1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 #define ICE_MBX_OVERFLOW_WATERMARK 64 1397 1398 /** 1399 * __ice_clean_ctrlq - helper function to clean controlq rings 1400 * @pf: ptr to struct ice_pf 1401 * @q_type: specific Control queue type 1402 */ 1403 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1404 { 1405 struct device *dev = ice_pf_to_dev(pf); 1406 struct ice_rq_event_info event; 1407 struct ice_hw *hw = &pf->hw; 1408 struct ice_ctl_q_info *cq; 1409 u16 pending, i = 0; 1410 const char *qtype; 1411 u32 oldval, val; 1412 1413 /* Do not clean control queue if/when PF reset fails */ 1414 if (test_bit(ICE_RESET_FAILED, pf->state)) 1415 return 0; 1416 1417 switch (q_type) { 1418 case ICE_CTL_Q_ADMIN: 1419 cq = &hw->adminq; 1420 qtype = "Admin"; 1421 break; 1422 case ICE_CTL_Q_SB: 1423 cq = &hw->sbq; 1424 qtype = "Sideband"; 1425 break; 1426 case ICE_CTL_Q_MAILBOX: 1427 cq = &hw->mailboxq; 1428 qtype = "Mailbox"; 1429 /* we are going to try to detect a malicious VF, so set the 1430 * state to begin detection 1431 */ 1432 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1433 break; 1434 default: 1435 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1436 return 0; 1437 } 1438 1439 /* check for error indications - PF_xx_AxQLEN register layout for 1440 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1441 */ 1442 val = rd32(hw, cq->rq.len); 1443 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1444 PF_FW_ARQLEN_ARQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ARQLEN_ARQVFE_M) 1447 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1450 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1454 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->rq.len, val); 1460 } 1461 1462 val = rd32(hw, cq->sq.len); 1463 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1464 PF_FW_ATQLEN_ATQCRIT_M)) { 1465 oldval = val; 1466 if (val & PF_FW_ATQLEN_ATQVFE_M) 1467 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1468 qtype); 1469 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1470 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1471 qtype); 1472 } 1473 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1474 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1475 qtype); 1476 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M); 1478 if (oldval != val) 1479 wr32(hw, cq->sq.len, val); 1480 } 1481 1482 event.buf_len = cq->rq_buf_size; 1483 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1484 if (!event.msg_buf) 1485 return 0; 1486 1487 do { 1488 struct ice_mbx_data data = {}; 1489 u16 opcode; 1490 int ret; 1491 1492 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1493 if (ret == -EALREADY) 1494 break; 1495 if (ret) { 1496 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1497 ret); 1498 break; 1499 } 1500 1501 opcode = le16_to_cpu(event.desc.opcode); 1502 1503 /* Notify any thread that might be waiting for this event */ 1504 ice_aq_check_events(pf, opcode, &event); 1505 1506 switch (opcode) { 1507 case ice_aqc_opc_get_link_status: 1508 if (ice_handle_link_event(pf, &event)) 1509 dev_err(dev, "Could not handle link event\n"); 1510 break; 1511 case ice_aqc_opc_event_lan_overflow: 1512 ice_vf_lan_overflow_event(pf, &event); 1513 break; 1514 case ice_mbx_opc_send_msg_to_pf: 1515 data.num_msg_proc = i; 1516 data.num_pending_arq = pending; 1517 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1518 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1519 1520 ice_vc_process_vf_msg(pf, &event, &data); 1521 break; 1522 case ice_aqc_opc_fw_logging: 1523 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1524 break; 1525 case ice_aqc_opc_lldp_set_mib_change: 1526 ice_dcb_process_lldp_set_mib_change(pf, &event); 1527 break; 1528 default: 1529 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1530 qtype, opcode); 1531 break; 1532 } 1533 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1534 1535 kfree(event.msg_buf); 1536 1537 return pending && (i == ICE_DFLT_IRQ_WORK); 1538 } 1539 1540 /** 1541 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1542 * @hw: pointer to hardware info 1543 * @cq: control queue information 1544 * 1545 * returns true if there are pending messages in a queue, false if there aren't 1546 */ 1547 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1548 { 1549 u16 ntu; 1550 1551 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1552 return cq->rq.next_to_clean != ntu; 1553 } 1554 1555 /** 1556 * ice_clean_adminq_subtask - clean the AdminQ rings 1557 * @pf: board private structure 1558 */ 1559 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1560 { 1561 struct ice_hw *hw = &pf->hw; 1562 1563 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1564 return; 1565 1566 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1567 return; 1568 1569 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1570 1571 /* There might be a situation where new messages arrive to a control 1572 * queue between processing the last message and clearing the 1573 * EVENT_PENDING bit. So before exiting, check queue head again (using 1574 * ice_ctrlq_pending) and process new messages if any. 1575 */ 1576 if (ice_ctrlq_pending(hw, &hw->adminq)) 1577 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1578 1579 ice_flush(hw); 1580 } 1581 1582 /** 1583 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1584 * @pf: board private structure 1585 */ 1586 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1587 { 1588 struct ice_hw *hw = &pf->hw; 1589 1590 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1591 return; 1592 1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1594 return; 1595 1596 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1597 1598 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1599 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1600 1601 ice_flush(hw); 1602 } 1603 1604 /** 1605 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 /* Nothing to do here if sideband queue is not supported */ 1613 if (!ice_is_sbq_supported(hw)) { 1614 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1615 return; 1616 } 1617 1618 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1619 return; 1620 1621 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1622 return; 1623 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 1626 if (ice_ctrlq_pending(hw, &hw->sbq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_service_task_schedule - schedule the service task to wake up 1634 * @pf: board private structure 1635 * 1636 * If not already scheduled, this puts the task into the work queue. 1637 */ 1638 void ice_service_task_schedule(struct ice_pf *pf) 1639 { 1640 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1641 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1642 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1643 queue_work(ice_wq, &pf->serv_task); 1644 } 1645 1646 /** 1647 * ice_service_task_complete - finish up the service task 1648 * @pf: board private structure 1649 */ 1650 static void ice_service_task_complete(struct ice_pf *pf) 1651 { 1652 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1653 1654 /* force memory (pf->state) to sync before next service task */ 1655 smp_mb__before_atomic(); 1656 clear_bit(ICE_SERVICE_SCHED, pf->state); 1657 } 1658 1659 /** 1660 * ice_service_task_stop - stop service task and cancel works 1661 * @pf: board private structure 1662 * 1663 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1664 * 1 otherwise. 1665 */ 1666 static int ice_service_task_stop(struct ice_pf *pf) 1667 { 1668 int ret; 1669 1670 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1671 1672 if (pf->serv_tmr.function) 1673 del_timer_sync(&pf->serv_tmr); 1674 if (pf->serv_task.func) 1675 cancel_work_sync(&pf->serv_task); 1676 1677 clear_bit(ICE_SERVICE_SCHED, pf->state); 1678 return ret; 1679 } 1680 1681 /** 1682 * ice_service_task_restart - restart service task and schedule works 1683 * @pf: board private structure 1684 * 1685 * This function is needed for suspend and resume works (e.g WoL scenario) 1686 */ 1687 static void ice_service_task_restart(struct ice_pf *pf) 1688 { 1689 clear_bit(ICE_SERVICE_DIS, pf->state); 1690 ice_service_task_schedule(pf); 1691 } 1692 1693 /** 1694 * ice_service_timer - timer callback to schedule service task 1695 * @t: pointer to timer_list 1696 */ 1697 static void ice_service_timer(struct timer_list *t) 1698 { 1699 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1700 1701 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_handle_mdd_event - handle malicious driver detect event 1707 * @pf: pointer to the PF structure 1708 * 1709 * Called from service task. OICR interrupt handler indicates MDD event. 1710 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1711 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1712 * disable the queue, the PF can be configured to reset the VF using ethtool 1713 * private flag mdd-auto-reset-vf. 1714 */ 1715 static void ice_handle_mdd_event(struct ice_pf *pf) 1716 { 1717 struct device *dev = ice_pf_to_dev(pf); 1718 struct ice_hw *hw = &pf->hw; 1719 struct ice_vf *vf; 1720 unsigned int bkt; 1721 u32 reg; 1722 1723 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1724 /* Since the VF MDD event logging is rate limited, check if 1725 * there are pending MDD events. 1726 */ 1727 ice_print_vfs_mdd_events(pf); 1728 return; 1729 } 1730 1731 /* find what triggered an MDD event */ 1732 reg = rd32(hw, GL_MDET_TX_PQM); 1733 if (reg & GL_MDET_TX_PQM_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1735 GL_MDET_TX_PQM_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1737 GL_MDET_TX_PQM_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1739 GL_MDET_TX_PQM_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1741 GL_MDET_TX_PQM_QNUM_S); 1742 1743 if (netif_msg_tx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1747 } 1748 1749 reg = rd32(hw, GL_MDET_TX_TCLAN); 1750 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1751 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1752 GL_MDET_TX_TCLAN_PF_NUM_S; 1753 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_VF_NUM_S; 1755 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1756 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1757 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1758 GL_MDET_TX_TCLAN_QNUM_S); 1759 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1762 event, queue, pf_num, vf_num); 1763 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1764 } 1765 1766 reg = rd32(hw, GL_MDET_RX); 1767 if (reg & GL_MDET_RX_VALID_M) { 1768 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1769 GL_MDET_RX_PF_NUM_S; 1770 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1771 GL_MDET_RX_VF_NUM_S; 1772 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1773 GL_MDET_RX_MAL_TYPE_S; 1774 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1775 GL_MDET_RX_QNUM_S); 1776 1777 if (netif_msg_rx_err(pf)) 1778 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1779 event, queue, pf_num, vf_num); 1780 wr32(hw, GL_MDET_RX, 0xffffffff); 1781 } 1782 1783 /* check to see if this PF caused an MDD event */ 1784 reg = rd32(hw, PF_MDET_TX_PQM); 1785 if (reg & PF_MDET_TX_PQM_VALID_M) { 1786 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_TX_TCLAN); 1792 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1793 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1796 } 1797 1798 reg = rd32(hw, PF_MDET_RX); 1799 if (reg & PF_MDET_RX_VALID_M) { 1800 wr32(hw, PF_MDET_RX, 0xFFFF); 1801 if (netif_msg_rx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1803 } 1804 1805 /* Check to see if one of the VFs caused an MDD event, and then 1806 * increment counters and set print pending 1807 */ 1808 mutex_lock(&pf->vfs.table_lock); 1809 ice_for_each_vf(pf, bkt, vf) { 1810 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1811 if (reg & VP_MDET_TX_PQM_VALID_M) { 1812 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1813 vf->mdd_tx_events.count++; 1814 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1817 vf->vf_id); 1818 } 1819 1820 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1821 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1822 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1841 if (reg & VP_MDET_RX_VALID_M) { 1842 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1843 vf->mdd_rx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1847 vf->vf_id); 1848 1849 /* Since the queue is disabled on VF Rx MDD events, the 1850 * PF can be configured to reset the VF through ethtool 1851 * private flag mdd-auto-reset-vf. 1852 */ 1853 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1854 /* VF MDD event counters will be cleared by 1855 * reset, so print the event prior to reset. 1856 */ 1857 ice_print_vf_rx_mdd_event(vf); 1858 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1859 } 1860 } 1861 } 1862 mutex_unlock(&pf->vfs.table_lock); 1863 1864 ice_print_vfs_mdd_events(pf); 1865 } 1866 1867 /** 1868 * ice_force_phys_link_state - Force the physical link state 1869 * @vsi: VSI to force the physical link state to up/down 1870 * @link_up: true/false indicates to set the physical link to up/down 1871 * 1872 * Force the physical link state by getting the current PHY capabilities from 1873 * hardware and setting the PHY config based on the determined capabilities. If 1874 * link changes a link event will be triggered because both the Enable Automatic 1875 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1876 * 1877 * Returns 0 on success, negative on failure 1878 */ 1879 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1880 { 1881 struct ice_aqc_get_phy_caps_data *pcaps; 1882 struct ice_aqc_set_phy_cfg_data *cfg; 1883 struct ice_port_info *pi; 1884 struct device *dev; 1885 int retcode; 1886 1887 if (!vsi || !vsi->port_info || !vsi->back) 1888 return -EINVAL; 1889 if (vsi->type != ICE_VSI_PF) 1890 return 0; 1891 1892 dev = ice_pf_to_dev(vsi->back); 1893 1894 pi = vsi->port_info; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1901 NULL); 1902 if (retcode) { 1903 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1904 vsi->vsi_num, retcode); 1905 retcode = -EIO; 1906 goto out; 1907 } 1908 1909 /* No change in link */ 1910 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1911 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1912 goto out; 1913 1914 /* Use the current user PHY configuration. The current user PHY 1915 * configuration is initialized during probe from PHY capabilities 1916 * software mode, and updated on set PHY configuration. 1917 */ 1918 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1919 if (!cfg) { 1920 retcode = -ENOMEM; 1921 goto out; 1922 } 1923 1924 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1925 if (link_up) 1926 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1927 else 1928 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1929 1930 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1931 if (retcode) { 1932 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1933 vsi->vsi_num, retcode); 1934 retcode = -EIO; 1935 } 1936 1937 kfree(cfg); 1938 out: 1939 kfree(pcaps); 1940 return retcode; 1941 } 1942 1943 /** 1944 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1945 * @pi: port info structure 1946 * 1947 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1948 */ 1949 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_pf *pf = pi->hw->back; 1953 int err; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1960 pcaps, NULL); 1961 1962 if (err) { 1963 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1964 goto out; 1965 } 1966 1967 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1968 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1969 1970 out: 1971 kfree(pcaps); 1972 return err; 1973 } 1974 1975 /** 1976 * ice_init_link_dflt_override - Initialize link default override 1977 * @pi: port info structure 1978 * 1979 * Initialize link default override and PHY total port shutdown during probe 1980 */ 1981 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1982 { 1983 struct ice_link_default_override_tlv *ldo; 1984 struct ice_pf *pf = pi->hw->back; 1985 1986 ldo = &pf->link_dflt_override; 1987 if (ice_get_link_default_override(ldo, pi)) 1988 return; 1989 1990 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1991 return; 1992 1993 /* Enable Total Port Shutdown (override/replace link-down-on-close 1994 * ethtool private flag) for ports with Port Disable bit set. 1995 */ 1996 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1997 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1998 } 1999 2000 /** 2001 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2002 * @pi: port info structure 2003 * 2004 * If default override is enabled, initialize the user PHY cfg speed and FEC 2005 * settings using the default override mask from the NVM. 2006 * 2007 * The PHY should only be configured with the default override settings the 2008 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2009 * is used to indicate that the user PHY cfg default override is initialized 2010 * and the PHY has not been configured with the default override settings. The 2011 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2012 * configured. 2013 * 2014 * This function should be called only if the FW doesn't support default 2015 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2016 */ 2017 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2018 { 2019 struct ice_link_default_override_tlv *ldo; 2020 struct ice_aqc_set_phy_cfg_data *cfg; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 2024 ldo = &pf->link_dflt_override; 2025 2026 /* If link default override is enabled, use to mask NVM PHY capabilities 2027 * for speed and FEC default configuration. 2028 */ 2029 cfg = &phy->curr_user_phy_cfg; 2030 2031 if (ldo->phy_type_low || ldo->phy_type_high) { 2032 cfg->phy_type_low = pf->nvm_phy_type_lo & 2033 cpu_to_le64(ldo->phy_type_low); 2034 cfg->phy_type_high = pf->nvm_phy_type_hi & 2035 cpu_to_le64(ldo->phy_type_high); 2036 } 2037 cfg->link_fec_opt = ldo->fec_options; 2038 phy->curr_user_fec_req = ICE_FEC_AUTO; 2039 2040 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2041 } 2042 2043 /** 2044 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2045 * @pi: port info structure 2046 * 2047 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2048 * mode to default. The PHY defaults are from get PHY capabilities topology 2049 * with media so call when media is first available. An error is returned if 2050 * called when media is not available. The PHY initialization completed state is 2051 * set here. 2052 * 2053 * These configurations are used when setting PHY 2054 * configuration. The user PHY configuration is updated on set PHY 2055 * configuration. Returns 0 on success, negative on failure 2056 */ 2057 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2058 { 2059 struct ice_aqc_get_phy_caps_data *pcaps; 2060 struct ice_phy_info *phy = &pi->phy; 2061 struct ice_pf *pf = pi->hw->back; 2062 int err; 2063 2064 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2065 return -EIO; 2066 2067 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2068 if (!pcaps) 2069 return -ENOMEM; 2070 2071 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2072 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2073 pcaps, NULL); 2074 else 2075 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2076 pcaps, NULL); 2077 if (err) { 2078 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2079 goto err_out; 2080 } 2081 2082 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2083 2084 /* check if lenient mode is supported and enabled */ 2085 if (ice_fw_supports_link_override(pi->hw) && 2086 !(pcaps->module_compliance_enforcement & 2087 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2088 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2089 2090 /* if the FW supports default PHY configuration mode, then the driver 2091 * does not have to apply link override settings. If not, 2092 * initialize user PHY configuration with link override values 2093 */ 2094 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2095 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2096 ice_init_phy_cfg_dflt_override(pi); 2097 goto out; 2098 } 2099 } 2100 2101 /* if link default override is not enabled, set user flow control and 2102 * FEC settings based on what get_phy_caps returned 2103 */ 2104 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2105 pcaps->link_fec_options); 2106 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2107 2108 out: 2109 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2110 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2111 err_out: 2112 kfree(pcaps); 2113 return err; 2114 } 2115 2116 /** 2117 * ice_configure_phy - configure PHY 2118 * @vsi: VSI of PHY 2119 * 2120 * Set the PHY configuration. If the current PHY configuration is the same as 2121 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2122 * configure the based get PHY capabilities for topology with media. 2123 */ 2124 static int ice_configure_phy(struct ice_vsi *vsi) 2125 { 2126 struct device *dev = ice_pf_to_dev(vsi->back); 2127 struct ice_port_info *pi = vsi->port_info; 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_aqc_set_phy_cfg_data *cfg; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = vsi->back; 2132 int err; 2133 2134 /* Ensure we have media as we cannot configure a medialess port */ 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EPERM; 2137 2138 ice_print_topo_conflict(vsi); 2139 2140 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2141 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2142 return -EPERM; 2143 2144 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2145 return ice_force_phys_link_state(vsi, true); 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 /* Get current PHY config */ 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2153 NULL); 2154 if (err) { 2155 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2156 vsi->vsi_num, err); 2157 goto done; 2158 } 2159 2160 /* If PHY enable link is configured and configuration has not changed, 2161 * there's nothing to do 2162 */ 2163 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2164 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2165 goto done; 2166 2167 /* Use PHY topology as baseline for configuration */ 2168 memset(pcaps, 0, sizeof(*pcaps)); 2169 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2170 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2171 pcaps, NULL); 2172 else 2173 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2174 pcaps, NULL); 2175 if (err) { 2176 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2177 vsi->vsi_num, err); 2178 goto done; 2179 } 2180 2181 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2182 if (!cfg) { 2183 err = -ENOMEM; 2184 goto done; 2185 } 2186 2187 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2188 2189 /* Speed - If default override pending, use curr_user_phy_cfg set in 2190 * ice_init_phy_user_cfg_ldo. 2191 */ 2192 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2193 vsi->back->state)) { 2194 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2195 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2196 } else { 2197 u64 phy_low = 0, phy_high = 0; 2198 2199 ice_update_phy_type(&phy_low, &phy_high, 2200 pi->phy.curr_user_speed_req); 2201 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2202 cfg->phy_type_high = pcaps->phy_type_high & 2203 cpu_to_le64(phy_high); 2204 } 2205 2206 /* Can't provide what was requested; use PHY capabilities */ 2207 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2208 cfg->phy_type_low = pcaps->phy_type_low; 2209 cfg->phy_type_high = pcaps->phy_type_high; 2210 } 2211 2212 /* FEC */ 2213 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2214 2215 /* Can't provide what was requested; use PHY capabilities */ 2216 if (cfg->link_fec_opt != 2217 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2218 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2219 cfg->link_fec_opt = pcaps->link_fec_options; 2220 } 2221 2222 /* Flow Control - always supported; no need to check against 2223 * capabilities 2224 */ 2225 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2226 2227 /* Enable link and link update */ 2228 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2229 2230 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2231 if (err) 2232 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 2235 kfree(cfg); 2236 done: 2237 kfree(pcaps); 2238 return err; 2239 } 2240 2241 /** 2242 * ice_check_media_subtask - Check for media 2243 * @pf: pointer to PF struct 2244 * 2245 * If media is available, then initialize PHY user configuration if it is not 2246 * been, and configure the PHY if the interface is up. 2247 */ 2248 static void ice_check_media_subtask(struct ice_pf *pf) 2249 { 2250 struct ice_port_info *pi; 2251 struct ice_vsi *vsi; 2252 int err; 2253 2254 /* No need to check for media if it's already present */ 2255 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2256 return; 2257 2258 vsi = ice_get_main_vsi(pf); 2259 if (!vsi) 2260 return; 2261 2262 /* Refresh link info and check if media is present */ 2263 pi = vsi->port_info; 2264 err = ice_update_link_info(pi); 2265 if (err) 2266 return; 2267 2268 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2269 2270 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2271 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2272 ice_init_phy_user_cfg(pi); 2273 2274 /* PHY settings are reset on media insertion, reconfigure 2275 * PHY to preserve settings. 2276 */ 2277 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2278 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2279 return; 2280 2281 err = ice_configure_phy(vsi); 2282 if (!err) 2283 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2284 2285 /* A Link Status Event will be generated; the event handler 2286 * will complete bringing the interface up 2287 */ 2288 } 2289 } 2290 2291 /** 2292 * ice_service_task - manage and run subtasks 2293 * @work: pointer to work_struct contained by the PF struct 2294 */ 2295 static void ice_service_task(struct work_struct *work) 2296 { 2297 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2298 unsigned long start_time = jiffies; 2299 2300 /* subtasks */ 2301 2302 /* process reset requests first */ 2303 ice_reset_subtask(pf); 2304 2305 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2306 if (ice_is_reset_in_progress(pf->state) || 2307 test_bit(ICE_SUSPENDED, pf->state) || 2308 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2309 ice_service_task_complete(pf); 2310 return; 2311 } 2312 2313 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2314 struct iidc_event *event; 2315 2316 event = kzalloc(sizeof(*event), GFP_KERNEL); 2317 if (event) { 2318 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2319 /* report the entire OICR value to AUX driver */ 2320 swap(event->reg, pf->oicr_err_reg); 2321 ice_send_event_to_aux(pf, event); 2322 kfree(event); 2323 } 2324 } 2325 2326 /* unplug aux dev per request, if an unplug request came in 2327 * while processing a plug request, this will handle it 2328 */ 2329 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2330 ice_unplug_aux_dev(pf); 2331 2332 /* Plug aux device per request */ 2333 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2334 ice_plug_aux_dev(pf); 2335 2336 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2337 struct iidc_event *event; 2338 2339 event = kzalloc(sizeof(*event), GFP_KERNEL); 2340 if (event) { 2341 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2342 ice_send_event_to_aux(pf, event); 2343 kfree(event); 2344 } 2345 } 2346 2347 ice_clean_adminq_subtask(pf); 2348 ice_check_media_subtask(pf); 2349 ice_check_for_hang_subtask(pf); 2350 ice_sync_fltr_subtask(pf); 2351 ice_handle_mdd_event(pf); 2352 ice_watchdog_subtask(pf); 2353 2354 if (ice_is_safe_mode(pf)) { 2355 ice_service_task_complete(pf); 2356 return; 2357 } 2358 2359 ice_process_vflr_event(pf); 2360 ice_clean_mailboxq_subtask(pf); 2361 ice_clean_sbq_subtask(pf); 2362 ice_sync_arfs_fltrs(pf); 2363 ice_flush_fdir_ctx(pf); 2364 2365 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2366 ice_service_task_complete(pf); 2367 2368 /* If the tasks have taken longer than one service timer period 2369 * or there is more work to be done, reset the service timer to 2370 * schedule the service task now. 2371 */ 2372 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2373 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2375 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2377 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2379 mod_timer(&pf->serv_tmr, jiffies); 2380 } 2381 2382 /** 2383 * ice_set_ctrlq_len - helper function to set controlq length 2384 * @hw: pointer to the HW instance 2385 */ 2386 static void ice_set_ctrlq_len(struct ice_hw *hw) 2387 { 2388 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2389 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2390 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2391 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2392 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2393 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2394 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2395 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2396 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2397 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2398 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2399 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2400 } 2401 2402 /** 2403 * ice_schedule_reset - schedule a reset 2404 * @pf: board private structure 2405 * @reset: reset being requested 2406 */ 2407 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2408 { 2409 struct device *dev = ice_pf_to_dev(pf); 2410 2411 /* bail out if earlier reset has failed */ 2412 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2413 dev_dbg(dev, "earlier reset has failed\n"); 2414 return -EIO; 2415 } 2416 /* bail if reset/recovery already in progress */ 2417 if (ice_is_reset_in_progress(pf->state)) { 2418 dev_dbg(dev, "Reset already in progress\n"); 2419 return -EBUSY; 2420 } 2421 2422 switch (reset) { 2423 case ICE_RESET_PFR: 2424 set_bit(ICE_PFR_REQ, pf->state); 2425 break; 2426 case ICE_RESET_CORER: 2427 set_bit(ICE_CORER_REQ, pf->state); 2428 break; 2429 case ICE_RESET_GLOBR: 2430 set_bit(ICE_GLOBR_REQ, pf->state); 2431 break; 2432 default: 2433 return -EINVAL; 2434 } 2435 2436 ice_service_task_schedule(pf); 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_irq_affinity_notify - Callback for affinity changes 2442 * @notify: context as to what irq was changed 2443 * @mask: the new affinity mask 2444 * 2445 * This is a callback function used by the irq_set_affinity_notifier function 2446 * so that we may register to receive changes to the irq affinity masks. 2447 */ 2448 static void 2449 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2450 const cpumask_t *mask) 2451 { 2452 struct ice_q_vector *q_vector = 2453 container_of(notify, struct ice_q_vector, affinity_notify); 2454 2455 cpumask_copy(&q_vector->affinity_mask, mask); 2456 } 2457 2458 /** 2459 * ice_irq_affinity_release - Callback for affinity notifier release 2460 * @ref: internal core kernel usage 2461 * 2462 * This is a callback function used by the irq_set_affinity_notifier function 2463 * to inform the current notification subscriber that they will no longer 2464 * receive notifications. 2465 */ 2466 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2467 2468 /** 2469 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2470 * @vsi: the VSI being configured 2471 */ 2472 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2473 { 2474 struct ice_hw *hw = &vsi->back->hw; 2475 int i; 2476 2477 ice_for_each_q_vector(vsi, i) 2478 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2479 2480 ice_flush(hw); 2481 return 0; 2482 } 2483 2484 /** 2485 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2486 * @vsi: the VSI being configured 2487 * @basename: name for the vector 2488 */ 2489 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2490 { 2491 int q_vectors = vsi->num_q_vectors; 2492 struct ice_pf *pf = vsi->back; 2493 int base = vsi->base_vector; 2494 struct device *dev; 2495 int rx_int_idx = 0; 2496 int tx_int_idx = 0; 2497 int vector, err; 2498 int irq_num; 2499 2500 dev = ice_pf_to_dev(pf); 2501 for (vector = 0; vector < q_vectors; vector++) { 2502 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2503 2504 irq_num = pf->msix_entries[base + vector].vector; 2505 2506 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2508 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2509 tx_int_idx++; 2510 } else if (q_vector->rx.rx_ring) { 2511 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2512 "%s-%s-%d", basename, "rx", rx_int_idx++); 2513 } else if (q_vector->tx.tx_ring) { 2514 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2515 "%s-%s-%d", basename, "tx", tx_int_idx++); 2516 } else { 2517 /* skip this unused q_vector */ 2518 continue; 2519 } 2520 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2522 IRQF_SHARED, q_vector->name, 2523 q_vector); 2524 else 2525 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2526 0, q_vector->name, q_vector); 2527 if (err) { 2528 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2529 err); 2530 goto free_q_irqs; 2531 } 2532 2533 /* register for affinity change notifications */ 2534 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2535 struct irq_affinity_notify *affinity_notify; 2536 2537 affinity_notify = &q_vector->affinity_notify; 2538 affinity_notify->notify = ice_irq_affinity_notify; 2539 affinity_notify->release = ice_irq_affinity_release; 2540 irq_set_affinity_notifier(irq_num, affinity_notify); 2541 } 2542 2543 /* assign the mask for this irq */ 2544 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2545 } 2546 2547 err = ice_set_cpu_rx_rmap(vsi); 2548 if (err) { 2549 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2550 vsi->vsi_num, ERR_PTR(err)); 2551 goto free_q_irqs; 2552 } 2553 2554 vsi->irqs_ready = true; 2555 return 0; 2556 2557 free_q_irqs: 2558 while (vector) { 2559 vector--; 2560 irq_num = pf->msix_entries[base + vector].vector; 2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2562 irq_set_affinity_notifier(irq_num, NULL); 2563 irq_set_affinity_hint(irq_num, NULL); 2564 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2565 } 2566 return err; 2567 } 2568 2569 /** 2570 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2571 * @vsi: VSI to setup Tx rings used by XDP 2572 * 2573 * Return 0 on success and negative value on error 2574 */ 2575 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2576 { 2577 struct device *dev = ice_pf_to_dev(vsi->back); 2578 struct ice_tx_desc *tx_desc; 2579 int i, j; 2580 2581 ice_for_each_xdp_txq(vsi, i) { 2582 u16 xdp_q_idx = vsi->alloc_txq + i; 2583 struct ice_ring_stats *ring_stats; 2584 struct ice_tx_ring *xdp_ring; 2585 2586 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2587 if (!xdp_ring) 2588 goto free_xdp_rings; 2589 2590 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2591 if (!ring_stats) { 2592 ice_free_tx_ring(xdp_ring); 2593 goto free_xdp_rings; 2594 } 2595 2596 xdp_ring->ring_stats = ring_stats; 2597 xdp_ring->q_index = xdp_q_idx; 2598 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2599 xdp_ring->vsi = vsi; 2600 xdp_ring->netdev = NULL; 2601 xdp_ring->dev = dev; 2602 xdp_ring->count = vsi->num_tx_desc; 2603 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2604 if (ice_setup_tx_ring(xdp_ring)) 2605 goto free_xdp_rings; 2606 ice_set_ring_xdp(xdp_ring); 2607 spin_lock_init(&xdp_ring->tx_lock); 2608 for (j = 0; j < xdp_ring->count; j++) { 2609 tx_desc = ICE_TX_DESC(xdp_ring, j); 2610 tx_desc->cmd_type_offset_bsz = 0; 2611 } 2612 } 2613 2614 return 0; 2615 2616 free_xdp_rings: 2617 for (; i >= 0; i--) { 2618 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2619 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2620 vsi->xdp_rings[i]->ring_stats = NULL; 2621 ice_free_tx_ring(vsi->xdp_rings[i]); 2622 } 2623 } 2624 return -ENOMEM; 2625 } 2626 2627 /** 2628 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2629 * @vsi: VSI to set the bpf prog on 2630 * @prog: the bpf prog pointer 2631 */ 2632 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2633 { 2634 struct bpf_prog *old_prog; 2635 int i; 2636 2637 old_prog = xchg(&vsi->xdp_prog, prog); 2638 if (old_prog) 2639 bpf_prog_put(old_prog); 2640 2641 ice_for_each_rxq(vsi, i) 2642 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2643 } 2644 2645 /** 2646 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2647 * @vsi: VSI to bring up Tx rings used by XDP 2648 * @prog: bpf program that will be assigned to VSI 2649 * 2650 * Return 0 on success and negative value on error 2651 */ 2652 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2653 { 2654 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2655 int xdp_rings_rem = vsi->num_xdp_txq; 2656 struct ice_pf *pf = vsi->back; 2657 struct ice_qs_cfg xdp_qs_cfg = { 2658 .qs_mutex = &pf->avail_q_mutex, 2659 .pf_map = pf->avail_txqs, 2660 .pf_map_size = pf->max_pf_txqs, 2661 .q_count = vsi->num_xdp_txq, 2662 .scatter_count = ICE_MAX_SCATTER_TXQS, 2663 .vsi_map = vsi->txq_map, 2664 .vsi_map_offset = vsi->alloc_txq, 2665 .mapping_mode = ICE_VSI_MAP_CONTIG 2666 }; 2667 struct device *dev; 2668 int i, v_idx; 2669 int status; 2670 2671 dev = ice_pf_to_dev(pf); 2672 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2673 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2674 if (!vsi->xdp_rings) 2675 return -ENOMEM; 2676 2677 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2678 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2679 goto err_map_xdp; 2680 2681 if (static_key_enabled(&ice_xdp_locking_key)) 2682 netdev_warn(vsi->netdev, 2683 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2684 2685 if (ice_xdp_alloc_setup_rings(vsi)) 2686 goto clear_xdp_rings; 2687 2688 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2689 ice_for_each_q_vector(vsi, v_idx) { 2690 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2691 int xdp_rings_per_v, q_id, q_base; 2692 2693 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2694 vsi->num_q_vectors - v_idx); 2695 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2696 2697 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2698 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2699 2700 xdp_ring->q_vector = q_vector; 2701 xdp_ring->next = q_vector->tx.tx_ring; 2702 q_vector->tx.tx_ring = xdp_ring; 2703 } 2704 xdp_rings_rem -= xdp_rings_per_v; 2705 } 2706 2707 ice_for_each_rxq(vsi, i) { 2708 if (static_key_enabled(&ice_xdp_locking_key)) { 2709 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2710 } else { 2711 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2712 struct ice_tx_ring *ring; 2713 2714 ice_for_each_tx_ring(ring, q_vector->tx) { 2715 if (ice_ring_is_xdp(ring)) { 2716 vsi->rx_rings[i]->xdp_ring = ring; 2717 break; 2718 } 2719 } 2720 } 2721 ice_tx_xsk_pool(vsi, i); 2722 } 2723 2724 /* omit the scheduler update if in reset path; XDP queues will be 2725 * taken into account at the end of ice_vsi_rebuild, where 2726 * ice_cfg_vsi_lan is being called 2727 */ 2728 if (ice_is_reset_in_progress(pf->state)) 2729 return 0; 2730 2731 /* tell the Tx scheduler that right now we have 2732 * additional queues 2733 */ 2734 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2735 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2736 2737 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2738 max_txqs); 2739 if (status) { 2740 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2741 status); 2742 goto clear_xdp_rings; 2743 } 2744 2745 /* assign the prog only when it's not already present on VSI; 2746 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2747 * VSI rebuild that happens under ethtool -L can expose us to 2748 * the bpf_prog refcount issues as we would be swapping same 2749 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2750 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2751 * this is not harmful as dev_xdp_install bumps the refcount 2752 * before calling the op exposed by the driver; 2753 */ 2754 if (!ice_is_xdp_ena_vsi(vsi)) 2755 ice_vsi_assign_bpf_prog(vsi, prog); 2756 2757 return 0; 2758 clear_xdp_rings: 2759 ice_for_each_xdp_txq(vsi, i) 2760 if (vsi->xdp_rings[i]) { 2761 kfree_rcu(vsi->xdp_rings[i], rcu); 2762 vsi->xdp_rings[i] = NULL; 2763 } 2764 2765 err_map_xdp: 2766 mutex_lock(&pf->avail_q_mutex); 2767 ice_for_each_xdp_txq(vsi, i) { 2768 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2769 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2770 } 2771 mutex_unlock(&pf->avail_q_mutex); 2772 2773 devm_kfree(dev, vsi->xdp_rings); 2774 return -ENOMEM; 2775 } 2776 2777 /** 2778 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2779 * @vsi: VSI to remove XDP rings 2780 * 2781 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2782 * resources 2783 */ 2784 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2785 { 2786 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2787 struct ice_pf *pf = vsi->back; 2788 int i, v_idx; 2789 2790 /* q_vectors are freed in reset path so there's no point in detaching 2791 * rings; in case of rebuild being triggered not from reset bits 2792 * in pf->state won't be set, so additionally check first q_vector 2793 * against NULL 2794 */ 2795 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2796 goto free_qmap; 2797 2798 ice_for_each_q_vector(vsi, v_idx) { 2799 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2800 struct ice_tx_ring *ring; 2801 2802 ice_for_each_tx_ring(ring, q_vector->tx) 2803 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2804 break; 2805 2806 /* restore the value of last node prior to XDP setup */ 2807 q_vector->tx.tx_ring = ring; 2808 } 2809 2810 free_qmap: 2811 mutex_lock(&pf->avail_q_mutex); 2812 ice_for_each_xdp_txq(vsi, i) { 2813 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2814 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2815 } 2816 mutex_unlock(&pf->avail_q_mutex); 2817 2818 ice_for_each_xdp_txq(vsi, i) 2819 if (vsi->xdp_rings[i]) { 2820 if (vsi->xdp_rings[i]->desc) { 2821 synchronize_rcu(); 2822 ice_free_tx_ring(vsi->xdp_rings[i]); 2823 } 2824 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2825 vsi->xdp_rings[i]->ring_stats = NULL; 2826 kfree_rcu(vsi->xdp_rings[i], rcu); 2827 vsi->xdp_rings[i] = NULL; 2828 } 2829 2830 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2831 vsi->xdp_rings = NULL; 2832 2833 if (static_key_enabled(&ice_xdp_locking_key)) 2834 static_branch_dec(&ice_xdp_locking_key); 2835 2836 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2837 return 0; 2838 2839 ice_vsi_assign_bpf_prog(vsi, NULL); 2840 2841 /* notify Tx scheduler that we destroyed XDP queues and bring 2842 * back the old number of child nodes 2843 */ 2844 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2845 max_txqs[i] = vsi->num_txq; 2846 2847 /* change number of XDP Tx queues to 0 */ 2848 vsi->num_xdp_txq = 0; 2849 2850 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2851 max_txqs); 2852 } 2853 2854 /** 2855 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2856 * @vsi: VSI to schedule napi on 2857 */ 2858 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2859 { 2860 int i; 2861 2862 ice_for_each_rxq(vsi, i) { 2863 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2864 2865 if (rx_ring->xsk_pool) 2866 napi_schedule(&rx_ring->q_vector->napi); 2867 } 2868 } 2869 2870 /** 2871 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2872 * @vsi: VSI to determine the count of XDP Tx qs 2873 * 2874 * returns 0 if Tx qs count is higher than at least half of CPU count, 2875 * -ENOMEM otherwise 2876 */ 2877 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2878 { 2879 u16 avail = ice_get_avail_txq_count(vsi->back); 2880 u16 cpus = num_possible_cpus(); 2881 2882 if (avail < cpus / 2) 2883 return -ENOMEM; 2884 2885 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2886 2887 if (vsi->num_xdp_txq < cpus) 2888 static_branch_inc(&ice_xdp_locking_key); 2889 2890 return 0; 2891 } 2892 2893 /** 2894 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2895 * @vsi: Pointer to VSI structure 2896 */ 2897 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2898 { 2899 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2900 return ICE_RXBUF_1664; 2901 else 2902 return ICE_RXBUF_3072; 2903 } 2904 2905 /** 2906 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2907 * @vsi: VSI to setup XDP for 2908 * @prog: XDP program 2909 * @extack: netlink extended ack 2910 */ 2911 static int 2912 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2913 struct netlink_ext_ack *extack) 2914 { 2915 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2916 bool if_running = netif_running(vsi->netdev); 2917 int ret = 0, xdp_ring_err = 0; 2918 2919 if (prog && !prog->aux->xdp_has_frags) { 2920 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2921 NL_SET_ERR_MSG_MOD(extack, 2922 "MTU is too large for linear frames and XDP prog does not support frags"); 2923 return -EOPNOTSUPP; 2924 } 2925 } 2926 2927 /* need to stop netdev while setting up the program for Rx rings */ 2928 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2929 ret = ice_down(vsi); 2930 if (ret) { 2931 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2932 return ret; 2933 } 2934 } 2935 2936 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2937 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2938 if (xdp_ring_err) { 2939 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2940 } else { 2941 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2942 if (xdp_ring_err) 2943 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2944 } 2945 xdp_features_set_redirect_target(vsi->netdev, true); 2946 /* reallocate Rx queues that are used for zero-copy */ 2947 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2948 if (xdp_ring_err) 2949 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2950 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2951 xdp_features_clear_redirect_target(vsi->netdev); 2952 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2953 if (xdp_ring_err) 2954 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2955 /* reallocate Rx queues that were used for zero-copy */ 2956 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2957 if (xdp_ring_err) 2958 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2959 } else { 2960 /* safe to call even when prog == vsi->xdp_prog as 2961 * dev_xdp_install in net/core/dev.c incremented prog's 2962 * refcount so corresponding bpf_prog_put won't cause 2963 * underflow 2964 */ 2965 ice_vsi_assign_bpf_prog(vsi, prog); 2966 } 2967 2968 if (if_running) 2969 ret = ice_up(vsi); 2970 2971 if (!ret && prog) 2972 ice_vsi_rx_napi_schedule(vsi); 2973 2974 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2975 } 2976 2977 /** 2978 * ice_xdp_safe_mode - XDP handler for safe mode 2979 * @dev: netdevice 2980 * @xdp: XDP command 2981 */ 2982 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2983 struct netdev_bpf *xdp) 2984 { 2985 NL_SET_ERR_MSG_MOD(xdp->extack, 2986 "Please provide working DDP firmware package in order to use XDP\n" 2987 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2988 return -EOPNOTSUPP; 2989 } 2990 2991 /** 2992 * ice_xdp - implements XDP handler 2993 * @dev: netdevice 2994 * @xdp: XDP command 2995 */ 2996 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2997 { 2998 struct ice_netdev_priv *np = netdev_priv(dev); 2999 struct ice_vsi *vsi = np->vsi; 3000 3001 if (vsi->type != ICE_VSI_PF) { 3002 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3003 return -EINVAL; 3004 } 3005 3006 switch (xdp->command) { 3007 case XDP_SETUP_PROG: 3008 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3009 case XDP_SETUP_XSK_POOL: 3010 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3011 xdp->xsk.queue_id); 3012 default: 3013 return -EINVAL; 3014 } 3015 } 3016 3017 /** 3018 * ice_ena_misc_vector - enable the non-queue interrupts 3019 * @pf: board private structure 3020 */ 3021 static void ice_ena_misc_vector(struct ice_pf *pf) 3022 { 3023 struct ice_hw *hw = &pf->hw; 3024 u32 val; 3025 3026 /* Disable anti-spoof detection interrupt to prevent spurious event 3027 * interrupts during a function reset. Anti-spoof functionally is 3028 * still supported. 3029 */ 3030 val = rd32(hw, GL_MDCK_TX_TDPU); 3031 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3032 wr32(hw, GL_MDCK_TX_TDPU, val); 3033 3034 /* clear things first */ 3035 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3036 rd32(hw, PFINT_OICR); /* read to clear */ 3037 3038 val = (PFINT_OICR_ECC_ERR_M | 3039 PFINT_OICR_MAL_DETECT_M | 3040 PFINT_OICR_GRST_M | 3041 PFINT_OICR_PCI_EXCEPTION_M | 3042 PFINT_OICR_VFLR_M | 3043 PFINT_OICR_HMC_ERR_M | 3044 PFINT_OICR_PE_PUSH_M | 3045 PFINT_OICR_PE_CRITERR_M); 3046 3047 wr32(hw, PFINT_OICR_ENA, val); 3048 3049 /* SW_ITR_IDX = 0, but don't change INTENA */ 3050 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3051 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3052 } 3053 3054 /** 3055 * ice_misc_intr - misc interrupt handler 3056 * @irq: interrupt number 3057 * @data: pointer to a q_vector 3058 */ 3059 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3060 { 3061 struct ice_pf *pf = (struct ice_pf *)data; 3062 struct ice_hw *hw = &pf->hw; 3063 irqreturn_t ret = IRQ_NONE; 3064 struct device *dev; 3065 u32 oicr, ena_mask; 3066 3067 dev = ice_pf_to_dev(pf); 3068 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3069 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3070 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3071 3072 oicr = rd32(hw, PFINT_OICR); 3073 ena_mask = rd32(hw, PFINT_OICR_ENA); 3074 3075 if (oicr & PFINT_OICR_SWINT_M) { 3076 ena_mask &= ~PFINT_OICR_SWINT_M; 3077 pf->sw_int_count++; 3078 } 3079 3080 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3081 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3082 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3083 } 3084 if (oicr & PFINT_OICR_VFLR_M) { 3085 /* disable any further VFLR event notifications */ 3086 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3087 u32 reg = rd32(hw, PFINT_OICR_ENA); 3088 3089 reg &= ~PFINT_OICR_VFLR_M; 3090 wr32(hw, PFINT_OICR_ENA, reg); 3091 } else { 3092 ena_mask &= ~PFINT_OICR_VFLR_M; 3093 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3094 } 3095 } 3096 3097 if (oicr & PFINT_OICR_GRST_M) { 3098 u32 reset; 3099 3100 /* we have a reset warning */ 3101 ena_mask &= ~PFINT_OICR_GRST_M; 3102 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3103 GLGEN_RSTAT_RESET_TYPE_S; 3104 3105 if (reset == ICE_RESET_CORER) 3106 pf->corer_count++; 3107 else if (reset == ICE_RESET_GLOBR) 3108 pf->globr_count++; 3109 else if (reset == ICE_RESET_EMPR) 3110 pf->empr_count++; 3111 else 3112 dev_dbg(dev, "Invalid reset type %d\n", reset); 3113 3114 /* If a reset cycle isn't already in progress, we set a bit in 3115 * pf->state so that the service task can start a reset/rebuild. 3116 */ 3117 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3118 if (reset == ICE_RESET_CORER) 3119 set_bit(ICE_CORER_RECV, pf->state); 3120 else if (reset == ICE_RESET_GLOBR) 3121 set_bit(ICE_GLOBR_RECV, pf->state); 3122 else 3123 set_bit(ICE_EMPR_RECV, pf->state); 3124 3125 /* There are couple of different bits at play here. 3126 * hw->reset_ongoing indicates whether the hardware is 3127 * in reset. This is set to true when a reset interrupt 3128 * is received and set back to false after the driver 3129 * has determined that the hardware is out of reset. 3130 * 3131 * ICE_RESET_OICR_RECV in pf->state indicates 3132 * that a post reset rebuild is required before the 3133 * driver is operational again. This is set above. 3134 * 3135 * As this is the start of the reset/rebuild cycle, set 3136 * both to indicate that. 3137 */ 3138 hw->reset_ongoing = true; 3139 } 3140 } 3141 3142 if (oicr & PFINT_OICR_TSYN_TX_M) { 3143 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3144 if (!hw->reset_ongoing) 3145 ret = IRQ_WAKE_THREAD; 3146 } 3147 3148 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3149 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3150 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3151 3152 /* Save EVENTs from GTSYN register */ 3153 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3154 GLTSYN_STAT_EVENT1_M | 3155 GLTSYN_STAT_EVENT2_M); 3156 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3157 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3158 } 3159 3160 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3161 if (oicr & ICE_AUX_CRIT_ERR) { 3162 pf->oicr_err_reg |= oicr; 3163 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3164 ena_mask &= ~ICE_AUX_CRIT_ERR; 3165 } 3166 3167 /* Report any remaining unexpected interrupts */ 3168 oicr &= ena_mask; 3169 if (oicr) { 3170 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3171 /* If a critical error is pending there is no choice but to 3172 * reset the device. 3173 */ 3174 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3175 PFINT_OICR_ECC_ERR_M)) { 3176 set_bit(ICE_PFR_REQ, pf->state); 3177 ice_service_task_schedule(pf); 3178 } 3179 } 3180 if (!ret) 3181 ret = IRQ_HANDLED; 3182 3183 ice_service_task_schedule(pf); 3184 ice_irq_dynamic_ena(hw, NULL, NULL); 3185 3186 return ret; 3187 } 3188 3189 /** 3190 * ice_misc_intr_thread_fn - misc interrupt thread function 3191 * @irq: interrupt number 3192 * @data: pointer to a q_vector 3193 */ 3194 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3195 { 3196 struct ice_pf *pf = data; 3197 3198 if (ice_is_reset_in_progress(pf->state)) 3199 return IRQ_HANDLED; 3200 3201 while (!ice_ptp_process_ts(pf)) 3202 usleep_range(50, 100); 3203 3204 return IRQ_HANDLED; 3205 } 3206 3207 /** 3208 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3209 * @hw: pointer to HW structure 3210 */ 3211 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3212 { 3213 /* disable Admin queue Interrupt causes */ 3214 wr32(hw, PFINT_FW_CTL, 3215 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3216 3217 /* disable Mailbox queue Interrupt causes */ 3218 wr32(hw, PFINT_MBX_CTL, 3219 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3220 3221 wr32(hw, PFINT_SB_CTL, 3222 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3223 3224 /* disable Control queue Interrupt causes */ 3225 wr32(hw, PFINT_OICR_CTL, 3226 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3227 3228 ice_flush(hw); 3229 } 3230 3231 /** 3232 * ice_free_irq_msix_misc - Unroll misc vector setup 3233 * @pf: board private structure 3234 */ 3235 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3236 { 3237 struct ice_hw *hw = &pf->hw; 3238 3239 ice_dis_ctrlq_interrupts(hw); 3240 3241 /* disable OICR interrupt */ 3242 wr32(hw, PFINT_OICR_ENA, 0); 3243 ice_flush(hw); 3244 3245 if (pf->msix_entries) { 3246 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3247 devm_free_irq(ice_pf_to_dev(pf), 3248 pf->msix_entries[pf->oicr_idx].vector, pf); 3249 } 3250 3251 pf->num_avail_sw_msix += 1; 3252 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3253 } 3254 3255 /** 3256 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3257 * @hw: pointer to HW structure 3258 * @reg_idx: HW vector index to associate the control queue interrupts with 3259 */ 3260 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3261 { 3262 u32 val; 3263 3264 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3265 PFINT_OICR_CTL_CAUSE_ENA_M); 3266 wr32(hw, PFINT_OICR_CTL, val); 3267 3268 /* enable Admin queue Interrupt causes */ 3269 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3270 PFINT_FW_CTL_CAUSE_ENA_M); 3271 wr32(hw, PFINT_FW_CTL, val); 3272 3273 /* enable Mailbox queue Interrupt causes */ 3274 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3275 PFINT_MBX_CTL_CAUSE_ENA_M); 3276 wr32(hw, PFINT_MBX_CTL, val); 3277 3278 /* This enables Sideband queue Interrupt causes */ 3279 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3280 PFINT_SB_CTL_CAUSE_ENA_M); 3281 wr32(hw, PFINT_SB_CTL, val); 3282 3283 ice_flush(hw); 3284 } 3285 3286 /** 3287 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3288 * @pf: board private structure 3289 * 3290 * This sets up the handler for MSIX 0, which is used to manage the 3291 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3292 * when in MSI or Legacy interrupt mode. 3293 */ 3294 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3295 { 3296 struct device *dev = ice_pf_to_dev(pf); 3297 struct ice_hw *hw = &pf->hw; 3298 int oicr_idx, err = 0; 3299 3300 if (!pf->int_name[0]) 3301 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3302 dev_driver_string(dev), dev_name(dev)); 3303 3304 /* Do not request IRQ but do enable OICR interrupt since settings are 3305 * lost during reset. Note that this function is called only during 3306 * rebuild path and not while reset is in progress. 3307 */ 3308 if (ice_is_reset_in_progress(pf->state)) 3309 goto skip_req_irq; 3310 3311 /* reserve one vector in irq_tracker for misc interrupts */ 3312 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3313 if (oicr_idx < 0) 3314 return oicr_idx; 3315 3316 pf->num_avail_sw_msix -= 1; 3317 pf->oicr_idx = (u16)oicr_idx; 3318 3319 err = devm_request_threaded_irq(dev, 3320 pf->msix_entries[pf->oicr_idx].vector, 3321 ice_misc_intr, ice_misc_intr_thread_fn, 3322 0, pf->int_name, pf); 3323 if (err) { 3324 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3325 pf->int_name, err); 3326 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3327 pf->num_avail_sw_msix += 1; 3328 return err; 3329 } 3330 3331 skip_req_irq: 3332 ice_ena_misc_vector(pf); 3333 3334 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3335 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3336 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3337 3338 ice_flush(hw); 3339 ice_irq_dynamic_ena(hw, NULL, NULL); 3340 3341 return 0; 3342 } 3343 3344 /** 3345 * ice_napi_add - register NAPI handler for the VSI 3346 * @vsi: VSI for which NAPI handler is to be registered 3347 * 3348 * This function is only called in the driver's load path. Registering the NAPI 3349 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3350 * reset/rebuild, etc.) 3351 */ 3352 static void ice_napi_add(struct ice_vsi *vsi) 3353 { 3354 int v_idx; 3355 3356 if (!vsi->netdev) 3357 return; 3358 3359 ice_for_each_q_vector(vsi, v_idx) 3360 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3361 ice_napi_poll); 3362 } 3363 3364 /** 3365 * ice_set_ops - set netdev and ethtools ops for the given netdev 3366 * @vsi: the VSI associated with the new netdev 3367 */ 3368 static void ice_set_ops(struct ice_vsi *vsi) 3369 { 3370 struct net_device *netdev = vsi->netdev; 3371 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3372 3373 if (ice_is_safe_mode(pf)) { 3374 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3375 ice_set_ethtool_safe_mode_ops(netdev); 3376 return; 3377 } 3378 3379 netdev->netdev_ops = &ice_netdev_ops; 3380 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3381 ice_set_ethtool_ops(netdev); 3382 3383 if (vsi->type != ICE_VSI_PF) 3384 return; 3385 3386 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3387 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3388 NETDEV_XDP_ACT_RX_SG; 3389 } 3390 3391 /** 3392 * ice_set_netdev_features - set features for the given netdev 3393 * @netdev: netdev instance 3394 */ 3395 static void ice_set_netdev_features(struct net_device *netdev) 3396 { 3397 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3398 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3399 netdev_features_t csumo_features; 3400 netdev_features_t vlano_features; 3401 netdev_features_t dflt_features; 3402 netdev_features_t tso_features; 3403 3404 if (ice_is_safe_mode(pf)) { 3405 /* safe mode */ 3406 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3407 netdev->hw_features = netdev->features; 3408 return; 3409 } 3410 3411 dflt_features = NETIF_F_SG | 3412 NETIF_F_HIGHDMA | 3413 NETIF_F_NTUPLE | 3414 NETIF_F_RXHASH; 3415 3416 csumo_features = NETIF_F_RXCSUM | 3417 NETIF_F_IP_CSUM | 3418 NETIF_F_SCTP_CRC | 3419 NETIF_F_IPV6_CSUM; 3420 3421 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3422 NETIF_F_HW_VLAN_CTAG_TX | 3423 NETIF_F_HW_VLAN_CTAG_RX; 3424 3425 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3426 if (is_dvm_ena) 3427 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3428 3429 tso_features = NETIF_F_TSO | 3430 NETIF_F_TSO_ECN | 3431 NETIF_F_TSO6 | 3432 NETIF_F_GSO_GRE | 3433 NETIF_F_GSO_UDP_TUNNEL | 3434 NETIF_F_GSO_GRE_CSUM | 3435 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3436 NETIF_F_GSO_PARTIAL | 3437 NETIF_F_GSO_IPXIP4 | 3438 NETIF_F_GSO_IPXIP6 | 3439 NETIF_F_GSO_UDP_L4; 3440 3441 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3442 NETIF_F_GSO_GRE_CSUM; 3443 /* set features that user can change */ 3444 netdev->hw_features = dflt_features | csumo_features | 3445 vlano_features | tso_features; 3446 3447 /* add support for HW_CSUM on packets with MPLS header */ 3448 netdev->mpls_features = NETIF_F_HW_CSUM | 3449 NETIF_F_TSO | 3450 NETIF_F_TSO6; 3451 3452 /* enable features */ 3453 netdev->features |= netdev->hw_features; 3454 3455 netdev->hw_features |= NETIF_F_HW_TC; 3456 netdev->hw_features |= NETIF_F_LOOPBACK; 3457 3458 /* encap and VLAN devices inherit default, csumo and tso features */ 3459 netdev->hw_enc_features |= dflt_features | csumo_features | 3460 tso_features; 3461 netdev->vlan_features |= dflt_features | csumo_features | 3462 tso_features; 3463 3464 /* advertise support but don't enable by default since only one type of 3465 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3466 * type turns on the other has to be turned off. This is enforced by the 3467 * ice_fix_features() ndo callback. 3468 */ 3469 if (is_dvm_ena) 3470 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3471 NETIF_F_HW_VLAN_STAG_TX; 3472 3473 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3474 * be changed at runtime 3475 */ 3476 netdev->hw_features |= NETIF_F_RXFCS; 3477 3478 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3479 } 3480 3481 /** 3482 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3483 * @lut: Lookup table 3484 * @rss_table_size: Lookup table size 3485 * @rss_size: Range of queue number for hashing 3486 */ 3487 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3488 { 3489 u16 i; 3490 3491 for (i = 0; i < rss_table_size; i++) 3492 lut[i] = i % rss_size; 3493 } 3494 3495 /** 3496 * ice_pf_vsi_setup - Set up a PF VSI 3497 * @pf: board private structure 3498 * @pi: pointer to the port_info instance 3499 * 3500 * Returns pointer to the successfully allocated VSI software struct 3501 * on success, otherwise returns NULL on failure. 3502 */ 3503 static struct ice_vsi * 3504 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3505 { 3506 struct ice_vsi_cfg_params params = {}; 3507 3508 params.type = ICE_VSI_PF; 3509 params.pi = pi; 3510 params.flags = ICE_VSI_FLAG_INIT; 3511 3512 return ice_vsi_setup(pf, ¶ms); 3513 } 3514 3515 static struct ice_vsi * 3516 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3517 struct ice_channel *ch) 3518 { 3519 struct ice_vsi_cfg_params params = {}; 3520 3521 params.type = ICE_VSI_CHNL; 3522 params.pi = pi; 3523 params.ch = ch; 3524 params.flags = ICE_VSI_FLAG_INIT; 3525 3526 return ice_vsi_setup(pf, ¶ms); 3527 } 3528 3529 /** 3530 * ice_ctrl_vsi_setup - Set up a control VSI 3531 * @pf: board private structure 3532 * @pi: pointer to the port_info instance 3533 * 3534 * Returns pointer to the successfully allocated VSI software struct 3535 * on success, otherwise returns NULL on failure. 3536 */ 3537 static struct ice_vsi * 3538 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3539 { 3540 struct ice_vsi_cfg_params params = {}; 3541 3542 params.type = ICE_VSI_CTRL; 3543 params.pi = pi; 3544 params.flags = ICE_VSI_FLAG_INIT; 3545 3546 return ice_vsi_setup(pf, ¶ms); 3547 } 3548 3549 /** 3550 * ice_lb_vsi_setup - Set up a loopback VSI 3551 * @pf: board private structure 3552 * @pi: pointer to the port_info instance 3553 * 3554 * Returns pointer to the successfully allocated VSI software struct 3555 * on success, otherwise returns NULL on failure. 3556 */ 3557 struct ice_vsi * 3558 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3559 { 3560 struct ice_vsi_cfg_params params = {}; 3561 3562 params.type = ICE_VSI_LB; 3563 params.pi = pi; 3564 params.flags = ICE_VSI_FLAG_INIT; 3565 3566 return ice_vsi_setup(pf, ¶ms); 3567 } 3568 3569 /** 3570 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3571 * @netdev: network interface to be adjusted 3572 * @proto: VLAN TPID 3573 * @vid: VLAN ID to be added 3574 * 3575 * net_device_ops implementation for adding VLAN IDs 3576 */ 3577 static int 3578 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3579 { 3580 struct ice_netdev_priv *np = netdev_priv(netdev); 3581 struct ice_vsi_vlan_ops *vlan_ops; 3582 struct ice_vsi *vsi = np->vsi; 3583 struct ice_vlan vlan; 3584 int ret; 3585 3586 /* VLAN 0 is added by default during load/reset */ 3587 if (!vid) 3588 return 0; 3589 3590 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3591 usleep_range(1000, 2000); 3592 3593 /* Add multicast promisc rule for the VLAN ID to be added if 3594 * all-multicast is currently enabled. 3595 */ 3596 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3597 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3598 ICE_MCAST_VLAN_PROMISC_BITS, 3599 vid); 3600 if (ret) 3601 goto finish; 3602 } 3603 3604 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3605 3606 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3607 * packets aren't pruned by the device's internal switch on Rx 3608 */ 3609 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3610 ret = vlan_ops->add_vlan(vsi, &vlan); 3611 if (ret) 3612 goto finish; 3613 3614 /* If all-multicast is currently enabled and this VLAN ID is only one 3615 * besides VLAN-0 we have to update look-up type of multicast promisc 3616 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3617 */ 3618 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3619 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3620 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3621 ICE_MCAST_PROMISC_BITS, 0); 3622 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3623 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3624 } 3625 3626 finish: 3627 clear_bit(ICE_CFG_BUSY, vsi->state); 3628 3629 return ret; 3630 } 3631 3632 /** 3633 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3634 * @netdev: network interface to be adjusted 3635 * @proto: VLAN TPID 3636 * @vid: VLAN ID to be removed 3637 * 3638 * net_device_ops implementation for removing VLAN IDs 3639 */ 3640 static int 3641 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3642 { 3643 struct ice_netdev_priv *np = netdev_priv(netdev); 3644 struct ice_vsi_vlan_ops *vlan_ops; 3645 struct ice_vsi *vsi = np->vsi; 3646 struct ice_vlan vlan; 3647 int ret; 3648 3649 /* don't allow removal of VLAN 0 */ 3650 if (!vid) 3651 return 0; 3652 3653 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3654 usleep_range(1000, 2000); 3655 3656 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3657 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3658 if (ret) { 3659 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3660 vsi->vsi_num); 3661 vsi->current_netdev_flags |= IFF_ALLMULTI; 3662 } 3663 3664 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3665 3666 /* Make sure VLAN delete is successful before updating VLAN 3667 * information 3668 */ 3669 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3670 ret = vlan_ops->del_vlan(vsi, &vlan); 3671 if (ret) 3672 goto finish; 3673 3674 /* Remove multicast promisc rule for the removed VLAN ID if 3675 * all-multicast is enabled. 3676 */ 3677 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3678 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3679 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3680 3681 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3682 /* Update look-up type of multicast promisc rule for VLAN 0 3683 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3684 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3685 */ 3686 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3687 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3688 ICE_MCAST_VLAN_PROMISC_BITS, 3689 0); 3690 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3691 ICE_MCAST_PROMISC_BITS, 0); 3692 } 3693 } 3694 3695 finish: 3696 clear_bit(ICE_CFG_BUSY, vsi->state); 3697 3698 return ret; 3699 } 3700 3701 /** 3702 * ice_rep_indr_tc_block_unbind 3703 * @cb_priv: indirection block private data 3704 */ 3705 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3706 { 3707 struct ice_indr_block_priv *indr_priv = cb_priv; 3708 3709 list_del(&indr_priv->list); 3710 kfree(indr_priv); 3711 } 3712 3713 /** 3714 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3715 * @vsi: VSI struct which has the netdev 3716 */ 3717 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3718 { 3719 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3720 3721 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3722 ice_rep_indr_tc_block_unbind); 3723 } 3724 3725 /** 3726 * ice_tc_indir_block_register - Register TC indirect block notifications 3727 * @vsi: VSI struct which has the netdev 3728 * 3729 * Returns 0 on success, negative value on failure 3730 */ 3731 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3732 { 3733 struct ice_netdev_priv *np; 3734 3735 if (!vsi || !vsi->netdev) 3736 return -EINVAL; 3737 3738 np = netdev_priv(vsi->netdev); 3739 3740 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3741 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3742 } 3743 3744 /** 3745 * ice_get_avail_q_count - Get count of queues in use 3746 * @pf_qmap: bitmap to get queue use count from 3747 * @lock: pointer to a mutex that protects access to pf_qmap 3748 * @size: size of the bitmap 3749 */ 3750 static u16 3751 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3752 { 3753 unsigned long bit; 3754 u16 count = 0; 3755 3756 mutex_lock(lock); 3757 for_each_clear_bit(bit, pf_qmap, size) 3758 count++; 3759 mutex_unlock(lock); 3760 3761 return count; 3762 } 3763 3764 /** 3765 * ice_get_avail_txq_count - Get count of Tx queues in use 3766 * @pf: pointer to an ice_pf instance 3767 */ 3768 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3769 { 3770 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3771 pf->max_pf_txqs); 3772 } 3773 3774 /** 3775 * ice_get_avail_rxq_count - Get count of Rx queues in use 3776 * @pf: pointer to an ice_pf instance 3777 */ 3778 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3779 { 3780 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3781 pf->max_pf_rxqs); 3782 } 3783 3784 /** 3785 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3786 * @pf: board private structure to initialize 3787 */ 3788 static void ice_deinit_pf(struct ice_pf *pf) 3789 { 3790 ice_service_task_stop(pf); 3791 mutex_destroy(&pf->adev_mutex); 3792 mutex_destroy(&pf->sw_mutex); 3793 mutex_destroy(&pf->tc_mutex); 3794 mutex_destroy(&pf->avail_q_mutex); 3795 mutex_destroy(&pf->vfs.table_lock); 3796 3797 if (pf->avail_txqs) { 3798 bitmap_free(pf->avail_txqs); 3799 pf->avail_txqs = NULL; 3800 } 3801 3802 if (pf->avail_rxqs) { 3803 bitmap_free(pf->avail_rxqs); 3804 pf->avail_rxqs = NULL; 3805 } 3806 3807 if (pf->ptp.clock) 3808 ptp_clock_unregister(pf->ptp.clock); 3809 } 3810 3811 /** 3812 * ice_set_pf_caps - set PFs capability flags 3813 * @pf: pointer to the PF instance 3814 */ 3815 static void ice_set_pf_caps(struct ice_pf *pf) 3816 { 3817 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3818 3819 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3820 if (func_caps->common_cap.rdma) 3821 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3822 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3823 if (func_caps->common_cap.dcb) 3824 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3825 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3826 if (func_caps->common_cap.sr_iov_1_1) { 3827 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3828 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3829 ICE_MAX_SRIOV_VFS); 3830 } 3831 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3832 if (func_caps->common_cap.rss_table_size) 3833 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3834 3835 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3836 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3837 u16 unused; 3838 3839 /* ctrl_vsi_idx will be set to a valid value when flow director 3840 * is setup by ice_init_fdir 3841 */ 3842 pf->ctrl_vsi_idx = ICE_NO_VSI; 3843 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3844 /* force guaranteed filter pool for PF */ 3845 ice_alloc_fd_guar_item(&pf->hw, &unused, 3846 func_caps->fd_fltr_guar); 3847 /* force shared filter pool for PF */ 3848 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3849 func_caps->fd_fltr_best_effort); 3850 } 3851 3852 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3853 if (func_caps->common_cap.ieee_1588) 3854 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3855 3856 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3857 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3858 } 3859 3860 /** 3861 * ice_init_pf - Initialize general software structures (struct ice_pf) 3862 * @pf: board private structure to initialize 3863 */ 3864 static int ice_init_pf(struct ice_pf *pf) 3865 { 3866 ice_set_pf_caps(pf); 3867 3868 mutex_init(&pf->sw_mutex); 3869 mutex_init(&pf->tc_mutex); 3870 mutex_init(&pf->adev_mutex); 3871 3872 INIT_HLIST_HEAD(&pf->aq_wait_list); 3873 spin_lock_init(&pf->aq_wait_lock); 3874 init_waitqueue_head(&pf->aq_wait_queue); 3875 3876 init_waitqueue_head(&pf->reset_wait_queue); 3877 3878 /* setup service timer and periodic service task */ 3879 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3880 pf->serv_tmr_period = HZ; 3881 INIT_WORK(&pf->serv_task, ice_service_task); 3882 clear_bit(ICE_SERVICE_SCHED, pf->state); 3883 3884 mutex_init(&pf->avail_q_mutex); 3885 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3886 if (!pf->avail_txqs) 3887 return -ENOMEM; 3888 3889 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3890 if (!pf->avail_rxqs) { 3891 bitmap_free(pf->avail_txqs); 3892 pf->avail_txqs = NULL; 3893 return -ENOMEM; 3894 } 3895 3896 mutex_init(&pf->vfs.table_lock); 3897 hash_init(pf->vfs.table); 3898 ice_mbx_init_snapshot(&pf->hw); 3899 3900 return 0; 3901 } 3902 3903 /** 3904 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3905 * @pf: board private structure 3906 * @v_remain: number of remaining MSI-X vectors to be distributed 3907 * 3908 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3909 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3910 * remaining vectors. 3911 */ 3912 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3913 { 3914 int v_rdma; 3915 3916 if (!ice_is_rdma_ena(pf)) { 3917 pf->num_lan_msix = v_remain; 3918 return; 3919 } 3920 3921 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3922 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3923 3924 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3925 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3926 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3927 3928 pf->num_rdma_msix = 0; 3929 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3930 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3931 (v_remain - v_rdma < v_rdma)) { 3932 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3933 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3934 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3935 } else { 3936 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3937 */ 3938 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3939 ICE_RDMA_NUM_AEQ_MSIX; 3940 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3941 } 3942 } 3943 3944 /** 3945 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3946 * @pf: board private structure 3947 * 3948 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3949 * device usage if there are not enough vectors. Return the number of vectors 3950 * reserved or negative on failure. 3951 */ 3952 static int ice_ena_msix_range(struct ice_pf *pf) 3953 { 3954 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3955 struct device *dev = ice_pf_to_dev(pf); 3956 int err, i; 3957 3958 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3959 num_cpus = num_online_cpus(); 3960 3961 /* LAN miscellaneous handler */ 3962 v_other = ICE_MIN_LAN_OICR_MSIX; 3963 3964 /* Flow Director */ 3965 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 3966 v_other += ICE_FDIR_MSIX; 3967 3968 /* switchdev */ 3969 v_other += ICE_ESWITCH_MSIX; 3970 3971 v_wanted = v_other; 3972 3973 /* LAN traffic */ 3974 pf->num_lan_msix = num_cpus; 3975 v_wanted += pf->num_lan_msix; 3976 3977 /* RDMA auxiliary driver */ 3978 if (ice_is_rdma_ena(pf)) { 3979 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3980 v_wanted += pf->num_rdma_msix; 3981 } 3982 3983 if (v_wanted > hw_num_msix) { 3984 int v_remain; 3985 3986 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 3987 v_wanted, hw_num_msix); 3988 3989 if (hw_num_msix < ICE_MIN_MSIX) { 3990 err = -ERANGE; 3991 goto exit_err; 3992 } 3993 3994 v_remain = hw_num_msix - v_other; 3995 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 3996 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 3997 v_remain = ICE_MIN_LAN_TXRX_MSIX; 3998 } 3999 4000 ice_reduce_msix_usage(pf, v_remain); 4001 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4002 4003 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4004 pf->num_lan_msix); 4005 if (ice_is_rdma_ena(pf)) 4006 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4007 pf->num_rdma_msix); 4008 } 4009 4010 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4011 sizeof(*pf->msix_entries), GFP_KERNEL); 4012 if (!pf->msix_entries) { 4013 err = -ENOMEM; 4014 goto exit_err; 4015 } 4016 4017 for (i = 0; i < v_wanted; i++) 4018 pf->msix_entries[i].entry = i; 4019 4020 /* actually reserve the vectors */ 4021 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4022 ICE_MIN_MSIX, v_wanted); 4023 if (v_actual < 0) { 4024 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4025 err = v_actual; 4026 goto msix_err; 4027 } 4028 4029 if (v_actual < v_wanted) { 4030 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4031 v_wanted, v_actual); 4032 4033 if (v_actual < ICE_MIN_MSIX) { 4034 /* error if we can't get minimum vectors */ 4035 pci_disable_msix(pf->pdev); 4036 err = -ERANGE; 4037 goto msix_err; 4038 } else { 4039 int v_remain = v_actual - v_other; 4040 4041 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4042 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4043 4044 ice_reduce_msix_usage(pf, v_remain); 4045 4046 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4047 pf->num_lan_msix); 4048 4049 if (ice_is_rdma_ena(pf)) 4050 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4051 pf->num_rdma_msix); 4052 } 4053 } 4054 4055 return v_actual; 4056 4057 msix_err: 4058 devm_kfree(dev, pf->msix_entries); 4059 4060 exit_err: 4061 pf->num_rdma_msix = 0; 4062 pf->num_lan_msix = 0; 4063 return err; 4064 } 4065 4066 /** 4067 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4068 * @pf: board private structure 4069 */ 4070 static void ice_dis_msix(struct ice_pf *pf) 4071 { 4072 pci_disable_msix(pf->pdev); 4073 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4074 pf->msix_entries = NULL; 4075 } 4076 4077 /** 4078 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4079 * @pf: board private structure 4080 */ 4081 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4082 { 4083 ice_dis_msix(pf); 4084 4085 if (pf->irq_tracker) { 4086 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4087 pf->irq_tracker = NULL; 4088 } 4089 } 4090 4091 /** 4092 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4093 * @pf: board private structure to initialize 4094 */ 4095 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4096 { 4097 int vectors; 4098 4099 vectors = ice_ena_msix_range(pf); 4100 4101 if (vectors < 0) 4102 return vectors; 4103 4104 /* set up vector assignment tracking */ 4105 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4106 struct_size(pf->irq_tracker, list, vectors), 4107 GFP_KERNEL); 4108 if (!pf->irq_tracker) { 4109 ice_dis_msix(pf); 4110 return -ENOMEM; 4111 } 4112 4113 /* populate SW interrupts pool with number of OS granted IRQs. */ 4114 pf->num_avail_sw_msix = (u16)vectors; 4115 pf->irq_tracker->num_entries = (u16)vectors; 4116 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4117 4118 return 0; 4119 } 4120 4121 /** 4122 * ice_is_wol_supported - check if WoL is supported 4123 * @hw: pointer to hardware info 4124 * 4125 * Check if WoL is supported based on the HW configuration. 4126 * Returns true if NVM supports and enables WoL for this port, false otherwise 4127 */ 4128 bool ice_is_wol_supported(struct ice_hw *hw) 4129 { 4130 u16 wol_ctrl; 4131 4132 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4133 * word) indicates WoL is not supported on the corresponding PF ID. 4134 */ 4135 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4136 return false; 4137 4138 return !(BIT(hw->port_info->lport) & wol_ctrl); 4139 } 4140 4141 /** 4142 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4143 * @vsi: VSI being changed 4144 * @new_rx: new number of Rx queues 4145 * @new_tx: new number of Tx queues 4146 * @locked: is adev device_lock held 4147 * 4148 * Only change the number of queues if new_tx, or new_rx is non-0. 4149 * 4150 * Returns 0 on success. 4151 */ 4152 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4153 { 4154 struct ice_pf *pf = vsi->back; 4155 int err = 0, timeout = 50; 4156 4157 if (!new_rx && !new_tx) 4158 return -EINVAL; 4159 4160 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4161 timeout--; 4162 if (!timeout) 4163 return -EBUSY; 4164 usleep_range(1000, 2000); 4165 } 4166 4167 if (new_tx) 4168 vsi->req_txq = (u16)new_tx; 4169 if (new_rx) 4170 vsi->req_rxq = (u16)new_rx; 4171 4172 /* set for the next time the netdev is started */ 4173 if (!netif_running(vsi->netdev)) { 4174 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4175 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4176 goto done; 4177 } 4178 4179 ice_vsi_close(vsi); 4180 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4181 ice_pf_dcb_recfg(pf, locked); 4182 ice_vsi_open(vsi); 4183 done: 4184 clear_bit(ICE_CFG_BUSY, pf->state); 4185 return err; 4186 } 4187 4188 /** 4189 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4190 * @pf: PF to configure 4191 * 4192 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4193 * VSI can still Tx/Rx VLAN tagged packets. 4194 */ 4195 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4196 { 4197 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4198 struct ice_vsi_ctx *ctxt; 4199 struct ice_hw *hw; 4200 int status; 4201 4202 if (!vsi) 4203 return; 4204 4205 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4206 if (!ctxt) 4207 return; 4208 4209 hw = &pf->hw; 4210 ctxt->info = vsi->info; 4211 4212 ctxt->info.valid_sections = 4213 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4214 ICE_AQ_VSI_PROP_SECURITY_VALID | 4215 ICE_AQ_VSI_PROP_SW_VALID); 4216 4217 /* disable VLAN anti-spoof */ 4218 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4219 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4220 4221 /* disable VLAN pruning and keep all other settings */ 4222 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4223 4224 /* allow all VLANs on Tx and don't strip on Rx */ 4225 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4226 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4227 4228 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4229 if (status) { 4230 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4231 status, ice_aq_str(hw->adminq.sq_last_status)); 4232 } else { 4233 vsi->info.sec_flags = ctxt->info.sec_flags; 4234 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4235 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4236 } 4237 4238 kfree(ctxt); 4239 } 4240 4241 /** 4242 * ice_log_pkg_init - log result of DDP package load 4243 * @hw: pointer to hardware info 4244 * @state: state of package load 4245 */ 4246 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4247 { 4248 struct ice_pf *pf = hw->back; 4249 struct device *dev; 4250 4251 dev = ice_pf_to_dev(pf); 4252 4253 switch (state) { 4254 case ICE_DDP_PKG_SUCCESS: 4255 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4256 hw->active_pkg_name, 4257 hw->active_pkg_ver.major, 4258 hw->active_pkg_ver.minor, 4259 hw->active_pkg_ver.update, 4260 hw->active_pkg_ver.draft); 4261 break; 4262 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4263 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4264 hw->active_pkg_name, 4265 hw->active_pkg_ver.major, 4266 hw->active_pkg_ver.minor, 4267 hw->active_pkg_ver.update, 4268 hw->active_pkg_ver.draft); 4269 break; 4270 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4271 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4272 hw->active_pkg_name, 4273 hw->active_pkg_ver.major, 4274 hw->active_pkg_ver.minor, 4275 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4276 break; 4277 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4278 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4279 hw->active_pkg_name, 4280 hw->active_pkg_ver.major, 4281 hw->active_pkg_ver.minor, 4282 hw->active_pkg_ver.update, 4283 hw->active_pkg_ver.draft, 4284 hw->pkg_name, 4285 hw->pkg_ver.major, 4286 hw->pkg_ver.minor, 4287 hw->pkg_ver.update, 4288 hw->pkg_ver.draft); 4289 break; 4290 case ICE_DDP_PKG_FW_MISMATCH: 4291 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_INVALID_FILE: 4294 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4297 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4300 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4301 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4302 break; 4303 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4304 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4305 break; 4306 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4307 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4308 break; 4309 case ICE_DDP_PKG_LOAD_ERROR: 4310 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4311 /* poll for reset to complete */ 4312 if (ice_check_reset(hw)) 4313 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4314 break; 4315 case ICE_DDP_PKG_ERR: 4316 default: 4317 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4318 break; 4319 } 4320 } 4321 4322 /** 4323 * ice_load_pkg - load/reload the DDP Package file 4324 * @firmware: firmware structure when firmware requested or NULL for reload 4325 * @pf: pointer to the PF instance 4326 * 4327 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4328 * initialize HW tables. 4329 */ 4330 static void 4331 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4332 { 4333 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4334 struct device *dev = ice_pf_to_dev(pf); 4335 struct ice_hw *hw = &pf->hw; 4336 4337 /* Load DDP Package */ 4338 if (firmware && !hw->pkg_copy) { 4339 state = ice_copy_and_init_pkg(hw, firmware->data, 4340 firmware->size); 4341 ice_log_pkg_init(hw, state); 4342 } else if (!firmware && hw->pkg_copy) { 4343 /* Reload package during rebuild after CORER/GLOBR reset */ 4344 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4345 ice_log_pkg_init(hw, state); 4346 } else { 4347 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4348 } 4349 4350 if (!ice_is_init_pkg_successful(state)) { 4351 /* Safe Mode */ 4352 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4353 return; 4354 } 4355 4356 /* Successful download package is the precondition for advanced 4357 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4358 */ 4359 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4360 } 4361 4362 /** 4363 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4364 * @pf: pointer to the PF structure 4365 * 4366 * There is no error returned here because the driver should be able to handle 4367 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4368 * specifically with Tx. 4369 */ 4370 static void ice_verify_cacheline_size(struct ice_pf *pf) 4371 { 4372 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4373 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4374 ICE_CACHE_LINE_BYTES); 4375 } 4376 4377 /** 4378 * ice_send_version - update firmware with driver version 4379 * @pf: PF struct 4380 * 4381 * Returns 0 on success, else error code 4382 */ 4383 static int ice_send_version(struct ice_pf *pf) 4384 { 4385 struct ice_driver_ver dv; 4386 4387 dv.major_ver = 0xff; 4388 dv.minor_ver = 0xff; 4389 dv.build_ver = 0xff; 4390 dv.subbuild_ver = 0; 4391 strscpy((char *)dv.driver_string, UTS_RELEASE, 4392 sizeof(dv.driver_string)); 4393 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4394 } 4395 4396 /** 4397 * ice_init_fdir - Initialize flow director VSI and configuration 4398 * @pf: pointer to the PF instance 4399 * 4400 * returns 0 on success, negative on error 4401 */ 4402 static int ice_init_fdir(struct ice_pf *pf) 4403 { 4404 struct device *dev = ice_pf_to_dev(pf); 4405 struct ice_vsi *ctrl_vsi; 4406 int err; 4407 4408 /* Side Band Flow Director needs to have a control VSI. 4409 * Allocate it and store it in the PF. 4410 */ 4411 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4412 if (!ctrl_vsi) { 4413 dev_dbg(dev, "could not create control VSI\n"); 4414 return -ENOMEM; 4415 } 4416 4417 err = ice_vsi_open_ctrl(ctrl_vsi); 4418 if (err) { 4419 dev_dbg(dev, "could not open control VSI\n"); 4420 goto err_vsi_open; 4421 } 4422 4423 mutex_init(&pf->hw.fdir_fltr_lock); 4424 4425 err = ice_fdir_create_dflt_rules(pf); 4426 if (err) 4427 goto err_fdir_rule; 4428 4429 return 0; 4430 4431 err_fdir_rule: 4432 ice_fdir_release_flows(&pf->hw); 4433 ice_vsi_close(ctrl_vsi); 4434 err_vsi_open: 4435 ice_vsi_release(ctrl_vsi); 4436 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4437 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4438 pf->ctrl_vsi_idx = ICE_NO_VSI; 4439 } 4440 return err; 4441 } 4442 4443 static void ice_deinit_fdir(struct ice_pf *pf) 4444 { 4445 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4446 4447 if (!vsi) 4448 return; 4449 4450 ice_vsi_manage_fdir(vsi, false); 4451 ice_vsi_release(vsi); 4452 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4453 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4454 pf->ctrl_vsi_idx = ICE_NO_VSI; 4455 } 4456 4457 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4458 } 4459 4460 /** 4461 * ice_get_opt_fw_name - return optional firmware file name or NULL 4462 * @pf: pointer to the PF instance 4463 */ 4464 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4465 { 4466 /* Optional firmware name same as default with additional dash 4467 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4468 */ 4469 struct pci_dev *pdev = pf->pdev; 4470 char *opt_fw_filename; 4471 u64 dsn; 4472 4473 /* Determine the name of the optional file using the DSN (two 4474 * dwords following the start of the DSN Capability). 4475 */ 4476 dsn = pci_get_dsn(pdev); 4477 if (!dsn) 4478 return NULL; 4479 4480 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4481 if (!opt_fw_filename) 4482 return NULL; 4483 4484 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4485 ICE_DDP_PKG_PATH, dsn); 4486 4487 return opt_fw_filename; 4488 } 4489 4490 /** 4491 * ice_request_fw - Device initialization routine 4492 * @pf: pointer to the PF instance 4493 */ 4494 static void ice_request_fw(struct ice_pf *pf) 4495 { 4496 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4497 const struct firmware *firmware = NULL; 4498 struct device *dev = ice_pf_to_dev(pf); 4499 int err = 0; 4500 4501 /* optional device-specific DDP (if present) overrides the default DDP 4502 * package file. kernel logs a debug message if the file doesn't exist, 4503 * and warning messages for other errors. 4504 */ 4505 if (opt_fw_filename) { 4506 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4507 if (err) { 4508 kfree(opt_fw_filename); 4509 goto dflt_pkg_load; 4510 } 4511 4512 /* request for firmware was successful. Download to device */ 4513 ice_load_pkg(firmware, pf); 4514 kfree(opt_fw_filename); 4515 release_firmware(firmware); 4516 return; 4517 } 4518 4519 dflt_pkg_load: 4520 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4521 if (err) { 4522 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4523 return; 4524 } 4525 4526 /* request for firmware was successful. Download to device */ 4527 ice_load_pkg(firmware, pf); 4528 release_firmware(firmware); 4529 } 4530 4531 /** 4532 * ice_print_wake_reason - show the wake up cause in the log 4533 * @pf: pointer to the PF struct 4534 */ 4535 static void ice_print_wake_reason(struct ice_pf *pf) 4536 { 4537 u32 wus = pf->wakeup_reason; 4538 const char *wake_str; 4539 4540 /* if no wake event, nothing to print */ 4541 if (!wus) 4542 return; 4543 4544 if (wus & PFPM_WUS_LNKC_M) 4545 wake_str = "Link\n"; 4546 else if (wus & PFPM_WUS_MAG_M) 4547 wake_str = "Magic Packet\n"; 4548 else if (wus & PFPM_WUS_MNG_M) 4549 wake_str = "Management\n"; 4550 else if (wus & PFPM_WUS_FW_RST_WK_M) 4551 wake_str = "Firmware Reset\n"; 4552 else 4553 wake_str = "Unknown\n"; 4554 4555 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4556 } 4557 4558 /** 4559 * ice_register_netdev - register netdev 4560 * @vsi: pointer to the VSI struct 4561 */ 4562 static int ice_register_netdev(struct ice_vsi *vsi) 4563 { 4564 int err; 4565 4566 if (!vsi || !vsi->netdev) 4567 return -EIO; 4568 4569 err = register_netdev(vsi->netdev); 4570 if (err) 4571 return err; 4572 4573 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4574 netif_carrier_off(vsi->netdev); 4575 netif_tx_stop_all_queues(vsi->netdev); 4576 4577 return 0; 4578 } 4579 4580 static void ice_unregister_netdev(struct ice_vsi *vsi) 4581 { 4582 if (!vsi || !vsi->netdev) 4583 return; 4584 4585 unregister_netdev(vsi->netdev); 4586 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4587 } 4588 4589 /** 4590 * ice_cfg_netdev - Allocate, configure and register a netdev 4591 * @vsi: the VSI associated with the new netdev 4592 * 4593 * Returns 0 on success, negative value on failure 4594 */ 4595 static int ice_cfg_netdev(struct ice_vsi *vsi) 4596 { 4597 struct ice_netdev_priv *np; 4598 struct net_device *netdev; 4599 u8 mac_addr[ETH_ALEN]; 4600 4601 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4602 vsi->alloc_rxq); 4603 if (!netdev) 4604 return -ENOMEM; 4605 4606 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4607 vsi->netdev = netdev; 4608 np = netdev_priv(netdev); 4609 np->vsi = vsi; 4610 4611 ice_set_netdev_features(netdev); 4612 ice_set_ops(vsi); 4613 4614 if (vsi->type == ICE_VSI_PF) { 4615 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4616 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4617 eth_hw_addr_set(netdev, mac_addr); 4618 } 4619 4620 netdev->priv_flags |= IFF_UNICAST_FLT; 4621 4622 /* Setup netdev TC information */ 4623 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4624 4625 netdev->max_mtu = ICE_MAX_MTU; 4626 4627 return 0; 4628 } 4629 4630 static void ice_decfg_netdev(struct ice_vsi *vsi) 4631 { 4632 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4633 free_netdev(vsi->netdev); 4634 vsi->netdev = NULL; 4635 } 4636 4637 static int ice_start_eth(struct ice_vsi *vsi) 4638 { 4639 int err; 4640 4641 err = ice_init_mac_fltr(vsi->back); 4642 if (err) 4643 return err; 4644 4645 rtnl_lock(); 4646 err = ice_vsi_open(vsi); 4647 rtnl_unlock(); 4648 4649 return err; 4650 } 4651 4652 static void ice_stop_eth(struct ice_vsi *vsi) 4653 { 4654 ice_fltr_remove_all(vsi); 4655 ice_vsi_close(vsi); 4656 } 4657 4658 static int ice_init_eth(struct ice_pf *pf) 4659 { 4660 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4661 int err; 4662 4663 if (!vsi) 4664 return -EINVAL; 4665 4666 /* init channel list */ 4667 INIT_LIST_HEAD(&vsi->ch_list); 4668 4669 err = ice_cfg_netdev(vsi); 4670 if (err) 4671 return err; 4672 /* Setup DCB netlink interface */ 4673 ice_dcbnl_setup(vsi); 4674 4675 err = ice_init_mac_fltr(pf); 4676 if (err) 4677 goto err_init_mac_fltr; 4678 4679 err = ice_devlink_create_pf_port(pf); 4680 if (err) 4681 goto err_devlink_create_pf_port; 4682 4683 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4684 4685 err = ice_register_netdev(vsi); 4686 if (err) 4687 goto err_register_netdev; 4688 4689 err = ice_tc_indir_block_register(vsi); 4690 if (err) 4691 goto err_tc_indir_block_register; 4692 4693 ice_napi_add(vsi); 4694 4695 return 0; 4696 4697 err_tc_indir_block_register: 4698 ice_unregister_netdev(vsi); 4699 err_register_netdev: 4700 ice_devlink_destroy_pf_port(pf); 4701 err_devlink_create_pf_port: 4702 err_init_mac_fltr: 4703 ice_decfg_netdev(vsi); 4704 return err; 4705 } 4706 4707 static void ice_deinit_eth(struct ice_pf *pf) 4708 { 4709 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4710 4711 if (!vsi) 4712 return; 4713 4714 ice_vsi_close(vsi); 4715 ice_unregister_netdev(vsi); 4716 ice_devlink_destroy_pf_port(pf); 4717 ice_tc_indir_block_unregister(vsi); 4718 ice_decfg_netdev(vsi); 4719 } 4720 4721 static int ice_init_dev(struct ice_pf *pf) 4722 { 4723 struct device *dev = ice_pf_to_dev(pf); 4724 struct ice_hw *hw = &pf->hw; 4725 int err; 4726 4727 err = ice_init_hw(hw); 4728 if (err) { 4729 dev_err(dev, "ice_init_hw failed: %d\n", err); 4730 return err; 4731 } 4732 4733 ice_init_feature_support(pf); 4734 4735 ice_request_fw(pf); 4736 4737 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4738 * set in pf->state, which will cause ice_is_safe_mode to return 4739 * true 4740 */ 4741 if (ice_is_safe_mode(pf)) { 4742 /* we already got function/device capabilities but these don't 4743 * reflect what the driver needs to do in safe mode. Instead of 4744 * adding conditional logic everywhere to ignore these 4745 * device/function capabilities, override them. 4746 */ 4747 ice_set_safe_mode_caps(hw); 4748 } 4749 4750 err = ice_init_pf(pf); 4751 if (err) { 4752 dev_err(dev, "ice_init_pf failed: %d\n", err); 4753 goto err_init_pf; 4754 } 4755 4756 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4757 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4758 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4759 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4760 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4761 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4762 pf->hw.tnl.valid_count[TNL_VXLAN]; 4763 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4764 UDP_TUNNEL_TYPE_VXLAN; 4765 } 4766 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4767 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4768 pf->hw.tnl.valid_count[TNL_GENEVE]; 4769 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4770 UDP_TUNNEL_TYPE_GENEVE; 4771 } 4772 4773 err = ice_init_interrupt_scheme(pf); 4774 if (err) { 4775 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4776 err = -EIO; 4777 goto err_init_interrupt_scheme; 4778 } 4779 4780 /* In case of MSIX we are going to setup the misc vector right here 4781 * to handle admin queue events etc. In case of legacy and MSI 4782 * the misc functionality and queue processing is combined in 4783 * the same vector and that gets setup at open. 4784 */ 4785 err = ice_req_irq_msix_misc(pf); 4786 if (err) { 4787 dev_err(dev, "setup of misc vector failed: %d\n", err); 4788 goto err_req_irq_msix_misc; 4789 } 4790 4791 return 0; 4792 4793 err_req_irq_msix_misc: 4794 ice_clear_interrupt_scheme(pf); 4795 err_init_interrupt_scheme: 4796 ice_deinit_pf(pf); 4797 err_init_pf: 4798 ice_deinit_hw(hw); 4799 return err; 4800 } 4801 4802 static void ice_deinit_dev(struct ice_pf *pf) 4803 { 4804 ice_free_irq_msix_misc(pf); 4805 ice_clear_interrupt_scheme(pf); 4806 ice_deinit_pf(pf); 4807 ice_deinit_hw(&pf->hw); 4808 } 4809 4810 static void ice_init_features(struct ice_pf *pf) 4811 { 4812 struct device *dev = ice_pf_to_dev(pf); 4813 4814 if (ice_is_safe_mode(pf)) 4815 return; 4816 4817 /* initialize DDP driven features */ 4818 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4819 ice_ptp_init(pf); 4820 4821 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4822 ice_gnss_init(pf); 4823 4824 /* Note: Flow director init failure is non-fatal to load */ 4825 if (ice_init_fdir(pf)) 4826 dev_err(dev, "could not initialize flow director\n"); 4827 4828 /* Note: DCB init failure is non-fatal to load */ 4829 if (ice_init_pf_dcb(pf, false)) { 4830 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4831 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4832 } else { 4833 ice_cfg_lldp_mib_change(&pf->hw, true); 4834 } 4835 4836 if (ice_init_lag(pf)) 4837 dev_warn(dev, "Failed to init link aggregation support\n"); 4838 } 4839 4840 static void ice_deinit_features(struct ice_pf *pf) 4841 { 4842 ice_deinit_lag(pf); 4843 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4844 ice_cfg_lldp_mib_change(&pf->hw, false); 4845 ice_deinit_fdir(pf); 4846 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4847 ice_gnss_exit(pf); 4848 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4849 ice_ptp_release(pf); 4850 } 4851 4852 static void ice_init_wakeup(struct ice_pf *pf) 4853 { 4854 /* Save wakeup reason register for later use */ 4855 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4856 4857 /* check for a power management event */ 4858 ice_print_wake_reason(pf); 4859 4860 /* clear wake status, all bits */ 4861 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4862 4863 /* Disable WoL at init, wait for user to enable */ 4864 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4865 } 4866 4867 static int ice_init_link(struct ice_pf *pf) 4868 { 4869 struct device *dev = ice_pf_to_dev(pf); 4870 int err; 4871 4872 err = ice_init_link_events(pf->hw.port_info); 4873 if (err) { 4874 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4875 return err; 4876 } 4877 4878 /* not a fatal error if this fails */ 4879 err = ice_init_nvm_phy_type(pf->hw.port_info); 4880 if (err) 4881 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4882 4883 /* not a fatal error if this fails */ 4884 err = ice_update_link_info(pf->hw.port_info); 4885 if (err) 4886 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4887 4888 ice_init_link_dflt_override(pf->hw.port_info); 4889 4890 ice_check_link_cfg_err(pf, 4891 pf->hw.port_info->phy.link_info.link_cfg_err); 4892 4893 /* if media available, initialize PHY settings */ 4894 if (pf->hw.port_info->phy.link_info.link_info & 4895 ICE_AQ_MEDIA_AVAILABLE) { 4896 /* not a fatal error if this fails */ 4897 err = ice_init_phy_user_cfg(pf->hw.port_info); 4898 if (err) 4899 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4900 4901 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4902 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4903 4904 if (vsi) 4905 ice_configure_phy(vsi); 4906 } 4907 } else { 4908 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4909 } 4910 4911 return err; 4912 } 4913 4914 static int ice_init_pf_sw(struct ice_pf *pf) 4915 { 4916 bool dvm = ice_is_dvm_ena(&pf->hw); 4917 struct ice_vsi *vsi; 4918 int err; 4919 4920 /* create switch struct for the switch element created by FW on boot */ 4921 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4922 if (!pf->first_sw) 4923 return -ENOMEM; 4924 4925 if (pf->hw.evb_veb) 4926 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4927 else 4928 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4929 4930 pf->first_sw->pf = pf; 4931 4932 /* record the sw_id available for later use */ 4933 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4934 4935 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4936 if (err) 4937 goto err_aq_set_port_params; 4938 4939 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4940 if (!vsi) { 4941 err = -ENOMEM; 4942 goto err_pf_vsi_setup; 4943 } 4944 4945 return 0; 4946 4947 err_pf_vsi_setup: 4948 err_aq_set_port_params: 4949 kfree(pf->first_sw); 4950 return err; 4951 } 4952 4953 static void ice_deinit_pf_sw(struct ice_pf *pf) 4954 { 4955 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4956 4957 if (!vsi) 4958 return; 4959 4960 ice_vsi_release(vsi); 4961 kfree(pf->first_sw); 4962 } 4963 4964 static int ice_alloc_vsis(struct ice_pf *pf) 4965 { 4966 struct device *dev = ice_pf_to_dev(pf); 4967 4968 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4969 if (!pf->num_alloc_vsi) 4970 return -EIO; 4971 4972 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4973 dev_warn(dev, 4974 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4975 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4976 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4977 } 4978 4979 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4980 GFP_KERNEL); 4981 if (!pf->vsi) 4982 return -ENOMEM; 4983 4984 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4985 sizeof(*pf->vsi_stats), GFP_KERNEL); 4986 if (!pf->vsi_stats) { 4987 devm_kfree(dev, pf->vsi); 4988 return -ENOMEM; 4989 } 4990 4991 return 0; 4992 } 4993 4994 static void ice_dealloc_vsis(struct ice_pf *pf) 4995 { 4996 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4997 pf->vsi_stats = NULL; 4998 4999 pf->num_alloc_vsi = 0; 5000 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5001 pf->vsi = NULL; 5002 } 5003 5004 static int ice_init_devlink(struct ice_pf *pf) 5005 { 5006 int err; 5007 5008 err = ice_devlink_register_params(pf); 5009 if (err) 5010 return err; 5011 5012 ice_devlink_init_regions(pf); 5013 ice_devlink_register(pf); 5014 5015 return 0; 5016 } 5017 5018 static void ice_deinit_devlink(struct ice_pf *pf) 5019 { 5020 ice_devlink_unregister(pf); 5021 ice_devlink_destroy_regions(pf); 5022 ice_devlink_unregister_params(pf); 5023 } 5024 5025 static int ice_init(struct ice_pf *pf) 5026 { 5027 int err; 5028 5029 err = ice_init_dev(pf); 5030 if (err) 5031 return err; 5032 5033 err = ice_alloc_vsis(pf); 5034 if (err) 5035 goto err_alloc_vsis; 5036 5037 err = ice_init_pf_sw(pf); 5038 if (err) 5039 goto err_init_pf_sw; 5040 5041 ice_init_wakeup(pf); 5042 5043 err = ice_init_link(pf); 5044 if (err) 5045 goto err_init_link; 5046 5047 err = ice_send_version(pf); 5048 if (err) 5049 goto err_init_link; 5050 5051 ice_verify_cacheline_size(pf); 5052 5053 if (ice_is_safe_mode(pf)) 5054 ice_set_safe_mode_vlan_cfg(pf); 5055 else 5056 /* print PCI link speed and width */ 5057 pcie_print_link_status(pf->pdev); 5058 5059 /* ready to go, so clear down state bit */ 5060 clear_bit(ICE_DOWN, pf->state); 5061 clear_bit(ICE_SERVICE_DIS, pf->state); 5062 5063 /* since everything is good, start the service timer */ 5064 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5065 5066 return 0; 5067 5068 err_init_link: 5069 ice_deinit_pf_sw(pf); 5070 err_init_pf_sw: 5071 ice_dealloc_vsis(pf); 5072 err_alloc_vsis: 5073 ice_deinit_dev(pf); 5074 return err; 5075 } 5076 5077 static void ice_deinit(struct ice_pf *pf) 5078 { 5079 set_bit(ICE_SERVICE_DIS, pf->state); 5080 set_bit(ICE_DOWN, pf->state); 5081 5082 ice_deinit_pf_sw(pf); 5083 ice_dealloc_vsis(pf); 5084 ice_deinit_dev(pf); 5085 } 5086 5087 /** 5088 * ice_load - load pf by init hw and starting VSI 5089 * @pf: pointer to the pf instance 5090 */ 5091 int ice_load(struct ice_pf *pf) 5092 { 5093 struct ice_vsi_cfg_params params = {}; 5094 struct ice_vsi *vsi; 5095 int err; 5096 5097 err = ice_reset(&pf->hw, ICE_RESET_PFR); 5098 if (err) 5099 return err; 5100 5101 err = ice_init_dev(pf); 5102 if (err) 5103 return err; 5104 5105 vsi = ice_get_main_vsi(pf); 5106 5107 params = ice_vsi_to_params(vsi); 5108 params.flags = ICE_VSI_FLAG_INIT; 5109 5110 err = ice_vsi_cfg(vsi, ¶ms); 5111 if (err) 5112 goto err_vsi_cfg; 5113 5114 err = ice_start_eth(ice_get_main_vsi(pf)); 5115 if (err) 5116 goto err_start_eth; 5117 5118 err = ice_init_rdma(pf); 5119 if (err) 5120 goto err_init_rdma; 5121 5122 ice_init_features(pf); 5123 ice_service_task_restart(pf); 5124 5125 clear_bit(ICE_DOWN, pf->state); 5126 5127 return 0; 5128 5129 err_init_rdma: 5130 ice_vsi_close(ice_get_main_vsi(pf)); 5131 err_start_eth: 5132 ice_vsi_decfg(ice_get_main_vsi(pf)); 5133 err_vsi_cfg: 5134 ice_deinit_dev(pf); 5135 return err; 5136 } 5137 5138 /** 5139 * ice_unload - unload pf by stopping VSI and deinit hw 5140 * @pf: pointer to the pf instance 5141 */ 5142 void ice_unload(struct ice_pf *pf) 5143 { 5144 ice_deinit_features(pf); 5145 ice_deinit_rdma(pf); 5146 ice_stop_eth(ice_get_main_vsi(pf)); 5147 ice_vsi_decfg(ice_get_main_vsi(pf)); 5148 ice_deinit_dev(pf); 5149 } 5150 5151 /** 5152 * ice_probe - Device initialization routine 5153 * @pdev: PCI device information struct 5154 * @ent: entry in ice_pci_tbl 5155 * 5156 * Returns 0 on success, negative on failure 5157 */ 5158 static int 5159 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5160 { 5161 struct device *dev = &pdev->dev; 5162 struct ice_pf *pf; 5163 struct ice_hw *hw; 5164 int err; 5165 5166 if (pdev->is_virtfn) { 5167 dev_err(dev, "can't probe a virtual function\n"); 5168 return -EINVAL; 5169 } 5170 5171 /* this driver uses devres, see 5172 * Documentation/driver-api/driver-model/devres.rst 5173 */ 5174 err = pcim_enable_device(pdev); 5175 if (err) 5176 return err; 5177 5178 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5179 if (err) { 5180 dev_err(dev, "BAR0 I/O map error %d\n", err); 5181 return err; 5182 } 5183 5184 pf = ice_allocate_pf(dev); 5185 if (!pf) 5186 return -ENOMEM; 5187 5188 /* initialize Auxiliary index to invalid value */ 5189 pf->aux_idx = -1; 5190 5191 /* set up for high or low DMA */ 5192 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5193 if (err) { 5194 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5195 return err; 5196 } 5197 5198 pci_set_master(pdev); 5199 5200 pf->pdev = pdev; 5201 pci_set_drvdata(pdev, pf); 5202 set_bit(ICE_DOWN, pf->state); 5203 /* Disable service task until DOWN bit is cleared */ 5204 set_bit(ICE_SERVICE_DIS, pf->state); 5205 5206 hw = &pf->hw; 5207 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5208 pci_save_state(pdev); 5209 5210 hw->back = pf; 5211 hw->port_info = NULL; 5212 hw->vendor_id = pdev->vendor; 5213 hw->device_id = pdev->device; 5214 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5215 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5216 hw->subsystem_device_id = pdev->subsystem_device; 5217 hw->bus.device = PCI_SLOT(pdev->devfn); 5218 hw->bus.func = PCI_FUNC(pdev->devfn); 5219 ice_set_ctrlq_len(hw); 5220 5221 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5222 5223 #ifndef CONFIG_DYNAMIC_DEBUG 5224 if (debug < -1) 5225 hw->debug_mask = debug; 5226 #endif 5227 5228 err = ice_init(pf); 5229 if (err) 5230 goto err_init; 5231 5232 err = ice_init_eth(pf); 5233 if (err) 5234 goto err_init_eth; 5235 5236 err = ice_init_rdma(pf); 5237 if (err) 5238 goto err_init_rdma; 5239 5240 err = ice_init_devlink(pf); 5241 if (err) 5242 goto err_init_devlink; 5243 5244 ice_init_features(pf); 5245 5246 return 0; 5247 5248 err_init_devlink: 5249 ice_deinit_rdma(pf); 5250 err_init_rdma: 5251 ice_deinit_eth(pf); 5252 err_init_eth: 5253 ice_deinit(pf); 5254 err_init: 5255 pci_disable_device(pdev); 5256 return err; 5257 } 5258 5259 /** 5260 * ice_set_wake - enable or disable Wake on LAN 5261 * @pf: pointer to the PF struct 5262 * 5263 * Simple helper for WoL control 5264 */ 5265 static void ice_set_wake(struct ice_pf *pf) 5266 { 5267 struct ice_hw *hw = &pf->hw; 5268 bool wol = pf->wol_ena; 5269 5270 /* clear wake state, otherwise new wake events won't fire */ 5271 wr32(hw, PFPM_WUS, U32_MAX); 5272 5273 /* enable / disable APM wake up, no RMW needed */ 5274 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5275 5276 /* set magic packet filter enabled */ 5277 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5278 } 5279 5280 /** 5281 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5282 * @pf: pointer to the PF struct 5283 * 5284 * Issue firmware command to enable multicast magic wake, making 5285 * sure that any locally administered address (LAA) is used for 5286 * wake, and that PF reset doesn't undo the LAA. 5287 */ 5288 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5289 { 5290 struct device *dev = ice_pf_to_dev(pf); 5291 struct ice_hw *hw = &pf->hw; 5292 u8 mac_addr[ETH_ALEN]; 5293 struct ice_vsi *vsi; 5294 int status; 5295 u8 flags; 5296 5297 if (!pf->wol_ena) 5298 return; 5299 5300 vsi = ice_get_main_vsi(pf); 5301 if (!vsi) 5302 return; 5303 5304 /* Get current MAC address in case it's an LAA */ 5305 if (vsi->netdev) 5306 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5307 else 5308 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5309 5310 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5311 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5312 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5313 5314 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5315 if (status) 5316 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5317 status, ice_aq_str(hw->adminq.sq_last_status)); 5318 } 5319 5320 /** 5321 * ice_remove - Device removal routine 5322 * @pdev: PCI device information struct 5323 */ 5324 static void ice_remove(struct pci_dev *pdev) 5325 { 5326 struct ice_pf *pf = pci_get_drvdata(pdev); 5327 int i; 5328 5329 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5330 if (!ice_is_reset_in_progress(pf->state)) 5331 break; 5332 msleep(100); 5333 } 5334 5335 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5336 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5337 ice_free_vfs(pf); 5338 } 5339 5340 ice_service_task_stop(pf); 5341 ice_aq_cancel_waiting_tasks(pf); 5342 set_bit(ICE_DOWN, pf->state); 5343 5344 if (!ice_is_safe_mode(pf)) 5345 ice_remove_arfs(pf); 5346 ice_deinit_features(pf); 5347 ice_deinit_devlink(pf); 5348 ice_deinit_rdma(pf); 5349 ice_deinit_eth(pf); 5350 ice_deinit(pf); 5351 5352 ice_vsi_release_all(pf); 5353 5354 ice_setup_mc_magic_wake(pf); 5355 ice_set_wake(pf); 5356 5357 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5358 * do it via ice_schedule_reset() since there is no need to rebuild 5359 * and the service task is already stopped. 5360 */ 5361 ice_reset(&pf->hw, ICE_RESET_PFR); 5362 pci_wait_for_pending_transaction(pdev); 5363 pci_disable_device(pdev); 5364 } 5365 5366 /** 5367 * ice_shutdown - PCI callback for shutting down device 5368 * @pdev: PCI device information struct 5369 */ 5370 static void ice_shutdown(struct pci_dev *pdev) 5371 { 5372 struct ice_pf *pf = pci_get_drvdata(pdev); 5373 5374 ice_remove(pdev); 5375 5376 if (system_state == SYSTEM_POWER_OFF) { 5377 pci_wake_from_d3(pdev, pf->wol_ena); 5378 pci_set_power_state(pdev, PCI_D3hot); 5379 } 5380 } 5381 5382 #ifdef CONFIG_PM 5383 /** 5384 * ice_prepare_for_shutdown - prep for PCI shutdown 5385 * @pf: board private structure 5386 * 5387 * Inform or close all dependent features in prep for PCI device shutdown 5388 */ 5389 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5390 { 5391 struct ice_hw *hw = &pf->hw; 5392 u32 v; 5393 5394 /* Notify VFs of impending reset */ 5395 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5396 ice_vc_notify_reset(pf); 5397 5398 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5399 5400 /* disable the VSIs and their queues that are not already DOWN */ 5401 ice_pf_dis_all_vsi(pf, false); 5402 5403 ice_for_each_vsi(pf, v) 5404 if (pf->vsi[v]) 5405 pf->vsi[v]->vsi_num = 0; 5406 5407 ice_shutdown_all_ctrlq(hw); 5408 } 5409 5410 /** 5411 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5412 * @pf: board private structure to reinitialize 5413 * 5414 * This routine reinitialize interrupt scheme that was cleared during 5415 * power management suspend callback. 5416 * 5417 * This should be called during resume routine to re-allocate the q_vectors 5418 * and reacquire interrupts. 5419 */ 5420 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5421 { 5422 struct device *dev = ice_pf_to_dev(pf); 5423 int ret, v; 5424 5425 /* Since we clear MSIX flag during suspend, we need to 5426 * set it back during resume... 5427 */ 5428 5429 ret = ice_init_interrupt_scheme(pf); 5430 if (ret) { 5431 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5432 return ret; 5433 } 5434 5435 /* Remap vectors and rings, after successful re-init interrupts */ 5436 ice_for_each_vsi(pf, v) { 5437 if (!pf->vsi[v]) 5438 continue; 5439 5440 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5441 if (ret) 5442 goto err_reinit; 5443 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5444 } 5445 5446 ret = ice_req_irq_msix_misc(pf); 5447 if (ret) { 5448 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5449 ret); 5450 goto err_reinit; 5451 } 5452 5453 return 0; 5454 5455 err_reinit: 5456 while (v--) 5457 if (pf->vsi[v]) 5458 ice_vsi_free_q_vectors(pf->vsi[v]); 5459 5460 return ret; 5461 } 5462 5463 /** 5464 * ice_suspend 5465 * @dev: generic device information structure 5466 * 5467 * Power Management callback to quiesce the device and prepare 5468 * for D3 transition. 5469 */ 5470 static int __maybe_unused ice_suspend(struct device *dev) 5471 { 5472 struct pci_dev *pdev = to_pci_dev(dev); 5473 struct ice_pf *pf; 5474 int disabled, v; 5475 5476 pf = pci_get_drvdata(pdev); 5477 5478 if (!ice_pf_state_is_nominal(pf)) { 5479 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5480 return -EBUSY; 5481 } 5482 5483 /* Stop watchdog tasks until resume completion. 5484 * Even though it is most likely that the service task is 5485 * disabled if the device is suspended or down, the service task's 5486 * state is controlled by a different state bit, and we should 5487 * store and honor whatever state that bit is in at this point. 5488 */ 5489 disabled = ice_service_task_stop(pf); 5490 5491 ice_unplug_aux_dev(pf); 5492 5493 /* Already suspended?, then there is nothing to do */ 5494 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5495 if (!disabled) 5496 ice_service_task_restart(pf); 5497 return 0; 5498 } 5499 5500 if (test_bit(ICE_DOWN, pf->state) || 5501 ice_is_reset_in_progress(pf->state)) { 5502 dev_err(dev, "can't suspend device in reset or already down\n"); 5503 if (!disabled) 5504 ice_service_task_restart(pf); 5505 return 0; 5506 } 5507 5508 ice_setup_mc_magic_wake(pf); 5509 5510 ice_prepare_for_shutdown(pf); 5511 5512 ice_set_wake(pf); 5513 5514 /* Free vectors, clear the interrupt scheme and release IRQs 5515 * for proper hibernation, especially with large number of CPUs. 5516 * Otherwise hibernation might fail when mapping all the vectors back 5517 * to CPU0. 5518 */ 5519 ice_free_irq_msix_misc(pf); 5520 ice_for_each_vsi(pf, v) { 5521 if (!pf->vsi[v]) 5522 continue; 5523 ice_vsi_free_q_vectors(pf->vsi[v]); 5524 } 5525 ice_clear_interrupt_scheme(pf); 5526 5527 pci_save_state(pdev); 5528 pci_wake_from_d3(pdev, pf->wol_ena); 5529 pci_set_power_state(pdev, PCI_D3hot); 5530 return 0; 5531 } 5532 5533 /** 5534 * ice_resume - PM callback for waking up from D3 5535 * @dev: generic device information structure 5536 */ 5537 static int __maybe_unused ice_resume(struct device *dev) 5538 { 5539 struct pci_dev *pdev = to_pci_dev(dev); 5540 enum ice_reset_req reset_type; 5541 struct ice_pf *pf; 5542 struct ice_hw *hw; 5543 int ret; 5544 5545 pci_set_power_state(pdev, PCI_D0); 5546 pci_restore_state(pdev); 5547 pci_save_state(pdev); 5548 5549 if (!pci_device_is_present(pdev)) 5550 return -ENODEV; 5551 5552 ret = pci_enable_device_mem(pdev); 5553 if (ret) { 5554 dev_err(dev, "Cannot enable device after suspend\n"); 5555 return ret; 5556 } 5557 5558 pf = pci_get_drvdata(pdev); 5559 hw = &pf->hw; 5560 5561 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5562 ice_print_wake_reason(pf); 5563 5564 /* We cleared the interrupt scheme when we suspended, so we need to 5565 * restore it now to resume device functionality. 5566 */ 5567 ret = ice_reinit_interrupt_scheme(pf); 5568 if (ret) 5569 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5570 5571 clear_bit(ICE_DOWN, pf->state); 5572 /* Now perform PF reset and rebuild */ 5573 reset_type = ICE_RESET_PFR; 5574 /* re-enable service task for reset, but allow reset to schedule it */ 5575 clear_bit(ICE_SERVICE_DIS, pf->state); 5576 5577 if (ice_schedule_reset(pf, reset_type)) 5578 dev_err(dev, "Reset during resume failed.\n"); 5579 5580 clear_bit(ICE_SUSPENDED, pf->state); 5581 ice_service_task_restart(pf); 5582 5583 /* Restart the service task */ 5584 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5585 5586 return 0; 5587 } 5588 #endif /* CONFIG_PM */ 5589 5590 /** 5591 * ice_pci_err_detected - warning that PCI error has been detected 5592 * @pdev: PCI device information struct 5593 * @err: the type of PCI error 5594 * 5595 * Called to warn that something happened on the PCI bus and the error handling 5596 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5597 */ 5598 static pci_ers_result_t 5599 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5600 { 5601 struct ice_pf *pf = pci_get_drvdata(pdev); 5602 5603 if (!pf) { 5604 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5605 __func__, err); 5606 return PCI_ERS_RESULT_DISCONNECT; 5607 } 5608 5609 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5610 ice_service_task_stop(pf); 5611 5612 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5613 set_bit(ICE_PFR_REQ, pf->state); 5614 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5615 } 5616 } 5617 5618 return PCI_ERS_RESULT_NEED_RESET; 5619 } 5620 5621 /** 5622 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5623 * @pdev: PCI device information struct 5624 * 5625 * Called to determine if the driver can recover from the PCI slot reset by 5626 * using a register read to determine if the device is recoverable. 5627 */ 5628 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5629 { 5630 struct ice_pf *pf = pci_get_drvdata(pdev); 5631 pci_ers_result_t result; 5632 int err; 5633 u32 reg; 5634 5635 err = pci_enable_device_mem(pdev); 5636 if (err) { 5637 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5638 err); 5639 result = PCI_ERS_RESULT_DISCONNECT; 5640 } else { 5641 pci_set_master(pdev); 5642 pci_restore_state(pdev); 5643 pci_save_state(pdev); 5644 pci_wake_from_d3(pdev, false); 5645 5646 /* Check for life */ 5647 reg = rd32(&pf->hw, GLGEN_RTRIG); 5648 if (!reg) 5649 result = PCI_ERS_RESULT_RECOVERED; 5650 else 5651 result = PCI_ERS_RESULT_DISCONNECT; 5652 } 5653 5654 return result; 5655 } 5656 5657 /** 5658 * ice_pci_err_resume - restart operations after PCI error recovery 5659 * @pdev: PCI device information struct 5660 * 5661 * Called to allow the driver to bring things back up after PCI error and/or 5662 * reset recovery have finished 5663 */ 5664 static void ice_pci_err_resume(struct pci_dev *pdev) 5665 { 5666 struct ice_pf *pf = pci_get_drvdata(pdev); 5667 5668 if (!pf) { 5669 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5670 __func__); 5671 return; 5672 } 5673 5674 if (test_bit(ICE_SUSPENDED, pf->state)) { 5675 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5676 __func__); 5677 return; 5678 } 5679 5680 ice_restore_all_vfs_msi_state(pdev); 5681 5682 ice_do_reset(pf, ICE_RESET_PFR); 5683 ice_service_task_restart(pf); 5684 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5685 } 5686 5687 /** 5688 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5689 * @pdev: PCI device information struct 5690 */ 5691 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5692 { 5693 struct ice_pf *pf = pci_get_drvdata(pdev); 5694 5695 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5696 ice_service_task_stop(pf); 5697 5698 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5699 set_bit(ICE_PFR_REQ, pf->state); 5700 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5701 } 5702 } 5703 } 5704 5705 /** 5706 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5707 * @pdev: PCI device information struct 5708 */ 5709 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5710 { 5711 ice_pci_err_resume(pdev); 5712 } 5713 5714 /* ice_pci_tbl - PCI Device ID Table 5715 * 5716 * Wildcard entries (PCI_ANY_ID) should come last 5717 * Last entry must be all 0s 5718 * 5719 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5720 * Class, Class Mask, private data (not used) } 5721 */ 5722 static const struct pci_device_id ice_pci_tbl[] = { 5723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5743 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5744 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5745 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5746 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5747 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5748 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5749 /* required last entry */ 5750 { 0, } 5751 }; 5752 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5753 5754 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5755 5756 static const struct pci_error_handlers ice_pci_err_handler = { 5757 .error_detected = ice_pci_err_detected, 5758 .slot_reset = ice_pci_err_slot_reset, 5759 .reset_prepare = ice_pci_err_reset_prepare, 5760 .reset_done = ice_pci_err_reset_done, 5761 .resume = ice_pci_err_resume 5762 }; 5763 5764 static struct pci_driver ice_driver = { 5765 .name = KBUILD_MODNAME, 5766 .id_table = ice_pci_tbl, 5767 .probe = ice_probe, 5768 .remove = ice_remove, 5769 #ifdef CONFIG_PM 5770 .driver.pm = &ice_pm_ops, 5771 #endif /* CONFIG_PM */ 5772 .shutdown = ice_shutdown, 5773 .sriov_configure = ice_sriov_configure, 5774 .err_handler = &ice_pci_err_handler 5775 }; 5776 5777 /** 5778 * ice_module_init - Driver registration routine 5779 * 5780 * ice_module_init is the first routine called when the driver is 5781 * loaded. All it does is register with the PCI subsystem. 5782 */ 5783 static int __init ice_module_init(void) 5784 { 5785 int status; 5786 5787 pr_info("%s\n", ice_driver_string); 5788 pr_info("%s\n", ice_copyright); 5789 5790 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5791 if (!ice_wq) { 5792 pr_err("Failed to create workqueue\n"); 5793 return -ENOMEM; 5794 } 5795 5796 status = pci_register_driver(&ice_driver); 5797 if (status) { 5798 pr_err("failed to register PCI driver, err %d\n", status); 5799 destroy_workqueue(ice_wq); 5800 } 5801 5802 return status; 5803 } 5804 module_init(ice_module_init); 5805 5806 /** 5807 * ice_module_exit - Driver exit cleanup routine 5808 * 5809 * ice_module_exit is called just before the driver is removed 5810 * from memory. 5811 */ 5812 static void __exit ice_module_exit(void) 5813 { 5814 pci_unregister_driver(&ice_driver); 5815 destroy_workqueue(ice_wq); 5816 pr_info("module unloaded\n"); 5817 } 5818 module_exit(ice_module_exit); 5819 5820 /** 5821 * ice_set_mac_address - NDO callback to set MAC address 5822 * @netdev: network interface device structure 5823 * @pi: pointer to an address structure 5824 * 5825 * Returns 0 on success, negative on failure 5826 */ 5827 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5828 { 5829 struct ice_netdev_priv *np = netdev_priv(netdev); 5830 struct ice_vsi *vsi = np->vsi; 5831 struct ice_pf *pf = vsi->back; 5832 struct ice_hw *hw = &pf->hw; 5833 struct sockaddr *addr = pi; 5834 u8 old_mac[ETH_ALEN]; 5835 u8 flags = 0; 5836 u8 *mac; 5837 int err; 5838 5839 mac = (u8 *)addr->sa_data; 5840 5841 if (!is_valid_ether_addr(mac)) 5842 return -EADDRNOTAVAIL; 5843 5844 if (ether_addr_equal(netdev->dev_addr, mac)) { 5845 netdev_dbg(netdev, "already using mac %pM\n", mac); 5846 return 0; 5847 } 5848 5849 if (test_bit(ICE_DOWN, pf->state) || 5850 ice_is_reset_in_progress(pf->state)) { 5851 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5852 mac); 5853 return -EBUSY; 5854 } 5855 5856 if (ice_chnl_dmac_fltr_cnt(pf)) { 5857 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5858 mac); 5859 return -EAGAIN; 5860 } 5861 5862 netif_addr_lock_bh(netdev); 5863 ether_addr_copy(old_mac, netdev->dev_addr); 5864 /* change the netdev's MAC address */ 5865 eth_hw_addr_set(netdev, mac); 5866 netif_addr_unlock_bh(netdev); 5867 5868 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5869 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5870 if (err && err != -ENOENT) { 5871 err = -EADDRNOTAVAIL; 5872 goto err_update_filters; 5873 } 5874 5875 /* Add filter for new MAC. If filter exists, return success */ 5876 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5877 if (err == -EEXIST) { 5878 /* Although this MAC filter is already present in hardware it's 5879 * possible in some cases (e.g. bonding) that dev_addr was 5880 * modified outside of the driver and needs to be restored back 5881 * to this value. 5882 */ 5883 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5884 5885 return 0; 5886 } else if (err) { 5887 /* error if the new filter addition failed */ 5888 err = -EADDRNOTAVAIL; 5889 } 5890 5891 err_update_filters: 5892 if (err) { 5893 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5894 mac); 5895 netif_addr_lock_bh(netdev); 5896 eth_hw_addr_set(netdev, old_mac); 5897 netif_addr_unlock_bh(netdev); 5898 return err; 5899 } 5900 5901 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5902 netdev->dev_addr); 5903 5904 /* write new MAC address to the firmware */ 5905 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5906 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5907 if (err) { 5908 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5909 mac, err); 5910 } 5911 return 0; 5912 } 5913 5914 /** 5915 * ice_set_rx_mode - NDO callback to set the netdev filters 5916 * @netdev: network interface device structure 5917 */ 5918 static void ice_set_rx_mode(struct net_device *netdev) 5919 { 5920 struct ice_netdev_priv *np = netdev_priv(netdev); 5921 struct ice_vsi *vsi = np->vsi; 5922 5923 if (!vsi) 5924 return; 5925 5926 /* Set the flags to synchronize filters 5927 * ndo_set_rx_mode may be triggered even without a change in netdev 5928 * flags 5929 */ 5930 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5931 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5932 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5933 5934 /* schedule our worker thread which will take care of 5935 * applying the new filter changes 5936 */ 5937 ice_service_task_schedule(vsi->back); 5938 } 5939 5940 /** 5941 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5942 * @netdev: network interface device structure 5943 * @queue_index: Queue ID 5944 * @maxrate: maximum bandwidth in Mbps 5945 */ 5946 static int 5947 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5948 { 5949 struct ice_netdev_priv *np = netdev_priv(netdev); 5950 struct ice_vsi *vsi = np->vsi; 5951 u16 q_handle; 5952 int status; 5953 u8 tc; 5954 5955 /* Validate maxrate requested is within permitted range */ 5956 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5957 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5958 maxrate, queue_index); 5959 return -EINVAL; 5960 } 5961 5962 q_handle = vsi->tx_rings[queue_index]->q_handle; 5963 tc = ice_dcb_get_tc(vsi, queue_index); 5964 5965 /* Set BW back to default, when user set maxrate to 0 */ 5966 if (!maxrate) 5967 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5968 q_handle, ICE_MAX_BW); 5969 else 5970 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5971 q_handle, ICE_MAX_BW, maxrate * 1000); 5972 if (status) 5973 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5974 status); 5975 5976 return status; 5977 } 5978 5979 /** 5980 * ice_fdb_add - add an entry to the hardware database 5981 * @ndm: the input from the stack 5982 * @tb: pointer to array of nladdr (unused) 5983 * @dev: the net device pointer 5984 * @addr: the MAC address entry being added 5985 * @vid: VLAN ID 5986 * @flags: instructions from stack about fdb operation 5987 * @extack: netlink extended ack 5988 */ 5989 static int 5990 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5991 struct net_device *dev, const unsigned char *addr, u16 vid, 5992 u16 flags, struct netlink_ext_ack __always_unused *extack) 5993 { 5994 int err; 5995 5996 if (vid) { 5997 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5998 return -EINVAL; 5999 } 6000 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6001 netdev_err(dev, "FDB only supports static addresses\n"); 6002 return -EINVAL; 6003 } 6004 6005 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6006 err = dev_uc_add_excl(dev, addr); 6007 else if (is_multicast_ether_addr(addr)) 6008 err = dev_mc_add_excl(dev, addr); 6009 else 6010 err = -EINVAL; 6011 6012 /* Only return duplicate errors if NLM_F_EXCL is set */ 6013 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6014 err = 0; 6015 6016 return err; 6017 } 6018 6019 /** 6020 * ice_fdb_del - delete an entry from the hardware database 6021 * @ndm: the input from the stack 6022 * @tb: pointer to array of nladdr (unused) 6023 * @dev: the net device pointer 6024 * @addr: the MAC address entry being added 6025 * @vid: VLAN ID 6026 * @extack: netlink extended ack 6027 */ 6028 static int 6029 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6030 struct net_device *dev, const unsigned char *addr, 6031 __always_unused u16 vid, struct netlink_ext_ack *extack) 6032 { 6033 int err; 6034 6035 if (ndm->ndm_state & NUD_PERMANENT) { 6036 netdev_err(dev, "FDB only supports static addresses\n"); 6037 return -EINVAL; 6038 } 6039 6040 if (is_unicast_ether_addr(addr)) 6041 err = dev_uc_del(dev, addr); 6042 else if (is_multicast_ether_addr(addr)) 6043 err = dev_mc_del(dev, addr); 6044 else 6045 err = -EINVAL; 6046 6047 return err; 6048 } 6049 6050 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6051 NETIF_F_HW_VLAN_CTAG_TX | \ 6052 NETIF_F_HW_VLAN_STAG_RX | \ 6053 NETIF_F_HW_VLAN_STAG_TX) 6054 6055 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6056 NETIF_F_HW_VLAN_STAG_RX) 6057 6058 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6059 NETIF_F_HW_VLAN_STAG_FILTER) 6060 6061 /** 6062 * ice_fix_features - fix the netdev features flags based on device limitations 6063 * @netdev: ptr to the netdev that flags are being fixed on 6064 * @features: features that need to be checked and possibly fixed 6065 * 6066 * Make sure any fixups are made to features in this callback. This enables the 6067 * driver to not have to check unsupported configurations throughout the driver 6068 * because that's the responsiblity of this callback. 6069 * 6070 * Single VLAN Mode (SVM) Supported Features: 6071 * NETIF_F_HW_VLAN_CTAG_FILTER 6072 * NETIF_F_HW_VLAN_CTAG_RX 6073 * NETIF_F_HW_VLAN_CTAG_TX 6074 * 6075 * Double VLAN Mode (DVM) Supported Features: 6076 * NETIF_F_HW_VLAN_CTAG_FILTER 6077 * NETIF_F_HW_VLAN_CTAG_RX 6078 * NETIF_F_HW_VLAN_CTAG_TX 6079 * 6080 * NETIF_F_HW_VLAN_STAG_FILTER 6081 * NETIF_HW_VLAN_STAG_RX 6082 * NETIF_HW_VLAN_STAG_TX 6083 * 6084 * Features that need fixing: 6085 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6086 * These are mutually exlusive as the VSI context cannot support multiple 6087 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6088 * is not done, then default to clearing the requested STAG offload 6089 * settings. 6090 * 6091 * All supported filtering has to be enabled or disabled together. For 6092 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6093 * together. If this is not done, then default to VLAN filtering disabled. 6094 * These are mutually exclusive as there is currently no way to 6095 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6096 * prune rules. 6097 */ 6098 static netdev_features_t 6099 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6100 { 6101 struct ice_netdev_priv *np = netdev_priv(netdev); 6102 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6103 bool cur_ctag, cur_stag, req_ctag, req_stag; 6104 6105 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6106 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6107 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6108 6109 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6110 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6111 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6112 6113 if (req_vlan_fltr != cur_vlan_fltr) { 6114 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6115 if (req_ctag && req_stag) { 6116 features |= NETIF_VLAN_FILTERING_FEATURES; 6117 } else if (!req_ctag && !req_stag) { 6118 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6119 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6120 (!cur_stag && req_stag && !cur_ctag)) { 6121 features |= NETIF_VLAN_FILTERING_FEATURES; 6122 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6123 } else if ((cur_ctag && !req_ctag && cur_stag) || 6124 (cur_stag && !req_stag && cur_ctag)) { 6125 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6126 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6127 } 6128 } else { 6129 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6130 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6131 6132 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6133 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6134 } 6135 } 6136 6137 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6138 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6139 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6140 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6141 NETIF_F_HW_VLAN_STAG_TX); 6142 } 6143 6144 if (!(netdev->features & NETIF_F_RXFCS) && 6145 (features & NETIF_F_RXFCS) && 6146 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6147 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6148 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6149 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6150 } 6151 6152 return features; 6153 } 6154 6155 /** 6156 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6157 * @vsi: PF's VSI 6158 * @features: features used to determine VLAN offload settings 6159 * 6160 * First, determine the vlan_ethertype based on the VLAN offload bits in 6161 * features. Then determine if stripping and insertion should be enabled or 6162 * disabled. Finally enable or disable VLAN stripping and insertion. 6163 */ 6164 static int 6165 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6166 { 6167 bool enable_stripping = true, enable_insertion = true; 6168 struct ice_vsi_vlan_ops *vlan_ops; 6169 int strip_err = 0, insert_err = 0; 6170 u16 vlan_ethertype = 0; 6171 6172 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6173 6174 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6175 vlan_ethertype = ETH_P_8021AD; 6176 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6177 vlan_ethertype = ETH_P_8021Q; 6178 6179 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6180 enable_stripping = false; 6181 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6182 enable_insertion = false; 6183 6184 if (enable_stripping) 6185 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6186 else 6187 strip_err = vlan_ops->dis_stripping(vsi); 6188 6189 if (enable_insertion) 6190 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6191 else 6192 insert_err = vlan_ops->dis_insertion(vsi); 6193 6194 if (strip_err || insert_err) 6195 return -EIO; 6196 6197 return 0; 6198 } 6199 6200 /** 6201 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6202 * @vsi: PF's VSI 6203 * @features: features used to determine VLAN filtering settings 6204 * 6205 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6206 * features. 6207 */ 6208 static int 6209 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6210 { 6211 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6212 int err = 0; 6213 6214 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6215 * if either bit is set 6216 */ 6217 if (features & 6218 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6219 err = vlan_ops->ena_rx_filtering(vsi); 6220 else 6221 err = vlan_ops->dis_rx_filtering(vsi); 6222 6223 return err; 6224 } 6225 6226 /** 6227 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6228 * @netdev: ptr to the netdev being adjusted 6229 * @features: the feature set that the stack is suggesting 6230 * 6231 * Only update VLAN settings if the requested_vlan_features are different than 6232 * the current_vlan_features. 6233 */ 6234 static int 6235 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6236 { 6237 netdev_features_t current_vlan_features, requested_vlan_features; 6238 struct ice_netdev_priv *np = netdev_priv(netdev); 6239 struct ice_vsi *vsi = np->vsi; 6240 int err; 6241 6242 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6243 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6244 if (current_vlan_features ^ requested_vlan_features) { 6245 if ((features & NETIF_F_RXFCS) && 6246 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6247 dev_err(ice_pf_to_dev(vsi->back), 6248 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6249 return -EIO; 6250 } 6251 6252 err = ice_set_vlan_offload_features(vsi, features); 6253 if (err) 6254 return err; 6255 } 6256 6257 current_vlan_features = netdev->features & 6258 NETIF_VLAN_FILTERING_FEATURES; 6259 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6260 if (current_vlan_features ^ requested_vlan_features) { 6261 err = ice_set_vlan_filtering_features(vsi, features); 6262 if (err) 6263 return err; 6264 } 6265 6266 return 0; 6267 } 6268 6269 /** 6270 * ice_set_loopback - turn on/off loopback mode on underlying PF 6271 * @vsi: ptr to VSI 6272 * @ena: flag to indicate the on/off setting 6273 */ 6274 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6275 { 6276 bool if_running = netif_running(vsi->netdev); 6277 int ret; 6278 6279 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6280 ret = ice_down(vsi); 6281 if (ret) { 6282 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6283 return ret; 6284 } 6285 } 6286 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6287 if (ret) 6288 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6289 if (if_running) 6290 ret = ice_up(vsi); 6291 6292 return ret; 6293 } 6294 6295 /** 6296 * ice_set_features - set the netdev feature flags 6297 * @netdev: ptr to the netdev being adjusted 6298 * @features: the feature set that the stack is suggesting 6299 */ 6300 static int 6301 ice_set_features(struct net_device *netdev, netdev_features_t features) 6302 { 6303 netdev_features_t changed = netdev->features ^ features; 6304 struct ice_netdev_priv *np = netdev_priv(netdev); 6305 struct ice_vsi *vsi = np->vsi; 6306 struct ice_pf *pf = vsi->back; 6307 int ret = 0; 6308 6309 /* Don't set any netdev advanced features with device in Safe Mode */ 6310 if (ice_is_safe_mode(pf)) { 6311 dev_err(ice_pf_to_dev(pf), 6312 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6313 return ret; 6314 } 6315 6316 /* Do not change setting during reset */ 6317 if (ice_is_reset_in_progress(pf->state)) { 6318 dev_err(ice_pf_to_dev(pf), 6319 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6320 return -EBUSY; 6321 } 6322 6323 /* Multiple features can be changed in one call so keep features in 6324 * separate if/else statements to guarantee each feature is checked 6325 */ 6326 if (changed & NETIF_F_RXHASH) 6327 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6328 6329 ret = ice_set_vlan_features(netdev, features); 6330 if (ret) 6331 return ret; 6332 6333 /* Turn on receive of FCS aka CRC, and after setting this 6334 * flag the packet data will have the 4 byte CRC appended 6335 */ 6336 if (changed & NETIF_F_RXFCS) { 6337 if ((features & NETIF_F_RXFCS) && 6338 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6339 dev_err(ice_pf_to_dev(vsi->back), 6340 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6341 return -EIO; 6342 } 6343 6344 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6345 ret = ice_down_up(vsi); 6346 if (ret) 6347 return ret; 6348 } 6349 6350 if (changed & NETIF_F_NTUPLE) { 6351 bool ena = !!(features & NETIF_F_NTUPLE); 6352 6353 ice_vsi_manage_fdir(vsi, ena); 6354 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6355 } 6356 6357 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6358 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6359 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6360 return -EACCES; 6361 } 6362 6363 if (changed & NETIF_F_HW_TC) { 6364 bool ena = !!(features & NETIF_F_HW_TC); 6365 6366 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6367 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6368 } 6369 6370 if (changed & NETIF_F_LOOPBACK) 6371 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6372 6373 return ret; 6374 } 6375 6376 /** 6377 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6378 * @vsi: VSI to setup VLAN properties for 6379 */ 6380 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6381 { 6382 int err; 6383 6384 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6385 if (err) 6386 return err; 6387 6388 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6389 if (err) 6390 return err; 6391 6392 return ice_vsi_add_vlan_zero(vsi); 6393 } 6394 6395 /** 6396 * ice_vsi_cfg_lan - Setup the VSI lan related config 6397 * @vsi: the VSI being configured 6398 * 6399 * Return 0 on success and negative value on error 6400 */ 6401 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6402 { 6403 int err; 6404 6405 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6406 ice_set_rx_mode(vsi->netdev); 6407 6408 err = ice_vsi_vlan_setup(vsi); 6409 if (err) 6410 return err; 6411 } 6412 ice_vsi_cfg_dcb_rings(vsi); 6413 6414 err = ice_vsi_cfg_lan_txqs(vsi); 6415 if (!err && ice_is_xdp_ena_vsi(vsi)) 6416 err = ice_vsi_cfg_xdp_txqs(vsi); 6417 if (!err) 6418 err = ice_vsi_cfg_rxqs(vsi); 6419 6420 return err; 6421 } 6422 6423 /* THEORY OF MODERATION: 6424 * The ice driver hardware works differently than the hardware that DIMLIB was 6425 * originally made for. ice hardware doesn't have packet count limits that 6426 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6427 * which is hard-coded to a limit of 250,000 ints/second. 6428 * If not using dynamic moderation, the INTRL value can be modified 6429 * by ethtool rx-usecs-high. 6430 */ 6431 struct ice_dim { 6432 /* the throttle rate for interrupts, basically worst case delay before 6433 * an initial interrupt fires, value is stored in microseconds. 6434 */ 6435 u16 itr; 6436 }; 6437 6438 /* Make a different profile for Rx that doesn't allow quite so aggressive 6439 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6440 * second. 6441 */ 6442 static const struct ice_dim rx_profile[] = { 6443 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6444 {8}, /* 125,000 ints/s */ 6445 {16}, /* 62,500 ints/s */ 6446 {62}, /* 16,129 ints/s */ 6447 {126} /* 7,936 ints/s */ 6448 }; 6449 6450 /* The transmit profile, which has the same sorts of values 6451 * as the previous struct 6452 */ 6453 static const struct ice_dim tx_profile[] = { 6454 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6455 {8}, /* 125,000 ints/s */ 6456 {40}, /* 16,125 ints/s */ 6457 {128}, /* 7,812 ints/s */ 6458 {256} /* 3,906 ints/s */ 6459 }; 6460 6461 static void ice_tx_dim_work(struct work_struct *work) 6462 { 6463 struct ice_ring_container *rc; 6464 struct dim *dim; 6465 u16 itr; 6466 6467 dim = container_of(work, struct dim, work); 6468 rc = (struct ice_ring_container *)dim->priv; 6469 6470 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6471 6472 /* look up the values in our local table */ 6473 itr = tx_profile[dim->profile_ix].itr; 6474 6475 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6476 ice_write_itr(rc, itr); 6477 6478 dim->state = DIM_START_MEASURE; 6479 } 6480 6481 static void ice_rx_dim_work(struct work_struct *work) 6482 { 6483 struct ice_ring_container *rc; 6484 struct dim *dim; 6485 u16 itr; 6486 6487 dim = container_of(work, struct dim, work); 6488 rc = (struct ice_ring_container *)dim->priv; 6489 6490 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6491 6492 /* look up the values in our local table */ 6493 itr = rx_profile[dim->profile_ix].itr; 6494 6495 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6496 ice_write_itr(rc, itr); 6497 6498 dim->state = DIM_START_MEASURE; 6499 } 6500 6501 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6502 6503 /** 6504 * ice_init_moderation - set up interrupt moderation 6505 * @q_vector: the vector containing rings to be configured 6506 * 6507 * Set up interrupt moderation registers, with the intent to do the right thing 6508 * when called from reset or from probe, and whether or not dynamic moderation 6509 * is enabled or not. Take special care to write all the registers in both 6510 * dynamic moderation mode or not in order to make sure hardware is in a known 6511 * state. 6512 */ 6513 static void ice_init_moderation(struct ice_q_vector *q_vector) 6514 { 6515 struct ice_ring_container *rc; 6516 bool tx_dynamic, rx_dynamic; 6517 6518 rc = &q_vector->tx; 6519 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6520 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6521 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6522 rc->dim.priv = rc; 6523 tx_dynamic = ITR_IS_DYNAMIC(rc); 6524 6525 /* set the initial TX ITR to match the above */ 6526 ice_write_itr(rc, tx_dynamic ? 6527 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6528 6529 rc = &q_vector->rx; 6530 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6531 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6532 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6533 rc->dim.priv = rc; 6534 rx_dynamic = ITR_IS_DYNAMIC(rc); 6535 6536 /* set the initial RX ITR to match the above */ 6537 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6538 rc->itr_setting); 6539 6540 ice_set_q_vector_intrl(q_vector); 6541 } 6542 6543 /** 6544 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6545 * @vsi: the VSI being configured 6546 */ 6547 static void ice_napi_enable_all(struct ice_vsi *vsi) 6548 { 6549 int q_idx; 6550 6551 if (!vsi->netdev) 6552 return; 6553 6554 ice_for_each_q_vector(vsi, q_idx) { 6555 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6556 6557 ice_init_moderation(q_vector); 6558 6559 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6560 napi_enable(&q_vector->napi); 6561 } 6562 } 6563 6564 /** 6565 * ice_up_complete - Finish the last steps of bringing up a connection 6566 * @vsi: The VSI being configured 6567 * 6568 * Return 0 on success and negative value on error 6569 */ 6570 static int ice_up_complete(struct ice_vsi *vsi) 6571 { 6572 struct ice_pf *pf = vsi->back; 6573 int err; 6574 6575 ice_vsi_cfg_msix(vsi); 6576 6577 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6578 * Tx queue group list was configured and the context bits were 6579 * programmed using ice_vsi_cfg_txqs 6580 */ 6581 err = ice_vsi_start_all_rx_rings(vsi); 6582 if (err) 6583 return err; 6584 6585 clear_bit(ICE_VSI_DOWN, vsi->state); 6586 ice_napi_enable_all(vsi); 6587 ice_vsi_ena_irq(vsi); 6588 6589 if (vsi->port_info && 6590 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6591 vsi->netdev && vsi->type == ICE_VSI_PF) { 6592 ice_print_link_msg(vsi, true); 6593 netif_tx_start_all_queues(vsi->netdev); 6594 netif_carrier_on(vsi->netdev); 6595 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6596 } 6597 6598 /* Perform an initial read of the statistics registers now to 6599 * set the baseline so counters are ready when interface is up 6600 */ 6601 ice_update_eth_stats(vsi); 6602 6603 if (vsi->type == ICE_VSI_PF) 6604 ice_service_task_schedule(pf); 6605 6606 return 0; 6607 } 6608 6609 /** 6610 * ice_up - Bring the connection back up after being down 6611 * @vsi: VSI being configured 6612 */ 6613 int ice_up(struct ice_vsi *vsi) 6614 { 6615 int err; 6616 6617 err = ice_vsi_cfg_lan(vsi); 6618 if (!err) 6619 err = ice_up_complete(vsi); 6620 6621 return err; 6622 } 6623 6624 /** 6625 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6626 * @syncp: pointer to u64_stats_sync 6627 * @stats: stats that pkts and bytes count will be taken from 6628 * @pkts: packets stats counter 6629 * @bytes: bytes stats counter 6630 * 6631 * This function fetches stats from the ring considering the atomic operations 6632 * that needs to be performed to read u64 values in 32 bit machine. 6633 */ 6634 void 6635 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6636 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6637 { 6638 unsigned int start; 6639 6640 do { 6641 start = u64_stats_fetch_begin(syncp); 6642 *pkts = stats.pkts; 6643 *bytes = stats.bytes; 6644 } while (u64_stats_fetch_retry(syncp, start)); 6645 } 6646 6647 /** 6648 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6649 * @vsi: the VSI to be updated 6650 * @vsi_stats: the stats struct to be updated 6651 * @rings: rings to work on 6652 * @count: number of rings 6653 */ 6654 static void 6655 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6656 struct rtnl_link_stats64 *vsi_stats, 6657 struct ice_tx_ring **rings, u16 count) 6658 { 6659 u16 i; 6660 6661 for (i = 0; i < count; i++) { 6662 struct ice_tx_ring *ring; 6663 u64 pkts = 0, bytes = 0; 6664 6665 ring = READ_ONCE(rings[i]); 6666 if (!ring || !ring->ring_stats) 6667 continue; 6668 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6669 ring->ring_stats->stats, &pkts, 6670 &bytes); 6671 vsi_stats->tx_packets += pkts; 6672 vsi_stats->tx_bytes += bytes; 6673 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6674 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6675 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6676 } 6677 } 6678 6679 /** 6680 * ice_update_vsi_ring_stats - Update VSI stats counters 6681 * @vsi: the VSI to be updated 6682 */ 6683 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6684 { 6685 struct rtnl_link_stats64 *net_stats, *stats_prev; 6686 struct rtnl_link_stats64 *vsi_stats; 6687 u64 pkts, bytes; 6688 int i; 6689 6690 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6691 if (!vsi_stats) 6692 return; 6693 6694 /* reset non-netdev (extended) stats */ 6695 vsi->tx_restart = 0; 6696 vsi->tx_busy = 0; 6697 vsi->tx_linearize = 0; 6698 vsi->rx_buf_failed = 0; 6699 vsi->rx_page_failed = 0; 6700 6701 rcu_read_lock(); 6702 6703 /* update Tx rings counters */ 6704 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6705 vsi->num_txq); 6706 6707 /* update Rx rings counters */ 6708 ice_for_each_rxq(vsi, i) { 6709 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6710 struct ice_ring_stats *ring_stats; 6711 6712 ring_stats = ring->ring_stats; 6713 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6714 ring_stats->stats, &pkts, 6715 &bytes); 6716 vsi_stats->rx_packets += pkts; 6717 vsi_stats->rx_bytes += bytes; 6718 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6719 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6720 } 6721 6722 /* update XDP Tx rings counters */ 6723 if (ice_is_xdp_ena_vsi(vsi)) 6724 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6725 vsi->num_xdp_txq); 6726 6727 rcu_read_unlock(); 6728 6729 net_stats = &vsi->net_stats; 6730 stats_prev = &vsi->net_stats_prev; 6731 6732 /* clear prev counters after reset */ 6733 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6734 vsi_stats->rx_packets < stats_prev->rx_packets) { 6735 stats_prev->tx_packets = 0; 6736 stats_prev->tx_bytes = 0; 6737 stats_prev->rx_packets = 0; 6738 stats_prev->rx_bytes = 0; 6739 } 6740 6741 /* update netdev counters */ 6742 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6743 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6744 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6745 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6746 6747 stats_prev->tx_packets = vsi_stats->tx_packets; 6748 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6749 stats_prev->rx_packets = vsi_stats->rx_packets; 6750 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6751 6752 kfree(vsi_stats); 6753 } 6754 6755 /** 6756 * ice_update_vsi_stats - Update VSI stats counters 6757 * @vsi: the VSI to be updated 6758 */ 6759 void ice_update_vsi_stats(struct ice_vsi *vsi) 6760 { 6761 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6762 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6763 struct ice_pf *pf = vsi->back; 6764 6765 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6766 test_bit(ICE_CFG_BUSY, pf->state)) 6767 return; 6768 6769 /* get stats as recorded by Tx/Rx rings */ 6770 ice_update_vsi_ring_stats(vsi); 6771 6772 /* get VSI stats as recorded by the hardware */ 6773 ice_update_eth_stats(vsi); 6774 6775 cur_ns->tx_errors = cur_es->tx_errors; 6776 cur_ns->rx_dropped = cur_es->rx_discards; 6777 cur_ns->tx_dropped = cur_es->tx_discards; 6778 cur_ns->multicast = cur_es->rx_multicast; 6779 6780 /* update some more netdev stats if this is main VSI */ 6781 if (vsi->type == ICE_VSI_PF) { 6782 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6783 cur_ns->rx_errors = pf->stats.crc_errors + 6784 pf->stats.illegal_bytes + 6785 pf->stats.rx_len_errors + 6786 pf->stats.rx_undersize + 6787 pf->hw_csum_rx_error + 6788 pf->stats.rx_jabber + 6789 pf->stats.rx_fragments + 6790 pf->stats.rx_oversize; 6791 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6792 /* record drops from the port level */ 6793 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6794 } 6795 } 6796 6797 /** 6798 * ice_update_pf_stats - Update PF port stats counters 6799 * @pf: PF whose stats needs to be updated 6800 */ 6801 void ice_update_pf_stats(struct ice_pf *pf) 6802 { 6803 struct ice_hw_port_stats *prev_ps, *cur_ps; 6804 struct ice_hw *hw = &pf->hw; 6805 u16 fd_ctr_base; 6806 u8 port; 6807 6808 port = hw->port_info->lport; 6809 prev_ps = &pf->stats_prev; 6810 cur_ps = &pf->stats; 6811 6812 if (ice_is_reset_in_progress(pf->state)) 6813 pf->stat_prev_loaded = false; 6814 6815 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6816 &prev_ps->eth.rx_bytes, 6817 &cur_ps->eth.rx_bytes); 6818 6819 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6820 &prev_ps->eth.rx_unicast, 6821 &cur_ps->eth.rx_unicast); 6822 6823 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6824 &prev_ps->eth.rx_multicast, 6825 &cur_ps->eth.rx_multicast); 6826 6827 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6828 &prev_ps->eth.rx_broadcast, 6829 &cur_ps->eth.rx_broadcast); 6830 6831 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6832 &prev_ps->eth.rx_discards, 6833 &cur_ps->eth.rx_discards); 6834 6835 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6836 &prev_ps->eth.tx_bytes, 6837 &cur_ps->eth.tx_bytes); 6838 6839 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6840 &prev_ps->eth.tx_unicast, 6841 &cur_ps->eth.tx_unicast); 6842 6843 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6844 &prev_ps->eth.tx_multicast, 6845 &cur_ps->eth.tx_multicast); 6846 6847 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6848 &prev_ps->eth.tx_broadcast, 6849 &cur_ps->eth.tx_broadcast); 6850 6851 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6852 &prev_ps->tx_dropped_link_down, 6853 &cur_ps->tx_dropped_link_down); 6854 6855 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6856 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6857 6858 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6859 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6860 6861 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6862 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6863 6864 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6865 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6866 6867 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6868 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6869 6870 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6871 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6872 6873 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6874 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6875 6876 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6877 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6878 6879 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6880 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6881 6882 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6883 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6884 6885 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6886 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6887 6888 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6889 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6890 6891 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6892 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6893 6894 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6895 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6896 6897 fd_ctr_base = hw->fd_ctr_base; 6898 6899 ice_stat_update40(hw, 6900 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6901 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6902 &cur_ps->fd_sb_match); 6903 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6904 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6905 6906 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6907 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6908 6909 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6910 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6911 6912 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6913 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6914 6915 ice_update_dcb_stats(pf); 6916 6917 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6918 &prev_ps->crc_errors, &cur_ps->crc_errors); 6919 6920 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6921 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6922 6923 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6924 &prev_ps->mac_local_faults, 6925 &cur_ps->mac_local_faults); 6926 6927 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6928 &prev_ps->mac_remote_faults, 6929 &cur_ps->mac_remote_faults); 6930 6931 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6932 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6933 6934 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6935 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6936 6937 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6938 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6939 6940 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6941 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6942 6943 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6944 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6945 6946 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6947 6948 pf->stat_prev_loaded = true; 6949 } 6950 6951 /** 6952 * ice_get_stats64 - get statistics for network device structure 6953 * @netdev: network interface device structure 6954 * @stats: main device statistics structure 6955 */ 6956 static 6957 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6958 { 6959 struct ice_netdev_priv *np = netdev_priv(netdev); 6960 struct rtnl_link_stats64 *vsi_stats; 6961 struct ice_vsi *vsi = np->vsi; 6962 6963 vsi_stats = &vsi->net_stats; 6964 6965 if (!vsi->num_txq || !vsi->num_rxq) 6966 return; 6967 6968 /* netdev packet/byte stats come from ring counter. These are obtained 6969 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6970 * But, only call the update routine and read the registers if VSI is 6971 * not down. 6972 */ 6973 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6974 ice_update_vsi_ring_stats(vsi); 6975 stats->tx_packets = vsi_stats->tx_packets; 6976 stats->tx_bytes = vsi_stats->tx_bytes; 6977 stats->rx_packets = vsi_stats->rx_packets; 6978 stats->rx_bytes = vsi_stats->rx_bytes; 6979 6980 /* The rest of the stats can be read from the hardware but instead we 6981 * just return values that the watchdog task has already obtained from 6982 * the hardware. 6983 */ 6984 stats->multicast = vsi_stats->multicast; 6985 stats->tx_errors = vsi_stats->tx_errors; 6986 stats->tx_dropped = vsi_stats->tx_dropped; 6987 stats->rx_errors = vsi_stats->rx_errors; 6988 stats->rx_dropped = vsi_stats->rx_dropped; 6989 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6990 stats->rx_length_errors = vsi_stats->rx_length_errors; 6991 } 6992 6993 /** 6994 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6995 * @vsi: VSI having NAPI disabled 6996 */ 6997 static void ice_napi_disable_all(struct ice_vsi *vsi) 6998 { 6999 int q_idx; 7000 7001 if (!vsi->netdev) 7002 return; 7003 7004 ice_for_each_q_vector(vsi, q_idx) { 7005 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7006 7007 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7008 napi_disable(&q_vector->napi); 7009 7010 cancel_work_sync(&q_vector->tx.dim.work); 7011 cancel_work_sync(&q_vector->rx.dim.work); 7012 } 7013 } 7014 7015 /** 7016 * ice_down - Shutdown the connection 7017 * @vsi: The VSI being stopped 7018 * 7019 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7020 */ 7021 int ice_down(struct ice_vsi *vsi) 7022 { 7023 int i, tx_err, rx_err, vlan_err = 0; 7024 7025 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7026 7027 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 7028 vlan_err = ice_vsi_del_vlan_zero(vsi); 7029 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7030 netif_carrier_off(vsi->netdev); 7031 netif_tx_disable(vsi->netdev); 7032 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 7033 ice_eswitch_stop_all_tx_queues(vsi->back); 7034 } 7035 7036 ice_vsi_dis_irq(vsi); 7037 7038 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7039 if (tx_err) 7040 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7041 vsi->vsi_num, tx_err); 7042 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7043 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7044 if (tx_err) 7045 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7046 vsi->vsi_num, tx_err); 7047 } 7048 7049 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7050 if (rx_err) 7051 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7052 vsi->vsi_num, rx_err); 7053 7054 ice_napi_disable_all(vsi); 7055 7056 ice_for_each_txq(vsi, i) 7057 ice_clean_tx_ring(vsi->tx_rings[i]); 7058 7059 ice_for_each_rxq(vsi, i) 7060 ice_clean_rx_ring(vsi->rx_rings[i]); 7061 7062 if (tx_err || rx_err || vlan_err) { 7063 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7064 vsi->vsi_num, vsi->vsw->sw_id); 7065 return -EIO; 7066 } 7067 7068 return 0; 7069 } 7070 7071 /** 7072 * ice_down_up - shutdown the VSI connection and bring it up 7073 * @vsi: the VSI to be reconnected 7074 */ 7075 int ice_down_up(struct ice_vsi *vsi) 7076 { 7077 int ret; 7078 7079 /* if DOWN already set, nothing to do */ 7080 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7081 return 0; 7082 7083 ret = ice_down(vsi); 7084 if (ret) 7085 return ret; 7086 7087 ret = ice_up(vsi); 7088 if (ret) { 7089 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7090 return ret; 7091 } 7092 7093 return 0; 7094 } 7095 7096 /** 7097 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7098 * @vsi: VSI having resources allocated 7099 * 7100 * Return 0 on success, negative on failure 7101 */ 7102 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7103 { 7104 int i, err = 0; 7105 7106 if (!vsi->num_txq) { 7107 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7108 vsi->vsi_num); 7109 return -EINVAL; 7110 } 7111 7112 ice_for_each_txq(vsi, i) { 7113 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7114 7115 if (!ring) 7116 return -EINVAL; 7117 7118 if (vsi->netdev) 7119 ring->netdev = vsi->netdev; 7120 err = ice_setup_tx_ring(ring); 7121 if (err) 7122 break; 7123 } 7124 7125 return err; 7126 } 7127 7128 /** 7129 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7130 * @vsi: VSI having resources allocated 7131 * 7132 * Return 0 on success, negative on failure 7133 */ 7134 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7135 { 7136 int i, err = 0; 7137 7138 if (!vsi->num_rxq) { 7139 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7140 vsi->vsi_num); 7141 return -EINVAL; 7142 } 7143 7144 ice_for_each_rxq(vsi, i) { 7145 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7146 7147 if (!ring) 7148 return -EINVAL; 7149 7150 if (vsi->netdev) 7151 ring->netdev = vsi->netdev; 7152 err = ice_setup_rx_ring(ring); 7153 if (err) 7154 break; 7155 } 7156 7157 return err; 7158 } 7159 7160 /** 7161 * ice_vsi_open_ctrl - open control VSI for use 7162 * @vsi: the VSI to open 7163 * 7164 * Initialization of the Control VSI 7165 * 7166 * Returns 0 on success, negative value on error 7167 */ 7168 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7169 { 7170 char int_name[ICE_INT_NAME_STR_LEN]; 7171 struct ice_pf *pf = vsi->back; 7172 struct device *dev; 7173 int err; 7174 7175 dev = ice_pf_to_dev(pf); 7176 /* allocate descriptors */ 7177 err = ice_vsi_setup_tx_rings(vsi); 7178 if (err) 7179 goto err_setup_tx; 7180 7181 err = ice_vsi_setup_rx_rings(vsi); 7182 if (err) 7183 goto err_setup_rx; 7184 7185 err = ice_vsi_cfg_lan(vsi); 7186 if (err) 7187 goto err_setup_rx; 7188 7189 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7190 dev_driver_string(dev), dev_name(dev)); 7191 err = ice_vsi_req_irq_msix(vsi, int_name); 7192 if (err) 7193 goto err_setup_rx; 7194 7195 ice_vsi_cfg_msix(vsi); 7196 7197 err = ice_vsi_start_all_rx_rings(vsi); 7198 if (err) 7199 goto err_up_complete; 7200 7201 clear_bit(ICE_VSI_DOWN, vsi->state); 7202 ice_vsi_ena_irq(vsi); 7203 7204 return 0; 7205 7206 err_up_complete: 7207 ice_down(vsi); 7208 err_setup_rx: 7209 ice_vsi_free_rx_rings(vsi); 7210 err_setup_tx: 7211 ice_vsi_free_tx_rings(vsi); 7212 7213 return err; 7214 } 7215 7216 /** 7217 * ice_vsi_open - Called when a network interface is made active 7218 * @vsi: the VSI to open 7219 * 7220 * Initialization of the VSI 7221 * 7222 * Returns 0 on success, negative value on error 7223 */ 7224 int ice_vsi_open(struct ice_vsi *vsi) 7225 { 7226 char int_name[ICE_INT_NAME_STR_LEN]; 7227 struct ice_pf *pf = vsi->back; 7228 int err; 7229 7230 /* allocate descriptors */ 7231 err = ice_vsi_setup_tx_rings(vsi); 7232 if (err) 7233 goto err_setup_tx; 7234 7235 err = ice_vsi_setup_rx_rings(vsi); 7236 if (err) 7237 goto err_setup_rx; 7238 7239 err = ice_vsi_cfg_lan(vsi); 7240 if (err) 7241 goto err_setup_rx; 7242 7243 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7244 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7245 err = ice_vsi_req_irq_msix(vsi, int_name); 7246 if (err) 7247 goto err_setup_rx; 7248 7249 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7250 7251 if (vsi->type == ICE_VSI_PF) { 7252 /* Notify the stack of the actual queue counts. */ 7253 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7254 if (err) 7255 goto err_set_qs; 7256 7257 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7258 if (err) 7259 goto err_set_qs; 7260 } 7261 7262 err = ice_up_complete(vsi); 7263 if (err) 7264 goto err_up_complete; 7265 7266 return 0; 7267 7268 err_up_complete: 7269 ice_down(vsi); 7270 err_set_qs: 7271 ice_vsi_free_irq(vsi); 7272 err_setup_rx: 7273 ice_vsi_free_rx_rings(vsi); 7274 err_setup_tx: 7275 ice_vsi_free_tx_rings(vsi); 7276 7277 return err; 7278 } 7279 7280 /** 7281 * ice_vsi_release_all - Delete all VSIs 7282 * @pf: PF from which all VSIs are being removed 7283 */ 7284 static void ice_vsi_release_all(struct ice_pf *pf) 7285 { 7286 int err, i; 7287 7288 if (!pf->vsi) 7289 return; 7290 7291 ice_for_each_vsi(pf, i) { 7292 if (!pf->vsi[i]) 7293 continue; 7294 7295 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7296 continue; 7297 7298 err = ice_vsi_release(pf->vsi[i]); 7299 if (err) 7300 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7301 i, err, pf->vsi[i]->vsi_num); 7302 } 7303 } 7304 7305 /** 7306 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7307 * @pf: pointer to the PF instance 7308 * @type: VSI type to rebuild 7309 * 7310 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7311 */ 7312 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7313 { 7314 struct device *dev = ice_pf_to_dev(pf); 7315 int i, err; 7316 7317 ice_for_each_vsi(pf, i) { 7318 struct ice_vsi *vsi = pf->vsi[i]; 7319 7320 if (!vsi || vsi->type != type) 7321 continue; 7322 7323 /* rebuild the VSI */ 7324 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7325 if (err) { 7326 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7327 err, vsi->idx, ice_vsi_type_str(type)); 7328 return err; 7329 } 7330 7331 /* replay filters for the VSI */ 7332 err = ice_replay_vsi(&pf->hw, vsi->idx); 7333 if (err) { 7334 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7335 err, vsi->idx, ice_vsi_type_str(type)); 7336 return err; 7337 } 7338 7339 /* Re-map HW VSI number, using VSI handle that has been 7340 * previously validated in ice_replay_vsi() call above 7341 */ 7342 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7343 7344 /* enable the VSI */ 7345 err = ice_ena_vsi(vsi, false); 7346 if (err) { 7347 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7348 err, vsi->idx, ice_vsi_type_str(type)); 7349 return err; 7350 } 7351 7352 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7353 ice_vsi_type_str(type)); 7354 } 7355 7356 return 0; 7357 } 7358 7359 /** 7360 * ice_update_pf_netdev_link - Update PF netdev link status 7361 * @pf: pointer to the PF instance 7362 */ 7363 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7364 { 7365 bool link_up; 7366 int i; 7367 7368 ice_for_each_vsi(pf, i) { 7369 struct ice_vsi *vsi = pf->vsi[i]; 7370 7371 if (!vsi || vsi->type != ICE_VSI_PF) 7372 return; 7373 7374 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7375 if (link_up) { 7376 netif_carrier_on(pf->vsi[i]->netdev); 7377 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7378 } else { 7379 netif_carrier_off(pf->vsi[i]->netdev); 7380 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7381 } 7382 } 7383 } 7384 7385 /** 7386 * ice_rebuild - rebuild after reset 7387 * @pf: PF to rebuild 7388 * @reset_type: type of reset 7389 * 7390 * Do not rebuild VF VSI in this flow because that is already handled via 7391 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7392 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7393 * to reset/rebuild all the VF VSI twice. 7394 */ 7395 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7396 { 7397 struct device *dev = ice_pf_to_dev(pf); 7398 struct ice_hw *hw = &pf->hw; 7399 bool dvm; 7400 int err; 7401 7402 if (test_bit(ICE_DOWN, pf->state)) 7403 goto clear_recovery; 7404 7405 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7406 7407 #define ICE_EMP_RESET_SLEEP_MS 5000 7408 if (reset_type == ICE_RESET_EMPR) { 7409 /* If an EMP reset has occurred, any previously pending flash 7410 * update will have completed. We no longer know whether or 7411 * not the NVM update EMP reset is restricted. 7412 */ 7413 pf->fw_emp_reset_disabled = false; 7414 7415 msleep(ICE_EMP_RESET_SLEEP_MS); 7416 } 7417 7418 err = ice_init_all_ctrlq(hw); 7419 if (err) { 7420 dev_err(dev, "control queues init failed %d\n", err); 7421 goto err_init_ctrlq; 7422 } 7423 7424 /* if DDP was previously loaded successfully */ 7425 if (!ice_is_safe_mode(pf)) { 7426 /* reload the SW DB of filter tables */ 7427 if (reset_type == ICE_RESET_PFR) 7428 ice_fill_blk_tbls(hw); 7429 else 7430 /* Reload DDP Package after CORER/GLOBR reset */ 7431 ice_load_pkg(NULL, pf); 7432 } 7433 7434 err = ice_clear_pf_cfg(hw); 7435 if (err) { 7436 dev_err(dev, "clear PF configuration failed %d\n", err); 7437 goto err_init_ctrlq; 7438 } 7439 7440 ice_clear_pxe_mode(hw); 7441 7442 err = ice_init_nvm(hw); 7443 if (err) { 7444 dev_err(dev, "ice_init_nvm failed %d\n", err); 7445 goto err_init_ctrlq; 7446 } 7447 7448 err = ice_get_caps(hw); 7449 if (err) { 7450 dev_err(dev, "ice_get_caps failed %d\n", err); 7451 goto err_init_ctrlq; 7452 } 7453 7454 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7455 if (err) { 7456 dev_err(dev, "set_mac_cfg failed %d\n", err); 7457 goto err_init_ctrlq; 7458 } 7459 7460 dvm = ice_is_dvm_ena(hw); 7461 7462 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7463 if (err) 7464 goto err_init_ctrlq; 7465 7466 err = ice_sched_init_port(hw->port_info); 7467 if (err) 7468 goto err_sched_init_port; 7469 7470 /* start misc vector */ 7471 err = ice_req_irq_msix_misc(pf); 7472 if (err) { 7473 dev_err(dev, "misc vector setup failed: %d\n", err); 7474 goto err_sched_init_port; 7475 } 7476 7477 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7478 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7479 if (!rd32(hw, PFQF_FD_SIZE)) { 7480 u16 unused, guar, b_effort; 7481 7482 guar = hw->func_caps.fd_fltr_guar; 7483 b_effort = hw->func_caps.fd_fltr_best_effort; 7484 7485 /* force guaranteed filter pool for PF */ 7486 ice_alloc_fd_guar_item(hw, &unused, guar); 7487 /* force shared filter pool for PF */ 7488 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7489 } 7490 } 7491 7492 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7493 ice_dcb_rebuild(pf); 7494 7495 /* If the PF previously had enabled PTP, PTP init needs to happen before 7496 * the VSI rebuild. If not, this causes the PTP link status events to 7497 * fail. 7498 */ 7499 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7500 ice_ptp_reset(pf); 7501 7502 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7503 ice_gnss_init(pf); 7504 7505 /* rebuild PF VSI */ 7506 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7507 if (err) { 7508 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7509 goto err_vsi_rebuild; 7510 } 7511 7512 /* configure PTP timestamping after VSI rebuild */ 7513 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7514 ice_ptp_cfg_timestamp(pf, false); 7515 7516 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7517 if (err) { 7518 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7519 goto err_vsi_rebuild; 7520 } 7521 7522 if (reset_type == ICE_RESET_PFR) { 7523 err = ice_rebuild_channels(pf); 7524 if (err) { 7525 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7526 err); 7527 goto err_vsi_rebuild; 7528 } 7529 } 7530 7531 /* If Flow Director is active */ 7532 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7533 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7534 if (err) { 7535 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7536 goto err_vsi_rebuild; 7537 } 7538 7539 /* replay HW Flow Director recipes */ 7540 if (hw->fdir_prof) 7541 ice_fdir_replay_flows(hw); 7542 7543 /* replay Flow Director filters */ 7544 ice_fdir_replay_fltrs(pf); 7545 7546 ice_rebuild_arfs(pf); 7547 } 7548 7549 ice_update_pf_netdev_link(pf); 7550 7551 /* tell the firmware we are up */ 7552 err = ice_send_version(pf); 7553 if (err) { 7554 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7555 err); 7556 goto err_vsi_rebuild; 7557 } 7558 7559 ice_replay_post(hw); 7560 7561 /* if we get here, reset flow is successful */ 7562 clear_bit(ICE_RESET_FAILED, pf->state); 7563 7564 ice_plug_aux_dev(pf); 7565 return; 7566 7567 err_vsi_rebuild: 7568 err_sched_init_port: 7569 ice_sched_cleanup_all(hw); 7570 err_init_ctrlq: 7571 ice_shutdown_all_ctrlq(hw); 7572 set_bit(ICE_RESET_FAILED, pf->state); 7573 clear_recovery: 7574 /* set this bit in PF state to control service task scheduling */ 7575 set_bit(ICE_NEEDS_RESTART, pf->state); 7576 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7577 } 7578 7579 /** 7580 * ice_change_mtu - NDO callback to change the MTU 7581 * @netdev: network interface device structure 7582 * @new_mtu: new value for maximum frame size 7583 * 7584 * Returns 0 on success, negative on failure 7585 */ 7586 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7587 { 7588 struct ice_netdev_priv *np = netdev_priv(netdev); 7589 struct ice_vsi *vsi = np->vsi; 7590 struct ice_pf *pf = vsi->back; 7591 struct bpf_prog *prog; 7592 u8 count = 0; 7593 int err = 0; 7594 7595 if (new_mtu == (int)netdev->mtu) { 7596 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7597 return 0; 7598 } 7599 7600 prog = vsi->xdp_prog; 7601 if (prog && !prog->aux->xdp_has_frags) { 7602 int frame_size = ice_max_xdp_frame_size(vsi); 7603 7604 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7605 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7606 frame_size - ICE_ETH_PKT_HDR_PAD); 7607 return -EINVAL; 7608 } 7609 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7610 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7611 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7612 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7613 return -EINVAL; 7614 } 7615 } 7616 7617 /* if a reset is in progress, wait for some time for it to complete */ 7618 do { 7619 if (ice_is_reset_in_progress(pf->state)) { 7620 count++; 7621 usleep_range(1000, 2000); 7622 } else { 7623 break; 7624 } 7625 7626 } while (count < 100); 7627 7628 if (count == 100) { 7629 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7630 return -EBUSY; 7631 } 7632 7633 netdev->mtu = (unsigned int)new_mtu; 7634 7635 /* if VSI is up, bring it down and then back up */ 7636 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7637 err = ice_down(vsi); 7638 if (err) { 7639 netdev_err(netdev, "change MTU if_down err %d\n", err); 7640 return err; 7641 } 7642 7643 err = ice_up(vsi); 7644 if (err) { 7645 netdev_err(netdev, "change MTU if_up err %d\n", err); 7646 return err; 7647 } 7648 } 7649 7650 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7651 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7652 7653 return err; 7654 } 7655 7656 /** 7657 * ice_eth_ioctl - Access the hwtstamp interface 7658 * @netdev: network interface device structure 7659 * @ifr: interface request data 7660 * @cmd: ioctl command 7661 */ 7662 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7663 { 7664 struct ice_netdev_priv *np = netdev_priv(netdev); 7665 struct ice_pf *pf = np->vsi->back; 7666 7667 switch (cmd) { 7668 case SIOCGHWTSTAMP: 7669 return ice_ptp_get_ts_config(pf, ifr); 7670 case SIOCSHWTSTAMP: 7671 return ice_ptp_set_ts_config(pf, ifr); 7672 default: 7673 return -EOPNOTSUPP; 7674 } 7675 } 7676 7677 /** 7678 * ice_aq_str - convert AQ err code to a string 7679 * @aq_err: the AQ error code to convert 7680 */ 7681 const char *ice_aq_str(enum ice_aq_err aq_err) 7682 { 7683 switch (aq_err) { 7684 case ICE_AQ_RC_OK: 7685 return "OK"; 7686 case ICE_AQ_RC_EPERM: 7687 return "ICE_AQ_RC_EPERM"; 7688 case ICE_AQ_RC_ENOENT: 7689 return "ICE_AQ_RC_ENOENT"; 7690 case ICE_AQ_RC_ENOMEM: 7691 return "ICE_AQ_RC_ENOMEM"; 7692 case ICE_AQ_RC_EBUSY: 7693 return "ICE_AQ_RC_EBUSY"; 7694 case ICE_AQ_RC_EEXIST: 7695 return "ICE_AQ_RC_EEXIST"; 7696 case ICE_AQ_RC_EINVAL: 7697 return "ICE_AQ_RC_EINVAL"; 7698 case ICE_AQ_RC_ENOSPC: 7699 return "ICE_AQ_RC_ENOSPC"; 7700 case ICE_AQ_RC_ENOSYS: 7701 return "ICE_AQ_RC_ENOSYS"; 7702 case ICE_AQ_RC_EMODE: 7703 return "ICE_AQ_RC_EMODE"; 7704 case ICE_AQ_RC_ENOSEC: 7705 return "ICE_AQ_RC_ENOSEC"; 7706 case ICE_AQ_RC_EBADSIG: 7707 return "ICE_AQ_RC_EBADSIG"; 7708 case ICE_AQ_RC_ESVN: 7709 return "ICE_AQ_RC_ESVN"; 7710 case ICE_AQ_RC_EBADMAN: 7711 return "ICE_AQ_RC_EBADMAN"; 7712 case ICE_AQ_RC_EBADBUF: 7713 return "ICE_AQ_RC_EBADBUF"; 7714 } 7715 7716 return "ICE_AQ_RC_UNKNOWN"; 7717 } 7718 7719 /** 7720 * ice_set_rss_lut - Set RSS LUT 7721 * @vsi: Pointer to VSI structure 7722 * @lut: Lookup table 7723 * @lut_size: Lookup table size 7724 * 7725 * Returns 0 on success, negative on failure 7726 */ 7727 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7728 { 7729 struct ice_aq_get_set_rss_lut_params params = {}; 7730 struct ice_hw *hw = &vsi->back->hw; 7731 int status; 7732 7733 if (!lut) 7734 return -EINVAL; 7735 7736 params.vsi_handle = vsi->idx; 7737 params.lut_size = lut_size; 7738 params.lut_type = vsi->rss_lut_type; 7739 params.lut = lut; 7740 7741 status = ice_aq_set_rss_lut(hw, ¶ms); 7742 if (status) 7743 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7744 status, ice_aq_str(hw->adminq.sq_last_status)); 7745 7746 return status; 7747 } 7748 7749 /** 7750 * ice_set_rss_key - Set RSS key 7751 * @vsi: Pointer to the VSI structure 7752 * @seed: RSS hash seed 7753 * 7754 * Returns 0 on success, negative on failure 7755 */ 7756 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7757 { 7758 struct ice_hw *hw = &vsi->back->hw; 7759 int status; 7760 7761 if (!seed) 7762 return -EINVAL; 7763 7764 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7765 if (status) 7766 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7767 status, ice_aq_str(hw->adminq.sq_last_status)); 7768 7769 return status; 7770 } 7771 7772 /** 7773 * ice_get_rss_lut - Get RSS LUT 7774 * @vsi: Pointer to VSI structure 7775 * @lut: Buffer to store the lookup table entries 7776 * @lut_size: Size of buffer to store the lookup table entries 7777 * 7778 * Returns 0 on success, negative on failure 7779 */ 7780 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7781 { 7782 struct ice_aq_get_set_rss_lut_params params = {}; 7783 struct ice_hw *hw = &vsi->back->hw; 7784 int status; 7785 7786 if (!lut) 7787 return -EINVAL; 7788 7789 params.vsi_handle = vsi->idx; 7790 params.lut_size = lut_size; 7791 params.lut_type = vsi->rss_lut_type; 7792 params.lut = lut; 7793 7794 status = ice_aq_get_rss_lut(hw, ¶ms); 7795 if (status) 7796 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7797 status, ice_aq_str(hw->adminq.sq_last_status)); 7798 7799 return status; 7800 } 7801 7802 /** 7803 * ice_get_rss_key - Get RSS key 7804 * @vsi: Pointer to VSI structure 7805 * @seed: Buffer to store the key in 7806 * 7807 * Returns 0 on success, negative on failure 7808 */ 7809 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7810 { 7811 struct ice_hw *hw = &vsi->back->hw; 7812 int status; 7813 7814 if (!seed) 7815 return -EINVAL; 7816 7817 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7818 if (status) 7819 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7820 status, ice_aq_str(hw->adminq.sq_last_status)); 7821 7822 return status; 7823 } 7824 7825 /** 7826 * ice_bridge_getlink - Get the hardware bridge mode 7827 * @skb: skb buff 7828 * @pid: process ID 7829 * @seq: RTNL message seq 7830 * @dev: the netdev being configured 7831 * @filter_mask: filter mask passed in 7832 * @nlflags: netlink flags passed in 7833 * 7834 * Return the bridge mode (VEB/VEPA) 7835 */ 7836 static int 7837 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7838 struct net_device *dev, u32 filter_mask, int nlflags) 7839 { 7840 struct ice_netdev_priv *np = netdev_priv(dev); 7841 struct ice_vsi *vsi = np->vsi; 7842 struct ice_pf *pf = vsi->back; 7843 u16 bmode; 7844 7845 bmode = pf->first_sw->bridge_mode; 7846 7847 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7848 filter_mask, NULL); 7849 } 7850 7851 /** 7852 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7853 * @vsi: Pointer to VSI structure 7854 * @bmode: Hardware bridge mode (VEB/VEPA) 7855 * 7856 * Returns 0 on success, negative on failure 7857 */ 7858 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7859 { 7860 struct ice_aqc_vsi_props *vsi_props; 7861 struct ice_hw *hw = &vsi->back->hw; 7862 struct ice_vsi_ctx *ctxt; 7863 int ret; 7864 7865 vsi_props = &vsi->info; 7866 7867 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7868 if (!ctxt) 7869 return -ENOMEM; 7870 7871 ctxt->info = vsi->info; 7872 7873 if (bmode == BRIDGE_MODE_VEB) 7874 /* change from VEPA to VEB mode */ 7875 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7876 else 7877 /* change from VEB to VEPA mode */ 7878 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7879 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7880 7881 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7882 if (ret) { 7883 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7884 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7885 goto out; 7886 } 7887 /* Update sw flags for book keeping */ 7888 vsi_props->sw_flags = ctxt->info.sw_flags; 7889 7890 out: 7891 kfree(ctxt); 7892 return ret; 7893 } 7894 7895 /** 7896 * ice_bridge_setlink - Set the hardware bridge mode 7897 * @dev: the netdev being configured 7898 * @nlh: RTNL message 7899 * @flags: bridge setlink flags 7900 * @extack: netlink extended ack 7901 * 7902 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7903 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7904 * not already set for all VSIs connected to this switch. And also update the 7905 * unicast switch filter rules for the corresponding switch of the netdev. 7906 */ 7907 static int 7908 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7909 u16 __always_unused flags, 7910 struct netlink_ext_ack __always_unused *extack) 7911 { 7912 struct ice_netdev_priv *np = netdev_priv(dev); 7913 struct ice_pf *pf = np->vsi->back; 7914 struct nlattr *attr, *br_spec; 7915 struct ice_hw *hw = &pf->hw; 7916 struct ice_sw *pf_sw; 7917 int rem, v, err = 0; 7918 7919 pf_sw = pf->first_sw; 7920 /* find the attribute in the netlink message */ 7921 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7922 7923 nla_for_each_nested(attr, br_spec, rem) { 7924 __u16 mode; 7925 7926 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7927 continue; 7928 mode = nla_get_u16(attr); 7929 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7930 return -EINVAL; 7931 /* Continue if bridge mode is not being flipped */ 7932 if (mode == pf_sw->bridge_mode) 7933 continue; 7934 /* Iterates through the PF VSI list and update the loopback 7935 * mode of the VSI 7936 */ 7937 ice_for_each_vsi(pf, v) { 7938 if (!pf->vsi[v]) 7939 continue; 7940 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7941 if (err) 7942 return err; 7943 } 7944 7945 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7946 /* Update the unicast switch filter rules for the corresponding 7947 * switch of the netdev 7948 */ 7949 err = ice_update_sw_rule_bridge_mode(hw); 7950 if (err) { 7951 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7952 mode, err, 7953 ice_aq_str(hw->adminq.sq_last_status)); 7954 /* revert hw->evb_veb */ 7955 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7956 return err; 7957 } 7958 7959 pf_sw->bridge_mode = mode; 7960 } 7961 7962 return 0; 7963 } 7964 7965 /** 7966 * ice_tx_timeout - Respond to a Tx Hang 7967 * @netdev: network interface device structure 7968 * @txqueue: Tx queue 7969 */ 7970 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7971 { 7972 struct ice_netdev_priv *np = netdev_priv(netdev); 7973 struct ice_tx_ring *tx_ring = NULL; 7974 struct ice_vsi *vsi = np->vsi; 7975 struct ice_pf *pf = vsi->back; 7976 u32 i; 7977 7978 pf->tx_timeout_count++; 7979 7980 /* Check if PFC is enabled for the TC to which the queue belongs 7981 * to. If yes then Tx timeout is not caused by a hung queue, no 7982 * need to reset and rebuild 7983 */ 7984 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7985 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7986 txqueue); 7987 return; 7988 } 7989 7990 /* now that we have an index, find the tx_ring struct */ 7991 ice_for_each_txq(vsi, i) 7992 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7993 if (txqueue == vsi->tx_rings[i]->q_index) { 7994 tx_ring = vsi->tx_rings[i]; 7995 break; 7996 } 7997 7998 /* Reset recovery level if enough time has elapsed after last timeout. 7999 * Also ensure no new reset action happens before next timeout period. 8000 */ 8001 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8002 pf->tx_timeout_recovery_level = 1; 8003 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8004 netdev->watchdog_timeo))) 8005 return; 8006 8007 if (tx_ring) { 8008 struct ice_hw *hw = &pf->hw; 8009 u32 head, val = 0; 8010 8011 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 8012 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 8013 /* Read interrupt register */ 8014 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8015 8016 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8017 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8018 head, tx_ring->next_to_use, val); 8019 } 8020 8021 pf->tx_timeout_last_recovery = jiffies; 8022 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8023 pf->tx_timeout_recovery_level, txqueue); 8024 8025 switch (pf->tx_timeout_recovery_level) { 8026 case 1: 8027 set_bit(ICE_PFR_REQ, pf->state); 8028 break; 8029 case 2: 8030 set_bit(ICE_CORER_REQ, pf->state); 8031 break; 8032 case 3: 8033 set_bit(ICE_GLOBR_REQ, pf->state); 8034 break; 8035 default: 8036 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8037 set_bit(ICE_DOWN, pf->state); 8038 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8039 set_bit(ICE_SERVICE_DIS, pf->state); 8040 break; 8041 } 8042 8043 ice_service_task_schedule(pf); 8044 pf->tx_timeout_recovery_level++; 8045 } 8046 8047 /** 8048 * ice_setup_tc_cls_flower - flower classifier offloads 8049 * @np: net device to configure 8050 * @filter_dev: device on which filter is added 8051 * @cls_flower: offload data 8052 */ 8053 static int 8054 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8055 struct net_device *filter_dev, 8056 struct flow_cls_offload *cls_flower) 8057 { 8058 struct ice_vsi *vsi = np->vsi; 8059 8060 if (cls_flower->common.chain_index) 8061 return -EOPNOTSUPP; 8062 8063 switch (cls_flower->command) { 8064 case FLOW_CLS_REPLACE: 8065 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8066 case FLOW_CLS_DESTROY: 8067 return ice_del_cls_flower(vsi, cls_flower); 8068 default: 8069 return -EINVAL; 8070 } 8071 } 8072 8073 /** 8074 * ice_setup_tc_block_cb - callback handler registered for TC block 8075 * @type: TC SETUP type 8076 * @type_data: TC flower offload data that contains user input 8077 * @cb_priv: netdev private data 8078 */ 8079 static int 8080 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8081 { 8082 struct ice_netdev_priv *np = cb_priv; 8083 8084 switch (type) { 8085 case TC_SETUP_CLSFLOWER: 8086 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8087 type_data); 8088 default: 8089 return -EOPNOTSUPP; 8090 } 8091 } 8092 8093 /** 8094 * ice_validate_mqprio_qopt - Validate TCF input parameters 8095 * @vsi: Pointer to VSI 8096 * @mqprio_qopt: input parameters for mqprio queue configuration 8097 * 8098 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8099 * needed), and make sure user doesn't specify qcount and BW rate limit 8100 * for TCs, which are more than "num_tc" 8101 */ 8102 static int 8103 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8104 struct tc_mqprio_qopt_offload *mqprio_qopt) 8105 { 8106 u64 sum_max_rate = 0, sum_min_rate = 0; 8107 int non_power_of_2_qcount = 0; 8108 struct ice_pf *pf = vsi->back; 8109 int max_rss_q_cnt = 0; 8110 struct device *dev; 8111 int i, speed; 8112 u8 num_tc; 8113 8114 if (vsi->type != ICE_VSI_PF) 8115 return -EINVAL; 8116 8117 if (mqprio_qopt->qopt.offset[0] != 0 || 8118 mqprio_qopt->qopt.num_tc < 1 || 8119 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8120 return -EINVAL; 8121 8122 dev = ice_pf_to_dev(pf); 8123 vsi->ch_rss_size = 0; 8124 num_tc = mqprio_qopt->qopt.num_tc; 8125 8126 for (i = 0; num_tc; i++) { 8127 int qcount = mqprio_qopt->qopt.count[i]; 8128 u64 max_rate, min_rate, rem; 8129 8130 if (!qcount) 8131 return -EINVAL; 8132 8133 if (is_power_of_2(qcount)) { 8134 if (non_power_of_2_qcount && 8135 qcount > non_power_of_2_qcount) { 8136 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8137 qcount, non_power_of_2_qcount); 8138 return -EINVAL; 8139 } 8140 if (qcount > max_rss_q_cnt) 8141 max_rss_q_cnt = qcount; 8142 } else { 8143 if (non_power_of_2_qcount && 8144 qcount != non_power_of_2_qcount) { 8145 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8146 qcount, non_power_of_2_qcount); 8147 return -EINVAL; 8148 } 8149 if (qcount < max_rss_q_cnt) { 8150 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8151 qcount, max_rss_q_cnt); 8152 return -EINVAL; 8153 } 8154 max_rss_q_cnt = qcount; 8155 non_power_of_2_qcount = qcount; 8156 } 8157 8158 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8159 * converts the bandwidth rate limit into Bytes/s when 8160 * passing it down to the driver. So convert input bandwidth 8161 * from Bytes/s to Kbps 8162 */ 8163 max_rate = mqprio_qopt->max_rate[i]; 8164 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8165 sum_max_rate += max_rate; 8166 8167 /* min_rate is minimum guaranteed rate and it can't be zero */ 8168 min_rate = mqprio_qopt->min_rate[i]; 8169 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8170 sum_min_rate += min_rate; 8171 8172 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8173 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8174 min_rate, ICE_MIN_BW_LIMIT); 8175 return -EINVAL; 8176 } 8177 8178 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8179 if (rem) { 8180 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8181 i, ICE_MIN_BW_LIMIT); 8182 return -EINVAL; 8183 } 8184 8185 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8186 if (rem) { 8187 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8188 i, ICE_MIN_BW_LIMIT); 8189 return -EINVAL; 8190 } 8191 8192 /* min_rate can't be more than max_rate, except when max_rate 8193 * is zero (implies max_rate sought is max line rate). In such 8194 * a case min_rate can be more than max. 8195 */ 8196 if (max_rate && min_rate > max_rate) { 8197 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8198 min_rate, max_rate); 8199 return -EINVAL; 8200 } 8201 8202 if (i >= mqprio_qopt->qopt.num_tc - 1) 8203 break; 8204 if (mqprio_qopt->qopt.offset[i + 1] != 8205 (mqprio_qopt->qopt.offset[i] + qcount)) 8206 return -EINVAL; 8207 } 8208 if (vsi->num_rxq < 8209 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8210 return -EINVAL; 8211 if (vsi->num_txq < 8212 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8213 return -EINVAL; 8214 8215 speed = ice_get_link_speed_kbps(vsi); 8216 if (sum_max_rate && sum_max_rate > (u64)speed) { 8217 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8218 sum_max_rate, speed); 8219 return -EINVAL; 8220 } 8221 if (sum_min_rate && sum_min_rate > (u64)speed) { 8222 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8223 sum_min_rate, speed); 8224 return -EINVAL; 8225 } 8226 8227 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8228 vsi->ch_rss_size = max_rss_q_cnt; 8229 8230 return 0; 8231 } 8232 8233 /** 8234 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8235 * @pf: ptr to PF device 8236 * @vsi: ptr to VSI 8237 */ 8238 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8239 { 8240 struct device *dev = ice_pf_to_dev(pf); 8241 bool added = false; 8242 struct ice_hw *hw; 8243 int flow; 8244 8245 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8246 return -EINVAL; 8247 8248 hw = &pf->hw; 8249 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8250 struct ice_fd_hw_prof *prof; 8251 int tun, status; 8252 u64 entry_h; 8253 8254 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8255 hw->fdir_prof[flow]->cnt)) 8256 continue; 8257 8258 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8259 enum ice_flow_priority prio; 8260 u64 prof_id; 8261 8262 /* add this VSI to FDir profile for this flow */ 8263 prio = ICE_FLOW_PRIO_NORMAL; 8264 prof = hw->fdir_prof[flow]; 8265 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8266 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8267 prof->vsi_h[0], vsi->idx, 8268 prio, prof->fdir_seg[tun], 8269 &entry_h); 8270 if (status) { 8271 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8272 vsi->idx, flow); 8273 continue; 8274 } 8275 8276 prof->entry_h[prof->cnt][tun] = entry_h; 8277 } 8278 8279 /* store VSI for filter replay and delete */ 8280 prof->vsi_h[prof->cnt] = vsi->idx; 8281 prof->cnt++; 8282 8283 added = true; 8284 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8285 flow); 8286 } 8287 8288 if (!added) 8289 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8290 8291 return 0; 8292 } 8293 8294 /** 8295 * ice_add_channel - add a channel by adding VSI 8296 * @pf: ptr to PF device 8297 * @sw_id: underlying HW switching element ID 8298 * @ch: ptr to channel structure 8299 * 8300 * Add a channel (VSI) using add_vsi and queue_map 8301 */ 8302 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8303 { 8304 struct device *dev = ice_pf_to_dev(pf); 8305 struct ice_vsi *vsi; 8306 8307 if (ch->type != ICE_VSI_CHNL) { 8308 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8309 return -EINVAL; 8310 } 8311 8312 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8313 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8314 dev_err(dev, "create chnl VSI failure\n"); 8315 return -EINVAL; 8316 } 8317 8318 ice_add_vsi_to_fdir(pf, vsi); 8319 8320 ch->sw_id = sw_id; 8321 ch->vsi_num = vsi->vsi_num; 8322 ch->info.mapping_flags = vsi->info.mapping_flags; 8323 ch->ch_vsi = vsi; 8324 /* set the back pointer of channel for newly created VSI */ 8325 vsi->ch = ch; 8326 8327 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8328 sizeof(vsi->info.q_mapping)); 8329 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8330 sizeof(vsi->info.tc_mapping)); 8331 8332 return 0; 8333 } 8334 8335 /** 8336 * ice_chnl_cfg_res 8337 * @vsi: the VSI being setup 8338 * @ch: ptr to channel structure 8339 * 8340 * Configure channel specific resources such as rings, vector. 8341 */ 8342 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8343 { 8344 int i; 8345 8346 for (i = 0; i < ch->num_txq; i++) { 8347 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8348 struct ice_ring_container *rc; 8349 struct ice_tx_ring *tx_ring; 8350 struct ice_rx_ring *rx_ring; 8351 8352 tx_ring = vsi->tx_rings[ch->base_q + i]; 8353 rx_ring = vsi->rx_rings[ch->base_q + i]; 8354 if (!tx_ring || !rx_ring) 8355 continue; 8356 8357 /* setup ring being channel enabled */ 8358 tx_ring->ch = ch; 8359 rx_ring->ch = ch; 8360 8361 /* following code block sets up vector specific attributes */ 8362 tx_q_vector = tx_ring->q_vector; 8363 rx_q_vector = rx_ring->q_vector; 8364 if (!tx_q_vector && !rx_q_vector) 8365 continue; 8366 8367 if (tx_q_vector) { 8368 tx_q_vector->ch = ch; 8369 /* setup Tx and Rx ITR setting if DIM is off */ 8370 rc = &tx_q_vector->tx; 8371 if (!ITR_IS_DYNAMIC(rc)) 8372 ice_write_itr(rc, rc->itr_setting); 8373 } 8374 if (rx_q_vector) { 8375 rx_q_vector->ch = ch; 8376 /* setup Tx and Rx ITR setting if DIM is off */ 8377 rc = &rx_q_vector->rx; 8378 if (!ITR_IS_DYNAMIC(rc)) 8379 ice_write_itr(rc, rc->itr_setting); 8380 } 8381 } 8382 8383 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8384 * GLINT_ITR register would have written to perform in-context 8385 * update, hence perform flush 8386 */ 8387 if (ch->num_txq || ch->num_rxq) 8388 ice_flush(&vsi->back->hw); 8389 } 8390 8391 /** 8392 * ice_cfg_chnl_all_res - configure channel resources 8393 * @vsi: pte to main_vsi 8394 * @ch: ptr to channel structure 8395 * 8396 * This function configures channel specific resources such as flow-director 8397 * counter index, and other resources such as queues, vectors, ITR settings 8398 */ 8399 static void 8400 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8401 { 8402 /* configure channel (aka ADQ) resources such as queues, vectors, 8403 * ITR settings for channel specific vectors and anything else 8404 */ 8405 ice_chnl_cfg_res(vsi, ch); 8406 } 8407 8408 /** 8409 * ice_setup_hw_channel - setup new channel 8410 * @pf: ptr to PF device 8411 * @vsi: the VSI being setup 8412 * @ch: ptr to channel structure 8413 * @sw_id: underlying HW switching element ID 8414 * @type: type of channel to be created (VMDq2/VF) 8415 * 8416 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8417 * and configures Tx rings accordingly 8418 */ 8419 static int 8420 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8421 struct ice_channel *ch, u16 sw_id, u8 type) 8422 { 8423 struct device *dev = ice_pf_to_dev(pf); 8424 int ret; 8425 8426 ch->base_q = vsi->next_base_q; 8427 ch->type = type; 8428 8429 ret = ice_add_channel(pf, sw_id, ch); 8430 if (ret) { 8431 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8432 return ret; 8433 } 8434 8435 /* configure/setup ADQ specific resources */ 8436 ice_cfg_chnl_all_res(vsi, ch); 8437 8438 /* make sure to update the next_base_q so that subsequent channel's 8439 * (aka ADQ) VSI queue map is correct 8440 */ 8441 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8442 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8443 ch->num_rxq); 8444 8445 return 0; 8446 } 8447 8448 /** 8449 * ice_setup_channel - setup new channel using uplink element 8450 * @pf: ptr to PF device 8451 * @vsi: the VSI being setup 8452 * @ch: ptr to channel structure 8453 * 8454 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8455 * and uplink switching element 8456 */ 8457 static bool 8458 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8459 struct ice_channel *ch) 8460 { 8461 struct device *dev = ice_pf_to_dev(pf); 8462 u16 sw_id; 8463 int ret; 8464 8465 if (vsi->type != ICE_VSI_PF) { 8466 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8467 return false; 8468 } 8469 8470 sw_id = pf->first_sw->sw_id; 8471 8472 /* create channel (VSI) */ 8473 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8474 if (ret) { 8475 dev_err(dev, "failed to setup hw_channel\n"); 8476 return false; 8477 } 8478 dev_dbg(dev, "successfully created channel()\n"); 8479 8480 return ch->ch_vsi ? true : false; 8481 } 8482 8483 /** 8484 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8485 * @vsi: VSI to be configured 8486 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8487 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8488 */ 8489 static int 8490 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8491 { 8492 int err; 8493 8494 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8495 if (err) 8496 return err; 8497 8498 return ice_set_max_bw_limit(vsi, max_tx_rate); 8499 } 8500 8501 /** 8502 * ice_create_q_channel - function to create channel 8503 * @vsi: VSI to be configured 8504 * @ch: ptr to channel (it contains channel specific params) 8505 * 8506 * This function creates channel (VSI) using num_queues specified by user, 8507 * reconfigs RSS if needed. 8508 */ 8509 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8510 { 8511 struct ice_pf *pf = vsi->back; 8512 struct device *dev; 8513 8514 if (!ch) 8515 return -EINVAL; 8516 8517 dev = ice_pf_to_dev(pf); 8518 if (!ch->num_txq || !ch->num_rxq) { 8519 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8520 return -EINVAL; 8521 } 8522 8523 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8524 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8525 vsi->cnt_q_avail, ch->num_txq); 8526 return -EINVAL; 8527 } 8528 8529 if (!ice_setup_channel(pf, vsi, ch)) { 8530 dev_info(dev, "Failed to setup channel\n"); 8531 return -EINVAL; 8532 } 8533 /* configure BW rate limit */ 8534 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8535 int ret; 8536 8537 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8538 ch->min_tx_rate); 8539 if (ret) 8540 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8541 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8542 else 8543 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8544 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8545 } 8546 8547 vsi->cnt_q_avail -= ch->num_txq; 8548 8549 return 0; 8550 } 8551 8552 /** 8553 * ice_rem_all_chnl_fltrs - removes all channel filters 8554 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8555 * 8556 * Remove all advanced switch filters only if they are channel specific 8557 * tc-flower based filter 8558 */ 8559 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8560 { 8561 struct ice_tc_flower_fltr *fltr; 8562 struct hlist_node *node; 8563 8564 /* to remove all channel filters, iterate an ordered list of filters */ 8565 hlist_for_each_entry_safe(fltr, node, 8566 &pf->tc_flower_fltr_list, 8567 tc_flower_node) { 8568 struct ice_rule_query_data rule; 8569 int status; 8570 8571 /* for now process only channel specific filters */ 8572 if (!ice_is_chnl_fltr(fltr)) 8573 continue; 8574 8575 rule.rid = fltr->rid; 8576 rule.rule_id = fltr->rule_id; 8577 rule.vsi_handle = fltr->dest_vsi_handle; 8578 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8579 if (status) { 8580 if (status == -ENOENT) 8581 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8582 rule.rule_id); 8583 else 8584 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8585 status); 8586 } else if (fltr->dest_vsi) { 8587 /* update advanced switch filter count */ 8588 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8589 u32 flags = fltr->flags; 8590 8591 fltr->dest_vsi->num_chnl_fltr--; 8592 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8593 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8594 pf->num_dmac_chnl_fltrs--; 8595 } 8596 } 8597 8598 hlist_del(&fltr->tc_flower_node); 8599 kfree(fltr); 8600 } 8601 } 8602 8603 /** 8604 * ice_remove_q_channels - Remove queue channels for the TCs 8605 * @vsi: VSI to be configured 8606 * @rem_fltr: delete advanced switch filter or not 8607 * 8608 * Remove queue channels for the TCs 8609 */ 8610 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8611 { 8612 struct ice_channel *ch, *ch_tmp; 8613 struct ice_pf *pf = vsi->back; 8614 int i; 8615 8616 /* remove all tc-flower based filter if they are channel filters only */ 8617 if (rem_fltr) 8618 ice_rem_all_chnl_fltrs(pf); 8619 8620 /* remove ntuple filters since queue configuration is being changed */ 8621 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8622 struct ice_hw *hw = &pf->hw; 8623 8624 mutex_lock(&hw->fdir_fltr_lock); 8625 ice_fdir_del_all_fltrs(vsi); 8626 mutex_unlock(&hw->fdir_fltr_lock); 8627 } 8628 8629 /* perform cleanup for channels if they exist */ 8630 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8631 struct ice_vsi *ch_vsi; 8632 8633 list_del(&ch->list); 8634 ch_vsi = ch->ch_vsi; 8635 if (!ch_vsi) { 8636 kfree(ch); 8637 continue; 8638 } 8639 8640 /* Reset queue contexts */ 8641 for (i = 0; i < ch->num_rxq; i++) { 8642 struct ice_tx_ring *tx_ring; 8643 struct ice_rx_ring *rx_ring; 8644 8645 tx_ring = vsi->tx_rings[ch->base_q + i]; 8646 rx_ring = vsi->rx_rings[ch->base_q + i]; 8647 if (tx_ring) { 8648 tx_ring->ch = NULL; 8649 if (tx_ring->q_vector) 8650 tx_ring->q_vector->ch = NULL; 8651 } 8652 if (rx_ring) { 8653 rx_ring->ch = NULL; 8654 if (rx_ring->q_vector) 8655 rx_ring->q_vector->ch = NULL; 8656 } 8657 } 8658 8659 /* Release FD resources for the channel VSI */ 8660 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8661 8662 /* clear the VSI from scheduler tree */ 8663 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8664 8665 /* Delete VSI from FW, PF and HW VSI arrays */ 8666 ice_vsi_delete(ch->ch_vsi); 8667 8668 /* free the channel */ 8669 kfree(ch); 8670 } 8671 8672 /* clear the channel VSI map which is stored in main VSI */ 8673 ice_for_each_chnl_tc(i) 8674 vsi->tc_map_vsi[i] = NULL; 8675 8676 /* reset main VSI's all TC information */ 8677 vsi->all_enatc = 0; 8678 vsi->all_numtc = 0; 8679 } 8680 8681 /** 8682 * ice_rebuild_channels - rebuild channel 8683 * @pf: ptr to PF 8684 * 8685 * Recreate channel VSIs and replay filters 8686 */ 8687 static int ice_rebuild_channels(struct ice_pf *pf) 8688 { 8689 struct device *dev = ice_pf_to_dev(pf); 8690 struct ice_vsi *main_vsi; 8691 bool rem_adv_fltr = true; 8692 struct ice_channel *ch; 8693 struct ice_vsi *vsi; 8694 int tc_idx = 1; 8695 int i, err; 8696 8697 main_vsi = ice_get_main_vsi(pf); 8698 if (!main_vsi) 8699 return 0; 8700 8701 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8702 main_vsi->old_numtc == 1) 8703 return 0; /* nothing to be done */ 8704 8705 /* reconfigure main VSI based on old value of TC and cached values 8706 * for MQPRIO opts 8707 */ 8708 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8709 if (err) { 8710 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8711 main_vsi->old_ena_tc, main_vsi->vsi_num); 8712 return err; 8713 } 8714 8715 /* rebuild ADQ VSIs */ 8716 ice_for_each_vsi(pf, i) { 8717 enum ice_vsi_type type; 8718 8719 vsi = pf->vsi[i]; 8720 if (!vsi || vsi->type != ICE_VSI_CHNL) 8721 continue; 8722 8723 type = vsi->type; 8724 8725 /* rebuild ADQ VSI */ 8726 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8727 if (err) { 8728 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8729 ice_vsi_type_str(type), vsi->idx, err); 8730 goto cleanup; 8731 } 8732 8733 /* Re-map HW VSI number, using VSI handle that has been 8734 * previously validated in ice_replay_vsi() call above 8735 */ 8736 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8737 8738 /* replay filters for the VSI */ 8739 err = ice_replay_vsi(&pf->hw, vsi->idx); 8740 if (err) { 8741 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8742 ice_vsi_type_str(type), err, vsi->idx); 8743 rem_adv_fltr = false; 8744 goto cleanup; 8745 } 8746 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8747 ice_vsi_type_str(type), vsi->idx); 8748 8749 /* store ADQ VSI at correct TC index in main VSI's 8750 * map of TC to VSI 8751 */ 8752 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8753 } 8754 8755 /* ADQ VSI(s) has been rebuilt successfully, so setup 8756 * channel for main VSI's Tx and Rx rings 8757 */ 8758 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8759 struct ice_vsi *ch_vsi; 8760 8761 ch_vsi = ch->ch_vsi; 8762 if (!ch_vsi) 8763 continue; 8764 8765 /* reconfig channel resources */ 8766 ice_cfg_chnl_all_res(main_vsi, ch); 8767 8768 /* replay BW rate limit if it is non-zero */ 8769 if (!ch->max_tx_rate && !ch->min_tx_rate) 8770 continue; 8771 8772 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8773 ch->min_tx_rate); 8774 if (err) 8775 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8776 err, ch->max_tx_rate, ch->min_tx_rate, 8777 ch_vsi->vsi_num); 8778 else 8779 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8780 ch->max_tx_rate, ch->min_tx_rate, 8781 ch_vsi->vsi_num); 8782 } 8783 8784 /* reconfig RSS for main VSI */ 8785 if (main_vsi->ch_rss_size) 8786 ice_vsi_cfg_rss_lut_key(main_vsi); 8787 8788 return 0; 8789 8790 cleanup: 8791 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8792 return err; 8793 } 8794 8795 /** 8796 * ice_create_q_channels - Add queue channel for the given TCs 8797 * @vsi: VSI to be configured 8798 * 8799 * Configures queue channel mapping to the given TCs 8800 */ 8801 static int ice_create_q_channels(struct ice_vsi *vsi) 8802 { 8803 struct ice_pf *pf = vsi->back; 8804 struct ice_channel *ch; 8805 int ret = 0, i; 8806 8807 ice_for_each_chnl_tc(i) { 8808 if (!(vsi->all_enatc & BIT(i))) 8809 continue; 8810 8811 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8812 if (!ch) { 8813 ret = -ENOMEM; 8814 goto err_free; 8815 } 8816 INIT_LIST_HEAD(&ch->list); 8817 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8818 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8819 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8820 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8821 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8822 8823 /* convert to Kbits/s */ 8824 if (ch->max_tx_rate) 8825 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8826 ICE_BW_KBPS_DIVISOR); 8827 if (ch->min_tx_rate) 8828 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8829 ICE_BW_KBPS_DIVISOR); 8830 8831 ret = ice_create_q_channel(vsi, ch); 8832 if (ret) { 8833 dev_err(ice_pf_to_dev(pf), 8834 "failed creating channel TC:%d\n", i); 8835 kfree(ch); 8836 goto err_free; 8837 } 8838 list_add_tail(&ch->list, &vsi->ch_list); 8839 vsi->tc_map_vsi[i] = ch->ch_vsi; 8840 dev_dbg(ice_pf_to_dev(pf), 8841 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8842 } 8843 return 0; 8844 8845 err_free: 8846 ice_remove_q_channels(vsi, false); 8847 8848 return ret; 8849 } 8850 8851 /** 8852 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8853 * @netdev: net device to configure 8854 * @type_data: TC offload data 8855 */ 8856 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8857 { 8858 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8859 struct ice_netdev_priv *np = netdev_priv(netdev); 8860 struct ice_vsi *vsi = np->vsi; 8861 struct ice_pf *pf = vsi->back; 8862 u16 mode, ena_tc_qdisc = 0; 8863 int cur_txq, cur_rxq; 8864 u8 hw = 0, num_tcf; 8865 struct device *dev; 8866 int ret, i; 8867 8868 dev = ice_pf_to_dev(pf); 8869 num_tcf = mqprio_qopt->qopt.num_tc; 8870 hw = mqprio_qopt->qopt.hw; 8871 mode = mqprio_qopt->mode; 8872 if (!hw) { 8873 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8874 vsi->ch_rss_size = 0; 8875 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8876 goto config_tcf; 8877 } 8878 8879 /* Generate queue region map for number of TCF requested */ 8880 for (i = 0; i < num_tcf; i++) 8881 ena_tc_qdisc |= BIT(i); 8882 8883 switch (mode) { 8884 case TC_MQPRIO_MODE_CHANNEL: 8885 8886 if (pf->hw.port_info->is_custom_tx_enabled) { 8887 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8888 return -EBUSY; 8889 } 8890 ice_tear_down_devlink_rate_tree(pf); 8891 8892 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8893 if (ret) { 8894 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8895 ret); 8896 return ret; 8897 } 8898 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8899 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8900 /* don't assume state of hw_tc_offload during driver load 8901 * and set the flag for TC flower filter if hw_tc_offload 8902 * already ON 8903 */ 8904 if (vsi->netdev->features & NETIF_F_HW_TC) 8905 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8906 break; 8907 default: 8908 return -EINVAL; 8909 } 8910 8911 config_tcf: 8912 8913 /* Requesting same TCF configuration as already enabled */ 8914 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8915 mode != TC_MQPRIO_MODE_CHANNEL) 8916 return 0; 8917 8918 /* Pause VSI queues */ 8919 ice_dis_vsi(vsi, true); 8920 8921 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8922 ice_remove_q_channels(vsi, true); 8923 8924 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8925 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8926 num_online_cpus()); 8927 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8928 num_online_cpus()); 8929 } else { 8930 /* logic to rebuild VSI, same like ethtool -L */ 8931 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8932 8933 for (i = 0; i < num_tcf; i++) { 8934 if (!(ena_tc_qdisc & BIT(i))) 8935 continue; 8936 8937 offset = vsi->mqprio_qopt.qopt.offset[i]; 8938 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8939 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8940 } 8941 vsi->req_txq = offset + qcount_tx; 8942 vsi->req_rxq = offset + qcount_rx; 8943 8944 /* store away original rss_size info, so that it gets reused 8945 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8946 * determine, what should be the rss_sizefor main VSI 8947 */ 8948 vsi->orig_rss_size = vsi->rss_size; 8949 } 8950 8951 /* save current values of Tx and Rx queues before calling VSI rebuild 8952 * for fallback option 8953 */ 8954 cur_txq = vsi->num_txq; 8955 cur_rxq = vsi->num_rxq; 8956 8957 /* proceed with rebuild main VSI using correct number of queues */ 8958 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8959 if (ret) { 8960 /* fallback to current number of queues */ 8961 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8962 vsi->req_txq = cur_txq; 8963 vsi->req_rxq = cur_rxq; 8964 clear_bit(ICE_RESET_FAILED, pf->state); 8965 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8966 dev_err(dev, "Rebuild of main VSI failed again\n"); 8967 return ret; 8968 } 8969 } 8970 8971 vsi->all_numtc = num_tcf; 8972 vsi->all_enatc = ena_tc_qdisc; 8973 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8974 if (ret) { 8975 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8976 vsi->vsi_num); 8977 goto exit; 8978 } 8979 8980 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8981 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8982 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8983 8984 /* set TC0 rate limit if specified */ 8985 if (max_tx_rate || min_tx_rate) { 8986 /* convert to Kbits/s */ 8987 if (max_tx_rate) 8988 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8989 if (min_tx_rate) 8990 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8991 8992 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8993 if (!ret) { 8994 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8995 max_tx_rate, min_tx_rate, vsi->vsi_num); 8996 } else { 8997 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8998 max_tx_rate, min_tx_rate, vsi->vsi_num); 8999 goto exit; 9000 } 9001 } 9002 ret = ice_create_q_channels(vsi); 9003 if (ret) { 9004 netdev_err(netdev, "failed configuring queue channels\n"); 9005 goto exit; 9006 } else { 9007 netdev_dbg(netdev, "successfully configured channels\n"); 9008 } 9009 } 9010 9011 if (vsi->ch_rss_size) 9012 ice_vsi_cfg_rss_lut_key(vsi); 9013 9014 exit: 9015 /* if error, reset the all_numtc and all_enatc */ 9016 if (ret) { 9017 vsi->all_numtc = 0; 9018 vsi->all_enatc = 0; 9019 } 9020 /* resume VSI */ 9021 ice_ena_vsi(vsi, true); 9022 9023 return ret; 9024 } 9025 9026 static LIST_HEAD(ice_block_cb_list); 9027 9028 static int 9029 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9030 void *type_data) 9031 { 9032 struct ice_netdev_priv *np = netdev_priv(netdev); 9033 struct ice_pf *pf = np->vsi->back; 9034 int err; 9035 9036 switch (type) { 9037 case TC_SETUP_BLOCK: 9038 return flow_block_cb_setup_simple(type_data, 9039 &ice_block_cb_list, 9040 ice_setup_tc_block_cb, 9041 np, np, true); 9042 case TC_SETUP_QDISC_MQPRIO: 9043 /* setup traffic classifier for receive side */ 9044 mutex_lock(&pf->tc_mutex); 9045 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9046 mutex_unlock(&pf->tc_mutex); 9047 return err; 9048 default: 9049 return -EOPNOTSUPP; 9050 } 9051 return -EOPNOTSUPP; 9052 } 9053 9054 static struct ice_indr_block_priv * 9055 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9056 struct net_device *netdev) 9057 { 9058 struct ice_indr_block_priv *cb_priv; 9059 9060 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9061 if (!cb_priv->netdev) 9062 return NULL; 9063 if (cb_priv->netdev == netdev) 9064 return cb_priv; 9065 } 9066 return NULL; 9067 } 9068 9069 static int 9070 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9071 void *indr_priv) 9072 { 9073 struct ice_indr_block_priv *priv = indr_priv; 9074 struct ice_netdev_priv *np = priv->np; 9075 9076 switch (type) { 9077 case TC_SETUP_CLSFLOWER: 9078 return ice_setup_tc_cls_flower(np, priv->netdev, 9079 (struct flow_cls_offload *) 9080 type_data); 9081 default: 9082 return -EOPNOTSUPP; 9083 } 9084 } 9085 9086 static int 9087 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9088 struct ice_netdev_priv *np, 9089 struct flow_block_offload *f, void *data, 9090 void (*cleanup)(struct flow_block_cb *block_cb)) 9091 { 9092 struct ice_indr_block_priv *indr_priv; 9093 struct flow_block_cb *block_cb; 9094 9095 if (!ice_is_tunnel_supported(netdev) && 9096 !(is_vlan_dev(netdev) && 9097 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9098 return -EOPNOTSUPP; 9099 9100 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9101 return -EOPNOTSUPP; 9102 9103 switch (f->command) { 9104 case FLOW_BLOCK_BIND: 9105 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9106 if (indr_priv) 9107 return -EEXIST; 9108 9109 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9110 if (!indr_priv) 9111 return -ENOMEM; 9112 9113 indr_priv->netdev = netdev; 9114 indr_priv->np = np; 9115 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9116 9117 block_cb = 9118 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9119 indr_priv, indr_priv, 9120 ice_rep_indr_tc_block_unbind, 9121 f, netdev, sch, data, np, 9122 cleanup); 9123 9124 if (IS_ERR(block_cb)) { 9125 list_del(&indr_priv->list); 9126 kfree(indr_priv); 9127 return PTR_ERR(block_cb); 9128 } 9129 flow_block_cb_add(block_cb, f); 9130 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9131 break; 9132 case FLOW_BLOCK_UNBIND: 9133 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9134 if (!indr_priv) 9135 return -ENOENT; 9136 9137 block_cb = flow_block_cb_lookup(f->block, 9138 ice_indr_setup_block_cb, 9139 indr_priv); 9140 if (!block_cb) 9141 return -ENOENT; 9142 9143 flow_indr_block_cb_remove(block_cb, f); 9144 9145 list_del(&block_cb->driver_list); 9146 break; 9147 default: 9148 return -EOPNOTSUPP; 9149 } 9150 return 0; 9151 } 9152 9153 static int 9154 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9155 void *cb_priv, enum tc_setup_type type, void *type_data, 9156 void *data, 9157 void (*cleanup)(struct flow_block_cb *block_cb)) 9158 { 9159 switch (type) { 9160 case TC_SETUP_BLOCK: 9161 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9162 data, cleanup); 9163 9164 default: 9165 return -EOPNOTSUPP; 9166 } 9167 } 9168 9169 /** 9170 * ice_open - Called when a network interface becomes active 9171 * @netdev: network interface device structure 9172 * 9173 * The open entry point is called when a network interface is made 9174 * active by the system (IFF_UP). At this point all resources needed 9175 * for transmit and receive operations are allocated, the interrupt 9176 * handler is registered with the OS, the netdev watchdog is enabled, 9177 * and the stack is notified that the interface is ready. 9178 * 9179 * Returns 0 on success, negative value on failure 9180 */ 9181 int ice_open(struct net_device *netdev) 9182 { 9183 struct ice_netdev_priv *np = netdev_priv(netdev); 9184 struct ice_pf *pf = np->vsi->back; 9185 9186 if (ice_is_reset_in_progress(pf->state)) { 9187 netdev_err(netdev, "can't open net device while reset is in progress"); 9188 return -EBUSY; 9189 } 9190 9191 return ice_open_internal(netdev); 9192 } 9193 9194 /** 9195 * ice_open_internal - Called when a network interface becomes active 9196 * @netdev: network interface device structure 9197 * 9198 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9199 * handling routine 9200 * 9201 * Returns 0 on success, negative value on failure 9202 */ 9203 int ice_open_internal(struct net_device *netdev) 9204 { 9205 struct ice_netdev_priv *np = netdev_priv(netdev); 9206 struct ice_vsi *vsi = np->vsi; 9207 struct ice_pf *pf = vsi->back; 9208 struct ice_port_info *pi; 9209 int err; 9210 9211 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9212 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9213 return -EIO; 9214 } 9215 9216 netif_carrier_off(netdev); 9217 9218 pi = vsi->port_info; 9219 err = ice_update_link_info(pi); 9220 if (err) { 9221 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9222 return err; 9223 } 9224 9225 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9226 9227 /* Set PHY if there is media, otherwise, turn off PHY */ 9228 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9229 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9230 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9231 err = ice_init_phy_user_cfg(pi); 9232 if (err) { 9233 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9234 err); 9235 return err; 9236 } 9237 } 9238 9239 err = ice_configure_phy(vsi); 9240 if (err) { 9241 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9242 err); 9243 return err; 9244 } 9245 } else { 9246 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9247 ice_set_link(vsi, false); 9248 } 9249 9250 err = ice_vsi_open(vsi); 9251 if (err) 9252 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9253 vsi->vsi_num, vsi->vsw->sw_id); 9254 9255 /* Update existing tunnels information */ 9256 udp_tunnel_get_rx_info(netdev); 9257 9258 return err; 9259 } 9260 9261 /** 9262 * ice_stop - Disables a network interface 9263 * @netdev: network interface device structure 9264 * 9265 * The stop entry point is called when an interface is de-activated by the OS, 9266 * and the netdevice enters the DOWN state. The hardware is still under the 9267 * driver's control, but the netdev interface is disabled. 9268 * 9269 * Returns success only - not allowed to fail 9270 */ 9271 int ice_stop(struct net_device *netdev) 9272 { 9273 struct ice_netdev_priv *np = netdev_priv(netdev); 9274 struct ice_vsi *vsi = np->vsi; 9275 struct ice_pf *pf = vsi->back; 9276 9277 if (ice_is_reset_in_progress(pf->state)) { 9278 netdev_err(netdev, "can't stop net device while reset is in progress"); 9279 return -EBUSY; 9280 } 9281 9282 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9283 int link_err = ice_force_phys_link_state(vsi, false); 9284 9285 if (link_err) { 9286 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9287 vsi->vsi_num, link_err); 9288 return -EIO; 9289 } 9290 } 9291 9292 ice_vsi_close(vsi); 9293 9294 return 0; 9295 } 9296 9297 /** 9298 * ice_features_check - Validate encapsulated packet conforms to limits 9299 * @skb: skb buffer 9300 * @netdev: This port's netdev 9301 * @features: Offload features that the stack believes apply 9302 */ 9303 static netdev_features_t 9304 ice_features_check(struct sk_buff *skb, 9305 struct net_device __always_unused *netdev, 9306 netdev_features_t features) 9307 { 9308 bool gso = skb_is_gso(skb); 9309 size_t len; 9310 9311 /* No point in doing any of this if neither checksum nor GSO are 9312 * being requested for this frame. We can rule out both by just 9313 * checking for CHECKSUM_PARTIAL 9314 */ 9315 if (skb->ip_summed != CHECKSUM_PARTIAL) 9316 return features; 9317 9318 /* We cannot support GSO if the MSS is going to be less than 9319 * 64 bytes. If it is then we need to drop support for GSO. 9320 */ 9321 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9322 features &= ~NETIF_F_GSO_MASK; 9323 9324 len = skb_network_offset(skb); 9325 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9326 goto out_rm_features; 9327 9328 len = skb_network_header_len(skb); 9329 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9330 goto out_rm_features; 9331 9332 if (skb->encapsulation) { 9333 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9334 * the case of IPIP frames, the transport header pointer is 9335 * after the inner header! So check to make sure that this 9336 * is a GRE or UDP_TUNNEL frame before doing that math. 9337 */ 9338 if (gso && (skb_shinfo(skb)->gso_type & 9339 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9340 len = skb_inner_network_header(skb) - 9341 skb_transport_header(skb); 9342 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9343 goto out_rm_features; 9344 } 9345 9346 len = skb_inner_network_header_len(skb); 9347 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9348 goto out_rm_features; 9349 } 9350 9351 return features; 9352 out_rm_features: 9353 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9354 } 9355 9356 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9357 .ndo_open = ice_open, 9358 .ndo_stop = ice_stop, 9359 .ndo_start_xmit = ice_start_xmit, 9360 .ndo_set_mac_address = ice_set_mac_address, 9361 .ndo_validate_addr = eth_validate_addr, 9362 .ndo_change_mtu = ice_change_mtu, 9363 .ndo_get_stats64 = ice_get_stats64, 9364 .ndo_tx_timeout = ice_tx_timeout, 9365 .ndo_bpf = ice_xdp_safe_mode, 9366 }; 9367 9368 static const struct net_device_ops ice_netdev_ops = { 9369 .ndo_open = ice_open, 9370 .ndo_stop = ice_stop, 9371 .ndo_start_xmit = ice_start_xmit, 9372 .ndo_select_queue = ice_select_queue, 9373 .ndo_features_check = ice_features_check, 9374 .ndo_fix_features = ice_fix_features, 9375 .ndo_set_rx_mode = ice_set_rx_mode, 9376 .ndo_set_mac_address = ice_set_mac_address, 9377 .ndo_validate_addr = eth_validate_addr, 9378 .ndo_change_mtu = ice_change_mtu, 9379 .ndo_get_stats64 = ice_get_stats64, 9380 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9381 .ndo_eth_ioctl = ice_eth_ioctl, 9382 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9383 .ndo_set_vf_mac = ice_set_vf_mac, 9384 .ndo_get_vf_config = ice_get_vf_cfg, 9385 .ndo_set_vf_trust = ice_set_vf_trust, 9386 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9387 .ndo_set_vf_link_state = ice_set_vf_link_state, 9388 .ndo_get_vf_stats = ice_get_vf_stats, 9389 .ndo_set_vf_rate = ice_set_vf_bw, 9390 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9391 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9392 .ndo_setup_tc = ice_setup_tc, 9393 .ndo_set_features = ice_set_features, 9394 .ndo_bridge_getlink = ice_bridge_getlink, 9395 .ndo_bridge_setlink = ice_bridge_setlink, 9396 .ndo_fdb_add = ice_fdb_add, 9397 .ndo_fdb_del = ice_fdb_del, 9398 #ifdef CONFIG_RFS_ACCEL 9399 .ndo_rx_flow_steer = ice_rx_flow_steer, 9400 #endif 9401 .ndo_tx_timeout = ice_tx_timeout, 9402 .ndo_bpf = ice_xdp, 9403 .ndo_xdp_xmit = ice_xdp_xmit, 9404 .ndo_xsk_wakeup = ice_xsk_wakeup, 9405 }; 9406