1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 
134 		if (!tx_ring)
135 			continue;
136 		if (ice_ring_ch_enabled(tx_ring))
137 			continue;
138 
139 		if (tx_ring->desc) {
140 			/* If packet counter has not changed the queue is
141 			 * likely stalled, so force an interrupt for this
142 			 * queue.
143 			 *
144 			 * prev_pkt would be negative if there was no
145 			 * pending work.
146 			 */
147 			packets = tx_ring->stats.pkts & INT_MAX;
148 			if (tx_ring->tx_stats.prev_pkt == packets) {
149 				/* Trigger sw interrupt to revive the queue */
150 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 				continue;
152 			}
153 
154 			/* Memory barrier between read of packet count and call
155 			 * to ice_get_tx_pending()
156 			 */
157 			smp_rmb();
158 			tx_ring->tx_stats.prev_pkt =
159 			    ice_get_tx_pending(tx_ring) ? packets : -1;
160 		}
161 	}
162 }
163 
164 /**
165  * ice_init_mac_fltr - Set initial MAC filters
166  * @pf: board private structure
167  *
168  * Set initial set of MAC filters for PF VSI; configure filters for permanent
169  * address and broadcast address. If an error is encountered, netdevice will be
170  * unregistered.
171  */
172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 	struct ice_vsi *vsi;
175 	u8 *perm_addr;
176 
177 	vsi = ice_get_main_vsi(pf);
178 	if (!vsi)
179 		return -EINVAL;
180 
181 	perm_addr = vsi->port_info->mac.perm_addr;
182 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184 
185 /**
186  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187  * @netdev: the net device on which the sync is happening
188  * @addr: MAC address to sync
189  *
190  * This is a callback function which is called by the in kernel device sync
191  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193  * MAC filters from the hardware.
194  */
195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 	struct ice_netdev_priv *np = netdev_priv(netdev);
198 	struct ice_vsi *vsi = np->vsi;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209  * @netdev: the net device on which the unsync is happening
210  * @addr: MAC address to unsync
211  *
212  * This is a callback function which is called by the in kernel device unsync
213  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215  * delete the MAC filters from the hardware.
216  */
217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 	struct ice_netdev_priv *np = netdev_priv(netdev);
220 	struct ice_vsi *vsi = np->vsi;
221 
222 	/* Under some circumstances, we might receive a request to delete our
223 	 * own device address from our uc list. Because we store the device
224 	 * address in the VSI's MAC filter list, we need to ignore such
225 	 * requests and not delete our device address from this list.
226 	 */
227 	if (ether_addr_equal(addr, netdev->dev_addr))
228 		return 0;
229 
230 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 				     ICE_FWD_TO_VSI))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
237 /**
238  * ice_vsi_fltr_changed - check if filter state changed
239  * @vsi: VSI to be checked
240  *
241  * returns true if filter state has changed, false otherwise.
242  */
243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248 
249 /**
250  * ice_set_promisc - Enable promiscuous mode for a given PF
251  * @vsi: the VSI being configured
252  * @promisc_m: mask of promiscuous config bits
253  *
254  */
255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 	int status;
258 
259 	if (vsi->type != ICE_VSI_PF)
260 		return 0;
261 
262 	if (ice_vsi_has_non_zero_vlans(vsi)) {
263 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 						       promisc_m);
266 	} else {
267 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 						  promisc_m, 0);
269 	}
270 	if (status && status != -EEXIST)
271 		return status;
272 
273 	return 0;
274 }
275 
276 /**
277  * ice_clear_promisc - Disable promiscuous mode for a given PF
278  * @vsi: the VSI being configured
279  * @promisc_m: mask of promiscuous config bits
280  *
281  */
282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
283 {
284 	int status;
285 
286 	if (vsi->type != ICE_VSI_PF)
287 		return 0;
288 
289 	if (ice_vsi_has_non_zero_vlans(vsi)) {
290 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
291 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
292 							 promisc_m);
293 	} else {
294 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
295 						    promisc_m, 0);
296 	}
297 
298 	return status;
299 }
300 
301 /**
302  * ice_get_devlink_port - Get devlink port from netdev
303  * @netdev: the netdevice structure
304  */
305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
306 {
307 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
308 
309 	if (!ice_is_switchdev_running(pf))
310 		return NULL;
311 
312 	return &pf->devlink_port;
313 }
314 
315 /**
316  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
317  * @vsi: ptr to the VSI
318  *
319  * Push any outstanding VSI filter changes through the AdminQ.
320  */
321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
322 {
323 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
324 	struct device *dev = ice_pf_to_dev(vsi->back);
325 	struct net_device *netdev = vsi->netdev;
326 	bool promisc_forced_on = false;
327 	struct ice_pf *pf = vsi->back;
328 	struct ice_hw *hw = &pf->hw;
329 	u32 changed_flags = 0;
330 	int err;
331 
332 	if (!vsi->netdev)
333 		return -EINVAL;
334 
335 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
336 		usleep_range(1000, 2000);
337 
338 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
339 	vsi->current_netdev_flags = vsi->netdev->flags;
340 
341 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
342 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
343 
344 	if (ice_vsi_fltr_changed(vsi)) {
345 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
346 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
347 
348 		/* grab the netdev's addr_list_lock */
349 		netif_addr_lock_bh(netdev);
350 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
353 			      ice_add_mac_to_unsync_list);
354 		/* our temp lists are populated. release lock */
355 		netif_addr_unlock_bh(netdev);
356 	}
357 
358 	/* Remove MAC addresses in the unsync list */
359 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
360 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
361 	if (err) {
362 		netdev_err(netdev, "Failed to delete MAC filters\n");
363 		/* if we failed because of alloc failures, just bail */
364 		if (err == -ENOMEM)
365 			goto out;
366 	}
367 
368 	/* Add MAC addresses in the sync list */
369 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
370 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
371 	/* If filter is added successfully or already exists, do not go into
372 	 * 'if' condition and report it as error. Instead continue processing
373 	 * rest of the function.
374 	 */
375 	if (err && err != -EEXIST) {
376 		netdev_err(netdev, "Failed to add MAC filters\n");
377 		/* If there is no more space for new umac filters, VSI
378 		 * should go into promiscuous mode. There should be some
379 		 * space reserved for promiscuous filters.
380 		 */
381 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
382 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
383 				      vsi->state)) {
384 			promisc_forced_on = true;
385 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
386 				    vsi->vsi_num);
387 		} else {
388 			goto out;
389 		}
390 	}
391 	err = 0;
392 	/* check for changes in promiscuous modes */
393 	if (changed_flags & IFF_ALLMULTI) {
394 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
395 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
396 			if (err) {
397 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
398 				goto out_promisc;
399 			}
400 		} else {
401 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
402 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
403 			if (err) {
404 				vsi->current_netdev_flags |= IFF_ALLMULTI;
405 				goto out_promisc;
406 			}
407 		}
408 	}
409 
410 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
411 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
412 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
413 		if (vsi->current_netdev_flags & IFF_PROMISC) {
414 			/* Apply Rx filter rule to get traffic from wire */
415 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
416 				err = ice_set_dflt_vsi(vsi);
417 				if (err && err != -EEXIST) {
418 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
419 						   err, vsi->vsi_num);
420 					vsi->current_netdev_flags &=
421 						~IFF_PROMISC;
422 					goto out_promisc;
423 				}
424 				err = 0;
425 				vlan_ops->dis_rx_filtering(vsi);
426 			}
427 		} else {
428 			/* Clear Rx filter to remove traffic from wire */
429 			if (ice_is_vsi_dflt_vsi(vsi)) {
430 				err = ice_clear_dflt_vsi(vsi);
431 				if (err) {
432 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
433 						   err, vsi->vsi_num);
434 					vsi->current_netdev_flags |=
435 						IFF_PROMISC;
436 					goto out_promisc;
437 				}
438 				if (vsi->netdev->features &
439 				    NETIF_F_HW_VLAN_CTAG_FILTER)
440 					vlan_ops->ena_rx_filtering(vsi);
441 			}
442 		}
443 	}
444 	goto exit;
445 
446 out_promisc:
447 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
448 	goto exit;
449 out:
450 	/* if something went wrong then set the changed flag so we try again */
451 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
452 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
453 exit:
454 	clear_bit(ICE_CFG_BUSY, vsi->state);
455 	return err;
456 }
457 
458 /**
459  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
460  * @pf: board private structure
461  */
462 static void ice_sync_fltr_subtask(struct ice_pf *pf)
463 {
464 	int v;
465 
466 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
467 		return;
468 
469 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
470 
471 	ice_for_each_vsi(pf, v)
472 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
473 		    ice_vsi_sync_fltr(pf->vsi[v])) {
474 			/* come back and try again later */
475 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
476 			break;
477 		}
478 }
479 
480 /**
481  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
482  * @pf: the PF
483  * @locked: is the rtnl_lock already held
484  */
485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
486 {
487 	int node;
488 	int v;
489 
490 	ice_for_each_vsi(pf, v)
491 		if (pf->vsi[v])
492 			ice_dis_vsi(pf->vsi[v], locked);
493 
494 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
495 		pf->pf_agg_node[node].num_vsis = 0;
496 
497 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
498 		pf->vf_agg_node[node].num_vsis = 0;
499 }
500 
501 /**
502  * ice_clear_sw_switch_recipes - clear switch recipes
503  * @pf: board private structure
504  *
505  * Mark switch recipes as not created in sw structures. There are cases where
506  * rules (especially advanced rules) need to be restored, either re-read from
507  * hardware or added again. For example after the reset. 'recp_created' flag
508  * prevents from doing that and need to be cleared upfront.
509  */
510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
511 {
512 	struct ice_sw_recipe *recp;
513 	u8 i;
514 
515 	recp = pf->hw.switch_info->recp_list;
516 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
517 		recp[i].recp_created = false;
518 }
519 
520 /**
521  * ice_prepare_for_reset - prep for reset
522  * @pf: board private structure
523  * @reset_type: reset type requested
524  *
525  * Inform or close all dependent features in prep for reset.
526  */
527 static void
528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
529 {
530 	struct ice_hw *hw = &pf->hw;
531 	struct ice_vsi *vsi;
532 	struct ice_vf *vf;
533 	unsigned int bkt;
534 
535 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
536 
537 	/* already prepared for reset */
538 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
539 		return;
540 
541 	ice_unplug_aux_dev(pf);
542 
543 	/* Notify VFs of impending reset */
544 	if (ice_check_sq_alive(hw, &hw->mailboxq))
545 		ice_vc_notify_reset(pf);
546 
547 	/* Disable VFs until reset is completed */
548 	mutex_lock(&pf->vfs.table_lock);
549 	ice_for_each_vf(pf, bkt, vf)
550 		ice_set_vf_state_qs_dis(vf);
551 	mutex_unlock(&pf->vfs.table_lock);
552 
553 	if (ice_is_eswitch_mode_switchdev(pf)) {
554 		if (reset_type != ICE_RESET_PFR)
555 			ice_clear_sw_switch_recipes(pf);
556 	}
557 
558 	/* release ADQ specific HW and SW resources */
559 	vsi = ice_get_main_vsi(pf);
560 	if (!vsi)
561 		goto skip;
562 
563 	/* to be on safe side, reset orig_rss_size so that normal flow
564 	 * of deciding rss_size can take precedence
565 	 */
566 	vsi->orig_rss_size = 0;
567 
568 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
569 		if (reset_type == ICE_RESET_PFR) {
570 			vsi->old_ena_tc = vsi->all_enatc;
571 			vsi->old_numtc = vsi->all_numtc;
572 		} else {
573 			ice_remove_q_channels(vsi, true);
574 
575 			/* for other reset type, do not support channel rebuild
576 			 * hence reset needed info
577 			 */
578 			vsi->old_ena_tc = 0;
579 			vsi->all_enatc = 0;
580 			vsi->old_numtc = 0;
581 			vsi->all_numtc = 0;
582 			vsi->req_txq = 0;
583 			vsi->req_rxq = 0;
584 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
585 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
586 		}
587 	}
588 skip:
589 
590 	/* clear SW filtering DB */
591 	ice_clear_hw_tbls(hw);
592 	/* disable the VSIs and their queues that are not already DOWN */
593 	ice_pf_dis_all_vsi(pf, false);
594 
595 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
596 		ice_ptp_prepare_for_reset(pf);
597 
598 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
599 		ice_gnss_exit(pf);
600 
601 	if (hw->port_info)
602 		ice_sched_clear_port(hw->port_info);
603 
604 	ice_shutdown_all_ctrlq(hw);
605 
606 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
607 }
608 
609 /**
610  * ice_do_reset - Initiate one of many types of resets
611  * @pf: board private structure
612  * @reset_type: reset type requested before this function was called.
613  */
614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
615 {
616 	struct device *dev = ice_pf_to_dev(pf);
617 	struct ice_hw *hw = &pf->hw;
618 
619 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
620 
621 	ice_prepare_for_reset(pf, reset_type);
622 
623 	/* trigger the reset */
624 	if (ice_reset(hw, reset_type)) {
625 		dev_err(dev, "reset %d failed\n", reset_type);
626 		set_bit(ICE_RESET_FAILED, pf->state);
627 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
628 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
629 		clear_bit(ICE_PFR_REQ, pf->state);
630 		clear_bit(ICE_CORER_REQ, pf->state);
631 		clear_bit(ICE_GLOBR_REQ, pf->state);
632 		wake_up(&pf->reset_wait_queue);
633 		return;
634 	}
635 
636 	/* PFR is a bit of a special case because it doesn't result in an OICR
637 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
638 	 * associated state bits.
639 	 */
640 	if (reset_type == ICE_RESET_PFR) {
641 		pf->pfr_count++;
642 		ice_rebuild(pf, reset_type);
643 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
644 		clear_bit(ICE_PFR_REQ, pf->state);
645 		wake_up(&pf->reset_wait_queue);
646 		ice_reset_all_vfs(pf);
647 	}
648 }
649 
650 /**
651  * ice_reset_subtask - Set up for resetting the device and driver
652  * @pf: board private structure
653  */
654 static void ice_reset_subtask(struct ice_pf *pf)
655 {
656 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
657 
658 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
659 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
660 	 * of reset is pending and sets bits in pf->state indicating the reset
661 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
662 	 * prepare for pending reset if not already (for PF software-initiated
663 	 * global resets the software should already be prepared for it as
664 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
665 	 * by firmware or software on other PFs, that bit is not set so prepare
666 	 * for the reset now), poll for reset done, rebuild and return.
667 	 */
668 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
669 		/* Perform the largest reset requested */
670 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
671 			reset_type = ICE_RESET_CORER;
672 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
673 			reset_type = ICE_RESET_GLOBR;
674 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
675 			reset_type = ICE_RESET_EMPR;
676 		/* return if no valid reset type requested */
677 		if (reset_type == ICE_RESET_INVAL)
678 			return;
679 		ice_prepare_for_reset(pf, reset_type);
680 
681 		/* make sure we are ready to rebuild */
682 		if (ice_check_reset(&pf->hw)) {
683 			set_bit(ICE_RESET_FAILED, pf->state);
684 		} else {
685 			/* done with reset. start rebuild */
686 			pf->hw.reset_ongoing = false;
687 			ice_rebuild(pf, reset_type);
688 			/* clear bit to resume normal operations, but
689 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
690 			 */
691 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
692 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
693 			clear_bit(ICE_PFR_REQ, pf->state);
694 			clear_bit(ICE_CORER_REQ, pf->state);
695 			clear_bit(ICE_GLOBR_REQ, pf->state);
696 			wake_up(&pf->reset_wait_queue);
697 			ice_reset_all_vfs(pf);
698 		}
699 
700 		return;
701 	}
702 
703 	/* No pending resets to finish processing. Check for new resets */
704 	if (test_bit(ICE_PFR_REQ, pf->state))
705 		reset_type = ICE_RESET_PFR;
706 	if (test_bit(ICE_CORER_REQ, pf->state))
707 		reset_type = ICE_RESET_CORER;
708 	if (test_bit(ICE_GLOBR_REQ, pf->state))
709 		reset_type = ICE_RESET_GLOBR;
710 	/* If no valid reset type requested just return */
711 	if (reset_type == ICE_RESET_INVAL)
712 		return;
713 
714 	/* reset if not already down or busy */
715 	if (!test_bit(ICE_DOWN, pf->state) &&
716 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
717 		ice_do_reset(pf, reset_type);
718 	}
719 }
720 
721 /**
722  * ice_print_topo_conflict - print topology conflict message
723  * @vsi: the VSI whose topology status is being checked
724  */
725 static void ice_print_topo_conflict(struct ice_vsi *vsi)
726 {
727 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
728 	case ICE_AQ_LINK_TOPO_CONFLICT:
729 	case ICE_AQ_LINK_MEDIA_CONFLICT:
730 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
731 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
732 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
733 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
734 		break;
735 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
736 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
737 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
738 		else
739 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
740 		break;
741 	default:
742 		break;
743 	}
744 }
745 
746 /**
747  * ice_print_link_msg - print link up or down message
748  * @vsi: the VSI whose link status is being queried
749  * @isup: boolean for if the link is now up or down
750  */
751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
752 {
753 	struct ice_aqc_get_phy_caps_data *caps;
754 	const char *an_advertised;
755 	const char *fec_req;
756 	const char *speed;
757 	const char *fec;
758 	const char *fc;
759 	const char *an;
760 	int status;
761 
762 	if (!vsi)
763 		return;
764 
765 	if (vsi->current_isup == isup)
766 		return;
767 
768 	vsi->current_isup = isup;
769 
770 	if (!isup) {
771 		netdev_info(vsi->netdev, "NIC Link is Down\n");
772 		return;
773 	}
774 
775 	switch (vsi->port_info->phy.link_info.link_speed) {
776 	case ICE_AQ_LINK_SPEED_100GB:
777 		speed = "100 G";
778 		break;
779 	case ICE_AQ_LINK_SPEED_50GB:
780 		speed = "50 G";
781 		break;
782 	case ICE_AQ_LINK_SPEED_40GB:
783 		speed = "40 G";
784 		break;
785 	case ICE_AQ_LINK_SPEED_25GB:
786 		speed = "25 G";
787 		break;
788 	case ICE_AQ_LINK_SPEED_20GB:
789 		speed = "20 G";
790 		break;
791 	case ICE_AQ_LINK_SPEED_10GB:
792 		speed = "10 G";
793 		break;
794 	case ICE_AQ_LINK_SPEED_5GB:
795 		speed = "5 G";
796 		break;
797 	case ICE_AQ_LINK_SPEED_2500MB:
798 		speed = "2.5 G";
799 		break;
800 	case ICE_AQ_LINK_SPEED_1000MB:
801 		speed = "1 G";
802 		break;
803 	case ICE_AQ_LINK_SPEED_100MB:
804 		speed = "100 M";
805 		break;
806 	default:
807 		speed = "Unknown ";
808 		break;
809 	}
810 
811 	switch (vsi->port_info->fc.current_mode) {
812 	case ICE_FC_FULL:
813 		fc = "Rx/Tx";
814 		break;
815 	case ICE_FC_TX_PAUSE:
816 		fc = "Tx";
817 		break;
818 	case ICE_FC_RX_PAUSE:
819 		fc = "Rx";
820 		break;
821 	case ICE_FC_NONE:
822 		fc = "None";
823 		break;
824 	default:
825 		fc = "Unknown";
826 		break;
827 	}
828 
829 	/* Get FEC mode based on negotiated link info */
830 	switch (vsi->port_info->phy.link_info.fec_info) {
831 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
832 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
833 		fec = "RS-FEC";
834 		break;
835 	case ICE_AQ_LINK_25G_KR_FEC_EN:
836 		fec = "FC-FEC/BASE-R";
837 		break;
838 	default:
839 		fec = "NONE";
840 		break;
841 	}
842 
843 	/* check if autoneg completed, might be false due to not supported */
844 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
845 		an = "True";
846 	else
847 		an = "False";
848 
849 	/* Get FEC mode requested based on PHY caps last SW configuration */
850 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
851 	if (!caps) {
852 		fec_req = "Unknown";
853 		an_advertised = "Unknown";
854 		goto done;
855 	}
856 
857 	status = ice_aq_get_phy_caps(vsi->port_info, false,
858 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
859 	if (status)
860 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
861 
862 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
863 
864 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
865 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
866 		fec_req = "RS-FEC";
867 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
868 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
869 		fec_req = "FC-FEC/BASE-R";
870 	else
871 		fec_req = "NONE";
872 
873 	kfree(caps);
874 
875 done:
876 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
877 		    speed, fec_req, fec, an_advertised, an, fc);
878 	ice_print_topo_conflict(vsi);
879 }
880 
881 /**
882  * ice_vsi_link_event - update the VSI's netdev
883  * @vsi: the VSI on which the link event occurred
884  * @link_up: whether or not the VSI needs to be set up or down
885  */
886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
887 {
888 	if (!vsi)
889 		return;
890 
891 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
892 		return;
893 
894 	if (vsi->type == ICE_VSI_PF) {
895 		if (link_up == netif_carrier_ok(vsi->netdev))
896 			return;
897 
898 		if (link_up) {
899 			netif_carrier_on(vsi->netdev);
900 			netif_tx_wake_all_queues(vsi->netdev);
901 		} else {
902 			netif_carrier_off(vsi->netdev);
903 			netif_tx_stop_all_queues(vsi->netdev);
904 		}
905 	}
906 }
907 
908 /**
909  * ice_set_dflt_mib - send a default config MIB to the FW
910  * @pf: private PF struct
911  *
912  * This function sends a default configuration MIB to the FW.
913  *
914  * If this function errors out at any point, the driver is still able to
915  * function.  The main impact is that LFC may not operate as expected.
916  * Therefore an error state in this function should be treated with a DBG
917  * message and continue on with driver rebuild/reenable.
918  */
919 static void ice_set_dflt_mib(struct ice_pf *pf)
920 {
921 	struct device *dev = ice_pf_to_dev(pf);
922 	u8 mib_type, *buf, *lldpmib = NULL;
923 	u16 len, typelen, offset = 0;
924 	struct ice_lldp_org_tlv *tlv;
925 	struct ice_hw *hw = &pf->hw;
926 	u32 ouisubtype;
927 
928 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
929 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
930 	if (!lldpmib) {
931 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
932 			__func__);
933 		return;
934 	}
935 
936 	/* Add ETS CFG TLV */
937 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
938 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
939 		   ICE_IEEE_ETS_TLV_LEN);
940 	tlv->typelen = htons(typelen);
941 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
942 		      ICE_IEEE_SUBTYPE_ETS_CFG);
943 	tlv->ouisubtype = htonl(ouisubtype);
944 
945 	buf = tlv->tlvinfo;
946 	buf[0] = 0;
947 
948 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
949 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
950 	 * Octets 13 - 20 are TSA values - leave as zeros
951 	 */
952 	buf[5] = 0x64;
953 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
954 	offset += len + 2;
955 	tlv = (struct ice_lldp_org_tlv *)
956 		((char *)tlv + sizeof(tlv->typelen) + len);
957 
958 	/* Add ETS REC TLV */
959 	buf = tlv->tlvinfo;
960 	tlv->typelen = htons(typelen);
961 
962 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
963 		      ICE_IEEE_SUBTYPE_ETS_REC);
964 	tlv->ouisubtype = htonl(ouisubtype);
965 
966 	/* First octet of buf is reserved
967 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
968 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
969 	 * Octets 13 - 20 are TSA value - leave as zeros
970 	 */
971 	buf[5] = 0x64;
972 	offset += len + 2;
973 	tlv = (struct ice_lldp_org_tlv *)
974 		((char *)tlv + sizeof(tlv->typelen) + len);
975 
976 	/* Add PFC CFG TLV */
977 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
978 		   ICE_IEEE_PFC_TLV_LEN);
979 	tlv->typelen = htons(typelen);
980 
981 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
982 		      ICE_IEEE_SUBTYPE_PFC_CFG);
983 	tlv->ouisubtype = htonl(ouisubtype);
984 
985 	/* Octet 1 left as all zeros - PFC disabled */
986 	buf[0] = 0x08;
987 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
988 	offset += len + 2;
989 
990 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
991 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
992 
993 	kfree(lldpmib);
994 }
995 
996 /**
997  * ice_check_phy_fw_load - check if PHY FW load failed
998  * @pf: pointer to PF struct
999  * @link_cfg_err: bitmap from the link info structure
1000  *
1001  * check if external PHY FW load failed and print an error message if it did
1002  */
1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1004 {
1005 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1006 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 		return;
1008 	}
1009 
1010 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1011 		return;
1012 
1013 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1014 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1015 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1016 	}
1017 }
1018 
1019 /**
1020  * ice_check_module_power
1021  * @pf: pointer to PF struct
1022  * @link_cfg_err: bitmap from the link info structure
1023  *
1024  * check module power level returned by a previous call to aq_get_link_info
1025  * and print error messages if module power level is not supported
1026  */
1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 	/* if module power level is supported, clear the flag */
1030 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1031 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1032 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1033 		return;
1034 	}
1035 
1036 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1037 	 * above block didn't clear this bit, there's nothing to do
1038 	 */
1039 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1040 		return;
1041 
1042 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1043 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1044 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1045 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1046 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1047 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1048 	}
1049 }
1050 
1051 /**
1052  * ice_check_link_cfg_err - check if link configuration failed
1053  * @pf: pointer to the PF struct
1054  * @link_cfg_err: bitmap from the link info structure
1055  *
1056  * print if any link configuration failure happens due to the value in the
1057  * link_cfg_err parameter in the link info structure
1058  */
1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1060 {
1061 	ice_check_module_power(pf, link_cfg_err);
1062 	ice_check_phy_fw_load(pf, link_cfg_err);
1063 }
1064 
1065 /**
1066  * ice_link_event - process the link event
1067  * @pf: PF that the link event is associated with
1068  * @pi: port_info for the port that the link event is associated with
1069  * @link_up: true if the physical link is up and false if it is down
1070  * @link_speed: current link speed received from the link event
1071  *
1072  * Returns 0 on success and negative on failure
1073  */
1074 static int
1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1076 	       u16 link_speed)
1077 {
1078 	struct device *dev = ice_pf_to_dev(pf);
1079 	struct ice_phy_info *phy_info;
1080 	struct ice_vsi *vsi;
1081 	u16 old_link_speed;
1082 	bool old_link;
1083 	int status;
1084 
1085 	phy_info = &pi->phy;
1086 	phy_info->link_info_old = phy_info->link_info;
1087 
1088 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1089 	old_link_speed = phy_info->link_info_old.link_speed;
1090 
1091 	/* update the link info structures and re-enable link events,
1092 	 * don't bail on failure due to other book keeping needed
1093 	 */
1094 	status = ice_update_link_info(pi);
1095 	if (status)
1096 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1097 			pi->lport, status,
1098 			ice_aq_str(pi->hw->adminq.sq_last_status));
1099 
1100 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1101 
1102 	/* Check if the link state is up after updating link info, and treat
1103 	 * this event as an UP event since the link is actually UP now.
1104 	 */
1105 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1106 		link_up = true;
1107 
1108 	vsi = ice_get_main_vsi(pf);
1109 	if (!vsi || !vsi->port_info)
1110 		return -EINVAL;
1111 
1112 	/* turn off PHY if media was removed */
1113 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1114 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1115 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1116 		ice_set_link(vsi, false);
1117 	}
1118 
1119 	/* if the old link up/down and speed is the same as the new */
1120 	if (link_up == old_link && link_speed == old_link_speed)
1121 		return 0;
1122 
1123 	if (!ice_is_e810(&pf->hw))
1124 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1125 
1126 	if (ice_is_dcb_active(pf)) {
1127 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1128 			ice_dcb_rebuild(pf);
1129 	} else {
1130 		if (link_up)
1131 			ice_set_dflt_mib(pf);
1132 	}
1133 	ice_vsi_link_event(vsi, link_up);
1134 	ice_print_link_msg(vsi, link_up);
1135 
1136 	ice_vc_notify_link_state(pf);
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1143  * @pf: board private structure
1144  */
1145 static void ice_watchdog_subtask(struct ice_pf *pf)
1146 {
1147 	int i;
1148 
1149 	/* if interface is down do nothing */
1150 	if (test_bit(ICE_DOWN, pf->state) ||
1151 	    test_bit(ICE_CFG_BUSY, pf->state))
1152 		return;
1153 
1154 	/* make sure we don't do these things too often */
1155 	if (time_before(jiffies,
1156 			pf->serv_tmr_prev + pf->serv_tmr_period))
1157 		return;
1158 
1159 	pf->serv_tmr_prev = jiffies;
1160 
1161 	/* Update the stats for active netdevs so the network stack
1162 	 * can look at updated numbers whenever it cares to
1163 	 */
1164 	ice_update_pf_stats(pf);
1165 	ice_for_each_vsi(pf, i)
1166 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1167 			ice_update_vsi_stats(pf->vsi[i]);
1168 }
1169 
1170 /**
1171  * ice_init_link_events - enable/initialize link events
1172  * @pi: pointer to the port_info instance
1173  *
1174  * Returns -EIO on failure, 0 on success
1175  */
1176 static int ice_init_link_events(struct ice_port_info *pi)
1177 {
1178 	u16 mask;
1179 
1180 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1181 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1182 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1183 
1184 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1185 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1186 			pi->lport);
1187 		return -EIO;
1188 	}
1189 
1190 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1191 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1192 			pi->lport);
1193 		return -EIO;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * ice_handle_link_event - handle link event via ARQ
1201  * @pf: PF that the link event is associated with
1202  * @event: event structure containing link status info
1203  */
1204 static int
1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1206 {
1207 	struct ice_aqc_get_link_status_data *link_data;
1208 	struct ice_port_info *port_info;
1209 	int status;
1210 
1211 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1212 	port_info = pf->hw.port_info;
1213 	if (!port_info)
1214 		return -EINVAL;
1215 
1216 	status = ice_link_event(pf, port_info,
1217 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1218 				le16_to_cpu(link_data->link_speed));
1219 	if (status)
1220 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1221 			status);
1222 
1223 	return status;
1224 }
1225 
1226 enum ice_aq_task_state {
1227 	ICE_AQ_TASK_WAITING = 0,
1228 	ICE_AQ_TASK_COMPLETE,
1229 	ICE_AQ_TASK_CANCELED,
1230 };
1231 
1232 struct ice_aq_task {
1233 	struct hlist_node entry;
1234 
1235 	u16 opcode;
1236 	struct ice_rq_event_info *event;
1237 	enum ice_aq_task_state state;
1238 };
1239 
1240 /**
1241  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1242  * @pf: pointer to the PF private structure
1243  * @opcode: the opcode to wait for
1244  * @timeout: how long to wait, in jiffies
1245  * @event: storage for the event info
1246  *
1247  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1248  * current thread will be put to sleep until the specified event occurs or
1249  * until the given timeout is reached.
1250  *
1251  * To obtain only the descriptor contents, pass an event without an allocated
1252  * msg_buf. If the complete data buffer is desired, allocate the
1253  * event->msg_buf with enough space ahead of time.
1254  *
1255  * Returns: zero on success, or a negative error code on failure.
1256  */
1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1258 			  struct ice_rq_event_info *event)
1259 {
1260 	struct device *dev = ice_pf_to_dev(pf);
1261 	struct ice_aq_task *task;
1262 	unsigned long start;
1263 	long ret;
1264 	int err;
1265 
1266 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1267 	if (!task)
1268 		return -ENOMEM;
1269 
1270 	INIT_HLIST_NODE(&task->entry);
1271 	task->opcode = opcode;
1272 	task->event = event;
1273 	task->state = ICE_AQ_TASK_WAITING;
1274 
1275 	spin_lock_bh(&pf->aq_wait_lock);
1276 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1277 	spin_unlock_bh(&pf->aq_wait_lock);
1278 
1279 	start = jiffies;
1280 
1281 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1282 					       timeout);
1283 	switch (task->state) {
1284 	case ICE_AQ_TASK_WAITING:
1285 		err = ret < 0 ? ret : -ETIMEDOUT;
1286 		break;
1287 	case ICE_AQ_TASK_CANCELED:
1288 		err = ret < 0 ? ret : -ECANCELED;
1289 		break;
1290 	case ICE_AQ_TASK_COMPLETE:
1291 		err = ret < 0 ? ret : 0;
1292 		break;
1293 	default:
1294 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1295 		err = -EINVAL;
1296 		break;
1297 	}
1298 
1299 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1300 		jiffies_to_msecs(jiffies - start),
1301 		jiffies_to_msecs(timeout),
1302 		opcode);
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_del(&task->entry);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 	kfree(task);
1308 
1309 	return err;
1310 }
1311 
1312 /**
1313  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1314  * @pf: pointer to the PF private structure
1315  * @opcode: the opcode of the event
1316  * @event: the event to check
1317  *
1318  * Loops over the current list of pending threads waiting for an AdminQ event.
1319  * For each matching task, copy the contents of the event into the task
1320  * structure and wake up the thread.
1321  *
1322  * If multiple threads wait for the same opcode, they will all be woken up.
1323  *
1324  * Note that event->msg_buf will only be duplicated if the event has a buffer
1325  * with enough space already allocated. Otherwise, only the descriptor and
1326  * message length will be copied.
1327  *
1328  * Returns: true if an event was found, false otherwise
1329  */
1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1331 				struct ice_rq_event_info *event)
1332 {
1333 	struct ice_aq_task *task;
1334 	bool found = false;
1335 
1336 	spin_lock_bh(&pf->aq_wait_lock);
1337 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1338 		if (task->state || task->opcode != opcode)
1339 			continue;
1340 
1341 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1342 		task->event->msg_len = event->msg_len;
1343 
1344 		/* Only copy the data buffer if a destination was set */
1345 		if (task->event->msg_buf &&
1346 		    task->event->buf_len > event->buf_len) {
1347 			memcpy(task->event->msg_buf, event->msg_buf,
1348 			       event->buf_len);
1349 			task->event->buf_len = event->buf_len;
1350 		}
1351 
1352 		task->state = ICE_AQ_TASK_COMPLETE;
1353 		found = true;
1354 	}
1355 	spin_unlock_bh(&pf->aq_wait_lock);
1356 
1357 	if (found)
1358 		wake_up(&pf->aq_wait_queue);
1359 }
1360 
1361 /**
1362  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1363  * @pf: the PF private structure
1364  *
1365  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1366  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1367  */
1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1369 {
1370 	struct ice_aq_task *task;
1371 
1372 	spin_lock_bh(&pf->aq_wait_lock);
1373 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1374 		task->state = ICE_AQ_TASK_CANCELED;
1375 	spin_unlock_bh(&pf->aq_wait_lock);
1376 
1377 	wake_up(&pf->aq_wait_queue);
1378 }
1379 
1380 /**
1381  * __ice_clean_ctrlq - helper function to clean controlq rings
1382  * @pf: ptr to struct ice_pf
1383  * @q_type: specific Control queue type
1384  */
1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1386 {
1387 	struct device *dev = ice_pf_to_dev(pf);
1388 	struct ice_rq_event_info event;
1389 	struct ice_hw *hw = &pf->hw;
1390 	struct ice_ctl_q_info *cq;
1391 	u16 pending, i = 0;
1392 	const char *qtype;
1393 	u32 oldval, val;
1394 
1395 	/* Do not clean control queue if/when PF reset fails */
1396 	if (test_bit(ICE_RESET_FAILED, pf->state))
1397 		return 0;
1398 
1399 	switch (q_type) {
1400 	case ICE_CTL_Q_ADMIN:
1401 		cq = &hw->adminq;
1402 		qtype = "Admin";
1403 		break;
1404 	case ICE_CTL_Q_SB:
1405 		cq = &hw->sbq;
1406 		qtype = "Sideband";
1407 		break;
1408 	case ICE_CTL_Q_MAILBOX:
1409 		cq = &hw->mailboxq;
1410 		qtype = "Mailbox";
1411 		/* we are going to try to detect a malicious VF, so set the
1412 		 * state to begin detection
1413 		 */
1414 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1415 		break;
1416 	default:
1417 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1418 		return 0;
1419 	}
1420 
1421 	/* check for error indications - PF_xx_AxQLEN register layout for
1422 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1423 	 */
1424 	val = rd32(hw, cq->rq.len);
1425 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1426 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1427 		oldval = val;
1428 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1429 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1430 				qtype);
1431 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1432 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1433 				qtype);
1434 		}
1435 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1436 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1437 				qtype);
1438 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1439 			 PF_FW_ARQLEN_ARQCRIT_M);
1440 		if (oldval != val)
1441 			wr32(hw, cq->rq.len, val);
1442 	}
1443 
1444 	val = rd32(hw, cq->sq.len);
1445 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1446 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1447 		oldval = val;
1448 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1449 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1450 				qtype);
1451 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1452 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1453 				qtype);
1454 		}
1455 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1456 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1457 				qtype);
1458 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1459 			 PF_FW_ATQLEN_ATQCRIT_M);
1460 		if (oldval != val)
1461 			wr32(hw, cq->sq.len, val);
1462 	}
1463 
1464 	event.buf_len = cq->rq_buf_size;
1465 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1466 	if (!event.msg_buf)
1467 		return 0;
1468 
1469 	do {
1470 		u16 opcode;
1471 		int ret;
1472 
1473 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1474 		if (ret == -EALREADY)
1475 			break;
1476 		if (ret) {
1477 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1478 				ret);
1479 			break;
1480 		}
1481 
1482 		opcode = le16_to_cpu(event.desc.opcode);
1483 
1484 		/* Notify any thread that might be waiting for this event */
1485 		ice_aq_check_events(pf, opcode, &event);
1486 
1487 		switch (opcode) {
1488 		case ice_aqc_opc_get_link_status:
1489 			if (ice_handle_link_event(pf, &event))
1490 				dev_err(dev, "Could not handle link event\n");
1491 			break;
1492 		case ice_aqc_opc_event_lan_overflow:
1493 			ice_vf_lan_overflow_event(pf, &event);
1494 			break;
1495 		case ice_mbx_opc_send_msg_to_pf:
1496 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1497 				ice_vc_process_vf_msg(pf, &event);
1498 			break;
1499 		case ice_aqc_opc_fw_logging:
1500 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1501 			break;
1502 		case ice_aqc_opc_lldp_set_mib_change:
1503 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1504 			break;
1505 		default:
1506 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1507 				qtype, opcode);
1508 			break;
1509 		}
1510 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1511 
1512 	kfree(event.msg_buf);
1513 
1514 	return pending && (i == ICE_DFLT_IRQ_WORK);
1515 }
1516 
1517 /**
1518  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1519  * @hw: pointer to hardware info
1520  * @cq: control queue information
1521  *
1522  * returns true if there are pending messages in a queue, false if there aren't
1523  */
1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1525 {
1526 	u16 ntu;
1527 
1528 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1529 	return cq->rq.next_to_clean != ntu;
1530 }
1531 
1532 /**
1533  * ice_clean_adminq_subtask - clean the AdminQ rings
1534  * @pf: board private structure
1535  */
1536 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1537 {
1538 	struct ice_hw *hw = &pf->hw;
1539 
1540 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1541 		return;
1542 
1543 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1544 		return;
1545 
1546 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1547 
1548 	/* There might be a situation where new messages arrive to a control
1549 	 * queue between processing the last message and clearing the
1550 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1551 	 * ice_ctrlq_pending) and process new messages if any.
1552 	 */
1553 	if (ice_ctrlq_pending(hw, &hw->adminq))
1554 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1555 
1556 	ice_flush(hw);
1557 }
1558 
1559 /**
1560  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1561  * @pf: board private structure
1562  */
1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1564 {
1565 	struct ice_hw *hw = &pf->hw;
1566 
1567 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1568 		return;
1569 
1570 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1571 		return;
1572 
1573 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1574 
1575 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1576 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1577 
1578 	ice_flush(hw);
1579 }
1580 
1581 /**
1582  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1583  * @pf: board private structure
1584  */
1585 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1586 {
1587 	struct ice_hw *hw = &pf->hw;
1588 
1589 	/* Nothing to do here if sideband queue is not supported */
1590 	if (!ice_is_sbq_supported(hw)) {
1591 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 		return;
1593 	}
1594 
1595 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1596 		return;
1597 
1598 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1599 		return;
1600 
1601 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1602 
1603 	if (ice_ctrlq_pending(hw, &hw->sbq))
1604 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1605 
1606 	ice_flush(hw);
1607 }
1608 
1609 /**
1610  * ice_service_task_schedule - schedule the service task to wake up
1611  * @pf: board private structure
1612  *
1613  * If not already scheduled, this puts the task into the work queue.
1614  */
1615 void ice_service_task_schedule(struct ice_pf *pf)
1616 {
1617 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1618 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1619 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1620 		queue_work(ice_wq, &pf->serv_task);
1621 }
1622 
1623 /**
1624  * ice_service_task_complete - finish up the service task
1625  * @pf: board private structure
1626  */
1627 static void ice_service_task_complete(struct ice_pf *pf)
1628 {
1629 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1630 
1631 	/* force memory (pf->state) to sync before next service task */
1632 	smp_mb__before_atomic();
1633 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1634 }
1635 
1636 /**
1637  * ice_service_task_stop - stop service task and cancel works
1638  * @pf: board private structure
1639  *
1640  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1641  * 1 otherwise.
1642  */
1643 static int ice_service_task_stop(struct ice_pf *pf)
1644 {
1645 	int ret;
1646 
1647 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1648 
1649 	if (pf->serv_tmr.function)
1650 		del_timer_sync(&pf->serv_tmr);
1651 	if (pf->serv_task.func)
1652 		cancel_work_sync(&pf->serv_task);
1653 
1654 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1655 	return ret;
1656 }
1657 
1658 /**
1659  * ice_service_task_restart - restart service task and schedule works
1660  * @pf: board private structure
1661  *
1662  * This function is needed for suspend and resume works (e.g WoL scenario)
1663  */
1664 static void ice_service_task_restart(struct ice_pf *pf)
1665 {
1666 	clear_bit(ICE_SERVICE_DIS, pf->state);
1667 	ice_service_task_schedule(pf);
1668 }
1669 
1670 /**
1671  * ice_service_timer - timer callback to schedule service task
1672  * @t: pointer to timer_list
1673  */
1674 static void ice_service_timer(struct timer_list *t)
1675 {
1676 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1677 
1678 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1679 	ice_service_task_schedule(pf);
1680 }
1681 
1682 /**
1683  * ice_handle_mdd_event - handle malicious driver detect event
1684  * @pf: pointer to the PF structure
1685  *
1686  * Called from service task. OICR interrupt handler indicates MDD event.
1687  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1688  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1689  * disable the queue, the PF can be configured to reset the VF using ethtool
1690  * private flag mdd-auto-reset-vf.
1691  */
1692 static void ice_handle_mdd_event(struct ice_pf *pf)
1693 {
1694 	struct device *dev = ice_pf_to_dev(pf);
1695 	struct ice_hw *hw = &pf->hw;
1696 	struct ice_vf *vf;
1697 	unsigned int bkt;
1698 	u32 reg;
1699 
1700 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1701 		/* Since the VF MDD event logging is rate limited, check if
1702 		 * there are pending MDD events.
1703 		 */
1704 		ice_print_vfs_mdd_events(pf);
1705 		return;
1706 	}
1707 
1708 	/* find what triggered an MDD event */
1709 	reg = rd32(hw, GL_MDET_TX_PQM);
1710 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1711 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1712 				GL_MDET_TX_PQM_PF_NUM_S;
1713 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1714 				GL_MDET_TX_PQM_VF_NUM_S;
1715 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1716 				GL_MDET_TX_PQM_MAL_TYPE_S;
1717 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1718 				GL_MDET_TX_PQM_QNUM_S);
1719 
1720 		if (netif_msg_tx_err(pf))
1721 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1722 				 event, queue, pf_num, vf_num);
1723 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1724 	}
1725 
1726 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1727 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1728 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1729 				GL_MDET_TX_TCLAN_PF_NUM_S;
1730 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1731 				GL_MDET_TX_TCLAN_VF_NUM_S;
1732 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1733 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1734 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1735 				GL_MDET_TX_TCLAN_QNUM_S);
1736 
1737 		if (netif_msg_tx_err(pf))
1738 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1739 				 event, queue, pf_num, vf_num);
1740 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1741 	}
1742 
1743 	reg = rd32(hw, GL_MDET_RX);
1744 	if (reg & GL_MDET_RX_VALID_M) {
1745 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1746 				GL_MDET_RX_PF_NUM_S;
1747 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1748 				GL_MDET_RX_VF_NUM_S;
1749 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1750 				GL_MDET_RX_MAL_TYPE_S;
1751 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1752 				GL_MDET_RX_QNUM_S);
1753 
1754 		if (netif_msg_rx_err(pf))
1755 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1756 				 event, queue, pf_num, vf_num);
1757 		wr32(hw, GL_MDET_RX, 0xffffffff);
1758 	}
1759 
1760 	/* check to see if this PF caused an MDD event */
1761 	reg = rd32(hw, PF_MDET_TX_PQM);
1762 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1763 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1764 		if (netif_msg_tx_err(pf))
1765 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1766 	}
1767 
1768 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1769 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1770 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1771 		if (netif_msg_tx_err(pf))
1772 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1773 	}
1774 
1775 	reg = rd32(hw, PF_MDET_RX);
1776 	if (reg & PF_MDET_RX_VALID_M) {
1777 		wr32(hw, PF_MDET_RX, 0xFFFF);
1778 		if (netif_msg_rx_err(pf))
1779 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1780 	}
1781 
1782 	/* Check to see if one of the VFs caused an MDD event, and then
1783 	 * increment counters and set print pending
1784 	 */
1785 	mutex_lock(&pf->vfs.table_lock);
1786 	ice_for_each_vf(pf, bkt, vf) {
1787 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1788 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1789 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1790 			vf->mdd_tx_events.count++;
1791 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 			if (netif_msg_tx_err(pf))
1793 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1794 					 vf->vf_id);
1795 		}
1796 
1797 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1798 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1799 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1800 			vf->mdd_tx_events.count++;
1801 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 			if (netif_msg_tx_err(pf))
1803 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1804 					 vf->vf_id);
1805 		}
1806 
1807 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1808 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1809 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1810 			vf->mdd_tx_events.count++;
1811 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 			if (netif_msg_tx_err(pf))
1813 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1814 					 vf->vf_id);
1815 		}
1816 
1817 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1818 		if (reg & VP_MDET_RX_VALID_M) {
1819 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1820 			vf->mdd_rx_events.count++;
1821 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1822 			if (netif_msg_rx_err(pf))
1823 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1824 					 vf->vf_id);
1825 
1826 			/* Since the queue is disabled on VF Rx MDD events, the
1827 			 * PF can be configured to reset the VF through ethtool
1828 			 * private flag mdd-auto-reset-vf.
1829 			 */
1830 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1831 				/* VF MDD event counters will be cleared by
1832 				 * reset, so print the event prior to reset.
1833 				 */
1834 				ice_print_vf_rx_mdd_event(vf);
1835 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1836 			}
1837 		}
1838 	}
1839 	mutex_unlock(&pf->vfs.table_lock);
1840 
1841 	ice_print_vfs_mdd_events(pf);
1842 }
1843 
1844 /**
1845  * ice_force_phys_link_state - Force the physical link state
1846  * @vsi: VSI to force the physical link state to up/down
1847  * @link_up: true/false indicates to set the physical link to up/down
1848  *
1849  * Force the physical link state by getting the current PHY capabilities from
1850  * hardware and setting the PHY config based on the determined capabilities. If
1851  * link changes a link event will be triggered because both the Enable Automatic
1852  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1853  *
1854  * Returns 0 on success, negative on failure
1855  */
1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1857 {
1858 	struct ice_aqc_get_phy_caps_data *pcaps;
1859 	struct ice_aqc_set_phy_cfg_data *cfg;
1860 	struct ice_port_info *pi;
1861 	struct device *dev;
1862 	int retcode;
1863 
1864 	if (!vsi || !vsi->port_info || !vsi->back)
1865 		return -EINVAL;
1866 	if (vsi->type != ICE_VSI_PF)
1867 		return 0;
1868 
1869 	dev = ice_pf_to_dev(vsi->back);
1870 
1871 	pi = vsi->port_info;
1872 
1873 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1874 	if (!pcaps)
1875 		return -ENOMEM;
1876 
1877 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1878 				      NULL);
1879 	if (retcode) {
1880 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1881 			vsi->vsi_num, retcode);
1882 		retcode = -EIO;
1883 		goto out;
1884 	}
1885 
1886 	/* No change in link */
1887 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1888 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1889 		goto out;
1890 
1891 	/* Use the current user PHY configuration. The current user PHY
1892 	 * configuration is initialized during probe from PHY capabilities
1893 	 * software mode, and updated on set PHY configuration.
1894 	 */
1895 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1896 	if (!cfg) {
1897 		retcode = -ENOMEM;
1898 		goto out;
1899 	}
1900 
1901 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1902 	if (link_up)
1903 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1904 	else
1905 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1906 
1907 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1908 	if (retcode) {
1909 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1910 			vsi->vsi_num, retcode);
1911 		retcode = -EIO;
1912 	}
1913 
1914 	kfree(cfg);
1915 out:
1916 	kfree(pcaps);
1917 	return retcode;
1918 }
1919 
1920 /**
1921  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1922  * @pi: port info structure
1923  *
1924  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1925  */
1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1927 {
1928 	struct ice_aqc_get_phy_caps_data *pcaps;
1929 	struct ice_pf *pf = pi->hw->back;
1930 	int err;
1931 
1932 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1933 	if (!pcaps)
1934 		return -ENOMEM;
1935 
1936 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1937 				  pcaps, NULL);
1938 
1939 	if (err) {
1940 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1941 		goto out;
1942 	}
1943 
1944 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1945 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1946 
1947 out:
1948 	kfree(pcaps);
1949 	return err;
1950 }
1951 
1952 /**
1953  * ice_init_link_dflt_override - Initialize link default override
1954  * @pi: port info structure
1955  *
1956  * Initialize link default override and PHY total port shutdown during probe
1957  */
1958 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1959 {
1960 	struct ice_link_default_override_tlv *ldo;
1961 	struct ice_pf *pf = pi->hw->back;
1962 
1963 	ldo = &pf->link_dflt_override;
1964 	if (ice_get_link_default_override(ldo, pi))
1965 		return;
1966 
1967 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1968 		return;
1969 
1970 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1971 	 * ethtool private flag) for ports with Port Disable bit set.
1972 	 */
1973 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1974 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1975 }
1976 
1977 /**
1978  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1979  * @pi: port info structure
1980  *
1981  * If default override is enabled, initialize the user PHY cfg speed and FEC
1982  * settings using the default override mask from the NVM.
1983  *
1984  * The PHY should only be configured with the default override settings the
1985  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1986  * is used to indicate that the user PHY cfg default override is initialized
1987  * and the PHY has not been configured with the default override settings. The
1988  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1989  * configured.
1990  *
1991  * This function should be called only if the FW doesn't support default
1992  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1993  */
1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1995 {
1996 	struct ice_link_default_override_tlv *ldo;
1997 	struct ice_aqc_set_phy_cfg_data *cfg;
1998 	struct ice_phy_info *phy = &pi->phy;
1999 	struct ice_pf *pf = pi->hw->back;
2000 
2001 	ldo = &pf->link_dflt_override;
2002 
2003 	/* If link default override is enabled, use to mask NVM PHY capabilities
2004 	 * for speed and FEC default configuration.
2005 	 */
2006 	cfg = &phy->curr_user_phy_cfg;
2007 
2008 	if (ldo->phy_type_low || ldo->phy_type_high) {
2009 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2010 				    cpu_to_le64(ldo->phy_type_low);
2011 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2012 				     cpu_to_le64(ldo->phy_type_high);
2013 	}
2014 	cfg->link_fec_opt = ldo->fec_options;
2015 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2016 
2017 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2018 }
2019 
2020 /**
2021  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2022  * @pi: port info structure
2023  *
2024  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2025  * mode to default. The PHY defaults are from get PHY capabilities topology
2026  * with media so call when media is first available. An error is returned if
2027  * called when media is not available. The PHY initialization completed state is
2028  * set here.
2029  *
2030  * These configurations are used when setting PHY
2031  * configuration. The user PHY configuration is updated on set PHY
2032  * configuration. Returns 0 on success, negative on failure
2033  */
2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2035 {
2036 	struct ice_aqc_get_phy_caps_data *pcaps;
2037 	struct ice_phy_info *phy = &pi->phy;
2038 	struct ice_pf *pf = pi->hw->back;
2039 	int err;
2040 
2041 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2042 		return -EIO;
2043 
2044 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2045 	if (!pcaps)
2046 		return -ENOMEM;
2047 
2048 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2049 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2050 					  pcaps, NULL);
2051 	else
2052 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2053 					  pcaps, NULL);
2054 	if (err) {
2055 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2056 		goto err_out;
2057 	}
2058 
2059 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2060 
2061 	/* check if lenient mode is supported and enabled */
2062 	if (ice_fw_supports_link_override(pi->hw) &&
2063 	    !(pcaps->module_compliance_enforcement &
2064 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2065 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2066 
2067 		/* if the FW supports default PHY configuration mode, then the driver
2068 		 * does not have to apply link override settings. If not,
2069 		 * initialize user PHY configuration with link override values
2070 		 */
2071 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2072 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2073 			ice_init_phy_cfg_dflt_override(pi);
2074 			goto out;
2075 		}
2076 	}
2077 
2078 	/* if link default override is not enabled, set user flow control and
2079 	 * FEC settings based on what get_phy_caps returned
2080 	 */
2081 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2082 						      pcaps->link_fec_options);
2083 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2084 
2085 out:
2086 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2087 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2088 err_out:
2089 	kfree(pcaps);
2090 	return err;
2091 }
2092 
2093 /**
2094  * ice_configure_phy - configure PHY
2095  * @vsi: VSI of PHY
2096  *
2097  * Set the PHY configuration. If the current PHY configuration is the same as
2098  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2099  * configure the based get PHY capabilities for topology with media.
2100  */
2101 static int ice_configure_phy(struct ice_vsi *vsi)
2102 {
2103 	struct device *dev = ice_pf_to_dev(vsi->back);
2104 	struct ice_port_info *pi = vsi->port_info;
2105 	struct ice_aqc_get_phy_caps_data *pcaps;
2106 	struct ice_aqc_set_phy_cfg_data *cfg;
2107 	struct ice_phy_info *phy = &pi->phy;
2108 	struct ice_pf *pf = vsi->back;
2109 	int err;
2110 
2111 	/* Ensure we have media as we cannot configure a medialess port */
2112 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2113 		return -EPERM;
2114 
2115 	ice_print_topo_conflict(vsi);
2116 
2117 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2118 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2119 		return -EPERM;
2120 
2121 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2122 		return ice_force_phys_link_state(vsi, true);
2123 
2124 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2125 	if (!pcaps)
2126 		return -ENOMEM;
2127 
2128 	/* Get current PHY config */
2129 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2130 				  NULL);
2131 	if (err) {
2132 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2133 			vsi->vsi_num, err);
2134 		goto done;
2135 	}
2136 
2137 	/* If PHY enable link is configured and configuration has not changed,
2138 	 * there's nothing to do
2139 	 */
2140 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2141 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2142 		goto done;
2143 
2144 	/* Use PHY topology as baseline for configuration */
2145 	memset(pcaps, 0, sizeof(*pcaps));
2146 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2147 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2148 					  pcaps, NULL);
2149 	else
2150 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2151 					  pcaps, NULL);
2152 	if (err) {
2153 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2154 			vsi->vsi_num, err);
2155 		goto done;
2156 	}
2157 
2158 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2159 	if (!cfg) {
2160 		err = -ENOMEM;
2161 		goto done;
2162 	}
2163 
2164 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2165 
2166 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2167 	 * ice_init_phy_user_cfg_ldo.
2168 	 */
2169 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2170 			       vsi->back->state)) {
2171 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2172 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2173 	} else {
2174 		u64 phy_low = 0, phy_high = 0;
2175 
2176 		ice_update_phy_type(&phy_low, &phy_high,
2177 				    pi->phy.curr_user_speed_req);
2178 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2179 		cfg->phy_type_high = pcaps->phy_type_high &
2180 				     cpu_to_le64(phy_high);
2181 	}
2182 
2183 	/* Can't provide what was requested; use PHY capabilities */
2184 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2185 		cfg->phy_type_low = pcaps->phy_type_low;
2186 		cfg->phy_type_high = pcaps->phy_type_high;
2187 	}
2188 
2189 	/* FEC */
2190 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2191 
2192 	/* Can't provide what was requested; use PHY capabilities */
2193 	if (cfg->link_fec_opt !=
2194 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2195 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2196 		cfg->link_fec_opt = pcaps->link_fec_options;
2197 	}
2198 
2199 	/* Flow Control - always supported; no need to check against
2200 	 * capabilities
2201 	 */
2202 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2203 
2204 	/* Enable link and link update */
2205 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2206 
2207 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2208 	if (err)
2209 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2210 			vsi->vsi_num, err);
2211 
2212 	kfree(cfg);
2213 done:
2214 	kfree(pcaps);
2215 	return err;
2216 }
2217 
2218 /**
2219  * ice_check_media_subtask - Check for media
2220  * @pf: pointer to PF struct
2221  *
2222  * If media is available, then initialize PHY user configuration if it is not
2223  * been, and configure the PHY if the interface is up.
2224  */
2225 static void ice_check_media_subtask(struct ice_pf *pf)
2226 {
2227 	struct ice_port_info *pi;
2228 	struct ice_vsi *vsi;
2229 	int err;
2230 
2231 	/* No need to check for media if it's already present */
2232 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2233 		return;
2234 
2235 	vsi = ice_get_main_vsi(pf);
2236 	if (!vsi)
2237 		return;
2238 
2239 	/* Refresh link info and check if media is present */
2240 	pi = vsi->port_info;
2241 	err = ice_update_link_info(pi);
2242 	if (err)
2243 		return;
2244 
2245 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2246 
2247 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2248 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2249 			ice_init_phy_user_cfg(pi);
2250 
2251 		/* PHY settings are reset on media insertion, reconfigure
2252 		 * PHY to preserve settings.
2253 		 */
2254 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2255 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2256 			return;
2257 
2258 		err = ice_configure_phy(vsi);
2259 		if (!err)
2260 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2261 
2262 		/* A Link Status Event will be generated; the event handler
2263 		 * will complete bringing the interface up
2264 		 */
2265 	}
2266 }
2267 
2268 /**
2269  * ice_service_task - manage and run subtasks
2270  * @work: pointer to work_struct contained by the PF struct
2271  */
2272 static void ice_service_task(struct work_struct *work)
2273 {
2274 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2275 	unsigned long start_time = jiffies;
2276 
2277 	/* subtasks */
2278 
2279 	/* process reset requests first */
2280 	ice_reset_subtask(pf);
2281 
2282 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2283 	if (ice_is_reset_in_progress(pf->state) ||
2284 	    test_bit(ICE_SUSPENDED, pf->state) ||
2285 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2286 		ice_service_task_complete(pf);
2287 		return;
2288 	}
2289 
2290 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2291 		struct iidc_event *event;
2292 
2293 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2294 		if (event) {
2295 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2296 			/* report the entire OICR value to AUX driver */
2297 			swap(event->reg, pf->oicr_err_reg);
2298 			ice_send_event_to_aux(pf, event);
2299 			kfree(event);
2300 		}
2301 	}
2302 
2303 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2304 		/* Plug aux device per request */
2305 		ice_plug_aux_dev(pf);
2306 
2307 		/* Mark plugging as done but check whether unplug was
2308 		 * requested during ice_plug_aux_dev() call
2309 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2310 		 * plug aux device.
2311 		 */
2312 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2313 			ice_unplug_aux_dev(pf);
2314 	}
2315 
2316 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2317 		struct iidc_event *event;
2318 
2319 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2320 		if (event) {
2321 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2322 			ice_send_event_to_aux(pf, event);
2323 			kfree(event);
2324 		}
2325 	}
2326 
2327 	ice_clean_adminq_subtask(pf);
2328 	ice_check_media_subtask(pf);
2329 	ice_check_for_hang_subtask(pf);
2330 	ice_sync_fltr_subtask(pf);
2331 	ice_handle_mdd_event(pf);
2332 	ice_watchdog_subtask(pf);
2333 
2334 	if (ice_is_safe_mode(pf)) {
2335 		ice_service_task_complete(pf);
2336 		return;
2337 	}
2338 
2339 	ice_process_vflr_event(pf);
2340 	ice_clean_mailboxq_subtask(pf);
2341 	ice_clean_sbq_subtask(pf);
2342 	ice_sync_arfs_fltrs(pf);
2343 	ice_flush_fdir_ctx(pf);
2344 
2345 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2346 	ice_service_task_complete(pf);
2347 
2348 	/* If the tasks have taken longer than one service timer period
2349 	 * or there is more work to be done, reset the service timer to
2350 	 * schedule the service task now.
2351 	 */
2352 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2353 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2354 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2355 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2356 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2357 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2358 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2359 		mod_timer(&pf->serv_tmr, jiffies);
2360 }
2361 
2362 /**
2363  * ice_set_ctrlq_len - helper function to set controlq length
2364  * @hw: pointer to the HW instance
2365  */
2366 static void ice_set_ctrlq_len(struct ice_hw *hw)
2367 {
2368 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2369 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2370 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2371 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2372 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2373 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2374 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2375 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2376 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2377 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2378 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2379 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2380 }
2381 
2382 /**
2383  * ice_schedule_reset - schedule a reset
2384  * @pf: board private structure
2385  * @reset: reset being requested
2386  */
2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2388 {
2389 	struct device *dev = ice_pf_to_dev(pf);
2390 
2391 	/* bail out if earlier reset has failed */
2392 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2393 		dev_dbg(dev, "earlier reset has failed\n");
2394 		return -EIO;
2395 	}
2396 	/* bail if reset/recovery already in progress */
2397 	if (ice_is_reset_in_progress(pf->state)) {
2398 		dev_dbg(dev, "Reset already in progress\n");
2399 		return -EBUSY;
2400 	}
2401 
2402 	ice_unplug_aux_dev(pf);
2403 
2404 	switch (reset) {
2405 	case ICE_RESET_PFR:
2406 		set_bit(ICE_PFR_REQ, pf->state);
2407 		break;
2408 	case ICE_RESET_CORER:
2409 		set_bit(ICE_CORER_REQ, pf->state);
2410 		break;
2411 	case ICE_RESET_GLOBR:
2412 		set_bit(ICE_GLOBR_REQ, pf->state);
2413 		break;
2414 	default:
2415 		return -EINVAL;
2416 	}
2417 
2418 	ice_service_task_schedule(pf);
2419 	return 0;
2420 }
2421 
2422 /**
2423  * ice_irq_affinity_notify - Callback for affinity changes
2424  * @notify: context as to what irq was changed
2425  * @mask: the new affinity mask
2426  *
2427  * This is a callback function used by the irq_set_affinity_notifier function
2428  * so that we may register to receive changes to the irq affinity masks.
2429  */
2430 static void
2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2432 			const cpumask_t *mask)
2433 {
2434 	struct ice_q_vector *q_vector =
2435 		container_of(notify, struct ice_q_vector, affinity_notify);
2436 
2437 	cpumask_copy(&q_vector->affinity_mask, mask);
2438 }
2439 
2440 /**
2441  * ice_irq_affinity_release - Callback for affinity notifier release
2442  * @ref: internal core kernel usage
2443  *
2444  * This is a callback function used by the irq_set_affinity_notifier function
2445  * to inform the current notification subscriber that they will no longer
2446  * receive notifications.
2447  */
2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2449 
2450 /**
2451  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2452  * @vsi: the VSI being configured
2453  */
2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2455 {
2456 	struct ice_hw *hw = &vsi->back->hw;
2457 	int i;
2458 
2459 	ice_for_each_q_vector(vsi, i)
2460 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2461 
2462 	ice_flush(hw);
2463 	return 0;
2464 }
2465 
2466 /**
2467  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2468  * @vsi: the VSI being configured
2469  * @basename: name for the vector
2470  */
2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2472 {
2473 	int q_vectors = vsi->num_q_vectors;
2474 	struct ice_pf *pf = vsi->back;
2475 	int base = vsi->base_vector;
2476 	struct device *dev;
2477 	int rx_int_idx = 0;
2478 	int tx_int_idx = 0;
2479 	int vector, err;
2480 	int irq_num;
2481 
2482 	dev = ice_pf_to_dev(pf);
2483 	for (vector = 0; vector < q_vectors; vector++) {
2484 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2485 
2486 		irq_num = pf->msix_entries[base + vector].vector;
2487 
2488 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2489 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2490 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2491 			tx_int_idx++;
2492 		} else if (q_vector->rx.rx_ring) {
2493 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2494 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2495 		} else if (q_vector->tx.tx_ring) {
2496 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2497 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2498 		} else {
2499 			/* skip this unused q_vector */
2500 			continue;
2501 		}
2502 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2503 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2504 					       IRQF_SHARED, q_vector->name,
2505 					       q_vector);
2506 		else
2507 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2508 					       0, q_vector->name, q_vector);
2509 		if (err) {
2510 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2511 				   err);
2512 			goto free_q_irqs;
2513 		}
2514 
2515 		/* register for affinity change notifications */
2516 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2517 			struct irq_affinity_notify *affinity_notify;
2518 
2519 			affinity_notify = &q_vector->affinity_notify;
2520 			affinity_notify->notify = ice_irq_affinity_notify;
2521 			affinity_notify->release = ice_irq_affinity_release;
2522 			irq_set_affinity_notifier(irq_num, affinity_notify);
2523 		}
2524 
2525 		/* assign the mask for this irq */
2526 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2527 	}
2528 
2529 	err = ice_set_cpu_rx_rmap(vsi);
2530 	if (err) {
2531 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2532 			   vsi->vsi_num, ERR_PTR(err));
2533 		goto free_q_irqs;
2534 	}
2535 
2536 	vsi->irqs_ready = true;
2537 	return 0;
2538 
2539 free_q_irqs:
2540 	while (vector) {
2541 		vector--;
2542 		irq_num = pf->msix_entries[base + vector].vector;
2543 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2544 			irq_set_affinity_notifier(irq_num, NULL);
2545 		irq_set_affinity_hint(irq_num, NULL);
2546 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2547 	}
2548 	return err;
2549 }
2550 
2551 /**
2552  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2553  * @vsi: VSI to setup Tx rings used by XDP
2554  *
2555  * Return 0 on success and negative value on error
2556  */
2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2558 {
2559 	struct device *dev = ice_pf_to_dev(vsi->back);
2560 	struct ice_tx_desc *tx_desc;
2561 	int i, j;
2562 
2563 	ice_for_each_xdp_txq(vsi, i) {
2564 		u16 xdp_q_idx = vsi->alloc_txq + i;
2565 		struct ice_tx_ring *xdp_ring;
2566 
2567 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2568 
2569 		if (!xdp_ring)
2570 			goto free_xdp_rings;
2571 
2572 		xdp_ring->q_index = xdp_q_idx;
2573 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2574 		xdp_ring->vsi = vsi;
2575 		xdp_ring->netdev = NULL;
2576 		xdp_ring->dev = dev;
2577 		xdp_ring->count = vsi->num_tx_desc;
2578 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2579 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2580 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2581 		if (ice_setup_tx_ring(xdp_ring))
2582 			goto free_xdp_rings;
2583 		ice_set_ring_xdp(xdp_ring);
2584 		spin_lock_init(&xdp_ring->tx_lock);
2585 		for (j = 0; j < xdp_ring->count; j++) {
2586 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2587 			tx_desc->cmd_type_offset_bsz = 0;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 
2593 free_xdp_rings:
2594 	for (; i >= 0; i--)
2595 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2596 			ice_free_tx_ring(vsi->xdp_rings[i]);
2597 	return -ENOMEM;
2598 }
2599 
2600 /**
2601  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2602  * @vsi: VSI to set the bpf prog on
2603  * @prog: the bpf prog pointer
2604  */
2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2606 {
2607 	struct bpf_prog *old_prog;
2608 	int i;
2609 
2610 	old_prog = xchg(&vsi->xdp_prog, prog);
2611 	if (old_prog)
2612 		bpf_prog_put(old_prog);
2613 
2614 	ice_for_each_rxq(vsi, i)
2615 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2616 }
2617 
2618 /**
2619  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2620  * @vsi: VSI to bring up Tx rings used by XDP
2621  * @prog: bpf program that will be assigned to VSI
2622  *
2623  * Return 0 on success and negative value on error
2624  */
2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2626 {
2627 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2628 	int xdp_rings_rem = vsi->num_xdp_txq;
2629 	struct ice_pf *pf = vsi->back;
2630 	struct ice_qs_cfg xdp_qs_cfg = {
2631 		.qs_mutex = &pf->avail_q_mutex,
2632 		.pf_map = pf->avail_txqs,
2633 		.pf_map_size = pf->max_pf_txqs,
2634 		.q_count = vsi->num_xdp_txq,
2635 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2636 		.vsi_map = vsi->txq_map,
2637 		.vsi_map_offset = vsi->alloc_txq,
2638 		.mapping_mode = ICE_VSI_MAP_CONTIG
2639 	};
2640 	struct device *dev;
2641 	int i, v_idx;
2642 	int status;
2643 
2644 	dev = ice_pf_to_dev(pf);
2645 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2646 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2647 	if (!vsi->xdp_rings)
2648 		return -ENOMEM;
2649 
2650 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2651 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2652 		goto err_map_xdp;
2653 
2654 	if (static_key_enabled(&ice_xdp_locking_key))
2655 		netdev_warn(vsi->netdev,
2656 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2657 
2658 	if (ice_xdp_alloc_setup_rings(vsi))
2659 		goto clear_xdp_rings;
2660 
2661 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2662 	ice_for_each_q_vector(vsi, v_idx) {
2663 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2664 		int xdp_rings_per_v, q_id, q_base;
2665 
2666 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2667 					       vsi->num_q_vectors - v_idx);
2668 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2669 
2670 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2671 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2672 
2673 			xdp_ring->q_vector = q_vector;
2674 			xdp_ring->next = q_vector->tx.tx_ring;
2675 			q_vector->tx.tx_ring = xdp_ring;
2676 		}
2677 		xdp_rings_rem -= xdp_rings_per_v;
2678 	}
2679 
2680 	ice_for_each_rxq(vsi, i) {
2681 		if (static_key_enabled(&ice_xdp_locking_key)) {
2682 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2683 		} else {
2684 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2685 			struct ice_tx_ring *ring;
2686 
2687 			ice_for_each_tx_ring(ring, q_vector->tx) {
2688 				if (ice_ring_is_xdp(ring)) {
2689 					vsi->rx_rings[i]->xdp_ring = ring;
2690 					break;
2691 				}
2692 			}
2693 		}
2694 		ice_tx_xsk_pool(vsi, i);
2695 	}
2696 
2697 	/* omit the scheduler update if in reset path; XDP queues will be
2698 	 * taken into account at the end of ice_vsi_rebuild, where
2699 	 * ice_cfg_vsi_lan is being called
2700 	 */
2701 	if (ice_is_reset_in_progress(pf->state))
2702 		return 0;
2703 
2704 	/* tell the Tx scheduler that right now we have
2705 	 * additional queues
2706 	 */
2707 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2708 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2709 
2710 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2711 				 max_txqs);
2712 	if (status) {
2713 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2714 			status);
2715 		goto clear_xdp_rings;
2716 	}
2717 
2718 	/* assign the prog only when it's not already present on VSI;
2719 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2720 	 * VSI rebuild that happens under ethtool -L can expose us to
2721 	 * the bpf_prog refcount issues as we would be swapping same
2722 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2723 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2724 	 * this is not harmful as dev_xdp_install bumps the refcount
2725 	 * before calling the op exposed by the driver;
2726 	 */
2727 	if (!ice_is_xdp_ena_vsi(vsi))
2728 		ice_vsi_assign_bpf_prog(vsi, prog);
2729 
2730 	return 0;
2731 clear_xdp_rings:
2732 	ice_for_each_xdp_txq(vsi, i)
2733 		if (vsi->xdp_rings[i]) {
2734 			kfree_rcu(vsi->xdp_rings[i], rcu);
2735 			vsi->xdp_rings[i] = NULL;
2736 		}
2737 
2738 err_map_xdp:
2739 	mutex_lock(&pf->avail_q_mutex);
2740 	ice_for_each_xdp_txq(vsi, i) {
2741 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2742 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2743 	}
2744 	mutex_unlock(&pf->avail_q_mutex);
2745 
2746 	devm_kfree(dev, vsi->xdp_rings);
2747 	return -ENOMEM;
2748 }
2749 
2750 /**
2751  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2752  * @vsi: VSI to remove XDP rings
2753  *
2754  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2755  * resources
2756  */
2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2758 {
2759 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2760 	struct ice_pf *pf = vsi->back;
2761 	int i, v_idx;
2762 
2763 	/* q_vectors are freed in reset path so there's no point in detaching
2764 	 * rings; in case of rebuild being triggered not from reset bits
2765 	 * in pf->state won't be set, so additionally check first q_vector
2766 	 * against NULL
2767 	 */
2768 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2769 		goto free_qmap;
2770 
2771 	ice_for_each_q_vector(vsi, v_idx) {
2772 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2773 		struct ice_tx_ring *ring;
2774 
2775 		ice_for_each_tx_ring(ring, q_vector->tx)
2776 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2777 				break;
2778 
2779 		/* restore the value of last node prior to XDP setup */
2780 		q_vector->tx.tx_ring = ring;
2781 	}
2782 
2783 free_qmap:
2784 	mutex_lock(&pf->avail_q_mutex);
2785 	ice_for_each_xdp_txq(vsi, i) {
2786 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2787 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2788 	}
2789 	mutex_unlock(&pf->avail_q_mutex);
2790 
2791 	ice_for_each_xdp_txq(vsi, i)
2792 		if (vsi->xdp_rings[i]) {
2793 			if (vsi->xdp_rings[i]->desc) {
2794 				synchronize_rcu();
2795 				ice_free_tx_ring(vsi->xdp_rings[i]);
2796 			}
2797 			kfree_rcu(vsi->xdp_rings[i], rcu);
2798 			vsi->xdp_rings[i] = NULL;
2799 		}
2800 
2801 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2802 	vsi->xdp_rings = NULL;
2803 
2804 	if (static_key_enabled(&ice_xdp_locking_key))
2805 		static_branch_dec(&ice_xdp_locking_key);
2806 
2807 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2808 		return 0;
2809 
2810 	ice_vsi_assign_bpf_prog(vsi, NULL);
2811 
2812 	/* notify Tx scheduler that we destroyed XDP queues and bring
2813 	 * back the old number of child nodes
2814 	 */
2815 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2816 		max_txqs[i] = vsi->num_txq;
2817 
2818 	/* change number of XDP Tx queues to 0 */
2819 	vsi->num_xdp_txq = 0;
2820 
2821 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2822 			       max_txqs);
2823 }
2824 
2825 /**
2826  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2827  * @vsi: VSI to schedule napi on
2828  */
2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2830 {
2831 	int i;
2832 
2833 	ice_for_each_rxq(vsi, i) {
2834 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2835 
2836 		if (rx_ring->xsk_pool)
2837 			napi_schedule(&rx_ring->q_vector->napi);
2838 	}
2839 }
2840 
2841 /**
2842  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2843  * @vsi: VSI to determine the count of XDP Tx qs
2844  *
2845  * returns 0 if Tx qs count is higher than at least half of CPU count,
2846  * -ENOMEM otherwise
2847  */
2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2849 {
2850 	u16 avail = ice_get_avail_txq_count(vsi->back);
2851 	u16 cpus = num_possible_cpus();
2852 
2853 	if (avail < cpus / 2)
2854 		return -ENOMEM;
2855 
2856 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2857 
2858 	if (vsi->num_xdp_txq < cpus)
2859 		static_branch_inc(&ice_xdp_locking_key);
2860 
2861 	return 0;
2862 }
2863 
2864 /**
2865  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2866  * @vsi: VSI to setup XDP for
2867  * @prog: XDP program
2868  * @extack: netlink extended ack
2869  */
2870 static int
2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2872 		   struct netlink_ext_ack *extack)
2873 {
2874 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2875 	bool if_running = netif_running(vsi->netdev);
2876 	int ret = 0, xdp_ring_err = 0;
2877 
2878 	if (frame_size > vsi->rx_buf_len) {
2879 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2880 		return -EOPNOTSUPP;
2881 	}
2882 
2883 	/* need to stop netdev while setting up the program for Rx rings */
2884 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2885 		ret = ice_down(vsi);
2886 		if (ret) {
2887 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2888 			return ret;
2889 		}
2890 	}
2891 
2892 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2893 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2894 		if (xdp_ring_err) {
2895 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2896 		} else {
2897 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2898 			if (xdp_ring_err)
2899 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2900 		}
2901 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2902 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2903 		if (xdp_ring_err)
2904 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2905 	} else {
2906 		/* safe to call even when prog == vsi->xdp_prog as
2907 		 * dev_xdp_install in net/core/dev.c incremented prog's
2908 		 * refcount so corresponding bpf_prog_put won't cause
2909 		 * underflow
2910 		 */
2911 		ice_vsi_assign_bpf_prog(vsi, prog);
2912 	}
2913 
2914 	if (if_running)
2915 		ret = ice_up(vsi);
2916 
2917 	if (!ret && prog)
2918 		ice_vsi_rx_napi_schedule(vsi);
2919 
2920 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2921 }
2922 
2923 /**
2924  * ice_xdp_safe_mode - XDP handler for safe mode
2925  * @dev: netdevice
2926  * @xdp: XDP command
2927  */
2928 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2929 			     struct netdev_bpf *xdp)
2930 {
2931 	NL_SET_ERR_MSG_MOD(xdp->extack,
2932 			   "Please provide working DDP firmware package in order to use XDP\n"
2933 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2934 	return -EOPNOTSUPP;
2935 }
2936 
2937 /**
2938  * ice_xdp - implements XDP handler
2939  * @dev: netdevice
2940  * @xdp: XDP command
2941  */
2942 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2943 {
2944 	struct ice_netdev_priv *np = netdev_priv(dev);
2945 	struct ice_vsi *vsi = np->vsi;
2946 
2947 	if (vsi->type != ICE_VSI_PF) {
2948 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2949 		return -EINVAL;
2950 	}
2951 
2952 	switch (xdp->command) {
2953 	case XDP_SETUP_PROG:
2954 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2955 	case XDP_SETUP_XSK_POOL:
2956 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2957 					  xdp->xsk.queue_id);
2958 	default:
2959 		return -EINVAL;
2960 	}
2961 }
2962 
2963 /**
2964  * ice_ena_misc_vector - enable the non-queue interrupts
2965  * @pf: board private structure
2966  */
2967 static void ice_ena_misc_vector(struct ice_pf *pf)
2968 {
2969 	struct ice_hw *hw = &pf->hw;
2970 	u32 val;
2971 
2972 	/* Disable anti-spoof detection interrupt to prevent spurious event
2973 	 * interrupts during a function reset. Anti-spoof functionally is
2974 	 * still supported.
2975 	 */
2976 	val = rd32(hw, GL_MDCK_TX_TDPU);
2977 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2978 	wr32(hw, GL_MDCK_TX_TDPU, val);
2979 
2980 	/* clear things first */
2981 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2982 	rd32(hw, PFINT_OICR);		/* read to clear */
2983 
2984 	val = (PFINT_OICR_ECC_ERR_M |
2985 	       PFINT_OICR_MAL_DETECT_M |
2986 	       PFINT_OICR_GRST_M |
2987 	       PFINT_OICR_PCI_EXCEPTION_M |
2988 	       PFINT_OICR_VFLR_M |
2989 	       PFINT_OICR_HMC_ERR_M |
2990 	       PFINT_OICR_PE_PUSH_M |
2991 	       PFINT_OICR_PE_CRITERR_M);
2992 
2993 	wr32(hw, PFINT_OICR_ENA, val);
2994 
2995 	/* SW_ITR_IDX = 0, but don't change INTENA */
2996 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2997 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2998 }
2999 
3000 /**
3001  * ice_misc_intr - misc interrupt handler
3002  * @irq: interrupt number
3003  * @data: pointer to a q_vector
3004  */
3005 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3006 {
3007 	struct ice_pf *pf = (struct ice_pf *)data;
3008 	struct ice_hw *hw = &pf->hw;
3009 	irqreturn_t ret = IRQ_NONE;
3010 	struct device *dev;
3011 	u32 oicr, ena_mask;
3012 
3013 	dev = ice_pf_to_dev(pf);
3014 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3015 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3016 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3017 
3018 	oicr = rd32(hw, PFINT_OICR);
3019 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3020 
3021 	if (oicr & PFINT_OICR_SWINT_M) {
3022 		ena_mask &= ~PFINT_OICR_SWINT_M;
3023 		pf->sw_int_count++;
3024 	}
3025 
3026 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3027 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3028 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3029 	}
3030 	if (oicr & PFINT_OICR_VFLR_M) {
3031 		/* disable any further VFLR event notifications */
3032 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3033 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3034 
3035 			reg &= ~PFINT_OICR_VFLR_M;
3036 			wr32(hw, PFINT_OICR_ENA, reg);
3037 		} else {
3038 			ena_mask &= ~PFINT_OICR_VFLR_M;
3039 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3040 		}
3041 	}
3042 
3043 	if (oicr & PFINT_OICR_GRST_M) {
3044 		u32 reset;
3045 
3046 		/* we have a reset warning */
3047 		ena_mask &= ~PFINT_OICR_GRST_M;
3048 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3049 			GLGEN_RSTAT_RESET_TYPE_S;
3050 
3051 		if (reset == ICE_RESET_CORER)
3052 			pf->corer_count++;
3053 		else if (reset == ICE_RESET_GLOBR)
3054 			pf->globr_count++;
3055 		else if (reset == ICE_RESET_EMPR)
3056 			pf->empr_count++;
3057 		else
3058 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3059 
3060 		/* If a reset cycle isn't already in progress, we set a bit in
3061 		 * pf->state so that the service task can start a reset/rebuild.
3062 		 */
3063 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3064 			if (reset == ICE_RESET_CORER)
3065 				set_bit(ICE_CORER_RECV, pf->state);
3066 			else if (reset == ICE_RESET_GLOBR)
3067 				set_bit(ICE_GLOBR_RECV, pf->state);
3068 			else
3069 				set_bit(ICE_EMPR_RECV, pf->state);
3070 
3071 			/* There are couple of different bits at play here.
3072 			 * hw->reset_ongoing indicates whether the hardware is
3073 			 * in reset. This is set to true when a reset interrupt
3074 			 * is received and set back to false after the driver
3075 			 * has determined that the hardware is out of reset.
3076 			 *
3077 			 * ICE_RESET_OICR_RECV in pf->state indicates
3078 			 * that a post reset rebuild is required before the
3079 			 * driver is operational again. This is set above.
3080 			 *
3081 			 * As this is the start of the reset/rebuild cycle, set
3082 			 * both to indicate that.
3083 			 */
3084 			hw->reset_ongoing = true;
3085 		}
3086 	}
3087 
3088 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3089 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3090 		ice_ptp_process_ts(pf);
3091 	}
3092 
3093 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3094 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3095 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3096 
3097 		/* Save EVENTs from GTSYN register */
3098 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3099 						     GLTSYN_STAT_EVENT1_M |
3100 						     GLTSYN_STAT_EVENT2_M);
3101 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3102 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3103 	}
3104 
3105 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3106 	if (oicr & ICE_AUX_CRIT_ERR) {
3107 		pf->oicr_err_reg |= oicr;
3108 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3109 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3110 	}
3111 
3112 	/* Report any remaining unexpected interrupts */
3113 	oicr &= ena_mask;
3114 	if (oicr) {
3115 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3116 		/* If a critical error is pending there is no choice but to
3117 		 * reset the device.
3118 		 */
3119 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3120 			    PFINT_OICR_ECC_ERR_M)) {
3121 			set_bit(ICE_PFR_REQ, pf->state);
3122 			ice_service_task_schedule(pf);
3123 		}
3124 	}
3125 	ret = IRQ_HANDLED;
3126 
3127 	ice_service_task_schedule(pf);
3128 	ice_irq_dynamic_ena(hw, NULL, NULL);
3129 
3130 	return ret;
3131 }
3132 
3133 /**
3134  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3135  * @hw: pointer to HW structure
3136  */
3137 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3138 {
3139 	/* disable Admin queue Interrupt causes */
3140 	wr32(hw, PFINT_FW_CTL,
3141 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3142 
3143 	/* disable Mailbox queue Interrupt causes */
3144 	wr32(hw, PFINT_MBX_CTL,
3145 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3146 
3147 	wr32(hw, PFINT_SB_CTL,
3148 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3149 
3150 	/* disable Control queue Interrupt causes */
3151 	wr32(hw, PFINT_OICR_CTL,
3152 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3153 
3154 	ice_flush(hw);
3155 }
3156 
3157 /**
3158  * ice_free_irq_msix_misc - Unroll misc vector setup
3159  * @pf: board private structure
3160  */
3161 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3162 {
3163 	struct ice_hw *hw = &pf->hw;
3164 
3165 	ice_dis_ctrlq_interrupts(hw);
3166 
3167 	/* disable OICR interrupt */
3168 	wr32(hw, PFINT_OICR_ENA, 0);
3169 	ice_flush(hw);
3170 
3171 	if (pf->msix_entries) {
3172 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3173 		devm_free_irq(ice_pf_to_dev(pf),
3174 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3175 	}
3176 
3177 	pf->num_avail_sw_msix += 1;
3178 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3179 }
3180 
3181 /**
3182  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3183  * @hw: pointer to HW structure
3184  * @reg_idx: HW vector index to associate the control queue interrupts with
3185  */
3186 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3187 {
3188 	u32 val;
3189 
3190 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3191 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3192 	wr32(hw, PFINT_OICR_CTL, val);
3193 
3194 	/* enable Admin queue Interrupt causes */
3195 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3196 	       PFINT_FW_CTL_CAUSE_ENA_M);
3197 	wr32(hw, PFINT_FW_CTL, val);
3198 
3199 	/* enable Mailbox queue Interrupt causes */
3200 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3201 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3202 	wr32(hw, PFINT_MBX_CTL, val);
3203 
3204 	/* This enables Sideband queue Interrupt causes */
3205 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3206 	       PFINT_SB_CTL_CAUSE_ENA_M);
3207 	wr32(hw, PFINT_SB_CTL, val);
3208 
3209 	ice_flush(hw);
3210 }
3211 
3212 /**
3213  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3214  * @pf: board private structure
3215  *
3216  * This sets up the handler for MSIX 0, which is used to manage the
3217  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3218  * when in MSI or Legacy interrupt mode.
3219  */
3220 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3221 {
3222 	struct device *dev = ice_pf_to_dev(pf);
3223 	struct ice_hw *hw = &pf->hw;
3224 	int oicr_idx, err = 0;
3225 
3226 	if (!pf->int_name[0])
3227 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3228 			 dev_driver_string(dev), dev_name(dev));
3229 
3230 	/* Do not request IRQ but do enable OICR interrupt since settings are
3231 	 * lost during reset. Note that this function is called only during
3232 	 * rebuild path and not while reset is in progress.
3233 	 */
3234 	if (ice_is_reset_in_progress(pf->state))
3235 		goto skip_req_irq;
3236 
3237 	/* reserve one vector in irq_tracker for misc interrupts */
3238 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3239 	if (oicr_idx < 0)
3240 		return oicr_idx;
3241 
3242 	pf->num_avail_sw_msix -= 1;
3243 	pf->oicr_idx = (u16)oicr_idx;
3244 
3245 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3246 			       ice_misc_intr, 0, pf->int_name, pf);
3247 	if (err) {
3248 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3249 			pf->int_name, err);
3250 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3251 		pf->num_avail_sw_msix += 1;
3252 		return err;
3253 	}
3254 
3255 skip_req_irq:
3256 	ice_ena_misc_vector(pf);
3257 
3258 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3259 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3260 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3261 
3262 	ice_flush(hw);
3263 	ice_irq_dynamic_ena(hw, NULL, NULL);
3264 
3265 	return 0;
3266 }
3267 
3268 /**
3269  * ice_napi_add - register NAPI handler for the VSI
3270  * @vsi: VSI for which NAPI handler is to be registered
3271  *
3272  * This function is only called in the driver's load path. Registering the NAPI
3273  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3274  * reset/rebuild, etc.)
3275  */
3276 static void ice_napi_add(struct ice_vsi *vsi)
3277 {
3278 	int v_idx;
3279 
3280 	if (!vsi->netdev)
3281 		return;
3282 
3283 	ice_for_each_q_vector(vsi, v_idx)
3284 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3285 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3286 }
3287 
3288 /**
3289  * ice_set_ops - set netdev and ethtools ops for the given netdev
3290  * @netdev: netdev instance
3291  */
3292 static void ice_set_ops(struct net_device *netdev)
3293 {
3294 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3295 
3296 	if (ice_is_safe_mode(pf)) {
3297 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3298 		ice_set_ethtool_safe_mode_ops(netdev);
3299 		return;
3300 	}
3301 
3302 	netdev->netdev_ops = &ice_netdev_ops;
3303 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3304 	ice_set_ethtool_ops(netdev);
3305 }
3306 
3307 /**
3308  * ice_set_netdev_features - set features for the given netdev
3309  * @netdev: netdev instance
3310  */
3311 static void ice_set_netdev_features(struct net_device *netdev)
3312 {
3313 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3314 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3315 	netdev_features_t csumo_features;
3316 	netdev_features_t vlano_features;
3317 	netdev_features_t dflt_features;
3318 	netdev_features_t tso_features;
3319 
3320 	if (ice_is_safe_mode(pf)) {
3321 		/* safe mode */
3322 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3323 		netdev->hw_features = netdev->features;
3324 		return;
3325 	}
3326 
3327 	dflt_features = NETIF_F_SG	|
3328 			NETIF_F_HIGHDMA	|
3329 			NETIF_F_NTUPLE	|
3330 			NETIF_F_RXHASH;
3331 
3332 	csumo_features = NETIF_F_RXCSUM	  |
3333 			 NETIF_F_IP_CSUM  |
3334 			 NETIF_F_SCTP_CRC |
3335 			 NETIF_F_IPV6_CSUM;
3336 
3337 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3338 			 NETIF_F_HW_VLAN_CTAG_TX     |
3339 			 NETIF_F_HW_VLAN_CTAG_RX;
3340 
3341 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3342 	if (is_dvm_ena)
3343 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3344 
3345 	tso_features = NETIF_F_TSO			|
3346 		       NETIF_F_TSO_ECN			|
3347 		       NETIF_F_TSO6			|
3348 		       NETIF_F_GSO_GRE			|
3349 		       NETIF_F_GSO_UDP_TUNNEL		|
3350 		       NETIF_F_GSO_GRE_CSUM		|
3351 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3352 		       NETIF_F_GSO_PARTIAL		|
3353 		       NETIF_F_GSO_IPXIP4		|
3354 		       NETIF_F_GSO_IPXIP6		|
3355 		       NETIF_F_GSO_UDP_L4;
3356 
3357 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3358 					NETIF_F_GSO_GRE_CSUM;
3359 	/* set features that user can change */
3360 	netdev->hw_features = dflt_features | csumo_features |
3361 			      vlano_features | tso_features;
3362 
3363 	/* add support for HW_CSUM on packets with MPLS header */
3364 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3365 				 NETIF_F_TSO     |
3366 				 NETIF_F_TSO6;
3367 
3368 	/* enable features */
3369 	netdev->features |= netdev->hw_features;
3370 
3371 	netdev->hw_features |= NETIF_F_HW_TC;
3372 	netdev->hw_features |= NETIF_F_LOOPBACK;
3373 
3374 	/* encap and VLAN devices inherit default, csumo and tso features */
3375 	netdev->hw_enc_features |= dflt_features | csumo_features |
3376 				   tso_features;
3377 	netdev->vlan_features |= dflt_features | csumo_features |
3378 				 tso_features;
3379 
3380 	/* advertise support but don't enable by default since only one type of
3381 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3382 	 * type turns on the other has to be turned off. This is enforced by the
3383 	 * ice_fix_features() ndo callback.
3384 	 */
3385 	if (is_dvm_ena)
3386 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3387 			NETIF_F_HW_VLAN_STAG_TX;
3388 
3389 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3390 	 * be changed at runtime
3391 	 */
3392 	netdev->hw_features |= NETIF_F_RXFCS;
3393 }
3394 
3395 /**
3396  * ice_cfg_netdev - Allocate, configure and register a netdev
3397  * @vsi: the VSI associated with the new netdev
3398  *
3399  * Returns 0 on success, negative value on failure
3400  */
3401 static int ice_cfg_netdev(struct ice_vsi *vsi)
3402 {
3403 	struct ice_netdev_priv *np;
3404 	struct net_device *netdev;
3405 	u8 mac_addr[ETH_ALEN];
3406 
3407 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3408 				    vsi->alloc_rxq);
3409 	if (!netdev)
3410 		return -ENOMEM;
3411 
3412 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3413 	vsi->netdev = netdev;
3414 	np = netdev_priv(netdev);
3415 	np->vsi = vsi;
3416 
3417 	ice_set_netdev_features(netdev);
3418 
3419 	ice_set_ops(netdev);
3420 
3421 	if (vsi->type == ICE_VSI_PF) {
3422 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3423 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3424 		eth_hw_addr_set(netdev, mac_addr);
3425 		ether_addr_copy(netdev->perm_addr, mac_addr);
3426 	}
3427 
3428 	netdev->priv_flags |= IFF_UNICAST_FLT;
3429 
3430 	/* Setup netdev TC information */
3431 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3432 
3433 	/* setup watchdog timeout value to be 5 second */
3434 	netdev->watchdog_timeo = 5 * HZ;
3435 
3436 	netdev->min_mtu = ETH_MIN_MTU;
3437 	netdev->max_mtu = ICE_MAX_MTU;
3438 
3439 	return 0;
3440 }
3441 
3442 /**
3443  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3444  * @lut: Lookup table
3445  * @rss_table_size: Lookup table size
3446  * @rss_size: Range of queue number for hashing
3447  */
3448 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3449 {
3450 	u16 i;
3451 
3452 	for (i = 0; i < rss_table_size; i++)
3453 		lut[i] = i % rss_size;
3454 }
3455 
3456 /**
3457  * ice_pf_vsi_setup - Set up a PF VSI
3458  * @pf: board private structure
3459  * @pi: pointer to the port_info instance
3460  *
3461  * Returns pointer to the successfully allocated VSI software struct
3462  * on success, otherwise returns NULL on failure.
3463  */
3464 static struct ice_vsi *
3465 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3466 {
3467 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3468 }
3469 
3470 static struct ice_vsi *
3471 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3472 		   struct ice_channel *ch)
3473 {
3474 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3475 }
3476 
3477 /**
3478  * ice_ctrl_vsi_setup - Set up a control VSI
3479  * @pf: board private structure
3480  * @pi: pointer to the port_info instance
3481  *
3482  * Returns pointer to the successfully allocated VSI software struct
3483  * on success, otherwise returns NULL on failure.
3484  */
3485 static struct ice_vsi *
3486 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3487 {
3488 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3489 }
3490 
3491 /**
3492  * ice_lb_vsi_setup - Set up a loopback VSI
3493  * @pf: board private structure
3494  * @pi: pointer to the port_info instance
3495  *
3496  * Returns pointer to the successfully allocated VSI software struct
3497  * on success, otherwise returns NULL on failure.
3498  */
3499 struct ice_vsi *
3500 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3501 {
3502 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3503 }
3504 
3505 /**
3506  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3507  * @netdev: network interface to be adjusted
3508  * @proto: VLAN TPID
3509  * @vid: VLAN ID to be added
3510  *
3511  * net_device_ops implementation for adding VLAN IDs
3512  */
3513 static int
3514 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3515 {
3516 	struct ice_netdev_priv *np = netdev_priv(netdev);
3517 	struct ice_vsi_vlan_ops *vlan_ops;
3518 	struct ice_vsi *vsi = np->vsi;
3519 	struct ice_vlan vlan;
3520 	int ret;
3521 
3522 	/* VLAN 0 is added by default during load/reset */
3523 	if (!vid)
3524 		return 0;
3525 
3526 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3527 		usleep_range(1000, 2000);
3528 
3529 	/* Add multicast promisc rule for the VLAN ID to be added if
3530 	 * all-multicast is currently enabled.
3531 	 */
3532 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3533 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3534 					       ICE_MCAST_VLAN_PROMISC_BITS,
3535 					       vid);
3536 		if (ret)
3537 			goto finish;
3538 	}
3539 
3540 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3541 
3542 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3543 	 * packets aren't pruned by the device's internal switch on Rx
3544 	 */
3545 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3546 	ret = vlan_ops->add_vlan(vsi, &vlan);
3547 	if (ret)
3548 		goto finish;
3549 
3550 	/* If all-multicast is currently enabled and this VLAN ID is only one
3551 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3552 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3553 	 */
3554 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3555 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3556 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3557 					   ICE_MCAST_PROMISC_BITS, 0);
3558 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3559 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3560 	}
3561 
3562 finish:
3563 	clear_bit(ICE_CFG_BUSY, vsi->state);
3564 
3565 	return ret;
3566 }
3567 
3568 /**
3569  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3570  * @netdev: network interface to be adjusted
3571  * @proto: VLAN TPID
3572  * @vid: VLAN ID to be removed
3573  *
3574  * net_device_ops implementation for removing VLAN IDs
3575  */
3576 static int
3577 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3578 {
3579 	struct ice_netdev_priv *np = netdev_priv(netdev);
3580 	struct ice_vsi_vlan_ops *vlan_ops;
3581 	struct ice_vsi *vsi = np->vsi;
3582 	struct ice_vlan vlan;
3583 	int ret;
3584 
3585 	/* don't allow removal of VLAN 0 */
3586 	if (!vid)
3587 		return 0;
3588 
3589 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3590 		usleep_range(1000, 2000);
3591 
3592 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3593 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3594 	if (ret) {
3595 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3596 			   vsi->vsi_num);
3597 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3598 	}
3599 
3600 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3601 
3602 	/* Make sure VLAN delete is successful before updating VLAN
3603 	 * information
3604 	 */
3605 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3606 	ret = vlan_ops->del_vlan(vsi, &vlan);
3607 	if (ret)
3608 		goto finish;
3609 
3610 	/* Remove multicast promisc rule for the removed VLAN ID if
3611 	 * all-multicast is enabled.
3612 	 */
3613 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3614 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3615 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3616 
3617 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3618 		/* Update look-up type of multicast promisc rule for VLAN 0
3619 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3620 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3621 		 */
3622 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3623 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3624 						   ICE_MCAST_VLAN_PROMISC_BITS,
3625 						   0);
3626 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3627 						 ICE_MCAST_PROMISC_BITS, 0);
3628 		}
3629 	}
3630 
3631 finish:
3632 	clear_bit(ICE_CFG_BUSY, vsi->state);
3633 
3634 	return ret;
3635 }
3636 
3637 /**
3638  * ice_rep_indr_tc_block_unbind
3639  * @cb_priv: indirection block private data
3640  */
3641 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3642 {
3643 	struct ice_indr_block_priv *indr_priv = cb_priv;
3644 
3645 	list_del(&indr_priv->list);
3646 	kfree(indr_priv);
3647 }
3648 
3649 /**
3650  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3651  * @vsi: VSI struct which has the netdev
3652  */
3653 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3654 {
3655 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3656 
3657 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3658 				 ice_rep_indr_tc_block_unbind);
3659 }
3660 
3661 /**
3662  * ice_tc_indir_block_remove - clean indirect TC block notifications
3663  * @pf: PF structure
3664  */
3665 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3666 {
3667 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3668 
3669 	if (!pf_vsi)
3670 		return;
3671 
3672 	ice_tc_indir_block_unregister(pf_vsi);
3673 }
3674 
3675 /**
3676  * ice_tc_indir_block_register - Register TC indirect block notifications
3677  * @vsi: VSI struct which has the netdev
3678  *
3679  * Returns 0 on success, negative value on failure
3680  */
3681 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3682 {
3683 	struct ice_netdev_priv *np;
3684 
3685 	if (!vsi || !vsi->netdev)
3686 		return -EINVAL;
3687 
3688 	np = netdev_priv(vsi->netdev);
3689 
3690 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3691 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3692 }
3693 
3694 /**
3695  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3696  * @pf: board private structure
3697  *
3698  * Returns 0 on success, negative value on failure
3699  */
3700 static int ice_setup_pf_sw(struct ice_pf *pf)
3701 {
3702 	struct device *dev = ice_pf_to_dev(pf);
3703 	bool dvm = ice_is_dvm_ena(&pf->hw);
3704 	struct ice_vsi *vsi;
3705 	int status;
3706 
3707 	if (ice_is_reset_in_progress(pf->state))
3708 		return -EBUSY;
3709 
3710 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3711 	if (status)
3712 		return -EIO;
3713 
3714 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3715 	if (!vsi)
3716 		return -ENOMEM;
3717 
3718 	/* init channel list */
3719 	INIT_LIST_HEAD(&vsi->ch_list);
3720 
3721 	status = ice_cfg_netdev(vsi);
3722 	if (status)
3723 		goto unroll_vsi_setup;
3724 	/* netdev has to be configured before setting frame size */
3725 	ice_vsi_cfg_frame_size(vsi);
3726 
3727 	/* init indirect block notifications */
3728 	status = ice_tc_indir_block_register(vsi);
3729 	if (status) {
3730 		dev_err(dev, "Failed to register netdev notifier\n");
3731 		goto unroll_cfg_netdev;
3732 	}
3733 
3734 	/* Setup DCB netlink interface */
3735 	ice_dcbnl_setup(vsi);
3736 
3737 	/* registering the NAPI handler requires both the queues and
3738 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3739 	 * and ice_cfg_netdev() respectively
3740 	 */
3741 	ice_napi_add(vsi);
3742 
3743 	status = ice_init_mac_fltr(pf);
3744 	if (status)
3745 		goto unroll_napi_add;
3746 
3747 	return 0;
3748 
3749 unroll_napi_add:
3750 	ice_tc_indir_block_unregister(vsi);
3751 unroll_cfg_netdev:
3752 	if (vsi) {
3753 		ice_napi_del(vsi);
3754 		if (vsi->netdev) {
3755 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3756 			free_netdev(vsi->netdev);
3757 			vsi->netdev = NULL;
3758 		}
3759 	}
3760 
3761 unroll_vsi_setup:
3762 	ice_vsi_release(vsi);
3763 	return status;
3764 }
3765 
3766 /**
3767  * ice_get_avail_q_count - Get count of queues in use
3768  * @pf_qmap: bitmap to get queue use count from
3769  * @lock: pointer to a mutex that protects access to pf_qmap
3770  * @size: size of the bitmap
3771  */
3772 static u16
3773 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3774 {
3775 	unsigned long bit;
3776 	u16 count = 0;
3777 
3778 	mutex_lock(lock);
3779 	for_each_clear_bit(bit, pf_qmap, size)
3780 		count++;
3781 	mutex_unlock(lock);
3782 
3783 	return count;
3784 }
3785 
3786 /**
3787  * ice_get_avail_txq_count - Get count of Tx queues in use
3788  * @pf: pointer to an ice_pf instance
3789  */
3790 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3791 {
3792 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3793 				     pf->max_pf_txqs);
3794 }
3795 
3796 /**
3797  * ice_get_avail_rxq_count - Get count of Rx queues in use
3798  * @pf: pointer to an ice_pf instance
3799  */
3800 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3801 {
3802 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3803 				     pf->max_pf_rxqs);
3804 }
3805 
3806 /**
3807  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3808  * @pf: board private structure to initialize
3809  */
3810 static void ice_deinit_pf(struct ice_pf *pf)
3811 {
3812 	ice_service_task_stop(pf);
3813 	mutex_destroy(&pf->adev_mutex);
3814 	mutex_destroy(&pf->sw_mutex);
3815 	mutex_destroy(&pf->tc_mutex);
3816 	mutex_destroy(&pf->avail_q_mutex);
3817 	mutex_destroy(&pf->vfs.table_lock);
3818 
3819 	if (pf->avail_txqs) {
3820 		bitmap_free(pf->avail_txqs);
3821 		pf->avail_txqs = NULL;
3822 	}
3823 
3824 	if (pf->avail_rxqs) {
3825 		bitmap_free(pf->avail_rxqs);
3826 		pf->avail_rxqs = NULL;
3827 	}
3828 
3829 	if (pf->ptp.clock)
3830 		ptp_clock_unregister(pf->ptp.clock);
3831 }
3832 
3833 /**
3834  * ice_set_pf_caps - set PFs capability flags
3835  * @pf: pointer to the PF instance
3836  */
3837 static void ice_set_pf_caps(struct ice_pf *pf)
3838 {
3839 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3840 
3841 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3842 	if (func_caps->common_cap.rdma)
3843 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3844 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3845 	if (func_caps->common_cap.dcb)
3846 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3847 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3848 	if (func_caps->common_cap.sr_iov_1_1) {
3849 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3850 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3851 					      ICE_MAX_SRIOV_VFS);
3852 	}
3853 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3854 	if (func_caps->common_cap.rss_table_size)
3855 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3856 
3857 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3858 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3859 		u16 unused;
3860 
3861 		/* ctrl_vsi_idx will be set to a valid value when flow director
3862 		 * is setup by ice_init_fdir
3863 		 */
3864 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3865 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3866 		/* force guaranteed filter pool for PF */
3867 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3868 				       func_caps->fd_fltr_guar);
3869 		/* force shared filter pool for PF */
3870 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3871 				       func_caps->fd_fltr_best_effort);
3872 	}
3873 
3874 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3875 	if (func_caps->common_cap.ieee_1588)
3876 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3877 
3878 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3879 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3880 }
3881 
3882 /**
3883  * ice_init_pf - Initialize general software structures (struct ice_pf)
3884  * @pf: board private structure to initialize
3885  */
3886 static int ice_init_pf(struct ice_pf *pf)
3887 {
3888 	ice_set_pf_caps(pf);
3889 
3890 	mutex_init(&pf->sw_mutex);
3891 	mutex_init(&pf->tc_mutex);
3892 	mutex_init(&pf->adev_mutex);
3893 
3894 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3895 	spin_lock_init(&pf->aq_wait_lock);
3896 	init_waitqueue_head(&pf->aq_wait_queue);
3897 
3898 	init_waitqueue_head(&pf->reset_wait_queue);
3899 
3900 	/* setup service timer and periodic service task */
3901 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3902 	pf->serv_tmr_period = HZ;
3903 	INIT_WORK(&pf->serv_task, ice_service_task);
3904 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3905 
3906 	mutex_init(&pf->avail_q_mutex);
3907 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3908 	if (!pf->avail_txqs)
3909 		return -ENOMEM;
3910 
3911 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3912 	if (!pf->avail_rxqs) {
3913 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3914 		pf->avail_txqs = NULL;
3915 		return -ENOMEM;
3916 	}
3917 
3918 	mutex_init(&pf->vfs.table_lock);
3919 	hash_init(pf->vfs.table);
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3926  * @pf: board private structure
3927  *
3928  * compute the number of MSIX vectors required (v_budget) and request from
3929  * the OS. Return the number of vectors reserved or negative on failure
3930  */
3931 static int ice_ena_msix_range(struct ice_pf *pf)
3932 {
3933 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3934 	struct device *dev = ice_pf_to_dev(pf);
3935 	int needed, err, i;
3936 
3937 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3938 	num_cpus = num_online_cpus();
3939 
3940 	/* reserve for LAN miscellaneous handler */
3941 	needed = ICE_MIN_LAN_OICR_MSIX;
3942 	if (v_left < needed)
3943 		goto no_hw_vecs_left_err;
3944 	v_budget += needed;
3945 	v_left -= needed;
3946 
3947 	/* reserve for flow director */
3948 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3949 		needed = ICE_FDIR_MSIX;
3950 		if (v_left < needed)
3951 			goto no_hw_vecs_left_err;
3952 		v_budget += needed;
3953 		v_left -= needed;
3954 	}
3955 
3956 	/* reserve for switchdev */
3957 	needed = ICE_ESWITCH_MSIX;
3958 	if (v_left < needed)
3959 		goto no_hw_vecs_left_err;
3960 	v_budget += needed;
3961 	v_left -= needed;
3962 
3963 	/* total used for non-traffic vectors */
3964 	v_other = v_budget;
3965 
3966 	/* reserve vectors for LAN traffic */
3967 	needed = num_cpus;
3968 	if (v_left < needed)
3969 		goto no_hw_vecs_left_err;
3970 	pf->num_lan_msix = needed;
3971 	v_budget += needed;
3972 	v_left -= needed;
3973 
3974 	/* reserve vectors for RDMA auxiliary driver */
3975 	if (ice_is_rdma_ena(pf)) {
3976 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3977 		if (v_left < needed)
3978 			goto no_hw_vecs_left_err;
3979 		pf->num_rdma_msix = needed;
3980 		v_budget += needed;
3981 		v_left -= needed;
3982 	}
3983 
3984 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3985 					sizeof(*pf->msix_entries), GFP_KERNEL);
3986 	if (!pf->msix_entries) {
3987 		err = -ENOMEM;
3988 		goto exit_err;
3989 	}
3990 
3991 	for (i = 0; i < v_budget; i++)
3992 		pf->msix_entries[i].entry = i;
3993 
3994 	/* actually reserve the vectors */
3995 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3996 					 ICE_MIN_MSIX, v_budget);
3997 	if (v_actual < 0) {
3998 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3999 		err = v_actual;
4000 		goto msix_err;
4001 	}
4002 
4003 	if (v_actual < v_budget) {
4004 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4005 			 v_budget, v_actual);
4006 
4007 		if (v_actual < ICE_MIN_MSIX) {
4008 			/* error if we can't get minimum vectors */
4009 			pci_disable_msix(pf->pdev);
4010 			err = -ERANGE;
4011 			goto msix_err;
4012 		} else {
4013 			int v_remain = v_actual - v_other;
4014 			int v_rdma = 0, v_min_rdma = 0;
4015 
4016 			if (ice_is_rdma_ena(pf)) {
4017 				/* Need at least 1 interrupt in addition to
4018 				 * AEQ MSIX
4019 				 */
4020 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4021 				v_min_rdma = ICE_MIN_RDMA_MSIX;
4022 			}
4023 
4024 			if (v_actual == ICE_MIN_MSIX ||
4025 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
4026 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4027 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4028 
4029 				pf->num_rdma_msix = 0;
4030 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4031 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4032 				   (v_remain - v_rdma < v_rdma)) {
4033 				/* Support minimum RDMA and give remaining
4034 				 * vectors to LAN MSIX
4035 				 */
4036 				pf->num_rdma_msix = v_min_rdma;
4037 				pf->num_lan_msix = v_remain - v_min_rdma;
4038 			} else {
4039 				/* Split remaining MSIX with RDMA after
4040 				 * accounting for AEQ MSIX
4041 				 */
4042 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4043 						    ICE_RDMA_NUM_AEQ_MSIX;
4044 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4045 			}
4046 
4047 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4048 				   pf->num_lan_msix);
4049 
4050 			if (ice_is_rdma_ena(pf))
4051 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4052 					   pf->num_rdma_msix);
4053 		}
4054 	}
4055 
4056 	return v_actual;
4057 
4058 msix_err:
4059 	devm_kfree(dev, pf->msix_entries);
4060 	goto exit_err;
4061 
4062 no_hw_vecs_left_err:
4063 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4064 		needed, v_left);
4065 	err = -ERANGE;
4066 exit_err:
4067 	pf->num_rdma_msix = 0;
4068 	pf->num_lan_msix = 0;
4069 	return err;
4070 }
4071 
4072 /**
4073  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4074  * @pf: board private structure
4075  */
4076 static void ice_dis_msix(struct ice_pf *pf)
4077 {
4078 	pci_disable_msix(pf->pdev);
4079 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4080 	pf->msix_entries = NULL;
4081 }
4082 
4083 /**
4084  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4085  * @pf: board private structure
4086  */
4087 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4088 {
4089 	ice_dis_msix(pf);
4090 
4091 	if (pf->irq_tracker) {
4092 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4093 		pf->irq_tracker = NULL;
4094 	}
4095 }
4096 
4097 /**
4098  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4099  * @pf: board private structure to initialize
4100  */
4101 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4102 {
4103 	int vectors;
4104 
4105 	vectors = ice_ena_msix_range(pf);
4106 
4107 	if (vectors < 0)
4108 		return vectors;
4109 
4110 	/* set up vector assignment tracking */
4111 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4112 				       struct_size(pf->irq_tracker, list, vectors),
4113 				       GFP_KERNEL);
4114 	if (!pf->irq_tracker) {
4115 		ice_dis_msix(pf);
4116 		return -ENOMEM;
4117 	}
4118 
4119 	/* populate SW interrupts pool with number of OS granted IRQs. */
4120 	pf->num_avail_sw_msix = (u16)vectors;
4121 	pf->irq_tracker->num_entries = (u16)vectors;
4122 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4123 
4124 	return 0;
4125 }
4126 
4127 /**
4128  * ice_is_wol_supported - check if WoL is supported
4129  * @hw: pointer to hardware info
4130  *
4131  * Check if WoL is supported based on the HW configuration.
4132  * Returns true if NVM supports and enables WoL for this port, false otherwise
4133  */
4134 bool ice_is_wol_supported(struct ice_hw *hw)
4135 {
4136 	u16 wol_ctrl;
4137 
4138 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4139 	 * word) indicates WoL is not supported on the corresponding PF ID.
4140 	 */
4141 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4142 		return false;
4143 
4144 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4145 }
4146 
4147 /**
4148  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4149  * @vsi: VSI being changed
4150  * @new_rx: new number of Rx queues
4151  * @new_tx: new number of Tx queues
4152  *
4153  * Only change the number of queues if new_tx, or new_rx is non-0.
4154  *
4155  * Returns 0 on success.
4156  */
4157 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4158 {
4159 	struct ice_pf *pf = vsi->back;
4160 	int err = 0, timeout = 50;
4161 
4162 	if (!new_rx && !new_tx)
4163 		return -EINVAL;
4164 
4165 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4166 		timeout--;
4167 		if (!timeout)
4168 			return -EBUSY;
4169 		usleep_range(1000, 2000);
4170 	}
4171 
4172 	if (new_tx)
4173 		vsi->req_txq = (u16)new_tx;
4174 	if (new_rx)
4175 		vsi->req_rxq = (u16)new_rx;
4176 
4177 	/* set for the next time the netdev is started */
4178 	if (!netif_running(vsi->netdev)) {
4179 		ice_vsi_rebuild(vsi, false);
4180 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4181 		goto done;
4182 	}
4183 
4184 	ice_vsi_close(vsi);
4185 	ice_vsi_rebuild(vsi, false);
4186 	ice_pf_dcb_recfg(pf);
4187 	ice_vsi_open(vsi);
4188 done:
4189 	clear_bit(ICE_CFG_BUSY, pf->state);
4190 	return err;
4191 }
4192 
4193 /**
4194  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4195  * @pf: PF to configure
4196  *
4197  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4198  * VSI can still Tx/Rx VLAN tagged packets.
4199  */
4200 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4201 {
4202 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4203 	struct ice_vsi_ctx *ctxt;
4204 	struct ice_hw *hw;
4205 	int status;
4206 
4207 	if (!vsi)
4208 		return;
4209 
4210 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4211 	if (!ctxt)
4212 		return;
4213 
4214 	hw = &pf->hw;
4215 	ctxt->info = vsi->info;
4216 
4217 	ctxt->info.valid_sections =
4218 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4219 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4220 			    ICE_AQ_VSI_PROP_SW_VALID);
4221 
4222 	/* disable VLAN anti-spoof */
4223 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4224 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4225 
4226 	/* disable VLAN pruning and keep all other settings */
4227 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4228 
4229 	/* allow all VLANs on Tx and don't strip on Rx */
4230 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4231 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4232 
4233 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4234 	if (status) {
4235 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4236 			status, ice_aq_str(hw->adminq.sq_last_status));
4237 	} else {
4238 		vsi->info.sec_flags = ctxt->info.sec_flags;
4239 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4240 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4241 	}
4242 
4243 	kfree(ctxt);
4244 }
4245 
4246 /**
4247  * ice_log_pkg_init - log result of DDP package load
4248  * @hw: pointer to hardware info
4249  * @state: state of package load
4250  */
4251 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4252 {
4253 	struct ice_pf *pf = hw->back;
4254 	struct device *dev;
4255 
4256 	dev = ice_pf_to_dev(pf);
4257 
4258 	switch (state) {
4259 	case ICE_DDP_PKG_SUCCESS:
4260 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4261 			 hw->active_pkg_name,
4262 			 hw->active_pkg_ver.major,
4263 			 hw->active_pkg_ver.minor,
4264 			 hw->active_pkg_ver.update,
4265 			 hw->active_pkg_ver.draft);
4266 		break;
4267 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4268 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4269 			 hw->active_pkg_name,
4270 			 hw->active_pkg_ver.major,
4271 			 hw->active_pkg_ver.minor,
4272 			 hw->active_pkg_ver.update,
4273 			 hw->active_pkg_ver.draft);
4274 		break;
4275 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4276 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4277 			hw->active_pkg_name,
4278 			hw->active_pkg_ver.major,
4279 			hw->active_pkg_ver.minor,
4280 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4281 		break;
4282 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4283 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4284 			 hw->active_pkg_name,
4285 			 hw->active_pkg_ver.major,
4286 			 hw->active_pkg_ver.minor,
4287 			 hw->active_pkg_ver.update,
4288 			 hw->active_pkg_ver.draft,
4289 			 hw->pkg_name,
4290 			 hw->pkg_ver.major,
4291 			 hw->pkg_ver.minor,
4292 			 hw->pkg_ver.update,
4293 			 hw->pkg_ver.draft);
4294 		break;
4295 	case ICE_DDP_PKG_FW_MISMATCH:
4296 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4297 		break;
4298 	case ICE_DDP_PKG_INVALID_FILE:
4299 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4300 		break;
4301 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4302 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4303 		break;
4304 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4305 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4306 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4307 		break;
4308 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4309 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4310 		break;
4311 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4312 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4313 		break;
4314 	case ICE_DDP_PKG_LOAD_ERROR:
4315 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4316 		/* poll for reset to complete */
4317 		if (ice_check_reset(hw))
4318 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4319 		break;
4320 	case ICE_DDP_PKG_ERR:
4321 	default:
4322 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4323 		break;
4324 	}
4325 }
4326 
4327 /**
4328  * ice_load_pkg - load/reload the DDP Package file
4329  * @firmware: firmware structure when firmware requested or NULL for reload
4330  * @pf: pointer to the PF instance
4331  *
4332  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4333  * initialize HW tables.
4334  */
4335 static void
4336 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4337 {
4338 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4339 	struct device *dev = ice_pf_to_dev(pf);
4340 	struct ice_hw *hw = &pf->hw;
4341 
4342 	/* Load DDP Package */
4343 	if (firmware && !hw->pkg_copy) {
4344 		state = ice_copy_and_init_pkg(hw, firmware->data,
4345 					      firmware->size);
4346 		ice_log_pkg_init(hw, state);
4347 	} else if (!firmware && hw->pkg_copy) {
4348 		/* Reload package during rebuild after CORER/GLOBR reset */
4349 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4350 		ice_log_pkg_init(hw, state);
4351 	} else {
4352 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4353 	}
4354 
4355 	if (!ice_is_init_pkg_successful(state)) {
4356 		/* Safe Mode */
4357 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4358 		return;
4359 	}
4360 
4361 	/* Successful download package is the precondition for advanced
4362 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4363 	 */
4364 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4365 }
4366 
4367 /**
4368  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4369  * @pf: pointer to the PF structure
4370  *
4371  * There is no error returned here because the driver should be able to handle
4372  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4373  * specifically with Tx.
4374  */
4375 static void ice_verify_cacheline_size(struct ice_pf *pf)
4376 {
4377 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4378 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4379 			 ICE_CACHE_LINE_BYTES);
4380 }
4381 
4382 /**
4383  * ice_send_version - update firmware with driver version
4384  * @pf: PF struct
4385  *
4386  * Returns 0 on success, else error code
4387  */
4388 static int ice_send_version(struct ice_pf *pf)
4389 {
4390 	struct ice_driver_ver dv;
4391 
4392 	dv.major_ver = 0xff;
4393 	dv.minor_ver = 0xff;
4394 	dv.build_ver = 0xff;
4395 	dv.subbuild_ver = 0;
4396 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4397 		sizeof(dv.driver_string));
4398 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4399 }
4400 
4401 /**
4402  * ice_init_fdir - Initialize flow director VSI and configuration
4403  * @pf: pointer to the PF instance
4404  *
4405  * returns 0 on success, negative on error
4406  */
4407 static int ice_init_fdir(struct ice_pf *pf)
4408 {
4409 	struct device *dev = ice_pf_to_dev(pf);
4410 	struct ice_vsi *ctrl_vsi;
4411 	int err;
4412 
4413 	/* Side Band Flow Director needs to have a control VSI.
4414 	 * Allocate it and store it in the PF.
4415 	 */
4416 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4417 	if (!ctrl_vsi) {
4418 		dev_dbg(dev, "could not create control VSI\n");
4419 		return -ENOMEM;
4420 	}
4421 
4422 	err = ice_vsi_open_ctrl(ctrl_vsi);
4423 	if (err) {
4424 		dev_dbg(dev, "could not open control VSI\n");
4425 		goto err_vsi_open;
4426 	}
4427 
4428 	mutex_init(&pf->hw.fdir_fltr_lock);
4429 
4430 	err = ice_fdir_create_dflt_rules(pf);
4431 	if (err)
4432 		goto err_fdir_rule;
4433 
4434 	return 0;
4435 
4436 err_fdir_rule:
4437 	ice_fdir_release_flows(&pf->hw);
4438 	ice_vsi_close(ctrl_vsi);
4439 err_vsi_open:
4440 	ice_vsi_release(ctrl_vsi);
4441 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4442 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4443 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4444 	}
4445 	return err;
4446 }
4447 
4448 /**
4449  * ice_get_opt_fw_name - return optional firmware file name or NULL
4450  * @pf: pointer to the PF instance
4451  */
4452 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4453 {
4454 	/* Optional firmware name same as default with additional dash
4455 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4456 	 */
4457 	struct pci_dev *pdev = pf->pdev;
4458 	char *opt_fw_filename;
4459 	u64 dsn;
4460 
4461 	/* Determine the name of the optional file using the DSN (two
4462 	 * dwords following the start of the DSN Capability).
4463 	 */
4464 	dsn = pci_get_dsn(pdev);
4465 	if (!dsn)
4466 		return NULL;
4467 
4468 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4469 	if (!opt_fw_filename)
4470 		return NULL;
4471 
4472 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4473 		 ICE_DDP_PKG_PATH, dsn);
4474 
4475 	return opt_fw_filename;
4476 }
4477 
4478 /**
4479  * ice_request_fw - Device initialization routine
4480  * @pf: pointer to the PF instance
4481  */
4482 static void ice_request_fw(struct ice_pf *pf)
4483 {
4484 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4485 	const struct firmware *firmware = NULL;
4486 	struct device *dev = ice_pf_to_dev(pf);
4487 	int err = 0;
4488 
4489 	/* optional device-specific DDP (if present) overrides the default DDP
4490 	 * package file. kernel logs a debug message if the file doesn't exist,
4491 	 * and warning messages for other errors.
4492 	 */
4493 	if (opt_fw_filename) {
4494 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4495 		if (err) {
4496 			kfree(opt_fw_filename);
4497 			goto dflt_pkg_load;
4498 		}
4499 
4500 		/* request for firmware was successful. Download to device */
4501 		ice_load_pkg(firmware, pf);
4502 		kfree(opt_fw_filename);
4503 		release_firmware(firmware);
4504 		return;
4505 	}
4506 
4507 dflt_pkg_load:
4508 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4509 	if (err) {
4510 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4511 		return;
4512 	}
4513 
4514 	/* request for firmware was successful. Download to device */
4515 	ice_load_pkg(firmware, pf);
4516 	release_firmware(firmware);
4517 }
4518 
4519 /**
4520  * ice_print_wake_reason - show the wake up cause in the log
4521  * @pf: pointer to the PF struct
4522  */
4523 static void ice_print_wake_reason(struct ice_pf *pf)
4524 {
4525 	u32 wus = pf->wakeup_reason;
4526 	const char *wake_str;
4527 
4528 	/* if no wake event, nothing to print */
4529 	if (!wus)
4530 		return;
4531 
4532 	if (wus & PFPM_WUS_LNKC_M)
4533 		wake_str = "Link\n";
4534 	else if (wus & PFPM_WUS_MAG_M)
4535 		wake_str = "Magic Packet\n";
4536 	else if (wus & PFPM_WUS_MNG_M)
4537 		wake_str = "Management\n";
4538 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4539 		wake_str = "Firmware Reset\n";
4540 	else
4541 		wake_str = "Unknown\n";
4542 
4543 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4544 }
4545 
4546 /**
4547  * ice_register_netdev - register netdev and devlink port
4548  * @pf: pointer to the PF struct
4549  */
4550 static int ice_register_netdev(struct ice_pf *pf)
4551 {
4552 	struct ice_vsi *vsi;
4553 	int err = 0;
4554 
4555 	vsi = ice_get_main_vsi(pf);
4556 	if (!vsi || !vsi->netdev)
4557 		return -EIO;
4558 
4559 	err = register_netdev(vsi->netdev);
4560 	if (err)
4561 		goto err_register_netdev;
4562 
4563 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4564 	netif_carrier_off(vsi->netdev);
4565 	netif_tx_stop_all_queues(vsi->netdev);
4566 	err = ice_devlink_create_pf_port(pf);
4567 	if (err)
4568 		goto err_devlink_create;
4569 
4570 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4571 
4572 	return 0;
4573 err_devlink_create:
4574 	unregister_netdev(vsi->netdev);
4575 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4576 err_register_netdev:
4577 	free_netdev(vsi->netdev);
4578 	vsi->netdev = NULL;
4579 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4580 	return err;
4581 }
4582 
4583 /**
4584  * ice_probe - Device initialization routine
4585  * @pdev: PCI device information struct
4586  * @ent: entry in ice_pci_tbl
4587  *
4588  * Returns 0 on success, negative on failure
4589  */
4590 static int
4591 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4592 {
4593 	struct device *dev = &pdev->dev;
4594 	struct ice_pf *pf;
4595 	struct ice_hw *hw;
4596 	int i, err;
4597 
4598 	if (pdev->is_virtfn) {
4599 		dev_err(dev, "can't probe a virtual function\n");
4600 		return -EINVAL;
4601 	}
4602 
4603 	/* this driver uses devres, see
4604 	 * Documentation/driver-api/driver-model/devres.rst
4605 	 */
4606 	err = pcim_enable_device(pdev);
4607 	if (err)
4608 		return err;
4609 
4610 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4611 	if (err) {
4612 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4613 		return err;
4614 	}
4615 
4616 	pf = ice_allocate_pf(dev);
4617 	if (!pf)
4618 		return -ENOMEM;
4619 
4620 	/* initialize Auxiliary index to invalid value */
4621 	pf->aux_idx = -1;
4622 
4623 	/* set up for high or low DMA */
4624 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4625 	if (err) {
4626 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4627 		return err;
4628 	}
4629 
4630 	pci_enable_pcie_error_reporting(pdev);
4631 	pci_set_master(pdev);
4632 
4633 	pf->pdev = pdev;
4634 	pci_set_drvdata(pdev, pf);
4635 	set_bit(ICE_DOWN, pf->state);
4636 	/* Disable service task until DOWN bit is cleared */
4637 	set_bit(ICE_SERVICE_DIS, pf->state);
4638 
4639 	hw = &pf->hw;
4640 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4641 	pci_save_state(pdev);
4642 
4643 	hw->back = pf;
4644 	hw->vendor_id = pdev->vendor;
4645 	hw->device_id = pdev->device;
4646 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4647 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4648 	hw->subsystem_device_id = pdev->subsystem_device;
4649 	hw->bus.device = PCI_SLOT(pdev->devfn);
4650 	hw->bus.func = PCI_FUNC(pdev->devfn);
4651 	ice_set_ctrlq_len(hw);
4652 
4653 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4654 
4655 #ifndef CONFIG_DYNAMIC_DEBUG
4656 	if (debug < -1)
4657 		hw->debug_mask = debug;
4658 #endif
4659 
4660 	err = ice_init_hw(hw);
4661 	if (err) {
4662 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4663 		err = -EIO;
4664 		goto err_exit_unroll;
4665 	}
4666 
4667 	ice_init_feature_support(pf);
4668 
4669 	ice_request_fw(pf);
4670 
4671 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4672 	 * set in pf->state, which will cause ice_is_safe_mode to return
4673 	 * true
4674 	 */
4675 	if (ice_is_safe_mode(pf)) {
4676 		/* we already got function/device capabilities but these don't
4677 		 * reflect what the driver needs to do in safe mode. Instead of
4678 		 * adding conditional logic everywhere to ignore these
4679 		 * device/function capabilities, override them.
4680 		 */
4681 		ice_set_safe_mode_caps(hw);
4682 	}
4683 
4684 	err = ice_init_pf(pf);
4685 	if (err) {
4686 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4687 		goto err_init_pf_unroll;
4688 	}
4689 
4690 	ice_devlink_init_regions(pf);
4691 
4692 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4693 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4694 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4695 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4696 	i = 0;
4697 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4698 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4699 			pf->hw.tnl.valid_count[TNL_VXLAN];
4700 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4701 			UDP_TUNNEL_TYPE_VXLAN;
4702 		i++;
4703 	}
4704 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4705 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4706 			pf->hw.tnl.valid_count[TNL_GENEVE];
4707 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4708 			UDP_TUNNEL_TYPE_GENEVE;
4709 		i++;
4710 	}
4711 
4712 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4713 	if (!pf->num_alloc_vsi) {
4714 		err = -EIO;
4715 		goto err_init_pf_unroll;
4716 	}
4717 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4718 		dev_warn(&pf->pdev->dev,
4719 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4720 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4721 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4722 	}
4723 
4724 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4725 			       GFP_KERNEL);
4726 	if (!pf->vsi) {
4727 		err = -ENOMEM;
4728 		goto err_init_pf_unroll;
4729 	}
4730 
4731 	err = ice_init_interrupt_scheme(pf);
4732 	if (err) {
4733 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4734 		err = -EIO;
4735 		goto err_init_vsi_unroll;
4736 	}
4737 
4738 	/* In case of MSIX we are going to setup the misc vector right here
4739 	 * to handle admin queue events etc. In case of legacy and MSI
4740 	 * the misc functionality and queue processing is combined in
4741 	 * the same vector and that gets setup at open.
4742 	 */
4743 	err = ice_req_irq_msix_misc(pf);
4744 	if (err) {
4745 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4746 		goto err_init_interrupt_unroll;
4747 	}
4748 
4749 	/* create switch struct for the switch element created by FW on boot */
4750 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4751 	if (!pf->first_sw) {
4752 		err = -ENOMEM;
4753 		goto err_msix_misc_unroll;
4754 	}
4755 
4756 	if (hw->evb_veb)
4757 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4758 	else
4759 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4760 
4761 	pf->first_sw->pf = pf;
4762 
4763 	/* record the sw_id available for later use */
4764 	pf->first_sw->sw_id = hw->port_info->sw_id;
4765 
4766 	err = ice_setup_pf_sw(pf);
4767 	if (err) {
4768 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4769 		goto err_alloc_sw_unroll;
4770 	}
4771 
4772 	clear_bit(ICE_SERVICE_DIS, pf->state);
4773 
4774 	/* tell the firmware we are up */
4775 	err = ice_send_version(pf);
4776 	if (err) {
4777 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4778 			UTS_RELEASE, err);
4779 		goto err_send_version_unroll;
4780 	}
4781 
4782 	/* since everything is good, start the service timer */
4783 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4784 
4785 	err = ice_init_link_events(pf->hw.port_info);
4786 	if (err) {
4787 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4788 		goto err_send_version_unroll;
4789 	}
4790 
4791 	/* not a fatal error if this fails */
4792 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4793 	if (err)
4794 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4795 
4796 	/* not a fatal error if this fails */
4797 	err = ice_update_link_info(pf->hw.port_info);
4798 	if (err)
4799 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4800 
4801 	ice_init_link_dflt_override(pf->hw.port_info);
4802 
4803 	ice_check_link_cfg_err(pf,
4804 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4805 
4806 	/* if media available, initialize PHY settings */
4807 	if (pf->hw.port_info->phy.link_info.link_info &
4808 	    ICE_AQ_MEDIA_AVAILABLE) {
4809 		/* not a fatal error if this fails */
4810 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4811 		if (err)
4812 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4813 
4814 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4815 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4816 
4817 			if (vsi)
4818 				ice_configure_phy(vsi);
4819 		}
4820 	} else {
4821 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4822 	}
4823 
4824 	ice_verify_cacheline_size(pf);
4825 
4826 	/* Save wakeup reason register for later use */
4827 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4828 
4829 	/* check for a power management event */
4830 	ice_print_wake_reason(pf);
4831 
4832 	/* clear wake status, all bits */
4833 	wr32(hw, PFPM_WUS, U32_MAX);
4834 
4835 	/* Disable WoL at init, wait for user to enable */
4836 	device_set_wakeup_enable(dev, false);
4837 
4838 	if (ice_is_safe_mode(pf)) {
4839 		ice_set_safe_mode_vlan_cfg(pf);
4840 		goto probe_done;
4841 	}
4842 
4843 	/* initialize DDP driven features */
4844 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4845 		ice_ptp_init(pf);
4846 
4847 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4848 		ice_gnss_init(pf);
4849 
4850 	/* Note: Flow director init failure is non-fatal to load */
4851 	if (ice_init_fdir(pf))
4852 		dev_err(dev, "could not initialize flow director\n");
4853 
4854 	/* Note: DCB init failure is non-fatal to load */
4855 	if (ice_init_pf_dcb(pf, false)) {
4856 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4857 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4858 	} else {
4859 		ice_cfg_lldp_mib_change(&pf->hw, true);
4860 	}
4861 
4862 	if (ice_init_lag(pf))
4863 		dev_warn(dev, "Failed to init link aggregation support\n");
4864 
4865 	/* print PCI link speed and width */
4866 	pcie_print_link_status(pf->pdev);
4867 
4868 probe_done:
4869 	err = ice_register_netdev(pf);
4870 	if (err)
4871 		goto err_netdev_reg;
4872 
4873 	err = ice_devlink_register_params(pf);
4874 	if (err)
4875 		goto err_netdev_reg;
4876 
4877 	/* ready to go, so clear down state bit */
4878 	clear_bit(ICE_DOWN, pf->state);
4879 	if (ice_is_rdma_ena(pf)) {
4880 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4881 		if (pf->aux_idx < 0) {
4882 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4883 			err = -ENOMEM;
4884 			goto err_devlink_reg_param;
4885 		}
4886 
4887 		err = ice_init_rdma(pf);
4888 		if (err) {
4889 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4890 			err = -EIO;
4891 			goto err_init_aux_unroll;
4892 		}
4893 	} else {
4894 		dev_warn(dev, "RDMA is not supported on this device\n");
4895 	}
4896 
4897 	ice_devlink_register(pf);
4898 	return 0;
4899 
4900 err_init_aux_unroll:
4901 	pf->adev = NULL;
4902 	ida_free(&ice_aux_ida, pf->aux_idx);
4903 err_devlink_reg_param:
4904 	ice_devlink_unregister_params(pf);
4905 err_netdev_reg:
4906 err_send_version_unroll:
4907 	ice_vsi_release_all(pf);
4908 err_alloc_sw_unroll:
4909 	set_bit(ICE_SERVICE_DIS, pf->state);
4910 	set_bit(ICE_DOWN, pf->state);
4911 	devm_kfree(dev, pf->first_sw);
4912 err_msix_misc_unroll:
4913 	ice_free_irq_msix_misc(pf);
4914 err_init_interrupt_unroll:
4915 	ice_clear_interrupt_scheme(pf);
4916 err_init_vsi_unroll:
4917 	devm_kfree(dev, pf->vsi);
4918 err_init_pf_unroll:
4919 	ice_deinit_pf(pf);
4920 	ice_devlink_destroy_regions(pf);
4921 	ice_deinit_hw(hw);
4922 err_exit_unroll:
4923 	pci_disable_pcie_error_reporting(pdev);
4924 	pci_disable_device(pdev);
4925 	return err;
4926 }
4927 
4928 /**
4929  * ice_set_wake - enable or disable Wake on LAN
4930  * @pf: pointer to the PF struct
4931  *
4932  * Simple helper for WoL control
4933  */
4934 static void ice_set_wake(struct ice_pf *pf)
4935 {
4936 	struct ice_hw *hw = &pf->hw;
4937 	bool wol = pf->wol_ena;
4938 
4939 	/* clear wake state, otherwise new wake events won't fire */
4940 	wr32(hw, PFPM_WUS, U32_MAX);
4941 
4942 	/* enable / disable APM wake up, no RMW needed */
4943 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4944 
4945 	/* set magic packet filter enabled */
4946 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4947 }
4948 
4949 /**
4950  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4951  * @pf: pointer to the PF struct
4952  *
4953  * Issue firmware command to enable multicast magic wake, making
4954  * sure that any locally administered address (LAA) is used for
4955  * wake, and that PF reset doesn't undo the LAA.
4956  */
4957 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4958 {
4959 	struct device *dev = ice_pf_to_dev(pf);
4960 	struct ice_hw *hw = &pf->hw;
4961 	u8 mac_addr[ETH_ALEN];
4962 	struct ice_vsi *vsi;
4963 	int status;
4964 	u8 flags;
4965 
4966 	if (!pf->wol_ena)
4967 		return;
4968 
4969 	vsi = ice_get_main_vsi(pf);
4970 	if (!vsi)
4971 		return;
4972 
4973 	/* Get current MAC address in case it's an LAA */
4974 	if (vsi->netdev)
4975 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4976 	else
4977 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4978 
4979 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4980 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4981 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4982 
4983 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4984 	if (status)
4985 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4986 			status, ice_aq_str(hw->adminq.sq_last_status));
4987 }
4988 
4989 /**
4990  * ice_remove - Device removal routine
4991  * @pdev: PCI device information struct
4992  */
4993 static void ice_remove(struct pci_dev *pdev)
4994 {
4995 	struct ice_pf *pf = pci_get_drvdata(pdev);
4996 	int i;
4997 
4998 	ice_devlink_unregister(pf);
4999 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5000 		if (!ice_is_reset_in_progress(pf->state))
5001 			break;
5002 		msleep(100);
5003 	}
5004 
5005 	ice_tc_indir_block_remove(pf);
5006 
5007 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5008 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5009 		ice_free_vfs(pf);
5010 	}
5011 
5012 	ice_service_task_stop(pf);
5013 
5014 	ice_aq_cancel_waiting_tasks(pf);
5015 	ice_unplug_aux_dev(pf);
5016 	if (pf->aux_idx >= 0)
5017 		ida_free(&ice_aux_ida, pf->aux_idx);
5018 	ice_devlink_unregister_params(pf);
5019 	set_bit(ICE_DOWN, pf->state);
5020 
5021 	ice_deinit_lag(pf);
5022 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5023 		ice_ptp_release(pf);
5024 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5025 		ice_gnss_exit(pf);
5026 	if (!ice_is_safe_mode(pf))
5027 		ice_remove_arfs(pf);
5028 	ice_setup_mc_magic_wake(pf);
5029 	ice_vsi_release_all(pf);
5030 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5031 	ice_set_wake(pf);
5032 	ice_free_irq_msix_misc(pf);
5033 	ice_for_each_vsi(pf, i) {
5034 		if (!pf->vsi[i])
5035 			continue;
5036 		ice_vsi_free_q_vectors(pf->vsi[i]);
5037 	}
5038 	ice_deinit_pf(pf);
5039 	ice_devlink_destroy_regions(pf);
5040 	ice_deinit_hw(&pf->hw);
5041 
5042 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5043 	 * do it via ice_schedule_reset() since there is no need to rebuild
5044 	 * and the service task is already stopped.
5045 	 */
5046 	ice_reset(&pf->hw, ICE_RESET_PFR);
5047 	pci_wait_for_pending_transaction(pdev);
5048 	ice_clear_interrupt_scheme(pf);
5049 	pci_disable_pcie_error_reporting(pdev);
5050 	pci_disable_device(pdev);
5051 }
5052 
5053 /**
5054  * ice_shutdown - PCI callback for shutting down device
5055  * @pdev: PCI device information struct
5056  */
5057 static void ice_shutdown(struct pci_dev *pdev)
5058 {
5059 	struct ice_pf *pf = pci_get_drvdata(pdev);
5060 
5061 	ice_remove(pdev);
5062 
5063 	if (system_state == SYSTEM_POWER_OFF) {
5064 		pci_wake_from_d3(pdev, pf->wol_ena);
5065 		pci_set_power_state(pdev, PCI_D3hot);
5066 	}
5067 }
5068 
5069 #ifdef CONFIG_PM
5070 /**
5071  * ice_prepare_for_shutdown - prep for PCI shutdown
5072  * @pf: board private structure
5073  *
5074  * Inform or close all dependent features in prep for PCI device shutdown
5075  */
5076 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5077 {
5078 	struct ice_hw *hw = &pf->hw;
5079 	u32 v;
5080 
5081 	/* Notify VFs of impending reset */
5082 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5083 		ice_vc_notify_reset(pf);
5084 
5085 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5086 
5087 	/* disable the VSIs and their queues that are not already DOWN */
5088 	ice_pf_dis_all_vsi(pf, false);
5089 
5090 	ice_for_each_vsi(pf, v)
5091 		if (pf->vsi[v])
5092 			pf->vsi[v]->vsi_num = 0;
5093 
5094 	ice_shutdown_all_ctrlq(hw);
5095 }
5096 
5097 /**
5098  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5099  * @pf: board private structure to reinitialize
5100  *
5101  * This routine reinitialize interrupt scheme that was cleared during
5102  * power management suspend callback.
5103  *
5104  * This should be called during resume routine to re-allocate the q_vectors
5105  * and reacquire interrupts.
5106  */
5107 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5108 {
5109 	struct device *dev = ice_pf_to_dev(pf);
5110 	int ret, v;
5111 
5112 	/* Since we clear MSIX flag during suspend, we need to
5113 	 * set it back during resume...
5114 	 */
5115 
5116 	ret = ice_init_interrupt_scheme(pf);
5117 	if (ret) {
5118 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5119 		return ret;
5120 	}
5121 
5122 	/* Remap vectors and rings, after successful re-init interrupts */
5123 	ice_for_each_vsi(pf, v) {
5124 		if (!pf->vsi[v])
5125 			continue;
5126 
5127 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5128 		if (ret)
5129 			goto err_reinit;
5130 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5131 	}
5132 
5133 	ret = ice_req_irq_msix_misc(pf);
5134 	if (ret) {
5135 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5136 			ret);
5137 		goto err_reinit;
5138 	}
5139 
5140 	return 0;
5141 
5142 err_reinit:
5143 	while (v--)
5144 		if (pf->vsi[v])
5145 			ice_vsi_free_q_vectors(pf->vsi[v]);
5146 
5147 	return ret;
5148 }
5149 
5150 /**
5151  * ice_suspend
5152  * @dev: generic device information structure
5153  *
5154  * Power Management callback to quiesce the device and prepare
5155  * for D3 transition.
5156  */
5157 static int __maybe_unused ice_suspend(struct device *dev)
5158 {
5159 	struct pci_dev *pdev = to_pci_dev(dev);
5160 	struct ice_pf *pf;
5161 	int disabled, v;
5162 
5163 	pf = pci_get_drvdata(pdev);
5164 
5165 	if (!ice_pf_state_is_nominal(pf)) {
5166 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5167 		return -EBUSY;
5168 	}
5169 
5170 	/* Stop watchdog tasks until resume completion.
5171 	 * Even though it is most likely that the service task is
5172 	 * disabled if the device is suspended or down, the service task's
5173 	 * state is controlled by a different state bit, and we should
5174 	 * store and honor whatever state that bit is in at this point.
5175 	 */
5176 	disabled = ice_service_task_stop(pf);
5177 
5178 	ice_unplug_aux_dev(pf);
5179 
5180 	/* Already suspended?, then there is nothing to do */
5181 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5182 		if (!disabled)
5183 			ice_service_task_restart(pf);
5184 		return 0;
5185 	}
5186 
5187 	if (test_bit(ICE_DOWN, pf->state) ||
5188 	    ice_is_reset_in_progress(pf->state)) {
5189 		dev_err(dev, "can't suspend device in reset or already down\n");
5190 		if (!disabled)
5191 			ice_service_task_restart(pf);
5192 		return 0;
5193 	}
5194 
5195 	ice_setup_mc_magic_wake(pf);
5196 
5197 	ice_prepare_for_shutdown(pf);
5198 
5199 	ice_set_wake(pf);
5200 
5201 	/* Free vectors, clear the interrupt scheme and release IRQs
5202 	 * for proper hibernation, especially with large number of CPUs.
5203 	 * Otherwise hibernation might fail when mapping all the vectors back
5204 	 * to CPU0.
5205 	 */
5206 	ice_free_irq_msix_misc(pf);
5207 	ice_for_each_vsi(pf, v) {
5208 		if (!pf->vsi[v])
5209 			continue;
5210 		ice_vsi_free_q_vectors(pf->vsi[v]);
5211 	}
5212 	ice_clear_interrupt_scheme(pf);
5213 
5214 	pci_save_state(pdev);
5215 	pci_wake_from_d3(pdev, pf->wol_ena);
5216 	pci_set_power_state(pdev, PCI_D3hot);
5217 	return 0;
5218 }
5219 
5220 /**
5221  * ice_resume - PM callback for waking up from D3
5222  * @dev: generic device information structure
5223  */
5224 static int __maybe_unused ice_resume(struct device *dev)
5225 {
5226 	struct pci_dev *pdev = to_pci_dev(dev);
5227 	enum ice_reset_req reset_type;
5228 	struct ice_pf *pf;
5229 	struct ice_hw *hw;
5230 	int ret;
5231 
5232 	pci_set_power_state(pdev, PCI_D0);
5233 	pci_restore_state(pdev);
5234 	pci_save_state(pdev);
5235 
5236 	if (!pci_device_is_present(pdev))
5237 		return -ENODEV;
5238 
5239 	ret = pci_enable_device_mem(pdev);
5240 	if (ret) {
5241 		dev_err(dev, "Cannot enable device after suspend\n");
5242 		return ret;
5243 	}
5244 
5245 	pf = pci_get_drvdata(pdev);
5246 	hw = &pf->hw;
5247 
5248 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5249 	ice_print_wake_reason(pf);
5250 
5251 	/* We cleared the interrupt scheme when we suspended, so we need to
5252 	 * restore it now to resume device functionality.
5253 	 */
5254 	ret = ice_reinit_interrupt_scheme(pf);
5255 	if (ret)
5256 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5257 
5258 	clear_bit(ICE_DOWN, pf->state);
5259 	/* Now perform PF reset and rebuild */
5260 	reset_type = ICE_RESET_PFR;
5261 	/* re-enable service task for reset, but allow reset to schedule it */
5262 	clear_bit(ICE_SERVICE_DIS, pf->state);
5263 
5264 	if (ice_schedule_reset(pf, reset_type))
5265 		dev_err(dev, "Reset during resume failed.\n");
5266 
5267 	clear_bit(ICE_SUSPENDED, pf->state);
5268 	ice_service_task_restart(pf);
5269 
5270 	/* Restart the service task */
5271 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5272 
5273 	return 0;
5274 }
5275 #endif /* CONFIG_PM */
5276 
5277 /**
5278  * ice_pci_err_detected - warning that PCI error has been detected
5279  * @pdev: PCI device information struct
5280  * @err: the type of PCI error
5281  *
5282  * Called to warn that something happened on the PCI bus and the error handling
5283  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5284  */
5285 static pci_ers_result_t
5286 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5287 {
5288 	struct ice_pf *pf = pci_get_drvdata(pdev);
5289 
5290 	if (!pf) {
5291 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5292 			__func__, err);
5293 		return PCI_ERS_RESULT_DISCONNECT;
5294 	}
5295 
5296 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5297 		ice_service_task_stop(pf);
5298 
5299 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5300 			set_bit(ICE_PFR_REQ, pf->state);
5301 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5302 		}
5303 	}
5304 
5305 	return PCI_ERS_RESULT_NEED_RESET;
5306 }
5307 
5308 /**
5309  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5310  * @pdev: PCI device information struct
5311  *
5312  * Called to determine if the driver can recover from the PCI slot reset by
5313  * using a register read to determine if the device is recoverable.
5314  */
5315 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5316 {
5317 	struct ice_pf *pf = pci_get_drvdata(pdev);
5318 	pci_ers_result_t result;
5319 	int err;
5320 	u32 reg;
5321 
5322 	err = pci_enable_device_mem(pdev);
5323 	if (err) {
5324 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5325 			err);
5326 		result = PCI_ERS_RESULT_DISCONNECT;
5327 	} else {
5328 		pci_set_master(pdev);
5329 		pci_restore_state(pdev);
5330 		pci_save_state(pdev);
5331 		pci_wake_from_d3(pdev, false);
5332 
5333 		/* Check for life */
5334 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5335 		if (!reg)
5336 			result = PCI_ERS_RESULT_RECOVERED;
5337 		else
5338 			result = PCI_ERS_RESULT_DISCONNECT;
5339 	}
5340 
5341 	return result;
5342 }
5343 
5344 /**
5345  * ice_pci_err_resume - restart operations after PCI error recovery
5346  * @pdev: PCI device information struct
5347  *
5348  * Called to allow the driver to bring things back up after PCI error and/or
5349  * reset recovery have finished
5350  */
5351 static void ice_pci_err_resume(struct pci_dev *pdev)
5352 {
5353 	struct ice_pf *pf = pci_get_drvdata(pdev);
5354 
5355 	if (!pf) {
5356 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5357 			__func__);
5358 		return;
5359 	}
5360 
5361 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5362 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5363 			__func__);
5364 		return;
5365 	}
5366 
5367 	ice_restore_all_vfs_msi_state(pdev);
5368 
5369 	ice_do_reset(pf, ICE_RESET_PFR);
5370 	ice_service_task_restart(pf);
5371 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5372 }
5373 
5374 /**
5375  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5376  * @pdev: PCI device information struct
5377  */
5378 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5379 {
5380 	struct ice_pf *pf = pci_get_drvdata(pdev);
5381 
5382 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5383 		ice_service_task_stop(pf);
5384 
5385 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5386 			set_bit(ICE_PFR_REQ, pf->state);
5387 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5388 		}
5389 	}
5390 }
5391 
5392 /**
5393  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5394  * @pdev: PCI device information struct
5395  */
5396 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5397 {
5398 	ice_pci_err_resume(pdev);
5399 }
5400 
5401 /* ice_pci_tbl - PCI Device ID Table
5402  *
5403  * Wildcard entries (PCI_ANY_ID) should come last
5404  * Last entry must be all 0s
5405  *
5406  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5407  *   Class, Class Mask, private data (not used) }
5408  */
5409 static const struct pci_device_id ice_pci_tbl[] = {
5410 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5411 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5412 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5413 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5414 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5415 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5416 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5417 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5418 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5419 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5420 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5421 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5422 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5423 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5424 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5425 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5426 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5427 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5428 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5429 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5430 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5431 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5432 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5433 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5434 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5435 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5436 	/* required last entry */
5437 	{ 0, }
5438 };
5439 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5440 
5441 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5442 
5443 static const struct pci_error_handlers ice_pci_err_handler = {
5444 	.error_detected = ice_pci_err_detected,
5445 	.slot_reset = ice_pci_err_slot_reset,
5446 	.reset_prepare = ice_pci_err_reset_prepare,
5447 	.reset_done = ice_pci_err_reset_done,
5448 	.resume = ice_pci_err_resume
5449 };
5450 
5451 static struct pci_driver ice_driver = {
5452 	.name = KBUILD_MODNAME,
5453 	.id_table = ice_pci_tbl,
5454 	.probe = ice_probe,
5455 	.remove = ice_remove,
5456 #ifdef CONFIG_PM
5457 	.driver.pm = &ice_pm_ops,
5458 #endif /* CONFIG_PM */
5459 	.shutdown = ice_shutdown,
5460 	.sriov_configure = ice_sriov_configure,
5461 	.err_handler = &ice_pci_err_handler
5462 };
5463 
5464 /**
5465  * ice_module_init - Driver registration routine
5466  *
5467  * ice_module_init is the first routine called when the driver is
5468  * loaded. All it does is register with the PCI subsystem.
5469  */
5470 static int __init ice_module_init(void)
5471 {
5472 	int status;
5473 
5474 	pr_info("%s\n", ice_driver_string);
5475 	pr_info("%s\n", ice_copyright);
5476 
5477 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5478 	if (!ice_wq) {
5479 		pr_err("Failed to create workqueue\n");
5480 		return -ENOMEM;
5481 	}
5482 
5483 	status = pci_register_driver(&ice_driver);
5484 	if (status) {
5485 		pr_err("failed to register PCI driver, err %d\n", status);
5486 		destroy_workqueue(ice_wq);
5487 	}
5488 
5489 	return status;
5490 }
5491 module_init(ice_module_init);
5492 
5493 /**
5494  * ice_module_exit - Driver exit cleanup routine
5495  *
5496  * ice_module_exit is called just before the driver is removed
5497  * from memory.
5498  */
5499 static void __exit ice_module_exit(void)
5500 {
5501 	pci_unregister_driver(&ice_driver);
5502 	destroy_workqueue(ice_wq);
5503 	pr_info("module unloaded\n");
5504 }
5505 module_exit(ice_module_exit);
5506 
5507 /**
5508  * ice_set_mac_address - NDO callback to set MAC address
5509  * @netdev: network interface device structure
5510  * @pi: pointer to an address structure
5511  *
5512  * Returns 0 on success, negative on failure
5513  */
5514 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5515 {
5516 	struct ice_netdev_priv *np = netdev_priv(netdev);
5517 	struct ice_vsi *vsi = np->vsi;
5518 	struct ice_pf *pf = vsi->back;
5519 	struct ice_hw *hw = &pf->hw;
5520 	struct sockaddr *addr = pi;
5521 	u8 old_mac[ETH_ALEN];
5522 	u8 flags = 0;
5523 	u8 *mac;
5524 	int err;
5525 
5526 	mac = (u8 *)addr->sa_data;
5527 
5528 	if (!is_valid_ether_addr(mac))
5529 		return -EADDRNOTAVAIL;
5530 
5531 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5532 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5533 		return 0;
5534 	}
5535 
5536 	if (test_bit(ICE_DOWN, pf->state) ||
5537 	    ice_is_reset_in_progress(pf->state)) {
5538 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5539 			   mac);
5540 		return -EBUSY;
5541 	}
5542 
5543 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5544 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5545 			   mac);
5546 		return -EAGAIN;
5547 	}
5548 
5549 	netif_addr_lock_bh(netdev);
5550 	ether_addr_copy(old_mac, netdev->dev_addr);
5551 	/* change the netdev's MAC address */
5552 	eth_hw_addr_set(netdev, mac);
5553 	netif_addr_unlock_bh(netdev);
5554 
5555 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5556 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5557 	if (err && err != -ENOENT) {
5558 		err = -EADDRNOTAVAIL;
5559 		goto err_update_filters;
5560 	}
5561 
5562 	/* Add filter for new MAC. If filter exists, return success */
5563 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5564 	if (err == -EEXIST) {
5565 		/* Although this MAC filter is already present in hardware it's
5566 		 * possible in some cases (e.g. bonding) that dev_addr was
5567 		 * modified outside of the driver and needs to be restored back
5568 		 * to this value.
5569 		 */
5570 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5571 
5572 		return 0;
5573 	} else if (err) {
5574 		/* error if the new filter addition failed */
5575 		err = -EADDRNOTAVAIL;
5576 	}
5577 
5578 err_update_filters:
5579 	if (err) {
5580 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5581 			   mac);
5582 		netif_addr_lock_bh(netdev);
5583 		eth_hw_addr_set(netdev, old_mac);
5584 		netif_addr_unlock_bh(netdev);
5585 		return err;
5586 	}
5587 
5588 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5589 		   netdev->dev_addr);
5590 
5591 	/* write new MAC address to the firmware */
5592 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5593 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5594 	if (err) {
5595 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5596 			   mac, err);
5597 	}
5598 	return 0;
5599 }
5600 
5601 /**
5602  * ice_set_rx_mode - NDO callback to set the netdev filters
5603  * @netdev: network interface device structure
5604  */
5605 static void ice_set_rx_mode(struct net_device *netdev)
5606 {
5607 	struct ice_netdev_priv *np = netdev_priv(netdev);
5608 	struct ice_vsi *vsi = np->vsi;
5609 
5610 	if (!vsi)
5611 		return;
5612 
5613 	/* Set the flags to synchronize filters
5614 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5615 	 * flags
5616 	 */
5617 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5618 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5619 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5620 
5621 	/* schedule our worker thread which will take care of
5622 	 * applying the new filter changes
5623 	 */
5624 	ice_service_task_schedule(vsi->back);
5625 }
5626 
5627 /**
5628  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5629  * @netdev: network interface device structure
5630  * @queue_index: Queue ID
5631  * @maxrate: maximum bandwidth in Mbps
5632  */
5633 static int
5634 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5635 {
5636 	struct ice_netdev_priv *np = netdev_priv(netdev);
5637 	struct ice_vsi *vsi = np->vsi;
5638 	u16 q_handle;
5639 	int status;
5640 	u8 tc;
5641 
5642 	/* Validate maxrate requested is within permitted range */
5643 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5644 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5645 			   maxrate, queue_index);
5646 		return -EINVAL;
5647 	}
5648 
5649 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5650 	tc = ice_dcb_get_tc(vsi, queue_index);
5651 
5652 	/* Set BW back to default, when user set maxrate to 0 */
5653 	if (!maxrate)
5654 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5655 					       q_handle, ICE_MAX_BW);
5656 	else
5657 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5658 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5659 	if (status)
5660 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5661 			   status);
5662 
5663 	return status;
5664 }
5665 
5666 /**
5667  * ice_fdb_add - add an entry to the hardware database
5668  * @ndm: the input from the stack
5669  * @tb: pointer to array of nladdr (unused)
5670  * @dev: the net device pointer
5671  * @addr: the MAC address entry being added
5672  * @vid: VLAN ID
5673  * @flags: instructions from stack about fdb operation
5674  * @extack: netlink extended ack
5675  */
5676 static int
5677 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5678 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5679 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5680 {
5681 	int err;
5682 
5683 	if (vid) {
5684 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5685 		return -EINVAL;
5686 	}
5687 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5688 		netdev_err(dev, "FDB only supports static addresses\n");
5689 		return -EINVAL;
5690 	}
5691 
5692 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5693 		err = dev_uc_add_excl(dev, addr);
5694 	else if (is_multicast_ether_addr(addr))
5695 		err = dev_mc_add_excl(dev, addr);
5696 	else
5697 		err = -EINVAL;
5698 
5699 	/* Only return duplicate errors if NLM_F_EXCL is set */
5700 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5701 		err = 0;
5702 
5703 	return err;
5704 }
5705 
5706 /**
5707  * ice_fdb_del - delete an entry from the hardware database
5708  * @ndm: the input from the stack
5709  * @tb: pointer to array of nladdr (unused)
5710  * @dev: the net device pointer
5711  * @addr: the MAC address entry being added
5712  * @vid: VLAN ID
5713  * @extack: netlink extended ack
5714  */
5715 static int
5716 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5717 	    struct net_device *dev, const unsigned char *addr,
5718 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5719 {
5720 	int err;
5721 
5722 	if (ndm->ndm_state & NUD_PERMANENT) {
5723 		netdev_err(dev, "FDB only supports static addresses\n");
5724 		return -EINVAL;
5725 	}
5726 
5727 	if (is_unicast_ether_addr(addr))
5728 		err = dev_uc_del(dev, addr);
5729 	else if (is_multicast_ether_addr(addr))
5730 		err = dev_mc_del(dev, addr);
5731 	else
5732 		err = -EINVAL;
5733 
5734 	return err;
5735 }
5736 
5737 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5738 					 NETIF_F_HW_VLAN_CTAG_TX | \
5739 					 NETIF_F_HW_VLAN_STAG_RX | \
5740 					 NETIF_F_HW_VLAN_STAG_TX)
5741 
5742 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5743 					 NETIF_F_HW_VLAN_STAG_RX)
5744 
5745 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5746 					 NETIF_F_HW_VLAN_STAG_FILTER)
5747 
5748 /**
5749  * ice_fix_features - fix the netdev features flags based on device limitations
5750  * @netdev: ptr to the netdev that flags are being fixed on
5751  * @features: features that need to be checked and possibly fixed
5752  *
5753  * Make sure any fixups are made to features in this callback. This enables the
5754  * driver to not have to check unsupported configurations throughout the driver
5755  * because that's the responsiblity of this callback.
5756  *
5757  * Single VLAN Mode (SVM) Supported Features:
5758  *	NETIF_F_HW_VLAN_CTAG_FILTER
5759  *	NETIF_F_HW_VLAN_CTAG_RX
5760  *	NETIF_F_HW_VLAN_CTAG_TX
5761  *
5762  * Double VLAN Mode (DVM) Supported Features:
5763  *	NETIF_F_HW_VLAN_CTAG_FILTER
5764  *	NETIF_F_HW_VLAN_CTAG_RX
5765  *	NETIF_F_HW_VLAN_CTAG_TX
5766  *
5767  *	NETIF_F_HW_VLAN_STAG_FILTER
5768  *	NETIF_HW_VLAN_STAG_RX
5769  *	NETIF_HW_VLAN_STAG_TX
5770  *
5771  * Features that need fixing:
5772  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5773  *	These are mutually exlusive as the VSI context cannot support multiple
5774  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5775  *	is not done, then default to clearing the requested STAG offload
5776  *	settings.
5777  *
5778  *	All supported filtering has to be enabled or disabled together. For
5779  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5780  *	together. If this is not done, then default to VLAN filtering disabled.
5781  *	These are mutually exclusive as there is currently no way to
5782  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5783  *	prune rules.
5784  */
5785 static netdev_features_t
5786 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5787 {
5788 	struct ice_netdev_priv *np = netdev_priv(netdev);
5789 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5790 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5791 
5792 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5793 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5794 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5795 
5796 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5797 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5798 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5799 
5800 	if (req_vlan_fltr != cur_vlan_fltr) {
5801 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5802 			if (req_ctag && req_stag) {
5803 				features |= NETIF_VLAN_FILTERING_FEATURES;
5804 			} else if (!req_ctag && !req_stag) {
5805 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5806 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5807 				   (!cur_stag && req_stag && !cur_ctag)) {
5808 				features |= NETIF_VLAN_FILTERING_FEATURES;
5809 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5810 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5811 				   (cur_stag && !req_stag && cur_ctag)) {
5812 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5813 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5814 			}
5815 		} else {
5816 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5817 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5818 
5819 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5820 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5821 		}
5822 	}
5823 
5824 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5825 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5826 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5827 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5828 			      NETIF_F_HW_VLAN_STAG_TX);
5829 	}
5830 
5831 	if (!(netdev->features & NETIF_F_RXFCS) &&
5832 	    (features & NETIF_F_RXFCS) &&
5833 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5834 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
5835 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5836 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5837 	}
5838 
5839 	return features;
5840 }
5841 
5842 /**
5843  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5844  * @vsi: PF's VSI
5845  * @features: features used to determine VLAN offload settings
5846  *
5847  * First, determine the vlan_ethertype based on the VLAN offload bits in
5848  * features. Then determine if stripping and insertion should be enabled or
5849  * disabled. Finally enable or disable VLAN stripping and insertion.
5850  */
5851 static int
5852 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5853 {
5854 	bool enable_stripping = true, enable_insertion = true;
5855 	struct ice_vsi_vlan_ops *vlan_ops;
5856 	int strip_err = 0, insert_err = 0;
5857 	u16 vlan_ethertype = 0;
5858 
5859 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5860 
5861 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5862 		vlan_ethertype = ETH_P_8021AD;
5863 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5864 		vlan_ethertype = ETH_P_8021Q;
5865 
5866 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5867 		enable_stripping = false;
5868 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5869 		enable_insertion = false;
5870 
5871 	if (enable_stripping)
5872 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5873 	else
5874 		strip_err = vlan_ops->dis_stripping(vsi);
5875 
5876 	if (enable_insertion)
5877 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5878 	else
5879 		insert_err = vlan_ops->dis_insertion(vsi);
5880 
5881 	if (strip_err || insert_err)
5882 		return -EIO;
5883 
5884 	return 0;
5885 }
5886 
5887 /**
5888  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5889  * @vsi: PF's VSI
5890  * @features: features used to determine VLAN filtering settings
5891  *
5892  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5893  * features.
5894  */
5895 static int
5896 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5897 {
5898 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5899 	int err = 0;
5900 
5901 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5902 	 * if either bit is set
5903 	 */
5904 	if (features &
5905 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5906 		err = vlan_ops->ena_rx_filtering(vsi);
5907 	else
5908 		err = vlan_ops->dis_rx_filtering(vsi);
5909 
5910 	return err;
5911 }
5912 
5913 /**
5914  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5915  * @netdev: ptr to the netdev being adjusted
5916  * @features: the feature set that the stack is suggesting
5917  *
5918  * Only update VLAN settings if the requested_vlan_features are different than
5919  * the current_vlan_features.
5920  */
5921 static int
5922 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5923 {
5924 	netdev_features_t current_vlan_features, requested_vlan_features;
5925 	struct ice_netdev_priv *np = netdev_priv(netdev);
5926 	struct ice_vsi *vsi = np->vsi;
5927 	int err;
5928 
5929 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5930 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5931 	if (current_vlan_features ^ requested_vlan_features) {
5932 		if ((features & NETIF_F_RXFCS) &&
5933 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
5934 			dev_err(ice_pf_to_dev(vsi->back),
5935 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
5936 			return -EIO;
5937 		}
5938 
5939 		err = ice_set_vlan_offload_features(vsi, features);
5940 		if (err)
5941 			return err;
5942 	}
5943 
5944 	current_vlan_features = netdev->features &
5945 		NETIF_VLAN_FILTERING_FEATURES;
5946 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5947 	if (current_vlan_features ^ requested_vlan_features) {
5948 		err = ice_set_vlan_filtering_features(vsi, features);
5949 		if (err)
5950 			return err;
5951 	}
5952 
5953 	return 0;
5954 }
5955 
5956 /**
5957  * ice_set_loopback - turn on/off loopback mode on underlying PF
5958  * @vsi: ptr to VSI
5959  * @ena: flag to indicate the on/off setting
5960  */
5961 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
5962 {
5963 	bool if_running = netif_running(vsi->netdev);
5964 	int ret;
5965 
5966 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
5967 		ret = ice_down(vsi);
5968 		if (ret) {
5969 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
5970 			return ret;
5971 		}
5972 	}
5973 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
5974 	if (ret)
5975 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
5976 	if (if_running)
5977 		ret = ice_up(vsi);
5978 
5979 	return ret;
5980 }
5981 
5982 /**
5983  * ice_set_features - set the netdev feature flags
5984  * @netdev: ptr to the netdev being adjusted
5985  * @features: the feature set that the stack is suggesting
5986  */
5987 static int
5988 ice_set_features(struct net_device *netdev, netdev_features_t features)
5989 {
5990 	netdev_features_t changed = netdev->features ^ features;
5991 	struct ice_netdev_priv *np = netdev_priv(netdev);
5992 	struct ice_vsi *vsi = np->vsi;
5993 	struct ice_pf *pf = vsi->back;
5994 	int ret = 0;
5995 
5996 	/* Don't set any netdev advanced features with device in Safe Mode */
5997 	if (ice_is_safe_mode(pf)) {
5998 		dev_err(ice_pf_to_dev(pf),
5999 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6000 		return ret;
6001 	}
6002 
6003 	/* Do not change setting during reset */
6004 	if (ice_is_reset_in_progress(pf->state)) {
6005 		dev_err(ice_pf_to_dev(pf),
6006 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6007 		return -EBUSY;
6008 	}
6009 
6010 	/* Multiple features can be changed in one call so keep features in
6011 	 * separate if/else statements to guarantee each feature is checked
6012 	 */
6013 	if (changed & NETIF_F_RXHASH)
6014 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6015 
6016 	ret = ice_set_vlan_features(netdev, features);
6017 	if (ret)
6018 		return ret;
6019 
6020 	/* Turn on receive of FCS aka CRC, and after setting this
6021 	 * flag the packet data will have the 4 byte CRC appended
6022 	 */
6023 	if (changed & NETIF_F_RXFCS) {
6024 		if ((features & NETIF_F_RXFCS) &&
6025 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6026 			dev_err(ice_pf_to_dev(vsi->back),
6027 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6028 			return -EIO;
6029 		}
6030 
6031 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6032 		ret = ice_down_up(vsi);
6033 		if (ret)
6034 			return ret;
6035 	}
6036 
6037 	if (changed & NETIF_F_NTUPLE) {
6038 		bool ena = !!(features & NETIF_F_NTUPLE);
6039 
6040 		ice_vsi_manage_fdir(vsi, ena);
6041 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6042 	}
6043 
6044 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6045 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6046 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6047 		return -EACCES;
6048 	}
6049 
6050 	if (changed & NETIF_F_HW_TC) {
6051 		bool ena = !!(features & NETIF_F_HW_TC);
6052 
6053 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6054 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6055 	}
6056 
6057 	if (changed & NETIF_F_LOOPBACK)
6058 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6059 
6060 	return ret;
6061 }
6062 
6063 /**
6064  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6065  * @vsi: VSI to setup VLAN properties for
6066  */
6067 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6068 {
6069 	int err;
6070 
6071 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6072 	if (err)
6073 		return err;
6074 
6075 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6076 	if (err)
6077 		return err;
6078 
6079 	return ice_vsi_add_vlan_zero(vsi);
6080 }
6081 
6082 /**
6083  * ice_vsi_cfg - Setup the VSI
6084  * @vsi: the VSI being configured
6085  *
6086  * Return 0 on success and negative value on error
6087  */
6088 int ice_vsi_cfg(struct ice_vsi *vsi)
6089 {
6090 	int err;
6091 
6092 	if (vsi->netdev) {
6093 		ice_set_rx_mode(vsi->netdev);
6094 
6095 		if (vsi->type != ICE_VSI_LB) {
6096 			err = ice_vsi_vlan_setup(vsi);
6097 
6098 			if (err)
6099 				return err;
6100 		}
6101 	}
6102 	ice_vsi_cfg_dcb_rings(vsi);
6103 
6104 	err = ice_vsi_cfg_lan_txqs(vsi);
6105 	if (!err && ice_is_xdp_ena_vsi(vsi))
6106 		err = ice_vsi_cfg_xdp_txqs(vsi);
6107 	if (!err)
6108 		err = ice_vsi_cfg_rxqs(vsi);
6109 
6110 	return err;
6111 }
6112 
6113 /* THEORY OF MODERATION:
6114  * The ice driver hardware works differently than the hardware that DIMLIB was
6115  * originally made for. ice hardware doesn't have packet count limits that
6116  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6117  * which is hard-coded to a limit of 250,000 ints/second.
6118  * If not using dynamic moderation, the INTRL value can be modified
6119  * by ethtool rx-usecs-high.
6120  */
6121 struct ice_dim {
6122 	/* the throttle rate for interrupts, basically worst case delay before
6123 	 * an initial interrupt fires, value is stored in microseconds.
6124 	 */
6125 	u16 itr;
6126 };
6127 
6128 /* Make a different profile for Rx that doesn't allow quite so aggressive
6129  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6130  * second.
6131  */
6132 static const struct ice_dim rx_profile[] = {
6133 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6134 	{8},    /* 125,000 ints/s */
6135 	{16},   /*  62,500 ints/s */
6136 	{62},   /*  16,129 ints/s */
6137 	{126}   /*   7,936 ints/s */
6138 };
6139 
6140 /* The transmit profile, which has the same sorts of values
6141  * as the previous struct
6142  */
6143 static const struct ice_dim tx_profile[] = {
6144 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6145 	{8},    /* 125,000 ints/s */
6146 	{40},   /*  16,125 ints/s */
6147 	{128},  /*   7,812 ints/s */
6148 	{256}   /*   3,906 ints/s */
6149 };
6150 
6151 static void ice_tx_dim_work(struct work_struct *work)
6152 {
6153 	struct ice_ring_container *rc;
6154 	struct dim *dim;
6155 	u16 itr;
6156 
6157 	dim = container_of(work, struct dim, work);
6158 	rc = (struct ice_ring_container *)dim->priv;
6159 
6160 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6161 
6162 	/* look up the values in our local table */
6163 	itr = tx_profile[dim->profile_ix].itr;
6164 
6165 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6166 	ice_write_itr(rc, itr);
6167 
6168 	dim->state = DIM_START_MEASURE;
6169 }
6170 
6171 static void ice_rx_dim_work(struct work_struct *work)
6172 {
6173 	struct ice_ring_container *rc;
6174 	struct dim *dim;
6175 	u16 itr;
6176 
6177 	dim = container_of(work, struct dim, work);
6178 	rc = (struct ice_ring_container *)dim->priv;
6179 
6180 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6181 
6182 	/* look up the values in our local table */
6183 	itr = rx_profile[dim->profile_ix].itr;
6184 
6185 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6186 	ice_write_itr(rc, itr);
6187 
6188 	dim->state = DIM_START_MEASURE;
6189 }
6190 
6191 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6192 
6193 /**
6194  * ice_init_moderation - set up interrupt moderation
6195  * @q_vector: the vector containing rings to be configured
6196  *
6197  * Set up interrupt moderation registers, with the intent to do the right thing
6198  * when called from reset or from probe, and whether or not dynamic moderation
6199  * is enabled or not. Take special care to write all the registers in both
6200  * dynamic moderation mode or not in order to make sure hardware is in a known
6201  * state.
6202  */
6203 static void ice_init_moderation(struct ice_q_vector *q_vector)
6204 {
6205 	struct ice_ring_container *rc;
6206 	bool tx_dynamic, rx_dynamic;
6207 
6208 	rc = &q_vector->tx;
6209 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6210 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6211 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6212 	rc->dim.priv = rc;
6213 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6214 
6215 	/* set the initial TX ITR to match the above */
6216 	ice_write_itr(rc, tx_dynamic ?
6217 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6218 
6219 	rc = &q_vector->rx;
6220 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6221 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6222 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6223 	rc->dim.priv = rc;
6224 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6225 
6226 	/* set the initial RX ITR to match the above */
6227 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6228 				       rc->itr_setting);
6229 
6230 	ice_set_q_vector_intrl(q_vector);
6231 }
6232 
6233 /**
6234  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6235  * @vsi: the VSI being configured
6236  */
6237 static void ice_napi_enable_all(struct ice_vsi *vsi)
6238 {
6239 	int q_idx;
6240 
6241 	if (!vsi->netdev)
6242 		return;
6243 
6244 	ice_for_each_q_vector(vsi, q_idx) {
6245 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6246 
6247 		ice_init_moderation(q_vector);
6248 
6249 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6250 			napi_enable(&q_vector->napi);
6251 	}
6252 }
6253 
6254 /**
6255  * ice_up_complete - Finish the last steps of bringing up a connection
6256  * @vsi: The VSI being configured
6257  *
6258  * Return 0 on success and negative value on error
6259  */
6260 static int ice_up_complete(struct ice_vsi *vsi)
6261 {
6262 	struct ice_pf *pf = vsi->back;
6263 	int err;
6264 
6265 	ice_vsi_cfg_msix(vsi);
6266 
6267 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6268 	 * Tx queue group list was configured and the context bits were
6269 	 * programmed using ice_vsi_cfg_txqs
6270 	 */
6271 	err = ice_vsi_start_all_rx_rings(vsi);
6272 	if (err)
6273 		return err;
6274 
6275 	clear_bit(ICE_VSI_DOWN, vsi->state);
6276 	ice_napi_enable_all(vsi);
6277 	ice_vsi_ena_irq(vsi);
6278 
6279 	if (vsi->port_info &&
6280 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6281 	    vsi->netdev) {
6282 		ice_print_link_msg(vsi, true);
6283 		netif_tx_start_all_queues(vsi->netdev);
6284 		netif_carrier_on(vsi->netdev);
6285 		if (!ice_is_e810(&pf->hw))
6286 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
6287 	}
6288 
6289 	/* Perform an initial read of the statistics registers now to
6290 	 * set the baseline so counters are ready when interface is up
6291 	 */
6292 	ice_update_eth_stats(vsi);
6293 	ice_service_task_schedule(pf);
6294 
6295 	return 0;
6296 }
6297 
6298 /**
6299  * ice_up - Bring the connection back up after being down
6300  * @vsi: VSI being configured
6301  */
6302 int ice_up(struct ice_vsi *vsi)
6303 {
6304 	int err;
6305 
6306 	err = ice_vsi_cfg(vsi);
6307 	if (!err)
6308 		err = ice_up_complete(vsi);
6309 
6310 	return err;
6311 }
6312 
6313 /**
6314  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6315  * @syncp: pointer to u64_stats_sync
6316  * @stats: stats that pkts and bytes count will be taken from
6317  * @pkts: packets stats counter
6318  * @bytes: bytes stats counter
6319  *
6320  * This function fetches stats from the ring considering the atomic operations
6321  * that needs to be performed to read u64 values in 32 bit machine.
6322  */
6323 void
6324 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6325 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6326 {
6327 	unsigned int start;
6328 
6329 	do {
6330 		start = u64_stats_fetch_begin_irq(syncp);
6331 		*pkts = stats.pkts;
6332 		*bytes = stats.bytes;
6333 	} while (u64_stats_fetch_retry_irq(syncp, start));
6334 }
6335 
6336 /**
6337  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6338  * @vsi: the VSI to be updated
6339  * @vsi_stats: the stats struct to be updated
6340  * @rings: rings to work on
6341  * @count: number of rings
6342  */
6343 static void
6344 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6345 			     struct rtnl_link_stats64 *vsi_stats,
6346 			     struct ice_tx_ring **rings, u16 count)
6347 {
6348 	u16 i;
6349 
6350 	for (i = 0; i < count; i++) {
6351 		struct ice_tx_ring *ring;
6352 		u64 pkts = 0, bytes = 0;
6353 
6354 		ring = READ_ONCE(rings[i]);
6355 		if (!ring)
6356 			continue;
6357 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6358 		vsi_stats->tx_packets += pkts;
6359 		vsi_stats->tx_bytes += bytes;
6360 		vsi->tx_restart += ring->tx_stats.restart_q;
6361 		vsi->tx_busy += ring->tx_stats.tx_busy;
6362 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
6363 	}
6364 }
6365 
6366 /**
6367  * ice_update_vsi_ring_stats - Update VSI stats counters
6368  * @vsi: the VSI to be updated
6369  */
6370 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6371 {
6372 	struct rtnl_link_stats64 *vsi_stats;
6373 	u64 pkts, bytes;
6374 	int i;
6375 
6376 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6377 	if (!vsi_stats)
6378 		return;
6379 
6380 	/* reset non-netdev (extended) stats */
6381 	vsi->tx_restart = 0;
6382 	vsi->tx_busy = 0;
6383 	vsi->tx_linearize = 0;
6384 	vsi->rx_buf_failed = 0;
6385 	vsi->rx_page_failed = 0;
6386 
6387 	rcu_read_lock();
6388 
6389 	/* update Tx rings counters */
6390 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6391 				     vsi->num_txq);
6392 
6393 	/* update Rx rings counters */
6394 	ice_for_each_rxq(vsi, i) {
6395 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6396 
6397 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6398 		vsi_stats->rx_packets += pkts;
6399 		vsi_stats->rx_bytes += bytes;
6400 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6401 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6402 	}
6403 
6404 	/* update XDP Tx rings counters */
6405 	if (ice_is_xdp_ena_vsi(vsi))
6406 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6407 					     vsi->num_xdp_txq);
6408 
6409 	rcu_read_unlock();
6410 
6411 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6412 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6413 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6414 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6415 
6416 	kfree(vsi_stats);
6417 }
6418 
6419 /**
6420  * ice_update_vsi_stats - Update VSI stats counters
6421  * @vsi: the VSI to be updated
6422  */
6423 void ice_update_vsi_stats(struct ice_vsi *vsi)
6424 {
6425 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6426 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6427 	struct ice_pf *pf = vsi->back;
6428 
6429 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6430 	    test_bit(ICE_CFG_BUSY, pf->state))
6431 		return;
6432 
6433 	/* get stats as recorded by Tx/Rx rings */
6434 	ice_update_vsi_ring_stats(vsi);
6435 
6436 	/* get VSI stats as recorded by the hardware */
6437 	ice_update_eth_stats(vsi);
6438 
6439 	cur_ns->tx_errors = cur_es->tx_errors;
6440 	cur_ns->rx_dropped = cur_es->rx_discards;
6441 	cur_ns->tx_dropped = cur_es->tx_discards;
6442 	cur_ns->multicast = cur_es->rx_multicast;
6443 
6444 	/* update some more netdev stats if this is main VSI */
6445 	if (vsi->type == ICE_VSI_PF) {
6446 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6447 		cur_ns->rx_errors = pf->stats.crc_errors +
6448 				    pf->stats.illegal_bytes +
6449 				    pf->stats.rx_len_errors +
6450 				    pf->stats.rx_undersize +
6451 				    pf->hw_csum_rx_error +
6452 				    pf->stats.rx_jabber +
6453 				    pf->stats.rx_fragments +
6454 				    pf->stats.rx_oversize;
6455 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6456 		/* record drops from the port level */
6457 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6458 	}
6459 }
6460 
6461 /**
6462  * ice_update_pf_stats - Update PF port stats counters
6463  * @pf: PF whose stats needs to be updated
6464  */
6465 void ice_update_pf_stats(struct ice_pf *pf)
6466 {
6467 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6468 	struct ice_hw *hw = &pf->hw;
6469 	u16 fd_ctr_base;
6470 	u8 port;
6471 
6472 	port = hw->port_info->lport;
6473 	prev_ps = &pf->stats_prev;
6474 	cur_ps = &pf->stats;
6475 
6476 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6477 			  &prev_ps->eth.rx_bytes,
6478 			  &cur_ps->eth.rx_bytes);
6479 
6480 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6481 			  &prev_ps->eth.rx_unicast,
6482 			  &cur_ps->eth.rx_unicast);
6483 
6484 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6485 			  &prev_ps->eth.rx_multicast,
6486 			  &cur_ps->eth.rx_multicast);
6487 
6488 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6489 			  &prev_ps->eth.rx_broadcast,
6490 			  &cur_ps->eth.rx_broadcast);
6491 
6492 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6493 			  &prev_ps->eth.rx_discards,
6494 			  &cur_ps->eth.rx_discards);
6495 
6496 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6497 			  &prev_ps->eth.tx_bytes,
6498 			  &cur_ps->eth.tx_bytes);
6499 
6500 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6501 			  &prev_ps->eth.tx_unicast,
6502 			  &cur_ps->eth.tx_unicast);
6503 
6504 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6505 			  &prev_ps->eth.tx_multicast,
6506 			  &cur_ps->eth.tx_multicast);
6507 
6508 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6509 			  &prev_ps->eth.tx_broadcast,
6510 			  &cur_ps->eth.tx_broadcast);
6511 
6512 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6513 			  &prev_ps->tx_dropped_link_down,
6514 			  &cur_ps->tx_dropped_link_down);
6515 
6516 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6517 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6518 
6519 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6520 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6521 
6522 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6523 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6524 
6525 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6526 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6527 
6528 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6529 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6530 
6531 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6532 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6533 
6534 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6535 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6536 
6537 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6538 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6539 
6540 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6541 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6542 
6543 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6544 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6545 
6546 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6547 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6548 
6549 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6550 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6551 
6552 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6553 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6554 
6555 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6556 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6557 
6558 	fd_ctr_base = hw->fd_ctr_base;
6559 
6560 	ice_stat_update40(hw,
6561 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6562 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6563 			  &cur_ps->fd_sb_match);
6564 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6565 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6566 
6567 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6568 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6569 
6570 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6571 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6572 
6573 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6574 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6575 
6576 	ice_update_dcb_stats(pf);
6577 
6578 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6579 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6580 
6581 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6582 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6583 
6584 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6585 			  &prev_ps->mac_local_faults,
6586 			  &cur_ps->mac_local_faults);
6587 
6588 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6589 			  &prev_ps->mac_remote_faults,
6590 			  &cur_ps->mac_remote_faults);
6591 
6592 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6593 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6594 
6595 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6596 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6597 
6598 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6599 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6600 
6601 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6602 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6603 
6604 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6605 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6606 
6607 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6608 
6609 	pf->stat_prev_loaded = true;
6610 }
6611 
6612 /**
6613  * ice_get_stats64 - get statistics for network device structure
6614  * @netdev: network interface device structure
6615  * @stats: main device statistics structure
6616  */
6617 static
6618 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6619 {
6620 	struct ice_netdev_priv *np = netdev_priv(netdev);
6621 	struct rtnl_link_stats64 *vsi_stats;
6622 	struct ice_vsi *vsi = np->vsi;
6623 
6624 	vsi_stats = &vsi->net_stats;
6625 
6626 	if (!vsi->num_txq || !vsi->num_rxq)
6627 		return;
6628 
6629 	/* netdev packet/byte stats come from ring counter. These are obtained
6630 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6631 	 * But, only call the update routine and read the registers if VSI is
6632 	 * not down.
6633 	 */
6634 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6635 		ice_update_vsi_ring_stats(vsi);
6636 	stats->tx_packets = vsi_stats->tx_packets;
6637 	stats->tx_bytes = vsi_stats->tx_bytes;
6638 	stats->rx_packets = vsi_stats->rx_packets;
6639 	stats->rx_bytes = vsi_stats->rx_bytes;
6640 
6641 	/* The rest of the stats can be read from the hardware but instead we
6642 	 * just return values that the watchdog task has already obtained from
6643 	 * the hardware.
6644 	 */
6645 	stats->multicast = vsi_stats->multicast;
6646 	stats->tx_errors = vsi_stats->tx_errors;
6647 	stats->tx_dropped = vsi_stats->tx_dropped;
6648 	stats->rx_errors = vsi_stats->rx_errors;
6649 	stats->rx_dropped = vsi_stats->rx_dropped;
6650 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6651 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6652 }
6653 
6654 /**
6655  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6656  * @vsi: VSI having NAPI disabled
6657  */
6658 static void ice_napi_disable_all(struct ice_vsi *vsi)
6659 {
6660 	int q_idx;
6661 
6662 	if (!vsi->netdev)
6663 		return;
6664 
6665 	ice_for_each_q_vector(vsi, q_idx) {
6666 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6667 
6668 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6669 			napi_disable(&q_vector->napi);
6670 
6671 		cancel_work_sync(&q_vector->tx.dim.work);
6672 		cancel_work_sync(&q_vector->rx.dim.work);
6673 	}
6674 }
6675 
6676 /**
6677  * ice_down - Shutdown the connection
6678  * @vsi: The VSI being stopped
6679  *
6680  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6681  */
6682 int ice_down(struct ice_vsi *vsi)
6683 {
6684 	int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6685 
6686 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6687 
6688 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6689 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6690 		if (!ice_is_e810(&vsi->back->hw))
6691 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6692 		netif_carrier_off(vsi->netdev);
6693 		netif_tx_disable(vsi->netdev);
6694 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6695 		ice_eswitch_stop_all_tx_queues(vsi->back);
6696 	}
6697 
6698 	ice_vsi_dis_irq(vsi);
6699 
6700 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6701 	if (tx_err)
6702 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6703 			   vsi->vsi_num, tx_err);
6704 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6705 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6706 		if (tx_err)
6707 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6708 				   vsi->vsi_num, tx_err);
6709 	}
6710 
6711 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6712 	if (rx_err)
6713 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6714 			   vsi->vsi_num, rx_err);
6715 
6716 	ice_napi_disable_all(vsi);
6717 
6718 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6719 		link_err = ice_force_phys_link_state(vsi, false);
6720 		if (link_err)
6721 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6722 				   vsi->vsi_num, link_err);
6723 	}
6724 
6725 	ice_for_each_txq(vsi, i)
6726 		ice_clean_tx_ring(vsi->tx_rings[i]);
6727 
6728 	ice_for_each_rxq(vsi, i)
6729 		ice_clean_rx_ring(vsi->rx_rings[i]);
6730 
6731 	if (tx_err || rx_err || link_err || vlan_err) {
6732 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6733 			   vsi->vsi_num, vsi->vsw->sw_id);
6734 		return -EIO;
6735 	}
6736 
6737 	return 0;
6738 }
6739 
6740 /**
6741  * ice_down_up - shutdown the VSI connection and bring it up
6742  * @vsi: the VSI to be reconnected
6743  */
6744 int ice_down_up(struct ice_vsi *vsi)
6745 {
6746 	int ret;
6747 
6748 	/* if DOWN already set, nothing to do */
6749 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6750 		return 0;
6751 
6752 	ret = ice_down(vsi);
6753 	if (ret)
6754 		return ret;
6755 
6756 	ret = ice_up(vsi);
6757 	if (ret) {
6758 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6759 		return ret;
6760 	}
6761 
6762 	return 0;
6763 }
6764 
6765 /**
6766  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6767  * @vsi: VSI having resources allocated
6768  *
6769  * Return 0 on success, negative on failure
6770  */
6771 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6772 {
6773 	int i, err = 0;
6774 
6775 	if (!vsi->num_txq) {
6776 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6777 			vsi->vsi_num);
6778 		return -EINVAL;
6779 	}
6780 
6781 	ice_for_each_txq(vsi, i) {
6782 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6783 
6784 		if (!ring)
6785 			return -EINVAL;
6786 
6787 		if (vsi->netdev)
6788 			ring->netdev = vsi->netdev;
6789 		err = ice_setup_tx_ring(ring);
6790 		if (err)
6791 			break;
6792 	}
6793 
6794 	return err;
6795 }
6796 
6797 /**
6798  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6799  * @vsi: VSI having resources allocated
6800  *
6801  * Return 0 on success, negative on failure
6802  */
6803 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6804 {
6805 	int i, err = 0;
6806 
6807 	if (!vsi->num_rxq) {
6808 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6809 			vsi->vsi_num);
6810 		return -EINVAL;
6811 	}
6812 
6813 	ice_for_each_rxq(vsi, i) {
6814 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6815 
6816 		if (!ring)
6817 			return -EINVAL;
6818 
6819 		if (vsi->netdev)
6820 			ring->netdev = vsi->netdev;
6821 		err = ice_setup_rx_ring(ring);
6822 		if (err)
6823 			break;
6824 	}
6825 
6826 	return err;
6827 }
6828 
6829 /**
6830  * ice_vsi_open_ctrl - open control VSI for use
6831  * @vsi: the VSI to open
6832  *
6833  * Initialization of the Control VSI
6834  *
6835  * Returns 0 on success, negative value on error
6836  */
6837 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6838 {
6839 	char int_name[ICE_INT_NAME_STR_LEN];
6840 	struct ice_pf *pf = vsi->back;
6841 	struct device *dev;
6842 	int err;
6843 
6844 	dev = ice_pf_to_dev(pf);
6845 	/* allocate descriptors */
6846 	err = ice_vsi_setup_tx_rings(vsi);
6847 	if (err)
6848 		goto err_setup_tx;
6849 
6850 	err = ice_vsi_setup_rx_rings(vsi);
6851 	if (err)
6852 		goto err_setup_rx;
6853 
6854 	err = ice_vsi_cfg(vsi);
6855 	if (err)
6856 		goto err_setup_rx;
6857 
6858 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6859 		 dev_driver_string(dev), dev_name(dev));
6860 	err = ice_vsi_req_irq_msix(vsi, int_name);
6861 	if (err)
6862 		goto err_setup_rx;
6863 
6864 	ice_vsi_cfg_msix(vsi);
6865 
6866 	err = ice_vsi_start_all_rx_rings(vsi);
6867 	if (err)
6868 		goto err_up_complete;
6869 
6870 	clear_bit(ICE_VSI_DOWN, vsi->state);
6871 	ice_vsi_ena_irq(vsi);
6872 
6873 	return 0;
6874 
6875 err_up_complete:
6876 	ice_down(vsi);
6877 err_setup_rx:
6878 	ice_vsi_free_rx_rings(vsi);
6879 err_setup_tx:
6880 	ice_vsi_free_tx_rings(vsi);
6881 
6882 	return err;
6883 }
6884 
6885 /**
6886  * ice_vsi_open - Called when a network interface is made active
6887  * @vsi: the VSI to open
6888  *
6889  * Initialization of the VSI
6890  *
6891  * Returns 0 on success, negative value on error
6892  */
6893 int ice_vsi_open(struct ice_vsi *vsi)
6894 {
6895 	char int_name[ICE_INT_NAME_STR_LEN];
6896 	struct ice_pf *pf = vsi->back;
6897 	int err;
6898 
6899 	/* allocate descriptors */
6900 	err = ice_vsi_setup_tx_rings(vsi);
6901 	if (err)
6902 		goto err_setup_tx;
6903 
6904 	err = ice_vsi_setup_rx_rings(vsi);
6905 	if (err)
6906 		goto err_setup_rx;
6907 
6908 	err = ice_vsi_cfg(vsi);
6909 	if (err)
6910 		goto err_setup_rx;
6911 
6912 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6913 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6914 	err = ice_vsi_req_irq_msix(vsi, int_name);
6915 	if (err)
6916 		goto err_setup_rx;
6917 
6918 	if (vsi->type == ICE_VSI_PF) {
6919 		/* Notify the stack of the actual queue counts. */
6920 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6921 		if (err)
6922 			goto err_set_qs;
6923 
6924 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6925 		if (err)
6926 			goto err_set_qs;
6927 	}
6928 
6929 	err = ice_up_complete(vsi);
6930 	if (err)
6931 		goto err_up_complete;
6932 
6933 	return 0;
6934 
6935 err_up_complete:
6936 	ice_down(vsi);
6937 err_set_qs:
6938 	ice_vsi_free_irq(vsi);
6939 err_setup_rx:
6940 	ice_vsi_free_rx_rings(vsi);
6941 err_setup_tx:
6942 	ice_vsi_free_tx_rings(vsi);
6943 
6944 	return err;
6945 }
6946 
6947 /**
6948  * ice_vsi_release_all - Delete all VSIs
6949  * @pf: PF from which all VSIs are being removed
6950  */
6951 static void ice_vsi_release_all(struct ice_pf *pf)
6952 {
6953 	int err, i;
6954 
6955 	if (!pf->vsi)
6956 		return;
6957 
6958 	ice_for_each_vsi(pf, i) {
6959 		if (!pf->vsi[i])
6960 			continue;
6961 
6962 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6963 			continue;
6964 
6965 		err = ice_vsi_release(pf->vsi[i]);
6966 		if (err)
6967 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6968 				i, err, pf->vsi[i]->vsi_num);
6969 	}
6970 }
6971 
6972 /**
6973  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6974  * @pf: pointer to the PF instance
6975  * @type: VSI type to rebuild
6976  *
6977  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6978  */
6979 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6980 {
6981 	struct device *dev = ice_pf_to_dev(pf);
6982 	int i, err;
6983 
6984 	ice_for_each_vsi(pf, i) {
6985 		struct ice_vsi *vsi = pf->vsi[i];
6986 
6987 		if (!vsi || vsi->type != type)
6988 			continue;
6989 
6990 		/* rebuild the VSI */
6991 		err = ice_vsi_rebuild(vsi, true);
6992 		if (err) {
6993 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6994 				err, vsi->idx, ice_vsi_type_str(type));
6995 			return err;
6996 		}
6997 
6998 		/* replay filters for the VSI */
6999 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7000 		if (err) {
7001 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7002 				err, vsi->idx, ice_vsi_type_str(type));
7003 			return err;
7004 		}
7005 
7006 		/* Re-map HW VSI number, using VSI handle that has been
7007 		 * previously validated in ice_replay_vsi() call above
7008 		 */
7009 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7010 
7011 		/* enable the VSI */
7012 		err = ice_ena_vsi(vsi, false);
7013 		if (err) {
7014 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7015 				err, vsi->idx, ice_vsi_type_str(type));
7016 			return err;
7017 		}
7018 
7019 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7020 			 ice_vsi_type_str(type));
7021 	}
7022 
7023 	return 0;
7024 }
7025 
7026 /**
7027  * ice_update_pf_netdev_link - Update PF netdev link status
7028  * @pf: pointer to the PF instance
7029  */
7030 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7031 {
7032 	bool link_up;
7033 	int i;
7034 
7035 	ice_for_each_vsi(pf, i) {
7036 		struct ice_vsi *vsi = pf->vsi[i];
7037 
7038 		if (!vsi || vsi->type != ICE_VSI_PF)
7039 			return;
7040 
7041 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7042 		if (link_up) {
7043 			netif_carrier_on(pf->vsi[i]->netdev);
7044 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7045 		} else {
7046 			netif_carrier_off(pf->vsi[i]->netdev);
7047 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7048 		}
7049 	}
7050 }
7051 
7052 /**
7053  * ice_rebuild - rebuild after reset
7054  * @pf: PF to rebuild
7055  * @reset_type: type of reset
7056  *
7057  * Do not rebuild VF VSI in this flow because that is already handled via
7058  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7059  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7060  * to reset/rebuild all the VF VSI twice.
7061  */
7062 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7063 {
7064 	struct device *dev = ice_pf_to_dev(pf);
7065 	struct ice_hw *hw = &pf->hw;
7066 	bool dvm;
7067 	int err;
7068 
7069 	if (test_bit(ICE_DOWN, pf->state))
7070 		goto clear_recovery;
7071 
7072 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7073 
7074 #define ICE_EMP_RESET_SLEEP_MS 5000
7075 	if (reset_type == ICE_RESET_EMPR) {
7076 		/* If an EMP reset has occurred, any previously pending flash
7077 		 * update will have completed. We no longer know whether or
7078 		 * not the NVM update EMP reset is restricted.
7079 		 */
7080 		pf->fw_emp_reset_disabled = false;
7081 
7082 		msleep(ICE_EMP_RESET_SLEEP_MS);
7083 	}
7084 
7085 	err = ice_init_all_ctrlq(hw);
7086 	if (err) {
7087 		dev_err(dev, "control queues init failed %d\n", err);
7088 		goto err_init_ctrlq;
7089 	}
7090 
7091 	/* if DDP was previously loaded successfully */
7092 	if (!ice_is_safe_mode(pf)) {
7093 		/* reload the SW DB of filter tables */
7094 		if (reset_type == ICE_RESET_PFR)
7095 			ice_fill_blk_tbls(hw);
7096 		else
7097 			/* Reload DDP Package after CORER/GLOBR reset */
7098 			ice_load_pkg(NULL, pf);
7099 	}
7100 
7101 	err = ice_clear_pf_cfg(hw);
7102 	if (err) {
7103 		dev_err(dev, "clear PF configuration failed %d\n", err);
7104 		goto err_init_ctrlq;
7105 	}
7106 
7107 	ice_clear_pxe_mode(hw);
7108 
7109 	err = ice_init_nvm(hw);
7110 	if (err) {
7111 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7112 		goto err_init_ctrlq;
7113 	}
7114 
7115 	err = ice_get_caps(hw);
7116 	if (err) {
7117 		dev_err(dev, "ice_get_caps failed %d\n", err);
7118 		goto err_init_ctrlq;
7119 	}
7120 
7121 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7122 	if (err) {
7123 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7124 		goto err_init_ctrlq;
7125 	}
7126 
7127 	dvm = ice_is_dvm_ena(hw);
7128 
7129 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7130 	if (err)
7131 		goto err_init_ctrlq;
7132 
7133 	err = ice_sched_init_port(hw->port_info);
7134 	if (err)
7135 		goto err_sched_init_port;
7136 
7137 	/* start misc vector */
7138 	err = ice_req_irq_msix_misc(pf);
7139 	if (err) {
7140 		dev_err(dev, "misc vector setup failed: %d\n", err);
7141 		goto err_sched_init_port;
7142 	}
7143 
7144 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7145 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7146 		if (!rd32(hw, PFQF_FD_SIZE)) {
7147 			u16 unused, guar, b_effort;
7148 
7149 			guar = hw->func_caps.fd_fltr_guar;
7150 			b_effort = hw->func_caps.fd_fltr_best_effort;
7151 
7152 			/* force guaranteed filter pool for PF */
7153 			ice_alloc_fd_guar_item(hw, &unused, guar);
7154 			/* force shared filter pool for PF */
7155 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7156 		}
7157 	}
7158 
7159 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7160 		ice_dcb_rebuild(pf);
7161 
7162 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7163 	 * the VSI rebuild. If not, this causes the PTP link status events to
7164 	 * fail.
7165 	 */
7166 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7167 		ice_ptp_reset(pf);
7168 
7169 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7170 		ice_gnss_init(pf);
7171 
7172 	/* rebuild PF VSI */
7173 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7174 	if (err) {
7175 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7176 		goto err_vsi_rebuild;
7177 	}
7178 
7179 	/* configure PTP timestamping after VSI rebuild */
7180 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7181 		ice_ptp_cfg_timestamp(pf, false);
7182 
7183 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7184 	if (err) {
7185 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7186 		goto err_vsi_rebuild;
7187 	}
7188 
7189 	if (reset_type == ICE_RESET_PFR) {
7190 		err = ice_rebuild_channels(pf);
7191 		if (err) {
7192 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7193 				err);
7194 			goto err_vsi_rebuild;
7195 		}
7196 	}
7197 
7198 	/* If Flow Director is active */
7199 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7200 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7201 		if (err) {
7202 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7203 			goto err_vsi_rebuild;
7204 		}
7205 
7206 		/* replay HW Flow Director recipes */
7207 		if (hw->fdir_prof)
7208 			ice_fdir_replay_flows(hw);
7209 
7210 		/* replay Flow Director filters */
7211 		ice_fdir_replay_fltrs(pf);
7212 
7213 		ice_rebuild_arfs(pf);
7214 	}
7215 
7216 	ice_update_pf_netdev_link(pf);
7217 
7218 	/* tell the firmware we are up */
7219 	err = ice_send_version(pf);
7220 	if (err) {
7221 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7222 			err);
7223 		goto err_vsi_rebuild;
7224 	}
7225 
7226 	ice_replay_post(hw);
7227 
7228 	/* if we get here, reset flow is successful */
7229 	clear_bit(ICE_RESET_FAILED, pf->state);
7230 
7231 	ice_plug_aux_dev(pf);
7232 	return;
7233 
7234 err_vsi_rebuild:
7235 err_sched_init_port:
7236 	ice_sched_cleanup_all(hw);
7237 err_init_ctrlq:
7238 	ice_shutdown_all_ctrlq(hw);
7239 	set_bit(ICE_RESET_FAILED, pf->state);
7240 clear_recovery:
7241 	/* set this bit in PF state to control service task scheduling */
7242 	set_bit(ICE_NEEDS_RESTART, pf->state);
7243 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7244 }
7245 
7246 /**
7247  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7248  * @vsi: Pointer to VSI structure
7249  */
7250 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7251 {
7252 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7253 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7254 	else
7255 		return ICE_RXBUF_3072;
7256 }
7257 
7258 /**
7259  * ice_change_mtu - NDO callback to change the MTU
7260  * @netdev: network interface device structure
7261  * @new_mtu: new value for maximum frame size
7262  *
7263  * Returns 0 on success, negative on failure
7264  */
7265 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7266 {
7267 	struct ice_netdev_priv *np = netdev_priv(netdev);
7268 	struct ice_vsi *vsi = np->vsi;
7269 	struct ice_pf *pf = vsi->back;
7270 	u8 count = 0;
7271 	int err = 0;
7272 
7273 	if (new_mtu == (int)netdev->mtu) {
7274 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7275 		return 0;
7276 	}
7277 
7278 	if (ice_is_xdp_ena_vsi(vsi)) {
7279 		int frame_size = ice_max_xdp_frame_size(vsi);
7280 
7281 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7282 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7283 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7284 			return -EINVAL;
7285 		}
7286 	}
7287 
7288 	/* if a reset is in progress, wait for some time for it to complete */
7289 	do {
7290 		if (ice_is_reset_in_progress(pf->state)) {
7291 			count++;
7292 			usleep_range(1000, 2000);
7293 		} else {
7294 			break;
7295 		}
7296 
7297 	} while (count < 100);
7298 
7299 	if (count == 100) {
7300 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7301 		return -EBUSY;
7302 	}
7303 
7304 	netdev->mtu = (unsigned int)new_mtu;
7305 
7306 	/* if VSI is up, bring it down and then back up */
7307 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7308 		err = ice_down(vsi);
7309 		if (err) {
7310 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7311 			return err;
7312 		}
7313 
7314 		err = ice_up(vsi);
7315 		if (err) {
7316 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7317 			return err;
7318 		}
7319 	}
7320 
7321 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7322 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7323 
7324 	return err;
7325 }
7326 
7327 /**
7328  * ice_eth_ioctl - Access the hwtstamp interface
7329  * @netdev: network interface device structure
7330  * @ifr: interface request data
7331  * @cmd: ioctl command
7332  */
7333 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7334 {
7335 	struct ice_netdev_priv *np = netdev_priv(netdev);
7336 	struct ice_pf *pf = np->vsi->back;
7337 
7338 	switch (cmd) {
7339 	case SIOCGHWTSTAMP:
7340 		return ice_ptp_get_ts_config(pf, ifr);
7341 	case SIOCSHWTSTAMP:
7342 		return ice_ptp_set_ts_config(pf, ifr);
7343 	default:
7344 		return -EOPNOTSUPP;
7345 	}
7346 }
7347 
7348 /**
7349  * ice_aq_str - convert AQ err code to a string
7350  * @aq_err: the AQ error code to convert
7351  */
7352 const char *ice_aq_str(enum ice_aq_err aq_err)
7353 {
7354 	switch (aq_err) {
7355 	case ICE_AQ_RC_OK:
7356 		return "OK";
7357 	case ICE_AQ_RC_EPERM:
7358 		return "ICE_AQ_RC_EPERM";
7359 	case ICE_AQ_RC_ENOENT:
7360 		return "ICE_AQ_RC_ENOENT";
7361 	case ICE_AQ_RC_ENOMEM:
7362 		return "ICE_AQ_RC_ENOMEM";
7363 	case ICE_AQ_RC_EBUSY:
7364 		return "ICE_AQ_RC_EBUSY";
7365 	case ICE_AQ_RC_EEXIST:
7366 		return "ICE_AQ_RC_EEXIST";
7367 	case ICE_AQ_RC_EINVAL:
7368 		return "ICE_AQ_RC_EINVAL";
7369 	case ICE_AQ_RC_ENOSPC:
7370 		return "ICE_AQ_RC_ENOSPC";
7371 	case ICE_AQ_RC_ENOSYS:
7372 		return "ICE_AQ_RC_ENOSYS";
7373 	case ICE_AQ_RC_EMODE:
7374 		return "ICE_AQ_RC_EMODE";
7375 	case ICE_AQ_RC_ENOSEC:
7376 		return "ICE_AQ_RC_ENOSEC";
7377 	case ICE_AQ_RC_EBADSIG:
7378 		return "ICE_AQ_RC_EBADSIG";
7379 	case ICE_AQ_RC_ESVN:
7380 		return "ICE_AQ_RC_ESVN";
7381 	case ICE_AQ_RC_EBADMAN:
7382 		return "ICE_AQ_RC_EBADMAN";
7383 	case ICE_AQ_RC_EBADBUF:
7384 		return "ICE_AQ_RC_EBADBUF";
7385 	}
7386 
7387 	return "ICE_AQ_RC_UNKNOWN";
7388 }
7389 
7390 /**
7391  * ice_set_rss_lut - Set RSS LUT
7392  * @vsi: Pointer to VSI structure
7393  * @lut: Lookup table
7394  * @lut_size: Lookup table size
7395  *
7396  * Returns 0 on success, negative on failure
7397  */
7398 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7399 {
7400 	struct ice_aq_get_set_rss_lut_params params = {};
7401 	struct ice_hw *hw = &vsi->back->hw;
7402 	int status;
7403 
7404 	if (!lut)
7405 		return -EINVAL;
7406 
7407 	params.vsi_handle = vsi->idx;
7408 	params.lut_size = lut_size;
7409 	params.lut_type = vsi->rss_lut_type;
7410 	params.lut = lut;
7411 
7412 	status = ice_aq_set_rss_lut(hw, &params);
7413 	if (status)
7414 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7415 			status, ice_aq_str(hw->adminq.sq_last_status));
7416 
7417 	return status;
7418 }
7419 
7420 /**
7421  * ice_set_rss_key - Set RSS key
7422  * @vsi: Pointer to the VSI structure
7423  * @seed: RSS hash seed
7424  *
7425  * Returns 0 on success, negative on failure
7426  */
7427 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7428 {
7429 	struct ice_hw *hw = &vsi->back->hw;
7430 	int status;
7431 
7432 	if (!seed)
7433 		return -EINVAL;
7434 
7435 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7436 	if (status)
7437 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7438 			status, ice_aq_str(hw->adminq.sq_last_status));
7439 
7440 	return status;
7441 }
7442 
7443 /**
7444  * ice_get_rss_lut - Get RSS LUT
7445  * @vsi: Pointer to VSI structure
7446  * @lut: Buffer to store the lookup table entries
7447  * @lut_size: Size of buffer to store the lookup table entries
7448  *
7449  * Returns 0 on success, negative on failure
7450  */
7451 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7452 {
7453 	struct ice_aq_get_set_rss_lut_params params = {};
7454 	struct ice_hw *hw = &vsi->back->hw;
7455 	int status;
7456 
7457 	if (!lut)
7458 		return -EINVAL;
7459 
7460 	params.vsi_handle = vsi->idx;
7461 	params.lut_size = lut_size;
7462 	params.lut_type = vsi->rss_lut_type;
7463 	params.lut = lut;
7464 
7465 	status = ice_aq_get_rss_lut(hw, &params);
7466 	if (status)
7467 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7468 			status, ice_aq_str(hw->adminq.sq_last_status));
7469 
7470 	return status;
7471 }
7472 
7473 /**
7474  * ice_get_rss_key - Get RSS key
7475  * @vsi: Pointer to VSI structure
7476  * @seed: Buffer to store the key in
7477  *
7478  * Returns 0 on success, negative on failure
7479  */
7480 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7481 {
7482 	struct ice_hw *hw = &vsi->back->hw;
7483 	int status;
7484 
7485 	if (!seed)
7486 		return -EINVAL;
7487 
7488 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7489 	if (status)
7490 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7491 			status, ice_aq_str(hw->adminq.sq_last_status));
7492 
7493 	return status;
7494 }
7495 
7496 /**
7497  * ice_bridge_getlink - Get the hardware bridge mode
7498  * @skb: skb buff
7499  * @pid: process ID
7500  * @seq: RTNL message seq
7501  * @dev: the netdev being configured
7502  * @filter_mask: filter mask passed in
7503  * @nlflags: netlink flags passed in
7504  *
7505  * Return the bridge mode (VEB/VEPA)
7506  */
7507 static int
7508 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7509 		   struct net_device *dev, u32 filter_mask, int nlflags)
7510 {
7511 	struct ice_netdev_priv *np = netdev_priv(dev);
7512 	struct ice_vsi *vsi = np->vsi;
7513 	struct ice_pf *pf = vsi->back;
7514 	u16 bmode;
7515 
7516 	bmode = pf->first_sw->bridge_mode;
7517 
7518 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7519 				       filter_mask, NULL);
7520 }
7521 
7522 /**
7523  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7524  * @vsi: Pointer to VSI structure
7525  * @bmode: Hardware bridge mode (VEB/VEPA)
7526  *
7527  * Returns 0 on success, negative on failure
7528  */
7529 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7530 {
7531 	struct ice_aqc_vsi_props *vsi_props;
7532 	struct ice_hw *hw = &vsi->back->hw;
7533 	struct ice_vsi_ctx *ctxt;
7534 	int ret;
7535 
7536 	vsi_props = &vsi->info;
7537 
7538 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7539 	if (!ctxt)
7540 		return -ENOMEM;
7541 
7542 	ctxt->info = vsi->info;
7543 
7544 	if (bmode == BRIDGE_MODE_VEB)
7545 		/* change from VEPA to VEB mode */
7546 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7547 	else
7548 		/* change from VEB to VEPA mode */
7549 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7550 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7551 
7552 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7553 	if (ret) {
7554 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7555 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7556 		goto out;
7557 	}
7558 	/* Update sw flags for book keeping */
7559 	vsi_props->sw_flags = ctxt->info.sw_flags;
7560 
7561 out:
7562 	kfree(ctxt);
7563 	return ret;
7564 }
7565 
7566 /**
7567  * ice_bridge_setlink - Set the hardware bridge mode
7568  * @dev: the netdev being configured
7569  * @nlh: RTNL message
7570  * @flags: bridge setlink flags
7571  * @extack: netlink extended ack
7572  *
7573  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7574  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7575  * not already set for all VSIs connected to this switch. And also update the
7576  * unicast switch filter rules for the corresponding switch of the netdev.
7577  */
7578 static int
7579 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7580 		   u16 __always_unused flags,
7581 		   struct netlink_ext_ack __always_unused *extack)
7582 {
7583 	struct ice_netdev_priv *np = netdev_priv(dev);
7584 	struct ice_pf *pf = np->vsi->back;
7585 	struct nlattr *attr, *br_spec;
7586 	struct ice_hw *hw = &pf->hw;
7587 	struct ice_sw *pf_sw;
7588 	int rem, v, err = 0;
7589 
7590 	pf_sw = pf->first_sw;
7591 	/* find the attribute in the netlink message */
7592 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7593 
7594 	nla_for_each_nested(attr, br_spec, rem) {
7595 		__u16 mode;
7596 
7597 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7598 			continue;
7599 		mode = nla_get_u16(attr);
7600 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7601 			return -EINVAL;
7602 		/* Continue  if bridge mode is not being flipped */
7603 		if (mode == pf_sw->bridge_mode)
7604 			continue;
7605 		/* Iterates through the PF VSI list and update the loopback
7606 		 * mode of the VSI
7607 		 */
7608 		ice_for_each_vsi(pf, v) {
7609 			if (!pf->vsi[v])
7610 				continue;
7611 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7612 			if (err)
7613 				return err;
7614 		}
7615 
7616 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7617 		/* Update the unicast switch filter rules for the corresponding
7618 		 * switch of the netdev
7619 		 */
7620 		err = ice_update_sw_rule_bridge_mode(hw);
7621 		if (err) {
7622 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7623 				   mode, err,
7624 				   ice_aq_str(hw->adminq.sq_last_status));
7625 			/* revert hw->evb_veb */
7626 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7627 			return err;
7628 		}
7629 
7630 		pf_sw->bridge_mode = mode;
7631 	}
7632 
7633 	return 0;
7634 }
7635 
7636 /**
7637  * ice_tx_timeout - Respond to a Tx Hang
7638  * @netdev: network interface device structure
7639  * @txqueue: Tx queue
7640  */
7641 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7642 {
7643 	struct ice_netdev_priv *np = netdev_priv(netdev);
7644 	struct ice_tx_ring *tx_ring = NULL;
7645 	struct ice_vsi *vsi = np->vsi;
7646 	struct ice_pf *pf = vsi->back;
7647 	u32 i;
7648 
7649 	pf->tx_timeout_count++;
7650 
7651 	/* Check if PFC is enabled for the TC to which the queue belongs
7652 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7653 	 * need to reset and rebuild
7654 	 */
7655 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7656 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7657 			 txqueue);
7658 		return;
7659 	}
7660 
7661 	/* now that we have an index, find the tx_ring struct */
7662 	ice_for_each_txq(vsi, i)
7663 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7664 			if (txqueue == vsi->tx_rings[i]->q_index) {
7665 				tx_ring = vsi->tx_rings[i];
7666 				break;
7667 			}
7668 
7669 	/* Reset recovery level if enough time has elapsed after last timeout.
7670 	 * Also ensure no new reset action happens before next timeout period.
7671 	 */
7672 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7673 		pf->tx_timeout_recovery_level = 1;
7674 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7675 				       netdev->watchdog_timeo)))
7676 		return;
7677 
7678 	if (tx_ring) {
7679 		struct ice_hw *hw = &pf->hw;
7680 		u32 head, val = 0;
7681 
7682 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7683 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7684 		/* Read interrupt register */
7685 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7686 
7687 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7688 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7689 			    head, tx_ring->next_to_use, val);
7690 	}
7691 
7692 	pf->tx_timeout_last_recovery = jiffies;
7693 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7694 		    pf->tx_timeout_recovery_level, txqueue);
7695 
7696 	switch (pf->tx_timeout_recovery_level) {
7697 	case 1:
7698 		set_bit(ICE_PFR_REQ, pf->state);
7699 		break;
7700 	case 2:
7701 		set_bit(ICE_CORER_REQ, pf->state);
7702 		break;
7703 	case 3:
7704 		set_bit(ICE_GLOBR_REQ, pf->state);
7705 		break;
7706 	default:
7707 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7708 		set_bit(ICE_DOWN, pf->state);
7709 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7710 		set_bit(ICE_SERVICE_DIS, pf->state);
7711 		break;
7712 	}
7713 
7714 	ice_service_task_schedule(pf);
7715 	pf->tx_timeout_recovery_level++;
7716 }
7717 
7718 /**
7719  * ice_setup_tc_cls_flower - flower classifier offloads
7720  * @np: net device to configure
7721  * @filter_dev: device on which filter is added
7722  * @cls_flower: offload data
7723  */
7724 static int
7725 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7726 			struct net_device *filter_dev,
7727 			struct flow_cls_offload *cls_flower)
7728 {
7729 	struct ice_vsi *vsi = np->vsi;
7730 
7731 	if (cls_flower->common.chain_index)
7732 		return -EOPNOTSUPP;
7733 
7734 	switch (cls_flower->command) {
7735 	case FLOW_CLS_REPLACE:
7736 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7737 	case FLOW_CLS_DESTROY:
7738 		return ice_del_cls_flower(vsi, cls_flower);
7739 	default:
7740 		return -EINVAL;
7741 	}
7742 }
7743 
7744 /**
7745  * ice_setup_tc_block_cb - callback handler registered for TC block
7746  * @type: TC SETUP type
7747  * @type_data: TC flower offload data that contains user input
7748  * @cb_priv: netdev private data
7749  */
7750 static int
7751 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7752 {
7753 	struct ice_netdev_priv *np = cb_priv;
7754 
7755 	switch (type) {
7756 	case TC_SETUP_CLSFLOWER:
7757 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7758 					       type_data);
7759 	default:
7760 		return -EOPNOTSUPP;
7761 	}
7762 }
7763 
7764 /**
7765  * ice_validate_mqprio_qopt - Validate TCF input parameters
7766  * @vsi: Pointer to VSI
7767  * @mqprio_qopt: input parameters for mqprio queue configuration
7768  *
7769  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7770  * needed), and make sure user doesn't specify qcount and BW rate limit
7771  * for TCs, which are more than "num_tc"
7772  */
7773 static int
7774 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7775 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7776 {
7777 	u64 sum_max_rate = 0, sum_min_rate = 0;
7778 	int non_power_of_2_qcount = 0;
7779 	struct ice_pf *pf = vsi->back;
7780 	int max_rss_q_cnt = 0;
7781 	struct device *dev;
7782 	int i, speed;
7783 	u8 num_tc;
7784 
7785 	if (vsi->type != ICE_VSI_PF)
7786 		return -EINVAL;
7787 
7788 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7789 	    mqprio_qopt->qopt.num_tc < 1 ||
7790 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7791 		return -EINVAL;
7792 
7793 	dev = ice_pf_to_dev(pf);
7794 	vsi->ch_rss_size = 0;
7795 	num_tc = mqprio_qopt->qopt.num_tc;
7796 
7797 	for (i = 0; num_tc; i++) {
7798 		int qcount = mqprio_qopt->qopt.count[i];
7799 		u64 max_rate, min_rate, rem;
7800 
7801 		if (!qcount)
7802 			return -EINVAL;
7803 
7804 		if (is_power_of_2(qcount)) {
7805 			if (non_power_of_2_qcount &&
7806 			    qcount > non_power_of_2_qcount) {
7807 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7808 					qcount, non_power_of_2_qcount);
7809 				return -EINVAL;
7810 			}
7811 			if (qcount > max_rss_q_cnt)
7812 				max_rss_q_cnt = qcount;
7813 		} else {
7814 			if (non_power_of_2_qcount &&
7815 			    qcount != non_power_of_2_qcount) {
7816 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7817 					qcount, non_power_of_2_qcount);
7818 				return -EINVAL;
7819 			}
7820 			if (qcount < max_rss_q_cnt) {
7821 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7822 					qcount, max_rss_q_cnt);
7823 				return -EINVAL;
7824 			}
7825 			max_rss_q_cnt = qcount;
7826 			non_power_of_2_qcount = qcount;
7827 		}
7828 
7829 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7830 		 * converts the bandwidth rate limit into Bytes/s when
7831 		 * passing it down to the driver. So convert input bandwidth
7832 		 * from Bytes/s to Kbps
7833 		 */
7834 		max_rate = mqprio_qopt->max_rate[i];
7835 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7836 		sum_max_rate += max_rate;
7837 
7838 		/* min_rate is minimum guaranteed rate and it can't be zero */
7839 		min_rate = mqprio_qopt->min_rate[i];
7840 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7841 		sum_min_rate += min_rate;
7842 
7843 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7844 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7845 				min_rate, ICE_MIN_BW_LIMIT);
7846 			return -EINVAL;
7847 		}
7848 
7849 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7850 		if (rem) {
7851 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7852 				i, ICE_MIN_BW_LIMIT);
7853 			return -EINVAL;
7854 		}
7855 
7856 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7857 		if (rem) {
7858 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7859 				i, ICE_MIN_BW_LIMIT);
7860 			return -EINVAL;
7861 		}
7862 
7863 		/* min_rate can't be more than max_rate, except when max_rate
7864 		 * is zero (implies max_rate sought is max line rate). In such
7865 		 * a case min_rate can be more than max.
7866 		 */
7867 		if (max_rate && min_rate > max_rate) {
7868 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7869 				min_rate, max_rate);
7870 			return -EINVAL;
7871 		}
7872 
7873 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7874 			break;
7875 		if (mqprio_qopt->qopt.offset[i + 1] !=
7876 		    (mqprio_qopt->qopt.offset[i] + qcount))
7877 			return -EINVAL;
7878 	}
7879 	if (vsi->num_rxq <
7880 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7881 		return -EINVAL;
7882 	if (vsi->num_txq <
7883 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7884 		return -EINVAL;
7885 
7886 	speed = ice_get_link_speed_kbps(vsi);
7887 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7888 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7889 			sum_max_rate, speed);
7890 		return -EINVAL;
7891 	}
7892 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7893 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7894 			sum_min_rate, speed);
7895 		return -EINVAL;
7896 	}
7897 
7898 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7899 	vsi->ch_rss_size = max_rss_q_cnt;
7900 
7901 	return 0;
7902 }
7903 
7904 /**
7905  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7906  * @pf: ptr to PF device
7907  * @vsi: ptr to VSI
7908  */
7909 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7910 {
7911 	struct device *dev = ice_pf_to_dev(pf);
7912 	bool added = false;
7913 	struct ice_hw *hw;
7914 	int flow;
7915 
7916 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7917 		return -EINVAL;
7918 
7919 	hw = &pf->hw;
7920 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7921 		struct ice_fd_hw_prof *prof;
7922 		int tun, status;
7923 		u64 entry_h;
7924 
7925 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7926 		      hw->fdir_prof[flow]->cnt))
7927 			continue;
7928 
7929 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7930 			enum ice_flow_priority prio;
7931 			u64 prof_id;
7932 
7933 			/* add this VSI to FDir profile for this flow */
7934 			prio = ICE_FLOW_PRIO_NORMAL;
7935 			prof = hw->fdir_prof[flow];
7936 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7937 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7938 						    prof->vsi_h[0], vsi->idx,
7939 						    prio, prof->fdir_seg[tun],
7940 						    &entry_h);
7941 			if (status) {
7942 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7943 					vsi->idx, flow);
7944 				continue;
7945 			}
7946 
7947 			prof->entry_h[prof->cnt][tun] = entry_h;
7948 		}
7949 
7950 		/* store VSI for filter replay and delete */
7951 		prof->vsi_h[prof->cnt] = vsi->idx;
7952 		prof->cnt++;
7953 
7954 		added = true;
7955 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7956 			flow);
7957 	}
7958 
7959 	if (!added)
7960 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7961 
7962 	return 0;
7963 }
7964 
7965 /**
7966  * ice_add_channel - add a channel by adding VSI
7967  * @pf: ptr to PF device
7968  * @sw_id: underlying HW switching element ID
7969  * @ch: ptr to channel structure
7970  *
7971  * Add a channel (VSI) using add_vsi and queue_map
7972  */
7973 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7974 {
7975 	struct device *dev = ice_pf_to_dev(pf);
7976 	struct ice_vsi *vsi;
7977 
7978 	if (ch->type != ICE_VSI_CHNL) {
7979 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7980 		return -EINVAL;
7981 	}
7982 
7983 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7984 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7985 		dev_err(dev, "create chnl VSI failure\n");
7986 		return -EINVAL;
7987 	}
7988 
7989 	ice_add_vsi_to_fdir(pf, vsi);
7990 
7991 	ch->sw_id = sw_id;
7992 	ch->vsi_num = vsi->vsi_num;
7993 	ch->info.mapping_flags = vsi->info.mapping_flags;
7994 	ch->ch_vsi = vsi;
7995 	/* set the back pointer of channel for newly created VSI */
7996 	vsi->ch = ch;
7997 
7998 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7999 	       sizeof(vsi->info.q_mapping));
8000 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8001 	       sizeof(vsi->info.tc_mapping));
8002 
8003 	return 0;
8004 }
8005 
8006 /**
8007  * ice_chnl_cfg_res
8008  * @vsi: the VSI being setup
8009  * @ch: ptr to channel structure
8010  *
8011  * Configure channel specific resources such as rings, vector.
8012  */
8013 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8014 {
8015 	int i;
8016 
8017 	for (i = 0; i < ch->num_txq; i++) {
8018 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8019 		struct ice_ring_container *rc;
8020 		struct ice_tx_ring *tx_ring;
8021 		struct ice_rx_ring *rx_ring;
8022 
8023 		tx_ring = vsi->tx_rings[ch->base_q + i];
8024 		rx_ring = vsi->rx_rings[ch->base_q + i];
8025 		if (!tx_ring || !rx_ring)
8026 			continue;
8027 
8028 		/* setup ring being channel enabled */
8029 		tx_ring->ch = ch;
8030 		rx_ring->ch = ch;
8031 
8032 		/* following code block sets up vector specific attributes */
8033 		tx_q_vector = tx_ring->q_vector;
8034 		rx_q_vector = rx_ring->q_vector;
8035 		if (!tx_q_vector && !rx_q_vector)
8036 			continue;
8037 
8038 		if (tx_q_vector) {
8039 			tx_q_vector->ch = ch;
8040 			/* setup Tx and Rx ITR setting if DIM is off */
8041 			rc = &tx_q_vector->tx;
8042 			if (!ITR_IS_DYNAMIC(rc))
8043 				ice_write_itr(rc, rc->itr_setting);
8044 		}
8045 		if (rx_q_vector) {
8046 			rx_q_vector->ch = ch;
8047 			/* setup Tx and Rx ITR setting if DIM is off */
8048 			rc = &rx_q_vector->rx;
8049 			if (!ITR_IS_DYNAMIC(rc))
8050 				ice_write_itr(rc, rc->itr_setting);
8051 		}
8052 	}
8053 
8054 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8055 	 * GLINT_ITR register would have written to perform in-context
8056 	 * update, hence perform flush
8057 	 */
8058 	if (ch->num_txq || ch->num_rxq)
8059 		ice_flush(&vsi->back->hw);
8060 }
8061 
8062 /**
8063  * ice_cfg_chnl_all_res - configure channel resources
8064  * @vsi: pte to main_vsi
8065  * @ch: ptr to channel structure
8066  *
8067  * This function configures channel specific resources such as flow-director
8068  * counter index, and other resources such as queues, vectors, ITR settings
8069  */
8070 static void
8071 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8072 {
8073 	/* configure channel (aka ADQ) resources such as queues, vectors,
8074 	 * ITR settings for channel specific vectors and anything else
8075 	 */
8076 	ice_chnl_cfg_res(vsi, ch);
8077 }
8078 
8079 /**
8080  * ice_setup_hw_channel - setup new channel
8081  * @pf: ptr to PF device
8082  * @vsi: the VSI being setup
8083  * @ch: ptr to channel structure
8084  * @sw_id: underlying HW switching element ID
8085  * @type: type of channel to be created (VMDq2/VF)
8086  *
8087  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8088  * and configures Tx rings accordingly
8089  */
8090 static int
8091 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8092 		     struct ice_channel *ch, u16 sw_id, u8 type)
8093 {
8094 	struct device *dev = ice_pf_to_dev(pf);
8095 	int ret;
8096 
8097 	ch->base_q = vsi->next_base_q;
8098 	ch->type = type;
8099 
8100 	ret = ice_add_channel(pf, sw_id, ch);
8101 	if (ret) {
8102 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8103 		return ret;
8104 	}
8105 
8106 	/* configure/setup ADQ specific resources */
8107 	ice_cfg_chnl_all_res(vsi, ch);
8108 
8109 	/* make sure to update the next_base_q so that subsequent channel's
8110 	 * (aka ADQ) VSI queue map is correct
8111 	 */
8112 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8113 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8114 		ch->num_rxq);
8115 
8116 	return 0;
8117 }
8118 
8119 /**
8120  * ice_setup_channel - setup new channel using uplink element
8121  * @pf: ptr to PF device
8122  * @vsi: the VSI being setup
8123  * @ch: ptr to channel structure
8124  *
8125  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8126  * and uplink switching element
8127  */
8128 static bool
8129 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8130 		  struct ice_channel *ch)
8131 {
8132 	struct device *dev = ice_pf_to_dev(pf);
8133 	u16 sw_id;
8134 	int ret;
8135 
8136 	if (vsi->type != ICE_VSI_PF) {
8137 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8138 		return false;
8139 	}
8140 
8141 	sw_id = pf->first_sw->sw_id;
8142 
8143 	/* create channel (VSI) */
8144 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8145 	if (ret) {
8146 		dev_err(dev, "failed to setup hw_channel\n");
8147 		return false;
8148 	}
8149 	dev_dbg(dev, "successfully created channel()\n");
8150 
8151 	return ch->ch_vsi ? true : false;
8152 }
8153 
8154 /**
8155  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8156  * @vsi: VSI to be configured
8157  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8158  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8159  */
8160 static int
8161 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8162 {
8163 	int err;
8164 
8165 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8166 	if (err)
8167 		return err;
8168 
8169 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8170 }
8171 
8172 /**
8173  * ice_create_q_channel - function to create channel
8174  * @vsi: VSI to be configured
8175  * @ch: ptr to channel (it contains channel specific params)
8176  *
8177  * This function creates channel (VSI) using num_queues specified by user,
8178  * reconfigs RSS if needed.
8179  */
8180 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8181 {
8182 	struct ice_pf *pf = vsi->back;
8183 	struct device *dev;
8184 
8185 	if (!ch)
8186 		return -EINVAL;
8187 
8188 	dev = ice_pf_to_dev(pf);
8189 	if (!ch->num_txq || !ch->num_rxq) {
8190 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8191 		return -EINVAL;
8192 	}
8193 
8194 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8195 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8196 			vsi->cnt_q_avail, ch->num_txq);
8197 		return -EINVAL;
8198 	}
8199 
8200 	if (!ice_setup_channel(pf, vsi, ch)) {
8201 		dev_info(dev, "Failed to setup channel\n");
8202 		return -EINVAL;
8203 	}
8204 	/* configure BW rate limit */
8205 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8206 		int ret;
8207 
8208 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8209 				       ch->min_tx_rate);
8210 		if (ret)
8211 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8212 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8213 		else
8214 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8215 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8216 	}
8217 
8218 	vsi->cnt_q_avail -= ch->num_txq;
8219 
8220 	return 0;
8221 }
8222 
8223 /**
8224  * ice_rem_all_chnl_fltrs - removes all channel filters
8225  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8226  *
8227  * Remove all advanced switch filters only if they are channel specific
8228  * tc-flower based filter
8229  */
8230 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8231 {
8232 	struct ice_tc_flower_fltr *fltr;
8233 	struct hlist_node *node;
8234 
8235 	/* to remove all channel filters, iterate an ordered list of filters */
8236 	hlist_for_each_entry_safe(fltr, node,
8237 				  &pf->tc_flower_fltr_list,
8238 				  tc_flower_node) {
8239 		struct ice_rule_query_data rule;
8240 		int status;
8241 
8242 		/* for now process only channel specific filters */
8243 		if (!ice_is_chnl_fltr(fltr))
8244 			continue;
8245 
8246 		rule.rid = fltr->rid;
8247 		rule.rule_id = fltr->rule_id;
8248 		rule.vsi_handle = fltr->dest_id;
8249 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8250 		if (status) {
8251 			if (status == -ENOENT)
8252 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8253 					rule.rule_id);
8254 			else
8255 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8256 					status);
8257 		} else if (fltr->dest_vsi) {
8258 			/* update advanced switch filter count */
8259 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8260 				u32 flags = fltr->flags;
8261 
8262 				fltr->dest_vsi->num_chnl_fltr--;
8263 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8264 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8265 					pf->num_dmac_chnl_fltrs--;
8266 			}
8267 		}
8268 
8269 		hlist_del(&fltr->tc_flower_node);
8270 		kfree(fltr);
8271 	}
8272 }
8273 
8274 /**
8275  * ice_remove_q_channels - Remove queue channels for the TCs
8276  * @vsi: VSI to be configured
8277  * @rem_fltr: delete advanced switch filter or not
8278  *
8279  * Remove queue channels for the TCs
8280  */
8281 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8282 {
8283 	struct ice_channel *ch, *ch_tmp;
8284 	struct ice_pf *pf = vsi->back;
8285 	int i;
8286 
8287 	/* remove all tc-flower based filter if they are channel filters only */
8288 	if (rem_fltr)
8289 		ice_rem_all_chnl_fltrs(pf);
8290 
8291 	/* remove ntuple filters since queue configuration is being changed */
8292 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8293 		struct ice_hw *hw = &pf->hw;
8294 
8295 		mutex_lock(&hw->fdir_fltr_lock);
8296 		ice_fdir_del_all_fltrs(vsi);
8297 		mutex_unlock(&hw->fdir_fltr_lock);
8298 	}
8299 
8300 	/* perform cleanup for channels if they exist */
8301 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8302 		struct ice_vsi *ch_vsi;
8303 
8304 		list_del(&ch->list);
8305 		ch_vsi = ch->ch_vsi;
8306 		if (!ch_vsi) {
8307 			kfree(ch);
8308 			continue;
8309 		}
8310 
8311 		/* Reset queue contexts */
8312 		for (i = 0; i < ch->num_rxq; i++) {
8313 			struct ice_tx_ring *tx_ring;
8314 			struct ice_rx_ring *rx_ring;
8315 
8316 			tx_ring = vsi->tx_rings[ch->base_q + i];
8317 			rx_ring = vsi->rx_rings[ch->base_q + i];
8318 			if (tx_ring) {
8319 				tx_ring->ch = NULL;
8320 				if (tx_ring->q_vector)
8321 					tx_ring->q_vector->ch = NULL;
8322 			}
8323 			if (rx_ring) {
8324 				rx_ring->ch = NULL;
8325 				if (rx_ring->q_vector)
8326 					rx_ring->q_vector->ch = NULL;
8327 			}
8328 		}
8329 
8330 		/* Release FD resources for the channel VSI */
8331 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8332 
8333 		/* clear the VSI from scheduler tree */
8334 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8335 
8336 		/* Delete VSI from FW */
8337 		ice_vsi_delete(ch->ch_vsi);
8338 
8339 		/* Delete VSI from PF and HW VSI arrays */
8340 		ice_vsi_clear(ch->ch_vsi);
8341 
8342 		/* free the channel */
8343 		kfree(ch);
8344 	}
8345 
8346 	/* clear the channel VSI map which is stored in main VSI */
8347 	ice_for_each_chnl_tc(i)
8348 		vsi->tc_map_vsi[i] = NULL;
8349 
8350 	/* reset main VSI's all TC information */
8351 	vsi->all_enatc = 0;
8352 	vsi->all_numtc = 0;
8353 }
8354 
8355 /**
8356  * ice_rebuild_channels - rebuild channel
8357  * @pf: ptr to PF
8358  *
8359  * Recreate channel VSIs and replay filters
8360  */
8361 static int ice_rebuild_channels(struct ice_pf *pf)
8362 {
8363 	struct device *dev = ice_pf_to_dev(pf);
8364 	struct ice_vsi *main_vsi;
8365 	bool rem_adv_fltr = true;
8366 	struct ice_channel *ch;
8367 	struct ice_vsi *vsi;
8368 	int tc_idx = 1;
8369 	int i, err;
8370 
8371 	main_vsi = ice_get_main_vsi(pf);
8372 	if (!main_vsi)
8373 		return 0;
8374 
8375 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8376 	    main_vsi->old_numtc == 1)
8377 		return 0; /* nothing to be done */
8378 
8379 	/* reconfigure main VSI based on old value of TC and cached values
8380 	 * for MQPRIO opts
8381 	 */
8382 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8383 	if (err) {
8384 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8385 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8386 		return err;
8387 	}
8388 
8389 	/* rebuild ADQ VSIs */
8390 	ice_for_each_vsi(pf, i) {
8391 		enum ice_vsi_type type;
8392 
8393 		vsi = pf->vsi[i];
8394 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8395 			continue;
8396 
8397 		type = vsi->type;
8398 
8399 		/* rebuild ADQ VSI */
8400 		err = ice_vsi_rebuild(vsi, true);
8401 		if (err) {
8402 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8403 				ice_vsi_type_str(type), vsi->idx, err);
8404 			goto cleanup;
8405 		}
8406 
8407 		/* Re-map HW VSI number, using VSI handle that has been
8408 		 * previously validated in ice_replay_vsi() call above
8409 		 */
8410 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8411 
8412 		/* replay filters for the VSI */
8413 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8414 		if (err) {
8415 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8416 				ice_vsi_type_str(type), err, vsi->idx);
8417 			rem_adv_fltr = false;
8418 			goto cleanup;
8419 		}
8420 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8421 			 ice_vsi_type_str(type), vsi->idx);
8422 
8423 		/* store ADQ VSI at correct TC index in main VSI's
8424 		 * map of TC to VSI
8425 		 */
8426 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8427 	}
8428 
8429 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8430 	 * channel for main VSI's Tx and Rx rings
8431 	 */
8432 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8433 		struct ice_vsi *ch_vsi;
8434 
8435 		ch_vsi = ch->ch_vsi;
8436 		if (!ch_vsi)
8437 			continue;
8438 
8439 		/* reconfig channel resources */
8440 		ice_cfg_chnl_all_res(main_vsi, ch);
8441 
8442 		/* replay BW rate limit if it is non-zero */
8443 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8444 			continue;
8445 
8446 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8447 				       ch->min_tx_rate);
8448 		if (err)
8449 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8450 				err, ch->max_tx_rate, ch->min_tx_rate,
8451 				ch_vsi->vsi_num);
8452 		else
8453 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8454 				ch->max_tx_rate, ch->min_tx_rate,
8455 				ch_vsi->vsi_num);
8456 	}
8457 
8458 	/* reconfig RSS for main VSI */
8459 	if (main_vsi->ch_rss_size)
8460 		ice_vsi_cfg_rss_lut_key(main_vsi);
8461 
8462 	return 0;
8463 
8464 cleanup:
8465 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8466 	return err;
8467 }
8468 
8469 /**
8470  * ice_create_q_channels - Add queue channel for the given TCs
8471  * @vsi: VSI to be configured
8472  *
8473  * Configures queue channel mapping to the given TCs
8474  */
8475 static int ice_create_q_channels(struct ice_vsi *vsi)
8476 {
8477 	struct ice_pf *pf = vsi->back;
8478 	struct ice_channel *ch;
8479 	int ret = 0, i;
8480 
8481 	ice_for_each_chnl_tc(i) {
8482 		if (!(vsi->all_enatc & BIT(i)))
8483 			continue;
8484 
8485 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8486 		if (!ch) {
8487 			ret = -ENOMEM;
8488 			goto err_free;
8489 		}
8490 		INIT_LIST_HEAD(&ch->list);
8491 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8492 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8493 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8494 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8495 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8496 
8497 		/* convert to Kbits/s */
8498 		if (ch->max_tx_rate)
8499 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8500 						  ICE_BW_KBPS_DIVISOR);
8501 		if (ch->min_tx_rate)
8502 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8503 						  ICE_BW_KBPS_DIVISOR);
8504 
8505 		ret = ice_create_q_channel(vsi, ch);
8506 		if (ret) {
8507 			dev_err(ice_pf_to_dev(pf),
8508 				"failed creating channel TC:%d\n", i);
8509 			kfree(ch);
8510 			goto err_free;
8511 		}
8512 		list_add_tail(&ch->list, &vsi->ch_list);
8513 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8514 		dev_dbg(ice_pf_to_dev(pf),
8515 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8516 	}
8517 	return 0;
8518 
8519 err_free:
8520 	ice_remove_q_channels(vsi, false);
8521 
8522 	return ret;
8523 }
8524 
8525 /**
8526  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8527  * @netdev: net device to configure
8528  * @type_data: TC offload data
8529  */
8530 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8531 {
8532 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8533 	struct ice_netdev_priv *np = netdev_priv(netdev);
8534 	struct ice_vsi *vsi = np->vsi;
8535 	struct ice_pf *pf = vsi->back;
8536 	u16 mode, ena_tc_qdisc = 0;
8537 	int cur_txq, cur_rxq;
8538 	u8 hw = 0, num_tcf;
8539 	struct device *dev;
8540 	int ret, i;
8541 
8542 	dev = ice_pf_to_dev(pf);
8543 	num_tcf = mqprio_qopt->qopt.num_tc;
8544 	hw = mqprio_qopt->qopt.hw;
8545 	mode = mqprio_qopt->mode;
8546 	if (!hw) {
8547 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8548 		vsi->ch_rss_size = 0;
8549 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8550 		goto config_tcf;
8551 	}
8552 
8553 	/* Generate queue region map for number of TCF requested */
8554 	for (i = 0; i < num_tcf; i++)
8555 		ena_tc_qdisc |= BIT(i);
8556 
8557 	switch (mode) {
8558 	case TC_MQPRIO_MODE_CHANNEL:
8559 
8560 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8561 		if (ret) {
8562 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8563 				   ret);
8564 			return ret;
8565 		}
8566 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8567 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8568 		/* don't assume state of hw_tc_offload during driver load
8569 		 * and set the flag for TC flower filter if hw_tc_offload
8570 		 * already ON
8571 		 */
8572 		if (vsi->netdev->features & NETIF_F_HW_TC)
8573 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8574 		break;
8575 	default:
8576 		return -EINVAL;
8577 	}
8578 
8579 config_tcf:
8580 
8581 	/* Requesting same TCF configuration as already enabled */
8582 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8583 	    mode != TC_MQPRIO_MODE_CHANNEL)
8584 		return 0;
8585 
8586 	/* Pause VSI queues */
8587 	ice_dis_vsi(vsi, true);
8588 
8589 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8590 		ice_remove_q_channels(vsi, true);
8591 
8592 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8593 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8594 				     num_online_cpus());
8595 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8596 				     num_online_cpus());
8597 	} else {
8598 		/* logic to rebuild VSI, same like ethtool -L */
8599 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8600 
8601 		for (i = 0; i < num_tcf; i++) {
8602 			if (!(ena_tc_qdisc & BIT(i)))
8603 				continue;
8604 
8605 			offset = vsi->mqprio_qopt.qopt.offset[i];
8606 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8607 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8608 		}
8609 		vsi->req_txq = offset + qcount_tx;
8610 		vsi->req_rxq = offset + qcount_rx;
8611 
8612 		/* store away original rss_size info, so that it gets reused
8613 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8614 		 * determine, what should be the rss_sizefor main VSI
8615 		 */
8616 		vsi->orig_rss_size = vsi->rss_size;
8617 	}
8618 
8619 	/* save current values of Tx and Rx queues before calling VSI rebuild
8620 	 * for fallback option
8621 	 */
8622 	cur_txq = vsi->num_txq;
8623 	cur_rxq = vsi->num_rxq;
8624 
8625 	/* proceed with rebuild main VSI using correct number of queues */
8626 	ret = ice_vsi_rebuild(vsi, false);
8627 	if (ret) {
8628 		/* fallback to current number of queues */
8629 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8630 		vsi->req_txq = cur_txq;
8631 		vsi->req_rxq = cur_rxq;
8632 		clear_bit(ICE_RESET_FAILED, pf->state);
8633 		if (ice_vsi_rebuild(vsi, false)) {
8634 			dev_err(dev, "Rebuild of main VSI failed again\n");
8635 			return ret;
8636 		}
8637 	}
8638 
8639 	vsi->all_numtc = num_tcf;
8640 	vsi->all_enatc = ena_tc_qdisc;
8641 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8642 	if (ret) {
8643 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8644 			   vsi->vsi_num);
8645 		goto exit;
8646 	}
8647 
8648 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8649 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8650 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8651 
8652 		/* set TC0 rate limit if specified */
8653 		if (max_tx_rate || min_tx_rate) {
8654 			/* convert to Kbits/s */
8655 			if (max_tx_rate)
8656 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8657 			if (min_tx_rate)
8658 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8659 
8660 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8661 			if (!ret) {
8662 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8663 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8664 			} else {
8665 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8666 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8667 				goto exit;
8668 			}
8669 		}
8670 		ret = ice_create_q_channels(vsi);
8671 		if (ret) {
8672 			netdev_err(netdev, "failed configuring queue channels\n");
8673 			goto exit;
8674 		} else {
8675 			netdev_dbg(netdev, "successfully configured channels\n");
8676 		}
8677 	}
8678 
8679 	if (vsi->ch_rss_size)
8680 		ice_vsi_cfg_rss_lut_key(vsi);
8681 
8682 exit:
8683 	/* if error, reset the all_numtc and all_enatc */
8684 	if (ret) {
8685 		vsi->all_numtc = 0;
8686 		vsi->all_enatc = 0;
8687 	}
8688 	/* resume VSI */
8689 	ice_ena_vsi(vsi, true);
8690 
8691 	return ret;
8692 }
8693 
8694 static LIST_HEAD(ice_block_cb_list);
8695 
8696 static int
8697 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8698 	     void *type_data)
8699 {
8700 	struct ice_netdev_priv *np = netdev_priv(netdev);
8701 	struct ice_pf *pf = np->vsi->back;
8702 	int err;
8703 
8704 	switch (type) {
8705 	case TC_SETUP_BLOCK:
8706 		return flow_block_cb_setup_simple(type_data,
8707 						  &ice_block_cb_list,
8708 						  ice_setup_tc_block_cb,
8709 						  np, np, true);
8710 	case TC_SETUP_QDISC_MQPRIO:
8711 		/* setup traffic classifier for receive side */
8712 		mutex_lock(&pf->tc_mutex);
8713 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8714 		mutex_unlock(&pf->tc_mutex);
8715 		return err;
8716 	default:
8717 		return -EOPNOTSUPP;
8718 	}
8719 	return -EOPNOTSUPP;
8720 }
8721 
8722 static struct ice_indr_block_priv *
8723 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8724 			   struct net_device *netdev)
8725 {
8726 	struct ice_indr_block_priv *cb_priv;
8727 
8728 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8729 		if (!cb_priv->netdev)
8730 			return NULL;
8731 		if (cb_priv->netdev == netdev)
8732 			return cb_priv;
8733 	}
8734 	return NULL;
8735 }
8736 
8737 static int
8738 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8739 			void *indr_priv)
8740 {
8741 	struct ice_indr_block_priv *priv = indr_priv;
8742 	struct ice_netdev_priv *np = priv->np;
8743 
8744 	switch (type) {
8745 	case TC_SETUP_CLSFLOWER:
8746 		return ice_setup_tc_cls_flower(np, priv->netdev,
8747 					       (struct flow_cls_offload *)
8748 					       type_data);
8749 	default:
8750 		return -EOPNOTSUPP;
8751 	}
8752 }
8753 
8754 static int
8755 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8756 			struct ice_netdev_priv *np,
8757 			struct flow_block_offload *f, void *data,
8758 			void (*cleanup)(struct flow_block_cb *block_cb))
8759 {
8760 	struct ice_indr_block_priv *indr_priv;
8761 	struct flow_block_cb *block_cb;
8762 
8763 	if (!ice_is_tunnel_supported(netdev) &&
8764 	    !(is_vlan_dev(netdev) &&
8765 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8766 		return -EOPNOTSUPP;
8767 
8768 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8769 		return -EOPNOTSUPP;
8770 
8771 	switch (f->command) {
8772 	case FLOW_BLOCK_BIND:
8773 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8774 		if (indr_priv)
8775 			return -EEXIST;
8776 
8777 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8778 		if (!indr_priv)
8779 			return -ENOMEM;
8780 
8781 		indr_priv->netdev = netdev;
8782 		indr_priv->np = np;
8783 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8784 
8785 		block_cb =
8786 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8787 						 indr_priv, indr_priv,
8788 						 ice_rep_indr_tc_block_unbind,
8789 						 f, netdev, sch, data, np,
8790 						 cleanup);
8791 
8792 		if (IS_ERR(block_cb)) {
8793 			list_del(&indr_priv->list);
8794 			kfree(indr_priv);
8795 			return PTR_ERR(block_cb);
8796 		}
8797 		flow_block_cb_add(block_cb, f);
8798 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8799 		break;
8800 	case FLOW_BLOCK_UNBIND:
8801 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8802 		if (!indr_priv)
8803 			return -ENOENT;
8804 
8805 		block_cb = flow_block_cb_lookup(f->block,
8806 						ice_indr_setup_block_cb,
8807 						indr_priv);
8808 		if (!block_cb)
8809 			return -ENOENT;
8810 
8811 		flow_indr_block_cb_remove(block_cb, f);
8812 
8813 		list_del(&block_cb->driver_list);
8814 		break;
8815 	default:
8816 		return -EOPNOTSUPP;
8817 	}
8818 	return 0;
8819 }
8820 
8821 static int
8822 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8823 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8824 		     void *data,
8825 		     void (*cleanup)(struct flow_block_cb *block_cb))
8826 {
8827 	switch (type) {
8828 	case TC_SETUP_BLOCK:
8829 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8830 					       data, cleanup);
8831 
8832 	default:
8833 		return -EOPNOTSUPP;
8834 	}
8835 }
8836 
8837 /**
8838  * ice_open - Called when a network interface becomes active
8839  * @netdev: network interface device structure
8840  *
8841  * The open entry point is called when a network interface is made
8842  * active by the system (IFF_UP). At this point all resources needed
8843  * for transmit and receive operations are allocated, the interrupt
8844  * handler is registered with the OS, the netdev watchdog is enabled,
8845  * and the stack is notified that the interface is ready.
8846  *
8847  * Returns 0 on success, negative value on failure
8848  */
8849 int ice_open(struct net_device *netdev)
8850 {
8851 	struct ice_netdev_priv *np = netdev_priv(netdev);
8852 	struct ice_pf *pf = np->vsi->back;
8853 
8854 	if (ice_is_reset_in_progress(pf->state)) {
8855 		netdev_err(netdev, "can't open net device while reset is in progress");
8856 		return -EBUSY;
8857 	}
8858 
8859 	return ice_open_internal(netdev);
8860 }
8861 
8862 /**
8863  * ice_open_internal - Called when a network interface becomes active
8864  * @netdev: network interface device structure
8865  *
8866  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8867  * handling routine
8868  *
8869  * Returns 0 on success, negative value on failure
8870  */
8871 int ice_open_internal(struct net_device *netdev)
8872 {
8873 	struct ice_netdev_priv *np = netdev_priv(netdev);
8874 	struct ice_vsi *vsi = np->vsi;
8875 	struct ice_pf *pf = vsi->back;
8876 	struct ice_port_info *pi;
8877 	int err;
8878 
8879 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8880 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8881 		return -EIO;
8882 	}
8883 
8884 	netif_carrier_off(netdev);
8885 
8886 	pi = vsi->port_info;
8887 	err = ice_update_link_info(pi);
8888 	if (err) {
8889 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8890 		return err;
8891 	}
8892 
8893 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8894 
8895 	/* Set PHY if there is media, otherwise, turn off PHY */
8896 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8897 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8898 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8899 			err = ice_init_phy_user_cfg(pi);
8900 			if (err) {
8901 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8902 					   err);
8903 				return err;
8904 			}
8905 		}
8906 
8907 		err = ice_configure_phy(vsi);
8908 		if (err) {
8909 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8910 				   err);
8911 			return err;
8912 		}
8913 	} else {
8914 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8915 		ice_set_link(vsi, false);
8916 	}
8917 
8918 	err = ice_vsi_open(vsi);
8919 	if (err)
8920 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8921 			   vsi->vsi_num, vsi->vsw->sw_id);
8922 
8923 	/* Update existing tunnels information */
8924 	udp_tunnel_get_rx_info(netdev);
8925 
8926 	return err;
8927 }
8928 
8929 /**
8930  * ice_stop - Disables a network interface
8931  * @netdev: network interface device structure
8932  *
8933  * The stop entry point is called when an interface is de-activated by the OS,
8934  * and the netdevice enters the DOWN state. The hardware is still under the
8935  * driver's control, but the netdev interface is disabled.
8936  *
8937  * Returns success only - not allowed to fail
8938  */
8939 int ice_stop(struct net_device *netdev)
8940 {
8941 	struct ice_netdev_priv *np = netdev_priv(netdev);
8942 	struct ice_vsi *vsi = np->vsi;
8943 	struct ice_pf *pf = vsi->back;
8944 
8945 	if (ice_is_reset_in_progress(pf->state)) {
8946 		netdev_err(netdev, "can't stop net device while reset is in progress");
8947 		return -EBUSY;
8948 	}
8949 
8950 	ice_vsi_close(vsi);
8951 
8952 	return 0;
8953 }
8954 
8955 /**
8956  * ice_features_check - Validate encapsulated packet conforms to limits
8957  * @skb: skb buffer
8958  * @netdev: This port's netdev
8959  * @features: Offload features that the stack believes apply
8960  */
8961 static netdev_features_t
8962 ice_features_check(struct sk_buff *skb,
8963 		   struct net_device __always_unused *netdev,
8964 		   netdev_features_t features)
8965 {
8966 	bool gso = skb_is_gso(skb);
8967 	size_t len;
8968 
8969 	/* No point in doing any of this if neither checksum nor GSO are
8970 	 * being requested for this frame. We can rule out both by just
8971 	 * checking for CHECKSUM_PARTIAL
8972 	 */
8973 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8974 		return features;
8975 
8976 	/* We cannot support GSO if the MSS is going to be less than
8977 	 * 64 bytes. If it is then we need to drop support for GSO.
8978 	 */
8979 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8980 		features &= ~NETIF_F_GSO_MASK;
8981 
8982 	len = skb_network_offset(skb);
8983 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8984 		goto out_rm_features;
8985 
8986 	len = skb_network_header_len(skb);
8987 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8988 		goto out_rm_features;
8989 
8990 	if (skb->encapsulation) {
8991 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8992 		 * the case of IPIP frames, the transport header pointer is
8993 		 * after the inner header! So check to make sure that this
8994 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8995 		 */
8996 		if (gso && (skb_shinfo(skb)->gso_type &
8997 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8998 			len = skb_inner_network_header(skb) -
8999 			      skb_transport_header(skb);
9000 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9001 				goto out_rm_features;
9002 		}
9003 
9004 		len = skb_inner_network_header_len(skb);
9005 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9006 			goto out_rm_features;
9007 	}
9008 
9009 	return features;
9010 out_rm_features:
9011 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9012 }
9013 
9014 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9015 	.ndo_open = ice_open,
9016 	.ndo_stop = ice_stop,
9017 	.ndo_start_xmit = ice_start_xmit,
9018 	.ndo_set_mac_address = ice_set_mac_address,
9019 	.ndo_validate_addr = eth_validate_addr,
9020 	.ndo_change_mtu = ice_change_mtu,
9021 	.ndo_get_stats64 = ice_get_stats64,
9022 	.ndo_tx_timeout = ice_tx_timeout,
9023 	.ndo_bpf = ice_xdp_safe_mode,
9024 };
9025 
9026 static const struct net_device_ops ice_netdev_ops = {
9027 	.ndo_open = ice_open,
9028 	.ndo_stop = ice_stop,
9029 	.ndo_start_xmit = ice_start_xmit,
9030 	.ndo_select_queue = ice_select_queue,
9031 	.ndo_features_check = ice_features_check,
9032 	.ndo_fix_features = ice_fix_features,
9033 	.ndo_set_rx_mode = ice_set_rx_mode,
9034 	.ndo_set_mac_address = ice_set_mac_address,
9035 	.ndo_validate_addr = eth_validate_addr,
9036 	.ndo_change_mtu = ice_change_mtu,
9037 	.ndo_get_stats64 = ice_get_stats64,
9038 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9039 	.ndo_eth_ioctl = ice_eth_ioctl,
9040 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9041 	.ndo_set_vf_mac = ice_set_vf_mac,
9042 	.ndo_get_vf_config = ice_get_vf_cfg,
9043 	.ndo_set_vf_trust = ice_set_vf_trust,
9044 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9045 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9046 	.ndo_get_vf_stats = ice_get_vf_stats,
9047 	.ndo_set_vf_rate = ice_set_vf_bw,
9048 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9049 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9050 	.ndo_setup_tc = ice_setup_tc,
9051 	.ndo_set_features = ice_set_features,
9052 	.ndo_bridge_getlink = ice_bridge_getlink,
9053 	.ndo_bridge_setlink = ice_bridge_setlink,
9054 	.ndo_fdb_add = ice_fdb_add,
9055 	.ndo_fdb_del = ice_fdb_del,
9056 #ifdef CONFIG_RFS_ACCEL
9057 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9058 #endif
9059 	.ndo_tx_timeout = ice_tx_timeout,
9060 	.ndo_bpf = ice_xdp,
9061 	.ndo_xdp_xmit = ice_xdp_xmit,
9062 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9063 	.ndo_get_devlink_port = ice_get_devlink_port,
9064 };
9065