1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 23 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 24 static const char ice_driver_string[] = DRV_SUMMARY; 25 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 26 27 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 28 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 29 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 30 31 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 32 MODULE_DESCRIPTION(DRV_SUMMARY); 33 MODULE_LICENSE("GPL v2"); 34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 35 36 static int debug = -1; 37 module_param(debug, int, 0644); 38 #ifndef CONFIG_DYNAMIC_DEBUG 39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 40 #else 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 42 #endif /* !CONFIG_DYNAMIC_DEBUG */ 43 44 static DEFINE_IDA(ice_aux_ida); 45 46 static struct workqueue_struct *ice_wq; 47 static const struct net_device_ops ice_netdev_safe_mode_ops; 48 static const struct net_device_ops ice_netdev_ops; 49 static int ice_vsi_open(struct ice_vsi *vsi); 50 51 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 52 53 static void ice_vsi_release_all(struct ice_pf *pf); 54 55 bool netif_is_ice(struct net_device *dev) 56 { 57 return dev && (dev->netdev_ops == &ice_netdev_ops); 58 } 59 60 /** 61 * ice_get_tx_pending - returns number of Tx descriptors not processed 62 * @ring: the ring of descriptors 63 */ 64 static u16 ice_get_tx_pending(struct ice_ring *ring) 65 { 66 u16 head, tail; 67 68 head = ring->next_to_clean; 69 tail = ring->next_to_use; 70 71 if (head != tail) 72 return (head < tail) ? 73 tail - head : (tail + ring->count - head); 74 return 0; 75 } 76 77 /** 78 * ice_check_for_hang_subtask - check for and recover hung queues 79 * @pf: pointer to PF struct 80 */ 81 static void ice_check_for_hang_subtask(struct ice_pf *pf) 82 { 83 struct ice_vsi *vsi = NULL; 84 struct ice_hw *hw; 85 unsigned int i; 86 int packets; 87 u32 v; 88 89 ice_for_each_vsi(pf, v) 90 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 91 vsi = pf->vsi[v]; 92 break; 93 } 94 95 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 96 return; 97 98 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 99 return; 100 101 hw = &vsi->back->hw; 102 103 for (i = 0; i < vsi->num_txq; i++) { 104 struct ice_ring *tx_ring = vsi->tx_rings[i]; 105 106 if (tx_ring && tx_ring->desc) { 107 /* If packet counter has not changed the queue is 108 * likely stalled, so force an interrupt for this 109 * queue. 110 * 111 * prev_pkt would be negative if there was no 112 * pending work. 113 */ 114 packets = tx_ring->stats.pkts & INT_MAX; 115 if (tx_ring->tx_stats.prev_pkt == packets) { 116 /* Trigger sw interrupt to revive the queue */ 117 ice_trigger_sw_intr(hw, tx_ring->q_vector); 118 continue; 119 } 120 121 /* Memory barrier between read of packet count and call 122 * to ice_get_tx_pending() 123 */ 124 smp_rmb(); 125 tx_ring->tx_stats.prev_pkt = 126 ice_get_tx_pending(tx_ring) ? packets : -1; 127 } 128 } 129 } 130 131 /** 132 * ice_init_mac_fltr - Set initial MAC filters 133 * @pf: board private structure 134 * 135 * Set initial set of MAC filters for PF VSI; configure filters for permanent 136 * address and broadcast address. If an error is encountered, netdevice will be 137 * unregistered. 138 */ 139 static int ice_init_mac_fltr(struct ice_pf *pf) 140 { 141 enum ice_status status; 142 struct ice_vsi *vsi; 143 u8 *perm_addr; 144 145 vsi = ice_get_main_vsi(pf); 146 if (!vsi) 147 return -EINVAL; 148 149 perm_addr = vsi->port_info->mac.perm_addr; 150 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 151 if (status) 152 return -EIO; 153 154 return 0; 155 } 156 157 /** 158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 159 * @netdev: the net device on which the sync is happening 160 * @addr: MAC address to sync 161 * 162 * This is a callback function which is called by the in kernel device sync 163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 165 * MAC filters from the hardware. 166 */ 167 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 168 { 169 struct ice_netdev_priv *np = netdev_priv(netdev); 170 struct ice_vsi *vsi = np->vsi; 171 172 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 173 ICE_FWD_TO_VSI)) 174 return -EINVAL; 175 176 return 0; 177 } 178 179 /** 180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 181 * @netdev: the net device on which the unsync is happening 182 * @addr: MAC address to unsync 183 * 184 * This is a callback function which is called by the in kernel device unsync 185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 187 * delete the MAC filters from the hardware. 188 */ 189 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 190 { 191 struct ice_netdev_priv *np = netdev_priv(netdev); 192 struct ice_vsi *vsi = np->vsi; 193 194 /* Under some circumstances, we might receive a request to delete our 195 * own device address from our uc list. Because we store the device 196 * address in the VSI's MAC filter list, we need to ignore such 197 * requests and not delete our device address from this list. 198 */ 199 if (ether_addr_equal(addr, netdev->dev_addr)) 200 return 0; 201 202 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 203 ICE_FWD_TO_VSI)) 204 return -EINVAL; 205 206 return 0; 207 } 208 209 /** 210 * ice_vsi_fltr_changed - check if filter state changed 211 * @vsi: VSI to be checked 212 * 213 * returns true if filter state has changed, false otherwise. 214 */ 215 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 216 { 217 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 218 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 219 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 220 } 221 222 /** 223 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 224 * @vsi: the VSI being configured 225 * @promisc_m: mask of promiscuous config bits 226 * @set_promisc: enable or disable promisc flag request 227 * 228 */ 229 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 230 { 231 struct ice_hw *hw = &vsi->back->hw; 232 enum ice_status status = 0; 233 234 if (vsi->type != ICE_VSI_PF) 235 return 0; 236 237 if (vsi->num_vlan > 1) { 238 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 239 set_promisc); 240 } else { 241 if (set_promisc) 242 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 243 0); 244 else 245 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 246 0); 247 } 248 249 if (status) 250 return -EIO; 251 252 return 0; 253 } 254 255 /** 256 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 257 * @vsi: ptr to the VSI 258 * 259 * Push any outstanding VSI filter changes through the AdminQ. 260 */ 261 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 262 { 263 struct device *dev = ice_pf_to_dev(vsi->back); 264 struct net_device *netdev = vsi->netdev; 265 bool promisc_forced_on = false; 266 struct ice_pf *pf = vsi->back; 267 struct ice_hw *hw = &pf->hw; 268 enum ice_status status = 0; 269 u32 changed_flags = 0; 270 u8 promisc_m; 271 int err = 0; 272 273 if (!vsi->netdev) 274 return -EINVAL; 275 276 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 277 usleep_range(1000, 2000); 278 279 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 280 vsi->current_netdev_flags = vsi->netdev->flags; 281 282 INIT_LIST_HEAD(&vsi->tmp_sync_list); 283 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 284 285 if (ice_vsi_fltr_changed(vsi)) { 286 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 287 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 288 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 289 290 /* grab the netdev's addr_list_lock */ 291 netif_addr_lock_bh(netdev); 292 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 293 ice_add_mac_to_unsync_list); 294 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 295 ice_add_mac_to_unsync_list); 296 /* our temp lists are populated. release lock */ 297 netif_addr_unlock_bh(netdev); 298 } 299 300 /* Remove MAC addresses in the unsync list */ 301 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 302 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 303 if (status) { 304 netdev_err(netdev, "Failed to delete MAC filters\n"); 305 /* if we failed because of alloc failures, just bail */ 306 if (status == ICE_ERR_NO_MEMORY) { 307 err = -ENOMEM; 308 goto out; 309 } 310 } 311 312 /* Add MAC addresses in the sync list */ 313 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 314 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 315 /* If filter is added successfully or already exists, do not go into 316 * 'if' condition and report it as error. Instead continue processing 317 * rest of the function. 318 */ 319 if (status && status != ICE_ERR_ALREADY_EXISTS) { 320 netdev_err(netdev, "Failed to add MAC filters\n"); 321 /* If there is no more space for new umac filters, VSI 322 * should go into promiscuous mode. There should be some 323 * space reserved for promiscuous filters. 324 */ 325 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 326 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 327 vsi->state)) { 328 promisc_forced_on = true; 329 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 330 vsi->vsi_num); 331 } else { 332 err = -EIO; 333 goto out; 334 } 335 } 336 /* check for changes in promiscuous modes */ 337 if (changed_flags & IFF_ALLMULTI) { 338 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 339 if (vsi->num_vlan > 1) 340 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 341 else 342 promisc_m = ICE_MCAST_PROMISC_BITS; 343 344 err = ice_cfg_promisc(vsi, promisc_m, true); 345 if (err) { 346 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 347 vsi->vsi_num); 348 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 349 goto out_promisc; 350 } 351 } else { 352 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 353 if (vsi->num_vlan > 1) 354 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 355 else 356 promisc_m = ICE_MCAST_PROMISC_BITS; 357 358 err = ice_cfg_promisc(vsi, promisc_m, false); 359 if (err) { 360 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 361 vsi->vsi_num); 362 vsi->current_netdev_flags |= IFF_ALLMULTI; 363 goto out_promisc; 364 } 365 } 366 } 367 368 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 369 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 370 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 371 if (vsi->current_netdev_flags & IFF_PROMISC) { 372 /* Apply Rx filter rule to get traffic from wire */ 373 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 374 err = ice_set_dflt_vsi(pf->first_sw, vsi); 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 377 err, vsi->vsi_num); 378 vsi->current_netdev_flags &= 379 ~IFF_PROMISC; 380 goto out_promisc; 381 } 382 ice_cfg_vlan_pruning(vsi, false, false); 383 } 384 } else { 385 /* Clear Rx filter to remove traffic from wire */ 386 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 387 err = ice_clear_dflt_vsi(pf->first_sw); 388 if (err) { 389 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 390 err, vsi->vsi_num); 391 vsi->current_netdev_flags |= 392 IFF_PROMISC; 393 goto out_promisc; 394 } 395 if (vsi->num_vlan > 1) 396 ice_cfg_vlan_pruning(vsi, true, false); 397 } 398 } 399 } 400 goto exit; 401 402 out_promisc: 403 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 404 goto exit; 405 out: 406 /* if something went wrong then set the changed flag so we try again */ 407 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 408 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 409 exit: 410 clear_bit(ICE_CFG_BUSY, vsi->state); 411 return err; 412 } 413 414 /** 415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 416 * @pf: board private structure 417 */ 418 static void ice_sync_fltr_subtask(struct ice_pf *pf) 419 { 420 int v; 421 422 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 423 return; 424 425 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 426 427 ice_for_each_vsi(pf, v) 428 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 429 ice_vsi_sync_fltr(pf->vsi[v])) { 430 /* come back and try again later */ 431 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 432 break; 433 } 434 } 435 436 /** 437 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 438 * @pf: the PF 439 * @locked: is the rtnl_lock already held 440 */ 441 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 442 { 443 int node; 444 int v; 445 446 ice_for_each_vsi(pf, v) 447 if (pf->vsi[v]) 448 ice_dis_vsi(pf->vsi[v], locked); 449 450 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 451 pf->pf_agg_node[node].num_vsis = 0; 452 453 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 454 pf->vf_agg_node[node].num_vsis = 0; 455 } 456 457 /** 458 * ice_prepare_for_reset - prep for the core to reset 459 * @pf: board private structure 460 * 461 * Inform or close all dependent features in prep for reset. 462 */ 463 static void 464 ice_prepare_for_reset(struct ice_pf *pf) 465 { 466 struct ice_hw *hw = &pf->hw; 467 unsigned int i; 468 469 /* already prepared for reset */ 470 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 471 return; 472 473 ice_unplug_aux_dev(pf); 474 475 /* Notify VFs of impending reset */ 476 if (ice_check_sq_alive(hw, &hw->mailboxq)) 477 ice_vc_notify_reset(pf); 478 479 /* Disable VFs until reset is completed */ 480 ice_for_each_vf(pf, i) 481 ice_set_vf_state_qs_dis(&pf->vf[i]); 482 483 /* clear SW filtering DB */ 484 ice_clear_hw_tbls(hw); 485 /* disable the VSIs and their queues that are not already DOWN */ 486 ice_pf_dis_all_vsi(pf, false); 487 488 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 489 ice_ptp_release(pf); 490 491 if (hw->port_info) 492 ice_sched_clear_port(hw->port_info); 493 494 ice_shutdown_all_ctrlq(hw); 495 496 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 497 } 498 499 /** 500 * ice_do_reset - Initiate one of many types of resets 501 * @pf: board private structure 502 * @reset_type: reset type requested 503 * before this function was called. 504 */ 505 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 506 { 507 struct device *dev = ice_pf_to_dev(pf); 508 struct ice_hw *hw = &pf->hw; 509 510 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 511 512 ice_prepare_for_reset(pf); 513 514 /* trigger the reset */ 515 if (ice_reset(hw, reset_type)) { 516 dev_err(dev, "reset %d failed\n", reset_type); 517 set_bit(ICE_RESET_FAILED, pf->state); 518 clear_bit(ICE_RESET_OICR_RECV, pf->state); 519 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 520 clear_bit(ICE_PFR_REQ, pf->state); 521 clear_bit(ICE_CORER_REQ, pf->state); 522 clear_bit(ICE_GLOBR_REQ, pf->state); 523 wake_up(&pf->reset_wait_queue); 524 return; 525 } 526 527 /* PFR is a bit of a special case because it doesn't result in an OICR 528 * interrupt. So for PFR, rebuild after the reset and clear the reset- 529 * associated state bits. 530 */ 531 if (reset_type == ICE_RESET_PFR) { 532 pf->pfr_count++; 533 ice_rebuild(pf, reset_type); 534 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 535 clear_bit(ICE_PFR_REQ, pf->state); 536 wake_up(&pf->reset_wait_queue); 537 ice_reset_all_vfs(pf, true); 538 } 539 } 540 541 /** 542 * ice_reset_subtask - Set up for resetting the device and driver 543 * @pf: board private structure 544 */ 545 static void ice_reset_subtask(struct ice_pf *pf) 546 { 547 enum ice_reset_req reset_type = ICE_RESET_INVAL; 548 549 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 550 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 551 * of reset is pending and sets bits in pf->state indicating the reset 552 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 553 * prepare for pending reset if not already (for PF software-initiated 554 * global resets the software should already be prepared for it as 555 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 556 * by firmware or software on other PFs, that bit is not set so prepare 557 * for the reset now), poll for reset done, rebuild and return. 558 */ 559 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 560 /* Perform the largest reset requested */ 561 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 562 reset_type = ICE_RESET_CORER; 563 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 564 reset_type = ICE_RESET_GLOBR; 565 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 566 reset_type = ICE_RESET_EMPR; 567 /* return if no valid reset type requested */ 568 if (reset_type == ICE_RESET_INVAL) 569 return; 570 ice_prepare_for_reset(pf); 571 572 /* make sure we are ready to rebuild */ 573 if (ice_check_reset(&pf->hw)) { 574 set_bit(ICE_RESET_FAILED, pf->state); 575 } else { 576 /* done with reset. start rebuild */ 577 pf->hw.reset_ongoing = false; 578 ice_rebuild(pf, reset_type); 579 /* clear bit to resume normal operations, but 580 * ICE_NEEDS_RESTART bit is set in case rebuild failed 581 */ 582 clear_bit(ICE_RESET_OICR_RECV, pf->state); 583 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 584 clear_bit(ICE_PFR_REQ, pf->state); 585 clear_bit(ICE_CORER_REQ, pf->state); 586 clear_bit(ICE_GLOBR_REQ, pf->state); 587 wake_up(&pf->reset_wait_queue); 588 ice_reset_all_vfs(pf, true); 589 } 590 591 return; 592 } 593 594 /* No pending resets to finish processing. Check for new resets */ 595 if (test_bit(ICE_PFR_REQ, pf->state)) 596 reset_type = ICE_RESET_PFR; 597 if (test_bit(ICE_CORER_REQ, pf->state)) 598 reset_type = ICE_RESET_CORER; 599 if (test_bit(ICE_GLOBR_REQ, pf->state)) 600 reset_type = ICE_RESET_GLOBR; 601 /* If no valid reset type requested just return */ 602 if (reset_type == ICE_RESET_INVAL) 603 return; 604 605 /* reset if not already down or busy */ 606 if (!test_bit(ICE_DOWN, pf->state) && 607 !test_bit(ICE_CFG_BUSY, pf->state)) { 608 ice_do_reset(pf, reset_type); 609 } 610 } 611 612 /** 613 * ice_print_topo_conflict - print topology conflict message 614 * @vsi: the VSI whose topology status is being checked 615 */ 616 static void ice_print_topo_conflict(struct ice_vsi *vsi) 617 { 618 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 619 case ICE_AQ_LINK_TOPO_CONFLICT: 620 case ICE_AQ_LINK_MEDIA_CONFLICT: 621 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 622 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 623 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 624 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 625 break; 626 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 627 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 628 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 629 else 630 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 631 break; 632 default: 633 break; 634 } 635 } 636 637 /** 638 * ice_print_link_msg - print link up or down message 639 * @vsi: the VSI whose link status is being queried 640 * @isup: boolean for if the link is now up or down 641 */ 642 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 643 { 644 struct ice_aqc_get_phy_caps_data *caps; 645 const char *an_advertised; 646 enum ice_status status; 647 const char *fec_req; 648 const char *speed; 649 const char *fec; 650 const char *fc; 651 const char *an; 652 653 if (!vsi) 654 return; 655 656 if (vsi->current_isup == isup) 657 return; 658 659 vsi->current_isup = isup; 660 661 if (!isup) { 662 netdev_info(vsi->netdev, "NIC Link is Down\n"); 663 return; 664 } 665 666 switch (vsi->port_info->phy.link_info.link_speed) { 667 case ICE_AQ_LINK_SPEED_100GB: 668 speed = "100 G"; 669 break; 670 case ICE_AQ_LINK_SPEED_50GB: 671 speed = "50 G"; 672 break; 673 case ICE_AQ_LINK_SPEED_40GB: 674 speed = "40 G"; 675 break; 676 case ICE_AQ_LINK_SPEED_25GB: 677 speed = "25 G"; 678 break; 679 case ICE_AQ_LINK_SPEED_20GB: 680 speed = "20 G"; 681 break; 682 case ICE_AQ_LINK_SPEED_10GB: 683 speed = "10 G"; 684 break; 685 case ICE_AQ_LINK_SPEED_5GB: 686 speed = "5 G"; 687 break; 688 case ICE_AQ_LINK_SPEED_2500MB: 689 speed = "2.5 G"; 690 break; 691 case ICE_AQ_LINK_SPEED_1000MB: 692 speed = "1 G"; 693 break; 694 case ICE_AQ_LINK_SPEED_100MB: 695 speed = "100 M"; 696 break; 697 default: 698 speed = "Unknown "; 699 break; 700 } 701 702 switch (vsi->port_info->fc.current_mode) { 703 case ICE_FC_FULL: 704 fc = "Rx/Tx"; 705 break; 706 case ICE_FC_TX_PAUSE: 707 fc = "Tx"; 708 break; 709 case ICE_FC_RX_PAUSE: 710 fc = "Rx"; 711 break; 712 case ICE_FC_NONE: 713 fc = "None"; 714 break; 715 default: 716 fc = "Unknown"; 717 break; 718 } 719 720 /* Get FEC mode based on negotiated link info */ 721 switch (vsi->port_info->phy.link_info.fec_info) { 722 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 723 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 724 fec = "RS-FEC"; 725 break; 726 case ICE_AQ_LINK_25G_KR_FEC_EN: 727 fec = "FC-FEC/BASE-R"; 728 break; 729 default: 730 fec = "NONE"; 731 break; 732 } 733 734 /* check if autoneg completed, might be false due to not supported */ 735 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 736 an = "True"; 737 else 738 an = "False"; 739 740 /* Get FEC mode requested based on PHY caps last SW configuration */ 741 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 742 if (!caps) { 743 fec_req = "Unknown"; 744 an_advertised = "Unknown"; 745 goto done; 746 } 747 748 status = ice_aq_get_phy_caps(vsi->port_info, false, 749 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 750 if (status) 751 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 752 753 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 754 755 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 756 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 757 fec_req = "RS-FEC"; 758 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 759 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 760 fec_req = "FC-FEC/BASE-R"; 761 else 762 fec_req = "NONE"; 763 764 kfree(caps); 765 766 done: 767 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 768 speed, fec_req, fec, an_advertised, an, fc); 769 ice_print_topo_conflict(vsi); 770 } 771 772 /** 773 * ice_vsi_link_event - update the VSI's netdev 774 * @vsi: the VSI on which the link event occurred 775 * @link_up: whether or not the VSI needs to be set up or down 776 */ 777 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 778 { 779 if (!vsi) 780 return; 781 782 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 783 return; 784 785 if (vsi->type == ICE_VSI_PF) { 786 if (link_up == netif_carrier_ok(vsi->netdev)) 787 return; 788 789 if (link_up) { 790 netif_carrier_on(vsi->netdev); 791 netif_tx_wake_all_queues(vsi->netdev); 792 } else { 793 netif_carrier_off(vsi->netdev); 794 netif_tx_stop_all_queues(vsi->netdev); 795 } 796 } 797 } 798 799 /** 800 * ice_set_dflt_mib - send a default config MIB to the FW 801 * @pf: private PF struct 802 * 803 * This function sends a default configuration MIB to the FW. 804 * 805 * If this function errors out at any point, the driver is still able to 806 * function. The main impact is that LFC may not operate as expected. 807 * Therefore an error state in this function should be treated with a DBG 808 * message and continue on with driver rebuild/reenable. 809 */ 810 static void ice_set_dflt_mib(struct ice_pf *pf) 811 { 812 struct device *dev = ice_pf_to_dev(pf); 813 u8 mib_type, *buf, *lldpmib = NULL; 814 u16 len, typelen, offset = 0; 815 struct ice_lldp_org_tlv *tlv; 816 struct ice_hw *hw = &pf->hw; 817 u32 ouisubtype; 818 819 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 820 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 821 if (!lldpmib) { 822 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 823 __func__); 824 return; 825 } 826 827 /* Add ETS CFG TLV */ 828 tlv = (struct ice_lldp_org_tlv *)lldpmib; 829 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 830 ICE_IEEE_ETS_TLV_LEN); 831 tlv->typelen = htons(typelen); 832 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 833 ICE_IEEE_SUBTYPE_ETS_CFG); 834 tlv->ouisubtype = htonl(ouisubtype); 835 836 buf = tlv->tlvinfo; 837 buf[0] = 0; 838 839 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 840 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 841 * Octets 13 - 20 are TSA values - leave as zeros 842 */ 843 buf[5] = 0x64; 844 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 845 offset += len + 2; 846 tlv = (struct ice_lldp_org_tlv *) 847 ((char *)tlv + sizeof(tlv->typelen) + len); 848 849 /* Add ETS REC TLV */ 850 buf = tlv->tlvinfo; 851 tlv->typelen = htons(typelen); 852 853 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 854 ICE_IEEE_SUBTYPE_ETS_REC); 855 tlv->ouisubtype = htonl(ouisubtype); 856 857 /* First octet of buf is reserved 858 * Octets 1 - 4 map UP to TC - all UPs map to zero 859 * Octets 5 - 12 are BW values - set TC 0 to 100%. 860 * Octets 13 - 20 are TSA value - leave as zeros 861 */ 862 buf[5] = 0x64; 863 offset += len + 2; 864 tlv = (struct ice_lldp_org_tlv *) 865 ((char *)tlv + sizeof(tlv->typelen) + len); 866 867 /* Add PFC CFG TLV */ 868 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 869 ICE_IEEE_PFC_TLV_LEN); 870 tlv->typelen = htons(typelen); 871 872 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 873 ICE_IEEE_SUBTYPE_PFC_CFG); 874 tlv->ouisubtype = htonl(ouisubtype); 875 876 /* Octet 1 left as all zeros - PFC disabled */ 877 buf[0] = 0x08; 878 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 879 offset += len + 2; 880 881 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 882 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 883 884 kfree(lldpmib); 885 } 886 887 /** 888 * ice_check_module_power 889 * @pf: pointer to PF struct 890 * @link_cfg_err: bitmap from the link info structure 891 * 892 * check module power level returned by a previous call to aq_get_link_info 893 * and print error messages if module power level is not supported 894 */ 895 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 896 { 897 /* if module power level is supported, clear the flag */ 898 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 899 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 900 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 901 return; 902 } 903 904 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 905 * above block didn't clear this bit, there's nothing to do 906 */ 907 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 908 return; 909 910 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 911 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 912 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 913 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 914 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 915 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 916 } 917 } 918 919 /** 920 * ice_link_event - process the link event 921 * @pf: PF that the link event is associated with 922 * @pi: port_info for the port that the link event is associated with 923 * @link_up: true if the physical link is up and false if it is down 924 * @link_speed: current link speed received from the link event 925 * 926 * Returns 0 on success and negative on failure 927 */ 928 static int 929 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 930 u16 link_speed) 931 { 932 struct device *dev = ice_pf_to_dev(pf); 933 struct ice_phy_info *phy_info; 934 enum ice_status status; 935 struct ice_vsi *vsi; 936 u16 old_link_speed; 937 bool old_link; 938 939 phy_info = &pi->phy; 940 phy_info->link_info_old = phy_info->link_info; 941 942 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 943 old_link_speed = phy_info->link_info_old.link_speed; 944 945 /* update the link info structures and re-enable link events, 946 * don't bail on failure due to other book keeping needed 947 */ 948 status = ice_update_link_info(pi); 949 if (status) 950 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 951 pi->lport, ice_stat_str(status), 952 ice_aq_str(pi->hw->adminq.sq_last_status)); 953 954 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 955 956 /* Check if the link state is up after updating link info, and treat 957 * this event as an UP event since the link is actually UP now. 958 */ 959 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 960 link_up = true; 961 962 vsi = ice_get_main_vsi(pf); 963 if (!vsi || !vsi->port_info) 964 return -EINVAL; 965 966 /* turn off PHY if media was removed */ 967 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 968 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 969 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 970 ice_set_link(vsi, false); 971 } 972 973 /* if the old link up/down and speed is the same as the new */ 974 if (link_up == old_link && link_speed == old_link_speed) 975 return 0; 976 977 if (ice_is_dcb_active(pf)) { 978 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 979 ice_dcb_rebuild(pf); 980 } else { 981 if (link_up) 982 ice_set_dflt_mib(pf); 983 } 984 ice_vsi_link_event(vsi, link_up); 985 ice_print_link_msg(vsi, link_up); 986 987 ice_vc_notify_link_state(pf); 988 989 return 0; 990 } 991 992 /** 993 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 994 * @pf: board private structure 995 */ 996 static void ice_watchdog_subtask(struct ice_pf *pf) 997 { 998 int i; 999 1000 /* if interface is down do nothing */ 1001 if (test_bit(ICE_DOWN, pf->state) || 1002 test_bit(ICE_CFG_BUSY, pf->state)) 1003 return; 1004 1005 /* make sure we don't do these things too often */ 1006 if (time_before(jiffies, 1007 pf->serv_tmr_prev + pf->serv_tmr_period)) 1008 return; 1009 1010 pf->serv_tmr_prev = jiffies; 1011 1012 /* Update the stats for active netdevs so the network stack 1013 * can look at updated numbers whenever it cares to 1014 */ 1015 ice_update_pf_stats(pf); 1016 ice_for_each_vsi(pf, i) 1017 if (pf->vsi[i] && pf->vsi[i]->netdev) 1018 ice_update_vsi_stats(pf->vsi[i]); 1019 } 1020 1021 /** 1022 * ice_init_link_events - enable/initialize link events 1023 * @pi: pointer to the port_info instance 1024 * 1025 * Returns -EIO on failure, 0 on success 1026 */ 1027 static int ice_init_link_events(struct ice_port_info *pi) 1028 { 1029 u16 mask; 1030 1031 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1032 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 1033 1034 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1035 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1036 pi->lport); 1037 return -EIO; 1038 } 1039 1040 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1041 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1042 pi->lport); 1043 return -EIO; 1044 } 1045 1046 return 0; 1047 } 1048 1049 /** 1050 * ice_handle_link_event - handle link event via ARQ 1051 * @pf: PF that the link event is associated with 1052 * @event: event structure containing link status info 1053 */ 1054 static int 1055 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1056 { 1057 struct ice_aqc_get_link_status_data *link_data; 1058 struct ice_port_info *port_info; 1059 int status; 1060 1061 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1062 port_info = pf->hw.port_info; 1063 if (!port_info) 1064 return -EINVAL; 1065 1066 status = ice_link_event(pf, port_info, 1067 !!(link_data->link_info & ICE_AQ_LINK_UP), 1068 le16_to_cpu(link_data->link_speed)); 1069 if (status) 1070 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1071 status); 1072 1073 return status; 1074 } 1075 1076 enum ice_aq_task_state { 1077 ICE_AQ_TASK_WAITING = 0, 1078 ICE_AQ_TASK_COMPLETE, 1079 ICE_AQ_TASK_CANCELED, 1080 }; 1081 1082 struct ice_aq_task { 1083 struct hlist_node entry; 1084 1085 u16 opcode; 1086 struct ice_rq_event_info *event; 1087 enum ice_aq_task_state state; 1088 }; 1089 1090 /** 1091 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1092 * @pf: pointer to the PF private structure 1093 * @opcode: the opcode to wait for 1094 * @timeout: how long to wait, in jiffies 1095 * @event: storage for the event info 1096 * 1097 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1098 * current thread will be put to sleep until the specified event occurs or 1099 * until the given timeout is reached. 1100 * 1101 * To obtain only the descriptor contents, pass an event without an allocated 1102 * msg_buf. If the complete data buffer is desired, allocate the 1103 * event->msg_buf with enough space ahead of time. 1104 * 1105 * Returns: zero on success, or a negative error code on failure. 1106 */ 1107 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1108 struct ice_rq_event_info *event) 1109 { 1110 struct device *dev = ice_pf_to_dev(pf); 1111 struct ice_aq_task *task; 1112 unsigned long start; 1113 long ret; 1114 int err; 1115 1116 task = kzalloc(sizeof(*task), GFP_KERNEL); 1117 if (!task) 1118 return -ENOMEM; 1119 1120 INIT_HLIST_NODE(&task->entry); 1121 task->opcode = opcode; 1122 task->event = event; 1123 task->state = ICE_AQ_TASK_WAITING; 1124 1125 spin_lock_bh(&pf->aq_wait_lock); 1126 hlist_add_head(&task->entry, &pf->aq_wait_list); 1127 spin_unlock_bh(&pf->aq_wait_lock); 1128 1129 start = jiffies; 1130 1131 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1132 timeout); 1133 switch (task->state) { 1134 case ICE_AQ_TASK_WAITING: 1135 err = ret < 0 ? ret : -ETIMEDOUT; 1136 break; 1137 case ICE_AQ_TASK_CANCELED: 1138 err = ret < 0 ? ret : -ECANCELED; 1139 break; 1140 case ICE_AQ_TASK_COMPLETE: 1141 err = ret < 0 ? ret : 0; 1142 break; 1143 default: 1144 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1145 err = -EINVAL; 1146 break; 1147 } 1148 1149 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1150 jiffies_to_msecs(jiffies - start), 1151 jiffies_to_msecs(timeout), 1152 opcode); 1153 1154 spin_lock_bh(&pf->aq_wait_lock); 1155 hlist_del(&task->entry); 1156 spin_unlock_bh(&pf->aq_wait_lock); 1157 kfree(task); 1158 1159 return err; 1160 } 1161 1162 /** 1163 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1164 * @pf: pointer to the PF private structure 1165 * @opcode: the opcode of the event 1166 * @event: the event to check 1167 * 1168 * Loops over the current list of pending threads waiting for an AdminQ event. 1169 * For each matching task, copy the contents of the event into the task 1170 * structure and wake up the thread. 1171 * 1172 * If multiple threads wait for the same opcode, they will all be woken up. 1173 * 1174 * Note that event->msg_buf will only be duplicated if the event has a buffer 1175 * with enough space already allocated. Otherwise, only the descriptor and 1176 * message length will be copied. 1177 * 1178 * Returns: true if an event was found, false otherwise 1179 */ 1180 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1181 struct ice_rq_event_info *event) 1182 { 1183 struct ice_aq_task *task; 1184 bool found = false; 1185 1186 spin_lock_bh(&pf->aq_wait_lock); 1187 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1188 if (task->state || task->opcode != opcode) 1189 continue; 1190 1191 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1192 task->event->msg_len = event->msg_len; 1193 1194 /* Only copy the data buffer if a destination was set */ 1195 if (task->event->msg_buf && 1196 task->event->buf_len > event->buf_len) { 1197 memcpy(task->event->msg_buf, event->msg_buf, 1198 event->buf_len); 1199 task->event->buf_len = event->buf_len; 1200 } 1201 1202 task->state = ICE_AQ_TASK_COMPLETE; 1203 found = true; 1204 } 1205 spin_unlock_bh(&pf->aq_wait_lock); 1206 1207 if (found) 1208 wake_up(&pf->aq_wait_queue); 1209 } 1210 1211 /** 1212 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1213 * @pf: the PF private structure 1214 * 1215 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1216 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1217 */ 1218 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1219 { 1220 struct ice_aq_task *task; 1221 1222 spin_lock_bh(&pf->aq_wait_lock); 1223 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1224 task->state = ICE_AQ_TASK_CANCELED; 1225 spin_unlock_bh(&pf->aq_wait_lock); 1226 1227 wake_up(&pf->aq_wait_queue); 1228 } 1229 1230 /** 1231 * __ice_clean_ctrlq - helper function to clean controlq rings 1232 * @pf: ptr to struct ice_pf 1233 * @q_type: specific Control queue type 1234 */ 1235 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1236 { 1237 struct device *dev = ice_pf_to_dev(pf); 1238 struct ice_rq_event_info event; 1239 struct ice_hw *hw = &pf->hw; 1240 struct ice_ctl_q_info *cq; 1241 u16 pending, i = 0; 1242 const char *qtype; 1243 u32 oldval, val; 1244 1245 /* Do not clean control queue if/when PF reset fails */ 1246 if (test_bit(ICE_RESET_FAILED, pf->state)) 1247 return 0; 1248 1249 switch (q_type) { 1250 case ICE_CTL_Q_ADMIN: 1251 cq = &hw->adminq; 1252 qtype = "Admin"; 1253 break; 1254 case ICE_CTL_Q_SB: 1255 cq = &hw->sbq; 1256 qtype = "Sideband"; 1257 break; 1258 case ICE_CTL_Q_MAILBOX: 1259 cq = &hw->mailboxq; 1260 qtype = "Mailbox"; 1261 /* we are going to try to detect a malicious VF, so set the 1262 * state to begin detection 1263 */ 1264 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1265 break; 1266 default: 1267 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1268 return 0; 1269 } 1270 1271 /* check for error indications - PF_xx_AxQLEN register layout for 1272 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1273 */ 1274 val = rd32(hw, cq->rq.len); 1275 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1276 PF_FW_ARQLEN_ARQCRIT_M)) { 1277 oldval = val; 1278 if (val & PF_FW_ARQLEN_ARQVFE_M) 1279 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1280 qtype); 1281 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1282 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1283 qtype); 1284 } 1285 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1286 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1287 qtype); 1288 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1289 PF_FW_ARQLEN_ARQCRIT_M); 1290 if (oldval != val) 1291 wr32(hw, cq->rq.len, val); 1292 } 1293 1294 val = rd32(hw, cq->sq.len); 1295 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1296 PF_FW_ATQLEN_ATQCRIT_M)) { 1297 oldval = val; 1298 if (val & PF_FW_ATQLEN_ATQVFE_M) 1299 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1300 qtype); 1301 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1302 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1303 qtype); 1304 } 1305 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1306 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1307 qtype); 1308 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1309 PF_FW_ATQLEN_ATQCRIT_M); 1310 if (oldval != val) 1311 wr32(hw, cq->sq.len, val); 1312 } 1313 1314 event.buf_len = cq->rq_buf_size; 1315 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1316 if (!event.msg_buf) 1317 return 0; 1318 1319 do { 1320 enum ice_status ret; 1321 u16 opcode; 1322 1323 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1324 if (ret == ICE_ERR_AQ_NO_WORK) 1325 break; 1326 if (ret) { 1327 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1328 ice_stat_str(ret)); 1329 break; 1330 } 1331 1332 opcode = le16_to_cpu(event.desc.opcode); 1333 1334 /* Notify any thread that might be waiting for this event */ 1335 ice_aq_check_events(pf, opcode, &event); 1336 1337 switch (opcode) { 1338 case ice_aqc_opc_get_link_status: 1339 if (ice_handle_link_event(pf, &event)) 1340 dev_err(dev, "Could not handle link event\n"); 1341 break; 1342 case ice_aqc_opc_event_lan_overflow: 1343 ice_vf_lan_overflow_event(pf, &event); 1344 break; 1345 case ice_mbx_opc_send_msg_to_pf: 1346 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1347 ice_vc_process_vf_msg(pf, &event); 1348 break; 1349 case ice_aqc_opc_fw_logging: 1350 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1351 break; 1352 case ice_aqc_opc_lldp_set_mib_change: 1353 ice_dcb_process_lldp_set_mib_change(pf, &event); 1354 break; 1355 default: 1356 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1357 qtype, opcode); 1358 break; 1359 } 1360 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1361 1362 kfree(event.msg_buf); 1363 1364 return pending && (i == ICE_DFLT_IRQ_WORK); 1365 } 1366 1367 /** 1368 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1369 * @hw: pointer to hardware info 1370 * @cq: control queue information 1371 * 1372 * returns true if there are pending messages in a queue, false if there aren't 1373 */ 1374 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1375 { 1376 u16 ntu; 1377 1378 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1379 return cq->rq.next_to_clean != ntu; 1380 } 1381 1382 /** 1383 * ice_clean_adminq_subtask - clean the AdminQ rings 1384 * @pf: board private structure 1385 */ 1386 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1387 { 1388 struct ice_hw *hw = &pf->hw; 1389 1390 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1391 return; 1392 1393 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1394 return; 1395 1396 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1397 1398 /* There might be a situation where new messages arrive to a control 1399 * queue between processing the last message and clearing the 1400 * EVENT_PENDING bit. So before exiting, check queue head again (using 1401 * ice_ctrlq_pending) and process new messages if any. 1402 */ 1403 if (ice_ctrlq_pending(hw, &hw->adminq)) 1404 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1405 1406 ice_flush(hw); 1407 } 1408 1409 /** 1410 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1411 * @pf: board private structure 1412 */ 1413 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1414 { 1415 struct ice_hw *hw = &pf->hw; 1416 1417 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1418 return; 1419 1420 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1421 return; 1422 1423 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1424 1425 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1426 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1427 1428 ice_flush(hw); 1429 } 1430 1431 /** 1432 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1433 * @pf: board private structure 1434 */ 1435 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1436 { 1437 struct ice_hw *hw = &pf->hw; 1438 1439 /* Nothing to do here if sideband queue is not supported */ 1440 if (!ice_is_sbq_supported(hw)) { 1441 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1442 return; 1443 } 1444 1445 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1446 return; 1447 1448 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1449 return; 1450 1451 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1452 1453 if (ice_ctrlq_pending(hw, &hw->sbq)) 1454 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1455 1456 ice_flush(hw); 1457 } 1458 1459 /** 1460 * ice_service_task_schedule - schedule the service task to wake up 1461 * @pf: board private structure 1462 * 1463 * If not already scheduled, this puts the task into the work queue. 1464 */ 1465 void ice_service_task_schedule(struct ice_pf *pf) 1466 { 1467 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1468 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1469 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1470 queue_work(ice_wq, &pf->serv_task); 1471 } 1472 1473 /** 1474 * ice_service_task_complete - finish up the service task 1475 * @pf: board private structure 1476 */ 1477 static void ice_service_task_complete(struct ice_pf *pf) 1478 { 1479 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1480 1481 /* force memory (pf->state) to sync before next service task */ 1482 smp_mb__before_atomic(); 1483 clear_bit(ICE_SERVICE_SCHED, pf->state); 1484 } 1485 1486 /** 1487 * ice_service_task_stop - stop service task and cancel works 1488 * @pf: board private structure 1489 * 1490 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1491 * 1 otherwise. 1492 */ 1493 static int ice_service_task_stop(struct ice_pf *pf) 1494 { 1495 int ret; 1496 1497 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1498 1499 if (pf->serv_tmr.function) 1500 del_timer_sync(&pf->serv_tmr); 1501 if (pf->serv_task.func) 1502 cancel_work_sync(&pf->serv_task); 1503 1504 clear_bit(ICE_SERVICE_SCHED, pf->state); 1505 return ret; 1506 } 1507 1508 /** 1509 * ice_service_task_restart - restart service task and schedule works 1510 * @pf: board private structure 1511 * 1512 * This function is needed for suspend and resume works (e.g WoL scenario) 1513 */ 1514 static void ice_service_task_restart(struct ice_pf *pf) 1515 { 1516 clear_bit(ICE_SERVICE_DIS, pf->state); 1517 ice_service_task_schedule(pf); 1518 } 1519 1520 /** 1521 * ice_service_timer - timer callback to schedule service task 1522 * @t: pointer to timer_list 1523 */ 1524 static void ice_service_timer(struct timer_list *t) 1525 { 1526 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1527 1528 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1529 ice_service_task_schedule(pf); 1530 } 1531 1532 /** 1533 * ice_handle_mdd_event - handle malicious driver detect event 1534 * @pf: pointer to the PF structure 1535 * 1536 * Called from service task. OICR interrupt handler indicates MDD event. 1537 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1538 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1539 * disable the queue, the PF can be configured to reset the VF using ethtool 1540 * private flag mdd-auto-reset-vf. 1541 */ 1542 static void ice_handle_mdd_event(struct ice_pf *pf) 1543 { 1544 struct device *dev = ice_pf_to_dev(pf); 1545 struct ice_hw *hw = &pf->hw; 1546 unsigned int i; 1547 u32 reg; 1548 1549 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1550 /* Since the VF MDD event logging is rate limited, check if 1551 * there are pending MDD events. 1552 */ 1553 ice_print_vfs_mdd_events(pf); 1554 return; 1555 } 1556 1557 /* find what triggered an MDD event */ 1558 reg = rd32(hw, GL_MDET_TX_PQM); 1559 if (reg & GL_MDET_TX_PQM_VALID_M) { 1560 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1561 GL_MDET_TX_PQM_PF_NUM_S; 1562 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1563 GL_MDET_TX_PQM_VF_NUM_S; 1564 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1565 GL_MDET_TX_PQM_MAL_TYPE_S; 1566 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1567 GL_MDET_TX_PQM_QNUM_S); 1568 1569 if (netif_msg_tx_err(pf)) 1570 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1571 event, queue, pf_num, vf_num); 1572 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1573 } 1574 1575 reg = rd32(hw, GL_MDET_TX_TCLAN); 1576 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1577 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1578 GL_MDET_TX_TCLAN_PF_NUM_S; 1579 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1580 GL_MDET_TX_TCLAN_VF_NUM_S; 1581 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1582 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1583 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1584 GL_MDET_TX_TCLAN_QNUM_S); 1585 1586 if (netif_msg_tx_err(pf)) 1587 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1588 event, queue, pf_num, vf_num); 1589 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1590 } 1591 1592 reg = rd32(hw, GL_MDET_RX); 1593 if (reg & GL_MDET_RX_VALID_M) { 1594 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1595 GL_MDET_RX_PF_NUM_S; 1596 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1597 GL_MDET_RX_VF_NUM_S; 1598 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1599 GL_MDET_RX_MAL_TYPE_S; 1600 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1601 GL_MDET_RX_QNUM_S); 1602 1603 if (netif_msg_rx_err(pf)) 1604 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1605 event, queue, pf_num, vf_num); 1606 wr32(hw, GL_MDET_RX, 0xffffffff); 1607 } 1608 1609 /* check to see if this PF caused an MDD event */ 1610 reg = rd32(hw, PF_MDET_TX_PQM); 1611 if (reg & PF_MDET_TX_PQM_VALID_M) { 1612 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1613 if (netif_msg_tx_err(pf)) 1614 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1615 } 1616 1617 reg = rd32(hw, PF_MDET_TX_TCLAN); 1618 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1619 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1620 if (netif_msg_tx_err(pf)) 1621 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1622 } 1623 1624 reg = rd32(hw, PF_MDET_RX); 1625 if (reg & PF_MDET_RX_VALID_M) { 1626 wr32(hw, PF_MDET_RX, 0xFFFF); 1627 if (netif_msg_rx_err(pf)) 1628 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1629 } 1630 1631 /* Check to see if one of the VFs caused an MDD event, and then 1632 * increment counters and set print pending 1633 */ 1634 ice_for_each_vf(pf, i) { 1635 struct ice_vf *vf = &pf->vf[i]; 1636 1637 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1638 if (reg & VP_MDET_TX_PQM_VALID_M) { 1639 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1640 vf->mdd_tx_events.count++; 1641 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1642 if (netif_msg_tx_err(pf)) 1643 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1644 i); 1645 } 1646 1647 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1648 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1649 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1650 vf->mdd_tx_events.count++; 1651 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1652 if (netif_msg_tx_err(pf)) 1653 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1654 i); 1655 } 1656 1657 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1658 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1659 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1660 vf->mdd_tx_events.count++; 1661 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1662 if (netif_msg_tx_err(pf)) 1663 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1664 i); 1665 } 1666 1667 reg = rd32(hw, VP_MDET_RX(i)); 1668 if (reg & VP_MDET_RX_VALID_M) { 1669 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1670 vf->mdd_rx_events.count++; 1671 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1672 if (netif_msg_rx_err(pf)) 1673 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1674 i); 1675 1676 /* Since the queue is disabled on VF Rx MDD events, the 1677 * PF can be configured to reset the VF through ethtool 1678 * private flag mdd-auto-reset-vf. 1679 */ 1680 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1681 /* VF MDD event counters will be cleared by 1682 * reset, so print the event prior to reset. 1683 */ 1684 ice_print_vf_rx_mdd_event(vf); 1685 ice_reset_vf(&pf->vf[i], false); 1686 } 1687 } 1688 } 1689 1690 ice_print_vfs_mdd_events(pf); 1691 } 1692 1693 /** 1694 * ice_force_phys_link_state - Force the physical link state 1695 * @vsi: VSI to force the physical link state to up/down 1696 * @link_up: true/false indicates to set the physical link to up/down 1697 * 1698 * Force the physical link state by getting the current PHY capabilities from 1699 * hardware and setting the PHY config based on the determined capabilities. If 1700 * link changes a link event will be triggered because both the Enable Automatic 1701 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1702 * 1703 * Returns 0 on success, negative on failure 1704 */ 1705 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1706 { 1707 struct ice_aqc_get_phy_caps_data *pcaps; 1708 struct ice_aqc_set_phy_cfg_data *cfg; 1709 struct ice_port_info *pi; 1710 struct device *dev; 1711 int retcode; 1712 1713 if (!vsi || !vsi->port_info || !vsi->back) 1714 return -EINVAL; 1715 if (vsi->type != ICE_VSI_PF) 1716 return 0; 1717 1718 dev = ice_pf_to_dev(vsi->back); 1719 1720 pi = vsi->port_info; 1721 1722 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1723 if (!pcaps) 1724 return -ENOMEM; 1725 1726 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1727 NULL); 1728 if (retcode) { 1729 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1730 vsi->vsi_num, retcode); 1731 retcode = -EIO; 1732 goto out; 1733 } 1734 1735 /* No change in link */ 1736 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1737 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1738 goto out; 1739 1740 /* Use the current user PHY configuration. The current user PHY 1741 * configuration is initialized during probe from PHY capabilities 1742 * software mode, and updated on set PHY configuration. 1743 */ 1744 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1745 if (!cfg) { 1746 retcode = -ENOMEM; 1747 goto out; 1748 } 1749 1750 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1751 if (link_up) 1752 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1753 else 1754 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1755 1756 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1757 if (retcode) { 1758 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1759 vsi->vsi_num, retcode); 1760 retcode = -EIO; 1761 } 1762 1763 kfree(cfg); 1764 out: 1765 kfree(pcaps); 1766 return retcode; 1767 } 1768 1769 /** 1770 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1771 * @pi: port info structure 1772 * 1773 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1774 */ 1775 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1776 { 1777 struct ice_aqc_get_phy_caps_data *pcaps; 1778 struct ice_pf *pf = pi->hw->back; 1779 enum ice_status status; 1780 int err = 0; 1781 1782 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1783 if (!pcaps) 1784 return -ENOMEM; 1785 1786 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1787 NULL); 1788 1789 if (status) { 1790 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1791 err = -EIO; 1792 goto out; 1793 } 1794 1795 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1796 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1797 1798 out: 1799 kfree(pcaps); 1800 return err; 1801 } 1802 1803 /** 1804 * ice_init_link_dflt_override - Initialize link default override 1805 * @pi: port info structure 1806 * 1807 * Initialize link default override and PHY total port shutdown during probe 1808 */ 1809 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1810 { 1811 struct ice_link_default_override_tlv *ldo; 1812 struct ice_pf *pf = pi->hw->back; 1813 1814 ldo = &pf->link_dflt_override; 1815 if (ice_get_link_default_override(ldo, pi)) 1816 return; 1817 1818 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1819 return; 1820 1821 /* Enable Total Port Shutdown (override/replace link-down-on-close 1822 * ethtool private flag) for ports with Port Disable bit set. 1823 */ 1824 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1825 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1826 } 1827 1828 /** 1829 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1830 * @pi: port info structure 1831 * 1832 * If default override is enabled, initialize the user PHY cfg speed and FEC 1833 * settings using the default override mask from the NVM. 1834 * 1835 * The PHY should only be configured with the default override settings the 1836 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1837 * is used to indicate that the user PHY cfg default override is initialized 1838 * and the PHY has not been configured with the default override settings. The 1839 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1840 * configured. 1841 * 1842 * This function should be called only if the FW doesn't support default 1843 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1844 */ 1845 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1846 { 1847 struct ice_link_default_override_tlv *ldo; 1848 struct ice_aqc_set_phy_cfg_data *cfg; 1849 struct ice_phy_info *phy = &pi->phy; 1850 struct ice_pf *pf = pi->hw->back; 1851 1852 ldo = &pf->link_dflt_override; 1853 1854 /* If link default override is enabled, use to mask NVM PHY capabilities 1855 * for speed and FEC default configuration. 1856 */ 1857 cfg = &phy->curr_user_phy_cfg; 1858 1859 if (ldo->phy_type_low || ldo->phy_type_high) { 1860 cfg->phy_type_low = pf->nvm_phy_type_lo & 1861 cpu_to_le64(ldo->phy_type_low); 1862 cfg->phy_type_high = pf->nvm_phy_type_hi & 1863 cpu_to_le64(ldo->phy_type_high); 1864 } 1865 cfg->link_fec_opt = ldo->fec_options; 1866 phy->curr_user_fec_req = ICE_FEC_AUTO; 1867 1868 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1869 } 1870 1871 /** 1872 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1873 * @pi: port info structure 1874 * 1875 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1876 * mode to default. The PHY defaults are from get PHY capabilities topology 1877 * with media so call when media is first available. An error is returned if 1878 * called when media is not available. The PHY initialization completed state is 1879 * set here. 1880 * 1881 * These configurations are used when setting PHY 1882 * configuration. The user PHY configuration is updated on set PHY 1883 * configuration. Returns 0 on success, negative on failure 1884 */ 1885 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1886 { 1887 struct ice_aqc_get_phy_caps_data *pcaps; 1888 struct ice_phy_info *phy = &pi->phy; 1889 struct ice_pf *pf = pi->hw->back; 1890 enum ice_status status; 1891 int err = 0; 1892 1893 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1894 return -EIO; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1901 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1902 pcaps, NULL); 1903 else 1904 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1905 pcaps, NULL); 1906 if (status) { 1907 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1908 err = -EIO; 1909 goto err_out; 1910 } 1911 1912 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1913 1914 /* check if lenient mode is supported and enabled */ 1915 if (ice_fw_supports_link_override(pi->hw) && 1916 !(pcaps->module_compliance_enforcement & 1917 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1918 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1919 1920 /* if the FW supports default PHY configuration mode, then the driver 1921 * does not have to apply link override settings. If not, 1922 * initialize user PHY configuration with link override values 1923 */ 1924 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1925 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1926 ice_init_phy_cfg_dflt_override(pi); 1927 goto out; 1928 } 1929 } 1930 1931 /* if link default override is not enabled, set user flow control and 1932 * FEC settings based on what get_phy_caps returned 1933 */ 1934 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1935 pcaps->link_fec_options); 1936 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1937 1938 out: 1939 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1940 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1941 err_out: 1942 kfree(pcaps); 1943 return err; 1944 } 1945 1946 /** 1947 * ice_configure_phy - configure PHY 1948 * @vsi: VSI of PHY 1949 * 1950 * Set the PHY configuration. If the current PHY configuration is the same as 1951 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1952 * configure the based get PHY capabilities for topology with media. 1953 */ 1954 static int ice_configure_phy(struct ice_vsi *vsi) 1955 { 1956 struct device *dev = ice_pf_to_dev(vsi->back); 1957 struct ice_port_info *pi = vsi->port_info; 1958 struct ice_aqc_get_phy_caps_data *pcaps; 1959 struct ice_aqc_set_phy_cfg_data *cfg; 1960 struct ice_phy_info *phy = &pi->phy; 1961 struct ice_pf *pf = vsi->back; 1962 enum ice_status status; 1963 int err = 0; 1964 1965 /* Ensure we have media as we cannot configure a medialess port */ 1966 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1967 return -EPERM; 1968 1969 ice_print_topo_conflict(vsi); 1970 1971 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 1972 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1973 return -EPERM; 1974 1975 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 1976 return ice_force_phys_link_state(vsi, true); 1977 1978 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1979 if (!pcaps) 1980 return -ENOMEM; 1981 1982 /* Get current PHY config */ 1983 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1984 NULL); 1985 if (status) { 1986 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1987 vsi->vsi_num, ice_stat_str(status)); 1988 err = -EIO; 1989 goto done; 1990 } 1991 1992 /* If PHY enable link is configured and configuration has not changed, 1993 * there's nothing to do 1994 */ 1995 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1996 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 1997 goto done; 1998 1999 /* Use PHY topology as baseline for configuration */ 2000 memset(pcaps, 0, sizeof(*pcaps)); 2001 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2002 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2003 pcaps, NULL); 2004 else 2005 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2006 pcaps, NULL); 2007 if (status) { 2008 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 2009 vsi->vsi_num, ice_stat_str(status)); 2010 err = -EIO; 2011 goto done; 2012 } 2013 2014 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2015 if (!cfg) { 2016 err = -ENOMEM; 2017 goto done; 2018 } 2019 2020 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2021 2022 /* Speed - If default override pending, use curr_user_phy_cfg set in 2023 * ice_init_phy_user_cfg_ldo. 2024 */ 2025 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2026 vsi->back->state)) { 2027 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2028 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2029 } else { 2030 u64 phy_low = 0, phy_high = 0; 2031 2032 ice_update_phy_type(&phy_low, &phy_high, 2033 pi->phy.curr_user_speed_req); 2034 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2035 cfg->phy_type_high = pcaps->phy_type_high & 2036 cpu_to_le64(phy_high); 2037 } 2038 2039 /* Can't provide what was requested; use PHY capabilities */ 2040 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2041 cfg->phy_type_low = pcaps->phy_type_low; 2042 cfg->phy_type_high = pcaps->phy_type_high; 2043 } 2044 2045 /* FEC */ 2046 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2047 2048 /* Can't provide what was requested; use PHY capabilities */ 2049 if (cfg->link_fec_opt != 2050 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2051 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2052 cfg->link_fec_opt = pcaps->link_fec_options; 2053 } 2054 2055 /* Flow Control - always supported; no need to check against 2056 * capabilities 2057 */ 2058 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2059 2060 /* Enable link and link update */ 2061 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2062 2063 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2064 if (status) { 2065 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 2066 vsi->vsi_num, ice_stat_str(status)); 2067 err = -EIO; 2068 } 2069 2070 kfree(cfg); 2071 done: 2072 kfree(pcaps); 2073 return err; 2074 } 2075 2076 /** 2077 * ice_check_media_subtask - Check for media 2078 * @pf: pointer to PF struct 2079 * 2080 * If media is available, then initialize PHY user configuration if it is not 2081 * been, and configure the PHY if the interface is up. 2082 */ 2083 static void ice_check_media_subtask(struct ice_pf *pf) 2084 { 2085 struct ice_port_info *pi; 2086 struct ice_vsi *vsi; 2087 int err; 2088 2089 /* No need to check for media if it's already present */ 2090 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2091 return; 2092 2093 vsi = ice_get_main_vsi(pf); 2094 if (!vsi) 2095 return; 2096 2097 /* Refresh link info and check if media is present */ 2098 pi = vsi->port_info; 2099 err = ice_update_link_info(pi); 2100 if (err) 2101 return; 2102 2103 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 2104 2105 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2106 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2107 ice_init_phy_user_cfg(pi); 2108 2109 /* PHY settings are reset on media insertion, reconfigure 2110 * PHY to preserve settings. 2111 */ 2112 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2113 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2114 return; 2115 2116 err = ice_configure_phy(vsi); 2117 if (!err) 2118 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2119 2120 /* A Link Status Event will be generated; the event handler 2121 * will complete bringing the interface up 2122 */ 2123 } 2124 } 2125 2126 /** 2127 * ice_service_task - manage and run subtasks 2128 * @work: pointer to work_struct contained by the PF struct 2129 */ 2130 static void ice_service_task(struct work_struct *work) 2131 { 2132 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2133 unsigned long start_time = jiffies; 2134 2135 /* subtasks */ 2136 2137 /* process reset requests first */ 2138 ice_reset_subtask(pf); 2139 2140 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2141 if (ice_is_reset_in_progress(pf->state) || 2142 test_bit(ICE_SUSPENDED, pf->state) || 2143 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2144 ice_service_task_complete(pf); 2145 return; 2146 } 2147 2148 ice_clean_adminq_subtask(pf); 2149 ice_check_media_subtask(pf); 2150 ice_check_for_hang_subtask(pf); 2151 ice_sync_fltr_subtask(pf); 2152 ice_handle_mdd_event(pf); 2153 ice_watchdog_subtask(pf); 2154 2155 if (ice_is_safe_mode(pf)) { 2156 ice_service_task_complete(pf); 2157 return; 2158 } 2159 2160 ice_process_vflr_event(pf); 2161 ice_clean_mailboxq_subtask(pf); 2162 ice_clean_sbq_subtask(pf); 2163 ice_sync_arfs_fltrs(pf); 2164 ice_flush_fdir_ctx(pf); 2165 2166 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2167 ice_service_task_complete(pf); 2168 2169 /* If the tasks have taken longer than one service timer period 2170 * or there is more work to be done, reset the service timer to 2171 * schedule the service task now. 2172 */ 2173 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2174 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2175 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2176 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2177 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2178 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2179 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2180 mod_timer(&pf->serv_tmr, jiffies); 2181 } 2182 2183 /** 2184 * ice_set_ctrlq_len - helper function to set controlq length 2185 * @hw: pointer to the HW instance 2186 */ 2187 static void ice_set_ctrlq_len(struct ice_hw *hw) 2188 { 2189 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2190 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2191 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2192 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2193 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2194 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2195 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2196 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2197 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2198 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2199 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2200 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2201 } 2202 2203 /** 2204 * ice_schedule_reset - schedule a reset 2205 * @pf: board private structure 2206 * @reset: reset being requested 2207 */ 2208 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2209 { 2210 struct device *dev = ice_pf_to_dev(pf); 2211 2212 /* bail out if earlier reset has failed */ 2213 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2214 dev_dbg(dev, "earlier reset has failed\n"); 2215 return -EIO; 2216 } 2217 /* bail if reset/recovery already in progress */ 2218 if (ice_is_reset_in_progress(pf->state)) { 2219 dev_dbg(dev, "Reset already in progress\n"); 2220 return -EBUSY; 2221 } 2222 2223 ice_unplug_aux_dev(pf); 2224 2225 switch (reset) { 2226 case ICE_RESET_PFR: 2227 set_bit(ICE_PFR_REQ, pf->state); 2228 break; 2229 case ICE_RESET_CORER: 2230 set_bit(ICE_CORER_REQ, pf->state); 2231 break; 2232 case ICE_RESET_GLOBR: 2233 set_bit(ICE_GLOBR_REQ, pf->state); 2234 break; 2235 default: 2236 return -EINVAL; 2237 } 2238 2239 ice_service_task_schedule(pf); 2240 return 0; 2241 } 2242 2243 /** 2244 * ice_irq_affinity_notify - Callback for affinity changes 2245 * @notify: context as to what irq was changed 2246 * @mask: the new affinity mask 2247 * 2248 * This is a callback function used by the irq_set_affinity_notifier function 2249 * so that we may register to receive changes to the irq affinity masks. 2250 */ 2251 static void 2252 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2253 const cpumask_t *mask) 2254 { 2255 struct ice_q_vector *q_vector = 2256 container_of(notify, struct ice_q_vector, affinity_notify); 2257 2258 cpumask_copy(&q_vector->affinity_mask, mask); 2259 } 2260 2261 /** 2262 * ice_irq_affinity_release - Callback for affinity notifier release 2263 * @ref: internal core kernel usage 2264 * 2265 * This is a callback function used by the irq_set_affinity_notifier function 2266 * to inform the current notification subscriber that they will no longer 2267 * receive notifications. 2268 */ 2269 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2270 2271 /** 2272 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2273 * @vsi: the VSI being configured 2274 */ 2275 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2276 { 2277 struct ice_hw *hw = &vsi->back->hw; 2278 int i; 2279 2280 ice_for_each_q_vector(vsi, i) 2281 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2282 2283 ice_flush(hw); 2284 return 0; 2285 } 2286 2287 /** 2288 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2289 * @vsi: the VSI being configured 2290 * @basename: name for the vector 2291 */ 2292 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2293 { 2294 int q_vectors = vsi->num_q_vectors; 2295 struct ice_pf *pf = vsi->back; 2296 int base = vsi->base_vector; 2297 struct device *dev; 2298 int rx_int_idx = 0; 2299 int tx_int_idx = 0; 2300 int vector, err; 2301 int irq_num; 2302 2303 dev = ice_pf_to_dev(pf); 2304 for (vector = 0; vector < q_vectors; vector++) { 2305 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2306 2307 irq_num = pf->msix_entries[base + vector].vector; 2308 2309 if (q_vector->tx.ring && q_vector->rx.ring) { 2310 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2311 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2312 tx_int_idx++; 2313 } else if (q_vector->rx.ring) { 2314 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2315 "%s-%s-%d", basename, "rx", rx_int_idx++); 2316 } else if (q_vector->tx.ring) { 2317 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2318 "%s-%s-%d", basename, "tx", tx_int_idx++); 2319 } else { 2320 /* skip this unused q_vector */ 2321 continue; 2322 } 2323 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2324 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2325 IRQF_SHARED, q_vector->name, 2326 q_vector); 2327 else 2328 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2329 0, q_vector->name, q_vector); 2330 if (err) { 2331 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2332 err); 2333 goto free_q_irqs; 2334 } 2335 2336 /* register for affinity change notifications */ 2337 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2338 struct irq_affinity_notify *affinity_notify; 2339 2340 affinity_notify = &q_vector->affinity_notify; 2341 affinity_notify->notify = ice_irq_affinity_notify; 2342 affinity_notify->release = ice_irq_affinity_release; 2343 irq_set_affinity_notifier(irq_num, affinity_notify); 2344 } 2345 2346 /* assign the mask for this irq */ 2347 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2348 } 2349 2350 vsi->irqs_ready = true; 2351 return 0; 2352 2353 free_q_irqs: 2354 while (vector) { 2355 vector--; 2356 irq_num = pf->msix_entries[base + vector].vector; 2357 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2358 irq_set_affinity_notifier(irq_num, NULL); 2359 irq_set_affinity_hint(irq_num, NULL); 2360 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2361 } 2362 return err; 2363 } 2364 2365 /** 2366 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2367 * @vsi: VSI to setup Tx rings used by XDP 2368 * 2369 * Return 0 on success and negative value on error 2370 */ 2371 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2372 { 2373 struct device *dev = ice_pf_to_dev(vsi->back); 2374 int i; 2375 2376 for (i = 0; i < vsi->num_xdp_txq; i++) { 2377 u16 xdp_q_idx = vsi->alloc_txq + i; 2378 struct ice_ring *xdp_ring; 2379 2380 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2381 2382 if (!xdp_ring) 2383 goto free_xdp_rings; 2384 2385 xdp_ring->q_index = xdp_q_idx; 2386 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2387 xdp_ring->ring_active = false; 2388 xdp_ring->vsi = vsi; 2389 xdp_ring->netdev = NULL; 2390 xdp_ring->dev = dev; 2391 xdp_ring->count = vsi->num_tx_desc; 2392 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2393 if (ice_setup_tx_ring(xdp_ring)) 2394 goto free_xdp_rings; 2395 ice_set_ring_xdp(xdp_ring); 2396 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2397 } 2398 2399 return 0; 2400 2401 free_xdp_rings: 2402 for (; i >= 0; i--) 2403 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2404 ice_free_tx_ring(vsi->xdp_rings[i]); 2405 return -ENOMEM; 2406 } 2407 2408 /** 2409 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2410 * @vsi: VSI to set the bpf prog on 2411 * @prog: the bpf prog pointer 2412 */ 2413 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2414 { 2415 struct bpf_prog *old_prog; 2416 int i; 2417 2418 old_prog = xchg(&vsi->xdp_prog, prog); 2419 if (old_prog) 2420 bpf_prog_put(old_prog); 2421 2422 ice_for_each_rxq(vsi, i) 2423 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2424 } 2425 2426 /** 2427 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2428 * @vsi: VSI to bring up Tx rings used by XDP 2429 * @prog: bpf program that will be assigned to VSI 2430 * 2431 * Return 0 on success and negative value on error 2432 */ 2433 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2434 { 2435 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2436 int xdp_rings_rem = vsi->num_xdp_txq; 2437 struct ice_pf *pf = vsi->back; 2438 struct ice_qs_cfg xdp_qs_cfg = { 2439 .qs_mutex = &pf->avail_q_mutex, 2440 .pf_map = pf->avail_txqs, 2441 .pf_map_size = pf->max_pf_txqs, 2442 .q_count = vsi->num_xdp_txq, 2443 .scatter_count = ICE_MAX_SCATTER_TXQS, 2444 .vsi_map = vsi->txq_map, 2445 .vsi_map_offset = vsi->alloc_txq, 2446 .mapping_mode = ICE_VSI_MAP_CONTIG 2447 }; 2448 enum ice_status status; 2449 struct device *dev; 2450 int i, v_idx; 2451 2452 dev = ice_pf_to_dev(pf); 2453 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2454 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2455 if (!vsi->xdp_rings) 2456 return -ENOMEM; 2457 2458 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2459 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2460 goto err_map_xdp; 2461 2462 if (ice_xdp_alloc_setup_rings(vsi)) 2463 goto clear_xdp_rings; 2464 2465 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2466 ice_for_each_q_vector(vsi, v_idx) { 2467 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2468 int xdp_rings_per_v, q_id, q_base; 2469 2470 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2471 vsi->num_q_vectors - v_idx); 2472 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2473 2474 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2475 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2476 2477 xdp_ring->q_vector = q_vector; 2478 xdp_ring->next = q_vector->tx.ring; 2479 q_vector->tx.ring = xdp_ring; 2480 } 2481 xdp_rings_rem -= xdp_rings_per_v; 2482 } 2483 2484 /* omit the scheduler update if in reset path; XDP queues will be 2485 * taken into account at the end of ice_vsi_rebuild, where 2486 * ice_cfg_vsi_lan is being called 2487 */ 2488 if (ice_is_reset_in_progress(pf->state)) 2489 return 0; 2490 2491 /* tell the Tx scheduler that right now we have 2492 * additional queues 2493 */ 2494 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2495 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2496 2497 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2498 max_txqs); 2499 if (status) { 2500 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2501 ice_stat_str(status)); 2502 goto clear_xdp_rings; 2503 } 2504 ice_vsi_assign_bpf_prog(vsi, prog); 2505 2506 return 0; 2507 clear_xdp_rings: 2508 for (i = 0; i < vsi->num_xdp_txq; i++) 2509 if (vsi->xdp_rings[i]) { 2510 kfree_rcu(vsi->xdp_rings[i], rcu); 2511 vsi->xdp_rings[i] = NULL; 2512 } 2513 2514 err_map_xdp: 2515 mutex_lock(&pf->avail_q_mutex); 2516 for (i = 0; i < vsi->num_xdp_txq; i++) { 2517 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2518 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2519 } 2520 mutex_unlock(&pf->avail_q_mutex); 2521 2522 devm_kfree(dev, vsi->xdp_rings); 2523 return -ENOMEM; 2524 } 2525 2526 /** 2527 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2528 * @vsi: VSI to remove XDP rings 2529 * 2530 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2531 * resources 2532 */ 2533 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2534 { 2535 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2536 struct ice_pf *pf = vsi->back; 2537 int i, v_idx; 2538 2539 /* q_vectors are freed in reset path so there's no point in detaching 2540 * rings; in case of rebuild being triggered not from reset bits 2541 * in pf->state won't be set, so additionally check first q_vector 2542 * against NULL 2543 */ 2544 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2545 goto free_qmap; 2546 2547 ice_for_each_q_vector(vsi, v_idx) { 2548 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2549 struct ice_ring *ring; 2550 2551 ice_for_each_ring(ring, q_vector->tx) 2552 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2553 break; 2554 2555 /* restore the value of last node prior to XDP setup */ 2556 q_vector->tx.ring = ring; 2557 } 2558 2559 free_qmap: 2560 mutex_lock(&pf->avail_q_mutex); 2561 for (i = 0; i < vsi->num_xdp_txq; i++) { 2562 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2563 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2564 } 2565 mutex_unlock(&pf->avail_q_mutex); 2566 2567 for (i = 0; i < vsi->num_xdp_txq; i++) 2568 if (vsi->xdp_rings[i]) { 2569 if (vsi->xdp_rings[i]->desc) 2570 ice_free_tx_ring(vsi->xdp_rings[i]); 2571 kfree_rcu(vsi->xdp_rings[i], rcu); 2572 vsi->xdp_rings[i] = NULL; 2573 } 2574 2575 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2576 vsi->xdp_rings = NULL; 2577 2578 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2579 return 0; 2580 2581 ice_vsi_assign_bpf_prog(vsi, NULL); 2582 2583 /* notify Tx scheduler that we destroyed XDP queues and bring 2584 * back the old number of child nodes 2585 */ 2586 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2587 max_txqs[i] = vsi->num_txq; 2588 2589 /* change number of XDP Tx queues to 0 */ 2590 vsi->num_xdp_txq = 0; 2591 2592 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2593 max_txqs); 2594 } 2595 2596 /** 2597 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2598 * @vsi: VSI to schedule napi on 2599 */ 2600 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2601 { 2602 int i; 2603 2604 ice_for_each_rxq(vsi, i) { 2605 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2606 2607 if (rx_ring->xsk_pool) 2608 napi_schedule(&rx_ring->q_vector->napi); 2609 } 2610 } 2611 2612 /** 2613 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2614 * @vsi: VSI to setup XDP for 2615 * @prog: XDP program 2616 * @extack: netlink extended ack 2617 */ 2618 static int 2619 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2620 struct netlink_ext_ack *extack) 2621 { 2622 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2623 bool if_running = netif_running(vsi->netdev); 2624 int ret = 0, xdp_ring_err = 0; 2625 2626 if (frame_size > vsi->rx_buf_len) { 2627 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2628 return -EOPNOTSUPP; 2629 } 2630 2631 /* need to stop netdev while setting up the program for Rx rings */ 2632 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2633 ret = ice_down(vsi); 2634 if (ret) { 2635 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2636 return ret; 2637 } 2638 } 2639 2640 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2641 vsi->num_xdp_txq = vsi->alloc_rxq; 2642 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2643 if (xdp_ring_err) 2644 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2645 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2646 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2647 if (xdp_ring_err) 2648 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2649 } else { 2650 ice_vsi_assign_bpf_prog(vsi, prog); 2651 } 2652 2653 if (if_running) 2654 ret = ice_up(vsi); 2655 2656 if (!ret && prog) 2657 ice_vsi_rx_napi_schedule(vsi); 2658 2659 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2660 } 2661 2662 /** 2663 * ice_xdp_safe_mode - XDP handler for safe mode 2664 * @dev: netdevice 2665 * @xdp: XDP command 2666 */ 2667 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2668 struct netdev_bpf *xdp) 2669 { 2670 NL_SET_ERR_MSG_MOD(xdp->extack, 2671 "Please provide working DDP firmware package in order to use XDP\n" 2672 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2673 return -EOPNOTSUPP; 2674 } 2675 2676 /** 2677 * ice_xdp - implements XDP handler 2678 * @dev: netdevice 2679 * @xdp: XDP command 2680 */ 2681 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2682 { 2683 struct ice_netdev_priv *np = netdev_priv(dev); 2684 struct ice_vsi *vsi = np->vsi; 2685 2686 if (vsi->type != ICE_VSI_PF) { 2687 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2688 return -EINVAL; 2689 } 2690 2691 switch (xdp->command) { 2692 case XDP_SETUP_PROG: 2693 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2694 case XDP_SETUP_XSK_POOL: 2695 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2696 xdp->xsk.queue_id); 2697 default: 2698 return -EINVAL; 2699 } 2700 } 2701 2702 /** 2703 * ice_ena_misc_vector - enable the non-queue interrupts 2704 * @pf: board private structure 2705 */ 2706 static void ice_ena_misc_vector(struct ice_pf *pf) 2707 { 2708 struct ice_hw *hw = &pf->hw; 2709 u32 val; 2710 2711 /* Disable anti-spoof detection interrupt to prevent spurious event 2712 * interrupts during a function reset. Anti-spoof functionally is 2713 * still supported. 2714 */ 2715 val = rd32(hw, GL_MDCK_TX_TDPU); 2716 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2717 wr32(hw, GL_MDCK_TX_TDPU, val); 2718 2719 /* clear things first */ 2720 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2721 rd32(hw, PFINT_OICR); /* read to clear */ 2722 2723 val = (PFINT_OICR_ECC_ERR_M | 2724 PFINT_OICR_MAL_DETECT_M | 2725 PFINT_OICR_GRST_M | 2726 PFINT_OICR_PCI_EXCEPTION_M | 2727 PFINT_OICR_VFLR_M | 2728 PFINT_OICR_HMC_ERR_M | 2729 PFINT_OICR_PE_PUSH_M | 2730 PFINT_OICR_PE_CRITERR_M); 2731 2732 wr32(hw, PFINT_OICR_ENA, val); 2733 2734 /* SW_ITR_IDX = 0, but don't change INTENA */ 2735 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2736 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2737 } 2738 2739 /** 2740 * ice_misc_intr - misc interrupt handler 2741 * @irq: interrupt number 2742 * @data: pointer to a q_vector 2743 */ 2744 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2745 { 2746 struct ice_pf *pf = (struct ice_pf *)data; 2747 struct ice_hw *hw = &pf->hw; 2748 irqreturn_t ret = IRQ_NONE; 2749 struct device *dev; 2750 u32 oicr, ena_mask; 2751 2752 dev = ice_pf_to_dev(pf); 2753 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2754 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2755 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2756 2757 oicr = rd32(hw, PFINT_OICR); 2758 ena_mask = rd32(hw, PFINT_OICR_ENA); 2759 2760 if (oicr & PFINT_OICR_SWINT_M) { 2761 ena_mask &= ~PFINT_OICR_SWINT_M; 2762 pf->sw_int_count++; 2763 } 2764 2765 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2766 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2767 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2768 } 2769 if (oicr & PFINT_OICR_VFLR_M) { 2770 /* disable any further VFLR event notifications */ 2771 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2772 u32 reg = rd32(hw, PFINT_OICR_ENA); 2773 2774 reg &= ~PFINT_OICR_VFLR_M; 2775 wr32(hw, PFINT_OICR_ENA, reg); 2776 } else { 2777 ena_mask &= ~PFINT_OICR_VFLR_M; 2778 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2779 } 2780 } 2781 2782 if (oicr & PFINT_OICR_GRST_M) { 2783 u32 reset; 2784 2785 /* we have a reset warning */ 2786 ena_mask &= ~PFINT_OICR_GRST_M; 2787 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2788 GLGEN_RSTAT_RESET_TYPE_S; 2789 2790 if (reset == ICE_RESET_CORER) 2791 pf->corer_count++; 2792 else if (reset == ICE_RESET_GLOBR) 2793 pf->globr_count++; 2794 else if (reset == ICE_RESET_EMPR) 2795 pf->empr_count++; 2796 else 2797 dev_dbg(dev, "Invalid reset type %d\n", reset); 2798 2799 /* If a reset cycle isn't already in progress, we set a bit in 2800 * pf->state so that the service task can start a reset/rebuild. 2801 */ 2802 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2803 if (reset == ICE_RESET_CORER) 2804 set_bit(ICE_CORER_RECV, pf->state); 2805 else if (reset == ICE_RESET_GLOBR) 2806 set_bit(ICE_GLOBR_RECV, pf->state); 2807 else 2808 set_bit(ICE_EMPR_RECV, pf->state); 2809 2810 /* There are couple of different bits at play here. 2811 * hw->reset_ongoing indicates whether the hardware is 2812 * in reset. This is set to true when a reset interrupt 2813 * is received and set back to false after the driver 2814 * has determined that the hardware is out of reset. 2815 * 2816 * ICE_RESET_OICR_RECV in pf->state indicates 2817 * that a post reset rebuild is required before the 2818 * driver is operational again. This is set above. 2819 * 2820 * As this is the start of the reset/rebuild cycle, set 2821 * both to indicate that. 2822 */ 2823 hw->reset_ongoing = true; 2824 } 2825 } 2826 2827 if (oicr & PFINT_OICR_TSYN_TX_M) { 2828 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 2829 ice_ptp_process_ts(pf); 2830 } 2831 2832 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 2833 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2834 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 2835 2836 /* Save EVENTs from GTSYN register */ 2837 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 2838 GLTSYN_STAT_EVENT1_M | 2839 GLTSYN_STAT_EVENT2_M); 2840 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 2841 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 2842 } 2843 2844 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2845 if (oicr & ICE_AUX_CRIT_ERR) { 2846 struct iidc_event *event; 2847 2848 ena_mask &= ~ICE_AUX_CRIT_ERR; 2849 event = kzalloc(sizeof(*event), GFP_KERNEL); 2850 if (event) { 2851 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2852 /* report the entire OICR value to AUX driver */ 2853 event->reg = oicr; 2854 ice_send_event_to_aux(pf, event); 2855 kfree(event); 2856 } 2857 } 2858 2859 /* Report any remaining unexpected interrupts */ 2860 oicr &= ena_mask; 2861 if (oicr) { 2862 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2863 /* If a critical error is pending there is no choice but to 2864 * reset the device. 2865 */ 2866 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 2867 PFINT_OICR_ECC_ERR_M)) { 2868 set_bit(ICE_PFR_REQ, pf->state); 2869 ice_service_task_schedule(pf); 2870 } 2871 } 2872 ret = IRQ_HANDLED; 2873 2874 ice_service_task_schedule(pf); 2875 ice_irq_dynamic_ena(hw, NULL, NULL); 2876 2877 return ret; 2878 } 2879 2880 /** 2881 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2882 * @hw: pointer to HW structure 2883 */ 2884 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2885 { 2886 /* disable Admin queue Interrupt causes */ 2887 wr32(hw, PFINT_FW_CTL, 2888 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2889 2890 /* disable Mailbox queue Interrupt causes */ 2891 wr32(hw, PFINT_MBX_CTL, 2892 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2893 2894 wr32(hw, PFINT_SB_CTL, 2895 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 2896 2897 /* disable Control queue Interrupt causes */ 2898 wr32(hw, PFINT_OICR_CTL, 2899 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2900 2901 ice_flush(hw); 2902 } 2903 2904 /** 2905 * ice_free_irq_msix_misc - Unroll misc vector setup 2906 * @pf: board private structure 2907 */ 2908 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2909 { 2910 struct ice_hw *hw = &pf->hw; 2911 2912 ice_dis_ctrlq_interrupts(hw); 2913 2914 /* disable OICR interrupt */ 2915 wr32(hw, PFINT_OICR_ENA, 0); 2916 ice_flush(hw); 2917 2918 if (pf->msix_entries) { 2919 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2920 devm_free_irq(ice_pf_to_dev(pf), 2921 pf->msix_entries[pf->oicr_idx].vector, pf); 2922 } 2923 2924 pf->num_avail_sw_msix += 1; 2925 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2926 } 2927 2928 /** 2929 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2930 * @hw: pointer to HW structure 2931 * @reg_idx: HW vector index to associate the control queue interrupts with 2932 */ 2933 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2934 { 2935 u32 val; 2936 2937 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2938 PFINT_OICR_CTL_CAUSE_ENA_M); 2939 wr32(hw, PFINT_OICR_CTL, val); 2940 2941 /* enable Admin queue Interrupt causes */ 2942 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2943 PFINT_FW_CTL_CAUSE_ENA_M); 2944 wr32(hw, PFINT_FW_CTL, val); 2945 2946 /* enable Mailbox queue Interrupt causes */ 2947 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2948 PFINT_MBX_CTL_CAUSE_ENA_M); 2949 wr32(hw, PFINT_MBX_CTL, val); 2950 2951 /* This enables Sideband queue Interrupt causes */ 2952 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 2953 PFINT_SB_CTL_CAUSE_ENA_M); 2954 wr32(hw, PFINT_SB_CTL, val); 2955 2956 ice_flush(hw); 2957 } 2958 2959 /** 2960 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2961 * @pf: board private structure 2962 * 2963 * This sets up the handler for MSIX 0, which is used to manage the 2964 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2965 * when in MSI or Legacy interrupt mode. 2966 */ 2967 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2968 { 2969 struct device *dev = ice_pf_to_dev(pf); 2970 struct ice_hw *hw = &pf->hw; 2971 int oicr_idx, err = 0; 2972 2973 if (!pf->int_name[0]) 2974 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2975 dev_driver_string(dev), dev_name(dev)); 2976 2977 /* Do not request IRQ but do enable OICR interrupt since settings are 2978 * lost during reset. Note that this function is called only during 2979 * rebuild path and not while reset is in progress. 2980 */ 2981 if (ice_is_reset_in_progress(pf->state)) 2982 goto skip_req_irq; 2983 2984 /* reserve one vector in irq_tracker for misc interrupts */ 2985 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2986 if (oicr_idx < 0) 2987 return oicr_idx; 2988 2989 pf->num_avail_sw_msix -= 1; 2990 pf->oicr_idx = (u16)oicr_idx; 2991 2992 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2993 ice_misc_intr, 0, pf->int_name, pf); 2994 if (err) { 2995 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2996 pf->int_name, err); 2997 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2998 pf->num_avail_sw_msix += 1; 2999 return err; 3000 } 3001 3002 skip_req_irq: 3003 ice_ena_misc_vector(pf); 3004 3005 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3006 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3007 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3008 3009 ice_flush(hw); 3010 ice_irq_dynamic_ena(hw, NULL, NULL); 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * ice_napi_add - register NAPI handler for the VSI 3017 * @vsi: VSI for which NAPI handler is to be registered 3018 * 3019 * This function is only called in the driver's load path. Registering the NAPI 3020 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3021 * reset/rebuild, etc.) 3022 */ 3023 static void ice_napi_add(struct ice_vsi *vsi) 3024 { 3025 int v_idx; 3026 3027 if (!vsi->netdev) 3028 return; 3029 3030 ice_for_each_q_vector(vsi, v_idx) 3031 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3032 ice_napi_poll, NAPI_POLL_WEIGHT); 3033 } 3034 3035 /** 3036 * ice_set_ops - set netdev and ethtools ops for the given netdev 3037 * @netdev: netdev instance 3038 */ 3039 static void ice_set_ops(struct net_device *netdev) 3040 { 3041 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3042 3043 if (ice_is_safe_mode(pf)) { 3044 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3045 ice_set_ethtool_safe_mode_ops(netdev); 3046 return; 3047 } 3048 3049 netdev->netdev_ops = &ice_netdev_ops; 3050 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3051 ice_set_ethtool_ops(netdev); 3052 } 3053 3054 /** 3055 * ice_set_netdev_features - set features for the given netdev 3056 * @netdev: netdev instance 3057 */ 3058 static void ice_set_netdev_features(struct net_device *netdev) 3059 { 3060 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3061 netdev_features_t csumo_features; 3062 netdev_features_t vlano_features; 3063 netdev_features_t dflt_features; 3064 netdev_features_t tso_features; 3065 3066 if (ice_is_safe_mode(pf)) { 3067 /* safe mode */ 3068 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3069 netdev->hw_features = netdev->features; 3070 return; 3071 } 3072 3073 dflt_features = NETIF_F_SG | 3074 NETIF_F_HIGHDMA | 3075 NETIF_F_NTUPLE | 3076 NETIF_F_RXHASH; 3077 3078 csumo_features = NETIF_F_RXCSUM | 3079 NETIF_F_IP_CSUM | 3080 NETIF_F_SCTP_CRC | 3081 NETIF_F_IPV6_CSUM; 3082 3083 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3084 NETIF_F_HW_VLAN_CTAG_TX | 3085 NETIF_F_HW_VLAN_CTAG_RX; 3086 3087 tso_features = NETIF_F_TSO | 3088 NETIF_F_TSO_ECN | 3089 NETIF_F_TSO6 | 3090 NETIF_F_GSO_GRE | 3091 NETIF_F_GSO_UDP_TUNNEL | 3092 NETIF_F_GSO_GRE_CSUM | 3093 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3094 NETIF_F_GSO_PARTIAL | 3095 NETIF_F_GSO_IPXIP4 | 3096 NETIF_F_GSO_IPXIP6 | 3097 NETIF_F_GSO_UDP_L4; 3098 3099 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3100 NETIF_F_GSO_GRE_CSUM; 3101 /* set features that user can change */ 3102 netdev->hw_features = dflt_features | csumo_features | 3103 vlano_features | tso_features; 3104 3105 /* add support for HW_CSUM on packets with MPLS header */ 3106 netdev->mpls_features = NETIF_F_HW_CSUM; 3107 3108 /* enable features */ 3109 netdev->features |= netdev->hw_features; 3110 /* encap and VLAN devices inherit default, csumo and tso features */ 3111 netdev->hw_enc_features |= dflt_features | csumo_features | 3112 tso_features; 3113 netdev->vlan_features |= dflt_features | csumo_features | 3114 tso_features; 3115 } 3116 3117 /** 3118 * ice_cfg_netdev - Allocate, configure and register a netdev 3119 * @vsi: the VSI associated with the new netdev 3120 * 3121 * Returns 0 on success, negative value on failure 3122 */ 3123 static int ice_cfg_netdev(struct ice_vsi *vsi) 3124 { 3125 struct ice_netdev_priv *np; 3126 struct net_device *netdev; 3127 u8 mac_addr[ETH_ALEN]; 3128 3129 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3130 vsi->alloc_rxq); 3131 if (!netdev) 3132 return -ENOMEM; 3133 3134 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3135 vsi->netdev = netdev; 3136 np = netdev_priv(netdev); 3137 np->vsi = vsi; 3138 3139 ice_set_netdev_features(netdev); 3140 3141 ice_set_ops(netdev); 3142 3143 if (vsi->type == ICE_VSI_PF) { 3144 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3145 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3146 eth_hw_addr_set(netdev, mac_addr); 3147 ether_addr_copy(netdev->perm_addr, mac_addr); 3148 } 3149 3150 netdev->priv_flags |= IFF_UNICAST_FLT; 3151 3152 /* Setup netdev TC information */ 3153 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3154 3155 /* setup watchdog timeout value to be 5 second */ 3156 netdev->watchdog_timeo = 5 * HZ; 3157 3158 netdev->min_mtu = ETH_MIN_MTU; 3159 netdev->max_mtu = ICE_MAX_MTU; 3160 3161 return 0; 3162 } 3163 3164 /** 3165 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3166 * @lut: Lookup table 3167 * @rss_table_size: Lookup table size 3168 * @rss_size: Range of queue number for hashing 3169 */ 3170 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3171 { 3172 u16 i; 3173 3174 for (i = 0; i < rss_table_size; i++) 3175 lut[i] = i % rss_size; 3176 } 3177 3178 /** 3179 * ice_pf_vsi_setup - Set up a PF VSI 3180 * @pf: board private structure 3181 * @pi: pointer to the port_info instance 3182 * 3183 * Returns pointer to the successfully allocated VSI software struct 3184 * on success, otherwise returns NULL on failure. 3185 */ 3186 static struct ice_vsi * 3187 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3188 { 3189 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3190 } 3191 3192 /** 3193 * ice_ctrl_vsi_setup - Set up a control VSI 3194 * @pf: board private structure 3195 * @pi: pointer to the port_info instance 3196 * 3197 * Returns pointer to the successfully allocated VSI software struct 3198 * on success, otherwise returns NULL on failure. 3199 */ 3200 static struct ice_vsi * 3201 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3202 { 3203 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3204 } 3205 3206 /** 3207 * ice_lb_vsi_setup - Set up a loopback VSI 3208 * @pf: board private structure 3209 * @pi: pointer to the port_info instance 3210 * 3211 * Returns pointer to the successfully allocated VSI software struct 3212 * on success, otherwise returns NULL on failure. 3213 */ 3214 struct ice_vsi * 3215 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3216 { 3217 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3218 } 3219 3220 /** 3221 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3222 * @netdev: network interface to be adjusted 3223 * @proto: unused protocol 3224 * @vid: VLAN ID to be added 3225 * 3226 * net_device_ops implementation for adding VLAN IDs 3227 */ 3228 static int 3229 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3230 u16 vid) 3231 { 3232 struct ice_netdev_priv *np = netdev_priv(netdev); 3233 struct ice_vsi *vsi = np->vsi; 3234 int ret; 3235 3236 /* VLAN 0 is added by default during load/reset */ 3237 if (!vid) 3238 return 0; 3239 3240 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3241 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3242 ret = ice_cfg_vlan_pruning(vsi, true, false); 3243 if (ret) 3244 return ret; 3245 } 3246 3247 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3248 * packets aren't pruned by the device's internal switch on Rx 3249 */ 3250 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3251 if (!ret) 3252 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3253 3254 return ret; 3255 } 3256 3257 /** 3258 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3259 * @netdev: network interface to be adjusted 3260 * @proto: unused protocol 3261 * @vid: VLAN ID to be removed 3262 * 3263 * net_device_ops implementation for removing VLAN IDs 3264 */ 3265 static int 3266 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3267 u16 vid) 3268 { 3269 struct ice_netdev_priv *np = netdev_priv(netdev); 3270 struct ice_vsi *vsi = np->vsi; 3271 int ret; 3272 3273 /* don't allow removal of VLAN 0 */ 3274 if (!vid) 3275 return 0; 3276 3277 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3278 * information 3279 */ 3280 ret = ice_vsi_kill_vlan(vsi, vid); 3281 if (ret) 3282 return ret; 3283 3284 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3285 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3286 ret = ice_cfg_vlan_pruning(vsi, false, false); 3287 3288 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3289 return ret; 3290 } 3291 3292 /** 3293 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3294 * @pf: board private structure 3295 * 3296 * Returns 0 on success, negative value on failure 3297 */ 3298 static int ice_setup_pf_sw(struct ice_pf *pf) 3299 { 3300 struct ice_vsi *vsi; 3301 int status = 0; 3302 3303 if (ice_is_reset_in_progress(pf->state)) 3304 return -EBUSY; 3305 3306 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3307 if (!vsi) 3308 return -ENOMEM; 3309 3310 status = ice_cfg_netdev(vsi); 3311 if (status) { 3312 status = -ENODEV; 3313 goto unroll_vsi_setup; 3314 } 3315 /* netdev has to be configured before setting frame size */ 3316 ice_vsi_cfg_frame_size(vsi); 3317 3318 /* Setup DCB netlink interface */ 3319 ice_dcbnl_setup(vsi); 3320 3321 /* registering the NAPI handler requires both the queues and 3322 * netdev to be created, which are done in ice_pf_vsi_setup() 3323 * and ice_cfg_netdev() respectively 3324 */ 3325 ice_napi_add(vsi); 3326 3327 status = ice_set_cpu_rx_rmap(vsi); 3328 if (status) { 3329 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3330 vsi->vsi_num, status); 3331 status = -EINVAL; 3332 goto unroll_napi_add; 3333 } 3334 status = ice_init_mac_fltr(pf); 3335 if (status) 3336 goto free_cpu_rx_map; 3337 3338 return status; 3339 3340 free_cpu_rx_map: 3341 ice_free_cpu_rx_rmap(vsi); 3342 3343 unroll_napi_add: 3344 if (vsi) { 3345 ice_napi_del(vsi); 3346 if (vsi->netdev) { 3347 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3348 free_netdev(vsi->netdev); 3349 vsi->netdev = NULL; 3350 } 3351 } 3352 3353 unroll_vsi_setup: 3354 ice_vsi_release(vsi); 3355 return status; 3356 } 3357 3358 /** 3359 * ice_get_avail_q_count - Get count of queues in use 3360 * @pf_qmap: bitmap to get queue use count from 3361 * @lock: pointer to a mutex that protects access to pf_qmap 3362 * @size: size of the bitmap 3363 */ 3364 static u16 3365 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3366 { 3367 unsigned long bit; 3368 u16 count = 0; 3369 3370 mutex_lock(lock); 3371 for_each_clear_bit(bit, pf_qmap, size) 3372 count++; 3373 mutex_unlock(lock); 3374 3375 return count; 3376 } 3377 3378 /** 3379 * ice_get_avail_txq_count - Get count of Tx queues in use 3380 * @pf: pointer to an ice_pf instance 3381 */ 3382 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3383 { 3384 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3385 pf->max_pf_txqs); 3386 } 3387 3388 /** 3389 * ice_get_avail_rxq_count - Get count of Rx queues in use 3390 * @pf: pointer to an ice_pf instance 3391 */ 3392 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3393 { 3394 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3395 pf->max_pf_rxqs); 3396 } 3397 3398 /** 3399 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3400 * @pf: board private structure to initialize 3401 */ 3402 static void ice_deinit_pf(struct ice_pf *pf) 3403 { 3404 ice_service_task_stop(pf); 3405 mutex_destroy(&pf->sw_mutex); 3406 mutex_destroy(&pf->tc_mutex); 3407 mutex_destroy(&pf->avail_q_mutex); 3408 3409 if (pf->avail_txqs) { 3410 bitmap_free(pf->avail_txqs); 3411 pf->avail_txqs = NULL; 3412 } 3413 3414 if (pf->avail_rxqs) { 3415 bitmap_free(pf->avail_rxqs); 3416 pf->avail_rxqs = NULL; 3417 } 3418 3419 if (pf->ptp.clock) 3420 ptp_clock_unregister(pf->ptp.clock); 3421 } 3422 3423 /** 3424 * ice_set_pf_caps - set PFs capability flags 3425 * @pf: pointer to the PF instance 3426 */ 3427 static void ice_set_pf_caps(struct ice_pf *pf) 3428 { 3429 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3430 3431 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3432 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3433 if (func_caps->common_cap.rdma) { 3434 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3435 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3436 } 3437 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3438 if (func_caps->common_cap.dcb) 3439 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3440 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3441 if (func_caps->common_cap.sr_iov_1_1) { 3442 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3443 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3444 ICE_MAX_VF_COUNT); 3445 } 3446 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3447 if (func_caps->common_cap.rss_table_size) 3448 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3449 3450 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3451 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3452 u16 unused; 3453 3454 /* ctrl_vsi_idx will be set to a valid value when flow director 3455 * is setup by ice_init_fdir 3456 */ 3457 pf->ctrl_vsi_idx = ICE_NO_VSI; 3458 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3459 /* force guaranteed filter pool for PF */ 3460 ice_alloc_fd_guar_item(&pf->hw, &unused, 3461 func_caps->fd_fltr_guar); 3462 /* force shared filter pool for PF */ 3463 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3464 func_caps->fd_fltr_best_effort); 3465 } 3466 3467 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3468 if (func_caps->common_cap.ieee_1588) 3469 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3470 3471 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3472 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3473 } 3474 3475 /** 3476 * ice_init_pf - Initialize general software structures (struct ice_pf) 3477 * @pf: board private structure to initialize 3478 */ 3479 static int ice_init_pf(struct ice_pf *pf) 3480 { 3481 ice_set_pf_caps(pf); 3482 3483 mutex_init(&pf->sw_mutex); 3484 mutex_init(&pf->tc_mutex); 3485 3486 INIT_HLIST_HEAD(&pf->aq_wait_list); 3487 spin_lock_init(&pf->aq_wait_lock); 3488 init_waitqueue_head(&pf->aq_wait_queue); 3489 3490 init_waitqueue_head(&pf->reset_wait_queue); 3491 3492 /* setup service timer and periodic service task */ 3493 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3494 pf->serv_tmr_period = HZ; 3495 INIT_WORK(&pf->serv_task, ice_service_task); 3496 clear_bit(ICE_SERVICE_SCHED, pf->state); 3497 3498 mutex_init(&pf->avail_q_mutex); 3499 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3500 if (!pf->avail_txqs) 3501 return -ENOMEM; 3502 3503 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3504 if (!pf->avail_rxqs) { 3505 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3506 pf->avail_txqs = NULL; 3507 return -ENOMEM; 3508 } 3509 3510 return 0; 3511 } 3512 3513 /** 3514 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3515 * @pf: board private structure 3516 * 3517 * compute the number of MSIX vectors required (v_budget) and request from 3518 * the OS. Return the number of vectors reserved or negative on failure 3519 */ 3520 static int ice_ena_msix_range(struct ice_pf *pf) 3521 { 3522 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3523 struct device *dev = ice_pf_to_dev(pf); 3524 int needed, err, i; 3525 3526 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3527 num_cpus = num_online_cpus(); 3528 3529 /* reserve for LAN miscellaneous handler */ 3530 needed = ICE_MIN_LAN_OICR_MSIX; 3531 if (v_left < needed) 3532 goto no_hw_vecs_left_err; 3533 v_budget += needed; 3534 v_left -= needed; 3535 3536 /* reserve for flow director */ 3537 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3538 needed = ICE_FDIR_MSIX; 3539 if (v_left < needed) 3540 goto no_hw_vecs_left_err; 3541 v_budget += needed; 3542 v_left -= needed; 3543 } 3544 3545 /* total used for non-traffic vectors */ 3546 v_other = v_budget; 3547 3548 /* reserve vectors for LAN traffic */ 3549 needed = num_cpus; 3550 if (v_left < needed) 3551 goto no_hw_vecs_left_err; 3552 pf->num_lan_msix = needed; 3553 v_budget += needed; 3554 v_left -= needed; 3555 3556 /* reserve vectors for RDMA auxiliary driver */ 3557 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3558 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3559 if (v_left < needed) 3560 goto no_hw_vecs_left_err; 3561 pf->num_rdma_msix = needed; 3562 v_budget += needed; 3563 v_left -= needed; 3564 } 3565 3566 pf->msix_entries = devm_kcalloc(dev, v_budget, 3567 sizeof(*pf->msix_entries), GFP_KERNEL); 3568 if (!pf->msix_entries) { 3569 err = -ENOMEM; 3570 goto exit_err; 3571 } 3572 3573 for (i = 0; i < v_budget; i++) 3574 pf->msix_entries[i].entry = i; 3575 3576 /* actually reserve the vectors */ 3577 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3578 ICE_MIN_MSIX, v_budget); 3579 if (v_actual < 0) { 3580 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3581 err = v_actual; 3582 goto msix_err; 3583 } 3584 3585 if (v_actual < v_budget) { 3586 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3587 v_budget, v_actual); 3588 3589 if (v_actual < ICE_MIN_MSIX) { 3590 /* error if we can't get minimum vectors */ 3591 pci_disable_msix(pf->pdev); 3592 err = -ERANGE; 3593 goto msix_err; 3594 } else { 3595 int v_remain = v_actual - v_other; 3596 int v_rdma = 0, v_min_rdma = 0; 3597 3598 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3599 /* Need at least 1 interrupt in addition to 3600 * AEQ MSIX 3601 */ 3602 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3603 v_min_rdma = ICE_MIN_RDMA_MSIX; 3604 } 3605 3606 if (v_actual == ICE_MIN_MSIX || 3607 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3608 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3609 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3610 3611 pf->num_rdma_msix = 0; 3612 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3613 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3614 (v_remain - v_rdma < v_rdma)) { 3615 /* Support minimum RDMA and give remaining 3616 * vectors to LAN MSIX 3617 */ 3618 pf->num_rdma_msix = v_min_rdma; 3619 pf->num_lan_msix = v_remain - v_min_rdma; 3620 } else { 3621 /* Split remaining MSIX with RDMA after 3622 * accounting for AEQ MSIX 3623 */ 3624 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3625 ICE_RDMA_NUM_AEQ_MSIX; 3626 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3627 } 3628 3629 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3630 pf->num_lan_msix); 3631 3632 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3633 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3634 pf->num_rdma_msix); 3635 } 3636 } 3637 3638 return v_actual; 3639 3640 msix_err: 3641 devm_kfree(dev, pf->msix_entries); 3642 goto exit_err; 3643 3644 no_hw_vecs_left_err: 3645 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3646 needed, v_left); 3647 err = -ERANGE; 3648 exit_err: 3649 pf->num_rdma_msix = 0; 3650 pf->num_lan_msix = 0; 3651 return err; 3652 } 3653 3654 /** 3655 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3656 * @pf: board private structure 3657 */ 3658 static void ice_dis_msix(struct ice_pf *pf) 3659 { 3660 pci_disable_msix(pf->pdev); 3661 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3662 pf->msix_entries = NULL; 3663 } 3664 3665 /** 3666 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3667 * @pf: board private structure 3668 */ 3669 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3670 { 3671 ice_dis_msix(pf); 3672 3673 if (pf->irq_tracker) { 3674 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3675 pf->irq_tracker = NULL; 3676 } 3677 } 3678 3679 /** 3680 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3681 * @pf: board private structure to initialize 3682 */ 3683 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3684 { 3685 int vectors; 3686 3687 vectors = ice_ena_msix_range(pf); 3688 3689 if (vectors < 0) 3690 return vectors; 3691 3692 /* set up vector assignment tracking */ 3693 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3694 struct_size(pf->irq_tracker, list, vectors), 3695 GFP_KERNEL); 3696 if (!pf->irq_tracker) { 3697 ice_dis_msix(pf); 3698 return -ENOMEM; 3699 } 3700 3701 /* populate SW interrupts pool with number of OS granted IRQs. */ 3702 pf->num_avail_sw_msix = (u16)vectors; 3703 pf->irq_tracker->num_entries = (u16)vectors; 3704 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3705 3706 return 0; 3707 } 3708 3709 /** 3710 * ice_is_wol_supported - check if WoL is supported 3711 * @hw: pointer to hardware info 3712 * 3713 * Check if WoL is supported based on the HW configuration. 3714 * Returns true if NVM supports and enables WoL for this port, false otherwise 3715 */ 3716 bool ice_is_wol_supported(struct ice_hw *hw) 3717 { 3718 u16 wol_ctrl; 3719 3720 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3721 * word) indicates WoL is not supported on the corresponding PF ID. 3722 */ 3723 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3724 return false; 3725 3726 return !(BIT(hw->port_info->lport) & wol_ctrl); 3727 } 3728 3729 /** 3730 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3731 * @vsi: VSI being changed 3732 * @new_rx: new number of Rx queues 3733 * @new_tx: new number of Tx queues 3734 * 3735 * Only change the number of queues if new_tx, or new_rx is non-0. 3736 * 3737 * Returns 0 on success. 3738 */ 3739 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3740 { 3741 struct ice_pf *pf = vsi->back; 3742 int err = 0, timeout = 50; 3743 3744 if (!new_rx && !new_tx) 3745 return -EINVAL; 3746 3747 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3748 timeout--; 3749 if (!timeout) 3750 return -EBUSY; 3751 usleep_range(1000, 2000); 3752 } 3753 3754 if (new_tx) 3755 vsi->req_txq = (u16)new_tx; 3756 if (new_rx) 3757 vsi->req_rxq = (u16)new_rx; 3758 3759 /* set for the next time the netdev is started */ 3760 if (!netif_running(vsi->netdev)) { 3761 ice_vsi_rebuild(vsi, false); 3762 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3763 goto done; 3764 } 3765 3766 ice_vsi_close(vsi); 3767 ice_vsi_rebuild(vsi, false); 3768 ice_pf_dcb_recfg(pf); 3769 ice_vsi_open(vsi); 3770 done: 3771 clear_bit(ICE_CFG_BUSY, pf->state); 3772 return err; 3773 } 3774 3775 /** 3776 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3777 * @pf: PF to configure 3778 * 3779 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3780 * VSI can still Tx/Rx VLAN tagged packets. 3781 */ 3782 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3783 { 3784 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3785 struct ice_vsi_ctx *ctxt; 3786 enum ice_status status; 3787 struct ice_hw *hw; 3788 3789 if (!vsi) 3790 return; 3791 3792 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3793 if (!ctxt) 3794 return; 3795 3796 hw = &pf->hw; 3797 ctxt->info = vsi->info; 3798 3799 ctxt->info.valid_sections = 3800 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3801 ICE_AQ_VSI_PROP_SECURITY_VALID | 3802 ICE_AQ_VSI_PROP_SW_VALID); 3803 3804 /* disable VLAN anti-spoof */ 3805 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3806 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3807 3808 /* disable VLAN pruning and keep all other settings */ 3809 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3810 3811 /* allow all VLANs on Tx and don't strip on Rx */ 3812 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3813 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3814 3815 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3816 if (status) { 3817 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3818 ice_stat_str(status), 3819 ice_aq_str(hw->adminq.sq_last_status)); 3820 } else { 3821 vsi->info.sec_flags = ctxt->info.sec_flags; 3822 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3823 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3824 } 3825 3826 kfree(ctxt); 3827 } 3828 3829 /** 3830 * ice_log_pkg_init - log result of DDP package load 3831 * @hw: pointer to hardware info 3832 * @status: status of package load 3833 */ 3834 static void 3835 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3836 { 3837 struct ice_pf *pf = (struct ice_pf *)hw->back; 3838 struct device *dev = ice_pf_to_dev(pf); 3839 3840 switch (*status) { 3841 case ICE_SUCCESS: 3842 /* The package download AdminQ command returned success because 3843 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3844 * already a package loaded on the device. 3845 */ 3846 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3847 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3848 hw->pkg_ver.update == hw->active_pkg_ver.update && 3849 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3850 !memcmp(hw->pkg_name, hw->active_pkg_name, 3851 sizeof(hw->pkg_name))) { 3852 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3853 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3854 hw->active_pkg_name, 3855 hw->active_pkg_ver.major, 3856 hw->active_pkg_ver.minor, 3857 hw->active_pkg_ver.update, 3858 hw->active_pkg_ver.draft); 3859 else 3860 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3861 hw->active_pkg_name, 3862 hw->active_pkg_ver.major, 3863 hw->active_pkg_ver.minor, 3864 hw->active_pkg_ver.update, 3865 hw->active_pkg_ver.draft); 3866 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3867 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3868 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3869 hw->active_pkg_name, 3870 hw->active_pkg_ver.major, 3871 hw->active_pkg_ver.minor, 3872 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3873 *status = ICE_ERR_NOT_SUPPORTED; 3874 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3875 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3876 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3877 hw->active_pkg_name, 3878 hw->active_pkg_ver.major, 3879 hw->active_pkg_ver.minor, 3880 hw->active_pkg_ver.update, 3881 hw->active_pkg_ver.draft, 3882 hw->pkg_name, 3883 hw->pkg_ver.major, 3884 hw->pkg_ver.minor, 3885 hw->pkg_ver.update, 3886 hw->pkg_ver.draft); 3887 } else { 3888 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3889 *status = ICE_ERR_NOT_SUPPORTED; 3890 } 3891 break; 3892 case ICE_ERR_FW_DDP_MISMATCH: 3893 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3894 break; 3895 case ICE_ERR_BUF_TOO_SHORT: 3896 case ICE_ERR_CFG: 3897 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3898 break; 3899 case ICE_ERR_NOT_SUPPORTED: 3900 /* Package File version not supported */ 3901 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3902 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3903 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3904 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3905 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3906 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3907 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3908 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3909 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3910 break; 3911 case ICE_ERR_AQ_ERROR: 3912 switch (hw->pkg_dwnld_status) { 3913 case ICE_AQ_RC_ENOSEC: 3914 case ICE_AQ_RC_EBADSIG: 3915 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3916 return; 3917 case ICE_AQ_RC_ESVN: 3918 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3919 return; 3920 case ICE_AQ_RC_EBADMAN: 3921 case ICE_AQ_RC_EBADBUF: 3922 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3923 /* poll for reset to complete */ 3924 if (ice_check_reset(hw)) 3925 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3926 return; 3927 default: 3928 break; 3929 } 3930 fallthrough; 3931 default: 3932 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3933 *status); 3934 break; 3935 } 3936 } 3937 3938 /** 3939 * ice_load_pkg - load/reload the DDP Package file 3940 * @firmware: firmware structure when firmware requested or NULL for reload 3941 * @pf: pointer to the PF instance 3942 * 3943 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3944 * initialize HW tables. 3945 */ 3946 static void 3947 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3948 { 3949 enum ice_status status = ICE_ERR_PARAM; 3950 struct device *dev = ice_pf_to_dev(pf); 3951 struct ice_hw *hw = &pf->hw; 3952 3953 /* Load DDP Package */ 3954 if (firmware && !hw->pkg_copy) { 3955 status = ice_copy_and_init_pkg(hw, firmware->data, 3956 firmware->size); 3957 ice_log_pkg_init(hw, &status); 3958 } else if (!firmware && hw->pkg_copy) { 3959 /* Reload package during rebuild after CORER/GLOBR reset */ 3960 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3961 ice_log_pkg_init(hw, &status); 3962 } else { 3963 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3964 } 3965 3966 if (status) { 3967 /* Safe Mode */ 3968 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3969 return; 3970 } 3971 3972 /* Successful download package is the precondition for advanced 3973 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3974 */ 3975 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3976 } 3977 3978 /** 3979 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3980 * @pf: pointer to the PF structure 3981 * 3982 * There is no error returned here because the driver should be able to handle 3983 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3984 * specifically with Tx. 3985 */ 3986 static void ice_verify_cacheline_size(struct ice_pf *pf) 3987 { 3988 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3989 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3990 ICE_CACHE_LINE_BYTES); 3991 } 3992 3993 /** 3994 * ice_send_version - update firmware with driver version 3995 * @pf: PF struct 3996 * 3997 * Returns ICE_SUCCESS on success, else error code 3998 */ 3999 static enum ice_status ice_send_version(struct ice_pf *pf) 4000 { 4001 struct ice_driver_ver dv; 4002 4003 dv.major_ver = 0xff; 4004 dv.minor_ver = 0xff; 4005 dv.build_ver = 0xff; 4006 dv.subbuild_ver = 0; 4007 strscpy((char *)dv.driver_string, UTS_RELEASE, 4008 sizeof(dv.driver_string)); 4009 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4010 } 4011 4012 /** 4013 * ice_init_fdir - Initialize flow director VSI and configuration 4014 * @pf: pointer to the PF instance 4015 * 4016 * returns 0 on success, negative on error 4017 */ 4018 static int ice_init_fdir(struct ice_pf *pf) 4019 { 4020 struct device *dev = ice_pf_to_dev(pf); 4021 struct ice_vsi *ctrl_vsi; 4022 int err; 4023 4024 /* Side Band Flow Director needs to have a control VSI. 4025 * Allocate it and store it in the PF. 4026 */ 4027 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4028 if (!ctrl_vsi) { 4029 dev_dbg(dev, "could not create control VSI\n"); 4030 return -ENOMEM; 4031 } 4032 4033 err = ice_vsi_open_ctrl(ctrl_vsi); 4034 if (err) { 4035 dev_dbg(dev, "could not open control VSI\n"); 4036 goto err_vsi_open; 4037 } 4038 4039 mutex_init(&pf->hw.fdir_fltr_lock); 4040 4041 err = ice_fdir_create_dflt_rules(pf); 4042 if (err) 4043 goto err_fdir_rule; 4044 4045 return 0; 4046 4047 err_fdir_rule: 4048 ice_fdir_release_flows(&pf->hw); 4049 ice_vsi_close(ctrl_vsi); 4050 err_vsi_open: 4051 ice_vsi_release(ctrl_vsi); 4052 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4053 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4054 pf->ctrl_vsi_idx = ICE_NO_VSI; 4055 } 4056 return err; 4057 } 4058 4059 /** 4060 * ice_get_opt_fw_name - return optional firmware file name or NULL 4061 * @pf: pointer to the PF instance 4062 */ 4063 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4064 { 4065 /* Optional firmware name same as default with additional dash 4066 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4067 */ 4068 struct pci_dev *pdev = pf->pdev; 4069 char *opt_fw_filename; 4070 u64 dsn; 4071 4072 /* Determine the name of the optional file using the DSN (two 4073 * dwords following the start of the DSN Capability). 4074 */ 4075 dsn = pci_get_dsn(pdev); 4076 if (!dsn) 4077 return NULL; 4078 4079 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4080 if (!opt_fw_filename) 4081 return NULL; 4082 4083 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4084 ICE_DDP_PKG_PATH, dsn); 4085 4086 return opt_fw_filename; 4087 } 4088 4089 /** 4090 * ice_request_fw - Device initialization routine 4091 * @pf: pointer to the PF instance 4092 */ 4093 static void ice_request_fw(struct ice_pf *pf) 4094 { 4095 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4096 const struct firmware *firmware = NULL; 4097 struct device *dev = ice_pf_to_dev(pf); 4098 int err = 0; 4099 4100 /* optional device-specific DDP (if present) overrides the default DDP 4101 * package file. kernel logs a debug message if the file doesn't exist, 4102 * and warning messages for other errors. 4103 */ 4104 if (opt_fw_filename) { 4105 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4106 if (err) { 4107 kfree(opt_fw_filename); 4108 goto dflt_pkg_load; 4109 } 4110 4111 /* request for firmware was successful. Download to device */ 4112 ice_load_pkg(firmware, pf); 4113 kfree(opt_fw_filename); 4114 release_firmware(firmware); 4115 return; 4116 } 4117 4118 dflt_pkg_load: 4119 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4120 if (err) { 4121 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4122 return; 4123 } 4124 4125 /* request for firmware was successful. Download to device */ 4126 ice_load_pkg(firmware, pf); 4127 release_firmware(firmware); 4128 } 4129 4130 /** 4131 * ice_print_wake_reason - show the wake up cause in the log 4132 * @pf: pointer to the PF struct 4133 */ 4134 static void ice_print_wake_reason(struct ice_pf *pf) 4135 { 4136 u32 wus = pf->wakeup_reason; 4137 const char *wake_str; 4138 4139 /* if no wake event, nothing to print */ 4140 if (!wus) 4141 return; 4142 4143 if (wus & PFPM_WUS_LNKC_M) 4144 wake_str = "Link\n"; 4145 else if (wus & PFPM_WUS_MAG_M) 4146 wake_str = "Magic Packet\n"; 4147 else if (wus & PFPM_WUS_MNG_M) 4148 wake_str = "Management\n"; 4149 else if (wus & PFPM_WUS_FW_RST_WK_M) 4150 wake_str = "Firmware Reset\n"; 4151 else 4152 wake_str = "Unknown\n"; 4153 4154 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4155 } 4156 4157 /** 4158 * ice_register_netdev - register netdev and devlink port 4159 * @pf: pointer to the PF struct 4160 */ 4161 static int ice_register_netdev(struct ice_pf *pf) 4162 { 4163 struct ice_vsi *vsi; 4164 int err = 0; 4165 4166 vsi = ice_get_main_vsi(pf); 4167 if (!vsi || !vsi->netdev) 4168 return -EIO; 4169 4170 err = register_netdev(vsi->netdev); 4171 if (err) 4172 goto err_register_netdev; 4173 4174 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4175 netif_carrier_off(vsi->netdev); 4176 netif_tx_stop_all_queues(vsi->netdev); 4177 err = ice_devlink_create_port(vsi); 4178 if (err) 4179 goto err_devlink_create; 4180 4181 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 4182 4183 return 0; 4184 err_devlink_create: 4185 unregister_netdev(vsi->netdev); 4186 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4187 err_register_netdev: 4188 free_netdev(vsi->netdev); 4189 vsi->netdev = NULL; 4190 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4191 return err; 4192 } 4193 4194 /** 4195 * ice_probe - Device initialization routine 4196 * @pdev: PCI device information struct 4197 * @ent: entry in ice_pci_tbl 4198 * 4199 * Returns 0 on success, negative on failure 4200 */ 4201 static int 4202 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4203 { 4204 struct device *dev = &pdev->dev; 4205 struct ice_pf *pf; 4206 struct ice_hw *hw; 4207 int i, err; 4208 4209 if (pdev->is_virtfn) { 4210 dev_err(dev, "can't probe a virtual function\n"); 4211 return -EINVAL; 4212 } 4213 4214 /* this driver uses devres, see 4215 * Documentation/driver-api/driver-model/devres.rst 4216 */ 4217 err = pcim_enable_device(pdev); 4218 if (err) 4219 return err; 4220 4221 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4222 if (err) { 4223 dev_err(dev, "BAR0 I/O map error %d\n", err); 4224 return err; 4225 } 4226 4227 pf = ice_allocate_pf(dev); 4228 if (!pf) 4229 return -ENOMEM; 4230 4231 /* set up for high or low DMA */ 4232 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4233 if (err) 4234 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4235 if (err) { 4236 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4237 return err; 4238 } 4239 4240 pci_enable_pcie_error_reporting(pdev); 4241 pci_set_master(pdev); 4242 4243 pf->pdev = pdev; 4244 pci_set_drvdata(pdev, pf); 4245 set_bit(ICE_DOWN, pf->state); 4246 /* Disable service task until DOWN bit is cleared */ 4247 set_bit(ICE_SERVICE_DIS, pf->state); 4248 4249 hw = &pf->hw; 4250 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4251 pci_save_state(pdev); 4252 4253 hw->back = pf; 4254 hw->vendor_id = pdev->vendor; 4255 hw->device_id = pdev->device; 4256 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4257 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4258 hw->subsystem_device_id = pdev->subsystem_device; 4259 hw->bus.device = PCI_SLOT(pdev->devfn); 4260 hw->bus.func = PCI_FUNC(pdev->devfn); 4261 ice_set_ctrlq_len(hw); 4262 4263 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4264 4265 #ifndef CONFIG_DYNAMIC_DEBUG 4266 if (debug < -1) 4267 hw->debug_mask = debug; 4268 #endif 4269 4270 err = ice_init_hw(hw); 4271 if (err) { 4272 dev_err(dev, "ice_init_hw failed: %d\n", err); 4273 err = -EIO; 4274 goto err_exit_unroll; 4275 } 4276 4277 ice_init_feature_support(pf); 4278 4279 ice_request_fw(pf); 4280 4281 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4282 * set in pf->state, which will cause ice_is_safe_mode to return 4283 * true 4284 */ 4285 if (ice_is_safe_mode(pf)) { 4286 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4287 /* we already got function/device capabilities but these don't 4288 * reflect what the driver needs to do in safe mode. Instead of 4289 * adding conditional logic everywhere to ignore these 4290 * device/function capabilities, override them. 4291 */ 4292 ice_set_safe_mode_caps(hw); 4293 } 4294 4295 err = ice_init_pf(pf); 4296 if (err) { 4297 dev_err(dev, "ice_init_pf failed: %d\n", err); 4298 goto err_init_pf_unroll; 4299 } 4300 4301 ice_devlink_init_regions(pf); 4302 4303 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4304 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4305 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4306 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4307 i = 0; 4308 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4309 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4310 pf->hw.tnl.valid_count[TNL_VXLAN]; 4311 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4312 UDP_TUNNEL_TYPE_VXLAN; 4313 i++; 4314 } 4315 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4316 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4317 pf->hw.tnl.valid_count[TNL_GENEVE]; 4318 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4319 UDP_TUNNEL_TYPE_GENEVE; 4320 i++; 4321 } 4322 4323 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4324 if (!pf->num_alloc_vsi) { 4325 err = -EIO; 4326 goto err_init_pf_unroll; 4327 } 4328 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4329 dev_warn(&pf->pdev->dev, 4330 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4331 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4332 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4333 } 4334 4335 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4336 GFP_KERNEL); 4337 if (!pf->vsi) { 4338 err = -ENOMEM; 4339 goto err_init_pf_unroll; 4340 } 4341 4342 err = ice_init_interrupt_scheme(pf); 4343 if (err) { 4344 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4345 err = -EIO; 4346 goto err_init_vsi_unroll; 4347 } 4348 4349 /* In case of MSIX we are going to setup the misc vector right here 4350 * to handle admin queue events etc. In case of legacy and MSI 4351 * the misc functionality and queue processing is combined in 4352 * the same vector and that gets setup at open. 4353 */ 4354 err = ice_req_irq_msix_misc(pf); 4355 if (err) { 4356 dev_err(dev, "setup of misc vector failed: %d\n", err); 4357 goto err_init_interrupt_unroll; 4358 } 4359 4360 /* create switch struct for the switch element created by FW on boot */ 4361 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4362 if (!pf->first_sw) { 4363 err = -ENOMEM; 4364 goto err_msix_misc_unroll; 4365 } 4366 4367 if (hw->evb_veb) 4368 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4369 else 4370 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4371 4372 pf->first_sw->pf = pf; 4373 4374 /* record the sw_id available for later use */ 4375 pf->first_sw->sw_id = hw->port_info->sw_id; 4376 4377 err = ice_setup_pf_sw(pf); 4378 if (err) { 4379 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4380 goto err_alloc_sw_unroll; 4381 } 4382 4383 clear_bit(ICE_SERVICE_DIS, pf->state); 4384 4385 /* tell the firmware we are up */ 4386 err = ice_send_version(pf); 4387 if (err) { 4388 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4389 UTS_RELEASE, err); 4390 goto err_send_version_unroll; 4391 } 4392 4393 /* since everything is good, start the service timer */ 4394 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4395 4396 err = ice_init_link_events(pf->hw.port_info); 4397 if (err) { 4398 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4399 goto err_send_version_unroll; 4400 } 4401 4402 /* not a fatal error if this fails */ 4403 err = ice_init_nvm_phy_type(pf->hw.port_info); 4404 if (err) 4405 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4406 4407 /* not a fatal error if this fails */ 4408 err = ice_update_link_info(pf->hw.port_info); 4409 if (err) 4410 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4411 4412 ice_init_link_dflt_override(pf->hw.port_info); 4413 4414 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err); 4415 4416 /* if media available, initialize PHY settings */ 4417 if (pf->hw.port_info->phy.link_info.link_info & 4418 ICE_AQ_MEDIA_AVAILABLE) { 4419 /* not a fatal error if this fails */ 4420 err = ice_init_phy_user_cfg(pf->hw.port_info); 4421 if (err) 4422 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4423 4424 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4425 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4426 4427 if (vsi) 4428 ice_configure_phy(vsi); 4429 } 4430 } else { 4431 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4432 } 4433 4434 ice_verify_cacheline_size(pf); 4435 4436 /* Save wakeup reason register for later use */ 4437 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4438 4439 /* check for a power management event */ 4440 ice_print_wake_reason(pf); 4441 4442 /* clear wake status, all bits */ 4443 wr32(hw, PFPM_WUS, U32_MAX); 4444 4445 /* Disable WoL at init, wait for user to enable */ 4446 device_set_wakeup_enable(dev, false); 4447 4448 if (ice_is_safe_mode(pf)) { 4449 ice_set_safe_mode_vlan_cfg(pf); 4450 goto probe_done; 4451 } 4452 4453 /* initialize DDP driven features */ 4454 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4455 ice_ptp_init(pf); 4456 4457 /* Note: Flow director init failure is non-fatal to load */ 4458 if (ice_init_fdir(pf)) 4459 dev_err(dev, "could not initialize flow director\n"); 4460 4461 /* Note: DCB init failure is non-fatal to load */ 4462 if (ice_init_pf_dcb(pf, false)) { 4463 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4464 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4465 } else { 4466 ice_cfg_lldp_mib_change(&pf->hw, true); 4467 } 4468 4469 if (ice_init_lag(pf)) 4470 dev_warn(dev, "Failed to init link aggregation support\n"); 4471 4472 /* print PCI link speed and width */ 4473 pcie_print_link_status(pf->pdev); 4474 4475 probe_done: 4476 err = ice_register_netdev(pf); 4477 if (err) 4478 goto err_netdev_reg; 4479 4480 /* ready to go, so clear down state bit */ 4481 clear_bit(ICE_DOWN, pf->state); 4482 if (ice_is_aux_ena(pf)) { 4483 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4484 if (pf->aux_idx < 0) { 4485 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4486 err = -ENOMEM; 4487 goto err_netdev_reg; 4488 } 4489 4490 err = ice_init_rdma(pf); 4491 if (err) { 4492 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4493 err = -EIO; 4494 goto err_init_aux_unroll; 4495 } 4496 } else { 4497 dev_warn(dev, "RDMA is not supported on this device\n"); 4498 } 4499 4500 ice_devlink_register(pf); 4501 return 0; 4502 4503 err_init_aux_unroll: 4504 pf->adev = NULL; 4505 ida_free(&ice_aux_ida, pf->aux_idx); 4506 err_netdev_reg: 4507 err_send_version_unroll: 4508 ice_vsi_release_all(pf); 4509 err_alloc_sw_unroll: 4510 set_bit(ICE_SERVICE_DIS, pf->state); 4511 set_bit(ICE_DOWN, pf->state); 4512 devm_kfree(dev, pf->first_sw); 4513 err_msix_misc_unroll: 4514 ice_free_irq_msix_misc(pf); 4515 err_init_interrupt_unroll: 4516 ice_clear_interrupt_scheme(pf); 4517 err_init_vsi_unroll: 4518 devm_kfree(dev, pf->vsi); 4519 err_init_pf_unroll: 4520 ice_deinit_pf(pf); 4521 ice_devlink_destroy_regions(pf); 4522 ice_deinit_hw(hw); 4523 err_exit_unroll: 4524 pci_disable_pcie_error_reporting(pdev); 4525 pci_disable_device(pdev); 4526 return err; 4527 } 4528 4529 /** 4530 * ice_set_wake - enable or disable Wake on LAN 4531 * @pf: pointer to the PF struct 4532 * 4533 * Simple helper for WoL control 4534 */ 4535 static void ice_set_wake(struct ice_pf *pf) 4536 { 4537 struct ice_hw *hw = &pf->hw; 4538 bool wol = pf->wol_ena; 4539 4540 /* clear wake state, otherwise new wake events won't fire */ 4541 wr32(hw, PFPM_WUS, U32_MAX); 4542 4543 /* enable / disable APM wake up, no RMW needed */ 4544 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4545 4546 /* set magic packet filter enabled */ 4547 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4548 } 4549 4550 /** 4551 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4552 * @pf: pointer to the PF struct 4553 * 4554 * Issue firmware command to enable multicast magic wake, making 4555 * sure that any locally administered address (LAA) is used for 4556 * wake, and that PF reset doesn't undo the LAA. 4557 */ 4558 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4559 { 4560 struct device *dev = ice_pf_to_dev(pf); 4561 struct ice_hw *hw = &pf->hw; 4562 enum ice_status status; 4563 u8 mac_addr[ETH_ALEN]; 4564 struct ice_vsi *vsi; 4565 u8 flags; 4566 4567 if (!pf->wol_ena) 4568 return; 4569 4570 vsi = ice_get_main_vsi(pf); 4571 if (!vsi) 4572 return; 4573 4574 /* Get current MAC address in case it's an LAA */ 4575 if (vsi->netdev) 4576 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4577 else 4578 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4579 4580 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4581 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4582 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4583 4584 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4585 if (status) 4586 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4587 ice_stat_str(status), 4588 ice_aq_str(hw->adminq.sq_last_status)); 4589 } 4590 4591 /** 4592 * ice_remove - Device removal routine 4593 * @pdev: PCI device information struct 4594 */ 4595 static void ice_remove(struct pci_dev *pdev) 4596 { 4597 struct ice_pf *pf = pci_get_drvdata(pdev); 4598 int i; 4599 4600 ice_devlink_unregister(pf); 4601 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4602 if (!ice_is_reset_in_progress(pf->state)) 4603 break; 4604 msleep(100); 4605 } 4606 4607 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4608 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4609 ice_free_vfs(pf); 4610 } 4611 4612 ice_service_task_stop(pf); 4613 4614 ice_aq_cancel_waiting_tasks(pf); 4615 ice_unplug_aux_dev(pf); 4616 ida_free(&ice_aux_ida, pf->aux_idx); 4617 set_bit(ICE_DOWN, pf->state); 4618 4619 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4620 ice_deinit_lag(pf); 4621 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4622 ice_ptp_release(pf); 4623 if (!ice_is_safe_mode(pf)) 4624 ice_remove_arfs(pf); 4625 ice_setup_mc_magic_wake(pf); 4626 ice_vsi_release_all(pf); 4627 ice_set_wake(pf); 4628 ice_free_irq_msix_misc(pf); 4629 ice_for_each_vsi(pf, i) { 4630 if (!pf->vsi[i]) 4631 continue; 4632 ice_vsi_free_q_vectors(pf->vsi[i]); 4633 } 4634 ice_deinit_pf(pf); 4635 ice_devlink_destroy_regions(pf); 4636 ice_deinit_hw(&pf->hw); 4637 4638 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4639 * do it via ice_schedule_reset() since there is no need to rebuild 4640 * and the service task is already stopped. 4641 */ 4642 ice_reset(&pf->hw, ICE_RESET_PFR); 4643 pci_wait_for_pending_transaction(pdev); 4644 ice_clear_interrupt_scheme(pf); 4645 pci_disable_pcie_error_reporting(pdev); 4646 pci_disable_device(pdev); 4647 } 4648 4649 /** 4650 * ice_shutdown - PCI callback for shutting down device 4651 * @pdev: PCI device information struct 4652 */ 4653 static void ice_shutdown(struct pci_dev *pdev) 4654 { 4655 struct ice_pf *pf = pci_get_drvdata(pdev); 4656 4657 ice_remove(pdev); 4658 4659 if (system_state == SYSTEM_POWER_OFF) { 4660 pci_wake_from_d3(pdev, pf->wol_ena); 4661 pci_set_power_state(pdev, PCI_D3hot); 4662 } 4663 } 4664 4665 #ifdef CONFIG_PM 4666 /** 4667 * ice_prepare_for_shutdown - prep for PCI shutdown 4668 * @pf: board private structure 4669 * 4670 * Inform or close all dependent features in prep for PCI device shutdown 4671 */ 4672 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4673 { 4674 struct ice_hw *hw = &pf->hw; 4675 u32 v; 4676 4677 /* Notify VFs of impending reset */ 4678 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4679 ice_vc_notify_reset(pf); 4680 4681 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4682 4683 /* disable the VSIs and their queues that are not already DOWN */ 4684 ice_pf_dis_all_vsi(pf, false); 4685 4686 ice_for_each_vsi(pf, v) 4687 if (pf->vsi[v]) 4688 pf->vsi[v]->vsi_num = 0; 4689 4690 ice_shutdown_all_ctrlq(hw); 4691 } 4692 4693 /** 4694 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4695 * @pf: board private structure to reinitialize 4696 * 4697 * This routine reinitialize interrupt scheme that was cleared during 4698 * power management suspend callback. 4699 * 4700 * This should be called during resume routine to re-allocate the q_vectors 4701 * and reacquire interrupts. 4702 */ 4703 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4704 { 4705 struct device *dev = ice_pf_to_dev(pf); 4706 int ret, v; 4707 4708 /* Since we clear MSIX flag during suspend, we need to 4709 * set it back during resume... 4710 */ 4711 4712 ret = ice_init_interrupt_scheme(pf); 4713 if (ret) { 4714 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4715 return ret; 4716 } 4717 4718 /* Remap vectors and rings, after successful re-init interrupts */ 4719 ice_for_each_vsi(pf, v) { 4720 if (!pf->vsi[v]) 4721 continue; 4722 4723 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4724 if (ret) 4725 goto err_reinit; 4726 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4727 } 4728 4729 ret = ice_req_irq_msix_misc(pf); 4730 if (ret) { 4731 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4732 ret); 4733 goto err_reinit; 4734 } 4735 4736 return 0; 4737 4738 err_reinit: 4739 while (v--) 4740 if (pf->vsi[v]) 4741 ice_vsi_free_q_vectors(pf->vsi[v]); 4742 4743 return ret; 4744 } 4745 4746 /** 4747 * ice_suspend 4748 * @dev: generic device information structure 4749 * 4750 * Power Management callback to quiesce the device and prepare 4751 * for D3 transition. 4752 */ 4753 static int __maybe_unused ice_suspend(struct device *dev) 4754 { 4755 struct pci_dev *pdev = to_pci_dev(dev); 4756 struct ice_pf *pf; 4757 int disabled, v; 4758 4759 pf = pci_get_drvdata(pdev); 4760 4761 if (!ice_pf_state_is_nominal(pf)) { 4762 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4763 return -EBUSY; 4764 } 4765 4766 /* Stop watchdog tasks until resume completion. 4767 * Even though it is most likely that the service task is 4768 * disabled if the device is suspended or down, the service task's 4769 * state is controlled by a different state bit, and we should 4770 * store and honor whatever state that bit is in at this point. 4771 */ 4772 disabled = ice_service_task_stop(pf); 4773 4774 ice_unplug_aux_dev(pf); 4775 4776 /* Already suspended?, then there is nothing to do */ 4777 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4778 if (!disabled) 4779 ice_service_task_restart(pf); 4780 return 0; 4781 } 4782 4783 if (test_bit(ICE_DOWN, pf->state) || 4784 ice_is_reset_in_progress(pf->state)) { 4785 dev_err(dev, "can't suspend device in reset or already down\n"); 4786 if (!disabled) 4787 ice_service_task_restart(pf); 4788 return 0; 4789 } 4790 4791 ice_setup_mc_magic_wake(pf); 4792 4793 ice_prepare_for_shutdown(pf); 4794 4795 ice_set_wake(pf); 4796 4797 /* Free vectors, clear the interrupt scheme and release IRQs 4798 * for proper hibernation, especially with large number of CPUs. 4799 * Otherwise hibernation might fail when mapping all the vectors back 4800 * to CPU0. 4801 */ 4802 ice_free_irq_msix_misc(pf); 4803 ice_for_each_vsi(pf, v) { 4804 if (!pf->vsi[v]) 4805 continue; 4806 ice_vsi_free_q_vectors(pf->vsi[v]); 4807 } 4808 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4809 ice_clear_interrupt_scheme(pf); 4810 4811 pci_save_state(pdev); 4812 pci_wake_from_d3(pdev, pf->wol_ena); 4813 pci_set_power_state(pdev, PCI_D3hot); 4814 return 0; 4815 } 4816 4817 /** 4818 * ice_resume - PM callback for waking up from D3 4819 * @dev: generic device information structure 4820 */ 4821 static int __maybe_unused ice_resume(struct device *dev) 4822 { 4823 struct pci_dev *pdev = to_pci_dev(dev); 4824 enum ice_reset_req reset_type; 4825 struct ice_pf *pf; 4826 struct ice_hw *hw; 4827 int ret; 4828 4829 pci_set_power_state(pdev, PCI_D0); 4830 pci_restore_state(pdev); 4831 pci_save_state(pdev); 4832 4833 if (!pci_device_is_present(pdev)) 4834 return -ENODEV; 4835 4836 ret = pci_enable_device_mem(pdev); 4837 if (ret) { 4838 dev_err(dev, "Cannot enable device after suspend\n"); 4839 return ret; 4840 } 4841 4842 pf = pci_get_drvdata(pdev); 4843 hw = &pf->hw; 4844 4845 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4846 ice_print_wake_reason(pf); 4847 4848 /* We cleared the interrupt scheme when we suspended, so we need to 4849 * restore it now to resume device functionality. 4850 */ 4851 ret = ice_reinit_interrupt_scheme(pf); 4852 if (ret) 4853 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4854 4855 clear_bit(ICE_DOWN, pf->state); 4856 /* Now perform PF reset and rebuild */ 4857 reset_type = ICE_RESET_PFR; 4858 /* re-enable service task for reset, but allow reset to schedule it */ 4859 clear_bit(ICE_SERVICE_DIS, pf->state); 4860 4861 if (ice_schedule_reset(pf, reset_type)) 4862 dev_err(dev, "Reset during resume failed.\n"); 4863 4864 clear_bit(ICE_SUSPENDED, pf->state); 4865 ice_service_task_restart(pf); 4866 4867 /* Restart the service task */ 4868 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4869 4870 return 0; 4871 } 4872 #endif /* CONFIG_PM */ 4873 4874 /** 4875 * ice_pci_err_detected - warning that PCI error has been detected 4876 * @pdev: PCI device information struct 4877 * @err: the type of PCI error 4878 * 4879 * Called to warn that something happened on the PCI bus and the error handling 4880 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4881 */ 4882 static pci_ers_result_t 4883 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4884 { 4885 struct ice_pf *pf = pci_get_drvdata(pdev); 4886 4887 if (!pf) { 4888 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4889 __func__, err); 4890 return PCI_ERS_RESULT_DISCONNECT; 4891 } 4892 4893 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4894 ice_service_task_stop(pf); 4895 4896 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4897 set_bit(ICE_PFR_REQ, pf->state); 4898 ice_prepare_for_reset(pf); 4899 } 4900 } 4901 4902 return PCI_ERS_RESULT_NEED_RESET; 4903 } 4904 4905 /** 4906 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4907 * @pdev: PCI device information struct 4908 * 4909 * Called to determine if the driver can recover from the PCI slot reset by 4910 * using a register read to determine if the device is recoverable. 4911 */ 4912 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4913 { 4914 struct ice_pf *pf = pci_get_drvdata(pdev); 4915 pci_ers_result_t result; 4916 int err; 4917 u32 reg; 4918 4919 err = pci_enable_device_mem(pdev); 4920 if (err) { 4921 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4922 err); 4923 result = PCI_ERS_RESULT_DISCONNECT; 4924 } else { 4925 pci_set_master(pdev); 4926 pci_restore_state(pdev); 4927 pci_save_state(pdev); 4928 pci_wake_from_d3(pdev, false); 4929 4930 /* Check for life */ 4931 reg = rd32(&pf->hw, GLGEN_RTRIG); 4932 if (!reg) 4933 result = PCI_ERS_RESULT_RECOVERED; 4934 else 4935 result = PCI_ERS_RESULT_DISCONNECT; 4936 } 4937 4938 err = pci_aer_clear_nonfatal_status(pdev); 4939 if (err) 4940 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4941 err); 4942 /* non-fatal, continue */ 4943 4944 return result; 4945 } 4946 4947 /** 4948 * ice_pci_err_resume - restart operations after PCI error recovery 4949 * @pdev: PCI device information struct 4950 * 4951 * Called to allow the driver to bring things back up after PCI error and/or 4952 * reset recovery have finished 4953 */ 4954 static void ice_pci_err_resume(struct pci_dev *pdev) 4955 { 4956 struct ice_pf *pf = pci_get_drvdata(pdev); 4957 4958 if (!pf) { 4959 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4960 __func__); 4961 return; 4962 } 4963 4964 if (test_bit(ICE_SUSPENDED, pf->state)) { 4965 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4966 __func__); 4967 return; 4968 } 4969 4970 ice_restore_all_vfs_msi_state(pdev); 4971 4972 ice_do_reset(pf, ICE_RESET_PFR); 4973 ice_service_task_restart(pf); 4974 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4975 } 4976 4977 /** 4978 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4979 * @pdev: PCI device information struct 4980 */ 4981 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4982 { 4983 struct ice_pf *pf = pci_get_drvdata(pdev); 4984 4985 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4986 ice_service_task_stop(pf); 4987 4988 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4989 set_bit(ICE_PFR_REQ, pf->state); 4990 ice_prepare_for_reset(pf); 4991 } 4992 } 4993 } 4994 4995 /** 4996 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4997 * @pdev: PCI device information struct 4998 */ 4999 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5000 { 5001 ice_pci_err_resume(pdev); 5002 } 5003 5004 /* ice_pci_tbl - PCI Device ID Table 5005 * 5006 * Wildcard entries (PCI_ANY_ID) should come last 5007 * Last entry must be all 0s 5008 * 5009 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5010 * Class, Class Mask, private data (not used) } 5011 */ 5012 static const struct pci_device_id ice_pci_tbl[] = { 5013 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5014 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5015 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5016 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5017 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5018 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5019 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5020 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5021 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5022 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5023 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5024 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5025 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5026 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5027 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5028 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5029 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5030 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5031 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5032 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5033 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5034 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5035 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5036 /* required last entry */ 5037 { 0, } 5038 }; 5039 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5040 5041 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5042 5043 static const struct pci_error_handlers ice_pci_err_handler = { 5044 .error_detected = ice_pci_err_detected, 5045 .slot_reset = ice_pci_err_slot_reset, 5046 .reset_prepare = ice_pci_err_reset_prepare, 5047 .reset_done = ice_pci_err_reset_done, 5048 .resume = ice_pci_err_resume 5049 }; 5050 5051 static struct pci_driver ice_driver = { 5052 .name = KBUILD_MODNAME, 5053 .id_table = ice_pci_tbl, 5054 .probe = ice_probe, 5055 .remove = ice_remove, 5056 #ifdef CONFIG_PM 5057 .driver.pm = &ice_pm_ops, 5058 #endif /* CONFIG_PM */ 5059 .shutdown = ice_shutdown, 5060 .sriov_configure = ice_sriov_configure, 5061 .err_handler = &ice_pci_err_handler 5062 }; 5063 5064 /** 5065 * ice_module_init - Driver registration routine 5066 * 5067 * ice_module_init is the first routine called when the driver is 5068 * loaded. All it does is register with the PCI subsystem. 5069 */ 5070 static int __init ice_module_init(void) 5071 { 5072 int status; 5073 5074 pr_info("%s\n", ice_driver_string); 5075 pr_info("%s\n", ice_copyright); 5076 5077 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5078 if (!ice_wq) { 5079 pr_err("Failed to create workqueue\n"); 5080 return -ENOMEM; 5081 } 5082 5083 status = pci_register_driver(&ice_driver); 5084 if (status) { 5085 pr_err("failed to register PCI driver, err %d\n", status); 5086 destroy_workqueue(ice_wq); 5087 } 5088 5089 return status; 5090 } 5091 module_init(ice_module_init); 5092 5093 /** 5094 * ice_module_exit - Driver exit cleanup routine 5095 * 5096 * ice_module_exit is called just before the driver is removed 5097 * from memory. 5098 */ 5099 static void __exit ice_module_exit(void) 5100 { 5101 pci_unregister_driver(&ice_driver); 5102 destroy_workqueue(ice_wq); 5103 pr_info("module unloaded\n"); 5104 } 5105 module_exit(ice_module_exit); 5106 5107 /** 5108 * ice_set_mac_address - NDO callback to set MAC address 5109 * @netdev: network interface device structure 5110 * @pi: pointer to an address structure 5111 * 5112 * Returns 0 on success, negative on failure 5113 */ 5114 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5115 { 5116 struct ice_netdev_priv *np = netdev_priv(netdev); 5117 struct ice_vsi *vsi = np->vsi; 5118 struct ice_pf *pf = vsi->back; 5119 struct ice_hw *hw = &pf->hw; 5120 struct sockaddr *addr = pi; 5121 enum ice_status status; 5122 u8 old_mac[ETH_ALEN]; 5123 u8 flags = 0; 5124 int err = 0; 5125 u8 *mac; 5126 5127 mac = (u8 *)addr->sa_data; 5128 5129 if (!is_valid_ether_addr(mac)) 5130 return -EADDRNOTAVAIL; 5131 5132 if (ether_addr_equal(netdev->dev_addr, mac)) { 5133 netdev_dbg(netdev, "already using mac %pM\n", mac); 5134 return 0; 5135 } 5136 5137 if (test_bit(ICE_DOWN, pf->state) || 5138 ice_is_reset_in_progress(pf->state)) { 5139 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5140 mac); 5141 return -EBUSY; 5142 } 5143 5144 netif_addr_lock_bh(netdev); 5145 ether_addr_copy(old_mac, netdev->dev_addr); 5146 /* change the netdev's MAC address */ 5147 eth_hw_addr_set(netdev, mac); 5148 netif_addr_unlock_bh(netdev); 5149 5150 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5151 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5152 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 5153 err = -EADDRNOTAVAIL; 5154 goto err_update_filters; 5155 } 5156 5157 /* Add filter for new MAC. If filter exists, return success */ 5158 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5159 if (status == ICE_ERR_ALREADY_EXISTS) 5160 /* Although this MAC filter is already present in hardware it's 5161 * possible in some cases (e.g. bonding) that dev_addr was 5162 * modified outside of the driver and needs to be restored back 5163 * to this value. 5164 */ 5165 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5166 else if (status) 5167 /* error if the new filter addition failed */ 5168 err = -EADDRNOTAVAIL; 5169 5170 err_update_filters: 5171 if (err) { 5172 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5173 mac); 5174 netif_addr_lock_bh(netdev); 5175 eth_hw_addr_set(netdev, old_mac); 5176 netif_addr_unlock_bh(netdev); 5177 return err; 5178 } 5179 5180 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5181 netdev->dev_addr); 5182 5183 /* write new MAC address to the firmware */ 5184 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5185 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5186 if (status) { 5187 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 5188 mac, ice_stat_str(status)); 5189 } 5190 return 0; 5191 } 5192 5193 /** 5194 * ice_set_rx_mode - NDO callback to set the netdev filters 5195 * @netdev: network interface device structure 5196 */ 5197 static void ice_set_rx_mode(struct net_device *netdev) 5198 { 5199 struct ice_netdev_priv *np = netdev_priv(netdev); 5200 struct ice_vsi *vsi = np->vsi; 5201 5202 if (!vsi) 5203 return; 5204 5205 /* Set the flags to synchronize filters 5206 * ndo_set_rx_mode may be triggered even without a change in netdev 5207 * flags 5208 */ 5209 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5210 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5211 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5212 5213 /* schedule our worker thread which will take care of 5214 * applying the new filter changes 5215 */ 5216 ice_service_task_schedule(vsi->back); 5217 } 5218 5219 /** 5220 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5221 * @netdev: network interface device structure 5222 * @queue_index: Queue ID 5223 * @maxrate: maximum bandwidth in Mbps 5224 */ 5225 static int 5226 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5227 { 5228 struct ice_netdev_priv *np = netdev_priv(netdev); 5229 struct ice_vsi *vsi = np->vsi; 5230 enum ice_status status; 5231 u16 q_handle; 5232 u8 tc; 5233 5234 /* Validate maxrate requested is within permitted range */ 5235 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5236 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5237 maxrate, queue_index); 5238 return -EINVAL; 5239 } 5240 5241 q_handle = vsi->tx_rings[queue_index]->q_handle; 5242 tc = ice_dcb_get_tc(vsi, queue_index); 5243 5244 /* Set BW back to default, when user set maxrate to 0 */ 5245 if (!maxrate) 5246 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5247 q_handle, ICE_MAX_BW); 5248 else 5249 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5250 q_handle, ICE_MAX_BW, maxrate * 1000); 5251 if (status) { 5252 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5253 ice_stat_str(status)); 5254 return -EIO; 5255 } 5256 5257 return 0; 5258 } 5259 5260 /** 5261 * ice_fdb_add - add an entry to the hardware database 5262 * @ndm: the input from the stack 5263 * @tb: pointer to array of nladdr (unused) 5264 * @dev: the net device pointer 5265 * @addr: the MAC address entry being added 5266 * @vid: VLAN ID 5267 * @flags: instructions from stack about fdb operation 5268 * @extack: netlink extended ack 5269 */ 5270 static int 5271 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5272 struct net_device *dev, const unsigned char *addr, u16 vid, 5273 u16 flags, struct netlink_ext_ack __always_unused *extack) 5274 { 5275 int err; 5276 5277 if (vid) { 5278 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5279 return -EINVAL; 5280 } 5281 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5282 netdev_err(dev, "FDB only supports static addresses\n"); 5283 return -EINVAL; 5284 } 5285 5286 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5287 err = dev_uc_add_excl(dev, addr); 5288 else if (is_multicast_ether_addr(addr)) 5289 err = dev_mc_add_excl(dev, addr); 5290 else 5291 err = -EINVAL; 5292 5293 /* Only return duplicate errors if NLM_F_EXCL is set */ 5294 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5295 err = 0; 5296 5297 return err; 5298 } 5299 5300 /** 5301 * ice_fdb_del - delete an entry from the hardware database 5302 * @ndm: the input from the stack 5303 * @tb: pointer to array of nladdr (unused) 5304 * @dev: the net device pointer 5305 * @addr: the MAC address entry being added 5306 * @vid: VLAN ID 5307 */ 5308 static int 5309 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5310 struct net_device *dev, const unsigned char *addr, 5311 __always_unused u16 vid) 5312 { 5313 int err; 5314 5315 if (ndm->ndm_state & NUD_PERMANENT) { 5316 netdev_err(dev, "FDB only supports static addresses\n"); 5317 return -EINVAL; 5318 } 5319 5320 if (is_unicast_ether_addr(addr)) 5321 err = dev_uc_del(dev, addr); 5322 else if (is_multicast_ether_addr(addr)) 5323 err = dev_mc_del(dev, addr); 5324 else 5325 err = -EINVAL; 5326 5327 return err; 5328 } 5329 5330 /** 5331 * ice_set_features - set the netdev feature flags 5332 * @netdev: ptr to the netdev being adjusted 5333 * @features: the feature set that the stack is suggesting 5334 */ 5335 static int 5336 ice_set_features(struct net_device *netdev, netdev_features_t features) 5337 { 5338 struct ice_netdev_priv *np = netdev_priv(netdev); 5339 struct ice_vsi *vsi = np->vsi; 5340 struct ice_pf *pf = vsi->back; 5341 int ret = 0; 5342 5343 /* Don't set any netdev advanced features with device in Safe Mode */ 5344 if (ice_is_safe_mode(vsi->back)) { 5345 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5346 return ret; 5347 } 5348 5349 /* Do not change setting during reset */ 5350 if (ice_is_reset_in_progress(pf->state)) { 5351 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5352 return -EBUSY; 5353 } 5354 5355 /* Multiple features can be changed in one call so keep features in 5356 * separate if/else statements to guarantee each feature is checked 5357 */ 5358 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5359 ice_vsi_manage_rss_lut(vsi, true); 5360 else if (!(features & NETIF_F_RXHASH) && 5361 netdev->features & NETIF_F_RXHASH) 5362 ice_vsi_manage_rss_lut(vsi, false); 5363 5364 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5365 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5366 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5367 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5368 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5369 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5370 5371 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5372 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5373 ret = ice_vsi_manage_vlan_insertion(vsi); 5374 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5375 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5376 ret = ice_vsi_manage_vlan_insertion(vsi); 5377 5378 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5379 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5380 ret = ice_cfg_vlan_pruning(vsi, true, false); 5381 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5382 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5383 ret = ice_cfg_vlan_pruning(vsi, false, false); 5384 5385 if ((features & NETIF_F_NTUPLE) && 5386 !(netdev->features & NETIF_F_NTUPLE)) { 5387 ice_vsi_manage_fdir(vsi, true); 5388 ice_init_arfs(vsi); 5389 } else if (!(features & NETIF_F_NTUPLE) && 5390 (netdev->features & NETIF_F_NTUPLE)) { 5391 ice_vsi_manage_fdir(vsi, false); 5392 ice_clear_arfs(vsi); 5393 } 5394 5395 return ret; 5396 } 5397 5398 /** 5399 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5400 * @vsi: VSI to setup VLAN properties for 5401 */ 5402 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5403 { 5404 int ret = 0; 5405 5406 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5407 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5408 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5409 ret = ice_vsi_manage_vlan_insertion(vsi); 5410 5411 return ret; 5412 } 5413 5414 /** 5415 * ice_vsi_cfg - Setup the VSI 5416 * @vsi: the VSI being configured 5417 * 5418 * Return 0 on success and negative value on error 5419 */ 5420 int ice_vsi_cfg(struct ice_vsi *vsi) 5421 { 5422 int err; 5423 5424 if (vsi->netdev) { 5425 ice_set_rx_mode(vsi->netdev); 5426 5427 err = ice_vsi_vlan_setup(vsi); 5428 5429 if (err) 5430 return err; 5431 } 5432 ice_vsi_cfg_dcb_rings(vsi); 5433 5434 err = ice_vsi_cfg_lan_txqs(vsi); 5435 if (!err && ice_is_xdp_ena_vsi(vsi)) 5436 err = ice_vsi_cfg_xdp_txqs(vsi); 5437 if (!err) 5438 err = ice_vsi_cfg_rxqs(vsi); 5439 5440 return err; 5441 } 5442 5443 /* THEORY OF MODERATION: 5444 * The below code creates custom DIM profiles for use by this driver, because 5445 * the ice driver hardware works differently than the hardware that DIMLIB was 5446 * originally made for. ice hardware doesn't have packet count limits that 5447 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5448 * and this code adds that capability to be used by the driver when it's using 5449 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver 5450 * for how to "respond" to traffic and interrupts, so this driver uses a 5451 * slightly different set of moderation parameters to get best performance. 5452 */ 5453 struct ice_dim { 5454 /* the throttle rate for interrupts, basically worst case delay before 5455 * an initial interrupt fires, value is stored in microseconds. 5456 */ 5457 u16 itr; 5458 /* the rate limit for interrupts, which can cap a delay from a small 5459 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR 5460 * could yield as much as 500,000 interrupts per second, but with a 5461 * 10us rate limit, it limits to 100,000 interrupts per second. Value 5462 * is stored in microseconds. 5463 */ 5464 u16 intrl; 5465 }; 5466 5467 /* Make a different profile for Rx that doesn't allow quite so aggressive 5468 * moderation at the high end (it maxes out at 128us or about 8k interrupts a 5469 * second. The INTRL/rate parameters here are only useful to cap small ITR 5470 * values, which is why for larger ITR's - like 128, which can only generate 5471 * 8k interrupts per second, there is no point to rate limit and the values 5472 * are set to zero. The rate limit values do affect latency, and so must 5473 * be reasonably small so to not impact latency sensitive tests. 5474 */ 5475 static const struct ice_dim rx_profile[] = { 5476 {2, 10}, 5477 {8, 16}, 5478 {32, 0}, 5479 {96, 0}, 5480 {128, 0} 5481 }; 5482 5483 /* The transmit profile, which has the same sorts of values 5484 * as the previous struct 5485 */ 5486 static const struct ice_dim tx_profile[] = { 5487 {2, 10}, 5488 {8, 16}, 5489 {64, 0}, 5490 {128, 0}, 5491 {256, 0} 5492 }; 5493 5494 static void ice_tx_dim_work(struct work_struct *work) 5495 { 5496 struct ice_ring_container *rc; 5497 struct ice_q_vector *q_vector; 5498 struct dim *dim; 5499 u16 itr, intrl; 5500 5501 dim = container_of(work, struct dim, work); 5502 rc = container_of(dim, struct ice_ring_container, dim); 5503 q_vector = container_of(rc, struct ice_q_vector, tx); 5504 5505 if (dim->profile_ix >= ARRAY_SIZE(tx_profile)) 5506 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1; 5507 5508 /* look up the values in our local table */ 5509 itr = tx_profile[dim->profile_ix].itr; 5510 intrl = tx_profile[dim->profile_ix].intrl; 5511 5512 ice_trace(tx_dim_work, q_vector, dim); 5513 ice_write_itr(rc, itr); 5514 ice_write_intrl(q_vector, intrl); 5515 5516 dim->state = DIM_START_MEASURE; 5517 } 5518 5519 static void ice_rx_dim_work(struct work_struct *work) 5520 { 5521 struct ice_ring_container *rc; 5522 struct ice_q_vector *q_vector; 5523 struct dim *dim; 5524 u16 itr, intrl; 5525 5526 dim = container_of(work, struct dim, work); 5527 rc = container_of(dim, struct ice_ring_container, dim); 5528 q_vector = container_of(rc, struct ice_q_vector, rx); 5529 5530 if (dim->profile_ix >= ARRAY_SIZE(rx_profile)) 5531 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1; 5532 5533 /* look up the values in our local table */ 5534 itr = rx_profile[dim->profile_ix].itr; 5535 intrl = rx_profile[dim->profile_ix].intrl; 5536 5537 ice_trace(rx_dim_work, q_vector, dim); 5538 ice_write_itr(rc, itr); 5539 ice_write_intrl(q_vector, intrl); 5540 5541 dim->state = DIM_START_MEASURE; 5542 } 5543 5544 /** 5545 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5546 * @vsi: the VSI being configured 5547 */ 5548 static void ice_napi_enable_all(struct ice_vsi *vsi) 5549 { 5550 int q_idx; 5551 5552 if (!vsi->netdev) 5553 return; 5554 5555 ice_for_each_q_vector(vsi, q_idx) { 5556 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5557 5558 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work); 5559 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5560 5561 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work); 5562 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5563 5564 if (q_vector->rx.ring || q_vector->tx.ring) 5565 napi_enable(&q_vector->napi); 5566 } 5567 } 5568 5569 /** 5570 * ice_up_complete - Finish the last steps of bringing up a connection 5571 * @vsi: The VSI being configured 5572 * 5573 * Return 0 on success and negative value on error 5574 */ 5575 static int ice_up_complete(struct ice_vsi *vsi) 5576 { 5577 struct ice_pf *pf = vsi->back; 5578 int err; 5579 5580 ice_vsi_cfg_msix(vsi); 5581 5582 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5583 * Tx queue group list was configured and the context bits were 5584 * programmed using ice_vsi_cfg_txqs 5585 */ 5586 err = ice_vsi_start_all_rx_rings(vsi); 5587 if (err) 5588 return err; 5589 5590 clear_bit(ICE_VSI_DOWN, vsi->state); 5591 ice_napi_enable_all(vsi); 5592 ice_vsi_ena_irq(vsi); 5593 5594 if (vsi->port_info && 5595 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5596 vsi->netdev) { 5597 ice_print_link_msg(vsi, true); 5598 netif_tx_start_all_queues(vsi->netdev); 5599 netif_carrier_on(vsi->netdev); 5600 } 5601 5602 ice_service_task_schedule(pf); 5603 5604 return 0; 5605 } 5606 5607 /** 5608 * ice_up - Bring the connection back up after being down 5609 * @vsi: VSI being configured 5610 */ 5611 int ice_up(struct ice_vsi *vsi) 5612 { 5613 int err; 5614 5615 err = ice_vsi_cfg(vsi); 5616 if (!err) 5617 err = ice_up_complete(vsi); 5618 5619 return err; 5620 } 5621 5622 /** 5623 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5624 * @ring: Tx or Rx ring to read stats from 5625 * @pkts: packets stats counter 5626 * @bytes: bytes stats counter 5627 * 5628 * This function fetches stats from the ring considering the atomic operations 5629 * that needs to be performed to read u64 values in 32 bit machine. 5630 */ 5631 static void 5632 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5633 { 5634 unsigned int start; 5635 *pkts = 0; 5636 *bytes = 0; 5637 5638 if (!ring) 5639 return; 5640 do { 5641 start = u64_stats_fetch_begin_irq(&ring->syncp); 5642 *pkts = ring->stats.pkts; 5643 *bytes = ring->stats.bytes; 5644 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5645 } 5646 5647 /** 5648 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5649 * @vsi: the VSI to be updated 5650 * @rings: rings to work on 5651 * @count: number of rings 5652 */ 5653 static void 5654 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5655 u16 count) 5656 { 5657 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5658 u16 i; 5659 5660 for (i = 0; i < count; i++) { 5661 struct ice_ring *ring; 5662 u64 pkts, bytes; 5663 5664 ring = READ_ONCE(rings[i]); 5665 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5666 vsi_stats->tx_packets += pkts; 5667 vsi_stats->tx_bytes += bytes; 5668 vsi->tx_restart += ring->tx_stats.restart_q; 5669 vsi->tx_busy += ring->tx_stats.tx_busy; 5670 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5671 } 5672 } 5673 5674 /** 5675 * ice_update_vsi_ring_stats - Update VSI stats counters 5676 * @vsi: the VSI to be updated 5677 */ 5678 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5679 { 5680 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5681 u64 pkts, bytes; 5682 int i; 5683 5684 /* reset netdev stats */ 5685 vsi_stats->tx_packets = 0; 5686 vsi_stats->tx_bytes = 0; 5687 vsi_stats->rx_packets = 0; 5688 vsi_stats->rx_bytes = 0; 5689 5690 /* reset non-netdev (extended) stats */ 5691 vsi->tx_restart = 0; 5692 vsi->tx_busy = 0; 5693 vsi->tx_linearize = 0; 5694 vsi->rx_buf_failed = 0; 5695 vsi->rx_page_failed = 0; 5696 5697 rcu_read_lock(); 5698 5699 /* update Tx rings counters */ 5700 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5701 5702 /* update Rx rings counters */ 5703 ice_for_each_rxq(vsi, i) { 5704 struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5705 5706 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5707 vsi_stats->rx_packets += pkts; 5708 vsi_stats->rx_bytes += bytes; 5709 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5710 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5711 } 5712 5713 /* update XDP Tx rings counters */ 5714 if (ice_is_xdp_ena_vsi(vsi)) 5715 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5716 vsi->num_xdp_txq); 5717 5718 rcu_read_unlock(); 5719 } 5720 5721 /** 5722 * ice_update_vsi_stats - Update VSI stats counters 5723 * @vsi: the VSI to be updated 5724 */ 5725 void ice_update_vsi_stats(struct ice_vsi *vsi) 5726 { 5727 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5728 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5729 struct ice_pf *pf = vsi->back; 5730 5731 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5732 test_bit(ICE_CFG_BUSY, pf->state)) 5733 return; 5734 5735 /* get stats as recorded by Tx/Rx rings */ 5736 ice_update_vsi_ring_stats(vsi); 5737 5738 /* get VSI stats as recorded by the hardware */ 5739 ice_update_eth_stats(vsi); 5740 5741 cur_ns->tx_errors = cur_es->tx_errors; 5742 cur_ns->rx_dropped = cur_es->rx_discards; 5743 cur_ns->tx_dropped = cur_es->tx_discards; 5744 cur_ns->multicast = cur_es->rx_multicast; 5745 5746 /* update some more netdev stats if this is main VSI */ 5747 if (vsi->type == ICE_VSI_PF) { 5748 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5749 cur_ns->rx_errors = pf->stats.crc_errors + 5750 pf->stats.illegal_bytes + 5751 pf->stats.rx_len_errors + 5752 pf->stats.rx_undersize + 5753 pf->hw_csum_rx_error + 5754 pf->stats.rx_jabber + 5755 pf->stats.rx_fragments + 5756 pf->stats.rx_oversize; 5757 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5758 /* record drops from the port level */ 5759 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5760 } 5761 } 5762 5763 /** 5764 * ice_update_pf_stats - Update PF port stats counters 5765 * @pf: PF whose stats needs to be updated 5766 */ 5767 void ice_update_pf_stats(struct ice_pf *pf) 5768 { 5769 struct ice_hw_port_stats *prev_ps, *cur_ps; 5770 struct ice_hw *hw = &pf->hw; 5771 u16 fd_ctr_base; 5772 u8 port; 5773 5774 port = hw->port_info->lport; 5775 prev_ps = &pf->stats_prev; 5776 cur_ps = &pf->stats; 5777 5778 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5779 &prev_ps->eth.rx_bytes, 5780 &cur_ps->eth.rx_bytes); 5781 5782 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5783 &prev_ps->eth.rx_unicast, 5784 &cur_ps->eth.rx_unicast); 5785 5786 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5787 &prev_ps->eth.rx_multicast, 5788 &cur_ps->eth.rx_multicast); 5789 5790 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5791 &prev_ps->eth.rx_broadcast, 5792 &cur_ps->eth.rx_broadcast); 5793 5794 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5795 &prev_ps->eth.rx_discards, 5796 &cur_ps->eth.rx_discards); 5797 5798 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5799 &prev_ps->eth.tx_bytes, 5800 &cur_ps->eth.tx_bytes); 5801 5802 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5803 &prev_ps->eth.tx_unicast, 5804 &cur_ps->eth.tx_unicast); 5805 5806 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5807 &prev_ps->eth.tx_multicast, 5808 &cur_ps->eth.tx_multicast); 5809 5810 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5811 &prev_ps->eth.tx_broadcast, 5812 &cur_ps->eth.tx_broadcast); 5813 5814 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5815 &prev_ps->tx_dropped_link_down, 5816 &cur_ps->tx_dropped_link_down); 5817 5818 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5819 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5820 5821 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5822 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5823 5824 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5825 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5826 5827 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5828 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5829 5830 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5831 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5832 5833 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5834 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5835 5836 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5837 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5838 5839 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5840 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5841 5842 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5843 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5844 5845 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5846 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5847 5848 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5849 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5850 5851 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5852 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5853 5854 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5855 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5856 5857 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5858 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5859 5860 fd_ctr_base = hw->fd_ctr_base; 5861 5862 ice_stat_update40(hw, 5863 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5864 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5865 &cur_ps->fd_sb_match); 5866 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5867 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5868 5869 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5870 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5871 5872 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5873 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5874 5875 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5876 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5877 5878 ice_update_dcb_stats(pf); 5879 5880 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5881 &prev_ps->crc_errors, &cur_ps->crc_errors); 5882 5883 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5884 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5885 5886 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5887 &prev_ps->mac_local_faults, 5888 &cur_ps->mac_local_faults); 5889 5890 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5891 &prev_ps->mac_remote_faults, 5892 &cur_ps->mac_remote_faults); 5893 5894 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5895 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5896 5897 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5898 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5899 5900 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5901 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5902 5903 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5904 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5905 5906 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5907 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5908 5909 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5910 5911 pf->stat_prev_loaded = true; 5912 } 5913 5914 /** 5915 * ice_get_stats64 - get statistics for network device structure 5916 * @netdev: network interface device structure 5917 * @stats: main device statistics structure 5918 */ 5919 static 5920 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5921 { 5922 struct ice_netdev_priv *np = netdev_priv(netdev); 5923 struct rtnl_link_stats64 *vsi_stats; 5924 struct ice_vsi *vsi = np->vsi; 5925 5926 vsi_stats = &vsi->net_stats; 5927 5928 if (!vsi->num_txq || !vsi->num_rxq) 5929 return; 5930 5931 /* netdev packet/byte stats come from ring counter. These are obtained 5932 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5933 * But, only call the update routine and read the registers if VSI is 5934 * not down. 5935 */ 5936 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 5937 ice_update_vsi_ring_stats(vsi); 5938 stats->tx_packets = vsi_stats->tx_packets; 5939 stats->tx_bytes = vsi_stats->tx_bytes; 5940 stats->rx_packets = vsi_stats->rx_packets; 5941 stats->rx_bytes = vsi_stats->rx_bytes; 5942 5943 /* The rest of the stats can be read from the hardware but instead we 5944 * just return values that the watchdog task has already obtained from 5945 * the hardware. 5946 */ 5947 stats->multicast = vsi_stats->multicast; 5948 stats->tx_errors = vsi_stats->tx_errors; 5949 stats->tx_dropped = vsi_stats->tx_dropped; 5950 stats->rx_errors = vsi_stats->rx_errors; 5951 stats->rx_dropped = vsi_stats->rx_dropped; 5952 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5953 stats->rx_length_errors = vsi_stats->rx_length_errors; 5954 } 5955 5956 /** 5957 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5958 * @vsi: VSI having NAPI disabled 5959 */ 5960 static void ice_napi_disable_all(struct ice_vsi *vsi) 5961 { 5962 int q_idx; 5963 5964 if (!vsi->netdev) 5965 return; 5966 5967 ice_for_each_q_vector(vsi, q_idx) { 5968 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5969 5970 if (q_vector->rx.ring || q_vector->tx.ring) 5971 napi_disable(&q_vector->napi); 5972 5973 cancel_work_sync(&q_vector->tx.dim.work); 5974 cancel_work_sync(&q_vector->rx.dim.work); 5975 } 5976 } 5977 5978 /** 5979 * ice_down - Shutdown the connection 5980 * @vsi: The VSI being stopped 5981 */ 5982 int ice_down(struct ice_vsi *vsi) 5983 { 5984 int i, tx_err, rx_err, link_err = 0; 5985 5986 /* Caller of this function is expected to set the 5987 * vsi->state ICE_DOWN bit 5988 */ 5989 if (vsi->netdev) { 5990 netif_carrier_off(vsi->netdev); 5991 netif_tx_disable(vsi->netdev); 5992 } 5993 5994 ice_vsi_dis_irq(vsi); 5995 5996 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5997 if (tx_err) 5998 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5999 vsi->vsi_num, tx_err); 6000 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6001 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6002 if (tx_err) 6003 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6004 vsi->vsi_num, tx_err); 6005 } 6006 6007 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6008 if (rx_err) 6009 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6010 vsi->vsi_num, rx_err); 6011 6012 ice_napi_disable_all(vsi); 6013 6014 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6015 link_err = ice_force_phys_link_state(vsi, false); 6016 if (link_err) 6017 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6018 vsi->vsi_num, link_err); 6019 } 6020 6021 ice_for_each_txq(vsi, i) 6022 ice_clean_tx_ring(vsi->tx_rings[i]); 6023 6024 ice_for_each_rxq(vsi, i) 6025 ice_clean_rx_ring(vsi->rx_rings[i]); 6026 6027 if (tx_err || rx_err || link_err) { 6028 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6029 vsi->vsi_num, vsi->vsw->sw_id); 6030 return -EIO; 6031 } 6032 6033 return 0; 6034 } 6035 6036 /** 6037 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6038 * @vsi: VSI having resources allocated 6039 * 6040 * Return 0 on success, negative on failure 6041 */ 6042 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6043 { 6044 int i, err = 0; 6045 6046 if (!vsi->num_txq) { 6047 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6048 vsi->vsi_num); 6049 return -EINVAL; 6050 } 6051 6052 ice_for_each_txq(vsi, i) { 6053 struct ice_ring *ring = vsi->tx_rings[i]; 6054 6055 if (!ring) 6056 return -EINVAL; 6057 6058 ring->netdev = vsi->netdev; 6059 err = ice_setup_tx_ring(ring); 6060 if (err) 6061 break; 6062 } 6063 6064 return err; 6065 } 6066 6067 /** 6068 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6069 * @vsi: VSI having resources allocated 6070 * 6071 * Return 0 on success, negative on failure 6072 */ 6073 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6074 { 6075 int i, err = 0; 6076 6077 if (!vsi->num_rxq) { 6078 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6079 vsi->vsi_num); 6080 return -EINVAL; 6081 } 6082 6083 ice_for_each_rxq(vsi, i) { 6084 struct ice_ring *ring = vsi->rx_rings[i]; 6085 6086 if (!ring) 6087 return -EINVAL; 6088 6089 ring->netdev = vsi->netdev; 6090 err = ice_setup_rx_ring(ring); 6091 if (err) 6092 break; 6093 } 6094 6095 return err; 6096 } 6097 6098 /** 6099 * ice_vsi_open_ctrl - open control VSI for use 6100 * @vsi: the VSI to open 6101 * 6102 * Initialization of the Control VSI 6103 * 6104 * Returns 0 on success, negative value on error 6105 */ 6106 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6107 { 6108 char int_name[ICE_INT_NAME_STR_LEN]; 6109 struct ice_pf *pf = vsi->back; 6110 struct device *dev; 6111 int err; 6112 6113 dev = ice_pf_to_dev(pf); 6114 /* allocate descriptors */ 6115 err = ice_vsi_setup_tx_rings(vsi); 6116 if (err) 6117 goto err_setup_tx; 6118 6119 err = ice_vsi_setup_rx_rings(vsi); 6120 if (err) 6121 goto err_setup_rx; 6122 6123 err = ice_vsi_cfg(vsi); 6124 if (err) 6125 goto err_setup_rx; 6126 6127 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6128 dev_driver_string(dev), dev_name(dev)); 6129 err = ice_vsi_req_irq_msix(vsi, int_name); 6130 if (err) 6131 goto err_setup_rx; 6132 6133 ice_vsi_cfg_msix(vsi); 6134 6135 err = ice_vsi_start_all_rx_rings(vsi); 6136 if (err) 6137 goto err_up_complete; 6138 6139 clear_bit(ICE_VSI_DOWN, vsi->state); 6140 ice_vsi_ena_irq(vsi); 6141 6142 return 0; 6143 6144 err_up_complete: 6145 ice_down(vsi); 6146 err_setup_rx: 6147 ice_vsi_free_rx_rings(vsi); 6148 err_setup_tx: 6149 ice_vsi_free_tx_rings(vsi); 6150 6151 return err; 6152 } 6153 6154 /** 6155 * ice_vsi_open - Called when a network interface is made active 6156 * @vsi: the VSI to open 6157 * 6158 * Initialization of the VSI 6159 * 6160 * Returns 0 on success, negative value on error 6161 */ 6162 static int ice_vsi_open(struct ice_vsi *vsi) 6163 { 6164 char int_name[ICE_INT_NAME_STR_LEN]; 6165 struct ice_pf *pf = vsi->back; 6166 int err; 6167 6168 /* allocate descriptors */ 6169 err = ice_vsi_setup_tx_rings(vsi); 6170 if (err) 6171 goto err_setup_tx; 6172 6173 err = ice_vsi_setup_rx_rings(vsi); 6174 if (err) 6175 goto err_setup_rx; 6176 6177 err = ice_vsi_cfg(vsi); 6178 if (err) 6179 goto err_setup_rx; 6180 6181 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6182 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6183 err = ice_vsi_req_irq_msix(vsi, int_name); 6184 if (err) 6185 goto err_setup_rx; 6186 6187 /* Notify the stack of the actual queue counts. */ 6188 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6189 if (err) 6190 goto err_set_qs; 6191 6192 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6193 if (err) 6194 goto err_set_qs; 6195 6196 err = ice_up_complete(vsi); 6197 if (err) 6198 goto err_up_complete; 6199 6200 return 0; 6201 6202 err_up_complete: 6203 ice_down(vsi); 6204 err_set_qs: 6205 ice_vsi_free_irq(vsi); 6206 err_setup_rx: 6207 ice_vsi_free_rx_rings(vsi); 6208 err_setup_tx: 6209 ice_vsi_free_tx_rings(vsi); 6210 6211 return err; 6212 } 6213 6214 /** 6215 * ice_vsi_release_all - Delete all VSIs 6216 * @pf: PF from which all VSIs are being removed 6217 */ 6218 static void ice_vsi_release_all(struct ice_pf *pf) 6219 { 6220 int err, i; 6221 6222 if (!pf->vsi) 6223 return; 6224 6225 ice_for_each_vsi(pf, i) { 6226 if (!pf->vsi[i]) 6227 continue; 6228 6229 err = ice_vsi_release(pf->vsi[i]); 6230 if (err) 6231 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6232 i, err, pf->vsi[i]->vsi_num); 6233 } 6234 } 6235 6236 /** 6237 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6238 * @pf: pointer to the PF instance 6239 * @type: VSI type to rebuild 6240 * 6241 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6242 */ 6243 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6244 { 6245 struct device *dev = ice_pf_to_dev(pf); 6246 enum ice_status status; 6247 int i, err; 6248 6249 ice_for_each_vsi(pf, i) { 6250 struct ice_vsi *vsi = pf->vsi[i]; 6251 6252 if (!vsi || vsi->type != type) 6253 continue; 6254 6255 /* rebuild the VSI */ 6256 err = ice_vsi_rebuild(vsi, true); 6257 if (err) { 6258 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6259 err, vsi->idx, ice_vsi_type_str(type)); 6260 return err; 6261 } 6262 6263 /* replay filters for the VSI */ 6264 status = ice_replay_vsi(&pf->hw, vsi->idx); 6265 if (status) { 6266 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6267 ice_stat_str(status), vsi->idx, 6268 ice_vsi_type_str(type)); 6269 return -EIO; 6270 } 6271 6272 /* Re-map HW VSI number, using VSI handle that has been 6273 * previously validated in ice_replay_vsi() call above 6274 */ 6275 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6276 6277 /* enable the VSI */ 6278 err = ice_ena_vsi(vsi, false); 6279 if (err) { 6280 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6281 err, vsi->idx, ice_vsi_type_str(type)); 6282 return err; 6283 } 6284 6285 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6286 ice_vsi_type_str(type)); 6287 } 6288 6289 return 0; 6290 } 6291 6292 /** 6293 * ice_update_pf_netdev_link - Update PF netdev link status 6294 * @pf: pointer to the PF instance 6295 */ 6296 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6297 { 6298 bool link_up; 6299 int i; 6300 6301 ice_for_each_vsi(pf, i) { 6302 struct ice_vsi *vsi = pf->vsi[i]; 6303 6304 if (!vsi || vsi->type != ICE_VSI_PF) 6305 return; 6306 6307 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6308 if (link_up) { 6309 netif_carrier_on(pf->vsi[i]->netdev); 6310 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6311 } else { 6312 netif_carrier_off(pf->vsi[i]->netdev); 6313 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6314 } 6315 } 6316 } 6317 6318 /** 6319 * ice_rebuild - rebuild after reset 6320 * @pf: PF to rebuild 6321 * @reset_type: type of reset 6322 * 6323 * Do not rebuild VF VSI in this flow because that is already handled via 6324 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6325 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6326 * to reset/rebuild all the VF VSI twice. 6327 */ 6328 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6329 { 6330 struct device *dev = ice_pf_to_dev(pf); 6331 struct ice_hw *hw = &pf->hw; 6332 enum ice_status ret; 6333 int err; 6334 6335 if (test_bit(ICE_DOWN, pf->state)) 6336 goto clear_recovery; 6337 6338 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6339 6340 ret = ice_init_all_ctrlq(hw); 6341 if (ret) { 6342 dev_err(dev, "control queues init failed %s\n", 6343 ice_stat_str(ret)); 6344 goto err_init_ctrlq; 6345 } 6346 6347 /* if DDP was previously loaded successfully */ 6348 if (!ice_is_safe_mode(pf)) { 6349 /* reload the SW DB of filter tables */ 6350 if (reset_type == ICE_RESET_PFR) 6351 ice_fill_blk_tbls(hw); 6352 else 6353 /* Reload DDP Package after CORER/GLOBR reset */ 6354 ice_load_pkg(NULL, pf); 6355 } 6356 6357 ret = ice_clear_pf_cfg(hw); 6358 if (ret) { 6359 dev_err(dev, "clear PF configuration failed %s\n", 6360 ice_stat_str(ret)); 6361 goto err_init_ctrlq; 6362 } 6363 6364 if (pf->first_sw->dflt_vsi_ena) 6365 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6366 /* clear the default VSI configuration if it exists */ 6367 pf->first_sw->dflt_vsi = NULL; 6368 pf->first_sw->dflt_vsi_ena = false; 6369 6370 ice_clear_pxe_mode(hw); 6371 6372 ret = ice_init_nvm(hw); 6373 if (ret) { 6374 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret)); 6375 goto err_init_ctrlq; 6376 } 6377 6378 ret = ice_get_caps(hw); 6379 if (ret) { 6380 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6381 goto err_init_ctrlq; 6382 } 6383 6384 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6385 if (ret) { 6386 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6387 goto err_init_ctrlq; 6388 } 6389 6390 err = ice_sched_init_port(hw->port_info); 6391 if (err) 6392 goto err_sched_init_port; 6393 6394 /* start misc vector */ 6395 err = ice_req_irq_msix_misc(pf); 6396 if (err) { 6397 dev_err(dev, "misc vector setup failed: %d\n", err); 6398 goto err_sched_init_port; 6399 } 6400 6401 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6402 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6403 if (!rd32(hw, PFQF_FD_SIZE)) { 6404 u16 unused, guar, b_effort; 6405 6406 guar = hw->func_caps.fd_fltr_guar; 6407 b_effort = hw->func_caps.fd_fltr_best_effort; 6408 6409 /* force guaranteed filter pool for PF */ 6410 ice_alloc_fd_guar_item(hw, &unused, guar); 6411 /* force shared filter pool for PF */ 6412 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6413 } 6414 } 6415 6416 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6417 ice_dcb_rebuild(pf); 6418 6419 /* If the PF previously had enabled PTP, PTP init needs to happen before 6420 * the VSI rebuild. If not, this causes the PTP link status events to 6421 * fail. 6422 */ 6423 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6424 ice_ptp_init(pf); 6425 6426 /* rebuild PF VSI */ 6427 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6428 if (err) { 6429 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6430 goto err_vsi_rebuild; 6431 } 6432 6433 /* If Flow Director is active */ 6434 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6435 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6436 if (err) { 6437 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6438 goto err_vsi_rebuild; 6439 } 6440 6441 /* replay HW Flow Director recipes */ 6442 if (hw->fdir_prof) 6443 ice_fdir_replay_flows(hw); 6444 6445 /* replay Flow Director filters */ 6446 ice_fdir_replay_fltrs(pf); 6447 6448 ice_rebuild_arfs(pf); 6449 } 6450 6451 ice_update_pf_netdev_link(pf); 6452 6453 /* tell the firmware we are up */ 6454 ret = ice_send_version(pf); 6455 if (ret) { 6456 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6457 ice_stat_str(ret)); 6458 goto err_vsi_rebuild; 6459 } 6460 6461 ice_replay_post(hw); 6462 6463 /* if we get here, reset flow is successful */ 6464 clear_bit(ICE_RESET_FAILED, pf->state); 6465 6466 ice_plug_aux_dev(pf); 6467 return; 6468 6469 err_vsi_rebuild: 6470 err_sched_init_port: 6471 ice_sched_cleanup_all(hw); 6472 err_init_ctrlq: 6473 ice_shutdown_all_ctrlq(hw); 6474 set_bit(ICE_RESET_FAILED, pf->state); 6475 clear_recovery: 6476 /* set this bit in PF state to control service task scheduling */ 6477 set_bit(ICE_NEEDS_RESTART, pf->state); 6478 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6479 } 6480 6481 /** 6482 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6483 * @vsi: Pointer to VSI structure 6484 */ 6485 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6486 { 6487 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6488 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6489 else 6490 return ICE_RXBUF_3072; 6491 } 6492 6493 /** 6494 * ice_change_mtu - NDO callback to change the MTU 6495 * @netdev: network interface device structure 6496 * @new_mtu: new value for maximum frame size 6497 * 6498 * Returns 0 on success, negative on failure 6499 */ 6500 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6501 { 6502 struct ice_netdev_priv *np = netdev_priv(netdev); 6503 struct ice_vsi *vsi = np->vsi; 6504 struct ice_pf *pf = vsi->back; 6505 struct iidc_event *event; 6506 u8 count = 0; 6507 int err = 0; 6508 6509 if (new_mtu == (int)netdev->mtu) { 6510 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6511 return 0; 6512 } 6513 6514 if (ice_is_xdp_ena_vsi(vsi)) { 6515 int frame_size = ice_max_xdp_frame_size(vsi); 6516 6517 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6518 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6519 frame_size - ICE_ETH_PKT_HDR_PAD); 6520 return -EINVAL; 6521 } 6522 } 6523 6524 /* if a reset is in progress, wait for some time for it to complete */ 6525 do { 6526 if (ice_is_reset_in_progress(pf->state)) { 6527 count++; 6528 usleep_range(1000, 2000); 6529 } else { 6530 break; 6531 } 6532 6533 } while (count < 100); 6534 6535 if (count == 100) { 6536 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6537 return -EBUSY; 6538 } 6539 6540 event = kzalloc(sizeof(*event), GFP_KERNEL); 6541 if (!event) 6542 return -ENOMEM; 6543 6544 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6545 ice_send_event_to_aux(pf, event); 6546 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6547 6548 netdev->mtu = (unsigned int)new_mtu; 6549 6550 /* if VSI is up, bring it down and then back up */ 6551 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6552 err = ice_down(vsi); 6553 if (err) { 6554 netdev_err(netdev, "change MTU if_down err %d\n", err); 6555 goto event_after; 6556 } 6557 6558 err = ice_up(vsi); 6559 if (err) { 6560 netdev_err(netdev, "change MTU if_up err %d\n", err); 6561 goto event_after; 6562 } 6563 } 6564 6565 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6566 event_after: 6567 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6568 ice_send_event_to_aux(pf, event); 6569 kfree(event); 6570 6571 return err; 6572 } 6573 6574 /** 6575 * ice_eth_ioctl - Access the hwtstamp interface 6576 * @netdev: network interface device structure 6577 * @ifr: interface request data 6578 * @cmd: ioctl command 6579 */ 6580 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6581 { 6582 struct ice_netdev_priv *np = netdev_priv(netdev); 6583 struct ice_pf *pf = np->vsi->back; 6584 6585 switch (cmd) { 6586 case SIOCGHWTSTAMP: 6587 return ice_ptp_get_ts_config(pf, ifr); 6588 case SIOCSHWTSTAMP: 6589 return ice_ptp_set_ts_config(pf, ifr); 6590 default: 6591 return -EOPNOTSUPP; 6592 } 6593 } 6594 6595 /** 6596 * ice_aq_str - convert AQ err code to a string 6597 * @aq_err: the AQ error code to convert 6598 */ 6599 const char *ice_aq_str(enum ice_aq_err aq_err) 6600 { 6601 switch (aq_err) { 6602 case ICE_AQ_RC_OK: 6603 return "OK"; 6604 case ICE_AQ_RC_EPERM: 6605 return "ICE_AQ_RC_EPERM"; 6606 case ICE_AQ_RC_ENOENT: 6607 return "ICE_AQ_RC_ENOENT"; 6608 case ICE_AQ_RC_ENOMEM: 6609 return "ICE_AQ_RC_ENOMEM"; 6610 case ICE_AQ_RC_EBUSY: 6611 return "ICE_AQ_RC_EBUSY"; 6612 case ICE_AQ_RC_EEXIST: 6613 return "ICE_AQ_RC_EEXIST"; 6614 case ICE_AQ_RC_EINVAL: 6615 return "ICE_AQ_RC_EINVAL"; 6616 case ICE_AQ_RC_ENOSPC: 6617 return "ICE_AQ_RC_ENOSPC"; 6618 case ICE_AQ_RC_ENOSYS: 6619 return "ICE_AQ_RC_ENOSYS"; 6620 case ICE_AQ_RC_EMODE: 6621 return "ICE_AQ_RC_EMODE"; 6622 case ICE_AQ_RC_ENOSEC: 6623 return "ICE_AQ_RC_ENOSEC"; 6624 case ICE_AQ_RC_EBADSIG: 6625 return "ICE_AQ_RC_EBADSIG"; 6626 case ICE_AQ_RC_ESVN: 6627 return "ICE_AQ_RC_ESVN"; 6628 case ICE_AQ_RC_EBADMAN: 6629 return "ICE_AQ_RC_EBADMAN"; 6630 case ICE_AQ_RC_EBADBUF: 6631 return "ICE_AQ_RC_EBADBUF"; 6632 } 6633 6634 return "ICE_AQ_RC_UNKNOWN"; 6635 } 6636 6637 /** 6638 * ice_stat_str - convert status err code to a string 6639 * @stat_err: the status error code to convert 6640 */ 6641 const char *ice_stat_str(enum ice_status stat_err) 6642 { 6643 switch (stat_err) { 6644 case ICE_SUCCESS: 6645 return "OK"; 6646 case ICE_ERR_PARAM: 6647 return "ICE_ERR_PARAM"; 6648 case ICE_ERR_NOT_IMPL: 6649 return "ICE_ERR_NOT_IMPL"; 6650 case ICE_ERR_NOT_READY: 6651 return "ICE_ERR_NOT_READY"; 6652 case ICE_ERR_NOT_SUPPORTED: 6653 return "ICE_ERR_NOT_SUPPORTED"; 6654 case ICE_ERR_BAD_PTR: 6655 return "ICE_ERR_BAD_PTR"; 6656 case ICE_ERR_INVAL_SIZE: 6657 return "ICE_ERR_INVAL_SIZE"; 6658 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6659 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6660 case ICE_ERR_RESET_FAILED: 6661 return "ICE_ERR_RESET_FAILED"; 6662 case ICE_ERR_FW_API_VER: 6663 return "ICE_ERR_FW_API_VER"; 6664 case ICE_ERR_NO_MEMORY: 6665 return "ICE_ERR_NO_MEMORY"; 6666 case ICE_ERR_CFG: 6667 return "ICE_ERR_CFG"; 6668 case ICE_ERR_OUT_OF_RANGE: 6669 return "ICE_ERR_OUT_OF_RANGE"; 6670 case ICE_ERR_ALREADY_EXISTS: 6671 return "ICE_ERR_ALREADY_EXISTS"; 6672 case ICE_ERR_NVM: 6673 return "ICE_ERR_NVM"; 6674 case ICE_ERR_NVM_CHECKSUM: 6675 return "ICE_ERR_NVM_CHECKSUM"; 6676 case ICE_ERR_BUF_TOO_SHORT: 6677 return "ICE_ERR_BUF_TOO_SHORT"; 6678 case ICE_ERR_NVM_BLANK_MODE: 6679 return "ICE_ERR_NVM_BLANK_MODE"; 6680 case ICE_ERR_IN_USE: 6681 return "ICE_ERR_IN_USE"; 6682 case ICE_ERR_MAX_LIMIT: 6683 return "ICE_ERR_MAX_LIMIT"; 6684 case ICE_ERR_RESET_ONGOING: 6685 return "ICE_ERR_RESET_ONGOING"; 6686 case ICE_ERR_HW_TABLE: 6687 return "ICE_ERR_HW_TABLE"; 6688 case ICE_ERR_DOES_NOT_EXIST: 6689 return "ICE_ERR_DOES_NOT_EXIST"; 6690 case ICE_ERR_FW_DDP_MISMATCH: 6691 return "ICE_ERR_FW_DDP_MISMATCH"; 6692 case ICE_ERR_AQ_ERROR: 6693 return "ICE_ERR_AQ_ERROR"; 6694 case ICE_ERR_AQ_TIMEOUT: 6695 return "ICE_ERR_AQ_TIMEOUT"; 6696 case ICE_ERR_AQ_FULL: 6697 return "ICE_ERR_AQ_FULL"; 6698 case ICE_ERR_AQ_NO_WORK: 6699 return "ICE_ERR_AQ_NO_WORK"; 6700 case ICE_ERR_AQ_EMPTY: 6701 return "ICE_ERR_AQ_EMPTY"; 6702 case ICE_ERR_AQ_FW_CRITICAL: 6703 return "ICE_ERR_AQ_FW_CRITICAL"; 6704 } 6705 6706 return "ICE_ERR_UNKNOWN"; 6707 } 6708 6709 /** 6710 * ice_set_rss_lut - Set RSS LUT 6711 * @vsi: Pointer to VSI structure 6712 * @lut: Lookup table 6713 * @lut_size: Lookup table size 6714 * 6715 * Returns 0 on success, negative on failure 6716 */ 6717 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6718 { 6719 struct ice_aq_get_set_rss_lut_params params = {}; 6720 struct ice_hw *hw = &vsi->back->hw; 6721 enum ice_status status; 6722 6723 if (!lut) 6724 return -EINVAL; 6725 6726 params.vsi_handle = vsi->idx; 6727 params.lut_size = lut_size; 6728 params.lut_type = vsi->rss_lut_type; 6729 params.lut = lut; 6730 6731 status = ice_aq_set_rss_lut(hw, ¶ms); 6732 if (status) { 6733 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6734 ice_stat_str(status), 6735 ice_aq_str(hw->adminq.sq_last_status)); 6736 return -EIO; 6737 } 6738 6739 return 0; 6740 } 6741 6742 /** 6743 * ice_set_rss_key - Set RSS key 6744 * @vsi: Pointer to the VSI structure 6745 * @seed: RSS hash seed 6746 * 6747 * Returns 0 on success, negative on failure 6748 */ 6749 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6750 { 6751 struct ice_hw *hw = &vsi->back->hw; 6752 enum ice_status status; 6753 6754 if (!seed) 6755 return -EINVAL; 6756 6757 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6758 if (status) { 6759 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6760 ice_stat_str(status), 6761 ice_aq_str(hw->adminq.sq_last_status)); 6762 return -EIO; 6763 } 6764 6765 return 0; 6766 } 6767 6768 /** 6769 * ice_get_rss_lut - Get RSS LUT 6770 * @vsi: Pointer to VSI structure 6771 * @lut: Buffer to store the lookup table entries 6772 * @lut_size: Size of buffer to store the lookup table entries 6773 * 6774 * Returns 0 on success, negative on failure 6775 */ 6776 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6777 { 6778 struct ice_aq_get_set_rss_lut_params params = {}; 6779 struct ice_hw *hw = &vsi->back->hw; 6780 enum ice_status status; 6781 6782 if (!lut) 6783 return -EINVAL; 6784 6785 params.vsi_handle = vsi->idx; 6786 params.lut_size = lut_size; 6787 params.lut_type = vsi->rss_lut_type; 6788 params.lut = lut; 6789 6790 status = ice_aq_get_rss_lut(hw, ¶ms); 6791 if (status) { 6792 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6793 ice_stat_str(status), 6794 ice_aq_str(hw->adminq.sq_last_status)); 6795 return -EIO; 6796 } 6797 6798 return 0; 6799 } 6800 6801 /** 6802 * ice_get_rss_key - Get RSS key 6803 * @vsi: Pointer to VSI structure 6804 * @seed: Buffer to store the key in 6805 * 6806 * Returns 0 on success, negative on failure 6807 */ 6808 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6809 { 6810 struct ice_hw *hw = &vsi->back->hw; 6811 enum ice_status status; 6812 6813 if (!seed) 6814 return -EINVAL; 6815 6816 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6817 if (status) { 6818 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6819 ice_stat_str(status), 6820 ice_aq_str(hw->adminq.sq_last_status)); 6821 return -EIO; 6822 } 6823 6824 return 0; 6825 } 6826 6827 /** 6828 * ice_bridge_getlink - Get the hardware bridge mode 6829 * @skb: skb buff 6830 * @pid: process ID 6831 * @seq: RTNL message seq 6832 * @dev: the netdev being configured 6833 * @filter_mask: filter mask passed in 6834 * @nlflags: netlink flags passed in 6835 * 6836 * Return the bridge mode (VEB/VEPA) 6837 */ 6838 static int 6839 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6840 struct net_device *dev, u32 filter_mask, int nlflags) 6841 { 6842 struct ice_netdev_priv *np = netdev_priv(dev); 6843 struct ice_vsi *vsi = np->vsi; 6844 struct ice_pf *pf = vsi->back; 6845 u16 bmode; 6846 6847 bmode = pf->first_sw->bridge_mode; 6848 6849 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6850 filter_mask, NULL); 6851 } 6852 6853 /** 6854 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6855 * @vsi: Pointer to VSI structure 6856 * @bmode: Hardware bridge mode (VEB/VEPA) 6857 * 6858 * Returns 0 on success, negative on failure 6859 */ 6860 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6861 { 6862 struct ice_aqc_vsi_props *vsi_props; 6863 struct ice_hw *hw = &vsi->back->hw; 6864 struct ice_vsi_ctx *ctxt; 6865 enum ice_status status; 6866 int ret = 0; 6867 6868 vsi_props = &vsi->info; 6869 6870 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6871 if (!ctxt) 6872 return -ENOMEM; 6873 6874 ctxt->info = vsi->info; 6875 6876 if (bmode == BRIDGE_MODE_VEB) 6877 /* change from VEPA to VEB mode */ 6878 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6879 else 6880 /* change from VEB to VEPA mode */ 6881 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6882 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6883 6884 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6885 if (status) { 6886 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6887 bmode, ice_stat_str(status), 6888 ice_aq_str(hw->adminq.sq_last_status)); 6889 ret = -EIO; 6890 goto out; 6891 } 6892 /* Update sw flags for book keeping */ 6893 vsi_props->sw_flags = ctxt->info.sw_flags; 6894 6895 out: 6896 kfree(ctxt); 6897 return ret; 6898 } 6899 6900 /** 6901 * ice_bridge_setlink - Set the hardware bridge mode 6902 * @dev: the netdev being configured 6903 * @nlh: RTNL message 6904 * @flags: bridge setlink flags 6905 * @extack: netlink extended ack 6906 * 6907 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6908 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6909 * not already set for all VSIs connected to this switch. And also update the 6910 * unicast switch filter rules for the corresponding switch of the netdev. 6911 */ 6912 static int 6913 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6914 u16 __always_unused flags, 6915 struct netlink_ext_ack __always_unused *extack) 6916 { 6917 struct ice_netdev_priv *np = netdev_priv(dev); 6918 struct ice_pf *pf = np->vsi->back; 6919 struct nlattr *attr, *br_spec; 6920 struct ice_hw *hw = &pf->hw; 6921 enum ice_status status; 6922 struct ice_sw *pf_sw; 6923 int rem, v, err = 0; 6924 6925 pf_sw = pf->first_sw; 6926 /* find the attribute in the netlink message */ 6927 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6928 6929 nla_for_each_nested(attr, br_spec, rem) { 6930 __u16 mode; 6931 6932 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6933 continue; 6934 mode = nla_get_u16(attr); 6935 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6936 return -EINVAL; 6937 /* Continue if bridge mode is not being flipped */ 6938 if (mode == pf_sw->bridge_mode) 6939 continue; 6940 /* Iterates through the PF VSI list and update the loopback 6941 * mode of the VSI 6942 */ 6943 ice_for_each_vsi(pf, v) { 6944 if (!pf->vsi[v]) 6945 continue; 6946 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6947 if (err) 6948 return err; 6949 } 6950 6951 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6952 /* Update the unicast switch filter rules for the corresponding 6953 * switch of the netdev 6954 */ 6955 status = ice_update_sw_rule_bridge_mode(hw); 6956 if (status) { 6957 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6958 mode, ice_stat_str(status), 6959 ice_aq_str(hw->adminq.sq_last_status)); 6960 /* revert hw->evb_veb */ 6961 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6962 return -EIO; 6963 } 6964 6965 pf_sw->bridge_mode = mode; 6966 } 6967 6968 return 0; 6969 } 6970 6971 /** 6972 * ice_tx_timeout - Respond to a Tx Hang 6973 * @netdev: network interface device structure 6974 * @txqueue: Tx queue 6975 */ 6976 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6977 { 6978 struct ice_netdev_priv *np = netdev_priv(netdev); 6979 struct ice_ring *tx_ring = NULL; 6980 struct ice_vsi *vsi = np->vsi; 6981 struct ice_pf *pf = vsi->back; 6982 u32 i; 6983 6984 pf->tx_timeout_count++; 6985 6986 /* Check if PFC is enabled for the TC to which the queue belongs 6987 * to. If yes then Tx timeout is not caused by a hung queue, no 6988 * need to reset and rebuild 6989 */ 6990 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6991 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6992 txqueue); 6993 return; 6994 } 6995 6996 /* now that we have an index, find the tx_ring struct */ 6997 for (i = 0; i < vsi->num_txq; i++) 6998 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6999 if (txqueue == vsi->tx_rings[i]->q_index) { 7000 tx_ring = vsi->tx_rings[i]; 7001 break; 7002 } 7003 7004 /* Reset recovery level if enough time has elapsed after last timeout. 7005 * Also ensure no new reset action happens before next timeout period. 7006 */ 7007 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7008 pf->tx_timeout_recovery_level = 1; 7009 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7010 netdev->watchdog_timeo))) 7011 return; 7012 7013 if (tx_ring) { 7014 struct ice_hw *hw = &pf->hw; 7015 u32 head, val = 0; 7016 7017 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7018 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7019 /* Read interrupt register */ 7020 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7021 7022 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7023 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7024 head, tx_ring->next_to_use, val); 7025 } 7026 7027 pf->tx_timeout_last_recovery = jiffies; 7028 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7029 pf->tx_timeout_recovery_level, txqueue); 7030 7031 switch (pf->tx_timeout_recovery_level) { 7032 case 1: 7033 set_bit(ICE_PFR_REQ, pf->state); 7034 break; 7035 case 2: 7036 set_bit(ICE_CORER_REQ, pf->state); 7037 break; 7038 case 3: 7039 set_bit(ICE_GLOBR_REQ, pf->state); 7040 break; 7041 default: 7042 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7043 set_bit(ICE_DOWN, pf->state); 7044 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7045 set_bit(ICE_SERVICE_DIS, pf->state); 7046 break; 7047 } 7048 7049 ice_service_task_schedule(pf); 7050 pf->tx_timeout_recovery_level++; 7051 } 7052 7053 /** 7054 * ice_open - Called when a network interface becomes active 7055 * @netdev: network interface device structure 7056 * 7057 * The open entry point is called when a network interface is made 7058 * active by the system (IFF_UP). At this point all resources needed 7059 * for transmit and receive operations are allocated, the interrupt 7060 * handler is registered with the OS, the netdev watchdog is enabled, 7061 * and the stack is notified that the interface is ready. 7062 * 7063 * Returns 0 on success, negative value on failure 7064 */ 7065 int ice_open(struct net_device *netdev) 7066 { 7067 struct ice_netdev_priv *np = netdev_priv(netdev); 7068 struct ice_pf *pf = np->vsi->back; 7069 7070 if (ice_is_reset_in_progress(pf->state)) { 7071 netdev_err(netdev, "can't open net device while reset is in progress"); 7072 return -EBUSY; 7073 } 7074 7075 return ice_open_internal(netdev); 7076 } 7077 7078 /** 7079 * ice_open_internal - Called when a network interface becomes active 7080 * @netdev: network interface device structure 7081 * 7082 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 7083 * handling routine 7084 * 7085 * Returns 0 on success, negative value on failure 7086 */ 7087 int ice_open_internal(struct net_device *netdev) 7088 { 7089 struct ice_netdev_priv *np = netdev_priv(netdev); 7090 struct ice_vsi *vsi = np->vsi; 7091 struct ice_pf *pf = vsi->back; 7092 struct ice_port_info *pi; 7093 enum ice_status status; 7094 int err; 7095 7096 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 7097 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 7098 return -EIO; 7099 } 7100 7101 netif_carrier_off(netdev); 7102 7103 pi = vsi->port_info; 7104 status = ice_update_link_info(pi); 7105 if (status) { 7106 netdev_err(netdev, "Failed to get link info, error %s\n", 7107 ice_stat_str(status)); 7108 return -EIO; 7109 } 7110 7111 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 7112 7113 /* Set PHY if there is media, otherwise, turn off PHY */ 7114 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 7115 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 7116 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 7117 err = ice_init_phy_user_cfg(pi); 7118 if (err) { 7119 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 7120 err); 7121 return err; 7122 } 7123 } 7124 7125 err = ice_configure_phy(vsi); 7126 if (err) { 7127 netdev_err(netdev, "Failed to set physical link up, error %d\n", 7128 err); 7129 return err; 7130 } 7131 } else { 7132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 7133 ice_set_link(vsi, false); 7134 } 7135 7136 err = ice_vsi_open(vsi); 7137 if (err) 7138 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 7139 vsi->vsi_num, vsi->vsw->sw_id); 7140 7141 /* Update existing tunnels information */ 7142 udp_tunnel_get_rx_info(netdev); 7143 7144 return err; 7145 } 7146 7147 /** 7148 * ice_stop - Disables a network interface 7149 * @netdev: network interface device structure 7150 * 7151 * The stop entry point is called when an interface is de-activated by the OS, 7152 * and the netdevice enters the DOWN state. The hardware is still under the 7153 * driver's control, but the netdev interface is disabled. 7154 * 7155 * Returns success only - not allowed to fail 7156 */ 7157 int ice_stop(struct net_device *netdev) 7158 { 7159 struct ice_netdev_priv *np = netdev_priv(netdev); 7160 struct ice_vsi *vsi = np->vsi; 7161 struct ice_pf *pf = vsi->back; 7162 7163 if (ice_is_reset_in_progress(pf->state)) { 7164 netdev_err(netdev, "can't stop net device while reset is in progress"); 7165 return -EBUSY; 7166 } 7167 7168 ice_vsi_close(vsi); 7169 7170 return 0; 7171 } 7172 7173 /** 7174 * ice_features_check - Validate encapsulated packet conforms to limits 7175 * @skb: skb buffer 7176 * @netdev: This port's netdev 7177 * @features: Offload features that the stack believes apply 7178 */ 7179 static netdev_features_t 7180 ice_features_check(struct sk_buff *skb, 7181 struct net_device __always_unused *netdev, 7182 netdev_features_t features) 7183 { 7184 size_t len; 7185 7186 /* No point in doing any of this if neither checksum nor GSO are 7187 * being requested for this frame. We can rule out both by just 7188 * checking for CHECKSUM_PARTIAL 7189 */ 7190 if (skb->ip_summed != CHECKSUM_PARTIAL) 7191 return features; 7192 7193 /* We cannot support GSO if the MSS is going to be less than 7194 * 64 bytes. If it is then we need to drop support for GSO. 7195 */ 7196 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 7197 features &= ~NETIF_F_GSO_MASK; 7198 7199 len = skb_network_header(skb) - skb->data; 7200 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 7201 goto out_rm_features; 7202 7203 len = skb_transport_header(skb) - skb_network_header(skb); 7204 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7205 goto out_rm_features; 7206 7207 if (skb->encapsulation) { 7208 len = skb_inner_network_header(skb) - skb_transport_header(skb); 7209 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 7210 goto out_rm_features; 7211 7212 len = skb_inner_transport_header(skb) - 7213 skb_inner_network_header(skb); 7214 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7215 goto out_rm_features; 7216 } 7217 7218 return features; 7219 out_rm_features: 7220 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 7221 } 7222 7223 static const struct net_device_ops ice_netdev_safe_mode_ops = { 7224 .ndo_open = ice_open, 7225 .ndo_stop = ice_stop, 7226 .ndo_start_xmit = ice_start_xmit, 7227 .ndo_set_mac_address = ice_set_mac_address, 7228 .ndo_validate_addr = eth_validate_addr, 7229 .ndo_change_mtu = ice_change_mtu, 7230 .ndo_get_stats64 = ice_get_stats64, 7231 .ndo_tx_timeout = ice_tx_timeout, 7232 .ndo_bpf = ice_xdp_safe_mode, 7233 }; 7234 7235 static const struct net_device_ops ice_netdev_ops = { 7236 .ndo_open = ice_open, 7237 .ndo_stop = ice_stop, 7238 .ndo_start_xmit = ice_start_xmit, 7239 .ndo_select_queue = ice_select_queue, 7240 .ndo_features_check = ice_features_check, 7241 .ndo_set_rx_mode = ice_set_rx_mode, 7242 .ndo_set_mac_address = ice_set_mac_address, 7243 .ndo_validate_addr = eth_validate_addr, 7244 .ndo_change_mtu = ice_change_mtu, 7245 .ndo_get_stats64 = ice_get_stats64, 7246 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 7247 .ndo_eth_ioctl = ice_eth_ioctl, 7248 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 7249 .ndo_set_vf_mac = ice_set_vf_mac, 7250 .ndo_get_vf_config = ice_get_vf_cfg, 7251 .ndo_set_vf_trust = ice_set_vf_trust, 7252 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 7253 .ndo_set_vf_link_state = ice_set_vf_link_state, 7254 .ndo_get_vf_stats = ice_get_vf_stats, 7255 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 7256 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 7257 .ndo_set_features = ice_set_features, 7258 .ndo_bridge_getlink = ice_bridge_getlink, 7259 .ndo_bridge_setlink = ice_bridge_setlink, 7260 .ndo_fdb_add = ice_fdb_add, 7261 .ndo_fdb_del = ice_fdb_del, 7262 #ifdef CONFIG_RFS_ACCEL 7263 .ndo_rx_flow_steer = ice_rx_flow_steer, 7264 #endif 7265 .ndo_tx_timeout = ice_tx_timeout, 7266 .ndo_bpf = ice_xdp, 7267 .ndo_xdp_xmit = ice_xdp_xmit, 7268 .ndo_xsk_wakeup = ice_xsk_wakeup, 7269 }; 7270