64)scaled_ppm) >> 16;
471 	diff = div_u64(freq, divisor);
472 
473 	if (neg_adj)
474 		incval -= diff;
475 	else
476 		incval += diff;
477 
478 	err = ice_ptp_write_incval_locked(hw, incval);
479 	if (err) {
480 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
481 			err);
482 		return -EIO;
483 	}
484 
485 	return 0;
486 }
487 
488 /**
489  * ice_ptp_extts_work - Workqueue task function
490  * @work: external timestamp work structure
491  *
492  * Service for PTP external clock event
493  */
494 static void ice_ptp_extts_work(struct kthread_work *work)
495 {
496 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
497 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
498 	struct ptp_clock_event event;
499 	struct ice_hw *hw = &pf->hw;
500 	u8 chan, tmr_idx;
501 	u32 hi, lo;
502 
503 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
504 	/* Event time is captured by one of the two matched registers
505 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
506 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
507 	 * Event is defined in GLTSYN_EVNT_0 register
508 	 */
509 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
510 		/* Check if channel is enabled */
511 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
512 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
513 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
514 			event.timestamp = (((u64)hi) << 32) | lo;
515 			event.type = PTP_CLOCK_EXTTS;
516 			event.index = chan;
517 
518 			/* Fire event */
519 			ptp_clock_event(pf->ptp.clock, &event);
520 			pf->ptp.ext_ts_irq &= ~(1 << chan);
521 		}
522 	}
523 }
524 
525 /**
526  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
527  * @pf: Board private structure
528  * @ena: true to enable; false to disable
529  * @chan: GPIO channel (0-3)
530  * @gpio_pin: GPIO pin
531  * @extts_flags: request flags from the ptp_extts_request.flags
532  */
533 static int
534 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
535 		  unsigned int extts_flags)
536 {
537 	u32 func, aux_reg, gpio_reg, irq_reg;
538 	struct ice_hw *hw = &pf->hw;
539 	u8 tmr_idx;
540 
541 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
542 		return -EINVAL;
543 
544 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
545 
546 	irq_reg = rd32(hw, PFINT_OICR_ENA);
547 
548 	if (ena) {
549 		/* Enable the interrupt */
550 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
551 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
552 
553 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
554 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
555 
556 		/* set event level to requested edge */
557 		if (extts_flags & PTP_FALLING_EDGE)
558 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
559 		if (extts_flags & PTP_RISING_EDGE)
560 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
561 
562 		/* Write GPIO CTL reg.
563 		 * 0x1 is input sampled by EVENT register(channel)
564 		 * + num_in_channels * tmr_idx
565 		 */
566 		func = 1 + chan + (tmr_idx * 3);
567 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
568 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
569 		pf->ptp.ext_ts_chan |= (1 << chan);
570 	} else {
571 		/* clear the values we set to reset defaults */
572 		aux_reg = 0;
573 		gpio_reg = 0;
574 		pf->ptp.ext_ts_chan &= ~(1 << chan);
575 		if (!pf->ptp.ext_ts_chan)
576 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
577 	}
578 
579 	wr32(hw, PFINT_OICR_ENA, irq_reg);
580 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
581 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
582 
583 	return 0;
584 }
585 
586 /**
587  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
588  * @pf: Board private structure
589  * @chan: GPIO channel (0-3)
590  * @config: desired periodic clk configuration. NULL will disable channel
591  * @store: If set to true the values will be stored
592  *
593  * Configure the internal clock generator modules to generate the clock wave of
594  * specified period.
595  */
596 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
597 			      struct ice_perout_channel *config, bool store)
598 {
599 	u64 current_time, period, start_time, phase;
600 	struct ice_hw *hw = &pf->hw;
601 	u32 func, val, gpio_pin;
602 	u8 tmr_idx;
603 
604 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
605 
606 	/* 0. Reset mode & out_en in AUX_OUT */
607 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
608 
609 	/* If we're disabling the output, clear out CLKO and TGT and keep
610 	 * output level low
611 	 */
612 	if (!config || !config->ena) {
613 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
614 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
615 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
616 
617 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
618 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
619 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
620 
621 		/* Store the value if requested */
622 		if (store)
623 			memset(&pf->ptp.perout_channels[chan], 0,
624 			       sizeof(struct ice_perout_channel));
625 
626 		return 0;
627 	}
628 	period = config->period;
629 	start_time = config->start_time;
630 	div64_u64_rem(start_time, period, &phase);
631 	gpio_pin = config->gpio_pin;
632 
633 	/* 1. Write clkout with half of required period value */
634 	if (period & 0x1) {
635 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
636 		goto err;
637 	}
638 
639 	period >>= 1;
640 
641 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
642 	 */
643 #define MIN_PULSE 3
644 	if (period <= MIN_PULSE || period > U32_MAX) {
645 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
646 			MIN_PULSE * 2);
647 		goto err;
648 	}
649 
650 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
651 
652 	/* Allow time for programming before start_time is hit */
653 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
654 
655 	/* if start time is in the past start the timer at the nearest second
656 	 * maintaining phase
657 	 */
658 	if (start_time < current_time)
659 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
660 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
661 
662 	start_time -= E810_OUT_PROP_DELAY_NS;
663 
664 	/* 2. Write TARGET time */
665 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
666 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
667 
668 	/* 3. Write AUX_OUT register */
669 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
670 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
671 
672 	/* 4. write GPIO CTL reg */
673 	func = 8 + chan + (tmr_idx * 4);
674 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
675 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
676 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
677 
678 	/* Store the value if requested */
679 	if (store) {
680 		memcpy(&pf->ptp.perout_channels[chan], config,
681 		       sizeof(struct ice_perout_channel));
682 		pf->ptp.perout_channels[chan].start_time = phase;
683 	}
684 
685 	return 0;
686 err:
687 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
688 	return -EFAULT;
689 }
690 
691 /**
692  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
693  * @pf: pointer to the PF structure
694  *
695  * Disable all currently configured clock outputs. This is necessary before
696  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
697  * re-enable the clocks again.
698  */
699 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
700 {
701 	uint i;
702 
703 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
704 		if (pf->ptp.perout_channels[i].ena)
705 			ice_ptp_cfg_clkout(pf, i, NULL, false);
706 }
707 
708 /**
709  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
710  * @pf: pointer to the PF structure
711  *
712  * Enable all currently configured clock outputs. Use this after
713  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
714  * their configuration.
715  */
716 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
717 {
718 	uint i;
719 
720 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
721 		if (pf->ptp.perout_channels[i].ena)
722 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
723 					   false);
724 }
725 
726 /**
727  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
728  * @info: the driver's PTP info structure
729  * @rq: The requested feature to change
730  * @on: Enable/disable flag
731  */
732 static int
733 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
734 			 struct ptp_clock_request *rq, int on)
735 {
736 	struct ice_pf *pf = ptp_info_to_pf(info);
737 	struct ice_perout_channel clk_cfg = {0};
738 	unsigned int chan;
739 	u32 gpio_pin;
740 	int err;
741 
742 	switch (rq->type) {
743 	case PTP_CLK_REQ_PEROUT:
744 		chan = rq->perout.index;
745 		if (chan == PPS_CLK_GEN_CHAN)
746 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
747 		else
748 			clk_cfg.gpio_pin = chan;
749 
750 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
751 				   rq->perout.period.nsec);
752 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
753 				       rq->perout.start.nsec);
754 		clk_cfg.ena = !!on;
755 
756 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
757 		break;
758 	case PTP_CLK_REQ_EXTTS:
759 		chan = rq->extts.index;
760 		gpio_pin = chan;
761 
762 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
763 					rq->extts.flags);
764 		break;
765 	default:
766 		return -EOPNOTSUPP;
767 	}
768 
769 	return err;
770 }
771 
772 /**
773  * ice_ptp_gettimex64 - Get the time of the clock
774  * @info: the driver's PTP info structure
775  * @ts: timespec64 structure to hold the current time value
776  * @sts: Optional parameter for holding a pair of system timestamps from
777  *       the system clock. Will be ignored if NULL is given.
778  *
779  * Read the device clock and return the correct value on ns, after converting it
780  * into a timespec struct.
781  */
782 static int
783 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
784 		   struct ptp_system_timestamp *sts)
785 {
786 	struct ice_pf *pf = ptp_info_to_pf(info);
787 	struct ice_hw *hw = &pf->hw;
788 
789 	if (!ice_ptp_lock(hw)) {
790 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
791 		return -EBUSY;
792 	}
793 
794 	ice_ptp_read_time(pf, ts, sts);
795 	ice_ptp_unlock(hw);
796 
797 	return 0;
798 }
799 
800 /**
801  * ice_ptp_settime64 - Set the time of the clock
802  * @info: the driver's PTP info structure
803  * @ts: timespec64 structure that holds the new time value
804  *
805  * Set the device clock to the user input value. The conversion from timespec
806  * to ns happens in the write function.
807  */
808 static int
809 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
810 {
811 	struct ice_pf *pf = ptp_info_to_pf(info);
812 	struct timespec64 ts64 = *ts;
813 	struct ice_hw *hw = &pf->hw;
814 	int err;
815 
816 	if (!ice_ptp_lock(hw)) {
817 		err = -EBUSY;
818 		goto exit;
819 	}
820 
821 	/* Disable periodic outputs */
822 	ice_ptp_disable_all_clkout(pf);
823 
824 	err = ice_ptp_write_init(pf, &ts64);
825 	ice_ptp_unlock(hw);
826 
827 	if (!err)
828 		ice_ptp_update_cached_phctime(pf);
829 
830 	/* Reenable periodic outputs */
831 	ice_ptp_enable_all_clkout(pf);
832 exit:
833 	if (err) {
834 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
835 		return err;
836 	}
837 
838 	return 0;
839 }
840 
841 /**
842  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
843  * @info: the driver's PTP info structure
844  * @delta: Offset in nanoseconds to adjust the time by
845  */
846 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
847 {
848 	struct timespec64 now, then;
849 
850 	then = ns_to_timespec64(delta);
851 	ice_ptp_gettimex64(info, &now, NULL);
852 	now = timespec64_add(now, then);
853 
854 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
855 }
856 
857 /**
858  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
859  * @info: the driver's PTP info structure
860  * @delta: Offset in nanoseconds to adjust the time by
861  */
862 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
863 {
864 	struct ice_pf *pf = ptp_info_to_pf(info);
865 	struct ice_hw *hw = &pf->hw;
866 	struct device *dev;
867 	int err;
868 
869 	dev = ice_pf_to_dev(pf);
870 
871 	/* Hardware only supports atomic adjustments using signed 32-bit
872 	 * integers. For any adjustment outside this range, perform
873 	 * a non-atomic get->adjust->set flow.
874 	 */
875 	if (delta > S32_MAX || delta < S32_MIN) {
876 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
877 		return ice_ptp_adjtime_nonatomic(info, delta);
878 	}
879 
880 	if (!ice_ptp_lock(hw)) {
881 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
882 		return -EBUSY;
883 	}
884 
885 	/* Disable periodic outputs */
886 	ice_ptp_disable_all_clkout(pf);
887 
888 	err = ice_ptp_write_adj(pf, delta);
889 
890 	/* Reenable periodic outputs */
891 	ice_ptp_enable_all_clkout(pf);
892 
893 	ice_ptp_unlock(hw);
894 
895 	if (err) {
896 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
897 		return err;
898 	}
899 
900 	ice_ptp_update_cached_phctime(pf);
901 
902 	return 0;
903 }
904 
905 /**
906  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
907  * @pf: Board private structure
908  * @ifr: ioctl data
909  *
910  * Copy the timestamping config to user buffer
911  */
912 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
913 {
914 	struct hwtstamp_config *config;
915 
916 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
917 		return -EIO;
918 
919 	config = &pf->ptp.tstamp_config;
920 
921 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
922 		-EFAULT : 0;
923 }
924 
925 /**
926  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
927  * @pf: Board private structure
928  * @config: hwtstamp settings requested or saved
929  */
930 static int
931 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
932 {
933 	/* Reserved for future extensions. */
934 	if (config->flags)
935 		return -EINVAL;
936 
937 	switch (config->tx_type) {
938 	case HWTSTAMP_TX_OFF:
939 		ice_set_tx_tstamp(pf, false);
940 		break;
941 	case HWTSTAMP_TX_ON:
942 		ice_set_tx_tstamp(pf, true);
943 		break;
944 	default:
945 		return -ERANGE;
946 	}
947 
948 	switch (config->rx_filter) {
949 	case HWTSTAMP_FILTER_NONE:
950 		ice_set_rx_tstamp(pf, false);
951 		break;
952 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
953 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
954 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
955 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
956 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
957 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
958 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
959 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
960 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
961 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
962 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
963 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
964 	case HWTSTAMP_FILTER_NTP_ALL:
965 	case HWTSTAMP_FILTER_ALL:
966 		config->rx_filter = HWTSTAMP_FILTER_ALL;
967 		ice_set_rx_tstamp(pf, true);
968 		break;
969 	default:
970 		return -ERANGE;
971 	}
972 
973 	return 0;
974 }
975 
976 /**
977  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
978  * @pf: Board private structure
979  * @ifr: ioctl data
980  *
981  * Get the user config and store it
982  */
983 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
984 {
985 	struct hwtstamp_config config;
986 	int err;
987 
988 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
989 		return -EAGAIN;
990 
991 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
992 		return -EFAULT;
993 
994 	err = ice_ptp_set_timestamp_mode(pf, &config);
995 	if (err)
996 		return err;
997 
998 	/* Save these settings for future reference */
999 	pf->ptp.tstamp_config = config;
1000 
1001 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1002 		-EFAULT : 0;
1003 }
1004 
1005 /**
1006  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
1007  * @rx_ring: Ring to get the VSI info
1008  * @rx_desc: Receive descriptor
1009  * @skb: Particular skb to send timestamp with
1010  *
1011  * The driver receives a notification in the receive descriptor with timestamp.
1012  * The timestamp is in ns, so we must convert the result first.
1013  */
1014 void
1015 ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring,
1016 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
1017 {
1018 	u32 ts_high;
1019 	u64 ts_ns;
1020 
1021 	/* Populate timesync data into skb */
1022 	if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
1023 		struct skb_shared_hwtstamps *hwtstamps;
1024 
1025 		/* Use ice_ptp_extend_32b_ts directly, using the ring-specific
1026 		 * cached PHC value, rather than accessing the PF. This also
1027 		 * allows us to simply pass the upper 32bits of nanoseconds
1028 		 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
1029 		 * it would just discard these bits itself.
1030 		 */
1031 		ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
1032 		ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
1033 
1034 		hwtstamps = skb_hwtstamps(skb);
1035 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1036 		hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
1037 	}
1038 }
1039 
1040 /**
1041  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
1042  * @info: PTP clock capabilities
1043  */
1044 static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info)
1045 {
1046 	info->n_per_out = E810_N_PER_OUT;
1047 	info->n_ext_ts = E810_N_EXT_TS;
1048 }
1049 
1050 /**
1051  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
1052  * @pf: Board private structure
1053  * @info: PTP info to fill
1054  *
1055  * Assign functions to the PTP capabiltiies structure for E810 devices.
1056  * Functions which operate across all device families should be set directly
1057  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
1058  * devices.
1059  */
1060 static void
1061 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1062 {
1063 	info->enable = ice_ptp_gpio_enable_e810;
1064 
1065 	ice_ptp_setup_pins_e810(info);
1066 }
1067 
1068 /**
1069  * ice_ptp_set_caps - Set PTP capabilities
1070  * @pf: Board private structure
1071  */
1072 static void ice_ptp_set_caps(struct ice_pf *pf)
1073 {
1074 	struct ptp_clock_info *info = &pf->ptp.info;
1075 	struct device *dev = ice_pf_to_dev(pf);
1076 
1077 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
1078 		 dev_driver_string(dev), dev_name(dev));
1079 	info->owner = THIS_MODULE;
1080 	info->max_adj = 999999999;
1081 	info->adjtime = ice_ptp_adjtime;
1082 	info->adjfine = ice_ptp_adjfine;
1083 	info->gettimex64 = ice_ptp_gettimex64;
1084 	info->settime64 = ice_ptp_settime64;
1085 
1086 	ice_ptp_set_funcs_e810(pf, info);
1087 }
1088 
1089 /**
1090  * ice_ptp_create_clock - Create PTP clock device for userspace
1091  * @pf: Board private structure
1092  *
1093  * This function creates a new PTP clock device. It only creates one if we
1094  * don't already have one. Will return error if it can't create one, but success
1095  * if we already have a device. Should be used by ice_ptp_init to create clock
1096  * initially, and prevent global resets from creating new clock devices.
1097  */
1098 static long ice_ptp_create_clock(struct ice_pf *pf)
1099 {
1100 	struct ptp_clock_info *info;
1101 	struct ptp_clock *clock;
1102 	struct device *dev;
1103 
1104 	/* No need to create a clock device if we already have one */
1105 	if (pf->ptp.clock)
1106 		return 0;
1107 
1108 	ice_ptp_set_caps(pf);
1109 
1110 	info = &pf->ptp.info;
1111 	dev = ice_pf_to_dev(pf);
1112 
1113 	/* Attempt to register the clock before enabling the hardware. */
1114 	clock = ptp_clock_register(info, dev);
1115 	if (IS_ERR(clock))
1116 		return PTR_ERR(clock);
1117 
1118 	pf->ptp.clock = clock;
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
1125  * @work: pointer to the kthread_work struct
1126  *
1127  * Process timestamps captured by the PHY associated with this port. To do
1128  * this, loop over each index with a waiting skb.
1129  *
1130  * If a given index has a valid timestamp, perform the following steps:
1131  *
1132  * 1) copy the timestamp out of the PHY register
1133  * 4) clear the timestamp valid bit in the PHY register
1134  * 5) unlock the index by clearing the associated in_use bit.
1135  * 2) extend the 40b timestamp value to get a 64bit timestamp
1136  * 3) send that timestamp to the stack
1137  *
1138  * After looping, if we still have waiting SKBs, then re-queue the work. This
1139  * may cause us effectively poll even when not strictly necessary. We do this
1140  * because it's possible a new timestamp was requested around the same time as
1141  * the interrupt. In some cases hardware might not interrupt us again when the
1142  * timestamp is captured.
1143  *
1144  * Note that we only take the tracking lock when clearing the bit and when
1145  * checking if we need to re-queue this task. The only place where bits can be
1146  * set is the hard xmit routine where an SKB has a request flag set. The only
1147  * places where we clear bits are this work function, or the periodic cleanup
1148  * thread. If the cleanup thread clears a bit we're processing we catch it
1149  * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
1150  * starts a new timestamp, we might not begin processing it right away but we
1151  * will notice it at the end when we re-queue the work item. If a Tx thread
1152  * starts a new timestamp just after this function exits without re-queuing,
1153  * the interrupt when the timestamp finishes should trigger. Avoiding holding
1154  * the lock for the entire function is important in order to ensure that Tx
1155  * threads do not get blocked while waiting for the lock.
1156  */
1157 static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
1158 {
1159 	struct ice_ptp_port *ptp_port;
1160 	struct ice_ptp_tx *tx;
1161 	struct ice_pf *pf;
1162 	struct ice_hw *hw;
1163 	u8 idx;
1164 
1165 	tx = container_of(work, struct ice_ptp_tx, work);
1166 	if (!tx->init)
1167 		return;
1168 
1169 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
1170 	pf = ptp_port_to_pf(ptp_port);
1171 	hw = &pf->hw;
1172 
1173 	for_each_set_bit(idx, tx->in_use, tx->len) {
1174 		struct skb_shared_hwtstamps shhwtstamps = {};
1175 		u8 phy_idx = idx + tx->quad_offset;
1176 		u64 raw_tstamp, tstamp;
1177 		struct sk_buff *skb;
1178 		int err;
1179 
1180 		err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
1181 					  &raw_tstamp);
1182 		if (err)
1183 			continue;
1184 
1185 		/* Check if the timestamp is valid */
1186 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
1187 			continue;
1188 
1189 		/* clear the timestamp register, so that it won't show valid
1190 		 * again when re-used.
1191 		 */
1192 		ice_clear_phy_tstamp(hw, tx->quad, phy_idx);
1193 
1194 		/* The timestamp is valid, so we'll go ahead and clear this
1195 		 * index and then send the timestamp up to the stack.
1196 		 */
1197 		spin_lock(&tx->lock);
1198 		clear_bit(idx, tx->in_use);
1199 		skb = tx->tstamps[idx].skb;
1200 		tx->tstamps[idx].skb = NULL;
1201 		spin_unlock(&tx->lock);
1202 
1203 		/* it's (unlikely but) possible we raced with the cleanup
1204 		 * thread for discarding old timestamp requests.
1205 		 */
1206 		if (!skb)
1207 			continue;
1208 
1209 		/* Extend the timestamp using cached PHC time */
1210 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
1211 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
1212 
1213 		skb_tstamp_tx(skb, &shhwtstamps);
1214 		dev_kfree_skb_any(skb);
1215 	}
1216 
1217 	/* Check if we still have work to do. If so, re-queue this task to
1218 	 * poll for remaining timestamps.
1219 	 */
1220 	spin_lock(&tx->lock);
1221 	if (!bitmap_empty(tx->in_use, tx->len))
1222 		kthread_queue_work(pf->ptp.kworker, &tx->work);
1223 	spin_unlock(&tx->lock);
1224 }
1225 
1226 /**
1227  * ice_ptp_request_ts - Request an available Tx timestamp index
1228  * @tx: the PTP Tx timestamp tracker to request from
1229  * @skb: the SKB to associate with this timestamp request
1230  */
1231 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
1232 {
1233 	u8 idx;
1234 
1235 	/* Check if this tracker is initialized */
1236 	if (!tx->init)
1237 		return -1;
1238 
1239 	spin_lock(&tx->lock);
1240 	/* Find and set the first available index */
1241 	idx = find_first_zero_bit(tx->in_use, tx->len);
1242 	if (idx < tx->len) {
1243 		/* We got a valid index that no other thread could have set. Store
1244 		 * a reference to the skb and the start time to allow discarding old
1245 		 * requests.
1246 		 */
1247 		set_bit(idx, tx->in_use);
1248 		tx->tstamps[idx].start = jiffies;
1249 		tx->tstamps[idx].skb = skb_get(skb);
1250 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1251 	}
1252 
1253 	spin_unlock(&tx->lock);
1254 
1255 	/* return the appropriate PHY timestamp register index, -1 if no
1256 	 * indexes were available.
1257 	 */
1258 	if (idx >= tx->len)
1259 		return -1;
1260 	else
1261 		return idx + tx->quad_offset;
1262 }
1263 
1264 /**
1265  * ice_ptp_process_ts - Spawn kthread work to handle timestamps
1266  * @pf: Board private structure
1267  *
1268  * Queue work required to process the PTP Tx timestamps outside of interrupt
1269  * context.
1270  */
1271 void ice_ptp_process_ts(struct ice_pf *pf)
1272 {
1273 	if (pf->ptp.port.tx.init)
1274 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
1275 }
1276 
1277 /**
1278  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
1279  * @tx: Tx tracking structure to initialize
1280  *
1281  * Assumes that the length has already been initialized. Do not call directly,
1282  * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
1283  */
1284 static int
1285 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
1286 {
1287 	tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
1288 	if (!tx->tstamps)
1289 		return -ENOMEM;
1290 
1291 	tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
1292 	if (!tx->in_use) {
1293 		kfree(tx->tstamps);
1294 		tx->tstamps = NULL;
1295 		return -ENOMEM;
1296 	}
1297 
1298 	spin_lock_init(&tx->lock);
1299 	kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
1300 
1301 	tx->init = 1;
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
1308  * @pf: Board private structure
1309  * @tx: the tracker to flush
1310  */
1311 static void
1312 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1313 {
1314 	u8 idx;
1315 
1316 	spin_lock(&tx->lock);
1317 
1318 	for (idx = 0; idx < tx->len; idx++) {
1319 		u8 phy_idx = idx + tx->quad_offset;
1320 
1321 		/* Clear any potential residual timestamp in the PHY block */
1322 		if (!pf->hw.reset_ongoing)
1323 			ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
1324 
1325 		if (tx->tstamps[idx].skb) {
1326 			dev_kfree_skb_any(tx->tstamps[idx].skb);
1327 			tx->tstamps[idx].skb = NULL;
1328 		}
1329 	}
1330 
1331 	spin_unlock(&tx->lock);
1332 }
1333 
1334 /**
1335  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
1336  * @pf: Board private structure
1337  * @tx: Tx tracking structure to release
1338  *
1339  * Free memory associated with the Tx timestamp tracker.
1340  */
1341 static void
1342 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1343 {
1344 	tx->init = 0;
1345 
1346 	kthread_cancel_work_sync(&tx->work);
1347 
1348 	ice_ptp_flush_tx_tracker(pf, tx);
1349 
1350 	kfree(tx->tstamps);
1351 	tx->tstamps = NULL;
1352 
1353 	kfree(tx->in_use);
1354 	tx->in_use = NULL;
1355 
1356 	tx->len = 0;
1357 }
1358 
1359 /**
1360  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1361  * @pf: Board private structure
1362  * @tx: the Tx tracking structure to initialize
1363  *
1364  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1365  * port has its own block of timestamps, independent of the other ports.
1366  */
1367 static int
1368 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1369 {
1370 	tx->quad = pf->hw.port_info->lport;
1371 	tx->quad_offset = 0;
1372 	tx->len = INDEX_PER_QUAD;
1373 
1374 	return ice_ptp_alloc_tx_tracker(tx);
1375 }
1376 
1377 /**
1378  * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
1379  * @tx: PTP Tx tracker to clean up
1380  *
1381  * Loop through the Tx timestamp requests and see if any of them have been
1382  * waiting for a long time. Discard any SKBs that have been waiting for more
1383  * than 2 seconds. This is long enough to be reasonably sure that the
1384  * timestamp will never be captured. This might happen if the packet gets
1385  * discarded before it reaches the PHY timestamping block.
1386  */
1387 static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx)
1388 {
1389 	u8 idx;
1390 
1391 	if (!tx->init)
1392 		return;
1393 
1394 	for_each_set_bit(idx, tx->in_use, tx->len) {
1395 		struct sk_buff *skb;
1396 
1397 		/* Check if this SKB has been waiting for too long */
1398 		if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
1399 			continue;
1400 
1401 		spin_lock(&tx->lock);
1402 		skb = tx->tstamps[idx].skb;
1403 		tx->tstamps[idx].skb = NULL;
1404 		clear_bit(idx, tx->in_use);
1405 		spin_unlock(&tx->lock);
1406 
1407 		/* Free the SKB after we've cleared the bit */
1408 		dev_kfree_skb_any(skb);
1409 	}
1410 }
1411 
1412 static void ice_ptp_periodic_work(struct kthread_work *work)
1413 {
1414 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
1415 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1416 
1417 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1418 		return;
1419 
1420 	ice_ptp_update_cached_phctime(pf);
1421 
1422 	ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx);
1423 
1424 	/* Run twice a second */
1425 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
1426 				   msecs_to_jiffies(500));
1427 }
1428 
1429 /**
1430  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
1431  * @pf: Board private structure
1432  *
1433  * Setup and initialize a PTP clock device that represents the device hardware
1434  * clock. Save the clock index for other functions connected to the same
1435  * hardware resource.
1436  */
1437 static int ice_ptp_init_owner(struct ice_pf *pf)
1438 {
1439 	struct device *dev = ice_pf_to_dev(pf);
1440 	struct ice_hw *hw = &pf->hw;
1441 	struct timespec64 ts;
1442 	u8 src_idx;
1443 	int err;
1444 
1445 	wr32(hw, GLTSYN_SYNC_DLAY, 0);
1446 
1447 	/* Clear some HW residue and enable source clock */
1448 	src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1449 
1450 	/* Enable source clocks */
1451 	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
1452 
1453 	/* Enable PHY time sync */
1454 	err = ice_ptp_init_phy_e810(hw);
1455 	if (err)
1456 		goto err_exit;
1457 
1458 	/* Clear event status indications for auxiliary pins */
1459 	(void)rd32(hw, GLTSYN_STAT(src_idx));
1460 
1461 	/* Acquire the global hardware lock */
1462 	if (!ice_ptp_lock(hw)) {
1463 		err = -EBUSY;
1464 		goto err_exit;
1465 	}
1466 
1467 	/* Write the increment time value to PHY and LAN */
1468 	err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810);
1469 	if (err) {
1470 		ice_ptp_unlock(hw);
1471 		goto err_exit;
1472 	}
1473 
1474 	ts = ktime_to_timespec64(ktime_get_real());
1475 	/* Write the initial Time value to PHY and LAN */
1476 	err = ice_ptp_write_init(pf, &ts);
1477 	if (err) {
1478 		ice_ptp_unlock(hw);
1479 		goto err_exit;
1480 	}
1481 
1482 	/* Release the global hardware lock */
1483 	ice_ptp_unlock(hw);
1484 
1485 	/* Ensure we have a clock device */
1486 	err = ice_ptp_create_clock(pf);
1487 	if (err)
1488 		goto err_clk;
1489 
1490 	/* Store the PTP clock index for other PFs */
1491 	ice_set_ptp_clock_index(pf);
1492 
1493 	return 0;
1494 
1495 err_clk:
1496 	pf->ptp.clock = NULL;
1497 err_exit:
1498 	dev_err(dev, "PTP failed to register clock, err %d\n", err);
1499 
1500 	return err;
1501 }
1502 
1503 /**
1504  * ice_ptp_init - Initialize the PTP support after device probe or reset
1505  * @pf: Board private structure
1506  *
1507  * This function sets device up for PTP support. The first time it is run, it
1508  * will create a clock device. It does not create a clock device if one
1509  * already exists. It also reconfigures the device after a reset.
1510  */
1511 void ice_ptp_init(struct ice_pf *pf)
1512 {
1513 	struct device *dev = ice_pf_to_dev(pf);
1514 	struct kthread_worker *kworker;
1515 	struct ice_hw *hw = &pf->hw;
1516 	int err;
1517 
1518 	/* PTP is currently only supported on E810 devices */
1519 	if (!ice_is_e810(hw))
1520 		return;
1521 
1522 	/* Check if this PF owns the source timer */
1523 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
1524 		err = ice_ptp_init_owner(pf);
1525 		if (err)
1526 			return;
1527 	}
1528 
1529 	/* Disable timestamping for both Tx and Rx */
1530 	ice_ptp_cfg_timestamp(pf, false);
1531 
1532 	/* Initialize the PTP port Tx timestamp tracker */
1533 	ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx);
1534 
1535 	/* Initialize work functions */
1536 	kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work);
1537 	kthread_init_work(&pf->ptp.extts_work, ice_ptp_extts_work);
1538 
1539 	/* Allocate a kworker for handling work required for the ports
1540 	 * connected to the PTP hardware clock.
1541 	 */
1542 	kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev));
1543 	if (IS_ERR(kworker)) {
1544 		err = PTR_ERR(kworker);
1545 		goto err_kworker;
1546 	}
1547 	pf->ptp.kworker = kworker;
1548 
1549 	set_bit(ICE_FLAG_PTP, pf->flags);
1550 
1551 	/* Start periodic work going */
1552 	kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0);
1553 
1554 	dev_info(dev, "PTP init successful\n");
1555 	return;
1556 
1557 err_kworker:
1558 	/* If we registered a PTP clock, release it */
1559 	if (pf->ptp.clock) {
1560 		ptp_clock_unregister(pf->ptp.clock);
1561 		pf->ptp.clock = NULL;
1562 	}
1563 	dev_err(dev, "PTP failed %d\n", err);
1564 }
1565 
1566 /**
1567  * ice_ptp_release - Disable the driver/HW support and unregister the clock
1568  * @pf: Board private structure
1569  *
1570  * This function handles the cleanup work required from the initialization by
1571  * clearing out the important information and unregistering the clock
1572  */
1573 void ice_ptp_release(struct ice_pf *pf)
1574 {
1575 	/* Disable timestamping for both Tx and Rx */
1576 	ice_ptp_cfg_timestamp(pf, false);
1577 
1578 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
1579 
1580 	clear_bit(ICE_FLAG_PTP, pf->flags);
1581 
1582 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
1583 
1584 	if (pf->ptp.kworker) {
1585 		kthread_destroy_worker(pf->ptp.kworker);
1586 		pf->ptp.kworker = NULL;
1587 	}
1588 
1589 	if (!pf->ptp.clock)
1590 		return;
1591 
1592 	/* Disable periodic outputs */
1593 	ice_ptp_disable_all_clkout(pf);
1594 
1595 	ice_clear_ptp_clock_index(pf);
1596 	ptp_clock_unregister(pf->ptp.clock);
1597 	pf->ptp.clock = NULL;
1598 
1599 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
1600 }
1601