1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 271 return status; 272 } 273 274 /** 275 * ice_clear_promisc - Disable promiscuous mode for a given PF 276 * @vsi: the VSI being configured 277 * @promisc_m: mask of promiscuous config bits 278 * 279 */ 280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 281 { 282 int status; 283 284 if (vsi->type != ICE_VSI_PF) 285 return 0; 286 287 if (ice_vsi_has_non_zero_vlans(vsi)) { 288 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 289 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 290 promisc_m); 291 } else { 292 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 293 promisc_m, 0); 294 } 295 296 return status; 297 } 298 299 /** 300 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 301 * @vsi: ptr to the VSI 302 * 303 * Push any outstanding VSI filter changes through the AdminQ. 304 */ 305 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 306 { 307 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 308 struct device *dev = ice_pf_to_dev(vsi->back); 309 struct net_device *netdev = vsi->netdev; 310 bool promisc_forced_on = false; 311 struct ice_pf *pf = vsi->back; 312 struct ice_hw *hw = &pf->hw; 313 u32 changed_flags = 0; 314 int err; 315 316 if (!vsi->netdev) 317 return -EINVAL; 318 319 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 320 usleep_range(1000, 2000); 321 322 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 323 vsi->current_netdev_flags = vsi->netdev->flags; 324 325 INIT_LIST_HEAD(&vsi->tmp_sync_list); 326 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 327 328 if (ice_vsi_fltr_changed(vsi)) { 329 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 330 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 331 332 /* grab the netdev's addr_list_lock */ 333 netif_addr_lock_bh(netdev); 334 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 335 ice_add_mac_to_unsync_list); 336 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 337 ice_add_mac_to_unsync_list); 338 /* our temp lists are populated. release lock */ 339 netif_addr_unlock_bh(netdev); 340 } 341 342 /* Remove MAC addresses in the unsync list */ 343 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 344 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 345 if (err) { 346 netdev_err(netdev, "Failed to delete MAC filters\n"); 347 /* if we failed because of alloc failures, just bail */ 348 if (err == -ENOMEM) 349 goto out; 350 } 351 352 /* Add MAC addresses in the sync list */ 353 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 354 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 355 /* If filter is added successfully or already exists, do not go into 356 * 'if' condition and report it as error. Instead continue processing 357 * rest of the function. 358 */ 359 if (err && err != -EEXIST) { 360 netdev_err(netdev, "Failed to add MAC filters\n"); 361 /* If there is no more space for new umac filters, VSI 362 * should go into promiscuous mode. There should be some 363 * space reserved for promiscuous filters. 364 */ 365 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 366 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 367 vsi->state)) { 368 promisc_forced_on = true; 369 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 370 vsi->vsi_num); 371 } else { 372 goto out; 373 } 374 } 375 err = 0; 376 /* check for changes in promiscuous modes */ 377 if (changed_flags & IFF_ALLMULTI) { 378 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 379 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 380 if (err) { 381 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 382 goto out_promisc; 383 } 384 } else { 385 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 386 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 387 if (err) { 388 vsi->current_netdev_flags |= IFF_ALLMULTI; 389 goto out_promisc; 390 } 391 } 392 } 393 394 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 395 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 396 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 397 if (vsi->current_netdev_flags & IFF_PROMISC) { 398 /* Apply Rx filter rule to get traffic from wire */ 399 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 400 err = ice_set_dflt_vsi(pf->first_sw, vsi); 401 if (err && err != -EEXIST) { 402 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 403 err, vsi->vsi_num); 404 vsi->current_netdev_flags &= 405 ~IFF_PROMISC; 406 goto out_promisc; 407 } 408 err = 0; 409 vlan_ops->dis_rx_filtering(vsi); 410 } 411 } else { 412 /* Clear Rx filter to remove traffic from wire */ 413 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 414 err = ice_clear_dflt_vsi(pf->first_sw); 415 if (err) { 416 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags |= 419 IFF_PROMISC; 420 goto out_promisc; 421 } 422 if (vsi->current_netdev_flags & 423 NETIF_F_HW_VLAN_CTAG_FILTER) 424 vlan_ops->ena_rx_filtering(vsi); 425 } 426 } 427 } 428 goto exit; 429 430 out_promisc: 431 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 432 goto exit; 433 out: 434 /* if something went wrong then set the changed flag so we try again */ 435 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 436 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 437 exit: 438 clear_bit(ICE_CFG_BUSY, vsi->state); 439 return err; 440 } 441 442 /** 443 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 444 * @pf: board private structure 445 */ 446 static void ice_sync_fltr_subtask(struct ice_pf *pf) 447 { 448 int v; 449 450 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 451 return; 452 453 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 454 455 ice_for_each_vsi(pf, v) 456 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 457 ice_vsi_sync_fltr(pf->vsi[v])) { 458 /* come back and try again later */ 459 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 460 break; 461 } 462 } 463 464 /** 465 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 466 * @pf: the PF 467 * @locked: is the rtnl_lock already held 468 */ 469 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 470 { 471 int node; 472 int v; 473 474 ice_for_each_vsi(pf, v) 475 if (pf->vsi[v]) 476 ice_dis_vsi(pf->vsi[v], locked); 477 478 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 479 pf->pf_agg_node[node].num_vsis = 0; 480 481 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 482 pf->vf_agg_node[node].num_vsis = 0; 483 } 484 485 /** 486 * ice_clear_sw_switch_recipes - clear switch recipes 487 * @pf: board private structure 488 * 489 * Mark switch recipes as not created in sw structures. There are cases where 490 * rules (especially advanced rules) need to be restored, either re-read from 491 * hardware or added again. For example after the reset. 'recp_created' flag 492 * prevents from doing that and need to be cleared upfront. 493 */ 494 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 495 { 496 struct ice_sw_recipe *recp; 497 u8 i; 498 499 recp = pf->hw.switch_info->recp_list; 500 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 501 recp[i].recp_created = false; 502 } 503 504 /** 505 * ice_prepare_for_reset - prep for reset 506 * @pf: board private structure 507 * @reset_type: reset type requested 508 * 509 * Inform or close all dependent features in prep for reset. 510 */ 511 static void 512 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 513 { 514 struct ice_hw *hw = &pf->hw; 515 struct ice_vsi *vsi; 516 struct ice_vf *vf; 517 unsigned int bkt; 518 519 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 520 521 /* already prepared for reset */ 522 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 523 return; 524 525 ice_unplug_aux_dev(pf); 526 527 /* Notify VFs of impending reset */ 528 if (ice_check_sq_alive(hw, &hw->mailboxq)) 529 ice_vc_notify_reset(pf); 530 531 /* Disable VFs until reset is completed */ 532 mutex_lock(&pf->vfs.table_lock); 533 ice_for_each_vf(pf, bkt, vf) 534 ice_set_vf_state_qs_dis(vf); 535 mutex_unlock(&pf->vfs.table_lock); 536 537 if (ice_is_eswitch_mode_switchdev(pf)) { 538 if (reset_type != ICE_RESET_PFR) 539 ice_clear_sw_switch_recipes(pf); 540 } 541 542 /* release ADQ specific HW and SW resources */ 543 vsi = ice_get_main_vsi(pf); 544 if (!vsi) 545 goto skip; 546 547 /* to be on safe side, reset orig_rss_size so that normal flow 548 * of deciding rss_size can take precedence 549 */ 550 vsi->orig_rss_size = 0; 551 552 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 553 if (reset_type == ICE_RESET_PFR) { 554 vsi->old_ena_tc = vsi->all_enatc; 555 vsi->old_numtc = vsi->all_numtc; 556 } else { 557 ice_remove_q_channels(vsi, true); 558 559 /* for other reset type, do not support channel rebuild 560 * hence reset needed info 561 */ 562 vsi->old_ena_tc = 0; 563 vsi->all_enatc = 0; 564 vsi->old_numtc = 0; 565 vsi->all_numtc = 0; 566 vsi->req_txq = 0; 567 vsi->req_rxq = 0; 568 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 569 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 570 } 571 } 572 skip: 573 574 /* clear SW filtering DB */ 575 ice_clear_hw_tbls(hw); 576 /* disable the VSIs and their queues that are not already DOWN */ 577 ice_pf_dis_all_vsi(pf, false); 578 579 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 580 ice_ptp_prepare_for_reset(pf); 581 582 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 583 ice_gnss_exit(pf); 584 585 if (hw->port_info) 586 ice_sched_clear_port(hw->port_info); 587 588 ice_shutdown_all_ctrlq(hw); 589 590 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 591 } 592 593 /** 594 * ice_do_reset - Initiate one of many types of resets 595 * @pf: board private structure 596 * @reset_type: reset type requested before this function was called. 597 */ 598 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 599 { 600 struct device *dev = ice_pf_to_dev(pf); 601 struct ice_hw *hw = &pf->hw; 602 603 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 604 605 ice_prepare_for_reset(pf, reset_type); 606 607 /* trigger the reset */ 608 if (ice_reset(hw, reset_type)) { 609 dev_err(dev, "reset %d failed\n", reset_type); 610 set_bit(ICE_RESET_FAILED, pf->state); 611 clear_bit(ICE_RESET_OICR_RECV, pf->state); 612 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 613 clear_bit(ICE_PFR_REQ, pf->state); 614 clear_bit(ICE_CORER_REQ, pf->state); 615 clear_bit(ICE_GLOBR_REQ, pf->state); 616 wake_up(&pf->reset_wait_queue); 617 return; 618 } 619 620 /* PFR is a bit of a special case because it doesn't result in an OICR 621 * interrupt. So for PFR, rebuild after the reset and clear the reset- 622 * associated state bits. 623 */ 624 if (reset_type == ICE_RESET_PFR) { 625 pf->pfr_count++; 626 ice_rebuild(pf, reset_type); 627 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 clear_bit(ICE_PFR_REQ, pf->state); 629 wake_up(&pf->reset_wait_queue); 630 ice_reset_all_vfs(pf); 631 } 632 } 633 634 /** 635 * ice_reset_subtask - Set up for resetting the device and driver 636 * @pf: board private structure 637 */ 638 static void ice_reset_subtask(struct ice_pf *pf) 639 { 640 enum ice_reset_req reset_type = ICE_RESET_INVAL; 641 642 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 643 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 644 * of reset is pending and sets bits in pf->state indicating the reset 645 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 646 * prepare for pending reset if not already (for PF software-initiated 647 * global resets the software should already be prepared for it as 648 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 649 * by firmware or software on other PFs, that bit is not set so prepare 650 * for the reset now), poll for reset done, rebuild and return. 651 */ 652 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 653 /* Perform the largest reset requested */ 654 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 655 reset_type = ICE_RESET_CORER; 656 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 657 reset_type = ICE_RESET_GLOBR; 658 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 659 reset_type = ICE_RESET_EMPR; 660 /* return if no valid reset type requested */ 661 if (reset_type == ICE_RESET_INVAL) 662 return; 663 ice_prepare_for_reset(pf, reset_type); 664 665 /* make sure we are ready to rebuild */ 666 if (ice_check_reset(&pf->hw)) { 667 set_bit(ICE_RESET_FAILED, pf->state); 668 } else { 669 /* done with reset. start rebuild */ 670 pf->hw.reset_ongoing = false; 671 ice_rebuild(pf, reset_type); 672 /* clear bit to resume normal operations, but 673 * ICE_NEEDS_RESTART bit is set in case rebuild failed 674 */ 675 clear_bit(ICE_RESET_OICR_RECV, pf->state); 676 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 677 clear_bit(ICE_PFR_REQ, pf->state); 678 clear_bit(ICE_CORER_REQ, pf->state); 679 clear_bit(ICE_GLOBR_REQ, pf->state); 680 wake_up(&pf->reset_wait_queue); 681 ice_reset_all_vfs(pf); 682 } 683 684 return; 685 } 686 687 /* No pending resets to finish processing. Check for new resets */ 688 if (test_bit(ICE_PFR_REQ, pf->state)) 689 reset_type = ICE_RESET_PFR; 690 if (test_bit(ICE_CORER_REQ, pf->state)) 691 reset_type = ICE_RESET_CORER; 692 if (test_bit(ICE_GLOBR_REQ, pf->state)) 693 reset_type = ICE_RESET_GLOBR; 694 /* If no valid reset type requested just return */ 695 if (reset_type == ICE_RESET_INVAL) 696 return; 697 698 /* reset if not already down or busy */ 699 if (!test_bit(ICE_DOWN, pf->state) && 700 !test_bit(ICE_CFG_BUSY, pf->state)) { 701 ice_do_reset(pf, reset_type); 702 } 703 } 704 705 /** 706 * ice_print_topo_conflict - print topology conflict message 707 * @vsi: the VSI whose topology status is being checked 708 */ 709 static void ice_print_topo_conflict(struct ice_vsi *vsi) 710 { 711 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 712 case ICE_AQ_LINK_TOPO_CONFLICT: 713 case ICE_AQ_LINK_MEDIA_CONFLICT: 714 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 715 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 716 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 717 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 718 break; 719 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 720 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 721 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 722 else 723 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 724 break; 725 default: 726 break; 727 } 728 } 729 730 /** 731 * ice_print_link_msg - print link up or down message 732 * @vsi: the VSI whose link status is being queried 733 * @isup: boolean for if the link is now up or down 734 */ 735 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 736 { 737 struct ice_aqc_get_phy_caps_data *caps; 738 const char *an_advertised; 739 const char *fec_req; 740 const char *speed; 741 const char *fec; 742 const char *fc; 743 const char *an; 744 int status; 745 746 if (!vsi) 747 return; 748 749 if (vsi->current_isup == isup) 750 return; 751 752 vsi->current_isup = isup; 753 754 if (!isup) { 755 netdev_info(vsi->netdev, "NIC Link is Down\n"); 756 return; 757 } 758 759 switch (vsi->port_info->phy.link_info.link_speed) { 760 case ICE_AQ_LINK_SPEED_100GB: 761 speed = "100 G"; 762 break; 763 case ICE_AQ_LINK_SPEED_50GB: 764 speed = "50 G"; 765 break; 766 case ICE_AQ_LINK_SPEED_40GB: 767 speed = "40 G"; 768 break; 769 case ICE_AQ_LINK_SPEED_25GB: 770 speed = "25 G"; 771 break; 772 case ICE_AQ_LINK_SPEED_20GB: 773 speed = "20 G"; 774 break; 775 case ICE_AQ_LINK_SPEED_10GB: 776 speed = "10 G"; 777 break; 778 case ICE_AQ_LINK_SPEED_5GB: 779 speed = "5 G"; 780 break; 781 case ICE_AQ_LINK_SPEED_2500MB: 782 speed = "2.5 G"; 783 break; 784 case ICE_AQ_LINK_SPEED_1000MB: 785 speed = "1 G"; 786 break; 787 case ICE_AQ_LINK_SPEED_100MB: 788 speed = "100 M"; 789 break; 790 default: 791 speed = "Unknown "; 792 break; 793 } 794 795 switch (vsi->port_info->fc.current_mode) { 796 case ICE_FC_FULL: 797 fc = "Rx/Tx"; 798 break; 799 case ICE_FC_TX_PAUSE: 800 fc = "Tx"; 801 break; 802 case ICE_FC_RX_PAUSE: 803 fc = "Rx"; 804 break; 805 case ICE_FC_NONE: 806 fc = "None"; 807 break; 808 default: 809 fc = "Unknown"; 810 break; 811 } 812 813 /* Get FEC mode based on negotiated link info */ 814 switch (vsi->port_info->phy.link_info.fec_info) { 815 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 816 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 817 fec = "RS-FEC"; 818 break; 819 case ICE_AQ_LINK_25G_KR_FEC_EN: 820 fec = "FC-FEC/BASE-R"; 821 break; 822 default: 823 fec = "NONE"; 824 break; 825 } 826 827 /* check if autoneg completed, might be false due to not supported */ 828 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 829 an = "True"; 830 else 831 an = "False"; 832 833 /* Get FEC mode requested based on PHY caps last SW configuration */ 834 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 835 if (!caps) { 836 fec_req = "Unknown"; 837 an_advertised = "Unknown"; 838 goto done; 839 } 840 841 status = ice_aq_get_phy_caps(vsi->port_info, false, 842 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 843 if (status) 844 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 845 846 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 847 848 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 849 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 850 fec_req = "RS-FEC"; 851 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 852 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 853 fec_req = "FC-FEC/BASE-R"; 854 else 855 fec_req = "NONE"; 856 857 kfree(caps); 858 859 done: 860 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 861 speed, fec_req, fec, an_advertised, an, fc); 862 ice_print_topo_conflict(vsi); 863 } 864 865 /** 866 * ice_vsi_link_event - update the VSI's netdev 867 * @vsi: the VSI on which the link event occurred 868 * @link_up: whether or not the VSI needs to be set up or down 869 */ 870 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 871 { 872 if (!vsi) 873 return; 874 875 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 876 return; 877 878 if (vsi->type == ICE_VSI_PF) { 879 if (link_up == netif_carrier_ok(vsi->netdev)) 880 return; 881 882 if (link_up) { 883 netif_carrier_on(vsi->netdev); 884 netif_tx_wake_all_queues(vsi->netdev); 885 } else { 886 netif_carrier_off(vsi->netdev); 887 netif_tx_stop_all_queues(vsi->netdev); 888 } 889 } 890 } 891 892 /** 893 * ice_set_dflt_mib - send a default config MIB to the FW 894 * @pf: private PF struct 895 * 896 * This function sends a default configuration MIB to the FW. 897 * 898 * If this function errors out at any point, the driver is still able to 899 * function. The main impact is that LFC may not operate as expected. 900 * Therefore an error state in this function should be treated with a DBG 901 * message and continue on with driver rebuild/reenable. 902 */ 903 static void ice_set_dflt_mib(struct ice_pf *pf) 904 { 905 struct device *dev = ice_pf_to_dev(pf); 906 u8 mib_type, *buf, *lldpmib = NULL; 907 u16 len, typelen, offset = 0; 908 struct ice_lldp_org_tlv *tlv; 909 struct ice_hw *hw = &pf->hw; 910 u32 ouisubtype; 911 912 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 913 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 914 if (!lldpmib) { 915 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 916 __func__); 917 return; 918 } 919 920 /* Add ETS CFG TLV */ 921 tlv = (struct ice_lldp_org_tlv *)lldpmib; 922 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 923 ICE_IEEE_ETS_TLV_LEN); 924 tlv->typelen = htons(typelen); 925 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 926 ICE_IEEE_SUBTYPE_ETS_CFG); 927 tlv->ouisubtype = htonl(ouisubtype); 928 929 buf = tlv->tlvinfo; 930 buf[0] = 0; 931 932 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 933 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 934 * Octets 13 - 20 are TSA values - leave as zeros 935 */ 936 buf[5] = 0x64; 937 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 938 offset += len + 2; 939 tlv = (struct ice_lldp_org_tlv *) 940 ((char *)tlv + sizeof(tlv->typelen) + len); 941 942 /* Add ETS REC TLV */ 943 buf = tlv->tlvinfo; 944 tlv->typelen = htons(typelen); 945 946 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 947 ICE_IEEE_SUBTYPE_ETS_REC); 948 tlv->ouisubtype = htonl(ouisubtype); 949 950 /* First octet of buf is reserved 951 * Octets 1 - 4 map UP to TC - all UPs map to zero 952 * Octets 5 - 12 are BW values - set TC 0 to 100%. 953 * Octets 13 - 20 are TSA value - leave as zeros 954 */ 955 buf[5] = 0x64; 956 offset += len + 2; 957 tlv = (struct ice_lldp_org_tlv *) 958 ((char *)tlv + sizeof(tlv->typelen) + len); 959 960 /* Add PFC CFG TLV */ 961 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 962 ICE_IEEE_PFC_TLV_LEN); 963 tlv->typelen = htons(typelen); 964 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_PFC_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 /* Octet 1 left as all zeros - PFC disabled */ 970 buf[0] = 0x08; 971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 972 offset += len + 2; 973 974 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 975 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 976 977 kfree(lldpmib); 978 } 979 980 /** 981 * ice_check_phy_fw_load - check if PHY FW load failed 982 * @pf: pointer to PF struct 983 * @link_cfg_err: bitmap from the link info structure 984 * 985 * check if external PHY FW load failed and print an error message if it did 986 */ 987 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 988 { 989 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 990 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 991 return; 992 } 993 994 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 995 return; 996 997 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 998 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 999 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1000 } 1001 } 1002 1003 /** 1004 * ice_check_module_power 1005 * @pf: pointer to PF struct 1006 * @link_cfg_err: bitmap from the link info structure 1007 * 1008 * check module power level returned by a previous call to aq_get_link_info 1009 * and print error messages if module power level is not supported 1010 */ 1011 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1012 { 1013 /* if module power level is supported, clear the flag */ 1014 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1015 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1016 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1017 return; 1018 } 1019 1020 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1021 * above block didn't clear this bit, there's nothing to do 1022 */ 1023 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1024 return; 1025 1026 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1027 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1028 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1029 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1030 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1031 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1032 } 1033 } 1034 1035 /** 1036 * ice_check_link_cfg_err - check if link configuration failed 1037 * @pf: pointer to the PF struct 1038 * @link_cfg_err: bitmap from the link info structure 1039 * 1040 * print if any link configuration failure happens due to the value in the 1041 * link_cfg_err parameter in the link info structure 1042 */ 1043 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1044 { 1045 ice_check_module_power(pf, link_cfg_err); 1046 ice_check_phy_fw_load(pf, link_cfg_err); 1047 } 1048 1049 /** 1050 * ice_link_event - process the link event 1051 * @pf: PF that the link event is associated with 1052 * @pi: port_info for the port that the link event is associated with 1053 * @link_up: true if the physical link is up and false if it is down 1054 * @link_speed: current link speed received from the link event 1055 * 1056 * Returns 0 on success and negative on failure 1057 */ 1058 static int 1059 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1060 u16 link_speed) 1061 { 1062 struct device *dev = ice_pf_to_dev(pf); 1063 struct ice_phy_info *phy_info; 1064 struct ice_vsi *vsi; 1065 u16 old_link_speed; 1066 bool old_link; 1067 int status; 1068 1069 phy_info = &pi->phy; 1070 phy_info->link_info_old = phy_info->link_info; 1071 1072 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1073 old_link_speed = phy_info->link_info_old.link_speed; 1074 1075 /* update the link info structures and re-enable link events, 1076 * don't bail on failure due to other book keeping needed 1077 */ 1078 status = ice_update_link_info(pi); 1079 if (status) 1080 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1081 pi->lport, status, 1082 ice_aq_str(pi->hw->adminq.sq_last_status)); 1083 1084 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1085 1086 /* Check if the link state is up after updating link info, and treat 1087 * this event as an UP event since the link is actually UP now. 1088 */ 1089 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1090 link_up = true; 1091 1092 vsi = ice_get_main_vsi(pf); 1093 if (!vsi || !vsi->port_info) 1094 return -EINVAL; 1095 1096 /* turn off PHY if media was removed */ 1097 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1098 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1099 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1100 ice_set_link(vsi, false); 1101 } 1102 1103 /* if the old link up/down and speed is the same as the new */ 1104 if (link_up == old_link && link_speed == old_link_speed) 1105 return 0; 1106 1107 if (!ice_is_e810(&pf->hw)) 1108 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1109 1110 if (ice_is_dcb_active(pf)) { 1111 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1112 ice_dcb_rebuild(pf); 1113 } else { 1114 if (link_up) 1115 ice_set_dflt_mib(pf); 1116 } 1117 ice_vsi_link_event(vsi, link_up); 1118 ice_print_link_msg(vsi, link_up); 1119 1120 ice_vc_notify_link_state(pf); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1127 * @pf: board private structure 1128 */ 1129 static void ice_watchdog_subtask(struct ice_pf *pf) 1130 { 1131 int i; 1132 1133 /* if interface is down do nothing */ 1134 if (test_bit(ICE_DOWN, pf->state) || 1135 test_bit(ICE_CFG_BUSY, pf->state)) 1136 return; 1137 1138 /* make sure we don't do these things too often */ 1139 if (time_before(jiffies, 1140 pf->serv_tmr_prev + pf->serv_tmr_period)) 1141 return; 1142 1143 pf->serv_tmr_prev = jiffies; 1144 1145 /* Update the stats for active netdevs so the network stack 1146 * can look at updated numbers whenever it cares to 1147 */ 1148 ice_update_pf_stats(pf); 1149 ice_for_each_vsi(pf, i) 1150 if (pf->vsi[i] && pf->vsi[i]->netdev) 1151 ice_update_vsi_stats(pf->vsi[i]); 1152 } 1153 1154 /** 1155 * ice_init_link_events - enable/initialize link events 1156 * @pi: pointer to the port_info instance 1157 * 1158 * Returns -EIO on failure, 0 on success 1159 */ 1160 static int ice_init_link_events(struct ice_port_info *pi) 1161 { 1162 u16 mask; 1163 1164 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1165 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1166 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1167 1168 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1169 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1170 pi->lport); 1171 return -EIO; 1172 } 1173 1174 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1175 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1176 pi->lport); 1177 return -EIO; 1178 } 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * ice_handle_link_event - handle link event via ARQ 1185 * @pf: PF that the link event is associated with 1186 * @event: event structure containing link status info 1187 */ 1188 static int 1189 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1190 { 1191 struct ice_aqc_get_link_status_data *link_data; 1192 struct ice_port_info *port_info; 1193 int status; 1194 1195 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1196 port_info = pf->hw.port_info; 1197 if (!port_info) 1198 return -EINVAL; 1199 1200 status = ice_link_event(pf, port_info, 1201 !!(link_data->link_info & ICE_AQ_LINK_UP), 1202 le16_to_cpu(link_data->link_speed)); 1203 if (status) 1204 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1205 status); 1206 1207 return status; 1208 } 1209 1210 enum ice_aq_task_state { 1211 ICE_AQ_TASK_WAITING = 0, 1212 ICE_AQ_TASK_COMPLETE, 1213 ICE_AQ_TASK_CANCELED, 1214 }; 1215 1216 struct ice_aq_task { 1217 struct hlist_node entry; 1218 1219 u16 opcode; 1220 struct ice_rq_event_info *event; 1221 enum ice_aq_task_state state; 1222 }; 1223 1224 /** 1225 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1226 * @pf: pointer to the PF private structure 1227 * @opcode: the opcode to wait for 1228 * @timeout: how long to wait, in jiffies 1229 * @event: storage for the event info 1230 * 1231 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1232 * current thread will be put to sleep until the specified event occurs or 1233 * until the given timeout is reached. 1234 * 1235 * To obtain only the descriptor contents, pass an event without an allocated 1236 * msg_buf. If the complete data buffer is desired, allocate the 1237 * event->msg_buf with enough space ahead of time. 1238 * 1239 * Returns: zero on success, or a negative error code on failure. 1240 */ 1241 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1242 struct ice_rq_event_info *event) 1243 { 1244 struct device *dev = ice_pf_to_dev(pf); 1245 struct ice_aq_task *task; 1246 unsigned long start; 1247 long ret; 1248 int err; 1249 1250 task = kzalloc(sizeof(*task), GFP_KERNEL); 1251 if (!task) 1252 return -ENOMEM; 1253 1254 INIT_HLIST_NODE(&task->entry); 1255 task->opcode = opcode; 1256 task->event = event; 1257 task->state = ICE_AQ_TASK_WAITING; 1258 1259 spin_lock_bh(&pf->aq_wait_lock); 1260 hlist_add_head(&task->entry, &pf->aq_wait_list); 1261 spin_unlock_bh(&pf->aq_wait_lock); 1262 1263 start = jiffies; 1264 1265 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1266 timeout); 1267 switch (task->state) { 1268 case ICE_AQ_TASK_WAITING: 1269 err = ret < 0 ? ret : -ETIMEDOUT; 1270 break; 1271 case ICE_AQ_TASK_CANCELED: 1272 err = ret < 0 ? ret : -ECANCELED; 1273 break; 1274 case ICE_AQ_TASK_COMPLETE: 1275 err = ret < 0 ? ret : 0; 1276 break; 1277 default: 1278 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1279 err = -EINVAL; 1280 break; 1281 } 1282 1283 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1284 jiffies_to_msecs(jiffies - start), 1285 jiffies_to_msecs(timeout), 1286 opcode); 1287 1288 spin_lock_bh(&pf->aq_wait_lock); 1289 hlist_del(&task->entry); 1290 spin_unlock_bh(&pf->aq_wait_lock); 1291 kfree(task); 1292 1293 return err; 1294 } 1295 1296 /** 1297 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1298 * @pf: pointer to the PF private structure 1299 * @opcode: the opcode of the event 1300 * @event: the event to check 1301 * 1302 * Loops over the current list of pending threads waiting for an AdminQ event. 1303 * For each matching task, copy the contents of the event into the task 1304 * structure and wake up the thread. 1305 * 1306 * If multiple threads wait for the same opcode, they will all be woken up. 1307 * 1308 * Note that event->msg_buf will only be duplicated if the event has a buffer 1309 * with enough space already allocated. Otherwise, only the descriptor and 1310 * message length will be copied. 1311 * 1312 * Returns: true if an event was found, false otherwise 1313 */ 1314 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1315 struct ice_rq_event_info *event) 1316 { 1317 struct ice_aq_task *task; 1318 bool found = false; 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1322 if (task->state || task->opcode != opcode) 1323 continue; 1324 1325 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1326 task->event->msg_len = event->msg_len; 1327 1328 /* Only copy the data buffer if a destination was set */ 1329 if (task->event->msg_buf && 1330 task->event->buf_len > event->buf_len) { 1331 memcpy(task->event->msg_buf, event->msg_buf, 1332 event->buf_len); 1333 task->event->buf_len = event->buf_len; 1334 } 1335 1336 task->state = ICE_AQ_TASK_COMPLETE; 1337 found = true; 1338 } 1339 spin_unlock_bh(&pf->aq_wait_lock); 1340 1341 if (found) 1342 wake_up(&pf->aq_wait_queue); 1343 } 1344 1345 /** 1346 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1347 * @pf: the PF private structure 1348 * 1349 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1350 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1351 */ 1352 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1353 { 1354 struct ice_aq_task *task; 1355 1356 spin_lock_bh(&pf->aq_wait_lock); 1357 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1358 task->state = ICE_AQ_TASK_CANCELED; 1359 spin_unlock_bh(&pf->aq_wait_lock); 1360 1361 wake_up(&pf->aq_wait_queue); 1362 } 1363 1364 /** 1365 * __ice_clean_ctrlq - helper function to clean controlq rings 1366 * @pf: ptr to struct ice_pf 1367 * @q_type: specific Control queue type 1368 */ 1369 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1370 { 1371 struct device *dev = ice_pf_to_dev(pf); 1372 struct ice_rq_event_info event; 1373 struct ice_hw *hw = &pf->hw; 1374 struct ice_ctl_q_info *cq; 1375 u16 pending, i = 0; 1376 const char *qtype; 1377 u32 oldval, val; 1378 1379 /* Do not clean control queue if/when PF reset fails */ 1380 if (test_bit(ICE_RESET_FAILED, pf->state)) 1381 return 0; 1382 1383 switch (q_type) { 1384 case ICE_CTL_Q_ADMIN: 1385 cq = &hw->adminq; 1386 qtype = "Admin"; 1387 break; 1388 case ICE_CTL_Q_SB: 1389 cq = &hw->sbq; 1390 qtype = "Sideband"; 1391 break; 1392 case ICE_CTL_Q_MAILBOX: 1393 cq = &hw->mailboxq; 1394 qtype = "Mailbox"; 1395 /* we are going to try to detect a malicious VF, so set the 1396 * state to begin detection 1397 */ 1398 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1399 break; 1400 default: 1401 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1402 return 0; 1403 } 1404 1405 /* check for error indications - PF_xx_AxQLEN register layout for 1406 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1407 */ 1408 val = rd32(hw, cq->rq.len); 1409 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1410 PF_FW_ARQLEN_ARQCRIT_M)) { 1411 oldval = val; 1412 if (val & PF_FW_ARQLEN_ARQVFE_M) 1413 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1414 qtype); 1415 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1416 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1417 qtype); 1418 } 1419 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1420 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1421 qtype); 1422 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1423 PF_FW_ARQLEN_ARQCRIT_M); 1424 if (oldval != val) 1425 wr32(hw, cq->rq.len, val); 1426 } 1427 1428 val = rd32(hw, cq->sq.len); 1429 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1430 PF_FW_ATQLEN_ATQCRIT_M)) { 1431 oldval = val; 1432 if (val & PF_FW_ATQLEN_ATQVFE_M) 1433 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1434 qtype); 1435 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1436 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1437 qtype); 1438 } 1439 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1440 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1441 qtype); 1442 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1443 PF_FW_ATQLEN_ATQCRIT_M); 1444 if (oldval != val) 1445 wr32(hw, cq->sq.len, val); 1446 } 1447 1448 event.buf_len = cq->rq_buf_size; 1449 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1450 if (!event.msg_buf) 1451 return 0; 1452 1453 do { 1454 u16 opcode; 1455 int ret; 1456 1457 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1458 if (ret == -EALREADY) 1459 break; 1460 if (ret) { 1461 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1462 ret); 1463 break; 1464 } 1465 1466 opcode = le16_to_cpu(event.desc.opcode); 1467 1468 /* Notify any thread that might be waiting for this event */ 1469 ice_aq_check_events(pf, opcode, &event); 1470 1471 switch (opcode) { 1472 case ice_aqc_opc_get_link_status: 1473 if (ice_handle_link_event(pf, &event)) 1474 dev_err(dev, "Could not handle link event\n"); 1475 break; 1476 case ice_aqc_opc_event_lan_overflow: 1477 ice_vf_lan_overflow_event(pf, &event); 1478 break; 1479 case ice_mbx_opc_send_msg_to_pf: 1480 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1481 ice_vc_process_vf_msg(pf, &event); 1482 break; 1483 case ice_aqc_opc_fw_logging: 1484 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1485 break; 1486 case ice_aqc_opc_lldp_set_mib_change: 1487 ice_dcb_process_lldp_set_mib_change(pf, &event); 1488 break; 1489 default: 1490 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1491 qtype, opcode); 1492 break; 1493 } 1494 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1495 1496 kfree(event.msg_buf); 1497 1498 return pending && (i == ICE_DFLT_IRQ_WORK); 1499 } 1500 1501 /** 1502 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1503 * @hw: pointer to hardware info 1504 * @cq: control queue information 1505 * 1506 * returns true if there are pending messages in a queue, false if there aren't 1507 */ 1508 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1509 { 1510 u16 ntu; 1511 1512 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1513 return cq->rq.next_to_clean != ntu; 1514 } 1515 1516 /** 1517 * ice_clean_adminq_subtask - clean the AdminQ rings 1518 * @pf: board private structure 1519 */ 1520 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1521 { 1522 struct ice_hw *hw = &pf->hw; 1523 1524 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1525 return; 1526 1527 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1528 return; 1529 1530 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1531 1532 /* There might be a situation where new messages arrive to a control 1533 * queue between processing the last message and clearing the 1534 * EVENT_PENDING bit. So before exiting, check queue head again (using 1535 * ice_ctrlq_pending) and process new messages if any. 1536 */ 1537 if (ice_ctrlq_pending(hw, &hw->adminq)) 1538 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1539 1540 ice_flush(hw); 1541 } 1542 1543 /** 1544 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1545 * @pf: board private structure 1546 */ 1547 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1548 { 1549 struct ice_hw *hw = &pf->hw; 1550 1551 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1552 return; 1553 1554 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1555 return; 1556 1557 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1558 1559 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1560 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1561 1562 ice_flush(hw); 1563 } 1564 1565 /** 1566 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1567 * @pf: board private structure 1568 */ 1569 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1570 { 1571 struct ice_hw *hw = &pf->hw; 1572 1573 /* Nothing to do here if sideband queue is not supported */ 1574 if (!ice_is_sbq_supported(hw)) { 1575 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1576 return; 1577 } 1578 1579 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1580 return; 1581 1582 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1583 return; 1584 1585 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1586 1587 if (ice_ctrlq_pending(hw, &hw->sbq)) 1588 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1589 1590 ice_flush(hw); 1591 } 1592 1593 /** 1594 * ice_service_task_schedule - schedule the service task to wake up 1595 * @pf: board private structure 1596 * 1597 * If not already scheduled, this puts the task into the work queue. 1598 */ 1599 void ice_service_task_schedule(struct ice_pf *pf) 1600 { 1601 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1602 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1603 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1604 queue_work(ice_wq, &pf->serv_task); 1605 } 1606 1607 /** 1608 * ice_service_task_complete - finish up the service task 1609 * @pf: board private structure 1610 */ 1611 static void ice_service_task_complete(struct ice_pf *pf) 1612 { 1613 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1614 1615 /* force memory (pf->state) to sync before next service task */ 1616 smp_mb__before_atomic(); 1617 clear_bit(ICE_SERVICE_SCHED, pf->state); 1618 } 1619 1620 /** 1621 * ice_service_task_stop - stop service task and cancel works 1622 * @pf: board private structure 1623 * 1624 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1625 * 1 otherwise. 1626 */ 1627 static int ice_service_task_stop(struct ice_pf *pf) 1628 { 1629 int ret; 1630 1631 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1632 1633 if (pf->serv_tmr.function) 1634 del_timer_sync(&pf->serv_tmr); 1635 if (pf->serv_task.func) 1636 cancel_work_sync(&pf->serv_task); 1637 1638 clear_bit(ICE_SERVICE_SCHED, pf->state); 1639 return ret; 1640 } 1641 1642 /** 1643 * ice_service_task_restart - restart service task and schedule works 1644 * @pf: board private structure 1645 * 1646 * This function is needed for suspend and resume works (e.g WoL scenario) 1647 */ 1648 static void ice_service_task_restart(struct ice_pf *pf) 1649 { 1650 clear_bit(ICE_SERVICE_DIS, pf->state); 1651 ice_service_task_schedule(pf); 1652 } 1653 1654 /** 1655 * ice_service_timer - timer callback to schedule service task 1656 * @t: pointer to timer_list 1657 */ 1658 static void ice_service_timer(struct timer_list *t) 1659 { 1660 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1661 1662 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1663 ice_service_task_schedule(pf); 1664 } 1665 1666 /** 1667 * ice_handle_mdd_event - handle malicious driver detect event 1668 * @pf: pointer to the PF structure 1669 * 1670 * Called from service task. OICR interrupt handler indicates MDD event. 1671 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1672 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1673 * disable the queue, the PF can be configured to reset the VF using ethtool 1674 * private flag mdd-auto-reset-vf. 1675 */ 1676 static void ice_handle_mdd_event(struct ice_pf *pf) 1677 { 1678 struct device *dev = ice_pf_to_dev(pf); 1679 struct ice_hw *hw = &pf->hw; 1680 struct ice_vf *vf; 1681 unsigned int bkt; 1682 u32 reg; 1683 1684 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1685 /* Since the VF MDD event logging is rate limited, check if 1686 * there are pending MDD events. 1687 */ 1688 ice_print_vfs_mdd_events(pf); 1689 return; 1690 } 1691 1692 /* find what triggered an MDD event */ 1693 reg = rd32(hw, GL_MDET_TX_PQM); 1694 if (reg & GL_MDET_TX_PQM_VALID_M) { 1695 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1696 GL_MDET_TX_PQM_PF_NUM_S; 1697 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1698 GL_MDET_TX_PQM_VF_NUM_S; 1699 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1700 GL_MDET_TX_PQM_MAL_TYPE_S; 1701 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1702 GL_MDET_TX_PQM_QNUM_S); 1703 1704 if (netif_msg_tx_err(pf)) 1705 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1706 event, queue, pf_num, vf_num); 1707 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1708 } 1709 1710 reg = rd32(hw, GL_MDET_TX_TCLAN); 1711 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1712 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1713 GL_MDET_TX_TCLAN_PF_NUM_S; 1714 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1715 GL_MDET_TX_TCLAN_VF_NUM_S; 1716 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1717 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1718 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1719 GL_MDET_TX_TCLAN_QNUM_S); 1720 1721 if (netif_msg_tx_err(pf)) 1722 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1723 event, queue, pf_num, vf_num); 1724 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1725 } 1726 1727 reg = rd32(hw, GL_MDET_RX); 1728 if (reg & GL_MDET_RX_VALID_M) { 1729 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1730 GL_MDET_RX_PF_NUM_S; 1731 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1732 GL_MDET_RX_VF_NUM_S; 1733 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1734 GL_MDET_RX_MAL_TYPE_S; 1735 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1736 GL_MDET_RX_QNUM_S); 1737 1738 if (netif_msg_rx_err(pf)) 1739 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1740 event, queue, pf_num, vf_num); 1741 wr32(hw, GL_MDET_RX, 0xffffffff); 1742 } 1743 1744 /* check to see if this PF caused an MDD event */ 1745 reg = rd32(hw, PF_MDET_TX_PQM); 1746 if (reg & PF_MDET_TX_PQM_VALID_M) { 1747 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1748 if (netif_msg_tx_err(pf)) 1749 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1750 } 1751 1752 reg = rd32(hw, PF_MDET_TX_TCLAN); 1753 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1754 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1755 if (netif_msg_tx_err(pf)) 1756 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1757 } 1758 1759 reg = rd32(hw, PF_MDET_RX); 1760 if (reg & PF_MDET_RX_VALID_M) { 1761 wr32(hw, PF_MDET_RX, 0xFFFF); 1762 if (netif_msg_rx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1764 } 1765 1766 /* Check to see if one of the VFs caused an MDD event, and then 1767 * increment counters and set print pending 1768 */ 1769 mutex_lock(&pf->vfs.table_lock); 1770 ice_for_each_vf(pf, bkt, vf) { 1771 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1772 if (reg & VP_MDET_TX_PQM_VALID_M) { 1773 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1774 vf->mdd_tx_events.count++; 1775 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1776 if (netif_msg_tx_err(pf)) 1777 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1778 vf->vf_id); 1779 } 1780 1781 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1782 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1783 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1784 vf->mdd_tx_events.count++; 1785 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1786 if (netif_msg_tx_err(pf)) 1787 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1788 vf->vf_id); 1789 } 1790 1791 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1792 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1793 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1794 vf->mdd_tx_events.count++; 1795 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1796 if (netif_msg_tx_err(pf)) 1797 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1798 vf->vf_id); 1799 } 1800 1801 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1802 if (reg & VP_MDET_RX_VALID_M) { 1803 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1804 vf->mdd_rx_events.count++; 1805 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1806 if (netif_msg_rx_err(pf)) 1807 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1808 vf->vf_id); 1809 1810 /* Since the queue is disabled on VF Rx MDD events, the 1811 * PF can be configured to reset the VF through ethtool 1812 * private flag mdd-auto-reset-vf. 1813 */ 1814 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1815 /* VF MDD event counters will be cleared by 1816 * reset, so print the event prior to reset. 1817 */ 1818 ice_print_vf_rx_mdd_event(vf); 1819 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1820 } 1821 } 1822 } 1823 mutex_unlock(&pf->vfs.table_lock); 1824 1825 ice_print_vfs_mdd_events(pf); 1826 } 1827 1828 /** 1829 * ice_force_phys_link_state - Force the physical link state 1830 * @vsi: VSI to force the physical link state to up/down 1831 * @link_up: true/false indicates to set the physical link to up/down 1832 * 1833 * Force the physical link state by getting the current PHY capabilities from 1834 * hardware and setting the PHY config based on the determined capabilities. If 1835 * link changes a link event will be triggered because both the Enable Automatic 1836 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1837 * 1838 * Returns 0 on success, negative on failure 1839 */ 1840 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1841 { 1842 struct ice_aqc_get_phy_caps_data *pcaps; 1843 struct ice_aqc_set_phy_cfg_data *cfg; 1844 struct ice_port_info *pi; 1845 struct device *dev; 1846 int retcode; 1847 1848 if (!vsi || !vsi->port_info || !vsi->back) 1849 return -EINVAL; 1850 if (vsi->type != ICE_VSI_PF) 1851 return 0; 1852 1853 dev = ice_pf_to_dev(vsi->back); 1854 1855 pi = vsi->port_info; 1856 1857 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1858 if (!pcaps) 1859 return -ENOMEM; 1860 1861 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1862 NULL); 1863 if (retcode) { 1864 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1865 vsi->vsi_num, retcode); 1866 retcode = -EIO; 1867 goto out; 1868 } 1869 1870 /* No change in link */ 1871 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1872 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1873 goto out; 1874 1875 /* Use the current user PHY configuration. The current user PHY 1876 * configuration is initialized during probe from PHY capabilities 1877 * software mode, and updated on set PHY configuration. 1878 */ 1879 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1880 if (!cfg) { 1881 retcode = -ENOMEM; 1882 goto out; 1883 } 1884 1885 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1886 if (link_up) 1887 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1888 else 1889 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1890 1891 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1892 if (retcode) { 1893 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1894 vsi->vsi_num, retcode); 1895 retcode = -EIO; 1896 } 1897 1898 kfree(cfg); 1899 out: 1900 kfree(pcaps); 1901 return retcode; 1902 } 1903 1904 /** 1905 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1906 * @pi: port info structure 1907 * 1908 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1909 */ 1910 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1911 { 1912 struct ice_aqc_get_phy_caps_data *pcaps; 1913 struct ice_pf *pf = pi->hw->back; 1914 int err; 1915 1916 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1917 if (!pcaps) 1918 return -ENOMEM; 1919 1920 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1921 pcaps, NULL); 1922 1923 if (err) { 1924 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1925 goto out; 1926 } 1927 1928 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1929 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1930 1931 out: 1932 kfree(pcaps); 1933 return err; 1934 } 1935 1936 /** 1937 * ice_init_link_dflt_override - Initialize link default override 1938 * @pi: port info structure 1939 * 1940 * Initialize link default override and PHY total port shutdown during probe 1941 */ 1942 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1943 { 1944 struct ice_link_default_override_tlv *ldo; 1945 struct ice_pf *pf = pi->hw->back; 1946 1947 ldo = &pf->link_dflt_override; 1948 if (ice_get_link_default_override(ldo, pi)) 1949 return; 1950 1951 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1952 return; 1953 1954 /* Enable Total Port Shutdown (override/replace link-down-on-close 1955 * ethtool private flag) for ports with Port Disable bit set. 1956 */ 1957 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1958 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1959 } 1960 1961 /** 1962 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1963 * @pi: port info structure 1964 * 1965 * If default override is enabled, initialize the user PHY cfg speed and FEC 1966 * settings using the default override mask from the NVM. 1967 * 1968 * The PHY should only be configured with the default override settings the 1969 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1970 * is used to indicate that the user PHY cfg default override is initialized 1971 * and the PHY has not been configured with the default override settings. The 1972 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1973 * configured. 1974 * 1975 * This function should be called only if the FW doesn't support default 1976 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1977 */ 1978 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1979 { 1980 struct ice_link_default_override_tlv *ldo; 1981 struct ice_aqc_set_phy_cfg_data *cfg; 1982 struct ice_phy_info *phy = &pi->phy; 1983 struct ice_pf *pf = pi->hw->back; 1984 1985 ldo = &pf->link_dflt_override; 1986 1987 /* If link default override is enabled, use to mask NVM PHY capabilities 1988 * for speed and FEC default configuration. 1989 */ 1990 cfg = &phy->curr_user_phy_cfg; 1991 1992 if (ldo->phy_type_low || ldo->phy_type_high) { 1993 cfg->phy_type_low = pf->nvm_phy_type_lo & 1994 cpu_to_le64(ldo->phy_type_low); 1995 cfg->phy_type_high = pf->nvm_phy_type_hi & 1996 cpu_to_le64(ldo->phy_type_high); 1997 } 1998 cfg->link_fec_opt = ldo->fec_options; 1999 phy->curr_user_fec_req = ICE_FEC_AUTO; 2000 2001 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2002 } 2003 2004 /** 2005 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2006 * @pi: port info structure 2007 * 2008 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2009 * mode to default. The PHY defaults are from get PHY capabilities topology 2010 * with media so call when media is first available. An error is returned if 2011 * called when media is not available. The PHY initialization completed state is 2012 * set here. 2013 * 2014 * These configurations are used when setting PHY 2015 * configuration. The user PHY configuration is updated on set PHY 2016 * configuration. Returns 0 on success, negative on failure 2017 */ 2018 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2019 { 2020 struct ice_aqc_get_phy_caps_data *pcaps; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 int err; 2024 2025 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2026 return -EIO; 2027 2028 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2029 if (!pcaps) 2030 return -ENOMEM; 2031 2032 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2033 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2034 pcaps, NULL); 2035 else 2036 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2037 pcaps, NULL); 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto err_out; 2041 } 2042 2043 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2044 2045 /* check if lenient mode is supported and enabled */ 2046 if (ice_fw_supports_link_override(pi->hw) && 2047 !(pcaps->module_compliance_enforcement & 2048 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2049 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2050 2051 /* if the FW supports default PHY configuration mode, then the driver 2052 * does not have to apply link override settings. If not, 2053 * initialize user PHY configuration with link override values 2054 */ 2055 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2056 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2057 ice_init_phy_cfg_dflt_override(pi); 2058 goto out; 2059 } 2060 } 2061 2062 /* if link default override is not enabled, set user flow control and 2063 * FEC settings based on what get_phy_caps returned 2064 */ 2065 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2066 pcaps->link_fec_options); 2067 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2068 2069 out: 2070 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2071 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2072 err_out: 2073 kfree(pcaps); 2074 return err; 2075 } 2076 2077 /** 2078 * ice_configure_phy - configure PHY 2079 * @vsi: VSI of PHY 2080 * 2081 * Set the PHY configuration. If the current PHY configuration is the same as 2082 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2083 * configure the based get PHY capabilities for topology with media. 2084 */ 2085 static int ice_configure_phy(struct ice_vsi *vsi) 2086 { 2087 struct device *dev = ice_pf_to_dev(vsi->back); 2088 struct ice_port_info *pi = vsi->port_info; 2089 struct ice_aqc_get_phy_caps_data *pcaps; 2090 struct ice_aqc_set_phy_cfg_data *cfg; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = vsi->back; 2093 int err; 2094 2095 /* Ensure we have media as we cannot configure a medialess port */ 2096 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2097 return -EPERM; 2098 2099 ice_print_topo_conflict(vsi); 2100 2101 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2102 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2103 return -EPERM; 2104 2105 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2106 return ice_force_phys_link_state(vsi, true); 2107 2108 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2109 if (!pcaps) 2110 return -ENOMEM; 2111 2112 /* Get current PHY config */ 2113 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2114 NULL); 2115 if (err) { 2116 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2117 vsi->vsi_num, err); 2118 goto done; 2119 } 2120 2121 /* If PHY enable link is configured and configuration has not changed, 2122 * there's nothing to do 2123 */ 2124 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2125 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2126 goto done; 2127 2128 /* Use PHY topology as baseline for configuration */ 2129 memset(pcaps, 0, sizeof(*pcaps)); 2130 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2132 pcaps, NULL); 2133 else 2134 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2135 pcaps, NULL); 2136 if (err) { 2137 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2138 vsi->vsi_num, err); 2139 goto done; 2140 } 2141 2142 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2143 if (!cfg) { 2144 err = -ENOMEM; 2145 goto done; 2146 } 2147 2148 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2149 2150 /* Speed - If default override pending, use curr_user_phy_cfg set in 2151 * ice_init_phy_user_cfg_ldo. 2152 */ 2153 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2154 vsi->back->state)) { 2155 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2156 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2157 } else { 2158 u64 phy_low = 0, phy_high = 0; 2159 2160 ice_update_phy_type(&phy_low, &phy_high, 2161 pi->phy.curr_user_speed_req); 2162 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2163 cfg->phy_type_high = pcaps->phy_type_high & 2164 cpu_to_le64(phy_high); 2165 } 2166 2167 /* Can't provide what was requested; use PHY capabilities */ 2168 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2169 cfg->phy_type_low = pcaps->phy_type_low; 2170 cfg->phy_type_high = pcaps->phy_type_high; 2171 } 2172 2173 /* FEC */ 2174 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2175 2176 /* Can't provide what was requested; use PHY capabilities */ 2177 if (cfg->link_fec_opt != 2178 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2179 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2180 cfg->link_fec_opt = pcaps->link_fec_options; 2181 } 2182 2183 /* Flow Control - always supported; no need to check against 2184 * capabilities 2185 */ 2186 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2187 2188 /* Enable link and link update */ 2189 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2190 2191 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2192 if (err) 2193 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2194 vsi->vsi_num, err); 2195 2196 kfree(cfg); 2197 done: 2198 kfree(pcaps); 2199 return err; 2200 } 2201 2202 /** 2203 * ice_check_media_subtask - Check for media 2204 * @pf: pointer to PF struct 2205 * 2206 * If media is available, then initialize PHY user configuration if it is not 2207 * been, and configure the PHY if the interface is up. 2208 */ 2209 static void ice_check_media_subtask(struct ice_pf *pf) 2210 { 2211 struct ice_port_info *pi; 2212 struct ice_vsi *vsi; 2213 int err; 2214 2215 /* No need to check for media if it's already present */ 2216 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2217 return; 2218 2219 vsi = ice_get_main_vsi(pf); 2220 if (!vsi) 2221 return; 2222 2223 /* Refresh link info and check if media is present */ 2224 pi = vsi->port_info; 2225 err = ice_update_link_info(pi); 2226 if (err) 2227 return; 2228 2229 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2230 2231 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2232 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2233 ice_init_phy_user_cfg(pi); 2234 2235 /* PHY settings are reset on media insertion, reconfigure 2236 * PHY to preserve settings. 2237 */ 2238 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2239 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2240 return; 2241 2242 err = ice_configure_phy(vsi); 2243 if (!err) 2244 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2245 2246 /* A Link Status Event will be generated; the event handler 2247 * will complete bringing the interface up 2248 */ 2249 } 2250 } 2251 2252 /** 2253 * ice_service_task - manage and run subtasks 2254 * @work: pointer to work_struct contained by the PF struct 2255 */ 2256 static void ice_service_task(struct work_struct *work) 2257 { 2258 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2259 unsigned long start_time = jiffies; 2260 2261 /* subtasks */ 2262 2263 /* process reset requests first */ 2264 ice_reset_subtask(pf); 2265 2266 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2267 if (ice_is_reset_in_progress(pf->state) || 2268 test_bit(ICE_SUSPENDED, pf->state) || 2269 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2270 ice_service_task_complete(pf); 2271 return; 2272 } 2273 2274 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2275 struct iidc_event *event; 2276 2277 event = kzalloc(sizeof(*event), GFP_KERNEL); 2278 if (event) { 2279 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2280 /* report the entire OICR value to AUX driver */ 2281 swap(event->reg, pf->oicr_err_reg); 2282 ice_send_event_to_aux(pf, event); 2283 kfree(event); 2284 } 2285 } 2286 2287 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2288 /* Plug aux device per request */ 2289 ice_plug_aux_dev(pf); 2290 2291 /* Mark plugging as done but check whether unplug was 2292 * requested during ice_plug_aux_dev() call 2293 * (e.g. from ice_clear_rdma_cap()) and if so then 2294 * plug aux device. 2295 */ 2296 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2297 ice_unplug_aux_dev(pf); 2298 } 2299 2300 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2301 struct iidc_event *event; 2302 2303 event = kzalloc(sizeof(*event), GFP_KERNEL); 2304 if (event) { 2305 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2306 ice_send_event_to_aux(pf, event); 2307 kfree(event); 2308 } 2309 } 2310 2311 ice_clean_adminq_subtask(pf); 2312 ice_check_media_subtask(pf); 2313 ice_check_for_hang_subtask(pf); 2314 ice_sync_fltr_subtask(pf); 2315 ice_handle_mdd_event(pf); 2316 ice_watchdog_subtask(pf); 2317 2318 if (ice_is_safe_mode(pf)) { 2319 ice_service_task_complete(pf); 2320 return; 2321 } 2322 2323 ice_process_vflr_event(pf); 2324 ice_clean_mailboxq_subtask(pf); 2325 ice_clean_sbq_subtask(pf); 2326 ice_sync_arfs_fltrs(pf); 2327 ice_flush_fdir_ctx(pf); 2328 2329 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2330 ice_service_task_complete(pf); 2331 2332 /* If the tasks have taken longer than one service timer period 2333 * or there is more work to be done, reset the service timer to 2334 * schedule the service task now. 2335 */ 2336 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2337 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2338 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2339 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2340 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2341 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2342 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2343 mod_timer(&pf->serv_tmr, jiffies); 2344 } 2345 2346 /** 2347 * ice_set_ctrlq_len - helper function to set controlq length 2348 * @hw: pointer to the HW instance 2349 */ 2350 static void ice_set_ctrlq_len(struct ice_hw *hw) 2351 { 2352 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2353 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2354 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2355 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2356 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2357 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2358 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2359 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2360 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2361 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2362 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2363 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2364 } 2365 2366 /** 2367 * ice_schedule_reset - schedule a reset 2368 * @pf: board private structure 2369 * @reset: reset being requested 2370 */ 2371 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2372 { 2373 struct device *dev = ice_pf_to_dev(pf); 2374 2375 /* bail out if earlier reset has failed */ 2376 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2377 dev_dbg(dev, "earlier reset has failed\n"); 2378 return -EIO; 2379 } 2380 /* bail if reset/recovery already in progress */ 2381 if (ice_is_reset_in_progress(pf->state)) { 2382 dev_dbg(dev, "Reset already in progress\n"); 2383 return -EBUSY; 2384 } 2385 2386 ice_unplug_aux_dev(pf); 2387 2388 switch (reset) { 2389 case ICE_RESET_PFR: 2390 set_bit(ICE_PFR_REQ, pf->state); 2391 break; 2392 case ICE_RESET_CORER: 2393 set_bit(ICE_CORER_REQ, pf->state); 2394 break; 2395 case ICE_RESET_GLOBR: 2396 set_bit(ICE_GLOBR_REQ, pf->state); 2397 break; 2398 default: 2399 return -EINVAL; 2400 } 2401 2402 ice_service_task_schedule(pf); 2403 return 0; 2404 } 2405 2406 /** 2407 * ice_irq_affinity_notify - Callback for affinity changes 2408 * @notify: context as to what irq was changed 2409 * @mask: the new affinity mask 2410 * 2411 * This is a callback function used by the irq_set_affinity_notifier function 2412 * so that we may register to receive changes to the irq affinity masks. 2413 */ 2414 static void 2415 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2416 const cpumask_t *mask) 2417 { 2418 struct ice_q_vector *q_vector = 2419 container_of(notify, struct ice_q_vector, affinity_notify); 2420 2421 cpumask_copy(&q_vector->affinity_mask, mask); 2422 } 2423 2424 /** 2425 * ice_irq_affinity_release - Callback for affinity notifier release 2426 * @ref: internal core kernel usage 2427 * 2428 * This is a callback function used by the irq_set_affinity_notifier function 2429 * to inform the current notification subscriber that they will no longer 2430 * receive notifications. 2431 */ 2432 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2433 2434 /** 2435 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2436 * @vsi: the VSI being configured 2437 */ 2438 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2439 { 2440 struct ice_hw *hw = &vsi->back->hw; 2441 int i; 2442 2443 ice_for_each_q_vector(vsi, i) 2444 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2445 2446 ice_flush(hw); 2447 return 0; 2448 } 2449 2450 /** 2451 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2452 * @vsi: the VSI being configured 2453 * @basename: name for the vector 2454 */ 2455 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2456 { 2457 int q_vectors = vsi->num_q_vectors; 2458 struct ice_pf *pf = vsi->back; 2459 int base = vsi->base_vector; 2460 struct device *dev; 2461 int rx_int_idx = 0; 2462 int tx_int_idx = 0; 2463 int vector, err; 2464 int irq_num; 2465 2466 dev = ice_pf_to_dev(pf); 2467 for (vector = 0; vector < q_vectors; vector++) { 2468 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2469 2470 irq_num = pf->msix_entries[base + vector].vector; 2471 2472 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2473 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2474 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2475 tx_int_idx++; 2476 } else if (q_vector->rx.rx_ring) { 2477 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2478 "%s-%s-%d", basename, "rx", rx_int_idx++); 2479 } else if (q_vector->tx.tx_ring) { 2480 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2481 "%s-%s-%d", basename, "tx", tx_int_idx++); 2482 } else { 2483 /* skip this unused q_vector */ 2484 continue; 2485 } 2486 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2487 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2488 IRQF_SHARED, q_vector->name, 2489 q_vector); 2490 else 2491 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2492 0, q_vector->name, q_vector); 2493 if (err) { 2494 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2495 err); 2496 goto free_q_irqs; 2497 } 2498 2499 /* register for affinity change notifications */ 2500 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2501 struct irq_affinity_notify *affinity_notify; 2502 2503 affinity_notify = &q_vector->affinity_notify; 2504 affinity_notify->notify = ice_irq_affinity_notify; 2505 affinity_notify->release = ice_irq_affinity_release; 2506 irq_set_affinity_notifier(irq_num, affinity_notify); 2507 } 2508 2509 /* assign the mask for this irq */ 2510 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2511 } 2512 2513 vsi->irqs_ready = true; 2514 return 0; 2515 2516 free_q_irqs: 2517 while (vector) { 2518 vector--; 2519 irq_num = pf->msix_entries[base + vector].vector; 2520 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2521 irq_set_affinity_notifier(irq_num, NULL); 2522 irq_set_affinity_hint(irq_num, NULL); 2523 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2524 } 2525 return err; 2526 } 2527 2528 /** 2529 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2530 * @vsi: VSI to setup Tx rings used by XDP 2531 * 2532 * Return 0 on success and negative value on error 2533 */ 2534 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2535 { 2536 struct device *dev = ice_pf_to_dev(vsi->back); 2537 struct ice_tx_desc *tx_desc; 2538 int i, j; 2539 2540 ice_for_each_xdp_txq(vsi, i) { 2541 u16 xdp_q_idx = vsi->alloc_txq + i; 2542 struct ice_tx_ring *xdp_ring; 2543 2544 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2545 2546 if (!xdp_ring) 2547 goto free_xdp_rings; 2548 2549 xdp_ring->q_index = xdp_q_idx; 2550 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2551 xdp_ring->vsi = vsi; 2552 xdp_ring->netdev = NULL; 2553 xdp_ring->dev = dev; 2554 xdp_ring->count = vsi->num_tx_desc; 2555 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2556 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2557 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2558 if (ice_setup_tx_ring(xdp_ring)) 2559 goto free_xdp_rings; 2560 ice_set_ring_xdp(xdp_ring); 2561 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2562 spin_lock_init(&xdp_ring->tx_lock); 2563 for (j = 0; j < xdp_ring->count; j++) { 2564 tx_desc = ICE_TX_DESC(xdp_ring, j); 2565 tx_desc->cmd_type_offset_bsz = 0; 2566 } 2567 } 2568 2569 ice_for_each_rxq(vsi, i) { 2570 if (static_key_enabled(&ice_xdp_locking_key)) 2571 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2572 else 2573 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2574 } 2575 2576 return 0; 2577 2578 free_xdp_rings: 2579 for (; i >= 0; i--) 2580 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2581 ice_free_tx_ring(vsi->xdp_rings[i]); 2582 return -ENOMEM; 2583 } 2584 2585 /** 2586 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2587 * @vsi: VSI to set the bpf prog on 2588 * @prog: the bpf prog pointer 2589 */ 2590 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2591 { 2592 struct bpf_prog *old_prog; 2593 int i; 2594 2595 old_prog = xchg(&vsi->xdp_prog, prog); 2596 if (old_prog) 2597 bpf_prog_put(old_prog); 2598 2599 ice_for_each_rxq(vsi, i) 2600 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2601 } 2602 2603 /** 2604 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2605 * @vsi: VSI to bring up Tx rings used by XDP 2606 * @prog: bpf program that will be assigned to VSI 2607 * 2608 * Return 0 on success and negative value on error 2609 */ 2610 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2611 { 2612 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2613 int xdp_rings_rem = vsi->num_xdp_txq; 2614 struct ice_pf *pf = vsi->back; 2615 struct ice_qs_cfg xdp_qs_cfg = { 2616 .qs_mutex = &pf->avail_q_mutex, 2617 .pf_map = pf->avail_txqs, 2618 .pf_map_size = pf->max_pf_txqs, 2619 .q_count = vsi->num_xdp_txq, 2620 .scatter_count = ICE_MAX_SCATTER_TXQS, 2621 .vsi_map = vsi->txq_map, 2622 .vsi_map_offset = vsi->alloc_txq, 2623 .mapping_mode = ICE_VSI_MAP_CONTIG 2624 }; 2625 struct device *dev; 2626 int i, v_idx; 2627 int status; 2628 2629 dev = ice_pf_to_dev(pf); 2630 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2631 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2632 if (!vsi->xdp_rings) 2633 return -ENOMEM; 2634 2635 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2636 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2637 goto err_map_xdp; 2638 2639 if (static_key_enabled(&ice_xdp_locking_key)) 2640 netdev_warn(vsi->netdev, 2641 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2642 2643 if (ice_xdp_alloc_setup_rings(vsi)) 2644 goto clear_xdp_rings; 2645 2646 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2647 ice_for_each_q_vector(vsi, v_idx) { 2648 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2649 int xdp_rings_per_v, q_id, q_base; 2650 2651 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2652 vsi->num_q_vectors - v_idx); 2653 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2654 2655 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2656 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2657 2658 xdp_ring->q_vector = q_vector; 2659 xdp_ring->next = q_vector->tx.tx_ring; 2660 q_vector->tx.tx_ring = xdp_ring; 2661 } 2662 xdp_rings_rem -= xdp_rings_per_v; 2663 } 2664 2665 /* omit the scheduler update if in reset path; XDP queues will be 2666 * taken into account at the end of ice_vsi_rebuild, where 2667 * ice_cfg_vsi_lan is being called 2668 */ 2669 if (ice_is_reset_in_progress(pf->state)) 2670 return 0; 2671 2672 /* tell the Tx scheduler that right now we have 2673 * additional queues 2674 */ 2675 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2676 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2677 2678 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2679 max_txqs); 2680 if (status) { 2681 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2682 status); 2683 goto clear_xdp_rings; 2684 } 2685 2686 /* assign the prog only when it's not already present on VSI; 2687 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2688 * VSI rebuild that happens under ethtool -L can expose us to 2689 * the bpf_prog refcount issues as we would be swapping same 2690 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2691 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2692 * this is not harmful as dev_xdp_install bumps the refcount 2693 * before calling the op exposed by the driver; 2694 */ 2695 if (!ice_is_xdp_ena_vsi(vsi)) 2696 ice_vsi_assign_bpf_prog(vsi, prog); 2697 2698 return 0; 2699 clear_xdp_rings: 2700 ice_for_each_xdp_txq(vsi, i) 2701 if (vsi->xdp_rings[i]) { 2702 kfree_rcu(vsi->xdp_rings[i], rcu); 2703 vsi->xdp_rings[i] = NULL; 2704 } 2705 2706 err_map_xdp: 2707 mutex_lock(&pf->avail_q_mutex); 2708 ice_for_each_xdp_txq(vsi, i) { 2709 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2710 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2711 } 2712 mutex_unlock(&pf->avail_q_mutex); 2713 2714 devm_kfree(dev, vsi->xdp_rings); 2715 return -ENOMEM; 2716 } 2717 2718 /** 2719 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2720 * @vsi: VSI to remove XDP rings 2721 * 2722 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2723 * resources 2724 */ 2725 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2726 { 2727 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2728 struct ice_pf *pf = vsi->back; 2729 int i, v_idx; 2730 2731 /* q_vectors are freed in reset path so there's no point in detaching 2732 * rings; in case of rebuild being triggered not from reset bits 2733 * in pf->state won't be set, so additionally check first q_vector 2734 * against NULL 2735 */ 2736 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2737 goto free_qmap; 2738 2739 ice_for_each_q_vector(vsi, v_idx) { 2740 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2741 struct ice_tx_ring *ring; 2742 2743 ice_for_each_tx_ring(ring, q_vector->tx) 2744 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2745 break; 2746 2747 /* restore the value of last node prior to XDP setup */ 2748 q_vector->tx.tx_ring = ring; 2749 } 2750 2751 free_qmap: 2752 mutex_lock(&pf->avail_q_mutex); 2753 ice_for_each_xdp_txq(vsi, i) { 2754 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2755 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2756 } 2757 mutex_unlock(&pf->avail_q_mutex); 2758 2759 ice_for_each_xdp_txq(vsi, i) 2760 if (vsi->xdp_rings[i]) { 2761 if (vsi->xdp_rings[i]->desc) { 2762 synchronize_rcu(); 2763 ice_free_tx_ring(vsi->xdp_rings[i]); 2764 } 2765 kfree_rcu(vsi->xdp_rings[i], rcu); 2766 vsi->xdp_rings[i] = NULL; 2767 } 2768 2769 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2770 vsi->xdp_rings = NULL; 2771 2772 if (static_key_enabled(&ice_xdp_locking_key)) 2773 static_branch_dec(&ice_xdp_locking_key); 2774 2775 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2776 return 0; 2777 2778 ice_vsi_assign_bpf_prog(vsi, NULL); 2779 2780 /* notify Tx scheduler that we destroyed XDP queues and bring 2781 * back the old number of child nodes 2782 */ 2783 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2784 max_txqs[i] = vsi->num_txq; 2785 2786 /* change number of XDP Tx queues to 0 */ 2787 vsi->num_xdp_txq = 0; 2788 2789 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2790 max_txqs); 2791 } 2792 2793 /** 2794 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2795 * @vsi: VSI to schedule napi on 2796 */ 2797 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2798 { 2799 int i; 2800 2801 ice_for_each_rxq(vsi, i) { 2802 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2803 2804 if (rx_ring->xsk_pool) 2805 napi_schedule(&rx_ring->q_vector->napi); 2806 } 2807 } 2808 2809 /** 2810 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2811 * @vsi: VSI to determine the count of XDP Tx qs 2812 * 2813 * returns 0 if Tx qs count is higher than at least half of CPU count, 2814 * -ENOMEM otherwise 2815 */ 2816 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2817 { 2818 u16 avail = ice_get_avail_txq_count(vsi->back); 2819 u16 cpus = num_possible_cpus(); 2820 2821 if (avail < cpus / 2) 2822 return -ENOMEM; 2823 2824 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2825 2826 if (vsi->num_xdp_txq < cpus) 2827 static_branch_inc(&ice_xdp_locking_key); 2828 2829 return 0; 2830 } 2831 2832 /** 2833 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2834 * @vsi: VSI to setup XDP for 2835 * @prog: XDP program 2836 * @extack: netlink extended ack 2837 */ 2838 static int 2839 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2840 struct netlink_ext_ack *extack) 2841 { 2842 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2843 bool if_running = netif_running(vsi->netdev); 2844 int ret = 0, xdp_ring_err = 0; 2845 2846 if (frame_size > vsi->rx_buf_len) { 2847 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2848 return -EOPNOTSUPP; 2849 } 2850 2851 /* need to stop netdev while setting up the program for Rx rings */ 2852 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2853 ret = ice_down(vsi); 2854 if (ret) { 2855 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2856 return ret; 2857 } 2858 } 2859 2860 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2861 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2862 if (xdp_ring_err) { 2863 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2864 } else { 2865 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2866 if (xdp_ring_err) 2867 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2868 } 2869 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2870 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2871 if (xdp_ring_err) 2872 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2873 } else { 2874 /* safe to call even when prog == vsi->xdp_prog as 2875 * dev_xdp_install in net/core/dev.c incremented prog's 2876 * refcount so corresponding bpf_prog_put won't cause 2877 * underflow 2878 */ 2879 ice_vsi_assign_bpf_prog(vsi, prog); 2880 } 2881 2882 if (if_running) 2883 ret = ice_up(vsi); 2884 2885 if (!ret && prog) 2886 ice_vsi_rx_napi_schedule(vsi); 2887 2888 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2889 } 2890 2891 /** 2892 * ice_xdp_safe_mode - XDP handler for safe mode 2893 * @dev: netdevice 2894 * @xdp: XDP command 2895 */ 2896 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2897 struct netdev_bpf *xdp) 2898 { 2899 NL_SET_ERR_MSG_MOD(xdp->extack, 2900 "Please provide working DDP firmware package in order to use XDP\n" 2901 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2902 return -EOPNOTSUPP; 2903 } 2904 2905 /** 2906 * ice_xdp - implements XDP handler 2907 * @dev: netdevice 2908 * @xdp: XDP command 2909 */ 2910 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2911 { 2912 struct ice_netdev_priv *np = netdev_priv(dev); 2913 struct ice_vsi *vsi = np->vsi; 2914 2915 if (vsi->type != ICE_VSI_PF) { 2916 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2917 return -EINVAL; 2918 } 2919 2920 switch (xdp->command) { 2921 case XDP_SETUP_PROG: 2922 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2923 case XDP_SETUP_XSK_POOL: 2924 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2925 xdp->xsk.queue_id); 2926 default: 2927 return -EINVAL; 2928 } 2929 } 2930 2931 /** 2932 * ice_ena_misc_vector - enable the non-queue interrupts 2933 * @pf: board private structure 2934 */ 2935 static void ice_ena_misc_vector(struct ice_pf *pf) 2936 { 2937 struct ice_hw *hw = &pf->hw; 2938 u32 val; 2939 2940 /* Disable anti-spoof detection interrupt to prevent spurious event 2941 * interrupts during a function reset. Anti-spoof functionally is 2942 * still supported. 2943 */ 2944 val = rd32(hw, GL_MDCK_TX_TDPU); 2945 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2946 wr32(hw, GL_MDCK_TX_TDPU, val); 2947 2948 /* clear things first */ 2949 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2950 rd32(hw, PFINT_OICR); /* read to clear */ 2951 2952 val = (PFINT_OICR_ECC_ERR_M | 2953 PFINT_OICR_MAL_DETECT_M | 2954 PFINT_OICR_GRST_M | 2955 PFINT_OICR_PCI_EXCEPTION_M | 2956 PFINT_OICR_VFLR_M | 2957 PFINT_OICR_HMC_ERR_M | 2958 PFINT_OICR_PE_PUSH_M | 2959 PFINT_OICR_PE_CRITERR_M); 2960 2961 wr32(hw, PFINT_OICR_ENA, val); 2962 2963 /* SW_ITR_IDX = 0, but don't change INTENA */ 2964 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2965 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2966 } 2967 2968 /** 2969 * ice_misc_intr - misc interrupt handler 2970 * @irq: interrupt number 2971 * @data: pointer to a q_vector 2972 */ 2973 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2974 { 2975 struct ice_pf *pf = (struct ice_pf *)data; 2976 struct ice_hw *hw = &pf->hw; 2977 irqreturn_t ret = IRQ_NONE; 2978 struct device *dev; 2979 u32 oicr, ena_mask; 2980 2981 dev = ice_pf_to_dev(pf); 2982 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2983 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2984 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2985 2986 oicr = rd32(hw, PFINT_OICR); 2987 ena_mask = rd32(hw, PFINT_OICR_ENA); 2988 2989 if (oicr & PFINT_OICR_SWINT_M) { 2990 ena_mask &= ~PFINT_OICR_SWINT_M; 2991 pf->sw_int_count++; 2992 } 2993 2994 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2995 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2996 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2997 } 2998 if (oicr & PFINT_OICR_VFLR_M) { 2999 /* disable any further VFLR event notifications */ 3000 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3001 u32 reg = rd32(hw, PFINT_OICR_ENA); 3002 3003 reg &= ~PFINT_OICR_VFLR_M; 3004 wr32(hw, PFINT_OICR_ENA, reg); 3005 } else { 3006 ena_mask &= ~PFINT_OICR_VFLR_M; 3007 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3008 } 3009 } 3010 3011 if (oicr & PFINT_OICR_GRST_M) { 3012 u32 reset; 3013 3014 /* we have a reset warning */ 3015 ena_mask &= ~PFINT_OICR_GRST_M; 3016 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3017 GLGEN_RSTAT_RESET_TYPE_S; 3018 3019 if (reset == ICE_RESET_CORER) 3020 pf->corer_count++; 3021 else if (reset == ICE_RESET_GLOBR) 3022 pf->globr_count++; 3023 else if (reset == ICE_RESET_EMPR) 3024 pf->empr_count++; 3025 else 3026 dev_dbg(dev, "Invalid reset type %d\n", reset); 3027 3028 /* If a reset cycle isn't already in progress, we set a bit in 3029 * pf->state so that the service task can start a reset/rebuild. 3030 */ 3031 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3032 if (reset == ICE_RESET_CORER) 3033 set_bit(ICE_CORER_RECV, pf->state); 3034 else if (reset == ICE_RESET_GLOBR) 3035 set_bit(ICE_GLOBR_RECV, pf->state); 3036 else 3037 set_bit(ICE_EMPR_RECV, pf->state); 3038 3039 /* There are couple of different bits at play here. 3040 * hw->reset_ongoing indicates whether the hardware is 3041 * in reset. This is set to true when a reset interrupt 3042 * is received and set back to false after the driver 3043 * has determined that the hardware is out of reset. 3044 * 3045 * ICE_RESET_OICR_RECV in pf->state indicates 3046 * that a post reset rebuild is required before the 3047 * driver is operational again. This is set above. 3048 * 3049 * As this is the start of the reset/rebuild cycle, set 3050 * both to indicate that. 3051 */ 3052 hw->reset_ongoing = true; 3053 } 3054 } 3055 3056 if (oicr & PFINT_OICR_TSYN_TX_M) { 3057 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3058 ice_ptp_process_ts(pf); 3059 } 3060 3061 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3062 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3063 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3064 3065 /* Save EVENTs from GTSYN register */ 3066 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3067 GLTSYN_STAT_EVENT1_M | 3068 GLTSYN_STAT_EVENT2_M); 3069 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3070 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3071 } 3072 3073 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3074 if (oicr & ICE_AUX_CRIT_ERR) { 3075 pf->oicr_err_reg |= oicr; 3076 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3077 ena_mask &= ~ICE_AUX_CRIT_ERR; 3078 } 3079 3080 /* Report any remaining unexpected interrupts */ 3081 oicr &= ena_mask; 3082 if (oicr) { 3083 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3084 /* If a critical error is pending there is no choice but to 3085 * reset the device. 3086 */ 3087 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3088 PFINT_OICR_ECC_ERR_M)) { 3089 set_bit(ICE_PFR_REQ, pf->state); 3090 ice_service_task_schedule(pf); 3091 } 3092 } 3093 ret = IRQ_HANDLED; 3094 3095 ice_service_task_schedule(pf); 3096 ice_irq_dynamic_ena(hw, NULL, NULL); 3097 3098 return ret; 3099 } 3100 3101 /** 3102 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3103 * @hw: pointer to HW structure 3104 */ 3105 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3106 { 3107 /* disable Admin queue Interrupt causes */ 3108 wr32(hw, PFINT_FW_CTL, 3109 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3110 3111 /* disable Mailbox queue Interrupt causes */ 3112 wr32(hw, PFINT_MBX_CTL, 3113 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3114 3115 wr32(hw, PFINT_SB_CTL, 3116 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3117 3118 /* disable Control queue Interrupt causes */ 3119 wr32(hw, PFINT_OICR_CTL, 3120 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3121 3122 ice_flush(hw); 3123 } 3124 3125 /** 3126 * ice_free_irq_msix_misc - Unroll misc vector setup 3127 * @pf: board private structure 3128 */ 3129 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3130 { 3131 struct ice_hw *hw = &pf->hw; 3132 3133 ice_dis_ctrlq_interrupts(hw); 3134 3135 /* disable OICR interrupt */ 3136 wr32(hw, PFINT_OICR_ENA, 0); 3137 ice_flush(hw); 3138 3139 if (pf->msix_entries) { 3140 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3141 devm_free_irq(ice_pf_to_dev(pf), 3142 pf->msix_entries[pf->oicr_idx].vector, pf); 3143 } 3144 3145 pf->num_avail_sw_msix += 1; 3146 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3147 } 3148 3149 /** 3150 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3151 * @hw: pointer to HW structure 3152 * @reg_idx: HW vector index to associate the control queue interrupts with 3153 */ 3154 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3155 { 3156 u32 val; 3157 3158 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3159 PFINT_OICR_CTL_CAUSE_ENA_M); 3160 wr32(hw, PFINT_OICR_CTL, val); 3161 3162 /* enable Admin queue Interrupt causes */ 3163 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3164 PFINT_FW_CTL_CAUSE_ENA_M); 3165 wr32(hw, PFINT_FW_CTL, val); 3166 3167 /* enable Mailbox queue Interrupt causes */ 3168 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3169 PFINT_MBX_CTL_CAUSE_ENA_M); 3170 wr32(hw, PFINT_MBX_CTL, val); 3171 3172 /* This enables Sideband queue Interrupt causes */ 3173 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3174 PFINT_SB_CTL_CAUSE_ENA_M); 3175 wr32(hw, PFINT_SB_CTL, val); 3176 3177 ice_flush(hw); 3178 } 3179 3180 /** 3181 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3182 * @pf: board private structure 3183 * 3184 * This sets up the handler for MSIX 0, which is used to manage the 3185 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3186 * when in MSI or Legacy interrupt mode. 3187 */ 3188 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3189 { 3190 struct device *dev = ice_pf_to_dev(pf); 3191 struct ice_hw *hw = &pf->hw; 3192 int oicr_idx, err = 0; 3193 3194 if (!pf->int_name[0]) 3195 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3196 dev_driver_string(dev), dev_name(dev)); 3197 3198 /* Do not request IRQ but do enable OICR interrupt since settings are 3199 * lost during reset. Note that this function is called only during 3200 * rebuild path and not while reset is in progress. 3201 */ 3202 if (ice_is_reset_in_progress(pf->state)) 3203 goto skip_req_irq; 3204 3205 /* reserve one vector in irq_tracker for misc interrupts */ 3206 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3207 if (oicr_idx < 0) 3208 return oicr_idx; 3209 3210 pf->num_avail_sw_msix -= 1; 3211 pf->oicr_idx = (u16)oicr_idx; 3212 3213 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3214 ice_misc_intr, 0, pf->int_name, pf); 3215 if (err) { 3216 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3217 pf->int_name, err); 3218 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3219 pf->num_avail_sw_msix += 1; 3220 return err; 3221 } 3222 3223 skip_req_irq: 3224 ice_ena_misc_vector(pf); 3225 3226 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3227 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3228 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3229 3230 ice_flush(hw); 3231 ice_irq_dynamic_ena(hw, NULL, NULL); 3232 3233 return 0; 3234 } 3235 3236 /** 3237 * ice_napi_add - register NAPI handler for the VSI 3238 * @vsi: VSI for which NAPI handler is to be registered 3239 * 3240 * This function is only called in the driver's load path. Registering the NAPI 3241 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3242 * reset/rebuild, etc.) 3243 */ 3244 static void ice_napi_add(struct ice_vsi *vsi) 3245 { 3246 int v_idx; 3247 3248 if (!vsi->netdev) 3249 return; 3250 3251 ice_for_each_q_vector(vsi, v_idx) 3252 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3253 ice_napi_poll, NAPI_POLL_WEIGHT); 3254 } 3255 3256 /** 3257 * ice_set_ops - set netdev and ethtools ops for the given netdev 3258 * @netdev: netdev instance 3259 */ 3260 static void ice_set_ops(struct net_device *netdev) 3261 { 3262 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3263 3264 if (ice_is_safe_mode(pf)) { 3265 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3266 ice_set_ethtool_safe_mode_ops(netdev); 3267 return; 3268 } 3269 3270 netdev->netdev_ops = &ice_netdev_ops; 3271 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3272 ice_set_ethtool_ops(netdev); 3273 } 3274 3275 /** 3276 * ice_set_netdev_features - set features for the given netdev 3277 * @netdev: netdev instance 3278 */ 3279 static void ice_set_netdev_features(struct net_device *netdev) 3280 { 3281 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3282 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3283 netdev_features_t csumo_features; 3284 netdev_features_t vlano_features; 3285 netdev_features_t dflt_features; 3286 netdev_features_t tso_features; 3287 3288 if (ice_is_safe_mode(pf)) { 3289 /* safe mode */ 3290 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3291 netdev->hw_features = netdev->features; 3292 return; 3293 } 3294 3295 dflt_features = NETIF_F_SG | 3296 NETIF_F_HIGHDMA | 3297 NETIF_F_NTUPLE | 3298 NETIF_F_RXHASH; 3299 3300 csumo_features = NETIF_F_RXCSUM | 3301 NETIF_F_IP_CSUM | 3302 NETIF_F_SCTP_CRC | 3303 NETIF_F_IPV6_CSUM; 3304 3305 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3306 NETIF_F_HW_VLAN_CTAG_TX | 3307 NETIF_F_HW_VLAN_CTAG_RX; 3308 3309 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3310 if (is_dvm_ena) 3311 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3312 3313 tso_features = NETIF_F_TSO | 3314 NETIF_F_TSO_ECN | 3315 NETIF_F_TSO6 | 3316 NETIF_F_GSO_GRE | 3317 NETIF_F_GSO_UDP_TUNNEL | 3318 NETIF_F_GSO_GRE_CSUM | 3319 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3320 NETIF_F_GSO_PARTIAL | 3321 NETIF_F_GSO_IPXIP4 | 3322 NETIF_F_GSO_IPXIP6 | 3323 NETIF_F_GSO_UDP_L4; 3324 3325 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3326 NETIF_F_GSO_GRE_CSUM; 3327 /* set features that user can change */ 3328 netdev->hw_features = dflt_features | csumo_features | 3329 vlano_features | tso_features; 3330 3331 /* add support for HW_CSUM on packets with MPLS header */ 3332 netdev->mpls_features = NETIF_F_HW_CSUM; 3333 3334 /* enable features */ 3335 netdev->features |= netdev->hw_features; 3336 3337 netdev->hw_features |= NETIF_F_HW_TC; 3338 3339 /* encap and VLAN devices inherit default, csumo and tso features */ 3340 netdev->hw_enc_features |= dflt_features | csumo_features | 3341 tso_features; 3342 netdev->vlan_features |= dflt_features | csumo_features | 3343 tso_features; 3344 3345 /* advertise support but don't enable by default since only one type of 3346 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3347 * type turns on the other has to be turned off. This is enforced by the 3348 * ice_fix_features() ndo callback. 3349 */ 3350 if (is_dvm_ena) 3351 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3352 NETIF_F_HW_VLAN_STAG_TX; 3353 } 3354 3355 /** 3356 * ice_cfg_netdev - Allocate, configure and register a netdev 3357 * @vsi: the VSI associated with the new netdev 3358 * 3359 * Returns 0 on success, negative value on failure 3360 */ 3361 static int ice_cfg_netdev(struct ice_vsi *vsi) 3362 { 3363 struct ice_netdev_priv *np; 3364 struct net_device *netdev; 3365 u8 mac_addr[ETH_ALEN]; 3366 3367 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3368 vsi->alloc_rxq); 3369 if (!netdev) 3370 return -ENOMEM; 3371 3372 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3373 vsi->netdev = netdev; 3374 np = netdev_priv(netdev); 3375 np->vsi = vsi; 3376 3377 ice_set_netdev_features(netdev); 3378 3379 ice_set_ops(netdev); 3380 3381 if (vsi->type == ICE_VSI_PF) { 3382 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3383 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3384 eth_hw_addr_set(netdev, mac_addr); 3385 ether_addr_copy(netdev->perm_addr, mac_addr); 3386 } 3387 3388 netdev->priv_flags |= IFF_UNICAST_FLT; 3389 3390 /* Setup netdev TC information */ 3391 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3392 3393 /* setup watchdog timeout value to be 5 second */ 3394 netdev->watchdog_timeo = 5 * HZ; 3395 3396 netdev->min_mtu = ETH_MIN_MTU; 3397 netdev->max_mtu = ICE_MAX_MTU; 3398 3399 return 0; 3400 } 3401 3402 /** 3403 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3404 * @lut: Lookup table 3405 * @rss_table_size: Lookup table size 3406 * @rss_size: Range of queue number for hashing 3407 */ 3408 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3409 { 3410 u16 i; 3411 3412 for (i = 0; i < rss_table_size; i++) 3413 lut[i] = i % rss_size; 3414 } 3415 3416 /** 3417 * ice_pf_vsi_setup - Set up a PF VSI 3418 * @pf: board private structure 3419 * @pi: pointer to the port_info instance 3420 * 3421 * Returns pointer to the successfully allocated VSI software struct 3422 * on success, otherwise returns NULL on failure. 3423 */ 3424 static struct ice_vsi * 3425 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3426 { 3427 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3428 } 3429 3430 static struct ice_vsi * 3431 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3432 struct ice_channel *ch) 3433 { 3434 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3435 } 3436 3437 /** 3438 * ice_ctrl_vsi_setup - Set up a control VSI 3439 * @pf: board private structure 3440 * @pi: pointer to the port_info instance 3441 * 3442 * Returns pointer to the successfully allocated VSI software struct 3443 * on success, otherwise returns NULL on failure. 3444 */ 3445 static struct ice_vsi * 3446 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3447 { 3448 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3449 } 3450 3451 /** 3452 * ice_lb_vsi_setup - Set up a loopback VSI 3453 * @pf: board private structure 3454 * @pi: pointer to the port_info instance 3455 * 3456 * Returns pointer to the successfully allocated VSI software struct 3457 * on success, otherwise returns NULL on failure. 3458 */ 3459 struct ice_vsi * 3460 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3461 { 3462 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3463 } 3464 3465 /** 3466 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3467 * @netdev: network interface to be adjusted 3468 * @proto: VLAN TPID 3469 * @vid: VLAN ID to be added 3470 * 3471 * net_device_ops implementation for adding VLAN IDs 3472 */ 3473 static int 3474 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3475 { 3476 struct ice_netdev_priv *np = netdev_priv(netdev); 3477 struct ice_vsi_vlan_ops *vlan_ops; 3478 struct ice_vsi *vsi = np->vsi; 3479 struct ice_vlan vlan; 3480 int ret; 3481 3482 /* VLAN 0 is added by default during load/reset */ 3483 if (!vid) 3484 return 0; 3485 3486 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3487 usleep_range(1000, 2000); 3488 3489 /* Add multicast promisc rule for the VLAN ID to be added if 3490 * all-multicast is currently enabled. 3491 */ 3492 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3493 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3494 ICE_MCAST_VLAN_PROMISC_BITS, 3495 vid); 3496 if (ret) 3497 goto finish; 3498 } 3499 3500 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3501 3502 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3503 * packets aren't pruned by the device's internal switch on Rx 3504 */ 3505 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3506 ret = vlan_ops->add_vlan(vsi, &vlan); 3507 if (ret) 3508 goto finish; 3509 3510 /* If all-multicast is currently enabled and this VLAN ID is only one 3511 * besides VLAN-0 we have to update look-up type of multicast promisc 3512 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3513 */ 3514 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3515 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3516 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3517 ICE_MCAST_PROMISC_BITS, 0); 3518 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3519 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3520 } 3521 3522 finish: 3523 clear_bit(ICE_CFG_BUSY, vsi->state); 3524 3525 return ret; 3526 } 3527 3528 /** 3529 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3530 * @netdev: network interface to be adjusted 3531 * @proto: VLAN TPID 3532 * @vid: VLAN ID to be removed 3533 * 3534 * net_device_ops implementation for removing VLAN IDs 3535 */ 3536 static int 3537 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3538 { 3539 struct ice_netdev_priv *np = netdev_priv(netdev); 3540 struct ice_vsi_vlan_ops *vlan_ops; 3541 struct ice_vsi *vsi = np->vsi; 3542 struct ice_vlan vlan; 3543 int ret; 3544 3545 /* don't allow removal of VLAN 0 */ 3546 if (!vid) 3547 return 0; 3548 3549 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3550 usleep_range(1000, 2000); 3551 3552 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3553 3554 /* Make sure VLAN delete is successful before updating VLAN 3555 * information 3556 */ 3557 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3558 ret = vlan_ops->del_vlan(vsi, &vlan); 3559 if (ret) 3560 goto finish; 3561 3562 /* Remove multicast promisc rule for the removed VLAN ID if 3563 * all-multicast is enabled. 3564 */ 3565 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3566 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3567 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3568 3569 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3570 /* Update look-up type of multicast promisc rule for VLAN 0 3571 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3572 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3573 */ 3574 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3575 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3576 ICE_MCAST_VLAN_PROMISC_BITS, 3577 0); 3578 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3579 ICE_MCAST_PROMISC_BITS, 0); 3580 } 3581 } 3582 3583 finish: 3584 clear_bit(ICE_CFG_BUSY, vsi->state); 3585 3586 return ret; 3587 } 3588 3589 /** 3590 * ice_rep_indr_tc_block_unbind 3591 * @cb_priv: indirection block private data 3592 */ 3593 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3594 { 3595 struct ice_indr_block_priv *indr_priv = cb_priv; 3596 3597 list_del(&indr_priv->list); 3598 kfree(indr_priv); 3599 } 3600 3601 /** 3602 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3603 * @vsi: VSI struct which has the netdev 3604 */ 3605 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3606 { 3607 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3608 3609 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3610 ice_rep_indr_tc_block_unbind); 3611 } 3612 3613 /** 3614 * ice_tc_indir_block_remove - clean indirect TC block notifications 3615 * @pf: PF structure 3616 */ 3617 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3618 { 3619 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3620 3621 if (!pf_vsi) 3622 return; 3623 3624 ice_tc_indir_block_unregister(pf_vsi); 3625 } 3626 3627 /** 3628 * ice_tc_indir_block_register - Register TC indirect block notifications 3629 * @vsi: VSI struct which has the netdev 3630 * 3631 * Returns 0 on success, negative value on failure 3632 */ 3633 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3634 { 3635 struct ice_netdev_priv *np; 3636 3637 if (!vsi || !vsi->netdev) 3638 return -EINVAL; 3639 3640 np = netdev_priv(vsi->netdev); 3641 3642 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3643 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3644 } 3645 3646 /** 3647 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3648 * @pf: board private structure 3649 * 3650 * Returns 0 on success, negative value on failure 3651 */ 3652 static int ice_setup_pf_sw(struct ice_pf *pf) 3653 { 3654 struct device *dev = ice_pf_to_dev(pf); 3655 bool dvm = ice_is_dvm_ena(&pf->hw); 3656 struct ice_vsi *vsi; 3657 int status; 3658 3659 if (ice_is_reset_in_progress(pf->state)) 3660 return -EBUSY; 3661 3662 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3663 if (status) 3664 return -EIO; 3665 3666 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3667 if (!vsi) 3668 return -ENOMEM; 3669 3670 /* init channel list */ 3671 INIT_LIST_HEAD(&vsi->ch_list); 3672 3673 status = ice_cfg_netdev(vsi); 3674 if (status) 3675 goto unroll_vsi_setup; 3676 /* netdev has to be configured before setting frame size */ 3677 ice_vsi_cfg_frame_size(vsi); 3678 3679 /* init indirect block notifications */ 3680 status = ice_tc_indir_block_register(vsi); 3681 if (status) { 3682 dev_err(dev, "Failed to register netdev notifier\n"); 3683 goto unroll_cfg_netdev; 3684 } 3685 3686 /* Setup DCB netlink interface */ 3687 ice_dcbnl_setup(vsi); 3688 3689 /* registering the NAPI handler requires both the queues and 3690 * netdev to be created, which are done in ice_pf_vsi_setup() 3691 * and ice_cfg_netdev() respectively 3692 */ 3693 ice_napi_add(vsi); 3694 3695 status = ice_set_cpu_rx_rmap(vsi); 3696 if (status) { 3697 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3698 vsi->vsi_num, status); 3699 goto unroll_napi_add; 3700 } 3701 status = ice_init_mac_fltr(pf); 3702 if (status) 3703 goto free_cpu_rx_map; 3704 3705 return 0; 3706 3707 free_cpu_rx_map: 3708 ice_free_cpu_rx_rmap(vsi); 3709 unroll_napi_add: 3710 ice_tc_indir_block_unregister(vsi); 3711 unroll_cfg_netdev: 3712 if (vsi) { 3713 ice_napi_del(vsi); 3714 if (vsi->netdev) { 3715 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3716 free_netdev(vsi->netdev); 3717 vsi->netdev = NULL; 3718 } 3719 } 3720 3721 unroll_vsi_setup: 3722 ice_vsi_release(vsi); 3723 return status; 3724 } 3725 3726 /** 3727 * ice_get_avail_q_count - Get count of queues in use 3728 * @pf_qmap: bitmap to get queue use count from 3729 * @lock: pointer to a mutex that protects access to pf_qmap 3730 * @size: size of the bitmap 3731 */ 3732 static u16 3733 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3734 { 3735 unsigned long bit; 3736 u16 count = 0; 3737 3738 mutex_lock(lock); 3739 for_each_clear_bit(bit, pf_qmap, size) 3740 count++; 3741 mutex_unlock(lock); 3742 3743 return count; 3744 } 3745 3746 /** 3747 * ice_get_avail_txq_count - Get count of Tx queues in use 3748 * @pf: pointer to an ice_pf instance 3749 */ 3750 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3751 { 3752 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3753 pf->max_pf_txqs); 3754 } 3755 3756 /** 3757 * ice_get_avail_rxq_count - Get count of Rx queues in use 3758 * @pf: pointer to an ice_pf instance 3759 */ 3760 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3761 { 3762 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3763 pf->max_pf_rxqs); 3764 } 3765 3766 /** 3767 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3768 * @pf: board private structure to initialize 3769 */ 3770 static void ice_deinit_pf(struct ice_pf *pf) 3771 { 3772 ice_service_task_stop(pf); 3773 mutex_destroy(&pf->sw_mutex); 3774 mutex_destroy(&pf->tc_mutex); 3775 mutex_destroy(&pf->avail_q_mutex); 3776 mutex_destroy(&pf->vfs.table_lock); 3777 3778 if (pf->avail_txqs) { 3779 bitmap_free(pf->avail_txqs); 3780 pf->avail_txqs = NULL; 3781 } 3782 3783 if (pf->avail_rxqs) { 3784 bitmap_free(pf->avail_rxqs); 3785 pf->avail_rxqs = NULL; 3786 } 3787 3788 if (pf->ptp.clock) 3789 ptp_clock_unregister(pf->ptp.clock); 3790 } 3791 3792 /** 3793 * ice_set_pf_caps - set PFs capability flags 3794 * @pf: pointer to the PF instance 3795 */ 3796 static void ice_set_pf_caps(struct ice_pf *pf) 3797 { 3798 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3799 3800 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3801 if (func_caps->common_cap.rdma) 3802 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3803 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3804 if (func_caps->common_cap.dcb) 3805 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3806 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3807 if (func_caps->common_cap.sr_iov_1_1) { 3808 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3809 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3810 ICE_MAX_SRIOV_VFS); 3811 } 3812 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3813 if (func_caps->common_cap.rss_table_size) 3814 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3815 3816 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3817 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3818 u16 unused; 3819 3820 /* ctrl_vsi_idx will be set to a valid value when flow director 3821 * is setup by ice_init_fdir 3822 */ 3823 pf->ctrl_vsi_idx = ICE_NO_VSI; 3824 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3825 /* force guaranteed filter pool for PF */ 3826 ice_alloc_fd_guar_item(&pf->hw, &unused, 3827 func_caps->fd_fltr_guar); 3828 /* force shared filter pool for PF */ 3829 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3830 func_caps->fd_fltr_best_effort); 3831 } 3832 3833 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3834 if (func_caps->common_cap.ieee_1588) 3835 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3836 3837 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3838 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3839 } 3840 3841 /** 3842 * ice_init_pf - Initialize general software structures (struct ice_pf) 3843 * @pf: board private structure to initialize 3844 */ 3845 static int ice_init_pf(struct ice_pf *pf) 3846 { 3847 ice_set_pf_caps(pf); 3848 3849 mutex_init(&pf->sw_mutex); 3850 mutex_init(&pf->tc_mutex); 3851 3852 INIT_HLIST_HEAD(&pf->aq_wait_list); 3853 spin_lock_init(&pf->aq_wait_lock); 3854 init_waitqueue_head(&pf->aq_wait_queue); 3855 3856 init_waitqueue_head(&pf->reset_wait_queue); 3857 3858 /* setup service timer and periodic service task */ 3859 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3860 pf->serv_tmr_period = HZ; 3861 INIT_WORK(&pf->serv_task, ice_service_task); 3862 clear_bit(ICE_SERVICE_SCHED, pf->state); 3863 3864 mutex_init(&pf->avail_q_mutex); 3865 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3866 if (!pf->avail_txqs) 3867 return -ENOMEM; 3868 3869 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3870 if (!pf->avail_rxqs) { 3871 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3872 pf->avail_txqs = NULL; 3873 return -ENOMEM; 3874 } 3875 3876 mutex_init(&pf->vfs.table_lock); 3877 hash_init(pf->vfs.table); 3878 3879 return 0; 3880 } 3881 3882 /** 3883 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3884 * @pf: board private structure 3885 * 3886 * compute the number of MSIX vectors required (v_budget) and request from 3887 * the OS. Return the number of vectors reserved or negative on failure 3888 */ 3889 static int ice_ena_msix_range(struct ice_pf *pf) 3890 { 3891 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3892 struct device *dev = ice_pf_to_dev(pf); 3893 int needed, err, i; 3894 3895 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3896 num_cpus = num_online_cpus(); 3897 3898 /* reserve for LAN miscellaneous handler */ 3899 needed = ICE_MIN_LAN_OICR_MSIX; 3900 if (v_left < needed) 3901 goto no_hw_vecs_left_err; 3902 v_budget += needed; 3903 v_left -= needed; 3904 3905 /* reserve for flow director */ 3906 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3907 needed = ICE_FDIR_MSIX; 3908 if (v_left < needed) 3909 goto no_hw_vecs_left_err; 3910 v_budget += needed; 3911 v_left -= needed; 3912 } 3913 3914 /* reserve for switchdev */ 3915 needed = ICE_ESWITCH_MSIX; 3916 if (v_left < needed) 3917 goto no_hw_vecs_left_err; 3918 v_budget += needed; 3919 v_left -= needed; 3920 3921 /* total used for non-traffic vectors */ 3922 v_other = v_budget; 3923 3924 /* reserve vectors for LAN traffic */ 3925 needed = num_cpus; 3926 if (v_left < needed) 3927 goto no_hw_vecs_left_err; 3928 pf->num_lan_msix = needed; 3929 v_budget += needed; 3930 v_left -= needed; 3931 3932 /* reserve vectors for RDMA auxiliary driver */ 3933 if (ice_is_rdma_ena(pf)) { 3934 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3935 if (v_left < needed) 3936 goto no_hw_vecs_left_err; 3937 pf->num_rdma_msix = needed; 3938 v_budget += needed; 3939 v_left -= needed; 3940 } 3941 3942 pf->msix_entries = devm_kcalloc(dev, v_budget, 3943 sizeof(*pf->msix_entries), GFP_KERNEL); 3944 if (!pf->msix_entries) { 3945 err = -ENOMEM; 3946 goto exit_err; 3947 } 3948 3949 for (i = 0; i < v_budget; i++) 3950 pf->msix_entries[i].entry = i; 3951 3952 /* actually reserve the vectors */ 3953 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3954 ICE_MIN_MSIX, v_budget); 3955 if (v_actual < 0) { 3956 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3957 err = v_actual; 3958 goto msix_err; 3959 } 3960 3961 if (v_actual < v_budget) { 3962 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3963 v_budget, v_actual); 3964 3965 if (v_actual < ICE_MIN_MSIX) { 3966 /* error if we can't get minimum vectors */ 3967 pci_disable_msix(pf->pdev); 3968 err = -ERANGE; 3969 goto msix_err; 3970 } else { 3971 int v_remain = v_actual - v_other; 3972 int v_rdma = 0, v_min_rdma = 0; 3973 3974 if (ice_is_rdma_ena(pf)) { 3975 /* Need at least 1 interrupt in addition to 3976 * AEQ MSIX 3977 */ 3978 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3979 v_min_rdma = ICE_MIN_RDMA_MSIX; 3980 } 3981 3982 if (v_actual == ICE_MIN_MSIX || 3983 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3984 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3985 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3986 3987 pf->num_rdma_msix = 0; 3988 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3989 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3990 (v_remain - v_rdma < v_rdma)) { 3991 /* Support minimum RDMA and give remaining 3992 * vectors to LAN MSIX 3993 */ 3994 pf->num_rdma_msix = v_min_rdma; 3995 pf->num_lan_msix = v_remain - v_min_rdma; 3996 } else { 3997 /* Split remaining MSIX with RDMA after 3998 * accounting for AEQ MSIX 3999 */ 4000 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4001 ICE_RDMA_NUM_AEQ_MSIX; 4002 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4003 } 4004 4005 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4006 pf->num_lan_msix); 4007 4008 if (ice_is_rdma_ena(pf)) 4009 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4010 pf->num_rdma_msix); 4011 } 4012 } 4013 4014 return v_actual; 4015 4016 msix_err: 4017 devm_kfree(dev, pf->msix_entries); 4018 goto exit_err; 4019 4020 no_hw_vecs_left_err: 4021 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4022 needed, v_left); 4023 err = -ERANGE; 4024 exit_err: 4025 pf->num_rdma_msix = 0; 4026 pf->num_lan_msix = 0; 4027 return err; 4028 } 4029 4030 /** 4031 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4032 * @pf: board private structure 4033 */ 4034 static void ice_dis_msix(struct ice_pf *pf) 4035 { 4036 pci_disable_msix(pf->pdev); 4037 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4038 pf->msix_entries = NULL; 4039 } 4040 4041 /** 4042 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4043 * @pf: board private structure 4044 */ 4045 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4046 { 4047 ice_dis_msix(pf); 4048 4049 if (pf->irq_tracker) { 4050 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4051 pf->irq_tracker = NULL; 4052 } 4053 } 4054 4055 /** 4056 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4057 * @pf: board private structure to initialize 4058 */ 4059 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4060 { 4061 int vectors; 4062 4063 vectors = ice_ena_msix_range(pf); 4064 4065 if (vectors < 0) 4066 return vectors; 4067 4068 /* set up vector assignment tracking */ 4069 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4070 struct_size(pf->irq_tracker, list, vectors), 4071 GFP_KERNEL); 4072 if (!pf->irq_tracker) { 4073 ice_dis_msix(pf); 4074 return -ENOMEM; 4075 } 4076 4077 /* populate SW interrupts pool with number of OS granted IRQs. */ 4078 pf->num_avail_sw_msix = (u16)vectors; 4079 pf->irq_tracker->num_entries = (u16)vectors; 4080 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4081 4082 return 0; 4083 } 4084 4085 /** 4086 * ice_is_wol_supported - check if WoL is supported 4087 * @hw: pointer to hardware info 4088 * 4089 * Check if WoL is supported based on the HW configuration. 4090 * Returns true if NVM supports and enables WoL for this port, false otherwise 4091 */ 4092 bool ice_is_wol_supported(struct ice_hw *hw) 4093 { 4094 u16 wol_ctrl; 4095 4096 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4097 * word) indicates WoL is not supported on the corresponding PF ID. 4098 */ 4099 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4100 return false; 4101 4102 return !(BIT(hw->port_info->lport) & wol_ctrl); 4103 } 4104 4105 /** 4106 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4107 * @vsi: VSI being changed 4108 * @new_rx: new number of Rx queues 4109 * @new_tx: new number of Tx queues 4110 * 4111 * Only change the number of queues if new_tx, or new_rx is non-0. 4112 * 4113 * Returns 0 on success. 4114 */ 4115 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4116 { 4117 struct ice_pf *pf = vsi->back; 4118 int err = 0, timeout = 50; 4119 4120 if (!new_rx && !new_tx) 4121 return -EINVAL; 4122 4123 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4124 timeout--; 4125 if (!timeout) 4126 return -EBUSY; 4127 usleep_range(1000, 2000); 4128 } 4129 4130 if (new_tx) 4131 vsi->req_txq = (u16)new_tx; 4132 if (new_rx) 4133 vsi->req_rxq = (u16)new_rx; 4134 4135 /* set for the next time the netdev is started */ 4136 if (!netif_running(vsi->netdev)) { 4137 ice_vsi_rebuild(vsi, false); 4138 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4139 goto done; 4140 } 4141 4142 ice_vsi_close(vsi); 4143 ice_vsi_rebuild(vsi, false); 4144 ice_pf_dcb_recfg(pf); 4145 ice_vsi_open(vsi); 4146 done: 4147 clear_bit(ICE_CFG_BUSY, pf->state); 4148 return err; 4149 } 4150 4151 /** 4152 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4153 * @pf: PF to configure 4154 * 4155 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4156 * VSI can still Tx/Rx VLAN tagged packets. 4157 */ 4158 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4159 { 4160 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4161 struct ice_vsi_ctx *ctxt; 4162 struct ice_hw *hw; 4163 int status; 4164 4165 if (!vsi) 4166 return; 4167 4168 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4169 if (!ctxt) 4170 return; 4171 4172 hw = &pf->hw; 4173 ctxt->info = vsi->info; 4174 4175 ctxt->info.valid_sections = 4176 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4177 ICE_AQ_VSI_PROP_SECURITY_VALID | 4178 ICE_AQ_VSI_PROP_SW_VALID); 4179 4180 /* disable VLAN anti-spoof */ 4181 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4182 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4183 4184 /* disable VLAN pruning and keep all other settings */ 4185 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4186 4187 /* allow all VLANs on Tx and don't strip on Rx */ 4188 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4189 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4190 4191 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4192 if (status) { 4193 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4194 status, ice_aq_str(hw->adminq.sq_last_status)); 4195 } else { 4196 vsi->info.sec_flags = ctxt->info.sec_flags; 4197 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4198 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4199 } 4200 4201 kfree(ctxt); 4202 } 4203 4204 /** 4205 * ice_log_pkg_init - log result of DDP package load 4206 * @hw: pointer to hardware info 4207 * @state: state of package load 4208 */ 4209 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4210 { 4211 struct ice_pf *pf = hw->back; 4212 struct device *dev; 4213 4214 dev = ice_pf_to_dev(pf); 4215 4216 switch (state) { 4217 case ICE_DDP_PKG_SUCCESS: 4218 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4219 hw->active_pkg_name, 4220 hw->active_pkg_ver.major, 4221 hw->active_pkg_ver.minor, 4222 hw->active_pkg_ver.update, 4223 hw->active_pkg_ver.draft); 4224 break; 4225 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4226 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4227 hw->active_pkg_name, 4228 hw->active_pkg_ver.major, 4229 hw->active_pkg_ver.minor, 4230 hw->active_pkg_ver.update, 4231 hw->active_pkg_ver.draft); 4232 break; 4233 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4234 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4235 hw->active_pkg_name, 4236 hw->active_pkg_ver.major, 4237 hw->active_pkg_ver.minor, 4238 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4239 break; 4240 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4241 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4242 hw->active_pkg_name, 4243 hw->active_pkg_ver.major, 4244 hw->active_pkg_ver.minor, 4245 hw->active_pkg_ver.update, 4246 hw->active_pkg_ver.draft, 4247 hw->pkg_name, 4248 hw->pkg_ver.major, 4249 hw->pkg_ver.minor, 4250 hw->pkg_ver.update, 4251 hw->pkg_ver.draft); 4252 break; 4253 case ICE_DDP_PKG_FW_MISMATCH: 4254 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4255 break; 4256 case ICE_DDP_PKG_INVALID_FILE: 4257 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4258 break; 4259 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4260 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4261 break; 4262 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4263 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4265 break; 4266 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4267 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4268 break; 4269 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4270 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4271 break; 4272 case ICE_DDP_PKG_LOAD_ERROR: 4273 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4274 /* poll for reset to complete */ 4275 if (ice_check_reset(hw)) 4276 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4277 break; 4278 case ICE_DDP_PKG_ERR: 4279 default: 4280 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4281 break; 4282 } 4283 } 4284 4285 /** 4286 * ice_load_pkg - load/reload the DDP Package file 4287 * @firmware: firmware structure when firmware requested or NULL for reload 4288 * @pf: pointer to the PF instance 4289 * 4290 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4291 * initialize HW tables. 4292 */ 4293 static void 4294 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4295 { 4296 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4297 struct device *dev = ice_pf_to_dev(pf); 4298 struct ice_hw *hw = &pf->hw; 4299 4300 /* Load DDP Package */ 4301 if (firmware && !hw->pkg_copy) { 4302 state = ice_copy_and_init_pkg(hw, firmware->data, 4303 firmware->size); 4304 ice_log_pkg_init(hw, state); 4305 } else if (!firmware && hw->pkg_copy) { 4306 /* Reload package during rebuild after CORER/GLOBR reset */ 4307 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4308 ice_log_pkg_init(hw, state); 4309 } else { 4310 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4311 } 4312 4313 if (!ice_is_init_pkg_successful(state)) { 4314 /* Safe Mode */ 4315 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4316 return; 4317 } 4318 4319 /* Successful download package is the precondition for advanced 4320 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4321 */ 4322 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4323 } 4324 4325 /** 4326 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4327 * @pf: pointer to the PF structure 4328 * 4329 * There is no error returned here because the driver should be able to handle 4330 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4331 * specifically with Tx. 4332 */ 4333 static void ice_verify_cacheline_size(struct ice_pf *pf) 4334 { 4335 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4336 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4337 ICE_CACHE_LINE_BYTES); 4338 } 4339 4340 /** 4341 * ice_send_version - update firmware with driver version 4342 * @pf: PF struct 4343 * 4344 * Returns 0 on success, else error code 4345 */ 4346 static int ice_send_version(struct ice_pf *pf) 4347 { 4348 struct ice_driver_ver dv; 4349 4350 dv.major_ver = 0xff; 4351 dv.minor_ver = 0xff; 4352 dv.build_ver = 0xff; 4353 dv.subbuild_ver = 0; 4354 strscpy((char *)dv.driver_string, UTS_RELEASE, 4355 sizeof(dv.driver_string)); 4356 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4357 } 4358 4359 /** 4360 * ice_init_fdir - Initialize flow director VSI and configuration 4361 * @pf: pointer to the PF instance 4362 * 4363 * returns 0 on success, negative on error 4364 */ 4365 static int ice_init_fdir(struct ice_pf *pf) 4366 { 4367 struct device *dev = ice_pf_to_dev(pf); 4368 struct ice_vsi *ctrl_vsi; 4369 int err; 4370 4371 /* Side Band Flow Director needs to have a control VSI. 4372 * Allocate it and store it in the PF. 4373 */ 4374 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4375 if (!ctrl_vsi) { 4376 dev_dbg(dev, "could not create control VSI\n"); 4377 return -ENOMEM; 4378 } 4379 4380 err = ice_vsi_open_ctrl(ctrl_vsi); 4381 if (err) { 4382 dev_dbg(dev, "could not open control VSI\n"); 4383 goto err_vsi_open; 4384 } 4385 4386 mutex_init(&pf->hw.fdir_fltr_lock); 4387 4388 err = ice_fdir_create_dflt_rules(pf); 4389 if (err) 4390 goto err_fdir_rule; 4391 4392 return 0; 4393 4394 err_fdir_rule: 4395 ice_fdir_release_flows(&pf->hw); 4396 ice_vsi_close(ctrl_vsi); 4397 err_vsi_open: 4398 ice_vsi_release(ctrl_vsi); 4399 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4400 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4401 pf->ctrl_vsi_idx = ICE_NO_VSI; 4402 } 4403 return err; 4404 } 4405 4406 /** 4407 * ice_get_opt_fw_name - return optional firmware file name or NULL 4408 * @pf: pointer to the PF instance 4409 */ 4410 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4411 { 4412 /* Optional firmware name same as default with additional dash 4413 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4414 */ 4415 struct pci_dev *pdev = pf->pdev; 4416 char *opt_fw_filename; 4417 u64 dsn; 4418 4419 /* Determine the name of the optional file using the DSN (two 4420 * dwords following the start of the DSN Capability). 4421 */ 4422 dsn = pci_get_dsn(pdev); 4423 if (!dsn) 4424 return NULL; 4425 4426 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4427 if (!opt_fw_filename) 4428 return NULL; 4429 4430 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4431 ICE_DDP_PKG_PATH, dsn); 4432 4433 return opt_fw_filename; 4434 } 4435 4436 /** 4437 * ice_request_fw - Device initialization routine 4438 * @pf: pointer to the PF instance 4439 */ 4440 static void ice_request_fw(struct ice_pf *pf) 4441 { 4442 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4443 const struct firmware *firmware = NULL; 4444 struct device *dev = ice_pf_to_dev(pf); 4445 int err = 0; 4446 4447 /* optional device-specific DDP (if present) overrides the default DDP 4448 * package file. kernel logs a debug message if the file doesn't exist, 4449 * and warning messages for other errors. 4450 */ 4451 if (opt_fw_filename) { 4452 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4453 if (err) { 4454 kfree(opt_fw_filename); 4455 goto dflt_pkg_load; 4456 } 4457 4458 /* request for firmware was successful. Download to device */ 4459 ice_load_pkg(firmware, pf); 4460 kfree(opt_fw_filename); 4461 release_firmware(firmware); 4462 return; 4463 } 4464 4465 dflt_pkg_load: 4466 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4467 if (err) { 4468 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4469 return; 4470 } 4471 4472 /* request for firmware was successful. Download to device */ 4473 ice_load_pkg(firmware, pf); 4474 release_firmware(firmware); 4475 } 4476 4477 /** 4478 * ice_print_wake_reason - show the wake up cause in the log 4479 * @pf: pointer to the PF struct 4480 */ 4481 static void ice_print_wake_reason(struct ice_pf *pf) 4482 { 4483 u32 wus = pf->wakeup_reason; 4484 const char *wake_str; 4485 4486 /* if no wake event, nothing to print */ 4487 if (!wus) 4488 return; 4489 4490 if (wus & PFPM_WUS_LNKC_M) 4491 wake_str = "Link\n"; 4492 else if (wus & PFPM_WUS_MAG_M) 4493 wake_str = "Magic Packet\n"; 4494 else if (wus & PFPM_WUS_MNG_M) 4495 wake_str = "Management\n"; 4496 else if (wus & PFPM_WUS_FW_RST_WK_M) 4497 wake_str = "Firmware Reset\n"; 4498 else 4499 wake_str = "Unknown\n"; 4500 4501 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4502 } 4503 4504 /** 4505 * ice_register_netdev - register netdev and devlink port 4506 * @pf: pointer to the PF struct 4507 */ 4508 static int ice_register_netdev(struct ice_pf *pf) 4509 { 4510 struct ice_vsi *vsi; 4511 int err = 0; 4512 4513 vsi = ice_get_main_vsi(pf); 4514 if (!vsi || !vsi->netdev) 4515 return -EIO; 4516 4517 err = register_netdev(vsi->netdev); 4518 if (err) 4519 goto err_register_netdev; 4520 4521 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4522 netif_carrier_off(vsi->netdev); 4523 netif_tx_stop_all_queues(vsi->netdev); 4524 err = ice_devlink_create_pf_port(pf); 4525 if (err) 4526 goto err_devlink_create; 4527 4528 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4529 4530 return 0; 4531 err_devlink_create: 4532 unregister_netdev(vsi->netdev); 4533 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4534 err_register_netdev: 4535 free_netdev(vsi->netdev); 4536 vsi->netdev = NULL; 4537 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4538 return err; 4539 } 4540 4541 /** 4542 * ice_probe - Device initialization routine 4543 * @pdev: PCI device information struct 4544 * @ent: entry in ice_pci_tbl 4545 * 4546 * Returns 0 on success, negative on failure 4547 */ 4548 static int 4549 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4550 { 4551 struct device *dev = &pdev->dev; 4552 struct ice_pf *pf; 4553 struct ice_hw *hw; 4554 int i, err; 4555 4556 if (pdev->is_virtfn) { 4557 dev_err(dev, "can't probe a virtual function\n"); 4558 return -EINVAL; 4559 } 4560 4561 /* this driver uses devres, see 4562 * Documentation/driver-api/driver-model/devres.rst 4563 */ 4564 err = pcim_enable_device(pdev); 4565 if (err) 4566 return err; 4567 4568 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4569 if (err) { 4570 dev_err(dev, "BAR0 I/O map error %d\n", err); 4571 return err; 4572 } 4573 4574 pf = ice_allocate_pf(dev); 4575 if (!pf) 4576 return -ENOMEM; 4577 4578 /* initialize Auxiliary index to invalid value */ 4579 pf->aux_idx = -1; 4580 4581 /* set up for high or low DMA */ 4582 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4583 if (err) { 4584 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4585 return err; 4586 } 4587 4588 pci_enable_pcie_error_reporting(pdev); 4589 pci_set_master(pdev); 4590 4591 pf->pdev = pdev; 4592 pci_set_drvdata(pdev, pf); 4593 set_bit(ICE_DOWN, pf->state); 4594 /* Disable service task until DOWN bit is cleared */ 4595 set_bit(ICE_SERVICE_DIS, pf->state); 4596 4597 hw = &pf->hw; 4598 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4599 pci_save_state(pdev); 4600 4601 hw->back = pf; 4602 hw->vendor_id = pdev->vendor; 4603 hw->device_id = pdev->device; 4604 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4605 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4606 hw->subsystem_device_id = pdev->subsystem_device; 4607 hw->bus.device = PCI_SLOT(pdev->devfn); 4608 hw->bus.func = PCI_FUNC(pdev->devfn); 4609 ice_set_ctrlq_len(hw); 4610 4611 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4612 4613 #ifndef CONFIG_DYNAMIC_DEBUG 4614 if (debug < -1) 4615 hw->debug_mask = debug; 4616 #endif 4617 4618 err = ice_init_hw(hw); 4619 if (err) { 4620 dev_err(dev, "ice_init_hw failed: %d\n", err); 4621 err = -EIO; 4622 goto err_exit_unroll; 4623 } 4624 4625 ice_init_feature_support(pf); 4626 4627 ice_request_fw(pf); 4628 4629 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4630 * set in pf->state, which will cause ice_is_safe_mode to return 4631 * true 4632 */ 4633 if (ice_is_safe_mode(pf)) { 4634 /* we already got function/device capabilities but these don't 4635 * reflect what the driver needs to do in safe mode. Instead of 4636 * adding conditional logic everywhere to ignore these 4637 * device/function capabilities, override them. 4638 */ 4639 ice_set_safe_mode_caps(hw); 4640 } 4641 4642 err = ice_init_pf(pf); 4643 if (err) { 4644 dev_err(dev, "ice_init_pf failed: %d\n", err); 4645 goto err_init_pf_unroll; 4646 } 4647 4648 ice_devlink_init_regions(pf); 4649 4650 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4651 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4652 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4653 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4654 i = 0; 4655 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4656 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4657 pf->hw.tnl.valid_count[TNL_VXLAN]; 4658 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4659 UDP_TUNNEL_TYPE_VXLAN; 4660 i++; 4661 } 4662 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4663 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4664 pf->hw.tnl.valid_count[TNL_GENEVE]; 4665 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4666 UDP_TUNNEL_TYPE_GENEVE; 4667 i++; 4668 } 4669 4670 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4671 if (!pf->num_alloc_vsi) { 4672 err = -EIO; 4673 goto err_init_pf_unroll; 4674 } 4675 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4676 dev_warn(&pf->pdev->dev, 4677 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4678 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4679 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4680 } 4681 4682 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4683 GFP_KERNEL); 4684 if (!pf->vsi) { 4685 err = -ENOMEM; 4686 goto err_init_pf_unroll; 4687 } 4688 4689 err = ice_init_interrupt_scheme(pf); 4690 if (err) { 4691 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4692 err = -EIO; 4693 goto err_init_vsi_unroll; 4694 } 4695 4696 /* In case of MSIX we are going to setup the misc vector right here 4697 * to handle admin queue events etc. In case of legacy and MSI 4698 * the misc functionality and queue processing is combined in 4699 * the same vector and that gets setup at open. 4700 */ 4701 err = ice_req_irq_msix_misc(pf); 4702 if (err) { 4703 dev_err(dev, "setup of misc vector failed: %d\n", err); 4704 goto err_init_interrupt_unroll; 4705 } 4706 4707 /* create switch struct for the switch element created by FW on boot */ 4708 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4709 if (!pf->first_sw) { 4710 err = -ENOMEM; 4711 goto err_msix_misc_unroll; 4712 } 4713 4714 if (hw->evb_veb) 4715 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4716 else 4717 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4718 4719 pf->first_sw->pf = pf; 4720 4721 /* record the sw_id available for later use */ 4722 pf->first_sw->sw_id = hw->port_info->sw_id; 4723 4724 err = ice_setup_pf_sw(pf); 4725 if (err) { 4726 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4727 goto err_alloc_sw_unroll; 4728 } 4729 4730 clear_bit(ICE_SERVICE_DIS, pf->state); 4731 4732 /* tell the firmware we are up */ 4733 err = ice_send_version(pf); 4734 if (err) { 4735 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4736 UTS_RELEASE, err); 4737 goto err_send_version_unroll; 4738 } 4739 4740 /* since everything is good, start the service timer */ 4741 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4742 4743 err = ice_init_link_events(pf->hw.port_info); 4744 if (err) { 4745 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4746 goto err_send_version_unroll; 4747 } 4748 4749 /* not a fatal error if this fails */ 4750 err = ice_init_nvm_phy_type(pf->hw.port_info); 4751 if (err) 4752 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4753 4754 /* not a fatal error if this fails */ 4755 err = ice_update_link_info(pf->hw.port_info); 4756 if (err) 4757 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4758 4759 ice_init_link_dflt_override(pf->hw.port_info); 4760 4761 ice_check_link_cfg_err(pf, 4762 pf->hw.port_info->phy.link_info.link_cfg_err); 4763 4764 /* if media available, initialize PHY settings */ 4765 if (pf->hw.port_info->phy.link_info.link_info & 4766 ICE_AQ_MEDIA_AVAILABLE) { 4767 /* not a fatal error if this fails */ 4768 err = ice_init_phy_user_cfg(pf->hw.port_info); 4769 if (err) 4770 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4771 4772 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4773 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4774 4775 if (vsi) 4776 ice_configure_phy(vsi); 4777 } 4778 } else { 4779 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4780 } 4781 4782 ice_verify_cacheline_size(pf); 4783 4784 /* Save wakeup reason register for later use */ 4785 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4786 4787 /* check for a power management event */ 4788 ice_print_wake_reason(pf); 4789 4790 /* clear wake status, all bits */ 4791 wr32(hw, PFPM_WUS, U32_MAX); 4792 4793 /* Disable WoL at init, wait for user to enable */ 4794 device_set_wakeup_enable(dev, false); 4795 4796 if (ice_is_safe_mode(pf)) { 4797 ice_set_safe_mode_vlan_cfg(pf); 4798 goto probe_done; 4799 } 4800 4801 /* initialize DDP driven features */ 4802 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4803 ice_ptp_init(pf); 4804 4805 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4806 ice_gnss_init(pf); 4807 4808 /* Note: Flow director init failure is non-fatal to load */ 4809 if (ice_init_fdir(pf)) 4810 dev_err(dev, "could not initialize flow director\n"); 4811 4812 /* Note: DCB init failure is non-fatal to load */ 4813 if (ice_init_pf_dcb(pf, false)) { 4814 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4815 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4816 } else { 4817 ice_cfg_lldp_mib_change(&pf->hw, true); 4818 } 4819 4820 if (ice_init_lag(pf)) 4821 dev_warn(dev, "Failed to init link aggregation support\n"); 4822 4823 /* print PCI link speed and width */ 4824 pcie_print_link_status(pf->pdev); 4825 4826 probe_done: 4827 err = ice_register_netdev(pf); 4828 if (err) 4829 goto err_netdev_reg; 4830 4831 err = ice_devlink_register_params(pf); 4832 if (err) 4833 goto err_netdev_reg; 4834 4835 /* ready to go, so clear down state bit */ 4836 clear_bit(ICE_DOWN, pf->state); 4837 if (ice_is_rdma_ena(pf)) { 4838 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4839 if (pf->aux_idx < 0) { 4840 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4841 err = -ENOMEM; 4842 goto err_devlink_reg_param; 4843 } 4844 4845 err = ice_init_rdma(pf); 4846 if (err) { 4847 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4848 err = -EIO; 4849 goto err_init_aux_unroll; 4850 } 4851 } else { 4852 dev_warn(dev, "RDMA is not supported on this device\n"); 4853 } 4854 4855 ice_devlink_register(pf); 4856 return 0; 4857 4858 err_init_aux_unroll: 4859 pf->adev = NULL; 4860 ida_free(&ice_aux_ida, pf->aux_idx); 4861 err_devlink_reg_param: 4862 ice_devlink_unregister_params(pf); 4863 err_netdev_reg: 4864 err_send_version_unroll: 4865 ice_vsi_release_all(pf); 4866 err_alloc_sw_unroll: 4867 set_bit(ICE_SERVICE_DIS, pf->state); 4868 set_bit(ICE_DOWN, pf->state); 4869 devm_kfree(dev, pf->first_sw); 4870 err_msix_misc_unroll: 4871 ice_free_irq_msix_misc(pf); 4872 err_init_interrupt_unroll: 4873 ice_clear_interrupt_scheme(pf); 4874 err_init_vsi_unroll: 4875 devm_kfree(dev, pf->vsi); 4876 err_init_pf_unroll: 4877 ice_deinit_pf(pf); 4878 ice_devlink_destroy_regions(pf); 4879 ice_deinit_hw(hw); 4880 err_exit_unroll: 4881 pci_disable_pcie_error_reporting(pdev); 4882 pci_disable_device(pdev); 4883 return err; 4884 } 4885 4886 /** 4887 * ice_set_wake - enable or disable Wake on LAN 4888 * @pf: pointer to the PF struct 4889 * 4890 * Simple helper for WoL control 4891 */ 4892 static void ice_set_wake(struct ice_pf *pf) 4893 { 4894 struct ice_hw *hw = &pf->hw; 4895 bool wol = pf->wol_ena; 4896 4897 /* clear wake state, otherwise new wake events won't fire */ 4898 wr32(hw, PFPM_WUS, U32_MAX); 4899 4900 /* enable / disable APM wake up, no RMW needed */ 4901 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4902 4903 /* set magic packet filter enabled */ 4904 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4905 } 4906 4907 /** 4908 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4909 * @pf: pointer to the PF struct 4910 * 4911 * Issue firmware command to enable multicast magic wake, making 4912 * sure that any locally administered address (LAA) is used for 4913 * wake, and that PF reset doesn't undo the LAA. 4914 */ 4915 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4916 { 4917 struct device *dev = ice_pf_to_dev(pf); 4918 struct ice_hw *hw = &pf->hw; 4919 u8 mac_addr[ETH_ALEN]; 4920 struct ice_vsi *vsi; 4921 int status; 4922 u8 flags; 4923 4924 if (!pf->wol_ena) 4925 return; 4926 4927 vsi = ice_get_main_vsi(pf); 4928 if (!vsi) 4929 return; 4930 4931 /* Get current MAC address in case it's an LAA */ 4932 if (vsi->netdev) 4933 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4934 else 4935 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4936 4937 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4938 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4939 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4940 4941 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4942 if (status) 4943 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4944 status, ice_aq_str(hw->adminq.sq_last_status)); 4945 } 4946 4947 /** 4948 * ice_remove - Device removal routine 4949 * @pdev: PCI device information struct 4950 */ 4951 static void ice_remove(struct pci_dev *pdev) 4952 { 4953 struct ice_pf *pf = pci_get_drvdata(pdev); 4954 int i; 4955 4956 ice_devlink_unregister(pf); 4957 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4958 if (!ice_is_reset_in_progress(pf->state)) 4959 break; 4960 msleep(100); 4961 } 4962 4963 ice_tc_indir_block_remove(pf); 4964 4965 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4966 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4967 ice_free_vfs(pf); 4968 } 4969 4970 ice_service_task_stop(pf); 4971 4972 ice_aq_cancel_waiting_tasks(pf); 4973 ice_unplug_aux_dev(pf); 4974 if (pf->aux_idx >= 0) 4975 ida_free(&ice_aux_ida, pf->aux_idx); 4976 ice_devlink_unregister_params(pf); 4977 set_bit(ICE_DOWN, pf->state); 4978 4979 ice_deinit_lag(pf); 4980 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4981 ice_ptp_release(pf); 4982 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4983 ice_gnss_exit(pf); 4984 if (!ice_is_safe_mode(pf)) 4985 ice_remove_arfs(pf); 4986 ice_setup_mc_magic_wake(pf); 4987 ice_vsi_release_all(pf); 4988 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4989 ice_set_wake(pf); 4990 ice_free_irq_msix_misc(pf); 4991 ice_for_each_vsi(pf, i) { 4992 if (!pf->vsi[i]) 4993 continue; 4994 ice_vsi_free_q_vectors(pf->vsi[i]); 4995 } 4996 ice_deinit_pf(pf); 4997 ice_devlink_destroy_regions(pf); 4998 ice_deinit_hw(&pf->hw); 4999 5000 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5001 * do it via ice_schedule_reset() since there is no need to rebuild 5002 * and the service task is already stopped. 5003 */ 5004 ice_reset(&pf->hw, ICE_RESET_PFR); 5005 pci_wait_for_pending_transaction(pdev); 5006 ice_clear_interrupt_scheme(pf); 5007 pci_disable_pcie_error_reporting(pdev); 5008 pci_disable_device(pdev); 5009 } 5010 5011 /** 5012 * ice_shutdown - PCI callback for shutting down device 5013 * @pdev: PCI device information struct 5014 */ 5015 static void ice_shutdown(struct pci_dev *pdev) 5016 { 5017 struct ice_pf *pf = pci_get_drvdata(pdev); 5018 5019 ice_remove(pdev); 5020 5021 if (system_state == SYSTEM_POWER_OFF) { 5022 pci_wake_from_d3(pdev, pf->wol_ena); 5023 pci_set_power_state(pdev, PCI_D3hot); 5024 } 5025 } 5026 5027 #ifdef CONFIG_PM 5028 /** 5029 * ice_prepare_for_shutdown - prep for PCI shutdown 5030 * @pf: board private structure 5031 * 5032 * Inform or close all dependent features in prep for PCI device shutdown 5033 */ 5034 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5035 { 5036 struct ice_hw *hw = &pf->hw; 5037 u32 v; 5038 5039 /* Notify VFs of impending reset */ 5040 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5041 ice_vc_notify_reset(pf); 5042 5043 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5044 5045 /* disable the VSIs and their queues that are not already DOWN */ 5046 ice_pf_dis_all_vsi(pf, false); 5047 5048 ice_for_each_vsi(pf, v) 5049 if (pf->vsi[v]) 5050 pf->vsi[v]->vsi_num = 0; 5051 5052 ice_shutdown_all_ctrlq(hw); 5053 } 5054 5055 /** 5056 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5057 * @pf: board private structure to reinitialize 5058 * 5059 * This routine reinitialize interrupt scheme that was cleared during 5060 * power management suspend callback. 5061 * 5062 * This should be called during resume routine to re-allocate the q_vectors 5063 * and reacquire interrupts. 5064 */ 5065 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5066 { 5067 struct device *dev = ice_pf_to_dev(pf); 5068 int ret, v; 5069 5070 /* Since we clear MSIX flag during suspend, we need to 5071 * set it back during resume... 5072 */ 5073 5074 ret = ice_init_interrupt_scheme(pf); 5075 if (ret) { 5076 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5077 return ret; 5078 } 5079 5080 /* Remap vectors and rings, after successful re-init interrupts */ 5081 ice_for_each_vsi(pf, v) { 5082 if (!pf->vsi[v]) 5083 continue; 5084 5085 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5086 if (ret) 5087 goto err_reinit; 5088 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5089 } 5090 5091 ret = ice_req_irq_msix_misc(pf); 5092 if (ret) { 5093 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5094 ret); 5095 goto err_reinit; 5096 } 5097 5098 return 0; 5099 5100 err_reinit: 5101 while (v--) 5102 if (pf->vsi[v]) 5103 ice_vsi_free_q_vectors(pf->vsi[v]); 5104 5105 return ret; 5106 } 5107 5108 /** 5109 * ice_suspend 5110 * @dev: generic device information structure 5111 * 5112 * Power Management callback to quiesce the device and prepare 5113 * for D3 transition. 5114 */ 5115 static int __maybe_unused ice_suspend(struct device *dev) 5116 { 5117 struct pci_dev *pdev = to_pci_dev(dev); 5118 struct ice_pf *pf; 5119 int disabled, v; 5120 5121 pf = pci_get_drvdata(pdev); 5122 5123 if (!ice_pf_state_is_nominal(pf)) { 5124 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5125 return -EBUSY; 5126 } 5127 5128 /* Stop watchdog tasks until resume completion. 5129 * Even though it is most likely that the service task is 5130 * disabled if the device is suspended or down, the service task's 5131 * state is controlled by a different state bit, and we should 5132 * store and honor whatever state that bit is in at this point. 5133 */ 5134 disabled = ice_service_task_stop(pf); 5135 5136 ice_unplug_aux_dev(pf); 5137 5138 /* Already suspended?, then there is nothing to do */ 5139 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5140 if (!disabled) 5141 ice_service_task_restart(pf); 5142 return 0; 5143 } 5144 5145 if (test_bit(ICE_DOWN, pf->state) || 5146 ice_is_reset_in_progress(pf->state)) { 5147 dev_err(dev, "can't suspend device in reset or already down\n"); 5148 if (!disabled) 5149 ice_service_task_restart(pf); 5150 return 0; 5151 } 5152 5153 ice_setup_mc_magic_wake(pf); 5154 5155 ice_prepare_for_shutdown(pf); 5156 5157 ice_set_wake(pf); 5158 5159 /* Free vectors, clear the interrupt scheme and release IRQs 5160 * for proper hibernation, especially with large number of CPUs. 5161 * Otherwise hibernation might fail when mapping all the vectors back 5162 * to CPU0. 5163 */ 5164 ice_free_irq_msix_misc(pf); 5165 ice_for_each_vsi(pf, v) { 5166 if (!pf->vsi[v]) 5167 continue; 5168 ice_vsi_free_q_vectors(pf->vsi[v]); 5169 } 5170 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5171 ice_clear_interrupt_scheme(pf); 5172 5173 pci_save_state(pdev); 5174 pci_wake_from_d3(pdev, pf->wol_ena); 5175 pci_set_power_state(pdev, PCI_D3hot); 5176 return 0; 5177 } 5178 5179 /** 5180 * ice_resume - PM callback for waking up from D3 5181 * @dev: generic device information structure 5182 */ 5183 static int __maybe_unused ice_resume(struct device *dev) 5184 { 5185 struct pci_dev *pdev = to_pci_dev(dev); 5186 enum ice_reset_req reset_type; 5187 struct ice_pf *pf; 5188 struct ice_hw *hw; 5189 int ret; 5190 5191 pci_set_power_state(pdev, PCI_D0); 5192 pci_restore_state(pdev); 5193 pci_save_state(pdev); 5194 5195 if (!pci_device_is_present(pdev)) 5196 return -ENODEV; 5197 5198 ret = pci_enable_device_mem(pdev); 5199 if (ret) { 5200 dev_err(dev, "Cannot enable device after suspend\n"); 5201 return ret; 5202 } 5203 5204 pf = pci_get_drvdata(pdev); 5205 hw = &pf->hw; 5206 5207 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5208 ice_print_wake_reason(pf); 5209 5210 /* We cleared the interrupt scheme when we suspended, so we need to 5211 * restore it now to resume device functionality. 5212 */ 5213 ret = ice_reinit_interrupt_scheme(pf); 5214 if (ret) 5215 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5216 5217 clear_bit(ICE_DOWN, pf->state); 5218 /* Now perform PF reset and rebuild */ 5219 reset_type = ICE_RESET_PFR; 5220 /* re-enable service task for reset, but allow reset to schedule it */ 5221 clear_bit(ICE_SERVICE_DIS, pf->state); 5222 5223 if (ice_schedule_reset(pf, reset_type)) 5224 dev_err(dev, "Reset during resume failed.\n"); 5225 5226 clear_bit(ICE_SUSPENDED, pf->state); 5227 ice_service_task_restart(pf); 5228 5229 /* Restart the service task */ 5230 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5231 5232 return 0; 5233 } 5234 #endif /* CONFIG_PM */ 5235 5236 /** 5237 * ice_pci_err_detected - warning that PCI error has been detected 5238 * @pdev: PCI device information struct 5239 * @err: the type of PCI error 5240 * 5241 * Called to warn that something happened on the PCI bus and the error handling 5242 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5243 */ 5244 static pci_ers_result_t 5245 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5246 { 5247 struct ice_pf *pf = pci_get_drvdata(pdev); 5248 5249 if (!pf) { 5250 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5251 __func__, err); 5252 return PCI_ERS_RESULT_DISCONNECT; 5253 } 5254 5255 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5256 ice_service_task_stop(pf); 5257 5258 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5259 set_bit(ICE_PFR_REQ, pf->state); 5260 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5261 } 5262 } 5263 5264 return PCI_ERS_RESULT_NEED_RESET; 5265 } 5266 5267 /** 5268 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5269 * @pdev: PCI device information struct 5270 * 5271 * Called to determine if the driver can recover from the PCI slot reset by 5272 * using a register read to determine if the device is recoverable. 5273 */ 5274 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5275 { 5276 struct ice_pf *pf = pci_get_drvdata(pdev); 5277 pci_ers_result_t result; 5278 int err; 5279 u32 reg; 5280 5281 err = pci_enable_device_mem(pdev); 5282 if (err) { 5283 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5284 err); 5285 result = PCI_ERS_RESULT_DISCONNECT; 5286 } else { 5287 pci_set_master(pdev); 5288 pci_restore_state(pdev); 5289 pci_save_state(pdev); 5290 pci_wake_from_d3(pdev, false); 5291 5292 /* Check for life */ 5293 reg = rd32(&pf->hw, GLGEN_RTRIG); 5294 if (!reg) 5295 result = PCI_ERS_RESULT_RECOVERED; 5296 else 5297 result = PCI_ERS_RESULT_DISCONNECT; 5298 } 5299 5300 err = pci_aer_clear_nonfatal_status(pdev); 5301 if (err) 5302 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5303 err); 5304 /* non-fatal, continue */ 5305 5306 return result; 5307 } 5308 5309 /** 5310 * ice_pci_err_resume - restart operations after PCI error recovery 5311 * @pdev: PCI device information struct 5312 * 5313 * Called to allow the driver to bring things back up after PCI error and/or 5314 * reset recovery have finished 5315 */ 5316 static void ice_pci_err_resume(struct pci_dev *pdev) 5317 { 5318 struct ice_pf *pf = pci_get_drvdata(pdev); 5319 5320 if (!pf) { 5321 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5322 __func__); 5323 return; 5324 } 5325 5326 if (test_bit(ICE_SUSPENDED, pf->state)) { 5327 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5328 __func__); 5329 return; 5330 } 5331 5332 ice_restore_all_vfs_msi_state(pdev); 5333 5334 ice_do_reset(pf, ICE_RESET_PFR); 5335 ice_service_task_restart(pf); 5336 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5337 } 5338 5339 /** 5340 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5341 * @pdev: PCI device information struct 5342 */ 5343 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5344 { 5345 struct ice_pf *pf = pci_get_drvdata(pdev); 5346 5347 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5348 ice_service_task_stop(pf); 5349 5350 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5351 set_bit(ICE_PFR_REQ, pf->state); 5352 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5353 } 5354 } 5355 } 5356 5357 /** 5358 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5359 * @pdev: PCI device information struct 5360 */ 5361 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5362 { 5363 ice_pci_err_resume(pdev); 5364 } 5365 5366 /* ice_pci_tbl - PCI Device ID Table 5367 * 5368 * Wildcard entries (PCI_ANY_ID) should come last 5369 * Last entry must be all 0s 5370 * 5371 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5372 * Class, Class Mask, private data (not used) } 5373 */ 5374 static const struct pci_device_id ice_pci_tbl[] = { 5375 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5376 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5377 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5378 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5379 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5380 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5381 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5382 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5383 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5384 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5385 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5386 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5387 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5388 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5389 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5390 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5391 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5392 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5393 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5394 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5395 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5396 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5397 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5398 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5399 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5400 /* required last entry */ 5401 { 0, } 5402 }; 5403 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5404 5405 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5406 5407 static const struct pci_error_handlers ice_pci_err_handler = { 5408 .error_detected = ice_pci_err_detected, 5409 .slot_reset = ice_pci_err_slot_reset, 5410 .reset_prepare = ice_pci_err_reset_prepare, 5411 .reset_done = ice_pci_err_reset_done, 5412 .resume = ice_pci_err_resume 5413 }; 5414 5415 static struct pci_driver ice_driver = { 5416 .name = KBUILD_MODNAME, 5417 .id_table = ice_pci_tbl, 5418 .probe = ice_probe, 5419 .remove = ice_remove, 5420 #ifdef CONFIG_PM 5421 .driver.pm = &ice_pm_ops, 5422 #endif /* CONFIG_PM */ 5423 .shutdown = ice_shutdown, 5424 .sriov_configure = ice_sriov_configure, 5425 .err_handler = &ice_pci_err_handler 5426 }; 5427 5428 /** 5429 * ice_module_init - Driver registration routine 5430 * 5431 * ice_module_init is the first routine called when the driver is 5432 * loaded. All it does is register with the PCI subsystem. 5433 */ 5434 static int __init ice_module_init(void) 5435 { 5436 int status; 5437 5438 pr_info("%s\n", ice_driver_string); 5439 pr_info("%s\n", ice_copyright); 5440 5441 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5442 if (!ice_wq) { 5443 pr_err("Failed to create workqueue\n"); 5444 return -ENOMEM; 5445 } 5446 5447 status = pci_register_driver(&ice_driver); 5448 if (status) { 5449 pr_err("failed to register PCI driver, err %d\n", status); 5450 destroy_workqueue(ice_wq); 5451 } 5452 5453 return status; 5454 } 5455 module_init(ice_module_init); 5456 5457 /** 5458 * ice_module_exit - Driver exit cleanup routine 5459 * 5460 * ice_module_exit is called just before the driver is removed 5461 * from memory. 5462 */ 5463 static void __exit ice_module_exit(void) 5464 { 5465 pci_unregister_driver(&ice_driver); 5466 destroy_workqueue(ice_wq); 5467 pr_info("module unloaded\n"); 5468 } 5469 module_exit(ice_module_exit); 5470 5471 /** 5472 * ice_set_mac_address - NDO callback to set MAC address 5473 * @netdev: network interface device structure 5474 * @pi: pointer to an address structure 5475 * 5476 * Returns 0 on success, negative on failure 5477 */ 5478 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5479 { 5480 struct ice_netdev_priv *np = netdev_priv(netdev); 5481 struct ice_vsi *vsi = np->vsi; 5482 struct ice_pf *pf = vsi->back; 5483 struct ice_hw *hw = &pf->hw; 5484 struct sockaddr *addr = pi; 5485 u8 old_mac[ETH_ALEN]; 5486 u8 flags = 0; 5487 u8 *mac; 5488 int err; 5489 5490 mac = (u8 *)addr->sa_data; 5491 5492 if (!is_valid_ether_addr(mac)) 5493 return -EADDRNOTAVAIL; 5494 5495 if (ether_addr_equal(netdev->dev_addr, mac)) { 5496 netdev_dbg(netdev, "already using mac %pM\n", mac); 5497 return 0; 5498 } 5499 5500 if (test_bit(ICE_DOWN, pf->state) || 5501 ice_is_reset_in_progress(pf->state)) { 5502 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5503 mac); 5504 return -EBUSY; 5505 } 5506 5507 if (ice_chnl_dmac_fltr_cnt(pf)) { 5508 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5509 mac); 5510 return -EAGAIN; 5511 } 5512 5513 netif_addr_lock_bh(netdev); 5514 ether_addr_copy(old_mac, netdev->dev_addr); 5515 /* change the netdev's MAC address */ 5516 eth_hw_addr_set(netdev, mac); 5517 netif_addr_unlock_bh(netdev); 5518 5519 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5520 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5521 if (err && err != -ENOENT) { 5522 err = -EADDRNOTAVAIL; 5523 goto err_update_filters; 5524 } 5525 5526 /* Add filter for new MAC. If filter exists, return success */ 5527 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5528 if (err == -EEXIST) { 5529 /* Although this MAC filter is already present in hardware it's 5530 * possible in some cases (e.g. bonding) that dev_addr was 5531 * modified outside of the driver and needs to be restored back 5532 * to this value. 5533 */ 5534 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5535 5536 return 0; 5537 } else if (err) { 5538 /* error if the new filter addition failed */ 5539 err = -EADDRNOTAVAIL; 5540 } 5541 5542 err_update_filters: 5543 if (err) { 5544 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5545 mac); 5546 netif_addr_lock_bh(netdev); 5547 eth_hw_addr_set(netdev, old_mac); 5548 netif_addr_unlock_bh(netdev); 5549 return err; 5550 } 5551 5552 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5553 netdev->dev_addr); 5554 5555 /* write new MAC address to the firmware */ 5556 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5557 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5558 if (err) { 5559 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5560 mac, err); 5561 } 5562 return 0; 5563 } 5564 5565 /** 5566 * ice_set_rx_mode - NDO callback to set the netdev filters 5567 * @netdev: network interface device structure 5568 */ 5569 static void ice_set_rx_mode(struct net_device *netdev) 5570 { 5571 struct ice_netdev_priv *np = netdev_priv(netdev); 5572 struct ice_vsi *vsi = np->vsi; 5573 5574 if (!vsi) 5575 return; 5576 5577 /* Set the flags to synchronize filters 5578 * ndo_set_rx_mode may be triggered even without a change in netdev 5579 * flags 5580 */ 5581 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5582 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5583 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5584 5585 /* schedule our worker thread which will take care of 5586 * applying the new filter changes 5587 */ 5588 ice_service_task_schedule(vsi->back); 5589 } 5590 5591 /** 5592 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5593 * @netdev: network interface device structure 5594 * @queue_index: Queue ID 5595 * @maxrate: maximum bandwidth in Mbps 5596 */ 5597 static int 5598 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5599 { 5600 struct ice_netdev_priv *np = netdev_priv(netdev); 5601 struct ice_vsi *vsi = np->vsi; 5602 u16 q_handle; 5603 int status; 5604 u8 tc; 5605 5606 /* Validate maxrate requested is within permitted range */ 5607 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5608 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5609 maxrate, queue_index); 5610 return -EINVAL; 5611 } 5612 5613 q_handle = vsi->tx_rings[queue_index]->q_handle; 5614 tc = ice_dcb_get_tc(vsi, queue_index); 5615 5616 /* Set BW back to default, when user set maxrate to 0 */ 5617 if (!maxrate) 5618 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5619 q_handle, ICE_MAX_BW); 5620 else 5621 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5622 q_handle, ICE_MAX_BW, maxrate * 1000); 5623 if (status) 5624 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5625 status); 5626 5627 return status; 5628 } 5629 5630 /** 5631 * ice_fdb_add - add an entry to the hardware database 5632 * @ndm: the input from the stack 5633 * @tb: pointer to array of nladdr (unused) 5634 * @dev: the net device pointer 5635 * @addr: the MAC address entry being added 5636 * @vid: VLAN ID 5637 * @flags: instructions from stack about fdb operation 5638 * @extack: netlink extended ack 5639 */ 5640 static int 5641 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5642 struct net_device *dev, const unsigned char *addr, u16 vid, 5643 u16 flags, struct netlink_ext_ack __always_unused *extack) 5644 { 5645 int err; 5646 5647 if (vid) { 5648 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5649 return -EINVAL; 5650 } 5651 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5652 netdev_err(dev, "FDB only supports static addresses\n"); 5653 return -EINVAL; 5654 } 5655 5656 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5657 err = dev_uc_add_excl(dev, addr); 5658 else if (is_multicast_ether_addr(addr)) 5659 err = dev_mc_add_excl(dev, addr); 5660 else 5661 err = -EINVAL; 5662 5663 /* Only return duplicate errors if NLM_F_EXCL is set */ 5664 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5665 err = 0; 5666 5667 return err; 5668 } 5669 5670 /** 5671 * ice_fdb_del - delete an entry from the hardware database 5672 * @ndm: the input from the stack 5673 * @tb: pointer to array of nladdr (unused) 5674 * @dev: the net device pointer 5675 * @addr: the MAC address entry being added 5676 * @vid: VLAN ID 5677 */ 5678 static int 5679 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5680 struct net_device *dev, const unsigned char *addr, 5681 __always_unused u16 vid) 5682 { 5683 int err; 5684 5685 if (ndm->ndm_state & NUD_PERMANENT) { 5686 netdev_err(dev, "FDB only supports static addresses\n"); 5687 return -EINVAL; 5688 } 5689 5690 if (is_unicast_ether_addr(addr)) 5691 err = dev_uc_del(dev, addr); 5692 else if (is_multicast_ether_addr(addr)) 5693 err = dev_mc_del(dev, addr); 5694 else 5695 err = -EINVAL; 5696 5697 return err; 5698 } 5699 5700 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5701 NETIF_F_HW_VLAN_CTAG_TX | \ 5702 NETIF_F_HW_VLAN_STAG_RX | \ 5703 NETIF_F_HW_VLAN_STAG_TX) 5704 5705 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5706 NETIF_F_HW_VLAN_STAG_FILTER) 5707 5708 /** 5709 * ice_fix_features - fix the netdev features flags based on device limitations 5710 * @netdev: ptr to the netdev that flags are being fixed on 5711 * @features: features that need to be checked and possibly fixed 5712 * 5713 * Make sure any fixups are made to features in this callback. This enables the 5714 * driver to not have to check unsupported configurations throughout the driver 5715 * because that's the responsiblity of this callback. 5716 * 5717 * Single VLAN Mode (SVM) Supported Features: 5718 * NETIF_F_HW_VLAN_CTAG_FILTER 5719 * NETIF_F_HW_VLAN_CTAG_RX 5720 * NETIF_F_HW_VLAN_CTAG_TX 5721 * 5722 * Double VLAN Mode (DVM) Supported Features: 5723 * NETIF_F_HW_VLAN_CTAG_FILTER 5724 * NETIF_F_HW_VLAN_CTAG_RX 5725 * NETIF_F_HW_VLAN_CTAG_TX 5726 * 5727 * NETIF_F_HW_VLAN_STAG_FILTER 5728 * NETIF_HW_VLAN_STAG_RX 5729 * NETIF_HW_VLAN_STAG_TX 5730 * 5731 * Features that need fixing: 5732 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5733 * These are mutually exlusive as the VSI context cannot support multiple 5734 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5735 * is not done, then default to clearing the requested STAG offload 5736 * settings. 5737 * 5738 * All supported filtering has to be enabled or disabled together. For 5739 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5740 * together. If this is not done, then default to VLAN filtering disabled. 5741 * These are mutually exclusive as there is currently no way to 5742 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5743 * prune rules. 5744 */ 5745 static netdev_features_t 5746 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5747 { 5748 struct ice_netdev_priv *np = netdev_priv(netdev); 5749 netdev_features_t supported_vlan_filtering; 5750 netdev_features_t requested_vlan_filtering; 5751 struct ice_vsi *vsi = np->vsi; 5752 5753 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5754 5755 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5756 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5757 if (ice_is_dvm_ena(&vsi->back->hw)) 5758 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5759 5760 if (requested_vlan_filtering && 5761 requested_vlan_filtering != supported_vlan_filtering) { 5762 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5763 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5764 features |= supported_vlan_filtering; 5765 } else { 5766 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5767 features &= ~supported_vlan_filtering; 5768 } 5769 } 5770 5771 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5772 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5773 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5774 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5775 NETIF_F_HW_VLAN_STAG_TX); 5776 } 5777 5778 return features; 5779 } 5780 5781 /** 5782 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5783 * @vsi: PF's VSI 5784 * @features: features used to determine VLAN offload settings 5785 * 5786 * First, determine the vlan_ethertype based on the VLAN offload bits in 5787 * features. Then determine if stripping and insertion should be enabled or 5788 * disabled. Finally enable or disable VLAN stripping and insertion. 5789 */ 5790 static int 5791 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5792 { 5793 bool enable_stripping = true, enable_insertion = true; 5794 struct ice_vsi_vlan_ops *vlan_ops; 5795 int strip_err = 0, insert_err = 0; 5796 u16 vlan_ethertype = 0; 5797 5798 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5799 5800 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5801 vlan_ethertype = ETH_P_8021AD; 5802 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5803 vlan_ethertype = ETH_P_8021Q; 5804 5805 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5806 enable_stripping = false; 5807 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5808 enable_insertion = false; 5809 5810 if (enable_stripping) 5811 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5812 else 5813 strip_err = vlan_ops->dis_stripping(vsi); 5814 5815 if (enable_insertion) 5816 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5817 else 5818 insert_err = vlan_ops->dis_insertion(vsi); 5819 5820 if (strip_err || insert_err) 5821 return -EIO; 5822 5823 return 0; 5824 } 5825 5826 /** 5827 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5828 * @vsi: PF's VSI 5829 * @features: features used to determine VLAN filtering settings 5830 * 5831 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5832 * features. 5833 */ 5834 static int 5835 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5836 { 5837 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5838 int err = 0; 5839 5840 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5841 * if either bit is set 5842 */ 5843 if (features & 5844 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5845 err = vlan_ops->ena_rx_filtering(vsi); 5846 else 5847 err = vlan_ops->dis_rx_filtering(vsi); 5848 5849 return err; 5850 } 5851 5852 /** 5853 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5854 * @netdev: ptr to the netdev being adjusted 5855 * @features: the feature set that the stack is suggesting 5856 * 5857 * Only update VLAN settings if the requested_vlan_features are different than 5858 * the current_vlan_features. 5859 */ 5860 static int 5861 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5862 { 5863 netdev_features_t current_vlan_features, requested_vlan_features; 5864 struct ice_netdev_priv *np = netdev_priv(netdev); 5865 struct ice_vsi *vsi = np->vsi; 5866 int err; 5867 5868 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5869 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5870 if (current_vlan_features ^ requested_vlan_features) { 5871 err = ice_set_vlan_offload_features(vsi, features); 5872 if (err) 5873 return err; 5874 } 5875 5876 current_vlan_features = netdev->features & 5877 NETIF_VLAN_FILTERING_FEATURES; 5878 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5879 if (current_vlan_features ^ requested_vlan_features) { 5880 err = ice_set_vlan_filtering_features(vsi, features); 5881 if (err) 5882 return err; 5883 } 5884 5885 return 0; 5886 } 5887 5888 /** 5889 * ice_set_features - set the netdev feature flags 5890 * @netdev: ptr to the netdev being adjusted 5891 * @features: the feature set that the stack is suggesting 5892 */ 5893 static int 5894 ice_set_features(struct net_device *netdev, netdev_features_t features) 5895 { 5896 struct ice_netdev_priv *np = netdev_priv(netdev); 5897 struct ice_vsi *vsi = np->vsi; 5898 struct ice_pf *pf = vsi->back; 5899 int ret = 0; 5900 5901 /* Don't set any netdev advanced features with device in Safe Mode */ 5902 if (ice_is_safe_mode(vsi->back)) { 5903 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5904 return ret; 5905 } 5906 5907 /* Do not change setting during reset */ 5908 if (ice_is_reset_in_progress(pf->state)) { 5909 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5910 return -EBUSY; 5911 } 5912 5913 /* Multiple features can be changed in one call so keep features in 5914 * separate if/else statements to guarantee each feature is checked 5915 */ 5916 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5917 ice_vsi_manage_rss_lut(vsi, true); 5918 else if (!(features & NETIF_F_RXHASH) && 5919 netdev->features & NETIF_F_RXHASH) 5920 ice_vsi_manage_rss_lut(vsi, false); 5921 5922 ret = ice_set_vlan_features(netdev, features); 5923 if (ret) 5924 return ret; 5925 5926 if ((features & NETIF_F_NTUPLE) && 5927 !(netdev->features & NETIF_F_NTUPLE)) { 5928 ice_vsi_manage_fdir(vsi, true); 5929 ice_init_arfs(vsi); 5930 } else if (!(features & NETIF_F_NTUPLE) && 5931 (netdev->features & NETIF_F_NTUPLE)) { 5932 ice_vsi_manage_fdir(vsi, false); 5933 ice_clear_arfs(vsi); 5934 } 5935 5936 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5937 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5938 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5939 return -EACCES; 5940 } 5941 5942 if ((features & NETIF_F_HW_TC) && 5943 !(netdev->features & NETIF_F_HW_TC)) 5944 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5945 else 5946 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5947 5948 return 0; 5949 } 5950 5951 /** 5952 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5953 * @vsi: VSI to setup VLAN properties for 5954 */ 5955 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5956 { 5957 int err; 5958 5959 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5960 if (err) 5961 return err; 5962 5963 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5964 if (err) 5965 return err; 5966 5967 return ice_vsi_add_vlan_zero(vsi); 5968 } 5969 5970 /** 5971 * ice_vsi_cfg - Setup the VSI 5972 * @vsi: the VSI being configured 5973 * 5974 * Return 0 on success and negative value on error 5975 */ 5976 int ice_vsi_cfg(struct ice_vsi *vsi) 5977 { 5978 int err; 5979 5980 if (vsi->netdev) { 5981 ice_set_rx_mode(vsi->netdev); 5982 5983 err = ice_vsi_vlan_setup(vsi); 5984 5985 if (err) 5986 return err; 5987 } 5988 ice_vsi_cfg_dcb_rings(vsi); 5989 5990 err = ice_vsi_cfg_lan_txqs(vsi); 5991 if (!err && ice_is_xdp_ena_vsi(vsi)) 5992 err = ice_vsi_cfg_xdp_txqs(vsi); 5993 if (!err) 5994 err = ice_vsi_cfg_rxqs(vsi); 5995 5996 return err; 5997 } 5998 5999 /* THEORY OF MODERATION: 6000 * The ice driver hardware works differently than the hardware that DIMLIB was 6001 * originally made for. ice hardware doesn't have packet count limits that 6002 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6003 * which is hard-coded to a limit of 250,000 ints/second. 6004 * If not using dynamic moderation, the INTRL value can be modified 6005 * by ethtool rx-usecs-high. 6006 */ 6007 struct ice_dim { 6008 /* the throttle rate for interrupts, basically worst case delay before 6009 * an initial interrupt fires, value is stored in microseconds. 6010 */ 6011 u16 itr; 6012 }; 6013 6014 /* Make a different profile for Rx that doesn't allow quite so aggressive 6015 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6016 * second. 6017 */ 6018 static const struct ice_dim rx_profile[] = { 6019 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6020 {8}, /* 125,000 ints/s */ 6021 {16}, /* 62,500 ints/s */ 6022 {62}, /* 16,129 ints/s */ 6023 {126} /* 7,936 ints/s */ 6024 }; 6025 6026 /* The transmit profile, which has the same sorts of values 6027 * as the previous struct 6028 */ 6029 static const struct ice_dim tx_profile[] = { 6030 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6031 {8}, /* 125,000 ints/s */ 6032 {40}, /* 16,125 ints/s */ 6033 {128}, /* 7,812 ints/s */ 6034 {256} /* 3,906 ints/s */ 6035 }; 6036 6037 static void ice_tx_dim_work(struct work_struct *work) 6038 { 6039 struct ice_ring_container *rc; 6040 struct dim *dim; 6041 u16 itr; 6042 6043 dim = container_of(work, struct dim, work); 6044 rc = (struct ice_ring_container *)dim->priv; 6045 6046 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6047 6048 /* look up the values in our local table */ 6049 itr = tx_profile[dim->profile_ix].itr; 6050 6051 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6052 ice_write_itr(rc, itr); 6053 6054 dim->state = DIM_START_MEASURE; 6055 } 6056 6057 static void ice_rx_dim_work(struct work_struct *work) 6058 { 6059 struct ice_ring_container *rc; 6060 struct dim *dim; 6061 u16 itr; 6062 6063 dim = container_of(work, struct dim, work); 6064 rc = (struct ice_ring_container *)dim->priv; 6065 6066 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6067 6068 /* look up the values in our local table */ 6069 itr = rx_profile[dim->profile_ix].itr; 6070 6071 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6072 ice_write_itr(rc, itr); 6073 6074 dim->state = DIM_START_MEASURE; 6075 } 6076 6077 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6078 6079 /** 6080 * ice_init_moderation - set up interrupt moderation 6081 * @q_vector: the vector containing rings to be configured 6082 * 6083 * Set up interrupt moderation registers, with the intent to do the right thing 6084 * when called from reset or from probe, and whether or not dynamic moderation 6085 * is enabled or not. Take special care to write all the registers in both 6086 * dynamic moderation mode or not in order to make sure hardware is in a known 6087 * state. 6088 */ 6089 static void ice_init_moderation(struct ice_q_vector *q_vector) 6090 { 6091 struct ice_ring_container *rc; 6092 bool tx_dynamic, rx_dynamic; 6093 6094 rc = &q_vector->tx; 6095 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6096 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6097 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6098 rc->dim.priv = rc; 6099 tx_dynamic = ITR_IS_DYNAMIC(rc); 6100 6101 /* set the initial TX ITR to match the above */ 6102 ice_write_itr(rc, tx_dynamic ? 6103 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6104 6105 rc = &q_vector->rx; 6106 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6107 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6108 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6109 rc->dim.priv = rc; 6110 rx_dynamic = ITR_IS_DYNAMIC(rc); 6111 6112 /* set the initial RX ITR to match the above */ 6113 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6114 rc->itr_setting); 6115 6116 ice_set_q_vector_intrl(q_vector); 6117 } 6118 6119 /** 6120 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6121 * @vsi: the VSI being configured 6122 */ 6123 static void ice_napi_enable_all(struct ice_vsi *vsi) 6124 { 6125 int q_idx; 6126 6127 if (!vsi->netdev) 6128 return; 6129 6130 ice_for_each_q_vector(vsi, q_idx) { 6131 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6132 6133 ice_init_moderation(q_vector); 6134 6135 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6136 napi_enable(&q_vector->napi); 6137 } 6138 } 6139 6140 /** 6141 * ice_up_complete - Finish the last steps of bringing up a connection 6142 * @vsi: The VSI being configured 6143 * 6144 * Return 0 on success and negative value on error 6145 */ 6146 static int ice_up_complete(struct ice_vsi *vsi) 6147 { 6148 struct ice_pf *pf = vsi->back; 6149 int err; 6150 6151 ice_vsi_cfg_msix(vsi); 6152 6153 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6154 * Tx queue group list was configured and the context bits were 6155 * programmed using ice_vsi_cfg_txqs 6156 */ 6157 err = ice_vsi_start_all_rx_rings(vsi); 6158 if (err) 6159 return err; 6160 6161 clear_bit(ICE_VSI_DOWN, vsi->state); 6162 ice_napi_enable_all(vsi); 6163 ice_vsi_ena_irq(vsi); 6164 6165 if (vsi->port_info && 6166 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6167 vsi->netdev) { 6168 ice_print_link_msg(vsi, true); 6169 netif_tx_start_all_queues(vsi->netdev); 6170 netif_carrier_on(vsi->netdev); 6171 if (!ice_is_e810(&pf->hw)) 6172 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6173 } 6174 6175 /* clear this now, and the first stats read will be used as baseline */ 6176 vsi->stat_offsets_loaded = false; 6177 6178 ice_service_task_schedule(pf); 6179 6180 return 0; 6181 } 6182 6183 /** 6184 * ice_up - Bring the connection back up after being down 6185 * @vsi: VSI being configured 6186 */ 6187 int ice_up(struct ice_vsi *vsi) 6188 { 6189 int err; 6190 6191 err = ice_vsi_cfg(vsi); 6192 if (!err) 6193 err = ice_up_complete(vsi); 6194 6195 return err; 6196 } 6197 6198 /** 6199 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6200 * @syncp: pointer to u64_stats_sync 6201 * @stats: stats that pkts and bytes count will be taken from 6202 * @pkts: packets stats counter 6203 * @bytes: bytes stats counter 6204 * 6205 * This function fetches stats from the ring considering the atomic operations 6206 * that needs to be performed to read u64 values in 32 bit machine. 6207 */ 6208 void 6209 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6210 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6211 { 6212 unsigned int start; 6213 6214 do { 6215 start = u64_stats_fetch_begin_irq(syncp); 6216 *pkts = stats.pkts; 6217 *bytes = stats.bytes; 6218 } while (u64_stats_fetch_retry_irq(syncp, start)); 6219 } 6220 6221 /** 6222 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6223 * @vsi: the VSI to be updated 6224 * @vsi_stats: the stats struct to be updated 6225 * @rings: rings to work on 6226 * @count: number of rings 6227 */ 6228 static void 6229 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6230 struct rtnl_link_stats64 *vsi_stats, 6231 struct ice_tx_ring **rings, u16 count) 6232 { 6233 u16 i; 6234 6235 for (i = 0; i < count; i++) { 6236 struct ice_tx_ring *ring; 6237 u64 pkts = 0, bytes = 0; 6238 6239 ring = READ_ONCE(rings[i]); 6240 if (!ring) 6241 continue; 6242 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6243 vsi_stats->tx_packets += pkts; 6244 vsi_stats->tx_bytes += bytes; 6245 vsi->tx_restart += ring->tx_stats.restart_q; 6246 vsi->tx_busy += ring->tx_stats.tx_busy; 6247 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6248 } 6249 } 6250 6251 /** 6252 * ice_update_vsi_ring_stats - Update VSI stats counters 6253 * @vsi: the VSI to be updated 6254 */ 6255 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6256 { 6257 struct rtnl_link_stats64 *vsi_stats; 6258 u64 pkts, bytes; 6259 int i; 6260 6261 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6262 if (!vsi_stats) 6263 return; 6264 6265 /* reset non-netdev (extended) stats */ 6266 vsi->tx_restart = 0; 6267 vsi->tx_busy = 0; 6268 vsi->tx_linearize = 0; 6269 vsi->rx_buf_failed = 0; 6270 vsi->rx_page_failed = 0; 6271 6272 rcu_read_lock(); 6273 6274 /* update Tx rings counters */ 6275 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6276 vsi->num_txq); 6277 6278 /* update Rx rings counters */ 6279 ice_for_each_rxq(vsi, i) { 6280 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6281 6282 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6283 vsi_stats->rx_packets += pkts; 6284 vsi_stats->rx_bytes += bytes; 6285 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6286 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6287 } 6288 6289 /* update XDP Tx rings counters */ 6290 if (ice_is_xdp_ena_vsi(vsi)) 6291 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6292 vsi->num_xdp_txq); 6293 6294 rcu_read_unlock(); 6295 6296 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6297 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6298 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6299 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6300 6301 kfree(vsi_stats); 6302 } 6303 6304 /** 6305 * ice_update_vsi_stats - Update VSI stats counters 6306 * @vsi: the VSI to be updated 6307 */ 6308 void ice_update_vsi_stats(struct ice_vsi *vsi) 6309 { 6310 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6311 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6312 struct ice_pf *pf = vsi->back; 6313 6314 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6315 test_bit(ICE_CFG_BUSY, pf->state)) 6316 return; 6317 6318 /* get stats as recorded by Tx/Rx rings */ 6319 ice_update_vsi_ring_stats(vsi); 6320 6321 /* get VSI stats as recorded by the hardware */ 6322 ice_update_eth_stats(vsi); 6323 6324 cur_ns->tx_errors = cur_es->tx_errors; 6325 cur_ns->rx_dropped = cur_es->rx_discards; 6326 cur_ns->tx_dropped = cur_es->tx_discards; 6327 cur_ns->multicast = cur_es->rx_multicast; 6328 6329 /* update some more netdev stats if this is main VSI */ 6330 if (vsi->type == ICE_VSI_PF) { 6331 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6332 cur_ns->rx_errors = pf->stats.crc_errors + 6333 pf->stats.illegal_bytes + 6334 pf->stats.rx_len_errors + 6335 pf->stats.rx_undersize + 6336 pf->hw_csum_rx_error + 6337 pf->stats.rx_jabber + 6338 pf->stats.rx_fragments + 6339 pf->stats.rx_oversize; 6340 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6341 /* record drops from the port level */ 6342 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6343 } 6344 } 6345 6346 /** 6347 * ice_update_pf_stats - Update PF port stats counters 6348 * @pf: PF whose stats needs to be updated 6349 */ 6350 void ice_update_pf_stats(struct ice_pf *pf) 6351 { 6352 struct ice_hw_port_stats *prev_ps, *cur_ps; 6353 struct ice_hw *hw = &pf->hw; 6354 u16 fd_ctr_base; 6355 u8 port; 6356 6357 port = hw->port_info->lport; 6358 prev_ps = &pf->stats_prev; 6359 cur_ps = &pf->stats; 6360 6361 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6362 &prev_ps->eth.rx_bytes, 6363 &cur_ps->eth.rx_bytes); 6364 6365 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6366 &prev_ps->eth.rx_unicast, 6367 &cur_ps->eth.rx_unicast); 6368 6369 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6370 &prev_ps->eth.rx_multicast, 6371 &cur_ps->eth.rx_multicast); 6372 6373 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6374 &prev_ps->eth.rx_broadcast, 6375 &cur_ps->eth.rx_broadcast); 6376 6377 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6378 &prev_ps->eth.rx_discards, 6379 &cur_ps->eth.rx_discards); 6380 6381 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6382 &prev_ps->eth.tx_bytes, 6383 &cur_ps->eth.tx_bytes); 6384 6385 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6386 &prev_ps->eth.tx_unicast, 6387 &cur_ps->eth.tx_unicast); 6388 6389 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6390 &prev_ps->eth.tx_multicast, 6391 &cur_ps->eth.tx_multicast); 6392 6393 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6394 &prev_ps->eth.tx_broadcast, 6395 &cur_ps->eth.tx_broadcast); 6396 6397 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6398 &prev_ps->tx_dropped_link_down, 6399 &cur_ps->tx_dropped_link_down); 6400 6401 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6402 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6403 6404 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6405 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6406 6407 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6408 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6409 6410 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6411 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6412 6413 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6414 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6415 6416 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6417 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6418 6419 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6420 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6421 6422 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6423 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6424 6425 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6426 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6427 6428 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6429 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6430 6431 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6432 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6433 6434 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6435 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6436 6437 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6438 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6439 6440 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6441 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6442 6443 fd_ctr_base = hw->fd_ctr_base; 6444 6445 ice_stat_update40(hw, 6446 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6447 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6448 &cur_ps->fd_sb_match); 6449 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6450 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6451 6452 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6453 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6454 6455 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6456 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6457 6458 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6459 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6460 6461 ice_update_dcb_stats(pf); 6462 6463 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6464 &prev_ps->crc_errors, &cur_ps->crc_errors); 6465 6466 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6467 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6468 6469 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6470 &prev_ps->mac_local_faults, 6471 &cur_ps->mac_local_faults); 6472 6473 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6474 &prev_ps->mac_remote_faults, 6475 &cur_ps->mac_remote_faults); 6476 6477 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6478 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6479 6480 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6481 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6482 6483 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6484 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6485 6486 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6487 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6488 6489 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6490 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6491 6492 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6493 6494 pf->stat_prev_loaded = true; 6495 } 6496 6497 /** 6498 * ice_get_stats64 - get statistics for network device structure 6499 * @netdev: network interface device structure 6500 * @stats: main device statistics structure 6501 */ 6502 static 6503 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6504 { 6505 struct ice_netdev_priv *np = netdev_priv(netdev); 6506 struct rtnl_link_stats64 *vsi_stats; 6507 struct ice_vsi *vsi = np->vsi; 6508 6509 vsi_stats = &vsi->net_stats; 6510 6511 if (!vsi->num_txq || !vsi->num_rxq) 6512 return; 6513 6514 /* netdev packet/byte stats come from ring counter. These are obtained 6515 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6516 * But, only call the update routine and read the registers if VSI is 6517 * not down. 6518 */ 6519 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6520 ice_update_vsi_ring_stats(vsi); 6521 stats->tx_packets = vsi_stats->tx_packets; 6522 stats->tx_bytes = vsi_stats->tx_bytes; 6523 stats->rx_packets = vsi_stats->rx_packets; 6524 stats->rx_bytes = vsi_stats->rx_bytes; 6525 6526 /* The rest of the stats can be read from the hardware but instead we 6527 * just return values that the watchdog task has already obtained from 6528 * the hardware. 6529 */ 6530 stats->multicast = vsi_stats->multicast; 6531 stats->tx_errors = vsi_stats->tx_errors; 6532 stats->tx_dropped = vsi_stats->tx_dropped; 6533 stats->rx_errors = vsi_stats->rx_errors; 6534 stats->rx_dropped = vsi_stats->rx_dropped; 6535 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6536 stats->rx_length_errors = vsi_stats->rx_length_errors; 6537 } 6538 6539 /** 6540 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6541 * @vsi: VSI having NAPI disabled 6542 */ 6543 static void ice_napi_disable_all(struct ice_vsi *vsi) 6544 { 6545 int q_idx; 6546 6547 if (!vsi->netdev) 6548 return; 6549 6550 ice_for_each_q_vector(vsi, q_idx) { 6551 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6552 6553 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6554 napi_disable(&q_vector->napi); 6555 6556 cancel_work_sync(&q_vector->tx.dim.work); 6557 cancel_work_sync(&q_vector->rx.dim.work); 6558 } 6559 } 6560 6561 /** 6562 * ice_down - Shutdown the connection 6563 * @vsi: The VSI being stopped 6564 * 6565 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6566 */ 6567 int ice_down(struct ice_vsi *vsi) 6568 { 6569 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6570 6571 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6572 6573 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6574 vlan_err = ice_vsi_del_vlan_zero(vsi); 6575 if (!ice_is_e810(&vsi->back->hw)) 6576 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6577 netif_carrier_off(vsi->netdev); 6578 netif_tx_disable(vsi->netdev); 6579 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6580 ice_eswitch_stop_all_tx_queues(vsi->back); 6581 } 6582 6583 ice_vsi_dis_irq(vsi); 6584 6585 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6586 if (tx_err) 6587 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6588 vsi->vsi_num, tx_err); 6589 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6590 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6591 if (tx_err) 6592 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6593 vsi->vsi_num, tx_err); 6594 } 6595 6596 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6597 if (rx_err) 6598 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6599 vsi->vsi_num, rx_err); 6600 6601 ice_napi_disable_all(vsi); 6602 6603 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6604 link_err = ice_force_phys_link_state(vsi, false); 6605 if (link_err) 6606 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6607 vsi->vsi_num, link_err); 6608 } 6609 6610 ice_for_each_txq(vsi, i) 6611 ice_clean_tx_ring(vsi->tx_rings[i]); 6612 6613 ice_for_each_rxq(vsi, i) 6614 ice_clean_rx_ring(vsi->rx_rings[i]); 6615 6616 if (tx_err || rx_err || link_err || vlan_err) { 6617 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6618 vsi->vsi_num, vsi->vsw->sw_id); 6619 return -EIO; 6620 } 6621 6622 return 0; 6623 } 6624 6625 /** 6626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6627 * @vsi: VSI having resources allocated 6628 * 6629 * Return 0 on success, negative on failure 6630 */ 6631 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6632 { 6633 int i, err = 0; 6634 6635 if (!vsi->num_txq) { 6636 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6637 vsi->vsi_num); 6638 return -EINVAL; 6639 } 6640 6641 ice_for_each_txq(vsi, i) { 6642 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6643 6644 if (!ring) 6645 return -EINVAL; 6646 6647 if (vsi->netdev) 6648 ring->netdev = vsi->netdev; 6649 err = ice_setup_tx_ring(ring); 6650 if (err) 6651 break; 6652 } 6653 6654 return err; 6655 } 6656 6657 /** 6658 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6659 * @vsi: VSI having resources allocated 6660 * 6661 * Return 0 on success, negative on failure 6662 */ 6663 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6664 { 6665 int i, err = 0; 6666 6667 if (!vsi->num_rxq) { 6668 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6669 vsi->vsi_num); 6670 return -EINVAL; 6671 } 6672 6673 ice_for_each_rxq(vsi, i) { 6674 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6675 6676 if (!ring) 6677 return -EINVAL; 6678 6679 if (vsi->netdev) 6680 ring->netdev = vsi->netdev; 6681 err = ice_setup_rx_ring(ring); 6682 if (err) 6683 break; 6684 } 6685 6686 return err; 6687 } 6688 6689 /** 6690 * ice_vsi_open_ctrl - open control VSI for use 6691 * @vsi: the VSI to open 6692 * 6693 * Initialization of the Control VSI 6694 * 6695 * Returns 0 on success, negative value on error 6696 */ 6697 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6698 { 6699 char int_name[ICE_INT_NAME_STR_LEN]; 6700 struct ice_pf *pf = vsi->back; 6701 struct device *dev; 6702 int err; 6703 6704 dev = ice_pf_to_dev(pf); 6705 /* allocate descriptors */ 6706 err = ice_vsi_setup_tx_rings(vsi); 6707 if (err) 6708 goto err_setup_tx; 6709 6710 err = ice_vsi_setup_rx_rings(vsi); 6711 if (err) 6712 goto err_setup_rx; 6713 6714 err = ice_vsi_cfg(vsi); 6715 if (err) 6716 goto err_setup_rx; 6717 6718 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6719 dev_driver_string(dev), dev_name(dev)); 6720 err = ice_vsi_req_irq_msix(vsi, int_name); 6721 if (err) 6722 goto err_setup_rx; 6723 6724 ice_vsi_cfg_msix(vsi); 6725 6726 err = ice_vsi_start_all_rx_rings(vsi); 6727 if (err) 6728 goto err_up_complete; 6729 6730 clear_bit(ICE_VSI_DOWN, vsi->state); 6731 ice_vsi_ena_irq(vsi); 6732 6733 return 0; 6734 6735 err_up_complete: 6736 ice_down(vsi); 6737 err_setup_rx: 6738 ice_vsi_free_rx_rings(vsi); 6739 err_setup_tx: 6740 ice_vsi_free_tx_rings(vsi); 6741 6742 return err; 6743 } 6744 6745 /** 6746 * ice_vsi_open - Called when a network interface is made active 6747 * @vsi: the VSI to open 6748 * 6749 * Initialization of the VSI 6750 * 6751 * Returns 0 on success, negative value on error 6752 */ 6753 int ice_vsi_open(struct ice_vsi *vsi) 6754 { 6755 char int_name[ICE_INT_NAME_STR_LEN]; 6756 struct ice_pf *pf = vsi->back; 6757 int err; 6758 6759 /* allocate descriptors */ 6760 err = ice_vsi_setup_tx_rings(vsi); 6761 if (err) 6762 goto err_setup_tx; 6763 6764 err = ice_vsi_setup_rx_rings(vsi); 6765 if (err) 6766 goto err_setup_rx; 6767 6768 err = ice_vsi_cfg(vsi); 6769 if (err) 6770 goto err_setup_rx; 6771 6772 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6773 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6774 err = ice_vsi_req_irq_msix(vsi, int_name); 6775 if (err) 6776 goto err_setup_rx; 6777 6778 if (vsi->type == ICE_VSI_PF) { 6779 /* Notify the stack of the actual queue counts. */ 6780 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6781 if (err) 6782 goto err_set_qs; 6783 6784 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6785 if (err) 6786 goto err_set_qs; 6787 } 6788 6789 err = ice_up_complete(vsi); 6790 if (err) 6791 goto err_up_complete; 6792 6793 return 0; 6794 6795 err_up_complete: 6796 ice_down(vsi); 6797 err_set_qs: 6798 ice_vsi_free_irq(vsi); 6799 err_setup_rx: 6800 ice_vsi_free_rx_rings(vsi); 6801 err_setup_tx: 6802 ice_vsi_free_tx_rings(vsi); 6803 6804 return err; 6805 } 6806 6807 /** 6808 * ice_vsi_release_all - Delete all VSIs 6809 * @pf: PF from which all VSIs are being removed 6810 */ 6811 static void ice_vsi_release_all(struct ice_pf *pf) 6812 { 6813 int err, i; 6814 6815 if (!pf->vsi) 6816 return; 6817 6818 ice_for_each_vsi(pf, i) { 6819 if (!pf->vsi[i]) 6820 continue; 6821 6822 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6823 continue; 6824 6825 err = ice_vsi_release(pf->vsi[i]); 6826 if (err) 6827 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6828 i, err, pf->vsi[i]->vsi_num); 6829 } 6830 } 6831 6832 /** 6833 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6834 * @pf: pointer to the PF instance 6835 * @type: VSI type to rebuild 6836 * 6837 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6838 */ 6839 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6840 { 6841 struct device *dev = ice_pf_to_dev(pf); 6842 int i, err; 6843 6844 ice_for_each_vsi(pf, i) { 6845 struct ice_vsi *vsi = pf->vsi[i]; 6846 6847 if (!vsi || vsi->type != type) 6848 continue; 6849 6850 /* rebuild the VSI */ 6851 err = ice_vsi_rebuild(vsi, true); 6852 if (err) { 6853 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6854 err, vsi->idx, ice_vsi_type_str(type)); 6855 return err; 6856 } 6857 6858 /* replay filters for the VSI */ 6859 err = ice_replay_vsi(&pf->hw, vsi->idx); 6860 if (err) { 6861 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6862 err, vsi->idx, ice_vsi_type_str(type)); 6863 return err; 6864 } 6865 6866 /* Re-map HW VSI number, using VSI handle that has been 6867 * previously validated in ice_replay_vsi() call above 6868 */ 6869 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6870 6871 /* enable the VSI */ 6872 err = ice_ena_vsi(vsi, false); 6873 if (err) { 6874 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6875 err, vsi->idx, ice_vsi_type_str(type)); 6876 return err; 6877 } 6878 6879 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6880 ice_vsi_type_str(type)); 6881 } 6882 6883 return 0; 6884 } 6885 6886 /** 6887 * ice_update_pf_netdev_link - Update PF netdev link status 6888 * @pf: pointer to the PF instance 6889 */ 6890 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6891 { 6892 bool link_up; 6893 int i; 6894 6895 ice_for_each_vsi(pf, i) { 6896 struct ice_vsi *vsi = pf->vsi[i]; 6897 6898 if (!vsi || vsi->type != ICE_VSI_PF) 6899 return; 6900 6901 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6902 if (link_up) { 6903 netif_carrier_on(pf->vsi[i]->netdev); 6904 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6905 } else { 6906 netif_carrier_off(pf->vsi[i]->netdev); 6907 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6908 } 6909 } 6910 } 6911 6912 /** 6913 * ice_rebuild - rebuild after reset 6914 * @pf: PF to rebuild 6915 * @reset_type: type of reset 6916 * 6917 * Do not rebuild VF VSI in this flow because that is already handled via 6918 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6919 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6920 * to reset/rebuild all the VF VSI twice. 6921 */ 6922 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6923 { 6924 struct device *dev = ice_pf_to_dev(pf); 6925 struct ice_hw *hw = &pf->hw; 6926 bool dvm; 6927 int err; 6928 6929 if (test_bit(ICE_DOWN, pf->state)) 6930 goto clear_recovery; 6931 6932 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6933 6934 if (reset_type == ICE_RESET_EMPR) { 6935 /* If an EMP reset has occurred, any previously pending flash 6936 * update will have completed. We no longer know whether or 6937 * not the NVM update EMP reset is restricted. 6938 */ 6939 pf->fw_emp_reset_disabled = false; 6940 } 6941 6942 err = ice_init_all_ctrlq(hw); 6943 if (err) { 6944 dev_err(dev, "control queues init failed %d\n", err); 6945 goto err_init_ctrlq; 6946 } 6947 6948 /* if DDP was previously loaded successfully */ 6949 if (!ice_is_safe_mode(pf)) { 6950 /* reload the SW DB of filter tables */ 6951 if (reset_type == ICE_RESET_PFR) 6952 ice_fill_blk_tbls(hw); 6953 else 6954 /* Reload DDP Package after CORER/GLOBR reset */ 6955 ice_load_pkg(NULL, pf); 6956 } 6957 6958 err = ice_clear_pf_cfg(hw); 6959 if (err) { 6960 dev_err(dev, "clear PF configuration failed %d\n", err); 6961 goto err_init_ctrlq; 6962 } 6963 6964 if (pf->first_sw->dflt_vsi_ena) 6965 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6966 /* clear the default VSI configuration if it exists */ 6967 pf->first_sw->dflt_vsi = NULL; 6968 pf->first_sw->dflt_vsi_ena = false; 6969 6970 ice_clear_pxe_mode(hw); 6971 6972 err = ice_init_nvm(hw); 6973 if (err) { 6974 dev_err(dev, "ice_init_nvm failed %d\n", err); 6975 goto err_init_ctrlq; 6976 } 6977 6978 err = ice_get_caps(hw); 6979 if (err) { 6980 dev_err(dev, "ice_get_caps failed %d\n", err); 6981 goto err_init_ctrlq; 6982 } 6983 6984 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6985 if (err) { 6986 dev_err(dev, "set_mac_cfg failed %d\n", err); 6987 goto err_init_ctrlq; 6988 } 6989 6990 dvm = ice_is_dvm_ena(hw); 6991 6992 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 6993 if (err) 6994 goto err_init_ctrlq; 6995 6996 err = ice_sched_init_port(hw->port_info); 6997 if (err) 6998 goto err_sched_init_port; 6999 7000 /* start misc vector */ 7001 err = ice_req_irq_msix_misc(pf); 7002 if (err) { 7003 dev_err(dev, "misc vector setup failed: %d\n", err); 7004 goto err_sched_init_port; 7005 } 7006 7007 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7008 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7009 if (!rd32(hw, PFQF_FD_SIZE)) { 7010 u16 unused, guar, b_effort; 7011 7012 guar = hw->func_caps.fd_fltr_guar; 7013 b_effort = hw->func_caps.fd_fltr_best_effort; 7014 7015 /* force guaranteed filter pool for PF */ 7016 ice_alloc_fd_guar_item(hw, &unused, guar); 7017 /* force shared filter pool for PF */ 7018 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7019 } 7020 } 7021 7022 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7023 ice_dcb_rebuild(pf); 7024 7025 /* If the PF previously had enabled PTP, PTP init needs to happen before 7026 * the VSI rebuild. If not, this causes the PTP link status events to 7027 * fail. 7028 */ 7029 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7030 ice_ptp_reset(pf); 7031 7032 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7033 ice_gnss_init(pf); 7034 7035 /* rebuild PF VSI */ 7036 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7037 if (err) { 7038 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7039 goto err_vsi_rebuild; 7040 } 7041 7042 /* configure PTP timestamping after VSI rebuild */ 7043 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7044 ice_ptp_cfg_timestamp(pf, false); 7045 7046 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7047 if (err) { 7048 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7049 goto err_vsi_rebuild; 7050 } 7051 7052 if (reset_type == ICE_RESET_PFR) { 7053 err = ice_rebuild_channels(pf); 7054 if (err) { 7055 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7056 err); 7057 goto err_vsi_rebuild; 7058 } 7059 } 7060 7061 /* If Flow Director is active */ 7062 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7063 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7064 if (err) { 7065 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7066 goto err_vsi_rebuild; 7067 } 7068 7069 /* replay HW Flow Director recipes */ 7070 if (hw->fdir_prof) 7071 ice_fdir_replay_flows(hw); 7072 7073 /* replay Flow Director filters */ 7074 ice_fdir_replay_fltrs(pf); 7075 7076 ice_rebuild_arfs(pf); 7077 } 7078 7079 ice_update_pf_netdev_link(pf); 7080 7081 /* tell the firmware we are up */ 7082 err = ice_send_version(pf); 7083 if (err) { 7084 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7085 err); 7086 goto err_vsi_rebuild; 7087 } 7088 7089 ice_replay_post(hw); 7090 7091 /* if we get here, reset flow is successful */ 7092 clear_bit(ICE_RESET_FAILED, pf->state); 7093 7094 ice_plug_aux_dev(pf); 7095 return; 7096 7097 err_vsi_rebuild: 7098 err_sched_init_port: 7099 ice_sched_cleanup_all(hw); 7100 err_init_ctrlq: 7101 ice_shutdown_all_ctrlq(hw); 7102 set_bit(ICE_RESET_FAILED, pf->state); 7103 clear_recovery: 7104 /* set this bit in PF state to control service task scheduling */ 7105 set_bit(ICE_NEEDS_RESTART, pf->state); 7106 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7107 } 7108 7109 /** 7110 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7111 * @vsi: Pointer to VSI structure 7112 */ 7113 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7114 { 7115 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7116 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7117 else 7118 return ICE_RXBUF_3072; 7119 } 7120 7121 /** 7122 * ice_change_mtu - NDO callback to change the MTU 7123 * @netdev: network interface device structure 7124 * @new_mtu: new value for maximum frame size 7125 * 7126 * Returns 0 on success, negative on failure 7127 */ 7128 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7129 { 7130 struct ice_netdev_priv *np = netdev_priv(netdev); 7131 struct ice_vsi *vsi = np->vsi; 7132 struct ice_pf *pf = vsi->back; 7133 u8 count = 0; 7134 int err = 0; 7135 7136 if (new_mtu == (int)netdev->mtu) { 7137 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7138 return 0; 7139 } 7140 7141 if (ice_is_xdp_ena_vsi(vsi)) { 7142 int frame_size = ice_max_xdp_frame_size(vsi); 7143 7144 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7145 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7146 frame_size - ICE_ETH_PKT_HDR_PAD); 7147 return -EINVAL; 7148 } 7149 } 7150 7151 /* if a reset is in progress, wait for some time for it to complete */ 7152 do { 7153 if (ice_is_reset_in_progress(pf->state)) { 7154 count++; 7155 usleep_range(1000, 2000); 7156 } else { 7157 break; 7158 } 7159 7160 } while (count < 100); 7161 7162 if (count == 100) { 7163 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7164 return -EBUSY; 7165 } 7166 7167 netdev->mtu = (unsigned int)new_mtu; 7168 7169 /* if VSI is up, bring it down and then back up */ 7170 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7171 err = ice_down(vsi); 7172 if (err) { 7173 netdev_err(netdev, "change MTU if_down err %d\n", err); 7174 return err; 7175 } 7176 7177 err = ice_up(vsi); 7178 if (err) { 7179 netdev_err(netdev, "change MTU if_up err %d\n", err); 7180 return err; 7181 } 7182 } 7183 7184 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7185 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7186 7187 return err; 7188 } 7189 7190 /** 7191 * ice_eth_ioctl - Access the hwtstamp interface 7192 * @netdev: network interface device structure 7193 * @ifr: interface request data 7194 * @cmd: ioctl command 7195 */ 7196 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7197 { 7198 struct ice_netdev_priv *np = netdev_priv(netdev); 7199 struct ice_pf *pf = np->vsi->back; 7200 7201 switch (cmd) { 7202 case SIOCGHWTSTAMP: 7203 return ice_ptp_get_ts_config(pf, ifr); 7204 case SIOCSHWTSTAMP: 7205 return ice_ptp_set_ts_config(pf, ifr); 7206 default: 7207 return -EOPNOTSUPP; 7208 } 7209 } 7210 7211 /** 7212 * ice_aq_str - convert AQ err code to a string 7213 * @aq_err: the AQ error code to convert 7214 */ 7215 const char *ice_aq_str(enum ice_aq_err aq_err) 7216 { 7217 switch (aq_err) { 7218 case ICE_AQ_RC_OK: 7219 return "OK"; 7220 case ICE_AQ_RC_EPERM: 7221 return "ICE_AQ_RC_EPERM"; 7222 case ICE_AQ_RC_ENOENT: 7223 return "ICE_AQ_RC_ENOENT"; 7224 case ICE_AQ_RC_ENOMEM: 7225 return "ICE_AQ_RC_ENOMEM"; 7226 case ICE_AQ_RC_EBUSY: 7227 return "ICE_AQ_RC_EBUSY"; 7228 case ICE_AQ_RC_EEXIST: 7229 return "ICE_AQ_RC_EEXIST"; 7230 case ICE_AQ_RC_EINVAL: 7231 return "ICE_AQ_RC_EINVAL"; 7232 case ICE_AQ_RC_ENOSPC: 7233 return "ICE_AQ_RC_ENOSPC"; 7234 case ICE_AQ_RC_ENOSYS: 7235 return "ICE_AQ_RC_ENOSYS"; 7236 case ICE_AQ_RC_EMODE: 7237 return "ICE_AQ_RC_EMODE"; 7238 case ICE_AQ_RC_ENOSEC: 7239 return "ICE_AQ_RC_ENOSEC"; 7240 case ICE_AQ_RC_EBADSIG: 7241 return "ICE_AQ_RC_EBADSIG"; 7242 case ICE_AQ_RC_ESVN: 7243 return "ICE_AQ_RC_ESVN"; 7244 case ICE_AQ_RC_EBADMAN: 7245 return "ICE_AQ_RC_EBADMAN"; 7246 case ICE_AQ_RC_EBADBUF: 7247 return "ICE_AQ_RC_EBADBUF"; 7248 } 7249 7250 return "ICE_AQ_RC_UNKNOWN"; 7251 } 7252 7253 /** 7254 * ice_set_rss_lut - Set RSS LUT 7255 * @vsi: Pointer to VSI structure 7256 * @lut: Lookup table 7257 * @lut_size: Lookup table size 7258 * 7259 * Returns 0 on success, negative on failure 7260 */ 7261 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7262 { 7263 struct ice_aq_get_set_rss_lut_params params = {}; 7264 struct ice_hw *hw = &vsi->back->hw; 7265 int status; 7266 7267 if (!lut) 7268 return -EINVAL; 7269 7270 params.vsi_handle = vsi->idx; 7271 params.lut_size = lut_size; 7272 params.lut_type = vsi->rss_lut_type; 7273 params.lut = lut; 7274 7275 status = ice_aq_set_rss_lut(hw, ¶ms); 7276 if (status) 7277 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7278 status, ice_aq_str(hw->adminq.sq_last_status)); 7279 7280 return status; 7281 } 7282 7283 /** 7284 * ice_set_rss_key - Set RSS key 7285 * @vsi: Pointer to the VSI structure 7286 * @seed: RSS hash seed 7287 * 7288 * Returns 0 on success, negative on failure 7289 */ 7290 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7291 { 7292 struct ice_hw *hw = &vsi->back->hw; 7293 int status; 7294 7295 if (!seed) 7296 return -EINVAL; 7297 7298 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7299 if (status) 7300 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7301 status, ice_aq_str(hw->adminq.sq_last_status)); 7302 7303 return status; 7304 } 7305 7306 /** 7307 * ice_get_rss_lut - Get RSS LUT 7308 * @vsi: Pointer to VSI structure 7309 * @lut: Buffer to store the lookup table entries 7310 * @lut_size: Size of buffer to store the lookup table entries 7311 * 7312 * Returns 0 on success, negative on failure 7313 */ 7314 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7315 { 7316 struct ice_aq_get_set_rss_lut_params params = {}; 7317 struct ice_hw *hw = &vsi->back->hw; 7318 int status; 7319 7320 if (!lut) 7321 return -EINVAL; 7322 7323 params.vsi_handle = vsi->idx; 7324 params.lut_size = lut_size; 7325 params.lut_type = vsi->rss_lut_type; 7326 params.lut = lut; 7327 7328 status = ice_aq_get_rss_lut(hw, ¶ms); 7329 if (status) 7330 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7331 status, ice_aq_str(hw->adminq.sq_last_status)); 7332 7333 return status; 7334 } 7335 7336 /** 7337 * ice_get_rss_key - Get RSS key 7338 * @vsi: Pointer to VSI structure 7339 * @seed: Buffer to store the key in 7340 * 7341 * Returns 0 on success, negative on failure 7342 */ 7343 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7344 { 7345 struct ice_hw *hw = &vsi->back->hw; 7346 int status; 7347 7348 if (!seed) 7349 return -EINVAL; 7350 7351 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7352 if (status) 7353 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7354 status, ice_aq_str(hw->adminq.sq_last_status)); 7355 7356 return status; 7357 } 7358 7359 /** 7360 * ice_bridge_getlink - Get the hardware bridge mode 7361 * @skb: skb buff 7362 * @pid: process ID 7363 * @seq: RTNL message seq 7364 * @dev: the netdev being configured 7365 * @filter_mask: filter mask passed in 7366 * @nlflags: netlink flags passed in 7367 * 7368 * Return the bridge mode (VEB/VEPA) 7369 */ 7370 static int 7371 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7372 struct net_device *dev, u32 filter_mask, int nlflags) 7373 { 7374 struct ice_netdev_priv *np = netdev_priv(dev); 7375 struct ice_vsi *vsi = np->vsi; 7376 struct ice_pf *pf = vsi->back; 7377 u16 bmode; 7378 7379 bmode = pf->first_sw->bridge_mode; 7380 7381 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7382 filter_mask, NULL); 7383 } 7384 7385 /** 7386 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7387 * @vsi: Pointer to VSI structure 7388 * @bmode: Hardware bridge mode (VEB/VEPA) 7389 * 7390 * Returns 0 on success, negative on failure 7391 */ 7392 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7393 { 7394 struct ice_aqc_vsi_props *vsi_props; 7395 struct ice_hw *hw = &vsi->back->hw; 7396 struct ice_vsi_ctx *ctxt; 7397 int ret; 7398 7399 vsi_props = &vsi->info; 7400 7401 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7402 if (!ctxt) 7403 return -ENOMEM; 7404 7405 ctxt->info = vsi->info; 7406 7407 if (bmode == BRIDGE_MODE_VEB) 7408 /* change from VEPA to VEB mode */ 7409 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7410 else 7411 /* change from VEB to VEPA mode */ 7412 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7413 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7414 7415 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7416 if (ret) { 7417 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7418 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7419 goto out; 7420 } 7421 /* Update sw flags for book keeping */ 7422 vsi_props->sw_flags = ctxt->info.sw_flags; 7423 7424 out: 7425 kfree(ctxt); 7426 return ret; 7427 } 7428 7429 /** 7430 * ice_bridge_setlink - Set the hardware bridge mode 7431 * @dev: the netdev being configured 7432 * @nlh: RTNL message 7433 * @flags: bridge setlink flags 7434 * @extack: netlink extended ack 7435 * 7436 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7437 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7438 * not already set for all VSIs connected to this switch. And also update the 7439 * unicast switch filter rules for the corresponding switch of the netdev. 7440 */ 7441 static int 7442 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7443 u16 __always_unused flags, 7444 struct netlink_ext_ack __always_unused *extack) 7445 { 7446 struct ice_netdev_priv *np = netdev_priv(dev); 7447 struct ice_pf *pf = np->vsi->back; 7448 struct nlattr *attr, *br_spec; 7449 struct ice_hw *hw = &pf->hw; 7450 struct ice_sw *pf_sw; 7451 int rem, v, err = 0; 7452 7453 pf_sw = pf->first_sw; 7454 /* find the attribute in the netlink message */ 7455 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7456 7457 nla_for_each_nested(attr, br_spec, rem) { 7458 __u16 mode; 7459 7460 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7461 continue; 7462 mode = nla_get_u16(attr); 7463 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7464 return -EINVAL; 7465 /* Continue if bridge mode is not being flipped */ 7466 if (mode == pf_sw->bridge_mode) 7467 continue; 7468 /* Iterates through the PF VSI list and update the loopback 7469 * mode of the VSI 7470 */ 7471 ice_for_each_vsi(pf, v) { 7472 if (!pf->vsi[v]) 7473 continue; 7474 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7475 if (err) 7476 return err; 7477 } 7478 7479 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7480 /* Update the unicast switch filter rules for the corresponding 7481 * switch of the netdev 7482 */ 7483 err = ice_update_sw_rule_bridge_mode(hw); 7484 if (err) { 7485 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7486 mode, err, 7487 ice_aq_str(hw->adminq.sq_last_status)); 7488 /* revert hw->evb_veb */ 7489 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7490 return err; 7491 } 7492 7493 pf_sw->bridge_mode = mode; 7494 } 7495 7496 return 0; 7497 } 7498 7499 /** 7500 * ice_tx_timeout - Respond to a Tx Hang 7501 * @netdev: network interface device structure 7502 * @txqueue: Tx queue 7503 */ 7504 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7505 { 7506 struct ice_netdev_priv *np = netdev_priv(netdev); 7507 struct ice_tx_ring *tx_ring = NULL; 7508 struct ice_vsi *vsi = np->vsi; 7509 struct ice_pf *pf = vsi->back; 7510 u32 i; 7511 7512 pf->tx_timeout_count++; 7513 7514 /* Check if PFC is enabled for the TC to which the queue belongs 7515 * to. If yes then Tx timeout is not caused by a hung queue, no 7516 * need to reset and rebuild 7517 */ 7518 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7519 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7520 txqueue); 7521 return; 7522 } 7523 7524 /* now that we have an index, find the tx_ring struct */ 7525 ice_for_each_txq(vsi, i) 7526 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7527 if (txqueue == vsi->tx_rings[i]->q_index) { 7528 tx_ring = vsi->tx_rings[i]; 7529 break; 7530 } 7531 7532 /* Reset recovery level if enough time has elapsed after last timeout. 7533 * Also ensure no new reset action happens before next timeout period. 7534 */ 7535 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7536 pf->tx_timeout_recovery_level = 1; 7537 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7538 netdev->watchdog_timeo))) 7539 return; 7540 7541 if (tx_ring) { 7542 struct ice_hw *hw = &pf->hw; 7543 u32 head, val = 0; 7544 7545 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7546 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7547 /* Read interrupt register */ 7548 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7549 7550 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7551 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7552 head, tx_ring->next_to_use, val); 7553 } 7554 7555 pf->tx_timeout_last_recovery = jiffies; 7556 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7557 pf->tx_timeout_recovery_level, txqueue); 7558 7559 switch (pf->tx_timeout_recovery_level) { 7560 case 1: 7561 set_bit(ICE_PFR_REQ, pf->state); 7562 break; 7563 case 2: 7564 set_bit(ICE_CORER_REQ, pf->state); 7565 break; 7566 case 3: 7567 set_bit(ICE_GLOBR_REQ, pf->state); 7568 break; 7569 default: 7570 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7571 set_bit(ICE_DOWN, pf->state); 7572 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7573 set_bit(ICE_SERVICE_DIS, pf->state); 7574 break; 7575 } 7576 7577 ice_service_task_schedule(pf); 7578 pf->tx_timeout_recovery_level++; 7579 } 7580 7581 /** 7582 * ice_setup_tc_cls_flower - flower classifier offloads 7583 * @np: net device to configure 7584 * @filter_dev: device on which filter is added 7585 * @cls_flower: offload data 7586 */ 7587 static int 7588 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7589 struct net_device *filter_dev, 7590 struct flow_cls_offload *cls_flower) 7591 { 7592 struct ice_vsi *vsi = np->vsi; 7593 7594 if (cls_flower->common.chain_index) 7595 return -EOPNOTSUPP; 7596 7597 switch (cls_flower->command) { 7598 case FLOW_CLS_REPLACE: 7599 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7600 case FLOW_CLS_DESTROY: 7601 return ice_del_cls_flower(vsi, cls_flower); 7602 default: 7603 return -EINVAL; 7604 } 7605 } 7606 7607 /** 7608 * ice_setup_tc_block_cb - callback handler registered for TC block 7609 * @type: TC SETUP type 7610 * @type_data: TC flower offload data that contains user input 7611 * @cb_priv: netdev private data 7612 */ 7613 static int 7614 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7615 { 7616 struct ice_netdev_priv *np = cb_priv; 7617 7618 switch (type) { 7619 case TC_SETUP_CLSFLOWER: 7620 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7621 type_data); 7622 default: 7623 return -EOPNOTSUPP; 7624 } 7625 } 7626 7627 /** 7628 * ice_validate_mqprio_qopt - Validate TCF input parameters 7629 * @vsi: Pointer to VSI 7630 * @mqprio_qopt: input parameters for mqprio queue configuration 7631 * 7632 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7633 * needed), and make sure user doesn't specify qcount and BW rate limit 7634 * for TCs, which are more than "num_tc" 7635 */ 7636 static int 7637 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7638 struct tc_mqprio_qopt_offload *mqprio_qopt) 7639 { 7640 u64 sum_max_rate = 0, sum_min_rate = 0; 7641 int non_power_of_2_qcount = 0; 7642 struct ice_pf *pf = vsi->back; 7643 int max_rss_q_cnt = 0; 7644 struct device *dev; 7645 int i, speed; 7646 u8 num_tc; 7647 7648 if (vsi->type != ICE_VSI_PF) 7649 return -EINVAL; 7650 7651 if (mqprio_qopt->qopt.offset[0] != 0 || 7652 mqprio_qopt->qopt.num_tc < 1 || 7653 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7654 return -EINVAL; 7655 7656 dev = ice_pf_to_dev(pf); 7657 vsi->ch_rss_size = 0; 7658 num_tc = mqprio_qopt->qopt.num_tc; 7659 7660 for (i = 0; num_tc; i++) { 7661 int qcount = mqprio_qopt->qopt.count[i]; 7662 u64 max_rate, min_rate, rem; 7663 7664 if (!qcount) 7665 return -EINVAL; 7666 7667 if (is_power_of_2(qcount)) { 7668 if (non_power_of_2_qcount && 7669 qcount > non_power_of_2_qcount) { 7670 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7671 qcount, non_power_of_2_qcount); 7672 return -EINVAL; 7673 } 7674 if (qcount > max_rss_q_cnt) 7675 max_rss_q_cnt = qcount; 7676 } else { 7677 if (non_power_of_2_qcount && 7678 qcount != non_power_of_2_qcount) { 7679 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7680 qcount, non_power_of_2_qcount); 7681 return -EINVAL; 7682 } 7683 if (qcount < max_rss_q_cnt) { 7684 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7685 qcount, max_rss_q_cnt); 7686 return -EINVAL; 7687 } 7688 max_rss_q_cnt = qcount; 7689 non_power_of_2_qcount = qcount; 7690 } 7691 7692 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7693 * converts the bandwidth rate limit into Bytes/s when 7694 * passing it down to the driver. So convert input bandwidth 7695 * from Bytes/s to Kbps 7696 */ 7697 max_rate = mqprio_qopt->max_rate[i]; 7698 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7699 sum_max_rate += max_rate; 7700 7701 /* min_rate is minimum guaranteed rate and it can't be zero */ 7702 min_rate = mqprio_qopt->min_rate[i]; 7703 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7704 sum_min_rate += min_rate; 7705 7706 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7707 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7708 min_rate, ICE_MIN_BW_LIMIT); 7709 return -EINVAL; 7710 } 7711 7712 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7713 if (rem) { 7714 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7715 i, ICE_MIN_BW_LIMIT); 7716 return -EINVAL; 7717 } 7718 7719 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7720 if (rem) { 7721 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7722 i, ICE_MIN_BW_LIMIT); 7723 return -EINVAL; 7724 } 7725 7726 /* min_rate can't be more than max_rate, except when max_rate 7727 * is zero (implies max_rate sought is max line rate). In such 7728 * a case min_rate can be more than max. 7729 */ 7730 if (max_rate && min_rate > max_rate) { 7731 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7732 min_rate, max_rate); 7733 return -EINVAL; 7734 } 7735 7736 if (i >= mqprio_qopt->qopt.num_tc - 1) 7737 break; 7738 if (mqprio_qopt->qopt.offset[i + 1] != 7739 (mqprio_qopt->qopt.offset[i] + qcount)) 7740 return -EINVAL; 7741 } 7742 if (vsi->num_rxq < 7743 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7744 return -EINVAL; 7745 if (vsi->num_txq < 7746 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7747 return -EINVAL; 7748 7749 speed = ice_get_link_speed_kbps(vsi); 7750 if (sum_max_rate && sum_max_rate > (u64)speed) { 7751 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7752 sum_max_rate, speed); 7753 return -EINVAL; 7754 } 7755 if (sum_min_rate && sum_min_rate > (u64)speed) { 7756 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7757 sum_min_rate, speed); 7758 return -EINVAL; 7759 } 7760 7761 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7762 vsi->ch_rss_size = max_rss_q_cnt; 7763 7764 return 0; 7765 } 7766 7767 /** 7768 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7769 * @pf: ptr to PF device 7770 * @vsi: ptr to VSI 7771 */ 7772 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7773 { 7774 struct device *dev = ice_pf_to_dev(pf); 7775 bool added = false; 7776 struct ice_hw *hw; 7777 int flow; 7778 7779 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7780 return -EINVAL; 7781 7782 hw = &pf->hw; 7783 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7784 struct ice_fd_hw_prof *prof; 7785 int tun, status; 7786 u64 entry_h; 7787 7788 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7789 hw->fdir_prof[flow]->cnt)) 7790 continue; 7791 7792 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7793 enum ice_flow_priority prio; 7794 u64 prof_id; 7795 7796 /* add this VSI to FDir profile for this flow */ 7797 prio = ICE_FLOW_PRIO_NORMAL; 7798 prof = hw->fdir_prof[flow]; 7799 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7800 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7801 prof->vsi_h[0], vsi->idx, 7802 prio, prof->fdir_seg[tun], 7803 &entry_h); 7804 if (status) { 7805 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7806 vsi->idx, flow); 7807 continue; 7808 } 7809 7810 prof->entry_h[prof->cnt][tun] = entry_h; 7811 } 7812 7813 /* store VSI for filter replay and delete */ 7814 prof->vsi_h[prof->cnt] = vsi->idx; 7815 prof->cnt++; 7816 7817 added = true; 7818 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7819 flow); 7820 } 7821 7822 if (!added) 7823 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7824 7825 return 0; 7826 } 7827 7828 /** 7829 * ice_add_channel - add a channel by adding VSI 7830 * @pf: ptr to PF device 7831 * @sw_id: underlying HW switching element ID 7832 * @ch: ptr to channel structure 7833 * 7834 * Add a channel (VSI) using add_vsi and queue_map 7835 */ 7836 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7837 { 7838 struct device *dev = ice_pf_to_dev(pf); 7839 struct ice_vsi *vsi; 7840 7841 if (ch->type != ICE_VSI_CHNL) { 7842 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7843 return -EINVAL; 7844 } 7845 7846 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7847 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7848 dev_err(dev, "create chnl VSI failure\n"); 7849 return -EINVAL; 7850 } 7851 7852 ice_add_vsi_to_fdir(pf, vsi); 7853 7854 ch->sw_id = sw_id; 7855 ch->vsi_num = vsi->vsi_num; 7856 ch->info.mapping_flags = vsi->info.mapping_flags; 7857 ch->ch_vsi = vsi; 7858 /* set the back pointer of channel for newly created VSI */ 7859 vsi->ch = ch; 7860 7861 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7862 sizeof(vsi->info.q_mapping)); 7863 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7864 sizeof(vsi->info.tc_mapping)); 7865 7866 return 0; 7867 } 7868 7869 /** 7870 * ice_chnl_cfg_res 7871 * @vsi: the VSI being setup 7872 * @ch: ptr to channel structure 7873 * 7874 * Configure channel specific resources such as rings, vector. 7875 */ 7876 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7877 { 7878 int i; 7879 7880 for (i = 0; i < ch->num_txq; i++) { 7881 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7882 struct ice_ring_container *rc; 7883 struct ice_tx_ring *tx_ring; 7884 struct ice_rx_ring *rx_ring; 7885 7886 tx_ring = vsi->tx_rings[ch->base_q + i]; 7887 rx_ring = vsi->rx_rings[ch->base_q + i]; 7888 if (!tx_ring || !rx_ring) 7889 continue; 7890 7891 /* setup ring being channel enabled */ 7892 tx_ring->ch = ch; 7893 rx_ring->ch = ch; 7894 7895 /* following code block sets up vector specific attributes */ 7896 tx_q_vector = tx_ring->q_vector; 7897 rx_q_vector = rx_ring->q_vector; 7898 if (!tx_q_vector && !rx_q_vector) 7899 continue; 7900 7901 if (tx_q_vector) { 7902 tx_q_vector->ch = ch; 7903 /* setup Tx and Rx ITR setting if DIM is off */ 7904 rc = &tx_q_vector->tx; 7905 if (!ITR_IS_DYNAMIC(rc)) 7906 ice_write_itr(rc, rc->itr_setting); 7907 } 7908 if (rx_q_vector) { 7909 rx_q_vector->ch = ch; 7910 /* setup Tx and Rx ITR setting if DIM is off */ 7911 rc = &rx_q_vector->rx; 7912 if (!ITR_IS_DYNAMIC(rc)) 7913 ice_write_itr(rc, rc->itr_setting); 7914 } 7915 } 7916 7917 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7918 * GLINT_ITR register would have written to perform in-context 7919 * update, hence perform flush 7920 */ 7921 if (ch->num_txq || ch->num_rxq) 7922 ice_flush(&vsi->back->hw); 7923 } 7924 7925 /** 7926 * ice_cfg_chnl_all_res - configure channel resources 7927 * @vsi: pte to main_vsi 7928 * @ch: ptr to channel structure 7929 * 7930 * This function configures channel specific resources such as flow-director 7931 * counter index, and other resources such as queues, vectors, ITR settings 7932 */ 7933 static void 7934 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7935 { 7936 /* configure channel (aka ADQ) resources such as queues, vectors, 7937 * ITR settings for channel specific vectors and anything else 7938 */ 7939 ice_chnl_cfg_res(vsi, ch); 7940 } 7941 7942 /** 7943 * ice_setup_hw_channel - setup new channel 7944 * @pf: ptr to PF device 7945 * @vsi: the VSI being setup 7946 * @ch: ptr to channel structure 7947 * @sw_id: underlying HW switching element ID 7948 * @type: type of channel to be created (VMDq2/VF) 7949 * 7950 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7951 * and configures Tx rings accordingly 7952 */ 7953 static int 7954 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7955 struct ice_channel *ch, u16 sw_id, u8 type) 7956 { 7957 struct device *dev = ice_pf_to_dev(pf); 7958 int ret; 7959 7960 ch->base_q = vsi->next_base_q; 7961 ch->type = type; 7962 7963 ret = ice_add_channel(pf, sw_id, ch); 7964 if (ret) { 7965 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7966 return ret; 7967 } 7968 7969 /* configure/setup ADQ specific resources */ 7970 ice_cfg_chnl_all_res(vsi, ch); 7971 7972 /* make sure to update the next_base_q so that subsequent channel's 7973 * (aka ADQ) VSI queue map is correct 7974 */ 7975 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7976 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7977 ch->num_rxq); 7978 7979 return 0; 7980 } 7981 7982 /** 7983 * ice_setup_channel - setup new channel using uplink element 7984 * @pf: ptr to PF device 7985 * @vsi: the VSI being setup 7986 * @ch: ptr to channel structure 7987 * 7988 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7989 * and uplink switching element 7990 */ 7991 static bool 7992 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7993 struct ice_channel *ch) 7994 { 7995 struct device *dev = ice_pf_to_dev(pf); 7996 u16 sw_id; 7997 int ret; 7998 7999 if (vsi->type != ICE_VSI_PF) { 8000 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8001 return false; 8002 } 8003 8004 sw_id = pf->first_sw->sw_id; 8005 8006 /* create channel (VSI) */ 8007 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8008 if (ret) { 8009 dev_err(dev, "failed to setup hw_channel\n"); 8010 return false; 8011 } 8012 dev_dbg(dev, "successfully created channel()\n"); 8013 8014 return ch->ch_vsi ? true : false; 8015 } 8016 8017 /** 8018 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8019 * @vsi: VSI to be configured 8020 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8021 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8022 */ 8023 static int 8024 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8025 { 8026 int err; 8027 8028 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8029 if (err) 8030 return err; 8031 8032 return ice_set_max_bw_limit(vsi, max_tx_rate); 8033 } 8034 8035 /** 8036 * ice_create_q_channel - function to create channel 8037 * @vsi: VSI to be configured 8038 * @ch: ptr to channel (it contains channel specific params) 8039 * 8040 * This function creates channel (VSI) using num_queues specified by user, 8041 * reconfigs RSS if needed. 8042 */ 8043 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8044 { 8045 struct ice_pf *pf = vsi->back; 8046 struct device *dev; 8047 8048 if (!ch) 8049 return -EINVAL; 8050 8051 dev = ice_pf_to_dev(pf); 8052 if (!ch->num_txq || !ch->num_rxq) { 8053 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8054 return -EINVAL; 8055 } 8056 8057 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8058 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8059 vsi->cnt_q_avail, ch->num_txq); 8060 return -EINVAL; 8061 } 8062 8063 if (!ice_setup_channel(pf, vsi, ch)) { 8064 dev_info(dev, "Failed to setup channel\n"); 8065 return -EINVAL; 8066 } 8067 /* configure BW rate limit */ 8068 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8069 int ret; 8070 8071 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8072 ch->min_tx_rate); 8073 if (ret) 8074 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8075 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8076 else 8077 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8078 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8079 } 8080 8081 vsi->cnt_q_avail -= ch->num_txq; 8082 8083 return 0; 8084 } 8085 8086 /** 8087 * ice_rem_all_chnl_fltrs - removes all channel filters 8088 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8089 * 8090 * Remove all advanced switch filters only if they are channel specific 8091 * tc-flower based filter 8092 */ 8093 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8094 { 8095 struct ice_tc_flower_fltr *fltr; 8096 struct hlist_node *node; 8097 8098 /* to remove all channel filters, iterate an ordered list of filters */ 8099 hlist_for_each_entry_safe(fltr, node, 8100 &pf->tc_flower_fltr_list, 8101 tc_flower_node) { 8102 struct ice_rule_query_data rule; 8103 int status; 8104 8105 /* for now process only channel specific filters */ 8106 if (!ice_is_chnl_fltr(fltr)) 8107 continue; 8108 8109 rule.rid = fltr->rid; 8110 rule.rule_id = fltr->rule_id; 8111 rule.vsi_handle = fltr->dest_id; 8112 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8113 if (status) { 8114 if (status == -ENOENT) 8115 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8116 rule.rule_id); 8117 else 8118 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8119 status); 8120 } else if (fltr->dest_vsi) { 8121 /* update advanced switch filter count */ 8122 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8123 u32 flags = fltr->flags; 8124 8125 fltr->dest_vsi->num_chnl_fltr--; 8126 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8127 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8128 pf->num_dmac_chnl_fltrs--; 8129 } 8130 } 8131 8132 hlist_del(&fltr->tc_flower_node); 8133 kfree(fltr); 8134 } 8135 } 8136 8137 /** 8138 * ice_remove_q_channels - Remove queue channels for the TCs 8139 * @vsi: VSI to be configured 8140 * @rem_fltr: delete advanced switch filter or not 8141 * 8142 * Remove queue channels for the TCs 8143 */ 8144 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8145 { 8146 struct ice_channel *ch, *ch_tmp; 8147 struct ice_pf *pf = vsi->back; 8148 int i; 8149 8150 /* remove all tc-flower based filter if they are channel filters only */ 8151 if (rem_fltr) 8152 ice_rem_all_chnl_fltrs(pf); 8153 8154 /* remove ntuple filters since queue configuration is being changed */ 8155 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8156 struct ice_hw *hw = &pf->hw; 8157 8158 mutex_lock(&hw->fdir_fltr_lock); 8159 ice_fdir_del_all_fltrs(vsi); 8160 mutex_unlock(&hw->fdir_fltr_lock); 8161 } 8162 8163 /* perform cleanup for channels if they exist */ 8164 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8165 struct ice_vsi *ch_vsi; 8166 8167 list_del(&ch->list); 8168 ch_vsi = ch->ch_vsi; 8169 if (!ch_vsi) { 8170 kfree(ch); 8171 continue; 8172 } 8173 8174 /* Reset queue contexts */ 8175 for (i = 0; i < ch->num_rxq; i++) { 8176 struct ice_tx_ring *tx_ring; 8177 struct ice_rx_ring *rx_ring; 8178 8179 tx_ring = vsi->tx_rings[ch->base_q + i]; 8180 rx_ring = vsi->rx_rings[ch->base_q + i]; 8181 if (tx_ring) { 8182 tx_ring->ch = NULL; 8183 if (tx_ring->q_vector) 8184 tx_ring->q_vector->ch = NULL; 8185 } 8186 if (rx_ring) { 8187 rx_ring->ch = NULL; 8188 if (rx_ring->q_vector) 8189 rx_ring->q_vector->ch = NULL; 8190 } 8191 } 8192 8193 /* Release FD resources for the channel VSI */ 8194 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8195 8196 /* clear the VSI from scheduler tree */ 8197 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8198 8199 /* Delete VSI from FW */ 8200 ice_vsi_delete(ch->ch_vsi); 8201 8202 /* Delete VSI from PF and HW VSI arrays */ 8203 ice_vsi_clear(ch->ch_vsi); 8204 8205 /* free the channel */ 8206 kfree(ch); 8207 } 8208 8209 /* clear the channel VSI map which is stored in main VSI */ 8210 ice_for_each_chnl_tc(i) 8211 vsi->tc_map_vsi[i] = NULL; 8212 8213 /* reset main VSI's all TC information */ 8214 vsi->all_enatc = 0; 8215 vsi->all_numtc = 0; 8216 } 8217 8218 /** 8219 * ice_rebuild_channels - rebuild channel 8220 * @pf: ptr to PF 8221 * 8222 * Recreate channel VSIs and replay filters 8223 */ 8224 static int ice_rebuild_channels(struct ice_pf *pf) 8225 { 8226 struct device *dev = ice_pf_to_dev(pf); 8227 struct ice_vsi *main_vsi; 8228 bool rem_adv_fltr = true; 8229 struct ice_channel *ch; 8230 struct ice_vsi *vsi; 8231 int tc_idx = 1; 8232 int i, err; 8233 8234 main_vsi = ice_get_main_vsi(pf); 8235 if (!main_vsi) 8236 return 0; 8237 8238 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8239 main_vsi->old_numtc == 1) 8240 return 0; /* nothing to be done */ 8241 8242 /* reconfigure main VSI based on old value of TC and cached values 8243 * for MQPRIO opts 8244 */ 8245 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8246 if (err) { 8247 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8248 main_vsi->old_ena_tc, main_vsi->vsi_num); 8249 return err; 8250 } 8251 8252 /* rebuild ADQ VSIs */ 8253 ice_for_each_vsi(pf, i) { 8254 enum ice_vsi_type type; 8255 8256 vsi = pf->vsi[i]; 8257 if (!vsi || vsi->type != ICE_VSI_CHNL) 8258 continue; 8259 8260 type = vsi->type; 8261 8262 /* rebuild ADQ VSI */ 8263 err = ice_vsi_rebuild(vsi, true); 8264 if (err) { 8265 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8266 ice_vsi_type_str(type), vsi->idx, err); 8267 goto cleanup; 8268 } 8269 8270 /* Re-map HW VSI number, using VSI handle that has been 8271 * previously validated in ice_replay_vsi() call above 8272 */ 8273 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8274 8275 /* replay filters for the VSI */ 8276 err = ice_replay_vsi(&pf->hw, vsi->idx); 8277 if (err) { 8278 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8279 ice_vsi_type_str(type), err, vsi->idx); 8280 rem_adv_fltr = false; 8281 goto cleanup; 8282 } 8283 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8284 ice_vsi_type_str(type), vsi->idx); 8285 8286 /* store ADQ VSI at correct TC index in main VSI's 8287 * map of TC to VSI 8288 */ 8289 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8290 } 8291 8292 /* ADQ VSI(s) has been rebuilt successfully, so setup 8293 * channel for main VSI's Tx and Rx rings 8294 */ 8295 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8296 struct ice_vsi *ch_vsi; 8297 8298 ch_vsi = ch->ch_vsi; 8299 if (!ch_vsi) 8300 continue; 8301 8302 /* reconfig channel resources */ 8303 ice_cfg_chnl_all_res(main_vsi, ch); 8304 8305 /* replay BW rate limit if it is non-zero */ 8306 if (!ch->max_tx_rate && !ch->min_tx_rate) 8307 continue; 8308 8309 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8310 ch->min_tx_rate); 8311 if (err) 8312 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8313 err, ch->max_tx_rate, ch->min_tx_rate, 8314 ch_vsi->vsi_num); 8315 else 8316 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8317 ch->max_tx_rate, ch->min_tx_rate, 8318 ch_vsi->vsi_num); 8319 } 8320 8321 /* reconfig RSS for main VSI */ 8322 if (main_vsi->ch_rss_size) 8323 ice_vsi_cfg_rss_lut_key(main_vsi); 8324 8325 return 0; 8326 8327 cleanup: 8328 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8329 return err; 8330 } 8331 8332 /** 8333 * ice_create_q_channels - Add queue channel for the given TCs 8334 * @vsi: VSI to be configured 8335 * 8336 * Configures queue channel mapping to the given TCs 8337 */ 8338 static int ice_create_q_channels(struct ice_vsi *vsi) 8339 { 8340 struct ice_pf *pf = vsi->back; 8341 struct ice_channel *ch; 8342 int ret = 0, i; 8343 8344 ice_for_each_chnl_tc(i) { 8345 if (!(vsi->all_enatc & BIT(i))) 8346 continue; 8347 8348 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8349 if (!ch) { 8350 ret = -ENOMEM; 8351 goto err_free; 8352 } 8353 INIT_LIST_HEAD(&ch->list); 8354 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8355 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8356 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8357 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8358 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8359 8360 /* convert to Kbits/s */ 8361 if (ch->max_tx_rate) 8362 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8363 ICE_BW_KBPS_DIVISOR); 8364 if (ch->min_tx_rate) 8365 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8366 ICE_BW_KBPS_DIVISOR); 8367 8368 ret = ice_create_q_channel(vsi, ch); 8369 if (ret) { 8370 dev_err(ice_pf_to_dev(pf), 8371 "failed creating channel TC:%d\n", i); 8372 kfree(ch); 8373 goto err_free; 8374 } 8375 list_add_tail(&ch->list, &vsi->ch_list); 8376 vsi->tc_map_vsi[i] = ch->ch_vsi; 8377 dev_dbg(ice_pf_to_dev(pf), 8378 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8379 } 8380 return 0; 8381 8382 err_free: 8383 ice_remove_q_channels(vsi, false); 8384 8385 return ret; 8386 } 8387 8388 /** 8389 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8390 * @netdev: net device to configure 8391 * @type_data: TC offload data 8392 */ 8393 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8394 { 8395 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8396 struct ice_netdev_priv *np = netdev_priv(netdev); 8397 struct ice_vsi *vsi = np->vsi; 8398 struct ice_pf *pf = vsi->back; 8399 u16 mode, ena_tc_qdisc = 0; 8400 int cur_txq, cur_rxq; 8401 u8 hw = 0, num_tcf; 8402 struct device *dev; 8403 int ret, i; 8404 8405 dev = ice_pf_to_dev(pf); 8406 num_tcf = mqprio_qopt->qopt.num_tc; 8407 hw = mqprio_qopt->qopt.hw; 8408 mode = mqprio_qopt->mode; 8409 if (!hw) { 8410 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8411 vsi->ch_rss_size = 0; 8412 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8413 goto config_tcf; 8414 } 8415 8416 /* Generate queue region map for number of TCF requested */ 8417 for (i = 0; i < num_tcf; i++) 8418 ena_tc_qdisc |= BIT(i); 8419 8420 switch (mode) { 8421 case TC_MQPRIO_MODE_CHANNEL: 8422 8423 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8424 if (ret) { 8425 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8426 ret); 8427 return ret; 8428 } 8429 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8430 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8431 /* don't assume state of hw_tc_offload during driver load 8432 * and set the flag for TC flower filter if hw_tc_offload 8433 * already ON 8434 */ 8435 if (vsi->netdev->features & NETIF_F_HW_TC) 8436 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8437 break; 8438 default: 8439 return -EINVAL; 8440 } 8441 8442 config_tcf: 8443 8444 /* Requesting same TCF configuration as already enabled */ 8445 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8446 mode != TC_MQPRIO_MODE_CHANNEL) 8447 return 0; 8448 8449 /* Pause VSI queues */ 8450 ice_dis_vsi(vsi, true); 8451 8452 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8453 ice_remove_q_channels(vsi, true); 8454 8455 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8456 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8457 num_online_cpus()); 8458 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8459 num_online_cpus()); 8460 } else { 8461 /* logic to rebuild VSI, same like ethtool -L */ 8462 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8463 8464 for (i = 0; i < num_tcf; i++) { 8465 if (!(ena_tc_qdisc & BIT(i))) 8466 continue; 8467 8468 offset = vsi->mqprio_qopt.qopt.offset[i]; 8469 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8470 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8471 } 8472 vsi->req_txq = offset + qcount_tx; 8473 vsi->req_rxq = offset + qcount_rx; 8474 8475 /* store away original rss_size info, so that it gets reused 8476 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8477 * determine, what should be the rss_sizefor main VSI 8478 */ 8479 vsi->orig_rss_size = vsi->rss_size; 8480 } 8481 8482 /* save current values of Tx and Rx queues before calling VSI rebuild 8483 * for fallback option 8484 */ 8485 cur_txq = vsi->num_txq; 8486 cur_rxq = vsi->num_rxq; 8487 8488 /* proceed with rebuild main VSI using correct number of queues */ 8489 ret = ice_vsi_rebuild(vsi, false); 8490 if (ret) { 8491 /* fallback to current number of queues */ 8492 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8493 vsi->req_txq = cur_txq; 8494 vsi->req_rxq = cur_rxq; 8495 clear_bit(ICE_RESET_FAILED, pf->state); 8496 if (ice_vsi_rebuild(vsi, false)) { 8497 dev_err(dev, "Rebuild of main VSI failed again\n"); 8498 return ret; 8499 } 8500 } 8501 8502 vsi->all_numtc = num_tcf; 8503 vsi->all_enatc = ena_tc_qdisc; 8504 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8505 if (ret) { 8506 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8507 vsi->vsi_num); 8508 goto exit; 8509 } 8510 8511 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8512 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8513 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8514 8515 /* set TC0 rate limit if specified */ 8516 if (max_tx_rate || min_tx_rate) { 8517 /* convert to Kbits/s */ 8518 if (max_tx_rate) 8519 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8520 if (min_tx_rate) 8521 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8522 8523 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8524 if (!ret) { 8525 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8526 max_tx_rate, min_tx_rate, vsi->vsi_num); 8527 } else { 8528 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8529 max_tx_rate, min_tx_rate, vsi->vsi_num); 8530 goto exit; 8531 } 8532 } 8533 ret = ice_create_q_channels(vsi); 8534 if (ret) { 8535 netdev_err(netdev, "failed configuring queue channels\n"); 8536 goto exit; 8537 } else { 8538 netdev_dbg(netdev, "successfully configured channels\n"); 8539 } 8540 } 8541 8542 if (vsi->ch_rss_size) 8543 ice_vsi_cfg_rss_lut_key(vsi); 8544 8545 exit: 8546 /* if error, reset the all_numtc and all_enatc */ 8547 if (ret) { 8548 vsi->all_numtc = 0; 8549 vsi->all_enatc = 0; 8550 } 8551 /* resume VSI */ 8552 ice_ena_vsi(vsi, true); 8553 8554 return ret; 8555 } 8556 8557 static LIST_HEAD(ice_block_cb_list); 8558 8559 static int 8560 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8561 void *type_data) 8562 { 8563 struct ice_netdev_priv *np = netdev_priv(netdev); 8564 struct ice_pf *pf = np->vsi->back; 8565 int err; 8566 8567 switch (type) { 8568 case TC_SETUP_BLOCK: 8569 return flow_block_cb_setup_simple(type_data, 8570 &ice_block_cb_list, 8571 ice_setup_tc_block_cb, 8572 np, np, true); 8573 case TC_SETUP_QDISC_MQPRIO: 8574 /* setup traffic classifier for receive side */ 8575 mutex_lock(&pf->tc_mutex); 8576 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8577 mutex_unlock(&pf->tc_mutex); 8578 return err; 8579 default: 8580 return -EOPNOTSUPP; 8581 } 8582 return -EOPNOTSUPP; 8583 } 8584 8585 static struct ice_indr_block_priv * 8586 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8587 struct net_device *netdev) 8588 { 8589 struct ice_indr_block_priv *cb_priv; 8590 8591 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8592 if (!cb_priv->netdev) 8593 return NULL; 8594 if (cb_priv->netdev == netdev) 8595 return cb_priv; 8596 } 8597 return NULL; 8598 } 8599 8600 static int 8601 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8602 void *indr_priv) 8603 { 8604 struct ice_indr_block_priv *priv = indr_priv; 8605 struct ice_netdev_priv *np = priv->np; 8606 8607 switch (type) { 8608 case TC_SETUP_CLSFLOWER: 8609 return ice_setup_tc_cls_flower(np, priv->netdev, 8610 (struct flow_cls_offload *) 8611 type_data); 8612 default: 8613 return -EOPNOTSUPP; 8614 } 8615 } 8616 8617 static int 8618 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8619 struct ice_netdev_priv *np, 8620 struct flow_block_offload *f, void *data, 8621 void (*cleanup)(struct flow_block_cb *block_cb)) 8622 { 8623 struct ice_indr_block_priv *indr_priv; 8624 struct flow_block_cb *block_cb; 8625 8626 if (!ice_is_tunnel_supported(netdev) && 8627 !(is_vlan_dev(netdev) && 8628 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8629 return -EOPNOTSUPP; 8630 8631 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8632 return -EOPNOTSUPP; 8633 8634 switch (f->command) { 8635 case FLOW_BLOCK_BIND: 8636 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8637 if (indr_priv) 8638 return -EEXIST; 8639 8640 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8641 if (!indr_priv) 8642 return -ENOMEM; 8643 8644 indr_priv->netdev = netdev; 8645 indr_priv->np = np; 8646 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8647 8648 block_cb = 8649 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8650 indr_priv, indr_priv, 8651 ice_rep_indr_tc_block_unbind, 8652 f, netdev, sch, data, np, 8653 cleanup); 8654 8655 if (IS_ERR(block_cb)) { 8656 list_del(&indr_priv->list); 8657 kfree(indr_priv); 8658 return PTR_ERR(block_cb); 8659 } 8660 flow_block_cb_add(block_cb, f); 8661 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8662 break; 8663 case FLOW_BLOCK_UNBIND: 8664 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8665 if (!indr_priv) 8666 return -ENOENT; 8667 8668 block_cb = flow_block_cb_lookup(f->block, 8669 ice_indr_setup_block_cb, 8670 indr_priv); 8671 if (!block_cb) 8672 return -ENOENT; 8673 8674 flow_indr_block_cb_remove(block_cb, f); 8675 8676 list_del(&block_cb->driver_list); 8677 break; 8678 default: 8679 return -EOPNOTSUPP; 8680 } 8681 return 0; 8682 } 8683 8684 static int 8685 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8686 void *cb_priv, enum tc_setup_type type, void *type_data, 8687 void *data, 8688 void (*cleanup)(struct flow_block_cb *block_cb)) 8689 { 8690 switch (type) { 8691 case TC_SETUP_BLOCK: 8692 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8693 data, cleanup); 8694 8695 default: 8696 return -EOPNOTSUPP; 8697 } 8698 } 8699 8700 /** 8701 * ice_open - Called when a network interface becomes active 8702 * @netdev: network interface device structure 8703 * 8704 * The open entry point is called when a network interface is made 8705 * active by the system (IFF_UP). At this point all resources needed 8706 * for transmit and receive operations are allocated, the interrupt 8707 * handler is registered with the OS, the netdev watchdog is enabled, 8708 * and the stack is notified that the interface is ready. 8709 * 8710 * Returns 0 on success, negative value on failure 8711 */ 8712 int ice_open(struct net_device *netdev) 8713 { 8714 struct ice_netdev_priv *np = netdev_priv(netdev); 8715 struct ice_pf *pf = np->vsi->back; 8716 8717 if (ice_is_reset_in_progress(pf->state)) { 8718 netdev_err(netdev, "can't open net device while reset is in progress"); 8719 return -EBUSY; 8720 } 8721 8722 return ice_open_internal(netdev); 8723 } 8724 8725 /** 8726 * ice_open_internal - Called when a network interface becomes active 8727 * @netdev: network interface device structure 8728 * 8729 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8730 * handling routine 8731 * 8732 * Returns 0 on success, negative value on failure 8733 */ 8734 int ice_open_internal(struct net_device *netdev) 8735 { 8736 struct ice_netdev_priv *np = netdev_priv(netdev); 8737 struct ice_vsi *vsi = np->vsi; 8738 struct ice_pf *pf = vsi->back; 8739 struct ice_port_info *pi; 8740 int err; 8741 8742 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8743 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8744 return -EIO; 8745 } 8746 8747 netif_carrier_off(netdev); 8748 8749 pi = vsi->port_info; 8750 err = ice_update_link_info(pi); 8751 if (err) { 8752 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8753 return err; 8754 } 8755 8756 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8757 8758 /* Set PHY if there is media, otherwise, turn off PHY */ 8759 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8760 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8761 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8762 err = ice_init_phy_user_cfg(pi); 8763 if (err) { 8764 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8765 err); 8766 return err; 8767 } 8768 } 8769 8770 err = ice_configure_phy(vsi); 8771 if (err) { 8772 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8773 err); 8774 return err; 8775 } 8776 } else { 8777 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8778 ice_set_link(vsi, false); 8779 } 8780 8781 err = ice_vsi_open(vsi); 8782 if (err) 8783 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8784 vsi->vsi_num, vsi->vsw->sw_id); 8785 8786 /* Update existing tunnels information */ 8787 udp_tunnel_get_rx_info(netdev); 8788 8789 return err; 8790 } 8791 8792 /** 8793 * ice_stop - Disables a network interface 8794 * @netdev: network interface device structure 8795 * 8796 * The stop entry point is called when an interface is de-activated by the OS, 8797 * and the netdevice enters the DOWN state. The hardware is still under the 8798 * driver's control, but the netdev interface is disabled. 8799 * 8800 * Returns success only - not allowed to fail 8801 */ 8802 int ice_stop(struct net_device *netdev) 8803 { 8804 struct ice_netdev_priv *np = netdev_priv(netdev); 8805 struct ice_vsi *vsi = np->vsi; 8806 struct ice_pf *pf = vsi->back; 8807 8808 if (ice_is_reset_in_progress(pf->state)) { 8809 netdev_err(netdev, "can't stop net device while reset is in progress"); 8810 return -EBUSY; 8811 } 8812 8813 ice_vsi_close(vsi); 8814 8815 return 0; 8816 } 8817 8818 /** 8819 * ice_features_check - Validate encapsulated packet conforms to limits 8820 * @skb: skb buffer 8821 * @netdev: This port's netdev 8822 * @features: Offload features that the stack believes apply 8823 */ 8824 static netdev_features_t 8825 ice_features_check(struct sk_buff *skb, 8826 struct net_device __always_unused *netdev, 8827 netdev_features_t features) 8828 { 8829 bool gso = skb_is_gso(skb); 8830 size_t len; 8831 8832 /* No point in doing any of this if neither checksum nor GSO are 8833 * being requested for this frame. We can rule out both by just 8834 * checking for CHECKSUM_PARTIAL 8835 */ 8836 if (skb->ip_summed != CHECKSUM_PARTIAL) 8837 return features; 8838 8839 /* We cannot support GSO if the MSS is going to be less than 8840 * 64 bytes. If it is then we need to drop support for GSO. 8841 */ 8842 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8843 features &= ~NETIF_F_GSO_MASK; 8844 8845 len = skb_network_offset(skb); 8846 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8847 goto out_rm_features; 8848 8849 len = skb_network_header_len(skb); 8850 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8851 goto out_rm_features; 8852 8853 if (skb->encapsulation) { 8854 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8855 * the case of IPIP frames, the transport header pointer is 8856 * after the inner header! So check to make sure that this 8857 * is a GRE or UDP_TUNNEL frame before doing that math. 8858 */ 8859 if (gso && (skb_shinfo(skb)->gso_type & 8860 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8861 len = skb_inner_network_header(skb) - 8862 skb_transport_header(skb); 8863 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8864 goto out_rm_features; 8865 } 8866 8867 len = skb_inner_network_header_len(skb); 8868 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8869 goto out_rm_features; 8870 } 8871 8872 return features; 8873 out_rm_features: 8874 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8875 } 8876 8877 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8878 .ndo_open = ice_open, 8879 .ndo_stop = ice_stop, 8880 .ndo_start_xmit = ice_start_xmit, 8881 .ndo_set_mac_address = ice_set_mac_address, 8882 .ndo_validate_addr = eth_validate_addr, 8883 .ndo_change_mtu = ice_change_mtu, 8884 .ndo_get_stats64 = ice_get_stats64, 8885 .ndo_tx_timeout = ice_tx_timeout, 8886 .ndo_bpf = ice_xdp_safe_mode, 8887 }; 8888 8889 static const struct net_device_ops ice_netdev_ops = { 8890 .ndo_open = ice_open, 8891 .ndo_stop = ice_stop, 8892 .ndo_start_xmit = ice_start_xmit, 8893 .ndo_select_queue = ice_select_queue, 8894 .ndo_features_check = ice_features_check, 8895 .ndo_fix_features = ice_fix_features, 8896 .ndo_set_rx_mode = ice_set_rx_mode, 8897 .ndo_set_mac_address = ice_set_mac_address, 8898 .ndo_validate_addr = eth_validate_addr, 8899 .ndo_change_mtu = ice_change_mtu, 8900 .ndo_get_stats64 = ice_get_stats64, 8901 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8902 .ndo_eth_ioctl = ice_eth_ioctl, 8903 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8904 .ndo_set_vf_mac = ice_set_vf_mac, 8905 .ndo_get_vf_config = ice_get_vf_cfg, 8906 .ndo_set_vf_trust = ice_set_vf_trust, 8907 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8908 .ndo_set_vf_link_state = ice_set_vf_link_state, 8909 .ndo_get_vf_stats = ice_get_vf_stats, 8910 .ndo_set_vf_rate = ice_set_vf_bw, 8911 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8912 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8913 .ndo_setup_tc = ice_setup_tc, 8914 .ndo_set_features = ice_set_features, 8915 .ndo_bridge_getlink = ice_bridge_getlink, 8916 .ndo_bridge_setlink = ice_bridge_setlink, 8917 .ndo_fdb_add = ice_fdb_add, 8918 .ndo_fdb_del = ice_fdb_del, 8919 #ifdef CONFIG_RFS_ACCEL 8920 .ndo_rx_flow_steer = ice_rx_flow_steer, 8921 #endif 8922 .ndo_tx_timeout = ice_tx_timeout, 8923 .ndo_bpf = ice_xdp, 8924 .ndo_xdp_xmit = ice_xdp_xmit, 8925 .ndo_xsk_wakeup = ice_xsk_wakeup, 8926 }; 8927