1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include "ice_dcb_nl.h" 13 14 #define DRV_VERSION_MAJOR 0 15 #define DRV_VERSION_MINOR 8 16 #define DRV_VERSION_BUILD 1 17 18 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 19 __stringify(DRV_VERSION_MINOR) "." \ 20 __stringify(DRV_VERSION_BUILD) "-k" 21 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 22 const char ice_drv_ver[] = DRV_VERSION; 23 static const char ice_driver_string[] = DRV_SUMMARY; 24 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 25 26 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 27 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 28 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 29 30 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 31 MODULE_DESCRIPTION(DRV_SUMMARY); 32 MODULE_LICENSE("GPL v2"); 33 MODULE_VERSION(DRV_VERSION); 34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 35 36 static int debug = -1; 37 module_param(debug, int, 0644); 38 #ifndef CONFIG_DYNAMIC_DEBUG 39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 40 #else 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 42 #endif /* !CONFIG_DYNAMIC_DEBUG */ 43 44 static struct workqueue_struct *ice_wq; 45 static const struct net_device_ops ice_netdev_safe_mode_ops; 46 static const struct net_device_ops ice_netdev_ops; 47 static int ice_vsi_open(struct ice_vsi *vsi); 48 49 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 50 51 static void ice_vsi_release_all(struct ice_pf *pf); 52 53 /** 54 * ice_get_tx_pending - returns number of Tx descriptors not processed 55 * @ring: the ring of descriptors 56 */ 57 static u16 ice_get_tx_pending(struct ice_ring *ring) 58 { 59 u16 head, tail; 60 61 head = ring->next_to_clean; 62 tail = ring->next_to_use; 63 64 if (head != tail) 65 return (head < tail) ? 66 tail - head : (tail + ring->count - head); 67 return 0; 68 } 69 70 /** 71 * ice_check_for_hang_subtask - check for and recover hung queues 72 * @pf: pointer to PF struct 73 */ 74 static void ice_check_for_hang_subtask(struct ice_pf *pf) 75 { 76 struct ice_vsi *vsi = NULL; 77 struct ice_hw *hw; 78 unsigned int i; 79 int packets; 80 u32 v; 81 82 ice_for_each_vsi(pf, v) 83 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 84 vsi = pf->vsi[v]; 85 break; 86 } 87 88 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 89 return; 90 91 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 92 return; 93 94 hw = &vsi->back->hw; 95 96 for (i = 0; i < vsi->num_txq; i++) { 97 struct ice_ring *tx_ring = vsi->tx_rings[i]; 98 99 if (tx_ring && tx_ring->desc) { 100 /* If packet counter has not changed the queue is 101 * likely stalled, so force an interrupt for this 102 * queue. 103 * 104 * prev_pkt would be negative if there was no 105 * pending work. 106 */ 107 packets = tx_ring->stats.pkts & INT_MAX; 108 if (tx_ring->tx_stats.prev_pkt == packets) { 109 /* Trigger sw interrupt to revive the queue */ 110 ice_trigger_sw_intr(hw, tx_ring->q_vector); 111 continue; 112 } 113 114 /* Memory barrier between read of packet count and call 115 * to ice_get_tx_pending() 116 */ 117 smp_rmb(); 118 tx_ring->tx_stats.prev_pkt = 119 ice_get_tx_pending(tx_ring) ? packets : -1; 120 } 121 } 122 } 123 124 /** 125 * ice_init_mac_fltr - Set initial MAC filters 126 * @pf: board private structure 127 * 128 * Set initial set of MAC filters for PF VSI; configure filters for permanent 129 * address and broadcast address. If an error is encountered, netdevice will be 130 * unregistered. 131 */ 132 static int ice_init_mac_fltr(struct ice_pf *pf) 133 { 134 enum ice_status status; 135 u8 broadcast[ETH_ALEN]; 136 struct ice_vsi *vsi; 137 138 vsi = ice_get_main_vsi(pf); 139 if (!vsi) 140 return -EINVAL; 141 142 /* To add a MAC filter, first add the MAC to a list and then 143 * pass the list to ice_add_mac. 144 */ 145 146 /* Add a unicast MAC filter so the VSI can get its packets */ 147 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true); 148 if (status) 149 goto unregister; 150 151 /* VSI needs to receive broadcast traffic, so add the broadcast 152 * MAC address to the list as well. 153 */ 154 eth_broadcast_addr(broadcast); 155 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true); 156 if (status) 157 goto unregister; 158 159 return 0; 160 unregister: 161 /* We aren't useful with no MAC filters, so unregister if we 162 * had an error 163 */ 164 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 165 dev_err(ice_pf_to_dev(pf), 166 "Could not add MAC filters error %d. Unregistering device\n", 167 status); 168 unregister_netdev(vsi->netdev); 169 free_netdev(vsi->netdev); 170 vsi->netdev = NULL; 171 } 172 173 return -EIO; 174 } 175 176 /** 177 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 178 * @netdev: the net device on which the sync is happening 179 * @addr: MAC address to sync 180 * 181 * This is a callback function which is called by the in kernel device sync 182 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 183 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 184 * MAC filters from the hardware. 185 */ 186 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 187 { 188 struct ice_netdev_priv *np = netdev_priv(netdev); 189 struct ice_vsi *vsi = np->vsi; 190 191 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 192 return -EINVAL; 193 194 return 0; 195 } 196 197 /** 198 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 199 * @netdev: the net device on which the unsync is happening 200 * @addr: MAC address to unsync 201 * 202 * This is a callback function which is called by the in kernel device unsync 203 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 204 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 205 * delete the MAC filters from the hardware. 206 */ 207 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 208 { 209 struct ice_netdev_priv *np = netdev_priv(netdev); 210 struct ice_vsi *vsi = np->vsi; 211 212 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_vsi_fltr_changed - check if filter state changed 220 * @vsi: VSI to be checked 221 * 222 * returns true if filter state has changed, false otherwise. 223 */ 224 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 225 { 226 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 227 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 228 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 229 } 230 231 /** 232 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 233 * @vsi: the VSI being configured 234 * @promisc_m: mask of promiscuous config bits 235 * @set_promisc: enable or disable promisc flag request 236 * 237 */ 238 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 239 { 240 struct ice_hw *hw = &vsi->back->hw; 241 enum ice_status status = 0; 242 243 if (vsi->type != ICE_VSI_PF) 244 return 0; 245 246 if (vsi->vlan_ena) { 247 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 248 set_promisc); 249 } else { 250 if (set_promisc) 251 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 252 0); 253 else 254 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 255 0); 256 } 257 258 if (status) 259 return -EIO; 260 261 return 0; 262 } 263 264 /** 265 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 266 * @vsi: ptr to the VSI 267 * 268 * Push any outstanding VSI filter changes through the AdminQ. 269 */ 270 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 271 { 272 struct device *dev = &vsi->back->pdev->dev; 273 struct net_device *netdev = vsi->netdev; 274 bool promisc_forced_on = false; 275 struct ice_pf *pf = vsi->back; 276 struct ice_hw *hw = &pf->hw; 277 enum ice_status status = 0; 278 u32 changed_flags = 0; 279 u8 promisc_m; 280 int err = 0; 281 282 if (!vsi->netdev) 283 return -EINVAL; 284 285 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 286 usleep_range(1000, 2000); 287 288 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 289 vsi->current_netdev_flags = vsi->netdev->flags; 290 291 INIT_LIST_HEAD(&vsi->tmp_sync_list); 292 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 293 294 if (ice_vsi_fltr_changed(vsi)) { 295 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 296 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 297 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 298 299 /* grab the netdev's addr_list_lock */ 300 netif_addr_lock_bh(netdev); 301 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 302 ice_add_mac_to_unsync_list); 303 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 304 ice_add_mac_to_unsync_list); 305 /* our temp lists are populated. release lock */ 306 netif_addr_unlock_bh(netdev); 307 } 308 309 /* Remove MAC addresses in the unsync list */ 310 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 311 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 312 if (status) { 313 netdev_err(netdev, "Failed to delete MAC filters\n"); 314 /* if we failed because of alloc failures, just bail */ 315 if (status == ICE_ERR_NO_MEMORY) { 316 err = -ENOMEM; 317 goto out; 318 } 319 } 320 321 /* Add MAC addresses in the sync list */ 322 status = ice_add_mac(hw, &vsi->tmp_sync_list); 323 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 324 /* If filter is added successfully or already exists, do not go into 325 * 'if' condition and report it as error. Instead continue processing 326 * rest of the function. 327 */ 328 if (status && status != ICE_ERR_ALREADY_EXISTS) { 329 netdev_err(netdev, "Failed to add MAC filters\n"); 330 /* If there is no more space for new umac filters, VSI 331 * should go into promiscuous mode. There should be some 332 * space reserved for promiscuous filters. 333 */ 334 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 335 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 336 vsi->state)) { 337 promisc_forced_on = true; 338 netdev_warn(netdev, 339 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 340 vsi->vsi_num); 341 } else { 342 err = -EIO; 343 goto out; 344 } 345 } 346 /* check for changes in promiscuous modes */ 347 if (changed_flags & IFF_ALLMULTI) { 348 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 349 if (vsi->vlan_ena) 350 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 351 else 352 promisc_m = ICE_MCAST_PROMISC_BITS; 353 354 err = ice_cfg_promisc(vsi, promisc_m, true); 355 if (err) { 356 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 357 vsi->vsi_num); 358 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 359 goto out_promisc; 360 } 361 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 362 if (vsi->vlan_ena) 363 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 364 else 365 promisc_m = ICE_MCAST_PROMISC_BITS; 366 367 err = ice_cfg_promisc(vsi, promisc_m, false); 368 if (err) { 369 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 370 vsi->vsi_num); 371 vsi->current_netdev_flags |= IFF_ALLMULTI; 372 goto out_promisc; 373 } 374 } 375 } 376 377 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 378 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 379 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 380 if (vsi->current_netdev_flags & IFF_PROMISC) { 381 /* Apply Rx filter rule to get traffic from wire */ 382 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 383 ICE_FLTR_RX); 384 if (status) { 385 netdev_err(netdev, "Error setting default VSI %i Rx rule\n", 386 vsi->vsi_num); 387 vsi->current_netdev_flags &= ~IFF_PROMISC; 388 err = -EIO; 389 goto out_promisc; 390 } 391 } else { 392 /* Clear Rx filter to remove traffic from wire */ 393 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 394 ICE_FLTR_RX); 395 if (status) { 396 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n", 397 vsi->vsi_num); 398 vsi->current_netdev_flags |= IFF_PROMISC; 399 err = -EIO; 400 goto out_promisc; 401 } 402 } 403 } 404 goto exit; 405 406 out_promisc: 407 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 408 goto exit; 409 out: 410 /* if something went wrong then set the changed flag so we try again */ 411 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 412 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 413 exit: 414 clear_bit(__ICE_CFG_BUSY, vsi->state); 415 return err; 416 } 417 418 /** 419 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 420 * @pf: board private structure 421 */ 422 static void ice_sync_fltr_subtask(struct ice_pf *pf) 423 { 424 int v; 425 426 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 427 return; 428 429 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 430 431 ice_for_each_vsi(pf, v) 432 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 433 ice_vsi_sync_fltr(pf->vsi[v])) { 434 /* come back and try again later */ 435 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 436 break; 437 } 438 } 439 440 /** 441 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 442 * @pf: the PF 443 * @locked: is the rtnl_lock already held 444 */ 445 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 446 { 447 int v; 448 449 ice_for_each_vsi(pf, v) 450 if (pf->vsi[v]) 451 ice_dis_vsi(pf->vsi[v], locked); 452 } 453 454 /** 455 * ice_prepare_for_reset - prep for the core to reset 456 * @pf: board private structure 457 * 458 * Inform or close all dependent features in prep for reset. 459 */ 460 static void 461 ice_prepare_for_reset(struct ice_pf *pf) 462 { 463 struct ice_hw *hw = &pf->hw; 464 int i; 465 466 /* already prepared for reset */ 467 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 468 return; 469 470 /* Notify VFs of impending reset */ 471 if (ice_check_sq_alive(hw, &hw->mailboxq)) 472 ice_vc_notify_reset(pf); 473 474 /* Disable VFs until reset is completed */ 475 for (i = 0; i < pf->num_alloc_vfs; i++) 476 ice_set_vf_state_qs_dis(&pf->vf[i]); 477 478 /* clear SW filtering DB */ 479 ice_clear_hw_tbls(hw); 480 /* disable the VSIs and their queues that are not already DOWN */ 481 ice_pf_dis_all_vsi(pf, false); 482 483 if (hw->port_info) 484 ice_sched_clear_port(hw->port_info); 485 486 ice_shutdown_all_ctrlq(hw); 487 488 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 489 } 490 491 /** 492 * ice_do_reset - Initiate one of many types of resets 493 * @pf: board private structure 494 * @reset_type: reset type requested 495 * before this function was called. 496 */ 497 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 498 { 499 struct device *dev = ice_pf_to_dev(pf); 500 struct ice_hw *hw = &pf->hw; 501 502 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 503 WARN_ON(in_interrupt()); 504 505 ice_prepare_for_reset(pf); 506 507 /* trigger the reset */ 508 if (ice_reset(hw, reset_type)) { 509 dev_err(dev, "reset %d failed\n", reset_type); 510 set_bit(__ICE_RESET_FAILED, pf->state); 511 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 512 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 513 clear_bit(__ICE_PFR_REQ, pf->state); 514 clear_bit(__ICE_CORER_REQ, pf->state); 515 clear_bit(__ICE_GLOBR_REQ, pf->state); 516 return; 517 } 518 519 /* PFR is a bit of a special case because it doesn't result in an OICR 520 * interrupt. So for PFR, rebuild after the reset and clear the reset- 521 * associated state bits. 522 */ 523 if (reset_type == ICE_RESET_PFR) { 524 pf->pfr_count++; 525 ice_rebuild(pf, reset_type); 526 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 527 clear_bit(__ICE_PFR_REQ, pf->state); 528 ice_reset_all_vfs(pf, true); 529 } 530 } 531 532 /** 533 * ice_reset_subtask - Set up for resetting the device and driver 534 * @pf: board private structure 535 */ 536 static void ice_reset_subtask(struct ice_pf *pf) 537 { 538 enum ice_reset_req reset_type = ICE_RESET_INVAL; 539 540 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 541 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 542 * of reset is pending and sets bits in pf->state indicating the reset 543 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 544 * prepare for pending reset if not already (for PF software-initiated 545 * global resets the software should already be prepared for it as 546 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 547 * by firmware or software on other PFs, that bit is not set so prepare 548 * for the reset now), poll for reset done, rebuild and return. 549 */ 550 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 551 /* Perform the largest reset requested */ 552 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 553 reset_type = ICE_RESET_CORER; 554 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 555 reset_type = ICE_RESET_GLOBR; 556 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 557 reset_type = ICE_RESET_EMPR; 558 /* return if no valid reset type requested */ 559 if (reset_type == ICE_RESET_INVAL) 560 return; 561 ice_prepare_for_reset(pf); 562 563 /* make sure we are ready to rebuild */ 564 if (ice_check_reset(&pf->hw)) { 565 set_bit(__ICE_RESET_FAILED, pf->state); 566 } else { 567 /* done with reset. start rebuild */ 568 pf->hw.reset_ongoing = false; 569 ice_rebuild(pf, reset_type); 570 /* clear bit to resume normal operations, but 571 * ICE_NEEDS_RESTART bit is set in case rebuild failed 572 */ 573 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 574 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 575 clear_bit(__ICE_PFR_REQ, pf->state); 576 clear_bit(__ICE_CORER_REQ, pf->state); 577 clear_bit(__ICE_GLOBR_REQ, pf->state); 578 ice_reset_all_vfs(pf, true); 579 } 580 581 return; 582 } 583 584 /* No pending resets to finish processing. Check for new resets */ 585 if (test_bit(__ICE_PFR_REQ, pf->state)) 586 reset_type = ICE_RESET_PFR; 587 if (test_bit(__ICE_CORER_REQ, pf->state)) 588 reset_type = ICE_RESET_CORER; 589 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 590 reset_type = ICE_RESET_GLOBR; 591 /* If no valid reset type requested just return */ 592 if (reset_type == ICE_RESET_INVAL) 593 return; 594 595 /* reset if not already down or busy */ 596 if (!test_bit(__ICE_DOWN, pf->state) && 597 !test_bit(__ICE_CFG_BUSY, pf->state)) { 598 ice_do_reset(pf, reset_type); 599 } 600 } 601 602 /** 603 * ice_print_topo_conflict - print topology conflict message 604 * @vsi: the VSI whose topology status is being checked 605 */ 606 static void ice_print_topo_conflict(struct ice_vsi *vsi) 607 { 608 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 609 case ICE_AQ_LINK_TOPO_CONFLICT: 610 case ICE_AQ_LINK_MEDIA_CONFLICT: 611 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 612 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 613 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 614 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 615 break; 616 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 617 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 618 break; 619 default: 620 break; 621 } 622 } 623 624 /** 625 * ice_print_link_msg - print link up or down message 626 * @vsi: the VSI whose link status is being queried 627 * @isup: boolean for if the link is now up or down 628 */ 629 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 630 { 631 struct ice_aqc_get_phy_caps_data *caps; 632 enum ice_status status; 633 const char *fec_req; 634 const char *speed; 635 const char *fec; 636 const char *fc; 637 const char *an; 638 639 if (!vsi) 640 return; 641 642 if (vsi->current_isup == isup) 643 return; 644 645 vsi->current_isup = isup; 646 647 if (!isup) { 648 netdev_info(vsi->netdev, "NIC Link is Down\n"); 649 return; 650 } 651 652 switch (vsi->port_info->phy.link_info.link_speed) { 653 case ICE_AQ_LINK_SPEED_100GB: 654 speed = "100 G"; 655 break; 656 case ICE_AQ_LINK_SPEED_50GB: 657 speed = "50 G"; 658 break; 659 case ICE_AQ_LINK_SPEED_40GB: 660 speed = "40 G"; 661 break; 662 case ICE_AQ_LINK_SPEED_25GB: 663 speed = "25 G"; 664 break; 665 case ICE_AQ_LINK_SPEED_20GB: 666 speed = "20 G"; 667 break; 668 case ICE_AQ_LINK_SPEED_10GB: 669 speed = "10 G"; 670 break; 671 case ICE_AQ_LINK_SPEED_5GB: 672 speed = "5 G"; 673 break; 674 case ICE_AQ_LINK_SPEED_2500MB: 675 speed = "2.5 G"; 676 break; 677 case ICE_AQ_LINK_SPEED_1000MB: 678 speed = "1 G"; 679 break; 680 case ICE_AQ_LINK_SPEED_100MB: 681 speed = "100 M"; 682 break; 683 default: 684 speed = "Unknown"; 685 break; 686 } 687 688 switch (vsi->port_info->fc.current_mode) { 689 case ICE_FC_FULL: 690 fc = "Rx/Tx"; 691 break; 692 case ICE_FC_TX_PAUSE: 693 fc = "Tx"; 694 break; 695 case ICE_FC_RX_PAUSE: 696 fc = "Rx"; 697 break; 698 case ICE_FC_NONE: 699 fc = "None"; 700 break; 701 default: 702 fc = "Unknown"; 703 break; 704 } 705 706 /* Get FEC mode based on negotiated link info */ 707 switch (vsi->port_info->phy.link_info.fec_info) { 708 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 709 /* fall through */ 710 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 711 fec = "RS-FEC"; 712 break; 713 case ICE_AQ_LINK_25G_KR_FEC_EN: 714 fec = "FC-FEC/BASE-R"; 715 break; 716 default: 717 fec = "NONE"; 718 break; 719 } 720 721 /* check if autoneg completed, might be false due to not supported */ 722 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 723 an = "True"; 724 else 725 an = "False"; 726 727 /* Get FEC mode requested based on PHY caps last SW configuration */ 728 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 729 if (!caps) { 730 fec_req = "Unknown"; 731 goto done; 732 } 733 734 status = ice_aq_get_phy_caps(vsi->port_info, false, 735 ICE_AQC_REPORT_SW_CFG, caps, NULL); 736 if (status) 737 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 738 739 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 740 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 741 fec_req = "RS-FEC"; 742 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 743 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 744 fec_req = "FC-FEC/BASE-R"; 745 else 746 fec_req = "NONE"; 747 748 kfree(caps); 749 750 done: 751 netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n", 752 speed, fec_req, fec, an, fc); 753 ice_print_topo_conflict(vsi); 754 } 755 756 /** 757 * ice_vsi_link_event - update the VSI's netdev 758 * @vsi: the VSI on which the link event occurred 759 * @link_up: whether or not the VSI needs to be set up or down 760 */ 761 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 762 { 763 if (!vsi) 764 return; 765 766 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 767 return; 768 769 if (vsi->type == ICE_VSI_PF) { 770 if (link_up == netif_carrier_ok(vsi->netdev)) 771 return; 772 773 if (link_up) { 774 netif_carrier_on(vsi->netdev); 775 netif_tx_wake_all_queues(vsi->netdev); 776 } else { 777 netif_carrier_off(vsi->netdev); 778 netif_tx_stop_all_queues(vsi->netdev); 779 } 780 } 781 } 782 783 /** 784 * ice_link_event - process the link event 785 * @pf: PF that the link event is associated with 786 * @pi: port_info for the port that the link event is associated with 787 * @link_up: true if the physical link is up and false if it is down 788 * @link_speed: current link speed received from the link event 789 * 790 * Returns 0 on success and negative on failure 791 */ 792 static int 793 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 794 u16 link_speed) 795 { 796 struct device *dev = ice_pf_to_dev(pf); 797 struct ice_phy_info *phy_info; 798 struct ice_vsi *vsi; 799 u16 old_link_speed; 800 bool old_link; 801 int result; 802 803 phy_info = &pi->phy; 804 phy_info->link_info_old = phy_info->link_info; 805 806 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 807 old_link_speed = phy_info->link_info_old.link_speed; 808 809 /* update the link info structures and re-enable link events, 810 * don't bail on failure due to other book keeping needed 811 */ 812 result = ice_update_link_info(pi); 813 if (result) 814 dev_dbg(dev, 815 "Failed to update link status and re-enable link events for port %d\n", 816 pi->lport); 817 818 /* if the old link up/down and speed is the same as the new */ 819 if (link_up == old_link && link_speed == old_link_speed) 820 return result; 821 822 vsi = ice_get_main_vsi(pf); 823 if (!vsi || !vsi->port_info) 824 return -EINVAL; 825 826 /* turn off PHY if media was removed */ 827 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 828 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 829 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 830 831 result = ice_aq_set_link_restart_an(pi, false, NULL); 832 if (result) { 833 dev_dbg(dev, 834 "Failed to set link down, VSI %d error %d\n", 835 vsi->vsi_num, result); 836 return result; 837 } 838 } 839 840 ice_vsi_link_event(vsi, link_up); 841 ice_print_link_msg(vsi, link_up); 842 843 if (pf->num_alloc_vfs) 844 ice_vc_notify_link_state(pf); 845 846 return result; 847 } 848 849 /** 850 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 851 * @pf: board private structure 852 */ 853 static void ice_watchdog_subtask(struct ice_pf *pf) 854 { 855 int i; 856 857 /* if interface is down do nothing */ 858 if (test_bit(__ICE_DOWN, pf->state) || 859 test_bit(__ICE_CFG_BUSY, pf->state)) 860 return; 861 862 /* make sure we don't do these things too often */ 863 if (time_before(jiffies, 864 pf->serv_tmr_prev + pf->serv_tmr_period)) 865 return; 866 867 pf->serv_tmr_prev = jiffies; 868 869 /* Update the stats for active netdevs so the network stack 870 * can look at updated numbers whenever it cares to 871 */ 872 ice_update_pf_stats(pf); 873 ice_for_each_vsi(pf, i) 874 if (pf->vsi[i] && pf->vsi[i]->netdev) 875 ice_update_vsi_stats(pf->vsi[i]); 876 } 877 878 /** 879 * ice_init_link_events - enable/initialize link events 880 * @pi: pointer to the port_info instance 881 * 882 * Returns -EIO on failure, 0 on success 883 */ 884 static int ice_init_link_events(struct ice_port_info *pi) 885 { 886 u16 mask; 887 888 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 889 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 890 891 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 892 dev_dbg(ice_hw_to_dev(pi->hw), 893 "Failed to set link event mask for port %d\n", 894 pi->lport); 895 return -EIO; 896 } 897 898 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 899 dev_dbg(ice_hw_to_dev(pi->hw), 900 "Failed to enable link events for port %d\n", 901 pi->lport); 902 return -EIO; 903 } 904 905 return 0; 906 } 907 908 /** 909 * ice_handle_link_event - handle link event via ARQ 910 * @pf: PF that the link event is associated with 911 * @event: event structure containing link status info 912 */ 913 static int 914 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 915 { 916 struct ice_aqc_get_link_status_data *link_data; 917 struct ice_port_info *port_info; 918 int status; 919 920 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 921 port_info = pf->hw.port_info; 922 if (!port_info) 923 return -EINVAL; 924 925 status = ice_link_event(pf, port_info, 926 !!(link_data->link_info & ICE_AQ_LINK_UP), 927 le16_to_cpu(link_data->link_speed)); 928 if (status) 929 dev_dbg(ice_pf_to_dev(pf), 930 "Could not process link event, error %d\n", status); 931 932 return status; 933 } 934 935 /** 936 * __ice_clean_ctrlq - helper function to clean controlq rings 937 * @pf: ptr to struct ice_pf 938 * @q_type: specific Control queue type 939 */ 940 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 941 { 942 struct device *dev = ice_pf_to_dev(pf); 943 struct ice_rq_event_info event; 944 struct ice_hw *hw = &pf->hw; 945 struct ice_ctl_q_info *cq; 946 u16 pending, i = 0; 947 const char *qtype; 948 u32 oldval, val; 949 950 /* Do not clean control queue if/when PF reset fails */ 951 if (test_bit(__ICE_RESET_FAILED, pf->state)) 952 return 0; 953 954 switch (q_type) { 955 case ICE_CTL_Q_ADMIN: 956 cq = &hw->adminq; 957 qtype = "Admin"; 958 break; 959 case ICE_CTL_Q_MAILBOX: 960 cq = &hw->mailboxq; 961 qtype = "Mailbox"; 962 break; 963 default: 964 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 965 return 0; 966 } 967 968 /* check for error indications - PF_xx_AxQLEN register layout for 969 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 970 */ 971 val = rd32(hw, cq->rq.len); 972 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 973 PF_FW_ARQLEN_ARQCRIT_M)) { 974 oldval = val; 975 if (val & PF_FW_ARQLEN_ARQVFE_M) 976 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 977 qtype); 978 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 979 dev_dbg(dev, 980 "%s Receive Queue Overflow Error detected\n", 981 qtype); 982 } 983 if (val & PF_FW_ARQLEN_ARQCRIT_M) 984 dev_dbg(dev, 985 "%s Receive Queue Critical Error detected\n", 986 qtype); 987 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 988 PF_FW_ARQLEN_ARQCRIT_M); 989 if (oldval != val) 990 wr32(hw, cq->rq.len, val); 991 } 992 993 val = rd32(hw, cq->sq.len); 994 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 995 PF_FW_ATQLEN_ATQCRIT_M)) { 996 oldval = val; 997 if (val & PF_FW_ATQLEN_ATQVFE_M) 998 dev_dbg(dev, 999 "%s Send Queue VF Error detected\n", qtype); 1000 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1001 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1002 qtype); 1003 } 1004 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1005 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1006 qtype); 1007 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1008 PF_FW_ATQLEN_ATQCRIT_M); 1009 if (oldval != val) 1010 wr32(hw, cq->sq.len, val); 1011 } 1012 1013 event.buf_len = cq->rq_buf_size; 1014 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1015 if (!event.msg_buf) 1016 return 0; 1017 1018 do { 1019 enum ice_status ret; 1020 u16 opcode; 1021 1022 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1023 if (ret == ICE_ERR_AQ_NO_WORK) 1024 break; 1025 if (ret) { 1026 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1027 ret); 1028 break; 1029 } 1030 1031 opcode = le16_to_cpu(event.desc.opcode); 1032 1033 switch (opcode) { 1034 case ice_aqc_opc_get_link_status: 1035 if (ice_handle_link_event(pf, &event)) 1036 dev_err(dev, "Could not handle link event\n"); 1037 break; 1038 case ice_mbx_opc_send_msg_to_pf: 1039 ice_vc_process_vf_msg(pf, &event); 1040 break; 1041 case ice_aqc_opc_fw_logging: 1042 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1043 break; 1044 case ice_aqc_opc_lldp_set_mib_change: 1045 ice_dcb_process_lldp_set_mib_change(pf, &event); 1046 break; 1047 default: 1048 dev_dbg(dev, 1049 "%s Receive Queue unknown event 0x%04x ignored\n", 1050 qtype, opcode); 1051 break; 1052 } 1053 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1054 1055 kfree(event.msg_buf); 1056 1057 return pending && (i == ICE_DFLT_IRQ_WORK); 1058 } 1059 1060 /** 1061 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1062 * @hw: pointer to hardware info 1063 * @cq: control queue information 1064 * 1065 * returns true if there are pending messages in a queue, false if there aren't 1066 */ 1067 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1068 { 1069 u16 ntu; 1070 1071 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1072 return cq->rq.next_to_clean != ntu; 1073 } 1074 1075 /** 1076 * ice_clean_adminq_subtask - clean the AdminQ rings 1077 * @pf: board private structure 1078 */ 1079 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1080 { 1081 struct ice_hw *hw = &pf->hw; 1082 1083 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1084 return; 1085 1086 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1087 return; 1088 1089 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1090 1091 /* There might be a situation where new messages arrive to a control 1092 * queue between processing the last message and clearing the 1093 * EVENT_PENDING bit. So before exiting, check queue head again (using 1094 * ice_ctrlq_pending) and process new messages if any. 1095 */ 1096 if (ice_ctrlq_pending(hw, &hw->adminq)) 1097 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1098 1099 ice_flush(hw); 1100 } 1101 1102 /** 1103 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1104 * @pf: board private structure 1105 */ 1106 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1107 { 1108 struct ice_hw *hw = &pf->hw; 1109 1110 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1111 return; 1112 1113 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1114 return; 1115 1116 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1117 1118 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1119 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1120 1121 ice_flush(hw); 1122 } 1123 1124 /** 1125 * ice_service_task_schedule - schedule the service task to wake up 1126 * @pf: board private structure 1127 * 1128 * If not already scheduled, this puts the task into the work queue. 1129 */ 1130 static void ice_service_task_schedule(struct ice_pf *pf) 1131 { 1132 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1133 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1134 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1135 queue_work(ice_wq, &pf->serv_task); 1136 } 1137 1138 /** 1139 * ice_service_task_complete - finish up the service task 1140 * @pf: board private structure 1141 */ 1142 static void ice_service_task_complete(struct ice_pf *pf) 1143 { 1144 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1145 1146 /* force memory (pf->state) to sync before next service task */ 1147 smp_mb__before_atomic(); 1148 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1149 } 1150 1151 /** 1152 * ice_service_task_stop - stop service task and cancel works 1153 * @pf: board private structure 1154 */ 1155 static void ice_service_task_stop(struct ice_pf *pf) 1156 { 1157 set_bit(__ICE_SERVICE_DIS, pf->state); 1158 1159 if (pf->serv_tmr.function) 1160 del_timer_sync(&pf->serv_tmr); 1161 if (pf->serv_task.func) 1162 cancel_work_sync(&pf->serv_task); 1163 1164 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1165 } 1166 1167 /** 1168 * ice_service_task_restart - restart service task and schedule works 1169 * @pf: board private structure 1170 * 1171 * This function is needed for suspend and resume works (e.g WoL scenario) 1172 */ 1173 static void ice_service_task_restart(struct ice_pf *pf) 1174 { 1175 clear_bit(__ICE_SERVICE_DIS, pf->state); 1176 ice_service_task_schedule(pf); 1177 } 1178 1179 /** 1180 * ice_service_timer - timer callback to schedule service task 1181 * @t: pointer to timer_list 1182 */ 1183 static void ice_service_timer(struct timer_list *t) 1184 { 1185 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1186 1187 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1188 ice_service_task_schedule(pf); 1189 } 1190 1191 /** 1192 * ice_handle_mdd_event - handle malicious driver detect event 1193 * @pf: pointer to the PF structure 1194 * 1195 * Called from service task. OICR interrupt handler indicates MDD event 1196 */ 1197 static void ice_handle_mdd_event(struct ice_pf *pf) 1198 { 1199 struct device *dev = ice_pf_to_dev(pf); 1200 struct ice_hw *hw = &pf->hw; 1201 bool mdd_detected = false; 1202 u32 reg; 1203 int i; 1204 1205 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 1206 return; 1207 1208 /* find what triggered the MDD event */ 1209 reg = rd32(hw, GL_MDET_TX_PQM); 1210 if (reg & GL_MDET_TX_PQM_VALID_M) { 1211 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1212 GL_MDET_TX_PQM_PF_NUM_S; 1213 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1214 GL_MDET_TX_PQM_VF_NUM_S; 1215 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1216 GL_MDET_TX_PQM_MAL_TYPE_S; 1217 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1218 GL_MDET_TX_PQM_QNUM_S); 1219 1220 if (netif_msg_tx_err(pf)) 1221 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1222 event, queue, pf_num, vf_num); 1223 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1224 mdd_detected = true; 1225 } 1226 1227 reg = rd32(hw, GL_MDET_TX_TCLAN); 1228 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1229 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1230 GL_MDET_TX_TCLAN_PF_NUM_S; 1231 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1232 GL_MDET_TX_TCLAN_VF_NUM_S; 1233 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1234 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1235 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1236 GL_MDET_TX_TCLAN_QNUM_S); 1237 1238 if (netif_msg_rx_err(pf)) 1239 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1240 event, queue, pf_num, vf_num); 1241 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1242 mdd_detected = true; 1243 } 1244 1245 reg = rd32(hw, GL_MDET_RX); 1246 if (reg & GL_MDET_RX_VALID_M) { 1247 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1248 GL_MDET_RX_PF_NUM_S; 1249 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1250 GL_MDET_RX_VF_NUM_S; 1251 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1252 GL_MDET_RX_MAL_TYPE_S; 1253 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1254 GL_MDET_RX_QNUM_S); 1255 1256 if (netif_msg_rx_err(pf)) 1257 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1258 event, queue, pf_num, vf_num); 1259 wr32(hw, GL_MDET_RX, 0xffffffff); 1260 mdd_detected = true; 1261 } 1262 1263 if (mdd_detected) { 1264 bool pf_mdd_detected = false; 1265 1266 reg = rd32(hw, PF_MDET_TX_PQM); 1267 if (reg & PF_MDET_TX_PQM_VALID_M) { 1268 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1269 dev_info(dev, "TX driver issue detected, PF reset issued\n"); 1270 pf_mdd_detected = true; 1271 } 1272 1273 reg = rd32(hw, PF_MDET_TX_TCLAN); 1274 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1275 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1276 dev_info(dev, "TX driver issue detected, PF reset issued\n"); 1277 pf_mdd_detected = true; 1278 } 1279 1280 reg = rd32(hw, PF_MDET_RX); 1281 if (reg & PF_MDET_RX_VALID_M) { 1282 wr32(hw, PF_MDET_RX, 0xFFFF); 1283 dev_info(dev, "RX driver issue detected, PF reset issued\n"); 1284 pf_mdd_detected = true; 1285 } 1286 /* Queue belongs to the PF initiate a reset */ 1287 if (pf_mdd_detected) { 1288 set_bit(__ICE_NEEDS_RESTART, pf->state); 1289 ice_service_task_schedule(pf); 1290 } 1291 } 1292 1293 /* check to see if one of the VFs caused the MDD */ 1294 for (i = 0; i < pf->num_alloc_vfs; i++) { 1295 struct ice_vf *vf = &pf->vf[i]; 1296 1297 bool vf_mdd_detected = false; 1298 1299 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1300 if (reg & VP_MDET_TX_PQM_VALID_M) { 1301 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1302 vf_mdd_detected = true; 1303 dev_info(dev, "TX driver issue detected on VF %d\n", 1304 i); 1305 } 1306 1307 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1308 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1309 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1310 vf_mdd_detected = true; 1311 dev_info(dev, "TX driver issue detected on VF %d\n", 1312 i); 1313 } 1314 1315 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1316 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1317 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1318 vf_mdd_detected = true; 1319 dev_info(dev, "TX driver issue detected on VF %d\n", 1320 i); 1321 } 1322 1323 reg = rd32(hw, VP_MDET_RX(i)); 1324 if (reg & VP_MDET_RX_VALID_M) { 1325 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1326 vf_mdd_detected = true; 1327 dev_info(dev, "RX driver issue detected on VF %d\n", 1328 i); 1329 } 1330 1331 if (vf_mdd_detected) { 1332 vf->num_mdd_events++; 1333 if (vf->num_mdd_events && 1334 vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD) 1335 dev_info(dev, 1336 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n", 1337 i, vf->num_mdd_events); 1338 } 1339 } 1340 } 1341 1342 /** 1343 * ice_force_phys_link_state - Force the physical link state 1344 * @vsi: VSI to force the physical link state to up/down 1345 * @link_up: true/false indicates to set the physical link to up/down 1346 * 1347 * Force the physical link state by getting the current PHY capabilities from 1348 * hardware and setting the PHY config based on the determined capabilities. If 1349 * link changes a link event will be triggered because both the Enable Automatic 1350 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1351 * 1352 * Returns 0 on success, negative on failure 1353 */ 1354 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1355 { 1356 struct ice_aqc_get_phy_caps_data *pcaps; 1357 struct ice_aqc_set_phy_cfg_data *cfg; 1358 struct ice_port_info *pi; 1359 struct device *dev; 1360 int retcode; 1361 1362 if (!vsi || !vsi->port_info || !vsi->back) 1363 return -EINVAL; 1364 if (vsi->type != ICE_VSI_PF) 1365 return 0; 1366 1367 dev = &vsi->back->pdev->dev; 1368 1369 pi = vsi->port_info; 1370 1371 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1372 if (!pcaps) 1373 return -ENOMEM; 1374 1375 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1376 NULL); 1377 if (retcode) { 1378 dev_err(dev, 1379 "Failed to get phy capabilities, VSI %d error %d\n", 1380 vsi->vsi_num, retcode); 1381 retcode = -EIO; 1382 goto out; 1383 } 1384 1385 /* No change in link */ 1386 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1387 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1388 goto out; 1389 1390 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1391 if (!cfg) { 1392 retcode = -ENOMEM; 1393 goto out; 1394 } 1395 1396 cfg->phy_type_low = pcaps->phy_type_low; 1397 cfg->phy_type_high = pcaps->phy_type_high; 1398 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1399 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1400 cfg->eee_cap = pcaps->eee_cap; 1401 cfg->eeer_value = pcaps->eeer_value; 1402 cfg->link_fec_opt = pcaps->link_fec_options; 1403 if (link_up) 1404 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1405 else 1406 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1407 1408 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1409 if (retcode) { 1410 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1411 vsi->vsi_num, retcode); 1412 retcode = -EIO; 1413 } 1414 1415 kfree(cfg); 1416 out: 1417 kfree(pcaps); 1418 return retcode; 1419 } 1420 1421 /** 1422 * ice_check_media_subtask - Check for media; bring link up if detected. 1423 * @pf: pointer to PF struct 1424 */ 1425 static void ice_check_media_subtask(struct ice_pf *pf) 1426 { 1427 struct ice_port_info *pi; 1428 struct ice_vsi *vsi; 1429 int err; 1430 1431 vsi = ice_get_main_vsi(pf); 1432 if (!vsi) 1433 return; 1434 1435 /* No need to check for media if it's already present or the interface 1436 * is down 1437 */ 1438 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1439 test_bit(__ICE_DOWN, vsi->state)) 1440 return; 1441 1442 /* Refresh link info and check if media is present */ 1443 pi = vsi->port_info; 1444 err = ice_update_link_info(pi); 1445 if (err) 1446 return; 1447 1448 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1449 err = ice_force_phys_link_state(vsi, true); 1450 if (err) 1451 return; 1452 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1453 1454 /* A Link Status Event will be generated; the event handler 1455 * will complete bringing the interface up 1456 */ 1457 } 1458 } 1459 1460 /** 1461 * ice_service_task - manage and run subtasks 1462 * @work: pointer to work_struct contained by the PF struct 1463 */ 1464 static void ice_service_task(struct work_struct *work) 1465 { 1466 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1467 unsigned long start_time = jiffies; 1468 1469 /* subtasks */ 1470 1471 /* process reset requests first */ 1472 ice_reset_subtask(pf); 1473 1474 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1475 if (ice_is_reset_in_progress(pf->state) || 1476 test_bit(__ICE_SUSPENDED, pf->state) || 1477 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1478 ice_service_task_complete(pf); 1479 return; 1480 } 1481 1482 ice_clean_adminq_subtask(pf); 1483 ice_check_media_subtask(pf); 1484 ice_check_for_hang_subtask(pf); 1485 ice_sync_fltr_subtask(pf); 1486 ice_handle_mdd_event(pf); 1487 ice_watchdog_subtask(pf); 1488 1489 if (ice_is_safe_mode(pf)) { 1490 ice_service_task_complete(pf); 1491 return; 1492 } 1493 1494 ice_process_vflr_event(pf); 1495 ice_clean_mailboxq_subtask(pf); 1496 1497 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1498 ice_service_task_complete(pf); 1499 1500 /* If the tasks have taken longer than one service timer period 1501 * or there is more work to be done, reset the service timer to 1502 * schedule the service task now. 1503 */ 1504 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1505 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1506 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1507 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1508 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1509 mod_timer(&pf->serv_tmr, jiffies); 1510 } 1511 1512 /** 1513 * ice_set_ctrlq_len - helper function to set controlq length 1514 * @hw: pointer to the HW instance 1515 */ 1516 static void ice_set_ctrlq_len(struct ice_hw *hw) 1517 { 1518 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1519 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1520 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1521 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1522 hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN; 1523 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1524 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1525 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1526 } 1527 1528 /** 1529 * ice_schedule_reset - schedule a reset 1530 * @pf: board private structure 1531 * @reset: reset being requested 1532 */ 1533 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 1534 { 1535 struct device *dev = ice_pf_to_dev(pf); 1536 1537 /* bail out if earlier reset has failed */ 1538 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 1539 dev_dbg(dev, "earlier reset has failed\n"); 1540 return -EIO; 1541 } 1542 /* bail if reset/recovery already in progress */ 1543 if (ice_is_reset_in_progress(pf->state)) { 1544 dev_dbg(dev, "Reset already in progress\n"); 1545 return -EBUSY; 1546 } 1547 1548 switch (reset) { 1549 case ICE_RESET_PFR: 1550 set_bit(__ICE_PFR_REQ, pf->state); 1551 break; 1552 case ICE_RESET_CORER: 1553 set_bit(__ICE_CORER_REQ, pf->state); 1554 break; 1555 case ICE_RESET_GLOBR: 1556 set_bit(__ICE_GLOBR_REQ, pf->state); 1557 break; 1558 default: 1559 return -EINVAL; 1560 } 1561 1562 ice_service_task_schedule(pf); 1563 return 0; 1564 } 1565 1566 /** 1567 * ice_irq_affinity_notify - Callback for affinity changes 1568 * @notify: context as to what irq was changed 1569 * @mask: the new affinity mask 1570 * 1571 * This is a callback function used by the irq_set_affinity_notifier function 1572 * so that we may register to receive changes to the irq affinity masks. 1573 */ 1574 static void 1575 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1576 const cpumask_t *mask) 1577 { 1578 struct ice_q_vector *q_vector = 1579 container_of(notify, struct ice_q_vector, affinity_notify); 1580 1581 cpumask_copy(&q_vector->affinity_mask, mask); 1582 } 1583 1584 /** 1585 * ice_irq_affinity_release - Callback for affinity notifier release 1586 * @ref: internal core kernel usage 1587 * 1588 * This is a callback function used by the irq_set_affinity_notifier function 1589 * to inform the current notification subscriber that they will no longer 1590 * receive notifications. 1591 */ 1592 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1593 1594 /** 1595 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1596 * @vsi: the VSI being configured 1597 */ 1598 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1599 { 1600 struct ice_hw *hw = &vsi->back->hw; 1601 int i; 1602 1603 ice_for_each_q_vector(vsi, i) 1604 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1605 1606 ice_flush(hw); 1607 return 0; 1608 } 1609 1610 /** 1611 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1612 * @vsi: the VSI being configured 1613 * @basename: name for the vector 1614 */ 1615 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1616 { 1617 int q_vectors = vsi->num_q_vectors; 1618 struct ice_pf *pf = vsi->back; 1619 int base = vsi->base_vector; 1620 struct device *dev; 1621 int rx_int_idx = 0; 1622 int tx_int_idx = 0; 1623 int vector, err; 1624 int irq_num; 1625 1626 dev = ice_pf_to_dev(pf); 1627 for (vector = 0; vector < q_vectors; vector++) { 1628 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1629 1630 irq_num = pf->msix_entries[base + vector].vector; 1631 1632 if (q_vector->tx.ring && q_vector->rx.ring) { 1633 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1634 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1635 tx_int_idx++; 1636 } else if (q_vector->rx.ring) { 1637 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1638 "%s-%s-%d", basename, "rx", rx_int_idx++); 1639 } else if (q_vector->tx.ring) { 1640 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1641 "%s-%s-%d", basename, "tx", tx_int_idx++); 1642 } else { 1643 /* skip this unused q_vector */ 1644 continue; 1645 } 1646 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 1647 q_vector->name, q_vector); 1648 if (err) { 1649 netdev_err(vsi->netdev, 1650 "MSIX request_irq failed, error: %d\n", err); 1651 goto free_q_irqs; 1652 } 1653 1654 /* register for affinity change notifications */ 1655 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1656 q_vector->affinity_notify.release = ice_irq_affinity_release; 1657 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1658 1659 /* assign the mask for this irq */ 1660 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1661 } 1662 1663 vsi->irqs_ready = true; 1664 return 0; 1665 1666 free_q_irqs: 1667 while (vector) { 1668 vector--; 1669 irq_num = pf->msix_entries[base + vector].vector, 1670 irq_set_affinity_notifier(irq_num, NULL); 1671 irq_set_affinity_hint(irq_num, NULL); 1672 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 1673 } 1674 return err; 1675 } 1676 1677 /** 1678 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 1679 * @vsi: VSI to setup Tx rings used by XDP 1680 * 1681 * Return 0 on success and negative value on error 1682 */ 1683 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 1684 { 1685 struct device *dev = &vsi->back->pdev->dev; 1686 int i; 1687 1688 for (i = 0; i < vsi->num_xdp_txq; i++) { 1689 u16 xdp_q_idx = vsi->alloc_txq + i; 1690 struct ice_ring *xdp_ring; 1691 1692 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 1693 1694 if (!xdp_ring) 1695 goto free_xdp_rings; 1696 1697 xdp_ring->q_index = xdp_q_idx; 1698 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 1699 xdp_ring->ring_active = false; 1700 xdp_ring->vsi = vsi; 1701 xdp_ring->netdev = NULL; 1702 xdp_ring->dev = dev; 1703 xdp_ring->count = vsi->num_tx_desc; 1704 vsi->xdp_rings[i] = xdp_ring; 1705 if (ice_setup_tx_ring(xdp_ring)) 1706 goto free_xdp_rings; 1707 ice_set_ring_xdp(xdp_ring); 1708 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 1709 } 1710 1711 return 0; 1712 1713 free_xdp_rings: 1714 for (; i >= 0; i--) 1715 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 1716 ice_free_tx_ring(vsi->xdp_rings[i]); 1717 return -ENOMEM; 1718 } 1719 1720 /** 1721 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 1722 * @vsi: VSI to set the bpf prog on 1723 * @prog: the bpf prog pointer 1724 */ 1725 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 1726 { 1727 struct bpf_prog *old_prog; 1728 int i; 1729 1730 old_prog = xchg(&vsi->xdp_prog, prog); 1731 if (old_prog) 1732 bpf_prog_put(old_prog); 1733 1734 ice_for_each_rxq(vsi, i) 1735 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 1736 } 1737 1738 /** 1739 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 1740 * @vsi: VSI to bring up Tx rings used by XDP 1741 * @prog: bpf program that will be assigned to VSI 1742 * 1743 * Return 0 on success and negative value on error 1744 */ 1745 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 1746 { 1747 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1748 int xdp_rings_rem = vsi->num_xdp_txq; 1749 struct ice_pf *pf = vsi->back; 1750 struct ice_qs_cfg xdp_qs_cfg = { 1751 .qs_mutex = &pf->avail_q_mutex, 1752 .pf_map = pf->avail_txqs, 1753 .pf_map_size = pf->max_pf_txqs, 1754 .q_count = vsi->num_xdp_txq, 1755 .scatter_count = ICE_MAX_SCATTER_TXQS, 1756 .vsi_map = vsi->txq_map, 1757 .vsi_map_offset = vsi->alloc_txq, 1758 .mapping_mode = ICE_VSI_MAP_CONTIG 1759 }; 1760 enum ice_status status; 1761 struct device *dev; 1762 int i, v_idx; 1763 1764 dev = ice_pf_to_dev(pf); 1765 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 1766 sizeof(*vsi->xdp_rings), GFP_KERNEL); 1767 if (!vsi->xdp_rings) 1768 return -ENOMEM; 1769 1770 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 1771 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 1772 goto err_map_xdp; 1773 1774 if (ice_xdp_alloc_setup_rings(vsi)) 1775 goto clear_xdp_rings; 1776 1777 /* follow the logic from ice_vsi_map_rings_to_vectors */ 1778 ice_for_each_q_vector(vsi, v_idx) { 1779 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1780 int xdp_rings_per_v, q_id, q_base; 1781 1782 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 1783 vsi->num_q_vectors - v_idx); 1784 q_base = vsi->num_xdp_txq - xdp_rings_rem; 1785 1786 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 1787 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 1788 1789 xdp_ring->q_vector = q_vector; 1790 xdp_ring->next = q_vector->tx.ring; 1791 q_vector->tx.ring = xdp_ring; 1792 } 1793 xdp_rings_rem -= xdp_rings_per_v; 1794 } 1795 1796 /* omit the scheduler update if in reset path; XDP queues will be 1797 * taken into account at the end of ice_vsi_rebuild, where 1798 * ice_cfg_vsi_lan is being called 1799 */ 1800 if (ice_is_reset_in_progress(pf->state)) 1801 return 0; 1802 1803 /* tell the Tx scheduler that right now we have 1804 * additional queues 1805 */ 1806 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1807 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 1808 1809 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1810 max_txqs); 1811 if (status) { 1812 dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n", 1813 status); 1814 goto clear_xdp_rings; 1815 } 1816 ice_vsi_assign_bpf_prog(vsi, prog); 1817 1818 return 0; 1819 clear_xdp_rings: 1820 for (i = 0; i < vsi->num_xdp_txq; i++) 1821 if (vsi->xdp_rings[i]) { 1822 kfree_rcu(vsi->xdp_rings[i], rcu); 1823 vsi->xdp_rings[i] = NULL; 1824 } 1825 1826 err_map_xdp: 1827 mutex_lock(&pf->avail_q_mutex); 1828 for (i = 0; i < vsi->num_xdp_txq; i++) { 1829 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1830 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1831 } 1832 mutex_unlock(&pf->avail_q_mutex); 1833 1834 devm_kfree(dev, vsi->xdp_rings); 1835 return -ENOMEM; 1836 } 1837 1838 /** 1839 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 1840 * @vsi: VSI to remove XDP rings 1841 * 1842 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 1843 * resources 1844 */ 1845 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 1846 { 1847 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1848 struct ice_pf *pf = vsi->back; 1849 int i, v_idx; 1850 1851 /* q_vectors are freed in reset path so there's no point in detaching 1852 * rings; in case of rebuild being triggered not from reset reset bits 1853 * in pf->state won't be set, so additionally check first q_vector 1854 * against NULL 1855 */ 1856 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1857 goto free_qmap; 1858 1859 ice_for_each_q_vector(vsi, v_idx) { 1860 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1861 struct ice_ring *ring; 1862 1863 ice_for_each_ring(ring, q_vector->tx) 1864 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 1865 break; 1866 1867 /* restore the value of last node prior to XDP setup */ 1868 q_vector->tx.ring = ring; 1869 } 1870 1871 free_qmap: 1872 mutex_lock(&pf->avail_q_mutex); 1873 for (i = 0; i < vsi->num_xdp_txq; i++) { 1874 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1875 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1876 } 1877 mutex_unlock(&pf->avail_q_mutex); 1878 1879 for (i = 0; i < vsi->num_xdp_txq; i++) 1880 if (vsi->xdp_rings[i]) { 1881 if (vsi->xdp_rings[i]->desc) 1882 ice_free_tx_ring(vsi->xdp_rings[i]); 1883 kfree_rcu(vsi->xdp_rings[i], rcu); 1884 vsi->xdp_rings[i] = NULL; 1885 } 1886 1887 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 1888 vsi->xdp_rings = NULL; 1889 1890 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1891 return 0; 1892 1893 ice_vsi_assign_bpf_prog(vsi, NULL); 1894 1895 /* notify Tx scheduler that we destroyed XDP queues and bring 1896 * back the old number of child nodes 1897 */ 1898 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1899 max_txqs[i] = vsi->num_txq; 1900 1901 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1902 max_txqs); 1903 } 1904 1905 /** 1906 * ice_xdp_setup_prog - Add or remove XDP eBPF program 1907 * @vsi: VSI to setup XDP for 1908 * @prog: XDP program 1909 * @extack: netlink extended ack 1910 */ 1911 static int 1912 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 1913 struct netlink_ext_ack *extack) 1914 { 1915 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 1916 bool if_running = netif_running(vsi->netdev); 1917 int ret = 0, xdp_ring_err = 0; 1918 1919 if (frame_size > vsi->rx_buf_len) { 1920 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 1921 return -EOPNOTSUPP; 1922 } 1923 1924 /* need to stop netdev while setting up the program for Rx rings */ 1925 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 1926 ret = ice_down(vsi); 1927 if (ret) { 1928 NL_SET_ERR_MSG_MOD(extack, 1929 "Preparing device for XDP attach failed"); 1930 return ret; 1931 } 1932 } 1933 1934 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 1935 vsi->num_xdp_txq = vsi->alloc_txq; 1936 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 1937 if (xdp_ring_err) 1938 NL_SET_ERR_MSG_MOD(extack, 1939 "Setting up XDP Tx resources failed"); 1940 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 1941 xdp_ring_err = ice_destroy_xdp_rings(vsi); 1942 if (xdp_ring_err) 1943 NL_SET_ERR_MSG_MOD(extack, 1944 "Freeing XDP Tx resources failed"); 1945 } else { 1946 ice_vsi_assign_bpf_prog(vsi, prog); 1947 } 1948 1949 if (if_running) 1950 ret = ice_up(vsi); 1951 1952 if (!ret && prog && vsi->xsk_umems) { 1953 int i; 1954 1955 ice_for_each_rxq(vsi, i) { 1956 struct ice_ring *rx_ring = vsi->rx_rings[i]; 1957 1958 if (rx_ring->xsk_umem) 1959 napi_schedule(&rx_ring->q_vector->napi); 1960 } 1961 } 1962 1963 return (ret || xdp_ring_err) ? -ENOMEM : 0; 1964 } 1965 1966 /** 1967 * ice_xdp - implements XDP handler 1968 * @dev: netdevice 1969 * @xdp: XDP command 1970 */ 1971 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1972 { 1973 struct ice_netdev_priv *np = netdev_priv(dev); 1974 struct ice_vsi *vsi = np->vsi; 1975 1976 if (vsi->type != ICE_VSI_PF) { 1977 NL_SET_ERR_MSG_MOD(xdp->extack, 1978 "XDP can be loaded only on PF VSI"); 1979 return -EINVAL; 1980 } 1981 1982 switch (xdp->command) { 1983 case XDP_SETUP_PROG: 1984 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 1985 case XDP_QUERY_PROG: 1986 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 1987 return 0; 1988 case XDP_SETUP_XSK_UMEM: 1989 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 1990 xdp->xsk.queue_id); 1991 default: 1992 return -EINVAL; 1993 } 1994 } 1995 1996 /** 1997 * ice_ena_misc_vector - enable the non-queue interrupts 1998 * @pf: board private structure 1999 */ 2000 static void ice_ena_misc_vector(struct ice_pf *pf) 2001 { 2002 struct ice_hw *hw = &pf->hw; 2003 u32 val; 2004 2005 /* clear things first */ 2006 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2007 rd32(hw, PFINT_OICR); /* read to clear */ 2008 2009 val = (PFINT_OICR_ECC_ERR_M | 2010 PFINT_OICR_MAL_DETECT_M | 2011 PFINT_OICR_GRST_M | 2012 PFINT_OICR_PCI_EXCEPTION_M | 2013 PFINT_OICR_VFLR_M | 2014 PFINT_OICR_HMC_ERR_M | 2015 PFINT_OICR_PE_CRITERR_M); 2016 2017 wr32(hw, PFINT_OICR_ENA, val); 2018 2019 /* SW_ITR_IDX = 0, but don't change INTENA */ 2020 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2021 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2022 } 2023 2024 /** 2025 * ice_misc_intr - misc interrupt handler 2026 * @irq: interrupt number 2027 * @data: pointer to a q_vector 2028 */ 2029 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2030 { 2031 struct ice_pf *pf = (struct ice_pf *)data; 2032 struct ice_hw *hw = &pf->hw; 2033 irqreturn_t ret = IRQ_NONE; 2034 struct device *dev; 2035 u32 oicr, ena_mask; 2036 2037 dev = ice_pf_to_dev(pf); 2038 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2039 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2040 2041 oicr = rd32(hw, PFINT_OICR); 2042 ena_mask = rd32(hw, PFINT_OICR_ENA); 2043 2044 if (oicr & PFINT_OICR_SWINT_M) { 2045 ena_mask &= ~PFINT_OICR_SWINT_M; 2046 pf->sw_int_count++; 2047 } 2048 2049 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2050 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2051 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2052 } 2053 if (oicr & PFINT_OICR_VFLR_M) { 2054 ena_mask &= ~PFINT_OICR_VFLR_M; 2055 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2056 } 2057 2058 if (oicr & PFINT_OICR_GRST_M) { 2059 u32 reset; 2060 2061 /* we have a reset warning */ 2062 ena_mask &= ~PFINT_OICR_GRST_M; 2063 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2064 GLGEN_RSTAT_RESET_TYPE_S; 2065 2066 if (reset == ICE_RESET_CORER) 2067 pf->corer_count++; 2068 else if (reset == ICE_RESET_GLOBR) 2069 pf->globr_count++; 2070 else if (reset == ICE_RESET_EMPR) 2071 pf->empr_count++; 2072 else 2073 dev_dbg(dev, "Invalid reset type %d\n", reset); 2074 2075 /* If a reset cycle isn't already in progress, we set a bit in 2076 * pf->state so that the service task can start a reset/rebuild. 2077 * We also make note of which reset happened so that peer 2078 * devices/drivers can be informed. 2079 */ 2080 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2081 if (reset == ICE_RESET_CORER) 2082 set_bit(__ICE_CORER_RECV, pf->state); 2083 else if (reset == ICE_RESET_GLOBR) 2084 set_bit(__ICE_GLOBR_RECV, pf->state); 2085 else 2086 set_bit(__ICE_EMPR_RECV, pf->state); 2087 2088 /* There are couple of different bits at play here. 2089 * hw->reset_ongoing indicates whether the hardware is 2090 * in reset. This is set to true when a reset interrupt 2091 * is received and set back to false after the driver 2092 * has determined that the hardware is out of reset. 2093 * 2094 * __ICE_RESET_OICR_RECV in pf->state indicates 2095 * that a post reset rebuild is required before the 2096 * driver is operational again. This is set above. 2097 * 2098 * As this is the start of the reset/rebuild cycle, set 2099 * both to indicate that. 2100 */ 2101 hw->reset_ongoing = true; 2102 } 2103 } 2104 2105 if (oicr & PFINT_OICR_HMC_ERR_M) { 2106 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2107 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2108 rd32(hw, PFHMC_ERRORINFO), 2109 rd32(hw, PFHMC_ERRORDATA)); 2110 } 2111 2112 /* Report any remaining unexpected interrupts */ 2113 oicr &= ena_mask; 2114 if (oicr) { 2115 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2116 /* If a critical error is pending there is no choice but to 2117 * reset the device. 2118 */ 2119 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2120 PFINT_OICR_PCI_EXCEPTION_M | 2121 PFINT_OICR_ECC_ERR_M)) { 2122 set_bit(__ICE_PFR_REQ, pf->state); 2123 ice_service_task_schedule(pf); 2124 } 2125 } 2126 ret = IRQ_HANDLED; 2127 2128 if (!test_bit(__ICE_DOWN, pf->state)) { 2129 ice_service_task_schedule(pf); 2130 ice_irq_dynamic_ena(hw, NULL, NULL); 2131 } 2132 2133 return ret; 2134 } 2135 2136 /** 2137 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2138 * @hw: pointer to HW structure 2139 */ 2140 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2141 { 2142 /* disable Admin queue Interrupt causes */ 2143 wr32(hw, PFINT_FW_CTL, 2144 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2145 2146 /* disable Mailbox queue Interrupt causes */ 2147 wr32(hw, PFINT_MBX_CTL, 2148 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2149 2150 /* disable Control queue Interrupt causes */ 2151 wr32(hw, PFINT_OICR_CTL, 2152 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2153 2154 ice_flush(hw); 2155 } 2156 2157 /** 2158 * ice_free_irq_msix_misc - Unroll misc vector setup 2159 * @pf: board private structure 2160 */ 2161 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2162 { 2163 struct ice_hw *hw = &pf->hw; 2164 2165 ice_dis_ctrlq_interrupts(hw); 2166 2167 /* disable OICR interrupt */ 2168 wr32(hw, PFINT_OICR_ENA, 0); 2169 ice_flush(hw); 2170 2171 if (pf->msix_entries) { 2172 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2173 devm_free_irq(ice_pf_to_dev(pf), 2174 pf->msix_entries[pf->oicr_idx].vector, pf); 2175 } 2176 2177 pf->num_avail_sw_msix += 1; 2178 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2179 } 2180 2181 /** 2182 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2183 * @hw: pointer to HW structure 2184 * @reg_idx: HW vector index to associate the control queue interrupts with 2185 */ 2186 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2187 { 2188 u32 val; 2189 2190 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2191 PFINT_OICR_CTL_CAUSE_ENA_M); 2192 wr32(hw, PFINT_OICR_CTL, val); 2193 2194 /* enable Admin queue Interrupt causes */ 2195 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2196 PFINT_FW_CTL_CAUSE_ENA_M); 2197 wr32(hw, PFINT_FW_CTL, val); 2198 2199 /* enable Mailbox queue Interrupt causes */ 2200 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2201 PFINT_MBX_CTL_CAUSE_ENA_M); 2202 wr32(hw, PFINT_MBX_CTL, val); 2203 2204 ice_flush(hw); 2205 } 2206 2207 /** 2208 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2209 * @pf: board private structure 2210 * 2211 * This sets up the handler for MSIX 0, which is used to manage the 2212 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2213 * when in MSI or Legacy interrupt mode. 2214 */ 2215 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2216 { 2217 struct device *dev = ice_pf_to_dev(pf); 2218 struct ice_hw *hw = &pf->hw; 2219 int oicr_idx, err = 0; 2220 2221 if (!pf->int_name[0]) 2222 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2223 dev_driver_string(dev), dev_name(dev)); 2224 2225 /* Do not request IRQ but do enable OICR interrupt since settings are 2226 * lost during reset. Note that this function is called only during 2227 * rebuild path and not while reset is in progress. 2228 */ 2229 if (ice_is_reset_in_progress(pf->state)) 2230 goto skip_req_irq; 2231 2232 /* reserve one vector in irq_tracker for misc interrupts */ 2233 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2234 if (oicr_idx < 0) 2235 return oicr_idx; 2236 2237 pf->num_avail_sw_msix -= 1; 2238 pf->oicr_idx = oicr_idx; 2239 2240 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2241 ice_misc_intr, 0, pf->int_name, pf); 2242 if (err) { 2243 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2244 pf->int_name, err); 2245 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2246 pf->num_avail_sw_msix += 1; 2247 return err; 2248 } 2249 2250 skip_req_irq: 2251 ice_ena_misc_vector(pf); 2252 2253 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2254 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2255 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2256 2257 ice_flush(hw); 2258 ice_irq_dynamic_ena(hw, NULL, NULL); 2259 2260 return 0; 2261 } 2262 2263 /** 2264 * ice_napi_add - register NAPI handler for the VSI 2265 * @vsi: VSI for which NAPI handler is to be registered 2266 * 2267 * This function is only called in the driver's load path. Registering the NAPI 2268 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2269 * reset/rebuild, etc.) 2270 */ 2271 static void ice_napi_add(struct ice_vsi *vsi) 2272 { 2273 int v_idx; 2274 2275 if (!vsi->netdev) 2276 return; 2277 2278 ice_for_each_q_vector(vsi, v_idx) 2279 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2280 ice_napi_poll, NAPI_POLL_WEIGHT); 2281 } 2282 2283 /** 2284 * ice_set_ops - set netdev and ethtools ops for the given netdev 2285 * @netdev: netdev instance 2286 */ 2287 static void ice_set_ops(struct net_device *netdev) 2288 { 2289 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2290 2291 if (ice_is_safe_mode(pf)) { 2292 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2293 ice_set_ethtool_safe_mode_ops(netdev); 2294 return; 2295 } 2296 2297 netdev->netdev_ops = &ice_netdev_ops; 2298 ice_set_ethtool_ops(netdev); 2299 } 2300 2301 /** 2302 * ice_set_netdev_features - set features for the given netdev 2303 * @netdev: netdev instance 2304 */ 2305 static void ice_set_netdev_features(struct net_device *netdev) 2306 { 2307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2308 netdev_features_t csumo_features; 2309 netdev_features_t vlano_features; 2310 netdev_features_t dflt_features; 2311 netdev_features_t tso_features; 2312 2313 if (ice_is_safe_mode(pf)) { 2314 /* safe mode */ 2315 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2316 netdev->hw_features = netdev->features; 2317 return; 2318 } 2319 2320 dflt_features = NETIF_F_SG | 2321 NETIF_F_HIGHDMA | 2322 NETIF_F_RXHASH; 2323 2324 csumo_features = NETIF_F_RXCSUM | 2325 NETIF_F_IP_CSUM | 2326 NETIF_F_SCTP_CRC | 2327 NETIF_F_IPV6_CSUM; 2328 2329 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2330 NETIF_F_HW_VLAN_CTAG_TX | 2331 NETIF_F_HW_VLAN_CTAG_RX; 2332 2333 tso_features = NETIF_F_TSO; 2334 2335 /* set features that user can change */ 2336 netdev->hw_features = dflt_features | csumo_features | 2337 vlano_features | tso_features; 2338 2339 /* enable features */ 2340 netdev->features |= netdev->hw_features; 2341 /* encap and VLAN devices inherit default, csumo and tso features */ 2342 netdev->hw_enc_features |= dflt_features | csumo_features | 2343 tso_features; 2344 netdev->vlan_features |= dflt_features | csumo_features | 2345 tso_features; 2346 } 2347 2348 /** 2349 * ice_cfg_netdev - Allocate, configure and register a netdev 2350 * @vsi: the VSI associated with the new netdev 2351 * 2352 * Returns 0 on success, negative value on failure 2353 */ 2354 static int ice_cfg_netdev(struct ice_vsi *vsi) 2355 { 2356 struct ice_pf *pf = vsi->back; 2357 struct ice_netdev_priv *np; 2358 struct net_device *netdev; 2359 u8 mac_addr[ETH_ALEN]; 2360 int err; 2361 2362 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2363 vsi->alloc_rxq); 2364 if (!netdev) 2365 return -ENOMEM; 2366 2367 vsi->netdev = netdev; 2368 np = netdev_priv(netdev); 2369 np->vsi = vsi; 2370 2371 ice_set_netdev_features(netdev); 2372 2373 ice_set_ops(netdev); 2374 2375 if (vsi->type == ICE_VSI_PF) { 2376 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2377 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2378 ether_addr_copy(netdev->dev_addr, mac_addr); 2379 ether_addr_copy(netdev->perm_addr, mac_addr); 2380 } 2381 2382 netdev->priv_flags |= IFF_UNICAST_FLT; 2383 2384 /* Setup netdev TC information */ 2385 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2386 2387 /* setup watchdog timeout value to be 5 second */ 2388 netdev->watchdog_timeo = 5 * HZ; 2389 2390 netdev->min_mtu = ETH_MIN_MTU; 2391 netdev->max_mtu = ICE_MAX_MTU; 2392 2393 err = register_netdev(vsi->netdev); 2394 if (err) 2395 return err; 2396 2397 netif_carrier_off(vsi->netdev); 2398 2399 /* make sure transmit queues start off as stopped */ 2400 netif_tx_stop_all_queues(vsi->netdev); 2401 2402 return 0; 2403 } 2404 2405 /** 2406 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2407 * @lut: Lookup table 2408 * @rss_table_size: Lookup table size 2409 * @rss_size: Range of queue number for hashing 2410 */ 2411 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2412 { 2413 u16 i; 2414 2415 for (i = 0; i < rss_table_size; i++) 2416 lut[i] = i % rss_size; 2417 } 2418 2419 /** 2420 * ice_pf_vsi_setup - Set up a PF VSI 2421 * @pf: board private structure 2422 * @pi: pointer to the port_info instance 2423 * 2424 * Returns pointer to the successfully allocated VSI software struct 2425 * on success, otherwise returns NULL on failure. 2426 */ 2427 static struct ice_vsi * 2428 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2429 { 2430 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2431 } 2432 2433 /** 2434 * ice_lb_vsi_setup - Set up a loopback VSI 2435 * @pf: board private structure 2436 * @pi: pointer to the port_info instance 2437 * 2438 * Returns pointer to the successfully allocated VSI software struct 2439 * on success, otherwise returns NULL on failure. 2440 */ 2441 struct ice_vsi * 2442 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2443 { 2444 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2445 } 2446 2447 /** 2448 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2449 * @netdev: network interface to be adjusted 2450 * @proto: unused protocol 2451 * @vid: VLAN ID to be added 2452 * 2453 * net_device_ops implementation for adding VLAN IDs 2454 */ 2455 static int 2456 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2457 u16 vid) 2458 { 2459 struct ice_netdev_priv *np = netdev_priv(netdev); 2460 struct ice_vsi *vsi = np->vsi; 2461 int ret; 2462 2463 if (vid >= VLAN_N_VID) { 2464 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2465 vid, VLAN_N_VID); 2466 return -EINVAL; 2467 } 2468 2469 if (vsi->info.pvid) 2470 return -EINVAL; 2471 2472 /* Enable VLAN pruning when VLAN 0 is added */ 2473 if (unlikely(!vid)) { 2474 ret = ice_cfg_vlan_pruning(vsi, true, false); 2475 if (ret) 2476 return ret; 2477 } 2478 2479 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is 2480 * needed to continue allowing all untagged packets since VLAN prune 2481 * list is applied to all packets by the switch 2482 */ 2483 ret = ice_vsi_add_vlan(vsi, vid); 2484 if (!ret) { 2485 vsi->vlan_ena = true; 2486 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2487 } 2488 2489 return ret; 2490 } 2491 2492 /** 2493 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2494 * @netdev: network interface to be adjusted 2495 * @proto: unused protocol 2496 * @vid: VLAN ID to be removed 2497 * 2498 * net_device_ops implementation for removing VLAN IDs 2499 */ 2500 static int 2501 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2502 u16 vid) 2503 { 2504 struct ice_netdev_priv *np = netdev_priv(netdev); 2505 struct ice_vsi *vsi = np->vsi; 2506 int ret; 2507 2508 if (vsi->info.pvid) 2509 return -EINVAL; 2510 2511 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2512 * information 2513 */ 2514 ret = ice_vsi_kill_vlan(vsi, vid); 2515 if (ret) 2516 return ret; 2517 2518 /* Disable VLAN pruning when VLAN 0 is removed */ 2519 if (unlikely(!vid)) 2520 ret = ice_cfg_vlan_pruning(vsi, false, false); 2521 2522 vsi->vlan_ena = false; 2523 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2524 return ret; 2525 } 2526 2527 /** 2528 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2529 * @pf: board private structure 2530 * 2531 * Returns 0 on success, negative value on failure 2532 */ 2533 static int ice_setup_pf_sw(struct ice_pf *pf) 2534 { 2535 struct ice_vsi *vsi; 2536 int status = 0; 2537 2538 if (ice_is_reset_in_progress(pf->state)) 2539 return -EBUSY; 2540 2541 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2542 if (!vsi) { 2543 status = -ENOMEM; 2544 goto unroll_vsi_setup; 2545 } 2546 2547 status = ice_cfg_netdev(vsi); 2548 if (status) { 2549 status = -ENODEV; 2550 goto unroll_vsi_setup; 2551 } 2552 /* netdev has to be configured before setting frame size */ 2553 ice_vsi_cfg_frame_size(vsi); 2554 2555 /* Setup DCB netlink interface */ 2556 ice_dcbnl_setup(vsi); 2557 2558 /* registering the NAPI handler requires both the queues and 2559 * netdev to be created, which are done in ice_pf_vsi_setup() 2560 * and ice_cfg_netdev() respectively 2561 */ 2562 ice_napi_add(vsi); 2563 2564 status = ice_init_mac_fltr(pf); 2565 if (status) 2566 goto unroll_napi_add; 2567 2568 return status; 2569 2570 unroll_napi_add: 2571 if (vsi) { 2572 ice_napi_del(vsi); 2573 if (vsi->netdev) { 2574 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2575 unregister_netdev(vsi->netdev); 2576 free_netdev(vsi->netdev); 2577 vsi->netdev = NULL; 2578 } 2579 } 2580 2581 unroll_vsi_setup: 2582 if (vsi) { 2583 ice_vsi_free_q_vectors(vsi); 2584 ice_vsi_delete(vsi); 2585 ice_vsi_put_qs(vsi); 2586 ice_vsi_clear(vsi); 2587 } 2588 return status; 2589 } 2590 2591 /** 2592 * ice_get_avail_q_count - Get count of queues in use 2593 * @pf_qmap: bitmap to get queue use count from 2594 * @lock: pointer to a mutex that protects access to pf_qmap 2595 * @size: size of the bitmap 2596 */ 2597 static u16 2598 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2599 { 2600 u16 count = 0, bit; 2601 2602 mutex_lock(lock); 2603 for_each_clear_bit(bit, pf_qmap, size) 2604 count++; 2605 mutex_unlock(lock); 2606 2607 return count; 2608 } 2609 2610 /** 2611 * ice_get_avail_txq_count - Get count of Tx queues in use 2612 * @pf: pointer to an ice_pf instance 2613 */ 2614 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2615 { 2616 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2617 pf->max_pf_txqs); 2618 } 2619 2620 /** 2621 * ice_get_avail_rxq_count - Get count of Rx queues in use 2622 * @pf: pointer to an ice_pf instance 2623 */ 2624 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2625 { 2626 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2627 pf->max_pf_rxqs); 2628 } 2629 2630 /** 2631 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2632 * @pf: board private structure to initialize 2633 */ 2634 static void ice_deinit_pf(struct ice_pf *pf) 2635 { 2636 ice_service_task_stop(pf); 2637 mutex_destroy(&pf->sw_mutex); 2638 mutex_destroy(&pf->tc_mutex); 2639 mutex_destroy(&pf->avail_q_mutex); 2640 2641 if (pf->avail_txqs) { 2642 bitmap_free(pf->avail_txqs); 2643 pf->avail_txqs = NULL; 2644 } 2645 2646 if (pf->avail_rxqs) { 2647 bitmap_free(pf->avail_rxqs); 2648 pf->avail_rxqs = NULL; 2649 } 2650 } 2651 2652 /** 2653 * ice_set_pf_caps - set PFs capability flags 2654 * @pf: pointer to the PF instance 2655 */ 2656 static void ice_set_pf_caps(struct ice_pf *pf) 2657 { 2658 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2659 2660 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2661 if (func_caps->common_cap.dcb) 2662 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2663 #ifdef CONFIG_PCI_IOV 2664 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2665 if (func_caps->common_cap.sr_iov_1_1) { 2666 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2667 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2668 ICE_MAX_VF_COUNT); 2669 } 2670 #endif /* CONFIG_PCI_IOV */ 2671 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2672 if (func_caps->common_cap.rss_table_size) 2673 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2674 2675 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2676 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2677 } 2678 2679 /** 2680 * ice_init_pf - Initialize general software structures (struct ice_pf) 2681 * @pf: board private structure to initialize 2682 */ 2683 static int ice_init_pf(struct ice_pf *pf) 2684 { 2685 ice_set_pf_caps(pf); 2686 2687 mutex_init(&pf->sw_mutex); 2688 mutex_init(&pf->tc_mutex); 2689 2690 /* setup service timer and periodic service task */ 2691 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2692 pf->serv_tmr_period = HZ; 2693 INIT_WORK(&pf->serv_task, ice_service_task); 2694 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2695 2696 mutex_init(&pf->avail_q_mutex); 2697 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2698 if (!pf->avail_txqs) 2699 return -ENOMEM; 2700 2701 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2702 if (!pf->avail_rxqs) { 2703 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 2704 pf->avail_txqs = NULL; 2705 return -ENOMEM; 2706 } 2707 2708 return 0; 2709 } 2710 2711 /** 2712 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2713 * @pf: board private structure 2714 * 2715 * compute the number of MSIX vectors required (v_budget) and request from 2716 * the OS. Return the number of vectors reserved or negative on failure 2717 */ 2718 static int ice_ena_msix_range(struct ice_pf *pf) 2719 { 2720 struct device *dev = ice_pf_to_dev(pf); 2721 int v_left, v_actual, v_budget = 0; 2722 int needed, err, i; 2723 2724 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2725 2726 /* reserve one vector for miscellaneous handler */ 2727 needed = 1; 2728 if (v_left < needed) 2729 goto no_hw_vecs_left_err; 2730 v_budget += needed; 2731 v_left -= needed; 2732 2733 /* reserve vectors for LAN traffic */ 2734 needed = min_t(int, num_online_cpus(), v_left); 2735 if (v_left < needed) 2736 goto no_hw_vecs_left_err; 2737 pf->num_lan_msix = needed; 2738 v_budget += needed; 2739 v_left -= needed; 2740 2741 pf->msix_entries = devm_kcalloc(dev, v_budget, 2742 sizeof(*pf->msix_entries), GFP_KERNEL); 2743 2744 if (!pf->msix_entries) { 2745 err = -ENOMEM; 2746 goto exit_err; 2747 } 2748 2749 for (i = 0; i < v_budget; i++) 2750 pf->msix_entries[i].entry = i; 2751 2752 /* actually reserve the vectors */ 2753 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2754 ICE_MIN_MSIX, v_budget); 2755 2756 if (v_actual < 0) { 2757 dev_err(dev, "unable to reserve MSI-X vectors\n"); 2758 err = v_actual; 2759 goto msix_err; 2760 } 2761 2762 if (v_actual < v_budget) { 2763 dev_warn(dev, 2764 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2765 v_budget, v_actual); 2766 /* 2 vectors for LAN (traffic + OICR) */ 2767 #define ICE_MIN_LAN_VECS 2 2768 2769 if (v_actual < ICE_MIN_LAN_VECS) { 2770 /* error if we can't get minimum vectors */ 2771 pci_disable_msix(pf->pdev); 2772 err = -ERANGE; 2773 goto msix_err; 2774 } else { 2775 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2776 } 2777 } 2778 2779 return v_actual; 2780 2781 msix_err: 2782 devm_kfree(dev, pf->msix_entries); 2783 goto exit_err; 2784 2785 no_hw_vecs_left_err: 2786 dev_err(dev, 2787 "not enough device MSI-X vectors. requested = %d, available = %d\n", 2788 needed, v_left); 2789 err = -ERANGE; 2790 exit_err: 2791 pf->num_lan_msix = 0; 2792 return err; 2793 } 2794 2795 /** 2796 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2797 * @pf: board private structure 2798 */ 2799 static void ice_dis_msix(struct ice_pf *pf) 2800 { 2801 pci_disable_msix(pf->pdev); 2802 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 2803 pf->msix_entries = NULL; 2804 } 2805 2806 /** 2807 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2808 * @pf: board private structure 2809 */ 2810 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2811 { 2812 ice_dis_msix(pf); 2813 2814 if (pf->irq_tracker) { 2815 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 2816 pf->irq_tracker = NULL; 2817 } 2818 } 2819 2820 /** 2821 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2822 * @pf: board private structure to initialize 2823 */ 2824 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2825 { 2826 int vectors; 2827 2828 vectors = ice_ena_msix_range(pf); 2829 2830 if (vectors < 0) 2831 return vectors; 2832 2833 /* set up vector assignment tracking */ 2834 pf->irq_tracker = 2835 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 2836 (sizeof(u16) * vectors), GFP_KERNEL); 2837 if (!pf->irq_tracker) { 2838 ice_dis_msix(pf); 2839 return -ENOMEM; 2840 } 2841 2842 /* populate SW interrupts pool with number of OS granted IRQs. */ 2843 pf->num_avail_sw_msix = vectors; 2844 pf->irq_tracker->num_entries = vectors; 2845 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2846 2847 return 0; 2848 } 2849 2850 /** 2851 * ice_vsi_recfg_qs - Change the number of queues on a VSI 2852 * @vsi: VSI being changed 2853 * @new_rx: new number of Rx queues 2854 * @new_tx: new number of Tx queues 2855 * 2856 * Only change the number of queues if new_tx, or new_rx is non-0. 2857 * 2858 * Returns 0 on success. 2859 */ 2860 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 2861 { 2862 struct ice_pf *pf = vsi->back; 2863 int err = 0, timeout = 50; 2864 2865 if (!new_rx && !new_tx) 2866 return -EINVAL; 2867 2868 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 2869 timeout--; 2870 if (!timeout) 2871 return -EBUSY; 2872 usleep_range(1000, 2000); 2873 } 2874 2875 if (new_tx) 2876 vsi->req_txq = new_tx; 2877 if (new_rx) 2878 vsi->req_rxq = new_rx; 2879 2880 /* set for the next time the netdev is started */ 2881 if (!netif_running(vsi->netdev)) { 2882 ice_vsi_rebuild(vsi, false); 2883 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 2884 goto done; 2885 } 2886 2887 ice_vsi_close(vsi); 2888 ice_vsi_rebuild(vsi, false); 2889 ice_pf_dcb_recfg(pf); 2890 ice_vsi_open(vsi); 2891 done: 2892 clear_bit(__ICE_CFG_BUSY, pf->state); 2893 return err; 2894 } 2895 2896 /** 2897 * ice_log_pkg_init - log result of DDP package load 2898 * @hw: pointer to hardware info 2899 * @status: status of package load 2900 */ 2901 static void 2902 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 2903 { 2904 struct ice_pf *pf = (struct ice_pf *)hw->back; 2905 struct device *dev = ice_pf_to_dev(pf); 2906 2907 switch (*status) { 2908 case ICE_SUCCESS: 2909 /* The package download AdminQ command returned success because 2910 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 2911 * already a package loaded on the device. 2912 */ 2913 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 2914 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 2915 hw->pkg_ver.update == hw->active_pkg_ver.update && 2916 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 2917 !memcmp(hw->pkg_name, hw->active_pkg_name, 2918 sizeof(hw->pkg_name))) { 2919 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 2920 dev_info(dev, 2921 "DDP package already present on device: %s version %d.%d.%d.%d\n", 2922 hw->active_pkg_name, 2923 hw->active_pkg_ver.major, 2924 hw->active_pkg_ver.minor, 2925 hw->active_pkg_ver.update, 2926 hw->active_pkg_ver.draft); 2927 else 2928 dev_info(dev, 2929 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 2930 hw->active_pkg_name, 2931 hw->active_pkg_ver.major, 2932 hw->active_pkg_ver.minor, 2933 hw->active_pkg_ver.update, 2934 hw->active_pkg_ver.draft); 2935 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 2936 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 2937 dev_err(dev, 2938 "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 2939 hw->active_pkg_name, 2940 hw->active_pkg_ver.major, 2941 hw->active_pkg_ver.minor, 2942 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2943 *status = ICE_ERR_NOT_SUPPORTED; 2944 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2945 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 2946 dev_info(dev, 2947 "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 2948 hw->active_pkg_name, 2949 hw->active_pkg_ver.major, 2950 hw->active_pkg_ver.minor, 2951 hw->active_pkg_ver.update, 2952 hw->active_pkg_ver.draft, 2953 hw->pkg_name, 2954 hw->pkg_ver.major, 2955 hw->pkg_ver.minor, 2956 hw->pkg_ver.update, 2957 hw->pkg_ver.draft); 2958 } else { 2959 dev_err(dev, 2960 "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 2961 *status = ICE_ERR_NOT_SUPPORTED; 2962 } 2963 break; 2964 case ICE_ERR_BUF_TOO_SHORT: 2965 /* fall-through */ 2966 case ICE_ERR_CFG: 2967 dev_err(dev, 2968 "The DDP package file is invalid. Entering Safe Mode.\n"); 2969 break; 2970 case ICE_ERR_NOT_SUPPORTED: 2971 /* Package File version not supported */ 2972 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 2973 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2974 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 2975 dev_err(dev, 2976 "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 2977 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 2978 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2979 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 2980 dev_err(dev, 2981 "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 2982 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2983 break; 2984 case ICE_ERR_AQ_ERROR: 2985 switch (hw->pkg_dwnld_status) { 2986 case ICE_AQ_RC_ENOSEC: 2987 case ICE_AQ_RC_EBADSIG: 2988 dev_err(dev, 2989 "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 2990 return; 2991 case ICE_AQ_RC_ESVN: 2992 dev_err(dev, 2993 "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 2994 return; 2995 case ICE_AQ_RC_EBADMAN: 2996 case ICE_AQ_RC_EBADBUF: 2997 dev_err(dev, 2998 "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 2999 return; 3000 default: 3001 break; 3002 } 3003 /* fall-through */ 3004 default: 3005 dev_err(dev, 3006 "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3007 *status); 3008 break; 3009 } 3010 } 3011 3012 /** 3013 * ice_load_pkg - load/reload the DDP Package file 3014 * @firmware: firmware structure when firmware requested or NULL for reload 3015 * @pf: pointer to the PF instance 3016 * 3017 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3018 * initialize HW tables. 3019 */ 3020 static void 3021 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3022 { 3023 enum ice_status status = ICE_ERR_PARAM; 3024 struct device *dev = ice_pf_to_dev(pf); 3025 struct ice_hw *hw = &pf->hw; 3026 3027 /* Load DDP Package */ 3028 if (firmware && !hw->pkg_copy) { 3029 status = ice_copy_and_init_pkg(hw, firmware->data, 3030 firmware->size); 3031 ice_log_pkg_init(hw, &status); 3032 } else if (!firmware && hw->pkg_copy) { 3033 /* Reload package during rebuild after CORER/GLOBR reset */ 3034 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3035 ice_log_pkg_init(hw, &status); 3036 } else { 3037 dev_err(dev, 3038 "The DDP package file failed to load. Entering Safe Mode.\n"); 3039 } 3040 3041 if (status) { 3042 /* Safe Mode */ 3043 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3044 return; 3045 } 3046 3047 /* Successful download package is the precondition for advanced 3048 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3049 */ 3050 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3051 } 3052 3053 /** 3054 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3055 * @pf: pointer to the PF structure 3056 * 3057 * There is no error returned here because the driver should be able to handle 3058 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3059 * specifically with Tx. 3060 */ 3061 static void ice_verify_cacheline_size(struct ice_pf *pf) 3062 { 3063 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3064 dev_warn(ice_pf_to_dev(pf), 3065 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3066 ICE_CACHE_LINE_BYTES); 3067 } 3068 3069 /** 3070 * ice_send_version - update firmware with driver version 3071 * @pf: PF struct 3072 * 3073 * Returns ICE_SUCCESS on success, else error code 3074 */ 3075 static enum ice_status ice_send_version(struct ice_pf *pf) 3076 { 3077 struct ice_driver_ver dv; 3078 3079 dv.major_ver = DRV_VERSION_MAJOR; 3080 dv.minor_ver = DRV_VERSION_MINOR; 3081 dv.build_ver = DRV_VERSION_BUILD; 3082 dv.subbuild_ver = 0; 3083 strscpy((char *)dv.driver_string, DRV_VERSION, 3084 sizeof(dv.driver_string)); 3085 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3086 } 3087 3088 /** 3089 * ice_get_opt_fw_name - return optional firmware file name or NULL 3090 * @pf: pointer to the PF instance 3091 */ 3092 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3093 { 3094 /* Optional firmware name same as default with additional dash 3095 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3096 */ 3097 struct pci_dev *pdev = pf->pdev; 3098 char *opt_fw_filename = NULL; 3099 u32 dword; 3100 u8 dsn[8]; 3101 int pos; 3102 3103 /* Determine the name of the optional file using the DSN (two 3104 * dwords following the start of the DSN Capability). 3105 */ 3106 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN); 3107 if (pos) { 3108 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3109 if (!opt_fw_filename) 3110 return NULL; 3111 3112 pci_read_config_dword(pdev, pos + 4, &dword); 3113 put_unaligned_le32(dword, &dsn[0]); 3114 pci_read_config_dword(pdev, pos + 8, &dword); 3115 put_unaligned_le32(dword, &dsn[4]); 3116 snprintf(opt_fw_filename, NAME_MAX, 3117 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg", 3118 ICE_DDP_PKG_PATH, 3119 dsn[7], dsn[6], dsn[5], dsn[4], 3120 dsn[3], dsn[2], dsn[1], dsn[0]); 3121 } 3122 3123 return opt_fw_filename; 3124 } 3125 3126 /** 3127 * ice_request_fw - Device initialization routine 3128 * @pf: pointer to the PF instance 3129 */ 3130 static void ice_request_fw(struct ice_pf *pf) 3131 { 3132 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3133 const struct firmware *firmware = NULL; 3134 struct device *dev = ice_pf_to_dev(pf); 3135 int err = 0; 3136 3137 /* optional device-specific DDP (if present) overrides the default DDP 3138 * package file. kernel logs a debug message if the file doesn't exist, 3139 * and warning messages for other errors. 3140 */ 3141 if (opt_fw_filename) { 3142 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3143 if (err) { 3144 kfree(opt_fw_filename); 3145 goto dflt_pkg_load; 3146 } 3147 3148 /* request for firmware was successful. Download to device */ 3149 ice_load_pkg(firmware, pf); 3150 kfree(opt_fw_filename); 3151 release_firmware(firmware); 3152 return; 3153 } 3154 3155 dflt_pkg_load: 3156 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3157 if (err) { 3158 dev_err(dev, 3159 "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3160 return; 3161 } 3162 3163 /* request for firmware was successful. Download to device */ 3164 ice_load_pkg(firmware, pf); 3165 release_firmware(firmware); 3166 } 3167 3168 /** 3169 * ice_probe - Device initialization routine 3170 * @pdev: PCI device information struct 3171 * @ent: entry in ice_pci_tbl 3172 * 3173 * Returns 0 on success, negative on failure 3174 */ 3175 static int 3176 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3177 { 3178 struct device *dev = &pdev->dev; 3179 struct ice_pf *pf; 3180 struct ice_hw *hw; 3181 int err; 3182 3183 /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */ 3184 err = pcim_enable_device(pdev); 3185 if (err) 3186 return err; 3187 3188 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3189 if (err) { 3190 dev_err(dev, "BAR0 I/O map error %d\n", err); 3191 return err; 3192 } 3193 3194 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 3195 if (!pf) 3196 return -ENOMEM; 3197 3198 /* set up for high or low DMA */ 3199 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3200 if (err) 3201 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3202 if (err) { 3203 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3204 return err; 3205 } 3206 3207 pci_enable_pcie_error_reporting(pdev); 3208 pci_set_master(pdev); 3209 3210 pf->pdev = pdev; 3211 pci_set_drvdata(pdev, pf); 3212 set_bit(__ICE_DOWN, pf->state); 3213 /* Disable service task until DOWN bit is cleared */ 3214 set_bit(__ICE_SERVICE_DIS, pf->state); 3215 3216 hw = &pf->hw; 3217 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 3218 pci_save_state(pdev); 3219 3220 hw->back = pf; 3221 hw->vendor_id = pdev->vendor; 3222 hw->device_id = pdev->device; 3223 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3224 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3225 hw->subsystem_device_id = pdev->subsystem_device; 3226 hw->bus.device = PCI_SLOT(pdev->devfn); 3227 hw->bus.func = PCI_FUNC(pdev->devfn); 3228 ice_set_ctrlq_len(hw); 3229 3230 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 3231 3232 #ifndef CONFIG_DYNAMIC_DEBUG 3233 if (debug < -1) 3234 hw->debug_mask = debug; 3235 #endif 3236 3237 err = ice_init_hw(hw); 3238 if (err) { 3239 dev_err(dev, "ice_init_hw failed: %d\n", err); 3240 err = -EIO; 3241 goto err_exit_unroll; 3242 } 3243 3244 dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n", 3245 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch, 3246 hw->api_maj_ver, hw->api_min_ver, hw->api_patch, 3247 ice_nvm_version_str(hw), hw->fw_build); 3248 3249 ice_request_fw(pf); 3250 3251 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 3252 * set in pf->state, which will cause ice_is_safe_mode to return 3253 * true 3254 */ 3255 if (ice_is_safe_mode(pf)) { 3256 dev_err(dev, 3257 "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 3258 /* we already got function/device capabilities but these don't 3259 * reflect what the driver needs to do in safe mode. Instead of 3260 * adding conditional logic everywhere to ignore these 3261 * device/function capabilities, override them. 3262 */ 3263 ice_set_safe_mode_caps(hw); 3264 } 3265 3266 err = ice_init_pf(pf); 3267 if (err) { 3268 dev_err(dev, "ice_init_pf failed: %d\n", err); 3269 goto err_init_pf_unroll; 3270 } 3271 3272 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 3273 if (!pf->num_alloc_vsi) { 3274 err = -EIO; 3275 goto err_init_pf_unroll; 3276 } 3277 3278 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 3279 GFP_KERNEL); 3280 if (!pf->vsi) { 3281 err = -ENOMEM; 3282 goto err_init_pf_unroll; 3283 } 3284 3285 err = ice_init_interrupt_scheme(pf); 3286 if (err) { 3287 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 3288 err = -EIO; 3289 goto err_init_interrupt_unroll; 3290 } 3291 3292 /* Driver is mostly up */ 3293 clear_bit(__ICE_DOWN, pf->state); 3294 3295 /* In case of MSIX we are going to setup the misc vector right here 3296 * to handle admin queue events etc. In case of legacy and MSI 3297 * the misc functionality and queue processing is combined in 3298 * the same vector and that gets setup at open. 3299 */ 3300 err = ice_req_irq_msix_misc(pf); 3301 if (err) { 3302 dev_err(dev, "setup of misc vector failed: %d\n", err); 3303 goto err_init_interrupt_unroll; 3304 } 3305 3306 /* create switch struct for the switch element created by FW on boot */ 3307 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 3308 if (!pf->first_sw) { 3309 err = -ENOMEM; 3310 goto err_msix_misc_unroll; 3311 } 3312 3313 if (hw->evb_veb) 3314 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 3315 else 3316 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 3317 3318 pf->first_sw->pf = pf; 3319 3320 /* record the sw_id available for later use */ 3321 pf->first_sw->sw_id = hw->port_info->sw_id; 3322 3323 err = ice_setup_pf_sw(pf); 3324 if (err) { 3325 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 3326 goto err_alloc_sw_unroll; 3327 } 3328 3329 clear_bit(__ICE_SERVICE_DIS, pf->state); 3330 3331 /* tell the firmware we are up */ 3332 err = ice_send_version(pf); 3333 if (err) { 3334 dev_err(dev, 3335 "probe failed sending driver version %s. error: %d\n", 3336 ice_drv_ver, err); 3337 goto err_alloc_sw_unroll; 3338 } 3339 3340 /* since everything is good, start the service timer */ 3341 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3342 3343 err = ice_init_link_events(pf->hw.port_info); 3344 if (err) { 3345 dev_err(dev, "ice_init_link_events failed: %d\n", err); 3346 goto err_alloc_sw_unroll; 3347 } 3348 3349 ice_verify_cacheline_size(pf); 3350 3351 /* If no DDP driven features have to be setup, return here */ 3352 if (ice_is_safe_mode(pf)) 3353 return 0; 3354 3355 /* initialize DDP driven features */ 3356 3357 /* Note: DCB init failure is non-fatal to load */ 3358 if (ice_init_pf_dcb(pf, false)) { 3359 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3360 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 3361 } else { 3362 ice_cfg_lldp_mib_change(&pf->hw, true); 3363 } 3364 3365 /* print PCI link speed and width */ 3366 pcie_print_link_status(pf->pdev); 3367 3368 return 0; 3369 3370 err_alloc_sw_unroll: 3371 set_bit(__ICE_SERVICE_DIS, pf->state); 3372 set_bit(__ICE_DOWN, pf->state); 3373 devm_kfree(dev, pf->first_sw); 3374 err_msix_misc_unroll: 3375 ice_free_irq_msix_misc(pf); 3376 err_init_interrupt_unroll: 3377 ice_clear_interrupt_scheme(pf); 3378 devm_kfree(dev, pf->vsi); 3379 err_init_pf_unroll: 3380 ice_deinit_pf(pf); 3381 ice_deinit_hw(hw); 3382 err_exit_unroll: 3383 pci_disable_pcie_error_reporting(pdev); 3384 return err; 3385 } 3386 3387 /** 3388 * ice_remove - Device removal routine 3389 * @pdev: PCI device information struct 3390 */ 3391 static void ice_remove(struct pci_dev *pdev) 3392 { 3393 struct ice_pf *pf = pci_get_drvdata(pdev); 3394 int i; 3395 3396 if (!pf) 3397 return; 3398 3399 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3400 if (!ice_is_reset_in_progress(pf->state)) 3401 break; 3402 msleep(100); 3403 } 3404 3405 set_bit(__ICE_DOWN, pf->state); 3406 ice_service_task_stop(pf); 3407 3408 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 3409 ice_free_vfs(pf); 3410 ice_vsi_release_all(pf); 3411 ice_free_irq_msix_misc(pf); 3412 ice_for_each_vsi(pf, i) { 3413 if (!pf->vsi[i]) 3414 continue; 3415 ice_vsi_free_q_vectors(pf->vsi[i]); 3416 } 3417 ice_deinit_pf(pf); 3418 ice_deinit_hw(&pf->hw); 3419 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3420 * do it via ice_schedule_reset() since there is no need to rebuild 3421 * and the service task is already stopped. 3422 */ 3423 ice_reset(&pf->hw, ICE_RESET_PFR); 3424 pci_wait_for_pending_transaction(pdev); 3425 ice_clear_interrupt_scheme(pf); 3426 pci_disable_pcie_error_reporting(pdev); 3427 } 3428 3429 /** 3430 * ice_pci_err_detected - warning that PCI error has been detected 3431 * @pdev: PCI device information struct 3432 * @err: the type of PCI error 3433 * 3434 * Called to warn that something happened on the PCI bus and the error handling 3435 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3436 */ 3437 static pci_ers_result_t 3438 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3439 { 3440 struct ice_pf *pf = pci_get_drvdata(pdev); 3441 3442 if (!pf) { 3443 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3444 __func__, err); 3445 return PCI_ERS_RESULT_DISCONNECT; 3446 } 3447 3448 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3449 ice_service_task_stop(pf); 3450 3451 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3452 set_bit(__ICE_PFR_REQ, pf->state); 3453 ice_prepare_for_reset(pf); 3454 } 3455 } 3456 3457 return PCI_ERS_RESULT_NEED_RESET; 3458 } 3459 3460 /** 3461 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3462 * @pdev: PCI device information struct 3463 * 3464 * Called to determine if the driver can recover from the PCI slot reset by 3465 * using a register read to determine if the device is recoverable. 3466 */ 3467 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3468 { 3469 struct ice_pf *pf = pci_get_drvdata(pdev); 3470 pci_ers_result_t result; 3471 int err; 3472 u32 reg; 3473 3474 err = pci_enable_device_mem(pdev); 3475 if (err) { 3476 dev_err(&pdev->dev, 3477 "Cannot re-enable PCI device after reset, error %d\n", 3478 err); 3479 result = PCI_ERS_RESULT_DISCONNECT; 3480 } else { 3481 pci_set_master(pdev); 3482 pci_restore_state(pdev); 3483 pci_save_state(pdev); 3484 pci_wake_from_d3(pdev, false); 3485 3486 /* Check for life */ 3487 reg = rd32(&pf->hw, GLGEN_RTRIG); 3488 if (!reg) 3489 result = PCI_ERS_RESULT_RECOVERED; 3490 else 3491 result = PCI_ERS_RESULT_DISCONNECT; 3492 } 3493 3494 err = pci_cleanup_aer_uncorrect_error_status(pdev); 3495 if (err) 3496 dev_dbg(&pdev->dev, 3497 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 3498 err); 3499 /* non-fatal, continue */ 3500 3501 return result; 3502 } 3503 3504 /** 3505 * ice_pci_err_resume - restart operations after PCI error recovery 3506 * @pdev: PCI device information struct 3507 * 3508 * Called to allow the driver to bring things back up after PCI error and/or 3509 * reset recovery have finished 3510 */ 3511 static void ice_pci_err_resume(struct pci_dev *pdev) 3512 { 3513 struct ice_pf *pf = pci_get_drvdata(pdev); 3514 3515 if (!pf) { 3516 dev_err(&pdev->dev, 3517 "%s failed, device is unrecoverable\n", __func__); 3518 return; 3519 } 3520 3521 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3522 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3523 __func__); 3524 return; 3525 } 3526 3527 ice_do_reset(pf, ICE_RESET_PFR); 3528 ice_service_task_restart(pf); 3529 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3530 } 3531 3532 /** 3533 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3534 * @pdev: PCI device information struct 3535 */ 3536 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3537 { 3538 struct ice_pf *pf = pci_get_drvdata(pdev); 3539 3540 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3541 ice_service_task_stop(pf); 3542 3543 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3544 set_bit(__ICE_PFR_REQ, pf->state); 3545 ice_prepare_for_reset(pf); 3546 } 3547 } 3548 } 3549 3550 /** 3551 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3552 * @pdev: PCI device information struct 3553 */ 3554 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3555 { 3556 ice_pci_err_resume(pdev); 3557 } 3558 3559 /* ice_pci_tbl - PCI Device ID Table 3560 * 3561 * Wildcard entries (PCI_ANY_ID) should come last 3562 * Last entry must be all 0s 3563 * 3564 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3565 * Class, Class Mask, private data (not used) } 3566 */ 3567 static const struct pci_device_id ice_pci_tbl[] = { 3568 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3569 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3570 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3571 /* required last entry */ 3572 { 0, } 3573 }; 3574 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3575 3576 static const struct pci_error_handlers ice_pci_err_handler = { 3577 .error_detected = ice_pci_err_detected, 3578 .slot_reset = ice_pci_err_slot_reset, 3579 .reset_prepare = ice_pci_err_reset_prepare, 3580 .reset_done = ice_pci_err_reset_done, 3581 .resume = ice_pci_err_resume 3582 }; 3583 3584 static struct pci_driver ice_driver = { 3585 .name = KBUILD_MODNAME, 3586 .id_table = ice_pci_tbl, 3587 .probe = ice_probe, 3588 .remove = ice_remove, 3589 .sriov_configure = ice_sriov_configure, 3590 .err_handler = &ice_pci_err_handler 3591 }; 3592 3593 /** 3594 * ice_module_init - Driver registration routine 3595 * 3596 * ice_module_init is the first routine called when the driver is 3597 * loaded. All it does is register with the PCI subsystem. 3598 */ 3599 static int __init ice_module_init(void) 3600 { 3601 int status; 3602 3603 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 3604 pr_info("%s\n", ice_copyright); 3605 3606 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3607 if (!ice_wq) { 3608 pr_err("Failed to create workqueue\n"); 3609 return -ENOMEM; 3610 } 3611 3612 status = pci_register_driver(&ice_driver); 3613 if (status) { 3614 pr_err("failed to register PCI driver, err %d\n", status); 3615 destroy_workqueue(ice_wq); 3616 } 3617 3618 return status; 3619 } 3620 module_init(ice_module_init); 3621 3622 /** 3623 * ice_module_exit - Driver exit cleanup routine 3624 * 3625 * ice_module_exit is called just before the driver is removed 3626 * from memory. 3627 */ 3628 static void __exit ice_module_exit(void) 3629 { 3630 pci_unregister_driver(&ice_driver); 3631 destroy_workqueue(ice_wq); 3632 pr_info("module unloaded\n"); 3633 } 3634 module_exit(ice_module_exit); 3635 3636 /** 3637 * ice_set_mac_address - NDO callback to set MAC address 3638 * @netdev: network interface device structure 3639 * @pi: pointer to an address structure 3640 * 3641 * Returns 0 on success, negative on failure 3642 */ 3643 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3644 { 3645 struct ice_netdev_priv *np = netdev_priv(netdev); 3646 struct ice_vsi *vsi = np->vsi; 3647 struct ice_pf *pf = vsi->back; 3648 struct ice_hw *hw = &pf->hw; 3649 struct sockaddr *addr = pi; 3650 enum ice_status status; 3651 u8 flags = 0; 3652 int err = 0; 3653 u8 *mac; 3654 3655 mac = (u8 *)addr->sa_data; 3656 3657 if (!is_valid_ether_addr(mac)) 3658 return -EADDRNOTAVAIL; 3659 3660 if (ether_addr_equal(netdev->dev_addr, mac)) { 3661 netdev_warn(netdev, "already using mac %pM\n", mac); 3662 return 0; 3663 } 3664 3665 if (test_bit(__ICE_DOWN, pf->state) || 3666 ice_is_reset_in_progress(pf->state)) { 3667 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3668 mac); 3669 return -EBUSY; 3670 } 3671 3672 /* When we change the MAC address we also have to change the MAC address 3673 * based filter rules that were created previously for the old MAC 3674 * address. So first, we remove the old filter rule using ice_remove_mac 3675 * and then create a new filter rule using ice_add_mac via 3676 * ice_vsi_cfg_mac_fltr function call for both add and/or remove 3677 * filters. 3678 */ 3679 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false); 3680 if (status) { 3681 err = -EADDRNOTAVAIL; 3682 goto err_update_filters; 3683 } 3684 3685 status = ice_vsi_cfg_mac_fltr(vsi, mac, true); 3686 if (status) { 3687 err = -EADDRNOTAVAIL; 3688 goto err_update_filters; 3689 } 3690 3691 err_update_filters: 3692 if (err) { 3693 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3694 mac); 3695 return err; 3696 } 3697 3698 /* change the netdev's MAC address */ 3699 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3700 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3701 netdev->dev_addr); 3702 3703 /* write new MAC address to the firmware */ 3704 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3705 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3706 if (status) { 3707 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 3708 mac, status); 3709 } 3710 return 0; 3711 } 3712 3713 /** 3714 * ice_set_rx_mode - NDO callback to set the netdev filters 3715 * @netdev: network interface device structure 3716 */ 3717 static void ice_set_rx_mode(struct net_device *netdev) 3718 { 3719 struct ice_netdev_priv *np = netdev_priv(netdev); 3720 struct ice_vsi *vsi = np->vsi; 3721 3722 if (!vsi) 3723 return; 3724 3725 /* Set the flags to synchronize filters 3726 * ndo_set_rx_mode may be triggered even without a change in netdev 3727 * flags 3728 */ 3729 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3730 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3731 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3732 3733 /* schedule our worker thread which will take care of 3734 * applying the new filter changes 3735 */ 3736 ice_service_task_schedule(vsi->back); 3737 } 3738 3739 /** 3740 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 3741 * @netdev: network interface device structure 3742 * @queue_index: Queue ID 3743 * @maxrate: maximum bandwidth in Mbps 3744 */ 3745 static int 3746 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 3747 { 3748 struct ice_netdev_priv *np = netdev_priv(netdev); 3749 struct ice_vsi *vsi = np->vsi; 3750 enum ice_status status; 3751 u16 q_handle; 3752 u8 tc; 3753 3754 /* Validate maxrate requested is within permitted range */ 3755 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 3756 netdev_err(netdev, 3757 "Invalid max rate %d specified for the queue %d\n", 3758 maxrate, queue_index); 3759 return -EINVAL; 3760 } 3761 3762 q_handle = vsi->tx_rings[queue_index]->q_handle; 3763 tc = ice_dcb_get_tc(vsi, queue_index); 3764 3765 /* Set BW back to default, when user set maxrate to 0 */ 3766 if (!maxrate) 3767 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 3768 q_handle, ICE_MAX_BW); 3769 else 3770 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 3771 q_handle, ICE_MAX_BW, maxrate * 1000); 3772 if (status) { 3773 netdev_err(netdev, 3774 "Unable to set Tx max rate, error %d\n", status); 3775 return -EIO; 3776 } 3777 3778 return 0; 3779 } 3780 3781 /** 3782 * ice_fdb_add - add an entry to the hardware database 3783 * @ndm: the input from the stack 3784 * @tb: pointer to array of nladdr (unused) 3785 * @dev: the net device pointer 3786 * @addr: the MAC address entry being added 3787 * @vid: VLAN ID 3788 * @flags: instructions from stack about fdb operation 3789 * @extack: netlink extended ack 3790 */ 3791 static int 3792 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3793 struct net_device *dev, const unsigned char *addr, u16 vid, 3794 u16 flags, struct netlink_ext_ack __always_unused *extack) 3795 { 3796 int err; 3797 3798 if (vid) { 3799 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3800 return -EINVAL; 3801 } 3802 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3803 netdev_err(dev, "FDB only supports static addresses\n"); 3804 return -EINVAL; 3805 } 3806 3807 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3808 err = dev_uc_add_excl(dev, addr); 3809 else if (is_multicast_ether_addr(addr)) 3810 err = dev_mc_add_excl(dev, addr); 3811 else 3812 err = -EINVAL; 3813 3814 /* Only return duplicate errors if NLM_F_EXCL is set */ 3815 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3816 err = 0; 3817 3818 return err; 3819 } 3820 3821 /** 3822 * ice_fdb_del - delete an entry from the hardware database 3823 * @ndm: the input from the stack 3824 * @tb: pointer to array of nladdr (unused) 3825 * @dev: the net device pointer 3826 * @addr: the MAC address entry being added 3827 * @vid: VLAN ID 3828 */ 3829 static int 3830 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3831 struct net_device *dev, const unsigned char *addr, 3832 __always_unused u16 vid) 3833 { 3834 int err; 3835 3836 if (ndm->ndm_state & NUD_PERMANENT) { 3837 netdev_err(dev, "FDB only supports static addresses\n"); 3838 return -EINVAL; 3839 } 3840 3841 if (is_unicast_ether_addr(addr)) 3842 err = dev_uc_del(dev, addr); 3843 else if (is_multicast_ether_addr(addr)) 3844 err = dev_mc_del(dev, addr); 3845 else 3846 err = -EINVAL; 3847 3848 return err; 3849 } 3850 3851 /** 3852 * ice_set_features - set the netdev feature flags 3853 * @netdev: ptr to the netdev being adjusted 3854 * @features: the feature set that the stack is suggesting 3855 */ 3856 static int 3857 ice_set_features(struct net_device *netdev, netdev_features_t features) 3858 { 3859 struct ice_netdev_priv *np = netdev_priv(netdev); 3860 struct ice_vsi *vsi = np->vsi; 3861 struct ice_pf *pf = vsi->back; 3862 int ret = 0; 3863 3864 /* Don't set any netdev advanced features with device in Safe Mode */ 3865 if (ice_is_safe_mode(vsi->back)) { 3866 dev_err(&vsi->back->pdev->dev, 3867 "Device is in Safe Mode - not enabling advanced netdev features\n"); 3868 return ret; 3869 } 3870 3871 /* Do not change setting during reset */ 3872 if (ice_is_reset_in_progress(pf->state)) { 3873 dev_err(&vsi->back->pdev->dev, 3874 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 3875 return -EBUSY; 3876 } 3877 3878 /* Multiple features can be changed in one call so keep features in 3879 * separate if/else statements to guarantee each feature is checked 3880 */ 3881 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 3882 ret = ice_vsi_manage_rss_lut(vsi, true); 3883 else if (!(features & NETIF_F_RXHASH) && 3884 netdev->features & NETIF_F_RXHASH) 3885 ret = ice_vsi_manage_rss_lut(vsi, false); 3886 3887 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 3888 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3889 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3890 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 3891 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3892 ret = ice_vsi_manage_vlan_stripping(vsi, false); 3893 3894 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 3895 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3896 ret = ice_vsi_manage_vlan_insertion(vsi); 3897 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 3898 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3899 ret = ice_vsi_manage_vlan_insertion(vsi); 3900 3901 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3902 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3903 ret = ice_cfg_vlan_pruning(vsi, true, false); 3904 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3905 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3906 ret = ice_cfg_vlan_pruning(vsi, false, false); 3907 3908 return ret; 3909 } 3910 3911 /** 3912 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 3913 * @vsi: VSI to setup VLAN properties for 3914 */ 3915 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 3916 { 3917 int ret = 0; 3918 3919 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3920 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3921 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 3922 ret = ice_vsi_manage_vlan_insertion(vsi); 3923 3924 return ret; 3925 } 3926 3927 /** 3928 * ice_vsi_cfg - Setup the VSI 3929 * @vsi: the VSI being configured 3930 * 3931 * Return 0 on success and negative value on error 3932 */ 3933 int ice_vsi_cfg(struct ice_vsi *vsi) 3934 { 3935 int err; 3936 3937 if (vsi->netdev) { 3938 ice_set_rx_mode(vsi->netdev); 3939 3940 err = ice_vsi_vlan_setup(vsi); 3941 3942 if (err) 3943 return err; 3944 } 3945 ice_vsi_cfg_dcb_rings(vsi); 3946 3947 err = ice_vsi_cfg_lan_txqs(vsi); 3948 if (!err && ice_is_xdp_ena_vsi(vsi)) 3949 err = ice_vsi_cfg_xdp_txqs(vsi); 3950 if (!err) 3951 err = ice_vsi_cfg_rxqs(vsi); 3952 3953 return err; 3954 } 3955 3956 /** 3957 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 3958 * @vsi: the VSI being configured 3959 */ 3960 static void ice_napi_enable_all(struct ice_vsi *vsi) 3961 { 3962 int q_idx; 3963 3964 if (!vsi->netdev) 3965 return; 3966 3967 ice_for_each_q_vector(vsi, q_idx) { 3968 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3969 3970 if (q_vector->rx.ring || q_vector->tx.ring) 3971 napi_enable(&q_vector->napi); 3972 } 3973 } 3974 3975 /** 3976 * ice_up_complete - Finish the last steps of bringing up a connection 3977 * @vsi: The VSI being configured 3978 * 3979 * Return 0 on success and negative value on error 3980 */ 3981 static int ice_up_complete(struct ice_vsi *vsi) 3982 { 3983 struct ice_pf *pf = vsi->back; 3984 int err; 3985 3986 ice_vsi_cfg_msix(vsi); 3987 3988 /* Enable only Rx rings, Tx rings were enabled by the FW when the 3989 * Tx queue group list was configured and the context bits were 3990 * programmed using ice_vsi_cfg_txqs 3991 */ 3992 err = ice_vsi_start_rx_rings(vsi); 3993 if (err) 3994 return err; 3995 3996 clear_bit(__ICE_DOWN, vsi->state); 3997 ice_napi_enable_all(vsi); 3998 ice_vsi_ena_irq(vsi); 3999 4000 if (vsi->port_info && 4001 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 4002 vsi->netdev) { 4003 ice_print_link_msg(vsi, true); 4004 netif_tx_start_all_queues(vsi->netdev); 4005 netif_carrier_on(vsi->netdev); 4006 } 4007 4008 ice_service_task_schedule(pf); 4009 4010 return 0; 4011 } 4012 4013 /** 4014 * ice_up - Bring the connection back up after being down 4015 * @vsi: VSI being configured 4016 */ 4017 int ice_up(struct ice_vsi *vsi) 4018 { 4019 int err; 4020 4021 err = ice_vsi_cfg(vsi); 4022 if (!err) 4023 err = ice_up_complete(vsi); 4024 4025 return err; 4026 } 4027 4028 /** 4029 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 4030 * @ring: Tx or Rx ring to read stats from 4031 * @pkts: packets stats counter 4032 * @bytes: bytes stats counter 4033 * 4034 * This function fetches stats from the ring considering the atomic operations 4035 * that needs to be performed to read u64 values in 32 bit machine. 4036 */ 4037 static void 4038 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 4039 { 4040 unsigned int start; 4041 *pkts = 0; 4042 *bytes = 0; 4043 4044 if (!ring) 4045 return; 4046 do { 4047 start = u64_stats_fetch_begin_irq(&ring->syncp); 4048 *pkts = ring->stats.pkts; 4049 *bytes = ring->stats.bytes; 4050 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4051 } 4052 4053 /** 4054 * ice_update_vsi_ring_stats - Update VSI stats counters 4055 * @vsi: the VSI to be updated 4056 */ 4057 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 4058 { 4059 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4060 struct ice_ring *ring; 4061 u64 pkts, bytes; 4062 int i; 4063 4064 /* reset netdev stats */ 4065 vsi_stats->tx_packets = 0; 4066 vsi_stats->tx_bytes = 0; 4067 vsi_stats->rx_packets = 0; 4068 vsi_stats->rx_bytes = 0; 4069 4070 /* reset non-netdev (extended) stats */ 4071 vsi->tx_restart = 0; 4072 vsi->tx_busy = 0; 4073 vsi->tx_linearize = 0; 4074 vsi->rx_buf_failed = 0; 4075 vsi->rx_page_failed = 0; 4076 4077 rcu_read_lock(); 4078 4079 /* update Tx rings counters */ 4080 ice_for_each_txq(vsi, i) { 4081 ring = READ_ONCE(vsi->tx_rings[i]); 4082 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4083 vsi_stats->tx_packets += pkts; 4084 vsi_stats->tx_bytes += bytes; 4085 vsi->tx_restart += ring->tx_stats.restart_q; 4086 vsi->tx_busy += ring->tx_stats.tx_busy; 4087 vsi->tx_linearize += ring->tx_stats.tx_linearize; 4088 } 4089 4090 /* update Rx rings counters */ 4091 ice_for_each_rxq(vsi, i) { 4092 ring = READ_ONCE(vsi->rx_rings[i]); 4093 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4094 vsi_stats->rx_packets += pkts; 4095 vsi_stats->rx_bytes += bytes; 4096 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 4097 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 4098 } 4099 4100 rcu_read_unlock(); 4101 } 4102 4103 /** 4104 * ice_update_vsi_stats - Update VSI stats counters 4105 * @vsi: the VSI to be updated 4106 */ 4107 void ice_update_vsi_stats(struct ice_vsi *vsi) 4108 { 4109 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 4110 struct ice_eth_stats *cur_es = &vsi->eth_stats; 4111 struct ice_pf *pf = vsi->back; 4112 4113 if (test_bit(__ICE_DOWN, vsi->state) || 4114 test_bit(__ICE_CFG_BUSY, pf->state)) 4115 return; 4116 4117 /* get stats as recorded by Tx/Rx rings */ 4118 ice_update_vsi_ring_stats(vsi); 4119 4120 /* get VSI stats as recorded by the hardware */ 4121 ice_update_eth_stats(vsi); 4122 4123 cur_ns->tx_errors = cur_es->tx_errors; 4124 cur_ns->rx_dropped = cur_es->rx_discards; 4125 cur_ns->tx_dropped = cur_es->tx_discards; 4126 cur_ns->multicast = cur_es->rx_multicast; 4127 4128 /* update some more netdev stats if this is main VSI */ 4129 if (vsi->type == ICE_VSI_PF) { 4130 cur_ns->rx_crc_errors = pf->stats.crc_errors; 4131 cur_ns->rx_errors = pf->stats.crc_errors + 4132 pf->stats.illegal_bytes; 4133 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 4134 /* record drops from the port level */ 4135 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 4136 } 4137 } 4138 4139 /** 4140 * ice_update_pf_stats - Update PF port stats counters 4141 * @pf: PF whose stats needs to be updated 4142 */ 4143 void ice_update_pf_stats(struct ice_pf *pf) 4144 { 4145 struct ice_hw_port_stats *prev_ps, *cur_ps; 4146 struct ice_hw *hw = &pf->hw; 4147 u8 port; 4148 4149 port = hw->port_info->lport; 4150 prev_ps = &pf->stats_prev; 4151 cur_ps = &pf->stats; 4152 4153 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 4154 &prev_ps->eth.rx_bytes, 4155 &cur_ps->eth.rx_bytes); 4156 4157 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 4158 &prev_ps->eth.rx_unicast, 4159 &cur_ps->eth.rx_unicast); 4160 4161 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 4162 &prev_ps->eth.rx_multicast, 4163 &cur_ps->eth.rx_multicast); 4164 4165 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 4166 &prev_ps->eth.rx_broadcast, 4167 &cur_ps->eth.rx_broadcast); 4168 4169 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 4170 &prev_ps->eth.rx_discards, 4171 &cur_ps->eth.rx_discards); 4172 4173 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 4174 &prev_ps->eth.tx_bytes, 4175 &cur_ps->eth.tx_bytes); 4176 4177 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 4178 &prev_ps->eth.tx_unicast, 4179 &cur_ps->eth.tx_unicast); 4180 4181 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 4182 &prev_ps->eth.tx_multicast, 4183 &cur_ps->eth.tx_multicast); 4184 4185 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 4186 &prev_ps->eth.tx_broadcast, 4187 &cur_ps->eth.tx_broadcast); 4188 4189 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 4190 &prev_ps->tx_dropped_link_down, 4191 &cur_ps->tx_dropped_link_down); 4192 4193 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 4194 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 4195 4196 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 4197 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 4198 4199 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 4200 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 4201 4202 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 4203 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 4204 4205 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 4206 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 4207 4208 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 4209 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 4210 4211 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 4212 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 4213 4214 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 4215 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 4216 4217 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 4218 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 4219 4220 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 4221 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 4222 4223 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 4224 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 4225 4226 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 4227 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 4228 4229 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 4230 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 4231 4232 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 4233 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 4234 4235 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 4236 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 4237 4238 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 4239 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 4240 4241 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 4242 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 4243 4244 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 4245 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 4246 4247 ice_update_dcb_stats(pf); 4248 4249 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 4250 &prev_ps->crc_errors, &cur_ps->crc_errors); 4251 4252 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 4253 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 4254 4255 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 4256 &prev_ps->mac_local_faults, 4257 &cur_ps->mac_local_faults); 4258 4259 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 4260 &prev_ps->mac_remote_faults, 4261 &cur_ps->mac_remote_faults); 4262 4263 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 4264 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 4265 4266 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 4267 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 4268 4269 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 4270 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 4271 4272 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 4273 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 4274 4275 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 4276 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 4277 4278 pf->stat_prev_loaded = true; 4279 } 4280 4281 /** 4282 * ice_get_stats64 - get statistics for network device structure 4283 * @netdev: network interface device structure 4284 * @stats: main device statistics structure 4285 */ 4286 static 4287 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 4288 { 4289 struct ice_netdev_priv *np = netdev_priv(netdev); 4290 struct rtnl_link_stats64 *vsi_stats; 4291 struct ice_vsi *vsi = np->vsi; 4292 4293 vsi_stats = &vsi->net_stats; 4294 4295 if (!vsi->num_txq || !vsi->num_rxq) 4296 return; 4297 4298 /* netdev packet/byte stats come from ring counter. These are obtained 4299 * by summing up ring counters (done by ice_update_vsi_ring_stats). 4300 * But, only call the update routine and read the registers if VSI is 4301 * not down. 4302 */ 4303 if (!test_bit(__ICE_DOWN, vsi->state)) 4304 ice_update_vsi_ring_stats(vsi); 4305 stats->tx_packets = vsi_stats->tx_packets; 4306 stats->tx_bytes = vsi_stats->tx_bytes; 4307 stats->rx_packets = vsi_stats->rx_packets; 4308 stats->rx_bytes = vsi_stats->rx_bytes; 4309 4310 /* The rest of the stats can be read from the hardware but instead we 4311 * just return values that the watchdog task has already obtained from 4312 * the hardware. 4313 */ 4314 stats->multicast = vsi_stats->multicast; 4315 stats->tx_errors = vsi_stats->tx_errors; 4316 stats->tx_dropped = vsi_stats->tx_dropped; 4317 stats->rx_errors = vsi_stats->rx_errors; 4318 stats->rx_dropped = vsi_stats->rx_dropped; 4319 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 4320 stats->rx_length_errors = vsi_stats->rx_length_errors; 4321 } 4322 4323 /** 4324 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4325 * @vsi: VSI having NAPI disabled 4326 */ 4327 static void ice_napi_disable_all(struct ice_vsi *vsi) 4328 { 4329 int q_idx; 4330 4331 if (!vsi->netdev) 4332 return; 4333 4334 ice_for_each_q_vector(vsi, q_idx) { 4335 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4336 4337 if (q_vector->rx.ring || q_vector->tx.ring) 4338 napi_disable(&q_vector->napi); 4339 } 4340 } 4341 4342 /** 4343 * ice_down - Shutdown the connection 4344 * @vsi: The VSI being stopped 4345 */ 4346 int ice_down(struct ice_vsi *vsi) 4347 { 4348 int i, tx_err, rx_err, link_err = 0; 4349 4350 /* Caller of this function is expected to set the 4351 * vsi->state __ICE_DOWN bit 4352 */ 4353 if (vsi->netdev) { 4354 netif_carrier_off(vsi->netdev); 4355 netif_tx_disable(vsi->netdev); 4356 } 4357 4358 ice_vsi_dis_irq(vsi); 4359 4360 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 4361 if (tx_err) 4362 netdev_err(vsi->netdev, 4363 "Failed stop Tx rings, VSI %d error %d\n", 4364 vsi->vsi_num, tx_err); 4365 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 4366 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 4367 if (tx_err) 4368 netdev_err(vsi->netdev, 4369 "Failed stop XDP rings, VSI %d error %d\n", 4370 vsi->vsi_num, tx_err); 4371 } 4372 4373 rx_err = ice_vsi_stop_rx_rings(vsi); 4374 if (rx_err) 4375 netdev_err(vsi->netdev, 4376 "Failed stop Rx rings, VSI %d error %d\n", 4377 vsi->vsi_num, rx_err); 4378 4379 ice_napi_disable_all(vsi); 4380 4381 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 4382 link_err = ice_force_phys_link_state(vsi, false); 4383 if (link_err) 4384 netdev_err(vsi->netdev, 4385 "Failed to set physical link down, VSI %d error %d\n", 4386 vsi->vsi_num, link_err); 4387 } 4388 4389 ice_for_each_txq(vsi, i) 4390 ice_clean_tx_ring(vsi->tx_rings[i]); 4391 4392 ice_for_each_rxq(vsi, i) 4393 ice_clean_rx_ring(vsi->rx_rings[i]); 4394 4395 if (tx_err || rx_err || link_err) { 4396 netdev_err(vsi->netdev, 4397 "Failed to close VSI 0x%04X on switch 0x%04X\n", 4398 vsi->vsi_num, vsi->vsw->sw_id); 4399 return -EIO; 4400 } 4401 4402 return 0; 4403 } 4404 4405 /** 4406 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 4407 * @vsi: VSI having resources allocated 4408 * 4409 * Return 0 on success, negative on failure 4410 */ 4411 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 4412 { 4413 int i, err = 0; 4414 4415 if (!vsi->num_txq) { 4416 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 4417 vsi->vsi_num); 4418 return -EINVAL; 4419 } 4420 4421 ice_for_each_txq(vsi, i) { 4422 struct ice_ring *ring = vsi->tx_rings[i]; 4423 4424 if (!ring) 4425 return -EINVAL; 4426 4427 ring->netdev = vsi->netdev; 4428 err = ice_setup_tx_ring(ring); 4429 if (err) 4430 break; 4431 } 4432 4433 return err; 4434 } 4435 4436 /** 4437 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 4438 * @vsi: VSI having resources allocated 4439 * 4440 * Return 0 on success, negative on failure 4441 */ 4442 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 4443 { 4444 int i, err = 0; 4445 4446 if (!vsi->num_rxq) { 4447 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 4448 vsi->vsi_num); 4449 return -EINVAL; 4450 } 4451 4452 ice_for_each_rxq(vsi, i) { 4453 struct ice_ring *ring = vsi->rx_rings[i]; 4454 4455 if (!ring) 4456 return -EINVAL; 4457 4458 ring->netdev = vsi->netdev; 4459 err = ice_setup_rx_ring(ring); 4460 if (err) 4461 break; 4462 } 4463 4464 return err; 4465 } 4466 4467 /** 4468 * ice_vsi_open - Called when a network interface is made active 4469 * @vsi: the VSI to open 4470 * 4471 * Initialization of the VSI 4472 * 4473 * Returns 0 on success, negative value on error 4474 */ 4475 static int ice_vsi_open(struct ice_vsi *vsi) 4476 { 4477 char int_name[ICE_INT_NAME_STR_LEN]; 4478 struct ice_pf *pf = vsi->back; 4479 int err; 4480 4481 /* allocate descriptors */ 4482 err = ice_vsi_setup_tx_rings(vsi); 4483 if (err) 4484 goto err_setup_tx; 4485 4486 err = ice_vsi_setup_rx_rings(vsi); 4487 if (err) 4488 goto err_setup_rx; 4489 4490 err = ice_vsi_cfg(vsi); 4491 if (err) 4492 goto err_setup_rx; 4493 4494 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4495 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 4496 err = ice_vsi_req_irq_msix(vsi, int_name); 4497 if (err) 4498 goto err_setup_rx; 4499 4500 /* Notify the stack of the actual queue counts. */ 4501 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4502 if (err) 4503 goto err_set_qs; 4504 4505 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4506 if (err) 4507 goto err_set_qs; 4508 4509 err = ice_up_complete(vsi); 4510 if (err) 4511 goto err_up_complete; 4512 4513 return 0; 4514 4515 err_up_complete: 4516 ice_down(vsi); 4517 err_set_qs: 4518 ice_vsi_free_irq(vsi); 4519 err_setup_rx: 4520 ice_vsi_free_rx_rings(vsi); 4521 err_setup_tx: 4522 ice_vsi_free_tx_rings(vsi); 4523 4524 return err; 4525 } 4526 4527 /** 4528 * ice_vsi_release_all - Delete all VSIs 4529 * @pf: PF from which all VSIs are being removed 4530 */ 4531 static void ice_vsi_release_all(struct ice_pf *pf) 4532 { 4533 int err, i; 4534 4535 if (!pf->vsi) 4536 return; 4537 4538 ice_for_each_vsi(pf, i) { 4539 if (!pf->vsi[i]) 4540 continue; 4541 4542 err = ice_vsi_release(pf->vsi[i]); 4543 if (err) 4544 dev_dbg(ice_pf_to_dev(pf), 4545 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4546 i, err, pf->vsi[i]->vsi_num); 4547 } 4548 } 4549 4550 /** 4551 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4552 * @pf: pointer to the PF instance 4553 * @type: VSI type to rebuild 4554 * 4555 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4556 */ 4557 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4558 { 4559 struct device *dev = ice_pf_to_dev(pf); 4560 enum ice_status status; 4561 int i, err; 4562 4563 ice_for_each_vsi(pf, i) { 4564 struct ice_vsi *vsi = pf->vsi[i]; 4565 4566 if (!vsi || vsi->type != type) 4567 continue; 4568 4569 /* rebuild the VSI */ 4570 err = ice_vsi_rebuild(vsi, true); 4571 if (err) { 4572 dev_err(dev, 4573 "rebuild VSI failed, err %d, VSI index %d, type %s\n", 4574 err, vsi->idx, ice_vsi_type_str(type)); 4575 return err; 4576 } 4577 4578 /* replay filters for the VSI */ 4579 status = ice_replay_vsi(&pf->hw, vsi->idx); 4580 if (status) { 4581 dev_err(dev, 4582 "replay VSI failed, status %d, VSI index %d, type %s\n", 4583 status, vsi->idx, ice_vsi_type_str(type)); 4584 return -EIO; 4585 } 4586 4587 /* Re-map HW VSI number, using VSI handle that has been 4588 * previously validated in ice_replay_vsi() call above 4589 */ 4590 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4591 4592 /* enable the VSI */ 4593 err = ice_ena_vsi(vsi, false); 4594 if (err) { 4595 dev_err(dev, 4596 "enable VSI failed, err %d, VSI index %d, type %s\n", 4597 err, vsi->idx, ice_vsi_type_str(type)); 4598 return err; 4599 } 4600 4601 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 4602 ice_vsi_type_str(type)); 4603 } 4604 4605 return 0; 4606 } 4607 4608 /** 4609 * ice_update_pf_netdev_link - Update PF netdev link status 4610 * @pf: pointer to the PF instance 4611 */ 4612 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4613 { 4614 bool link_up; 4615 int i; 4616 4617 ice_for_each_vsi(pf, i) { 4618 struct ice_vsi *vsi = pf->vsi[i]; 4619 4620 if (!vsi || vsi->type != ICE_VSI_PF) 4621 return; 4622 4623 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4624 if (link_up) { 4625 netif_carrier_on(pf->vsi[i]->netdev); 4626 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4627 } else { 4628 netif_carrier_off(pf->vsi[i]->netdev); 4629 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4630 } 4631 } 4632 } 4633 4634 /** 4635 * ice_rebuild - rebuild after reset 4636 * @pf: PF to rebuild 4637 * @reset_type: type of reset 4638 */ 4639 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4640 { 4641 struct device *dev = ice_pf_to_dev(pf); 4642 struct ice_hw *hw = &pf->hw; 4643 enum ice_status ret; 4644 int err; 4645 4646 if (test_bit(__ICE_DOWN, pf->state)) 4647 goto clear_recovery; 4648 4649 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4650 4651 ret = ice_init_all_ctrlq(hw); 4652 if (ret) { 4653 dev_err(dev, "control queues init failed %d\n", ret); 4654 goto err_init_ctrlq; 4655 } 4656 4657 /* if DDP was previously loaded successfully */ 4658 if (!ice_is_safe_mode(pf)) { 4659 /* reload the SW DB of filter tables */ 4660 if (reset_type == ICE_RESET_PFR) 4661 ice_fill_blk_tbls(hw); 4662 else 4663 /* Reload DDP Package after CORER/GLOBR reset */ 4664 ice_load_pkg(NULL, pf); 4665 } 4666 4667 ret = ice_clear_pf_cfg(hw); 4668 if (ret) { 4669 dev_err(dev, "clear PF configuration failed %d\n", ret); 4670 goto err_init_ctrlq; 4671 } 4672 4673 ice_clear_pxe_mode(hw); 4674 4675 ret = ice_get_caps(hw); 4676 if (ret) { 4677 dev_err(dev, "ice_get_caps failed %d\n", ret); 4678 goto err_init_ctrlq; 4679 } 4680 4681 err = ice_sched_init_port(hw->port_info); 4682 if (err) 4683 goto err_sched_init_port; 4684 4685 err = ice_update_link_info(hw->port_info); 4686 if (err) 4687 dev_err(dev, "Get link status error %d\n", err); 4688 4689 /* start misc vector */ 4690 err = ice_req_irq_msix_misc(pf); 4691 if (err) { 4692 dev_err(dev, "misc vector setup failed: %d\n", err); 4693 goto err_sched_init_port; 4694 } 4695 4696 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4697 ice_dcb_rebuild(pf); 4698 4699 /* rebuild PF VSI */ 4700 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4701 if (err) { 4702 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4703 goto err_vsi_rebuild; 4704 } 4705 4706 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4707 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF); 4708 if (err) { 4709 dev_err(dev, "VF VSI rebuild failed: %d\n", err); 4710 goto err_vsi_rebuild; 4711 } 4712 } 4713 4714 ice_update_pf_netdev_link(pf); 4715 4716 /* tell the firmware we are up */ 4717 ret = ice_send_version(pf); 4718 if (ret) { 4719 dev_err(dev, 4720 "Rebuild failed due to error sending driver version: %d\n", 4721 ret); 4722 goto err_vsi_rebuild; 4723 } 4724 4725 ice_replay_post(hw); 4726 4727 /* if we get here, reset flow is successful */ 4728 clear_bit(__ICE_RESET_FAILED, pf->state); 4729 return; 4730 4731 err_vsi_rebuild: 4732 err_sched_init_port: 4733 ice_sched_cleanup_all(hw); 4734 err_init_ctrlq: 4735 ice_shutdown_all_ctrlq(hw); 4736 set_bit(__ICE_RESET_FAILED, pf->state); 4737 clear_recovery: 4738 /* set this bit in PF state to control service task scheduling */ 4739 set_bit(__ICE_NEEDS_RESTART, pf->state); 4740 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 4741 } 4742 4743 /** 4744 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 4745 * @vsi: Pointer to VSI structure 4746 */ 4747 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 4748 { 4749 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 4750 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 4751 else 4752 return ICE_RXBUF_3072; 4753 } 4754 4755 /** 4756 * ice_change_mtu - NDO callback to change the MTU 4757 * @netdev: network interface device structure 4758 * @new_mtu: new value for maximum frame size 4759 * 4760 * Returns 0 on success, negative on failure 4761 */ 4762 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 4763 { 4764 struct ice_netdev_priv *np = netdev_priv(netdev); 4765 struct ice_vsi *vsi = np->vsi; 4766 struct ice_pf *pf = vsi->back; 4767 u8 count = 0; 4768 4769 if (new_mtu == netdev->mtu) { 4770 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 4771 return 0; 4772 } 4773 4774 if (ice_is_xdp_ena_vsi(vsi)) { 4775 int frame_size = ice_max_xdp_frame_size(vsi); 4776 4777 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 4778 netdev_err(netdev, "max MTU for XDP usage is %d\n", 4779 frame_size - ICE_ETH_PKT_HDR_PAD); 4780 return -EINVAL; 4781 } 4782 } 4783 4784 if (new_mtu < netdev->min_mtu) { 4785 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 4786 netdev->min_mtu); 4787 return -EINVAL; 4788 } else if (new_mtu > netdev->max_mtu) { 4789 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 4790 netdev->min_mtu); 4791 return -EINVAL; 4792 } 4793 /* if a reset is in progress, wait for some time for it to complete */ 4794 do { 4795 if (ice_is_reset_in_progress(pf->state)) { 4796 count++; 4797 usleep_range(1000, 2000); 4798 } else { 4799 break; 4800 } 4801 4802 } while (count < 100); 4803 4804 if (count == 100) { 4805 netdev_err(netdev, "can't change MTU. Device is busy\n"); 4806 return -EBUSY; 4807 } 4808 4809 netdev->mtu = new_mtu; 4810 4811 /* if VSI is up, bring it down and then back up */ 4812 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 4813 int err; 4814 4815 err = ice_down(vsi); 4816 if (err) { 4817 netdev_err(netdev, "change MTU if_up err %d\n", err); 4818 return err; 4819 } 4820 4821 err = ice_up(vsi); 4822 if (err) { 4823 netdev_err(netdev, "change MTU if_up err %d\n", err); 4824 return err; 4825 } 4826 } 4827 4828 netdev_info(netdev, "changed MTU to %d\n", new_mtu); 4829 return 0; 4830 } 4831 4832 /** 4833 * ice_set_rss - Set RSS keys and lut 4834 * @vsi: Pointer to VSI structure 4835 * @seed: RSS hash seed 4836 * @lut: Lookup table 4837 * @lut_size: Lookup table size 4838 * 4839 * Returns 0 on success, negative on failure 4840 */ 4841 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4842 { 4843 struct ice_pf *pf = vsi->back; 4844 struct ice_hw *hw = &pf->hw; 4845 enum ice_status status; 4846 struct device *dev; 4847 4848 dev = ice_pf_to_dev(pf); 4849 if (seed) { 4850 struct ice_aqc_get_set_rss_keys *buf = 4851 (struct ice_aqc_get_set_rss_keys *)seed; 4852 4853 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 4854 4855 if (status) { 4856 dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n", 4857 status, hw->adminq.rq_last_status); 4858 return -EIO; 4859 } 4860 } 4861 4862 if (lut) { 4863 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4864 lut, lut_size); 4865 if (status) { 4866 dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n", 4867 status, hw->adminq.rq_last_status); 4868 return -EIO; 4869 } 4870 } 4871 4872 return 0; 4873 } 4874 4875 /** 4876 * ice_get_rss - Get RSS keys and lut 4877 * @vsi: Pointer to VSI structure 4878 * @seed: Buffer to store the keys 4879 * @lut: Buffer to store the lookup table entries 4880 * @lut_size: Size of buffer to store the lookup table entries 4881 * 4882 * Returns 0 on success, negative on failure 4883 */ 4884 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4885 { 4886 struct ice_pf *pf = vsi->back; 4887 struct ice_hw *hw = &pf->hw; 4888 enum ice_status status; 4889 struct device *dev; 4890 4891 dev = ice_pf_to_dev(pf); 4892 if (seed) { 4893 struct ice_aqc_get_set_rss_keys *buf = 4894 (struct ice_aqc_get_set_rss_keys *)seed; 4895 4896 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4897 if (status) { 4898 dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n", 4899 status, hw->adminq.rq_last_status); 4900 return -EIO; 4901 } 4902 } 4903 4904 if (lut) { 4905 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4906 lut, lut_size); 4907 if (status) { 4908 dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n", 4909 status, hw->adminq.rq_last_status); 4910 return -EIO; 4911 } 4912 } 4913 4914 return 0; 4915 } 4916 4917 /** 4918 * ice_bridge_getlink - Get the hardware bridge mode 4919 * @skb: skb buff 4920 * @pid: process ID 4921 * @seq: RTNL message seq 4922 * @dev: the netdev being configured 4923 * @filter_mask: filter mask passed in 4924 * @nlflags: netlink flags passed in 4925 * 4926 * Return the bridge mode (VEB/VEPA) 4927 */ 4928 static int 4929 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4930 struct net_device *dev, u32 filter_mask, int nlflags) 4931 { 4932 struct ice_netdev_priv *np = netdev_priv(dev); 4933 struct ice_vsi *vsi = np->vsi; 4934 struct ice_pf *pf = vsi->back; 4935 u16 bmode; 4936 4937 bmode = pf->first_sw->bridge_mode; 4938 4939 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4940 filter_mask, NULL); 4941 } 4942 4943 /** 4944 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4945 * @vsi: Pointer to VSI structure 4946 * @bmode: Hardware bridge mode (VEB/VEPA) 4947 * 4948 * Returns 0 on success, negative on failure 4949 */ 4950 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4951 { 4952 struct ice_aqc_vsi_props *vsi_props; 4953 struct ice_hw *hw = &vsi->back->hw; 4954 struct ice_vsi_ctx *ctxt; 4955 enum ice_status status; 4956 int ret = 0; 4957 4958 vsi_props = &vsi->info; 4959 4960 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4961 if (!ctxt) 4962 return -ENOMEM; 4963 4964 ctxt->info = vsi->info; 4965 4966 if (bmode == BRIDGE_MODE_VEB) 4967 /* change from VEPA to VEB mode */ 4968 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4969 else 4970 /* change from VEB to VEPA mode */ 4971 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4972 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4973 4974 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4975 if (status) { 4976 dev_err(&vsi->back->pdev->dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4977 bmode, status, hw->adminq.sq_last_status); 4978 ret = -EIO; 4979 goto out; 4980 } 4981 /* Update sw flags for book keeping */ 4982 vsi_props->sw_flags = ctxt->info.sw_flags; 4983 4984 out: 4985 kfree(ctxt); 4986 return ret; 4987 } 4988 4989 /** 4990 * ice_bridge_setlink - Set the hardware bridge mode 4991 * @dev: the netdev being configured 4992 * @nlh: RTNL message 4993 * @flags: bridge setlink flags 4994 * @extack: netlink extended ack 4995 * 4996 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4997 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4998 * not already set for all VSIs connected to this switch. And also update the 4999 * unicast switch filter rules for the corresponding switch of the netdev. 5000 */ 5001 static int 5002 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 5003 u16 __always_unused flags, 5004 struct netlink_ext_ack __always_unused *extack) 5005 { 5006 struct ice_netdev_priv *np = netdev_priv(dev); 5007 struct ice_pf *pf = np->vsi->back; 5008 struct nlattr *attr, *br_spec; 5009 struct ice_hw *hw = &pf->hw; 5010 enum ice_status status; 5011 struct ice_sw *pf_sw; 5012 int rem, v, err = 0; 5013 5014 pf_sw = pf->first_sw; 5015 /* find the attribute in the netlink message */ 5016 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 5017 5018 nla_for_each_nested(attr, br_spec, rem) { 5019 __u16 mode; 5020 5021 if (nla_type(attr) != IFLA_BRIDGE_MODE) 5022 continue; 5023 mode = nla_get_u16(attr); 5024 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 5025 return -EINVAL; 5026 /* Continue if bridge mode is not being flipped */ 5027 if (mode == pf_sw->bridge_mode) 5028 continue; 5029 /* Iterates through the PF VSI list and update the loopback 5030 * mode of the VSI 5031 */ 5032 ice_for_each_vsi(pf, v) { 5033 if (!pf->vsi[v]) 5034 continue; 5035 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 5036 if (err) 5037 return err; 5038 } 5039 5040 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 5041 /* Update the unicast switch filter rules for the corresponding 5042 * switch of the netdev 5043 */ 5044 status = ice_update_sw_rule_bridge_mode(hw); 5045 if (status) { 5046 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 5047 mode, status, hw->adminq.sq_last_status); 5048 /* revert hw->evb_veb */ 5049 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 5050 return -EIO; 5051 } 5052 5053 pf_sw->bridge_mode = mode; 5054 } 5055 5056 return 0; 5057 } 5058 5059 /** 5060 * ice_tx_timeout - Respond to a Tx Hang 5061 * @netdev: network interface device structure 5062 */ 5063 static void ice_tx_timeout(struct net_device *netdev) 5064 { 5065 struct ice_netdev_priv *np = netdev_priv(netdev); 5066 struct ice_ring *tx_ring = NULL; 5067 struct ice_vsi *vsi = np->vsi; 5068 struct ice_pf *pf = vsi->back; 5069 int hung_queue = -1; 5070 u32 i; 5071 5072 pf->tx_timeout_count++; 5073 5074 /* find the stopped queue the same way dev_watchdog() does */ 5075 for (i = 0; i < netdev->num_tx_queues; i++) { 5076 unsigned long trans_start; 5077 struct netdev_queue *q; 5078 5079 q = netdev_get_tx_queue(netdev, i); 5080 trans_start = q->trans_start; 5081 if (netif_xmit_stopped(q) && 5082 time_after(jiffies, 5083 trans_start + netdev->watchdog_timeo)) { 5084 hung_queue = i; 5085 break; 5086 } 5087 } 5088 5089 if (i == netdev->num_tx_queues) 5090 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 5091 else 5092 /* now that we have an index, find the tx_ring struct */ 5093 for (i = 0; i < vsi->num_txq; i++) 5094 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 5095 if (hung_queue == vsi->tx_rings[i]->q_index) { 5096 tx_ring = vsi->tx_rings[i]; 5097 break; 5098 } 5099 5100 /* Reset recovery level if enough time has elapsed after last timeout. 5101 * Also ensure no new reset action happens before next timeout period. 5102 */ 5103 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 5104 pf->tx_timeout_recovery_level = 1; 5105 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 5106 netdev->watchdog_timeo))) 5107 return; 5108 5109 if (tx_ring) { 5110 struct ice_hw *hw = &pf->hw; 5111 u32 head, val = 0; 5112 5113 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) & 5114 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 5115 /* Read interrupt register */ 5116 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 5117 5118 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 5119 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 5120 head, tx_ring->next_to_use, val); 5121 } 5122 5123 pf->tx_timeout_last_recovery = jiffies; 5124 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 5125 pf->tx_timeout_recovery_level, hung_queue); 5126 5127 switch (pf->tx_timeout_recovery_level) { 5128 case 1: 5129 set_bit(__ICE_PFR_REQ, pf->state); 5130 break; 5131 case 2: 5132 set_bit(__ICE_CORER_REQ, pf->state); 5133 break; 5134 case 3: 5135 set_bit(__ICE_GLOBR_REQ, pf->state); 5136 break; 5137 default: 5138 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 5139 set_bit(__ICE_DOWN, pf->state); 5140 set_bit(__ICE_NEEDS_RESTART, vsi->state); 5141 set_bit(__ICE_SERVICE_DIS, pf->state); 5142 break; 5143 } 5144 5145 ice_service_task_schedule(pf); 5146 pf->tx_timeout_recovery_level++; 5147 } 5148 5149 /** 5150 * ice_open - Called when a network interface becomes active 5151 * @netdev: network interface device structure 5152 * 5153 * The open entry point is called when a network interface is made 5154 * active by the system (IFF_UP). At this point all resources needed 5155 * for transmit and receive operations are allocated, the interrupt 5156 * handler is registered with the OS, the netdev watchdog is enabled, 5157 * and the stack is notified that the interface is ready. 5158 * 5159 * Returns 0 on success, negative value on failure 5160 */ 5161 int ice_open(struct net_device *netdev) 5162 { 5163 struct ice_netdev_priv *np = netdev_priv(netdev); 5164 struct ice_vsi *vsi = np->vsi; 5165 struct ice_port_info *pi; 5166 int err; 5167 5168 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 5169 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 5170 return -EIO; 5171 } 5172 5173 netif_carrier_off(netdev); 5174 5175 pi = vsi->port_info; 5176 err = ice_update_link_info(pi); 5177 if (err) { 5178 netdev_err(netdev, "Failed to get link info, error %d\n", 5179 err); 5180 return err; 5181 } 5182 5183 /* Set PHY if there is media, otherwise, turn off PHY */ 5184 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 5185 err = ice_force_phys_link_state(vsi, true); 5186 if (err) { 5187 netdev_err(netdev, 5188 "Failed to set physical link up, error %d\n", 5189 err); 5190 return err; 5191 } 5192 } else { 5193 err = ice_aq_set_link_restart_an(pi, false, NULL); 5194 if (err) { 5195 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 5196 vsi->vsi_num, err); 5197 return err; 5198 } 5199 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 5200 } 5201 5202 err = ice_vsi_open(vsi); 5203 if (err) 5204 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 5205 vsi->vsi_num, vsi->vsw->sw_id); 5206 return err; 5207 } 5208 5209 /** 5210 * ice_stop - Disables a network interface 5211 * @netdev: network interface device structure 5212 * 5213 * The stop entry point is called when an interface is de-activated by the OS, 5214 * and the netdevice enters the DOWN state. The hardware is still under the 5215 * driver's control, but the netdev interface is disabled. 5216 * 5217 * Returns success only - not allowed to fail 5218 */ 5219 int ice_stop(struct net_device *netdev) 5220 { 5221 struct ice_netdev_priv *np = netdev_priv(netdev); 5222 struct ice_vsi *vsi = np->vsi; 5223 5224 ice_vsi_close(vsi); 5225 5226 return 0; 5227 } 5228 5229 /** 5230 * ice_features_check - Validate encapsulated packet conforms to limits 5231 * @skb: skb buffer 5232 * @netdev: This port's netdev 5233 * @features: Offload features that the stack believes apply 5234 */ 5235 static netdev_features_t 5236 ice_features_check(struct sk_buff *skb, 5237 struct net_device __always_unused *netdev, 5238 netdev_features_t features) 5239 { 5240 size_t len; 5241 5242 /* No point in doing any of this if neither checksum nor GSO are 5243 * being requested for this frame. We can rule out both by just 5244 * checking for CHECKSUM_PARTIAL 5245 */ 5246 if (skb->ip_summed != CHECKSUM_PARTIAL) 5247 return features; 5248 5249 /* We cannot support GSO if the MSS is going to be less than 5250 * 64 bytes. If it is then we need to drop support for GSO. 5251 */ 5252 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 5253 features &= ~NETIF_F_GSO_MASK; 5254 5255 len = skb_network_header(skb) - skb->data; 5256 if (len & ~(ICE_TXD_MACLEN_MAX)) 5257 goto out_rm_features; 5258 5259 len = skb_transport_header(skb) - skb_network_header(skb); 5260 if (len & ~(ICE_TXD_IPLEN_MAX)) 5261 goto out_rm_features; 5262 5263 if (skb->encapsulation) { 5264 len = skb_inner_network_header(skb) - skb_transport_header(skb); 5265 if (len & ~(ICE_TXD_L4LEN_MAX)) 5266 goto out_rm_features; 5267 5268 len = skb_inner_transport_header(skb) - 5269 skb_inner_network_header(skb); 5270 if (len & ~(ICE_TXD_IPLEN_MAX)) 5271 goto out_rm_features; 5272 } 5273 5274 return features; 5275 out_rm_features: 5276 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 5277 } 5278 5279 static const struct net_device_ops ice_netdev_safe_mode_ops = { 5280 .ndo_open = ice_open, 5281 .ndo_stop = ice_stop, 5282 .ndo_start_xmit = ice_start_xmit, 5283 .ndo_set_mac_address = ice_set_mac_address, 5284 .ndo_validate_addr = eth_validate_addr, 5285 .ndo_change_mtu = ice_change_mtu, 5286 .ndo_get_stats64 = ice_get_stats64, 5287 .ndo_tx_timeout = ice_tx_timeout, 5288 }; 5289 5290 static const struct net_device_ops ice_netdev_ops = { 5291 .ndo_open = ice_open, 5292 .ndo_stop = ice_stop, 5293 .ndo_start_xmit = ice_start_xmit, 5294 .ndo_features_check = ice_features_check, 5295 .ndo_set_rx_mode = ice_set_rx_mode, 5296 .ndo_set_mac_address = ice_set_mac_address, 5297 .ndo_validate_addr = eth_validate_addr, 5298 .ndo_change_mtu = ice_change_mtu, 5299 .ndo_get_stats64 = ice_get_stats64, 5300 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 5301 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 5302 .ndo_set_vf_mac = ice_set_vf_mac, 5303 .ndo_get_vf_config = ice_get_vf_cfg, 5304 .ndo_set_vf_trust = ice_set_vf_trust, 5305 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 5306 .ndo_set_vf_link_state = ice_set_vf_link_state, 5307 .ndo_get_vf_stats = ice_get_vf_stats, 5308 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 5309 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 5310 .ndo_set_features = ice_set_features, 5311 .ndo_bridge_getlink = ice_bridge_getlink, 5312 .ndo_bridge_setlink = ice_bridge_setlink, 5313 .ndo_fdb_add = ice_fdb_add, 5314 .ndo_fdb_del = ice_fdb_del, 5315 .ndo_tx_timeout = ice_tx_timeout, 5316 .ndo_bpf = ice_xdp, 5317 .ndo_xdp_xmit = ice_xdp_xmit, 5318 .ndo_xsk_wakeup = ice_xsk_wakeup, 5319 }; 5320