1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_get_devlink_port - Get devlink port from netdev 303 * @netdev: the netdevice structure 304 */ 305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 306 { 307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 308 309 if (!ice_is_switchdev_running(pf)) 310 return NULL; 311 312 return &pf->devlink_port; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 } 427 } else { 428 /* Clear Rx filter to remove traffic from wire */ 429 if (ice_is_vsi_dflt_vsi(vsi)) { 430 err = ice_clear_dflt_vsi(vsi); 431 if (err) { 432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 433 err, vsi->vsi_num); 434 vsi->current_netdev_flags |= 435 IFF_PROMISC; 436 goto out_promisc; 437 } 438 if (vsi->netdev->features & 439 NETIF_F_HW_VLAN_CTAG_FILTER) 440 vlan_ops->ena_rx_filtering(vsi); 441 } 442 } 443 } 444 goto exit; 445 446 out_promisc: 447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 448 goto exit; 449 out: 450 /* if something went wrong then set the changed flag so we try again */ 451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 453 exit: 454 clear_bit(ICE_CFG_BUSY, vsi->state); 455 return err; 456 } 457 458 /** 459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 460 * @pf: board private structure 461 */ 462 static void ice_sync_fltr_subtask(struct ice_pf *pf) 463 { 464 int v; 465 466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 467 return; 468 469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 470 471 ice_for_each_vsi(pf, v) 472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 473 ice_vsi_sync_fltr(pf->vsi[v])) { 474 /* come back and try again later */ 475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 476 break; 477 } 478 } 479 480 /** 481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 482 * @pf: the PF 483 * @locked: is the rtnl_lock already held 484 */ 485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 486 { 487 int node; 488 int v; 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v]) 492 ice_dis_vsi(pf->vsi[v], locked); 493 494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 495 pf->pf_agg_node[node].num_vsis = 0; 496 497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 498 pf->vf_agg_node[node].num_vsis = 0; 499 } 500 501 /** 502 * ice_clear_sw_switch_recipes - clear switch recipes 503 * @pf: board private structure 504 * 505 * Mark switch recipes as not created in sw structures. There are cases where 506 * rules (especially advanced rules) need to be restored, either re-read from 507 * hardware or added again. For example after the reset. 'recp_created' flag 508 * prevents from doing that and need to be cleared upfront. 509 */ 510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 511 { 512 struct ice_sw_recipe *recp; 513 u8 i; 514 515 recp = pf->hw.switch_info->recp_list; 516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 517 recp[i].recp_created = false; 518 } 519 520 /** 521 * ice_prepare_for_reset - prep for reset 522 * @pf: board private structure 523 * @reset_type: reset type requested 524 * 525 * Inform or close all dependent features in prep for reset. 526 */ 527 static void 528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 529 { 530 struct ice_hw *hw = &pf->hw; 531 struct ice_vsi *vsi; 532 struct ice_vf *vf; 533 unsigned int bkt; 534 535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 536 537 /* already prepared for reset */ 538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 539 return; 540 541 ice_unplug_aux_dev(pf); 542 543 /* Notify VFs of impending reset */ 544 if (ice_check_sq_alive(hw, &hw->mailboxq)) 545 ice_vc_notify_reset(pf); 546 547 /* Disable VFs until reset is completed */ 548 mutex_lock(&pf->vfs.table_lock); 549 ice_for_each_vf(pf, bkt, vf) 550 ice_set_vf_state_qs_dis(vf); 551 mutex_unlock(&pf->vfs.table_lock); 552 553 if (ice_is_eswitch_mode_switchdev(pf)) { 554 if (reset_type != ICE_RESET_PFR) 555 ice_clear_sw_switch_recipes(pf); 556 } 557 558 /* release ADQ specific HW and SW resources */ 559 vsi = ice_get_main_vsi(pf); 560 if (!vsi) 561 goto skip; 562 563 /* to be on safe side, reset orig_rss_size so that normal flow 564 * of deciding rss_size can take precedence 565 */ 566 vsi->orig_rss_size = 0; 567 568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 569 if (reset_type == ICE_RESET_PFR) { 570 vsi->old_ena_tc = vsi->all_enatc; 571 vsi->old_numtc = vsi->all_numtc; 572 } else { 573 ice_remove_q_channels(vsi, true); 574 575 /* for other reset type, do not support channel rebuild 576 * hence reset needed info 577 */ 578 vsi->old_ena_tc = 0; 579 vsi->all_enatc = 0; 580 vsi->old_numtc = 0; 581 vsi->all_numtc = 0; 582 vsi->req_txq = 0; 583 vsi->req_rxq = 0; 584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 586 } 587 } 588 skip: 589 590 /* clear SW filtering DB */ 591 ice_clear_hw_tbls(hw); 592 /* disable the VSIs and their queues that are not already DOWN */ 593 ice_pf_dis_all_vsi(pf, false); 594 595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 596 ice_ptp_prepare_for_reset(pf); 597 598 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 599 ice_gnss_exit(pf); 600 601 if (hw->port_info) 602 ice_sched_clear_port(hw->port_info); 603 604 ice_shutdown_all_ctrlq(hw); 605 606 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 607 } 608 609 /** 610 * ice_do_reset - Initiate one of many types of resets 611 * @pf: board private structure 612 * @reset_type: reset type requested before this function was called. 613 */ 614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 615 { 616 struct device *dev = ice_pf_to_dev(pf); 617 struct ice_hw *hw = &pf->hw; 618 619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 620 621 ice_prepare_for_reset(pf, reset_type); 622 623 /* trigger the reset */ 624 if (ice_reset(hw, reset_type)) { 625 dev_err(dev, "reset %d failed\n", reset_type); 626 set_bit(ICE_RESET_FAILED, pf->state); 627 clear_bit(ICE_RESET_OICR_RECV, pf->state); 628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 clear_bit(ICE_PFR_REQ, pf->state); 630 clear_bit(ICE_CORER_REQ, pf->state); 631 clear_bit(ICE_GLOBR_REQ, pf->state); 632 wake_up(&pf->reset_wait_queue); 633 return; 634 } 635 636 /* PFR is a bit of a special case because it doesn't result in an OICR 637 * interrupt. So for PFR, rebuild after the reset and clear the reset- 638 * associated state bits. 639 */ 640 if (reset_type == ICE_RESET_PFR) { 641 pf->pfr_count++; 642 ice_rebuild(pf, reset_type); 643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 644 clear_bit(ICE_PFR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 ice_reset_all_vfs(pf); 647 } 648 } 649 650 /** 651 * ice_reset_subtask - Set up for resetting the device and driver 652 * @pf: board private structure 653 */ 654 static void ice_reset_subtask(struct ice_pf *pf) 655 { 656 enum ice_reset_req reset_type = ICE_RESET_INVAL; 657 658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 660 * of reset is pending and sets bits in pf->state indicating the reset 661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 662 * prepare for pending reset if not already (for PF software-initiated 663 * global resets the software should already be prepared for it as 664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 665 * by firmware or software on other PFs, that bit is not set so prepare 666 * for the reset now), poll for reset done, rebuild and return. 667 */ 668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 669 /* Perform the largest reset requested */ 670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 671 reset_type = ICE_RESET_CORER; 672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 673 reset_type = ICE_RESET_GLOBR; 674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 675 reset_type = ICE_RESET_EMPR; 676 /* return if no valid reset type requested */ 677 if (reset_type == ICE_RESET_INVAL) 678 return; 679 ice_prepare_for_reset(pf, reset_type); 680 681 /* make sure we are ready to rebuild */ 682 if (ice_check_reset(&pf->hw)) { 683 set_bit(ICE_RESET_FAILED, pf->state); 684 } else { 685 /* done with reset. start rebuild */ 686 pf->hw.reset_ongoing = false; 687 ice_rebuild(pf, reset_type); 688 /* clear bit to resume normal operations, but 689 * ICE_NEEDS_RESTART bit is set in case rebuild failed 690 */ 691 clear_bit(ICE_RESET_OICR_RECV, pf->state); 692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 693 clear_bit(ICE_PFR_REQ, pf->state); 694 clear_bit(ICE_CORER_REQ, pf->state); 695 clear_bit(ICE_GLOBR_REQ, pf->state); 696 wake_up(&pf->reset_wait_queue); 697 ice_reset_all_vfs(pf); 698 } 699 700 return; 701 } 702 703 /* No pending resets to finish processing. Check for new resets */ 704 if (test_bit(ICE_PFR_REQ, pf->state)) 705 reset_type = ICE_RESET_PFR; 706 if (test_bit(ICE_CORER_REQ, pf->state)) 707 reset_type = ICE_RESET_CORER; 708 if (test_bit(ICE_GLOBR_REQ, pf->state)) 709 reset_type = ICE_RESET_GLOBR; 710 /* If no valid reset type requested just return */ 711 if (reset_type == ICE_RESET_INVAL) 712 return; 713 714 /* reset if not already down or busy */ 715 if (!test_bit(ICE_DOWN, pf->state) && 716 !test_bit(ICE_CFG_BUSY, pf->state)) { 717 ice_do_reset(pf, reset_type); 718 } 719 } 720 721 /** 722 * ice_print_topo_conflict - print topology conflict message 723 * @vsi: the VSI whose topology status is being checked 724 */ 725 static void ice_print_topo_conflict(struct ice_vsi *vsi) 726 { 727 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 728 case ICE_AQ_LINK_TOPO_CONFLICT: 729 case ICE_AQ_LINK_MEDIA_CONFLICT: 730 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 734 break; 735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 738 else 739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 740 break; 741 default: 742 break; 743 } 744 } 745 746 /** 747 * ice_print_link_msg - print link up or down message 748 * @vsi: the VSI whose link status is being queried 749 * @isup: boolean for if the link is now up or down 750 */ 751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 752 { 753 struct ice_aqc_get_phy_caps_data *caps; 754 const char *an_advertised; 755 const char *fec_req; 756 const char *speed; 757 const char *fec; 758 const char *fc; 759 const char *an; 760 int status; 761 762 if (!vsi) 763 return; 764 765 if (vsi->current_isup == isup) 766 return; 767 768 vsi->current_isup = isup; 769 770 if (!isup) { 771 netdev_info(vsi->netdev, "NIC Link is Down\n"); 772 return; 773 } 774 775 switch (vsi->port_info->phy.link_info.link_speed) { 776 case ICE_AQ_LINK_SPEED_100GB: 777 speed = "100 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_50GB: 780 speed = "50 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_40GB: 783 speed = "40 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_25GB: 786 speed = "25 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_20GB: 789 speed = "20 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_10GB: 792 speed = "10 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_5GB: 795 speed = "5 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_2500MB: 798 speed = "2.5 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_1000MB: 801 speed = "1 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_100MB: 804 speed = "100 M"; 805 break; 806 default: 807 speed = "Unknown "; 808 break; 809 } 810 811 switch (vsi->port_info->fc.current_mode) { 812 case ICE_FC_FULL: 813 fc = "Rx/Tx"; 814 break; 815 case ICE_FC_TX_PAUSE: 816 fc = "Tx"; 817 break; 818 case ICE_FC_RX_PAUSE: 819 fc = "Rx"; 820 break; 821 case ICE_FC_NONE: 822 fc = "None"; 823 break; 824 default: 825 fc = "Unknown"; 826 break; 827 } 828 829 /* Get FEC mode based on negotiated link info */ 830 switch (vsi->port_info->phy.link_info.fec_info) { 831 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 832 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 833 fec = "RS-FEC"; 834 break; 835 case ICE_AQ_LINK_25G_KR_FEC_EN: 836 fec = "FC-FEC/BASE-R"; 837 break; 838 default: 839 fec = "NONE"; 840 break; 841 } 842 843 /* check if autoneg completed, might be false due to not supported */ 844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 845 an = "True"; 846 else 847 an = "False"; 848 849 /* Get FEC mode requested based on PHY caps last SW configuration */ 850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 851 if (!caps) { 852 fec_req = "Unknown"; 853 an_advertised = "Unknown"; 854 goto done; 855 } 856 857 status = ice_aq_get_phy_caps(vsi->port_info, false, 858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 859 if (status) 860 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 861 862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 863 864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 866 fec_req = "RS-FEC"; 867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 869 fec_req = "FC-FEC/BASE-R"; 870 else 871 fec_req = "NONE"; 872 873 kfree(caps); 874 875 done: 876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 877 speed, fec_req, fec, an_advertised, an, fc); 878 ice_print_topo_conflict(vsi); 879 } 880 881 /** 882 * ice_vsi_link_event - update the VSI's netdev 883 * @vsi: the VSI on which the link event occurred 884 * @link_up: whether or not the VSI needs to be set up or down 885 */ 886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 887 { 888 if (!vsi) 889 return; 890 891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 892 return; 893 894 if (vsi->type == ICE_VSI_PF) { 895 if (link_up == netif_carrier_ok(vsi->netdev)) 896 return; 897 898 if (link_up) { 899 netif_carrier_on(vsi->netdev); 900 netif_tx_wake_all_queues(vsi->netdev); 901 } else { 902 netif_carrier_off(vsi->netdev); 903 netif_tx_stop_all_queues(vsi->netdev); 904 } 905 } 906 } 907 908 /** 909 * ice_set_dflt_mib - send a default config MIB to the FW 910 * @pf: private PF struct 911 * 912 * This function sends a default configuration MIB to the FW. 913 * 914 * If this function errors out at any point, the driver is still able to 915 * function. The main impact is that LFC may not operate as expected. 916 * Therefore an error state in this function should be treated with a DBG 917 * message and continue on with driver rebuild/reenable. 918 */ 919 static void ice_set_dflt_mib(struct ice_pf *pf) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 u8 mib_type, *buf, *lldpmib = NULL; 923 u16 len, typelen, offset = 0; 924 struct ice_lldp_org_tlv *tlv; 925 struct ice_hw *hw = &pf->hw; 926 u32 ouisubtype; 927 928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 930 if (!lldpmib) { 931 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 932 __func__); 933 return; 934 } 935 936 /* Add ETS CFG TLV */ 937 tlv = (struct ice_lldp_org_tlv *)lldpmib; 938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 939 ICE_IEEE_ETS_TLV_LEN); 940 tlv->typelen = htons(typelen); 941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 942 ICE_IEEE_SUBTYPE_ETS_CFG); 943 tlv->ouisubtype = htonl(ouisubtype); 944 945 buf = tlv->tlvinfo; 946 buf[0] = 0; 947 948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 950 * Octets 13 - 20 are TSA values - leave as zeros 951 */ 952 buf[5] = 0x64; 953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 954 offset += len + 2; 955 tlv = (struct ice_lldp_org_tlv *) 956 ((char *)tlv + sizeof(tlv->typelen) + len); 957 958 /* Add ETS REC TLV */ 959 buf = tlv->tlvinfo; 960 tlv->typelen = htons(typelen); 961 962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 963 ICE_IEEE_SUBTYPE_ETS_REC); 964 tlv->ouisubtype = htonl(ouisubtype); 965 966 /* First octet of buf is reserved 967 * Octets 1 - 4 map UP to TC - all UPs map to zero 968 * Octets 5 - 12 are BW values - set TC 0 to 100%. 969 * Octets 13 - 20 are TSA value - leave as zeros 970 */ 971 buf[5] = 0x64; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add PFC CFG TLV */ 977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 978 ICE_IEEE_PFC_TLV_LEN); 979 tlv->typelen = htons(typelen); 980 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_PFC_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 /* Octet 1 left as all zeros - PFC disabled */ 986 buf[0] = 0x08; 987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 988 offset += len + 2; 989 990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 992 993 kfree(lldpmib); 994 } 995 996 /** 997 * ice_check_phy_fw_load - check if PHY FW load failed 998 * @pf: pointer to PF struct 999 * @link_cfg_err: bitmap from the link info structure 1000 * 1001 * check if external PHY FW load failed and print an error message if it did 1002 */ 1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 return; 1008 } 1009 1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1011 return; 1012 1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1016 } 1017 } 1018 1019 /** 1020 * ice_check_module_power 1021 * @pf: pointer to PF struct 1022 * @link_cfg_err: bitmap from the link info structure 1023 * 1024 * check module power level returned by a previous call to aq_get_link_info 1025 * and print error messages if module power level is not supported 1026 */ 1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 /* if module power level is supported, clear the flag */ 1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1033 return; 1034 } 1035 1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1037 * above block didn't clear this bit, there's nothing to do 1038 */ 1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_link_cfg_err - check if link configuration failed 1053 * @pf: pointer to the PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * print if any link configuration failure happens due to the value in the 1057 * link_cfg_err parameter in the link info structure 1058 */ 1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 ice_check_module_power(pf, link_cfg_err); 1062 ice_check_phy_fw_load(pf, link_cfg_err); 1063 } 1064 1065 /** 1066 * ice_link_event - process the link event 1067 * @pf: PF that the link event is associated with 1068 * @pi: port_info for the port that the link event is associated with 1069 * @link_up: true if the physical link is up and false if it is down 1070 * @link_speed: current link speed received from the link event 1071 * 1072 * Returns 0 on success and negative on failure 1073 */ 1074 static int 1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1076 u16 link_speed) 1077 { 1078 struct device *dev = ice_pf_to_dev(pf); 1079 struct ice_phy_info *phy_info; 1080 struct ice_vsi *vsi; 1081 u16 old_link_speed; 1082 bool old_link; 1083 int status; 1084 1085 phy_info = &pi->phy; 1086 phy_info->link_info_old = phy_info->link_info; 1087 1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1089 old_link_speed = phy_info->link_info_old.link_speed; 1090 1091 /* update the link info structures and re-enable link events, 1092 * don't bail on failure due to other book keeping needed 1093 */ 1094 status = ice_update_link_info(pi); 1095 if (status) 1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1097 pi->lport, status, 1098 ice_aq_str(pi->hw->adminq.sq_last_status)); 1099 1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1101 1102 /* Check if the link state is up after updating link info, and treat 1103 * this event as an UP event since the link is actually UP now. 1104 */ 1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1106 link_up = true; 1107 1108 vsi = ice_get_main_vsi(pf); 1109 if (!vsi || !vsi->port_info) 1110 return -EINVAL; 1111 1112 /* turn off PHY if media was removed */ 1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1116 ice_set_link(vsi, false); 1117 } 1118 1119 /* if the old link up/down and speed is the same as the new */ 1120 if (link_up == old_link && link_speed == old_link_speed) 1121 return 0; 1122 1123 if (!ice_is_e810(&pf->hw)) 1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1125 1126 if (ice_is_dcb_active(pf)) { 1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1128 ice_dcb_rebuild(pf); 1129 } else { 1130 if (link_up) 1131 ice_set_dflt_mib(pf); 1132 } 1133 ice_vsi_link_event(vsi, link_up); 1134 ice_print_link_msg(vsi, link_up); 1135 1136 ice_vc_notify_link_state(pf); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1143 * @pf: board private structure 1144 */ 1145 static void ice_watchdog_subtask(struct ice_pf *pf) 1146 { 1147 int i; 1148 1149 /* if interface is down do nothing */ 1150 if (test_bit(ICE_DOWN, pf->state) || 1151 test_bit(ICE_CFG_BUSY, pf->state)) 1152 return; 1153 1154 /* make sure we don't do these things too often */ 1155 if (time_before(jiffies, 1156 pf->serv_tmr_prev + pf->serv_tmr_period)) 1157 return; 1158 1159 pf->serv_tmr_prev = jiffies; 1160 1161 /* Update the stats for active netdevs so the network stack 1162 * can look at updated numbers whenever it cares to 1163 */ 1164 ice_update_pf_stats(pf); 1165 ice_for_each_vsi(pf, i) 1166 if (pf->vsi[i] && pf->vsi[i]->netdev) 1167 ice_update_vsi_stats(pf->vsi[i]); 1168 } 1169 1170 /** 1171 * ice_init_link_events - enable/initialize link events 1172 * @pi: pointer to the port_info instance 1173 * 1174 * Returns -EIO on failure, 0 on success 1175 */ 1176 static int ice_init_link_events(struct ice_port_info *pi) 1177 { 1178 u16 mask; 1179 1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1183 1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1186 pi->lport); 1187 return -EIO; 1188 } 1189 1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1192 pi->lport); 1193 return -EIO; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * ice_handle_link_event - handle link event via ARQ 1201 * @pf: PF that the link event is associated with 1202 * @event: event structure containing link status info 1203 */ 1204 static int 1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1206 { 1207 struct ice_aqc_get_link_status_data *link_data; 1208 struct ice_port_info *port_info; 1209 int status; 1210 1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1212 port_info = pf->hw.port_info; 1213 if (!port_info) 1214 return -EINVAL; 1215 1216 status = ice_link_event(pf, port_info, 1217 !!(link_data->link_info & ICE_AQ_LINK_UP), 1218 le16_to_cpu(link_data->link_speed)); 1219 if (status) 1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1221 status); 1222 1223 return status; 1224 } 1225 1226 enum ice_aq_task_state { 1227 ICE_AQ_TASK_WAITING = 0, 1228 ICE_AQ_TASK_COMPLETE, 1229 ICE_AQ_TASK_CANCELED, 1230 }; 1231 1232 struct ice_aq_task { 1233 struct hlist_node entry; 1234 1235 u16 opcode; 1236 struct ice_rq_event_info *event; 1237 enum ice_aq_task_state state; 1238 }; 1239 1240 /** 1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1242 * @pf: pointer to the PF private structure 1243 * @opcode: the opcode to wait for 1244 * @timeout: how long to wait, in jiffies 1245 * @event: storage for the event info 1246 * 1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1248 * current thread will be put to sleep until the specified event occurs or 1249 * until the given timeout is reached. 1250 * 1251 * To obtain only the descriptor contents, pass an event without an allocated 1252 * msg_buf. If the complete data buffer is desired, allocate the 1253 * event->msg_buf with enough space ahead of time. 1254 * 1255 * Returns: zero on success, or a negative error code on failure. 1256 */ 1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1258 struct ice_rq_event_info *event) 1259 { 1260 struct device *dev = ice_pf_to_dev(pf); 1261 struct ice_aq_task *task; 1262 unsigned long start; 1263 long ret; 1264 int err; 1265 1266 task = kzalloc(sizeof(*task), GFP_KERNEL); 1267 if (!task) 1268 return -ENOMEM; 1269 1270 INIT_HLIST_NODE(&task->entry); 1271 task->opcode = opcode; 1272 task->event = event; 1273 task->state = ICE_AQ_TASK_WAITING; 1274 1275 spin_lock_bh(&pf->aq_wait_lock); 1276 hlist_add_head(&task->entry, &pf->aq_wait_list); 1277 spin_unlock_bh(&pf->aq_wait_lock); 1278 1279 start = jiffies; 1280 1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1282 timeout); 1283 switch (task->state) { 1284 case ICE_AQ_TASK_WAITING: 1285 err = ret < 0 ? ret : -ETIMEDOUT; 1286 break; 1287 case ICE_AQ_TASK_CANCELED: 1288 err = ret < 0 ? ret : -ECANCELED; 1289 break; 1290 case ICE_AQ_TASK_COMPLETE: 1291 err = ret < 0 ? ret : 0; 1292 break; 1293 default: 1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1295 err = -EINVAL; 1296 break; 1297 } 1298 1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1300 jiffies_to_msecs(jiffies - start), 1301 jiffies_to_msecs(timeout), 1302 opcode); 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_del(&task->entry); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 kfree(task); 1308 1309 return err; 1310 } 1311 1312 /** 1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1314 * @pf: pointer to the PF private structure 1315 * @opcode: the opcode of the event 1316 * @event: the event to check 1317 * 1318 * Loops over the current list of pending threads waiting for an AdminQ event. 1319 * For each matching task, copy the contents of the event into the task 1320 * structure and wake up the thread. 1321 * 1322 * If multiple threads wait for the same opcode, they will all be woken up. 1323 * 1324 * Note that event->msg_buf will only be duplicated if the event has a buffer 1325 * with enough space already allocated. Otherwise, only the descriptor and 1326 * message length will be copied. 1327 * 1328 * Returns: true if an event was found, false otherwise 1329 */ 1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1331 struct ice_rq_event_info *event) 1332 { 1333 struct ice_aq_task *task; 1334 bool found = false; 1335 1336 spin_lock_bh(&pf->aq_wait_lock); 1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1338 if (task->state || task->opcode != opcode) 1339 continue; 1340 1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1342 task->event->msg_len = event->msg_len; 1343 1344 /* Only copy the data buffer if a destination was set */ 1345 if (task->event->msg_buf && 1346 task->event->buf_len > event->buf_len) { 1347 memcpy(task->event->msg_buf, event->msg_buf, 1348 event->buf_len); 1349 task->event->buf_len = event->buf_len; 1350 } 1351 1352 task->state = ICE_AQ_TASK_COMPLETE; 1353 found = true; 1354 } 1355 spin_unlock_bh(&pf->aq_wait_lock); 1356 1357 if (found) 1358 wake_up(&pf->aq_wait_queue); 1359 } 1360 1361 /** 1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1363 * @pf: the PF private structure 1364 * 1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1367 */ 1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1369 { 1370 struct ice_aq_task *task; 1371 1372 spin_lock_bh(&pf->aq_wait_lock); 1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1374 task->state = ICE_AQ_TASK_CANCELED; 1375 spin_unlock_bh(&pf->aq_wait_lock); 1376 1377 wake_up(&pf->aq_wait_queue); 1378 } 1379 1380 /** 1381 * __ice_clean_ctrlq - helper function to clean controlq rings 1382 * @pf: ptr to struct ice_pf 1383 * @q_type: specific Control queue type 1384 */ 1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1386 { 1387 struct device *dev = ice_pf_to_dev(pf); 1388 struct ice_rq_event_info event; 1389 struct ice_hw *hw = &pf->hw; 1390 struct ice_ctl_q_info *cq; 1391 u16 pending, i = 0; 1392 const char *qtype; 1393 u32 oldval, val; 1394 1395 /* Do not clean control queue if/when PF reset fails */ 1396 if (test_bit(ICE_RESET_FAILED, pf->state)) 1397 return 0; 1398 1399 switch (q_type) { 1400 case ICE_CTL_Q_ADMIN: 1401 cq = &hw->adminq; 1402 qtype = "Admin"; 1403 break; 1404 case ICE_CTL_Q_SB: 1405 cq = &hw->sbq; 1406 qtype = "Sideband"; 1407 break; 1408 case ICE_CTL_Q_MAILBOX: 1409 cq = &hw->mailboxq; 1410 qtype = "Mailbox"; 1411 /* we are going to try to detect a malicious VF, so set the 1412 * state to begin detection 1413 */ 1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1415 break; 1416 default: 1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1418 return 0; 1419 } 1420 1421 /* check for error indications - PF_xx_AxQLEN register layout for 1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1423 */ 1424 val = rd32(hw, cq->rq.len); 1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1426 PF_FW_ARQLEN_ARQCRIT_M)) { 1427 oldval = val; 1428 if (val & PF_FW_ARQLEN_ARQVFE_M) 1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1430 qtype); 1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1433 qtype); 1434 } 1435 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1437 qtype); 1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1439 PF_FW_ARQLEN_ARQCRIT_M); 1440 if (oldval != val) 1441 wr32(hw, cq->rq.len, val); 1442 } 1443 1444 val = rd32(hw, cq->sq.len); 1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1446 PF_FW_ATQLEN_ATQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ATQLEN_ATQVFE_M) 1449 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1459 PF_FW_ATQLEN_ATQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->sq.len, val); 1462 } 1463 1464 event.buf_len = cq->rq_buf_size; 1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1466 if (!event.msg_buf) 1467 return 0; 1468 1469 do { 1470 u16 opcode; 1471 int ret; 1472 1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1474 if (ret == -EALREADY) 1475 break; 1476 if (ret) { 1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1478 ret); 1479 break; 1480 } 1481 1482 opcode = le16_to_cpu(event.desc.opcode); 1483 1484 /* Notify any thread that might be waiting for this event */ 1485 ice_aq_check_events(pf, opcode, &event); 1486 1487 switch (opcode) { 1488 case ice_aqc_opc_get_link_status: 1489 if (ice_handle_link_event(pf, &event)) 1490 dev_err(dev, "Could not handle link event\n"); 1491 break; 1492 case ice_aqc_opc_event_lan_overflow: 1493 ice_vf_lan_overflow_event(pf, &event); 1494 break; 1495 case ice_mbx_opc_send_msg_to_pf: 1496 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1497 ice_vc_process_vf_msg(pf, &event); 1498 break; 1499 case ice_aqc_opc_fw_logging: 1500 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1501 break; 1502 case ice_aqc_opc_lldp_set_mib_change: 1503 ice_dcb_process_lldp_set_mib_change(pf, &event); 1504 break; 1505 default: 1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1507 qtype, opcode); 1508 break; 1509 } 1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1511 1512 kfree(event.msg_buf); 1513 1514 return pending && (i == ICE_DFLT_IRQ_WORK); 1515 } 1516 1517 /** 1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1519 * @hw: pointer to hardware info 1520 * @cq: control queue information 1521 * 1522 * returns true if there are pending messages in a queue, false if there aren't 1523 */ 1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1525 { 1526 u16 ntu; 1527 1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1529 return cq->rq.next_to_clean != ntu; 1530 } 1531 1532 /** 1533 * ice_clean_adminq_subtask - clean the AdminQ rings 1534 * @pf: board private structure 1535 */ 1536 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1537 { 1538 struct ice_hw *hw = &pf->hw; 1539 1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1541 return; 1542 1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1544 return; 1545 1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1547 1548 /* There might be a situation where new messages arrive to a control 1549 * queue between processing the last message and clearing the 1550 * EVENT_PENDING bit. So before exiting, check queue head again (using 1551 * ice_ctrlq_pending) and process new messages if any. 1552 */ 1553 if (ice_ctrlq_pending(hw, &hw->adminq)) 1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1555 1556 ice_flush(hw); 1557 } 1558 1559 /** 1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1561 * @pf: board private structure 1562 */ 1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1564 { 1565 struct ice_hw *hw = &pf->hw; 1566 1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1568 return; 1569 1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1571 return; 1572 1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1574 1575 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1577 1578 ice_flush(hw); 1579 } 1580 1581 /** 1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1583 * @pf: board private structure 1584 */ 1585 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1586 { 1587 struct ice_hw *hw = &pf->hw; 1588 1589 /* Nothing to do here if sideband queue is not supported */ 1590 if (!ice_is_sbq_supported(hw)) { 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 return; 1593 } 1594 1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1596 return; 1597 1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1599 return; 1600 1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1602 1603 if (ice_ctrlq_pending(hw, &hw->sbq)) 1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1605 1606 ice_flush(hw); 1607 } 1608 1609 /** 1610 * ice_service_task_schedule - schedule the service task to wake up 1611 * @pf: board private structure 1612 * 1613 * If not already scheduled, this puts the task into the work queue. 1614 */ 1615 void ice_service_task_schedule(struct ice_pf *pf) 1616 { 1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1619 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1620 queue_work(ice_wq, &pf->serv_task); 1621 } 1622 1623 /** 1624 * ice_service_task_complete - finish up the service task 1625 * @pf: board private structure 1626 */ 1627 static void ice_service_task_complete(struct ice_pf *pf) 1628 { 1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1630 1631 /* force memory (pf->state) to sync before next service task */ 1632 smp_mb__before_atomic(); 1633 clear_bit(ICE_SERVICE_SCHED, pf->state); 1634 } 1635 1636 /** 1637 * ice_service_task_stop - stop service task and cancel works 1638 * @pf: board private structure 1639 * 1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1641 * 1 otherwise. 1642 */ 1643 static int ice_service_task_stop(struct ice_pf *pf) 1644 { 1645 int ret; 1646 1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1648 1649 if (pf->serv_tmr.function) 1650 del_timer_sync(&pf->serv_tmr); 1651 if (pf->serv_task.func) 1652 cancel_work_sync(&pf->serv_task); 1653 1654 clear_bit(ICE_SERVICE_SCHED, pf->state); 1655 return ret; 1656 } 1657 1658 /** 1659 * ice_service_task_restart - restart service task and schedule works 1660 * @pf: board private structure 1661 * 1662 * This function is needed for suspend and resume works (e.g WoL scenario) 1663 */ 1664 static void ice_service_task_restart(struct ice_pf *pf) 1665 { 1666 clear_bit(ICE_SERVICE_DIS, pf->state); 1667 ice_service_task_schedule(pf); 1668 } 1669 1670 /** 1671 * ice_service_timer - timer callback to schedule service task 1672 * @t: pointer to timer_list 1673 */ 1674 static void ice_service_timer(struct timer_list *t) 1675 { 1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1677 1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1679 ice_service_task_schedule(pf); 1680 } 1681 1682 /** 1683 * ice_handle_mdd_event - handle malicious driver detect event 1684 * @pf: pointer to the PF structure 1685 * 1686 * Called from service task. OICR interrupt handler indicates MDD event. 1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1689 * disable the queue, the PF can be configured to reset the VF using ethtool 1690 * private flag mdd-auto-reset-vf. 1691 */ 1692 static void ice_handle_mdd_event(struct ice_pf *pf) 1693 { 1694 struct device *dev = ice_pf_to_dev(pf); 1695 struct ice_hw *hw = &pf->hw; 1696 struct ice_vf *vf; 1697 unsigned int bkt; 1698 u32 reg; 1699 1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1701 /* Since the VF MDD event logging is rate limited, check if 1702 * there are pending MDD events. 1703 */ 1704 ice_print_vfs_mdd_events(pf); 1705 return; 1706 } 1707 1708 /* find what triggered an MDD event */ 1709 reg = rd32(hw, GL_MDET_TX_PQM); 1710 if (reg & GL_MDET_TX_PQM_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1712 GL_MDET_TX_PQM_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1714 GL_MDET_TX_PQM_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1716 GL_MDET_TX_PQM_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1718 GL_MDET_TX_PQM_QNUM_S); 1719 1720 if (netif_msg_tx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1724 } 1725 1726 reg = rd32(hw, GL_MDET_TX_TCLAN); 1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_PF_NUM_S; 1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1731 GL_MDET_TX_TCLAN_VF_NUM_S; 1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1733 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1735 GL_MDET_TX_TCLAN_QNUM_S); 1736 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1739 event, queue, pf_num, vf_num); 1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1741 } 1742 1743 reg = rd32(hw, GL_MDET_RX); 1744 if (reg & GL_MDET_RX_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1746 GL_MDET_RX_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1748 GL_MDET_RX_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1750 GL_MDET_RX_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1752 GL_MDET_RX_QNUM_S); 1753 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_RX, 0xffffffff); 1758 } 1759 1760 /* check to see if this PF caused an MDD event */ 1761 reg = rd32(hw, PF_MDET_TX_PQM); 1762 if (reg & PF_MDET_TX_PQM_VALID_M) { 1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1764 if (netif_msg_tx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1766 } 1767 1768 reg = rd32(hw, PF_MDET_TX_TCLAN); 1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1773 } 1774 1775 reg = rd32(hw, PF_MDET_RX); 1776 if (reg & PF_MDET_RX_VALID_M) { 1777 wr32(hw, PF_MDET_RX, 0xFFFF); 1778 if (netif_msg_rx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1780 } 1781 1782 /* Check to see if one of the VFs caused an MDD event, and then 1783 * increment counters and set print pending 1784 */ 1785 mutex_lock(&pf->vfs.table_lock); 1786 ice_for_each_vf(pf, bkt, vf) { 1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1788 if (reg & VP_MDET_TX_PQM_VALID_M) { 1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1808 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1810 vf->mdd_tx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_tx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1814 vf->vf_id); 1815 } 1816 1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1818 if (reg & VP_MDET_RX_VALID_M) { 1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1820 vf->mdd_rx_events.count++; 1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1822 if (netif_msg_rx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1824 vf->vf_id); 1825 1826 /* Since the queue is disabled on VF Rx MDD events, the 1827 * PF can be configured to reset the VF through ethtool 1828 * private flag mdd-auto-reset-vf. 1829 */ 1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1831 /* VF MDD event counters will be cleared by 1832 * reset, so print the event prior to reset. 1833 */ 1834 ice_print_vf_rx_mdd_event(vf); 1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1836 } 1837 } 1838 } 1839 mutex_unlock(&pf->vfs.table_lock); 1840 1841 ice_print_vfs_mdd_events(pf); 1842 } 1843 1844 /** 1845 * ice_force_phys_link_state - Force the physical link state 1846 * @vsi: VSI to force the physical link state to up/down 1847 * @link_up: true/false indicates to set the physical link to up/down 1848 * 1849 * Force the physical link state by getting the current PHY capabilities from 1850 * hardware and setting the PHY config based on the determined capabilities. If 1851 * link changes a link event will be triggered because both the Enable Automatic 1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1853 * 1854 * Returns 0 on success, negative on failure 1855 */ 1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1857 { 1858 struct ice_aqc_get_phy_caps_data *pcaps; 1859 struct ice_aqc_set_phy_cfg_data *cfg; 1860 struct ice_port_info *pi; 1861 struct device *dev; 1862 int retcode; 1863 1864 if (!vsi || !vsi->port_info || !vsi->back) 1865 return -EINVAL; 1866 if (vsi->type != ICE_VSI_PF) 1867 return 0; 1868 1869 dev = ice_pf_to_dev(vsi->back); 1870 1871 pi = vsi->port_info; 1872 1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1874 if (!pcaps) 1875 return -ENOMEM; 1876 1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1878 NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 goto out; 1884 } 1885 1886 /* No change in link */ 1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1889 goto out; 1890 1891 /* Use the current user PHY configuration. The current user PHY 1892 * configuration is initialized during probe from PHY capabilities 1893 * software mode, and updated on set PHY configuration. 1894 */ 1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1896 if (!cfg) { 1897 retcode = -ENOMEM; 1898 goto out; 1899 } 1900 1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1902 if (link_up) 1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1904 else 1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1906 1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1908 if (retcode) { 1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1910 vsi->vsi_num, retcode); 1911 retcode = -EIO; 1912 } 1913 1914 kfree(cfg); 1915 out: 1916 kfree(pcaps); 1917 return retcode; 1918 } 1919 1920 /** 1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1922 * @pi: port info structure 1923 * 1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1925 */ 1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1927 { 1928 struct ice_aqc_get_phy_caps_data *pcaps; 1929 struct ice_pf *pf = pi->hw->back; 1930 int err; 1931 1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1933 if (!pcaps) 1934 return -ENOMEM; 1935 1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1937 pcaps, NULL); 1938 1939 if (err) { 1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1941 goto out; 1942 } 1943 1944 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1945 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1946 1947 out: 1948 kfree(pcaps); 1949 return err; 1950 } 1951 1952 /** 1953 * ice_init_link_dflt_override - Initialize link default override 1954 * @pi: port info structure 1955 * 1956 * Initialize link default override and PHY total port shutdown during probe 1957 */ 1958 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1959 { 1960 struct ice_link_default_override_tlv *ldo; 1961 struct ice_pf *pf = pi->hw->back; 1962 1963 ldo = &pf->link_dflt_override; 1964 if (ice_get_link_default_override(ldo, pi)) 1965 return; 1966 1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1968 return; 1969 1970 /* Enable Total Port Shutdown (override/replace link-down-on-close 1971 * ethtool private flag) for ports with Port Disable bit set. 1972 */ 1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1975 } 1976 1977 /** 1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1979 * @pi: port info structure 1980 * 1981 * If default override is enabled, initialize the user PHY cfg speed and FEC 1982 * settings using the default override mask from the NVM. 1983 * 1984 * The PHY should only be configured with the default override settings the 1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1986 * is used to indicate that the user PHY cfg default override is initialized 1987 * and the PHY has not been configured with the default override settings. The 1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1989 * configured. 1990 * 1991 * This function should be called only if the FW doesn't support default 1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1993 */ 1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_aqc_set_phy_cfg_data *cfg; 1998 struct ice_phy_info *phy = &pi->phy; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 2003 /* If link default override is enabled, use to mask NVM PHY capabilities 2004 * for speed and FEC default configuration. 2005 */ 2006 cfg = &phy->curr_user_phy_cfg; 2007 2008 if (ldo->phy_type_low || ldo->phy_type_high) { 2009 cfg->phy_type_low = pf->nvm_phy_type_lo & 2010 cpu_to_le64(ldo->phy_type_low); 2011 cfg->phy_type_high = pf->nvm_phy_type_hi & 2012 cpu_to_le64(ldo->phy_type_high); 2013 } 2014 cfg->link_fec_opt = ldo->fec_options; 2015 phy->curr_user_fec_req = ICE_FEC_AUTO; 2016 2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2018 } 2019 2020 /** 2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2022 * @pi: port info structure 2023 * 2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2025 * mode to default. The PHY defaults are from get PHY capabilities topology 2026 * with media so call when media is first available. An error is returned if 2027 * called when media is not available. The PHY initialization completed state is 2028 * set here. 2029 * 2030 * These configurations are used when setting PHY 2031 * configuration. The user PHY configuration is updated on set PHY 2032 * configuration. Returns 0 on success, negative on failure 2033 */ 2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2035 { 2036 struct ice_aqc_get_phy_caps_data *pcaps; 2037 struct ice_phy_info *phy = &pi->phy; 2038 struct ice_pf *pf = pi->hw->back; 2039 int err; 2040 2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2042 return -EIO; 2043 2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2045 if (!pcaps) 2046 return -ENOMEM; 2047 2048 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2050 pcaps, NULL); 2051 else 2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2053 pcaps, NULL); 2054 if (err) { 2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2056 goto err_out; 2057 } 2058 2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2060 2061 /* check if lenient mode is supported and enabled */ 2062 if (ice_fw_supports_link_override(pi->hw) && 2063 !(pcaps->module_compliance_enforcement & 2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2066 2067 /* if the FW supports default PHY configuration mode, then the driver 2068 * does not have to apply link override settings. If not, 2069 * initialize user PHY configuration with link override values 2070 */ 2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2073 ice_init_phy_cfg_dflt_override(pi); 2074 goto out; 2075 } 2076 } 2077 2078 /* if link default override is not enabled, set user flow control and 2079 * FEC settings based on what get_phy_caps returned 2080 */ 2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2082 pcaps->link_fec_options); 2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2084 2085 out: 2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2088 err_out: 2089 kfree(pcaps); 2090 return err; 2091 } 2092 2093 /** 2094 * ice_configure_phy - configure PHY 2095 * @vsi: VSI of PHY 2096 * 2097 * Set the PHY configuration. If the current PHY configuration is the same as 2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2099 * configure the based get PHY capabilities for topology with media. 2100 */ 2101 static int ice_configure_phy(struct ice_vsi *vsi) 2102 { 2103 struct device *dev = ice_pf_to_dev(vsi->back); 2104 struct ice_port_info *pi = vsi->port_info; 2105 struct ice_aqc_get_phy_caps_data *pcaps; 2106 struct ice_aqc_set_phy_cfg_data *cfg; 2107 struct ice_phy_info *phy = &pi->phy; 2108 struct ice_pf *pf = vsi->back; 2109 int err; 2110 2111 /* Ensure we have media as we cannot configure a medialess port */ 2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2113 return -EPERM; 2114 2115 ice_print_topo_conflict(vsi); 2116 2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2119 return -EPERM; 2120 2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2122 return ice_force_phys_link_state(vsi, true); 2123 2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2125 if (!pcaps) 2126 return -ENOMEM; 2127 2128 /* Get current PHY config */ 2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2130 NULL); 2131 if (err) { 2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2133 vsi->vsi_num, err); 2134 goto done; 2135 } 2136 2137 /* If PHY enable link is configured and configuration has not changed, 2138 * there's nothing to do 2139 */ 2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2142 goto done; 2143 2144 /* Use PHY topology as baseline for configuration */ 2145 memset(pcaps, 0, sizeof(*pcaps)); 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2154 vsi->vsi_num, err); 2155 goto done; 2156 } 2157 2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2159 if (!cfg) { 2160 err = -ENOMEM; 2161 goto done; 2162 } 2163 2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2165 2166 /* Speed - If default override pending, use curr_user_phy_cfg set in 2167 * ice_init_phy_user_cfg_ldo. 2168 */ 2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2170 vsi->back->state)) { 2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2173 } else { 2174 u64 phy_low = 0, phy_high = 0; 2175 2176 ice_update_phy_type(&phy_low, &phy_high, 2177 pi->phy.curr_user_speed_req); 2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2179 cfg->phy_type_high = pcaps->phy_type_high & 2180 cpu_to_le64(phy_high); 2181 } 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2185 cfg->phy_type_low = pcaps->phy_type_low; 2186 cfg->phy_type_high = pcaps->phy_type_high; 2187 } 2188 2189 /* FEC */ 2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2191 2192 /* Can't provide what was requested; use PHY capabilities */ 2193 if (cfg->link_fec_opt != 2194 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2196 cfg->link_fec_opt = pcaps->link_fec_options; 2197 } 2198 2199 /* Flow Control - always supported; no need to check against 2200 * capabilities 2201 */ 2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2203 2204 /* Enable link and link update */ 2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2206 2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2208 if (err) 2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2210 vsi->vsi_num, err); 2211 2212 kfree(cfg); 2213 done: 2214 kfree(pcaps); 2215 return err; 2216 } 2217 2218 /** 2219 * ice_check_media_subtask - Check for media 2220 * @pf: pointer to PF struct 2221 * 2222 * If media is available, then initialize PHY user configuration if it is not 2223 * been, and configure the PHY if the interface is up. 2224 */ 2225 static void ice_check_media_subtask(struct ice_pf *pf) 2226 { 2227 struct ice_port_info *pi; 2228 struct ice_vsi *vsi; 2229 int err; 2230 2231 /* No need to check for media if it's already present */ 2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2233 return; 2234 2235 vsi = ice_get_main_vsi(pf); 2236 if (!vsi) 2237 return; 2238 2239 /* Refresh link info and check if media is present */ 2240 pi = vsi->port_info; 2241 err = ice_update_link_info(pi); 2242 if (err) 2243 return; 2244 2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2246 2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2249 ice_init_phy_user_cfg(pi); 2250 2251 /* PHY settings are reset on media insertion, reconfigure 2252 * PHY to preserve settings. 2253 */ 2254 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2256 return; 2257 2258 err = ice_configure_phy(vsi); 2259 if (!err) 2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2261 2262 /* A Link Status Event will be generated; the event handler 2263 * will complete bringing the interface up 2264 */ 2265 } 2266 } 2267 2268 /** 2269 * ice_service_task - manage and run subtasks 2270 * @work: pointer to work_struct contained by the PF struct 2271 */ 2272 static void ice_service_task(struct work_struct *work) 2273 { 2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2275 unsigned long start_time = jiffies; 2276 2277 /* subtasks */ 2278 2279 /* process reset requests first */ 2280 ice_reset_subtask(pf); 2281 2282 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2283 if (ice_is_reset_in_progress(pf->state) || 2284 test_bit(ICE_SUSPENDED, pf->state) || 2285 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2286 ice_service_task_complete(pf); 2287 return; 2288 } 2289 2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2291 struct iidc_event *event; 2292 2293 event = kzalloc(sizeof(*event), GFP_KERNEL); 2294 if (event) { 2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2296 /* report the entire OICR value to AUX driver */ 2297 swap(event->reg, pf->oicr_err_reg); 2298 ice_send_event_to_aux(pf, event); 2299 kfree(event); 2300 } 2301 } 2302 2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2304 /* Plug aux device per request */ 2305 ice_plug_aux_dev(pf); 2306 2307 /* Mark plugging as done but check whether unplug was 2308 * requested during ice_plug_aux_dev() call 2309 * (e.g. from ice_clear_rdma_cap()) and if so then 2310 * plug aux device. 2311 */ 2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2313 ice_unplug_aux_dev(pf); 2314 } 2315 2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2317 struct iidc_event *event; 2318 2319 event = kzalloc(sizeof(*event), GFP_KERNEL); 2320 if (event) { 2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2322 ice_send_event_to_aux(pf, event); 2323 kfree(event); 2324 } 2325 } 2326 2327 ice_clean_adminq_subtask(pf); 2328 ice_check_media_subtask(pf); 2329 ice_check_for_hang_subtask(pf); 2330 ice_sync_fltr_subtask(pf); 2331 ice_handle_mdd_event(pf); 2332 ice_watchdog_subtask(pf); 2333 2334 if (ice_is_safe_mode(pf)) { 2335 ice_service_task_complete(pf); 2336 return; 2337 } 2338 2339 ice_process_vflr_event(pf); 2340 ice_clean_mailboxq_subtask(pf); 2341 ice_clean_sbq_subtask(pf); 2342 ice_sync_arfs_fltrs(pf); 2343 ice_flush_fdir_ctx(pf); 2344 2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2346 ice_service_task_complete(pf); 2347 2348 /* If the tasks have taken longer than one service timer period 2349 * or there is more work to be done, reset the service timer to 2350 * schedule the service task now. 2351 */ 2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2359 mod_timer(&pf->serv_tmr, jiffies); 2360 } 2361 2362 /** 2363 * ice_set_ctrlq_len - helper function to set controlq length 2364 * @hw: pointer to the HW instance 2365 */ 2366 static void ice_set_ctrlq_len(struct ice_hw *hw) 2367 { 2368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2380 } 2381 2382 /** 2383 * ice_schedule_reset - schedule a reset 2384 * @pf: board private structure 2385 * @reset: reset being requested 2386 */ 2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2388 { 2389 struct device *dev = ice_pf_to_dev(pf); 2390 2391 /* bail out if earlier reset has failed */ 2392 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2393 dev_dbg(dev, "earlier reset has failed\n"); 2394 return -EIO; 2395 } 2396 /* bail if reset/recovery already in progress */ 2397 if (ice_is_reset_in_progress(pf->state)) { 2398 dev_dbg(dev, "Reset already in progress\n"); 2399 return -EBUSY; 2400 } 2401 2402 ice_unplug_aux_dev(pf); 2403 2404 switch (reset) { 2405 case ICE_RESET_PFR: 2406 set_bit(ICE_PFR_REQ, pf->state); 2407 break; 2408 case ICE_RESET_CORER: 2409 set_bit(ICE_CORER_REQ, pf->state); 2410 break; 2411 case ICE_RESET_GLOBR: 2412 set_bit(ICE_GLOBR_REQ, pf->state); 2413 break; 2414 default: 2415 return -EINVAL; 2416 } 2417 2418 ice_service_task_schedule(pf); 2419 return 0; 2420 } 2421 2422 /** 2423 * ice_irq_affinity_notify - Callback for affinity changes 2424 * @notify: context as to what irq was changed 2425 * @mask: the new affinity mask 2426 * 2427 * This is a callback function used by the irq_set_affinity_notifier function 2428 * so that we may register to receive changes to the irq affinity masks. 2429 */ 2430 static void 2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2432 const cpumask_t *mask) 2433 { 2434 struct ice_q_vector *q_vector = 2435 container_of(notify, struct ice_q_vector, affinity_notify); 2436 2437 cpumask_copy(&q_vector->affinity_mask, mask); 2438 } 2439 2440 /** 2441 * ice_irq_affinity_release - Callback for affinity notifier release 2442 * @ref: internal core kernel usage 2443 * 2444 * This is a callback function used by the irq_set_affinity_notifier function 2445 * to inform the current notification subscriber that they will no longer 2446 * receive notifications. 2447 */ 2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2449 2450 /** 2451 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2452 * @vsi: the VSI being configured 2453 */ 2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2455 { 2456 struct ice_hw *hw = &vsi->back->hw; 2457 int i; 2458 2459 ice_for_each_q_vector(vsi, i) 2460 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2461 2462 ice_flush(hw); 2463 return 0; 2464 } 2465 2466 /** 2467 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2468 * @vsi: the VSI being configured 2469 * @basename: name for the vector 2470 */ 2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2472 { 2473 int q_vectors = vsi->num_q_vectors; 2474 struct ice_pf *pf = vsi->back; 2475 int base = vsi->base_vector; 2476 struct device *dev; 2477 int rx_int_idx = 0; 2478 int tx_int_idx = 0; 2479 int vector, err; 2480 int irq_num; 2481 2482 dev = ice_pf_to_dev(pf); 2483 for (vector = 0; vector < q_vectors; vector++) { 2484 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2485 2486 irq_num = pf->msix_entries[base + vector].vector; 2487 2488 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2489 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2490 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2491 tx_int_idx++; 2492 } else if (q_vector->rx.rx_ring) { 2493 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2494 "%s-%s-%d", basename, "rx", rx_int_idx++); 2495 } else if (q_vector->tx.tx_ring) { 2496 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2497 "%s-%s-%d", basename, "tx", tx_int_idx++); 2498 } else { 2499 /* skip this unused q_vector */ 2500 continue; 2501 } 2502 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2503 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2504 IRQF_SHARED, q_vector->name, 2505 q_vector); 2506 else 2507 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2508 0, q_vector->name, q_vector); 2509 if (err) { 2510 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2511 err); 2512 goto free_q_irqs; 2513 } 2514 2515 /* register for affinity change notifications */ 2516 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2517 struct irq_affinity_notify *affinity_notify; 2518 2519 affinity_notify = &q_vector->affinity_notify; 2520 affinity_notify->notify = ice_irq_affinity_notify; 2521 affinity_notify->release = ice_irq_affinity_release; 2522 irq_set_affinity_notifier(irq_num, affinity_notify); 2523 } 2524 2525 /* assign the mask for this irq */ 2526 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2527 } 2528 2529 err = ice_set_cpu_rx_rmap(vsi); 2530 if (err) { 2531 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2532 vsi->vsi_num, ERR_PTR(err)); 2533 goto free_q_irqs; 2534 } 2535 2536 vsi->irqs_ready = true; 2537 return 0; 2538 2539 free_q_irqs: 2540 while (vector) { 2541 vector--; 2542 irq_num = pf->msix_entries[base + vector].vector; 2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2544 irq_set_affinity_notifier(irq_num, NULL); 2545 irq_set_affinity_hint(irq_num, NULL); 2546 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2547 } 2548 return err; 2549 } 2550 2551 /** 2552 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2553 * @vsi: VSI to setup Tx rings used by XDP 2554 * 2555 * Return 0 on success and negative value on error 2556 */ 2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2558 { 2559 struct device *dev = ice_pf_to_dev(vsi->back); 2560 struct ice_tx_desc *tx_desc; 2561 int i, j; 2562 2563 ice_for_each_xdp_txq(vsi, i) { 2564 u16 xdp_q_idx = vsi->alloc_txq + i; 2565 struct ice_tx_ring *xdp_ring; 2566 2567 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2568 2569 if (!xdp_ring) 2570 goto free_xdp_rings; 2571 2572 xdp_ring->q_index = xdp_q_idx; 2573 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2574 xdp_ring->vsi = vsi; 2575 xdp_ring->netdev = NULL; 2576 xdp_ring->dev = dev; 2577 xdp_ring->count = vsi->num_tx_desc; 2578 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2579 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2580 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2581 if (ice_setup_tx_ring(xdp_ring)) 2582 goto free_xdp_rings; 2583 ice_set_ring_xdp(xdp_ring); 2584 spin_lock_init(&xdp_ring->tx_lock); 2585 for (j = 0; j < xdp_ring->count; j++) { 2586 tx_desc = ICE_TX_DESC(xdp_ring, j); 2587 tx_desc->cmd_type_offset_bsz = 0; 2588 } 2589 } 2590 2591 return 0; 2592 2593 free_xdp_rings: 2594 for (; i >= 0; i--) 2595 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2596 ice_free_tx_ring(vsi->xdp_rings[i]); 2597 return -ENOMEM; 2598 } 2599 2600 /** 2601 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2602 * @vsi: VSI to set the bpf prog on 2603 * @prog: the bpf prog pointer 2604 */ 2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2606 { 2607 struct bpf_prog *old_prog; 2608 int i; 2609 2610 old_prog = xchg(&vsi->xdp_prog, prog); 2611 if (old_prog) 2612 bpf_prog_put(old_prog); 2613 2614 ice_for_each_rxq(vsi, i) 2615 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2616 } 2617 2618 /** 2619 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2620 * @vsi: VSI to bring up Tx rings used by XDP 2621 * @prog: bpf program that will be assigned to VSI 2622 * 2623 * Return 0 on success and negative value on error 2624 */ 2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2626 { 2627 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2628 int xdp_rings_rem = vsi->num_xdp_txq; 2629 struct ice_pf *pf = vsi->back; 2630 struct ice_qs_cfg xdp_qs_cfg = { 2631 .qs_mutex = &pf->avail_q_mutex, 2632 .pf_map = pf->avail_txqs, 2633 .pf_map_size = pf->max_pf_txqs, 2634 .q_count = vsi->num_xdp_txq, 2635 .scatter_count = ICE_MAX_SCATTER_TXQS, 2636 .vsi_map = vsi->txq_map, 2637 .vsi_map_offset = vsi->alloc_txq, 2638 .mapping_mode = ICE_VSI_MAP_CONTIG 2639 }; 2640 struct device *dev; 2641 int i, v_idx; 2642 int status; 2643 2644 dev = ice_pf_to_dev(pf); 2645 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2646 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2647 if (!vsi->xdp_rings) 2648 return -ENOMEM; 2649 2650 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2651 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2652 goto err_map_xdp; 2653 2654 if (static_key_enabled(&ice_xdp_locking_key)) 2655 netdev_warn(vsi->netdev, 2656 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2657 2658 if (ice_xdp_alloc_setup_rings(vsi)) 2659 goto clear_xdp_rings; 2660 2661 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2662 ice_for_each_q_vector(vsi, v_idx) { 2663 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2664 int xdp_rings_per_v, q_id, q_base; 2665 2666 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2667 vsi->num_q_vectors - v_idx); 2668 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2669 2670 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2671 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2672 2673 xdp_ring->q_vector = q_vector; 2674 xdp_ring->next = q_vector->tx.tx_ring; 2675 q_vector->tx.tx_ring = xdp_ring; 2676 } 2677 xdp_rings_rem -= xdp_rings_per_v; 2678 } 2679 2680 ice_for_each_rxq(vsi, i) { 2681 if (static_key_enabled(&ice_xdp_locking_key)) { 2682 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2683 } else { 2684 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2685 struct ice_tx_ring *ring; 2686 2687 ice_for_each_tx_ring(ring, q_vector->tx) { 2688 if (ice_ring_is_xdp(ring)) { 2689 vsi->rx_rings[i]->xdp_ring = ring; 2690 break; 2691 } 2692 } 2693 } 2694 ice_tx_xsk_pool(vsi, i); 2695 } 2696 2697 /* omit the scheduler update if in reset path; XDP queues will be 2698 * taken into account at the end of ice_vsi_rebuild, where 2699 * ice_cfg_vsi_lan is being called 2700 */ 2701 if (ice_is_reset_in_progress(pf->state)) 2702 return 0; 2703 2704 /* tell the Tx scheduler that right now we have 2705 * additional queues 2706 */ 2707 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2708 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2709 2710 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2711 max_txqs); 2712 if (status) { 2713 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2714 status); 2715 goto clear_xdp_rings; 2716 } 2717 2718 /* assign the prog only when it's not already present on VSI; 2719 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2720 * VSI rebuild that happens under ethtool -L can expose us to 2721 * the bpf_prog refcount issues as we would be swapping same 2722 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2723 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2724 * this is not harmful as dev_xdp_install bumps the refcount 2725 * before calling the op exposed by the driver; 2726 */ 2727 if (!ice_is_xdp_ena_vsi(vsi)) 2728 ice_vsi_assign_bpf_prog(vsi, prog); 2729 2730 return 0; 2731 clear_xdp_rings: 2732 ice_for_each_xdp_txq(vsi, i) 2733 if (vsi->xdp_rings[i]) { 2734 kfree_rcu(vsi->xdp_rings[i], rcu); 2735 vsi->xdp_rings[i] = NULL; 2736 } 2737 2738 err_map_xdp: 2739 mutex_lock(&pf->avail_q_mutex); 2740 ice_for_each_xdp_txq(vsi, i) { 2741 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2742 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2743 } 2744 mutex_unlock(&pf->avail_q_mutex); 2745 2746 devm_kfree(dev, vsi->xdp_rings); 2747 return -ENOMEM; 2748 } 2749 2750 /** 2751 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2752 * @vsi: VSI to remove XDP rings 2753 * 2754 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2755 * resources 2756 */ 2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2758 { 2759 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2760 struct ice_pf *pf = vsi->back; 2761 int i, v_idx; 2762 2763 /* q_vectors are freed in reset path so there's no point in detaching 2764 * rings; in case of rebuild being triggered not from reset bits 2765 * in pf->state won't be set, so additionally check first q_vector 2766 * against NULL 2767 */ 2768 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2769 goto free_qmap; 2770 2771 ice_for_each_q_vector(vsi, v_idx) { 2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2773 struct ice_tx_ring *ring; 2774 2775 ice_for_each_tx_ring(ring, q_vector->tx) 2776 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2777 break; 2778 2779 /* restore the value of last node prior to XDP setup */ 2780 q_vector->tx.tx_ring = ring; 2781 } 2782 2783 free_qmap: 2784 mutex_lock(&pf->avail_q_mutex); 2785 ice_for_each_xdp_txq(vsi, i) { 2786 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2787 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2788 } 2789 mutex_unlock(&pf->avail_q_mutex); 2790 2791 ice_for_each_xdp_txq(vsi, i) 2792 if (vsi->xdp_rings[i]) { 2793 if (vsi->xdp_rings[i]->desc) { 2794 synchronize_rcu(); 2795 ice_free_tx_ring(vsi->xdp_rings[i]); 2796 } 2797 kfree_rcu(vsi->xdp_rings[i], rcu); 2798 vsi->xdp_rings[i] = NULL; 2799 } 2800 2801 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2802 vsi->xdp_rings = NULL; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 static_branch_dec(&ice_xdp_locking_key); 2806 2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2808 return 0; 2809 2810 ice_vsi_assign_bpf_prog(vsi, NULL); 2811 2812 /* notify Tx scheduler that we destroyed XDP queues and bring 2813 * back the old number of child nodes 2814 */ 2815 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2816 max_txqs[i] = vsi->num_txq; 2817 2818 /* change number of XDP Tx queues to 0 */ 2819 vsi->num_xdp_txq = 0; 2820 2821 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2822 max_txqs); 2823 } 2824 2825 /** 2826 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2827 * @vsi: VSI to schedule napi on 2828 */ 2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2830 { 2831 int i; 2832 2833 ice_for_each_rxq(vsi, i) { 2834 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2835 2836 if (rx_ring->xsk_pool) 2837 napi_schedule(&rx_ring->q_vector->napi); 2838 } 2839 } 2840 2841 /** 2842 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2843 * @vsi: VSI to determine the count of XDP Tx qs 2844 * 2845 * returns 0 if Tx qs count is higher than at least half of CPU count, 2846 * -ENOMEM otherwise 2847 */ 2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2849 { 2850 u16 avail = ice_get_avail_txq_count(vsi->back); 2851 u16 cpus = num_possible_cpus(); 2852 2853 if (avail < cpus / 2) 2854 return -ENOMEM; 2855 2856 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2857 2858 if (vsi->num_xdp_txq < cpus) 2859 static_branch_inc(&ice_xdp_locking_key); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2866 * @vsi: VSI to setup XDP for 2867 * @prog: XDP program 2868 * @extack: netlink extended ack 2869 */ 2870 static int 2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2872 struct netlink_ext_ack *extack) 2873 { 2874 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2875 bool if_running = netif_running(vsi->netdev); 2876 int ret = 0, xdp_ring_err = 0; 2877 2878 if (frame_size > vsi->rx_buf_len) { 2879 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2880 return -EOPNOTSUPP; 2881 } 2882 2883 /* need to stop netdev while setting up the program for Rx rings */ 2884 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2885 ret = ice_down(vsi); 2886 if (ret) { 2887 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2888 return ret; 2889 } 2890 } 2891 2892 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2893 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2894 if (xdp_ring_err) { 2895 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2896 } else { 2897 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2898 if (xdp_ring_err) 2899 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2900 } 2901 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2902 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2903 if (xdp_ring_err) 2904 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2905 } else { 2906 /* safe to call even when prog == vsi->xdp_prog as 2907 * dev_xdp_install in net/core/dev.c incremented prog's 2908 * refcount so corresponding bpf_prog_put won't cause 2909 * underflow 2910 */ 2911 ice_vsi_assign_bpf_prog(vsi, prog); 2912 } 2913 2914 if (if_running) 2915 ret = ice_up(vsi); 2916 2917 if (!ret && prog) 2918 ice_vsi_rx_napi_schedule(vsi); 2919 2920 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2921 } 2922 2923 /** 2924 * ice_xdp_safe_mode - XDP handler for safe mode 2925 * @dev: netdevice 2926 * @xdp: XDP command 2927 */ 2928 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2929 struct netdev_bpf *xdp) 2930 { 2931 NL_SET_ERR_MSG_MOD(xdp->extack, 2932 "Please provide working DDP firmware package in order to use XDP\n" 2933 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2934 return -EOPNOTSUPP; 2935 } 2936 2937 /** 2938 * ice_xdp - implements XDP handler 2939 * @dev: netdevice 2940 * @xdp: XDP command 2941 */ 2942 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2943 { 2944 struct ice_netdev_priv *np = netdev_priv(dev); 2945 struct ice_vsi *vsi = np->vsi; 2946 2947 if (vsi->type != ICE_VSI_PF) { 2948 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2949 return -EINVAL; 2950 } 2951 2952 switch (xdp->command) { 2953 case XDP_SETUP_PROG: 2954 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2955 case XDP_SETUP_XSK_POOL: 2956 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2957 xdp->xsk.queue_id); 2958 default: 2959 return -EINVAL; 2960 } 2961 } 2962 2963 /** 2964 * ice_ena_misc_vector - enable the non-queue interrupts 2965 * @pf: board private structure 2966 */ 2967 static void ice_ena_misc_vector(struct ice_pf *pf) 2968 { 2969 struct ice_hw *hw = &pf->hw; 2970 u32 val; 2971 2972 /* Disable anti-spoof detection interrupt to prevent spurious event 2973 * interrupts during a function reset. Anti-spoof functionally is 2974 * still supported. 2975 */ 2976 val = rd32(hw, GL_MDCK_TX_TDPU); 2977 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2978 wr32(hw, GL_MDCK_TX_TDPU, val); 2979 2980 /* clear things first */ 2981 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2982 rd32(hw, PFINT_OICR); /* read to clear */ 2983 2984 val = (PFINT_OICR_ECC_ERR_M | 2985 PFINT_OICR_MAL_DETECT_M | 2986 PFINT_OICR_GRST_M | 2987 PFINT_OICR_PCI_EXCEPTION_M | 2988 PFINT_OICR_VFLR_M | 2989 PFINT_OICR_HMC_ERR_M | 2990 PFINT_OICR_PE_PUSH_M | 2991 PFINT_OICR_PE_CRITERR_M); 2992 2993 wr32(hw, PFINT_OICR_ENA, val); 2994 2995 /* SW_ITR_IDX = 0, but don't change INTENA */ 2996 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2997 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2998 } 2999 3000 /** 3001 * ice_misc_intr - misc interrupt handler 3002 * @irq: interrupt number 3003 * @data: pointer to a q_vector 3004 */ 3005 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3006 { 3007 struct ice_pf *pf = (struct ice_pf *)data; 3008 struct ice_hw *hw = &pf->hw; 3009 irqreturn_t ret = IRQ_NONE; 3010 struct device *dev; 3011 u32 oicr, ena_mask; 3012 3013 dev = ice_pf_to_dev(pf); 3014 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3015 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3016 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3017 3018 oicr = rd32(hw, PFINT_OICR); 3019 ena_mask = rd32(hw, PFINT_OICR_ENA); 3020 3021 if (oicr & PFINT_OICR_SWINT_M) { 3022 ena_mask &= ~PFINT_OICR_SWINT_M; 3023 pf->sw_int_count++; 3024 } 3025 3026 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3027 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3028 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3029 } 3030 if (oicr & PFINT_OICR_VFLR_M) { 3031 /* disable any further VFLR event notifications */ 3032 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3033 u32 reg = rd32(hw, PFINT_OICR_ENA); 3034 3035 reg &= ~PFINT_OICR_VFLR_M; 3036 wr32(hw, PFINT_OICR_ENA, reg); 3037 } else { 3038 ena_mask &= ~PFINT_OICR_VFLR_M; 3039 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3040 } 3041 } 3042 3043 if (oicr & PFINT_OICR_GRST_M) { 3044 u32 reset; 3045 3046 /* we have a reset warning */ 3047 ena_mask &= ~PFINT_OICR_GRST_M; 3048 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3049 GLGEN_RSTAT_RESET_TYPE_S; 3050 3051 if (reset == ICE_RESET_CORER) 3052 pf->corer_count++; 3053 else if (reset == ICE_RESET_GLOBR) 3054 pf->globr_count++; 3055 else if (reset == ICE_RESET_EMPR) 3056 pf->empr_count++; 3057 else 3058 dev_dbg(dev, "Invalid reset type %d\n", reset); 3059 3060 /* If a reset cycle isn't already in progress, we set a bit in 3061 * pf->state so that the service task can start a reset/rebuild. 3062 */ 3063 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3064 if (reset == ICE_RESET_CORER) 3065 set_bit(ICE_CORER_RECV, pf->state); 3066 else if (reset == ICE_RESET_GLOBR) 3067 set_bit(ICE_GLOBR_RECV, pf->state); 3068 else 3069 set_bit(ICE_EMPR_RECV, pf->state); 3070 3071 /* There are couple of different bits at play here. 3072 * hw->reset_ongoing indicates whether the hardware is 3073 * in reset. This is set to true when a reset interrupt 3074 * is received and set back to false after the driver 3075 * has determined that the hardware is out of reset. 3076 * 3077 * ICE_RESET_OICR_RECV in pf->state indicates 3078 * that a post reset rebuild is required before the 3079 * driver is operational again. This is set above. 3080 * 3081 * As this is the start of the reset/rebuild cycle, set 3082 * both to indicate that. 3083 */ 3084 hw->reset_ongoing = true; 3085 } 3086 } 3087 3088 if (oicr & PFINT_OICR_TSYN_TX_M) { 3089 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3090 ice_ptp_process_ts(pf); 3091 } 3092 3093 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3094 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3095 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3096 3097 /* Save EVENTs from GTSYN register */ 3098 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3099 GLTSYN_STAT_EVENT1_M | 3100 GLTSYN_STAT_EVENT2_M); 3101 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3102 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3103 } 3104 3105 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3106 if (oicr & ICE_AUX_CRIT_ERR) { 3107 pf->oicr_err_reg |= oicr; 3108 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3109 ena_mask &= ~ICE_AUX_CRIT_ERR; 3110 } 3111 3112 /* Report any remaining unexpected interrupts */ 3113 oicr &= ena_mask; 3114 if (oicr) { 3115 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3116 /* If a critical error is pending there is no choice but to 3117 * reset the device. 3118 */ 3119 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3120 PFINT_OICR_ECC_ERR_M)) { 3121 set_bit(ICE_PFR_REQ, pf->state); 3122 ice_service_task_schedule(pf); 3123 } 3124 } 3125 ret = IRQ_HANDLED; 3126 3127 ice_service_task_schedule(pf); 3128 ice_irq_dynamic_ena(hw, NULL, NULL); 3129 3130 return ret; 3131 } 3132 3133 /** 3134 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3135 * @hw: pointer to HW structure 3136 */ 3137 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3138 { 3139 /* disable Admin queue Interrupt causes */ 3140 wr32(hw, PFINT_FW_CTL, 3141 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3142 3143 /* disable Mailbox queue Interrupt causes */ 3144 wr32(hw, PFINT_MBX_CTL, 3145 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3146 3147 wr32(hw, PFINT_SB_CTL, 3148 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3149 3150 /* disable Control queue Interrupt causes */ 3151 wr32(hw, PFINT_OICR_CTL, 3152 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3153 3154 ice_flush(hw); 3155 } 3156 3157 /** 3158 * ice_free_irq_msix_misc - Unroll misc vector setup 3159 * @pf: board private structure 3160 */ 3161 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3162 { 3163 struct ice_hw *hw = &pf->hw; 3164 3165 ice_dis_ctrlq_interrupts(hw); 3166 3167 /* disable OICR interrupt */ 3168 wr32(hw, PFINT_OICR_ENA, 0); 3169 ice_flush(hw); 3170 3171 if (pf->msix_entries) { 3172 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3173 devm_free_irq(ice_pf_to_dev(pf), 3174 pf->msix_entries[pf->oicr_idx].vector, pf); 3175 } 3176 3177 pf->num_avail_sw_msix += 1; 3178 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3179 } 3180 3181 /** 3182 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3183 * @hw: pointer to HW structure 3184 * @reg_idx: HW vector index to associate the control queue interrupts with 3185 */ 3186 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3187 { 3188 u32 val; 3189 3190 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3191 PFINT_OICR_CTL_CAUSE_ENA_M); 3192 wr32(hw, PFINT_OICR_CTL, val); 3193 3194 /* enable Admin queue Interrupt causes */ 3195 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3196 PFINT_FW_CTL_CAUSE_ENA_M); 3197 wr32(hw, PFINT_FW_CTL, val); 3198 3199 /* enable Mailbox queue Interrupt causes */ 3200 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3201 PFINT_MBX_CTL_CAUSE_ENA_M); 3202 wr32(hw, PFINT_MBX_CTL, val); 3203 3204 /* This enables Sideband queue Interrupt causes */ 3205 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3206 PFINT_SB_CTL_CAUSE_ENA_M); 3207 wr32(hw, PFINT_SB_CTL, val); 3208 3209 ice_flush(hw); 3210 } 3211 3212 /** 3213 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3214 * @pf: board private structure 3215 * 3216 * This sets up the handler for MSIX 0, which is used to manage the 3217 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3218 * when in MSI or Legacy interrupt mode. 3219 */ 3220 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3221 { 3222 struct device *dev = ice_pf_to_dev(pf); 3223 struct ice_hw *hw = &pf->hw; 3224 int oicr_idx, err = 0; 3225 3226 if (!pf->int_name[0]) 3227 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3228 dev_driver_string(dev), dev_name(dev)); 3229 3230 /* Do not request IRQ but do enable OICR interrupt since settings are 3231 * lost during reset. Note that this function is called only during 3232 * rebuild path and not while reset is in progress. 3233 */ 3234 if (ice_is_reset_in_progress(pf->state)) 3235 goto skip_req_irq; 3236 3237 /* reserve one vector in irq_tracker for misc interrupts */ 3238 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3239 if (oicr_idx < 0) 3240 return oicr_idx; 3241 3242 pf->num_avail_sw_msix -= 1; 3243 pf->oicr_idx = (u16)oicr_idx; 3244 3245 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3246 ice_misc_intr, 0, pf->int_name, pf); 3247 if (err) { 3248 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3249 pf->int_name, err); 3250 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3251 pf->num_avail_sw_msix += 1; 3252 return err; 3253 } 3254 3255 skip_req_irq: 3256 ice_ena_misc_vector(pf); 3257 3258 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3259 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3260 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3261 3262 ice_flush(hw); 3263 ice_irq_dynamic_ena(hw, NULL, NULL); 3264 3265 return 0; 3266 } 3267 3268 /** 3269 * ice_napi_add - register NAPI handler for the VSI 3270 * @vsi: VSI for which NAPI handler is to be registered 3271 * 3272 * This function is only called in the driver's load path. Registering the NAPI 3273 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3274 * reset/rebuild, etc.) 3275 */ 3276 static void ice_napi_add(struct ice_vsi *vsi) 3277 { 3278 int v_idx; 3279 3280 if (!vsi->netdev) 3281 return; 3282 3283 ice_for_each_q_vector(vsi, v_idx) 3284 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3285 ice_napi_poll, NAPI_POLL_WEIGHT); 3286 } 3287 3288 /** 3289 * ice_set_ops - set netdev and ethtools ops for the given netdev 3290 * @netdev: netdev instance 3291 */ 3292 static void ice_set_ops(struct net_device *netdev) 3293 { 3294 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3295 3296 if (ice_is_safe_mode(pf)) { 3297 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3298 ice_set_ethtool_safe_mode_ops(netdev); 3299 return; 3300 } 3301 3302 netdev->netdev_ops = &ice_netdev_ops; 3303 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3304 ice_set_ethtool_ops(netdev); 3305 } 3306 3307 /** 3308 * ice_set_netdev_features - set features for the given netdev 3309 * @netdev: netdev instance 3310 */ 3311 static void ice_set_netdev_features(struct net_device *netdev) 3312 { 3313 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3314 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3315 netdev_features_t csumo_features; 3316 netdev_features_t vlano_features; 3317 netdev_features_t dflt_features; 3318 netdev_features_t tso_features; 3319 3320 if (ice_is_safe_mode(pf)) { 3321 /* safe mode */ 3322 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3323 netdev->hw_features = netdev->features; 3324 return; 3325 } 3326 3327 dflt_features = NETIF_F_SG | 3328 NETIF_F_HIGHDMA | 3329 NETIF_F_NTUPLE | 3330 NETIF_F_RXHASH; 3331 3332 csumo_features = NETIF_F_RXCSUM | 3333 NETIF_F_IP_CSUM | 3334 NETIF_F_SCTP_CRC | 3335 NETIF_F_IPV6_CSUM; 3336 3337 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3338 NETIF_F_HW_VLAN_CTAG_TX | 3339 NETIF_F_HW_VLAN_CTAG_RX; 3340 3341 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3342 if (is_dvm_ena) 3343 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3344 3345 tso_features = NETIF_F_TSO | 3346 NETIF_F_TSO_ECN | 3347 NETIF_F_TSO6 | 3348 NETIF_F_GSO_GRE | 3349 NETIF_F_GSO_UDP_TUNNEL | 3350 NETIF_F_GSO_GRE_CSUM | 3351 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3352 NETIF_F_GSO_PARTIAL | 3353 NETIF_F_GSO_IPXIP4 | 3354 NETIF_F_GSO_IPXIP6 | 3355 NETIF_F_GSO_UDP_L4; 3356 3357 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3358 NETIF_F_GSO_GRE_CSUM; 3359 /* set features that user can change */ 3360 netdev->hw_features = dflt_features | csumo_features | 3361 vlano_features | tso_features; 3362 3363 /* add support for HW_CSUM on packets with MPLS header */ 3364 netdev->mpls_features = NETIF_F_HW_CSUM | 3365 NETIF_F_TSO | 3366 NETIF_F_TSO6; 3367 3368 /* enable features */ 3369 netdev->features |= netdev->hw_features; 3370 3371 netdev->hw_features |= NETIF_F_HW_TC; 3372 netdev->hw_features |= NETIF_F_LOOPBACK; 3373 3374 /* encap and VLAN devices inherit default, csumo and tso features */ 3375 netdev->hw_enc_features |= dflt_features | csumo_features | 3376 tso_features; 3377 netdev->vlan_features |= dflt_features | csumo_features | 3378 tso_features; 3379 3380 /* advertise support but don't enable by default since only one type of 3381 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3382 * type turns on the other has to be turned off. This is enforced by the 3383 * ice_fix_features() ndo callback. 3384 */ 3385 if (is_dvm_ena) 3386 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3387 NETIF_F_HW_VLAN_STAG_TX; 3388 3389 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3390 * be changed at runtime 3391 */ 3392 netdev->hw_features |= NETIF_F_RXFCS; 3393 } 3394 3395 /** 3396 * ice_cfg_netdev - Allocate, configure and register a netdev 3397 * @vsi: the VSI associated with the new netdev 3398 * 3399 * Returns 0 on success, negative value on failure 3400 */ 3401 static int ice_cfg_netdev(struct ice_vsi *vsi) 3402 { 3403 struct ice_netdev_priv *np; 3404 struct net_device *netdev; 3405 u8 mac_addr[ETH_ALEN]; 3406 3407 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3408 vsi->alloc_rxq); 3409 if (!netdev) 3410 return -ENOMEM; 3411 3412 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3413 vsi->netdev = netdev; 3414 np = netdev_priv(netdev); 3415 np->vsi = vsi; 3416 3417 ice_set_netdev_features(netdev); 3418 3419 ice_set_ops(netdev); 3420 3421 if (vsi->type == ICE_VSI_PF) { 3422 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3423 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3424 eth_hw_addr_set(netdev, mac_addr); 3425 ether_addr_copy(netdev->perm_addr, mac_addr); 3426 } 3427 3428 netdev->priv_flags |= IFF_UNICAST_FLT; 3429 3430 /* Setup netdev TC information */ 3431 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3432 3433 /* setup watchdog timeout value to be 5 second */ 3434 netdev->watchdog_timeo = 5 * HZ; 3435 3436 netdev->min_mtu = ETH_MIN_MTU; 3437 netdev->max_mtu = ICE_MAX_MTU; 3438 3439 return 0; 3440 } 3441 3442 /** 3443 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3444 * @lut: Lookup table 3445 * @rss_table_size: Lookup table size 3446 * @rss_size: Range of queue number for hashing 3447 */ 3448 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3449 { 3450 u16 i; 3451 3452 for (i = 0; i < rss_table_size; i++) 3453 lut[i] = i % rss_size; 3454 } 3455 3456 /** 3457 * ice_pf_vsi_setup - Set up a PF VSI 3458 * @pf: board private structure 3459 * @pi: pointer to the port_info instance 3460 * 3461 * Returns pointer to the successfully allocated VSI software struct 3462 * on success, otherwise returns NULL on failure. 3463 */ 3464 static struct ice_vsi * 3465 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3466 { 3467 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3468 } 3469 3470 static struct ice_vsi * 3471 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3472 struct ice_channel *ch) 3473 { 3474 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3475 } 3476 3477 /** 3478 * ice_ctrl_vsi_setup - Set up a control VSI 3479 * @pf: board private structure 3480 * @pi: pointer to the port_info instance 3481 * 3482 * Returns pointer to the successfully allocated VSI software struct 3483 * on success, otherwise returns NULL on failure. 3484 */ 3485 static struct ice_vsi * 3486 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3487 { 3488 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3489 } 3490 3491 /** 3492 * ice_lb_vsi_setup - Set up a loopback VSI 3493 * @pf: board private structure 3494 * @pi: pointer to the port_info instance 3495 * 3496 * Returns pointer to the successfully allocated VSI software struct 3497 * on success, otherwise returns NULL on failure. 3498 */ 3499 struct ice_vsi * 3500 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3501 { 3502 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3503 } 3504 3505 /** 3506 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3507 * @netdev: network interface to be adjusted 3508 * @proto: VLAN TPID 3509 * @vid: VLAN ID to be added 3510 * 3511 * net_device_ops implementation for adding VLAN IDs 3512 */ 3513 static int 3514 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3515 { 3516 struct ice_netdev_priv *np = netdev_priv(netdev); 3517 struct ice_vsi_vlan_ops *vlan_ops; 3518 struct ice_vsi *vsi = np->vsi; 3519 struct ice_vlan vlan; 3520 int ret; 3521 3522 /* VLAN 0 is added by default during load/reset */ 3523 if (!vid) 3524 return 0; 3525 3526 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3527 usleep_range(1000, 2000); 3528 3529 /* Add multicast promisc rule for the VLAN ID to be added if 3530 * all-multicast is currently enabled. 3531 */ 3532 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3533 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3534 ICE_MCAST_VLAN_PROMISC_BITS, 3535 vid); 3536 if (ret) 3537 goto finish; 3538 } 3539 3540 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3541 3542 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3543 * packets aren't pruned by the device's internal switch on Rx 3544 */ 3545 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3546 ret = vlan_ops->add_vlan(vsi, &vlan); 3547 if (ret) 3548 goto finish; 3549 3550 /* If all-multicast is currently enabled and this VLAN ID is only one 3551 * besides VLAN-0 we have to update look-up type of multicast promisc 3552 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3553 */ 3554 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3555 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3556 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3557 ICE_MCAST_PROMISC_BITS, 0); 3558 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3559 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3560 } 3561 3562 finish: 3563 clear_bit(ICE_CFG_BUSY, vsi->state); 3564 3565 return ret; 3566 } 3567 3568 /** 3569 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3570 * @netdev: network interface to be adjusted 3571 * @proto: VLAN TPID 3572 * @vid: VLAN ID to be removed 3573 * 3574 * net_device_ops implementation for removing VLAN IDs 3575 */ 3576 static int 3577 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3578 { 3579 struct ice_netdev_priv *np = netdev_priv(netdev); 3580 struct ice_vsi_vlan_ops *vlan_ops; 3581 struct ice_vsi *vsi = np->vsi; 3582 struct ice_vlan vlan; 3583 int ret; 3584 3585 /* don't allow removal of VLAN 0 */ 3586 if (!vid) 3587 return 0; 3588 3589 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3590 usleep_range(1000, 2000); 3591 3592 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3593 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3594 if (ret) { 3595 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3596 vsi->vsi_num); 3597 vsi->current_netdev_flags |= IFF_ALLMULTI; 3598 } 3599 3600 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3601 3602 /* Make sure VLAN delete is successful before updating VLAN 3603 * information 3604 */ 3605 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3606 ret = vlan_ops->del_vlan(vsi, &vlan); 3607 if (ret) 3608 goto finish; 3609 3610 /* Remove multicast promisc rule for the removed VLAN ID if 3611 * all-multicast is enabled. 3612 */ 3613 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3614 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3615 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3616 3617 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3618 /* Update look-up type of multicast promisc rule for VLAN 0 3619 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3620 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3621 */ 3622 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3623 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3624 ICE_MCAST_VLAN_PROMISC_BITS, 3625 0); 3626 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3627 ICE_MCAST_PROMISC_BITS, 0); 3628 } 3629 } 3630 3631 finish: 3632 clear_bit(ICE_CFG_BUSY, vsi->state); 3633 3634 return ret; 3635 } 3636 3637 /** 3638 * ice_rep_indr_tc_block_unbind 3639 * @cb_priv: indirection block private data 3640 */ 3641 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3642 { 3643 struct ice_indr_block_priv *indr_priv = cb_priv; 3644 3645 list_del(&indr_priv->list); 3646 kfree(indr_priv); 3647 } 3648 3649 /** 3650 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3651 * @vsi: VSI struct which has the netdev 3652 */ 3653 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3654 { 3655 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3656 3657 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3658 ice_rep_indr_tc_block_unbind); 3659 } 3660 3661 /** 3662 * ice_tc_indir_block_remove - clean indirect TC block notifications 3663 * @pf: PF structure 3664 */ 3665 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3666 { 3667 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3668 3669 if (!pf_vsi) 3670 return; 3671 3672 ice_tc_indir_block_unregister(pf_vsi); 3673 } 3674 3675 /** 3676 * ice_tc_indir_block_register - Register TC indirect block notifications 3677 * @vsi: VSI struct which has the netdev 3678 * 3679 * Returns 0 on success, negative value on failure 3680 */ 3681 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3682 { 3683 struct ice_netdev_priv *np; 3684 3685 if (!vsi || !vsi->netdev) 3686 return -EINVAL; 3687 3688 np = netdev_priv(vsi->netdev); 3689 3690 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3691 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3692 } 3693 3694 /** 3695 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3696 * @pf: board private structure 3697 * 3698 * Returns 0 on success, negative value on failure 3699 */ 3700 static int ice_setup_pf_sw(struct ice_pf *pf) 3701 { 3702 struct device *dev = ice_pf_to_dev(pf); 3703 bool dvm = ice_is_dvm_ena(&pf->hw); 3704 struct ice_vsi *vsi; 3705 int status; 3706 3707 if (ice_is_reset_in_progress(pf->state)) 3708 return -EBUSY; 3709 3710 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3711 if (status) 3712 return -EIO; 3713 3714 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3715 if (!vsi) 3716 return -ENOMEM; 3717 3718 /* init channel list */ 3719 INIT_LIST_HEAD(&vsi->ch_list); 3720 3721 status = ice_cfg_netdev(vsi); 3722 if (status) 3723 goto unroll_vsi_setup; 3724 /* netdev has to be configured before setting frame size */ 3725 ice_vsi_cfg_frame_size(vsi); 3726 3727 /* init indirect block notifications */ 3728 status = ice_tc_indir_block_register(vsi); 3729 if (status) { 3730 dev_err(dev, "Failed to register netdev notifier\n"); 3731 goto unroll_cfg_netdev; 3732 } 3733 3734 /* Setup DCB netlink interface */ 3735 ice_dcbnl_setup(vsi); 3736 3737 /* registering the NAPI handler requires both the queues and 3738 * netdev to be created, which are done in ice_pf_vsi_setup() 3739 * and ice_cfg_netdev() respectively 3740 */ 3741 ice_napi_add(vsi); 3742 3743 status = ice_init_mac_fltr(pf); 3744 if (status) 3745 goto unroll_napi_add; 3746 3747 return 0; 3748 3749 unroll_napi_add: 3750 ice_tc_indir_block_unregister(vsi); 3751 unroll_cfg_netdev: 3752 if (vsi) { 3753 ice_napi_del(vsi); 3754 if (vsi->netdev) { 3755 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3756 free_netdev(vsi->netdev); 3757 vsi->netdev = NULL; 3758 } 3759 } 3760 3761 unroll_vsi_setup: 3762 ice_vsi_release(vsi); 3763 return status; 3764 } 3765 3766 /** 3767 * ice_get_avail_q_count - Get count of queues in use 3768 * @pf_qmap: bitmap to get queue use count from 3769 * @lock: pointer to a mutex that protects access to pf_qmap 3770 * @size: size of the bitmap 3771 */ 3772 static u16 3773 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3774 { 3775 unsigned long bit; 3776 u16 count = 0; 3777 3778 mutex_lock(lock); 3779 for_each_clear_bit(bit, pf_qmap, size) 3780 count++; 3781 mutex_unlock(lock); 3782 3783 return count; 3784 } 3785 3786 /** 3787 * ice_get_avail_txq_count - Get count of Tx queues in use 3788 * @pf: pointer to an ice_pf instance 3789 */ 3790 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3791 { 3792 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3793 pf->max_pf_txqs); 3794 } 3795 3796 /** 3797 * ice_get_avail_rxq_count - Get count of Rx queues in use 3798 * @pf: pointer to an ice_pf instance 3799 */ 3800 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3801 { 3802 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3803 pf->max_pf_rxqs); 3804 } 3805 3806 /** 3807 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3808 * @pf: board private structure to initialize 3809 */ 3810 static void ice_deinit_pf(struct ice_pf *pf) 3811 { 3812 ice_service_task_stop(pf); 3813 mutex_destroy(&pf->adev_mutex); 3814 mutex_destroy(&pf->sw_mutex); 3815 mutex_destroy(&pf->tc_mutex); 3816 mutex_destroy(&pf->avail_q_mutex); 3817 mutex_destroy(&pf->vfs.table_lock); 3818 3819 if (pf->avail_txqs) { 3820 bitmap_free(pf->avail_txqs); 3821 pf->avail_txqs = NULL; 3822 } 3823 3824 if (pf->avail_rxqs) { 3825 bitmap_free(pf->avail_rxqs); 3826 pf->avail_rxqs = NULL; 3827 } 3828 3829 if (pf->ptp.clock) 3830 ptp_clock_unregister(pf->ptp.clock); 3831 } 3832 3833 /** 3834 * ice_set_pf_caps - set PFs capability flags 3835 * @pf: pointer to the PF instance 3836 */ 3837 static void ice_set_pf_caps(struct ice_pf *pf) 3838 { 3839 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3840 3841 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3842 if (func_caps->common_cap.rdma) 3843 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3844 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3845 if (func_caps->common_cap.dcb) 3846 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3847 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3848 if (func_caps->common_cap.sr_iov_1_1) { 3849 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3850 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3851 ICE_MAX_SRIOV_VFS); 3852 } 3853 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3854 if (func_caps->common_cap.rss_table_size) 3855 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3856 3857 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3858 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3859 u16 unused; 3860 3861 /* ctrl_vsi_idx will be set to a valid value when flow director 3862 * is setup by ice_init_fdir 3863 */ 3864 pf->ctrl_vsi_idx = ICE_NO_VSI; 3865 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3866 /* force guaranteed filter pool for PF */ 3867 ice_alloc_fd_guar_item(&pf->hw, &unused, 3868 func_caps->fd_fltr_guar); 3869 /* force shared filter pool for PF */ 3870 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3871 func_caps->fd_fltr_best_effort); 3872 } 3873 3874 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3875 if (func_caps->common_cap.ieee_1588) 3876 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3877 3878 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3879 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3880 } 3881 3882 /** 3883 * ice_init_pf - Initialize general software structures (struct ice_pf) 3884 * @pf: board private structure to initialize 3885 */ 3886 static int ice_init_pf(struct ice_pf *pf) 3887 { 3888 ice_set_pf_caps(pf); 3889 3890 mutex_init(&pf->sw_mutex); 3891 mutex_init(&pf->tc_mutex); 3892 mutex_init(&pf->adev_mutex); 3893 3894 INIT_HLIST_HEAD(&pf->aq_wait_list); 3895 spin_lock_init(&pf->aq_wait_lock); 3896 init_waitqueue_head(&pf->aq_wait_queue); 3897 3898 init_waitqueue_head(&pf->reset_wait_queue); 3899 3900 /* setup service timer and periodic service task */ 3901 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3902 pf->serv_tmr_period = HZ; 3903 INIT_WORK(&pf->serv_task, ice_service_task); 3904 clear_bit(ICE_SERVICE_SCHED, pf->state); 3905 3906 mutex_init(&pf->avail_q_mutex); 3907 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3908 if (!pf->avail_txqs) 3909 return -ENOMEM; 3910 3911 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3912 if (!pf->avail_rxqs) { 3913 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3914 pf->avail_txqs = NULL; 3915 return -ENOMEM; 3916 } 3917 3918 mutex_init(&pf->vfs.table_lock); 3919 hash_init(pf->vfs.table); 3920 3921 return 0; 3922 } 3923 3924 /** 3925 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3926 * @pf: board private structure 3927 * 3928 * compute the number of MSIX vectors required (v_budget) and request from 3929 * the OS. Return the number of vectors reserved or negative on failure 3930 */ 3931 static int ice_ena_msix_range(struct ice_pf *pf) 3932 { 3933 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3934 struct device *dev = ice_pf_to_dev(pf); 3935 int needed, err, i; 3936 3937 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3938 num_cpus = num_online_cpus(); 3939 3940 /* reserve for LAN miscellaneous handler */ 3941 needed = ICE_MIN_LAN_OICR_MSIX; 3942 if (v_left < needed) 3943 goto no_hw_vecs_left_err; 3944 v_budget += needed; 3945 v_left -= needed; 3946 3947 /* reserve for flow director */ 3948 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3949 needed = ICE_FDIR_MSIX; 3950 if (v_left < needed) 3951 goto no_hw_vecs_left_err; 3952 v_budget += needed; 3953 v_left -= needed; 3954 } 3955 3956 /* reserve for switchdev */ 3957 needed = ICE_ESWITCH_MSIX; 3958 if (v_left < needed) 3959 goto no_hw_vecs_left_err; 3960 v_budget += needed; 3961 v_left -= needed; 3962 3963 /* total used for non-traffic vectors */ 3964 v_other = v_budget; 3965 3966 /* reserve vectors for LAN traffic */ 3967 needed = num_cpus; 3968 if (v_left < needed) 3969 goto no_hw_vecs_left_err; 3970 pf->num_lan_msix = needed; 3971 v_budget += needed; 3972 v_left -= needed; 3973 3974 /* reserve vectors for RDMA auxiliary driver */ 3975 if (ice_is_rdma_ena(pf)) { 3976 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3977 if (v_left < needed) 3978 goto no_hw_vecs_left_err; 3979 pf->num_rdma_msix = needed; 3980 v_budget += needed; 3981 v_left -= needed; 3982 } 3983 3984 pf->msix_entries = devm_kcalloc(dev, v_budget, 3985 sizeof(*pf->msix_entries), GFP_KERNEL); 3986 if (!pf->msix_entries) { 3987 err = -ENOMEM; 3988 goto exit_err; 3989 } 3990 3991 for (i = 0; i < v_budget; i++) 3992 pf->msix_entries[i].entry = i; 3993 3994 /* actually reserve the vectors */ 3995 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3996 ICE_MIN_MSIX, v_budget); 3997 if (v_actual < 0) { 3998 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3999 err = v_actual; 4000 goto msix_err; 4001 } 4002 4003 if (v_actual < v_budget) { 4004 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4005 v_budget, v_actual); 4006 4007 if (v_actual < ICE_MIN_MSIX) { 4008 /* error if we can't get minimum vectors */ 4009 pci_disable_msix(pf->pdev); 4010 err = -ERANGE; 4011 goto msix_err; 4012 } else { 4013 int v_remain = v_actual - v_other; 4014 int v_rdma = 0, v_min_rdma = 0; 4015 4016 if (ice_is_rdma_ena(pf)) { 4017 /* Need at least 1 interrupt in addition to 4018 * AEQ MSIX 4019 */ 4020 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 4021 v_min_rdma = ICE_MIN_RDMA_MSIX; 4022 } 4023 4024 if (v_actual == ICE_MIN_MSIX || 4025 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 4026 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4027 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4028 4029 pf->num_rdma_msix = 0; 4030 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4031 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4032 (v_remain - v_rdma < v_rdma)) { 4033 /* Support minimum RDMA and give remaining 4034 * vectors to LAN MSIX 4035 */ 4036 pf->num_rdma_msix = v_min_rdma; 4037 pf->num_lan_msix = v_remain - v_min_rdma; 4038 } else { 4039 /* Split remaining MSIX with RDMA after 4040 * accounting for AEQ MSIX 4041 */ 4042 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4043 ICE_RDMA_NUM_AEQ_MSIX; 4044 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4045 } 4046 4047 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4048 pf->num_lan_msix); 4049 4050 if (ice_is_rdma_ena(pf)) 4051 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4052 pf->num_rdma_msix); 4053 } 4054 } 4055 4056 return v_actual; 4057 4058 msix_err: 4059 devm_kfree(dev, pf->msix_entries); 4060 goto exit_err; 4061 4062 no_hw_vecs_left_err: 4063 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4064 needed, v_left); 4065 err = -ERANGE; 4066 exit_err: 4067 pf->num_rdma_msix = 0; 4068 pf->num_lan_msix = 0; 4069 return err; 4070 } 4071 4072 /** 4073 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4074 * @pf: board private structure 4075 */ 4076 static void ice_dis_msix(struct ice_pf *pf) 4077 { 4078 pci_disable_msix(pf->pdev); 4079 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4080 pf->msix_entries = NULL; 4081 } 4082 4083 /** 4084 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4085 * @pf: board private structure 4086 */ 4087 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4088 { 4089 ice_dis_msix(pf); 4090 4091 if (pf->irq_tracker) { 4092 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4093 pf->irq_tracker = NULL; 4094 } 4095 } 4096 4097 /** 4098 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4099 * @pf: board private structure to initialize 4100 */ 4101 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4102 { 4103 int vectors; 4104 4105 vectors = ice_ena_msix_range(pf); 4106 4107 if (vectors < 0) 4108 return vectors; 4109 4110 /* set up vector assignment tracking */ 4111 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4112 struct_size(pf->irq_tracker, list, vectors), 4113 GFP_KERNEL); 4114 if (!pf->irq_tracker) { 4115 ice_dis_msix(pf); 4116 return -ENOMEM; 4117 } 4118 4119 /* populate SW interrupts pool with number of OS granted IRQs. */ 4120 pf->num_avail_sw_msix = (u16)vectors; 4121 pf->irq_tracker->num_entries = (u16)vectors; 4122 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4123 4124 return 0; 4125 } 4126 4127 /** 4128 * ice_is_wol_supported - check if WoL is supported 4129 * @hw: pointer to hardware info 4130 * 4131 * Check if WoL is supported based on the HW configuration. 4132 * Returns true if NVM supports and enables WoL for this port, false otherwise 4133 */ 4134 bool ice_is_wol_supported(struct ice_hw *hw) 4135 { 4136 u16 wol_ctrl; 4137 4138 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4139 * word) indicates WoL is not supported on the corresponding PF ID. 4140 */ 4141 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4142 return false; 4143 4144 return !(BIT(hw->port_info->lport) & wol_ctrl); 4145 } 4146 4147 /** 4148 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4149 * @vsi: VSI being changed 4150 * @new_rx: new number of Rx queues 4151 * @new_tx: new number of Tx queues 4152 * 4153 * Only change the number of queues if new_tx, or new_rx is non-0. 4154 * 4155 * Returns 0 on success. 4156 */ 4157 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4158 { 4159 struct ice_pf *pf = vsi->back; 4160 int err = 0, timeout = 50; 4161 4162 if (!new_rx && !new_tx) 4163 return -EINVAL; 4164 4165 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4166 timeout--; 4167 if (!timeout) 4168 return -EBUSY; 4169 usleep_range(1000, 2000); 4170 } 4171 4172 if (new_tx) 4173 vsi->req_txq = (u16)new_tx; 4174 if (new_rx) 4175 vsi->req_rxq = (u16)new_rx; 4176 4177 /* set for the next time the netdev is started */ 4178 if (!netif_running(vsi->netdev)) { 4179 ice_vsi_rebuild(vsi, false); 4180 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4181 goto done; 4182 } 4183 4184 ice_vsi_close(vsi); 4185 ice_vsi_rebuild(vsi, false); 4186 ice_pf_dcb_recfg(pf); 4187 ice_vsi_open(vsi); 4188 done: 4189 clear_bit(ICE_CFG_BUSY, pf->state); 4190 return err; 4191 } 4192 4193 /** 4194 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4195 * @pf: PF to configure 4196 * 4197 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4198 * VSI can still Tx/Rx VLAN tagged packets. 4199 */ 4200 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4201 { 4202 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4203 struct ice_vsi_ctx *ctxt; 4204 struct ice_hw *hw; 4205 int status; 4206 4207 if (!vsi) 4208 return; 4209 4210 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4211 if (!ctxt) 4212 return; 4213 4214 hw = &pf->hw; 4215 ctxt->info = vsi->info; 4216 4217 ctxt->info.valid_sections = 4218 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4219 ICE_AQ_VSI_PROP_SECURITY_VALID | 4220 ICE_AQ_VSI_PROP_SW_VALID); 4221 4222 /* disable VLAN anti-spoof */ 4223 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4224 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4225 4226 /* disable VLAN pruning and keep all other settings */ 4227 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4228 4229 /* allow all VLANs on Tx and don't strip on Rx */ 4230 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4231 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4232 4233 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4234 if (status) { 4235 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4236 status, ice_aq_str(hw->adminq.sq_last_status)); 4237 } else { 4238 vsi->info.sec_flags = ctxt->info.sec_flags; 4239 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4240 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4241 } 4242 4243 kfree(ctxt); 4244 } 4245 4246 /** 4247 * ice_log_pkg_init - log result of DDP package load 4248 * @hw: pointer to hardware info 4249 * @state: state of package load 4250 */ 4251 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4252 { 4253 struct ice_pf *pf = hw->back; 4254 struct device *dev; 4255 4256 dev = ice_pf_to_dev(pf); 4257 4258 switch (state) { 4259 case ICE_DDP_PKG_SUCCESS: 4260 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4261 hw->active_pkg_name, 4262 hw->active_pkg_ver.major, 4263 hw->active_pkg_ver.minor, 4264 hw->active_pkg_ver.update, 4265 hw->active_pkg_ver.draft); 4266 break; 4267 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4268 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4269 hw->active_pkg_name, 4270 hw->active_pkg_ver.major, 4271 hw->active_pkg_ver.minor, 4272 hw->active_pkg_ver.update, 4273 hw->active_pkg_ver.draft); 4274 break; 4275 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4276 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4277 hw->active_pkg_name, 4278 hw->active_pkg_ver.major, 4279 hw->active_pkg_ver.minor, 4280 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4281 break; 4282 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4283 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4284 hw->active_pkg_name, 4285 hw->active_pkg_ver.major, 4286 hw->active_pkg_ver.minor, 4287 hw->active_pkg_ver.update, 4288 hw->active_pkg_ver.draft, 4289 hw->pkg_name, 4290 hw->pkg_ver.major, 4291 hw->pkg_ver.minor, 4292 hw->pkg_ver.update, 4293 hw->pkg_ver.draft); 4294 break; 4295 case ICE_DDP_PKG_FW_MISMATCH: 4296 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4297 break; 4298 case ICE_DDP_PKG_INVALID_FILE: 4299 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4300 break; 4301 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4302 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4303 break; 4304 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4305 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4306 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4307 break; 4308 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4309 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4310 break; 4311 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4312 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4313 break; 4314 case ICE_DDP_PKG_LOAD_ERROR: 4315 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4316 /* poll for reset to complete */ 4317 if (ice_check_reset(hw)) 4318 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4319 break; 4320 case ICE_DDP_PKG_ERR: 4321 default: 4322 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4323 break; 4324 } 4325 } 4326 4327 /** 4328 * ice_load_pkg - load/reload the DDP Package file 4329 * @firmware: firmware structure when firmware requested or NULL for reload 4330 * @pf: pointer to the PF instance 4331 * 4332 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4333 * initialize HW tables. 4334 */ 4335 static void 4336 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4337 { 4338 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4339 struct device *dev = ice_pf_to_dev(pf); 4340 struct ice_hw *hw = &pf->hw; 4341 4342 /* Load DDP Package */ 4343 if (firmware && !hw->pkg_copy) { 4344 state = ice_copy_and_init_pkg(hw, firmware->data, 4345 firmware->size); 4346 ice_log_pkg_init(hw, state); 4347 } else if (!firmware && hw->pkg_copy) { 4348 /* Reload package during rebuild after CORER/GLOBR reset */ 4349 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4350 ice_log_pkg_init(hw, state); 4351 } else { 4352 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4353 } 4354 4355 if (!ice_is_init_pkg_successful(state)) { 4356 /* Safe Mode */ 4357 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4358 return; 4359 } 4360 4361 /* Successful download package is the precondition for advanced 4362 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4363 */ 4364 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4365 } 4366 4367 /** 4368 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4369 * @pf: pointer to the PF structure 4370 * 4371 * There is no error returned here because the driver should be able to handle 4372 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4373 * specifically with Tx. 4374 */ 4375 static void ice_verify_cacheline_size(struct ice_pf *pf) 4376 { 4377 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4378 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4379 ICE_CACHE_LINE_BYTES); 4380 } 4381 4382 /** 4383 * ice_send_version - update firmware with driver version 4384 * @pf: PF struct 4385 * 4386 * Returns 0 on success, else error code 4387 */ 4388 static int ice_send_version(struct ice_pf *pf) 4389 { 4390 struct ice_driver_ver dv; 4391 4392 dv.major_ver = 0xff; 4393 dv.minor_ver = 0xff; 4394 dv.build_ver = 0xff; 4395 dv.subbuild_ver = 0; 4396 strscpy((char *)dv.driver_string, UTS_RELEASE, 4397 sizeof(dv.driver_string)); 4398 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4399 } 4400 4401 /** 4402 * ice_init_fdir - Initialize flow director VSI and configuration 4403 * @pf: pointer to the PF instance 4404 * 4405 * returns 0 on success, negative on error 4406 */ 4407 static int ice_init_fdir(struct ice_pf *pf) 4408 { 4409 struct device *dev = ice_pf_to_dev(pf); 4410 struct ice_vsi *ctrl_vsi; 4411 int err; 4412 4413 /* Side Band Flow Director needs to have a control VSI. 4414 * Allocate it and store it in the PF. 4415 */ 4416 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4417 if (!ctrl_vsi) { 4418 dev_dbg(dev, "could not create control VSI\n"); 4419 return -ENOMEM; 4420 } 4421 4422 err = ice_vsi_open_ctrl(ctrl_vsi); 4423 if (err) { 4424 dev_dbg(dev, "could not open control VSI\n"); 4425 goto err_vsi_open; 4426 } 4427 4428 mutex_init(&pf->hw.fdir_fltr_lock); 4429 4430 err = ice_fdir_create_dflt_rules(pf); 4431 if (err) 4432 goto err_fdir_rule; 4433 4434 return 0; 4435 4436 err_fdir_rule: 4437 ice_fdir_release_flows(&pf->hw); 4438 ice_vsi_close(ctrl_vsi); 4439 err_vsi_open: 4440 ice_vsi_release(ctrl_vsi); 4441 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4442 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4443 pf->ctrl_vsi_idx = ICE_NO_VSI; 4444 } 4445 return err; 4446 } 4447 4448 /** 4449 * ice_get_opt_fw_name - return optional firmware file name or NULL 4450 * @pf: pointer to the PF instance 4451 */ 4452 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4453 { 4454 /* Optional firmware name same as default with additional dash 4455 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4456 */ 4457 struct pci_dev *pdev = pf->pdev; 4458 char *opt_fw_filename; 4459 u64 dsn; 4460 4461 /* Determine the name of the optional file using the DSN (two 4462 * dwords following the start of the DSN Capability). 4463 */ 4464 dsn = pci_get_dsn(pdev); 4465 if (!dsn) 4466 return NULL; 4467 4468 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4469 if (!opt_fw_filename) 4470 return NULL; 4471 4472 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4473 ICE_DDP_PKG_PATH, dsn); 4474 4475 return opt_fw_filename; 4476 } 4477 4478 /** 4479 * ice_request_fw - Device initialization routine 4480 * @pf: pointer to the PF instance 4481 */ 4482 static void ice_request_fw(struct ice_pf *pf) 4483 { 4484 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4485 const struct firmware *firmware = NULL; 4486 struct device *dev = ice_pf_to_dev(pf); 4487 int err = 0; 4488 4489 /* optional device-specific DDP (if present) overrides the default DDP 4490 * package file. kernel logs a debug message if the file doesn't exist, 4491 * and warning messages for other errors. 4492 */ 4493 if (opt_fw_filename) { 4494 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4495 if (err) { 4496 kfree(opt_fw_filename); 4497 goto dflt_pkg_load; 4498 } 4499 4500 /* request for firmware was successful. Download to device */ 4501 ice_load_pkg(firmware, pf); 4502 kfree(opt_fw_filename); 4503 release_firmware(firmware); 4504 return; 4505 } 4506 4507 dflt_pkg_load: 4508 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4509 if (err) { 4510 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4511 return; 4512 } 4513 4514 /* request for firmware was successful. Download to device */ 4515 ice_load_pkg(firmware, pf); 4516 release_firmware(firmware); 4517 } 4518 4519 /** 4520 * ice_print_wake_reason - show the wake up cause in the log 4521 * @pf: pointer to the PF struct 4522 */ 4523 static void ice_print_wake_reason(struct ice_pf *pf) 4524 { 4525 u32 wus = pf->wakeup_reason; 4526 const char *wake_str; 4527 4528 /* if no wake event, nothing to print */ 4529 if (!wus) 4530 return; 4531 4532 if (wus & PFPM_WUS_LNKC_M) 4533 wake_str = "Link\n"; 4534 else if (wus & PFPM_WUS_MAG_M) 4535 wake_str = "Magic Packet\n"; 4536 else if (wus & PFPM_WUS_MNG_M) 4537 wake_str = "Management\n"; 4538 else if (wus & PFPM_WUS_FW_RST_WK_M) 4539 wake_str = "Firmware Reset\n"; 4540 else 4541 wake_str = "Unknown\n"; 4542 4543 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4544 } 4545 4546 /** 4547 * ice_register_netdev - register netdev and devlink port 4548 * @pf: pointer to the PF struct 4549 */ 4550 static int ice_register_netdev(struct ice_pf *pf) 4551 { 4552 struct ice_vsi *vsi; 4553 int err = 0; 4554 4555 vsi = ice_get_main_vsi(pf); 4556 if (!vsi || !vsi->netdev) 4557 return -EIO; 4558 4559 err = register_netdev(vsi->netdev); 4560 if (err) 4561 goto err_register_netdev; 4562 4563 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4564 netif_carrier_off(vsi->netdev); 4565 netif_tx_stop_all_queues(vsi->netdev); 4566 err = ice_devlink_create_pf_port(pf); 4567 if (err) 4568 goto err_devlink_create; 4569 4570 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4571 4572 return 0; 4573 err_devlink_create: 4574 unregister_netdev(vsi->netdev); 4575 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4576 err_register_netdev: 4577 free_netdev(vsi->netdev); 4578 vsi->netdev = NULL; 4579 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4580 return err; 4581 } 4582 4583 /** 4584 * ice_probe - Device initialization routine 4585 * @pdev: PCI device information struct 4586 * @ent: entry in ice_pci_tbl 4587 * 4588 * Returns 0 on success, negative on failure 4589 */ 4590 static int 4591 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4592 { 4593 struct device *dev = &pdev->dev; 4594 struct ice_pf *pf; 4595 struct ice_hw *hw; 4596 int i, err; 4597 4598 if (pdev->is_virtfn) { 4599 dev_err(dev, "can't probe a virtual function\n"); 4600 return -EINVAL; 4601 } 4602 4603 /* this driver uses devres, see 4604 * Documentation/driver-api/driver-model/devres.rst 4605 */ 4606 err = pcim_enable_device(pdev); 4607 if (err) 4608 return err; 4609 4610 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4611 if (err) { 4612 dev_err(dev, "BAR0 I/O map error %d\n", err); 4613 return err; 4614 } 4615 4616 pf = ice_allocate_pf(dev); 4617 if (!pf) 4618 return -ENOMEM; 4619 4620 /* initialize Auxiliary index to invalid value */ 4621 pf->aux_idx = -1; 4622 4623 /* set up for high or low DMA */ 4624 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4625 if (err) { 4626 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4627 return err; 4628 } 4629 4630 pci_enable_pcie_error_reporting(pdev); 4631 pci_set_master(pdev); 4632 4633 pf->pdev = pdev; 4634 pci_set_drvdata(pdev, pf); 4635 set_bit(ICE_DOWN, pf->state); 4636 /* Disable service task until DOWN bit is cleared */ 4637 set_bit(ICE_SERVICE_DIS, pf->state); 4638 4639 hw = &pf->hw; 4640 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4641 pci_save_state(pdev); 4642 4643 hw->back = pf; 4644 hw->vendor_id = pdev->vendor; 4645 hw->device_id = pdev->device; 4646 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4647 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4648 hw->subsystem_device_id = pdev->subsystem_device; 4649 hw->bus.device = PCI_SLOT(pdev->devfn); 4650 hw->bus.func = PCI_FUNC(pdev->devfn); 4651 ice_set_ctrlq_len(hw); 4652 4653 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4654 4655 #ifndef CONFIG_DYNAMIC_DEBUG 4656 if (debug < -1) 4657 hw->debug_mask = debug; 4658 #endif 4659 4660 err = ice_init_hw(hw); 4661 if (err) { 4662 dev_err(dev, "ice_init_hw failed: %d\n", err); 4663 err = -EIO; 4664 goto err_exit_unroll; 4665 } 4666 4667 ice_init_feature_support(pf); 4668 4669 ice_request_fw(pf); 4670 4671 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4672 * set in pf->state, which will cause ice_is_safe_mode to return 4673 * true 4674 */ 4675 if (ice_is_safe_mode(pf)) { 4676 /* we already got function/device capabilities but these don't 4677 * reflect what the driver needs to do in safe mode. Instead of 4678 * adding conditional logic everywhere to ignore these 4679 * device/function capabilities, override them. 4680 */ 4681 ice_set_safe_mode_caps(hw); 4682 } 4683 4684 err = ice_init_pf(pf); 4685 if (err) { 4686 dev_err(dev, "ice_init_pf failed: %d\n", err); 4687 goto err_init_pf_unroll; 4688 } 4689 4690 ice_devlink_init_regions(pf); 4691 4692 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4693 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4694 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4695 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4696 i = 0; 4697 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4698 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4699 pf->hw.tnl.valid_count[TNL_VXLAN]; 4700 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4701 UDP_TUNNEL_TYPE_VXLAN; 4702 i++; 4703 } 4704 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4705 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4706 pf->hw.tnl.valid_count[TNL_GENEVE]; 4707 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4708 UDP_TUNNEL_TYPE_GENEVE; 4709 i++; 4710 } 4711 4712 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4713 if (!pf->num_alloc_vsi) { 4714 err = -EIO; 4715 goto err_init_pf_unroll; 4716 } 4717 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4718 dev_warn(&pf->pdev->dev, 4719 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4720 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4721 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4722 } 4723 4724 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4725 GFP_KERNEL); 4726 if (!pf->vsi) { 4727 err = -ENOMEM; 4728 goto err_init_pf_unroll; 4729 } 4730 4731 err = ice_init_interrupt_scheme(pf); 4732 if (err) { 4733 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4734 err = -EIO; 4735 goto err_init_vsi_unroll; 4736 } 4737 4738 /* In case of MSIX we are going to setup the misc vector right here 4739 * to handle admin queue events etc. In case of legacy and MSI 4740 * the misc functionality and queue processing is combined in 4741 * the same vector and that gets setup at open. 4742 */ 4743 err = ice_req_irq_msix_misc(pf); 4744 if (err) { 4745 dev_err(dev, "setup of misc vector failed: %d\n", err); 4746 goto err_init_interrupt_unroll; 4747 } 4748 4749 /* create switch struct for the switch element created by FW on boot */ 4750 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4751 if (!pf->first_sw) { 4752 err = -ENOMEM; 4753 goto err_msix_misc_unroll; 4754 } 4755 4756 if (hw->evb_veb) 4757 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4758 else 4759 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4760 4761 pf->first_sw->pf = pf; 4762 4763 /* record the sw_id available for later use */ 4764 pf->first_sw->sw_id = hw->port_info->sw_id; 4765 4766 err = ice_setup_pf_sw(pf); 4767 if (err) { 4768 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4769 goto err_alloc_sw_unroll; 4770 } 4771 4772 clear_bit(ICE_SERVICE_DIS, pf->state); 4773 4774 /* tell the firmware we are up */ 4775 err = ice_send_version(pf); 4776 if (err) { 4777 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4778 UTS_RELEASE, err); 4779 goto err_send_version_unroll; 4780 } 4781 4782 /* since everything is good, start the service timer */ 4783 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4784 4785 err = ice_init_link_events(pf->hw.port_info); 4786 if (err) { 4787 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4788 goto err_send_version_unroll; 4789 } 4790 4791 /* not a fatal error if this fails */ 4792 err = ice_init_nvm_phy_type(pf->hw.port_info); 4793 if (err) 4794 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4795 4796 /* not a fatal error if this fails */ 4797 err = ice_update_link_info(pf->hw.port_info); 4798 if (err) 4799 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4800 4801 ice_init_link_dflt_override(pf->hw.port_info); 4802 4803 ice_check_link_cfg_err(pf, 4804 pf->hw.port_info->phy.link_info.link_cfg_err); 4805 4806 /* if media available, initialize PHY settings */ 4807 if (pf->hw.port_info->phy.link_info.link_info & 4808 ICE_AQ_MEDIA_AVAILABLE) { 4809 /* not a fatal error if this fails */ 4810 err = ice_init_phy_user_cfg(pf->hw.port_info); 4811 if (err) 4812 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4813 4814 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4815 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4816 4817 if (vsi) 4818 ice_configure_phy(vsi); 4819 } 4820 } else { 4821 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4822 } 4823 4824 ice_verify_cacheline_size(pf); 4825 4826 /* Save wakeup reason register for later use */ 4827 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4828 4829 /* check for a power management event */ 4830 ice_print_wake_reason(pf); 4831 4832 /* clear wake status, all bits */ 4833 wr32(hw, PFPM_WUS, U32_MAX); 4834 4835 /* Disable WoL at init, wait for user to enable */ 4836 device_set_wakeup_enable(dev, false); 4837 4838 if (ice_is_safe_mode(pf)) { 4839 ice_set_safe_mode_vlan_cfg(pf); 4840 goto probe_done; 4841 } 4842 4843 /* initialize DDP driven features */ 4844 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4845 ice_ptp_init(pf); 4846 4847 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4848 ice_gnss_init(pf); 4849 4850 /* Note: Flow director init failure is non-fatal to load */ 4851 if (ice_init_fdir(pf)) 4852 dev_err(dev, "could not initialize flow director\n"); 4853 4854 /* Note: DCB init failure is non-fatal to load */ 4855 if (ice_init_pf_dcb(pf, false)) { 4856 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4857 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4858 } else { 4859 ice_cfg_lldp_mib_change(&pf->hw, true); 4860 } 4861 4862 if (ice_init_lag(pf)) 4863 dev_warn(dev, "Failed to init link aggregation support\n"); 4864 4865 /* print PCI link speed and width */ 4866 pcie_print_link_status(pf->pdev); 4867 4868 probe_done: 4869 err = ice_register_netdev(pf); 4870 if (err) 4871 goto err_netdev_reg; 4872 4873 err = ice_devlink_register_params(pf); 4874 if (err) 4875 goto err_netdev_reg; 4876 4877 /* ready to go, so clear down state bit */ 4878 clear_bit(ICE_DOWN, pf->state); 4879 if (ice_is_rdma_ena(pf)) { 4880 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4881 if (pf->aux_idx < 0) { 4882 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4883 err = -ENOMEM; 4884 goto err_devlink_reg_param; 4885 } 4886 4887 err = ice_init_rdma(pf); 4888 if (err) { 4889 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4890 err = -EIO; 4891 goto err_init_aux_unroll; 4892 } 4893 } else { 4894 dev_warn(dev, "RDMA is not supported on this device\n"); 4895 } 4896 4897 ice_devlink_register(pf); 4898 return 0; 4899 4900 err_init_aux_unroll: 4901 pf->adev = NULL; 4902 ida_free(&ice_aux_ida, pf->aux_idx); 4903 err_devlink_reg_param: 4904 ice_devlink_unregister_params(pf); 4905 err_netdev_reg: 4906 err_send_version_unroll: 4907 ice_vsi_release_all(pf); 4908 err_alloc_sw_unroll: 4909 set_bit(ICE_SERVICE_DIS, pf->state); 4910 set_bit(ICE_DOWN, pf->state); 4911 devm_kfree(dev, pf->first_sw); 4912 err_msix_misc_unroll: 4913 ice_free_irq_msix_misc(pf); 4914 err_init_interrupt_unroll: 4915 ice_clear_interrupt_scheme(pf); 4916 err_init_vsi_unroll: 4917 devm_kfree(dev, pf->vsi); 4918 err_init_pf_unroll: 4919 ice_deinit_pf(pf); 4920 ice_devlink_destroy_regions(pf); 4921 ice_deinit_hw(hw); 4922 err_exit_unroll: 4923 pci_disable_pcie_error_reporting(pdev); 4924 pci_disable_device(pdev); 4925 return err; 4926 } 4927 4928 /** 4929 * ice_set_wake - enable or disable Wake on LAN 4930 * @pf: pointer to the PF struct 4931 * 4932 * Simple helper for WoL control 4933 */ 4934 static void ice_set_wake(struct ice_pf *pf) 4935 { 4936 struct ice_hw *hw = &pf->hw; 4937 bool wol = pf->wol_ena; 4938 4939 /* clear wake state, otherwise new wake events won't fire */ 4940 wr32(hw, PFPM_WUS, U32_MAX); 4941 4942 /* enable / disable APM wake up, no RMW needed */ 4943 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4944 4945 /* set magic packet filter enabled */ 4946 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4947 } 4948 4949 /** 4950 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4951 * @pf: pointer to the PF struct 4952 * 4953 * Issue firmware command to enable multicast magic wake, making 4954 * sure that any locally administered address (LAA) is used for 4955 * wake, and that PF reset doesn't undo the LAA. 4956 */ 4957 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4958 { 4959 struct device *dev = ice_pf_to_dev(pf); 4960 struct ice_hw *hw = &pf->hw; 4961 u8 mac_addr[ETH_ALEN]; 4962 struct ice_vsi *vsi; 4963 int status; 4964 u8 flags; 4965 4966 if (!pf->wol_ena) 4967 return; 4968 4969 vsi = ice_get_main_vsi(pf); 4970 if (!vsi) 4971 return; 4972 4973 /* Get current MAC address in case it's an LAA */ 4974 if (vsi->netdev) 4975 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4976 else 4977 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4978 4979 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4980 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4981 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4982 4983 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4984 if (status) 4985 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4986 status, ice_aq_str(hw->adminq.sq_last_status)); 4987 } 4988 4989 /** 4990 * ice_remove - Device removal routine 4991 * @pdev: PCI device information struct 4992 */ 4993 static void ice_remove(struct pci_dev *pdev) 4994 { 4995 struct ice_pf *pf = pci_get_drvdata(pdev); 4996 int i; 4997 4998 ice_devlink_unregister(pf); 4999 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5000 if (!ice_is_reset_in_progress(pf->state)) 5001 break; 5002 msleep(100); 5003 } 5004 5005 ice_tc_indir_block_remove(pf); 5006 5007 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5008 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5009 ice_free_vfs(pf); 5010 } 5011 5012 ice_service_task_stop(pf); 5013 5014 ice_aq_cancel_waiting_tasks(pf); 5015 ice_unplug_aux_dev(pf); 5016 if (pf->aux_idx >= 0) 5017 ida_free(&ice_aux_ida, pf->aux_idx); 5018 ice_devlink_unregister_params(pf); 5019 set_bit(ICE_DOWN, pf->state); 5020 5021 ice_deinit_lag(pf); 5022 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5023 ice_ptp_release(pf); 5024 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5025 ice_gnss_exit(pf); 5026 if (!ice_is_safe_mode(pf)) 5027 ice_remove_arfs(pf); 5028 ice_setup_mc_magic_wake(pf); 5029 ice_vsi_release_all(pf); 5030 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5031 ice_set_wake(pf); 5032 ice_free_irq_msix_misc(pf); 5033 ice_for_each_vsi(pf, i) { 5034 if (!pf->vsi[i]) 5035 continue; 5036 ice_vsi_free_q_vectors(pf->vsi[i]); 5037 } 5038 ice_deinit_pf(pf); 5039 ice_devlink_destroy_regions(pf); 5040 ice_deinit_hw(&pf->hw); 5041 5042 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5043 * do it via ice_schedule_reset() since there is no need to rebuild 5044 * and the service task is already stopped. 5045 */ 5046 ice_reset(&pf->hw, ICE_RESET_PFR); 5047 pci_wait_for_pending_transaction(pdev); 5048 ice_clear_interrupt_scheme(pf); 5049 pci_disable_pcie_error_reporting(pdev); 5050 pci_disable_device(pdev); 5051 } 5052 5053 /** 5054 * ice_shutdown - PCI callback for shutting down device 5055 * @pdev: PCI device information struct 5056 */ 5057 static void ice_shutdown(struct pci_dev *pdev) 5058 { 5059 struct ice_pf *pf = pci_get_drvdata(pdev); 5060 5061 ice_remove(pdev); 5062 5063 if (system_state == SYSTEM_POWER_OFF) { 5064 pci_wake_from_d3(pdev, pf->wol_ena); 5065 pci_set_power_state(pdev, PCI_D3hot); 5066 } 5067 } 5068 5069 #ifdef CONFIG_PM 5070 /** 5071 * ice_prepare_for_shutdown - prep for PCI shutdown 5072 * @pf: board private structure 5073 * 5074 * Inform or close all dependent features in prep for PCI device shutdown 5075 */ 5076 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5077 { 5078 struct ice_hw *hw = &pf->hw; 5079 u32 v; 5080 5081 /* Notify VFs of impending reset */ 5082 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5083 ice_vc_notify_reset(pf); 5084 5085 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5086 5087 /* disable the VSIs and their queues that are not already DOWN */ 5088 ice_pf_dis_all_vsi(pf, false); 5089 5090 ice_for_each_vsi(pf, v) 5091 if (pf->vsi[v]) 5092 pf->vsi[v]->vsi_num = 0; 5093 5094 ice_shutdown_all_ctrlq(hw); 5095 } 5096 5097 /** 5098 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5099 * @pf: board private structure to reinitialize 5100 * 5101 * This routine reinitialize interrupt scheme that was cleared during 5102 * power management suspend callback. 5103 * 5104 * This should be called during resume routine to re-allocate the q_vectors 5105 * and reacquire interrupts. 5106 */ 5107 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5108 { 5109 struct device *dev = ice_pf_to_dev(pf); 5110 int ret, v; 5111 5112 /* Since we clear MSIX flag during suspend, we need to 5113 * set it back during resume... 5114 */ 5115 5116 ret = ice_init_interrupt_scheme(pf); 5117 if (ret) { 5118 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5119 return ret; 5120 } 5121 5122 /* Remap vectors and rings, after successful re-init interrupts */ 5123 ice_for_each_vsi(pf, v) { 5124 if (!pf->vsi[v]) 5125 continue; 5126 5127 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5128 if (ret) 5129 goto err_reinit; 5130 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5131 } 5132 5133 ret = ice_req_irq_msix_misc(pf); 5134 if (ret) { 5135 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5136 ret); 5137 goto err_reinit; 5138 } 5139 5140 return 0; 5141 5142 err_reinit: 5143 while (v--) 5144 if (pf->vsi[v]) 5145 ice_vsi_free_q_vectors(pf->vsi[v]); 5146 5147 return ret; 5148 } 5149 5150 /** 5151 * ice_suspend 5152 * @dev: generic device information structure 5153 * 5154 * Power Management callback to quiesce the device and prepare 5155 * for D3 transition. 5156 */ 5157 static int __maybe_unused ice_suspend(struct device *dev) 5158 { 5159 struct pci_dev *pdev = to_pci_dev(dev); 5160 struct ice_pf *pf; 5161 int disabled, v; 5162 5163 pf = pci_get_drvdata(pdev); 5164 5165 if (!ice_pf_state_is_nominal(pf)) { 5166 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5167 return -EBUSY; 5168 } 5169 5170 /* Stop watchdog tasks until resume completion. 5171 * Even though it is most likely that the service task is 5172 * disabled if the device is suspended or down, the service task's 5173 * state is controlled by a different state bit, and we should 5174 * store and honor whatever state that bit is in at this point. 5175 */ 5176 disabled = ice_service_task_stop(pf); 5177 5178 ice_unplug_aux_dev(pf); 5179 5180 /* Already suspended?, then there is nothing to do */ 5181 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5182 if (!disabled) 5183 ice_service_task_restart(pf); 5184 return 0; 5185 } 5186 5187 if (test_bit(ICE_DOWN, pf->state) || 5188 ice_is_reset_in_progress(pf->state)) { 5189 dev_err(dev, "can't suspend device in reset or already down\n"); 5190 if (!disabled) 5191 ice_service_task_restart(pf); 5192 return 0; 5193 } 5194 5195 ice_setup_mc_magic_wake(pf); 5196 5197 ice_prepare_for_shutdown(pf); 5198 5199 ice_set_wake(pf); 5200 5201 /* Free vectors, clear the interrupt scheme and release IRQs 5202 * for proper hibernation, especially with large number of CPUs. 5203 * Otherwise hibernation might fail when mapping all the vectors back 5204 * to CPU0. 5205 */ 5206 ice_free_irq_msix_misc(pf); 5207 ice_for_each_vsi(pf, v) { 5208 if (!pf->vsi[v]) 5209 continue; 5210 ice_vsi_free_q_vectors(pf->vsi[v]); 5211 } 5212 ice_clear_interrupt_scheme(pf); 5213 5214 pci_save_state(pdev); 5215 pci_wake_from_d3(pdev, pf->wol_ena); 5216 pci_set_power_state(pdev, PCI_D3hot); 5217 return 0; 5218 } 5219 5220 /** 5221 * ice_resume - PM callback for waking up from D3 5222 * @dev: generic device information structure 5223 */ 5224 static int __maybe_unused ice_resume(struct device *dev) 5225 { 5226 struct pci_dev *pdev = to_pci_dev(dev); 5227 enum ice_reset_req reset_type; 5228 struct ice_pf *pf; 5229 struct ice_hw *hw; 5230 int ret; 5231 5232 pci_set_power_state(pdev, PCI_D0); 5233 pci_restore_state(pdev); 5234 pci_save_state(pdev); 5235 5236 if (!pci_device_is_present(pdev)) 5237 return -ENODEV; 5238 5239 ret = pci_enable_device_mem(pdev); 5240 if (ret) { 5241 dev_err(dev, "Cannot enable device after suspend\n"); 5242 return ret; 5243 } 5244 5245 pf = pci_get_drvdata(pdev); 5246 hw = &pf->hw; 5247 5248 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5249 ice_print_wake_reason(pf); 5250 5251 /* We cleared the interrupt scheme when we suspended, so we need to 5252 * restore it now to resume device functionality. 5253 */ 5254 ret = ice_reinit_interrupt_scheme(pf); 5255 if (ret) 5256 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5257 5258 clear_bit(ICE_DOWN, pf->state); 5259 /* Now perform PF reset and rebuild */ 5260 reset_type = ICE_RESET_PFR; 5261 /* re-enable service task for reset, but allow reset to schedule it */ 5262 clear_bit(ICE_SERVICE_DIS, pf->state); 5263 5264 if (ice_schedule_reset(pf, reset_type)) 5265 dev_err(dev, "Reset during resume failed.\n"); 5266 5267 clear_bit(ICE_SUSPENDED, pf->state); 5268 ice_service_task_restart(pf); 5269 5270 /* Restart the service task */ 5271 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5272 5273 return 0; 5274 } 5275 #endif /* CONFIG_PM */ 5276 5277 /** 5278 * ice_pci_err_detected - warning that PCI error has been detected 5279 * @pdev: PCI device information struct 5280 * @err: the type of PCI error 5281 * 5282 * Called to warn that something happened on the PCI bus and the error handling 5283 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5284 */ 5285 static pci_ers_result_t 5286 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5287 { 5288 struct ice_pf *pf = pci_get_drvdata(pdev); 5289 5290 if (!pf) { 5291 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5292 __func__, err); 5293 return PCI_ERS_RESULT_DISCONNECT; 5294 } 5295 5296 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5297 ice_service_task_stop(pf); 5298 5299 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5300 set_bit(ICE_PFR_REQ, pf->state); 5301 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5302 } 5303 } 5304 5305 return PCI_ERS_RESULT_NEED_RESET; 5306 } 5307 5308 /** 5309 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5310 * @pdev: PCI device information struct 5311 * 5312 * Called to determine if the driver can recover from the PCI slot reset by 5313 * using a register read to determine if the device is recoverable. 5314 */ 5315 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5316 { 5317 struct ice_pf *pf = pci_get_drvdata(pdev); 5318 pci_ers_result_t result; 5319 int err; 5320 u32 reg; 5321 5322 err = pci_enable_device_mem(pdev); 5323 if (err) { 5324 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5325 err); 5326 result = PCI_ERS_RESULT_DISCONNECT; 5327 } else { 5328 pci_set_master(pdev); 5329 pci_restore_state(pdev); 5330 pci_save_state(pdev); 5331 pci_wake_from_d3(pdev, false); 5332 5333 /* Check for life */ 5334 reg = rd32(&pf->hw, GLGEN_RTRIG); 5335 if (!reg) 5336 result = PCI_ERS_RESULT_RECOVERED; 5337 else 5338 result = PCI_ERS_RESULT_DISCONNECT; 5339 } 5340 5341 return result; 5342 } 5343 5344 /** 5345 * ice_pci_err_resume - restart operations after PCI error recovery 5346 * @pdev: PCI device information struct 5347 * 5348 * Called to allow the driver to bring things back up after PCI error and/or 5349 * reset recovery have finished 5350 */ 5351 static void ice_pci_err_resume(struct pci_dev *pdev) 5352 { 5353 struct ice_pf *pf = pci_get_drvdata(pdev); 5354 5355 if (!pf) { 5356 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5357 __func__); 5358 return; 5359 } 5360 5361 if (test_bit(ICE_SUSPENDED, pf->state)) { 5362 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5363 __func__); 5364 return; 5365 } 5366 5367 ice_restore_all_vfs_msi_state(pdev); 5368 5369 ice_do_reset(pf, ICE_RESET_PFR); 5370 ice_service_task_restart(pf); 5371 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5372 } 5373 5374 /** 5375 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5376 * @pdev: PCI device information struct 5377 */ 5378 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5379 { 5380 struct ice_pf *pf = pci_get_drvdata(pdev); 5381 5382 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5383 ice_service_task_stop(pf); 5384 5385 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5386 set_bit(ICE_PFR_REQ, pf->state); 5387 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5388 } 5389 } 5390 } 5391 5392 /** 5393 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5394 * @pdev: PCI device information struct 5395 */ 5396 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5397 { 5398 ice_pci_err_resume(pdev); 5399 } 5400 5401 /* ice_pci_tbl - PCI Device ID Table 5402 * 5403 * Wildcard entries (PCI_ANY_ID) should come last 5404 * Last entry must be all 0s 5405 * 5406 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5407 * Class, Class Mask, private data (not used) } 5408 */ 5409 static const struct pci_device_id ice_pci_tbl[] = { 5410 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5411 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5412 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5413 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5414 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5415 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5416 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5417 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5418 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5419 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5420 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5421 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5422 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5423 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5424 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5425 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5426 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5427 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5428 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5429 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5430 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5431 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5432 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5433 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5434 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5435 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5436 /* required last entry */ 5437 { 0, } 5438 }; 5439 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5440 5441 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5442 5443 static const struct pci_error_handlers ice_pci_err_handler = { 5444 .error_detected = ice_pci_err_detected, 5445 .slot_reset = ice_pci_err_slot_reset, 5446 .reset_prepare = ice_pci_err_reset_prepare, 5447 .reset_done = ice_pci_err_reset_done, 5448 .resume = ice_pci_err_resume 5449 }; 5450 5451 static struct pci_driver ice_driver = { 5452 .name = KBUILD_MODNAME, 5453 .id_table = ice_pci_tbl, 5454 .probe = ice_probe, 5455 .remove = ice_remove, 5456 #ifdef CONFIG_PM 5457 .driver.pm = &ice_pm_ops, 5458 #endif /* CONFIG_PM */ 5459 .shutdown = ice_shutdown, 5460 .sriov_configure = ice_sriov_configure, 5461 .err_handler = &ice_pci_err_handler 5462 }; 5463 5464 /** 5465 * ice_module_init - Driver registration routine 5466 * 5467 * ice_module_init is the first routine called when the driver is 5468 * loaded. All it does is register with the PCI subsystem. 5469 */ 5470 static int __init ice_module_init(void) 5471 { 5472 int status; 5473 5474 pr_info("%s\n", ice_driver_string); 5475 pr_info("%s\n", ice_copyright); 5476 5477 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5478 if (!ice_wq) { 5479 pr_err("Failed to create workqueue\n"); 5480 return -ENOMEM; 5481 } 5482 5483 status = pci_register_driver(&ice_driver); 5484 if (status) { 5485 pr_err("failed to register PCI driver, err %d\n", status); 5486 destroy_workqueue(ice_wq); 5487 } 5488 5489 return status; 5490 } 5491 module_init(ice_module_init); 5492 5493 /** 5494 * ice_module_exit - Driver exit cleanup routine 5495 * 5496 * ice_module_exit is called just before the driver is removed 5497 * from memory. 5498 */ 5499 static void __exit ice_module_exit(void) 5500 { 5501 pci_unregister_driver(&ice_driver); 5502 destroy_workqueue(ice_wq); 5503 pr_info("module unloaded\n"); 5504 } 5505 module_exit(ice_module_exit); 5506 5507 /** 5508 * ice_set_mac_address - NDO callback to set MAC address 5509 * @netdev: network interface device structure 5510 * @pi: pointer to an address structure 5511 * 5512 * Returns 0 on success, negative on failure 5513 */ 5514 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5515 { 5516 struct ice_netdev_priv *np = netdev_priv(netdev); 5517 struct ice_vsi *vsi = np->vsi; 5518 struct ice_pf *pf = vsi->back; 5519 struct ice_hw *hw = &pf->hw; 5520 struct sockaddr *addr = pi; 5521 u8 old_mac[ETH_ALEN]; 5522 u8 flags = 0; 5523 u8 *mac; 5524 int err; 5525 5526 mac = (u8 *)addr->sa_data; 5527 5528 if (!is_valid_ether_addr(mac)) 5529 return -EADDRNOTAVAIL; 5530 5531 if (ether_addr_equal(netdev->dev_addr, mac)) { 5532 netdev_dbg(netdev, "already using mac %pM\n", mac); 5533 return 0; 5534 } 5535 5536 if (test_bit(ICE_DOWN, pf->state) || 5537 ice_is_reset_in_progress(pf->state)) { 5538 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5539 mac); 5540 return -EBUSY; 5541 } 5542 5543 if (ice_chnl_dmac_fltr_cnt(pf)) { 5544 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5545 mac); 5546 return -EAGAIN; 5547 } 5548 5549 netif_addr_lock_bh(netdev); 5550 ether_addr_copy(old_mac, netdev->dev_addr); 5551 /* change the netdev's MAC address */ 5552 eth_hw_addr_set(netdev, mac); 5553 netif_addr_unlock_bh(netdev); 5554 5555 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5556 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5557 if (err && err != -ENOENT) { 5558 err = -EADDRNOTAVAIL; 5559 goto err_update_filters; 5560 } 5561 5562 /* Add filter for new MAC. If filter exists, return success */ 5563 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5564 if (err == -EEXIST) { 5565 /* Although this MAC filter is already present in hardware it's 5566 * possible in some cases (e.g. bonding) that dev_addr was 5567 * modified outside of the driver and needs to be restored back 5568 * to this value. 5569 */ 5570 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5571 5572 return 0; 5573 } else if (err) { 5574 /* error if the new filter addition failed */ 5575 err = -EADDRNOTAVAIL; 5576 } 5577 5578 err_update_filters: 5579 if (err) { 5580 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5581 mac); 5582 netif_addr_lock_bh(netdev); 5583 eth_hw_addr_set(netdev, old_mac); 5584 netif_addr_unlock_bh(netdev); 5585 return err; 5586 } 5587 5588 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5589 netdev->dev_addr); 5590 5591 /* write new MAC address to the firmware */ 5592 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5593 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5594 if (err) { 5595 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5596 mac, err); 5597 } 5598 return 0; 5599 } 5600 5601 /** 5602 * ice_set_rx_mode - NDO callback to set the netdev filters 5603 * @netdev: network interface device structure 5604 */ 5605 static void ice_set_rx_mode(struct net_device *netdev) 5606 { 5607 struct ice_netdev_priv *np = netdev_priv(netdev); 5608 struct ice_vsi *vsi = np->vsi; 5609 5610 if (!vsi) 5611 return; 5612 5613 /* Set the flags to synchronize filters 5614 * ndo_set_rx_mode may be triggered even without a change in netdev 5615 * flags 5616 */ 5617 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5618 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5619 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5620 5621 /* schedule our worker thread which will take care of 5622 * applying the new filter changes 5623 */ 5624 ice_service_task_schedule(vsi->back); 5625 } 5626 5627 /** 5628 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5629 * @netdev: network interface device structure 5630 * @queue_index: Queue ID 5631 * @maxrate: maximum bandwidth in Mbps 5632 */ 5633 static int 5634 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5635 { 5636 struct ice_netdev_priv *np = netdev_priv(netdev); 5637 struct ice_vsi *vsi = np->vsi; 5638 u16 q_handle; 5639 int status; 5640 u8 tc; 5641 5642 /* Validate maxrate requested is within permitted range */ 5643 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5644 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5645 maxrate, queue_index); 5646 return -EINVAL; 5647 } 5648 5649 q_handle = vsi->tx_rings[queue_index]->q_handle; 5650 tc = ice_dcb_get_tc(vsi, queue_index); 5651 5652 /* Set BW back to default, when user set maxrate to 0 */ 5653 if (!maxrate) 5654 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5655 q_handle, ICE_MAX_BW); 5656 else 5657 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5658 q_handle, ICE_MAX_BW, maxrate * 1000); 5659 if (status) 5660 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5661 status); 5662 5663 return status; 5664 } 5665 5666 /** 5667 * ice_fdb_add - add an entry to the hardware database 5668 * @ndm: the input from the stack 5669 * @tb: pointer to array of nladdr (unused) 5670 * @dev: the net device pointer 5671 * @addr: the MAC address entry being added 5672 * @vid: VLAN ID 5673 * @flags: instructions from stack about fdb operation 5674 * @extack: netlink extended ack 5675 */ 5676 static int 5677 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5678 struct net_device *dev, const unsigned char *addr, u16 vid, 5679 u16 flags, struct netlink_ext_ack __always_unused *extack) 5680 { 5681 int err; 5682 5683 if (vid) { 5684 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5685 return -EINVAL; 5686 } 5687 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5688 netdev_err(dev, "FDB only supports static addresses\n"); 5689 return -EINVAL; 5690 } 5691 5692 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5693 err = dev_uc_add_excl(dev, addr); 5694 else if (is_multicast_ether_addr(addr)) 5695 err = dev_mc_add_excl(dev, addr); 5696 else 5697 err = -EINVAL; 5698 5699 /* Only return duplicate errors if NLM_F_EXCL is set */ 5700 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5701 err = 0; 5702 5703 return err; 5704 } 5705 5706 /** 5707 * ice_fdb_del - delete an entry from the hardware database 5708 * @ndm: the input from the stack 5709 * @tb: pointer to array of nladdr (unused) 5710 * @dev: the net device pointer 5711 * @addr: the MAC address entry being added 5712 * @vid: VLAN ID 5713 * @extack: netlink extended ack 5714 */ 5715 static int 5716 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5717 struct net_device *dev, const unsigned char *addr, 5718 __always_unused u16 vid, struct netlink_ext_ack *extack) 5719 { 5720 int err; 5721 5722 if (ndm->ndm_state & NUD_PERMANENT) { 5723 netdev_err(dev, "FDB only supports static addresses\n"); 5724 return -EINVAL; 5725 } 5726 5727 if (is_unicast_ether_addr(addr)) 5728 err = dev_uc_del(dev, addr); 5729 else if (is_multicast_ether_addr(addr)) 5730 err = dev_mc_del(dev, addr); 5731 else 5732 err = -EINVAL; 5733 5734 return err; 5735 } 5736 5737 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5738 NETIF_F_HW_VLAN_CTAG_TX | \ 5739 NETIF_F_HW_VLAN_STAG_RX | \ 5740 NETIF_F_HW_VLAN_STAG_TX) 5741 5742 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5743 NETIF_F_HW_VLAN_STAG_RX) 5744 5745 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5746 NETIF_F_HW_VLAN_STAG_FILTER) 5747 5748 /** 5749 * ice_fix_features - fix the netdev features flags based on device limitations 5750 * @netdev: ptr to the netdev that flags are being fixed on 5751 * @features: features that need to be checked and possibly fixed 5752 * 5753 * Make sure any fixups are made to features in this callback. This enables the 5754 * driver to not have to check unsupported configurations throughout the driver 5755 * because that's the responsiblity of this callback. 5756 * 5757 * Single VLAN Mode (SVM) Supported Features: 5758 * NETIF_F_HW_VLAN_CTAG_FILTER 5759 * NETIF_F_HW_VLAN_CTAG_RX 5760 * NETIF_F_HW_VLAN_CTAG_TX 5761 * 5762 * Double VLAN Mode (DVM) Supported Features: 5763 * NETIF_F_HW_VLAN_CTAG_FILTER 5764 * NETIF_F_HW_VLAN_CTAG_RX 5765 * NETIF_F_HW_VLAN_CTAG_TX 5766 * 5767 * NETIF_F_HW_VLAN_STAG_FILTER 5768 * NETIF_HW_VLAN_STAG_RX 5769 * NETIF_HW_VLAN_STAG_TX 5770 * 5771 * Features that need fixing: 5772 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5773 * These are mutually exlusive as the VSI context cannot support multiple 5774 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5775 * is not done, then default to clearing the requested STAG offload 5776 * settings. 5777 * 5778 * All supported filtering has to be enabled or disabled together. For 5779 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5780 * together. If this is not done, then default to VLAN filtering disabled. 5781 * These are mutually exclusive as there is currently no way to 5782 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5783 * prune rules. 5784 */ 5785 static netdev_features_t 5786 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5787 { 5788 struct ice_netdev_priv *np = netdev_priv(netdev); 5789 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5790 bool cur_ctag, cur_stag, req_ctag, req_stag; 5791 5792 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5793 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5794 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5795 5796 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5797 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5798 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5799 5800 if (req_vlan_fltr != cur_vlan_fltr) { 5801 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5802 if (req_ctag && req_stag) { 5803 features |= NETIF_VLAN_FILTERING_FEATURES; 5804 } else if (!req_ctag && !req_stag) { 5805 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5806 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5807 (!cur_stag && req_stag && !cur_ctag)) { 5808 features |= NETIF_VLAN_FILTERING_FEATURES; 5809 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5810 } else if ((cur_ctag && !req_ctag && cur_stag) || 5811 (cur_stag && !req_stag && cur_ctag)) { 5812 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5813 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5814 } 5815 } else { 5816 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5817 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5818 5819 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5820 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5821 } 5822 } 5823 5824 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5825 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5826 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5827 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5828 NETIF_F_HW_VLAN_STAG_TX); 5829 } 5830 5831 if (!(netdev->features & NETIF_F_RXFCS) && 5832 (features & NETIF_F_RXFCS) && 5833 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5834 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5835 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5836 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5837 } 5838 5839 return features; 5840 } 5841 5842 /** 5843 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5844 * @vsi: PF's VSI 5845 * @features: features used to determine VLAN offload settings 5846 * 5847 * First, determine the vlan_ethertype based on the VLAN offload bits in 5848 * features. Then determine if stripping and insertion should be enabled or 5849 * disabled. Finally enable or disable VLAN stripping and insertion. 5850 */ 5851 static int 5852 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5853 { 5854 bool enable_stripping = true, enable_insertion = true; 5855 struct ice_vsi_vlan_ops *vlan_ops; 5856 int strip_err = 0, insert_err = 0; 5857 u16 vlan_ethertype = 0; 5858 5859 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5860 5861 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5862 vlan_ethertype = ETH_P_8021AD; 5863 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5864 vlan_ethertype = ETH_P_8021Q; 5865 5866 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5867 enable_stripping = false; 5868 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5869 enable_insertion = false; 5870 5871 if (enable_stripping) 5872 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5873 else 5874 strip_err = vlan_ops->dis_stripping(vsi); 5875 5876 if (enable_insertion) 5877 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5878 else 5879 insert_err = vlan_ops->dis_insertion(vsi); 5880 5881 if (strip_err || insert_err) 5882 return -EIO; 5883 5884 return 0; 5885 } 5886 5887 /** 5888 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5889 * @vsi: PF's VSI 5890 * @features: features used to determine VLAN filtering settings 5891 * 5892 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5893 * features. 5894 */ 5895 static int 5896 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5897 { 5898 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5899 int err = 0; 5900 5901 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5902 * if either bit is set 5903 */ 5904 if (features & 5905 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5906 err = vlan_ops->ena_rx_filtering(vsi); 5907 else 5908 err = vlan_ops->dis_rx_filtering(vsi); 5909 5910 return err; 5911 } 5912 5913 /** 5914 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5915 * @netdev: ptr to the netdev being adjusted 5916 * @features: the feature set that the stack is suggesting 5917 * 5918 * Only update VLAN settings if the requested_vlan_features are different than 5919 * the current_vlan_features. 5920 */ 5921 static int 5922 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5923 { 5924 netdev_features_t current_vlan_features, requested_vlan_features; 5925 struct ice_netdev_priv *np = netdev_priv(netdev); 5926 struct ice_vsi *vsi = np->vsi; 5927 int err; 5928 5929 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5930 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5931 if (current_vlan_features ^ requested_vlan_features) { 5932 if ((features & NETIF_F_RXFCS) && 5933 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 5934 dev_err(ice_pf_to_dev(vsi->back), 5935 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 5936 return -EIO; 5937 } 5938 5939 err = ice_set_vlan_offload_features(vsi, features); 5940 if (err) 5941 return err; 5942 } 5943 5944 current_vlan_features = netdev->features & 5945 NETIF_VLAN_FILTERING_FEATURES; 5946 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5947 if (current_vlan_features ^ requested_vlan_features) { 5948 err = ice_set_vlan_filtering_features(vsi, features); 5949 if (err) 5950 return err; 5951 } 5952 5953 return 0; 5954 } 5955 5956 /** 5957 * ice_set_loopback - turn on/off loopback mode on underlying PF 5958 * @vsi: ptr to VSI 5959 * @ena: flag to indicate the on/off setting 5960 */ 5961 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5962 { 5963 bool if_running = netif_running(vsi->netdev); 5964 int ret; 5965 5966 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5967 ret = ice_down(vsi); 5968 if (ret) { 5969 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5970 return ret; 5971 } 5972 } 5973 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 5974 if (ret) 5975 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 5976 if (if_running) 5977 ret = ice_up(vsi); 5978 5979 return ret; 5980 } 5981 5982 /** 5983 * ice_set_features - set the netdev feature flags 5984 * @netdev: ptr to the netdev being adjusted 5985 * @features: the feature set that the stack is suggesting 5986 */ 5987 static int 5988 ice_set_features(struct net_device *netdev, netdev_features_t features) 5989 { 5990 netdev_features_t changed = netdev->features ^ features; 5991 struct ice_netdev_priv *np = netdev_priv(netdev); 5992 struct ice_vsi *vsi = np->vsi; 5993 struct ice_pf *pf = vsi->back; 5994 int ret = 0; 5995 5996 /* Don't set any netdev advanced features with device in Safe Mode */ 5997 if (ice_is_safe_mode(pf)) { 5998 dev_err(ice_pf_to_dev(pf), 5999 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6000 return ret; 6001 } 6002 6003 /* Do not change setting during reset */ 6004 if (ice_is_reset_in_progress(pf->state)) { 6005 dev_err(ice_pf_to_dev(pf), 6006 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6007 return -EBUSY; 6008 } 6009 6010 /* Multiple features can be changed in one call so keep features in 6011 * separate if/else statements to guarantee each feature is checked 6012 */ 6013 if (changed & NETIF_F_RXHASH) 6014 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6015 6016 ret = ice_set_vlan_features(netdev, features); 6017 if (ret) 6018 return ret; 6019 6020 /* Turn on receive of FCS aka CRC, and after setting this 6021 * flag the packet data will have the 4 byte CRC appended 6022 */ 6023 if (changed & NETIF_F_RXFCS) { 6024 if ((features & NETIF_F_RXFCS) && 6025 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6026 dev_err(ice_pf_to_dev(vsi->back), 6027 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6028 return -EIO; 6029 } 6030 6031 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6032 ret = ice_down_up(vsi); 6033 if (ret) 6034 return ret; 6035 } 6036 6037 if (changed & NETIF_F_NTUPLE) { 6038 bool ena = !!(features & NETIF_F_NTUPLE); 6039 6040 ice_vsi_manage_fdir(vsi, ena); 6041 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6042 } 6043 6044 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6045 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6046 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6047 return -EACCES; 6048 } 6049 6050 if (changed & NETIF_F_HW_TC) { 6051 bool ena = !!(features & NETIF_F_HW_TC); 6052 6053 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6054 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6055 } 6056 6057 if (changed & NETIF_F_LOOPBACK) 6058 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6059 6060 return ret; 6061 } 6062 6063 /** 6064 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6065 * @vsi: VSI to setup VLAN properties for 6066 */ 6067 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6068 { 6069 int err; 6070 6071 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6072 if (err) 6073 return err; 6074 6075 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6076 if (err) 6077 return err; 6078 6079 return ice_vsi_add_vlan_zero(vsi); 6080 } 6081 6082 /** 6083 * ice_vsi_cfg - Setup the VSI 6084 * @vsi: the VSI being configured 6085 * 6086 * Return 0 on success and negative value on error 6087 */ 6088 int ice_vsi_cfg(struct ice_vsi *vsi) 6089 { 6090 int err; 6091 6092 if (vsi->netdev) { 6093 ice_set_rx_mode(vsi->netdev); 6094 6095 if (vsi->type != ICE_VSI_LB) { 6096 err = ice_vsi_vlan_setup(vsi); 6097 6098 if (err) 6099 return err; 6100 } 6101 } 6102 ice_vsi_cfg_dcb_rings(vsi); 6103 6104 err = ice_vsi_cfg_lan_txqs(vsi); 6105 if (!err && ice_is_xdp_ena_vsi(vsi)) 6106 err = ice_vsi_cfg_xdp_txqs(vsi); 6107 if (!err) 6108 err = ice_vsi_cfg_rxqs(vsi); 6109 6110 return err; 6111 } 6112 6113 /* THEORY OF MODERATION: 6114 * The ice driver hardware works differently than the hardware that DIMLIB was 6115 * originally made for. ice hardware doesn't have packet count limits that 6116 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6117 * which is hard-coded to a limit of 250,000 ints/second. 6118 * If not using dynamic moderation, the INTRL value can be modified 6119 * by ethtool rx-usecs-high. 6120 */ 6121 struct ice_dim { 6122 /* the throttle rate for interrupts, basically worst case delay before 6123 * an initial interrupt fires, value is stored in microseconds. 6124 */ 6125 u16 itr; 6126 }; 6127 6128 /* Make a different profile for Rx that doesn't allow quite so aggressive 6129 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6130 * second. 6131 */ 6132 static const struct ice_dim rx_profile[] = { 6133 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6134 {8}, /* 125,000 ints/s */ 6135 {16}, /* 62,500 ints/s */ 6136 {62}, /* 16,129 ints/s */ 6137 {126} /* 7,936 ints/s */ 6138 }; 6139 6140 /* The transmit profile, which has the same sorts of values 6141 * as the previous struct 6142 */ 6143 static const struct ice_dim tx_profile[] = { 6144 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6145 {8}, /* 125,000 ints/s */ 6146 {40}, /* 16,125 ints/s */ 6147 {128}, /* 7,812 ints/s */ 6148 {256} /* 3,906 ints/s */ 6149 }; 6150 6151 static void ice_tx_dim_work(struct work_struct *work) 6152 { 6153 struct ice_ring_container *rc; 6154 struct dim *dim; 6155 u16 itr; 6156 6157 dim = container_of(work, struct dim, work); 6158 rc = (struct ice_ring_container *)dim->priv; 6159 6160 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6161 6162 /* look up the values in our local table */ 6163 itr = tx_profile[dim->profile_ix].itr; 6164 6165 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6166 ice_write_itr(rc, itr); 6167 6168 dim->state = DIM_START_MEASURE; 6169 } 6170 6171 static void ice_rx_dim_work(struct work_struct *work) 6172 { 6173 struct ice_ring_container *rc; 6174 struct dim *dim; 6175 u16 itr; 6176 6177 dim = container_of(work, struct dim, work); 6178 rc = (struct ice_ring_container *)dim->priv; 6179 6180 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6181 6182 /* look up the values in our local table */ 6183 itr = rx_profile[dim->profile_ix].itr; 6184 6185 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6186 ice_write_itr(rc, itr); 6187 6188 dim->state = DIM_START_MEASURE; 6189 } 6190 6191 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6192 6193 /** 6194 * ice_init_moderation - set up interrupt moderation 6195 * @q_vector: the vector containing rings to be configured 6196 * 6197 * Set up interrupt moderation registers, with the intent to do the right thing 6198 * when called from reset or from probe, and whether or not dynamic moderation 6199 * is enabled or not. Take special care to write all the registers in both 6200 * dynamic moderation mode or not in order to make sure hardware is in a known 6201 * state. 6202 */ 6203 static void ice_init_moderation(struct ice_q_vector *q_vector) 6204 { 6205 struct ice_ring_container *rc; 6206 bool tx_dynamic, rx_dynamic; 6207 6208 rc = &q_vector->tx; 6209 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6210 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6211 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6212 rc->dim.priv = rc; 6213 tx_dynamic = ITR_IS_DYNAMIC(rc); 6214 6215 /* set the initial TX ITR to match the above */ 6216 ice_write_itr(rc, tx_dynamic ? 6217 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6218 6219 rc = &q_vector->rx; 6220 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6221 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6222 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6223 rc->dim.priv = rc; 6224 rx_dynamic = ITR_IS_DYNAMIC(rc); 6225 6226 /* set the initial RX ITR to match the above */ 6227 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6228 rc->itr_setting); 6229 6230 ice_set_q_vector_intrl(q_vector); 6231 } 6232 6233 /** 6234 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6235 * @vsi: the VSI being configured 6236 */ 6237 static void ice_napi_enable_all(struct ice_vsi *vsi) 6238 { 6239 int q_idx; 6240 6241 if (!vsi->netdev) 6242 return; 6243 6244 ice_for_each_q_vector(vsi, q_idx) { 6245 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6246 6247 ice_init_moderation(q_vector); 6248 6249 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6250 napi_enable(&q_vector->napi); 6251 } 6252 } 6253 6254 /** 6255 * ice_up_complete - Finish the last steps of bringing up a connection 6256 * @vsi: The VSI being configured 6257 * 6258 * Return 0 on success and negative value on error 6259 */ 6260 static int ice_up_complete(struct ice_vsi *vsi) 6261 { 6262 struct ice_pf *pf = vsi->back; 6263 int err; 6264 6265 ice_vsi_cfg_msix(vsi); 6266 6267 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6268 * Tx queue group list was configured and the context bits were 6269 * programmed using ice_vsi_cfg_txqs 6270 */ 6271 err = ice_vsi_start_all_rx_rings(vsi); 6272 if (err) 6273 return err; 6274 6275 clear_bit(ICE_VSI_DOWN, vsi->state); 6276 ice_napi_enable_all(vsi); 6277 ice_vsi_ena_irq(vsi); 6278 6279 if (vsi->port_info && 6280 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6281 vsi->netdev) { 6282 ice_print_link_msg(vsi, true); 6283 netif_tx_start_all_queues(vsi->netdev); 6284 netif_carrier_on(vsi->netdev); 6285 if (!ice_is_e810(&pf->hw)) 6286 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6287 } 6288 6289 /* Perform an initial read of the statistics registers now to 6290 * set the baseline so counters are ready when interface is up 6291 */ 6292 ice_update_eth_stats(vsi); 6293 ice_service_task_schedule(pf); 6294 6295 return 0; 6296 } 6297 6298 /** 6299 * ice_up - Bring the connection back up after being down 6300 * @vsi: VSI being configured 6301 */ 6302 int ice_up(struct ice_vsi *vsi) 6303 { 6304 int err; 6305 6306 err = ice_vsi_cfg(vsi); 6307 if (!err) 6308 err = ice_up_complete(vsi); 6309 6310 return err; 6311 } 6312 6313 /** 6314 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6315 * @syncp: pointer to u64_stats_sync 6316 * @stats: stats that pkts and bytes count will be taken from 6317 * @pkts: packets stats counter 6318 * @bytes: bytes stats counter 6319 * 6320 * This function fetches stats from the ring considering the atomic operations 6321 * that needs to be performed to read u64 values in 32 bit machine. 6322 */ 6323 void 6324 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6325 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6326 { 6327 unsigned int start; 6328 6329 do { 6330 start = u64_stats_fetch_begin_irq(syncp); 6331 *pkts = stats.pkts; 6332 *bytes = stats.bytes; 6333 } while (u64_stats_fetch_retry_irq(syncp, start)); 6334 } 6335 6336 /** 6337 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6338 * @vsi: the VSI to be updated 6339 * @vsi_stats: the stats struct to be updated 6340 * @rings: rings to work on 6341 * @count: number of rings 6342 */ 6343 static void 6344 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6345 struct rtnl_link_stats64 *vsi_stats, 6346 struct ice_tx_ring **rings, u16 count) 6347 { 6348 u16 i; 6349 6350 for (i = 0; i < count; i++) { 6351 struct ice_tx_ring *ring; 6352 u64 pkts = 0, bytes = 0; 6353 6354 ring = READ_ONCE(rings[i]); 6355 if (!ring) 6356 continue; 6357 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6358 vsi_stats->tx_packets += pkts; 6359 vsi_stats->tx_bytes += bytes; 6360 vsi->tx_restart += ring->tx_stats.restart_q; 6361 vsi->tx_busy += ring->tx_stats.tx_busy; 6362 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6363 } 6364 } 6365 6366 /** 6367 * ice_update_vsi_ring_stats - Update VSI stats counters 6368 * @vsi: the VSI to be updated 6369 */ 6370 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6371 { 6372 struct rtnl_link_stats64 *vsi_stats; 6373 u64 pkts, bytes; 6374 int i; 6375 6376 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6377 if (!vsi_stats) 6378 return; 6379 6380 /* reset non-netdev (extended) stats */ 6381 vsi->tx_restart = 0; 6382 vsi->tx_busy = 0; 6383 vsi->tx_linearize = 0; 6384 vsi->rx_buf_failed = 0; 6385 vsi->rx_page_failed = 0; 6386 6387 rcu_read_lock(); 6388 6389 /* update Tx rings counters */ 6390 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6391 vsi->num_txq); 6392 6393 /* update Rx rings counters */ 6394 ice_for_each_rxq(vsi, i) { 6395 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6396 6397 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6398 vsi_stats->rx_packets += pkts; 6399 vsi_stats->rx_bytes += bytes; 6400 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6401 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6402 } 6403 6404 /* update XDP Tx rings counters */ 6405 if (ice_is_xdp_ena_vsi(vsi)) 6406 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6407 vsi->num_xdp_txq); 6408 6409 rcu_read_unlock(); 6410 6411 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6412 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6413 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6414 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6415 6416 kfree(vsi_stats); 6417 } 6418 6419 /** 6420 * ice_update_vsi_stats - Update VSI stats counters 6421 * @vsi: the VSI to be updated 6422 */ 6423 void ice_update_vsi_stats(struct ice_vsi *vsi) 6424 { 6425 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6426 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6427 struct ice_pf *pf = vsi->back; 6428 6429 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6430 test_bit(ICE_CFG_BUSY, pf->state)) 6431 return; 6432 6433 /* get stats as recorded by Tx/Rx rings */ 6434 ice_update_vsi_ring_stats(vsi); 6435 6436 /* get VSI stats as recorded by the hardware */ 6437 ice_update_eth_stats(vsi); 6438 6439 cur_ns->tx_errors = cur_es->tx_errors; 6440 cur_ns->rx_dropped = cur_es->rx_discards; 6441 cur_ns->tx_dropped = cur_es->tx_discards; 6442 cur_ns->multicast = cur_es->rx_multicast; 6443 6444 /* update some more netdev stats if this is main VSI */ 6445 if (vsi->type == ICE_VSI_PF) { 6446 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6447 cur_ns->rx_errors = pf->stats.crc_errors + 6448 pf->stats.illegal_bytes + 6449 pf->stats.rx_len_errors + 6450 pf->stats.rx_undersize + 6451 pf->hw_csum_rx_error + 6452 pf->stats.rx_jabber + 6453 pf->stats.rx_fragments + 6454 pf->stats.rx_oversize; 6455 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6456 /* record drops from the port level */ 6457 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6458 } 6459 } 6460 6461 /** 6462 * ice_update_pf_stats - Update PF port stats counters 6463 * @pf: PF whose stats needs to be updated 6464 */ 6465 void ice_update_pf_stats(struct ice_pf *pf) 6466 { 6467 struct ice_hw_port_stats *prev_ps, *cur_ps; 6468 struct ice_hw *hw = &pf->hw; 6469 u16 fd_ctr_base; 6470 u8 port; 6471 6472 port = hw->port_info->lport; 6473 prev_ps = &pf->stats_prev; 6474 cur_ps = &pf->stats; 6475 6476 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6477 &prev_ps->eth.rx_bytes, 6478 &cur_ps->eth.rx_bytes); 6479 6480 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6481 &prev_ps->eth.rx_unicast, 6482 &cur_ps->eth.rx_unicast); 6483 6484 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6485 &prev_ps->eth.rx_multicast, 6486 &cur_ps->eth.rx_multicast); 6487 6488 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6489 &prev_ps->eth.rx_broadcast, 6490 &cur_ps->eth.rx_broadcast); 6491 6492 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6493 &prev_ps->eth.rx_discards, 6494 &cur_ps->eth.rx_discards); 6495 6496 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6497 &prev_ps->eth.tx_bytes, 6498 &cur_ps->eth.tx_bytes); 6499 6500 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6501 &prev_ps->eth.tx_unicast, 6502 &cur_ps->eth.tx_unicast); 6503 6504 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6505 &prev_ps->eth.tx_multicast, 6506 &cur_ps->eth.tx_multicast); 6507 6508 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6509 &prev_ps->eth.tx_broadcast, 6510 &cur_ps->eth.tx_broadcast); 6511 6512 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6513 &prev_ps->tx_dropped_link_down, 6514 &cur_ps->tx_dropped_link_down); 6515 6516 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6517 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6518 6519 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6520 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6521 6522 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6523 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6524 6525 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6526 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6527 6528 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6529 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6530 6531 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6532 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6533 6534 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6535 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6536 6537 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6538 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6539 6540 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6541 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6542 6543 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6544 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6545 6546 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6547 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6548 6549 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6550 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6551 6552 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6553 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6554 6555 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6556 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6557 6558 fd_ctr_base = hw->fd_ctr_base; 6559 6560 ice_stat_update40(hw, 6561 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6562 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6563 &cur_ps->fd_sb_match); 6564 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6565 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6566 6567 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6568 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6569 6570 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6571 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6572 6573 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6574 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6575 6576 ice_update_dcb_stats(pf); 6577 6578 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6579 &prev_ps->crc_errors, &cur_ps->crc_errors); 6580 6581 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6582 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6583 6584 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6585 &prev_ps->mac_local_faults, 6586 &cur_ps->mac_local_faults); 6587 6588 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6589 &prev_ps->mac_remote_faults, 6590 &cur_ps->mac_remote_faults); 6591 6592 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6593 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6594 6595 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6596 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6597 6598 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6599 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6600 6601 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6602 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6603 6604 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6605 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6606 6607 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6608 6609 pf->stat_prev_loaded = true; 6610 } 6611 6612 /** 6613 * ice_get_stats64 - get statistics for network device structure 6614 * @netdev: network interface device structure 6615 * @stats: main device statistics structure 6616 */ 6617 static 6618 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6619 { 6620 struct ice_netdev_priv *np = netdev_priv(netdev); 6621 struct rtnl_link_stats64 *vsi_stats; 6622 struct ice_vsi *vsi = np->vsi; 6623 6624 vsi_stats = &vsi->net_stats; 6625 6626 if (!vsi->num_txq || !vsi->num_rxq) 6627 return; 6628 6629 /* netdev packet/byte stats come from ring counter. These are obtained 6630 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6631 * But, only call the update routine and read the registers if VSI is 6632 * not down. 6633 */ 6634 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6635 ice_update_vsi_ring_stats(vsi); 6636 stats->tx_packets = vsi_stats->tx_packets; 6637 stats->tx_bytes = vsi_stats->tx_bytes; 6638 stats->rx_packets = vsi_stats->rx_packets; 6639 stats->rx_bytes = vsi_stats->rx_bytes; 6640 6641 /* The rest of the stats can be read from the hardware but instead we 6642 * just return values that the watchdog task has already obtained from 6643 * the hardware. 6644 */ 6645 stats->multicast = vsi_stats->multicast; 6646 stats->tx_errors = vsi_stats->tx_errors; 6647 stats->tx_dropped = vsi_stats->tx_dropped; 6648 stats->rx_errors = vsi_stats->rx_errors; 6649 stats->rx_dropped = vsi_stats->rx_dropped; 6650 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6651 stats->rx_length_errors = vsi_stats->rx_length_errors; 6652 } 6653 6654 /** 6655 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6656 * @vsi: VSI having NAPI disabled 6657 */ 6658 static void ice_napi_disable_all(struct ice_vsi *vsi) 6659 { 6660 int q_idx; 6661 6662 if (!vsi->netdev) 6663 return; 6664 6665 ice_for_each_q_vector(vsi, q_idx) { 6666 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6667 6668 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6669 napi_disable(&q_vector->napi); 6670 6671 cancel_work_sync(&q_vector->tx.dim.work); 6672 cancel_work_sync(&q_vector->rx.dim.work); 6673 } 6674 } 6675 6676 /** 6677 * ice_down - Shutdown the connection 6678 * @vsi: The VSI being stopped 6679 * 6680 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6681 */ 6682 int ice_down(struct ice_vsi *vsi) 6683 { 6684 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6685 6686 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6687 6688 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6689 vlan_err = ice_vsi_del_vlan_zero(vsi); 6690 if (!ice_is_e810(&vsi->back->hw)) 6691 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6692 netif_carrier_off(vsi->netdev); 6693 netif_tx_disable(vsi->netdev); 6694 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6695 ice_eswitch_stop_all_tx_queues(vsi->back); 6696 } 6697 6698 ice_vsi_dis_irq(vsi); 6699 6700 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6701 if (tx_err) 6702 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6703 vsi->vsi_num, tx_err); 6704 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6705 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6706 if (tx_err) 6707 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6708 vsi->vsi_num, tx_err); 6709 } 6710 6711 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6712 if (rx_err) 6713 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6714 vsi->vsi_num, rx_err); 6715 6716 ice_napi_disable_all(vsi); 6717 6718 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6719 link_err = ice_force_phys_link_state(vsi, false); 6720 if (link_err) 6721 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6722 vsi->vsi_num, link_err); 6723 } 6724 6725 ice_for_each_txq(vsi, i) 6726 ice_clean_tx_ring(vsi->tx_rings[i]); 6727 6728 ice_for_each_rxq(vsi, i) 6729 ice_clean_rx_ring(vsi->rx_rings[i]); 6730 6731 if (tx_err || rx_err || link_err || vlan_err) { 6732 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6733 vsi->vsi_num, vsi->vsw->sw_id); 6734 return -EIO; 6735 } 6736 6737 return 0; 6738 } 6739 6740 /** 6741 * ice_down_up - shutdown the VSI connection and bring it up 6742 * @vsi: the VSI to be reconnected 6743 */ 6744 int ice_down_up(struct ice_vsi *vsi) 6745 { 6746 int ret; 6747 6748 /* if DOWN already set, nothing to do */ 6749 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6750 return 0; 6751 6752 ret = ice_down(vsi); 6753 if (ret) 6754 return ret; 6755 6756 ret = ice_up(vsi); 6757 if (ret) { 6758 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6759 return ret; 6760 } 6761 6762 return 0; 6763 } 6764 6765 /** 6766 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6767 * @vsi: VSI having resources allocated 6768 * 6769 * Return 0 on success, negative on failure 6770 */ 6771 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6772 { 6773 int i, err = 0; 6774 6775 if (!vsi->num_txq) { 6776 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6777 vsi->vsi_num); 6778 return -EINVAL; 6779 } 6780 6781 ice_for_each_txq(vsi, i) { 6782 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6783 6784 if (!ring) 6785 return -EINVAL; 6786 6787 if (vsi->netdev) 6788 ring->netdev = vsi->netdev; 6789 err = ice_setup_tx_ring(ring); 6790 if (err) 6791 break; 6792 } 6793 6794 return err; 6795 } 6796 6797 /** 6798 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6799 * @vsi: VSI having resources allocated 6800 * 6801 * Return 0 on success, negative on failure 6802 */ 6803 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6804 { 6805 int i, err = 0; 6806 6807 if (!vsi->num_rxq) { 6808 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6809 vsi->vsi_num); 6810 return -EINVAL; 6811 } 6812 6813 ice_for_each_rxq(vsi, i) { 6814 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6815 6816 if (!ring) 6817 return -EINVAL; 6818 6819 if (vsi->netdev) 6820 ring->netdev = vsi->netdev; 6821 err = ice_setup_rx_ring(ring); 6822 if (err) 6823 break; 6824 } 6825 6826 return err; 6827 } 6828 6829 /** 6830 * ice_vsi_open_ctrl - open control VSI for use 6831 * @vsi: the VSI to open 6832 * 6833 * Initialization of the Control VSI 6834 * 6835 * Returns 0 on success, negative value on error 6836 */ 6837 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6838 { 6839 char int_name[ICE_INT_NAME_STR_LEN]; 6840 struct ice_pf *pf = vsi->back; 6841 struct device *dev; 6842 int err; 6843 6844 dev = ice_pf_to_dev(pf); 6845 /* allocate descriptors */ 6846 err = ice_vsi_setup_tx_rings(vsi); 6847 if (err) 6848 goto err_setup_tx; 6849 6850 err = ice_vsi_setup_rx_rings(vsi); 6851 if (err) 6852 goto err_setup_rx; 6853 6854 err = ice_vsi_cfg(vsi); 6855 if (err) 6856 goto err_setup_rx; 6857 6858 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6859 dev_driver_string(dev), dev_name(dev)); 6860 err = ice_vsi_req_irq_msix(vsi, int_name); 6861 if (err) 6862 goto err_setup_rx; 6863 6864 ice_vsi_cfg_msix(vsi); 6865 6866 err = ice_vsi_start_all_rx_rings(vsi); 6867 if (err) 6868 goto err_up_complete; 6869 6870 clear_bit(ICE_VSI_DOWN, vsi->state); 6871 ice_vsi_ena_irq(vsi); 6872 6873 return 0; 6874 6875 err_up_complete: 6876 ice_down(vsi); 6877 err_setup_rx: 6878 ice_vsi_free_rx_rings(vsi); 6879 err_setup_tx: 6880 ice_vsi_free_tx_rings(vsi); 6881 6882 return err; 6883 } 6884 6885 /** 6886 * ice_vsi_open - Called when a network interface is made active 6887 * @vsi: the VSI to open 6888 * 6889 * Initialization of the VSI 6890 * 6891 * Returns 0 on success, negative value on error 6892 */ 6893 int ice_vsi_open(struct ice_vsi *vsi) 6894 { 6895 char int_name[ICE_INT_NAME_STR_LEN]; 6896 struct ice_pf *pf = vsi->back; 6897 int err; 6898 6899 /* allocate descriptors */ 6900 err = ice_vsi_setup_tx_rings(vsi); 6901 if (err) 6902 goto err_setup_tx; 6903 6904 err = ice_vsi_setup_rx_rings(vsi); 6905 if (err) 6906 goto err_setup_rx; 6907 6908 err = ice_vsi_cfg(vsi); 6909 if (err) 6910 goto err_setup_rx; 6911 6912 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6913 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6914 err = ice_vsi_req_irq_msix(vsi, int_name); 6915 if (err) 6916 goto err_setup_rx; 6917 6918 if (vsi->type == ICE_VSI_PF) { 6919 /* Notify the stack of the actual queue counts. */ 6920 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6921 if (err) 6922 goto err_set_qs; 6923 6924 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6925 if (err) 6926 goto err_set_qs; 6927 } 6928 6929 err = ice_up_complete(vsi); 6930 if (err) 6931 goto err_up_complete; 6932 6933 return 0; 6934 6935 err_up_complete: 6936 ice_down(vsi); 6937 err_set_qs: 6938 ice_vsi_free_irq(vsi); 6939 err_setup_rx: 6940 ice_vsi_free_rx_rings(vsi); 6941 err_setup_tx: 6942 ice_vsi_free_tx_rings(vsi); 6943 6944 return err; 6945 } 6946 6947 /** 6948 * ice_vsi_release_all - Delete all VSIs 6949 * @pf: PF from which all VSIs are being removed 6950 */ 6951 static void ice_vsi_release_all(struct ice_pf *pf) 6952 { 6953 int err, i; 6954 6955 if (!pf->vsi) 6956 return; 6957 6958 ice_for_each_vsi(pf, i) { 6959 if (!pf->vsi[i]) 6960 continue; 6961 6962 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6963 continue; 6964 6965 err = ice_vsi_release(pf->vsi[i]); 6966 if (err) 6967 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6968 i, err, pf->vsi[i]->vsi_num); 6969 } 6970 } 6971 6972 /** 6973 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6974 * @pf: pointer to the PF instance 6975 * @type: VSI type to rebuild 6976 * 6977 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6978 */ 6979 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6980 { 6981 struct device *dev = ice_pf_to_dev(pf); 6982 int i, err; 6983 6984 ice_for_each_vsi(pf, i) { 6985 struct ice_vsi *vsi = pf->vsi[i]; 6986 6987 if (!vsi || vsi->type != type) 6988 continue; 6989 6990 /* rebuild the VSI */ 6991 err = ice_vsi_rebuild(vsi, true); 6992 if (err) { 6993 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6994 err, vsi->idx, ice_vsi_type_str(type)); 6995 return err; 6996 } 6997 6998 /* replay filters for the VSI */ 6999 err = ice_replay_vsi(&pf->hw, vsi->idx); 7000 if (err) { 7001 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7002 err, vsi->idx, ice_vsi_type_str(type)); 7003 return err; 7004 } 7005 7006 /* Re-map HW VSI number, using VSI handle that has been 7007 * previously validated in ice_replay_vsi() call above 7008 */ 7009 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7010 7011 /* enable the VSI */ 7012 err = ice_ena_vsi(vsi, false); 7013 if (err) { 7014 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7015 err, vsi->idx, ice_vsi_type_str(type)); 7016 return err; 7017 } 7018 7019 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7020 ice_vsi_type_str(type)); 7021 } 7022 7023 return 0; 7024 } 7025 7026 /** 7027 * ice_update_pf_netdev_link - Update PF netdev link status 7028 * @pf: pointer to the PF instance 7029 */ 7030 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7031 { 7032 bool link_up; 7033 int i; 7034 7035 ice_for_each_vsi(pf, i) { 7036 struct ice_vsi *vsi = pf->vsi[i]; 7037 7038 if (!vsi || vsi->type != ICE_VSI_PF) 7039 return; 7040 7041 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7042 if (link_up) { 7043 netif_carrier_on(pf->vsi[i]->netdev); 7044 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7045 } else { 7046 netif_carrier_off(pf->vsi[i]->netdev); 7047 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7048 } 7049 } 7050 } 7051 7052 /** 7053 * ice_rebuild - rebuild after reset 7054 * @pf: PF to rebuild 7055 * @reset_type: type of reset 7056 * 7057 * Do not rebuild VF VSI in this flow because that is already handled via 7058 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7059 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7060 * to reset/rebuild all the VF VSI twice. 7061 */ 7062 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7063 { 7064 struct device *dev = ice_pf_to_dev(pf); 7065 struct ice_hw *hw = &pf->hw; 7066 bool dvm; 7067 int err; 7068 7069 if (test_bit(ICE_DOWN, pf->state)) 7070 goto clear_recovery; 7071 7072 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7073 7074 #define ICE_EMP_RESET_SLEEP_MS 5000 7075 if (reset_type == ICE_RESET_EMPR) { 7076 /* If an EMP reset has occurred, any previously pending flash 7077 * update will have completed. We no longer know whether or 7078 * not the NVM update EMP reset is restricted. 7079 */ 7080 pf->fw_emp_reset_disabled = false; 7081 7082 msleep(ICE_EMP_RESET_SLEEP_MS); 7083 } 7084 7085 err = ice_init_all_ctrlq(hw); 7086 if (err) { 7087 dev_err(dev, "control queues init failed %d\n", err); 7088 goto err_init_ctrlq; 7089 } 7090 7091 /* if DDP was previously loaded successfully */ 7092 if (!ice_is_safe_mode(pf)) { 7093 /* reload the SW DB of filter tables */ 7094 if (reset_type == ICE_RESET_PFR) 7095 ice_fill_blk_tbls(hw); 7096 else 7097 /* Reload DDP Package after CORER/GLOBR reset */ 7098 ice_load_pkg(NULL, pf); 7099 } 7100 7101 err = ice_clear_pf_cfg(hw); 7102 if (err) { 7103 dev_err(dev, "clear PF configuration failed %d\n", err); 7104 goto err_init_ctrlq; 7105 } 7106 7107 ice_clear_pxe_mode(hw); 7108 7109 err = ice_init_nvm(hw); 7110 if (err) { 7111 dev_err(dev, "ice_init_nvm failed %d\n", err); 7112 goto err_init_ctrlq; 7113 } 7114 7115 err = ice_get_caps(hw); 7116 if (err) { 7117 dev_err(dev, "ice_get_caps failed %d\n", err); 7118 goto err_init_ctrlq; 7119 } 7120 7121 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7122 if (err) { 7123 dev_err(dev, "set_mac_cfg failed %d\n", err); 7124 goto err_init_ctrlq; 7125 } 7126 7127 dvm = ice_is_dvm_ena(hw); 7128 7129 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7130 if (err) 7131 goto err_init_ctrlq; 7132 7133 err = ice_sched_init_port(hw->port_info); 7134 if (err) 7135 goto err_sched_init_port; 7136 7137 /* start misc vector */ 7138 err = ice_req_irq_msix_misc(pf); 7139 if (err) { 7140 dev_err(dev, "misc vector setup failed: %d\n", err); 7141 goto err_sched_init_port; 7142 } 7143 7144 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7145 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7146 if (!rd32(hw, PFQF_FD_SIZE)) { 7147 u16 unused, guar, b_effort; 7148 7149 guar = hw->func_caps.fd_fltr_guar; 7150 b_effort = hw->func_caps.fd_fltr_best_effort; 7151 7152 /* force guaranteed filter pool for PF */ 7153 ice_alloc_fd_guar_item(hw, &unused, guar); 7154 /* force shared filter pool for PF */ 7155 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7156 } 7157 } 7158 7159 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7160 ice_dcb_rebuild(pf); 7161 7162 /* If the PF previously had enabled PTP, PTP init needs to happen before 7163 * the VSI rebuild. If not, this causes the PTP link status events to 7164 * fail. 7165 */ 7166 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7167 ice_ptp_reset(pf); 7168 7169 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7170 ice_gnss_init(pf); 7171 7172 /* rebuild PF VSI */ 7173 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7174 if (err) { 7175 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7176 goto err_vsi_rebuild; 7177 } 7178 7179 /* configure PTP timestamping after VSI rebuild */ 7180 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7181 ice_ptp_cfg_timestamp(pf, false); 7182 7183 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7184 if (err) { 7185 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7186 goto err_vsi_rebuild; 7187 } 7188 7189 if (reset_type == ICE_RESET_PFR) { 7190 err = ice_rebuild_channels(pf); 7191 if (err) { 7192 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7193 err); 7194 goto err_vsi_rebuild; 7195 } 7196 } 7197 7198 /* If Flow Director is active */ 7199 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7200 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7201 if (err) { 7202 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7203 goto err_vsi_rebuild; 7204 } 7205 7206 /* replay HW Flow Director recipes */ 7207 if (hw->fdir_prof) 7208 ice_fdir_replay_flows(hw); 7209 7210 /* replay Flow Director filters */ 7211 ice_fdir_replay_fltrs(pf); 7212 7213 ice_rebuild_arfs(pf); 7214 } 7215 7216 ice_update_pf_netdev_link(pf); 7217 7218 /* tell the firmware we are up */ 7219 err = ice_send_version(pf); 7220 if (err) { 7221 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7222 err); 7223 goto err_vsi_rebuild; 7224 } 7225 7226 ice_replay_post(hw); 7227 7228 /* if we get here, reset flow is successful */ 7229 clear_bit(ICE_RESET_FAILED, pf->state); 7230 7231 ice_plug_aux_dev(pf); 7232 return; 7233 7234 err_vsi_rebuild: 7235 err_sched_init_port: 7236 ice_sched_cleanup_all(hw); 7237 err_init_ctrlq: 7238 ice_shutdown_all_ctrlq(hw); 7239 set_bit(ICE_RESET_FAILED, pf->state); 7240 clear_recovery: 7241 /* set this bit in PF state to control service task scheduling */ 7242 set_bit(ICE_NEEDS_RESTART, pf->state); 7243 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7244 } 7245 7246 /** 7247 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7248 * @vsi: Pointer to VSI structure 7249 */ 7250 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7251 { 7252 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7253 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7254 else 7255 return ICE_RXBUF_3072; 7256 } 7257 7258 /** 7259 * ice_change_mtu - NDO callback to change the MTU 7260 * @netdev: network interface device structure 7261 * @new_mtu: new value for maximum frame size 7262 * 7263 * Returns 0 on success, negative on failure 7264 */ 7265 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7266 { 7267 struct ice_netdev_priv *np = netdev_priv(netdev); 7268 struct ice_vsi *vsi = np->vsi; 7269 struct ice_pf *pf = vsi->back; 7270 u8 count = 0; 7271 int err = 0; 7272 7273 if (new_mtu == (int)netdev->mtu) { 7274 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7275 return 0; 7276 } 7277 7278 if (ice_is_xdp_ena_vsi(vsi)) { 7279 int frame_size = ice_max_xdp_frame_size(vsi); 7280 7281 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7282 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7283 frame_size - ICE_ETH_PKT_HDR_PAD); 7284 return -EINVAL; 7285 } 7286 } 7287 7288 /* if a reset is in progress, wait for some time for it to complete */ 7289 do { 7290 if (ice_is_reset_in_progress(pf->state)) { 7291 count++; 7292 usleep_range(1000, 2000); 7293 } else { 7294 break; 7295 } 7296 7297 } while (count < 100); 7298 7299 if (count == 100) { 7300 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7301 return -EBUSY; 7302 } 7303 7304 netdev->mtu = (unsigned int)new_mtu; 7305 7306 /* if VSI is up, bring it down and then back up */ 7307 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7308 err = ice_down(vsi); 7309 if (err) { 7310 netdev_err(netdev, "change MTU if_down err %d\n", err); 7311 return err; 7312 } 7313 7314 err = ice_up(vsi); 7315 if (err) { 7316 netdev_err(netdev, "change MTU if_up err %d\n", err); 7317 return err; 7318 } 7319 } 7320 7321 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7322 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7323 7324 return err; 7325 } 7326 7327 /** 7328 * ice_eth_ioctl - Access the hwtstamp interface 7329 * @netdev: network interface device structure 7330 * @ifr: interface request data 7331 * @cmd: ioctl command 7332 */ 7333 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7334 { 7335 struct ice_netdev_priv *np = netdev_priv(netdev); 7336 struct ice_pf *pf = np->vsi->back; 7337 7338 switch (cmd) { 7339 case SIOCGHWTSTAMP: 7340 return ice_ptp_get_ts_config(pf, ifr); 7341 case SIOCSHWTSTAMP: 7342 return ice_ptp_set_ts_config(pf, ifr); 7343 default: 7344 return -EOPNOTSUPP; 7345 } 7346 } 7347 7348 /** 7349 * ice_aq_str - convert AQ err code to a string 7350 * @aq_err: the AQ error code to convert 7351 */ 7352 const char *ice_aq_str(enum ice_aq_err aq_err) 7353 { 7354 switch (aq_err) { 7355 case ICE_AQ_RC_OK: 7356 return "OK"; 7357 case ICE_AQ_RC_EPERM: 7358 return "ICE_AQ_RC_EPERM"; 7359 case ICE_AQ_RC_ENOENT: 7360 return "ICE_AQ_RC_ENOENT"; 7361 case ICE_AQ_RC_ENOMEM: 7362 return "ICE_AQ_RC_ENOMEM"; 7363 case ICE_AQ_RC_EBUSY: 7364 return "ICE_AQ_RC_EBUSY"; 7365 case ICE_AQ_RC_EEXIST: 7366 return "ICE_AQ_RC_EEXIST"; 7367 case ICE_AQ_RC_EINVAL: 7368 return "ICE_AQ_RC_EINVAL"; 7369 case ICE_AQ_RC_ENOSPC: 7370 return "ICE_AQ_RC_ENOSPC"; 7371 case ICE_AQ_RC_ENOSYS: 7372 return "ICE_AQ_RC_ENOSYS"; 7373 case ICE_AQ_RC_EMODE: 7374 return "ICE_AQ_RC_EMODE"; 7375 case ICE_AQ_RC_ENOSEC: 7376 return "ICE_AQ_RC_ENOSEC"; 7377 case ICE_AQ_RC_EBADSIG: 7378 return "ICE_AQ_RC_EBADSIG"; 7379 case ICE_AQ_RC_ESVN: 7380 return "ICE_AQ_RC_ESVN"; 7381 case ICE_AQ_RC_EBADMAN: 7382 return "ICE_AQ_RC_EBADMAN"; 7383 case ICE_AQ_RC_EBADBUF: 7384 return "ICE_AQ_RC_EBADBUF"; 7385 } 7386 7387 return "ICE_AQ_RC_UNKNOWN"; 7388 } 7389 7390 /** 7391 * ice_set_rss_lut - Set RSS LUT 7392 * @vsi: Pointer to VSI structure 7393 * @lut: Lookup table 7394 * @lut_size: Lookup table size 7395 * 7396 * Returns 0 on success, negative on failure 7397 */ 7398 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7399 { 7400 struct ice_aq_get_set_rss_lut_params params = {}; 7401 struct ice_hw *hw = &vsi->back->hw; 7402 int status; 7403 7404 if (!lut) 7405 return -EINVAL; 7406 7407 params.vsi_handle = vsi->idx; 7408 params.lut_size = lut_size; 7409 params.lut_type = vsi->rss_lut_type; 7410 params.lut = lut; 7411 7412 status = ice_aq_set_rss_lut(hw, ¶ms); 7413 if (status) 7414 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7415 status, ice_aq_str(hw->adminq.sq_last_status)); 7416 7417 return status; 7418 } 7419 7420 /** 7421 * ice_set_rss_key - Set RSS key 7422 * @vsi: Pointer to the VSI structure 7423 * @seed: RSS hash seed 7424 * 7425 * Returns 0 on success, negative on failure 7426 */ 7427 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7428 { 7429 struct ice_hw *hw = &vsi->back->hw; 7430 int status; 7431 7432 if (!seed) 7433 return -EINVAL; 7434 7435 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7436 if (status) 7437 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7438 status, ice_aq_str(hw->adminq.sq_last_status)); 7439 7440 return status; 7441 } 7442 7443 /** 7444 * ice_get_rss_lut - Get RSS LUT 7445 * @vsi: Pointer to VSI structure 7446 * @lut: Buffer to store the lookup table entries 7447 * @lut_size: Size of buffer to store the lookup table entries 7448 * 7449 * Returns 0 on success, negative on failure 7450 */ 7451 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7452 { 7453 struct ice_aq_get_set_rss_lut_params params = {}; 7454 struct ice_hw *hw = &vsi->back->hw; 7455 int status; 7456 7457 if (!lut) 7458 return -EINVAL; 7459 7460 params.vsi_handle = vsi->idx; 7461 params.lut_size = lut_size; 7462 params.lut_type = vsi->rss_lut_type; 7463 params.lut = lut; 7464 7465 status = ice_aq_get_rss_lut(hw, ¶ms); 7466 if (status) 7467 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7468 status, ice_aq_str(hw->adminq.sq_last_status)); 7469 7470 return status; 7471 } 7472 7473 /** 7474 * ice_get_rss_key - Get RSS key 7475 * @vsi: Pointer to VSI structure 7476 * @seed: Buffer to store the key in 7477 * 7478 * Returns 0 on success, negative on failure 7479 */ 7480 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7481 { 7482 struct ice_hw *hw = &vsi->back->hw; 7483 int status; 7484 7485 if (!seed) 7486 return -EINVAL; 7487 7488 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7489 if (status) 7490 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7491 status, ice_aq_str(hw->adminq.sq_last_status)); 7492 7493 return status; 7494 } 7495 7496 /** 7497 * ice_bridge_getlink - Get the hardware bridge mode 7498 * @skb: skb buff 7499 * @pid: process ID 7500 * @seq: RTNL message seq 7501 * @dev: the netdev being configured 7502 * @filter_mask: filter mask passed in 7503 * @nlflags: netlink flags passed in 7504 * 7505 * Return the bridge mode (VEB/VEPA) 7506 */ 7507 static int 7508 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7509 struct net_device *dev, u32 filter_mask, int nlflags) 7510 { 7511 struct ice_netdev_priv *np = netdev_priv(dev); 7512 struct ice_vsi *vsi = np->vsi; 7513 struct ice_pf *pf = vsi->back; 7514 u16 bmode; 7515 7516 bmode = pf->first_sw->bridge_mode; 7517 7518 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7519 filter_mask, NULL); 7520 } 7521 7522 /** 7523 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7524 * @vsi: Pointer to VSI structure 7525 * @bmode: Hardware bridge mode (VEB/VEPA) 7526 * 7527 * Returns 0 on success, negative on failure 7528 */ 7529 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7530 { 7531 struct ice_aqc_vsi_props *vsi_props; 7532 struct ice_hw *hw = &vsi->back->hw; 7533 struct ice_vsi_ctx *ctxt; 7534 int ret; 7535 7536 vsi_props = &vsi->info; 7537 7538 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7539 if (!ctxt) 7540 return -ENOMEM; 7541 7542 ctxt->info = vsi->info; 7543 7544 if (bmode == BRIDGE_MODE_VEB) 7545 /* change from VEPA to VEB mode */ 7546 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7547 else 7548 /* change from VEB to VEPA mode */ 7549 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7550 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7551 7552 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7553 if (ret) { 7554 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7555 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7556 goto out; 7557 } 7558 /* Update sw flags for book keeping */ 7559 vsi_props->sw_flags = ctxt->info.sw_flags; 7560 7561 out: 7562 kfree(ctxt); 7563 return ret; 7564 } 7565 7566 /** 7567 * ice_bridge_setlink - Set the hardware bridge mode 7568 * @dev: the netdev being configured 7569 * @nlh: RTNL message 7570 * @flags: bridge setlink flags 7571 * @extack: netlink extended ack 7572 * 7573 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7574 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7575 * not already set for all VSIs connected to this switch. And also update the 7576 * unicast switch filter rules for the corresponding switch of the netdev. 7577 */ 7578 static int 7579 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7580 u16 __always_unused flags, 7581 struct netlink_ext_ack __always_unused *extack) 7582 { 7583 struct ice_netdev_priv *np = netdev_priv(dev); 7584 struct ice_pf *pf = np->vsi->back; 7585 struct nlattr *attr, *br_spec; 7586 struct ice_hw *hw = &pf->hw; 7587 struct ice_sw *pf_sw; 7588 int rem, v, err = 0; 7589 7590 pf_sw = pf->first_sw; 7591 /* find the attribute in the netlink message */ 7592 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7593 7594 nla_for_each_nested(attr, br_spec, rem) { 7595 __u16 mode; 7596 7597 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7598 continue; 7599 mode = nla_get_u16(attr); 7600 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7601 return -EINVAL; 7602 /* Continue if bridge mode is not being flipped */ 7603 if (mode == pf_sw->bridge_mode) 7604 continue; 7605 /* Iterates through the PF VSI list and update the loopback 7606 * mode of the VSI 7607 */ 7608 ice_for_each_vsi(pf, v) { 7609 if (!pf->vsi[v]) 7610 continue; 7611 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7612 if (err) 7613 return err; 7614 } 7615 7616 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7617 /* Update the unicast switch filter rules for the corresponding 7618 * switch of the netdev 7619 */ 7620 err = ice_update_sw_rule_bridge_mode(hw); 7621 if (err) { 7622 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7623 mode, err, 7624 ice_aq_str(hw->adminq.sq_last_status)); 7625 /* revert hw->evb_veb */ 7626 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7627 return err; 7628 } 7629 7630 pf_sw->bridge_mode = mode; 7631 } 7632 7633 return 0; 7634 } 7635 7636 /** 7637 * ice_tx_timeout - Respond to a Tx Hang 7638 * @netdev: network interface device structure 7639 * @txqueue: Tx queue 7640 */ 7641 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7642 { 7643 struct ice_netdev_priv *np = netdev_priv(netdev); 7644 struct ice_tx_ring *tx_ring = NULL; 7645 struct ice_vsi *vsi = np->vsi; 7646 struct ice_pf *pf = vsi->back; 7647 u32 i; 7648 7649 pf->tx_timeout_count++; 7650 7651 /* Check if PFC is enabled for the TC to which the queue belongs 7652 * to. If yes then Tx timeout is not caused by a hung queue, no 7653 * need to reset and rebuild 7654 */ 7655 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7656 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7657 txqueue); 7658 return; 7659 } 7660 7661 /* now that we have an index, find the tx_ring struct */ 7662 ice_for_each_txq(vsi, i) 7663 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7664 if (txqueue == vsi->tx_rings[i]->q_index) { 7665 tx_ring = vsi->tx_rings[i]; 7666 break; 7667 } 7668 7669 /* Reset recovery level if enough time has elapsed after last timeout. 7670 * Also ensure no new reset action happens before next timeout period. 7671 */ 7672 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7673 pf->tx_timeout_recovery_level = 1; 7674 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7675 netdev->watchdog_timeo))) 7676 return; 7677 7678 if (tx_ring) { 7679 struct ice_hw *hw = &pf->hw; 7680 u32 head, val = 0; 7681 7682 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7683 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7684 /* Read interrupt register */ 7685 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7686 7687 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7688 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7689 head, tx_ring->next_to_use, val); 7690 } 7691 7692 pf->tx_timeout_last_recovery = jiffies; 7693 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7694 pf->tx_timeout_recovery_level, txqueue); 7695 7696 switch (pf->tx_timeout_recovery_level) { 7697 case 1: 7698 set_bit(ICE_PFR_REQ, pf->state); 7699 break; 7700 case 2: 7701 set_bit(ICE_CORER_REQ, pf->state); 7702 break; 7703 case 3: 7704 set_bit(ICE_GLOBR_REQ, pf->state); 7705 break; 7706 default: 7707 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7708 set_bit(ICE_DOWN, pf->state); 7709 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7710 set_bit(ICE_SERVICE_DIS, pf->state); 7711 break; 7712 } 7713 7714 ice_service_task_schedule(pf); 7715 pf->tx_timeout_recovery_level++; 7716 } 7717 7718 /** 7719 * ice_setup_tc_cls_flower - flower classifier offloads 7720 * @np: net device to configure 7721 * @filter_dev: device on which filter is added 7722 * @cls_flower: offload data 7723 */ 7724 static int 7725 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7726 struct net_device *filter_dev, 7727 struct flow_cls_offload *cls_flower) 7728 { 7729 struct ice_vsi *vsi = np->vsi; 7730 7731 if (cls_flower->common.chain_index) 7732 return -EOPNOTSUPP; 7733 7734 switch (cls_flower->command) { 7735 case FLOW_CLS_REPLACE: 7736 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7737 case FLOW_CLS_DESTROY: 7738 return ice_del_cls_flower(vsi, cls_flower); 7739 default: 7740 return -EINVAL; 7741 } 7742 } 7743 7744 /** 7745 * ice_setup_tc_block_cb - callback handler registered for TC block 7746 * @type: TC SETUP type 7747 * @type_data: TC flower offload data that contains user input 7748 * @cb_priv: netdev private data 7749 */ 7750 static int 7751 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7752 { 7753 struct ice_netdev_priv *np = cb_priv; 7754 7755 switch (type) { 7756 case TC_SETUP_CLSFLOWER: 7757 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7758 type_data); 7759 default: 7760 return -EOPNOTSUPP; 7761 } 7762 } 7763 7764 /** 7765 * ice_validate_mqprio_qopt - Validate TCF input parameters 7766 * @vsi: Pointer to VSI 7767 * @mqprio_qopt: input parameters for mqprio queue configuration 7768 * 7769 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7770 * needed), and make sure user doesn't specify qcount and BW rate limit 7771 * for TCs, which are more than "num_tc" 7772 */ 7773 static int 7774 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7775 struct tc_mqprio_qopt_offload *mqprio_qopt) 7776 { 7777 u64 sum_max_rate = 0, sum_min_rate = 0; 7778 int non_power_of_2_qcount = 0; 7779 struct ice_pf *pf = vsi->back; 7780 int max_rss_q_cnt = 0; 7781 struct device *dev; 7782 int i, speed; 7783 u8 num_tc; 7784 7785 if (vsi->type != ICE_VSI_PF) 7786 return -EINVAL; 7787 7788 if (mqprio_qopt->qopt.offset[0] != 0 || 7789 mqprio_qopt->qopt.num_tc < 1 || 7790 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7791 return -EINVAL; 7792 7793 dev = ice_pf_to_dev(pf); 7794 vsi->ch_rss_size = 0; 7795 num_tc = mqprio_qopt->qopt.num_tc; 7796 7797 for (i = 0; num_tc; i++) { 7798 int qcount = mqprio_qopt->qopt.count[i]; 7799 u64 max_rate, min_rate, rem; 7800 7801 if (!qcount) 7802 return -EINVAL; 7803 7804 if (is_power_of_2(qcount)) { 7805 if (non_power_of_2_qcount && 7806 qcount > non_power_of_2_qcount) { 7807 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7808 qcount, non_power_of_2_qcount); 7809 return -EINVAL; 7810 } 7811 if (qcount > max_rss_q_cnt) 7812 max_rss_q_cnt = qcount; 7813 } else { 7814 if (non_power_of_2_qcount && 7815 qcount != non_power_of_2_qcount) { 7816 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7817 qcount, non_power_of_2_qcount); 7818 return -EINVAL; 7819 } 7820 if (qcount < max_rss_q_cnt) { 7821 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7822 qcount, max_rss_q_cnt); 7823 return -EINVAL; 7824 } 7825 max_rss_q_cnt = qcount; 7826 non_power_of_2_qcount = qcount; 7827 } 7828 7829 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7830 * converts the bandwidth rate limit into Bytes/s when 7831 * passing it down to the driver. So convert input bandwidth 7832 * from Bytes/s to Kbps 7833 */ 7834 max_rate = mqprio_qopt->max_rate[i]; 7835 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7836 sum_max_rate += max_rate; 7837 7838 /* min_rate is minimum guaranteed rate and it can't be zero */ 7839 min_rate = mqprio_qopt->min_rate[i]; 7840 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7841 sum_min_rate += min_rate; 7842 7843 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7844 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7845 min_rate, ICE_MIN_BW_LIMIT); 7846 return -EINVAL; 7847 } 7848 7849 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7850 if (rem) { 7851 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7852 i, ICE_MIN_BW_LIMIT); 7853 return -EINVAL; 7854 } 7855 7856 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7857 if (rem) { 7858 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7859 i, ICE_MIN_BW_LIMIT); 7860 return -EINVAL; 7861 } 7862 7863 /* min_rate can't be more than max_rate, except when max_rate 7864 * is zero (implies max_rate sought is max line rate). In such 7865 * a case min_rate can be more than max. 7866 */ 7867 if (max_rate && min_rate > max_rate) { 7868 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7869 min_rate, max_rate); 7870 return -EINVAL; 7871 } 7872 7873 if (i >= mqprio_qopt->qopt.num_tc - 1) 7874 break; 7875 if (mqprio_qopt->qopt.offset[i + 1] != 7876 (mqprio_qopt->qopt.offset[i] + qcount)) 7877 return -EINVAL; 7878 } 7879 if (vsi->num_rxq < 7880 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7881 return -EINVAL; 7882 if (vsi->num_txq < 7883 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7884 return -EINVAL; 7885 7886 speed = ice_get_link_speed_kbps(vsi); 7887 if (sum_max_rate && sum_max_rate > (u64)speed) { 7888 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7889 sum_max_rate, speed); 7890 return -EINVAL; 7891 } 7892 if (sum_min_rate && sum_min_rate > (u64)speed) { 7893 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7894 sum_min_rate, speed); 7895 return -EINVAL; 7896 } 7897 7898 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7899 vsi->ch_rss_size = max_rss_q_cnt; 7900 7901 return 0; 7902 } 7903 7904 /** 7905 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7906 * @pf: ptr to PF device 7907 * @vsi: ptr to VSI 7908 */ 7909 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7910 { 7911 struct device *dev = ice_pf_to_dev(pf); 7912 bool added = false; 7913 struct ice_hw *hw; 7914 int flow; 7915 7916 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7917 return -EINVAL; 7918 7919 hw = &pf->hw; 7920 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7921 struct ice_fd_hw_prof *prof; 7922 int tun, status; 7923 u64 entry_h; 7924 7925 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7926 hw->fdir_prof[flow]->cnt)) 7927 continue; 7928 7929 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7930 enum ice_flow_priority prio; 7931 u64 prof_id; 7932 7933 /* add this VSI to FDir profile for this flow */ 7934 prio = ICE_FLOW_PRIO_NORMAL; 7935 prof = hw->fdir_prof[flow]; 7936 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7937 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7938 prof->vsi_h[0], vsi->idx, 7939 prio, prof->fdir_seg[tun], 7940 &entry_h); 7941 if (status) { 7942 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7943 vsi->idx, flow); 7944 continue; 7945 } 7946 7947 prof->entry_h[prof->cnt][tun] = entry_h; 7948 } 7949 7950 /* store VSI for filter replay and delete */ 7951 prof->vsi_h[prof->cnt] = vsi->idx; 7952 prof->cnt++; 7953 7954 added = true; 7955 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7956 flow); 7957 } 7958 7959 if (!added) 7960 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7961 7962 return 0; 7963 } 7964 7965 /** 7966 * ice_add_channel - add a channel by adding VSI 7967 * @pf: ptr to PF device 7968 * @sw_id: underlying HW switching element ID 7969 * @ch: ptr to channel structure 7970 * 7971 * Add a channel (VSI) using add_vsi and queue_map 7972 */ 7973 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7974 { 7975 struct device *dev = ice_pf_to_dev(pf); 7976 struct ice_vsi *vsi; 7977 7978 if (ch->type != ICE_VSI_CHNL) { 7979 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7980 return -EINVAL; 7981 } 7982 7983 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7984 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7985 dev_err(dev, "create chnl VSI failure\n"); 7986 return -EINVAL; 7987 } 7988 7989 ice_add_vsi_to_fdir(pf, vsi); 7990 7991 ch->sw_id = sw_id; 7992 ch->vsi_num = vsi->vsi_num; 7993 ch->info.mapping_flags = vsi->info.mapping_flags; 7994 ch->ch_vsi = vsi; 7995 /* set the back pointer of channel for newly created VSI */ 7996 vsi->ch = ch; 7997 7998 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7999 sizeof(vsi->info.q_mapping)); 8000 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8001 sizeof(vsi->info.tc_mapping)); 8002 8003 return 0; 8004 } 8005 8006 /** 8007 * ice_chnl_cfg_res 8008 * @vsi: the VSI being setup 8009 * @ch: ptr to channel structure 8010 * 8011 * Configure channel specific resources such as rings, vector. 8012 */ 8013 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8014 { 8015 int i; 8016 8017 for (i = 0; i < ch->num_txq; i++) { 8018 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8019 struct ice_ring_container *rc; 8020 struct ice_tx_ring *tx_ring; 8021 struct ice_rx_ring *rx_ring; 8022 8023 tx_ring = vsi->tx_rings[ch->base_q + i]; 8024 rx_ring = vsi->rx_rings[ch->base_q + i]; 8025 if (!tx_ring || !rx_ring) 8026 continue; 8027 8028 /* setup ring being channel enabled */ 8029 tx_ring->ch = ch; 8030 rx_ring->ch = ch; 8031 8032 /* following code block sets up vector specific attributes */ 8033 tx_q_vector = tx_ring->q_vector; 8034 rx_q_vector = rx_ring->q_vector; 8035 if (!tx_q_vector && !rx_q_vector) 8036 continue; 8037 8038 if (tx_q_vector) { 8039 tx_q_vector->ch = ch; 8040 /* setup Tx and Rx ITR setting if DIM is off */ 8041 rc = &tx_q_vector->tx; 8042 if (!ITR_IS_DYNAMIC(rc)) 8043 ice_write_itr(rc, rc->itr_setting); 8044 } 8045 if (rx_q_vector) { 8046 rx_q_vector->ch = ch; 8047 /* setup Tx and Rx ITR setting if DIM is off */ 8048 rc = &rx_q_vector->rx; 8049 if (!ITR_IS_DYNAMIC(rc)) 8050 ice_write_itr(rc, rc->itr_setting); 8051 } 8052 } 8053 8054 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8055 * GLINT_ITR register would have written to perform in-context 8056 * update, hence perform flush 8057 */ 8058 if (ch->num_txq || ch->num_rxq) 8059 ice_flush(&vsi->back->hw); 8060 } 8061 8062 /** 8063 * ice_cfg_chnl_all_res - configure channel resources 8064 * @vsi: pte to main_vsi 8065 * @ch: ptr to channel structure 8066 * 8067 * This function configures channel specific resources such as flow-director 8068 * counter index, and other resources such as queues, vectors, ITR settings 8069 */ 8070 static void 8071 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8072 { 8073 /* configure channel (aka ADQ) resources such as queues, vectors, 8074 * ITR settings for channel specific vectors and anything else 8075 */ 8076 ice_chnl_cfg_res(vsi, ch); 8077 } 8078 8079 /** 8080 * ice_setup_hw_channel - setup new channel 8081 * @pf: ptr to PF device 8082 * @vsi: the VSI being setup 8083 * @ch: ptr to channel structure 8084 * @sw_id: underlying HW switching element ID 8085 * @type: type of channel to be created (VMDq2/VF) 8086 * 8087 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8088 * and configures Tx rings accordingly 8089 */ 8090 static int 8091 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8092 struct ice_channel *ch, u16 sw_id, u8 type) 8093 { 8094 struct device *dev = ice_pf_to_dev(pf); 8095 int ret; 8096 8097 ch->base_q = vsi->next_base_q; 8098 ch->type = type; 8099 8100 ret = ice_add_channel(pf, sw_id, ch); 8101 if (ret) { 8102 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8103 return ret; 8104 } 8105 8106 /* configure/setup ADQ specific resources */ 8107 ice_cfg_chnl_all_res(vsi, ch); 8108 8109 /* make sure to update the next_base_q so that subsequent channel's 8110 * (aka ADQ) VSI queue map is correct 8111 */ 8112 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8113 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8114 ch->num_rxq); 8115 8116 return 0; 8117 } 8118 8119 /** 8120 * ice_setup_channel - setup new channel using uplink element 8121 * @pf: ptr to PF device 8122 * @vsi: the VSI being setup 8123 * @ch: ptr to channel structure 8124 * 8125 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8126 * and uplink switching element 8127 */ 8128 static bool 8129 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8130 struct ice_channel *ch) 8131 { 8132 struct device *dev = ice_pf_to_dev(pf); 8133 u16 sw_id; 8134 int ret; 8135 8136 if (vsi->type != ICE_VSI_PF) { 8137 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8138 return false; 8139 } 8140 8141 sw_id = pf->first_sw->sw_id; 8142 8143 /* create channel (VSI) */ 8144 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8145 if (ret) { 8146 dev_err(dev, "failed to setup hw_channel\n"); 8147 return false; 8148 } 8149 dev_dbg(dev, "successfully created channel()\n"); 8150 8151 return ch->ch_vsi ? true : false; 8152 } 8153 8154 /** 8155 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8156 * @vsi: VSI to be configured 8157 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8158 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8159 */ 8160 static int 8161 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8162 { 8163 int err; 8164 8165 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8166 if (err) 8167 return err; 8168 8169 return ice_set_max_bw_limit(vsi, max_tx_rate); 8170 } 8171 8172 /** 8173 * ice_create_q_channel - function to create channel 8174 * @vsi: VSI to be configured 8175 * @ch: ptr to channel (it contains channel specific params) 8176 * 8177 * This function creates channel (VSI) using num_queues specified by user, 8178 * reconfigs RSS if needed. 8179 */ 8180 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8181 { 8182 struct ice_pf *pf = vsi->back; 8183 struct device *dev; 8184 8185 if (!ch) 8186 return -EINVAL; 8187 8188 dev = ice_pf_to_dev(pf); 8189 if (!ch->num_txq || !ch->num_rxq) { 8190 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8191 return -EINVAL; 8192 } 8193 8194 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8195 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8196 vsi->cnt_q_avail, ch->num_txq); 8197 return -EINVAL; 8198 } 8199 8200 if (!ice_setup_channel(pf, vsi, ch)) { 8201 dev_info(dev, "Failed to setup channel\n"); 8202 return -EINVAL; 8203 } 8204 /* configure BW rate limit */ 8205 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8206 int ret; 8207 8208 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8209 ch->min_tx_rate); 8210 if (ret) 8211 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8212 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8213 else 8214 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8215 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8216 } 8217 8218 vsi->cnt_q_avail -= ch->num_txq; 8219 8220 return 0; 8221 } 8222 8223 /** 8224 * ice_rem_all_chnl_fltrs - removes all channel filters 8225 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8226 * 8227 * Remove all advanced switch filters only if they are channel specific 8228 * tc-flower based filter 8229 */ 8230 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8231 { 8232 struct ice_tc_flower_fltr *fltr; 8233 struct hlist_node *node; 8234 8235 /* to remove all channel filters, iterate an ordered list of filters */ 8236 hlist_for_each_entry_safe(fltr, node, 8237 &pf->tc_flower_fltr_list, 8238 tc_flower_node) { 8239 struct ice_rule_query_data rule; 8240 int status; 8241 8242 /* for now process only channel specific filters */ 8243 if (!ice_is_chnl_fltr(fltr)) 8244 continue; 8245 8246 rule.rid = fltr->rid; 8247 rule.rule_id = fltr->rule_id; 8248 rule.vsi_handle = fltr->dest_id; 8249 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8250 if (status) { 8251 if (status == -ENOENT) 8252 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8253 rule.rule_id); 8254 else 8255 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8256 status); 8257 } else if (fltr->dest_vsi) { 8258 /* update advanced switch filter count */ 8259 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8260 u32 flags = fltr->flags; 8261 8262 fltr->dest_vsi->num_chnl_fltr--; 8263 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8264 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8265 pf->num_dmac_chnl_fltrs--; 8266 } 8267 } 8268 8269 hlist_del(&fltr->tc_flower_node); 8270 kfree(fltr); 8271 } 8272 } 8273 8274 /** 8275 * ice_remove_q_channels - Remove queue channels for the TCs 8276 * @vsi: VSI to be configured 8277 * @rem_fltr: delete advanced switch filter or not 8278 * 8279 * Remove queue channels for the TCs 8280 */ 8281 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8282 { 8283 struct ice_channel *ch, *ch_tmp; 8284 struct ice_pf *pf = vsi->back; 8285 int i; 8286 8287 /* remove all tc-flower based filter if they are channel filters only */ 8288 if (rem_fltr) 8289 ice_rem_all_chnl_fltrs(pf); 8290 8291 /* remove ntuple filters since queue configuration is being changed */ 8292 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8293 struct ice_hw *hw = &pf->hw; 8294 8295 mutex_lock(&hw->fdir_fltr_lock); 8296 ice_fdir_del_all_fltrs(vsi); 8297 mutex_unlock(&hw->fdir_fltr_lock); 8298 } 8299 8300 /* perform cleanup for channels if they exist */ 8301 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8302 struct ice_vsi *ch_vsi; 8303 8304 list_del(&ch->list); 8305 ch_vsi = ch->ch_vsi; 8306 if (!ch_vsi) { 8307 kfree(ch); 8308 continue; 8309 } 8310 8311 /* Reset queue contexts */ 8312 for (i = 0; i < ch->num_rxq; i++) { 8313 struct ice_tx_ring *tx_ring; 8314 struct ice_rx_ring *rx_ring; 8315 8316 tx_ring = vsi->tx_rings[ch->base_q + i]; 8317 rx_ring = vsi->rx_rings[ch->base_q + i]; 8318 if (tx_ring) { 8319 tx_ring->ch = NULL; 8320 if (tx_ring->q_vector) 8321 tx_ring->q_vector->ch = NULL; 8322 } 8323 if (rx_ring) { 8324 rx_ring->ch = NULL; 8325 if (rx_ring->q_vector) 8326 rx_ring->q_vector->ch = NULL; 8327 } 8328 } 8329 8330 /* Release FD resources for the channel VSI */ 8331 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8332 8333 /* clear the VSI from scheduler tree */ 8334 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8335 8336 /* Delete VSI from FW */ 8337 ice_vsi_delete(ch->ch_vsi); 8338 8339 /* Delete VSI from PF and HW VSI arrays */ 8340 ice_vsi_clear(ch->ch_vsi); 8341 8342 /* free the channel */ 8343 kfree(ch); 8344 } 8345 8346 /* clear the channel VSI map which is stored in main VSI */ 8347 ice_for_each_chnl_tc(i) 8348 vsi->tc_map_vsi[i] = NULL; 8349 8350 /* reset main VSI's all TC information */ 8351 vsi->all_enatc = 0; 8352 vsi->all_numtc = 0; 8353 } 8354 8355 /** 8356 * ice_rebuild_channels - rebuild channel 8357 * @pf: ptr to PF 8358 * 8359 * Recreate channel VSIs and replay filters 8360 */ 8361 static int ice_rebuild_channels(struct ice_pf *pf) 8362 { 8363 struct device *dev = ice_pf_to_dev(pf); 8364 struct ice_vsi *main_vsi; 8365 bool rem_adv_fltr = true; 8366 struct ice_channel *ch; 8367 struct ice_vsi *vsi; 8368 int tc_idx = 1; 8369 int i, err; 8370 8371 main_vsi = ice_get_main_vsi(pf); 8372 if (!main_vsi) 8373 return 0; 8374 8375 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8376 main_vsi->old_numtc == 1) 8377 return 0; /* nothing to be done */ 8378 8379 /* reconfigure main VSI based on old value of TC and cached values 8380 * for MQPRIO opts 8381 */ 8382 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8383 if (err) { 8384 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8385 main_vsi->old_ena_tc, main_vsi->vsi_num); 8386 return err; 8387 } 8388 8389 /* rebuild ADQ VSIs */ 8390 ice_for_each_vsi(pf, i) { 8391 enum ice_vsi_type type; 8392 8393 vsi = pf->vsi[i]; 8394 if (!vsi || vsi->type != ICE_VSI_CHNL) 8395 continue; 8396 8397 type = vsi->type; 8398 8399 /* rebuild ADQ VSI */ 8400 err = ice_vsi_rebuild(vsi, true); 8401 if (err) { 8402 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8403 ice_vsi_type_str(type), vsi->idx, err); 8404 goto cleanup; 8405 } 8406 8407 /* Re-map HW VSI number, using VSI handle that has been 8408 * previously validated in ice_replay_vsi() call above 8409 */ 8410 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8411 8412 /* replay filters for the VSI */ 8413 err = ice_replay_vsi(&pf->hw, vsi->idx); 8414 if (err) { 8415 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8416 ice_vsi_type_str(type), err, vsi->idx); 8417 rem_adv_fltr = false; 8418 goto cleanup; 8419 } 8420 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8421 ice_vsi_type_str(type), vsi->idx); 8422 8423 /* store ADQ VSI at correct TC index in main VSI's 8424 * map of TC to VSI 8425 */ 8426 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8427 } 8428 8429 /* ADQ VSI(s) has been rebuilt successfully, so setup 8430 * channel for main VSI's Tx and Rx rings 8431 */ 8432 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8433 struct ice_vsi *ch_vsi; 8434 8435 ch_vsi = ch->ch_vsi; 8436 if (!ch_vsi) 8437 continue; 8438 8439 /* reconfig channel resources */ 8440 ice_cfg_chnl_all_res(main_vsi, ch); 8441 8442 /* replay BW rate limit if it is non-zero */ 8443 if (!ch->max_tx_rate && !ch->min_tx_rate) 8444 continue; 8445 8446 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8447 ch->min_tx_rate); 8448 if (err) 8449 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8450 err, ch->max_tx_rate, ch->min_tx_rate, 8451 ch_vsi->vsi_num); 8452 else 8453 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8454 ch->max_tx_rate, ch->min_tx_rate, 8455 ch_vsi->vsi_num); 8456 } 8457 8458 /* reconfig RSS for main VSI */ 8459 if (main_vsi->ch_rss_size) 8460 ice_vsi_cfg_rss_lut_key(main_vsi); 8461 8462 return 0; 8463 8464 cleanup: 8465 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8466 return err; 8467 } 8468 8469 /** 8470 * ice_create_q_channels - Add queue channel for the given TCs 8471 * @vsi: VSI to be configured 8472 * 8473 * Configures queue channel mapping to the given TCs 8474 */ 8475 static int ice_create_q_channels(struct ice_vsi *vsi) 8476 { 8477 struct ice_pf *pf = vsi->back; 8478 struct ice_channel *ch; 8479 int ret = 0, i; 8480 8481 ice_for_each_chnl_tc(i) { 8482 if (!(vsi->all_enatc & BIT(i))) 8483 continue; 8484 8485 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8486 if (!ch) { 8487 ret = -ENOMEM; 8488 goto err_free; 8489 } 8490 INIT_LIST_HEAD(&ch->list); 8491 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8492 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8493 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8494 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8495 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8496 8497 /* convert to Kbits/s */ 8498 if (ch->max_tx_rate) 8499 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8500 ICE_BW_KBPS_DIVISOR); 8501 if (ch->min_tx_rate) 8502 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8503 ICE_BW_KBPS_DIVISOR); 8504 8505 ret = ice_create_q_channel(vsi, ch); 8506 if (ret) { 8507 dev_err(ice_pf_to_dev(pf), 8508 "failed creating channel TC:%d\n", i); 8509 kfree(ch); 8510 goto err_free; 8511 } 8512 list_add_tail(&ch->list, &vsi->ch_list); 8513 vsi->tc_map_vsi[i] = ch->ch_vsi; 8514 dev_dbg(ice_pf_to_dev(pf), 8515 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8516 } 8517 return 0; 8518 8519 err_free: 8520 ice_remove_q_channels(vsi, false); 8521 8522 return ret; 8523 } 8524 8525 /** 8526 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8527 * @netdev: net device to configure 8528 * @type_data: TC offload data 8529 */ 8530 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8531 { 8532 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8533 struct ice_netdev_priv *np = netdev_priv(netdev); 8534 struct ice_vsi *vsi = np->vsi; 8535 struct ice_pf *pf = vsi->back; 8536 u16 mode, ena_tc_qdisc = 0; 8537 int cur_txq, cur_rxq; 8538 u8 hw = 0, num_tcf; 8539 struct device *dev; 8540 int ret, i; 8541 8542 dev = ice_pf_to_dev(pf); 8543 num_tcf = mqprio_qopt->qopt.num_tc; 8544 hw = mqprio_qopt->qopt.hw; 8545 mode = mqprio_qopt->mode; 8546 if (!hw) { 8547 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8548 vsi->ch_rss_size = 0; 8549 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8550 goto config_tcf; 8551 } 8552 8553 /* Generate queue region map for number of TCF requested */ 8554 for (i = 0; i < num_tcf; i++) 8555 ena_tc_qdisc |= BIT(i); 8556 8557 switch (mode) { 8558 case TC_MQPRIO_MODE_CHANNEL: 8559 8560 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8561 if (ret) { 8562 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8563 ret); 8564 return ret; 8565 } 8566 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8567 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8568 /* don't assume state of hw_tc_offload during driver load 8569 * and set the flag for TC flower filter if hw_tc_offload 8570 * already ON 8571 */ 8572 if (vsi->netdev->features & NETIF_F_HW_TC) 8573 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8574 break; 8575 default: 8576 return -EINVAL; 8577 } 8578 8579 config_tcf: 8580 8581 /* Requesting same TCF configuration as already enabled */ 8582 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8583 mode != TC_MQPRIO_MODE_CHANNEL) 8584 return 0; 8585 8586 /* Pause VSI queues */ 8587 ice_dis_vsi(vsi, true); 8588 8589 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8590 ice_remove_q_channels(vsi, true); 8591 8592 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8593 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8594 num_online_cpus()); 8595 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8596 num_online_cpus()); 8597 } else { 8598 /* logic to rebuild VSI, same like ethtool -L */ 8599 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8600 8601 for (i = 0; i < num_tcf; i++) { 8602 if (!(ena_tc_qdisc & BIT(i))) 8603 continue; 8604 8605 offset = vsi->mqprio_qopt.qopt.offset[i]; 8606 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8607 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8608 } 8609 vsi->req_txq = offset + qcount_tx; 8610 vsi->req_rxq = offset + qcount_rx; 8611 8612 /* store away original rss_size info, so that it gets reused 8613 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8614 * determine, what should be the rss_sizefor main VSI 8615 */ 8616 vsi->orig_rss_size = vsi->rss_size; 8617 } 8618 8619 /* save current values of Tx and Rx queues before calling VSI rebuild 8620 * for fallback option 8621 */ 8622 cur_txq = vsi->num_txq; 8623 cur_rxq = vsi->num_rxq; 8624 8625 /* proceed with rebuild main VSI using correct number of queues */ 8626 ret = ice_vsi_rebuild(vsi, false); 8627 if (ret) { 8628 /* fallback to current number of queues */ 8629 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8630 vsi->req_txq = cur_txq; 8631 vsi->req_rxq = cur_rxq; 8632 clear_bit(ICE_RESET_FAILED, pf->state); 8633 if (ice_vsi_rebuild(vsi, false)) { 8634 dev_err(dev, "Rebuild of main VSI failed again\n"); 8635 return ret; 8636 } 8637 } 8638 8639 vsi->all_numtc = num_tcf; 8640 vsi->all_enatc = ena_tc_qdisc; 8641 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8642 if (ret) { 8643 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8644 vsi->vsi_num); 8645 goto exit; 8646 } 8647 8648 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8649 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8650 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8651 8652 /* set TC0 rate limit if specified */ 8653 if (max_tx_rate || min_tx_rate) { 8654 /* convert to Kbits/s */ 8655 if (max_tx_rate) 8656 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8657 if (min_tx_rate) 8658 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8659 8660 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8661 if (!ret) { 8662 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8663 max_tx_rate, min_tx_rate, vsi->vsi_num); 8664 } else { 8665 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8666 max_tx_rate, min_tx_rate, vsi->vsi_num); 8667 goto exit; 8668 } 8669 } 8670 ret = ice_create_q_channels(vsi); 8671 if (ret) { 8672 netdev_err(netdev, "failed configuring queue channels\n"); 8673 goto exit; 8674 } else { 8675 netdev_dbg(netdev, "successfully configured channels\n"); 8676 } 8677 } 8678 8679 if (vsi->ch_rss_size) 8680 ice_vsi_cfg_rss_lut_key(vsi); 8681 8682 exit: 8683 /* if error, reset the all_numtc and all_enatc */ 8684 if (ret) { 8685 vsi->all_numtc = 0; 8686 vsi->all_enatc = 0; 8687 } 8688 /* resume VSI */ 8689 ice_ena_vsi(vsi, true); 8690 8691 return ret; 8692 } 8693 8694 static LIST_HEAD(ice_block_cb_list); 8695 8696 static int 8697 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8698 void *type_data) 8699 { 8700 struct ice_netdev_priv *np = netdev_priv(netdev); 8701 struct ice_pf *pf = np->vsi->back; 8702 int err; 8703 8704 switch (type) { 8705 case TC_SETUP_BLOCK: 8706 return flow_block_cb_setup_simple(type_data, 8707 &ice_block_cb_list, 8708 ice_setup_tc_block_cb, 8709 np, np, true); 8710 case TC_SETUP_QDISC_MQPRIO: 8711 /* setup traffic classifier for receive side */ 8712 mutex_lock(&pf->tc_mutex); 8713 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8714 mutex_unlock(&pf->tc_mutex); 8715 return err; 8716 default: 8717 return -EOPNOTSUPP; 8718 } 8719 return -EOPNOTSUPP; 8720 } 8721 8722 static struct ice_indr_block_priv * 8723 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8724 struct net_device *netdev) 8725 { 8726 struct ice_indr_block_priv *cb_priv; 8727 8728 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8729 if (!cb_priv->netdev) 8730 return NULL; 8731 if (cb_priv->netdev == netdev) 8732 return cb_priv; 8733 } 8734 return NULL; 8735 } 8736 8737 static int 8738 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8739 void *indr_priv) 8740 { 8741 struct ice_indr_block_priv *priv = indr_priv; 8742 struct ice_netdev_priv *np = priv->np; 8743 8744 switch (type) { 8745 case TC_SETUP_CLSFLOWER: 8746 return ice_setup_tc_cls_flower(np, priv->netdev, 8747 (struct flow_cls_offload *) 8748 type_data); 8749 default: 8750 return -EOPNOTSUPP; 8751 } 8752 } 8753 8754 static int 8755 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8756 struct ice_netdev_priv *np, 8757 struct flow_block_offload *f, void *data, 8758 void (*cleanup)(struct flow_block_cb *block_cb)) 8759 { 8760 struct ice_indr_block_priv *indr_priv; 8761 struct flow_block_cb *block_cb; 8762 8763 if (!ice_is_tunnel_supported(netdev) && 8764 !(is_vlan_dev(netdev) && 8765 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8766 return -EOPNOTSUPP; 8767 8768 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8769 return -EOPNOTSUPP; 8770 8771 switch (f->command) { 8772 case FLOW_BLOCK_BIND: 8773 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8774 if (indr_priv) 8775 return -EEXIST; 8776 8777 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8778 if (!indr_priv) 8779 return -ENOMEM; 8780 8781 indr_priv->netdev = netdev; 8782 indr_priv->np = np; 8783 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8784 8785 block_cb = 8786 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8787 indr_priv, indr_priv, 8788 ice_rep_indr_tc_block_unbind, 8789 f, netdev, sch, data, np, 8790 cleanup); 8791 8792 if (IS_ERR(block_cb)) { 8793 list_del(&indr_priv->list); 8794 kfree(indr_priv); 8795 return PTR_ERR(block_cb); 8796 } 8797 flow_block_cb_add(block_cb, f); 8798 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8799 break; 8800 case FLOW_BLOCK_UNBIND: 8801 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8802 if (!indr_priv) 8803 return -ENOENT; 8804 8805 block_cb = flow_block_cb_lookup(f->block, 8806 ice_indr_setup_block_cb, 8807 indr_priv); 8808 if (!block_cb) 8809 return -ENOENT; 8810 8811 flow_indr_block_cb_remove(block_cb, f); 8812 8813 list_del(&block_cb->driver_list); 8814 break; 8815 default: 8816 return -EOPNOTSUPP; 8817 } 8818 return 0; 8819 } 8820 8821 static int 8822 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8823 void *cb_priv, enum tc_setup_type type, void *type_data, 8824 void *data, 8825 void (*cleanup)(struct flow_block_cb *block_cb)) 8826 { 8827 switch (type) { 8828 case TC_SETUP_BLOCK: 8829 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8830 data, cleanup); 8831 8832 default: 8833 return -EOPNOTSUPP; 8834 } 8835 } 8836 8837 /** 8838 * ice_open - Called when a network interface becomes active 8839 * @netdev: network interface device structure 8840 * 8841 * The open entry point is called when a network interface is made 8842 * active by the system (IFF_UP). At this point all resources needed 8843 * for transmit and receive operations are allocated, the interrupt 8844 * handler is registered with the OS, the netdev watchdog is enabled, 8845 * and the stack is notified that the interface is ready. 8846 * 8847 * Returns 0 on success, negative value on failure 8848 */ 8849 int ice_open(struct net_device *netdev) 8850 { 8851 struct ice_netdev_priv *np = netdev_priv(netdev); 8852 struct ice_pf *pf = np->vsi->back; 8853 8854 if (ice_is_reset_in_progress(pf->state)) { 8855 netdev_err(netdev, "can't open net device while reset is in progress"); 8856 return -EBUSY; 8857 } 8858 8859 return ice_open_internal(netdev); 8860 } 8861 8862 /** 8863 * ice_open_internal - Called when a network interface becomes active 8864 * @netdev: network interface device structure 8865 * 8866 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8867 * handling routine 8868 * 8869 * Returns 0 on success, negative value on failure 8870 */ 8871 int ice_open_internal(struct net_device *netdev) 8872 { 8873 struct ice_netdev_priv *np = netdev_priv(netdev); 8874 struct ice_vsi *vsi = np->vsi; 8875 struct ice_pf *pf = vsi->back; 8876 struct ice_port_info *pi; 8877 int err; 8878 8879 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8880 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8881 return -EIO; 8882 } 8883 8884 netif_carrier_off(netdev); 8885 8886 pi = vsi->port_info; 8887 err = ice_update_link_info(pi); 8888 if (err) { 8889 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8890 return err; 8891 } 8892 8893 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8894 8895 /* Set PHY if there is media, otherwise, turn off PHY */ 8896 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8897 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8898 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8899 err = ice_init_phy_user_cfg(pi); 8900 if (err) { 8901 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8902 err); 8903 return err; 8904 } 8905 } 8906 8907 err = ice_configure_phy(vsi); 8908 if (err) { 8909 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8910 err); 8911 return err; 8912 } 8913 } else { 8914 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8915 ice_set_link(vsi, false); 8916 } 8917 8918 err = ice_vsi_open(vsi); 8919 if (err) 8920 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8921 vsi->vsi_num, vsi->vsw->sw_id); 8922 8923 /* Update existing tunnels information */ 8924 udp_tunnel_get_rx_info(netdev); 8925 8926 return err; 8927 } 8928 8929 /** 8930 * ice_stop - Disables a network interface 8931 * @netdev: network interface device structure 8932 * 8933 * The stop entry point is called when an interface is de-activated by the OS, 8934 * and the netdevice enters the DOWN state. The hardware is still under the 8935 * driver's control, but the netdev interface is disabled. 8936 * 8937 * Returns success only - not allowed to fail 8938 */ 8939 int ice_stop(struct net_device *netdev) 8940 { 8941 struct ice_netdev_priv *np = netdev_priv(netdev); 8942 struct ice_vsi *vsi = np->vsi; 8943 struct ice_pf *pf = vsi->back; 8944 8945 if (ice_is_reset_in_progress(pf->state)) { 8946 netdev_err(netdev, "can't stop net device while reset is in progress"); 8947 return -EBUSY; 8948 } 8949 8950 ice_vsi_close(vsi); 8951 8952 return 0; 8953 } 8954 8955 /** 8956 * ice_features_check - Validate encapsulated packet conforms to limits 8957 * @skb: skb buffer 8958 * @netdev: This port's netdev 8959 * @features: Offload features that the stack believes apply 8960 */ 8961 static netdev_features_t 8962 ice_features_check(struct sk_buff *skb, 8963 struct net_device __always_unused *netdev, 8964 netdev_features_t features) 8965 { 8966 bool gso = skb_is_gso(skb); 8967 size_t len; 8968 8969 /* No point in doing any of this if neither checksum nor GSO are 8970 * being requested for this frame. We can rule out both by just 8971 * checking for CHECKSUM_PARTIAL 8972 */ 8973 if (skb->ip_summed != CHECKSUM_PARTIAL) 8974 return features; 8975 8976 /* We cannot support GSO if the MSS is going to be less than 8977 * 64 bytes. If it is then we need to drop support for GSO. 8978 */ 8979 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8980 features &= ~NETIF_F_GSO_MASK; 8981 8982 len = skb_network_offset(skb); 8983 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8984 goto out_rm_features; 8985 8986 len = skb_network_header_len(skb); 8987 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8988 goto out_rm_features; 8989 8990 if (skb->encapsulation) { 8991 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8992 * the case of IPIP frames, the transport header pointer is 8993 * after the inner header! So check to make sure that this 8994 * is a GRE or UDP_TUNNEL frame before doing that math. 8995 */ 8996 if (gso && (skb_shinfo(skb)->gso_type & 8997 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8998 len = skb_inner_network_header(skb) - 8999 skb_transport_header(skb); 9000 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9001 goto out_rm_features; 9002 } 9003 9004 len = skb_inner_network_header_len(skb); 9005 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9006 goto out_rm_features; 9007 } 9008 9009 return features; 9010 out_rm_features: 9011 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9012 } 9013 9014 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9015 .ndo_open = ice_open, 9016 .ndo_stop = ice_stop, 9017 .ndo_start_xmit = ice_start_xmit, 9018 .ndo_set_mac_address = ice_set_mac_address, 9019 .ndo_validate_addr = eth_validate_addr, 9020 .ndo_change_mtu = ice_change_mtu, 9021 .ndo_get_stats64 = ice_get_stats64, 9022 .ndo_tx_timeout = ice_tx_timeout, 9023 .ndo_bpf = ice_xdp_safe_mode, 9024 }; 9025 9026 static const struct net_device_ops ice_netdev_ops = { 9027 .ndo_open = ice_open, 9028 .ndo_stop = ice_stop, 9029 .ndo_start_xmit = ice_start_xmit, 9030 .ndo_select_queue = ice_select_queue, 9031 .ndo_features_check = ice_features_check, 9032 .ndo_fix_features = ice_fix_features, 9033 .ndo_set_rx_mode = ice_set_rx_mode, 9034 .ndo_set_mac_address = ice_set_mac_address, 9035 .ndo_validate_addr = eth_validate_addr, 9036 .ndo_change_mtu = ice_change_mtu, 9037 .ndo_get_stats64 = ice_get_stats64, 9038 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9039 .ndo_eth_ioctl = ice_eth_ioctl, 9040 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9041 .ndo_set_vf_mac = ice_set_vf_mac, 9042 .ndo_get_vf_config = ice_get_vf_cfg, 9043 .ndo_set_vf_trust = ice_set_vf_trust, 9044 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9045 .ndo_set_vf_link_state = ice_set_vf_link_state, 9046 .ndo_get_vf_stats = ice_get_vf_stats, 9047 .ndo_set_vf_rate = ice_set_vf_bw, 9048 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9049 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9050 .ndo_setup_tc = ice_setup_tc, 9051 .ndo_set_features = ice_set_features, 9052 .ndo_bridge_getlink = ice_bridge_getlink, 9053 .ndo_bridge_setlink = ice_bridge_setlink, 9054 .ndo_fdb_add = ice_fdb_add, 9055 .ndo_fdb_del = ice_fdb_del, 9056 #ifdef CONFIG_RFS_ACCEL 9057 .ndo_rx_flow_steer = ice_rx_flow_steer, 9058 #endif 9059 .ndo_tx_timeout = ice_tx_timeout, 9060 .ndo_bpf = ice_xdp, 9061 .ndo_xdp_xmit = ice_xdp_xmit, 9062 .ndo_xsk_wakeup = ice_xsk_wakeup, 9063 .ndo_get_devlink_port = ice_get_devlink_port, 9064 }; 9065