1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 
8 #define E810_OUT_PROP_DELAY_NS 1
9 
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
11 
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 	/* name    idx   func         chan */
14 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20 
21 /**
22  * ice_get_sma_config_e810t
23  * @hw: pointer to the hw struct
24  * @ptp_pins: pointer to the ptp_pin_desc struture
25  *
26  * Read the configuration of the SMA control logic and put it into the
27  * ptp_pin_desc structure
28  */
29 static int
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 	u8 data, i;
33 	int status;
34 
35 	/* Read initial pin state */
36 	status = ice_read_sma_ctrl_e810t(hw, &data);
37 	if (status)
38 		return status;
39 
40 	/* initialize with defaults */
41 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43 			 "%s", ice_pin_desc_e810t[i].name);
44 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 	}
48 
49 	/* Parse SMA1/UFL1 */
50 	switch (data & ICE_SMA1_MASK_E810T) {
51 	case ICE_SMA1_MASK_E810T:
52 	default:
53 		ptp_pins[SMA1].func = PTP_PF_NONE;
54 		ptp_pins[UFL1].func = PTP_PF_NONE;
55 		break;
56 	case ICE_SMA1_DIR_EN_E810T:
57 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 		ptp_pins[UFL1].func = PTP_PF_NONE;
59 		break;
60 	case ICE_SMA1_TX_EN_E810T:
61 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 		ptp_pins[UFL1].func = PTP_PF_NONE;
63 		break;
64 	case 0:
65 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 		break;
68 	}
69 
70 	/* Parse SMA2/UFL2 */
71 	switch (data & ICE_SMA2_MASK_E810T) {
72 	case ICE_SMA2_MASK_E810T:
73 	default:
74 		ptp_pins[SMA2].func = PTP_PF_NONE;
75 		ptp_pins[UFL2].func = PTP_PF_NONE;
76 		break;
77 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 		ptp_pins[UFL2].func = PTP_PF_NONE;
80 		break;
81 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 		ptp_pins[UFL2].func = PTP_PF_NONE;
84 		break;
85 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 		ptp_pins[SMA2].func = PTP_PF_NONE;
87 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 		break;
89 	case ICE_SMA2_DIR_EN_E810T:
90 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 		break;
93 	}
94 
95 	return 0;
96 }
97 
98 /**
99  * ice_ptp_set_sma_config_e810t
100  * @hw: pointer to the hw struct
101  * @ptp_pins: pointer to the ptp_pin_desc struture
102  *
103  * Set the configuration of the SMA control logic based on the configuration in
104  * num_pins parameter
105  */
106 static int
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 			     const struct ptp_pin_desc *ptp_pins)
109 {
110 	int status;
111 	u8 data;
112 
113 	/* SMA1 and UFL1 cannot be set to TX at the same time */
114 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 		return -EINVAL;
117 
118 	/* SMA2 and UFL2 cannot be set to RX at the same time */
119 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 		return -EINVAL;
122 
123 	/* Read initial pin state value */
124 	status = ice_read_sma_ctrl_e810t(hw, &data);
125 	if (status)
126 		return status;
127 
128 	/* Set the right sate based on the desired configuration */
129 	data &= ~ICE_SMA1_MASK_E810T;
130 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 		data |= ICE_SMA1_MASK_E810T;
134 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 		data |= ICE_SMA1_TX_EN_E810T;
138 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 		/* U.FL 1 TX will always enable SMA 1 RX */
141 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 		data |= ICE_SMA1_DIR_EN_E810T;
149 	}
150 
151 	data &= ~ICE_SMA2_MASK_E810T;
152 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 		data |= ICE_SMA2_MASK_E810T;
156 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 			ptp_pins[UFL2].func == PTP_PF_NONE) {
158 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 		data |= (ICE_SMA2_TX_EN_E810T |
160 			 ICE_SMA2_UFL2_RX_DIS_E810T);
161 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 		data |= (ICE_SMA2_DIR_EN_E810T |
169 			 ICE_SMA2_UFL2_RX_DIS_E810T);
170 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 		data |= ICE_SMA2_DIR_EN_E810T;
174 	}
175 
176 	return ice_write_sma_ctrl_e810t(hw, data);
177 }
178 
179 /**
180  * ice_ptp_set_sma_e810t
181  * @info: the driver's PTP info structure
182  * @pin: pin index in kernel structure
183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184  *
185  * Set the configuration of a single SMA pin
186  */
187 static int
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 		      enum ptp_pin_function func)
190 {
191 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 	struct ice_pf *pf = ptp_info_to_pf(info);
193 	struct ice_hw *hw = &pf->hw;
194 	int err;
195 
196 	if (pin < SMA1 || func > PTP_PF_PEROUT)
197 		return -EOPNOTSUPP;
198 
199 	err = ice_get_sma_config_e810t(hw, ptp_pins);
200 	if (err)
201 		return err;
202 
203 	/* Disable the same function on the other pin sharing the channel */
204 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 		ptp_pins[UFL1].func = PTP_PF_NONE;
206 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 		ptp_pins[SMA1].func = PTP_PF_NONE;
208 
209 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 		ptp_pins[UFL2].func = PTP_PF_NONE;
211 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 		ptp_pins[SMA2].func = PTP_PF_NONE;
213 
214 	/* Set up new pin function in the temp table */
215 	ptp_pins[pin].func = func;
216 
217 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219 
220 /**
221  * ice_verify_pin_e810t
222  * @info: the driver's PTP info structure
223  * @pin: Pin index
224  * @func: Assigned function
225  * @chan: Assigned channel
226  *
227  * Verify if pin supports requested pin function. If the Check pins consistency.
228  * Reconfigure the SMA logic attached to the given pin to enable its
229  * desired functionality
230  */
231 static int
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 		     enum ptp_pin_function func, unsigned int chan)
234 {
235 	/* Don't allow channel reassignment */
236 	if (chan != ice_pin_desc_e810t[pin].chan)
237 		return -EOPNOTSUPP;
238 
239 	/* Check if functions are properly assigned */
240 	switch (func) {
241 	case PTP_PF_NONE:
242 		break;
243 	case PTP_PF_EXTTS:
244 		if (pin == UFL1)
245 			return -EOPNOTSUPP;
246 		break;
247 	case PTP_PF_PEROUT:
248 		if (pin == UFL2 || pin == GNSS)
249 			return -EOPNOTSUPP;
250 		break;
251 	case PTP_PF_PHYSYNC:
252 		return -EOPNOTSUPP;
253 	}
254 
255 	return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257 
258 /**
259  * ice_set_tx_tstamp - Enable or disable Tx timestamping
260  * @pf: The PF pointer to search in
261  * @on: bool value for whether timestamps are enabled or disabled
262  */
263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
264 {
265 	struct ice_vsi *vsi;
266 	u32 val;
267 	u16 i;
268 
269 	vsi = ice_get_main_vsi(pf);
270 	if (!vsi)
271 		return;
272 
273 	/* Set the timestamp enable flag for all the Tx rings */
274 	ice_for_each_txq(vsi, i) {
275 		if (!vsi->tx_rings[i])
276 			continue;
277 		vsi->tx_rings[i]->ptp_tx = on;
278 	}
279 
280 	/* Configure the Tx timestamp interrupt */
281 	val = rd32(&pf->hw, PFINT_OICR_ENA);
282 	if (on)
283 		val |= PFINT_OICR_TSYN_TX_M;
284 	else
285 		val &= ~PFINT_OICR_TSYN_TX_M;
286 	wr32(&pf->hw, PFINT_OICR_ENA, val);
287 
288 	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
289 }
290 
291 /**
292  * ice_set_rx_tstamp - Enable or disable Rx timestamping
293  * @pf: The PF pointer to search in
294  * @on: bool value for whether timestamps are enabled or disabled
295  */
296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
297 {
298 	struct ice_vsi *vsi;
299 	u16 i;
300 
301 	vsi = ice_get_main_vsi(pf);
302 	if (!vsi)
303 		return;
304 
305 	/* Set the timestamp flag for all the Rx rings */
306 	ice_for_each_rxq(vsi, i) {
307 		if (!vsi->rx_rings[i])
308 			continue;
309 		vsi->rx_rings[i]->ptp_rx = on;
310 	}
311 
312 	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313 					       HWTSTAMP_FILTER_NONE;
314 }
315 
316 /**
317  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318  * @pf: Board private structure
319  * @ena: bool value to enable or disable time stamp
320  *
321  * This function will configure timestamping during PTP initialization
322  * and deinitialization
323  */
324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
325 {
326 	ice_set_tx_tstamp(pf, ena);
327 	ice_set_rx_tstamp(pf, ena);
328 }
329 
330 /**
331  * ice_get_ptp_clock_index - Get the PTP clock index
332  * @pf: the PF pointer
333  *
334  * Determine the clock index of the PTP clock associated with this device. If
335  * this is the PF controlling the clock, just use the local access to the
336  * clock device pointer.
337  *
338  * Otherwise, read from the driver shared parameters to determine the clock
339  * index value.
340  *
341  * Returns: the index of the PTP clock associated with this device, or -1 if
342  * there is no associated clock.
343  */
344 int ice_get_ptp_clock_index(struct ice_pf *pf)
345 {
346 	struct device *dev = ice_pf_to_dev(pf);
347 	enum ice_aqc_driver_params param_idx;
348 	struct ice_hw *hw = &pf->hw;
349 	u8 tmr_idx;
350 	u32 value;
351 	int err;
352 
353 	/* Use the ptp_clock structure if we're the main PF */
354 	if (pf->ptp.clock)
355 		return ptp_clock_index(pf->ptp.clock);
356 
357 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
358 	if (!tmr_idx)
359 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
360 	else
361 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
362 
363 	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
364 	if (err) {
365 		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366 			err, ice_aq_str(hw->adminq.sq_last_status));
367 		return -1;
368 	}
369 
370 	/* The PTP clock index is an integer, and will be between 0 and
371 	 * INT_MAX. The highest bit of the driver shared parameter is used to
372 	 * indicate whether or not the currently stored clock index is valid.
373 	 */
374 	if (!(value & PTP_SHARED_CLK_IDX_VALID))
375 		return -1;
376 
377 	return value & ~PTP_SHARED_CLK_IDX_VALID;
378 }
379 
380 /**
381  * ice_set_ptp_clock_index - Set the PTP clock index
382  * @pf: the PF pointer
383  *
384  * Set the PTP clock index for this device into the shared driver parameters,
385  * so that other PFs associated with this device can read it.
386  *
387  * If the PF is unable to store the clock index, it will log an error, but
388  * will continue operating PTP.
389  */
390 static void ice_set_ptp_clock_index(struct ice_pf *pf)
391 {
392 	struct device *dev = ice_pf_to_dev(pf);
393 	enum ice_aqc_driver_params param_idx;
394 	struct ice_hw *hw = &pf->hw;
395 	u8 tmr_idx;
396 	u32 value;
397 	int err;
398 
399 	if (!pf->ptp.clock)
400 		return;
401 
402 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
403 	if (!tmr_idx)
404 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
405 	else
406 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
407 
408 	value = (u32)ptp_clock_index(pf->ptp.clock);
409 	if (value > INT_MAX) {
410 		dev_err(dev, "PTP Clock index is too large to store\n");
411 		return;
412 	}
413 	value |= PTP_SHARED_CLK_IDX_VALID;
414 
415 	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
416 	if (err) {
417 		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418 			err, ice_aq_str(hw->adminq.sq_last_status));
419 	}
420 }
421 
422 /**
423  * ice_clear_ptp_clock_index - Clear the PTP clock index
424  * @pf: the PF pointer
425  *
426  * Clear the PTP clock index for this device. Must be called when
427  * unregistering the PTP clock, in order to ensure other PFs stop reporting
428  * a clock object that no longer exists.
429  */
430 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
431 {
432 	struct device *dev = ice_pf_to_dev(pf);
433 	enum ice_aqc_driver_params param_idx;
434 	struct ice_hw *hw = &pf->hw;
435 	u8 tmr_idx;
436 	int err;
437 
438 	/* Do not clear the index if we don't own the timer */
439 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
440 		return;
441 
442 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
443 	if (!tmr_idx)
444 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
445 	else
446 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
447 
448 	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
449 	if (err) {
450 		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451 			err, ice_aq_str(hw->adminq.sq_last_status));
452 	}
453 }
454 
455 /**
456  * ice_ptp_read_src_clk_reg - Read the source clock register
457  * @pf: Board private structure
458  * @sts: Optional parameter for holding a pair of system timestamps from
459  *       the system clock. Will be ignored if NULL is given.
460  */
461 static u64
462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
463 {
464 	struct ice_hw *hw = &pf->hw;
465 	u32 hi, lo, lo2;
466 	u8 tmr_idx;
467 
468 	tmr_idx = ice_get_ptp_src_clock_index(hw);
469 	/* Read the system timestamp pre PHC read */
470 	ptp_read_system_prets(sts);
471 
472 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
473 
474 	/* Read the system timestamp post PHC read */
475 	ptp_read_system_postts(sts);
476 
477 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
479 
480 	if (lo2 < lo) {
481 		/* if TIME_L rolled over read TIME_L again and update
482 		 * system timestamps
483 		 */
484 		ptp_read_system_prets(sts);
485 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486 		ptp_read_system_postts(sts);
487 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
488 	}
489 
490 	return ((u64)hi << 32) | lo;
491 }
492 
493 /**
494  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
495  * @cached_phc_time: recently cached copy of PHC time
496  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
497  *
498  * Hardware captures timestamps which contain only 32 bits of nominal
499  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
500  * Note that the captured timestamp values may be 40 bits, but the lower
501  * 8 bits are sub-nanoseconds and generally discarded.
502  *
503  * Extend the 32bit nanosecond timestamp using the following algorithm and
504  * assumptions:
505  *
506  * 1) have a recently cached copy of the PHC time
507  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
508  *    seconds) before or after the PHC time was captured.
509  * 3) calculate the delta between the cached time and the timestamp
510  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
511  *    captured after the PHC time. In this case, the full timestamp is just
512  *    the cached PHC time plus the delta.
513  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
514  *    timestamp was captured *before* the PHC time, i.e. because the PHC
515  *    cache was updated after the timestamp was captured by hardware. In this
516  *    case, the full timestamp is the cached time minus the inverse delta.
517  *
518  * This algorithm works even if the PHC time was updated after a Tx timestamp
519  * was requested, but before the Tx timestamp event was reported from
520  * hardware.
521  *
522  * This calculation primarily relies on keeping the cached PHC time up to
523  * date. If the timestamp was captured more than 2^31 nanoseconds after the
524  * PHC time, it is possible that the lower 32bits of PHC time have
525  * overflowed more than once, and we might generate an incorrect timestamp.
526  *
527  * This is prevented by (a) periodically updating the cached PHC time once
528  * a second, and (b) discarding any Tx timestamp packet if it has waited for
529  * a timestamp for more than one second.
530  */
531 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
532 {
533 	u32 delta, phc_time_lo;
534 	u64 ns;
535 
536 	/* Extract the lower 32 bits of the PHC time */
537 	phc_time_lo = (u32)cached_phc_time;
538 
539 	/* Calculate the delta between the lower 32bits of the cached PHC
540 	 * time and the in_tstamp value
541 	 */
542 	delta = (in_tstamp - phc_time_lo);
543 
544 	/* Do not assume that the in_tstamp is always more recent than the
545 	 * cached PHC time. If the delta is large, it indicates that the
546 	 * in_tstamp was taken in the past, and should be converted
547 	 * forward.
548 	 */
549 	if (delta > (U32_MAX / 2)) {
550 		/* reverse the delta calculation here */
551 		delta = (phc_time_lo - in_tstamp);
552 		ns = cached_phc_time - delta;
553 	} else {
554 		ns = cached_phc_time + delta;
555 	}
556 
557 	return ns;
558 }
559 
560 /**
561  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
562  * @pf: Board private structure
563  * @in_tstamp: Ingress/egress 40b timestamp value
564  *
565  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
566  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
567  *
568  *  *--------------------------------------------------------------*
569  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
570  *  *--------------------------------------------------------------*
571  *
572  * The low bit is an indicator of whether the timestamp is valid. The next
573  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
574  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
575  *
576  * It is assumed that the caller verifies the timestamp is valid prior to
577  * calling this function.
578  *
579  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
580  * time stored in the device private PTP structure as the basis for timestamp
581  * extension.
582  *
583  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
584  * algorithm.
585  */
586 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
587 {
588 	const u64 mask = GENMASK_ULL(31, 0);
589 	unsigned long discard_time;
590 
591 	/* Discard the hardware timestamp if the cached PHC time is too old */
592 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
593 	if (time_is_before_jiffies(discard_time)) {
594 		pf->ptp.tx_hwtstamp_discarded++;
595 		return 0;
596 	}
597 
598 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
599 				     (in_tstamp >> 8) & mask);
600 }
601 
602 /**
603  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
604  * @tx: the PTP Tx timestamp tracker to check
605  *
606  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
607  * to accept new timestamp requests.
608  *
609  * Assumes the tx->lock spinlock is already held.
610  */
611 static bool
612 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
613 {
614 	lockdep_assert_held(&tx->lock);
615 
616 	return tx->init && !tx->calibrating;
617 }
618 
619 /**
620  * ice_ptp_tx_tstamp - Process Tx timestamps for a port
621  * @tx: the PTP Tx timestamp tracker
622  *
623  * Process timestamps captured by the PHY associated with this port. To do
624  * this, loop over each index with a waiting skb.
625  *
626  * If a given index has a valid timestamp, perform the following steps:
627  *
628  * 1) check that the timestamp request is not stale
629  * 2) check that a timestamp is ready and available in the PHY memory bank
630  * 3) read and copy the timestamp out of the PHY register
631  * 4) unlock the index by clearing the associated in_use bit
632  * 5) check if the timestamp is stale, and discard if so
633  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
634  * 7) send this 64 bit timestamp to the stack
635  *
636  * Returns true if all timestamps were handled, and false if any slots remain
637  * without a timestamp.
638  *
639  * After looping, if we still have waiting SKBs, return false. This may cause
640  * us effectively poll even when not strictly necessary. We do this because
641  * it's possible a new timestamp was requested around the same time as the
642  * interrupt. In some cases hardware might not interrupt us again when the
643  * timestamp is captured.
644  *
645  * Note that we do not hold the tracking lock while reading the Tx timestamp.
646  * This is because reading the timestamp requires taking a mutex that might
647  * sleep.
648  *
649  * The only place where we set in_use is when a new timestamp is initiated
650  * with a slot index. This is only called in the hard xmit routine where an
651  * SKB has a request flag set. The only places where we clear this bit is this
652  * function, or during teardown when the Tx timestamp tracker is being
653  * removed. A timestamp index will never be re-used until the in_use bit for
654  * that index is cleared.
655  *
656  * If a Tx thread starts a new timestamp, we might not begin processing it
657  * right away but we will notice it at the end when we re-queue the task.
658  *
659  * If a Tx thread starts a new timestamp just after this function exits, the
660  * interrupt for that timestamp should re-trigger this function once
661  * a timestamp is ready.
662  *
663  * In cases where the PTP hardware clock was directly adjusted, some
664  * timestamps may not be able to safely use the timestamp extension math. In
665  * this case, software will set the stale bit for any outstanding Tx
666  * timestamps when the clock is adjusted. Then this function will discard
667  * those captured timestamps instead of sending them to the stack.
668  *
669  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
670  * to correctly extend the timestamp using the cached PHC time. It is
671  * extremely unlikely that a packet will ever take this long to timestamp. If
672  * we detect a Tx timestamp request that has waited for this long we assume
673  * the packet will never be sent by hardware and discard it without reading
674  * the timestamp register.
675  */
676 static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
677 {
678 	struct ice_ptp_port *ptp_port;
679 	bool more_timestamps;
680 	struct ice_pf *pf;
681 	struct ice_hw *hw;
682 	u64 tstamp_ready;
683 	bool link_up;
684 	int err;
685 	u8 idx;
686 
687 	if (!tx->init)
688 		return true;
689 
690 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
691 	pf = ptp_port_to_pf(ptp_port);
692 	hw = &pf->hw;
693 
694 	/* Read the Tx ready status first */
695 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
696 	if (err)
697 		return false;
698 
699 	/* Drop packets if the link went down */
700 	link_up = ptp_port->link_up;
701 
702 	for_each_set_bit(idx, tx->in_use, tx->len) {
703 		struct skb_shared_hwtstamps shhwtstamps = {};
704 		u8 phy_idx = idx + tx->offset;
705 		u64 raw_tstamp = 0, tstamp;
706 		bool drop_ts = !link_up;
707 		struct sk_buff *skb;
708 
709 		/* Drop packets which have waited for more than 2 seconds */
710 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
711 			drop_ts = true;
712 
713 			/* Count the number of Tx timestamps that timed out */
714 			pf->ptp.tx_hwtstamp_timeouts++;
715 		}
716 
717 		/* Only read a timestamp from the PHY if its marked as ready
718 		 * by the tstamp_ready register. This avoids unnecessary
719 		 * reading of timestamps which are not yet valid. This is
720 		 * important as we must read all timestamps which are valid
721 		 * and only timestamps which are valid during each interrupt.
722 		 * If we do not, the hardware logic for generating a new
723 		 * interrupt can get stuck on some devices.
724 		 */
725 		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
726 			if (drop_ts)
727 				goto skip_ts_read;
728 
729 			continue;
730 		}
731 
732 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
733 
734 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
735 		if (err && !drop_ts)
736 			continue;
737 
738 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
739 
740 		/* For PHYs which don't implement a proper timestamp ready
741 		 * bitmap, verify that the timestamp value is different
742 		 * from the last cached timestamp. If it is not, skip this for
743 		 * now assuming it hasn't yet been captured by hardware.
744 		 */
745 		if (!drop_ts && tx->verify_cached &&
746 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
747 			continue;
748 
749 		/* Discard any timestamp value without the valid bit set */
750 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
751 			drop_ts = true;
752 
753 skip_ts_read:
754 		spin_lock(&tx->lock);
755 		if (tx->verify_cached && raw_tstamp)
756 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
757 		clear_bit(idx, tx->in_use);
758 		skb = tx->tstamps[idx].skb;
759 		tx->tstamps[idx].skb = NULL;
760 		if (test_and_clear_bit(idx, tx->stale))
761 			drop_ts = true;
762 		spin_unlock(&tx->lock);
763 
764 		/* It is unlikely but possible that the SKB will have been
765 		 * flushed at this point due to link change or teardown.
766 		 */
767 		if (!skb)
768 			continue;
769 
770 		if (drop_ts) {
771 			dev_kfree_skb_any(skb);
772 			continue;
773 		}
774 
775 		/* Extend the timestamp using cached PHC time */
776 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
777 		if (tstamp) {
778 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
779 			ice_trace(tx_tstamp_complete, skb, idx);
780 		}
781 
782 		skb_tstamp_tx(skb, &shhwtstamps);
783 		dev_kfree_skb_any(skb);
784 	}
785 
786 	/* Check if we still have work to do. If so, re-queue this task to
787 	 * poll for remaining timestamps.
788 	 */
789 	spin_lock(&tx->lock);
790 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
791 	spin_unlock(&tx->lock);
792 
793 	return !more_timestamps;
794 }
795 
796 /**
797  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
798  * @tx: Tx tracking structure to initialize
799  *
800  * Assumes that the length has already been initialized. Do not call directly,
801  * use the ice_ptp_init_tx_* instead.
802  */
803 static int
804 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
805 {
806 	unsigned long *in_use, *stale;
807 	struct ice_tx_tstamp *tstamps;
808 
809 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
810 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
811 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
812 
813 	if (!tstamps || !in_use || !stale) {
814 		kfree(tstamps);
815 		bitmap_free(in_use);
816 		bitmap_free(stale);
817 
818 		return -ENOMEM;
819 	}
820 
821 	tx->tstamps = tstamps;
822 	tx->in_use = in_use;
823 	tx->stale = stale;
824 	tx->init = 1;
825 
826 	spin_lock_init(&tx->lock);
827 
828 	return 0;
829 }
830 
831 /**
832  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
833  * @pf: Board private structure
834  * @tx: the tracker to flush
835  *
836  * Called during teardown when a Tx tracker is being removed.
837  */
838 static void
839 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
840 {
841 	struct ice_hw *hw = &pf->hw;
842 	u64 tstamp_ready;
843 	int err;
844 	u8 idx;
845 
846 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
847 	if (err) {
848 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
849 			tx->block, err);
850 
851 		/* If we fail to read the Tx timestamp ready bitmap just
852 		 * skip clearing the PHY timestamps.
853 		 */
854 		tstamp_ready = 0;
855 	}
856 
857 	for_each_set_bit(idx, tx->in_use, tx->len) {
858 		u8 phy_idx = idx + tx->offset;
859 		struct sk_buff *skb;
860 
861 		/* In case this timestamp is ready, we need to clear it. */
862 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
863 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
864 
865 		spin_lock(&tx->lock);
866 		skb = tx->tstamps[idx].skb;
867 		tx->tstamps[idx].skb = NULL;
868 		clear_bit(idx, tx->in_use);
869 		clear_bit(idx, tx->stale);
870 		spin_unlock(&tx->lock);
871 
872 		/* Count the number of Tx timestamps flushed */
873 		pf->ptp.tx_hwtstamp_flushed++;
874 
875 		/* Free the SKB after we've cleared the bit */
876 		dev_kfree_skb_any(skb);
877 	}
878 }
879 
880 /**
881  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
882  * @tx: the tracker to mark
883  *
884  * Mark currently outstanding Tx timestamps as stale. This prevents sending
885  * their timestamp value to the stack. This is required to prevent extending
886  * the 40bit hardware timestamp incorrectly.
887  *
888  * This should be called when the PTP clock is modified such as after a set
889  * time request.
890  */
891 static void
892 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
893 {
894 	spin_lock(&tx->lock);
895 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
896 	spin_unlock(&tx->lock);
897 }
898 
899 /**
900  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
901  * @pf: Board private structure
902  * @tx: Tx tracking structure to release
903  *
904  * Free memory associated with the Tx timestamp tracker.
905  */
906 static void
907 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
908 {
909 	spin_lock(&tx->lock);
910 	tx->init = 0;
911 	spin_unlock(&tx->lock);
912 
913 	/* wait for potentially outstanding interrupt to complete */
914 	synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
915 
916 	ice_ptp_flush_tx_tracker(pf, tx);
917 
918 	kfree(tx->tstamps);
919 	tx->tstamps = NULL;
920 
921 	bitmap_free(tx->in_use);
922 	tx->in_use = NULL;
923 
924 	bitmap_free(tx->stale);
925 	tx->stale = NULL;
926 
927 	tx->len = 0;
928 }
929 
930 /**
931  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
932  * @pf: Board private structure
933  * @tx: the Tx tracking structure to initialize
934  * @port: the port this structure tracks
935  *
936  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
937  * the timestamp block is shared for all ports in the same quad. To avoid
938  * ports using the same timestamp index, logically break the block of
939  * registers into chunks based on the port number.
940  */
941 static int
942 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
943 {
944 	tx->block = port / ICE_PORTS_PER_QUAD;
945 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
946 	tx->len = INDEX_PER_PORT_E822;
947 	tx->verify_cached = 0;
948 
949 	return ice_ptp_alloc_tx_tracker(tx);
950 }
951 
952 /**
953  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
954  * @pf: Board private structure
955  * @tx: the Tx tracking structure to initialize
956  *
957  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
958  * port has its own block of timestamps, independent of the other ports.
959  */
960 static int
961 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
962 {
963 	tx->block = pf->hw.port_info->lport;
964 	tx->offset = 0;
965 	tx->len = INDEX_PER_PORT_E810;
966 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
967 	 * verify new timestamps against cached copy of the last read
968 	 * timestamp.
969 	 */
970 	tx->verify_cached = 1;
971 
972 	return ice_ptp_alloc_tx_tracker(tx);
973 }
974 
975 /**
976  * ice_ptp_update_cached_phctime - Update the cached PHC time values
977  * @pf: Board specific private structure
978  *
979  * This function updates the system time values which are cached in the PF
980  * structure and the Rx rings.
981  *
982  * This function must be called periodically to ensure that the cached value
983  * is never more than 2 seconds old.
984  *
985  * Note that the cached copy in the PF PTP structure is always updated, even
986  * if we can't update the copy in the Rx rings.
987  *
988  * Return:
989  * * 0 - OK, successfully updated
990  * * -EAGAIN - PF was busy, need to reschedule the update
991  */
992 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
993 {
994 	struct device *dev = ice_pf_to_dev(pf);
995 	unsigned long update_before;
996 	u64 systime;
997 	int i;
998 
999 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1000 	if (pf->ptp.cached_phc_time &&
1001 	    time_is_before_jiffies(update_before)) {
1002 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1003 
1004 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1005 			 jiffies_to_msecs(time_taken));
1006 		pf->ptp.late_cached_phc_updates++;
1007 	}
1008 
1009 	/* Read the current PHC time */
1010 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1011 
1012 	/* Update the cached PHC time stored in the PF structure */
1013 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1014 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1015 
1016 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1017 		return -EAGAIN;
1018 
1019 	ice_for_each_vsi(pf, i) {
1020 		struct ice_vsi *vsi = pf->vsi[i];
1021 		int j;
1022 
1023 		if (!vsi)
1024 			continue;
1025 
1026 		if (vsi->type != ICE_VSI_PF)
1027 			continue;
1028 
1029 		ice_for_each_rxq(vsi, j) {
1030 			if (!vsi->rx_rings[j])
1031 				continue;
1032 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1033 		}
1034 	}
1035 	clear_bit(ICE_CFG_BUSY, pf->state);
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1042  * @pf: Board specific private structure
1043  *
1044  * This function must be called when the cached PHC time is no longer valid,
1045  * such as after a time adjustment. It marks any currently outstanding Tx
1046  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1047  * rings.
1048  *
1049  * If updating the PHC time cannot be done immediately, a warning message is
1050  * logged and the work item is scheduled immediately to minimize the window
1051  * with a wrong cached timestamp.
1052  */
1053 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1054 {
1055 	struct device *dev = ice_pf_to_dev(pf);
1056 	int err;
1057 
1058 	/* Update the cached PHC time immediately if possible, otherwise
1059 	 * schedule the work item to execute soon.
1060 	 */
1061 	err = ice_ptp_update_cached_phctime(pf);
1062 	if (err) {
1063 		/* If another thread is updating the Rx rings, we won't
1064 		 * properly reset them here. This could lead to reporting of
1065 		 * invalid timestamps, but there isn't much we can do.
1066 		 */
1067 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1068 			 __func__);
1069 
1070 		/* Queue the work item to update the Rx rings when possible */
1071 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1072 					   msecs_to_jiffies(10));
1073 	}
1074 
1075 	/* Mark any outstanding timestamps as stale, since they might have
1076 	 * been captured in hardware before the time update. This could lead
1077 	 * to us extending them with the wrong cached value resulting in
1078 	 * incorrect timestamp values.
1079 	 */
1080 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1081 }
1082 
1083 /**
1084  * ice_ptp_read_time - Read the time from the device
1085  * @pf: Board private structure
1086  * @ts: timespec structure to hold the current time value
1087  * @sts: Optional parameter for holding a pair of system timestamps from
1088  *       the system clock. Will be ignored if NULL is given.
1089  *
1090  * This function reads the source clock registers and stores them in a timespec.
1091  * However, since the registers are 64 bits of nanoseconds, we must convert the
1092  * result to a timespec before we can return.
1093  */
1094 static void
1095 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1096 		  struct ptp_system_timestamp *sts)
1097 {
1098 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1099 
1100 	*ts = ns_to_timespec64(time_ns);
1101 }
1102 
1103 /**
1104  * ice_ptp_write_init - Set PHC time to provided value
1105  * @pf: Board private structure
1106  * @ts: timespec structure that holds the new time value
1107  *
1108  * Set the PHC time to the specified time provided in the timespec.
1109  */
1110 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1111 {
1112 	u64 ns = timespec64_to_ns(ts);
1113 	struct ice_hw *hw = &pf->hw;
1114 
1115 	return ice_ptp_init_time(hw, ns);
1116 }
1117 
1118 /**
1119  * ice_ptp_write_adj - Adjust PHC clock time atomically
1120  * @pf: Board private structure
1121  * @adj: Adjustment in nanoseconds
1122  *
1123  * Perform an atomic adjustment of the PHC time by the specified number of
1124  * nanoseconds.
1125  */
1126 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1127 {
1128 	struct ice_hw *hw = &pf->hw;
1129 
1130 	return ice_ptp_adj_clock(hw, adj);
1131 }
1132 
1133 /**
1134  * ice_base_incval - Get base timer increment value
1135  * @pf: Board private structure
1136  *
1137  * Look up the base timer increment value for this device. The base increment
1138  * value is used to define the nominal clock tick rate. This increment value
1139  * is programmed during device initialization. It is also used as the basis
1140  * for calculating adjustments using scaled_ppm.
1141  */
1142 static u64 ice_base_incval(struct ice_pf *pf)
1143 {
1144 	struct ice_hw *hw = &pf->hw;
1145 	u64 incval;
1146 
1147 	if (ice_is_e810(hw))
1148 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1149 	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1150 		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1151 	else
1152 		incval = UNKNOWN_INCVAL_E822;
1153 
1154 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1155 		incval);
1156 
1157 	return incval;
1158 }
1159 
1160 /**
1161  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1162  * @port: PTP port for which Tx FIFO is checked
1163  */
1164 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1165 {
1166 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1167 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1168 	struct ice_pf *pf;
1169 	struct ice_hw *hw;
1170 	u32 val, phy_sts;
1171 	int err;
1172 
1173 	pf = ptp_port_to_pf(port);
1174 	hw = &pf->hw;
1175 
1176 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1177 		return 0;
1178 
1179 	/* need to read FIFO state */
1180 	if (offs == 0 || offs == 1)
1181 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1182 					     &val);
1183 	else
1184 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1185 					     &val);
1186 
1187 	if (err) {
1188 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1189 			port->port_num, err);
1190 		return err;
1191 	}
1192 
1193 	if (offs & 0x1)
1194 		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1195 	else
1196 		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1197 
1198 	if (phy_sts & FIFO_EMPTY) {
1199 		port->tx_fifo_busy_cnt = FIFO_OK;
1200 		return 0;
1201 	}
1202 
1203 	port->tx_fifo_busy_cnt++;
1204 
1205 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1206 		port->tx_fifo_busy_cnt, port->port_num);
1207 
1208 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1209 		dev_dbg(ice_pf_to_dev(pf),
1210 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1211 			port->port_num, quad);
1212 		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1213 		port->tx_fifo_busy_cnt = FIFO_OK;
1214 		return 0;
1215 	}
1216 
1217 	return -EAGAIN;
1218 }
1219 
1220 /**
1221  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1222  * @work: Pointer to the kthread_work structure for this task
1223  *
1224  * Check whether hardware has completed measuring the Tx and Rx offset values
1225  * used to configure and enable vernier timestamp calibration.
1226  *
1227  * Once the offset in either direction is measured, configure the associated
1228  * registers with the calibrated offset values and enable timestamping. The Tx
1229  * and Rx directions are configured independently as soon as their associated
1230  * offsets are known.
1231  *
1232  * This function reschedules itself until both Tx and Rx calibration have
1233  * completed.
1234  */
1235 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1236 {
1237 	struct ice_ptp_port *port;
1238 	struct ice_pf *pf;
1239 	struct ice_hw *hw;
1240 	int tx_err;
1241 	int rx_err;
1242 
1243 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1244 	pf = ptp_port_to_pf(port);
1245 	hw = &pf->hw;
1246 
1247 	if (ice_is_reset_in_progress(pf->state)) {
1248 		/* wait for device driver to complete reset */
1249 		kthread_queue_delayed_work(pf->ptp.kworker,
1250 					   &port->ov_work,
1251 					   msecs_to_jiffies(100));
1252 		return;
1253 	}
1254 
1255 	tx_err = ice_ptp_check_tx_fifo(port);
1256 	if (!tx_err)
1257 		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1258 	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1259 	if (tx_err || rx_err) {
1260 		/* Tx and/or Rx offset not yet configured, try again later */
1261 		kthread_queue_delayed_work(pf->ptp.kworker,
1262 					   &port->ov_work,
1263 					   msecs_to_jiffies(100));
1264 		return;
1265 	}
1266 }
1267 
1268 /**
1269  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1270  * @ptp_port: PTP port to stop
1271  */
1272 static int
1273 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1274 {
1275 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1276 	u8 port = ptp_port->port_num;
1277 	struct ice_hw *hw = &pf->hw;
1278 	int err;
1279 
1280 	if (ice_is_e810(hw))
1281 		return 0;
1282 
1283 	mutex_lock(&ptp_port->ps_lock);
1284 
1285 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1286 
1287 	err = ice_stop_phy_timer_e822(hw, port, true);
1288 	if (err)
1289 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1290 			port, err);
1291 
1292 	mutex_unlock(&ptp_port->ps_lock);
1293 
1294 	return err;
1295 }
1296 
1297 /**
1298  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1299  * @ptp_port: PTP port for which the PHY start is set
1300  *
1301  * Start the PHY timestamping block, and initiate Vernier timestamping
1302  * calibration. If timestamping cannot be calibrated (such as if link is down)
1303  * then disable the timestamping block instead.
1304  */
1305 static int
1306 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1307 {
1308 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1309 	u8 port = ptp_port->port_num;
1310 	struct ice_hw *hw = &pf->hw;
1311 	int err;
1312 
1313 	if (ice_is_e810(hw))
1314 		return 0;
1315 
1316 	if (!ptp_port->link_up)
1317 		return ice_ptp_port_phy_stop(ptp_port);
1318 
1319 	mutex_lock(&ptp_port->ps_lock);
1320 
1321 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1322 
1323 	/* temporarily disable Tx timestamps while calibrating PHY offset */
1324 	spin_lock(&ptp_port->tx.lock);
1325 	ptp_port->tx.calibrating = true;
1326 	spin_unlock(&ptp_port->tx.lock);
1327 	ptp_port->tx_fifo_busy_cnt = 0;
1328 
1329 	/* Start the PHY timer in Vernier mode */
1330 	err = ice_start_phy_timer_e822(hw, port);
1331 	if (err)
1332 		goto out_unlock;
1333 
1334 	/* Enable Tx timestamps right away */
1335 	spin_lock(&ptp_port->tx.lock);
1336 	ptp_port->tx.calibrating = false;
1337 	spin_unlock(&ptp_port->tx.lock);
1338 
1339 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1340 
1341 out_unlock:
1342 	if (err)
1343 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1344 			port, err);
1345 
1346 	mutex_unlock(&ptp_port->ps_lock);
1347 
1348 	return err;
1349 }
1350 
1351 /**
1352  * ice_ptp_link_change - Reconfigure PTP after link status change
1353  * @pf: Board private structure
1354  * @port: Port for which the PHY start is set
1355  * @linkup: Link is up or down
1356  */
1357 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1358 {
1359 	struct ice_ptp_port *ptp_port;
1360 
1361 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1362 		return;
1363 
1364 	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1365 		return;
1366 
1367 	ptp_port = &pf->ptp.port;
1368 	if (WARN_ON_ONCE(ptp_port->port_num != port))
1369 		return;
1370 
1371 	/* Update cached link status for this port immediately */
1372 	ptp_port->link_up = linkup;
1373 
1374 	/* E810 devices do not need to reconfigure the PHY */
1375 	if (ice_is_e810(&pf->hw))
1376 		return;
1377 
1378 	ice_ptp_port_phy_restart(ptp_port);
1379 }
1380 
1381 /**
1382  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1383  * @pf: PF private structure
1384  * @ena: bool value to enable or disable interrupt
1385  * @threshold: Minimum number of packets at which intr is triggered
1386  *
1387  * Utility function to enable or disable Tx timestamp interrupt and threshold
1388  */
1389 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1390 {
1391 	struct ice_hw *hw = &pf->hw;
1392 	int err = 0;
1393 	int quad;
1394 	u32 val;
1395 
1396 	ice_ptp_reset_ts_memory(hw);
1397 
1398 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1399 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1400 					     &val);
1401 		if (err)
1402 			break;
1403 
1404 		if (ena) {
1405 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1406 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1407 			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1408 				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1409 		} else {
1410 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1411 		}
1412 
1413 		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1414 					      val);
1415 		if (err)
1416 			break;
1417 	}
1418 
1419 	if (err)
1420 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1421 			err);
1422 	return err;
1423 }
1424 
1425 /**
1426  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1427  * @pf: Board private structure
1428  */
1429 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1430 {
1431 	ice_ptp_port_phy_restart(&pf->ptp.port);
1432 }
1433 
1434 /**
1435  * ice_ptp_adjfine - Adjust clock increment rate
1436  * @info: the driver's PTP info structure
1437  * @scaled_ppm: Parts per million with 16-bit fractional field
1438  *
1439  * Adjust the frequency of the clock by the indicated scaled ppm from the
1440  * base frequency.
1441  */
1442 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1443 {
1444 	struct ice_pf *pf = ptp_info_to_pf(info);
1445 	struct ice_hw *hw = &pf->hw;
1446 	u64 incval;
1447 	int err;
1448 
1449 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1450 	err = ice_ptp_write_incval_locked(hw, incval);
1451 	if (err) {
1452 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1453 			err);
1454 		return -EIO;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  * ice_ptp_extts_work - Workqueue task function
1462  * @work: external timestamp work structure
1463  *
1464  * Service for PTP external clock event
1465  */
1466 static void ice_ptp_extts_work(struct kthread_work *work)
1467 {
1468 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1469 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1470 	struct ptp_clock_event event;
1471 	struct ice_hw *hw = &pf->hw;
1472 	u8 chan, tmr_idx;
1473 	u32 hi, lo;
1474 
1475 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1476 	/* Event time is captured by one of the two matched registers
1477 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1478 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1479 	 * Event is defined in GLTSYN_EVNT_0 register
1480 	 */
1481 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1482 		/* Check if channel is enabled */
1483 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1484 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1485 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1486 			event.timestamp = (((u64)hi) << 32) | lo;
1487 			event.type = PTP_CLOCK_EXTTS;
1488 			event.index = chan;
1489 
1490 			/* Fire event */
1491 			ptp_clock_event(pf->ptp.clock, &event);
1492 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1493 		}
1494 	}
1495 }
1496 
1497 /**
1498  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1499  * @pf: Board private structure
1500  * @ena: true to enable; false to disable
1501  * @chan: GPIO channel (0-3)
1502  * @gpio_pin: GPIO pin
1503  * @extts_flags: request flags from the ptp_extts_request.flags
1504  */
1505 static int
1506 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1507 		  unsigned int extts_flags)
1508 {
1509 	u32 func, aux_reg, gpio_reg, irq_reg;
1510 	struct ice_hw *hw = &pf->hw;
1511 	u8 tmr_idx;
1512 
1513 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1514 		return -EINVAL;
1515 
1516 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1517 
1518 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1519 
1520 	if (ena) {
1521 		/* Enable the interrupt */
1522 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1523 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1524 
1525 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1526 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1527 
1528 		/* set event level to requested edge */
1529 		if (extts_flags & PTP_FALLING_EDGE)
1530 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1531 		if (extts_flags & PTP_RISING_EDGE)
1532 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1533 
1534 		/* Write GPIO CTL reg.
1535 		 * 0x1 is input sampled by EVENT register(channel)
1536 		 * + num_in_channels * tmr_idx
1537 		 */
1538 		func = 1 + chan + (tmr_idx * 3);
1539 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1540 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1541 		pf->ptp.ext_ts_chan |= (1 << chan);
1542 	} else {
1543 		/* clear the values we set to reset defaults */
1544 		aux_reg = 0;
1545 		gpio_reg = 0;
1546 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1547 		if (!pf->ptp.ext_ts_chan)
1548 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1549 	}
1550 
1551 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1552 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1553 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1560  * @pf: Board private structure
1561  * @chan: GPIO channel (0-3)
1562  * @config: desired periodic clk configuration. NULL will disable channel
1563  * @store: If set to true the values will be stored
1564  *
1565  * Configure the internal clock generator modules to generate the clock wave of
1566  * specified period.
1567  */
1568 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1569 			      struct ice_perout_channel *config, bool store)
1570 {
1571 	u64 current_time, period, start_time, phase;
1572 	struct ice_hw *hw = &pf->hw;
1573 	u32 func, val, gpio_pin;
1574 	u8 tmr_idx;
1575 
1576 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1577 
1578 	/* 0. Reset mode & out_en in AUX_OUT */
1579 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1580 
1581 	/* If we're disabling the output, clear out CLKO and TGT and keep
1582 	 * output level low
1583 	 */
1584 	if (!config || !config->ena) {
1585 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1586 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1587 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1588 
1589 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1590 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1591 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1592 
1593 		/* Store the value if requested */
1594 		if (store)
1595 			memset(&pf->ptp.perout_channels[chan], 0,
1596 			       sizeof(struct ice_perout_channel));
1597 
1598 		return 0;
1599 	}
1600 	period = config->period;
1601 	start_time = config->start_time;
1602 	div64_u64_rem(start_time, period, &phase);
1603 	gpio_pin = config->gpio_pin;
1604 
1605 	/* 1. Write clkout with half of required period value */
1606 	if (period & 0x1) {
1607 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1608 		goto err;
1609 	}
1610 
1611 	period >>= 1;
1612 
1613 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1614 	 */
1615 #define MIN_PULSE 3
1616 	if (period <= MIN_PULSE || period > U32_MAX) {
1617 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1618 			MIN_PULSE * 2);
1619 		goto err;
1620 	}
1621 
1622 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1623 
1624 	/* Allow time for programming before start_time is hit */
1625 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1626 
1627 	/* if start time is in the past start the timer at the nearest second
1628 	 * maintaining phase
1629 	 */
1630 	if (start_time < current_time)
1631 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1632 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1633 
1634 	if (ice_is_e810(hw))
1635 		start_time -= E810_OUT_PROP_DELAY_NS;
1636 	else
1637 		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1638 
1639 	/* 2. Write TARGET time */
1640 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1641 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1642 
1643 	/* 3. Write AUX_OUT register */
1644 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1645 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1646 
1647 	/* 4. write GPIO CTL reg */
1648 	func = 8 + chan + (tmr_idx * 4);
1649 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1650 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1651 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1652 
1653 	/* Store the value if requested */
1654 	if (store) {
1655 		memcpy(&pf->ptp.perout_channels[chan], config,
1656 		       sizeof(struct ice_perout_channel));
1657 		pf->ptp.perout_channels[chan].start_time = phase;
1658 	}
1659 
1660 	return 0;
1661 err:
1662 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1663 	return -EFAULT;
1664 }
1665 
1666 /**
1667  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1668  * @pf: pointer to the PF structure
1669  *
1670  * Disable all currently configured clock outputs. This is necessary before
1671  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1672  * re-enable the clocks again.
1673  */
1674 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1675 {
1676 	uint i;
1677 
1678 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1679 		if (pf->ptp.perout_channels[i].ena)
1680 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1681 }
1682 
1683 /**
1684  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1685  * @pf: pointer to the PF structure
1686  *
1687  * Enable all currently configured clock outputs. Use this after
1688  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1689  * their configuration.
1690  */
1691 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1692 {
1693 	uint i;
1694 
1695 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1696 		if (pf->ptp.perout_channels[i].ena)
1697 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1698 					   false);
1699 }
1700 
1701 /**
1702  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1703  * @info: the driver's PTP info structure
1704  * @rq: The requested feature to change
1705  * @on: Enable/disable flag
1706  */
1707 static int
1708 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1709 			 struct ptp_clock_request *rq, int on)
1710 {
1711 	struct ice_pf *pf = ptp_info_to_pf(info);
1712 	struct ice_perout_channel clk_cfg = {0};
1713 	bool sma_pres = false;
1714 	unsigned int chan;
1715 	u32 gpio_pin;
1716 	int err;
1717 
1718 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1719 		sma_pres = true;
1720 
1721 	switch (rq->type) {
1722 	case PTP_CLK_REQ_PEROUT:
1723 		chan = rq->perout.index;
1724 		if (sma_pres) {
1725 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1726 				clk_cfg.gpio_pin = GPIO_20;
1727 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1728 				clk_cfg.gpio_pin = GPIO_22;
1729 			else
1730 				return -1;
1731 		} else if (ice_is_e810t(&pf->hw)) {
1732 			if (chan == 0)
1733 				clk_cfg.gpio_pin = GPIO_20;
1734 			else
1735 				clk_cfg.gpio_pin = GPIO_22;
1736 		} else if (chan == PPS_CLK_GEN_CHAN) {
1737 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1738 		} else {
1739 			clk_cfg.gpio_pin = chan;
1740 		}
1741 
1742 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1743 				   rq->perout.period.nsec);
1744 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1745 				       rq->perout.start.nsec);
1746 		clk_cfg.ena = !!on;
1747 
1748 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1749 		break;
1750 	case PTP_CLK_REQ_EXTTS:
1751 		chan = rq->extts.index;
1752 		if (sma_pres) {
1753 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1754 				gpio_pin = GPIO_21;
1755 			else
1756 				gpio_pin = GPIO_23;
1757 		} else if (ice_is_e810t(&pf->hw)) {
1758 			if (chan == 0)
1759 				gpio_pin = GPIO_21;
1760 			else
1761 				gpio_pin = GPIO_23;
1762 		} else {
1763 			gpio_pin = chan;
1764 		}
1765 
1766 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1767 					rq->extts.flags);
1768 		break;
1769 	default:
1770 		return -EOPNOTSUPP;
1771 	}
1772 
1773 	return err;
1774 }
1775 
1776 /**
1777  * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1778  * @info: the driver's PTP info structure
1779  * @rq: The requested feature to change
1780  * @on: Enable/disable flag
1781  */
1782 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1783 				    struct ptp_clock_request *rq, int on)
1784 {
1785 	struct ice_pf *pf = ptp_info_to_pf(info);
1786 	struct ice_perout_channel clk_cfg = {0};
1787 	int err;
1788 
1789 	switch (rq->type) {
1790 	case PTP_CLK_REQ_PPS:
1791 		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1792 		clk_cfg.period = NSEC_PER_SEC;
1793 		clk_cfg.ena = !!on;
1794 
1795 		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1796 		break;
1797 	case PTP_CLK_REQ_EXTTS:
1798 		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1799 					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1800 		break;
1801 	default:
1802 		return -EOPNOTSUPP;
1803 	}
1804 
1805 	return err;
1806 }
1807 
1808 /**
1809  * ice_ptp_gettimex64 - Get the time of the clock
1810  * @info: the driver's PTP info structure
1811  * @ts: timespec64 structure to hold the current time value
1812  * @sts: Optional parameter for holding a pair of system timestamps from
1813  *       the system clock. Will be ignored if NULL is given.
1814  *
1815  * Read the device clock and return the correct value on ns, after converting it
1816  * into a timespec struct.
1817  */
1818 static int
1819 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1820 		   struct ptp_system_timestamp *sts)
1821 {
1822 	struct ice_pf *pf = ptp_info_to_pf(info);
1823 	struct ice_hw *hw = &pf->hw;
1824 
1825 	if (!ice_ptp_lock(hw)) {
1826 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1827 		return -EBUSY;
1828 	}
1829 
1830 	ice_ptp_read_time(pf, ts, sts);
1831 	ice_ptp_unlock(hw);
1832 
1833 	return 0;
1834 }
1835 
1836 /**
1837  * ice_ptp_settime64 - Set the time of the clock
1838  * @info: the driver's PTP info structure
1839  * @ts: timespec64 structure that holds the new time value
1840  *
1841  * Set the device clock to the user input value. The conversion from timespec
1842  * to ns happens in the write function.
1843  */
1844 static int
1845 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1846 {
1847 	struct ice_pf *pf = ptp_info_to_pf(info);
1848 	struct timespec64 ts64 = *ts;
1849 	struct ice_hw *hw = &pf->hw;
1850 	int err;
1851 
1852 	/* For Vernier mode, we need to recalibrate after new settime
1853 	 * Start with disabling timestamp block
1854 	 */
1855 	if (pf->ptp.port.link_up)
1856 		ice_ptp_port_phy_stop(&pf->ptp.port);
1857 
1858 	if (!ice_ptp_lock(hw)) {
1859 		err = -EBUSY;
1860 		goto exit;
1861 	}
1862 
1863 	/* Disable periodic outputs */
1864 	ice_ptp_disable_all_clkout(pf);
1865 
1866 	err = ice_ptp_write_init(pf, &ts64);
1867 	ice_ptp_unlock(hw);
1868 
1869 	if (!err)
1870 		ice_ptp_reset_cached_phctime(pf);
1871 
1872 	/* Reenable periodic outputs */
1873 	ice_ptp_enable_all_clkout(pf);
1874 
1875 	/* Recalibrate and re-enable timestamp block */
1876 	if (pf->ptp.port.link_up)
1877 		ice_ptp_port_phy_restart(&pf->ptp.port);
1878 exit:
1879 	if (err) {
1880 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1881 		return err;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1889  * @info: the driver's PTP info structure
1890  * @delta: Offset in nanoseconds to adjust the time by
1891  */
1892 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1893 {
1894 	struct timespec64 now, then;
1895 	int ret;
1896 
1897 	then = ns_to_timespec64(delta);
1898 	ret = ice_ptp_gettimex64(info, &now, NULL);
1899 	if (ret)
1900 		return ret;
1901 	now = timespec64_add(now, then);
1902 
1903 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1904 }
1905 
1906 /**
1907  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1908  * @info: the driver's PTP info structure
1909  * @delta: Offset in nanoseconds to adjust the time by
1910  */
1911 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1912 {
1913 	struct ice_pf *pf = ptp_info_to_pf(info);
1914 	struct ice_hw *hw = &pf->hw;
1915 	struct device *dev;
1916 	int err;
1917 
1918 	dev = ice_pf_to_dev(pf);
1919 
1920 	/* Hardware only supports atomic adjustments using signed 32-bit
1921 	 * integers. For any adjustment outside this range, perform
1922 	 * a non-atomic get->adjust->set flow.
1923 	 */
1924 	if (delta > S32_MAX || delta < S32_MIN) {
1925 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1926 		return ice_ptp_adjtime_nonatomic(info, delta);
1927 	}
1928 
1929 	if (!ice_ptp_lock(hw)) {
1930 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1931 		return -EBUSY;
1932 	}
1933 
1934 	/* Disable periodic outputs */
1935 	ice_ptp_disable_all_clkout(pf);
1936 
1937 	err = ice_ptp_write_adj(pf, delta);
1938 
1939 	/* Reenable periodic outputs */
1940 	ice_ptp_enable_all_clkout(pf);
1941 
1942 	ice_ptp_unlock(hw);
1943 
1944 	if (err) {
1945 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1946 		return err;
1947 	}
1948 
1949 	ice_ptp_reset_cached_phctime(pf);
1950 
1951 	return 0;
1952 }
1953 
1954 #ifdef CONFIG_ICE_HWTS
1955 /**
1956  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1957  * @device: Current device time
1958  * @system: System counter value read synchronously with device time
1959  * @ctx: Context provided by timekeeping code
1960  *
1961  * Read device and system (ART) clock simultaneously and return the corrected
1962  * clock values in ns.
1963  */
1964 static int
1965 ice_ptp_get_syncdevicetime(ktime_t *device,
1966 			   struct system_counterval_t *system,
1967 			   void *ctx)
1968 {
1969 	struct ice_pf *pf = (struct ice_pf *)ctx;
1970 	struct ice_hw *hw = &pf->hw;
1971 	u32 hh_lock, hh_art_ctl;
1972 	int i;
1973 
1974 	/* Get the HW lock */
1975 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1976 	if (hh_lock & PFHH_SEM_BUSY_M) {
1977 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1978 		return -EFAULT;
1979 	}
1980 
1981 	/* Start the ART and device clock sync sequence */
1982 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1983 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1984 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1985 
1986 #define MAX_HH_LOCK_TRIES 100
1987 
1988 	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1989 		/* Wait for sync to complete */
1990 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1991 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1992 			udelay(1);
1993 			continue;
1994 		} else {
1995 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1996 			u64 hh_ts;
1997 
1998 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1999 			/* Read ART time */
2000 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2001 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2002 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2003 			*system = convert_art_ns_to_tsc(hh_ts);
2004 			/* Read Device source clock time */
2005 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2006 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2007 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2008 			*device = ns_to_ktime(hh_ts);
2009 			break;
2010 		}
2011 	}
2012 	/* Release HW lock */
2013 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2014 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2015 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2016 
2017 	if (i == MAX_HH_LOCK_TRIES)
2018 		return -ETIMEDOUT;
2019 
2020 	return 0;
2021 }
2022 
2023 /**
2024  * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
2025  * @info: the driver's PTP info structure
2026  * @cts: The memory to fill the cross timestamp info
2027  *
2028  * Capture a cross timestamp between the ART and the device PTP hardware
2029  * clock. Fill the cross timestamp information and report it back to the
2030  * caller.
2031  *
2032  * This is only valid for E822 devices which have support for generating the
2033  * cross timestamp via PCIe PTM.
2034  *
2035  * In order to correctly correlate the ART timestamp back to the TSC time, the
2036  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2037  */
2038 static int
2039 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2040 			    struct system_device_crosststamp *cts)
2041 {
2042 	struct ice_pf *pf = ptp_info_to_pf(info);
2043 
2044 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2045 					     pf, NULL, cts);
2046 }
2047 #endif /* CONFIG_ICE_HWTS */
2048 
2049 /**
2050  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2051  * @pf: Board private structure
2052  * @ifr: ioctl data
2053  *
2054  * Copy the timestamping config to user buffer
2055  */
2056 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2057 {
2058 	struct hwtstamp_config *config;
2059 
2060 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2061 		return -EIO;
2062 
2063 	config = &pf->ptp.tstamp_config;
2064 
2065 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2066 		-EFAULT : 0;
2067 }
2068 
2069 /**
2070  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2071  * @pf: Board private structure
2072  * @config: hwtstamp settings requested or saved
2073  */
2074 static int
2075 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2076 {
2077 	switch (config->tx_type) {
2078 	case HWTSTAMP_TX_OFF:
2079 		ice_set_tx_tstamp(pf, false);
2080 		break;
2081 	case HWTSTAMP_TX_ON:
2082 		ice_set_tx_tstamp(pf, true);
2083 		break;
2084 	default:
2085 		return -ERANGE;
2086 	}
2087 
2088 	switch (config->rx_filter) {
2089 	case HWTSTAMP_FILTER_NONE:
2090 		ice_set_rx_tstamp(pf, false);
2091 		break;
2092 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2093 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2094 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2095 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2096 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2097 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2098 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2099 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2100 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2101 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2102 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2103 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2104 	case HWTSTAMP_FILTER_NTP_ALL:
2105 	case HWTSTAMP_FILTER_ALL:
2106 		ice_set_rx_tstamp(pf, true);
2107 		break;
2108 	default:
2109 		return -ERANGE;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 /**
2116  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2117  * @pf: Board private structure
2118  * @ifr: ioctl data
2119  *
2120  * Get the user config and store it
2121  */
2122 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2123 {
2124 	struct hwtstamp_config config;
2125 	int err;
2126 
2127 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2128 		return -EAGAIN;
2129 
2130 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2131 		return -EFAULT;
2132 
2133 	err = ice_ptp_set_timestamp_mode(pf, &config);
2134 	if (err)
2135 		return err;
2136 
2137 	/* Return the actual configuration set */
2138 	config = pf->ptp.tstamp_config;
2139 
2140 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2141 		-EFAULT : 0;
2142 }
2143 
2144 /**
2145  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2146  * @rx_ring: Ring to get the VSI info
2147  * @rx_desc: Receive descriptor
2148  * @skb: Particular skb to send timestamp with
2149  *
2150  * The driver receives a notification in the receive descriptor with timestamp.
2151  * The timestamp is in ns, so we must convert the result first.
2152  */
2153 void
2154 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2155 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2156 {
2157 	struct skb_shared_hwtstamps *hwtstamps;
2158 	u64 ts_ns, cached_time;
2159 	u32 ts_high;
2160 
2161 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2162 		return;
2163 
2164 	cached_time = READ_ONCE(rx_ring->cached_phctime);
2165 
2166 	/* Do not report a timestamp if we don't have a cached PHC time */
2167 	if (!cached_time)
2168 		return;
2169 
2170 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2171 	 * PHC value, rather than accessing the PF. This also allows us to
2172 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2173 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2174 	 * bits itself.
2175 	 */
2176 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2177 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2178 
2179 	hwtstamps = skb_hwtstamps(skb);
2180 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2181 	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2182 }
2183 
2184 /**
2185  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2186  * @pf: pointer to the PF structure
2187  * @info: PTP clock info structure
2188  *
2189  * Disable the OS access to the SMA pins. Called to clear out the OS
2190  * indications of pin support when we fail to setup the E810-T SMA control
2191  * register.
2192  */
2193 static void
2194 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2195 {
2196 	struct device *dev = ice_pf_to_dev(pf);
2197 
2198 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2199 
2200 	info->enable = NULL;
2201 	info->verify = NULL;
2202 	info->n_pins = 0;
2203 	info->n_ext_ts = 0;
2204 	info->n_per_out = 0;
2205 }
2206 
2207 /**
2208  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2209  * @pf: pointer to the PF structure
2210  * @info: PTP clock info structure
2211  *
2212  * Finish setting up the SMA pins by allocating pin_config, and setting it up
2213  * according to the current status of the SMA. On failure, disable all of the
2214  * extended SMA pin support.
2215  */
2216 static void
2217 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2218 {
2219 	struct device *dev = ice_pf_to_dev(pf);
2220 	int err;
2221 
2222 	/* Allocate memory for kernel pins interface */
2223 	info->pin_config = devm_kcalloc(dev, info->n_pins,
2224 					sizeof(*info->pin_config), GFP_KERNEL);
2225 	if (!info->pin_config) {
2226 		ice_ptp_disable_sma_pins_e810t(pf, info);
2227 		return;
2228 	}
2229 
2230 	/* Read current SMA status */
2231 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2232 	if (err)
2233 		ice_ptp_disable_sma_pins_e810t(pf, info);
2234 }
2235 
2236 /**
2237  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2238  * @pf: pointer to the PF instance
2239  * @info: PTP clock capabilities
2240  */
2241 static void
2242 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2243 {
2244 	info->n_per_out = N_PER_OUT_E810;
2245 
2246 	if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
2247 		info->n_ext_ts = N_EXT_TS_E810;
2248 
2249 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2250 		info->n_ext_ts = N_EXT_TS_E810;
2251 		info->n_pins = NUM_PTP_PINS_E810T;
2252 		info->verify = ice_verify_pin_e810t;
2253 
2254 		/* Complete setup of the SMA pins */
2255 		ice_ptp_setup_sma_pins_e810t(pf, info);
2256 	}
2257 }
2258 
2259 /**
2260  * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2261  * @pf: pointer to the PF instance
2262  * @info: PTP clock capabilities
2263  */
2264 static void
2265 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2266 {
2267 	info->pps = 1;
2268 	info->n_per_out = 0;
2269 	info->n_ext_ts = 1;
2270 }
2271 
2272 /**
2273  * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2274  * @pf: Board private structure
2275  * @info: PTP info to fill
2276  *
2277  * Assign functions to the PTP capabiltiies structure for E822 devices.
2278  * Functions which operate across all device families should be set directly
2279  * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2280  * devices.
2281  */
2282 static void
2283 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2284 {
2285 #ifdef CONFIG_ICE_HWTS
2286 	if (boot_cpu_has(X86_FEATURE_ART) &&
2287 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2288 		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2289 #endif /* CONFIG_ICE_HWTS */
2290 }
2291 
2292 /**
2293  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2294  * @pf: Board private structure
2295  * @info: PTP info to fill
2296  *
2297  * Assign functions to the PTP capabiltiies structure for E810 devices.
2298  * Functions which operate across all device families should be set directly
2299  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2300  * devices.
2301  */
2302 static void
2303 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2304 {
2305 	info->enable = ice_ptp_gpio_enable_e810;
2306 	ice_ptp_setup_pins_e810(pf, info);
2307 }
2308 
2309 /**
2310  * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2311  * @pf: Board private structure
2312  * @info: PTP info to fill
2313  *
2314  * Assign functions to the PTP capabiltiies structure for E823 devices.
2315  * Functions which operate across all device families should be set directly
2316  * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2317  * devices.
2318  */
2319 static void
2320 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2321 {
2322 	info->enable = ice_ptp_gpio_enable_e823;
2323 	ice_ptp_setup_pins_e823(pf, info);
2324 }
2325 
2326 /**
2327  * ice_ptp_set_caps - Set PTP capabilities
2328  * @pf: Board private structure
2329  */
2330 static void ice_ptp_set_caps(struct ice_pf *pf)
2331 {
2332 	struct ptp_clock_info *info = &pf->ptp.info;
2333 	struct device *dev = ice_pf_to_dev(pf);
2334 
2335 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2336 		 dev_driver_string(dev), dev_name(dev));
2337 	info->owner = THIS_MODULE;
2338 	info->max_adj = 100000000;
2339 	info->adjtime = ice_ptp_adjtime;
2340 	info->adjfine = ice_ptp_adjfine;
2341 	info->gettimex64 = ice_ptp_gettimex64;
2342 	info->settime64 = ice_ptp_settime64;
2343 
2344 	if (ice_is_e810(&pf->hw))
2345 		ice_ptp_set_funcs_e810(pf, info);
2346 	else if (ice_is_e823(&pf->hw))
2347 		ice_ptp_set_funcs_e823(pf, info);
2348 	else
2349 		ice_ptp_set_funcs_e822(pf, info);
2350 }
2351 
2352 /**
2353  * ice_ptp_create_clock - Create PTP clock device for userspace
2354  * @pf: Board private structure
2355  *
2356  * This function creates a new PTP clock device. It only creates one if we
2357  * don't already have one. Will return error if it can't create one, but success
2358  * if we already have a device. Should be used by ice_ptp_init to create clock
2359  * initially, and prevent global resets from creating new clock devices.
2360  */
2361 static long ice_ptp_create_clock(struct ice_pf *pf)
2362 {
2363 	struct ptp_clock_info *info;
2364 	struct ptp_clock *clock;
2365 	struct device *dev;
2366 
2367 	/* No need to create a clock device if we already have one */
2368 	if (pf->ptp.clock)
2369 		return 0;
2370 
2371 	ice_ptp_set_caps(pf);
2372 
2373 	info = &pf->ptp.info;
2374 	dev = ice_pf_to_dev(pf);
2375 
2376 	/* Attempt to register the clock before enabling the hardware. */
2377 	clock = ptp_clock_register(info, dev);
2378 	if (IS_ERR(clock))
2379 		return PTR_ERR(clock);
2380 
2381 	pf->ptp.clock = clock;
2382 
2383 	return 0;
2384 }
2385 
2386 /**
2387  * ice_ptp_request_ts - Request an available Tx timestamp index
2388  * @tx: the PTP Tx timestamp tracker to request from
2389  * @skb: the SKB to associate with this timestamp request
2390  */
2391 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2392 {
2393 	u8 idx;
2394 
2395 	spin_lock(&tx->lock);
2396 
2397 	/* Check that this tracker is accepting new timestamp requests */
2398 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2399 		spin_unlock(&tx->lock);
2400 		return -1;
2401 	}
2402 
2403 	/* Find and set the first available index */
2404 	idx = find_first_zero_bit(tx->in_use, tx->len);
2405 	if (idx < tx->len) {
2406 		/* We got a valid index that no other thread could have set. Store
2407 		 * a reference to the skb and the start time to allow discarding old
2408 		 * requests.
2409 		 */
2410 		set_bit(idx, tx->in_use);
2411 		clear_bit(idx, tx->stale);
2412 		tx->tstamps[idx].start = jiffies;
2413 		tx->tstamps[idx].skb = skb_get(skb);
2414 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2415 		ice_trace(tx_tstamp_request, skb, idx);
2416 	}
2417 
2418 	spin_unlock(&tx->lock);
2419 
2420 	/* return the appropriate PHY timestamp register index, -1 if no
2421 	 * indexes were available.
2422 	 */
2423 	if (idx >= tx->len)
2424 		return -1;
2425 	else
2426 		return idx + tx->offset;
2427 }
2428 
2429 /**
2430  * ice_ptp_process_ts - Process the PTP Tx timestamps
2431  * @pf: Board private structure
2432  *
2433  * Returns true if timestamps are processed.
2434  */
2435 bool ice_ptp_process_ts(struct ice_pf *pf)
2436 {
2437 	return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2438 }
2439 
2440 static void ice_ptp_periodic_work(struct kthread_work *work)
2441 {
2442 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2443 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2444 	int err;
2445 
2446 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2447 		return;
2448 
2449 	err = ice_ptp_update_cached_phctime(pf);
2450 
2451 	/* Run twice a second or reschedule if phc update failed */
2452 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2453 				   msecs_to_jiffies(err ? 10 : 500));
2454 }
2455 
2456 /**
2457  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2458  * @pf: Board private structure
2459  */
2460 void ice_ptp_reset(struct ice_pf *pf)
2461 {
2462 	struct ice_ptp *ptp = &pf->ptp;
2463 	struct ice_hw *hw = &pf->hw;
2464 	struct timespec64 ts;
2465 	int err, itr = 1;
2466 	u64 time_diff;
2467 
2468 	if (test_bit(ICE_PFR_REQ, pf->state))
2469 		goto pfr;
2470 
2471 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2472 		goto reset_ts;
2473 
2474 	err = ice_ptp_init_phc(hw);
2475 	if (err)
2476 		goto err;
2477 
2478 	/* Acquire the global hardware lock */
2479 	if (!ice_ptp_lock(hw)) {
2480 		err = -EBUSY;
2481 		goto err;
2482 	}
2483 
2484 	/* Write the increment time value to PHY and LAN */
2485 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2486 	if (err) {
2487 		ice_ptp_unlock(hw);
2488 		goto err;
2489 	}
2490 
2491 	/* Write the initial Time value to PHY and LAN using the cached PHC
2492 	 * time before the reset and time difference between stopping and
2493 	 * starting the clock.
2494 	 */
2495 	if (ptp->cached_phc_time) {
2496 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2497 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2498 	} else {
2499 		ts = ktime_to_timespec64(ktime_get_real());
2500 	}
2501 	err = ice_ptp_write_init(pf, &ts);
2502 	if (err) {
2503 		ice_ptp_unlock(hw);
2504 		goto err;
2505 	}
2506 
2507 	/* Release the global hardware lock */
2508 	ice_ptp_unlock(hw);
2509 
2510 	if (!ice_is_e810(hw)) {
2511 		/* Enable quad interrupts */
2512 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2513 		if (err)
2514 			goto err;
2515 	}
2516 
2517 reset_ts:
2518 	/* Restart the PHY timestamping block */
2519 	ice_ptp_reset_phy_timestamping(pf);
2520 
2521 pfr:
2522 	/* Init Tx structures */
2523 	if (ice_is_e810(&pf->hw)) {
2524 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2525 	} else {
2526 		kthread_init_delayed_work(&ptp->port.ov_work,
2527 					  ice_ptp_wait_for_offsets);
2528 		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2529 					   ptp->port.port_num);
2530 	}
2531 	if (err)
2532 		goto err;
2533 
2534 	set_bit(ICE_FLAG_PTP, pf->flags);
2535 
2536 	/* Start periodic work going */
2537 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2538 
2539 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2540 	return;
2541 
2542 err:
2543 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2544 }
2545 
2546 /**
2547  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2548  * @pf: Board private structure
2549  */
2550 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2551 {
2552 	struct ice_ptp *ptp = &pf->ptp;
2553 	u8 src_tmr;
2554 
2555 	clear_bit(ICE_FLAG_PTP, pf->flags);
2556 
2557 	/* Disable timestamping for both Tx and Rx */
2558 	ice_ptp_cfg_timestamp(pf, false);
2559 
2560 	kthread_cancel_delayed_work_sync(&ptp->work);
2561 	kthread_cancel_work_sync(&ptp->extts_work);
2562 
2563 	if (test_bit(ICE_PFR_REQ, pf->state))
2564 		return;
2565 
2566 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2567 
2568 	/* Disable periodic outputs */
2569 	ice_ptp_disable_all_clkout(pf);
2570 
2571 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2572 
2573 	/* Disable source clock */
2574 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2575 
2576 	/* Acquire PHC and system timer to restore after reset */
2577 	ptp->reset_time = ktime_get_real_ns();
2578 }
2579 
2580 /**
2581  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2582  * @pf: Board private structure
2583  *
2584  * Setup and initialize a PTP clock device that represents the device hardware
2585  * clock. Save the clock index for other functions connected to the same
2586  * hardware resource.
2587  */
2588 static int ice_ptp_init_owner(struct ice_pf *pf)
2589 {
2590 	struct ice_hw *hw = &pf->hw;
2591 	struct timespec64 ts;
2592 	int err, itr = 1;
2593 
2594 	err = ice_ptp_init_phc(hw);
2595 	if (err) {
2596 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2597 			err);
2598 		return err;
2599 	}
2600 
2601 	/* Acquire the global hardware lock */
2602 	if (!ice_ptp_lock(hw)) {
2603 		err = -EBUSY;
2604 		goto err_exit;
2605 	}
2606 
2607 	/* Write the increment time value to PHY and LAN */
2608 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2609 	if (err) {
2610 		ice_ptp_unlock(hw);
2611 		goto err_exit;
2612 	}
2613 
2614 	ts = ktime_to_timespec64(ktime_get_real());
2615 	/* Write the initial Time value to PHY and LAN */
2616 	err = ice_ptp_write_init(pf, &ts);
2617 	if (err) {
2618 		ice_ptp_unlock(hw);
2619 		goto err_exit;
2620 	}
2621 
2622 	/* Release the global hardware lock */
2623 	ice_ptp_unlock(hw);
2624 
2625 	if (!ice_is_e810(hw)) {
2626 		/* Enable quad interrupts */
2627 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2628 		if (err)
2629 			goto err_exit;
2630 	}
2631 
2632 	/* Ensure we have a clock device */
2633 	err = ice_ptp_create_clock(pf);
2634 	if (err)
2635 		goto err_clk;
2636 
2637 	/* Store the PTP clock index for other PFs */
2638 	ice_set_ptp_clock_index(pf);
2639 
2640 	return 0;
2641 
2642 err_clk:
2643 	pf->ptp.clock = NULL;
2644 err_exit:
2645 	return err;
2646 }
2647 
2648 /**
2649  * ice_ptp_init_work - Initialize PTP work threads
2650  * @pf: Board private structure
2651  * @ptp: PF PTP structure
2652  */
2653 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2654 {
2655 	struct kthread_worker *kworker;
2656 
2657 	/* Initialize work functions */
2658 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2659 	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2660 
2661 	/* Allocate a kworker for handling work required for the ports
2662 	 * connected to the PTP hardware clock.
2663 	 */
2664 	kworker = kthread_create_worker(0, "ice-ptp-%s",
2665 					dev_name(ice_pf_to_dev(pf)));
2666 	if (IS_ERR(kworker))
2667 		return PTR_ERR(kworker);
2668 
2669 	ptp->kworker = kworker;
2670 
2671 	/* Start periodic work going */
2672 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2673 
2674 	return 0;
2675 }
2676 
2677 /**
2678  * ice_ptp_init_port - Initialize PTP port structure
2679  * @pf: Board private structure
2680  * @ptp_port: PTP port structure
2681  */
2682 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2683 {
2684 	mutex_init(&ptp_port->ps_lock);
2685 
2686 	if (ice_is_e810(&pf->hw))
2687 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2688 
2689 	kthread_init_delayed_work(&ptp_port->ov_work,
2690 				  ice_ptp_wait_for_offsets);
2691 	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2692 }
2693 
2694 /**
2695  * ice_ptp_init - Initialize PTP hardware clock support
2696  * @pf: Board private structure
2697  *
2698  * Set up the device for interacting with the PTP hardware clock for all
2699  * functions, both the function that owns the clock hardware, and the
2700  * functions connected to the clock hardware.
2701  *
2702  * The clock owner will allocate and register a ptp_clock with the
2703  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2704  * items used for asynchronous work such as Tx timestamps and periodic work.
2705  */
2706 void ice_ptp_init(struct ice_pf *pf)
2707 {
2708 	struct ice_ptp *ptp = &pf->ptp;
2709 	struct ice_hw *hw = &pf->hw;
2710 	int err;
2711 
2712 	/* If this function owns the clock hardware, it must allocate and
2713 	 * configure the PTP clock device to represent it.
2714 	 */
2715 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2716 		err = ice_ptp_init_owner(pf);
2717 		if (err)
2718 			goto err;
2719 	}
2720 
2721 	ptp->port.port_num = hw->pf_id;
2722 	err = ice_ptp_init_port(pf, &ptp->port);
2723 	if (err)
2724 		goto err;
2725 
2726 	/* Start the PHY timestamping block */
2727 	ice_ptp_reset_phy_timestamping(pf);
2728 
2729 	set_bit(ICE_FLAG_PTP, pf->flags);
2730 	err = ice_ptp_init_work(pf, ptp);
2731 	if (err)
2732 		goto err;
2733 
2734 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2735 	return;
2736 
2737 err:
2738 	/* If we registered a PTP clock, release it */
2739 	if (pf->ptp.clock) {
2740 		ptp_clock_unregister(ptp->clock);
2741 		pf->ptp.clock = NULL;
2742 	}
2743 	clear_bit(ICE_FLAG_PTP, pf->flags);
2744 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2745 }
2746 
2747 /**
2748  * ice_ptp_release - Disable the driver/HW support and unregister the clock
2749  * @pf: Board private structure
2750  *
2751  * This function handles the cleanup work required from the initialization by
2752  * clearing out the important information and unregistering the clock
2753  */
2754 void ice_ptp_release(struct ice_pf *pf)
2755 {
2756 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2757 		return;
2758 
2759 	/* Disable timestamping for both Tx and Rx */
2760 	ice_ptp_cfg_timestamp(pf, false);
2761 
2762 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2763 
2764 	clear_bit(ICE_FLAG_PTP, pf->flags);
2765 
2766 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2767 
2768 	ice_ptp_port_phy_stop(&pf->ptp.port);
2769 	mutex_destroy(&pf->ptp.port.ps_lock);
2770 	if (pf->ptp.kworker) {
2771 		kthread_destroy_worker(pf->ptp.kworker);
2772 		pf->ptp.kworker = NULL;
2773 	}
2774 
2775 	if (!pf->ptp.clock)
2776 		return;
2777 
2778 	/* Disable periodic outputs */
2779 	ice_ptp_disable_all_clkout(pf);
2780 
2781 	ice_clear_ptp_clock_index(pf);
2782 	ptp_clock_unregister(pf->ptp.clock);
2783 	pf->ptp.clock = NULL;
2784 
2785 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2786 }
2787