1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "ice.h"
9 #include "ice_base.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include "ice_dcb_nl.h"
13 
14 #define DRV_VERSION_MAJOR 0
15 #define DRV_VERSION_MINOR 8
16 #define DRV_VERSION_BUILD 2
17 
18 #define DRV_VERSION	__stringify(DRV_VERSION_MAJOR) "." \
19 			__stringify(DRV_VERSION_MINOR) "." \
20 			__stringify(DRV_VERSION_BUILD) "-k"
21 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
22 const char ice_drv_ver[] = DRV_VERSION;
23 static const char ice_driver_string[] = DRV_SUMMARY;
24 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
25 
26 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
27 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
28 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
29 
30 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
31 MODULE_DESCRIPTION(DRV_SUMMARY);
32 MODULE_LICENSE("GPL v2");
33 MODULE_VERSION(DRV_VERSION);
34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
35 
36 static int debug = -1;
37 module_param(debug, int, 0644);
38 #ifndef CONFIG_DYNAMIC_DEBUG
39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
40 #else
41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
42 #endif /* !CONFIG_DYNAMIC_DEBUG */
43 
44 static struct workqueue_struct *ice_wq;
45 static const struct net_device_ops ice_netdev_safe_mode_ops;
46 static const struct net_device_ops ice_netdev_ops;
47 static int ice_vsi_open(struct ice_vsi *vsi);
48 
49 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
50 
51 static void ice_vsi_release_all(struct ice_pf *pf);
52 
53 /**
54  * ice_get_tx_pending - returns number of Tx descriptors not processed
55  * @ring: the ring of descriptors
56  */
57 static u16 ice_get_tx_pending(struct ice_ring *ring)
58 {
59 	u16 head, tail;
60 
61 	head = ring->next_to_clean;
62 	tail = ring->next_to_use;
63 
64 	if (head != tail)
65 		return (head < tail) ?
66 			tail - head : (tail + ring->count - head);
67 	return 0;
68 }
69 
70 /**
71  * ice_check_for_hang_subtask - check for and recover hung queues
72  * @pf: pointer to PF struct
73  */
74 static void ice_check_for_hang_subtask(struct ice_pf *pf)
75 {
76 	struct ice_vsi *vsi = NULL;
77 	struct ice_hw *hw;
78 	unsigned int i;
79 	int packets;
80 	u32 v;
81 
82 	ice_for_each_vsi(pf, v)
83 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
84 			vsi = pf->vsi[v];
85 			break;
86 		}
87 
88 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
89 		return;
90 
91 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
92 		return;
93 
94 	hw = &vsi->back->hw;
95 
96 	for (i = 0; i < vsi->num_txq; i++) {
97 		struct ice_ring *tx_ring = vsi->tx_rings[i];
98 
99 		if (tx_ring && tx_ring->desc) {
100 			/* If packet counter has not changed the queue is
101 			 * likely stalled, so force an interrupt for this
102 			 * queue.
103 			 *
104 			 * prev_pkt would be negative if there was no
105 			 * pending work.
106 			 */
107 			packets = tx_ring->stats.pkts & INT_MAX;
108 			if (tx_ring->tx_stats.prev_pkt == packets) {
109 				/* Trigger sw interrupt to revive the queue */
110 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
111 				continue;
112 			}
113 
114 			/* Memory barrier between read of packet count and call
115 			 * to ice_get_tx_pending()
116 			 */
117 			smp_rmb();
118 			tx_ring->tx_stats.prev_pkt =
119 			    ice_get_tx_pending(tx_ring) ? packets : -1;
120 		}
121 	}
122 }
123 
124 /**
125  * ice_init_mac_fltr - Set initial MAC filters
126  * @pf: board private structure
127  *
128  * Set initial set of MAC filters for PF VSI; configure filters for permanent
129  * address and broadcast address. If an error is encountered, netdevice will be
130  * unregistered.
131  */
132 static int ice_init_mac_fltr(struct ice_pf *pf)
133 {
134 	enum ice_status status;
135 	u8 broadcast[ETH_ALEN];
136 	struct ice_vsi *vsi;
137 
138 	vsi = ice_get_main_vsi(pf);
139 	if (!vsi)
140 		return -EINVAL;
141 
142 	/* To add a MAC filter, first add the MAC to a list and then
143 	 * pass the list to ice_add_mac.
144 	 */
145 
146 	 /* Add a unicast MAC filter so the VSI can get its packets */
147 	status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
148 	if (status)
149 		goto unregister;
150 
151 	/* VSI needs to receive broadcast traffic, so add the broadcast
152 	 * MAC address to the list as well.
153 	 */
154 	eth_broadcast_addr(broadcast);
155 	status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
156 	if (status)
157 		goto unregister;
158 
159 	return 0;
160 unregister:
161 	/* We aren't useful with no MAC filters, so unregister if we
162 	 * had an error
163 	 */
164 	if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
165 		dev_err(ice_pf_to_dev(pf),
166 			"Could not add MAC filters error %d. Unregistering device\n",
167 			status);
168 		unregister_netdev(vsi->netdev);
169 		free_netdev(vsi->netdev);
170 		vsi->netdev = NULL;
171 	}
172 
173 	return -EIO;
174 }
175 
176 /**
177  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
178  * @netdev: the net device on which the sync is happening
179  * @addr: MAC address to sync
180  *
181  * This is a callback function which is called by the in kernel device sync
182  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
183  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
184  * MAC filters from the hardware.
185  */
186 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
187 {
188 	struct ice_netdev_priv *np = netdev_priv(netdev);
189 	struct ice_vsi *vsi = np->vsi;
190 
191 	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
192 		return -EINVAL;
193 
194 	return 0;
195 }
196 
197 /**
198  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
199  * @netdev: the net device on which the unsync is happening
200  * @addr: MAC address to unsync
201  *
202  * This is a callback function which is called by the in kernel device unsync
203  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
204  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
205  * delete the MAC filters from the hardware.
206  */
207 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
208 {
209 	struct ice_netdev_priv *np = netdev_priv(netdev);
210 	struct ice_vsi *vsi = np->vsi;
211 
212 	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
213 		return -EINVAL;
214 
215 	return 0;
216 }
217 
218 /**
219  * ice_vsi_fltr_changed - check if filter state changed
220  * @vsi: VSI to be checked
221  *
222  * returns true if filter state has changed, false otherwise.
223  */
224 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
225 {
226 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
227 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
228 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
229 }
230 
231 /**
232  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
233  * @vsi: the VSI being configured
234  * @promisc_m: mask of promiscuous config bits
235  * @set_promisc: enable or disable promisc flag request
236  *
237  */
238 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
239 {
240 	struct ice_hw *hw = &vsi->back->hw;
241 	enum ice_status status = 0;
242 
243 	if (vsi->type != ICE_VSI_PF)
244 		return 0;
245 
246 	if (vsi->vlan_ena) {
247 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
248 						  set_promisc);
249 	} else {
250 		if (set_promisc)
251 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
252 						     0);
253 		else
254 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
255 						       0);
256 	}
257 
258 	if (status)
259 		return -EIO;
260 
261 	return 0;
262 }
263 
264 /**
265  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
266  * @vsi: ptr to the VSI
267  *
268  * Push any outstanding VSI filter changes through the AdminQ.
269  */
270 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
271 {
272 	struct device *dev = &vsi->back->pdev->dev;
273 	struct net_device *netdev = vsi->netdev;
274 	bool promisc_forced_on = false;
275 	struct ice_pf *pf = vsi->back;
276 	struct ice_hw *hw = &pf->hw;
277 	enum ice_status status = 0;
278 	u32 changed_flags = 0;
279 	u8 promisc_m;
280 	int err = 0;
281 
282 	if (!vsi->netdev)
283 		return -EINVAL;
284 
285 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
286 		usleep_range(1000, 2000);
287 
288 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
289 	vsi->current_netdev_flags = vsi->netdev->flags;
290 
291 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
292 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
293 
294 	if (ice_vsi_fltr_changed(vsi)) {
295 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
296 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
297 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
298 
299 		/* grab the netdev's addr_list_lock */
300 		netif_addr_lock_bh(netdev);
301 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
302 			      ice_add_mac_to_unsync_list);
303 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
304 			      ice_add_mac_to_unsync_list);
305 		/* our temp lists are populated. release lock */
306 		netif_addr_unlock_bh(netdev);
307 	}
308 
309 	/* Remove MAC addresses in the unsync list */
310 	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
311 	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
312 	if (status) {
313 		netdev_err(netdev, "Failed to delete MAC filters\n");
314 		/* if we failed because of alloc failures, just bail */
315 		if (status == ICE_ERR_NO_MEMORY) {
316 			err = -ENOMEM;
317 			goto out;
318 		}
319 	}
320 
321 	/* Add MAC addresses in the sync list */
322 	status = ice_add_mac(hw, &vsi->tmp_sync_list);
323 	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
324 	/* If filter is added successfully or already exists, do not go into
325 	 * 'if' condition and report it as error. Instead continue processing
326 	 * rest of the function.
327 	 */
328 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
329 		netdev_err(netdev, "Failed to add MAC filters\n");
330 		/* If there is no more space for new umac filters, VSI
331 		 * should go into promiscuous mode. There should be some
332 		 * space reserved for promiscuous filters.
333 		 */
334 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
335 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
336 				      vsi->state)) {
337 			promisc_forced_on = true;
338 			netdev_warn(netdev,
339 				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
340 				    vsi->vsi_num);
341 		} else {
342 			err = -EIO;
343 			goto out;
344 		}
345 	}
346 	/* check for changes in promiscuous modes */
347 	if (changed_flags & IFF_ALLMULTI) {
348 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
349 			if (vsi->vlan_ena)
350 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
351 			else
352 				promisc_m = ICE_MCAST_PROMISC_BITS;
353 
354 			err = ice_cfg_promisc(vsi, promisc_m, true);
355 			if (err) {
356 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
357 					   vsi->vsi_num);
358 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
359 				goto out_promisc;
360 			}
361 		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
362 			if (vsi->vlan_ena)
363 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
364 			else
365 				promisc_m = ICE_MCAST_PROMISC_BITS;
366 
367 			err = ice_cfg_promisc(vsi, promisc_m, false);
368 			if (err) {
369 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
370 					   vsi->vsi_num);
371 				vsi->current_netdev_flags |= IFF_ALLMULTI;
372 				goto out_promisc;
373 			}
374 		}
375 	}
376 
377 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
378 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
379 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
380 		if (vsi->current_netdev_flags & IFF_PROMISC) {
381 			/* Apply Rx filter rule to get traffic from wire */
382 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
383 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
384 				if (err && err != -EEXIST) {
385 					netdev_err(netdev,
386 						   "Error %d setting default VSI %i Rx rule\n",
387 						   err, vsi->vsi_num);
388 					vsi->current_netdev_flags &=
389 						~IFF_PROMISC;
390 					goto out_promisc;
391 				}
392 			}
393 		} else {
394 			/* Clear Rx filter to remove traffic from wire */
395 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
396 				err = ice_clear_dflt_vsi(pf->first_sw);
397 				if (err) {
398 					netdev_err(netdev,
399 						   "Error %d clearing default VSI %i Rx rule\n",
400 						   err, vsi->vsi_num);
401 					vsi->current_netdev_flags |=
402 						IFF_PROMISC;
403 					goto out_promisc;
404 				}
405 			}
406 		}
407 	}
408 	goto exit;
409 
410 out_promisc:
411 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
412 	goto exit;
413 out:
414 	/* if something went wrong then set the changed flag so we try again */
415 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
416 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
417 exit:
418 	clear_bit(__ICE_CFG_BUSY, vsi->state);
419 	return err;
420 }
421 
422 /**
423  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
424  * @pf: board private structure
425  */
426 static void ice_sync_fltr_subtask(struct ice_pf *pf)
427 {
428 	int v;
429 
430 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
431 		return;
432 
433 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
434 
435 	ice_for_each_vsi(pf, v)
436 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
437 		    ice_vsi_sync_fltr(pf->vsi[v])) {
438 			/* come back and try again later */
439 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
440 			break;
441 		}
442 }
443 
444 /**
445  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
446  * @pf: the PF
447  * @locked: is the rtnl_lock already held
448  */
449 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
450 {
451 	int v;
452 
453 	ice_for_each_vsi(pf, v)
454 		if (pf->vsi[v])
455 			ice_dis_vsi(pf->vsi[v], locked);
456 }
457 
458 /**
459  * ice_prepare_for_reset - prep for the core to reset
460  * @pf: board private structure
461  *
462  * Inform or close all dependent features in prep for reset.
463  */
464 static void
465 ice_prepare_for_reset(struct ice_pf *pf)
466 {
467 	struct ice_hw *hw = &pf->hw;
468 	int i;
469 
470 	/* already prepared for reset */
471 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
472 		return;
473 
474 	/* Notify VFs of impending reset */
475 	if (ice_check_sq_alive(hw, &hw->mailboxq))
476 		ice_vc_notify_reset(pf);
477 
478 	/* Disable VFs until reset is completed */
479 	ice_for_each_vf(pf, i)
480 		ice_set_vf_state_qs_dis(&pf->vf[i]);
481 
482 	/* clear SW filtering DB */
483 	ice_clear_hw_tbls(hw);
484 	/* disable the VSIs and their queues that are not already DOWN */
485 	ice_pf_dis_all_vsi(pf, false);
486 
487 	if (hw->port_info)
488 		ice_sched_clear_port(hw->port_info);
489 
490 	ice_shutdown_all_ctrlq(hw);
491 
492 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
493 }
494 
495 /**
496  * ice_do_reset - Initiate one of many types of resets
497  * @pf: board private structure
498  * @reset_type: reset type requested
499  * before this function was called.
500  */
501 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
502 {
503 	struct device *dev = ice_pf_to_dev(pf);
504 	struct ice_hw *hw = &pf->hw;
505 
506 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
507 	WARN_ON(in_interrupt());
508 
509 	ice_prepare_for_reset(pf);
510 
511 	/* trigger the reset */
512 	if (ice_reset(hw, reset_type)) {
513 		dev_err(dev, "reset %d failed\n", reset_type);
514 		set_bit(__ICE_RESET_FAILED, pf->state);
515 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
516 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
517 		clear_bit(__ICE_PFR_REQ, pf->state);
518 		clear_bit(__ICE_CORER_REQ, pf->state);
519 		clear_bit(__ICE_GLOBR_REQ, pf->state);
520 		return;
521 	}
522 
523 	/* PFR is a bit of a special case because it doesn't result in an OICR
524 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
525 	 * associated state bits.
526 	 */
527 	if (reset_type == ICE_RESET_PFR) {
528 		pf->pfr_count++;
529 		ice_rebuild(pf, reset_type);
530 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
531 		clear_bit(__ICE_PFR_REQ, pf->state);
532 		ice_reset_all_vfs(pf, true);
533 	}
534 }
535 
536 /**
537  * ice_reset_subtask - Set up for resetting the device and driver
538  * @pf: board private structure
539  */
540 static void ice_reset_subtask(struct ice_pf *pf)
541 {
542 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
543 
544 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
545 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
546 	 * of reset is pending and sets bits in pf->state indicating the reset
547 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
548 	 * prepare for pending reset if not already (for PF software-initiated
549 	 * global resets the software should already be prepared for it as
550 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
551 	 * by firmware or software on other PFs, that bit is not set so prepare
552 	 * for the reset now), poll for reset done, rebuild and return.
553 	 */
554 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
555 		/* Perform the largest reset requested */
556 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
557 			reset_type = ICE_RESET_CORER;
558 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
559 			reset_type = ICE_RESET_GLOBR;
560 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
561 			reset_type = ICE_RESET_EMPR;
562 		/* return if no valid reset type requested */
563 		if (reset_type == ICE_RESET_INVAL)
564 			return;
565 		ice_prepare_for_reset(pf);
566 
567 		/* make sure we are ready to rebuild */
568 		if (ice_check_reset(&pf->hw)) {
569 			set_bit(__ICE_RESET_FAILED, pf->state);
570 		} else {
571 			/* done with reset. start rebuild */
572 			pf->hw.reset_ongoing = false;
573 			ice_rebuild(pf, reset_type);
574 			/* clear bit to resume normal operations, but
575 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
576 			 */
577 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
578 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
579 			clear_bit(__ICE_PFR_REQ, pf->state);
580 			clear_bit(__ICE_CORER_REQ, pf->state);
581 			clear_bit(__ICE_GLOBR_REQ, pf->state);
582 			ice_reset_all_vfs(pf, true);
583 		}
584 
585 		return;
586 	}
587 
588 	/* No pending resets to finish processing. Check for new resets */
589 	if (test_bit(__ICE_PFR_REQ, pf->state))
590 		reset_type = ICE_RESET_PFR;
591 	if (test_bit(__ICE_CORER_REQ, pf->state))
592 		reset_type = ICE_RESET_CORER;
593 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
594 		reset_type = ICE_RESET_GLOBR;
595 	/* If no valid reset type requested just return */
596 	if (reset_type == ICE_RESET_INVAL)
597 		return;
598 
599 	/* reset if not already down or busy */
600 	if (!test_bit(__ICE_DOWN, pf->state) &&
601 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
602 		ice_do_reset(pf, reset_type);
603 	}
604 }
605 
606 /**
607  * ice_print_topo_conflict - print topology conflict message
608  * @vsi: the VSI whose topology status is being checked
609  */
610 static void ice_print_topo_conflict(struct ice_vsi *vsi)
611 {
612 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
613 	case ICE_AQ_LINK_TOPO_CONFLICT:
614 	case ICE_AQ_LINK_MEDIA_CONFLICT:
615 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
616 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
617 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
618 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
619 		break;
620 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
621 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
622 		break;
623 	default:
624 		break;
625 	}
626 }
627 
628 /**
629  * ice_print_link_msg - print link up or down message
630  * @vsi: the VSI whose link status is being queried
631  * @isup: boolean for if the link is now up or down
632  */
633 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
634 {
635 	struct ice_aqc_get_phy_caps_data *caps;
636 	enum ice_status status;
637 	const char *fec_req;
638 	const char *speed;
639 	const char *fec;
640 	const char *fc;
641 	const char *an;
642 
643 	if (!vsi)
644 		return;
645 
646 	if (vsi->current_isup == isup)
647 		return;
648 
649 	vsi->current_isup = isup;
650 
651 	if (!isup) {
652 		netdev_info(vsi->netdev, "NIC Link is Down\n");
653 		return;
654 	}
655 
656 	switch (vsi->port_info->phy.link_info.link_speed) {
657 	case ICE_AQ_LINK_SPEED_100GB:
658 		speed = "100 G";
659 		break;
660 	case ICE_AQ_LINK_SPEED_50GB:
661 		speed = "50 G";
662 		break;
663 	case ICE_AQ_LINK_SPEED_40GB:
664 		speed = "40 G";
665 		break;
666 	case ICE_AQ_LINK_SPEED_25GB:
667 		speed = "25 G";
668 		break;
669 	case ICE_AQ_LINK_SPEED_20GB:
670 		speed = "20 G";
671 		break;
672 	case ICE_AQ_LINK_SPEED_10GB:
673 		speed = "10 G";
674 		break;
675 	case ICE_AQ_LINK_SPEED_5GB:
676 		speed = "5 G";
677 		break;
678 	case ICE_AQ_LINK_SPEED_2500MB:
679 		speed = "2.5 G";
680 		break;
681 	case ICE_AQ_LINK_SPEED_1000MB:
682 		speed = "1 G";
683 		break;
684 	case ICE_AQ_LINK_SPEED_100MB:
685 		speed = "100 M";
686 		break;
687 	default:
688 		speed = "Unknown";
689 		break;
690 	}
691 
692 	switch (vsi->port_info->fc.current_mode) {
693 	case ICE_FC_FULL:
694 		fc = "Rx/Tx";
695 		break;
696 	case ICE_FC_TX_PAUSE:
697 		fc = "Tx";
698 		break;
699 	case ICE_FC_RX_PAUSE:
700 		fc = "Rx";
701 		break;
702 	case ICE_FC_NONE:
703 		fc = "None";
704 		break;
705 	default:
706 		fc = "Unknown";
707 		break;
708 	}
709 
710 	/* Get FEC mode based on negotiated link info */
711 	switch (vsi->port_info->phy.link_info.fec_info) {
712 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
713 		/* fall through */
714 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
715 		fec = "RS-FEC";
716 		break;
717 	case ICE_AQ_LINK_25G_KR_FEC_EN:
718 		fec = "FC-FEC/BASE-R";
719 		break;
720 	default:
721 		fec = "NONE";
722 		break;
723 	}
724 
725 	/* check if autoneg completed, might be false due to not supported */
726 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
727 		an = "True";
728 	else
729 		an = "False";
730 
731 	/* Get FEC mode requested based on PHY caps last SW configuration */
732 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
733 	if (!caps) {
734 		fec_req = "Unknown";
735 		goto done;
736 	}
737 
738 	status = ice_aq_get_phy_caps(vsi->port_info, false,
739 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
740 	if (status)
741 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
742 
743 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
744 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
745 		fec_req = "RS-FEC";
746 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
747 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
748 		fec_req = "FC-FEC/BASE-R";
749 	else
750 		fec_req = "NONE";
751 
752 	kfree(caps);
753 
754 done:
755 	netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n",
756 		    speed, fec_req, fec, an, fc);
757 	ice_print_topo_conflict(vsi);
758 }
759 
760 /**
761  * ice_vsi_link_event - update the VSI's netdev
762  * @vsi: the VSI on which the link event occurred
763  * @link_up: whether or not the VSI needs to be set up or down
764  */
765 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
766 {
767 	if (!vsi)
768 		return;
769 
770 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
771 		return;
772 
773 	if (vsi->type == ICE_VSI_PF) {
774 		if (link_up == netif_carrier_ok(vsi->netdev))
775 			return;
776 
777 		if (link_up) {
778 			netif_carrier_on(vsi->netdev);
779 			netif_tx_wake_all_queues(vsi->netdev);
780 		} else {
781 			netif_carrier_off(vsi->netdev);
782 			netif_tx_stop_all_queues(vsi->netdev);
783 		}
784 	}
785 }
786 
787 /**
788  * ice_link_event - process the link event
789  * @pf: PF that the link event is associated with
790  * @pi: port_info for the port that the link event is associated with
791  * @link_up: true if the physical link is up and false if it is down
792  * @link_speed: current link speed received from the link event
793  *
794  * Returns 0 on success and negative on failure
795  */
796 static int
797 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
798 	       u16 link_speed)
799 {
800 	struct device *dev = ice_pf_to_dev(pf);
801 	struct ice_phy_info *phy_info;
802 	struct ice_vsi *vsi;
803 	u16 old_link_speed;
804 	bool old_link;
805 	int result;
806 
807 	phy_info = &pi->phy;
808 	phy_info->link_info_old = phy_info->link_info;
809 
810 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
811 	old_link_speed = phy_info->link_info_old.link_speed;
812 
813 	/* update the link info structures and re-enable link events,
814 	 * don't bail on failure due to other book keeping needed
815 	 */
816 	result = ice_update_link_info(pi);
817 	if (result)
818 		dev_dbg(dev,
819 			"Failed to update link status and re-enable link events for port %d\n",
820 			pi->lport);
821 
822 	/* if the old link up/down and speed is the same as the new */
823 	if (link_up == old_link && link_speed == old_link_speed)
824 		return result;
825 
826 	vsi = ice_get_main_vsi(pf);
827 	if (!vsi || !vsi->port_info)
828 		return -EINVAL;
829 
830 	/* turn off PHY if media was removed */
831 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
832 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
833 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
834 
835 		result = ice_aq_set_link_restart_an(pi, false, NULL);
836 		if (result) {
837 			dev_dbg(dev,
838 				"Failed to set link down, VSI %d error %d\n",
839 				vsi->vsi_num, result);
840 			return result;
841 		}
842 	}
843 
844 	ice_vsi_link_event(vsi, link_up);
845 	ice_print_link_msg(vsi, link_up);
846 
847 	ice_vc_notify_link_state(pf);
848 
849 	return result;
850 }
851 
852 /**
853  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
854  * @pf: board private structure
855  */
856 static void ice_watchdog_subtask(struct ice_pf *pf)
857 {
858 	int i;
859 
860 	/* if interface is down do nothing */
861 	if (test_bit(__ICE_DOWN, pf->state) ||
862 	    test_bit(__ICE_CFG_BUSY, pf->state))
863 		return;
864 
865 	/* make sure we don't do these things too often */
866 	if (time_before(jiffies,
867 			pf->serv_tmr_prev + pf->serv_tmr_period))
868 		return;
869 
870 	pf->serv_tmr_prev = jiffies;
871 
872 	/* Update the stats for active netdevs so the network stack
873 	 * can look at updated numbers whenever it cares to
874 	 */
875 	ice_update_pf_stats(pf);
876 	ice_for_each_vsi(pf, i)
877 		if (pf->vsi[i] && pf->vsi[i]->netdev)
878 			ice_update_vsi_stats(pf->vsi[i]);
879 }
880 
881 /**
882  * ice_init_link_events - enable/initialize link events
883  * @pi: pointer to the port_info instance
884  *
885  * Returns -EIO on failure, 0 on success
886  */
887 static int ice_init_link_events(struct ice_port_info *pi)
888 {
889 	u16 mask;
890 
891 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
892 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
893 
894 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
895 		dev_dbg(ice_hw_to_dev(pi->hw),
896 			"Failed to set link event mask for port %d\n",
897 			pi->lport);
898 		return -EIO;
899 	}
900 
901 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
902 		dev_dbg(ice_hw_to_dev(pi->hw),
903 			"Failed to enable link events for port %d\n",
904 			pi->lport);
905 		return -EIO;
906 	}
907 
908 	return 0;
909 }
910 
911 /**
912  * ice_handle_link_event - handle link event via ARQ
913  * @pf: PF that the link event is associated with
914  * @event: event structure containing link status info
915  */
916 static int
917 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
918 {
919 	struct ice_aqc_get_link_status_data *link_data;
920 	struct ice_port_info *port_info;
921 	int status;
922 
923 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
924 	port_info = pf->hw.port_info;
925 	if (!port_info)
926 		return -EINVAL;
927 
928 	status = ice_link_event(pf, port_info,
929 				!!(link_data->link_info & ICE_AQ_LINK_UP),
930 				le16_to_cpu(link_data->link_speed));
931 	if (status)
932 		dev_dbg(ice_pf_to_dev(pf),
933 			"Could not process link event, error %d\n", status);
934 
935 	return status;
936 }
937 
938 /**
939  * __ice_clean_ctrlq - helper function to clean controlq rings
940  * @pf: ptr to struct ice_pf
941  * @q_type: specific Control queue type
942  */
943 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
944 {
945 	struct device *dev = ice_pf_to_dev(pf);
946 	struct ice_rq_event_info event;
947 	struct ice_hw *hw = &pf->hw;
948 	struct ice_ctl_q_info *cq;
949 	u16 pending, i = 0;
950 	const char *qtype;
951 	u32 oldval, val;
952 
953 	/* Do not clean control queue if/when PF reset fails */
954 	if (test_bit(__ICE_RESET_FAILED, pf->state))
955 		return 0;
956 
957 	switch (q_type) {
958 	case ICE_CTL_Q_ADMIN:
959 		cq = &hw->adminq;
960 		qtype = "Admin";
961 		break;
962 	case ICE_CTL_Q_MAILBOX:
963 		cq = &hw->mailboxq;
964 		qtype = "Mailbox";
965 		break;
966 	default:
967 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
968 		return 0;
969 	}
970 
971 	/* check for error indications - PF_xx_AxQLEN register layout for
972 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
973 	 */
974 	val = rd32(hw, cq->rq.len);
975 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
976 		   PF_FW_ARQLEN_ARQCRIT_M)) {
977 		oldval = val;
978 		if (val & PF_FW_ARQLEN_ARQVFE_M)
979 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
980 				qtype);
981 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
982 			dev_dbg(dev,
983 				"%s Receive Queue Overflow Error detected\n",
984 				qtype);
985 		}
986 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
987 			dev_dbg(dev,
988 				"%s Receive Queue Critical Error detected\n",
989 				qtype);
990 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
991 			 PF_FW_ARQLEN_ARQCRIT_M);
992 		if (oldval != val)
993 			wr32(hw, cq->rq.len, val);
994 	}
995 
996 	val = rd32(hw, cq->sq.len);
997 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
998 		   PF_FW_ATQLEN_ATQCRIT_M)) {
999 		oldval = val;
1000 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1001 			dev_dbg(dev,
1002 				"%s Send Queue VF Error detected\n", qtype);
1003 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1004 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1005 				qtype);
1006 		}
1007 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1008 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1009 				qtype);
1010 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1011 			 PF_FW_ATQLEN_ATQCRIT_M);
1012 		if (oldval != val)
1013 			wr32(hw, cq->sq.len, val);
1014 	}
1015 
1016 	event.buf_len = cq->rq_buf_size;
1017 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1018 	if (!event.msg_buf)
1019 		return 0;
1020 
1021 	do {
1022 		enum ice_status ret;
1023 		u16 opcode;
1024 
1025 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1026 		if (ret == ICE_ERR_AQ_NO_WORK)
1027 			break;
1028 		if (ret) {
1029 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1030 				ret);
1031 			break;
1032 		}
1033 
1034 		opcode = le16_to_cpu(event.desc.opcode);
1035 
1036 		switch (opcode) {
1037 		case ice_aqc_opc_get_link_status:
1038 			if (ice_handle_link_event(pf, &event))
1039 				dev_err(dev, "Could not handle link event\n");
1040 			break;
1041 		case ice_mbx_opc_send_msg_to_pf:
1042 			ice_vc_process_vf_msg(pf, &event);
1043 			break;
1044 		case ice_aqc_opc_fw_logging:
1045 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1046 			break;
1047 		case ice_aqc_opc_lldp_set_mib_change:
1048 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1049 			break;
1050 		default:
1051 			dev_dbg(dev,
1052 				"%s Receive Queue unknown event 0x%04x ignored\n",
1053 				qtype, opcode);
1054 			break;
1055 		}
1056 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1057 
1058 	kfree(event.msg_buf);
1059 
1060 	return pending && (i == ICE_DFLT_IRQ_WORK);
1061 }
1062 
1063 /**
1064  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1065  * @hw: pointer to hardware info
1066  * @cq: control queue information
1067  *
1068  * returns true if there are pending messages in a queue, false if there aren't
1069  */
1070 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1071 {
1072 	u16 ntu;
1073 
1074 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1075 	return cq->rq.next_to_clean != ntu;
1076 }
1077 
1078 /**
1079  * ice_clean_adminq_subtask - clean the AdminQ rings
1080  * @pf: board private structure
1081  */
1082 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1083 {
1084 	struct ice_hw *hw = &pf->hw;
1085 
1086 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1087 		return;
1088 
1089 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1090 		return;
1091 
1092 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1093 
1094 	/* There might be a situation where new messages arrive to a control
1095 	 * queue between processing the last message and clearing the
1096 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1097 	 * ice_ctrlq_pending) and process new messages if any.
1098 	 */
1099 	if (ice_ctrlq_pending(hw, &hw->adminq))
1100 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1101 
1102 	ice_flush(hw);
1103 }
1104 
1105 /**
1106  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1107  * @pf: board private structure
1108  */
1109 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1110 {
1111 	struct ice_hw *hw = &pf->hw;
1112 
1113 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1114 		return;
1115 
1116 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1117 		return;
1118 
1119 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1120 
1121 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1122 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1123 
1124 	ice_flush(hw);
1125 }
1126 
1127 /**
1128  * ice_service_task_schedule - schedule the service task to wake up
1129  * @pf: board private structure
1130  *
1131  * If not already scheduled, this puts the task into the work queue.
1132  */
1133 static void ice_service_task_schedule(struct ice_pf *pf)
1134 {
1135 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1136 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1137 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1138 		queue_work(ice_wq, &pf->serv_task);
1139 }
1140 
1141 /**
1142  * ice_service_task_complete - finish up the service task
1143  * @pf: board private structure
1144  */
1145 static void ice_service_task_complete(struct ice_pf *pf)
1146 {
1147 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1148 
1149 	/* force memory (pf->state) to sync before next service task */
1150 	smp_mb__before_atomic();
1151 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1152 }
1153 
1154 /**
1155  * ice_service_task_stop - stop service task and cancel works
1156  * @pf: board private structure
1157  */
1158 static void ice_service_task_stop(struct ice_pf *pf)
1159 {
1160 	set_bit(__ICE_SERVICE_DIS, pf->state);
1161 
1162 	if (pf->serv_tmr.function)
1163 		del_timer_sync(&pf->serv_tmr);
1164 	if (pf->serv_task.func)
1165 		cancel_work_sync(&pf->serv_task);
1166 
1167 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1168 }
1169 
1170 /**
1171  * ice_service_task_restart - restart service task and schedule works
1172  * @pf: board private structure
1173  *
1174  * This function is needed for suspend and resume works (e.g WoL scenario)
1175  */
1176 static void ice_service_task_restart(struct ice_pf *pf)
1177 {
1178 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1179 	ice_service_task_schedule(pf);
1180 }
1181 
1182 /**
1183  * ice_service_timer - timer callback to schedule service task
1184  * @t: pointer to timer_list
1185  */
1186 static void ice_service_timer(struct timer_list *t)
1187 {
1188 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1189 
1190 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1191 	ice_service_task_schedule(pf);
1192 }
1193 
1194 /**
1195  * ice_handle_mdd_event - handle malicious driver detect event
1196  * @pf: pointer to the PF structure
1197  *
1198  * Called from service task. OICR interrupt handler indicates MDD event
1199  */
1200 static void ice_handle_mdd_event(struct ice_pf *pf)
1201 {
1202 	struct device *dev = ice_pf_to_dev(pf);
1203 	struct ice_hw *hw = &pf->hw;
1204 	bool mdd_detected = false;
1205 	u32 reg;
1206 	int i;
1207 
1208 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1209 		return;
1210 
1211 	/* find what triggered the MDD event */
1212 	reg = rd32(hw, GL_MDET_TX_PQM);
1213 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1214 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1215 				GL_MDET_TX_PQM_PF_NUM_S;
1216 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1217 				GL_MDET_TX_PQM_VF_NUM_S;
1218 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1219 				GL_MDET_TX_PQM_MAL_TYPE_S;
1220 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1221 				GL_MDET_TX_PQM_QNUM_S);
1222 
1223 		if (netif_msg_tx_err(pf))
1224 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1225 				 event, queue, pf_num, vf_num);
1226 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1227 		mdd_detected = true;
1228 	}
1229 
1230 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1231 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1232 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1233 				GL_MDET_TX_TCLAN_PF_NUM_S;
1234 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1235 				GL_MDET_TX_TCLAN_VF_NUM_S;
1236 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1237 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1238 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1239 				GL_MDET_TX_TCLAN_QNUM_S);
1240 
1241 		if (netif_msg_rx_err(pf))
1242 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1243 				 event, queue, pf_num, vf_num);
1244 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1245 		mdd_detected = true;
1246 	}
1247 
1248 	reg = rd32(hw, GL_MDET_RX);
1249 	if (reg & GL_MDET_RX_VALID_M) {
1250 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1251 				GL_MDET_RX_PF_NUM_S;
1252 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1253 				GL_MDET_RX_VF_NUM_S;
1254 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1255 				GL_MDET_RX_MAL_TYPE_S;
1256 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1257 				GL_MDET_RX_QNUM_S);
1258 
1259 		if (netif_msg_rx_err(pf))
1260 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1261 				 event, queue, pf_num, vf_num);
1262 		wr32(hw, GL_MDET_RX, 0xffffffff);
1263 		mdd_detected = true;
1264 	}
1265 
1266 	if (mdd_detected) {
1267 		bool pf_mdd_detected = false;
1268 
1269 		reg = rd32(hw, PF_MDET_TX_PQM);
1270 		if (reg & PF_MDET_TX_PQM_VALID_M) {
1271 			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1272 			dev_info(dev, "TX driver issue detected, PF reset issued\n");
1273 			pf_mdd_detected = true;
1274 		}
1275 
1276 		reg = rd32(hw, PF_MDET_TX_TCLAN);
1277 		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1278 			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1279 			dev_info(dev, "TX driver issue detected, PF reset issued\n");
1280 			pf_mdd_detected = true;
1281 		}
1282 
1283 		reg = rd32(hw, PF_MDET_RX);
1284 		if (reg & PF_MDET_RX_VALID_M) {
1285 			wr32(hw, PF_MDET_RX, 0xFFFF);
1286 			dev_info(dev, "RX driver issue detected, PF reset issued\n");
1287 			pf_mdd_detected = true;
1288 		}
1289 		/* Queue belongs to the PF initiate a reset */
1290 		if (pf_mdd_detected) {
1291 			set_bit(__ICE_NEEDS_RESTART, pf->state);
1292 			ice_service_task_schedule(pf);
1293 		}
1294 	}
1295 
1296 	/* check to see if one of the VFs caused the MDD */
1297 	ice_for_each_vf(pf, i) {
1298 		struct ice_vf *vf = &pf->vf[i];
1299 
1300 		bool vf_mdd_detected = false;
1301 
1302 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1303 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1304 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1305 			vf_mdd_detected = true;
1306 			dev_info(dev, "TX driver issue detected on VF %d\n",
1307 				 i);
1308 		}
1309 
1310 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1311 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1312 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1313 			vf_mdd_detected = true;
1314 			dev_info(dev, "TX driver issue detected on VF %d\n",
1315 				 i);
1316 		}
1317 
1318 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1319 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1320 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1321 			vf_mdd_detected = true;
1322 			dev_info(dev, "TX driver issue detected on VF %d\n",
1323 				 i);
1324 		}
1325 
1326 		reg = rd32(hw, VP_MDET_RX(i));
1327 		if (reg & VP_MDET_RX_VALID_M) {
1328 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1329 			vf_mdd_detected = true;
1330 			dev_info(dev, "RX driver issue detected on VF %d\n",
1331 				 i);
1332 		}
1333 
1334 		if (vf_mdd_detected) {
1335 			vf->num_mdd_events++;
1336 			if (vf->num_mdd_events &&
1337 			    vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD)
1338 				dev_info(dev,
1339 					 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n",
1340 					 i, vf->num_mdd_events);
1341 		}
1342 	}
1343 }
1344 
1345 /**
1346  * ice_force_phys_link_state - Force the physical link state
1347  * @vsi: VSI to force the physical link state to up/down
1348  * @link_up: true/false indicates to set the physical link to up/down
1349  *
1350  * Force the physical link state by getting the current PHY capabilities from
1351  * hardware and setting the PHY config based on the determined capabilities. If
1352  * link changes a link event will be triggered because both the Enable Automatic
1353  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1354  *
1355  * Returns 0 on success, negative on failure
1356  */
1357 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1358 {
1359 	struct ice_aqc_get_phy_caps_data *pcaps;
1360 	struct ice_aqc_set_phy_cfg_data *cfg;
1361 	struct ice_port_info *pi;
1362 	struct device *dev;
1363 	int retcode;
1364 
1365 	if (!vsi || !vsi->port_info || !vsi->back)
1366 		return -EINVAL;
1367 	if (vsi->type != ICE_VSI_PF)
1368 		return 0;
1369 
1370 	dev = &vsi->back->pdev->dev;
1371 
1372 	pi = vsi->port_info;
1373 
1374 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1375 	if (!pcaps)
1376 		return -ENOMEM;
1377 
1378 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1379 				      NULL);
1380 	if (retcode) {
1381 		dev_err(dev,
1382 			"Failed to get phy capabilities, VSI %d error %d\n",
1383 			vsi->vsi_num, retcode);
1384 		retcode = -EIO;
1385 		goto out;
1386 	}
1387 
1388 	/* No change in link */
1389 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1390 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1391 		goto out;
1392 
1393 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1394 	if (!cfg) {
1395 		retcode = -ENOMEM;
1396 		goto out;
1397 	}
1398 
1399 	cfg->phy_type_low = pcaps->phy_type_low;
1400 	cfg->phy_type_high = pcaps->phy_type_high;
1401 	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1402 	cfg->low_power_ctrl = pcaps->low_power_ctrl;
1403 	cfg->eee_cap = pcaps->eee_cap;
1404 	cfg->eeer_value = pcaps->eeer_value;
1405 	cfg->link_fec_opt = pcaps->link_fec_options;
1406 	if (link_up)
1407 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1408 	else
1409 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1410 
1411 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1412 	if (retcode) {
1413 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1414 			vsi->vsi_num, retcode);
1415 		retcode = -EIO;
1416 	}
1417 
1418 	kfree(cfg);
1419 out:
1420 	kfree(pcaps);
1421 	return retcode;
1422 }
1423 
1424 /**
1425  * ice_check_media_subtask - Check for media; bring link up if detected.
1426  * @pf: pointer to PF struct
1427  */
1428 static void ice_check_media_subtask(struct ice_pf *pf)
1429 {
1430 	struct ice_port_info *pi;
1431 	struct ice_vsi *vsi;
1432 	int err;
1433 
1434 	vsi = ice_get_main_vsi(pf);
1435 	if (!vsi)
1436 		return;
1437 
1438 	/* No need to check for media if it's already present or the interface
1439 	 * is down
1440 	 */
1441 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1442 	    test_bit(__ICE_DOWN, vsi->state))
1443 		return;
1444 
1445 	/* Refresh link info and check if media is present */
1446 	pi = vsi->port_info;
1447 	err = ice_update_link_info(pi);
1448 	if (err)
1449 		return;
1450 
1451 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1452 		err = ice_force_phys_link_state(vsi, true);
1453 		if (err)
1454 			return;
1455 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1456 
1457 		/* A Link Status Event will be generated; the event handler
1458 		 * will complete bringing the interface up
1459 		 */
1460 	}
1461 }
1462 
1463 /**
1464  * ice_service_task - manage and run subtasks
1465  * @work: pointer to work_struct contained by the PF struct
1466  */
1467 static void ice_service_task(struct work_struct *work)
1468 {
1469 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1470 	unsigned long start_time = jiffies;
1471 
1472 	/* subtasks */
1473 
1474 	/* process reset requests first */
1475 	ice_reset_subtask(pf);
1476 
1477 	/* bail if a reset/recovery cycle is pending or rebuild failed */
1478 	if (ice_is_reset_in_progress(pf->state) ||
1479 	    test_bit(__ICE_SUSPENDED, pf->state) ||
1480 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1481 		ice_service_task_complete(pf);
1482 		return;
1483 	}
1484 
1485 	ice_clean_adminq_subtask(pf);
1486 	ice_check_media_subtask(pf);
1487 	ice_check_for_hang_subtask(pf);
1488 	ice_sync_fltr_subtask(pf);
1489 	ice_handle_mdd_event(pf);
1490 	ice_watchdog_subtask(pf);
1491 
1492 	if (ice_is_safe_mode(pf)) {
1493 		ice_service_task_complete(pf);
1494 		return;
1495 	}
1496 
1497 	ice_process_vflr_event(pf);
1498 	ice_clean_mailboxq_subtask(pf);
1499 
1500 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1501 	ice_service_task_complete(pf);
1502 
1503 	/* If the tasks have taken longer than one service timer period
1504 	 * or there is more work to be done, reset the service timer to
1505 	 * schedule the service task now.
1506 	 */
1507 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1508 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1509 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1510 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1511 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1512 		mod_timer(&pf->serv_tmr, jiffies);
1513 }
1514 
1515 /**
1516  * ice_set_ctrlq_len - helper function to set controlq length
1517  * @hw: pointer to the HW instance
1518  */
1519 static void ice_set_ctrlq_len(struct ice_hw *hw)
1520 {
1521 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1522 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1523 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1524 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1525 	hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN;
1526 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1527 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1528 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1529 }
1530 
1531 /**
1532  * ice_schedule_reset - schedule a reset
1533  * @pf: board private structure
1534  * @reset: reset being requested
1535  */
1536 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
1537 {
1538 	struct device *dev = ice_pf_to_dev(pf);
1539 
1540 	/* bail out if earlier reset has failed */
1541 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
1542 		dev_dbg(dev, "earlier reset has failed\n");
1543 		return -EIO;
1544 	}
1545 	/* bail if reset/recovery already in progress */
1546 	if (ice_is_reset_in_progress(pf->state)) {
1547 		dev_dbg(dev, "Reset already in progress\n");
1548 		return -EBUSY;
1549 	}
1550 
1551 	switch (reset) {
1552 	case ICE_RESET_PFR:
1553 		set_bit(__ICE_PFR_REQ, pf->state);
1554 		break;
1555 	case ICE_RESET_CORER:
1556 		set_bit(__ICE_CORER_REQ, pf->state);
1557 		break;
1558 	case ICE_RESET_GLOBR:
1559 		set_bit(__ICE_GLOBR_REQ, pf->state);
1560 		break;
1561 	default:
1562 		return -EINVAL;
1563 	}
1564 
1565 	ice_service_task_schedule(pf);
1566 	return 0;
1567 }
1568 
1569 /**
1570  * ice_irq_affinity_notify - Callback for affinity changes
1571  * @notify: context as to what irq was changed
1572  * @mask: the new affinity mask
1573  *
1574  * This is a callback function used by the irq_set_affinity_notifier function
1575  * so that we may register to receive changes to the irq affinity masks.
1576  */
1577 static void
1578 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1579 			const cpumask_t *mask)
1580 {
1581 	struct ice_q_vector *q_vector =
1582 		container_of(notify, struct ice_q_vector, affinity_notify);
1583 
1584 	cpumask_copy(&q_vector->affinity_mask, mask);
1585 }
1586 
1587 /**
1588  * ice_irq_affinity_release - Callback for affinity notifier release
1589  * @ref: internal core kernel usage
1590  *
1591  * This is a callback function used by the irq_set_affinity_notifier function
1592  * to inform the current notification subscriber that they will no longer
1593  * receive notifications.
1594  */
1595 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1596 
1597 /**
1598  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1599  * @vsi: the VSI being configured
1600  */
1601 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1602 {
1603 	struct ice_hw *hw = &vsi->back->hw;
1604 	int i;
1605 
1606 	ice_for_each_q_vector(vsi, i)
1607 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1608 
1609 	ice_flush(hw);
1610 	return 0;
1611 }
1612 
1613 /**
1614  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1615  * @vsi: the VSI being configured
1616  * @basename: name for the vector
1617  */
1618 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1619 {
1620 	int q_vectors = vsi->num_q_vectors;
1621 	struct ice_pf *pf = vsi->back;
1622 	int base = vsi->base_vector;
1623 	struct device *dev;
1624 	int rx_int_idx = 0;
1625 	int tx_int_idx = 0;
1626 	int vector, err;
1627 	int irq_num;
1628 
1629 	dev = ice_pf_to_dev(pf);
1630 	for (vector = 0; vector < q_vectors; vector++) {
1631 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1632 
1633 		irq_num = pf->msix_entries[base + vector].vector;
1634 
1635 		if (q_vector->tx.ring && q_vector->rx.ring) {
1636 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1637 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1638 			tx_int_idx++;
1639 		} else if (q_vector->rx.ring) {
1640 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1641 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1642 		} else if (q_vector->tx.ring) {
1643 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1644 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1645 		} else {
1646 			/* skip this unused q_vector */
1647 			continue;
1648 		}
1649 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
1650 				       q_vector->name, q_vector);
1651 		if (err) {
1652 			netdev_err(vsi->netdev,
1653 				   "MSIX request_irq failed, error: %d\n", err);
1654 			goto free_q_irqs;
1655 		}
1656 
1657 		/* register for affinity change notifications */
1658 		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1659 		q_vector->affinity_notify.release = ice_irq_affinity_release;
1660 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1661 
1662 		/* assign the mask for this irq */
1663 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1664 	}
1665 
1666 	vsi->irqs_ready = true;
1667 	return 0;
1668 
1669 free_q_irqs:
1670 	while (vector) {
1671 		vector--;
1672 		irq_num = pf->msix_entries[base + vector].vector,
1673 		irq_set_affinity_notifier(irq_num, NULL);
1674 		irq_set_affinity_hint(irq_num, NULL);
1675 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
1676 	}
1677 	return err;
1678 }
1679 
1680 /**
1681  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
1682  * @vsi: VSI to setup Tx rings used by XDP
1683  *
1684  * Return 0 on success and negative value on error
1685  */
1686 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
1687 {
1688 	struct device *dev = &vsi->back->pdev->dev;
1689 	int i;
1690 
1691 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1692 		u16 xdp_q_idx = vsi->alloc_txq + i;
1693 		struct ice_ring *xdp_ring;
1694 
1695 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
1696 
1697 		if (!xdp_ring)
1698 			goto free_xdp_rings;
1699 
1700 		xdp_ring->q_index = xdp_q_idx;
1701 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
1702 		xdp_ring->ring_active = false;
1703 		xdp_ring->vsi = vsi;
1704 		xdp_ring->netdev = NULL;
1705 		xdp_ring->dev = dev;
1706 		xdp_ring->count = vsi->num_tx_desc;
1707 		vsi->xdp_rings[i] = xdp_ring;
1708 		if (ice_setup_tx_ring(xdp_ring))
1709 			goto free_xdp_rings;
1710 		ice_set_ring_xdp(xdp_ring);
1711 		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
1712 	}
1713 
1714 	return 0;
1715 
1716 free_xdp_rings:
1717 	for (; i >= 0; i--)
1718 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
1719 			ice_free_tx_ring(vsi->xdp_rings[i]);
1720 	return -ENOMEM;
1721 }
1722 
1723 /**
1724  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
1725  * @vsi: VSI to set the bpf prog on
1726  * @prog: the bpf prog pointer
1727  */
1728 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
1729 {
1730 	struct bpf_prog *old_prog;
1731 	int i;
1732 
1733 	old_prog = xchg(&vsi->xdp_prog, prog);
1734 	if (old_prog)
1735 		bpf_prog_put(old_prog);
1736 
1737 	ice_for_each_rxq(vsi, i)
1738 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
1739 }
1740 
1741 /**
1742  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
1743  * @vsi: VSI to bring up Tx rings used by XDP
1744  * @prog: bpf program that will be assigned to VSI
1745  *
1746  * Return 0 on success and negative value on error
1747  */
1748 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
1749 {
1750 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1751 	int xdp_rings_rem = vsi->num_xdp_txq;
1752 	struct ice_pf *pf = vsi->back;
1753 	struct ice_qs_cfg xdp_qs_cfg = {
1754 		.qs_mutex = &pf->avail_q_mutex,
1755 		.pf_map = pf->avail_txqs,
1756 		.pf_map_size = pf->max_pf_txqs,
1757 		.q_count = vsi->num_xdp_txq,
1758 		.scatter_count = ICE_MAX_SCATTER_TXQS,
1759 		.vsi_map = vsi->txq_map,
1760 		.vsi_map_offset = vsi->alloc_txq,
1761 		.mapping_mode = ICE_VSI_MAP_CONTIG
1762 	};
1763 	enum ice_status status;
1764 	struct device *dev;
1765 	int i, v_idx;
1766 
1767 	dev = ice_pf_to_dev(pf);
1768 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
1769 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
1770 	if (!vsi->xdp_rings)
1771 		return -ENOMEM;
1772 
1773 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
1774 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
1775 		goto err_map_xdp;
1776 
1777 	if (ice_xdp_alloc_setup_rings(vsi))
1778 		goto clear_xdp_rings;
1779 
1780 	/* follow the logic from ice_vsi_map_rings_to_vectors */
1781 	ice_for_each_q_vector(vsi, v_idx) {
1782 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1783 		int xdp_rings_per_v, q_id, q_base;
1784 
1785 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
1786 					       vsi->num_q_vectors - v_idx);
1787 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
1788 
1789 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
1790 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
1791 
1792 			xdp_ring->q_vector = q_vector;
1793 			xdp_ring->next = q_vector->tx.ring;
1794 			q_vector->tx.ring = xdp_ring;
1795 		}
1796 		xdp_rings_rem -= xdp_rings_per_v;
1797 	}
1798 
1799 	/* omit the scheduler update if in reset path; XDP queues will be
1800 	 * taken into account at the end of ice_vsi_rebuild, where
1801 	 * ice_cfg_vsi_lan is being called
1802 	 */
1803 	if (ice_is_reset_in_progress(pf->state))
1804 		return 0;
1805 
1806 	/* tell the Tx scheduler that right now we have
1807 	 * additional queues
1808 	 */
1809 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
1810 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
1811 
1812 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1813 				 max_txqs);
1814 	if (status) {
1815 		dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n",
1816 			status);
1817 		goto clear_xdp_rings;
1818 	}
1819 	ice_vsi_assign_bpf_prog(vsi, prog);
1820 
1821 	return 0;
1822 clear_xdp_rings:
1823 	for (i = 0; i < vsi->num_xdp_txq; i++)
1824 		if (vsi->xdp_rings[i]) {
1825 			kfree_rcu(vsi->xdp_rings[i], rcu);
1826 			vsi->xdp_rings[i] = NULL;
1827 		}
1828 
1829 err_map_xdp:
1830 	mutex_lock(&pf->avail_q_mutex);
1831 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1832 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1833 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1834 	}
1835 	mutex_unlock(&pf->avail_q_mutex);
1836 
1837 	devm_kfree(dev, vsi->xdp_rings);
1838 	return -ENOMEM;
1839 }
1840 
1841 /**
1842  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
1843  * @vsi: VSI to remove XDP rings
1844  *
1845  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
1846  * resources
1847  */
1848 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
1849 {
1850 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1851 	struct ice_pf *pf = vsi->back;
1852 	int i, v_idx;
1853 
1854 	/* q_vectors are freed in reset path so there's no point in detaching
1855 	 * rings; in case of rebuild being triggered not from reset reset bits
1856 	 * in pf->state won't be set, so additionally check first q_vector
1857 	 * against NULL
1858 	 */
1859 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1860 		goto free_qmap;
1861 
1862 	ice_for_each_q_vector(vsi, v_idx) {
1863 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1864 		struct ice_ring *ring;
1865 
1866 		ice_for_each_ring(ring, q_vector->tx)
1867 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
1868 				break;
1869 
1870 		/* restore the value of last node prior to XDP setup */
1871 		q_vector->tx.ring = ring;
1872 	}
1873 
1874 free_qmap:
1875 	mutex_lock(&pf->avail_q_mutex);
1876 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1877 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1878 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1879 	}
1880 	mutex_unlock(&pf->avail_q_mutex);
1881 
1882 	for (i = 0; i < vsi->num_xdp_txq; i++)
1883 		if (vsi->xdp_rings[i]) {
1884 			if (vsi->xdp_rings[i]->desc)
1885 				ice_free_tx_ring(vsi->xdp_rings[i]);
1886 			kfree_rcu(vsi->xdp_rings[i], rcu);
1887 			vsi->xdp_rings[i] = NULL;
1888 		}
1889 
1890 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
1891 	vsi->xdp_rings = NULL;
1892 
1893 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1894 		return 0;
1895 
1896 	ice_vsi_assign_bpf_prog(vsi, NULL);
1897 
1898 	/* notify Tx scheduler that we destroyed XDP queues and bring
1899 	 * back the old number of child nodes
1900 	 */
1901 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
1902 		max_txqs[i] = vsi->num_txq;
1903 
1904 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1905 			       max_txqs);
1906 }
1907 
1908 /**
1909  * ice_xdp_setup_prog - Add or remove XDP eBPF program
1910  * @vsi: VSI to setup XDP for
1911  * @prog: XDP program
1912  * @extack: netlink extended ack
1913  */
1914 static int
1915 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
1916 		   struct netlink_ext_ack *extack)
1917 {
1918 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
1919 	bool if_running = netif_running(vsi->netdev);
1920 	int ret = 0, xdp_ring_err = 0;
1921 
1922 	if (frame_size > vsi->rx_buf_len) {
1923 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
1924 		return -EOPNOTSUPP;
1925 	}
1926 
1927 	/* need to stop netdev while setting up the program for Rx rings */
1928 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
1929 		ret = ice_down(vsi);
1930 		if (ret) {
1931 			NL_SET_ERR_MSG_MOD(extack,
1932 					   "Preparing device for XDP attach failed");
1933 			return ret;
1934 		}
1935 	}
1936 
1937 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
1938 		vsi->num_xdp_txq = vsi->alloc_txq;
1939 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
1940 		if (xdp_ring_err)
1941 			NL_SET_ERR_MSG_MOD(extack,
1942 					   "Setting up XDP Tx resources failed");
1943 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
1944 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
1945 		if (xdp_ring_err)
1946 			NL_SET_ERR_MSG_MOD(extack,
1947 					   "Freeing XDP Tx resources failed");
1948 	} else {
1949 		ice_vsi_assign_bpf_prog(vsi, prog);
1950 	}
1951 
1952 	if (if_running)
1953 		ret = ice_up(vsi);
1954 
1955 	if (!ret && prog && vsi->xsk_umems) {
1956 		int i;
1957 
1958 		ice_for_each_rxq(vsi, i) {
1959 			struct ice_ring *rx_ring = vsi->rx_rings[i];
1960 
1961 			if (rx_ring->xsk_umem)
1962 				napi_schedule(&rx_ring->q_vector->napi);
1963 		}
1964 	}
1965 
1966 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
1967 }
1968 
1969 /**
1970  * ice_xdp - implements XDP handler
1971  * @dev: netdevice
1972  * @xdp: XDP command
1973  */
1974 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1975 {
1976 	struct ice_netdev_priv *np = netdev_priv(dev);
1977 	struct ice_vsi *vsi = np->vsi;
1978 
1979 	if (vsi->type != ICE_VSI_PF) {
1980 		NL_SET_ERR_MSG_MOD(xdp->extack,
1981 				   "XDP can be loaded only on PF VSI");
1982 		return -EINVAL;
1983 	}
1984 
1985 	switch (xdp->command) {
1986 	case XDP_SETUP_PROG:
1987 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
1988 	case XDP_QUERY_PROG:
1989 		xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
1990 		return 0;
1991 	case XDP_SETUP_XSK_UMEM:
1992 		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
1993 					  xdp->xsk.queue_id);
1994 	default:
1995 		return -EINVAL;
1996 	}
1997 }
1998 
1999 /**
2000  * ice_ena_misc_vector - enable the non-queue interrupts
2001  * @pf: board private structure
2002  */
2003 static void ice_ena_misc_vector(struct ice_pf *pf)
2004 {
2005 	struct ice_hw *hw = &pf->hw;
2006 	u32 val;
2007 
2008 	/* clear things first */
2009 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2010 	rd32(hw, PFINT_OICR);		/* read to clear */
2011 
2012 	val = (PFINT_OICR_ECC_ERR_M |
2013 	       PFINT_OICR_MAL_DETECT_M |
2014 	       PFINT_OICR_GRST_M |
2015 	       PFINT_OICR_PCI_EXCEPTION_M |
2016 	       PFINT_OICR_VFLR_M |
2017 	       PFINT_OICR_HMC_ERR_M |
2018 	       PFINT_OICR_PE_CRITERR_M);
2019 
2020 	wr32(hw, PFINT_OICR_ENA, val);
2021 
2022 	/* SW_ITR_IDX = 0, but don't change INTENA */
2023 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2024 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2025 }
2026 
2027 /**
2028  * ice_misc_intr - misc interrupt handler
2029  * @irq: interrupt number
2030  * @data: pointer to a q_vector
2031  */
2032 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2033 {
2034 	struct ice_pf *pf = (struct ice_pf *)data;
2035 	struct ice_hw *hw = &pf->hw;
2036 	irqreturn_t ret = IRQ_NONE;
2037 	struct device *dev;
2038 	u32 oicr, ena_mask;
2039 
2040 	dev = ice_pf_to_dev(pf);
2041 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2042 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2043 
2044 	oicr = rd32(hw, PFINT_OICR);
2045 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2046 
2047 	if (oicr & PFINT_OICR_SWINT_M) {
2048 		ena_mask &= ~PFINT_OICR_SWINT_M;
2049 		pf->sw_int_count++;
2050 	}
2051 
2052 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2053 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2054 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2055 	}
2056 	if (oicr & PFINT_OICR_VFLR_M) {
2057 		ena_mask &= ~PFINT_OICR_VFLR_M;
2058 		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2059 	}
2060 
2061 	if (oicr & PFINT_OICR_GRST_M) {
2062 		u32 reset;
2063 
2064 		/* we have a reset warning */
2065 		ena_mask &= ~PFINT_OICR_GRST_M;
2066 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2067 			GLGEN_RSTAT_RESET_TYPE_S;
2068 
2069 		if (reset == ICE_RESET_CORER)
2070 			pf->corer_count++;
2071 		else if (reset == ICE_RESET_GLOBR)
2072 			pf->globr_count++;
2073 		else if (reset == ICE_RESET_EMPR)
2074 			pf->empr_count++;
2075 		else
2076 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2077 
2078 		/* If a reset cycle isn't already in progress, we set a bit in
2079 		 * pf->state so that the service task can start a reset/rebuild.
2080 		 * We also make note of which reset happened so that peer
2081 		 * devices/drivers can be informed.
2082 		 */
2083 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2084 			if (reset == ICE_RESET_CORER)
2085 				set_bit(__ICE_CORER_RECV, pf->state);
2086 			else if (reset == ICE_RESET_GLOBR)
2087 				set_bit(__ICE_GLOBR_RECV, pf->state);
2088 			else
2089 				set_bit(__ICE_EMPR_RECV, pf->state);
2090 
2091 			/* There are couple of different bits at play here.
2092 			 * hw->reset_ongoing indicates whether the hardware is
2093 			 * in reset. This is set to true when a reset interrupt
2094 			 * is received and set back to false after the driver
2095 			 * has determined that the hardware is out of reset.
2096 			 *
2097 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2098 			 * that a post reset rebuild is required before the
2099 			 * driver is operational again. This is set above.
2100 			 *
2101 			 * As this is the start of the reset/rebuild cycle, set
2102 			 * both to indicate that.
2103 			 */
2104 			hw->reset_ongoing = true;
2105 		}
2106 	}
2107 
2108 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2109 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2110 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2111 			rd32(hw, PFHMC_ERRORINFO),
2112 			rd32(hw, PFHMC_ERRORDATA));
2113 	}
2114 
2115 	/* Report any remaining unexpected interrupts */
2116 	oicr &= ena_mask;
2117 	if (oicr) {
2118 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2119 		/* If a critical error is pending there is no choice but to
2120 		 * reset the device.
2121 		 */
2122 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2123 			    PFINT_OICR_PCI_EXCEPTION_M |
2124 			    PFINT_OICR_ECC_ERR_M)) {
2125 			set_bit(__ICE_PFR_REQ, pf->state);
2126 			ice_service_task_schedule(pf);
2127 		}
2128 	}
2129 	ret = IRQ_HANDLED;
2130 
2131 	if (!test_bit(__ICE_DOWN, pf->state)) {
2132 		ice_service_task_schedule(pf);
2133 		ice_irq_dynamic_ena(hw, NULL, NULL);
2134 	}
2135 
2136 	return ret;
2137 }
2138 
2139 /**
2140  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2141  * @hw: pointer to HW structure
2142  */
2143 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2144 {
2145 	/* disable Admin queue Interrupt causes */
2146 	wr32(hw, PFINT_FW_CTL,
2147 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2148 
2149 	/* disable Mailbox queue Interrupt causes */
2150 	wr32(hw, PFINT_MBX_CTL,
2151 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2152 
2153 	/* disable Control queue Interrupt causes */
2154 	wr32(hw, PFINT_OICR_CTL,
2155 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2156 
2157 	ice_flush(hw);
2158 }
2159 
2160 /**
2161  * ice_free_irq_msix_misc - Unroll misc vector setup
2162  * @pf: board private structure
2163  */
2164 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2165 {
2166 	struct ice_hw *hw = &pf->hw;
2167 
2168 	ice_dis_ctrlq_interrupts(hw);
2169 
2170 	/* disable OICR interrupt */
2171 	wr32(hw, PFINT_OICR_ENA, 0);
2172 	ice_flush(hw);
2173 
2174 	if (pf->msix_entries) {
2175 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2176 		devm_free_irq(ice_pf_to_dev(pf),
2177 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2178 	}
2179 
2180 	pf->num_avail_sw_msix += 1;
2181 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2182 }
2183 
2184 /**
2185  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2186  * @hw: pointer to HW structure
2187  * @reg_idx: HW vector index to associate the control queue interrupts with
2188  */
2189 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2190 {
2191 	u32 val;
2192 
2193 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2194 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2195 	wr32(hw, PFINT_OICR_CTL, val);
2196 
2197 	/* enable Admin queue Interrupt causes */
2198 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2199 	       PFINT_FW_CTL_CAUSE_ENA_M);
2200 	wr32(hw, PFINT_FW_CTL, val);
2201 
2202 	/* enable Mailbox queue Interrupt causes */
2203 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2204 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2205 	wr32(hw, PFINT_MBX_CTL, val);
2206 
2207 	ice_flush(hw);
2208 }
2209 
2210 /**
2211  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2212  * @pf: board private structure
2213  *
2214  * This sets up the handler for MSIX 0, which is used to manage the
2215  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2216  * when in MSI or Legacy interrupt mode.
2217  */
2218 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2219 {
2220 	struct device *dev = ice_pf_to_dev(pf);
2221 	struct ice_hw *hw = &pf->hw;
2222 	int oicr_idx, err = 0;
2223 
2224 	if (!pf->int_name[0])
2225 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2226 			 dev_driver_string(dev), dev_name(dev));
2227 
2228 	/* Do not request IRQ but do enable OICR interrupt since settings are
2229 	 * lost during reset. Note that this function is called only during
2230 	 * rebuild path and not while reset is in progress.
2231 	 */
2232 	if (ice_is_reset_in_progress(pf->state))
2233 		goto skip_req_irq;
2234 
2235 	/* reserve one vector in irq_tracker for misc interrupts */
2236 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2237 	if (oicr_idx < 0)
2238 		return oicr_idx;
2239 
2240 	pf->num_avail_sw_msix -= 1;
2241 	pf->oicr_idx = oicr_idx;
2242 
2243 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2244 			       ice_misc_intr, 0, pf->int_name, pf);
2245 	if (err) {
2246 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2247 			pf->int_name, err);
2248 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2249 		pf->num_avail_sw_msix += 1;
2250 		return err;
2251 	}
2252 
2253 skip_req_irq:
2254 	ice_ena_misc_vector(pf);
2255 
2256 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2257 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2258 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2259 
2260 	ice_flush(hw);
2261 	ice_irq_dynamic_ena(hw, NULL, NULL);
2262 
2263 	return 0;
2264 }
2265 
2266 /**
2267  * ice_napi_add - register NAPI handler for the VSI
2268  * @vsi: VSI for which NAPI handler is to be registered
2269  *
2270  * This function is only called in the driver's load path. Registering the NAPI
2271  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2272  * reset/rebuild, etc.)
2273  */
2274 static void ice_napi_add(struct ice_vsi *vsi)
2275 {
2276 	int v_idx;
2277 
2278 	if (!vsi->netdev)
2279 		return;
2280 
2281 	ice_for_each_q_vector(vsi, v_idx)
2282 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2283 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2284 }
2285 
2286 /**
2287  * ice_set_ops - set netdev and ethtools ops for the given netdev
2288  * @netdev: netdev instance
2289  */
2290 static void ice_set_ops(struct net_device *netdev)
2291 {
2292 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2293 
2294 	if (ice_is_safe_mode(pf)) {
2295 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2296 		ice_set_ethtool_safe_mode_ops(netdev);
2297 		return;
2298 	}
2299 
2300 	netdev->netdev_ops = &ice_netdev_ops;
2301 	ice_set_ethtool_ops(netdev);
2302 }
2303 
2304 /**
2305  * ice_set_netdev_features - set features for the given netdev
2306  * @netdev: netdev instance
2307  */
2308 static void ice_set_netdev_features(struct net_device *netdev)
2309 {
2310 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2311 	netdev_features_t csumo_features;
2312 	netdev_features_t vlano_features;
2313 	netdev_features_t dflt_features;
2314 	netdev_features_t tso_features;
2315 
2316 	if (ice_is_safe_mode(pf)) {
2317 		/* safe mode */
2318 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2319 		netdev->hw_features = netdev->features;
2320 		return;
2321 	}
2322 
2323 	dflt_features = NETIF_F_SG	|
2324 			NETIF_F_HIGHDMA	|
2325 			NETIF_F_RXHASH;
2326 
2327 	csumo_features = NETIF_F_RXCSUM	  |
2328 			 NETIF_F_IP_CSUM  |
2329 			 NETIF_F_SCTP_CRC |
2330 			 NETIF_F_IPV6_CSUM;
2331 
2332 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2333 			 NETIF_F_HW_VLAN_CTAG_TX     |
2334 			 NETIF_F_HW_VLAN_CTAG_RX;
2335 
2336 	tso_features = NETIF_F_TSO		|
2337 		       NETIF_F_GSO_UDP_L4;
2338 
2339 	/* set features that user can change */
2340 	netdev->hw_features = dflt_features | csumo_features |
2341 			      vlano_features | tso_features;
2342 
2343 	/* enable features */
2344 	netdev->features |= netdev->hw_features;
2345 	/* encap and VLAN devices inherit default, csumo and tso features */
2346 	netdev->hw_enc_features |= dflt_features | csumo_features |
2347 				   tso_features;
2348 	netdev->vlan_features |= dflt_features | csumo_features |
2349 				 tso_features;
2350 }
2351 
2352 /**
2353  * ice_cfg_netdev - Allocate, configure and register a netdev
2354  * @vsi: the VSI associated with the new netdev
2355  *
2356  * Returns 0 on success, negative value on failure
2357  */
2358 static int ice_cfg_netdev(struct ice_vsi *vsi)
2359 {
2360 	struct ice_pf *pf = vsi->back;
2361 	struct ice_netdev_priv *np;
2362 	struct net_device *netdev;
2363 	u8 mac_addr[ETH_ALEN];
2364 	int err;
2365 
2366 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2367 				    vsi->alloc_rxq);
2368 	if (!netdev)
2369 		return -ENOMEM;
2370 
2371 	vsi->netdev = netdev;
2372 	np = netdev_priv(netdev);
2373 	np->vsi = vsi;
2374 
2375 	ice_set_netdev_features(netdev);
2376 
2377 	ice_set_ops(netdev);
2378 
2379 	if (vsi->type == ICE_VSI_PF) {
2380 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2381 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2382 		ether_addr_copy(netdev->dev_addr, mac_addr);
2383 		ether_addr_copy(netdev->perm_addr, mac_addr);
2384 	}
2385 
2386 	netdev->priv_flags |= IFF_UNICAST_FLT;
2387 
2388 	/* Setup netdev TC information */
2389 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2390 
2391 	/* setup watchdog timeout value to be 5 second */
2392 	netdev->watchdog_timeo = 5 * HZ;
2393 
2394 	netdev->min_mtu = ETH_MIN_MTU;
2395 	netdev->max_mtu = ICE_MAX_MTU;
2396 
2397 	err = register_netdev(vsi->netdev);
2398 	if (err)
2399 		return err;
2400 
2401 	netif_carrier_off(vsi->netdev);
2402 
2403 	/* make sure transmit queues start off as stopped */
2404 	netif_tx_stop_all_queues(vsi->netdev);
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * ice_fill_rss_lut - Fill the RSS lookup table with default values
2411  * @lut: Lookup table
2412  * @rss_table_size: Lookup table size
2413  * @rss_size: Range of queue number for hashing
2414  */
2415 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2416 {
2417 	u16 i;
2418 
2419 	for (i = 0; i < rss_table_size; i++)
2420 		lut[i] = i % rss_size;
2421 }
2422 
2423 /**
2424  * ice_pf_vsi_setup - Set up a PF VSI
2425  * @pf: board private structure
2426  * @pi: pointer to the port_info instance
2427  *
2428  * Returns pointer to the successfully allocated VSI software struct
2429  * on success, otherwise returns NULL on failure.
2430  */
2431 static struct ice_vsi *
2432 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2433 {
2434 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2435 }
2436 
2437 /**
2438  * ice_lb_vsi_setup - Set up a loopback VSI
2439  * @pf: board private structure
2440  * @pi: pointer to the port_info instance
2441  *
2442  * Returns pointer to the successfully allocated VSI software struct
2443  * on success, otherwise returns NULL on failure.
2444  */
2445 struct ice_vsi *
2446 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2447 {
2448 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2449 }
2450 
2451 /**
2452  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2453  * @netdev: network interface to be adjusted
2454  * @proto: unused protocol
2455  * @vid: VLAN ID to be added
2456  *
2457  * net_device_ops implementation for adding VLAN IDs
2458  */
2459 static int
2460 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2461 		    u16 vid)
2462 {
2463 	struct ice_netdev_priv *np = netdev_priv(netdev);
2464 	struct ice_vsi *vsi = np->vsi;
2465 	int ret;
2466 
2467 	if (vid >= VLAN_N_VID) {
2468 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2469 			   vid, VLAN_N_VID);
2470 		return -EINVAL;
2471 	}
2472 
2473 	if (vsi->info.pvid)
2474 		return -EINVAL;
2475 
2476 	/* Enable VLAN pruning when VLAN 0 is added */
2477 	if (unlikely(!vid)) {
2478 		ret = ice_cfg_vlan_pruning(vsi, true, false);
2479 		if (ret)
2480 			return ret;
2481 	}
2482 
2483 	/* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
2484 	 * needed to continue allowing all untagged packets since VLAN prune
2485 	 * list is applied to all packets by the switch
2486 	 */
2487 	ret = ice_vsi_add_vlan(vsi, vid);
2488 	if (!ret) {
2489 		vsi->vlan_ena = true;
2490 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2491 	}
2492 
2493 	return ret;
2494 }
2495 
2496 /**
2497  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2498  * @netdev: network interface to be adjusted
2499  * @proto: unused protocol
2500  * @vid: VLAN ID to be removed
2501  *
2502  * net_device_ops implementation for removing VLAN IDs
2503  */
2504 static int
2505 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2506 		     u16 vid)
2507 {
2508 	struct ice_netdev_priv *np = netdev_priv(netdev);
2509 	struct ice_vsi *vsi = np->vsi;
2510 	int ret;
2511 
2512 	if (vsi->info.pvid)
2513 		return -EINVAL;
2514 
2515 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2516 	 * information
2517 	 */
2518 	ret = ice_vsi_kill_vlan(vsi, vid);
2519 	if (ret)
2520 		return ret;
2521 
2522 	/* Disable VLAN pruning when VLAN 0 is removed */
2523 	if (unlikely(!vid))
2524 		ret = ice_cfg_vlan_pruning(vsi, false, false);
2525 
2526 	vsi->vlan_ena = false;
2527 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2528 	return ret;
2529 }
2530 
2531 /**
2532  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2533  * @pf: board private structure
2534  *
2535  * Returns 0 on success, negative value on failure
2536  */
2537 static int ice_setup_pf_sw(struct ice_pf *pf)
2538 {
2539 	struct ice_vsi *vsi;
2540 	int status = 0;
2541 
2542 	if (ice_is_reset_in_progress(pf->state))
2543 		return -EBUSY;
2544 
2545 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2546 	if (!vsi) {
2547 		status = -ENOMEM;
2548 		goto unroll_vsi_setup;
2549 	}
2550 
2551 	status = ice_cfg_netdev(vsi);
2552 	if (status) {
2553 		status = -ENODEV;
2554 		goto unroll_vsi_setup;
2555 	}
2556 	/* netdev has to be configured before setting frame size */
2557 	ice_vsi_cfg_frame_size(vsi);
2558 
2559 	/* Setup DCB netlink interface */
2560 	ice_dcbnl_setup(vsi);
2561 
2562 	/* registering the NAPI handler requires both the queues and
2563 	 * netdev to be created, which are done in ice_pf_vsi_setup()
2564 	 * and ice_cfg_netdev() respectively
2565 	 */
2566 	ice_napi_add(vsi);
2567 
2568 	status = ice_init_mac_fltr(pf);
2569 	if (status)
2570 		goto unroll_napi_add;
2571 
2572 	return status;
2573 
2574 unroll_napi_add:
2575 	if (vsi) {
2576 		ice_napi_del(vsi);
2577 		if (vsi->netdev) {
2578 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
2579 				unregister_netdev(vsi->netdev);
2580 			free_netdev(vsi->netdev);
2581 			vsi->netdev = NULL;
2582 		}
2583 	}
2584 
2585 unroll_vsi_setup:
2586 	if (vsi) {
2587 		ice_vsi_free_q_vectors(vsi);
2588 		ice_vsi_delete(vsi);
2589 		ice_vsi_put_qs(vsi);
2590 		ice_vsi_clear(vsi);
2591 	}
2592 	return status;
2593 }
2594 
2595 /**
2596  * ice_get_avail_q_count - Get count of queues in use
2597  * @pf_qmap: bitmap to get queue use count from
2598  * @lock: pointer to a mutex that protects access to pf_qmap
2599  * @size: size of the bitmap
2600  */
2601 static u16
2602 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2603 {
2604 	u16 count = 0, bit;
2605 
2606 	mutex_lock(lock);
2607 	for_each_clear_bit(bit, pf_qmap, size)
2608 		count++;
2609 	mutex_unlock(lock);
2610 
2611 	return count;
2612 }
2613 
2614 /**
2615  * ice_get_avail_txq_count - Get count of Tx queues in use
2616  * @pf: pointer to an ice_pf instance
2617  */
2618 u16 ice_get_avail_txq_count(struct ice_pf *pf)
2619 {
2620 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2621 				     pf->max_pf_txqs);
2622 }
2623 
2624 /**
2625  * ice_get_avail_rxq_count - Get count of Rx queues in use
2626  * @pf: pointer to an ice_pf instance
2627  */
2628 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2629 {
2630 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2631 				     pf->max_pf_rxqs);
2632 }
2633 
2634 /**
2635  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2636  * @pf: board private structure to initialize
2637  */
2638 static void ice_deinit_pf(struct ice_pf *pf)
2639 {
2640 	ice_service_task_stop(pf);
2641 	mutex_destroy(&pf->sw_mutex);
2642 	mutex_destroy(&pf->tc_mutex);
2643 	mutex_destroy(&pf->avail_q_mutex);
2644 
2645 	if (pf->avail_txqs) {
2646 		bitmap_free(pf->avail_txqs);
2647 		pf->avail_txqs = NULL;
2648 	}
2649 
2650 	if (pf->avail_rxqs) {
2651 		bitmap_free(pf->avail_rxqs);
2652 		pf->avail_rxqs = NULL;
2653 	}
2654 }
2655 
2656 /**
2657  * ice_set_pf_caps - set PFs capability flags
2658  * @pf: pointer to the PF instance
2659  */
2660 static void ice_set_pf_caps(struct ice_pf *pf)
2661 {
2662 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2663 
2664 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2665 	if (func_caps->common_cap.dcb)
2666 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2667 #ifdef CONFIG_PCI_IOV
2668 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2669 	if (func_caps->common_cap.sr_iov_1_1) {
2670 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2671 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2672 					      ICE_MAX_VF_COUNT);
2673 	}
2674 #endif /* CONFIG_PCI_IOV */
2675 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2676 	if (func_caps->common_cap.rss_table_size)
2677 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2678 
2679 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
2680 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2681 }
2682 
2683 /**
2684  * ice_init_pf - Initialize general software structures (struct ice_pf)
2685  * @pf: board private structure to initialize
2686  */
2687 static int ice_init_pf(struct ice_pf *pf)
2688 {
2689 	ice_set_pf_caps(pf);
2690 
2691 	mutex_init(&pf->sw_mutex);
2692 	mutex_init(&pf->tc_mutex);
2693 
2694 	/* setup service timer and periodic service task */
2695 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2696 	pf->serv_tmr_period = HZ;
2697 	INIT_WORK(&pf->serv_task, ice_service_task);
2698 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
2699 
2700 	mutex_init(&pf->avail_q_mutex);
2701 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2702 	if (!pf->avail_txqs)
2703 		return -ENOMEM;
2704 
2705 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2706 	if (!pf->avail_rxqs) {
2707 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
2708 		pf->avail_txqs = NULL;
2709 		return -ENOMEM;
2710 	}
2711 
2712 	return 0;
2713 }
2714 
2715 /**
2716  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2717  * @pf: board private structure
2718  *
2719  * compute the number of MSIX vectors required (v_budget) and request from
2720  * the OS. Return the number of vectors reserved or negative on failure
2721  */
2722 static int ice_ena_msix_range(struct ice_pf *pf)
2723 {
2724 	struct device *dev = ice_pf_to_dev(pf);
2725 	int v_left, v_actual, v_budget = 0;
2726 	int needed, err, i;
2727 
2728 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2729 
2730 	/* reserve one vector for miscellaneous handler */
2731 	needed = 1;
2732 	if (v_left < needed)
2733 		goto no_hw_vecs_left_err;
2734 	v_budget += needed;
2735 	v_left -= needed;
2736 
2737 	/* reserve vectors for LAN traffic */
2738 	needed = min_t(int, num_online_cpus(), v_left);
2739 	if (v_left < needed)
2740 		goto no_hw_vecs_left_err;
2741 	pf->num_lan_msix = needed;
2742 	v_budget += needed;
2743 	v_left -= needed;
2744 
2745 	pf->msix_entries = devm_kcalloc(dev, v_budget,
2746 					sizeof(*pf->msix_entries), GFP_KERNEL);
2747 
2748 	if (!pf->msix_entries) {
2749 		err = -ENOMEM;
2750 		goto exit_err;
2751 	}
2752 
2753 	for (i = 0; i < v_budget; i++)
2754 		pf->msix_entries[i].entry = i;
2755 
2756 	/* actually reserve the vectors */
2757 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2758 					 ICE_MIN_MSIX, v_budget);
2759 
2760 	if (v_actual < 0) {
2761 		dev_err(dev, "unable to reserve MSI-X vectors\n");
2762 		err = v_actual;
2763 		goto msix_err;
2764 	}
2765 
2766 	if (v_actual < v_budget) {
2767 		dev_warn(dev,
2768 			 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2769 			 v_budget, v_actual);
2770 /* 2 vectors for LAN (traffic + OICR) */
2771 #define ICE_MIN_LAN_VECS 2
2772 
2773 		if (v_actual < ICE_MIN_LAN_VECS) {
2774 			/* error if we can't get minimum vectors */
2775 			pci_disable_msix(pf->pdev);
2776 			err = -ERANGE;
2777 			goto msix_err;
2778 		} else {
2779 			pf->num_lan_msix = ICE_MIN_LAN_VECS;
2780 		}
2781 	}
2782 
2783 	return v_actual;
2784 
2785 msix_err:
2786 	devm_kfree(dev, pf->msix_entries);
2787 	goto exit_err;
2788 
2789 no_hw_vecs_left_err:
2790 	dev_err(dev,
2791 		"not enough device MSI-X vectors. requested = %d, available = %d\n",
2792 		needed, v_left);
2793 	err = -ERANGE;
2794 exit_err:
2795 	pf->num_lan_msix = 0;
2796 	return err;
2797 }
2798 
2799 /**
2800  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2801  * @pf: board private structure
2802  */
2803 static void ice_dis_msix(struct ice_pf *pf)
2804 {
2805 	pci_disable_msix(pf->pdev);
2806 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
2807 	pf->msix_entries = NULL;
2808 }
2809 
2810 /**
2811  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2812  * @pf: board private structure
2813  */
2814 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2815 {
2816 	ice_dis_msix(pf);
2817 
2818 	if (pf->irq_tracker) {
2819 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
2820 		pf->irq_tracker = NULL;
2821 	}
2822 }
2823 
2824 /**
2825  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2826  * @pf: board private structure to initialize
2827  */
2828 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2829 {
2830 	int vectors;
2831 
2832 	vectors = ice_ena_msix_range(pf);
2833 
2834 	if (vectors < 0)
2835 		return vectors;
2836 
2837 	/* set up vector assignment tracking */
2838 	pf->irq_tracker =
2839 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
2840 			     (sizeof(u16) * vectors), GFP_KERNEL);
2841 	if (!pf->irq_tracker) {
2842 		ice_dis_msix(pf);
2843 		return -ENOMEM;
2844 	}
2845 
2846 	/* populate SW interrupts pool with number of OS granted IRQs. */
2847 	pf->num_avail_sw_msix = vectors;
2848 	pf->irq_tracker->num_entries = vectors;
2849 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
2850 
2851 	return 0;
2852 }
2853 
2854 /**
2855  * ice_vsi_recfg_qs - Change the number of queues on a VSI
2856  * @vsi: VSI being changed
2857  * @new_rx: new number of Rx queues
2858  * @new_tx: new number of Tx queues
2859  *
2860  * Only change the number of queues if new_tx, or new_rx is non-0.
2861  *
2862  * Returns 0 on success.
2863  */
2864 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
2865 {
2866 	struct ice_pf *pf = vsi->back;
2867 	int err = 0, timeout = 50;
2868 
2869 	if (!new_rx && !new_tx)
2870 		return -EINVAL;
2871 
2872 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
2873 		timeout--;
2874 		if (!timeout)
2875 			return -EBUSY;
2876 		usleep_range(1000, 2000);
2877 	}
2878 
2879 	if (new_tx)
2880 		vsi->req_txq = new_tx;
2881 	if (new_rx)
2882 		vsi->req_rxq = new_rx;
2883 
2884 	/* set for the next time the netdev is started */
2885 	if (!netif_running(vsi->netdev)) {
2886 		ice_vsi_rebuild(vsi, false);
2887 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
2888 		goto done;
2889 	}
2890 
2891 	ice_vsi_close(vsi);
2892 	ice_vsi_rebuild(vsi, false);
2893 	ice_pf_dcb_recfg(pf);
2894 	ice_vsi_open(vsi);
2895 done:
2896 	clear_bit(__ICE_CFG_BUSY, pf->state);
2897 	return err;
2898 }
2899 
2900 /**
2901  * ice_log_pkg_init - log result of DDP package load
2902  * @hw: pointer to hardware info
2903  * @status: status of package load
2904  */
2905 static void
2906 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2907 {
2908 	struct ice_pf *pf = (struct ice_pf *)hw->back;
2909 	struct device *dev = ice_pf_to_dev(pf);
2910 
2911 	switch (*status) {
2912 	case ICE_SUCCESS:
2913 		/* The package download AdminQ command returned success because
2914 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2915 		 * already a package loaded on the device.
2916 		 */
2917 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2918 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2919 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
2920 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2921 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
2922 			    sizeof(hw->pkg_name))) {
2923 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2924 				dev_info(dev,
2925 					 "DDP package already present on device: %s version %d.%d.%d.%d\n",
2926 					 hw->active_pkg_name,
2927 					 hw->active_pkg_ver.major,
2928 					 hw->active_pkg_ver.minor,
2929 					 hw->active_pkg_ver.update,
2930 					 hw->active_pkg_ver.draft);
2931 			else
2932 				dev_info(dev,
2933 					 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2934 					 hw->active_pkg_name,
2935 					 hw->active_pkg_ver.major,
2936 					 hw->active_pkg_ver.minor,
2937 					 hw->active_pkg_ver.update,
2938 					 hw->active_pkg_ver.draft);
2939 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2940 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2941 			dev_err(dev,
2942 				"The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
2943 				hw->active_pkg_name,
2944 				hw->active_pkg_ver.major,
2945 				hw->active_pkg_ver.minor,
2946 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2947 			*status = ICE_ERR_NOT_SUPPORTED;
2948 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2949 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2950 			dev_info(dev,
2951 				 "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2952 				 hw->active_pkg_name,
2953 				 hw->active_pkg_ver.major,
2954 				 hw->active_pkg_ver.minor,
2955 				 hw->active_pkg_ver.update,
2956 				 hw->active_pkg_ver.draft,
2957 				 hw->pkg_name,
2958 				 hw->pkg_ver.major,
2959 				 hw->pkg_ver.minor,
2960 				 hw->pkg_ver.update,
2961 				 hw->pkg_ver.draft);
2962 		} else {
2963 			dev_err(dev,
2964 				"An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
2965 			*status = ICE_ERR_NOT_SUPPORTED;
2966 		}
2967 		break;
2968 	case ICE_ERR_BUF_TOO_SHORT:
2969 		/* fall-through */
2970 	case ICE_ERR_CFG:
2971 		dev_err(dev,
2972 			"The DDP package file is invalid. Entering Safe Mode.\n");
2973 		break;
2974 	case ICE_ERR_NOT_SUPPORTED:
2975 		/* Package File version not supported */
2976 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2977 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2978 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2979 			dev_err(dev,
2980 				"The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
2981 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2982 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2983 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
2984 			dev_err(dev,
2985 				"The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
2986 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2987 		break;
2988 	case ICE_ERR_AQ_ERROR:
2989 		switch (hw->pkg_dwnld_status) {
2990 		case ICE_AQ_RC_ENOSEC:
2991 		case ICE_AQ_RC_EBADSIG:
2992 			dev_err(dev,
2993 				"The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
2994 			return;
2995 		case ICE_AQ_RC_ESVN:
2996 			dev_err(dev,
2997 				"The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
2998 			return;
2999 		case ICE_AQ_RC_EBADMAN:
3000 		case ICE_AQ_RC_EBADBUF:
3001 			dev_err(dev,
3002 				"An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3003 			return;
3004 		default:
3005 			break;
3006 		}
3007 		/* fall-through */
3008 	default:
3009 		dev_err(dev,
3010 			"An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3011 			*status);
3012 		break;
3013 	}
3014 }
3015 
3016 /**
3017  * ice_load_pkg - load/reload the DDP Package file
3018  * @firmware: firmware structure when firmware requested or NULL for reload
3019  * @pf: pointer to the PF instance
3020  *
3021  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3022  * initialize HW tables.
3023  */
3024 static void
3025 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3026 {
3027 	enum ice_status status = ICE_ERR_PARAM;
3028 	struct device *dev = ice_pf_to_dev(pf);
3029 	struct ice_hw *hw = &pf->hw;
3030 
3031 	/* Load DDP Package */
3032 	if (firmware && !hw->pkg_copy) {
3033 		status = ice_copy_and_init_pkg(hw, firmware->data,
3034 					       firmware->size);
3035 		ice_log_pkg_init(hw, &status);
3036 	} else if (!firmware && hw->pkg_copy) {
3037 		/* Reload package during rebuild after CORER/GLOBR reset */
3038 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3039 		ice_log_pkg_init(hw, &status);
3040 	} else {
3041 		dev_err(dev,
3042 			"The DDP package file failed to load. Entering Safe Mode.\n");
3043 	}
3044 
3045 	if (status) {
3046 		/* Safe Mode */
3047 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3048 		return;
3049 	}
3050 
3051 	/* Successful download package is the precondition for advanced
3052 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3053 	 */
3054 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3055 }
3056 
3057 /**
3058  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3059  * @pf: pointer to the PF structure
3060  *
3061  * There is no error returned here because the driver should be able to handle
3062  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3063  * specifically with Tx.
3064  */
3065 static void ice_verify_cacheline_size(struct ice_pf *pf)
3066 {
3067 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3068 		dev_warn(ice_pf_to_dev(pf),
3069 			 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3070 			 ICE_CACHE_LINE_BYTES);
3071 }
3072 
3073 /**
3074  * ice_send_version - update firmware with driver version
3075  * @pf: PF struct
3076  *
3077  * Returns ICE_SUCCESS on success, else error code
3078  */
3079 static enum ice_status ice_send_version(struct ice_pf *pf)
3080 {
3081 	struct ice_driver_ver dv;
3082 
3083 	dv.major_ver = DRV_VERSION_MAJOR;
3084 	dv.minor_ver = DRV_VERSION_MINOR;
3085 	dv.build_ver = DRV_VERSION_BUILD;
3086 	dv.subbuild_ver = 0;
3087 	strscpy((char *)dv.driver_string, DRV_VERSION,
3088 		sizeof(dv.driver_string));
3089 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3090 }
3091 
3092 /**
3093  * ice_get_opt_fw_name - return optional firmware file name or NULL
3094  * @pf: pointer to the PF instance
3095  */
3096 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3097 {
3098 	/* Optional firmware name same as default with additional dash
3099 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3100 	 */
3101 	struct pci_dev *pdev = pf->pdev;
3102 	char *opt_fw_filename = NULL;
3103 	u32 dword;
3104 	u8 dsn[8];
3105 	int pos;
3106 
3107 	/* Determine the name of the optional file using the DSN (two
3108 	 * dwords following the start of the DSN Capability).
3109 	 */
3110 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
3111 	if (pos) {
3112 		opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3113 		if (!opt_fw_filename)
3114 			return NULL;
3115 
3116 		pci_read_config_dword(pdev, pos + 4, &dword);
3117 		put_unaligned_le32(dword, &dsn[0]);
3118 		pci_read_config_dword(pdev, pos + 8, &dword);
3119 		put_unaligned_le32(dword, &dsn[4]);
3120 		snprintf(opt_fw_filename, NAME_MAX,
3121 			 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg",
3122 			 ICE_DDP_PKG_PATH,
3123 			 dsn[7], dsn[6], dsn[5], dsn[4],
3124 			 dsn[3], dsn[2], dsn[1], dsn[0]);
3125 	}
3126 
3127 	return opt_fw_filename;
3128 }
3129 
3130 /**
3131  * ice_request_fw - Device initialization routine
3132  * @pf: pointer to the PF instance
3133  */
3134 static void ice_request_fw(struct ice_pf *pf)
3135 {
3136 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3137 	const struct firmware *firmware = NULL;
3138 	struct device *dev = ice_pf_to_dev(pf);
3139 	int err = 0;
3140 
3141 	/* optional device-specific DDP (if present) overrides the default DDP
3142 	 * package file. kernel logs a debug message if the file doesn't exist,
3143 	 * and warning messages for other errors.
3144 	 */
3145 	if (opt_fw_filename) {
3146 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3147 		if (err) {
3148 			kfree(opt_fw_filename);
3149 			goto dflt_pkg_load;
3150 		}
3151 
3152 		/* request for firmware was successful. Download to device */
3153 		ice_load_pkg(firmware, pf);
3154 		kfree(opt_fw_filename);
3155 		release_firmware(firmware);
3156 		return;
3157 	}
3158 
3159 dflt_pkg_load:
3160 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3161 	if (err) {
3162 		dev_err(dev,
3163 			"The DDP package file was not found or could not be read. Entering Safe Mode\n");
3164 		return;
3165 	}
3166 
3167 	/* request for firmware was successful. Download to device */
3168 	ice_load_pkg(firmware, pf);
3169 	release_firmware(firmware);
3170 }
3171 
3172 /**
3173  * ice_probe - Device initialization routine
3174  * @pdev: PCI device information struct
3175  * @ent: entry in ice_pci_tbl
3176  *
3177  * Returns 0 on success, negative on failure
3178  */
3179 static int
3180 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3181 {
3182 	struct device *dev = &pdev->dev;
3183 	struct ice_pf *pf;
3184 	struct ice_hw *hw;
3185 	int err;
3186 
3187 	/* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
3188 	err = pcim_enable_device(pdev);
3189 	if (err)
3190 		return err;
3191 
3192 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3193 	if (err) {
3194 		dev_err(dev, "BAR0 I/O map error %d\n", err);
3195 		return err;
3196 	}
3197 
3198 	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
3199 	if (!pf)
3200 		return -ENOMEM;
3201 
3202 	/* set up for high or low DMA */
3203 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3204 	if (err)
3205 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3206 	if (err) {
3207 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3208 		return err;
3209 	}
3210 
3211 	pci_enable_pcie_error_reporting(pdev);
3212 	pci_set_master(pdev);
3213 
3214 	pf->pdev = pdev;
3215 	pci_set_drvdata(pdev, pf);
3216 	set_bit(__ICE_DOWN, pf->state);
3217 	/* Disable service task until DOWN bit is cleared */
3218 	set_bit(__ICE_SERVICE_DIS, pf->state);
3219 
3220 	hw = &pf->hw;
3221 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
3222 	pci_save_state(pdev);
3223 
3224 	hw->back = pf;
3225 	hw->vendor_id = pdev->vendor;
3226 	hw->device_id = pdev->device;
3227 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3228 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3229 	hw->subsystem_device_id = pdev->subsystem_device;
3230 	hw->bus.device = PCI_SLOT(pdev->devfn);
3231 	hw->bus.func = PCI_FUNC(pdev->devfn);
3232 	ice_set_ctrlq_len(hw);
3233 
3234 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3235 
3236 #ifndef CONFIG_DYNAMIC_DEBUG
3237 	if (debug < -1)
3238 		hw->debug_mask = debug;
3239 #endif
3240 
3241 	err = ice_init_hw(hw);
3242 	if (err) {
3243 		dev_err(dev, "ice_init_hw failed: %d\n", err);
3244 		err = -EIO;
3245 		goto err_exit_unroll;
3246 	}
3247 
3248 	dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n",
3249 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
3250 		 hw->api_maj_ver, hw->api_min_ver, hw->api_patch,
3251 		 ice_nvm_version_str(hw), hw->fw_build);
3252 
3253 	ice_request_fw(pf);
3254 
3255 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
3256 	 * set in pf->state, which will cause ice_is_safe_mode to return
3257 	 * true
3258 	 */
3259 	if (ice_is_safe_mode(pf)) {
3260 		dev_err(dev,
3261 			"Package download failed. Advanced features disabled - Device now in Safe Mode\n");
3262 		/* we already got function/device capabilities but these don't
3263 		 * reflect what the driver needs to do in safe mode. Instead of
3264 		 * adding conditional logic everywhere to ignore these
3265 		 * device/function capabilities, override them.
3266 		 */
3267 		ice_set_safe_mode_caps(hw);
3268 	}
3269 
3270 	err = ice_init_pf(pf);
3271 	if (err) {
3272 		dev_err(dev, "ice_init_pf failed: %d\n", err);
3273 		goto err_init_pf_unroll;
3274 	}
3275 
3276 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
3277 	if (!pf->num_alloc_vsi) {
3278 		err = -EIO;
3279 		goto err_init_pf_unroll;
3280 	}
3281 
3282 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
3283 			       GFP_KERNEL);
3284 	if (!pf->vsi) {
3285 		err = -ENOMEM;
3286 		goto err_init_pf_unroll;
3287 	}
3288 
3289 	err = ice_init_interrupt_scheme(pf);
3290 	if (err) {
3291 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
3292 		err = -EIO;
3293 		goto err_init_interrupt_unroll;
3294 	}
3295 
3296 	/* Driver is mostly up */
3297 	clear_bit(__ICE_DOWN, pf->state);
3298 
3299 	/* In case of MSIX we are going to setup the misc vector right here
3300 	 * to handle admin queue events etc. In case of legacy and MSI
3301 	 * the misc functionality and queue processing is combined in
3302 	 * the same vector and that gets setup at open.
3303 	 */
3304 	err = ice_req_irq_msix_misc(pf);
3305 	if (err) {
3306 		dev_err(dev, "setup of misc vector failed: %d\n", err);
3307 		goto err_init_interrupt_unroll;
3308 	}
3309 
3310 	/* create switch struct for the switch element created by FW on boot */
3311 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
3312 	if (!pf->first_sw) {
3313 		err = -ENOMEM;
3314 		goto err_msix_misc_unroll;
3315 	}
3316 
3317 	if (hw->evb_veb)
3318 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
3319 	else
3320 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
3321 
3322 	pf->first_sw->pf = pf;
3323 
3324 	/* record the sw_id available for later use */
3325 	pf->first_sw->sw_id = hw->port_info->sw_id;
3326 
3327 	err = ice_setup_pf_sw(pf);
3328 	if (err) {
3329 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
3330 		goto err_alloc_sw_unroll;
3331 	}
3332 
3333 	clear_bit(__ICE_SERVICE_DIS, pf->state);
3334 
3335 	/* tell the firmware we are up */
3336 	err = ice_send_version(pf);
3337 	if (err) {
3338 		dev_err(dev,
3339 			"probe failed sending driver version %s. error: %d\n",
3340 			ice_drv_ver, err);
3341 		goto err_alloc_sw_unroll;
3342 	}
3343 
3344 	/* since everything is good, start the service timer */
3345 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3346 
3347 	err = ice_init_link_events(pf->hw.port_info);
3348 	if (err) {
3349 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
3350 		goto err_alloc_sw_unroll;
3351 	}
3352 
3353 	ice_verify_cacheline_size(pf);
3354 
3355 	/* If no DDP driven features have to be setup, return here */
3356 	if (ice_is_safe_mode(pf))
3357 		return 0;
3358 
3359 	/* initialize DDP driven features */
3360 
3361 	/* Note: DCB init failure is non-fatal to load */
3362 	if (ice_init_pf_dcb(pf, false)) {
3363 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3364 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
3365 	} else {
3366 		ice_cfg_lldp_mib_change(&pf->hw, true);
3367 	}
3368 
3369 	/* print PCI link speed and width */
3370 	pcie_print_link_status(pf->pdev);
3371 
3372 	return 0;
3373 
3374 err_alloc_sw_unroll:
3375 	set_bit(__ICE_SERVICE_DIS, pf->state);
3376 	set_bit(__ICE_DOWN, pf->state);
3377 	devm_kfree(dev, pf->first_sw);
3378 err_msix_misc_unroll:
3379 	ice_free_irq_msix_misc(pf);
3380 err_init_interrupt_unroll:
3381 	ice_clear_interrupt_scheme(pf);
3382 	devm_kfree(dev, pf->vsi);
3383 err_init_pf_unroll:
3384 	ice_deinit_pf(pf);
3385 	ice_deinit_hw(hw);
3386 err_exit_unroll:
3387 	pci_disable_pcie_error_reporting(pdev);
3388 	return err;
3389 }
3390 
3391 /**
3392  * ice_remove - Device removal routine
3393  * @pdev: PCI device information struct
3394  */
3395 static void ice_remove(struct pci_dev *pdev)
3396 {
3397 	struct ice_pf *pf = pci_get_drvdata(pdev);
3398 	int i;
3399 
3400 	if (!pf)
3401 		return;
3402 
3403 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3404 		if (!ice_is_reset_in_progress(pf->state))
3405 			break;
3406 		msleep(100);
3407 	}
3408 
3409 	set_bit(__ICE_DOWN, pf->state);
3410 	ice_service_task_stop(pf);
3411 
3412 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
3413 		ice_free_vfs(pf);
3414 	ice_vsi_release_all(pf);
3415 	ice_free_irq_msix_misc(pf);
3416 	ice_for_each_vsi(pf, i) {
3417 		if (!pf->vsi[i])
3418 			continue;
3419 		ice_vsi_free_q_vectors(pf->vsi[i]);
3420 	}
3421 	ice_deinit_pf(pf);
3422 	ice_deinit_hw(&pf->hw);
3423 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
3424 	 * do it via ice_schedule_reset() since there is no need to rebuild
3425 	 * and the service task is already stopped.
3426 	 */
3427 	ice_reset(&pf->hw, ICE_RESET_PFR);
3428 	pci_wait_for_pending_transaction(pdev);
3429 	ice_clear_interrupt_scheme(pf);
3430 	pci_disable_pcie_error_reporting(pdev);
3431 }
3432 
3433 /**
3434  * ice_pci_err_detected - warning that PCI error has been detected
3435  * @pdev: PCI device information struct
3436  * @err: the type of PCI error
3437  *
3438  * Called to warn that something happened on the PCI bus and the error handling
3439  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
3440  */
3441 static pci_ers_result_t
3442 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3443 {
3444 	struct ice_pf *pf = pci_get_drvdata(pdev);
3445 
3446 	if (!pf) {
3447 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3448 			__func__, err);
3449 		return PCI_ERS_RESULT_DISCONNECT;
3450 	}
3451 
3452 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3453 		ice_service_task_stop(pf);
3454 
3455 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3456 			set_bit(__ICE_PFR_REQ, pf->state);
3457 			ice_prepare_for_reset(pf);
3458 		}
3459 	}
3460 
3461 	return PCI_ERS_RESULT_NEED_RESET;
3462 }
3463 
3464 /**
3465  * ice_pci_err_slot_reset - a PCI slot reset has just happened
3466  * @pdev: PCI device information struct
3467  *
3468  * Called to determine if the driver can recover from the PCI slot reset by
3469  * using a register read to determine if the device is recoverable.
3470  */
3471 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3472 {
3473 	struct ice_pf *pf = pci_get_drvdata(pdev);
3474 	pci_ers_result_t result;
3475 	int err;
3476 	u32 reg;
3477 
3478 	err = pci_enable_device_mem(pdev);
3479 	if (err) {
3480 		dev_err(&pdev->dev,
3481 			"Cannot re-enable PCI device after reset, error %d\n",
3482 			err);
3483 		result = PCI_ERS_RESULT_DISCONNECT;
3484 	} else {
3485 		pci_set_master(pdev);
3486 		pci_restore_state(pdev);
3487 		pci_save_state(pdev);
3488 		pci_wake_from_d3(pdev, false);
3489 
3490 		/* Check for life */
3491 		reg = rd32(&pf->hw, GLGEN_RTRIG);
3492 		if (!reg)
3493 			result = PCI_ERS_RESULT_RECOVERED;
3494 		else
3495 			result = PCI_ERS_RESULT_DISCONNECT;
3496 	}
3497 
3498 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
3499 	if (err)
3500 		dev_dbg(&pdev->dev,
3501 			"pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
3502 			err);
3503 		/* non-fatal, continue */
3504 
3505 	return result;
3506 }
3507 
3508 /**
3509  * ice_pci_err_resume - restart operations after PCI error recovery
3510  * @pdev: PCI device information struct
3511  *
3512  * Called to allow the driver to bring things back up after PCI error and/or
3513  * reset recovery have finished
3514  */
3515 static void ice_pci_err_resume(struct pci_dev *pdev)
3516 {
3517 	struct ice_pf *pf = pci_get_drvdata(pdev);
3518 
3519 	if (!pf) {
3520 		dev_err(&pdev->dev,
3521 			"%s failed, device is unrecoverable\n", __func__);
3522 		return;
3523 	}
3524 
3525 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
3526 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3527 			__func__);
3528 		return;
3529 	}
3530 
3531 	ice_do_reset(pf, ICE_RESET_PFR);
3532 	ice_service_task_restart(pf);
3533 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3534 }
3535 
3536 /**
3537  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3538  * @pdev: PCI device information struct
3539  */
3540 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3541 {
3542 	struct ice_pf *pf = pci_get_drvdata(pdev);
3543 
3544 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3545 		ice_service_task_stop(pf);
3546 
3547 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3548 			set_bit(__ICE_PFR_REQ, pf->state);
3549 			ice_prepare_for_reset(pf);
3550 		}
3551 	}
3552 }
3553 
3554 /**
3555  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3556  * @pdev: PCI device information struct
3557  */
3558 static void ice_pci_err_reset_done(struct pci_dev *pdev)
3559 {
3560 	ice_pci_err_resume(pdev);
3561 }
3562 
3563 /* ice_pci_tbl - PCI Device ID Table
3564  *
3565  * Wildcard entries (PCI_ANY_ID) should come last
3566  * Last entry must be all 0s
3567  *
3568  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3569  *   Class, Class Mask, private data (not used) }
3570  */
3571 static const struct pci_device_id ice_pci_tbl[] = {
3572 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3573 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3574 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
3575 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
3576 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
3577 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
3578 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
3579 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
3580 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822X_BACKPLANE), 0 },
3581 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
3582 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
3583 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
3584 	/* required last entry */
3585 	{ 0, }
3586 };
3587 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3588 
3589 static const struct pci_error_handlers ice_pci_err_handler = {
3590 	.error_detected = ice_pci_err_detected,
3591 	.slot_reset = ice_pci_err_slot_reset,
3592 	.reset_prepare = ice_pci_err_reset_prepare,
3593 	.reset_done = ice_pci_err_reset_done,
3594 	.resume = ice_pci_err_resume
3595 };
3596 
3597 static struct pci_driver ice_driver = {
3598 	.name = KBUILD_MODNAME,
3599 	.id_table = ice_pci_tbl,
3600 	.probe = ice_probe,
3601 	.remove = ice_remove,
3602 	.sriov_configure = ice_sriov_configure,
3603 	.err_handler = &ice_pci_err_handler
3604 };
3605 
3606 /**
3607  * ice_module_init - Driver registration routine
3608  *
3609  * ice_module_init is the first routine called when the driver is
3610  * loaded. All it does is register with the PCI subsystem.
3611  */
3612 static int __init ice_module_init(void)
3613 {
3614 	int status;
3615 
3616 	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3617 	pr_info("%s\n", ice_copyright);
3618 
3619 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3620 	if (!ice_wq) {
3621 		pr_err("Failed to create workqueue\n");
3622 		return -ENOMEM;
3623 	}
3624 
3625 	status = pci_register_driver(&ice_driver);
3626 	if (status) {
3627 		pr_err("failed to register PCI driver, err %d\n", status);
3628 		destroy_workqueue(ice_wq);
3629 	}
3630 
3631 	return status;
3632 }
3633 module_init(ice_module_init);
3634 
3635 /**
3636  * ice_module_exit - Driver exit cleanup routine
3637  *
3638  * ice_module_exit is called just before the driver is removed
3639  * from memory.
3640  */
3641 static void __exit ice_module_exit(void)
3642 {
3643 	pci_unregister_driver(&ice_driver);
3644 	destroy_workqueue(ice_wq);
3645 	pr_info("module unloaded\n");
3646 }
3647 module_exit(ice_module_exit);
3648 
3649 /**
3650  * ice_set_mac_address - NDO callback to set MAC address
3651  * @netdev: network interface device structure
3652  * @pi: pointer to an address structure
3653  *
3654  * Returns 0 on success, negative on failure
3655  */
3656 static int ice_set_mac_address(struct net_device *netdev, void *pi)
3657 {
3658 	struct ice_netdev_priv *np = netdev_priv(netdev);
3659 	struct ice_vsi *vsi = np->vsi;
3660 	struct ice_pf *pf = vsi->back;
3661 	struct ice_hw *hw = &pf->hw;
3662 	struct sockaddr *addr = pi;
3663 	enum ice_status status;
3664 	u8 flags = 0;
3665 	int err = 0;
3666 	u8 *mac;
3667 
3668 	mac = (u8 *)addr->sa_data;
3669 
3670 	if (!is_valid_ether_addr(mac))
3671 		return -EADDRNOTAVAIL;
3672 
3673 	if (ether_addr_equal(netdev->dev_addr, mac)) {
3674 		netdev_warn(netdev, "already using mac %pM\n", mac);
3675 		return 0;
3676 	}
3677 
3678 	if (test_bit(__ICE_DOWN, pf->state) ||
3679 	    ice_is_reset_in_progress(pf->state)) {
3680 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3681 			   mac);
3682 		return -EBUSY;
3683 	}
3684 
3685 	/* When we change the MAC address we also have to change the MAC address
3686 	 * based filter rules that were created previously for the old MAC
3687 	 * address. So first, we remove the old filter rule using ice_remove_mac
3688 	 * and then create a new filter rule using ice_add_mac via
3689 	 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3690 	 * filters.
3691 	 */
3692 	status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3693 	if (status) {
3694 		err = -EADDRNOTAVAIL;
3695 		goto err_update_filters;
3696 	}
3697 
3698 	status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3699 	if (status) {
3700 		err = -EADDRNOTAVAIL;
3701 		goto err_update_filters;
3702 	}
3703 
3704 err_update_filters:
3705 	if (err) {
3706 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3707 			   mac);
3708 		return err;
3709 	}
3710 
3711 	/* change the netdev's MAC address */
3712 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3713 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3714 		   netdev->dev_addr);
3715 
3716 	/* write new MAC address to the firmware */
3717 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3718 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3719 	if (status) {
3720 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3721 			   mac, status);
3722 	}
3723 	return 0;
3724 }
3725 
3726 /**
3727  * ice_set_rx_mode - NDO callback to set the netdev filters
3728  * @netdev: network interface device structure
3729  */
3730 static void ice_set_rx_mode(struct net_device *netdev)
3731 {
3732 	struct ice_netdev_priv *np = netdev_priv(netdev);
3733 	struct ice_vsi *vsi = np->vsi;
3734 
3735 	if (!vsi)
3736 		return;
3737 
3738 	/* Set the flags to synchronize filters
3739 	 * ndo_set_rx_mode may be triggered even without a change in netdev
3740 	 * flags
3741 	 */
3742 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3743 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3744 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3745 
3746 	/* schedule our worker thread which will take care of
3747 	 * applying the new filter changes
3748 	 */
3749 	ice_service_task_schedule(vsi->back);
3750 }
3751 
3752 /**
3753  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
3754  * @netdev: network interface device structure
3755  * @queue_index: Queue ID
3756  * @maxrate: maximum bandwidth in Mbps
3757  */
3758 static int
3759 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
3760 {
3761 	struct ice_netdev_priv *np = netdev_priv(netdev);
3762 	struct ice_vsi *vsi = np->vsi;
3763 	enum ice_status status;
3764 	u16 q_handle;
3765 	u8 tc;
3766 
3767 	/* Validate maxrate requested is within permitted range */
3768 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
3769 		netdev_err(netdev,
3770 			   "Invalid max rate %d specified for the queue %d\n",
3771 			   maxrate, queue_index);
3772 		return -EINVAL;
3773 	}
3774 
3775 	q_handle = vsi->tx_rings[queue_index]->q_handle;
3776 	tc = ice_dcb_get_tc(vsi, queue_index);
3777 
3778 	/* Set BW back to default, when user set maxrate to 0 */
3779 	if (!maxrate)
3780 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
3781 					       q_handle, ICE_MAX_BW);
3782 	else
3783 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
3784 					  q_handle, ICE_MAX_BW, maxrate * 1000);
3785 	if (status) {
3786 		netdev_err(netdev,
3787 			   "Unable to set Tx max rate, error %d\n", status);
3788 		return -EIO;
3789 	}
3790 
3791 	return 0;
3792 }
3793 
3794 /**
3795  * ice_fdb_add - add an entry to the hardware database
3796  * @ndm: the input from the stack
3797  * @tb: pointer to array of nladdr (unused)
3798  * @dev: the net device pointer
3799  * @addr: the MAC address entry being added
3800  * @vid: VLAN ID
3801  * @flags: instructions from stack about fdb operation
3802  * @extack: netlink extended ack
3803  */
3804 static int
3805 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3806 	    struct net_device *dev, const unsigned char *addr, u16 vid,
3807 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
3808 {
3809 	int err;
3810 
3811 	if (vid) {
3812 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3813 		return -EINVAL;
3814 	}
3815 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3816 		netdev_err(dev, "FDB only supports static addresses\n");
3817 		return -EINVAL;
3818 	}
3819 
3820 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3821 		err = dev_uc_add_excl(dev, addr);
3822 	else if (is_multicast_ether_addr(addr))
3823 		err = dev_mc_add_excl(dev, addr);
3824 	else
3825 		err = -EINVAL;
3826 
3827 	/* Only return duplicate errors if NLM_F_EXCL is set */
3828 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3829 		err = 0;
3830 
3831 	return err;
3832 }
3833 
3834 /**
3835  * ice_fdb_del - delete an entry from the hardware database
3836  * @ndm: the input from the stack
3837  * @tb: pointer to array of nladdr (unused)
3838  * @dev: the net device pointer
3839  * @addr: the MAC address entry being added
3840  * @vid: VLAN ID
3841  */
3842 static int
3843 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3844 	    struct net_device *dev, const unsigned char *addr,
3845 	    __always_unused u16 vid)
3846 {
3847 	int err;
3848 
3849 	if (ndm->ndm_state & NUD_PERMANENT) {
3850 		netdev_err(dev, "FDB only supports static addresses\n");
3851 		return -EINVAL;
3852 	}
3853 
3854 	if (is_unicast_ether_addr(addr))
3855 		err = dev_uc_del(dev, addr);
3856 	else if (is_multicast_ether_addr(addr))
3857 		err = dev_mc_del(dev, addr);
3858 	else
3859 		err = -EINVAL;
3860 
3861 	return err;
3862 }
3863 
3864 /**
3865  * ice_set_features - set the netdev feature flags
3866  * @netdev: ptr to the netdev being adjusted
3867  * @features: the feature set that the stack is suggesting
3868  */
3869 static int
3870 ice_set_features(struct net_device *netdev, netdev_features_t features)
3871 {
3872 	struct ice_netdev_priv *np = netdev_priv(netdev);
3873 	struct ice_vsi *vsi = np->vsi;
3874 	struct ice_pf *pf = vsi->back;
3875 	int ret = 0;
3876 
3877 	/* Don't set any netdev advanced features with device in Safe Mode */
3878 	if (ice_is_safe_mode(vsi->back)) {
3879 		dev_err(&vsi->back->pdev->dev,
3880 			"Device is in Safe Mode - not enabling advanced netdev features\n");
3881 		return ret;
3882 	}
3883 
3884 	/* Do not change setting during reset */
3885 	if (ice_is_reset_in_progress(pf->state)) {
3886 		dev_err(&vsi->back->pdev->dev,
3887 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
3888 		return -EBUSY;
3889 	}
3890 
3891 	/* Multiple features can be changed in one call so keep features in
3892 	 * separate if/else statements to guarantee each feature is checked
3893 	 */
3894 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3895 		ret = ice_vsi_manage_rss_lut(vsi, true);
3896 	else if (!(features & NETIF_F_RXHASH) &&
3897 		 netdev->features & NETIF_F_RXHASH)
3898 		ret = ice_vsi_manage_rss_lut(vsi, false);
3899 
3900 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3901 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3902 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3903 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3904 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3905 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3906 
3907 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3908 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3909 		ret = ice_vsi_manage_vlan_insertion(vsi);
3910 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3911 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3912 		ret = ice_vsi_manage_vlan_insertion(vsi);
3913 
3914 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3915 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3916 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3917 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3918 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3919 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3920 
3921 	return ret;
3922 }
3923 
3924 /**
3925  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3926  * @vsi: VSI to setup VLAN properties for
3927  */
3928 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3929 {
3930 	int ret = 0;
3931 
3932 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3933 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3934 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3935 		ret = ice_vsi_manage_vlan_insertion(vsi);
3936 
3937 	return ret;
3938 }
3939 
3940 /**
3941  * ice_vsi_cfg - Setup the VSI
3942  * @vsi: the VSI being configured
3943  *
3944  * Return 0 on success and negative value on error
3945  */
3946 int ice_vsi_cfg(struct ice_vsi *vsi)
3947 {
3948 	int err;
3949 
3950 	if (vsi->netdev) {
3951 		ice_set_rx_mode(vsi->netdev);
3952 
3953 		err = ice_vsi_vlan_setup(vsi);
3954 
3955 		if (err)
3956 			return err;
3957 	}
3958 	ice_vsi_cfg_dcb_rings(vsi);
3959 
3960 	err = ice_vsi_cfg_lan_txqs(vsi);
3961 	if (!err && ice_is_xdp_ena_vsi(vsi))
3962 		err = ice_vsi_cfg_xdp_txqs(vsi);
3963 	if (!err)
3964 		err = ice_vsi_cfg_rxqs(vsi);
3965 
3966 	return err;
3967 }
3968 
3969 /**
3970  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3971  * @vsi: the VSI being configured
3972  */
3973 static void ice_napi_enable_all(struct ice_vsi *vsi)
3974 {
3975 	int q_idx;
3976 
3977 	if (!vsi->netdev)
3978 		return;
3979 
3980 	ice_for_each_q_vector(vsi, q_idx) {
3981 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3982 
3983 		if (q_vector->rx.ring || q_vector->tx.ring)
3984 			napi_enable(&q_vector->napi);
3985 	}
3986 }
3987 
3988 /**
3989  * ice_up_complete - Finish the last steps of bringing up a connection
3990  * @vsi: The VSI being configured
3991  *
3992  * Return 0 on success and negative value on error
3993  */
3994 static int ice_up_complete(struct ice_vsi *vsi)
3995 {
3996 	struct ice_pf *pf = vsi->back;
3997 	int err;
3998 
3999 	ice_vsi_cfg_msix(vsi);
4000 
4001 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
4002 	 * Tx queue group list was configured and the context bits were
4003 	 * programmed using ice_vsi_cfg_txqs
4004 	 */
4005 	err = ice_vsi_start_rx_rings(vsi);
4006 	if (err)
4007 		return err;
4008 
4009 	clear_bit(__ICE_DOWN, vsi->state);
4010 	ice_napi_enable_all(vsi);
4011 	ice_vsi_ena_irq(vsi);
4012 
4013 	if (vsi->port_info &&
4014 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4015 	    vsi->netdev) {
4016 		ice_print_link_msg(vsi, true);
4017 		netif_tx_start_all_queues(vsi->netdev);
4018 		netif_carrier_on(vsi->netdev);
4019 	}
4020 
4021 	ice_service_task_schedule(pf);
4022 
4023 	return 0;
4024 }
4025 
4026 /**
4027  * ice_up - Bring the connection back up after being down
4028  * @vsi: VSI being configured
4029  */
4030 int ice_up(struct ice_vsi *vsi)
4031 {
4032 	int err;
4033 
4034 	err = ice_vsi_cfg(vsi);
4035 	if (!err)
4036 		err = ice_up_complete(vsi);
4037 
4038 	return err;
4039 }
4040 
4041 /**
4042  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4043  * @ring: Tx or Rx ring to read stats from
4044  * @pkts: packets stats counter
4045  * @bytes: bytes stats counter
4046  *
4047  * This function fetches stats from the ring considering the atomic operations
4048  * that needs to be performed to read u64 values in 32 bit machine.
4049  */
4050 static void
4051 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
4052 {
4053 	unsigned int start;
4054 	*pkts = 0;
4055 	*bytes = 0;
4056 
4057 	if (!ring)
4058 		return;
4059 	do {
4060 		start = u64_stats_fetch_begin_irq(&ring->syncp);
4061 		*pkts = ring->stats.pkts;
4062 		*bytes = ring->stats.bytes;
4063 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4064 }
4065 
4066 /**
4067  * ice_update_vsi_ring_stats - Update VSI stats counters
4068  * @vsi: the VSI to be updated
4069  */
4070 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4071 {
4072 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4073 	struct ice_ring *ring;
4074 	u64 pkts, bytes;
4075 	int i;
4076 
4077 	/* reset netdev stats */
4078 	vsi_stats->tx_packets = 0;
4079 	vsi_stats->tx_bytes = 0;
4080 	vsi_stats->rx_packets = 0;
4081 	vsi_stats->rx_bytes = 0;
4082 
4083 	/* reset non-netdev (extended) stats */
4084 	vsi->tx_restart = 0;
4085 	vsi->tx_busy = 0;
4086 	vsi->tx_linearize = 0;
4087 	vsi->rx_buf_failed = 0;
4088 	vsi->rx_page_failed = 0;
4089 
4090 	rcu_read_lock();
4091 
4092 	/* update Tx rings counters */
4093 	ice_for_each_txq(vsi, i) {
4094 		ring = READ_ONCE(vsi->tx_rings[i]);
4095 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4096 		vsi_stats->tx_packets += pkts;
4097 		vsi_stats->tx_bytes += bytes;
4098 		vsi->tx_restart += ring->tx_stats.restart_q;
4099 		vsi->tx_busy += ring->tx_stats.tx_busy;
4100 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
4101 	}
4102 
4103 	/* update Rx rings counters */
4104 	ice_for_each_rxq(vsi, i) {
4105 		ring = READ_ONCE(vsi->rx_rings[i]);
4106 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4107 		vsi_stats->rx_packets += pkts;
4108 		vsi_stats->rx_bytes += bytes;
4109 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4110 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4111 	}
4112 
4113 	rcu_read_unlock();
4114 }
4115 
4116 /**
4117  * ice_update_vsi_stats - Update VSI stats counters
4118  * @vsi: the VSI to be updated
4119  */
4120 void ice_update_vsi_stats(struct ice_vsi *vsi)
4121 {
4122 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4123 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
4124 	struct ice_pf *pf = vsi->back;
4125 
4126 	if (test_bit(__ICE_DOWN, vsi->state) ||
4127 	    test_bit(__ICE_CFG_BUSY, pf->state))
4128 		return;
4129 
4130 	/* get stats as recorded by Tx/Rx rings */
4131 	ice_update_vsi_ring_stats(vsi);
4132 
4133 	/* get VSI stats as recorded by the hardware */
4134 	ice_update_eth_stats(vsi);
4135 
4136 	cur_ns->tx_errors = cur_es->tx_errors;
4137 	cur_ns->rx_dropped = cur_es->rx_discards;
4138 	cur_ns->tx_dropped = cur_es->tx_discards;
4139 	cur_ns->multicast = cur_es->rx_multicast;
4140 
4141 	/* update some more netdev stats if this is main VSI */
4142 	if (vsi->type == ICE_VSI_PF) {
4143 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
4144 		cur_ns->rx_errors = pf->stats.crc_errors +
4145 				    pf->stats.illegal_bytes;
4146 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
4147 		/* record drops from the port level */
4148 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
4149 	}
4150 }
4151 
4152 /**
4153  * ice_update_pf_stats - Update PF port stats counters
4154  * @pf: PF whose stats needs to be updated
4155  */
4156 void ice_update_pf_stats(struct ice_pf *pf)
4157 {
4158 	struct ice_hw_port_stats *prev_ps, *cur_ps;
4159 	struct ice_hw *hw = &pf->hw;
4160 	u8 port;
4161 
4162 	port = hw->port_info->lport;
4163 	prev_ps = &pf->stats_prev;
4164 	cur_ps = &pf->stats;
4165 
4166 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
4167 			  &prev_ps->eth.rx_bytes,
4168 			  &cur_ps->eth.rx_bytes);
4169 
4170 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
4171 			  &prev_ps->eth.rx_unicast,
4172 			  &cur_ps->eth.rx_unicast);
4173 
4174 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
4175 			  &prev_ps->eth.rx_multicast,
4176 			  &cur_ps->eth.rx_multicast);
4177 
4178 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
4179 			  &prev_ps->eth.rx_broadcast,
4180 			  &cur_ps->eth.rx_broadcast);
4181 
4182 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
4183 			  &prev_ps->eth.rx_discards,
4184 			  &cur_ps->eth.rx_discards);
4185 
4186 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
4187 			  &prev_ps->eth.tx_bytes,
4188 			  &cur_ps->eth.tx_bytes);
4189 
4190 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
4191 			  &prev_ps->eth.tx_unicast,
4192 			  &cur_ps->eth.tx_unicast);
4193 
4194 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
4195 			  &prev_ps->eth.tx_multicast,
4196 			  &cur_ps->eth.tx_multicast);
4197 
4198 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
4199 			  &prev_ps->eth.tx_broadcast,
4200 			  &cur_ps->eth.tx_broadcast);
4201 
4202 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
4203 			  &prev_ps->tx_dropped_link_down,
4204 			  &cur_ps->tx_dropped_link_down);
4205 
4206 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
4207 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
4208 
4209 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
4210 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
4211 
4212 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
4213 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
4214 
4215 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
4216 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
4217 
4218 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
4219 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4220 
4221 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
4222 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4223 
4224 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
4225 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4226 
4227 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
4228 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
4229 
4230 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
4231 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
4232 
4233 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
4234 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
4235 
4236 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
4237 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
4238 
4239 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
4240 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4241 
4242 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
4243 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4244 
4245 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
4246 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4247 
4248 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
4249 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4250 
4251 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
4252 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4253 
4254 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
4255 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4256 
4257 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
4258 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4259 
4260 	ice_update_dcb_stats(pf);
4261 
4262 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
4263 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
4264 
4265 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
4266 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4267 
4268 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
4269 			  &prev_ps->mac_local_faults,
4270 			  &cur_ps->mac_local_faults);
4271 
4272 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
4273 			  &prev_ps->mac_remote_faults,
4274 			  &cur_ps->mac_remote_faults);
4275 
4276 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
4277 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4278 
4279 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
4280 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4281 
4282 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
4283 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4284 
4285 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
4286 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4287 
4288 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
4289 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4290 
4291 	pf->stat_prev_loaded = true;
4292 }
4293 
4294 /**
4295  * ice_get_stats64 - get statistics for network device structure
4296  * @netdev: network interface device structure
4297  * @stats: main device statistics structure
4298  */
4299 static
4300 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4301 {
4302 	struct ice_netdev_priv *np = netdev_priv(netdev);
4303 	struct rtnl_link_stats64 *vsi_stats;
4304 	struct ice_vsi *vsi = np->vsi;
4305 
4306 	vsi_stats = &vsi->net_stats;
4307 
4308 	if (!vsi->num_txq || !vsi->num_rxq)
4309 		return;
4310 
4311 	/* netdev packet/byte stats come from ring counter. These are obtained
4312 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
4313 	 * But, only call the update routine and read the registers if VSI is
4314 	 * not down.
4315 	 */
4316 	if (!test_bit(__ICE_DOWN, vsi->state))
4317 		ice_update_vsi_ring_stats(vsi);
4318 	stats->tx_packets = vsi_stats->tx_packets;
4319 	stats->tx_bytes = vsi_stats->tx_bytes;
4320 	stats->rx_packets = vsi_stats->rx_packets;
4321 	stats->rx_bytes = vsi_stats->rx_bytes;
4322 
4323 	/* The rest of the stats can be read from the hardware but instead we
4324 	 * just return values that the watchdog task has already obtained from
4325 	 * the hardware.
4326 	 */
4327 	stats->multicast = vsi_stats->multicast;
4328 	stats->tx_errors = vsi_stats->tx_errors;
4329 	stats->tx_dropped = vsi_stats->tx_dropped;
4330 	stats->rx_errors = vsi_stats->rx_errors;
4331 	stats->rx_dropped = vsi_stats->rx_dropped;
4332 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4333 	stats->rx_length_errors = vsi_stats->rx_length_errors;
4334 }
4335 
4336 /**
4337  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4338  * @vsi: VSI having NAPI disabled
4339  */
4340 static void ice_napi_disable_all(struct ice_vsi *vsi)
4341 {
4342 	int q_idx;
4343 
4344 	if (!vsi->netdev)
4345 		return;
4346 
4347 	ice_for_each_q_vector(vsi, q_idx) {
4348 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
4349 
4350 		if (q_vector->rx.ring || q_vector->tx.ring)
4351 			napi_disable(&q_vector->napi);
4352 	}
4353 }
4354 
4355 /**
4356  * ice_down - Shutdown the connection
4357  * @vsi: The VSI being stopped
4358  */
4359 int ice_down(struct ice_vsi *vsi)
4360 {
4361 	int i, tx_err, rx_err, link_err = 0;
4362 
4363 	/* Caller of this function is expected to set the
4364 	 * vsi->state __ICE_DOWN bit
4365 	 */
4366 	if (vsi->netdev) {
4367 		netif_carrier_off(vsi->netdev);
4368 		netif_tx_disable(vsi->netdev);
4369 	}
4370 
4371 	ice_vsi_dis_irq(vsi);
4372 
4373 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
4374 	if (tx_err)
4375 		netdev_err(vsi->netdev,
4376 			   "Failed stop Tx rings, VSI %d error %d\n",
4377 			   vsi->vsi_num, tx_err);
4378 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
4379 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
4380 		if (tx_err)
4381 			netdev_err(vsi->netdev,
4382 				   "Failed stop XDP rings, VSI %d error %d\n",
4383 				   vsi->vsi_num, tx_err);
4384 	}
4385 
4386 	rx_err = ice_vsi_stop_rx_rings(vsi);
4387 	if (rx_err)
4388 		netdev_err(vsi->netdev,
4389 			   "Failed stop Rx rings, VSI %d error %d\n",
4390 			   vsi->vsi_num, rx_err);
4391 
4392 	ice_napi_disable_all(vsi);
4393 
4394 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
4395 		link_err = ice_force_phys_link_state(vsi, false);
4396 		if (link_err)
4397 			netdev_err(vsi->netdev,
4398 				   "Failed to set physical link down, VSI %d error %d\n",
4399 				   vsi->vsi_num, link_err);
4400 	}
4401 
4402 	ice_for_each_txq(vsi, i)
4403 		ice_clean_tx_ring(vsi->tx_rings[i]);
4404 
4405 	ice_for_each_rxq(vsi, i)
4406 		ice_clean_rx_ring(vsi->rx_rings[i]);
4407 
4408 	if (tx_err || rx_err || link_err) {
4409 		netdev_err(vsi->netdev,
4410 			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
4411 			   vsi->vsi_num, vsi->vsw->sw_id);
4412 		return -EIO;
4413 	}
4414 
4415 	return 0;
4416 }
4417 
4418 /**
4419  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4420  * @vsi: VSI having resources allocated
4421  *
4422  * Return 0 on success, negative on failure
4423  */
4424 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4425 {
4426 	int i, err = 0;
4427 
4428 	if (!vsi->num_txq) {
4429 		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
4430 			vsi->vsi_num);
4431 		return -EINVAL;
4432 	}
4433 
4434 	ice_for_each_txq(vsi, i) {
4435 		struct ice_ring *ring = vsi->tx_rings[i];
4436 
4437 		if (!ring)
4438 			return -EINVAL;
4439 
4440 		ring->netdev = vsi->netdev;
4441 		err = ice_setup_tx_ring(ring);
4442 		if (err)
4443 			break;
4444 	}
4445 
4446 	return err;
4447 }
4448 
4449 /**
4450  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4451  * @vsi: VSI having resources allocated
4452  *
4453  * Return 0 on success, negative on failure
4454  */
4455 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4456 {
4457 	int i, err = 0;
4458 
4459 	if (!vsi->num_rxq) {
4460 		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
4461 			vsi->vsi_num);
4462 		return -EINVAL;
4463 	}
4464 
4465 	ice_for_each_rxq(vsi, i) {
4466 		struct ice_ring *ring = vsi->rx_rings[i];
4467 
4468 		if (!ring)
4469 			return -EINVAL;
4470 
4471 		ring->netdev = vsi->netdev;
4472 		err = ice_setup_rx_ring(ring);
4473 		if (err)
4474 			break;
4475 	}
4476 
4477 	return err;
4478 }
4479 
4480 /**
4481  * ice_vsi_open - Called when a network interface is made active
4482  * @vsi: the VSI to open
4483  *
4484  * Initialization of the VSI
4485  *
4486  * Returns 0 on success, negative value on error
4487  */
4488 static int ice_vsi_open(struct ice_vsi *vsi)
4489 {
4490 	char int_name[ICE_INT_NAME_STR_LEN];
4491 	struct ice_pf *pf = vsi->back;
4492 	int err;
4493 
4494 	/* allocate descriptors */
4495 	err = ice_vsi_setup_tx_rings(vsi);
4496 	if (err)
4497 		goto err_setup_tx;
4498 
4499 	err = ice_vsi_setup_rx_rings(vsi);
4500 	if (err)
4501 		goto err_setup_rx;
4502 
4503 	err = ice_vsi_cfg(vsi);
4504 	if (err)
4505 		goto err_setup_rx;
4506 
4507 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4508 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
4509 	err = ice_vsi_req_irq_msix(vsi, int_name);
4510 	if (err)
4511 		goto err_setup_rx;
4512 
4513 	/* Notify the stack of the actual queue counts. */
4514 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4515 	if (err)
4516 		goto err_set_qs;
4517 
4518 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4519 	if (err)
4520 		goto err_set_qs;
4521 
4522 	err = ice_up_complete(vsi);
4523 	if (err)
4524 		goto err_up_complete;
4525 
4526 	return 0;
4527 
4528 err_up_complete:
4529 	ice_down(vsi);
4530 err_set_qs:
4531 	ice_vsi_free_irq(vsi);
4532 err_setup_rx:
4533 	ice_vsi_free_rx_rings(vsi);
4534 err_setup_tx:
4535 	ice_vsi_free_tx_rings(vsi);
4536 
4537 	return err;
4538 }
4539 
4540 /**
4541  * ice_vsi_release_all - Delete all VSIs
4542  * @pf: PF from which all VSIs are being removed
4543  */
4544 static void ice_vsi_release_all(struct ice_pf *pf)
4545 {
4546 	int err, i;
4547 
4548 	if (!pf->vsi)
4549 		return;
4550 
4551 	ice_for_each_vsi(pf, i) {
4552 		if (!pf->vsi[i])
4553 			continue;
4554 
4555 		err = ice_vsi_release(pf->vsi[i]);
4556 		if (err)
4557 			dev_dbg(ice_pf_to_dev(pf),
4558 				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4559 				i, err, pf->vsi[i]->vsi_num);
4560 	}
4561 }
4562 
4563 /**
4564  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4565  * @pf: pointer to the PF instance
4566  * @type: VSI type to rebuild
4567  *
4568  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4569  */
4570 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4571 {
4572 	struct device *dev = ice_pf_to_dev(pf);
4573 	enum ice_status status;
4574 	int i, err;
4575 
4576 	ice_for_each_vsi(pf, i) {
4577 		struct ice_vsi *vsi = pf->vsi[i];
4578 
4579 		if (!vsi || vsi->type != type)
4580 			continue;
4581 
4582 		/* rebuild the VSI */
4583 		err = ice_vsi_rebuild(vsi, true);
4584 		if (err) {
4585 			dev_err(dev,
4586 				"rebuild VSI failed, err %d, VSI index %d, type %s\n",
4587 				err, vsi->idx, ice_vsi_type_str(type));
4588 			return err;
4589 		}
4590 
4591 		/* replay filters for the VSI */
4592 		status = ice_replay_vsi(&pf->hw, vsi->idx);
4593 		if (status) {
4594 			dev_err(dev,
4595 				"replay VSI failed, status %d, VSI index %d, type %s\n",
4596 				status, vsi->idx, ice_vsi_type_str(type));
4597 			return -EIO;
4598 		}
4599 
4600 		/* Re-map HW VSI number, using VSI handle that has been
4601 		 * previously validated in ice_replay_vsi() call above
4602 		 */
4603 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4604 
4605 		/* enable the VSI */
4606 		err = ice_ena_vsi(vsi, false);
4607 		if (err) {
4608 			dev_err(dev,
4609 				"enable VSI failed, err %d, VSI index %d, type %s\n",
4610 				err, vsi->idx, ice_vsi_type_str(type));
4611 			return err;
4612 		}
4613 
4614 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
4615 			 ice_vsi_type_str(type));
4616 	}
4617 
4618 	return 0;
4619 }
4620 
4621 /**
4622  * ice_update_pf_netdev_link - Update PF netdev link status
4623  * @pf: pointer to the PF instance
4624  */
4625 static void ice_update_pf_netdev_link(struct ice_pf *pf)
4626 {
4627 	bool link_up;
4628 	int i;
4629 
4630 	ice_for_each_vsi(pf, i) {
4631 		struct ice_vsi *vsi = pf->vsi[i];
4632 
4633 		if (!vsi || vsi->type != ICE_VSI_PF)
4634 			return;
4635 
4636 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4637 		if (link_up) {
4638 			netif_carrier_on(pf->vsi[i]->netdev);
4639 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4640 		} else {
4641 			netif_carrier_off(pf->vsi[i]->netdev);
4642 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4643 		}
4644 	}
4645 }
4646 
4647 /**
4648  * ice_rebuild - rebuild after reset
4649  * @pf: PF to rebuild
4650  * @reset_type: type of reset
4651  */
4652 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4653 {
4654 	struct device *dev = ice_pf_to_dev(pf);
4655 	struct ice_hw *hw = &pf->hw;
4656 	enum ice_status ret;
4657 	int err;
4658 
4659 	if (test_bit(__ICE_DOWN, pf->state))
4660 		goto clear_recovery;
4661 
4662 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4663 
4664 	ret = ice_init_all_ctrlq(hw);
4665 	if (ret) {
4666 		dev_err(dev, "control queues init failed %d\n", ret);
4667 		goto err_init_ctrlq;
4668 	}
4669 
4670 	/* if DDP was previously loaded successfully */
4671 	if (!ice_is_safe_mode(pf)) {
4672 		/* reload the SW DB of filter tables */
4673 		if (reset_type == ICE_RESET_PFR)
4674 			ice_fill_blk_tbls(hw);
4675 		else
4676 			/* Reload DDP Package after CORER/GLOBR reset */
4677 			ice_load_pkg(NULL, pf);
4678 	}
4679 
4680 	ret = ice_clear_pf_cfg(hw);
4681 	if (ret) {
4682 		dev_err(dev, "clear PF configuration failed %d\n", ret);
4683 		goto err_init_ctrlq;
4684 	}
4685 
4686 	if (pf->first_sw->dflt_vsi_ena)
4687 		dev_info(dev,
4688 			 "Clearing default VSI, re-enable after reset completes\n");
4689 	/* clear the default VSI configuration if it exists */
4690 	pf->first_sw->dflt_vsi = NULL;
4691 	pf->first_sw->dflt_vsi_ena = false;
4692 
4693 	ice_clear_pxe_mode(hw);
4694 
4695 	ret = ice_get_caps(hw);
4696 	if (ret) {
4697 		dev_err(dev, "ice_get_caps failed %d\n", ret);
4698 		goto err_init_ctrlq;
4699 	}
4700 
4701 	err = ice_sched_init_port(hw->port_info);
4702 	if (err)
4703 		goto err_sched_init_port;
4704 
4705 	err = ice_update_link_info(hw->port_info);
4706 	if (err)
4707 		dev_err(dev, "Get link status error %d\n", err);
4708 
4709 	/* start misc vector */
4710 	err = ice_req_irq_msix_misc(pf);
4711 	if (err) {
4712 		dev_err(dev, "misc vector setup failed: %d\n", err);
4713 		goto err_sched_init_port;
4714 	}
4715 
4716 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4717 		ice_dcb_rebuild(pf);
4718 
4719 	/* rebuild PF VSI */
4720 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4721 	if (err) {
4722 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4723 		goto err_vsi_rebuild;
4724 	}
4725 
4726 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4727 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
4728 		if (err) {
4729 			dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4730 			goto err_vsi_rebuild;
4731 		}
4732 	}
4733 
4734 	ice_update_pf_netdev_link(pf);
4735 
4736 	/* tell the firmware we are up */
4737 	ret = ice_send_version(pf);
4738 	if (ret) {
4739 		dev_err(dev,
4740 			"Rebuild failed due to error sending driver version: %d\n",
4741 			ret);
4742 		goto err_vsi_rebuild;
4743 	}
4744 
4745 	ice_replay_post(hw);
4746 
4747 	/* if we get here, reset flow is successful */
4748 	clear_bit(__ICE_RESET_FAILED, pf->state);
4749 	return;
4750 
4751 err_vsi_rebuild:
4752 err_sched_init_port:
4753 	ice_sched_cleanup_all(hw);
4754 err_init_ctrlq:
4755 	ice_shutdown_all_ctrlq(hw);
4756 	set_bit(__ICE_RESET_FAILED, pf->state);
4757 clear_recovery:
4758 	/* set this bit in PF state to control service task scheduling */
4759 	set_bit(__ICE_NEEDS_RESTART, pf->state);
4760 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
4761 }
4762 
4763 /**
4764  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
4765  * @vsi: Pointer to VSI structure
4766  */
4767 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
4768 {
4769 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
4770 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
4771 	else
4772 		return ICE_RXBUF_3072;
4773 }
4774 
4775 /**
4776  * ice_change_mtu - NDO callback to change the MTU
4777  * @netdev: network interface device structure
4778  * @new_mtu: new value for maximum frame size
4779  *
4780  * Returns 0 on success, negative on failure
4781  */
4782 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4783 {
4784 	struct ice_netdev_priv *np = netdev_priv(netdev);
4785 	struct ice_vsi *vsi = np->vsi;
4786 	struct ice_pf *pf = vsi->back;
4787 	u8 count = 0;
4788 
4789 	if (new_mtu == netdev->mtu) {
4790 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4791 		return 0;
4792 	}
4793 
4794 	if (ice_is_xdp_ena_vsi(vsi)) {
4795 		int frame_size = ice_max_xdp_frame_size(vsi);
4796 
4797 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
4798 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
4799 				   frame_size - ICE_ETH_PKT_HDR_PAD);
4800 			return -EINVAL;
4801 		}
4802 	}
4803 
4804 	if (new_mtu < netdev->min_mtu) {
4805 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4806 			   netdev->min_mtu);
4807 		return -EINVAL;
4808 	} else if (new_mtu > netdev->max_mtu) {
4809 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4810 			   netdev->min_mtu);
4811 		return -EINVAL;
4812 	}
4813 	/* if a reset is in progress, wait for some time for it to complete */
4814 	do {
4815 		if (ice_is_reset_in_progress(pf->state)) {
4816 			count++;
4817 			usleep_range(1000, 2000);
4818 		} else {
4819 			break;
4820 		}
4821 
4822 	} while (count < 100);
4823 
4824 	if (count == 100) {
4825 		netdev_err(netdev, "can't change MTU. Device is busy\n");
4826 		return -EBUSY;
4827 	}
4828 
4829 	netdev->mtu = new_mtu;
4830 
4831 	/* if VSI is up, bring it down and then back up */
4832 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4833 		int err;
4834 
4835 		err = ice_down(vsi);
4836 		if (err) {
4837 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4838 			return err;
4839 		}
4840 
4841 		err = ice_up(vsi);
4842 		if (err) {
4843 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4844 			return err;
4845 		}
4846 	}
4847 
4848 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
4849 	return 0;
4850 }
4851 
4852 /**
4853  * ice_set_rss - Set RSS keys and lut
4854  * @vsi: Pointer to VSI structure
4855  * @seed: RSS hash seed
4856  * @lut: Lookup table
4857  * @lut_size: Lookup table size
4858  *
4859  * Returns 0 on success, negative on failure
4860  */
4861 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4862 {
4863 	struct ice_pf *pf = vsi->back;
4864 	struct ice_hw *hw = &pf->hw;
4865 	enum ice_status status;
4866 	struct device *dev;
4867 
4868 	dev = ice_pf_to_dev(pf);
4869 	if (seed) {
4870 		struct ice_aqc_get_set_rss_keys *buf =
4871 				  (struct ice_aqc_get_set_rss_keys *)seed;
4872 
4873 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4874 
4875 		if (status) {
4876 			dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n",
4877 				status, hw->adminq.rq_last_status);
4878 			return -EIO;
4879 		}
4880 	}
4881 
4882 	if (lut) {
4883 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4884 					    lut, lut_size);
4885 		if (status) {
4886 			dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n",
4887 				status, hw->adminq.rq_last_status);
4888 			return -EIO;
4889 		}
4890 	}
4891 
4892 	return 0;
4893 }
4894 
4895 /**
4896  * ice_get_rss - Get RSS keys and lut
4897  * @vsi: Pointer to VSI structure
4898  * @seed: Buffer to store the keys
4899  * @lut: Buffer to store the lookup table entries
4900  * @lut_size: Size of buffer to store the lookup table entries
4901  *
4902  * Returns 0 on success, negative on failure
4903  */
4904 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4905 {
4906 	struct ice_pf *pf = vsi->back;
4907 	struct ice_hw *hw = &pf->hw;
4908 	enum ice_status status;
4909 	struct device *dev;
4910 
4911 	dev = ice_pf_to_dev(pf);
4912 	if (seed) {
4913 		struct ice_aqc_get_set_rss_keys *buf =
4914 				  (struct ice_aqc_get_set_rss_keys *)seed;
4915 
4916 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4917 		if (status) {
4918 			dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n",
4919 				status, hw->adminq.rq_last_status);
4920 			return -EIO;
4921 		}
4922 	}
4923 
4924 	if (lut) {
4925 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4926 					    lut, lut_size);
4927 		if (status) {
4928 			dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n",
4929 				status, hw->adminq.rq_last_status);
4930 			return -EIO;
4931 		}
4932 	}
4933 
4934 	return 0;
4935 }
4936 
4937 /**
4938  * ice_bridge_getlink - Get the hardware bridge mode
4939  * @skb: skb buff
4940  * @pid: process ID
4941  * @seq: RTNL message seq
4942  * @dev: the netdev being configured
4943  * @filter_mask: filter mask passed in
4944  * @nlflags: netlink flags passed in
4945  *
4946  * Return the bridge mode (VEB/VEPA)
4947  */
4948 static int
4949 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4950 		   struct net_device *dev, u32 filter_mask, int nlflags)
4951 {
4952 	struct ice_netdev_priv *np = netdev_priv(dev);
4953 	struct ice_vsi *vsi = np->vsi;
4954 	struct ice_pf *pf = vsi->back;
4955 	u16 bmode;
4956 
4957 	bmode = pf->first_sw->bridge_mode;
4958 
4959 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4960 				       filter_mask, NULL);
4961 }
4962 
4963 /**
4964  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4965  * @vsi: Pointer to VSI structure
4966  * @bmode: Hardware bridge mode (VEB/VEPA)
4967  *
4968  * Returns 0 on success, negative on failure
4969  */
4970 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4971 {
4972 	struct ice_aqc_vsi_props *vsi_props;
4973 	struct ice_hw *hw = &vsi->back->hw;
4974 	struct ice_vsi_ctx *ctxt;
4975 	enum ice_status status;
4976 	int ret = 0;
4977 
4978 	vsi_props = &vsi->info;
4979 
4980 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4981 	if (!ctxt)
4982 		return -ENOMEM;
4983 
4984 	ctxt->info = vsi->info;
4985 
4986 	if (bmode == BRIDGE_MODE_VEB)
4987 		/* change from VEPA to VEB mode */
4988 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4989 	else
4990 		/* change from VEB to VEPA mode */
4991 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4992 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4993 
4994 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4995 	if (status) {
4996 		dev_err(&vsi->back->pdev->dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4997 			bmode, status, hw->adminq.sq_last_status);
4998 		ret = -EIO;
4999 		goto out;
5000 	}
5001 	/* Update sw flags for book keeping */
5002 	vsi_props->sw_flags = ctxt->info.sw_flags;
5003 
5004 out:
5005 	kfree(ctxt);
5006 	return ret;
5007 }
5008 
5009 /**
5010  * ice_bridge_setlink - Set the hardware bridge mode
5011  * @dev: the netdev being configured
5012  * @nlh: RTNL message
5013  * @flags: bridge setlink flags
5014  * @extack: netlink extended ack
5015  *
5016  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
5017  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
5018  * not already set for all VSIs connected to this switch. And also update the
5019  * unicast switch filter rules for the corresponding switch of the netdev.
5020  */
5021 static int
5022 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
5023 		   u16 __always_unused flags,
5024 		   struct netlink_ext_ack __always_unused *extack)
5025 {
5026 	struct ice_netdev_priv *np = netdev_priv(dev);
5027 	struct ice_pf *pf = np->vsi->back;
5028 	struct nlattr *attr, *br_spec;
5029 	struct ice_hw *hw = &pf->hw;
5030 	enum ice_status status;
5031 	struct ice_sw *pf_sw;
5032 	int rem, v, err = 0;
5033 
5034 	pf_sw = pf->first_sw;
5035 	/* find the attribute in the netlink message */
5036 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
5037 
5038 	nla_for_each_nested(attr, br_spec, rem) {
5039 		__u16 mode;
5040 
5041 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
5042 			continue;
5043 		mode = nla_get_u16(attr);
5044 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
5045 			return -EINVAL;
5046 		/* Continue  if bridge mode is not being flipped */
5047 		if (mode == pf_sw->bridge_mode)
5048 			continue;
5049 		/* Iterates through the PF VSI list and update the loopback
5050 		 * mode of the VSI
5051 		 */
5052 		ice_for_each_vsi(pf, v) {
5053 			if (!pf->vsi[v])
5054 				continue;
5055 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
5056 			if (err)
5057 				return err;
5058 		}
5059 
5060 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
5061 		/* Update the unicast switch filter rules for the corresponding
5062 		 * switch of the netdev
5063 		 */
5064 		status = ice_update_sw_rule_bridge_mode(hw);
5065 		if (status) {
5066 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
5067 				   mode, status, hw->adminq.sq_last_status);
5068 			/* revert hw->evb_veb */
5069 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
5070 			return -EIO;
5071 		}
5072 
5073 		pf_sw->bridge_mode = mode;
5074 	}
5075 
5076 	return 0;
5077 }
5078 
5079 /**
5080  * ice_tx_timeout - Respond to a Tx Hang
5081  * @netdev: network interface device structure
5082  */
5083 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5084 {
5085 	struct ice_netdev_priv *np = netdev_priv(netdev);
5086 	struct ice_ring *tx_ring = NULL;
5087 	struct ice_vsi *vsi = np->vsi;
5088 	struct ice_pf *pf = vsi->back;
5089 	u32 i;
5090 
5091 	pf->tx_timeout_count++;
5092 
5093 	/* now that we have an index, find the tx_ring struct */
5094 	for (i = 0; i < vsi->num_txq; i++)
5095 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
5096 			if (txqueue == vsi->tx_rings[i]->q_index) {
5097 				tx_ring = vsi->tx_rings[i];
5098 				break;
5099 			}
5100 
5101 	/* Reset recovery level if enough time has elapsed after last timeout.
5102 	 * Also ensure no new reset action happens before next timeout period.
5103 	 */
5104 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
5105 		pf->tx_timeout_recovery_level = 1;
5106 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
5107 				       netdev->watchdog_timeo)))
5108 		return;
5109 
5110 	if (tx_ring) {
5111 		struct ice_hw *hw = &pf->hw;
5112 		u32 head, val = 0;
5113 
5114 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
5115 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
5116 		/* Read interrupt register */
5117 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
5118 
5119 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
5120 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
5121 			    head, tx_ring->next_to_use, val);
5122 	}
5123 
5124 	pf->tx_timeout_last_recovery = jiffies;
5125 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n",
5126 		    pf->tx_timeout_recovery_level, txqueue);
5127 
5128 	switch (pf->tx_timeout_recovery_level) {
5129 	case 1:
5130 		set_bit(__ICE_PFR_REQ, pf->state);
5131 		break;
5132 	case 2:
5133 		set_bit(__ICE_CORER_REQ, pf->state);
5134 		break;
5135 	case 3:
5136 		set_bit(__ICE_GLOBR_REQ, pf->state);
5137 		break;
5138 	default:
5139 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
5140 		set_bit(__ICE_DOWN, pf->state);
5141 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
5142 		set_bit(__ICE_SERVICE_DIS, pf->state);
5143 		break;
5144 	}
5145 
5146 	ice_service_task_schedule(pf);
5147 	pf->tx_timeout_recovery_level++;
5148 }
5149 
5150 /**
5151  * ice_open - Called when a network interface becomes active
5152  * @netdev: network interface device structure
5153  *
5154  * The open entry point is called when a network interface is made
5155  * active by the system (IFF_UP). At this point all resources needed
5156  * for transmit and receive operations are allocated, the interrupt
5157  * handler is registered with the OS, the netdev watchdog is enabled,
5158  * and the stack is notified that the interface is ready.
5159  *
5160  * Returns 0 on success, negative value on failure
5161  */
5162 int ice_open(struct net_device *netdev)
5163 {
5164 	struct ice_netdev_priv *np = netdev_priv(netdev);
5165 	struct ice_vsi *vsi = np->vsi;
5166 	struct ice_port_info *pi;
5167 	int err;
5168 
5169 	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
5170 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
5171 		return -EIO;
5172 	}
5173 
5174 	netif_carrier_off(netdev);
5175 
5176 	pi = vsi->port_info;
5177 	err = ice_update_link_info(pi);
5178 	if (err) {
5179 		netdev_err(netdev, "Failed to get link info, error %d\n",
5180 			   err);
5181 		return err;
5182 	}
5183 
5184 	/* Set PHY if there is media, otherwise, turn off PHY */
5185 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
5186 		err = ice_force_phys_link_state(vsi, true);
5187 		if (err) {
5188 			netdev_err(netdev,
5189 				   "Failed to set physical link up, error %d\n",
5190 				   err);
5191 			return err;
5192 		}
5193 	} else {
5194 		err = ice_aq_set_link_restart_an(pi, false, NULL);
5195 		if (err) {
5196 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
5197 				   vsi->vsi_num, err);
5198 			return err;
5199 		}
5200 		set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
5201 	}
5202 
5203 	err = ice_vsi_open(vsi);
5204 	if (err)
5205 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5206 			   vsi->vsi_num, vsi->vsw->sw_id);
5207 	return err;
5208 }
5209 
5210 /**
5211  * ice_stop - Disables a network interface
5212  * @netdev: network interface device structure
5213  *
5214  * The stop entry point is called when an interface is de-activated by the OS,
5215  * and the netdevice enters the DOWN state. The hardware is still under the
5216  * driver's control, but the netdev interface is disabled.
5217  *
5218  * Returns success only - not allowed to fail
5219  */
5220 int ice_stop(struct net_device *netdev)
5221 {
5222 	struct ice_netdev_priv *np = netdev_priv(netdev);
5223 	struct ice_vsi *vsi = np->vsi;
5224 
5225 	ice_vsi_close(vsi);
5226 
5227 	return 0;
5228 }
5229 
5230 /**
5231  * ice_features_check - Validate encapsulated packet conforms to limits
5232  * @skb: skb buffer
5233  * @netdev: This port's netdev
5234  * @features: Offload features that the stack believes apply
5235  */
5236 static netdev_features_t
5237 ice_features_check(struct sk_buff *skb,
5238 		   struct net_device __always_unused *netdev,
5239 		   netdev_features_t features)
5240 {
5241 	size_t len;
5242 
5243 	/* No point in doing any of this if neither checksum nor GSO are
5244 	 * being requested for this frame. We can rule out both by just
5245 	 * checking for CHECKSUM_PARTIAL
5246 	 */
5247 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5248 		return features;
5249 
5250 	/* We cannot support GSO if the MSS is going to be less than
5251 	 * 64 bytes. If it is then we need to drop support for GSO.
5252 	 */
5253 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5254 		features &= ~NETIF_F_GSO_MASK;
5255 
5256 	len = skb_network_header(skb) - skb->data;
5257 	if (len & ~(ICE_TXD_MACLEN_MAX))
5258 		goto out_rm_features;
5259 
5260 	len = skb_transport_header(skb) - skb_network_header(skb);
5261 	if (len & ~(ICE_TXD_IPLEN_MAX))
5262 		goto out_rm_features;
5263 
5264 	if (skb->encapsulation) {
5265 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
5266 		if (len & ~(ICE_TXD_L4LEN_MAX))
5267 			goto out_rm_features;
5268 
5269 		len = skb_inner_transport_header(skb) -
5270 		      skb_inner_network_header(skb);
5271 		if (len & ~(ICE_TXD_IPLEN_MAX))
5272 			goto out_rm_features;
5273 	}
5274 
5275 	return features;
5276 out_rm_features:
5277 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5278 }
5279 
5280 static const struct net_device_ops ice_netdev_safe_mode_ops = {
5281 	.ndo_open = ice_open,
5282 	.ndo_stop = ice_stop,
5283 	.ndo_start_xmit = ice_start_xmit,
5284 	.ndo_set_mac_address = ice_set_mac_address,
5285 	.ndo_validate_addr = eth_validate_addr,
5286 	.ndo_change_mtu = ice_change_mtu,
5287 	.ndo_get_stats64 = ice_get_stats64,
5288 	.ndo_tx_timeout = ice_tx_timeout,
5289 };
5290 
5291 static const struct net_device_ops ice_netdev_ops = {
5292 	.ndo_open = ice_open,
5293 	.ndo_stop = ice_stop,
5294 	.ndo_start_xmit = ice_start_xmit,
5295 	.ndo_features_check = ice_features_check,
5296 	.ndo_set_rx_mode = ice_set_rx_mode,
5297 	.ndo_set_mac_address = ice_set_mac_address,
5298 	.ndo_validate_addr = eth_validate_addr,
5299 	.ndo_change_mtu = ice_change_mtu,
5300 	.ndo_get_stats64 = ice_get_stats64,
5301 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
5302 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
5303 	.ndo_set_vf_mac = ice_set_vf_mac,
5304 	.ndo_get_vf_config = ice_get_vf_cfg,
5305 	.ndo_set_vf_trust = ice_set_vf_trust,
5306 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
5307 	.ndo_set_vf_link_state = ice_set_vf_link_state,
5308 	.ndo_get_vf_stats = ice_get_vf_stats,
5309 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5310 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5311 	.ndo_set_features = ice_set_features,
5312 	.ndo_bridge_getlink = ice_bridge_getlink,
5313 	.ndo_bridge_setlink = ice_bridge_setlink,
5314 	.ndo_fdb_add = ice_fdb_add,
5315 	.ndo_fdb_del = ice_fdb_del,
5316 	.ndo_tx_timeout = ice_tx_timeout,
5317 	.ndo_bpf = ice_xdp,
5318 	.ndo_xdp_xmit = ice_xdp_xmit,
5319 	.ndo_xsk_wakeup = ice_xsk_wakeup,
5320 };
5321