1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 
25 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
26 static const char ice_driver_string[] = DRV_SUMMARY;
27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
28 
29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
30 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
31 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
37 
38 static int debug = -1;
39 module_param(debug, int, 0644);
40 #ifndef CONFIG_DYNAMIC_DEBUG
41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
42 #else
43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
44 #endif /* !CONFIG_DYNAMIC_DEBUG */
45 
46 static DEFINE_IDA(ice_aux_ida);
47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
48 EXPORT_SYMBOL(ice_xdp_locking_key);
49 
50 static struct workqueue_struct *ice_wq;
51 static const struct net_device_ops ice_netdev_safe_mode_ops;
52 static const struct net_device_ops ice_netdev_ops;
53 
54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
55 
56 static void ice_vsi_release_all(struct ice_pf *pf);
57 
58 static int ice_rebuild_channels(struct ice_pf *pf);
59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
60 
61 static int
62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
63 		     void *cb_priv, enum tc_setup_type type, void *type_data,
64 		     void *data,
65 		     void (*cleanup)(struct flow_block_cb *block_cb));
66 
67 bool netif_is_ice(struct net_device *dev)
68 {
69 	return dev && (dev->netdev_ops == &ice_netdev_ops);
70 }
71 
72 /**
73  * ice_get_tx_pending - returns number of Tx descriptors not processed
74  * @ring: the ring of descriptors
75  */
76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
77 {
78 	u16 head, tail;
79 
80 	head = ring->next_to_clean;
81 	tail = ring->next_to_use;
82 
83 	if (head != tail)
84 		return (head < tail) ?
85 			tail - head : (tail + ring->count - head);
86 	return 0;
87 }
88 
89 /**
90  * ice_check_for_hang_subtask - check for and recover hung queues
91  * @pf: pointer to PF struct
92  */
93 static void ice_check_for_hang_subtask(struct ice_pf *pf)
94 {
95 	struct ice_vsi *vsi = NULL;
96 	struct ice_hw *hw;
97 	unsigned int i;
98 	int packets;
99 	u32 v;
100 
101 	ice_for_each_vsi(pf, v)
102 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
103 			vsi = pf->vsi[v];
104 			break;
105 		}
106 
107 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
108 		return;
109 
110 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
111 		return;
112 
113 	hw = &vsi->back->hw;
114 
115 	ice_for_each_txq(vsi, i) {
116 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
117 
118 		if (!tx_ring)
119 			continue;
120 		if (ice_ring_ch_enabled(tx_ring))
121 			continue;
122 
123 		if (tx_ring->desc) {
124 			/* If packet counter has not changed the queue is
125 			 * likely stalled, so force an interrupt for this
126 			 * queue.
127 			 *
128 			 * prev_pkt would be negative if there was no
129 			 * pending work.
130 			 */
131 			packets = tx_ring->stats.pkts & INT_MAX;
132 			if (tx_ring->tx_stats.prev_pkt == packets) {
133 				/* Trigger sw interrupt to revive the queue */
134 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
135 				continue;
136 			}
137 
138 			/* Memory barrier between read of packet count and call
139 			 * to ice_get_tx_pending()
140 			 */
141 			smp_rmb();
142 			tx_ring->tx_stats.prev_pkt =
143 			    ice_get_tx_pending(tx_ring) ? packets : -1;
144 		}
145 	}
146 }
147 
148 /**
149  * ice_init_mac_fltr - Set initial MAC filters
150  * @pf: board private structure
151  *
152  * Set initial set of MAC filters for PF VSI; configure filters for permanent
153  * address and broadcast address. If an error is encountered, netdevice will be
154  * unregistered.
155  */
156 static int ice_init_mac_fltr(struct ice_pf *pf)
157 {
158 	struct ice_vsi *vsi;
159 	u8 *perm_addr;
160 
161 	vsi = ice_get_main_vsi(pf);
162 	if (!vsi)
163 		return -EINVAL;
164 
165 	perm_addr = vsi->port_info->mac.perm_addr;
166 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
167 }
168 
169 /**
170  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
171  * @netdev: the net device on which the sync is happening
172  * @addr: MAC address to sync
173  *
174  * This is a callback function which is called by the in kernel device sync
175  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
176  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
177  * MAC filters from the hardware.
178  */
179 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
180 {
181 	struct ice_netdev_priv *np = netdev_priv(netdev);
182 	struct ice_vsi *vsi = np->vsi;
183 
184 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
185 				     ICE_FWD_TO_VSI))
186 		return -EINVAL;
187 
188 	return 0;
189 }
190 
191 /**
192  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
193  * @netdev: the net device on which the unsync is happening
194  * @addr: MAC address to unsync
195  *
196  * This is a callback function which is called by the in kernel device unsync
197  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
198  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
199  * delete the MAC filters from the hardware.
200  */
201 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
202 {
203 	struct ice_netdev_priv *np = netdev_priv(netdev);
204 	struct ice_vsi *vsi = np->vsi;
205 
206 	/* Under some circumstances, we might receive a request to delete our
207 	 * own device address from our uc list. Because we store the device
208 	 * address in the VSI's MAC filter list, we need to ignore such
209 	 * requests and not delete our device address from this list.
210 	 */
211 	if (ether_addr_equal(addr, netdev->dev_addr))
212 		return 0;
213 
214 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
215 				     ICE_FWD_TO_VSI))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 /**
222  * ice_vsi_fltr_changed - check if filter state changed
223  * @vsi: VSI to be checked
224  *
225  * returns true if filter state has changed, false otherwise.
226  */
227 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
228 {
229 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
230 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
231 	       test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
232 }
233 
234 /**
235  * ice_set_promisc - Enable promiscuous mode for a given PF
236  * @vsi: the VSI being configured
237  * @promisc_m: mask of promiscuous config bits
238  *
239  */
240 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
241 {
242 	int status;
243 
244 	if (vsi->type != ICE_VSI_PF)
245 		return 0;
246 
247 	if (vsi->num_vlan > 1)
248 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m);
249 	else
250 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0);
251 	return status;
252 }
253 
254 /**
255  * ice_clear_promisc - Disable promiscuous mode for a given PF
256  * @vsi: the VSI being configured
257  * @promisc_m: mask of promiscuous config bits
258  *
259  */
260 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
261 {
262 	int status;
263 
264 	if (vsi->type != ICE_VSI_PF)
265 		return 0;
266 
267 	if (vsi->num_vlan > 1)
268 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m);
269 	else
270 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0);
271 	return status;
272 }
273 
274 /**
275  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
276  * @vsi: ptr to the VSI
277  *
278  * Push any outstanding VSI filter changes through the AdminQ.
279  */
280 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
281 {
282 	struct device *dev = ice_pf_to_dev(vsi->back);
283 	struct net_device *netdev = vsi->netdev;
284 	bool promisc_forced_on = false;
285 	struct ice_pf *pf = vsi->back;
286 	struct ice_hw *hw = &pf->hw;
287 	u32 changed_flags = 0;
288 	u8 promisc_m;
289 	int err;
290 
291 	if (!vsi->netdev)
292 		return -EINVAL;
293 
294 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
295 		usleep_range(1000, 2000);
296 
297 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
298 	vsi->current_netdev_flags = vsi->netdev->flags;
299 
300 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
301 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
302 
303 	if (ice_vsi_fltr_changed(vsi)) {
304 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
305 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
306 		clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
307 
308 		/* grab the netdev's addr_list_lock */
309 		netif_addr_lock_bh(netdev);
310 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
311 			      ice_add_mac_to_unsync_list);
312 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
313 			      ice_add_mac_to_unsync_list);
314 		/* our temp lists are populated. release lock */
315 		netif_addr_unlock_bh(netdev);
316 	}
317 
318 	/* Remove MAC addresses in the unsync list */
319 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
320 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
321 	if (err) {
322 		netdev_err(netdev, "Failed to delete MAC filters\n");
323 		/* if we failed because of alloc failures, just bail */
324 		if (err == -ENOMEM)
325 			goto out;
326 	}
327 
328 	/* Add MAC addresses in the sync list */
329 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
330 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
331 	/* If filter is added successfully or already exists, do not go into
332 	 * 'if' condition and report it as error. Instead continue processing
333 	 * rest of the function.
334 	 */
335 	if (err && err != -EEXIST) {
336 		netdev_err(netdev, "Failed to add MAC filters\n");
337 		/* If there is no more space for new umac filters, VSI
338 		 * should go into promiscuous mode. There should be some
339 		 * space reserved for promiscuous filters.
340 		 */
341 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
342 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
343 				      vsi->state)) {
344 			promisc_forced_on = true;
345 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
346 				    vsi->vsi_num);
347 		} else {
348 			goto out;
349 		}
350 	}
351 	err = 0;
352 	/* check for changes in promiscuous modes */
353 	if (changed_flags & IFF_ALLMULTI) {
354 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
355 			if (vsi->num_vlan > 1)
356 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
357 			else
358 				promisc_m = ICE_MCAST_PROMISC_BITS;
359 
360 			err = ice_set_promisc(vsi, promisc_m);
361 			if (err) {
362 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
363 					   vsi->vsi_num);
364 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
365 				goto out_promisc;
366 			}
367 		} else {
368 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
369 			if (vsi->num_vlan > 1)
370 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
371 			else
372 				promisc_m = ICE_MCAST_PROMISC_BITS;
373 
374 			err = ice_clear_promisc(vsi, promisc_m);
375 			if (err) {
376 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
377 					   vsi->vsi_num);
378 				vsi->current_netdev_flags |= IFF_ALLMULTI;
379 				goto out_promisc;
380 			}
381 		}
382 	}
383 
384 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
385 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
386 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
387 		if (vsi->current_netdev_flags & IFF_PROMISC) {
388 			/* Apply Rx filter rule to get traffic from wire */
389 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
390 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
391 				if (err && err != -EEXIST) {
392 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
393 						   err, vsi->vsi_num);
394 					vsi->current_netdev_flags &=
395 						~IFF_PROMISC;
396 					goto out_promisc;
397 				}
398 				err = 0;
399 				ice_cfg_vlan_pruning(vsi, false);
400 			}
401 		} else {
402 			/* Clear Rx filter to remove traffic from wire */
403 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
404 				err = ice_clear_dflt_vsi(pf->first_sw);
405 				if (err) {
406 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
407 						   err, vsi->vsi_num);
408 					vsi->current_netdev_flags |=
409 						IFF_PROMISC;
410 					goto out_promisc;
411 				}
412 				if (vsi->num_vlan > 1)
413 					ice_cfg_vlan_pruning(vsi, true);
414 			}
415 		}
416 	}
417 	goto exit;
418 
419 out_promisc:
420 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
421 	goto exit;
422 out:
423 	/* if something went wrong then set the changed flag so we try again */
424 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
425 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
426 exit:
427 	clear_bit(ICE_CFG_BUSY, vsi->state);
428 	return err;
429 }
430 
431 /**
432  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
433  * @pf: board private structure
434  */
435 static void ice_sync_fltr_subtask(struct ice_pf *pf)
436 {
437 	int v;
438 
439 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
440 		return;
441 
442 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
443 
444 	ice_for_each_vsi(pf, v)
445 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
446 		    ice_vsi_sync_fltr(pf->vsi[v])) {
447 			/* come back and try again later */
448 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
449 			break;
450 		}
451 }
452 
453 /**
454  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
455  * @pf: the PF
456  * @locked: is the rtnl_lock already held
457  */
458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
459 {
460 	int node;
461 	int v;
462 
463 	ice_for_each_vsi(pf, v)
464 		if (pf->vsi[v])
465 			ice_dis_vsi(pf->vsi[v], locked);
466 
467 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
468 		pf->pf_agg_node[node].num_vsis = 0;
469 
470 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
471 		pf->vf_agg_node[node].num_vsis = 0;
472 }
473 
474 /**
475  * ice_clear_sw_switch_recipes - clear switch recipes
476  * @pf: board private structure
477  *
478  * Mark switch recipes as not created in sw structures. There are cases where
479  * rules (especially advanced rules) need to be restored, either re-read from
480  * hardware or added again. For example after the reset. 'recp_created' flag
481  * prevents from doing that and need to be cleared upfront.
482  */
483 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
484 {
485 	struct ice_sw_recipe *recp;
486 	u8 i;
487 
488 	recp = pf->hw.switch_info->recp_list;
489 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
490 		recp[i].recp_created = false;
491 }
492 
493 /**
494  * ice_prepare_for_reset - prep for reset
495  * @pf: board private structure
496  * @reset_type: reset type requested
497  *
498  * Inform or close all dependent features in prep for reset.
499  */
500 static void
501 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
502 {
503 	struct ice_hw *hw = &pf->hw;
504 	struct ice_vsi *vsi;
505 	unsigned int i;
506 
507 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
508 
509 	/* already prepared for reset */
510 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
511 		return;
512 
513 	ice_unplug_aux_dev(pf);
514 
515 	/* Notify VFs of impending reset */
516 	if (ice_check_sq_alive(hw, &hw->mailboxq))
517 		ice_vc_notify_reset(pf);
518 
519 	/* Disable VFs until reset is completed */
520 	ice_for_each_vf(pf, i)
521 		ice_set_vf_state_qs_dis(&pf->vf[i]);
522 
523 	if (ice_is_eswitch_mode_switchdev(pf)) {
524 		if (reset_type != ICE_RESET_PFR)
525 			ice_clear_sw_switch_recipes(pf);
526 	}
527 
528 	/* release ADQ specific HW and SW resources */
529 	vsi = ice_get_main_vsi(pf);
530 	if (!vsi)
531 		goto skip;
532 
533 	/* to be on safe side, reset orig_rss_size so that normal flow
534 	 * of deciding rss_size can take precedence
535 	 */
536 	vsi->orig_rss_size = 0;
537 
538 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
539 		if (reset_type == ICE_RESET_PFR) {
540 			vsi->old_ena_tc = vsi->all_enatc;
541 			vsi->old_numtc = vsi->all_numtc;
542 		} else {
543 			ice_remove_q_channels(vsi, true);
544 
545 			/* for other reset type, do not support channel rebuild
546 			 * hence reset needed info
547 			 */
548 			vsi->old_ena_tc = 0;
549 			vsi->all_enatc = 0;
550 			vsi->old_numtc = 0;
551 			vsi->all_numtc = 0;
552 			vsi->req_txq = 0;
553 			vsi->req_rxq = 0;
554 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
555 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
556 		}
557 	}
558 skip:
559 
560 	/* clear SW filtering DB */
561 	ice_clear_hw_tbls(hw);
562 	/* disable the VSIs and their queues that are not already DOWN */
563 	ice_pf_dis_all_vsi(pf, false);
564 
565 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
566 		ice_ptp_prepare_for_reset(pf);
567 
568 	if (hw->port_info)
569 		ice_sched_clear_port(hw->port_info);
570 
571 	ice_shutdown_all_ctrlq(hw);
572 
573 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
574 }
575 
576 /**
577  * ice_do_reset - Initiate one of many types of resets
578  * @pf: board private structure
579  * @reset_type: reset type requested before this function was called.
580  */
581 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
582 {
583 	struct device *dev = ice_pf_to_dev(pf);
584 	struct ice_hw *hw = &pf->hw;
585 
586 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
587 
588 	ice_prepare_for_reset(pf, reset_type);
589 
590 	/* trigger the reset */
591 	if (ice_reset(hw, reset_type)) {
592 		dev_err(dev, "reset %d failed\n", reset_type);
593 		set_bit(ICE_RESET_FAILED, pf->state);
594 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
595 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
596 		clear_bit(ICE_PFR_REQ, pf->state);
597 		clear_bit(ICE_CORER_REQ, pf->state);
598 		clear_bit(ICE_GLOBR_REQ, pf->state);
599 		wake_up(&pf->reset_wait_queue);
600 		return;
601 	}
602 
603 	/* PFR is a bit of a special case because it doesn't result in an OICR
604 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
605 	 * associated state bits.
606 	 */
607 	if (reset_type == ICE_RESET_PFR) {
608 		pf->pfr_count++;
609 		ice_rebuild(pf, reset_type);
610 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
611 		clear_bit(ICE_PFR_REQ, pf->state);
612 		wake_up(&pf->reset_wait_queue);
613 		ice_reset_all_vfs(pf, true);
614 	}
615 }
616 
617 /**
618  * ice_reset_subtask - Set up for resetting the device and driver
619  * @pf: board private structure
620  */
621 static void ice_reset_subtask(struct ice_pf *pf)
622 {
623 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
624 
625 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
626 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
627 	 * of reset is pending and sets bits in pf->state indicating the reset
628 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
629 	 * prepare for pending reset if not already (for PF software-initiated
630 	 * global resets the software should already be prepared for it as
631 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
632 	 * by firmware or software on other PFs, that bit is not set so prepare
633 	 * for the reset now), poll for reset done, rebuild and return.
634 	 */
635 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
636 		/* Perform the largest reset requested */
637 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
638 			reset_type = ICE_RESET_CORER;
639 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
640 			reset_type = ICE_RESET_GLOBR;
641 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
642 			reset_type = ICE_RESET_EMPR;
643 		/* return if no valid reset type requested */
644 		if (reset_type == ICE_RESET_INVAL)
645 			return;
646 		ice_prepare_for_reset(pf, reset_type);
647 
648 		/* make sure we are ready to rebuild */
649 		if (ice_check_reset(&pf->hw)) {
650 			set_bit(ICE_RESET_FAILED, pf->state);
651 		} else {
652 			/* done with reset. start rebuild */
653 			pf->hw.reset_ongoing = false;
654 			ice_rebuild(pf, reset_type);
655 			/* clear bit to resume normal operations, but
656 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
657 			 */
658 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
659 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 			clear_bit(ICE_PFR_REQ, pf->state);
661 			clear_bit(ICE_CORER_REQ, pf->state);
662 			clear_bit(ICE_GLOBR_REQ, pf->state);
663 			wake_up(&pf->reset_wait_queue);
664 			ice_reset_all_vfs(pf, true);
665 		}
666 
667 		return;
668 	}
669 
670 	/* No pending resets to finish processing. Check for new resets */
671 	if (test_bit(ICE_PFR_REQ, pf->state))
672 		reset_type = ICE_RESET_PFR;
673 	if (test_bit(ICE_CORER_REQ, pf->state))
674 		reset_type = ICE_RESET_CORER;
675 	if (test_bit(ICE_GLOBR_REQ, pf->state))
676 		reset_type = ICE_RESET_GLOBR;
677 	/* If no valid reset type requested just return */
678 	if (reset_type == ICE_RESET_INVAL)
679 		return;
680 
681 	/* reset if not already down or busy */
682 	if (!test_bit(ICE_DOWN, pf->state) &&
683 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
684 		ice_do_reset(pf, reset_type);
685 	}
686 }
687 
688 /**
689  * ice_print_topo_conflict - print topology conflict message
690  * @vsi: the VSI whose topology status is being checked
691  */
692 static void ice_print_topo_conflict(struct ice_vsi *vsi)
693 {
694 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
695 	case ICE_AQ_LINK_TOPO_CONFLICT:
696 	case ICE_AQ_LINK_MEDIA_CONFLICT:
697 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
698 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
699 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
700 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
701 		break;
702 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
703 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
704 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
705 		else
706 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
707 		break;
708 	default:
709 		break;
710 	}
711 }
712 
713 /**
714  * ice_print_link_msg - print link up or down message
715  * @vsi: the VSI whose link status is being queried
716  * @isup: boolean for if the link is now up or down
717  */
718 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
719 {
720 	struct ice_aqc_get_phy_caps_data *caps;
721 	const char *an_advertised;
722 	const char *fec_req;
723 	const char *speed;
724 	const char *fec;
725 	const char *fc;
726 	const char *an;
727 	int status;
728 
729 	if (!vsi)
730 		return;
731 
732 	if (vsi->current_isup == isup)
733 		return;
734 
735 	vsi->current_isup = isup;
736 
737 	if (!isup) {
738 		netdev_info(vsi->netdev, "NIC Link is Down\n");
739 		return;
740 	}
741 
742 	switch (vsi->port_info->phy.link_info.link_speed) {
743 	case ICE_AQ_LINK_SPEED_100GB:
744 		speed = "100 G";
745 		break;
746 	case ICE_AQ_LINK_SPEED_50GB:
747 		speed = "50 G";
748 		break;
749 	case ICE_AQ_LINK_SPEED_40GB:
750 		speed = "40 G";
751 		break;
752 	case ICE_AQ_LINK_SPEED_25GB:
753 		speed = "25 G";
754 		break;
755 	case ICE_AQ_LINK_SPEED_20GB:
756 		speed = "20 G";
757 		break;
758 	case ICE_AQ_LINK_SPEED_10GB:
759 		speed = "10 G";
760 		break;
761 	case ICE_AQ_LINK_SPEED_5GB:
762 		speed = "5 G";
763 		break;
764 	case ICE_AQ_LINK_SPEED_2500MB:
765 		speed = "2.5 G";
766 		break;
767 	case ICE_AQ_LINK_SPEED_1000MB:
768 		speed = "1 G";
769 		break;
770 	case ICE_AQ_LINK_SPEED_100MB:
771 		speed = "100 M";
772 		break;
773 	default:
774 		speed = "Unknown ";
775 		break;
776 	}
777 
778 	switch (vsi->port_info->fc.current_mode) {
779 	case ICE_FC_FULL:
780 		fc = "Rx/Tx";
781 		break;
782 	case ICE_FC_TX_PAUSE:
783 		fc = "Tx";
784 		break;
785 	case ICE_FC_RX_PAUSE:
786 		fc = "Rx";
787 		break;
788 	case ICE_FC_NONE:
789 		fc = "None";
790 		break;
791 	default:
792 		fc = "Unknown";
793 		break;
794 	}
795 
796 	/* Get FEC mode based on negotiated link info */
797 	switch (vsi->port_info->phy.link_info.fec_info) {
798 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
799 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
800 		fec = "RS-FEC";
801 		break;
802 	case ICE_AQ_LINK_25G_KR_FEC_EN:
803 		fec = "FC-FEC/BASE-R";
804 		break;
805 	default:
806 		fec = "NONE";
807 		break;
808 	}
809 
810 	/* check if autoneg completed, might be false due to not supported */
811 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
812 		an = "True";
813 	else
814 		an = "False";
815 
816 	/* Get FEC mode requested based on PHY caps last SW configuration */
817 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
818 	if (!caps) {
819 		fec_req = "Unknown";
820 		an_advertised = "Unknown";
821 		goto done;
822 	}
823 
824 	status = ice_aq_get_phy_caps(vsi->port_info, false,
825 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
826 	if (status)
827 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
828 
829 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
830 
831 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
832 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
833 		fec_req = "RS-FEC";
834 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
835 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
836 		fec_req = "FC-FEC/BASE-R";
837 	else
838 		fec_req = "NONE";
839 
840 	kfree(caps);
841 
842 done:
843 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
844 		    speed, fec_req, fec, an_advertised, an, fc);
845 	ice_print_topo_conflict(vsi);
846 }
847 
848 /**
849  * ice_vsi_link_event - update the VSI's netdev
850  * @vsi: the VSI on which the link event occurred
851  * @link_up: whether or not the VSI needs to be set up or down
852  */
853 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
854 {
855 	if (!vsi)
856 		return;
857 
858 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
859 		return;
860 
861 	if (vsi->type == ICE_VSI_PF) {
862 		if (link_up == netif_carrier_ok(vsi->netdev))
863 			return;
864 
865 		if (link_up) {
866 			netif_carrier_on(vsi->netdev);
867 			netif_tx_wake_all_queues(vsi->netdev);
868 		} else {
869 			netif_carrier_off(vsi->netdev);
870 			netif_tx_stop_all_queues(vsi->netdev);
871 		}
872 	}
873 }
874 
875 /**
876  * ice_set_dflt_mib - send a default config MIB to the FW
877  * @pf: private PF struct
878  *
879  * This function sends a default configuration MIB to the FW.
880  *
881  * If this function errors out at any point, the driver is still able to
882  * function.  The main impact is that LFC may not operate as expected.
883  * Therefore an error state in this function should be treated with a DBG
884  * message and continue on with driver rebuild/reenable.
885  */
886 static void ice_set_dflt_mib(struct ice_pf *pf)
887 {
888 	struct device *dev = ice_pf_to_dev(pf);
889 	u8 mib_type, *buf, *lldpmib = NULL;
890 	u16 len, typelen, offset = 0;
891 	struct ice_lldp_org_tlv *tlv;
892 	struct ice_hw *hw = &pf->hw;
893 	u32 ouisubtype;
894 
895 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
896 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
897 	if (!lldpmib) {
898 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
899 			__func__);
900 		return;
901 	}
902 
903 	/* Add ETS CFG TLV */
904 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
905 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
906 		   ICE_IEEE_ETS_TLV_LEN);
907 	tlv->typelen = htons(typelen);
908 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
909 		      ICE_IEEE_SUBTYPE_ETS_CFG);
910 	tlv->ouisubtype = htonl(ouisubtype);
911 
912 	buf = tlv->tlvinfo;
913 	buf[0] = 0;
914 
915 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
916 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
917 	 * Octets 13 - 20 are TSA values - leave as zeros
918 	 */
919 	buf[5] = 0x64;
920 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
921 	offset += len + 2;
922 	tlv = (struct ice_lldp_org_tlv *)
923 		((char *)tlv + sizeof(tlv->typelen) + len);
924 
925 	/* Add ETS REC TLV */
926 	buf = tlv->tlvinfo;
927 	tlv->typelen = htons(typelen);
928 
929 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
930 		      ICE_IEEE_SUBTYPE_ETS_REC);
931 	tlv->ouisubtype = htonl(ouisubtype);
932 
933 	/* First octet of buf is reserved
934 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
935 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
936 	 * Octets 13 - 20 are TSA value - leave as zeros
937 	 */
938 	buf[5] = 0x64;
939 	offset += len + 2;
940 	tlv = (struct ice_lldp_org_tlv *)
941 		((char *)tlv + sizeof(tlv->typelen) + len);
942 
943 	/* Add PFC CFG TLV */
944 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
945 		   ICE_IEEE_PFC_TLV_LEN);
946 	tlv->typelen = htons(typelen);
947 
948 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
949 		      ICE_IEEE_SUBTYPE_PFC_CFG);
950 	tlv->ouisubtype = htonl(ouisubtype);
951 
952 	/* Octet 1 left as all zeros - PFC disabled */
953 	buf[0] = 0x08;
954 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
955 	offset += len + 2;
956 
957 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
958 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
959 
960 	kfree(lldpmib);
961 }
962 
963 /**
964  * ice_check_phy_fw_load - check if PHY FW load failed
965  * @pf: pointer to PF struct
966  * @link_cfg_err: bitmap from the link info structure
967  *
968  * check if external PHY FW load failed and print an error message if it did
969  */
970 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
971 {
972 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
973 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
974 		return;
975 	}
976 
977 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
978 		return;
979 
980 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
981 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
982 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
983 	}
984 }
985 
986 /**
987  * ice_check_module_power
988  * @pf: pointer to PF struct
989  * @link_cfg_err: bitmap from the link info structure
990  *
991  * check module power level returned by a previous call to aq_get_link_info
992  * and print error messages if module power level is not supported
993  */
994 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
995 {
996 	/* if module power level is supported, clear the flag */
997 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
998 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
999 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1000 		return;
1001 	}
1002 
1003 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1004 	 * above block didn't clear this bit, there's nothing to do
1005 	 */
1006 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1007 		return;
1008 
1009 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1010 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1011 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1012 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1013 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1014 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1015 	}
1016 }
1017 
1018 /**
1019  * ice_check_link_cfg_err - check if link configuration failed
1020  * @pf: pointer to the PF struct
1021  * @link_cfg_err: bitmap from the link info structure
1022  *
1023  * print if any link configuration failure happens due to the value in the
1024  * link_cfg_err parameter in the link info structure
1025  */
1026 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1027 {
1028 	ice_check_module_power(pf, link_cfg_err);
1029 	ice_check_phy_fw_load(pf, link_cfg_err);
1030 }
1031 
1032 /**
1033  * ice_link_event - process the link event
1034  * @pf: PF that the link event is associated with
1035  * @pi: port_info for the port that the link event is associated with
1036  * @link_up: true if the physical link is up and false if it is down
1037  * @link_speed: current link speed received from the link event
1038  *
1039  * Returns 0 on success and negative on failure
1040  */
1041 static int
1042 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1043 	       u16 link_speed)
1044 {
1045 	struct device *dev = ice_pf_to_dev(pf);
1046 	struct ice_phy_info *phy_info;
1047 	struct ice_vsi *vsi;
1048 	u16 old_link_speed;
1049 	bool old_link;
1050 	int status;
1051 
1052 	phy_info = &pi->phy;
1053 	phy_info->link_info_old = phy_info->link_info;
1054 
1055 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1056 	old_link_speed = phy_info->link_info_old.link_speed;
1057 
1058 	/* update the link info structures and re-enable link events,
1059 	 * don't bail on failure due to other book keeping needed
1060 	 */
1061 	status = ice_update_link_info(pi);
1062 	if (status)
1063 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1064 			pi->lport, status,
1065 			ice_aq_str(pi->hw->adminq.sq_last_status));
1066 
1067 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1068 
1069 	/* Check if the link state is up after updating link info, and treat
1070 	 * this event as an UP event since the link is actually UP now.
1071 	 */
1072 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1073 		link_up = true;
1074 
1075 	vsi = ice_get_main_vsi(pf);
1076 	if (!vsi || !vsi->port_info)
1077 		return -EINVAL;
1078 
1079 	/* turn off PHY if media was removed */
1080 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1081 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1082 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1083 		ice_set_link(vsi, false);
1084 	}
1085 
1086 	/* if the old link up/down and speed is the same as the new */
1087 	if (link_up == old_link && link_speed == old_link_speed)
1088 		return 0;
1089 
1090 	if (!ice_is_e810(&pf->hw))
1091 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1092 
1093 	if (ice_is_dcb_active(pf)) {
1094 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1095 			ice_dcb_rebuild(pf);
1096 	} else {
1097 		if (link_up)
1098 			ice_set_dflt_mib(pf);
1099 	}
1100 	ice_vsi_link_event(vsi, link_up);
1101 	ice_print_link_msg(vsi, link_up);
1102 
1103 	ice_vc_notify_link_state(pf);
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1110  * @pf: board private structure
1111  */
1112 static void ice_watchdog_subtask(struct ice_pf *pf)
1113 {
1114 	int i;
1115 
1116 	/* if interface is down do nothing */
1117 	if (test_bit(ICE_DOWN, pf->state) ||
1118 	    test_bit(ICE_CFG_BUSY, pf->state))
1119 		return;
1120 
1121 	/* make sure we don't do these things too often */
1122 	if (time_before(jiffies,
1123 			pf->serv_tmr_prev + pf->serv_tmr_period))
1124 		return;
1125 
1126 	pf->serv_tmr_prev = jiffies;
1127 
1128 	/* Update the stats for active netdevs so the network stack
1129 	 * can look at updated numbers whenever it cares to
1130 	 */
1131 	ice_update_pf_stats(pf);
1132 	ice_for_each_vsi(pf, i)
1133 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1134 			ice_update_vsi_stats(pf->vsi[i]);
1135 }
1136 
1137 /**
1138  * ice_init_link_events - enable/initialize link events
1139  * @pi: pointer to the port_info instance
1140  *
1141  * Returns -EIO on failure, 0 on success
1142  */
1143 static int ice_init_link_events(struct ice_port_info *pi)
1144 {
1145 	u16 mask;
1146 
1147 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1148 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1149 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1150 
1151 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1152 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1153 			pi->lport);
1154 		return -EIO;
1155 	}
1156 
1157 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1158 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1159 			pi->lport);
1160 		return -EIO;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 /**
1167  * ice_handle_link_event - handle link event via ARQ
1168  * @pf: PF that the link event is associated with
1169  * @event: event structure containing link status info
1170  */
1171 static int
1172 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1173 {
1174 	struct ice_aqc_get_link_status_data *link_data;
1175 	struct ice_port_info *port_info;
1176 	int status;
1177 
1178 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1179 	port_info = pf->hw.port_info;
1180 	if (!port_info)
1181 		return -EINVAL;
1182 
1183 	status = ice_link_event(pf, port_info,
1184 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1185 				le16_to_cpu(link_data->link_speed));
1186 	if (status)
1187 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1188 			status);
1189 
1190 	return status;
1191 }
1192 
1193 enum ice_aq_task_state {
1194 	ICE_AQ_TASK_WAITING = 0,
1195 	ICE_AQ_TASK_COMPLETE,
1196 	ICE_AQ_TASK_CANCELED,
1197 };
1198 
1199 struct ice_aq_task {
1200 	struct hlist_node entry;
1201 
1202 	u16 opcode;
1203 	struct ice_rq_event_info *event;
1204 	enum ice_aq_task_state state;
1205 };
1206 
1207 /**
1208  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1209  * @pf: pointer to the PF private structure
1210  * @opcode: the opcode to wait for
1211  * @timeout: how long to wait, in jiffies
1212  * @event: storage for the event info
1213  *
1214  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1215  * current thread will be put to sleep until the specified event occurs or
1216  * until the given timeout is reached.
1217  *
1218  * To obtain only the descriptor contents, pass an event without an allocated
1219  * msg_buf. If the complete data buffer is desired, allocate the
1220  * event->msg_buf with enough space ahead of time.
1221  *
1222  * Returns: zero on success, or a negative error code on failure.
1223  */
1224 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1225 			  struct ice_rq_event_info *event)
1226 {
1227 	struct device *dev = ice_pf_to_dev(pf);
1228 	struct ice_aq_task *task;
1229 	unsigned long start;
1230 	long ret;
1231 	int err;
1232 
1233 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1234 	if (!task)
1235 		return -ENOMEM;
1236 
1237 	INIT_HLIST_NODE(&task->entry);
1238 	task->opcode = opcode;
1239 	task->event = event;
1240 	task->state = ICE_AQ_TASK_WAITING;
1241 
1242 	spin_lock_bh(&pf->aq_wait_lock);
1243 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1244 	spin_unlock_bh(&pf->aq_wait_lock);
1245 
1246 	start = jiffies;
1247 
1248 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1249 					       timeout);
1250 	switch (task->state) {
1251 	case ICE_AQ_TASK_WAITING:
1252 		err = ret < 0 ? ret : -ETIMEDOUT;
1253 		break;
1254 	case ICE_AQ_TASK_CANCELED:
1255 		err = ret < 0 ? ret : -ECANCELED;
1256 		break;
1257 	case ICE_AQ_TASK_COMPLETE:
1258 		err = ret < 0 ? ret : 0;
1259 		break;
1260 	default:
1261 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1262 		err = -EINVAL;
1263 		break;
1264 	}
1265 
1266 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1267 		jiffies_to_msecs(jiffies - start),
1268 		jiffies_to_msecs(timeout),
1269 		opcode);
1270 
1271 	spin_lock_bh(&pf->aq_wait_lock);
1272 	hlist_del(&task->entry);
1273 	spin_unlock_bh(&pf->aq_wait_lock);
1274 	kfree(task);
1275 
1276 	return err;
1277 }
1278 
1279 /**
1280  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1281  * @pf: pointer to the PF private structure
1282  * @opcode: the opcode of the event
1283  * @event: the event to check
1284  *
1285  * Loops over the current list of pending threads waiting for an AdminQ event.
1286  * For each matching task, copy the contents of the event into the task
1287  * structure and wake up the thread.
1288  *
1289  * If multiple threads wait for the same opcode, they will all be woken up.
1290  *
1291  * Note that event->msg_buf will only be duplicated if the event has a buffer
1292  * with enough space already allocated. Otherwise, only the descriptor and
1293  * message length will be copied.
1294  *
1295  * Returns: true if an event was found, false otherwise
1296  */
1297 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1298 				struct ice_rq_event_info *event)
1299 {
1300 	struct ice_aq_task *task;
1301 	bool found = false;
1302 
1303 	spin_lock_bh(&pf->aq_wait_lock);
1304 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1305 		if (task->state || task->opcode != opcode)
1306 			continue;
1307 
1308 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1309 		task->event->msg_len = event->msg_len;
1310 
1311 		/* Only copy the data buffer if a destination was set */
1312 		if (task->event->msg_buf &&
1313 		    task->event->buf_len > event->buf_len) {
1314 			memcpy(task->event->msg_buf, event->msg_buf,
1315 			       event->buf_len);
1316 			task->event->buf_len = event->buf_len;
1317 		}
1318 
1319 		task->state = ICE_AQ_TASK_COMPLETE;
1320 		found = true;
1321 	}
1322 	spin_unlock_bh(&pf->aq_wait_lock);
1323 
1324 	if (found)
1325 		wake_up(&pf->aq_wait_queue);
1326 }
1327 
1328 /**
1329  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1330  * @pf: the PF private structure
1331  *
1332  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1333  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1334  */
1335 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1336 {
1337 	struct ice_aq_task *task;
1338 
1339 	spin_lock_bh(&pf->aq_wait_lock);
1340 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1341 		task->state = ICE_AQ_TASK_CANCELED;
1342 	spin_unlock_bh(&pf->aq_wait_lock);
1343 
1344 	wake_up(&pf->aq_wait_queue);
1345 }
1346 
1347 /**
1348  * __ice_clean_ctrlq - helper function to clean controlq rings
1349  * @pf: ptr to struct ice_pf
1350  * @q_type: specific Control queue type
1351  */
1352 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1353 {
1354 	struct device *dev = ice_pf_to_dev(pf);
1355 	struct ice_rq_event_info event;
1356 	struct ice_hw *hw = &pf->hw;
1357 	struct ice_ctl_q_info *cq;
1358 	u16 pending, i = 0;
1359 	const char *qtype;
1360 	u32 oldval, val;
1361 
1362 	/* Do not clean control queue if/when PF reset fails */
1363 	if (test_bit(ICE_RESET_FAILED, pf->state))
1364 		return 0;
1365 
1366 	switch (q_type) {
1367 	case ICE_CTL_Q_ADMIN:
1368 		cq = &hw->adminq;
1369 		qtype = "Admin";
1370 		break;
1371 	case ICE_CTL_Q_SB:
1372 		cq = &hw->sbq;
1373 		qtype = "Sideband";
1374 		break;
1375 	case ICE_CTL_Q_MAILBOX:
1376 		cq = &hw->mailboxq;
1377 		qtype = "Mailbox";
1378 		/* we are going to try to detect a malicious VF, so set the
1379 		 * state to begin detection
1380 		 */
1381 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1382 		break;
1383 	default:
1384 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1385 		return 0;
1386 	}
1387 
1388 	/* check for error indications - PF_xx_AxQLEN register layout for
1389 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1390 	 */
1391 	val = rd32(hw, cq->rq.len);
1392 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1393 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1394 		oldval = val;
1395 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1396 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1397 				qtype);
1398 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1399 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1400 				qtype);
1401 		}
1402 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1403 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1404 				qtype);
1405 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1406 			 PF_FW_ARQLEN_ARQCRIT_M);
1407 		if (oldval != val)
1408 			wr32(hw, cq->rq.len, val);
1409 	}
1410 
1411 	val = rd32(hw, cq->sq.len);
1412 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1413 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1414 		oldval = val;
1415 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1416 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1417 				qtype);
1418 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1419 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1420 				qtype);
1421 		}
1422 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1423 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1424 				qtype);
1425 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1426 			 PF_FW_ATQLEN_ATQCRIT_M);
1427 		if (oldval != val)
1428 			wr32(hw, cq->sq.len, val);
1429 	}
1430 
1431 	event.buf_len = cq->rq_buf_size;
1432 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1433 	if (!event.msg_buf)
1434 		return 0;
1435 
1436 	do {
1437 		u16 opcode;
1438 		int ret;
1439 
1440 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1441 		if (ret == -EALREADY)
1442 			break;
1443 		if (ret) {
1444 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1445 				ret);
1446 			break;
1447 		}
1448 
1449 		opcode = le16_to_cpu(event.desc.opcode);
1450 
1451 		/* Notify any thread that might be waiting for this event */
1452 		ice_aq_check_events(pf, opcode, &event);
1453 
1454 		switch (opcode) {
1455 		case ice_aqc_opc_get_link_status:
1456 			if (ice_handle_link_event(pf, &event))
1457 				dev_err(dev, "Could not handle link event\n");
1458 			break;
1459 		case ice_aqc_opc_event_lan_overflow:
1460 			ice_vf_lan_overflow_event(pf, &event);
1461 			break;
1462 		case ice_mbx_opc_send_msg_to_pf:
1463 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1464 				ice_vc_process_vf_msg(pf, &event);
1465 			break;
1466 		case ice_aqc_opc_fw_logging:
1467 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1468 			break;
1469 		case ice_aqc_opc_lldp_set_mib_change:
1470 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1471 			break;
1472 		default:
1473 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1474 				qtype, opcode);
1475 			break;
1476 		}
1477 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1478 
1479 	kfree(event.msg_buf);
1480 
1481 	return pending && (i == ICE_DFLT_IRQ_WORK);
1482 }
1483 
1484 /**
1485  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1486  * @hw: pointer to hardware info
1487  * @cq: control queue information
1488  *
1489  * returns true if there are pending messages in a queue, false if there aren't
1490  */
1491 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1492 {
1493 	u16 ntu;
1494 
1495 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1496 	return cq->rq.next_to_clean != ntu;
1497 }
1498 
1499 /**
1500  * ice_clean_adminq_subtask - clean the AdminQ rings
1501  * @pf: board private structure
1502  */
1503 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1504 {
1505 	struct ice_hw *hw = &pf->hw;
1506 
1507 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1508 		return;
1509 
1510 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1511 		return;
1512 
1513 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1514 
1515 	/* There might be a situation where new messages arrive to a control
1516 	 * queue between processing the last message and clearing the
1517 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1518 	 * ice_ctrlq_pending) and process new messages if any.
1519 	 */
1520 	if (ice_ctrlq_pending(hw, &hw->adminq))
1521 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1522 
1523 	ice_flush(hw);
1524 }
1525 
1526 /**
1527  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1528  * @pf: board private structure
1529  */
1530 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1531 {
1532 	struct ice_hw *hw = &pf->hw;
1533 
1534 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1535 		return;
1536 
1537 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1538 		return;
1539 
1540 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1541 
1542 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1543 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1544 
1545 	ice_flush(hw);
1546 }
1547 
1548 /**
1549  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1550  * @pf: board private structure
1551  */
1552 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1553 {
1554 	struct ice_hw *hw = &pf->hw;
1555 
1556 	/* Nothing to do here if sideband queue is not supported */
1557 	if (!ice_is_sbq_supported(hw)) {
1558 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1559 		return;
1560 	}
1561 
1562 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1563 		return;
1564 
1565 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1566 		return;
1567 
1568 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1569 
1570 	if (ice_ctrlq_pending(hw, &hw->sbq))
1571 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1572 
1573 	ice_flush(hw);
1574 }
1575 
1576 /**
1577  * ice_service_task_schedule - schedule the service task to wake up
1578  * @pf: board private structure
1579  *
1580  * If not already scheduled, this puts the task into the work queue.
1581  */
1582 void ice_service_task_schedule(struct ice_pf *pf)
1583 {
1584 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1585 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1586 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1587 		queue_work(ice_wq, &pf->serv_task);
1588 }
1589 
1590 /**
1591  * ice_service_task_complete - finish up the service task
1592  * @pf: board private structure
1593  */
1594 static void ice_service_task_complete(struct ice_pf *pf)
1595 {
1596 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1597 
1598 	/* force memory (pf->state) to sync before next service task */
1599 	smp_mb__before_atomic();
1600 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1601 }
1602 
1603 /**
1604  * ice_service_task_stop - stop service task and cancel works
1605  * @pf: board private structure
1606  *
1607  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1608  * 1 otherwise.
1609  */
1610 static int ice_service_task_stop(struct ice_pf *pf)
1611 {
1612 	int ret;
1613 
1614 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1615 
1616 	if (pf->serv_tmr.function)
1617 		del_timer_sync(&pf->serv_tmr);
1618 	if (pf->serv_task.func)
1619 		cancel_work_sync(&pf->serv_task);
1620 
1621 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1622 	return ret;
1623 }
1624 
1625 /**
1626  * ice_service_task_restart - restart service task and schedule works
1627  * @pf: board private structure
1628  *
1629  * This function is needed for suspend and resume works (e.g WoL scenario)
1630  */
1631 static void ice_service_task_restart(struct ice_pf *pf)
1632 {
1633 	clear_bit(ICE_SERVICE_DIS, pf->state);
1634 	ice_service_task_schedule(pf);
1635 }
1636 
1637 /**
1638  * ice_service_timer - timer callback to schedule service task
1639  * @t: pointer to timer_list
1640  */
1641 static void ice_service_timer(struct timer_list *t)
1642 {
1643 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1644 
1645 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1646 	ice_service_task_schedule(pf);
1647 }
1648 
1649 /**
1650  * ice_handle_mdd_event - handle malicious driver detect event
1651  * @pf: pointer to the PF structure
1652  *
1653  * Called from service task. OICR interrupt handler indicates MDD event.
1654  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1655  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1656  * disable the queue, the PF can be configured to reset the VF using ethtool
1657  * private flag mdd-auto-reset-vf.
1658  */
1659 static void ice_handle_mdd_event(struct ice_pf *pf)
1660 {
1661 	struct device *dev = ice_pf_to_dev(pf);
1662 	struct ice_hw *hw = &pf->hw;
1663 	unsigned int i;
1664 	u32 reg;
1665 
1666 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1667 		/* Since the VF MDD event logging is rate limited, check if
1668 		 * there are pending MDD events.
1669 		 */
1670 		ice_print_vfs_mdd_events(pf);
1671 		return;
1672 	}
1673 
1674 	/* find what triggered an MDD event */
1675 	reg = rd32(hw, GL_MDET_TX_PQM);
1676 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1677 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1678 				GL_MDET_TX_PQM_PF_NUM_S;
1679 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1680 				GL_MDET_TX_PQM_VF_NUM_S;
1681 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1682 				GL_MDET_TX_PQM_MAL_TYPE_S;
1683 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1684 				GL_MDET_TX_PQM_QNUM_S);
1685 
1686 		if (netif_msg_tx_err(pf))
1687 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1688 				 event, queue, pf_num, vf_num);
1689 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1690 	}
1691 
1692 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1693 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1694 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1695 				GL_MDET_TX_TCLAN_PF_NUM_S;
1696 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1697 				GL_MDET_TX_TCLAN_VF_NUM_S;
1698 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1699 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1700 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1701 				GL_MDET_TX_TCLAN_QNUM_S);
1702 
1703 		if (netif_msg_tx_err(pf))
1704 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1705 				 event, queue, pf_num, vf_num);
1706 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1707 	}
1708 
1709 	reg = rd32(hw, GL_MDET_RX);
1710 	if (reg & GL_MDET_RX_VALID_M) {
1711 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1712 				GL_MDET_RX_PF_NUM_S;
1713 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1714 				GL_MDET_RX_VF_NUM_S;
1715 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1716 				GL_MDET_RX_MAL_TYPE_S;
1717 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1718 				GL_MDET_RX_QNUM_S);
1719 
1720 		if (netif_msg_rx_err(pf))
1721 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1722 				 event, queue, pf_num, vf_num);
1723 		wr32(hw, GL_MDET_RX, 0xffffffff);
1724 	}
1725 
1726 	/* check to see if this PF caused an MDD event */
1727 	reg = rd32(hw, PF_MDET_TX_PQM);
1728 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1729 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1730 		if (netif_msg_tx_err(pf))
1731 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1732 	}
1733 
1734 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1735 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1736 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1737 		if (netif_msg_tx_err(pf))
1738 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1739 	}
1740 
1741 	reg = rd32(hw, PF_MDET_RX);
1742 	if (reg & PF_MDET_RX_VALID_M) {
1743 		wr32(hw, PF_MDET_RX, 0xFFFF);
1744 		if (netif_msg_rx_err(pf))
1745 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1746 	}
1747 
1748 	/* Check to see if one of the VFs caused an MDD event, and then
1749 	 * increment counters and set print pending
1750 	 */
1751 	ice_for_each_vf(pf, i) {
1752 		struct ice_vf *vf = &pf->vf[i];
1753 
1754 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1755 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1756 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1757 			vf->mdd_tx_events.count++;
1758 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1759 			if (netif_msg_tx_err(pf))
1760 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1761 					 i);
1762 		}
1763 
1764 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1765 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1766 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1767 			vf->mdd_tx_events.count++;
1768 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1769 			if (netif_msg_tx_err(pf))
1770 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1771 					 i);
1772 		}
1773 
1774 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1775 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1776 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1777 			vf->mdd_tx_events.count++;
1778 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1779 			if (netif_msg_tx_err(pf))
1780 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1781 					 i);
1782 		}
1783 
1784 		reg = rd32(hw, VP_MDET_RX(i));
1785 		if (reg & VP_MDET_RX_VALID_M) {
1786 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1787 			vf->mdd_rx_events.count++;
1788 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1789 			if (netif_msg_rx_err(pf))
1790 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1791 					 i);
1792 
1793 			/* Since the queue is disabled on VF Rx MDD events, the
1794 			 * PF can be configured to reset the VF through ethtool
1795 			 * private flag mdd-auto-reset-vf.
1796 			 */
1797 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1798 				/* VF MDD event counters will be cleared by
1799 				 * reset, so print the event prior to reset.
1800 				 */
1801 				ice_print_vf_rx_mdd_event(vf);
1802 				mutex_lock(&pf->vf[i].cfg_lock);
1803 				ice_reset_vf(&pf->vf[i], false);
1804 				mutex_unlock(&pf->vf[i].cfg_lock);
1805 			}
1806 		}
1807 	}
1808 
1809 	ice_print_vfs_mdd_events(pf);
1810 }
1811 
1812 /**
1813  * ice_force_phys_link_state - Force the physical link state
1814  * @vsi: VSI to force the physical link state to up/down
1815  * @link_up: true/false indicates to set the physical link to up/down
1816  *
1817  * Force the physical link state by getting the current PHY capabilities from
1818  * hardware and setting the PHY config based on the determined capabilities. If
1819  * link changes a link event will be triggered because both the Enable Automatic
1820  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1821  *
1822  * Returns 0 on success, negative on failure
1823  */
1824 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1825 {
1826 	struct ice_aqc_get_phy_caps_data *pcaps;
1827 	struct ice_aqc_set_phy_cfg_data *cfg;
1828 	struct ice_port_info *pi;
1829 	struct device *dev;
1830 	int retcode;
1831 
1832 	if (!vsi || !vsi->port_info || !vsi->back)
1833 		return -EINVAL;
1834 	if (vsi->type != ICE_VSI_PF)
1835 		return 0;
1836 
1837 	dev = ice_pf_to_dev(vsi->back);
1838 
1839 	pi = vsi->port_info;
1840 
1841 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1842 	if (!pcaps)
1843 		return -ENOMEM;
1844 
1845 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1846 				      NULL);
1847 	if (retcode) {
1848 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1849 			vsi->vsi_num, retcode);
1850 		retcode = -EIO;
1851 		goto out;
1852 	}
1853 
1854 	/* No change in link */
1855 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1856 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1857 		goto out;
1858 
1859 	/* Use the current user PHY configuration. The current user PHY
1860 	 * configuration is initialized during probe from PHY capabilities
1861 	 * software mode, and updated on set PHY configuration.
1862 	 */
1863 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1864 	if (!cfg) {
1865 		retcode = -ENOMEM;
1866 		goto out;
1867 	}
1868 
1869 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1870 	if (link_up)
1871 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1872 	else
1873 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1874 
1875 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1876 	if (retcode) {
1877 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1878 			vsi->vsi_num, retcode);
1879 		retcode = -EIO;
1880 	}
1881 
1882 	kfree(cfg);
1883 out:
1884 	kfree(pcaps);
1885 	return retcode;
1886 }
1887 
1888 /**
1889  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1890  * @pi: port info structure
1891  *
1892  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1893  */
1894 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1895 {
1896 	struct ice_aqc_get_phy_caps_data *pcaps;
1897 	struct ice_pf *pf = pi->hw->back;
1898 	int err;
1899 
1900 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1901 	if (!pcaps)
1902 		return -ENOMEM;
1903 
1904 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1905 				  pcaps, NULL);
1906 
1907 	if (err) {
1908 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1909 		goto out;
1910 	}
1911 
1912 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1913 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1914 
1915 out:
1916 	kfree(pcaps);
1917 	return err;
1918 }
1919 
1920 /**
1921  * ice_init_link_dflt_override - Initialize link default override
1922  * @pi: port info structure
1923  *
1924  * Initialize link default override and PHY total port shutdown during probe
1925  */
1926 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1927 {
1928 	struct ice_link_default_override_tlv *ldo;
1929 	struct ice_pf *pf = pi->hw->back;
1930 
1931 	ldo = &pf->link_dflt_override;
1932 	if (ice_get_link_default_override(ldo, pi))
1933 		return;
1934 
1935 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1936 		return;
1937 
1938 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1939 	 * ethtool private flag) for ports with Port Disable bit set.
1940 	 */
1941 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1942 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1943 }
1944 
1945 /**
1946  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1947  * @pi: port info structure
1948  *
1949  * If default override is enabled, initialize the user PHY cfg speed and FEC
1950  * settings using the default override mask from the NVM.
1951  *
1952  * The PHY should only be configured with the default override settings the
1953  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1954  * is used to indicate that the user PHY cfg default override is initialized
1955  * and the PHY has not been configured with the default override settings. The
1956  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1957  * configured.
1958  *
1959  * This function should be called only if the FW doesn't support default
1960  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1961  */
1962 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1963 {
1964 	struct ice_link_default_override_tlv *ldo;
1965 	struct ice_aqc_set_phy_cfg_data *cfg;
1966 	struct ice_phy_info *phy = &pi->phy;
1967 	struct ice_pf *pf = pi->hw->back;
1968 
1969 	ldo = &pf->link_dflt_override;
1970 
1971 	/* If link default override is enabled, use to mask NVM PHY capabilities
1972 	 * for speed and FEC default configuration.
1973 	 */
1974 	cfg = &phy->curr_user_phy_cfg;
1975 
1976 	if (ldo->phy_type_low || ldo->phy_type_high) {
1977 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1978 				    cpu_to_le64(ldo->phy_type_low);
1979 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1980 				     cpu_to_le64(ldo->phy_type_high);
1981 	}
1982 	cfg->link_fec_opt = ldo->fec_options;
1983 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1984 
1985 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1986 }
1987 
1988 /**
1989  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1990  * @pi: port info structure
1991  *
1992  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1993  * mode to default. The PHY defaults are from get PHY capabilities topology
1994  * with media so call when media is first available. An error is returned if
1995  * called when media is not available. The PHY initialization completed state is
1996  * set here.
1997  *
1998  * These configurations are used when setting PHY
1999  * configuration. The user PHY configuration is updated on set PHY
2000  * configuration. Returns 0 on success, negative on failure
2001  */
2002 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2003 {
2004 	struct ice_aqc_get_phy_caps_data *pcaps;
2005 	struct ice_phy_info *phy = &pi->phy;
2006 	struct ice_pf *pf = pi->hw->back;
2007 	int err;
2008 
2009 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2010 		return -EIO;
2011 
2012 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2013 	if (!pcaps)
2014 		return -ENOMEM;
2015 
2016 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2017 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2018 					  pcaps, NULL);
2019 	else
2020 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2021 					  pcaps, NULL);
2022 	if (err) {
2023 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2024 		goto err_out;
2025 	}
2026 
2027 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2028 
2029 	/* check if lenient mode is supported and enabled */
2030 	if (ice_fw_supports_link_override(pi->hw) &&
2031 	    !(pcaps->module_compliance_enforcement &
2032 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2033 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2034 
2035 		/* if the FW supports default PHY configuration mode, then the driver
2036 		 * does not have to apply link override settings. If not,
2037 		 * initialize user PHY configuration with link override values
2038 		 */
2039 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2040 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2041 			ice_init_phy_cfg_dflt_override(pi);
2042 			goto out;
2043 		}
2044 	}
2045 
2046 	/* if link default override is not enabled, set user flow control and
2047 	 * FEC settings based on what get_phy_caps returned
2048 	 */
2049 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2050 						      pcaps->link_fec_options);
2051 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2052 
2053 out:
2054 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2055 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2056 err_out:
2057 	kfree(pcaps);
2058 	return err;
2059 }
2060 
2061 /**
2062  * ice_configure_phy - configure PHY
2063  * @vsi: VSI of PHY
2064  *
2065  * Set the PHY configuration. If the current PHY configuration is the same as
2066  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2067  * configure the based get PHY capabilities for topology with media.
2068  */
2069 static int ice_configure_phy(struct ice_vsi *vsi)
2070 {
2071 	struct device *dev = ice_pf_to_dev(vsi->back);
2072 	struct ice_port_info *pi = vsi->port_info;
2073 	struct ice_aqc_get_phy_caps_data *pcaps;
2074 	struct ice_aqc_set_phy_cfg_data *cfg;
2075 	struct ice_phy_info *phy = &pi->phy;
2076 	struct ice_pf *pf = vsi->back;
2077 	int err;
2078 
2079 	/* Ensure we have media as we cannot configure a medialess port */
2080 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2081 		return -EPERM;
2082 
2083 	ice_print_topo_conflict(vsi);
2084 
2085 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2086 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2087 		return -EPERM;
2088 
2089 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2090 		return ice_force_phys_link_state(vsi, true);
2091 
2092 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2093 	if (!pcaps)
2094 		return -ENOMEM;
2095 
2096 	/* Get current PHY config */
2097 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2098 				  NULL);
2099 	if (err) {
2100 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2101 			vsi->vsi_num, err);
2102 		goto done;
2103 	}
2104 
2105 	/* If PHY enable link is configured and configuration has not changed,
2106 	 * there's nothing to do
2107 	 */
2108 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2109 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2110 		goto done;
2111 
2112 	/* Use PHY topology as baseline for configuration */
2113 	memset(pcaps, 0, sizeof(*pcaps));
2114 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2115 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2116 					  pcaps, NULL);
2117 	else
2118 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2119 					  pcaps, NULL);
2120 	if (err) {
2121 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2122 			vsi->vsi_num, err);
2123 		goto done;
2124 	}
2125 
2126 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2127 	if (!cfg) {
2128 		err = -ENOMEM;
2129 		goto done;
2130 	}
2131 
2132 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2133 
2134 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2135 	 * ice_init_phy_user_cfg_ldo.
2136 	 */
2137 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2138 			       vsi->back->state)) {
2139 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2140 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2141 	} else {
2142 		u64 phy_low = 0, phy_high = 0;
2143 
2144 		ice_update_phy_type(&phy_low, &phy_high,
2145 				    pi->phy.curr_user_speed_req);
2146 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2147 		cfg->phy_type_high = pcaps->phy_type_high &
2148 				     cpu_to_le64(phy_high);
2149 	}
2150 
2151 	/* Can't provide what was requested; use PHY capabilities */
2152 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2153 		cfg->phy_type_low = pcaps->phy_type_low;
2154 		cfg->phy_type_high = pcaps->phy_type_high;
2155 	}
2156 
2157 	/* FEC */
2158 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2159 
2160 	/* Can't provide what was requested; use PHY capabilities */
2161 	if (cfg->link_fec_opt !=
2162 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2163 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2164 		cfg->link_fec_opt = pcaps->link_fec_options;
2165 	}
2166 
2167 	/* Flow Control - always supported; no need to check against
2168 	 * capabilities
2169 	 */
2170 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2171 
2172 	/* Enable link and link update */
2173 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2174 
2175 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2176 	if (err)
2177 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2178 			vsi->vsi_num, err);
2179 
2180 	kfree(cfg);
2181 done:
2182 	kfree(pcaps);
2183 	return err;
2184 }
2185 
2186 /**
2187  * ice_check_media_subtask - Check for media
2188  * @pf: pointer to PF struct
2189  *
2190  * If media is available, then initialize PHY user configuration if it is not
2191  * been, and configure the PHY if the interface is up.
2192  */
2193 static void ice_check_media_subtask(struct ice_pf *pf)
2194 {
2195 	struct ice_port_info *pi;
2196 	struct ice_vsi *vsi;
2197 	int err;
2198 
2199 	/* No need to check for media if it's already present */
2200 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2201 		return;
2202 
2203 	vsi = ice_get_main_vsi(pf);
2204 	if (!vsi)
2205 		return;
2206 
2207 	/* Refresh link info and check if media is present */
2208 	pi = vsi->port_info;
2209 	err = ice_update_link_info(pi);
2210 	if (err)
2211 		return;
2212 
2213 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2214 
2215 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2216 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2217 			ice_init_phy_user_cfg(pi);
2218 
2219 		/* PHY settings are reset on media insertion, reconfigure
2220 		 * PHY to preserve settings.
2221 		 */
2222 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2223 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2224 			return;
2225 
2226 		err = ice_configure_phy(vsi);
2227 		if (!err)
2228 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2229 
2230 		/* A Link Status Event will be generated; the event handler
2231 		 * will complete bringing the interface up
2232 		 */
2233 	}
2234 }
2235 
2236 /**
2237  * ice_service_task - manage and run subtasks
2238  * @work: pointer to work_struct contained by the PF struct
2239  */
2240 static void ice_service_task(struct work_struct *work)
2241 {
2242 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2243 	unsigned long start_time = jiffies;
2244 
2245 	/* subtasks */
2246 
2247 	/* process reset requests first */
2248 	ice_reset_subtask(pf);
2249 
2250 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2251 	if (ice_is_reset_in_progress(pf->state) ||
2252 	    test_bit(ICE_SUSPENDED, pf->state) ||
2253 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2254 		ice_service_task_complete(pf);
2255 		return;
2256 	}
2257 
2258 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2259 		/* Plug aux device per request */
2260 		ice_plug_aux_dev(pf);
2261 
2262 		/* Mark plugging as done but check whether unplug was
2263 		 * requested during ice_plug_aux_dev() call
2264 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2265 		 * plug aux device.
2266 		 */
2267 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2268 			ice_unplug_aux_dev(pf);
2269 	}
2270 
2271 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2272 		struct iidc_event *event;
2273 
2274 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2275 		if (event) {
2276 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2277 			ice_send_event_to_aux(pf, event);
2278 			kfree(event);
2279 		}
2280 	}
2281 
2282 	ice_clean_adminq_subtask(pf);
2283 	ice_check_media_subtask(pf);
2284 	ice_check_for_hang_subtask(pf);
2285 	ice_sync_fltr_subtask(pf);
2286 	ice_handle_mdd_event(pf);
2287 	ice_watchdog_subtask(pf);
2288 
2289 	if (ice_is_safe_mode(pf)) {
2290 		ice_service_task_complete(pf);
2291 		return;
2292 	}
2293 
2294 	ice_process_vflr_event(pf);
2295 	ice_clean_mailboxq_subtask(pf);
2296 	ice_clean_sbq_subtask(pf);
2297 	ice_sync_arfs_fltrs(pf);
2298 	ice_flush_fdir_ctx(pf);
2299 
2300 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2301 	ice_service_task_complete(pf);
2302 
2303 	/* If the tasks have taken longer than one service timer period
2304 	 * or there is more work to be done, reset the service timer to
2305 	 * schedule the service task now.
2306 	 */
2307 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2308 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2309 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2310 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2311 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2312 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2313 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2314 		mod_timer(&pf->serv_tmr, jiffies);
2315 }
2316 
2317 /**
2318  * ice_set_ctrlq_len - helper function to set controlq length
2319  * @hw: pointer to the HW instance
2320  */
2321 static void ice_set_ctrlq_len(struct ice_hw *hw)
2322 {
2323 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2324 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2325 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2326 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2327 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2328 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2329 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2330 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2331 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2332 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2333 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2334 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2335 }
2336 
2337 /**
2338  * ice_schedule_reset - schedule a reset
2339  * @pf: board private structure
2340  * @reset: reset being requested
2341  */
2342 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2343 {
2344 	struct device *dev = ice_pf_to_dev(pf);
2345 
2346 	/* bail out if earlier reset has failed */
2347 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2348 		dev_dbg(dev, "earlier reset has failed\n");
2349 		return -EIO;
2350 	}
2351 	/* bail if reset/recovery already in progress */
2352 	if (ice_is_reset_in_progress(pf->state)) {
2353 		dev_dbg(dev, "Reset already in progress\n");
2354 		return -EBUSY;
2355 	}
2356 
2357 	ice_unplug_aux_dev(pf);
2358 
2359 	switch (reset) {
2360 	case ICE_RESET_PFR:
2361 		set_bit(ICE_PFR_REQ, pf->state);
2362 		break;
2363 	case ICE_RESET_CORER:
2364 		set_bit(ICE_CORER_REQ, pf->state);
2365 		break;
2366 	case ICE_RESET_GLOBR:
2367 		set_bit(ICE_GLOBR_REQ, pf->state);
2368 		break;
2369 	default:
2370 		return -EINVAL;
2371 	}
2372 
2373 	ice_service_task_schedule(pf);
2374 	return 0;
2375 }
2376 
2377 /**
2378  * ice_irq_affinity_notify - Callback for affinity changes
2379  * @notify: context as to what irq was changed
2380  * @mask: the new affinity mask
2381  *
2382  * This is a callback function used by the irq_set_affinity_notifier function
2383  * so that we may register to receive changes to the irq affinity masks.
2384  */
2385 static void
2386 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2387 			const cpumask_t *mask)
2388 {
2389 	struct ice_q_vector *q_vector =
2390 		container_of(notify, struct ice_q_vector, affinity_notify);
2391 
2392 	cpumask_copy(&q_vector->affinity_mask, mask);
2393 }
2394 
2395 /**
2396  * ice_irq_affinity_release - Callback for affinity notifier release
2397  * @ref: internal core kernel usage
2398  *
2399  * This is a callback function used by the irq_set_affinity_notifier function
2400  * to inform the current notification subscriber that they will no longer
2401  * receive notifications.
2402  */
2403 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2404 
2405 /**
2406  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2407  * @vsi: the VSI being configured
2408  */
2409 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2410 {
2411 	struct ice_hw *hw = &vsi->back->hw;
2412 	int i;
2413 
2414 	ice_for_each_q_vector(vsi, i)
2415 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2416 
2417 	ice_flush(hw);
2418 	return 0;
2419 }
2420 
2421 /**
2422  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2423  * @vsi: the VSI being configured
2424  * @basename: name for the vector
2425  */
2426 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2427 {
2428 	int q_vectors = vsi->num_q_vectors;
2429 	struct ice_pf *pf = vsi->back;
2430 	int base = vsi->base_vector;
2431 	struct device *dev;
2432 	int rx_int_idx = 0;
2433 	int tx_int_idx = 0;
2434 	int vector, err;
2435 	int irq_num;
2436 
2437 	dev = ice_pf_to_dev(pf);
2438 	for (vector = 0; vector < q_vectors; vector++) {
2439 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2440 
2441 		irq_num = pf->msix_entries[base + vector].vector;
2442 
2443 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2444 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2445 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2446 			tx_int_idx++;
2447 		} else if (q_vector->rx.rx_ring) {
2448 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2449 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2450 		} else if (q_vector->tx.tx_ring) {
2451 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2452 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2453 		} else {
2454 			/* skip this unused q_vector */
2455 			continue;
2456 		}
2457 		if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2458 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2459 					       IRQF_SHARED, q_vector->name,
2460 					       q_vector);
2461 		else
2462 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2463 					       0, q_vector->name, q_vector);
2464 		if (err) {
2465 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2466 				   err);
2467 			goto free_q_irqs;
2468 		}
2469 
2470 		/* register for affinity change notifications */
2471 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2472 			struct irq_affinity_notify *affinity_notify;
2473 
2474 			affinity_notify = &q_vector->affinity_notify;
2475 			affinity_notify->notify = ice_irq_affinity_notify;
2476 			affinity_notify->release = ice_irq_affinity_release;
2477 			irq_set_affinity_notifier(irq_num, affinity_notify);
2478 		}
2479 
2480 		/* assign the mask for this irq */
2481 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2482 	}
2483 
2484 	vsi->irqs_ready = true;
2485 	return 0;
2486 
2487 free_q_irqs:
2488 	while (vector) {
2489 		vector--;
2490 		irq_num = pf->msix_entries[base + vector].vector;
2491 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2492 			irq_set_affinity_notifier(irq_num, NULL);
2493 		irq_set_affinity_hint(irq_num, NULL);
2494 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2495 	}
2496 	return err;
2497 }
2498 
2499 /**
2500  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2501  * @vsi: VSI to setup Tx rings used by XDP
2502  *
2503  * Return 0 on success and negative value on error
2504  */
2505 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2506 {
2507 	struct device *dev = ice_pf_to_dev(vsi->back);
2508 	struct ice_tx_desc *tx_desc;
2509 	int i, j;
2510 
2511 	ice_for_each_xdp_txq(vsi, i) {
2512 		u16 xdp_q_idx = vsi->alloc_txq + i;
2513 		struct ice_tx_ring *xdp_ring;
2514 
2515 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2516 
2517 		if (!xdp_ring)
2518 			goto free_xdp_rings;
2519 
2520 		xdp_ring->q_index = xdp_q_idx;
2521 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2522 		xdp_ring->vsi = vsi;
2523 		xdp_ring->netdev = NULL;
2524 		xdp_ring->next_dd = ICE_TX_THRESH - 1;
2525 		xdp_ring->next_rs = ICE_TX_THRESH - 1;
2526 		xdp_ring->dev = dev;
2527 		xdp_ring->count = vsi->num_tx_desc;
2528 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2529 		if (ice_setup_tx_ring(xdp_ring))
2530 			goto free_xdp_rings;
2531 		ice_set_ring_xdp(xdp_ring);
2532 		xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
2533 		spin_lock_init(&xdp_ring->tx_lock);
2534 		for (j = 0; j < xdp_ring->count; j++) {
2535 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2536 			tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE);
2537 		}
2538 	}
2539 
2540 	ice_for_each_rxq(vsi, i) {
2541 		if (static_key_enabled(&ice_xdp_locking_key))
2542 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2543 		else
2544 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i];
2545 	}
2546 
2547 	return 0;
2548 
2549 free_xdp_rings:
2550 	for (; i >= 0; i--)
2551 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2552 			ice_free_tx_ring(vsi->xdp_rings[i]);
2553 	return -ENOMEM;
2554 }
2555 
2556 /**
2557  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2558  * @vsi: VSI to set the bpf prog on
2559  * @prog: the bpf prog pointer
2560  */
2561 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2562 {
2563 	struct bpf_prog *old_prog;
2564 	int i;
2565 
2566 	old_prog = xchg(&vsi->xdp_prog, prog);
2567 	if (old_prog)
2568 		bpf_prog_put(old_prog);
2569 
2570 	ice_for_each_rxq(vsi, i)
2571 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2572 }
2573 
2574 /**
2575  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2576  * @vsi: VSI to bring up Tx rings used by XDP
2577  * @prog: bpf program that will be assigned to VSI
2578  *
2579  * Return 0 on success and negative value on error
2580  */
2581 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2582 {
2583 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2584 	int xdp_rings_rem = vsi->num_xdp_txq;
2585 	struct ice_pf *pf = vsi->back;
2586 	struct ice_qs_cfg xdp_qs_cfg = {
2587 		.qs_mutex = &pf->avail_q_mutex,
2588 		.pf_map = pf->avail_txqs,
2589 		.pf_map_size = pf->max_pf_txqs,
2590 		.q_count = vsi->num_xdp_txq,
2591 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2592 		.vsi_map = vsi->txq_map,
2593 		.vsi_map_offset = vsi->alloc_txq,
2594 		.mapping_mode = ICE_VSI_MAP_CONTIG
2595 	};
2596 	struct device *dev;
2597 	int i, v_idx;
2598 	int status;
2599 
2600 	dev = ice_pf_to_dev(pf);
2601 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2602 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2603 	if (!vsi->xdp_rings)
2604 		return -ENOMEM;
2605 
2606 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2607 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2608 		goto err_map_xdp;
2609 
2610 	if (static_key_enabled(&ice_xdp_locking_key))
2611 		netdev_warn(vsi->netdev,
2612 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2613 
2614 	if (ice_xdp_alloc_setup_rings(vsi))
2615 		goto clear_xdp_rings;
2616 
2617 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2618 	ice_for_each_q_vector(vsi, v_idx) {
2619 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2620 		int xdp_rings_per_v, q_id, q_base;
2621 
2622 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2623 					       vsi->num_q_vectors - v_idx);
2624 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2625 
2626 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2627 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2628 
2629 			xdp_ring->q_vector = q_vector;
2630 			xdp_ring->next = q_vector->tx.tx_ring;
2631 			q_vector->tx.tx_ring = xdp_ring;
2632 		}
2633 		xdp_rings_rem -= xdp_rings_per_v;
2634 	}
2635 
2636 	/* omit the scheduler update if in reset path; XDP queues will be
2637 	 * taken into account at the end of ice_vsi_rebuild, where
2638 	 * ice_cfg_vsi_lan is being called
2639 	 */
2640 	if (ice_is_reset_in_progress(pf->state))
2641 		return 0;
2642 
2643 	/* tell the Tx scheduler that right now we have
2644 	 * additional queues
2645 	 */
2646 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2647 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2648 
2649 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2650 				 max_txqs);
2651 	if (status) {
2652 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2653 			status);
2654 		goto clear_xdp_rings;
2655 	}
2656 
2657 	/* assign the prog only when it's not already present on VSI;
2658 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2659 	 * VSI rebuild that happens under ethtool -L can expose us to
2660 	 * the bpf_prog refcount issues as we would be swapping same
2661 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2662 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2663 	 * this is not harmful as dev_xdp_install bumps the refcount
2664 	 * before calling the op exposed by the driver;
2665 	 */
2666 	if (!ice_is_xdp_ena_vsi(vsi))
2667 		ice_vsi_assign_bpf_prog(vsi, prog);
2668 
2669 	return 0;
2670 clear_xdp_rings:
2671 	ice_for_each_xdp_txq(vsi, i)
2672 		if (vsi->xdp_rings[i]) {
2673 			kfree_rcu(vsi->xdp_rings[i], rcu);
2674 			vsi->xdp_rings[i] = NULL;
2675 		}
2676 
2677 err_map_xdp:
2678 	mutex_lock(&pf->avail_q_mutex);
2679 	ice_for_each_xdp_txq(vsi, i) {
2680 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2681 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2682 	}
2683 	mutex_unlock(&pf->avail_q_mutex);
2684 
2685 	devm_kfree(dev, vsi->xdp_rings);
2686 	return -ENOMEM;
2687 }
2688 
2689 /**
2690  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2691  * @vsi: VSI to remove XDP rings
2692  *
2693  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2694  * resources
2695  */
2696 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2697 {
2698 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2699 	struct ice_pf *pf = vsi->back;
2700 	int i, v_idx;
2701 
2702 	/* q_vectors are freed in reset path so there's no point in detaching
2703 	 * rings; in case of rebuild being triggered not from reset bits
2704 	 * in pf->state won't be set, so additionally check first q_vector
2705 	 * against NULL
2706 	 */
2707 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2708 		goto free_qmap;
2709 
2710 	ice_for_each_q_vector(vsi, v_idx) {
2711 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2712 		struct ice_tx_ring *ring;
2713 
2714 		ice_for_each_tx_ring(ring, q_vector->tx)
2715 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2716 				break;
2717 
2718 		/* restore the value of last node prior to XDP setup */
2719 		q_vector->tx.tx_ring = ring;
2720 	}
2721 
2722 free_qmap:
2723 	mutex_lock(&pf->avail_q_mutex);
2724 	ice_for_each_xdp_txq(vsi, i) {
2725 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2726 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2727 	}
2728 	mutex_unlock(&pf->avail_q_mutex);
2729 
2730 	ice_for_each_xdp_txq(vsi, i)
2731 		if (vsi->xdp_rings[i]) {
2732 			if (vsi->xdp_rings[i]->desc)
2733 				ice_free_tx_ring(vsi->xdp_rings[i]);
2734 			kfree_rcu(vsi->xdp_rings[i], rcu);
2735 			vsi->xdp_rings[i] = NULL;
2736 		}
2737 
2738 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2739 	vsi->xdp_rings = NULL;
2740 
2741 	if (static_key_enabled(&ice_xdp_locking_key))
2742 		static_branch_dec(&ice_xdp_locking_key);
2743 
2744 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2745 		return 0;
2746 
2747 	ice_vsi_assign_bpf_prog(vsi, NULL);
2748 
2749 	/* notify Tx scheduler that we destroyed XDP queues and bring
2750 	 * back the old number of child nodes
2751 	 */
2752 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2753 		max_txqs[i] = vsi->num_txq;
2754 
2755 	/* change number of XDP Tx queues to 0 */
2756 	vsi->num_xdp_txq = 0;
2757 
2758 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2759 			       max_txqs);
2760 }
2761 
2762 /**
2763  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2764  * @vsi: VSI to schedule napi on
2765  */
2766 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2767 {
2768 	int i;
2769 
2770 	ice_for_each_rxq(vsi, i) {
2771 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2772 
2773 		if (rx_ring->xsk_pool)
2774 			napi_schedule(&rx_ring->q_vector->napi);
2775 	}
2776 }
2777 
2778 /**
2779  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2780  * @vsi: VSI to determine the count of XDP Tx qs
2781  *
2782  * returns 0 if Tx qs count is higher than at least half of CPU count,
2783  * -ENOMEM otherwise
2784  */
2785 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2786 {
2787 	u16 avail = ice_get_avail_txq_count(vsi->back);
2788 	u16 cpus = num_possible_cpus();
2789 
2790 	if (avail < cpus / 2)
2791 		return -ENOMEM;
2792 
2793 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2794 
2795 	if (vsi->num_xdp_txq < cpus)
2796 		static_branch_inc(&ice_xdp_locking_key);
2797 
2798 	return 0;
2799 }
2800 
2801 /**
2802  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2803  * @vsi: VSI to setup XDP for
2804  * @prog: XDP program
2805  * @extack: netlink extended ack
2806  */
2807 static int
2808 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2809 		   struct netlink_ext_ack *extack)
2810 {
2811 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2812 	bool if_running = netif_running(vsi->netdev);
2813 	int ret = 0, xdp_ring_err = 0;
2814 
2815 	if (frame_size > vsi->rx_buf_len) {
2816 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2817 		return -EOPNOTSUPP;
2818 	}
2819 
2820 	/* need to stop netdev while setting up the program for Rx rings */
2821 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2822 		ret = ice_down(vsi);
2823 		if (ret) {
2824 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2825 			return ret;
2826 		}
2827 	}
2828 
2829 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2830 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2831 		if (xdp_ring_err) {
2832 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2833 		} else {
2834 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2835 			if (xdp_ring_err)
2836 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2837 		}
2838 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2839 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2840 		if (xdp_ring_err)
2841 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2842 	} else {
2843 		/* safe to call even when prog == vsi->xdp_prog as
2844 		 * dev_xdp_install in net/core/dev.c incremented prog's
2845 		 * refcount so corresponding bpf_prog_put won't cause
2846 		 * underflow
2847 		 */
2848 		ice_vsi_assign_bpf_prog(vsi, prog);
2849 	}
2850 
2851 	if (if_running)
2852 		ret = ice_up(vsi);
2853 
2854 	if (!ret && prog)
2855 		ice_vsi_rx_napi_schedule(vsi);
2856 
2857 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2858 }
2859 
2860 /**
2861  * ice_xdp_safe_mode - XDP handler for safe mode
2862  * @dev: netdevice
2863  * @xdp: XDP command
2864  */
2865 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2866 			     struct netdev_bpf *xdp)
2867 {
2868 	NL_SET_ERR_MSG_MOD(xdp->extack,
2869 			   "Please provide working DDP firmware package in order to use XDP\n"
2870 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2871 	return -EOPNOTSUPP;
2872 }
2873 
2874 /**
2875  * ice_xdp - implements XDP handler
2876  * @dev: netdevice
2877  * @xdp: XDP command
2878  */
2879 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2880 {
2881 	struct ice_netdev_priv *np = netdev_priv(dev);
2882 	struct ice_vsi *vsi = np->vsi;
2883 
2884 	if (vsi->type != ICE_VSI_PF) {
2885 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2886 		return -EINVAL;
2887 	}
2888 
2889 	switch (xdp->command) {
2890 	case XDP_SETUP_PROG:
2891 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2892 	case XDP_SETUP_XSK_POOL:
2893 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2894 					  xdp->xsk.queue_id);
2895 	default:
2896 		return -EINVAL;
2897 	}
2898 }
2899 
2900 /**
2901  * ice_ena_misc_vector - enable the non-queue interrupts
2902  * @pf: board private structure
2903  */
2904 static void ice_ena_misc_vector(struct ice_pf *pf)
2905 {
2906 	struct ice_hw *hw = &pf->hw;
2907 	u32 val;
2908 
2909 	/* Disable anti-spoof detection interrupt to prevent spurious event
2910 	 * interrupts during a function reset. Anti-spoof functionally is
2911 	 * still supported.
2912 	 */
2913 	val = rd32(hw, GL_MDCK_TX_TDPU);
2914 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2915 	wr32(hw, GL_MDCK_TX_TDPU, val);
2916 
2917 	/* clear things first */
2918 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2919 	rd32(hw, PFINT_OICR);		/* read to clear */
2920 
2921 	val = (PFINT_OICR_ECC_ERR_M |
2922 	       PFINT_OICR_MAL_DETECT_M |
2923 	       PFINT_OICR_GRST_M |
2924 	       PFINT_OICR_PCI_EXCEPTION_M |
2925 	       PFINT_OICR_VFLR_M |
2926 	       PFINT_OICR_HMC_ERR_M |
2927 	       PFINT_OICR_PE_PUSH_M |
2928 	       PFINT_OICR_PE_CRITERR_M);
2929 
2930 	wr32(hw, PFINT_OICR_ENA, val);
2931 
2932 	/* SW_ITR_IDX = 0, but don't change INTENA */
2933 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2934 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2935 }
2936 
2937 /**
2938  * ice_misc_intr - misc interrupt handler
2939  * @irq: interrupt number
2940  * @data: pointer to a q_vector
2941  */
2942 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2943 {
2944 	struct ice_pf *pf = (struct ice_pf *)data;
2945 	struct ice_hw *hw = &pf->hw;
2946 	irqreturn_t ret = IRQ_NONE;
2947 	struct device *dev;
2948 	u32 oicr, ena_mask;
2949 
2950 	dev = ice_pf_to_dev(pf);
2951 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2952 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2953 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2954 
2955 	oicr = rd32(hw, PFINT_OICR);
2956 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2957 
2958 	if (oicr & PFINT_OICR_SWINT_M) {
2959 		ena_mask &= ~PFINT_OICR_SWINT_M;
2960 		pf->sw_int_count++;
2961 	}
2962 
2963 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2964 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2965 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2966 	}
2967 	if (oicr & PFINT_OICR_VFLR_M) {
2968 		/* disable any further VFLR event notifications */
2969 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2970 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2971 
2972 			reg &= ~PFINT_OICR_VFLR_M;
2973 			wr32(hw, PFINT_OICR_ENA, reg);
2974 		} else {
2975 			ena_mask &= ~PFINT_OICR_VFLR_M;
2976 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2977 		}
2978 	}
2979 
2980 	if (oicr & PFINT_OICR_GRST_M) {
2981 		u32 reset;
2982 
2983 		/* we have a reset warning */
2984 		ena_mask &= ~PFINT_OICR_GRST_M;
2985 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2986 			GLGEN_RSTAT_RESET_TYPE_S;
2987 
2988 		if (reset == ICE_RESET_CORER)
2989 			pf->corer_count++;
2990 		else if (reset == ICE_RESET_GLOBR)
2991 			pf->globr_count++;
2992 		else if (reset == ICE_RESET_EMPR)
2993 			pf->empr_count++;
2994 		else
2995 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2996 
2997 		/* If a reset cycle isn't already in progress, we set a bit in
2998 		 * pf->state so that the service task can start a reset/rebuild.
2999 		 */
3000 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3001 			if (reset == ICE_RESET_CORER)
3002 				set_bit(ICE_CORER_RECV, pf->state);
3003 			else if (reset == ICE_RESET_GLOBR)
3004 				set_bit(ICE_GLOBR_RECV, pf->state);
3005 			else
3006 				set_bit(ICE_EMPR_RECV, pf->state);
3007 
3008 			/* There are couple of different bits at play here.
3009 			 * hw->reset_ongoing indicates whether the hardware is
3010 			 * in reset. This is set to true when a reset interrupt
3011 			 * is received and set back to false after the driver
3012 			 * has determined that the hardware is out of reset.
3013 			 *
3014 			 * ICE_RESET_OICR_RECV in pf->state indicates
3015 			 * that a post reset rebuild is required before the
3016 			 * driver is operational again. This is set above.
3017 			 *
3018 			 * As this is the start of the reset/rebuild cycle, set
3019 			 * both to indicate that.
3020 			 */
3021 			hw->reset_ongoing = true;
3022 		}
3023 	}
3024 
3025 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3026 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3027 		ice_ptp_process_ts(pf);
3028 	}
3029 
3030 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3031 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3032 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3033 
3034 		/* Save EVENTs from GTSYN register */
3035 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3036 						     GLTSYN_STAT_EVENT1_M |
3037 						     GLTSYN_STAT_EVENT2_M);
3038 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3039 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3040 	}
3041 
3042 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3043 	if (oicr & ICE_AUX_CRIT_ERR) {
3044 		struct iidc_event *event;
3045 
3046 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3047 		event = kzalloc(sizeof(*event), GFP_ATOMIC);
3048 		if (event) {
3049 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
3050 			/* report the entire OICR value to AUX driver */
3051 			event->reg = oicr;
3052 			ice_send_event_to_aux(pf, event);
3053 			kfree(event);
3054 		}
3055 	}
3056 
3057 	/* Report any remaining unexpected interrupts */
3058 	oicr &= ena_mask;
3059 	if (oicr) {
3060 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3061 		/* If a critical error is pending there is no choice but to
3062 		 * reset the device.
3063 		 */
3064 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3065 			    PFINT_OICR_ECC_ERR_M)) {
3066 			set_bit(ICE_PFR_REQ, pf->state);
3067 			ice_service_task_schedule(pf);
3068 		}
3069 	}
3070 	ret = IRQ_HANDLED;
3071 
3072 	ice_service_task_schedule(pf);
3073 	ice_irq_dynamic_ena(hw, NULL, NULL);
3074 
3075 	return ret;
3076 }
3077 
3078 /**
3079  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3080  * @hw: pointer to HW structure
3081  */
3082 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3083 {
3084 	/* disable Admin queue Interrupt causes */
3085 	wr32(hw, PFINT_FW_CTL,
3086 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3087 
3088 	/* disable Mailbox queue Interrupt causes */
3089 	wr32(hw, PFINT_MBX_CTL,
3090 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3091 
3092 	wr32(hw, PFINT_SB_CTL,
3093 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3094 
3095 	/* disable Control queue Interrupt causes */
3096 	wr32(hw, PFINT_OICR_CTL,
3097 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3098 
3099 	ice_flush(hw);
3100 }
3101 
3102 /**
3103  * ice_free_irq_msix_misc - Unroll misc vector setup
3104  * @pf: board private structure
3105  */
3106 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3107 {
3108 	struct ice_hw *hw = &pf->hw;
3109 
3110 	ice_dis_ctrlq_interrupts(hw);
3111 
3112 	/* disable OICR interrupt */
3113 	wr32(hw, PFINT_OICR_ENA, 0);
3114 	ice_flush(hw);
3115 
3116 	if (pf->msix_entries) {
3117 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3118 		devm_free_irq(ice_pf_to_dev(pf),
3119 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3120 	}
3121 
3122 	pf->num_avail_sw_msix += 1;
3123 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3124 }
3125 
3126 /**
3127  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3128  * @hw: pointer to HW structure
3129  * @reg_idx: HW vector index to associate the control queue interrupts with
3130  */
3131 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3132 {
3133 	u32 val;
3134 
3135 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3136 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3137 	wr32(hw, PFINT_OICR_CTL, val);
3138 
3139 	/* enable Admin queue Interrupt causes */
3140 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3141 	       PFINT_FW_CTL_CAUSE_ENA_M);
3142 	wr32(hw, PFINT_FW_CTL, val);
3143 
3144 	/* enable Mailbox queue Interrupt causes */
3145 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3146 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3147 	wr32(hw, PFINT_MBX_CTL, val);
3148 
3149 	/* This enables Sideband queue Interrupt causes */
3150 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3151 	       PFINT_SB_CTL_CAUSE_ENA_M);
3152 	wr32(hw, PFINT_SB_CTL, val);
3153 
3154 	ice_flush(hw);
3155 }
3156 
3157 /**
3158  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3159  * @pf: board private structure
3160  *
3161  * This sets up the handler for MSIX 0, which is used to manage the
3162  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3163  * when in MSI or Legacy interrupt mode.
3164  */
3165 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3166 {
3167 	struct device *dev = ice_pf_to_dev(pf);
3168 	struct ice_hw *hw = &pf->hw;
3169 	int oicr_idx, err = 0;
3170 
3171 	if (!pf->int_name[0])
3172 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3173 			 dev_driver_string(dev), dev_name(dev));
3174 
3175 	/* Do not request IRQ but do enable OICR interrupt since settings are
3176 	 * lost during reset. Note that this function is called only during
3177 	 * rebuild path and not while reset is in progress.
3178 	 */
3179 	if (ice_is_reset_in_progress(pf->state))
3180 		goto skip_req_irq;
3181 
3182 	/* reserve one vector in irq_tracker for misc interrupts */
3183 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3184 	if (oicr_idx < 0)
3185 		return oicr_idx;
3186 
3187 	pf->num_avail_sw_msix -= 1;
3188 	pf->oicr_idx = (u16)oicr_idx;
3189 
3190 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3191 			       ice_misc_intr, 0, pf->int_name, pf);
3192 	if (err) {
3193 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3194 			pf->int_name, err);
3195 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3196 		pf->num_avail_sw_msix += 1;
3197 		return err;
3198 	}
3199 
3200 skip_req_irq:
3201 	ice_ena_misc_vector(pf);
3202 
3203 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3204 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3205 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3206 
3207 	ice_flush(hw);
3208 	ice_irq_dynamic_ena(hw, NULL, NULL);
3209 
3210 	return 0;
3211 }
3212 
3213 /**
3214  * ice_napi_add - register NAPI handler for the VSI
3215  * @vsi: VSI for which NAPI handler is to be registered
3216  *
3217  * This function is only called in the driver's load path. Registering the NAPI
3218  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3219  * reset/rebuild, etc.)
3220  */
3221 static void ice_napi_add(struct ice_vsi *vsi)
3222 {
3223 	int v_idx;
3224 
3225 	if (!vsi->netdev)
3226 		return;
3227 
3228 	ice_for_each_q_vector(vsi, v_idx)
3229 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3230 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3231 }
3232 
3233 /**
3234  * ice_set_ops - set netdev and ethtools ops for the given netdev
3235  * @netdev: netdev instance
3236  */
3237 static void ice_set_ops(struct net_device *netdev)
3238 {
3239 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3240 
3241 	if (ice_is_safe_mode(pf)) {
3242 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3243 		ice_set_ethtool_safe_mode_ops(netdev);
3244 		return;
3245 	}
3246 
3247 	netdev->netdev_ops = &ice_netdev_ops;
3248 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3249 	ice_set_ethtool_ops(netdev);
3250 }
3251 
3252 /**
3253  * ice_set_netdev_features - set features for the given netdev
3254  * @netdev: netdev instance
3255  */
3256 static void ice_set_netdev_features(struct net_device *netdev)
3257 {
3258 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3259 	netdev_features_t csumo_features;
3260 	netdev_features_t vlano_features;
3261 	netdev_features_t dflt_features;
3262 	netdev_features_t tso_features;
3263 
3264 	if (ice_is_safe_mode(pf)) {
3265 		/* safe mode */
3266 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3267 		netdev->hw_features = netdev->features;
3268 		return;
3269 	}
3270 
3271 	dflt_features = NETIF_F_SG	|
3272 			NETIF_F_HIGHDMA	|
3273 			NETIF_F_NTUPLE	|
3274 			NETIF_F_RXHASH;
3275 
3276 	csumo_features = NETIF_F_RXCSUM	  |
3277 			 NETIF_F_IP_CSUM  |
3278 			 NETIF_F_SCTP_CRC |
3279 			 NETIF_F_IPV6_CSUM;
3280 
3281 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3282 			 NETIF_F_HW_VLAN_CTAG_TX     |
3283 			 NETIF_F_HW_VLAN_CTAG_RX;
3284 
3285 	tso_features = NETIF_F_TSO			|
3286 		       NETIF_F_TSO_ECN			|
3287 		       NETIF_F_TSO6			|
3288 		       NETIF_F_GSO_GRE			|
3289 		       NETIF_F_GSO_UDP_TUNNEL		|
3290 		       NETIF_F_GSO_GRE_CSUM		|
3291 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3292 		       NETIF_F_GSO_PARTIAL		|
3293 		       NETIF_F_GSO_IPXIP4		|
3294 		       NETIF_F_GSO_IPXIP6		|
3295 		       NETIF_F_GSO_UDP_L4;
3296 
3297 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3298 					NETIF_F_GSO_GRE_CSUM;
3299 	/* set features that user can change */
3300 	netdev->hw_features = dflt_features | csumo_features |
3301 			      vlano_features | tso_features;
3302 
3303 	/* add support for HW_CSUM on packets with MPLS header */
3304 	netdev->mpls_features =  NETIF_F_HW_CSUM;
3305 
3306 	/* enable features */
3307 	netdev->features |= netdev->hw_features;
3308 
3309 	netdev->hw_features |= NETIF_F_HW_TC;
3310 
3311 	/* encap and VLAN devices inherit default, csumo and tso features */
3312 	netdev->hw_enc_features |= dflt_features | csumo_features |
3313 				   tso_features;
3314 	netdev->vlan_features |= dflt_features | csumo_features |
3315 				 tso_features;
3316 }
3317 
3318 /**
3319  * ice_cfg_netdev - Allocate, configure and register a netdev
3320  * @vsi: the VSI associated with the new netdev
3321  *
3322  * Returns 0 on success, negative value on failure
3323  */
3324 static int ice_cfg_netdev(struct ice_vsi *vsi)
3325 {
3326 	struct ice_netdev_priv *np;
3327 	struct net_device *netdev;
3328 	u8 mac_addr[ETH_ALEN];
3329 
3330 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3331 				    vsi->alloc_rxq);
3332 	if (!netdev)
3333 		return -ENOMEM;
3334 
3335 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3336 	vsi->netdev = netdev;
3337 	np = netdev_priv(netdev);
3338 	np->vsi = vsi;
3339 
3340 	ice_set_netdev_features(netdev);
3341 
3342 	ice_set_ops(netdev);
3343 
3344 	if (vsi->type == ICE_VSI_PF) {
3345 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3346 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3347 		eth_hw_addr_set(netdev, mac_addr);
3348 		ether_addr_copy(netdev->perm_addr, mac_addr);
3349 	}
3350 
3351 	netdev->priv_flags |= IFF_UNICAST_FLT;
3352 
3353 	/* Setup netdev TC information */
3354 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3355 
3356 	/* setup watchdog timeout value to be 5 second */
3357 	netdev->watchdog_timeo = 5 * HZ;
3358 
3359 	netdev->min_mtu = ETH_MIN_MTU;
3360 	netdev->max_mtu = ICE_MAX_MTU;
3361 
3362 	return 0;
3363 }
3364 
3365 /**
3366  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3367  * @lut: Lookup table
3368  * @rss_table_size: Lookup table size
3369  * @rss_size: Range of queue number for hashing
3370  */
3371 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3372 {
3373 	u16 i;
3374 
3375 	for (i = 0; i < rss_table_size; i++)
3376 		lut[i] = i % rss_size;
3377 }
3378 
3379 /**
3380  * ice_pf_vsi_setup - Set up a PF VSI
3381  * @pf: board private structure
3382  * @pi: pointer to the port_info instance
3383  *
3384  * Returns pointer to the successfully allocated VSI software struct
3385  * on success, otherwise returns NULL on failure.
3386  */
3387 static struct ice_vsi *
3388 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3389 {
3390 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL);
3391 }
3392 
3393 static struct ice_vsi *
3394 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3395 		   struct ice_channel *ch)
3396 {
3397 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch);
3398 }
3399 
3400 /**
3401  * ice_ctrl_vsi_setup - Set up a control VSI
3402  * @pf: board private structure
3403  * @pi: pointer to the port_info instance
3404  *
3405  * Returns pointer to the successfully allocated VSI software struct
3406  * on success, otherwise returns NULL on failure.
3407  */
3408 static struct ice_vsi *
3409 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3410 {
3411 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL);
3412 }
3413 
3414 /**
3415  * ice_lb_vsi_setup - Set up a loopback VSI
3416  * @pf: board private structure
3417  * @pi: pointer to the port_info instance
3418  *
3419  * Returns pointer to the successfully allocated VSI software struct
3420  * on success, otherwise returns NULL on failure.
3421  */
3422 struct ice_vsi *
3423 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3424 {
3425 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL);
3426 }
3427 
3428 /**
3429  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3430  * @netdev: network interface to be adjusted
3431  * @proto: unused protocol
3432  * @vid: VLAN ID to be added
3433  *
3434  * net_device_ops implementation for adding VLAN IDs
3435  */
3436 static int
3437 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3438 		    u16 vid)
3439 {
3440 	struct ice_netdev_priv *np = netdev_priv(netdev);
3441 	struct ice_vsi *vsi = np->vsi;
3442 	int ret;
3443 
3444 	/* VLAN 0 is added by default during load/reset */
3445 	if (!vid)
3446 		return 0;
3447 
3448 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3449 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3450 		ret = ice_cfg_vlan_pruning(vsi, true);
3451 		if (ret)
3452 			return ret;
3453 	}
3454 
3455 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3456 	 * packets aren't pruned by the device's internal switch on Rx
3457 	 */
3458 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3459 	if (!ret)
3460 		set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3461 
3462 	return ret;
3463 }
3464 
3465 /**
3466  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3467  * @netdev: network interface to be adjusted
3468  * @proto: unused protocol
3469  * @vid: VLAN ID to be removed
3470  *
3471  * net_device_ops implementation for removing VLAN IDs
3472  */
3473 static int
3474 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3475 		     u16 vid)
3476 {
3477 	struct ice_netdev_priv *np = netdev_priv(netdev);
3478 	struct ice_vsi *vsi = np->vsi;
3479 	int ret;
3480 
3481 	/* don't allow removal of VLAN 0 */
3482 	if (!vid)
3483 		return 0;
3484 
3485 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3486 	 * information
3487 	 */
3488 	ret = ice_vsi_kill_vlan(vsi, vid);
3489 	if (ret)
3490 		return ret;
3491 
3492 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3493 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3494 		ret = ice_cfg_vlan_pruning(vsi, false);
3495 
3496 	set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3497 	return ret;
3498 }
3499 
3500 /**
3501  * ice_rep_indr_tc_block_unbind
3502  * @cb_priv: indirection block private data
3503  */
3504 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3505 {
3506 	struct ice_indr_block_priv *indr_priv = cb_priv;
3507 
3508 	list_del(&indr_priv->list);
3509 	kfree(indr_priv);
3510 }
3511 
3512 /**
3513  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3514  * @vsi: VSI struct which has the netdev
3515  */
3516 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3517 {
3518 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3519 
3520 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3521 				 ice_rep_indr_tc_block_unbind);
3522 }
3523 
3524 /**
3525  * ice_tc_indir_block_remove - clean indirect TC block notifications
3526  * @pf: PF structure
3527  */
3528 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3529 {
3530 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3531 
3532 	if (!pf_vsi)
3533 		return;
3534 
3535 	ice_tc_indir_block_unregister(pf_vsi);
3536 }
3537 
3538 /**
3539  * ice_tc_indir_block_register - Register TC indirect block notifications
3540  * @vsi: VSI struct which has the netdev
3541  *
3542  * Returns 0 on success, negative value on failure
3543  */
3544 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3545 {
3546 	struct ice_netdev_priv *np;
3547 
3548 	if (!vsi || !vsi->netdev)
3549 		return -EINVAL;
3550 
3551 	np = netdev_priv(vsi->netdev);
3552 
3553 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3554 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3555 }
3556 
3557 /**
3558  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3559  * @pf: board private structure
3560  *
3561  * Returns 0 on success, negative value on failure
3562  */
3563 static int ice_setup_pf_sw(struct ice_pf *pf)
3564 {
3565 	struct device *dev = ice_pf_to_dev(pf);
3566 	struct ice_vsi *vsi;
3567 	int status;
3568 
3569 	if (ice_is_reset_in_progress(pf->state))
3570 		return -EBUSY;
3571 
3572 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3573 	if (!vsi)
3574 		return -ENOMEM;
3575 
3576 	/* init channel list */
3577 	INIT_LIST_HEAD(&vsi->ch_list);
3578 
3579 	status = ice_cfg_netdev(vsi);
3580 	if (status)
3581 		goto unroll_vsi_setup;
3582 	/* netdev has to be configured before setting frame size */
3583 	ice_vsi_cfg_frame_size(vsi);
3584 
3585 	/* init indirect block notifications */
3586 	status = ice_tc_indir_block_register(vsi);
3587 	if (status) {
3588 		dev_err(dev, "Failed to register netdev notifier\n");
3589 		goto unroll_cfg_netdev;
3590 	}
3591 
3592 	/* Setup DCB netlink interface */
3593 	ice_dcbnl_setup(vsi);
3594 
3595 	/* registering the NAPI handler requires both the queues and
3596 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3597 	 * and ice_cfg_netdev() respectively
3598 	 */
3599 	ice_napi_add(vsi);
3600 
3601 	status = ice_set_cpu_rx_rmap(vsi);
3602 	if (status) {
3603 		dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n",
3604 			vsi->vsi_num, status);
3605 		goto unroll_napi_add;
3606 	}
3607 	status = ice_init_mac_fltr(pf);
3608 	if (status)
3609 		goto free_cpu_rx_map;
3610 
3611 	return 0;
3612 
3613 free_cpu_rx_map:
3614 	ice_free_cpu_rx_rmap(vsi);
3615 unroll_napi_add:
3616 	ice_tc_indir_block_unregister(vsi);
3617 unroll_cfg_netdev:
3618 	if (vsi) {
3619 		ice_napi_del(vsi);
3620 		if (vsi->netdev) {
3621 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3622 			free_netdev(vsi->netdev);
3623 			vsi->netdev = NULL;
3624 		}
3625 	}
3626 
3627 unroll_vsi_setup:
3628 	ice_vsi_release(vsi);
3629 	return status;
3630 }
3631 
3632 /**
3633  * ice_get_avail_q_count - Get count of queues in use
3634  * @pf_qmap: bitmap to get queue use count from
3635  * @lock: pointer to a mutex that protects access to pf_qmap
3636  * @size: size of the bitmap
3637  */
3638 static u16
3639 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3640 {
3641 	unsigned long bit;
3642 	u16 count = 0;
3643 
3644 	mutex_lock(lock);
3645 	for_each_clear_bit(bit, pf_qmap, size)
3646 		count++;
3647 	mutex_unlock(lock);
3648 
3649 	return count;
3650 }
3651 
3652 /**
3653  * ice_get_avail_txq_count - Get count of Tx queues in use
3654  * @pf: pointer to an ice_pf instance
3655  */
3656 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3657 {
3658 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3659 				     pf->max_pf_txqs);
3660 }
3661 
3662 /**
3663  * ice_get_avail_rxq_count - Get count of Rx queues in use
3664  * @pf: pointer to an ice_pf instance
3665  */
3666 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3667 {
3668 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3669 				     pf->max_pf_rxqs);
3670 }
3671 
3672 /**
3673  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3674  * @pf: board private structure to initialize
3675  */
3676 static void ice_deinit_pf(struct ice_pf *pf)
3677 {
3678 	ice_service_task_stop(pf);
3679 	mutex_destroy(&pf->sw_mutex);
3680 	mutex_destroy(&pf->tc_mutex);
3681 	mutex_destroy(&pf->avail_q_mutex);
3682 
3683 	if (pf->avail_txqs) {
3684 		bitmap_free(pf->avail_txqs);
3685 		pf->avail_txqs = NULL;
3686 	}
3687 
3688 	if (pf->avail_rxqs) {
3689 		bitmap_free(pf->avail_rxqs);
3690 		pf->avail_rxqs = NULL;
3691 	}
3692 
3693 	if (pf->ptp.clock)
3694 		ptp_clock_unregister(pf->ptp.clock);
3695 }
3696 
3697 /**
3698  * ice_set_pf_caps - set PFs capability flags
3699  * @pf: pointer to the PF instance
3700  */
3701 static void ice_set_pf_caps(struct ice_pf *pf)
3702 {
3703 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3704 
3705 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3706 	clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3707 	if (func_caps->common_cap.rdma) {
3708 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3709 		set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3710 	}
3711 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3712 	if (func_caps->common_cap.dcb)
3713 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3714 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3715 	if (func_caps->common_cap.sr_iov_1_1) {
3716 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3717 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3718 					      ICE_MAX_VF_COUNT);
3719 	}
3720 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3721 	if (func_caps->common_cap.rss_table_size)
3722 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3723 
3724 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3725 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3726 		u16 unused;
3727 
3728 		/* ctrl_vsi_idx will be set to a valid value when flow director
3729 		 * is setup by ice_init_fdir
3730 		 */
3731 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3732 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3733 		/* force guaranteed filter pool for PF */
3734 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3735 				       func_caps->fd_fltr_guar);
3736 		/* force shared filter pool for PF */
3737 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3738 				       func_caps->fd_fltr_best_effort);
3739 	}
3740 
3741 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3742 	if (func_caps->common_cap.ieee_1588)
3743 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3744 
3745 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3746 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3747 }
3748 
3749 /**
3750  * ice_init_pf - Initialize general software structures (struct ice_pf)
3751  * @pf: board private structure to initialize
3752  */
3753 static int ice_init_pf(struct ice_pf *pf)
3754 {
3755 	ice_set_pf_caps(pf);
3756 
3757 	mutex_init(&pf->sw_mutex);
3758 	mutex_init(&pf->tc_mutex);
3759 
3760 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3761 	spin_lock_init(&pf->aq_wait_lock);
3762 	init_waitqueue_head(&pf->aq_wait_queue);
3763 
3764 	init_waitqueue_head(&pf->reset_wait_queue);
3765 
3766 	/* setup service timer and periodic service task */
3767 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3768 	pf->serv_tmr_period = HZ;
3769 	INIT_WORK(&pf->serv_task, ice_service_task);
3770 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3771 
3772 	mutex_init(&pf->avail_q_mutex);
3773 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3774 	if (!pf->avail_txqs)
3775 		return -ENOMEM;
3776 
3777 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3778 	if (!pf->avail_rxqs) {
3779 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3780 		pf->avail_txqs = NULL;
3781 		return -ENOMEM;
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 /**
3788  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3789  * @pf: board private structure
3790  *
3791  * compute the number of MSIX vectors required (v_budget) and request from
3792  * the OS. Return the number of vectors reserved or negative on failure
3793  */
3794 static int ice_ena_msix_range(struct ice_pf *pf)
3795 {
3796 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3797 	struct device *dev = ice_pf_to_dev(pf);
3798 	int needed, err, i;
3799 
3800 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3801 	num_cpus = num_online_cpus();
3802 
3803 	/* reserve for LAN miscellaneous handler */
3804 	needed = ICE_MIN_LAN_OICR_MSIX;
3805 	if (v_left < needed)
3806 		goto no_hw_vecs_left_err;
3807 	v_budget += needed;
3808 	v_left -= needed;
3809 
3810 	/* reserve for flow director */
3811 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3812 		needed = ICE_FDIR_MSIX;
3813 		if (v_left < needed)
3814 			goto no_hw_vecs_left_err;
3815 		v_budget += needed;
3816 		v_left -= needed;
3817 	}
3818 
3819 	/* reserve for switchdev */
3820 	needed = ICE_ESWITCH_MSIX;
3821 	if (v_left < needed)
3822 		goto no_hw_vecs_left_err;
3823 	v_budget += needed;
3824 	v_left -= needed;
3825 
3826 	/* total used for non-traffic vectors */
3827 	v_other = v_budget;
3828 
3829 	/* reserve vectors for LAN traffic */
3830 	needed = num_cpus;
3831 	if (v_left < needed)
3832 		goto no_hw_vecs_left_err;
3833 	pf->num_lan_msix = needed;
3834 	v_budget += needed;
3835 	v_left -= needed;
3836 
3837 	/* reserve vectors for RDMA auxiliary driver */
3838 	if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3839 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3840 		if (v_left < needed)
3841 			goto no_hw_vecs_left_err;
3842 		pf->num_rdma_msix = needed;
3843 		v_budget += needed;
3844 		v_left -= needed;
3845 	}
3846 
3847 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3848 					sizeof(*pf->msix_entries), GFP_KERNEL);
3849 	if (!pf->msix_entries) {
3850 		err = -ENOMEM;
3851 		goto exit_err;
3852 	}
3853 
3854 	for (i = 0; i < v_budget; i++)
3855 		pf->msix_entries[i].entry = i;
3856 
3857 	/* actually reserve the vectors */
3858 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3859 					 ICE_MIN_MSIX, v_budget);
3860 	if (v_actual < 0) {
3861 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3862 		err = v_actual;
3863 		goto msix_err;
3864 	}
3865 
3866 	if (v_actual < v_budget) {
3867 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3868 			 v_budget, v_actual);
3869 
3870 		if (v_actual < ICE_MIN_MSIX) {
3871 			/* error if we can't get minimum vectors */
3872 			pci_disable_msix(pf->pdev);
3873 			err = -ERANGE;
3874 			goto msix_err;
3875 		} else {
3876 			int v_remain = v_actual - v_other;
3877 			int v_rdma = 0, v_min_rdma = 0;
3878 
3879 			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3880 				/* Need at least 1 interrupt in addition to
3881 				 * AEQ MSIX
3882 				 */
3883 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3884 				v_min_rdma = ICE_MIN_RDMA_MSIX;
3885 			}
3886 
3887 			if (v_actual == ICE_MIN_MSIX ||
3888 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3889 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3890 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3891 
3892 				pf->num_rdma_msix = 0;
3893 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3894 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3895 				   (v_remain - v_rdma < v_rdma)) {
3896 				/* Support minimum RDMA and give remaining
3897 				 * vectors to LAN MSIX
3898 				 */
3899 				pf->num_rdma_msix = v_min_rdma;
3900 				pf->num_lan_msix = v_remain - v_min_rdma;
3901 			} else {
3902 				/* Split remaining MSIX with RDMA after
3903 				 * accounting for AEQ MSIX
3904 				 */
3905 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3906 						    ICE_RDMA_NUM_AEQ_MSIX;
3907 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3908 			}
3909 
3910 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3911 				   pf->num_lan_msix);
3912 
3913 			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3914 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3915 					   pf->num_rdma_msix);
3916 		}
3917 	}
3918 
3919 	return v_actual;
3920 
3921 msix_err:
3922 	devm_kfree(dev, pf->msix_entries);
3923 	goto exit_err;
3924 
3925 no_hw_vecs_left_err:
3926 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3927 		needed, v_left);
3928 	err = -ERANGE;
3929 exit_err:
3930 	pf->num_rdma_msix = 0;
3931 	pf->num_lan_msix = 0;
3932 	return err;
3933 }
3934 
3935 /**
3936  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3937  * @pf: board private structure
3938  */
3939 static void ice_dis_msix(struct ice_pf *pf)
3940 {
3941 	pci_disable_msix(pf->pdev);
3942 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3943 	pf->msix_entries = NULL;
3944 }
3945 
3946 /**
3947  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3948  * @pf: board private structure
3949  */
3950 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3951 {
3952 	ice_dis_msix(pf);
3953 
3954 	if (pf->irq_tracker) {
3955 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3956 		pf->irq_tracker = NULL;
3957 	}
3958 }
3959 
3960 /**
3961  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3962  * @pf: board private structure to initialize
3963  */
3964 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3965 {
3966 	int vectors;
3967 
3968 	vectors = ice_ena_msix_range(pf);
3969 
3970 	if (vectors < 0)
3971 		return vectors;
3972 
3973 	/* set up vector assignment tracking */
3974 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3975 				       struct_size(pf->irq_tracker, list, vectors),
3976 				       GFP_KERNEL);
3977 	if (!pf->irq_tracker) {
3978 		ice_dis_msix(pf);
3979 		return -ENOMEM;
3980 	}
3981 
3982 	/* populate SW interrupts pool with number of OS granted IRQs. */
3983 	pf->num_avail_sw_msix = (u16)vectors;
3984 	pf->irq_tracker->num_entries = (u16)vectors;
3985 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3986 
3987 	return 0;
3988 }
3989 
3990 /**
3991  * ice_is_wol_supported - check if WoL is supported
3992  * @hw: pointer to hardware info
3993  *
3994  * Check if WoL is supported based on the HW configuration.
3995  * Returns true if NVM supports and enables WoL for this port, false otherwise
3996  */
3997 bool ice_is_wol_supported(struct ice_hw *hw)
3998 {
3999 	u16 wol_ctrl;
4000 
4001 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4002 	 * word) indicates WoL is not supported on the corresponding PF ID.
4003 	 */
4004 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4005 		return false;
4006 
4007 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4008 }
4009 
4010 /**
4011  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4012  * @vsi: VSI being changed
4013  * @new_rx: new number of Rx queues
4014  * @new_tx: new number of Tx queues
4015  *
4016  * Only change the number of queues if new_tx, or new_rx is non-0.
4017  *
4018  * Returns 0 on success.
4019  */
4020 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4021 {
4022 	struct ice_pf *pf = vsi->back;
4023 	int err = 0, timeout = 50;
4024 
4025 	if (!new_rx && !new_tx)
4026 		return -EINVAL;
4027 
4028 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4029 		timeout--;
4030 		if (!timeout)
4031 			return -EBUSY;
4032 		usleep_range(1000, 2000);
4033 	}
4034 
4035 	if (new_tx)
4036 		vsi->req_txq = (u16)new_tx;
4037 	if (new_rx)
4038 		vsi->req_rxq = (u16)new_rx;
4039 
4040 	/* set for the next time the netdev is started */
4041 	if (!netif_running(vsi->netdev)) {
4042 		ice_vsi_rebuild(vsi, false);
4043 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4044 		goto done;
4045 	}
4046 
4047 	ice_vsi_close(vsi);
4048 	ice_vsi_rebuild(vsi, false);
4049 	ice_pf_dcb_recfg(pf);
4050 	ice_vsi_open(vsi);
4051 done:
4052 	clear_bit(ICE_CFG_BUSY, pf->state);
4053 	return err;
4054 }
4055 
4056 /**
4057  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4058  * @pf: PF to configure
4059  *
4060  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4061  * VSI can still Tx/Rx VLAN tagged packets.
4062  */
4063 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4064 {
4065 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4066 	struct ice_vsi_ctx *ctxt;
4067 	struct ice_hw *hw;
4068 	int status;
4069 
4070 	if (!vsi)
4071 		return;
4072 
4073 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4074 	if (!ctxt)
4075 		return;
4076 
4077 	hw = &pf->hw;
4078 	ctxt->info = vsi->info;
4079 
4080 	ctxt->info.valid_sections =
4081 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4082 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4083 			    ICE_AQ_VSI_PROP_SW_VALID);
4084 
4085 	/* disable VLAN anti-spoof */
4086 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4087 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4088 
4089 	/* disable VLAN pruning and keep all other settings */
4090 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4091 
4092 	/* allow all VLANs on Tx and don't strip on Rx */
4093 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
4094 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
4095 
4096 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4097 	if (status) {
4098 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4099 			status, ice_aq_str(hw->adminq.sq_last_status));
4100 	} else {
4101 		vsi->info.sec_flags = ctxt->info.sec_flags;
4102 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4103 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
4104 	}
4105 
4106 	kfree(ctxt);
4107 }
4108 
4109 /**
4110  * ice_log_pkg_init - log result of DDP package load
4111  * @hw: pointer to hardware info
4112  * @state: state of package load
4113  */
4114 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4115 {
4116 	struct ice_pf *pf = hw->back;
4117 	struct device *dev;
4118 
4119 	dev = ice_pf_to_dev(pf);
4120 
4121 	switch (state) {
4122 	case ICE_DDP_PKG_SUCCESS:
4123 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4124 			 hw->active_pkg_name,
4125 			 hw->active_pkg_ver.major,
4126 			 hw->active_pkg_ver.minor,
4127 			 hw->active_pkg_ver.update,
4128 			 hw->active_pkg_ver.draft);
4129 		break;
4130 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4131 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4132 			 hw->active_pkg_name,
4133 			 hw->active_pkg_ver.major,
4134 			 hw->active_pkg_ver.minor,
4135 			 hw->active_pkg_ver.update,
4136 			 hw->active_pkg_ver.draft);
4137 		break;
4138 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4139 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4140 			hw->active_pkg_name,
4141 			hw->active_pkg_ver.major,
4142 			hw->active_pkg_ver.minor,
4143 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4144 		break;
4145 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4146 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4147 			 hw->active_pkg_name,
4148 			 hw->active_pkg_ver.major,
4149 			 hw->active_pkg_ver.minor,
4150 			 hw->active_pkg_ver.update,
4151 			 hw->active_pkg_ver.draft,
4152 			 hw->pkg_name,
4153 			 hw->pkg_ver.major,
4154 			 hw->pkg_ver.minor,
4155 			 hw->pkg_ver.update,
4156 			 hw->pkg_ver.draft);
4157 		break;
4158 	case ICE_DDP_PKG_FW_MISMATCH:
4159 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4160 		break;
4161 	case ICE_DDP_PKG_INVALID_FILE:
4162 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4163 		break;
4164 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4165 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4166 		break;
4167 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4168 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4169 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4170 		break;
4171 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4172 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4173 		break;
4174 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4175 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4176 		break;
4177 	case ICE_DDP_PKG_LOAD_ERROR:
4178 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4179 		/* poll for reset to complete */
4180 		if (ice_check_reset(hw))
4181 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4182 		break;
4183 	case ICE_DDP_PKG_ERR:
4184 	default:
4185 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4186 		break;
4187 	}
4188 }
4189 
4190 /**
4191  * ice_load_pkg - load/reload the DDP Package file
4192  * @firmware: firmware structure when firmware requested or NULL for reload
4193  * @pf: pointer to the PF instance
4194  *
4195  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4196  * initialize HW tables.
4197  */
4198 static void
4199 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4200 {
4201 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4202 	struct device *dev = ice_pf_to_dev(pf);
4203 	struct ice_hw *hw = &pf->hw;
4204 
4205 	/* Load DDP Package */
4206 	if (firmware && !hw->pkg_copy) {
4207 		state = ice_copy_and_init_pkg(hw, firmware->data,
4208 					      firmware->size);
4209 		ice_log_pkg_init(hw, state);
4210 	} else if (!firmware && hw->pkg_copy) {
4211 		/* Reload package during rebuild after CORER/GLOBR reset */
4212 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4213 		ice_log_pkg_init(hw, state);
4214 	} else {
4215 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4216 	}
4217 
4218 	if (!ice_is_init_pkg_successful(state)) {
4219 		/* Safe Mode */
4220 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4221 		return;
4222 	}
4223 
4224 	/* Successful download package is the precondition for advanced
4225 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4226 	 */
4227 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4228 }
4229 
4230 /**
4231  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4232  * @pf: pointer to the PF structure
4233  *
4234  * There is no error returned here because the driver should be able to handle
4235  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4236  * specifically with Tx.
4237  */
4238 static void ice_verify_cacheline_size(struct ice_pf *pf)
4239 {
4240 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4241 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4242 			 ICE_CACHE_LINE_BYTES);
4243 }
4244 
4245 /**
4246  * ice_send_version - update firmware with driver version
4247  * @pf: PF struct
4248  *
4249  * Returns 0 on success, else error code
4250  */
4251 static int ice_send_version(struct ice_pf *pf)
4252 {
4253 	struct ice_driver_ver dv;
4254 
4255 	dv.major_ver = 0xff;
4256 	dv.minor_ver = 0xff;
4257 	dv.build_ver = 0xff;
4258 	dv.subbuild_ver = 0;
4259 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4260 		sizeof(dv.driver_string));
4261 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4262 }
4263 
4264 /**
4265  * ice_init_fdir - Initialize flow director VSI and configuration
4266  * @pf: pointer to the PF instance
4267  *
4268  * returns 0 on success, negative on error
4269  */
4270 static int ice_init_fdir(struct ice_pf *pf)
4271 {
4272 	struct device *dev = ice_pf_to_dev(pf);
4273 	struct ice_vsi *ctrl_vsi;
4274 	int err;
4275 
4276 	/* Side Band Flow Director needs to have a control VSI.
4277 	 * Allocate it and store it in the PF.
4278 	 */
4279 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4280 	if (!ctrl_vsi) {
4281 		dev_dbg(dev, "could not create control VSI\n");
4282 		return -ENOMEM;
4283 	}
4284 
4285 	err = ice_vsi_open_ctrl(ctrl_vsi);
4286 	if (err) {
4287 		dev_dbg(dev, "could not open control VSI\n");
4288 		goto err_vsi_open;
4289 	}
4290 
4291 	mutex_init(&pf->hw.fdir_fltr_lock);
4292 
4293 	err = ice_fdir_create_dflt_rules(pf);
4294 	if (err)
4295 		goto err_fdir_rule;
4296 
4297 	return 0;
4298 
4299 err_fdir_rule:
4300 	ice_fdir_release_flows(&pf->hw);
4301 	ice_vsi_close(ctrl_vsi);
4302 err_vsi_open:
4303 	ice_vsi_release(ctrl_vsi);
4304 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4305 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4306 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4307 	}
4308 	return err;
4309 }
4310 
4311 /**
4312  * ice_get_opt_fw_name - return optional firmware file name or NULL
4313  * @pf: pointer to the PF instance
4314  */
4315 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4316 {
4317 	/* Optional firmware name same as default with additional dash
4318 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4319 	 */
4320 	struct pci_dev *pdev = pf->pdev;
4321 	char *opt_fw_filename;
4322 	u64 dsn;
4323 
4324 	/* Determine the name of the optional file using the DSN (two
4325 	 * dwords following the start of the DSN Capability).
4326 	 */
4327 	dsn = pci_get_dsn(pdev);
4328 	if (!dsn)
4329 		return NULL;
4330 
4331 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4332 	if (!opt_fw_filename)
4333 		return NULL;
4334 
4335 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4336 		 ICE_DDP_PKG_PATH, dsn);
4337 
4338 	return opt_fw_filename;
4339 }
4340 
4341 /**
4342  * ice_request_fw - Device initialization routine
4343  * @pf: pointer to the PF instance
4344  */
4345 static void ice_request_fw(struct ice_pf *pf)
4346 {
4347 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4348 	const struct firmware *firmware = NULL;
4349 	struct device *dev = ice_pf_to_dev(pf);
4350 	int err = 0;
4351 
4352 	/* optional device-specific DDP (if present) overrides the default DDP
4353 	 * package file. kernel logs a debug message if the file doesn't exist,
4354 	 * and warning messages for other errors.
4355 	 */
4356 	if (opt_fw_filename) {
4357 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4358 		if (err) {
4359 			kfree(opt_fw_filename);
4360 			goto dflt_pkg_load;
4361 		}
4362 
4363 		/* request for firmware was successful. Download to device */
4364 		ice_load_pkg(firmware, pf);
4365 		kfree(opt_fw_filename);
4366 		release_firmware(firmware);
4367 		return;
4368 	}
4369 
4370 dflt_pkg_load:
4371 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4372 	if (err) {
4373 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4374 		return;
4375 	}
4376 
4377 	/* request for firmware was successful. Download to device */
4378 	ice_load_pkg(firmware, pf);
4379 	release_firmware(firmware);
4380 }
4381 
4382 /**
4383  * ice_print_wake_reason - show the wake up cause in the log
4384  * @pf: pointer to the PF struct
4385  */
4386 static void ice_print_wake_reason(struct ice_pf *pf)
4387 {
4388 	u32 wus = pf->wakeup_reason;
4389 	const char *wake_str;
4390 
4391 	/* if no wake event, nothing to print */
4392 	if (!wus)
4393 		return;
4394 
4395 	if (wus & PFPM_WUS_LNKC_M)
4396 		wake_str = "Link\n";
4397 	else if (wus & PFPM_WUS_MAG_M)
4398 		wake_str = "Magic Packet\n";
4399 	else if (wus & PFPM_WUS_MNG_M)
4400 		wake_str = "Management\n";
4401 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4402 		wake_str = "Firmware Reset\n";
4403 	else
4404 		wake_str = "Unknown\n";
4405 
4406 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4407 }
4408 
4409 /**
4410  * ice_register_netdev - register netdev and devlink port
4411  * @pf: pointer to the PF struct
4412  */
4413 static int ice_register_netdev(struct ice_pf *pf)
4414 {
4415 	struct ice_vsi *vsi;
4416 	int err = 0;
4417 
4418 	vsi = ice_get_main_vsi(pf);
4419 	if (!vsi || !vsi->netdev)
4420 		return -EIO;
4421 
4422 	err = register_netdev(vsi->netdev);
4423 	if (err)
4424 		goto err_register_netdev;
4425 
4426 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4427 	netif_carrier_off(vsi->netdev);
4428 	netif_tx_stop_all_queues(vsi->netdev);
4429 	err = ice_devlink_create_pf_port(pf);
4430 	if (err)
4431 		goto err_devlink_create;
4432 
4433 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4434 
4435 	return 0;
4436 err_devlink_create:
4437 	unregister_netdev(vsi->netdev);
4438 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4439 err_register_netdev:
4440 	free_netdev(vsi->netdev);
4441 	vsi->netdev = NULL;
4442 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4443 	return err;
4444 }
4445 
4446 /**
4447  * ice_probe - Device initialization routine
4448  * @pdev: PCI device information struct
4449  * @ent: entry in ice_pci_tbl
4450  *
4451  * Returns 0 on success, negative on failure
4452  */
4453 static int
4454 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4455 {
4456 	struct device *dev = &pdev->dev;
4457 	struct ice_pf *pf;
4458 	struct ice_hw *hw;
4459 	int i, err;
4460 
4461 	if (pdev->is_virtfn) {
4462 		dev_err(dev, "can't probe a virtual function\n");
4463 		return -EINVAL;
4464 	}
4465 
4466 	/* this driver uses devres, see
4467 	 * Documentation/driver-api/driver-model/devres.rst
4468 	 */
4469 	err = pcim_enable_device(pdev);
4470 	if (err)
4471 		return err;
4472 
4473 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4474 	if (err) {
4475 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4476 		return err;
4477 	}
4478 
4479 	pf = ice_allocate_pf(dev);
4480 	if (!pf)
4481 		return -ENOMEM;
4482 
4483 	/* initialize Auxiliary index to invalid value */
4484 	pf->aux_idx = -1;
4485 
4486 	/* set up for high or low DMA */
4487 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4488 	if (err)
4489 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4490 	if (err) {
4491 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4492 		return err;
4493 	}
4494 
4495 	pci_enable_pcie_error_reporting(pdev);
4496 	pci_set_master(pdev);
4497 
4498 	pf->pdev = pdev;
4499 	pci_set_drvdata(pdev, pf);
4500 	set_bit(ICE_DOWN, pf->state);
4501 	/* Disable service task until DOWN bit is cleared */
4502 	set_bit(ICE_SERVICE_DIS, pf->state);
4503 
4504 	hw = &pf->hw;
4505 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4506 	pci_save_state(pdev);
4507 
4508 	hw->back = pf;
4509 	hw->vendor_id = pdev->vendor;
4510 	hw->device_id = pdev->device;
4511 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4512 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4513 	hw->subsystem_device_id = pdev->subsystem_device;
4514 	hw->bus.device = PCI_SLOT(pdev->devfn);
4515 	hw->bus.func = PCI_FUNC(pdev->devfn);
4516 	ice_set_ctrlq_len(hw);
4517 
4518 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4519 
4520 #ifndef CONFIG_DYNAMIC_DEBUG
4521 	if (debug < -1)
4522 		hw->debug_mask = debug;
4523 #endif
4524 
4525 	err = ice_init_hw(hw);
4526 	if (err) {
4527 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4528 		err = -EIO;
4529 		goto err_exit_unroll;
4530 	}
4531 
4532 	ice_init_feature_support(pf);
4533 
4534 	ice_request_fw(pf);
4535 
4536 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4537 	 * set in pf->state, which will cause ice_is_safe_mode to return
4538 	 * true
4539 	 */
4540 	if (ice_is_safe_mode(pf)) {
4541 		/* we already got function/device capabilities but these don't
4542 		 * reflect what the driver needs to do in safe mode. Instead of
4543 		 * adding conditional logic everywhere to ignore these
4544 		 * device/function capabilities, override them.
4545 		 */
4546 		ice_set_safe_mode_caps(hw);
4547 	}
4548 
4549 	err = ice_init_pf(pf);
4550 	if (err) {
4551 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4552 		goto err_init_pf_unroll;
4553 	}
4554 
4555 	ice_devlink_init_regions(pf);
4556 
4557 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4558 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4559 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4560 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4561 	i = 0;
4562 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4563 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4564 			pf->hw.tnl.valid_count[TNL_VXLAN];
4565 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4566 			UDP_TUNNEL_TYPE_VXLAN;
4567 		i++;
4568 	}
4569 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4570 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4571 			pf->hw.tnl.valid_count[TNL_GENEVE];
4572 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4573 			UDP_TUNNEL_TYPE_GENEVE;
4574 		i++;
4575 	}
4576 
4577 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4578 	if (!pf->num_alloc_vsi) {
4579 		err = -EIO;
4580 		goto err_init_pf_unroll;
4581 	}
4582 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4583 		dev_warn(&pf->pdev->dev,
4584 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4585 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4586 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4587 	}
4588 
4589 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4590 			       GFP_KERNEL);
4591 	if (!pf->vsi) {
4592 		err = -ENOMEM;
4593 		goto err_init_pf_unroll;
4594 	}
4595 
4596 	err = ice_init_interrupt_scheme(pf);
4597 	if (err) {
4598 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4599 		err = -EIO;
4600 		goto err_init_vsi_unroll;
4601 	}
4602 
4603 	/* In case of MSIX we are going to setup the misc vector right here
4604 	 * to handle admin queue events etc. In case of legacy and MSI
4605 	 * the misc functionality and queue processing is combined in
4606 	 * the same vector and that gets setup at open.
4607 	 */
4608 	err = ice_req_irq_msix_misc(pf);
4609 	if (err) {
4610 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4611 		goto err_init_interrupt_unroll;
4612 	}
4613 
4614 	/* create switch struct for the switch element created by FW on boot */
4615 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4616 	if (!pf->first_sw) {
4617 		err = -ENOMEM;
4618 		goto err_msix_misc_unroll;
4619 	}
4620 
4621 	if (hw->evb_veb)
4622 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4623 	else
4624 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4625 
4626 	pf->first_sw->pf = pf;
4627 
4628 	/* record the sw_id available for later use */
4629 	pf->first_sw->sw_id = hw->port_info->sw_id;
4630 
4631 	err = ice_setup_pf_sw(pf);
4632 	if (err) {
4633 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4634 		goto err_alloc_sw_unroll;
4635 	}
4636 
4637 	clear_bit(ICE_SERVICE_DIS, pf->state);
4638 
4639 	/* tell the firmware we are up */
4640 	err = ice_send_version(pf);
4641 	if (err) {
4642 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4643 			UTS_RELEASE, err);
4644 		goto err_send_version_unroll;
4645 	}
4646 
4647 	/* since everything is good, start the service timer */
4648 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4649 
4650 	err = ice_init_link_events(pf->hw.port_info);
4651 	if (err) {
4652 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4653 		goto err_send_version_unroll;
4654 	}
4655 
4656 	/* not a fatal error if this fails */
4657 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4658 	if (err)
4659 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4660 
4661 	/* not a fatal error if this fails */
4662 	err = ice_update_link_info(pf->hw.port_info);
4663 	if (err)
4664 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4665 
4666 	ice_init_link_dflt_override(pf->hw.port_info);
4667 
4668 	ice_check_link_cfg_err(pf,
4669 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4670 
4671 	/* if media available, initialize PHY settings */
4672 	if (pf->hw.port_info->phy.link_info.link_info &
4673 	    ICE_AQ_MEDIA_AVAILABLE) {
4674 		/* not a fatal error if this fails */
4675 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4676 		if (err)
4677 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4678 
4679 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4680 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4681 
4682 			if (vsi)
4683 				ice_configure_phy(vsi);
4684 		}
4685 	} else {
4686 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4687 	}
4688 
4689 	ice_verify_cacheline_size(pf);
4690 
4691 	/* Save wakeup reason register for later use */
4692 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4693 
4694 	/* check for a power management event */
4695 	ice_print_wake_reason(pf);
4696 
4697 	/* clear wake status, all bits */
4698 	wr32(hw, PFPM_WUS, U32_MAX);
4699 
4700 	/* Disable WoL at init, wait for user to enable */
4701 	device_set_wakeup_enable(dev, false);
4702 
4703 	if (ice_is_safe_mode(pf)) {
4704 		ice_set_safe_mode_vlan_cfg(pf);
4705 		goto probe_done;
4706 	}
4707 
4708 	/* initialize DDP driven features */
4709 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4710 		ice_ptp_init(pf);
4711 
4712 	/* Note: Flow director init failure is non-fatal to load */
4713 	if (ice_init_fdir(pf))
4714 		dev_err(dev, "could not initialize flow director\n");
4715 
4716 	/* Note: DCB init failure is non-fatal to load */
4717 	if (ice_init_pf_dcb(pf, false)) {
4718 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4719 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4720 	} else {
4721 		ice_cfg_lldp_mib_change(&pf->hw, true);
4722 	}
4723 
4724 	if (ice_init_lag(pf))
4725 		dev_warn(dev, "Failed to init link aggregation support\n");
4726 
4727 	/* print PCI link speed and width */
4728 	pcie_print_link_status(pf->pdev);
4729 
4730 probe_done:
4731 	err = ice_register_netdev(pf);
4732 	if (err)
4733 		goto err_netdev_reg;
4734 
4735 	err = ice_devlink_register_params(pf);
4736 	if (err)
4737 		goto err_netdev_reg;
4738 
4739 	/* ready to go, so clear down state bit */
4740 	clear_bit(ICE_DOWN, pf->state);
4741 	if (ice_is_aux_ena(pf)) {
4742 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4743 		if (pf->aux_idx < 0) {
4744 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4745 			err = -ENOMEM;
4746 			goto err_devlink_reg_param;
4747 		}
4748 
4749 		err = ice_init_rdma(pf);
4750 		if (err) {
4751 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4752 			err = -EIO;
4753 			goto err_init_aux_unroll;
4754 		}
4755 	} else {
4756 		dev_warn(dev, "RDMA is not supported on this device\n");
4757 	}
4758 
4759 	ice_devlink_register(pf);
4760 	return 0;
4761 
4762 err_init_aux_unroll:
4763 	pf->adev = NULL;
4764 	ida_free(&ice_aux_ida, pf->aux_idx);
4765 err_devlink_reg_param:
4766 	ice_devlink_unregister_params(pf);
4767 err_netdev_reg:
4768 err_send_version_unroll:
4769 	ice_vsi_release_all(pf);
4770 err_alloc_sw_unroll:
4771 	set_bit(ICE_SERVICE_DIS, pf->state);
4772 	set_bit(ICE_DOWN, pf->state);
4773 	devm_kfree(dev, pf->first_sw);
4774 err_msix_misc_unroll:
4775 	ice_free_irq_msix_misc(pf);
4776 err_init_interrupt_unroll:
4777 	ice_clear_interrupt_scheme(pf);
4778 err_init_vsi_unroll:
4779 	devm_kfree(dev, pf->vsi);
4780 err_init_pf_unroll:
4781 	ice_deinit_pf(pf);
4782 	ice_devlink_destroy_regions(pf);
4783 	ice_deinit_hw(hw);
4784 err_exit_unroll:
4785 	pci_disable_pcie_error_reporting(pdev);
4786 	pci_disable_device(pdev);
4787 	return err;
4788 }
4789 
4790 /**
4791  * ice_set_wake - enable or disable Wake on LAN
4792  * @pf: pointer to the PF struct
4793  *
4794  * Simple helper for WoL control
4795  */
4796 static void ice_set_wake(struct ice_pf *pf)
4797 {
4798 	struct ice_hw *hw = &pf->hw;
4799 	bool wol = pf->wol_ena;
4800 
4801 	/* clear wake state, otherwise new wake events won't fire */
4802 	wr32(hw, PFPM_WUS, U32_MAX);
4803 
4804 	/* enable / disable APM wake up, no RMW needed */
4805 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4806 
4807 	/* set magic packet filter enabled */
4808 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4809 }
4810 
4811 /**
4812  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4813  * @pf: pointer to the PF struct
4814  *
4815  * Issue firmware command to enable multicast magic wake, making
4816  * sure that any locally administered address (LAA) is used for
4817  * wake, and that PF reset doesn't undo the LAA.
4818  */
4819 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4820 {
4821 	struct device *dev = ice_pf_to_dev(pf);
4822 	struct ice_hw *hw = &pf->hw;
4823 	u8 mac_addr[ETH_ALEN];
4824 	struct ice_vsi *vsi;
4825 	int status;
4826 	u8 flags;
4827 
4828 	if (!pf->wol_ena)
4829 		return;
4830 
4831 	vsi = ice_get_main_vsi(pf);
4832 	if (!vsi)
4833 		return;
4834 
4835 	/* Get current MAC address in case it's an LAA */
4836 	if (vsi->netdev)
4837 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4838 	else
4839 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4840 
4841 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4842 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4843 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4844 
4845 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4846 	if (status)
4847 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4848 			status, ice_aq_str(hw->adminq.sq_last_status));
4849 }
4850 
4851 /**
4852  * ice_remove - Device removal routine
4853  * @pdev: PCI device information struct
4854  */
4855 static void ice_remove(struct pci_dev *pdev)
4856 {
4857 	struct ice_pf *pf = pci_get_drvdata(pdev);
4858 	int i;
4859 
4860 	ice_devlink_unregister(pf);
4861 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4862 		if (!ice_is_reset_in_progress(pf->state))
4863 			break;
4864 		msleep(100);
4865 	}
4866 
4867 	ice_tc_indir_block_remove(pf);
4868 
4869 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4870 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4871 		ice_free_vfs(pf);
4872 	}
4873 
4874 	ice_service_task_stop(pf);
4875 
4876 	ice_aq_cancel_waiting_tasks(pf);
4877 	ice_unplug_aux_dev(pf);
4878 	if (pf->aux_idx >= 0)
4879 		ida_free(&ice_aux_ida, pf->aux_idx);
4880 	ice_devlink_unregister_params(pf);
4881 	set_bit(ICE_DOWN, pf->state);
4882 
4883 	ice_deinit_lag(pf);
4884 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4885 		ice_ptp_release(pf);
4886 	if (!ice_is_safe_mode(pf))
4887 		ice_remove_arfs(pf);
4888 	ice_setup_mc_magic_wake(pf);
4889 	ice_vsi_release_all(pf);
4890 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4891 	ice_set_wake(pf);
4892 	ice_free_irq_msix_misc(pf);
4893 	ice_for_each_vsi(pf, i) {
4894 		if (!pf->vsi[i])
4895 			continue;
4896 		ice_vsi_free_q_vectors(pf->vsi[i]);
4897 	}
4898 	ice_deinit_pf(pf);
4899 	ice_devlink_destroy_regions(pf);
4900 	ice_deinit_hw(&pf->hw);
4901 
4902 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4903 	 * do it via ice_schedule_reset() since there is no need to rebuild
4904 	 * and the service task is already stopped.
4905 	 */
4906 	ice_reset(&pf->hw, ICE_RESET_PFR);
4907 	pci_wait_for_pending_transaction(pdev);
4908 	ice_clear_interrupt_scheme(pf);
4909 	pci_disable_pcie_error_reporting(pdev);
4910 	pci_disable_device(pdev);
4911 }
4912 
4913 /**
4914  * ice_shutdown - PCI callback for shutting down device
4915  * @pdev: PCI device information struct
4916  */
4917 static void ice_shutdown(struct pci_dev *pdev)
4918 {
4919 	struct ice_pf *pf = pci_get_drvdata(pdev);
4920 
4921 	ice_remove(pdev);
4922 
4923 	if (system_state == SYSTEM_POWER_OFF) {
4924 		pci_wake_from_d3(pdev, pf->wol_ena);
4925 		pci_set_power_state(pdev, PCI_D3hot);
4926 	}
4927 }
4928 
4929 #ifdef CONFIG_PM
4930 /**
4931  * ice_prepare_for_shutdown - prep for PCI shutdown
4932  * @pf: board private structure
4933  *
4934  * Inform or close all dependent features in prep for PCI device shutdown
4935  */
4936 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4937 {
4938 	struct ice_hw *hw = &pf->hw;
4939 	u32 v;
4940 
4941 	/* Notify VFs of impending reset */
4942 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4943 		ice_vc_notify_reset(pf);
4944 
4945 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4946 
4947 	/* disable the VSIs and their queues that are not already DOWN */
4948 	ice_pf_dis_all_vsi(pf, false);
4949 
4950 	ice_for_each_vsi(pf, v)
4951 		if (pf->vsi[v])
4952 			pf->vsi[v]->vsi_num = 0;
4953 
4954 	ice_shutdown_all_ctrlq(hw);
4955 }
4956 
4957 /**
4958  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4959  * @pf: board private structure to reinitialize
4960  *
4961  * This routine reinitialize interrupt scheme that was cleared during
4962  * power management suspend callback.
4963  *
4964  * This should be called during resume routine to re-allocate the q_vectors
4965  * and reacquire interrupts.
4966  */
4967 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4968 {
4969 	struct device *dev = ice_pf_to_dev(pf);
4970 	int ret, v;
4971 
4972 	/* Since we clear MSIX flag during suspend, we need to
4973 	 * set it back during resume...
4974 	 */
4975 
4976 	ret = ice_init_interrupt_scheme(pf);
4977 	if (ret) {
4978 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4979 		return ret;
4980 	}
4981 
4982 	/* Remap vectors and rings, after successful re-init interrupts */
4983 	ice_for_each_vsi(pf, v) {
4984 		if (!pf->vsi[v])
4985 			continue;
4986 
4987 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4988 		if (ret)
4989 			goto err_reinit;
4990 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4991 	}
4992 
4993 	ret = ice_req_irq_msix_misc(pf);
4994 	if (ret) {
4995 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4996 			ret);
4997 		goto err_reinit;
4998 	}
4999 
5000 	return 0;
5001 
5002 err_reinit:
5003 	while (v--)
5004 		if (pf->vsi[v])
5005 			ice_vsi_free_q_vectors(pf->vsi[v]);
5006 
5007 	return ret;
5008 }
5009 
5010 /**
5011  * ice_suspend
5012  * @dev: generic device information structure
5013  *
5014  * Power Management callback to quiesce the device and prepare
5015  * for D3 transition.
5016  */
5017 static int __maybe_unused ice_suspend(struct device *dev)
5018 {
5019 	struct pci_dev *pdev = to_pci_dev(dev);
5020 	struct ice_pf *pf;
5021 	int disabled, v;
5022 
5023 	pf = pci_get_drvdata(pdev);
5024 
5025 	if (!ice_pf_state_is_nominal(pf)) {
5026 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5027 		return -EBUSY;
5028 	}
5029 
5030 	/* Stop watchdog tasks until resume completion.
5031 	 * Even though it is most likely that the service task is
5032 	 * disabled if the device is suspended or down, the service task's
5033 	 * state is controlled by a different state bit, and we should
5034 	 * store and honor whatever state that bit is in at this point.
5035 	 */
5036 	disabled = ice_service_task_stop(pf);
5037 
5038 	ice_unplug_aux_dev(pf);
5039 
5040 	/* Already suspended?, then there is nothing to do */
5041 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5042 		if (!disabled)
5043 			ice_service_task_restart(pf);
5044 		return 0;
5045 	}
5046 
5047 	if (test_bit(ICE_DOWN, pf->state) ||
5048 	    ice_is_reset_in_progress(pf->state)) {
5049 		dev_err(dev, "can't suspend device in reset or already down\n");
5050 		if (!disabled)
5051 			ice_service_task_restart(pf);
5052 		return 0;
5053 	}
5054 
5055 	ice_setup_mc_magic_wake(pf);
5056 
5057 	ice_prepare_for_shutdown(pf);
5058 
5059 	ice_set_wake(pf);
5060 
5061 	/* Free vectors, clear the interrupt scheme and release IRQs
5062 	 * for proper hibernation, especially with large number of CPUs.
5063 	 * Otherwise hibernation might fail when mapping all the vectors back
5064 	 * to CPU0.
5065 	 */
5066 	ice_free_irq_msix_misc(pf);
5067 	ice_for_each_vsi(pf, v) {
5068 		if (!pf->vsi[v])
5069 			continue;
5070 		ice_vsi_free_q_vectors(pf->vsi[v]);
5071 	}
5072 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
5073 	ice_clear_interrupt_scheme(pf);
5074 
5075 	pci_save_state(pdev);
5076 	pci_wake_from_d3(pdev, pf->wol_ena);
5077 	pci_set_power_state(pdev, PCI_D3hot);
5078 	return 0;
5079 }
5080 
5081 /**
5082  * ice_resume - PM callback for waking up from D3
5083  * @dev: generic device information structure
5084  */
5085 static int __maybe_unused ice_resume(struct device *dev)
5086 {
5087 	struct pci_dev *pdev = to_pci_dev(dev);
5088 	enum ice_reset_req reset_type;
5089 	struct ice_pf *pf;
5090 	struct ice_hw *hw;
5091 	int ret;
5092 
5093 	pci_set_power_state(pdev, PCI_D0);
5094 	pci_restore_state(pdev);
5095 	pci_save_state(pdev);
5096 
5097 	if (!pci_device_is_present(pdev))
5098 		return -ENODEV;
5099 
5100 	ret = pci_enable_device_mem(pdev);
5101 	if (ret) {
5102 		dev_err(dev, "Cannot enable device after suspend\n");
5103 		return ret;
5104 	}
5105 
5106 	pf = pci_get_drvdata(pdev);
5107 	hw = &pf->hw;
5108 
5109 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5110 	ice_print_wake_reason(pf);
5111 
5112 	/* We cleared the interrupt scheme when we suspended, so we need to
5113 	 * restore it now to resume device functionality.
5114 	 */
5115 	ret = ice_reinit_interrupt_scheme(pf);
5116 	if (ret)
5117 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5118 
5119 	clear_bit(ICE_DOWN, pf->state);
5120 	/* Now perform PF reset and rebuild */
5121 	reset_type = ICE_RESET_PFR;
5122 	/* re-enable service task for reset, but allow reset to schedule it */
5123 	clear_bit(ICE_SERVICE_DIS, pf->state);
5124 
5125 	if (ice_schedule_reset(pf, reset_type))
5126 		dev_err(dev, "Reset during resume failed.\n");
5127 
5128 	clear_bit(ICE_SUSPENDED, pf->state);
5129 	ice_service_task_restart(pf);
5130 
5131 	/* Restart the service task */
5132 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5133 
5134 	return 0;
5135 }
5136 #endif /* CONFIG_PM */
5137 
5138 /**
5139  * ice_pci_err_detected - warning that PCI error has been detected
5140  * @pdev: PCI device information struct
5141  * @err: the type of PCI error
5142  *
5143  * Called to warn that something happened on the PCI bus and the error handling
5144  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5145  */
5146 static pci_ers_result_t
5147 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5148 {
5149 	struct ice_pf *pf = pci_get_drvdata(pdev);
5150 
5151 	if (!pf) {
5152 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5153 			__func__, err);
5154 		return PCI_ERS_RESULT_DISCONNECT;
5155 	}
5156 
5157 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5158 		ice_service_task_stop(pf);
5159 
5160 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5161 			set_bit(ICE_PFR_REQ, pf->state);
5162 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5163 		}
5164 	}
5165 
5166 	return PCI_ERS_RESULT_NEED_RESET;
5167 }
5168 
5169 /**
5170  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5171  * @pdev: PCI device information struct
5172  *
5173  * Called to determine if the driver can recover from the PCI slot reset by
5174  * using a register read to determine if the device is recoverable.
5175  */
5176 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5177 {
5178 	struct ice_pf *pf = pci_get_drvdata(pdev);
5179 	pci_ers_result_t result;
5180 	int err;
5181 	u32 reg;
5182 
5183 	err = pci_enable_device_mem(pdev);
5184 	if (err) {
5185 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5186 			err);
5187 		result = PCI_ERS_RESULT_DISCONNECT;
5188 	} else {
5189 		pci_set_master(pdev);
5190 		pci_restore_state(pdev);
5191 		pci_save_state(pdev);
5192 		pci_wake_from_d3(pdev, false);
5193 
5194 		/* Check for life */
5195 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5196 		if (!reg)
5197 			result = PCI_ERS_RESULT_RECOVERED;
5198 		else
5199 			result = PCI_ERS_RESULT_DISCONNECT;
5200 	}
5201 
5202 	err = pci_aer_clear_nonfatal_status(pdev);
5203 	if (err)
5204 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
5205 			err);
5206 		/* non-fatal, continue */
5207 
5208 	return result;
5209 }
5210 
5211 /**
5212  * ice_pci_err_resume - restart operations after PCI error recovery
5213  * @pdev: PCI device information struct
5214  *
5215  * Called to allow the driver to bring things back up after PCI error and/or
5216  * reset recovery have finished
5217  */
5218 static void ice_pci_err_resume(struct pci_dev *pdev)
5219 {
5220 	struct ice_pf *pf = pci_get_drvdata(pdev);
5221 
5222 	if (!pf) {
5223 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5224 			__func__);
5225 		return;
5226 	}
5227 
5228 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5229 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5230 			__func__);
5231 		return;
5232 	}
5233 
5234 	ice_restore_all_vfs_msi_state(pdev);
5235 
5236 	ice_do_reset(pf, ICE_RESET_PFR);
5237 	ice_service_task_restart(pf);
5238 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5239 }
5240 
5241 /**
5242  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5243  * @pdev: PCI device information struct
5244  */
5245 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5246 {
5247 	struct ice_pf *pf = pci_get_drvdata(pdev);
5248 
5249 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5250 		ice_service_task_stop(pf);
5251 
5252 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5253 			set_bit(ICE_PFR_REQ, pf->state);
5254 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5255 		}
5256 	}
5257 }
5258 
5259 /**
5260  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5261  * @pdev: PCI device information struct
5262  */
5263 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5264 {
5265 	ice_pci_err_resume(pdev);
5266 }
5267 
5268 /* ice_pci_tbl - PCI Device ID Table
5269  *
5270  * Wildcard entries (PCI_ANY_ID) should come last
5271  * Last entry must be all 0s
5272  *
5273  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5274  *   Class, Class Mask, private data (not used) }
5275  */
5276 static const struct pci_device_id ice_pci_tbl[] = {
5277 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5278 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5279 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5280 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5281 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5282 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5283 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5284 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5285 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5286 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5287 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5288 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5289 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5290 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5291 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5292 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5293 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5294 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5295 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5296 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5297 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5298 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5299 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5300 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5301 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5302 	/* required last entry */
5303 	{ 0, }
5304 };
5305 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5306 
5307 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5308 
5309 static const struct pci_error_handlers ice_pci_err_handler = {
5310 	.error_detected = ice_pci_err_detected,
5311 	.slot_reset = ice_pci_err_slot_reset,
5312 	.reset_prepare = ice_pci_err_reset_prepare,
5313 	.reset_done = ice_pci_err_reset_done,
5314 	.resume = ice_pci_err_resume
5315 };
5316 
5317 static struct pci_driver ice_driver = {
5318 	.name = KBUILD_MODNAME,
5319 	.id_table = ice_pci_tbl,
5320 	.probe = ice_probe,
5321 	.remove = ice_remove,
5322 #ifdef CONFIG_PM
5323 	.driver.pm = &ice_pm_ops,
5324 #endif /* CONFIG_PM */
5325 	.shutdown = ice_shutdown,
5326 	.sriov_configure = ice_sriov_configure,
5327 	.err_handler = &ice_pci_err_handler
5328 };
5329 
5330 /**
5331  * ice_module_init - Driver registration routine
5332  *
5333  * ice_module_init is the first routine called when the driver is
5334  * loaded. All it does is register with the PCI subsystem.
5335  */
5336 static int __init ice_module_init(void)
5337 {
5338 	int status;
5339 
5340 	pr_info("%s\n", ice_driver_string);
5341 	pr_info("%s\n", ice_copyright);
5342 
5343 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5344 	if (!ice_wq) {
5345 		pr_err("Failed to create workqueue\n");
5346 		return -ENOMEM;
5347 	}
5348 
5349 	status = pci_register_driver(&ice_driver);
5350 	if (status) {
5351 		pr_err("failed to register PCI driver, err %d\n", status);
5352 		destroy_workqueue(ice_wq);
5353 	}
5354 
5355 	return status;
5356 }
5357 module_init(ice_module_init);
5358 
5359 /**
5360  * ice_module_exit - Driver exit cleanup routine
5361  *
5362  * ice_module_exit is called just before the driver is removed
5363  * from memory.
5364  */
5365 static void __exit ice_module_exit(void)
5366 {
5367 	pci_unregister_driver(&ice_driver);
5368 	destroy_workqueue(ice_wq);
5369 	pr_info("module unloaded\n");
5370 }
5371 module_exit(ice_module_exit);
5372 
5373 /**
5374  * ice_set_mac_address - NDO callback to set MAC address
5375  * @netdev: network interface device structure
5376  * @pi: pointer to an address structure
5377  *
5378  * Returns 0 on success, negative on failure
5379  */
5380 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5381 {
5382 	struct ice_netdev_priv *np = netdev_priv(netdev);
5383 	struct ice_vsi *vsi = np->vsi;
5384 	struct ice_pf *pf = vsi->back;
5385 	struct ice_hw *hw = &pf->hw;
5386 	struct sockaddr *addr = pi;
5387 	u8 old_mac[ETH_ALEN];
5388 	u8 flags = 0;
5389 	u8 *mac;
5390 	int err;
5391 
5392 	mac = (u8 *)addr->sa_data;
5393 
5394 	if (!is_valid_ether_addr(mac))
5395 		return -EADDRNOTAVAIL;
5396 
5397 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5398 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5399 		return 0;
5400 	}
5401 
5402 	if (test_bit(ICE_DOWN, pf->state) ||
5403 	    ice_is_reset_in_progress(pf->state)) {
5404 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5405 			   mac);
5406 		return -EBUSY;
5407 	}
5408 
5409 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5410 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5411 			   mac);
5412 		return -EAGAIN;
5413 	}
5414 
5415 	netif_addr_lock_bh(netdev);
5416 	ether_addr_copy(old_mac, netdev->dev_addr);
5417 	/* change the netdev's MAC address */
5418 	eth_hw_addr_set(netdev, mac);
5419 	netif_addr_unlock_bh(netdev);
5420 
5421 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5422 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5423 	if (err && err != -ENOENT) {
5424 		err = -EADDRNOTAVAIL;
5425 		goto err_update_filters;
5426 	}
5427 
5428 	/* Add filter for new MAC. If filter exists, return success */
5429 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5430 	if (err == -EEXIST)
5431 		/* Although this MAC filter is already present in hardware it's
5432 		 * possible in some cases (e.g. bonding) that dev_addr was
5433 		 * modified outside of the driver and needs to be restored back
5434 		 * to this value.
5435 		 */
5436 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5437 	else if (err)
5438 		/* error if the new filter addition failed */
5439 		err = -EADDRNOTAVAIL;
5440 
5441 err_update_filters:
5442 	if (err) {
5443 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5444 			   mac);
5445 		netif_addr_lock_bh(netdev);
5446 		eth_hw_addr_set(netdev, old_mac);
5447 		netif_addr_unlock_bh(netdev);
5448 		return err;
5449 	}
5450 
5451 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5452 		   netdev->dev_addr);
5453 
5454 	/* write new MAC address to the firmware */
5455 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5456 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5457 	if (err) {
5458 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5459 			   mac, err);
5460 	}
5461 	return 0;
5462 }
5463 
5464 /**
5465  * ice_set_rx_mode - NDO callback to set the netdev filters
5466  * @netdev: network interface device structure
5467  */
5468 static void ice_set_rx_mode(struct net_device *netdev)
5469 {
5470 	struct ice_netdev_priv *np = netdev_priv(netdev);
5471 	struct ice_vsi *vsi = np->vsi;
5472 
5473 	if (!vsi)
5474 		return;
5475 
5476 	/* Set the flags to synchronize filters
5477 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5478 	 * flags
5479 	 */
5480 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5481 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5482 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5483 
5484 	/* schedule our worker thread which will take care of
5485 	 * applying the new filter changes
5486 	 */
5487 	ice_service_task_schedule(vsi->back);
5488 }
5489 
5490 /**
5491  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5492  * @netdev: network interface device structure
5493  * @queue_index: Queue ID
5494  * @maxrate: maximum bandwidth in Mbps
5495  */
5496 static int
5497 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5498 {
5499 	struct ice_netdev_priv *np = netdev_priv(netdev);
5500 	struct ice_vsi *vsi = np->vsi;
5501 	u16 q_handle;
5502 	int status;
5503 	u8 tc;
5504 
5505 	/* Validate maxrate requested is within permitted range */
5506 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5507 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5508 			   maxrate, queue_index);
5509 		return -EINVAL;
5510 	}
5511 
5512 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5513 	tc = ice_dcb_get_tc(vsi, queue_index);
5514 
5515 	/* Set BW back to default, when user set maxrate to 0 */
5516 	if (!maxrate)
5517 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5518 					       q_handle, ICE_MAX_BW);
5519 	else
5520 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5521 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5522 	if (status)
5523 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5524 			   status);
5525 
5526 	return status;
5527 }
5528 
5529 /**
5530  * ice_fdb_add - add an entry to the hardware database
5531  * @ndm: the input from the stack
5532  * @tb: pointer to array of nladdr (unused)
5533  * @dev: the net device pointer
5534  * @addr: the MAC address entry being added
5535  * @vid: VLAN ID
5536  * @flags: instructions from stack about fdb operation
5537  * @extack: netlink extended ack
5538  */
5539 static int
5540 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5541 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5542 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5543 {
5544 	int err;
5545 
5546 	if (vid) {
5547 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5548 		return -EINVAL;
5549 	}
5550 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5551 		netdev_err(dev, "FDB only supports static addresses\n");
5552 		return -EINVAL;
5553 	}
5554 
5555 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5556 		err = dev_uc_add_excl(dev, addr);
5557 	else if (is_multicast_ether_addr(addr))
5558 		err = dev_mc_add_excl(dev, addr);
5559 	else
5560 		err = -EINVAL;
5561 
5562 	/* Only return duplicate errors if NLM_F_EXCL is set */
5563 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5564 		err = 0;
5565 
5566 	return err;
5567 }
5568 
5569 /**
5570  * ice_fdb_del - delete an entry from the hardware database
5571  * @ndm: the input from the stack
5572  * @tb: pointer to array of nladdr (unused)
5573  * @dev: the net device pointer
5574  * @addr: the MAC address entry being added
5575  * @vid: VLAN ID
5576  */
5577 static int
5578 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5579 	    struct net_device *dev, const unsigned char *addr,
5580 	    __always_unused u16 vid)
5581 {
5582 	int err;
5583 
5584 	if (ndm->ndm_state & NUD_PERMANENT) {
5585 		netdev_err(dev, "FDB only supports static addresses\n");
5586 		return -EINVAL;
5587 	}
5588 
5589 	if (is_unicast_ether_addr(addr))
5590 		err = dev_uc_del(dev, addr);
5591 	else if (is_multicast_ether_addr(addr))
5592 		err = dev_mc_del(dev, addr);
5593 	else
5594 		err = -EINVAL;
5595 
5596 	return err;
5597 }
5598 
5599 /**
5600  * ice_set_features - set the netdev feature flags
5601  * @netdev: ptr to the netdev being adjusted
5602  * @features: the feature set that the stack is suggesting
5603  */
5604 static int
5605 ice_set_features(struct net_device *netdev, netdev_features_t features)
5606 {
5607 	struct ice_netdev_priv *np = netdev_priv(netdev);
5608 	struct ice_vsi *vsi = np->vsi;
5609 	struct ice_pf *pf = vsi->back;
5610 	int ret = 0;
5611 
5612 	/* Don't set any netdev advanced features with device in Safe Mode */
5613 	if (ice_is_safe_mode(vsi->back)) {
5614 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5615 		return ret;
5616 	}
5617 
5618 	/* Do not change setting during reset */
5619 	if (ice_is_reset_in_progress(pf->state)) {
5620 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5621 		return -EBUSY;
5622 	}
5623 
5624 	/* Multiple features can be changed in one call so keep features in
5625 	 * separate if/else statements to guarantee each feature is checked
5626 	 */
5627 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5628 		ice_vsi_manage_rss_lut(vsi, true);
5629 	else if (!(features & NETIF_F_RXHASH) &&
5630 		 netdev->features & NETIF_F_RXHASH)
5631 		ice_vsi_manage_rss_lut(vsi, false);
5632 
5633 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5634 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5635 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5636 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5637 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5638 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5639 
5640 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5641 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5642 		ret = ice_vsi_manage_vlan_insertion(vsi);
5643 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5644 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5645 		ret = ice_vsi_manage_vlan_insertion(vsi);
5646 
5647 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5648 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5649 		ret = ice_cfg_vlan_pruning(vsi, true);
5650 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5651 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5652 		ret = ice_cfg_vlan_pruning(vsi, false);
5653 
5654 	if ((features & NETIF_F_NTUPLE) &&
5655 	    !(netdev->features & NETIF_F_NTUPLE)) {
5656 		ice_vsi_manage_fdir(vsi, true);
5657 		ice_init_arfs(vsi);
5658 	} else if (!(features & NETIF_F_NTUPLE) &&
5659 		 (netdev->features & NETIF_F_NTUPLE)) {
5660 		ice_vsi_manage_fdir(vsi, false);
5661 		ice_clear_arfs(vsi);
5662 	}
5663 
5664 	/* don't turn off hw_tc_offload when ADQ is already enabled */
5665 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5666 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5667 		return -EACCES;
5668 	}
5669 
5670 	if ((features & NETIF_F_HW_TC) &&
5671 	    !(netdev->features & NETIF_F_HW_TC))
5672 		set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5673 	else
5674 		clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5675 
5676 	return ret;
5677 }
5678 
5679 /**
5680  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5681  * @vsi: VSI to setup VLAN properties for
5682  */
5683 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5684 {
5685 	int ret = 0;
5686 
5687 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5688 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5689 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5690 		ret = ice_vsi_manage_vlan_insertion(vsi);
5691 
5692 	return ret;
5693 }
5694 
5695 /**
5696  * ice_vsi_cfg - Setup the VSI
5697  * @vsi: the VSI being configured
5698  *
5699  * Return 0 on success and negative value on error
5700  */
5701 int ice_vsi_cfg(struct ice_vsi *vsi)
5702 {
5703 	int err;
5704 
5705 	if (vsi->netdev) {
5706 		ice_set_rx_mode(vsi->netdev);
5707 
5708 		err = ice_vsi_vlan_setup(vsi);
5709 
5710 		if (err)
5711 			return err;
5712 	}
5713 	ice_vsi_cfg_dcb_rings(vsi);
5714 
5715 	err = ice_vsi_cfg_lan_txqs(vsi);
5716 	if (!err && ice_is_xdp_ena_vsi(vsi))
5717 		err = ice_vsi_cfg_xdp_txqs(vsi);
5718 	if (!err)
5719 		err = ice_vsi_cfg_rxqs(vsi);
5720 
5721 	return err;
5722 }
5723 
5724 /* THEORY OF MODERATION:
5725  * The ice driver hardware works differently than the hardware that DIMLIB was
5726  * originally made for. ice hardware doesn't have packet count limits that
5727  * can trigger an interrupt, but it *does* have interrupt rate limit support,
5728  * which is hard-coded to a limit of 250,000 ints/second.
5729  * If not using dynamic moderation, the INTRL value can be modified
5730  * by ethtool rx-usecs-high.
5731  */
5732 struct ice_dim {
5733 	/* the throttle rate for interrupts, basically worst case delay before
5734 	 * an initial interrupt fires, value is stored in microseconds.
5735 	 */
5736 	u16 itr;
5737 };
5738 
5739 /* Make a different profile for Rx that doesn't allow quite so aggressive
5740  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
5741  * second.
5742  */
5743 static const struct ice_dim rx_profile[] = {
5744 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
5745 	{8},    /* 125,000 ints/s */
5746 	{16},   /*  62,500 ints/s */
5747 	{62},   /*  16,129 ints/s */
5748 	{126}   /*   7,936 ints/s */
5749 };
5750 
5751 /* The transmit profile, which has the same sorts of values
5752  * as the previous struct
5753  */
5754 static const struct ice_dim tx_profile[] = {
5755 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
5756 	{8},    /* 125,000 ints/s */
5757 	{40},   /*  16,125 ints/s */
5758 	{128},  /*   7,812 ints/s */
5759 	{256}   /*   3,906 ints/s */
5760 };
5761 
5762 static void ice_tx_dim_work(struct work_struct *work)
5763 {
5764 	struct ice_ring_container *rc;
5765 	struct dim *dim;
5766 	u16 itr;
5767 
5768 	dim = container_of(work, struct dim, work);
5769 	rc = (struct ice_ring_container *)dim->priv;
5770 
5771 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
5772 
5773 	/* look up the values in our local table */
5774 	itr = tx_profile[dim->profile_ix].itr;
5775 
5776 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
5777 	ice_write_itr(rc, itr);
5778 
5779 	dim->state = DIM_START_MEASURE;
5780 }
5781 
5782 static void ice_rx_dim_work(struct work_struct *work)
5783 {
5784 	struct ice_ring_container *rc;
5785 	struct dim *dim;
5786 	u16 itr;
5787 
5788 	dim = container_of(work, struct dim, work);
5789 	rc = (struct ice_ring_container *)dim->priv;
5790 
5791 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
5792 
5793 	/* look up the values in our local table */
5794 	itr = rx_profile[dim->profile_ix].itr;
5795 
5796 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
5797 	ice_write_itr(rc, itr);
5798 
5799 	dim->state = DIM_START_MEASURE;
5800 }
5801 
5802 #define ICE_DIM_DEFAULT_PROFILE_IX 1
5803 
5804 /**
5805  * ice_init_moderation - set up interrupt moderation
5806  * @q_vector: the vector containing rings to be configured
5807  *
5808  * Set up interrupt moderation registers, with the intent to do the right thing
5809  * when called from reset or from probe, and whether or not dynamic moderation
5810  * is enabled or not. Take special care to write all the registers in both
5811  * dynamic moderation mode or not in order to make sure hardware is in a known
5812  * state.
5813  */
5814 static void ice_init_moderation(struct ice_q_vector *q_vector)
5815 {
5816 	struct ice_ring_container *rc;
5817 	bool tx_dynamic, rx_dynamic;
5818 
5819 	rc = &q_vector->tx;
5820 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
5821 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5822 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
5823 	rc->dim.priv = rc;
5824 	tx_dynamic = ITR_IS_DYNAMIC(rc);
5825 
5826 	/* set the initial TX ITR to match the above */
5827 	ice_write_itr(rc, tx_dynamic ?
5828 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
5829 
5830 	rc = &q_vector->rx;
5831 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
5832 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5833 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
5834 	rc->dim.priv = rc;
5835 	rx_dynamic = ITR_IS_DYNAMIC(rc);
5836 
5837 	/* set the initial RX ITR to match the above */
5838 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
5839 				       rc->itr_setting);
5840 
5841 	ice_set_q_vector_intrl(q_vector);
5842 }
5843 
5844 /**
5845  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5846  * @vsi: the VSI being configured
5847  */
5848 static void ice_napi_enable_all(struct ice_vsi *vsi)
5849 {
5850 	int q_idx;
5851 
5852 	if (!vsi->netdev)
5853 		return;
5854 
5855 	ice_for_each_q_vector(vsi, q_idx) {
5856 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5857 
5858 		ice_init_moderation(q_vector);
5859 
5860 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
5861 			napi_enable(&q_vector->napi);
5862 	}
5863 }
5864 
5865 /**
5866  * ice_up_complete - Finish the last steps of bringing up a connection
5867  * @vsi: The VSI being configured
5868  *
5869  * Return 0 on success and negative value on error
5870  */
5871 static int ice_up_complete(struct ice_vsi *vsi)
5872 {
5873 	struct ice_pf *pf = vsi->back;
5874 	int err;
5875 
5876 	ice_vsi_cfg_msix(vsi);
5877 
5878 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5879 	 * Tx queue group list was configured and the context bits were
5880 	 * programmed using ice_vsi_cfg_txqs
5881 	 */
5882 	err = ice_vsi_start_all_rx_rings(vsi);
5883 	if (err)
5884 		return err;
5885 
5886 	clear_bit(ICE_VSI_DOWN, vsi->state);
5887 	ice_napi_enable_all(vsi);
5888 	ice_vsi_ena_irq(vsi);
5889 
5890 	if (vsi->port_info &&
5891 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5892 	    vsi->netdev) {
5893 		ice_print_link_msg(vsi, true);
5894 		netif_tx_start_all_queues(vsi->netdev);
5895 		netif_carrier_on(vsi->netdev);
5896 		if (!ice_is_e810(&pf->hw))
5897 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
5898 	}
5899 
5900 	/* clear this now, and the first stats read will be used as baseline */
5901 	vsi->stat_offsets_loaded = false;
5902 
5903 	ice_service_task_schedule(pf);
5904 
5905 	return 0;
5906 }
5907 
5908 /**
5909  * ice_up - Bring the connection back up after being down
5910  * @vsi: VSI being configured
5911  */
5912 int ice_up(struct ice_vsi *vsi)
5913 {
5914 	int err;
5915 
5916 	err = ice_vsi_cfg(vsi);
5917 	if (!err)
5918 		err = ice_up_complete(vsi);
5919 
5920 	return err;
5921 }
5922 
5923 /**
5924  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5925  * @syncp: pointer to u64_stats_sync
5926  * @stats: stats that pkts and bytes count will be taken from
5927  * @pkts: packets stats counter
5928  * @bytes: bytes stats counter
5929  *
5930  * This function fetches stats from the ring considering the atomic operations
5931  * that needs to be performed to read u64 values in 32 bit machine.
5932  */
5933 static void
5934 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats,
5935 			     u64 *pkts, u64 *bytes)
5936 {
5937 	unsigned int start;
5938 
5939 	do {
5940 		start = u64_stats_fetch_begin_irq(syncp);
5941 		*pkts = stats.pkts;
5942 		*bytes = stats.bytes;
5943 	} while (u64_stats_fetch_retry_irq(syncp, start));
5944 }
5945 
5946 /**
5947  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5948  * @vsi: the VSI to be updated
5949  * @vsi_stats: the stats struct to be updated
5950  * @rings: rings to work on
5951  * @count: number of rings
5952  */
5953 static void
5954 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
5955 			     struct rtnl_link_stats64 *vsi_stats,
5956 			     struct ice_tx_ring **rings, u16 count)
5957 {
5958 	u16 i;
5959 
5960 	for (i = 0; i < count; i++) {
5961 		struct ice_tx_ring *ring;
5962 		u64 pkts = 0, bytes = 0;
5963 
5964 		ring = READ_ONCE(rings[i]);
5965 		if (!ring)
5966 			continue;
5967 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
5968 		vsi_stats->tx_packets += pkts;
5969 		vsi_stats->tx_bytes += bytes;
5970 		vsi->tx_restart += ring->tx_stats.restart_q;
5971 		vsi->tx_busy += ring->tx_stats.tx_busy;
5972 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5973 	}
5974 }
5975 
5976 /**
5977  * ice_update_vsi_ring_stats - Update VSI stats counters
5978  * @vsi: the VSI to be updated
5979  */
5980 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5981 {
5982 	struct rtnl_link_stats64 *vsi_stats;
5983 	u64 pkts, bytes;
5984 	int i;
5985 
5986 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
5987 	if (!vsi_stats)
5988 		return;
5989 
5990 	/* reset non-netdev (extended) stats */
5991 	vsi->tx_restart = 0;
5992 	vsi->tx_busy = 0;
5993 	vsi->tx_linearize = 0;
5994 	vsi->rx_buf_failed = 0;
5995 	vsi->rx_page_failed = 0;
5996 
5997 	rcu_read_lock();
5998 
5999 	/* update Tx rings counters */
6000 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6001 				     vsi->num_txq);
6002 
6003 	/* update Rx rings counters */
6004 	ice_for_each_rxq(vsi, i) {
6005 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6006 
6007 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6008 		vsi_stats->rx_packets += pkts;
6009 		vsi_stats->rx_bytes += bytes;
6010 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6011 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6012 	}
6013 
6014 	/* update XDP Tx rings counters */
6015 	if (ice_is_xdp_ena_vsi(vsi))
6016 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6017 					     vsi->num_xdp_txq);
6018 
6019 	rcu_read_unlock();
6020 
6021 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6022 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6023 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6024 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6025 
6026 	kfree(vsi_stats);
6027 }
6028 
6029 /**
6030  * ice_update_vsi_stats - Update VSI stats counters
6031  * @vsi: the VSI to be updated
6032  */
6033 void ice_update_vsi_stats(struct ice_vsi *vsi)
6034 {
6035 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6036 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6037 	struct ice_pf *pf = vsi->back;
6038 
6039 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6040 	    test_bit(ICE_CFG_BUSY, pf->state))
6041 		return;
6042 
6043 	/* get stats as recorded by Tx/Rx rings */
6044 	ice_update_vsi_ring_stats(vsi);
6045 
6046 	/* get VSI stats as recorded by the hardware */
6047 	ice_update_eth_stats(vsi);
6048 
6049 	cur_ns->tx_errors = cur_es->tx_errors;
6050 	cur_ns->rx_dropped = cur_es->rx_discards;
6051 	cur_ns->tx_dropped = cur_es->tx_discards;
6052 	cur_ns->multicast = cur_es->rx_multicast;
6053 
6054 	/* update some more netdev stats if this is main VSI */
6055 	if (vsi->type == ICE_VSI_PF) {
6056 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6057 		cur_ns->rx_errors = pf->stats.crc_errors +
6058 				    pf->stats.illegal_bytes +
6059 				    pf->stats.rx_len_errors +
6060 				    pf->stats.rx_undersize +
6061 				    pf->hw_csum_rx_error +
6062 				    pf->stats.rx_jabber +
6063 				    pf->stats.rx_fragments +
6064 				    pf->stats.rx_oversize;
6065 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6066 		/* record drops from the port level */
6067 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6068 	}
6069 }
6070 
6071 /**
6072  * ice_update_pf_stats - Update PF port stats counters
6073  * @pf: PF whose stats needs to be updated
6074  */
6075 void ice_update_pf_stats(struct ice_pf *pf)
6076 {
6077 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6078 	struct ice_hw *hw = &pf->hw;
6079 	u16 fd_ctr_base;
6080 	u8 port;
6081 
6082 	port = hw->port_info->lport;
6083 	prev_ps = &pf->stats_prev;
6084 	cur_ps = &pf->stats;
6085 
6086 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6087 			  &prev_ps->eth.rx_bytes,
6088 			  &cur_ps->eth.rx_bytes);
6089 
6090 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6091 			  &prev_ps->eth.rx_unicast,
6092 			  &cur_ps->eth.rx_unicast);
6093 
6094 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6095 			  &prev_ps->eth.rx_multicast,
6096 			  &cur_ps->eth.rx_multicast);
6097 
6098 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6099 			  &prev_ps->eth.rx_broadcast,
6100 			  &cur_ps->eth.rx_broadcast);
6101 
6102 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6103 			  &prev_ps->eth.rx_discards,
6104 			  &cur_ps->eth.rx_discards);
6105 
6106 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6107 			  &prev_ps->eth.tx_bytes,
6108 			  &cur_ps->eth.tx_bytes);
6109 
6110 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6111 			  &prev_ps->eth.tx_unicast,
6112 			  &cur_ps->eth.tx_unicast);
6113 
6114 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6115 			  &prev_ps->eth.tx_multicast,
6116 			  &cur_ps->eth.tx_multicast);
6117 
6118 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6119 			  &prev_ps->eth.tx_broadcast,
6120 			  &cur_ps->eth.tx_broadcast);
6121 
6122 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6123 			  &prev_ps->tx_dropped_link_down,
6124 			  &cur_ps->tx_dropped_link_down);
6125 
6126 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6127 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6128 
6129 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6130 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6131 
6132 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6133 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6134 
6135 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6136 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6137 
6138 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6139 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6140 
6141 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6142 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6143 
6144 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6145 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6146 
6147 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6148 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6149 
6150 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6151 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6152 
6153 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6154 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6155 
6156 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6157 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6158 
6159 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6160 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6161 
6162 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6163 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6164 
6165 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6166 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6167 
6168 	fd_ctr_base = hw->fd_ctr_base;
6169 
6170 	ice_stat_update40(hw,
6171 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6172 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6173 			  &cur_ps->fd_sb_match);
6174 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6175 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6176 
6177 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6178 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6179 
6180 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6181 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6182 
6183 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6184 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6185 
6186 	ice_update_dcb_stats(pf);
6187 
6188 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6189 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6190 
6191 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6192 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6193 
6194 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6195 			  &prev_ps->mac_local_faults,
6196 			  &cur_ps->mac_local_faults);
6197 
6198 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6199 			  &prev_ps->mac_remote_faults,
6200 			  &cur_ps->mac_remote_faults);
6201 
6202 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6203 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6204 
6205 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6206 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6207 
6208 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6209 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6210 
6211 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6212 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6213 
6214 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6215 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6216 
6217 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6218 
6219 	pf->stat_prev_loaded = true;
6220 }
6221 
6222 /**
6223  * ice_get_stats64 - get statistics for network device structure
6224  * @netdev: network interface device structure
6225  * @stats: main device statistics structure
6226  */
6227 static
6228 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6229 {
6230 	struct ice_netdev_priv *np = netdev_priv(netdev);
6231 	struct rtnl_link_stats64 *vsi_stats;
6232 	struct ice_vsi *vsi = np->vsi;
6233 
6234 	vsi_stats = &vsi->net_stats;
6235 
6236 	if (!vsi->num_txq || !vsi->num_rxq)
6237 		return;
6238 
6239 	/* netdev packet/byte stats come from ring counter. These are obtained
6240 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6241 	 * But, only call the update routine and read the registers if VSI is
6242 	 * not down.
6243 	 */
6244 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6245 		ice_update_vsi_ring_stats(vsi);
6246 	stats->tx_packets = vsi_stats->tx_packets;
6247 	stats->tx_bytes = vsi_stats->tx_bytes;
6248 	stats->rx_packets = vsi_stats->rx_packets;
6249 	stats->rx_bytes = vsi_stats->rx_bytes;
6250 
6251 	/* The rest of the stats can be read from the hardware but instead we
6252 	 * just return values that the watchdog task has already obtained from
6253 	 * the hardware.
6254 	 */
6255 	stats->multicast = vsi_stats->multicast;
6256 	stats->tx_errors = vsi_stats->tx_errors;
6257 	stats->tx_dropped = vsi_stats->tx_dropped;
6258 	stats->rx_errors = vsi_stats->rx_errors;
6259 	stats->rx_dropped = vsi_stats->rx_dropped;
6260 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6261 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6262 }
6263 
6264 /**
6265  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6266  * @vsi: VSI having NAPI disabled
6267  */
6268 static void ice_napi_disable_all(struct ice_vsi *vsi)
6269 {
6270 	int q_idx;
6271 
6272 	if (!vsi->netdev)
6273 		return;
6274 
6275 	ice_for_each_q_vector(vsi, q_idx) {
6276 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6277 
6278 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6279 			napi_disable(&q_vector->napi);
6280 
6281 		cancel_work_sync(&q_vector->tx.dim.work);
6282 		cancel_work_sync(&q_vector->rx.dim.work);
6283 	}
6284 }
6285 
6286 /**
6287  * ice_down - Shutdown the connection
6288  * @vsi: The VSI being stopped
6289  *
6290  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6291  */
6292 int ice_down(struct ice_vsi *vsi)
6293 {
6294 	int i, tx_err, rx_err, link_err = 0;
6295 
6296 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6297 
6298 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6299 		if (!ice_is_e810(&vsi->back->hw))
6300 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6301 		netif_carrier_off(vsi->netdev);
6302 		netif_tx_disable(vsi->netdev);
6303 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6304 		ice_eswitch_stop_all_tx_queues(vsi->back);
6305 	}
6306 
6307 	ice_vsi_dis_irq(vsi);
6308 
6309 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6310 	if (tx_err)
6311 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6312 			   vsi->vsi_num, tx_err);
6313 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6314 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6315 		if (tx_err)
6316 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6317 				   vsi->vsi_num, tx_err);
6318 	}
6319 
6320 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6321 	if (rx_err)
6322 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6323 			   vsi->vsi_num, rx_err);
6324 
6325 	ice_napi_disable_all(vsi);
6326 
6327 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6328 		link_err = ice_force_phys_link_state(vsi, false);
6329 		if (link_err)
6330 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6331 				   vsi->vsi_num, link_err);
6332 	}
6333 
6334 	ice_for_each_txq(vsi, i)
6335 		ice_clean_tx_ring(vsi->tx_rings[i]);
6336 
6337 	ice_for_each_rxq(vsi, i)
6338 		ice_clean_rx_ring(vsi->rx_rings[i]);
6339 
6340 	if (tx_err || rx_err || link_err) {
6341 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6342 			   vsi->vsi_num, vsi->vsw->sw_id);
6343 		return -EIO;
6344 	}
6345 
6346 	return 0;
6347 }
6348 
6349 /**
6350  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6351  * @vsi: VSI having resources allocated
6352  *
6353  * Return 0 on success, negative on failure
6354  */
6355 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6356 {
6357 	int i, err = 0;
6358 
6359 	if (!vsi->num_txq) {
6360 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6361 			vsi->vsi_num);
6362 		return -EINVAL;
6363 	}
6364 
6365 	ice_for_each_txq(vsi, i) {
6366 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6367 
6368 		if (!ring)
6369 			return -EINVAL;
6370 
6371 		if (vsi->netdev)
6372 			ring->netdev = vsi->netdev;
6373 		err = ice_setup_tx_ring(ring);
6374 		if (err)
6375 			break;
6376 	}
6377 
6378 	return err;
6379 }
6380 
6381 /**
6382  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6383  * @vsi: VSI having resources allocated
6384  *
6385  * Return 0 on success, negative on failure
6386  */
6387 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6388 {
6389 	int i, err = 0;
6390 
6391 	if (!vsi->num_rxq) {
6392 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6393 			vsi->vsi_num);
6394 		return -EINVAL;
6395 	}
6396 
6397 	ice_for_each_rxq(vsi, i) {
6398 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6399 
6400 		if (!ring)
6401 			return -EINVAL;
6402 
6403 		if (vsi->netdev)
6404 			ring->netdev = vsi->netdev;
6405 		err = ice_setup_rx_ring(ring);
6406 		if (err)
6407 			break;
6408 	}
6409 
6410 	return err;
6411 }
6412 
6413 /**
6414  * ice_vsi_open_ctrl - open control VSI for use
6415  * @vsi: the VSI to open
6416  *
6417  * Initialization of the Control VSI
6418  *
6419  * Returns 0 on success, negative value on error
6420  */
6421 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6422 {
6423 	char int_name[ICE_INT_NAME_STR_LEN];
6424 	struct ice_pf *pf = vsi->back;
6425 	struct device *dev;
6426 	int err;
6427 
6428 	dev = ice_pf_to_dev(pf);
6429 	/* allocate descriptors */
6430 	err = ice_vsi_setup_tx_rings(vsi);
6431 	if (err)
6432 		goto err_setup_tx;
6433 
6434 	err = ice_vsi_setup_rx_rings(vsi);
6435 	if (err)
6436 		goto err_setup_rx;
6437 
6438 	err = ice_vsi_cfg(vsi);
6439 	if (err)
6440 		goto err_setup_rx;
6441 
6442 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6443 		 dev_driver_string(dev), dev_name(dev));
6444 	err = ice_vsi_req_irq_msix(vsi, int_name);
6445 	if (err)
6446 		goto err_setup_rx;
6447 
6448 	ice_vsi_cfg_msix(vsi);
6449 
6450 	err = ice_vsi_start_all_rx_rings(vsi);
6451 	if (err)
6452 		goto err_up_complete;
6453 
6454 	clear_bit(ICE_VSI_DOWN, vsi->state);
6455 	ice_vsi_ena_irq(vsi);
6456 
6457 	return 0;
6458 
6459 err_up_complete:
6460 	ice_down(vsi);
6461 err_setup_rx:
6462 	ice_vsi_free_rx_rings(vsi);
6463 err_setup_tx:
6464 	ice_vsi_free_tx_rings(vsi);
6465 
6466 	return err;
6467 }
6468 
6469 /**
6470  * ice_vsi_open - Called when a network interface is made active
6471  * @vsi: the VSI to open
6472  *
6473  * Initialization of the VSI
6474  *
6475  * Returns 0 on success, negative value on error
6476  */
6477 int ice_vsi_open(struct ice_vsi *vsi)
6478 {
6479 	char int_name[ICE_INT_NAME_STR_LEN];
6480 	struct ice_pf *pf = vsi->back;
6481 	int err;
6482 
6483 	/* allocate descriptors */
6484 	err = ice_vsi_setup_tx_rings(vsi);
6485 	if (err)
6486 		goto err_setup_tx;
6487 
6488 	err = ice_vsi_setup_rx_rings(vsi);
6489 	if (err)
6490 		goto err_setup_rx;
6491 
6492 	err = ice_vsi_cfg(vsi);
6493 	if (err)
6494 		goto err_setup_rx;
6495 
6496 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6497 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6498 	err = ice_vsi_req_irq_msix(vsi, int_name);
6499 	if (err)
6500 		goto err_setup_rx;
6501 
6502 	if (vsi->type == ICE_VSI_PF) {
6503 		/* Notify the stack of the actual queue counts. */
6504 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6505 		if (err)
6506 			goto err_set_qs;
6507 
6508 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6509 		if (err)
6510 			goto err_set_qs;
6511 	}
6512 
6513 	err = ice_up_complete(vsi);
6514 	if (err)
6515 		goto err_up_complete;
6516 
6517 	return 0;
6518 
6519 err_up_complete:
6520 	ice_down(vsi);
6521 err_set_qs:
6522 	ice_vsi_free_irq(vsi);
6523 err_setup_rx:
6524 	ice_vsi_free_rx_rings(vsi);
6525 err_setup_tx:
6526 	ice_vsi_free_tx_rings(vsi);
6527 
6528 	return err;
6529 }
6530 
6531 /**
6532  * ice_vsi_release_all - Delete all VSIs
6533  * @pf: PF from which all VSIs are being removed
6534  */
6535 static void ice_vsi_release_all(struct ice_pf *pf)
6536 {
6537 	int err, i;
6538 
6539 	if (!pf->vsi)
6540 		return;
6541 
6542 	ice_for_each_vsi(pf, i) {
6543 		if (!pf->vsi[i])
6544 			continue;
6545 
6546 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6547 			continue;
6548 
6549 		err = ice_vsi_release(pf->vsi[i]);
6550 		if (err)
6551 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6552 				i, err, pf->vsi[i]->vsi_num);
6553 	}
6554 }
6555 
6556 /**
6557  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6558  * @pf: pointer to the PF instance
6559  * @type: VSI type to rebuild
6560  *
6561  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6562  */
6563 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6564 {
6565 	struct device *dev = ice_pf_to_dev(pf);
6566 	int i, err;
6567 
6568 	ice_for_each_vsi(pf, i) {
6569 		struct ice_vsi *vsi = pf->vsi[i];
6570 
6571 		if (!vsi || vsi->type != type)
6572 			continue;
6573 
6574 		/* rebuild the VSI */
6575 		err = ice_vsi_rebuild(vsi, true);
6576 		if (err) {
6577 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6578 				err, vsi->idx, ice_vsi_type_str(type));
6579 			return err;
6580 		}
6581 
6582 		/* replay filters for the VSI */
6583 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6584 		if (err) {
6585 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6586 				err, vsi->idx, ice_vsi_type_str(type));
6587 			return err;
6588 		}
6589 
6590 		/* Re-map HW VSI number, using VSI handle that has been
6591 		 * previously validated in ice_replay_vsi() call above
6592 		 */
6593 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6594 
6595 		/* enable the VSI */
6596 		err = ice_ena_vsi(vsi, false);
6597 		if (err) {
6598 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6599 				err, vsi->idx, ice_vsi_type_str(type));
6600 			return err;
6601 		}
6602 
6603 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6604 			 ice_vsi_type_str(type));
6605 	}
6606 
6607 	return 0;
6608 }
6609 
6610 /**
6611  * ice_update_pf_netdev_link - Update PF netdev link status
6612  * @pf: pointer to the PF instance
6613  */
6614 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6615 {
6616 	bool link_up;
6617 	int i;
6618 
6619 	ice_for_each_vsi(pf, i) {
6620 		struct ice_vsi *vsi = pf->vsi[i];
6621 
6622 		if (!vsi || vsi->type != ICE_VSI_PF)
6623 			return;
6624 
6625 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6626 		if (link_up) {
6627 			netif_carrier_on(pf->vsi[i]->netdev);
6628 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6629 		} else {
6630 			netif_carrier_off(pf->vsi[i]->netdev);
6631 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6632 		}
6633 	}
6634 }
6635 
6636 /**
6637  * ice_rebuild - rebuild after reset
6638  * @pf: PF to rebuild
6639  * @reset_type: type of reset
6640  *
6641  * Do not rebuild VF VSI in this flow because that is already handled via
6642  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6643  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6644  * to reset/rebuild all the VF VSI twice.
6645  */
6646 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6647 {
6648 	struct device *dev = ice_pf_to_dev(pf);
6649 	struct ice_hw *hw = &pf->hw;
6650 	int err;
6651 
6652 	if (test_bit(ICE_DOWN, pf->state))
6653 		goto clear_recovery;
6654 
6655 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6656 
6657 	if (reset_type == ICE_RESET_EMPR) {
6658 		/* If an EMP reset has occurred, any previously pending flash
6659 		 * update will have completed. We no longer know whether or
6660 		 * not the NVM update EMP reset is restricted.
6661 		 */
6662 		pf->fw_emp_reset_disabled = false;
6663 	}
6664 
6665 	err = ice_init_all_ctrlq(hw);
6666 	if (err) {
6667 		dev_err(dev, "control queues init failed %d\n", err);
6668 		goto err_init_ctrlq;
6669 	}
6670 
6671 	/* if DDP was previously loaded successfully */
6672 	if (!ice_is_safe_mode(pf)) {
6673 		/* reload the SW DB of filter tables */
6674 		if (reset_type == ICE_RESET_PFR)
6675 			ice_fill_blk_tbls(hw);
6676 		else
6677 			/* Reload DDP Package after CORER/GLOBR reset */
6678 			ice_load_pkg(NULL, pf);
6679 	}
6680 
6681 	err = ice_clear_pf_cfg(hw);
6682 	if (err) {
6683 		dev_err(dev, "clear PF configuration failed %d\n", err);
6684 		goto err_init_ctrlq;
6685 	}
6686 
6687 	if (pf->first_sw->dflt_vsi_ena)
6688 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6689 	/* clear the default VSI configuration if it exists */
6690 	pf->first_sw->dflt_vsi = NULL;
6691 	pf->first_sw->dflt_vsi_ena = false;
6692 
6693 	ice_clear_pxe_mode(hw);
6694 
6695 	err = ice_init_nvm(hw);
6696 	if (err) {
6697 		dev_err(dev, "ice_init_nvm failed %d\n", err);
6698 		goto err_init_ctrlq;
6699 	}
6700 
6701 	err = ice_get_caps(hw);
6702 	if (err) {
6703 		dev_err(dev, "ice_get_caps failed %d\n", err);
6704 		goto err_init_ctrlq;
6705 	}
6706 
6707 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6708 	if (err) {
6709 		dev_err(dev, "set_mac_cfg failed %d\n", err);
6710 		goto err_init_ctrlq;
6711 	}
6712 
6713 	err = ice_sched_init_port(hw->port_info);
6714 	if (err)
6715 		goto err_sched_init_port;
6716 
6717 	/* start misc vector */
6718 	err = ice_req_irq_msix_misc(pf);
6719 	if (err) {
6720 		dev_err(dev, "misc vector setup failed: %d\n", err);
6721 		goto err_sched_init_port;
6722 	}
6723 
6724 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6725 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6726 		if (!rd32(hw, PFQF_FD_SIZE)) {
6727 			u16 unused, guar, b_effort;
6728 
6729 			guar = hw->func_caps.fd_fltr_guar;
6730 			b_effort = hw->func_caps.fd_fltr_best_effort;
6731 
6732 			/* force guaranteed filter pool for PF */
6733 			ice_alloc_fd_guar_item(hw, &unused, guar);
6734 			/* force shared filter pool for PF */
6735 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6736 		}
6737 	}
6738 
6739 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6740 		ice_dcb_rebuild(pf);
6741 
6742 	/* If the PF previously had enabled PTP, PTP init needs to happen before
6743 	 * the VSI rebuild. If not, this causes the PTP link status events to
6744 	 * fail.
6745 	 */
6746 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6747 		ice_ptp_reset(pf);
6748 
6749 	/* rebuild PF VSI */
6750 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6751 	if (err) {
6752 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6753 		goto err_vsi_rebuild;
6754 	}
6755 
6756 	/* configure PTP timestamping after VSI rebuild */
6757 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6758 		ice_ptp_cfg_timestamp(pf, false);
6759 
6760 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
6761 	if (err) {
6762 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
6763 		goto err_vsi_rebuild;
6764 	}
6765 
6766 	if (reset_type == ICE_RESET_PFR) {
6767 		err = ice_rebuild_channels(pf);
6768 		if (err) {
6769 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
6770 				err);
6771 			goto err_vsi_rebuild;
6772 		}
6773 	}
6774 
6775 	/* If Flow Director is active */
6776 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6777 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6778 		if (err) {
6779 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6780 			goto err_vsi_rebuild;
6781 		}
6782 
6783 		/* replay HW Flow Director recipes */
6784 		if (hw->fdir_prof)
6785 			ice_fdir_replay_flows(hw);
6786 
6787 		/* replay Flow Director filters */
6788 		ice_fdir_replay_fltrs(pf);
6789 
6790 		ice_rebuild_arfs(pf);
6791 	}
6792 
6793 	ice_update_pf_netdev_link(pf);
6794 
6795 	/* tell the firmware we are up */
6796 	err = ice_send_version(pf);
6797 	if (err) {
6798 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
6799 			err);
6800 		goto err_vsi_rebuild;
6801 	}
6802 
6803 	ice_replay_post(hw);
6804 
6805 	/* if we get here, reset flow is successful */
6806 	clear_bit(ICE_RESET_FAILED, pf->state);
6807 
6808 	ice_plug_aux_dev(pf);
6809 	return;
6810 
6811 err_vsi_rebuild:
6812 err_sched_init_port:
6813 	ice_sched_cleanup_all(hw);
6814 err_init_ctrlq:
6815 	ice_shutdown_all_ctrlq(hw);
6816 	set_bit(ICE_RESET_FAILED, pf->state);
6817 clear_recovery:
6818 	/* set this bit in PF state to control service task scheduling */
6819 	set_bit(ICE_NEEDS_RESTART, pf->state);
6820 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6821 }
6822 
6823 /**
6824  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6825  * @vsi: Pointer to VSI structure
6826  */
6827 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6828 {
6829 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6830 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6831 	else
6832 		return ICE_RXBUF_3072;
6833 }
6834 
6835 /**
6836  * ice_change_mtu - NDO callback to change the MTU
6837  * @netdev: network interface device structure
6838  * @new_mtu: new value for maximum frame size
6839  *
6840  * Returns 0 on success, negative on failure
6841  */
6842 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6843 {
6844 	struct ice_netdev_priv *np = netdev_priv(netdev);
6845 	struct ice_vsi *vsi = np->vsi;
6846 	struct ice_pf *pf = vsi->back;
6847 	u8 count = 0;
6848 	int err = 0;
6849 
6850 	if (new_mtu == (int)netdev->mtu) {
6851 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6852 		return 0;
6853 	}
6854 
6855 	if (ice_is_xdp_ena_vsi(vsi)) {
6856 		int frame_size = ice_max_xdp_frame_size(vsi);
6857 
6858 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6859 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6860 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6861 			return -EINVAL;
6862 		}
6863 	}
6864 
6865 	/* if a reset is in progress, wait for some time for it to complete */
6866 	do {
6867 		if (ice_is_reset_in_progress(pf->state)) {
6868 			count++;
6869 			usleep_range(1000, 2000);
6870 		} else {
6871 			break;
6872 		}
6873 
6874 	} while (count < 100);
6875 
6876 	if (count == 100) {
6877 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6878 		return -EBUSY;
6879 	}
6880 
6881 	netdev->mtu = (unsigned int)new_mtu;
6882 
6883 	/* if VSI is up, bring it down and then back up */
6884 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6885 		err = ice_down(vsi);
6886 		if (err) {
6887 			netdev_err(netdev, "change MTU if_down err %d\n", err);
6888 			return err;
6889 		}
6890 
6891 		err = ice_up(vsi);
6892 		if (err) {
6893 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6894 			return err;
6895 		}
6896 	}
6897 
6898 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6899 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
6900 
6901 	return err;
6902 }
6903 
6904 /**
6905  * ice_eth_ioctl - Access the hwtstamp interface
6906  * @netdev: network interface device structure
6907  * @ifr: interface request data
6908  * @cmd: ioctl command
6909  */
6910 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6911 {
6912 	struct ice_netdev_priv *np = netdev_priv(netdev);
6913 	struct ice_pf *pf = np->vsi->back;
6914 
6915 	switch (cmd) {
6916 	case SIOCGHWTSTAMP:
6917 		return ice_ptp_get_ts_config(pf, ifr);
6918 	case SIOCSHWTSTAMP:
6919 		return ice_ptp_set_ts_config(pf, ifr);
6920 	default:
6921 		return -EOPNOTSUPP;
6922 	}
6923 }
6924 
6925 /**
6926  * ice_aq_str - convert AQ err code to a string
6927  * @aq_err: the AQ error code to convert
6928  */
6929 const char *ice_aq_str(enum ice_aq_err aq_err)
6930 {
6931 	switch (aq_err) {
6932 	case ICE_AQ_RC_OK:
6933 		return "OK";
6934 	case ICE_AQ_RC_EPERM:
6935 		return "ICE_AQ_RC_EPERM";
6936 	case ICE_AQ_RC_ENOENT:
6937 		return "ICE_AQ_RC_ENOENT";
6938 	case ICE_AQ_RC_ENOMEM:
6939 		return "ICE_AQ_RC_ENOMEM";
6940 	case ICE_AQ_RC_EBUSY:
6941 		return "ICE_AQ_RC_EBUSY";
6942 	case ICE_AQ_RC_EEXIST:
6943 		return "ICE_AQ_RC_EEXIST";
6944 	case ICE_AQ_RC_EINVAL:
6945 		return "ICE_AQ_RC_EINVAL";
6946 	case ICE_AQ_RC_ENOSPC:
6947 		return "ICE_AQ_RC_ENOSPC";
6948 	case ICE_AQ_RC_ENOSYS:
6949 		return "ICE_AQ_RC_ENOSYS";
6950 	case ICE_AQ_RC_EMODE:
6951 		return "ICE_AQ_RC_EMODE";
6952 	case ICE_AQ_RC_ENOSEC:
6953 		return "ICE_AQ_RC_ENOSEC";
6954 	case ICE_AQ_RC_EBADSIG:
6955 		return "ICE_AQ_RC_EBADSIG";
6956 	case ICE_AQ_RC_ESVN:
6957 		return "ICE_AQ_RC_ESVN";
6958 	case ICE_AQ_RC_EBADMAN:
6959 		return "ICE_AQ_RC_EBADMAN";
6960 	case ICE_AQ_RC_EBADBUF:
6961 		return "ICE_AQ_RC_EBADBUF";
6962 	}
6963 
6964 	return "ICE_AQ_RC_UNKNOWN";
6965 }
6966 
6967 /**
6968  * ice_set_rss_lut - Set RSS LUT
6969  * @vsi: Pointer to VSI structure
6970  * @lut: Lookup table
6971  * @lut_size: Lookup table size
6972  *
6973  * Returns 0 on success, negative on failure
6974  */
6975 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6976 {
6977 	struct ice_aq_get_set_rss_lut_params params = {};
6978 	struct ice_hw *hw = &vsi->back->hw;
6979 	int status;
6980 
6981 	if (!lut)
6982 		return -EINVAL;
6983 
6984 	params.vsi_handle = vsi->idx;
6985 	params.lut_size = lut_size;
6986 	params.lut_type = vsi->rss_lut_type;
6987 	params.lut = lut;
6988 
6989 	status = ice_aq_set_rss_lut(hw, &params);
6990 	if (status)
6991 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
6992 			status, ice_aq_str(hw->adminq.sq_last_status));
6993 
6994 	return status;
6995 }
6996 
6997 /**
6998  * ice_set_rss_key - Set RSS key
6999  * @vsi: Pointer to the VSI structure
7000  * @seed: RSS hash seed
7001  *
7002  * Returns 0 on success, negative on failure
7003  */
7004 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7005 {
7006 	struct ice_hw *hw = &vsi->back->hw;
7007 	int status;
7008 
7009 	if (!seed)
7010 		return -EINVAL;
7011 
7012 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7013 	if (status)
7014 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7015 			status, ice_aq_str(hw->adminq.sq_last_status));
7016 
7017 	return status;
7018 }
7019 
7020 /**
7021  * ice_get_rss_lut - Get RSS LUT
7022  * @vsi: Pointer to VSI structure
7023  * @lut: Buffer to store the lookup table entries
7024  * @lut_size: Size of buffer to store the lookup table entries
7025  *
7026  * Returns 0 on success, negative on failure
7027  */
7028 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7029 {
7030 	struct ice_aq_get_set_rss_lut_params params = {};
7031 	struct ice_hw *hw = &vsi->back->hw;
7032 	int status;
7033 
7034 	if (!lut)
7035 		return -EINVAL;
7036 
7037 	params.vsi_handle = vsi->idx;
7038 	params.lut_size = lut_size;
7039 	params.lut_type = vsi->rss_lut_type;
7040 	params.lut = lut;
7041 
7042 	status = ice_aq_get_rss_lut(hw, &params);
7043 	if (status)
7044 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7045 			status, ice_aq_str(hw->adminq.sq_last_status));
7046 
7047 	return status;
7048 }
7049 
7050 /**
7051  * ice_get_rss_key - Get RSS key
7052  * @vsi: Pointer to VSI structure
7053  * @seed: Buffer to store the key in
7054  *
7055  * Returns 0 on success, negative on failure
7056  */
7057 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7058 {
7059 	struct ice_hw *hw = &vsi->back->hw;
7060 	int status;
7061 
7062 	if (!seed)
7063 		return -EINVAL;
7064 
7065 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7066 	if (status)
7067 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7068 			status, ice_aq_str(hw->adminq.sq_last_status));
7069 
7070 	return status;
7071 }
7072 
7073 /**
7074  * ice_bridge_getlink - Get the hardware bridge mode
7075  * @skb: skb buff
7076  * @pid: process ID
7077  * @seq: RTNL message seq
7078  * @dev: the netdev being configured
7079  * @filter_mask: filter mask passed in
7080  * @nlflags: netlink flags passed in
7081  *
7082  * Return the bridge mode (VEB/VEPA)
7083  */
7084 static int
7085 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7086 		   struct net_device *dev, u32 filter_mask, int nlflags)
7087 {
7088 	struct ice_netdev_priv *np = netdev_priv(dev);
7089 	struct ice_vsi *vsi = np->vsi;
7090 	struct ice_pf *pf = vsi->back;
7091 	u16 bmode;
7092 
7093 	bmode = pf->first_sw->bridge_mode;
7094 
7095 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7096 				       filter_mask, NULL);
7097 }
7098 
7099 /**
7100  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7101  * @vsi: Pointer to VSI structure
7102  * @bmode: Hardware bridge mode (VEB/VEPA)
7103  *
7104  * Returns 0 on success, negative on failure
7105  */
7106 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7107 {
7108 	struct ice_aqc_vsi_props *vsi_props;
7109 	struct ice_hw *hw = &vsi->back->hw;
7110 	struct ice_vsi_ctx *ctxt;
7111 	int ret;
7112 
7113 	vsi_props = &vsi->info;
7114 
7115 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7116 	if (!ctxt)
7117 		return -ENOMEM;
7118 
7119 	ctxt->info = vsi->info;
7120 
7121 	if (bmode == BRIDGE_MODE_VEB)
7122 		/* change from VEPA to VEB mode */
7123 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7124 	else
7125 		/* change from VEB to VEPA mode */
7126 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7127 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7128 
7129 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7130 	if (ret) {
7131 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7132 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7133 		goto out;
7134 	}
7135 	/* Update sw flags for book keeping */
7136 	vsi_props->sw_flags = ctxt->info.sw_flags;
7137 
7138 out:
7139 	kfree(ctxt);
7140 	return ret;
7141 }
7142 
7143 /**
7144  * ice_bridge_setlink - Set the hardware bridge mode
7145  * @dev: the netdev being configured
7146  * @nlh: RTNL message
7147  * @flags: bridge setlink flags
7148  * @extack: netlink extended ack
7149  *
7150  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7151  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7152  * not already set for all VSIs connected to this switch. And also update the
7153  * unicast switch filter rules for the corresponding switch of the netdev.
7154  */
7155 static int
7156 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7157 		   u16 __always_unused flags,
7158 		   struct netlink_ext_ack __always_unused *extack)
7159 {
7160 	struct ice_netdev_priv *np = netdev_priv(dev);
7161 	struct ice_pf *pf = np->vsi->back;
7162 	struct nlattr *attr, *br_spec;
7163 	struct ice_hw *hw = &pf->hw;
7164 	struct ice_sw *pf_sw;
7165 	int rem, v, err = 0;
7166 
7167 	pf_sw = pf->first_sw;
7168 	/* find the attribute in the netlink message */
7169 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7170 
7171 	nla_for_each_nested(attr, br_spec, rem) {
7172 		__u16 mode;
7173 
7174 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7175 			continue;
7176 		mode = nla_get_u16(attr);
7177 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7178 			return -EINVAL;
7179 		/* Continue  if bridge mode is not being flipped */
7180 		if (mode == pf_sw->bridge_mode)
7181 			continue;
7182 		/* Iterates through the PF VSI list and update the loopback
7183 		 * mode of the VSI
7184 		 */
7185 		ice_for_each_vsi(pf, v) {
7186 			if (!pf->vsi[v])
7187 				continue;
7188 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7189 			if (err)
7190 				return err;
7191 		}
7192 
7193 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7194 		/* Update the unicast switch filter rules for the corresponding
7195 		 * switch of the netdev
7196 		 */
7197 		err = ice_update_sw_rule_bridge_mode(hw);
7198 		if (err) {
7199 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7200 				   mode, err,
7201 				   ice_aq_str(hw->adminq.sq_last_status));
7202 			/* revert hw->evb_veb */
7203 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7204 			return err;
7205 		}
7206 
7207 		pf_sw->bridge_mode = mode;
7208 	}
7209 
7210 	return 0;
7211 }
7212 
7213 /**
7214  * ice_tx_timeout - Respond to a Tx Hang
7215  * @netdev: network interface device structure
7216  * @txqueue: Tx queue
7217  */
7218 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7219 {
7220 	struct ice_netdev_priv *np = netdev_priv(netdev);
7221 	struct ice_tx_ring *tx_ring = NULL;
7222 	struct ice_vsi *vsi = np->vsi;
7223 	struct ice_pf *pf = vsi->back;
7224 	u32 i;
7225 
7226 	pf->tx_timeout_count++;
7227 
7228 	/* Check if PFC is enabled for the TC to which the queue belongs
7229 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7230 	 * need to reset and rebuild
7231 	 */
7232 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7233 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7234 			 txqueue);
7235 		return;
7236 	}
7237 
7238 	/* now that we have an index, find the tx_ring struct */
7239 	ice_for_each_txq(vsi, i)
7240 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7241 			if (txqueue == vsi->tx_rings[i]->q_index) {
7242 				tx_ring = vsi->tx_rings[i];
7243 				break;
7244 			}
7245 
7246 	/* Reset recovery level if enough time has elapsed after last timeout.
7247 	 * Also ensure no new reset action happens before next timeout period.
7248 	 */
7249 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7250 		pf->tx_timeout_recovery_level = 1;
7251 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7252 				       netdev->watchdog_timeo)))
7253 		return;
7254 
7255 	if (tx_ring) {
7256 		struct ice_hw *hw = &pf->hw;
7257 		u32 head, val = 0;
7258 
7259 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7260 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7261 		/* Read interrupt register */
7262 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7263 
7264 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7265 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7266 			    head, tx_ring->next_to_use, val);
7267 	}
7268 
7269 	pf->tx_timeout_last_recovery = jiffies;
7270 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7271 		    pf->tx_timeout_recovery_level, txqueue);
7272 
7273 	switch (pf->tx_timeout_recovery_level) {
7274 	case 1:
7275 		set_bit(ICE_PFR_REQ, pf->state);
7276 		break;
7277 	case 2:
7278 		set_bit(ICE_CORER_REQ, pf->state);
7279 		break;
7280 	case 3:
7281 		set_bit(ICE_GLOBR_REQ, pf->state);
7282 		break;
7283 	default:
7284 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7285 		set_bit(ICE_DOWN, pf->state);
7286 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7287 		set_bit(ICE_SERVICE_DIS, pf->state);
7288 		break;
7289 	}
7290 
7291 	ice_service_task_schedule(pf);
7292 	pf->tx_timeout_recovery_level++;
7293 }
7294 
7295 /**
7296  * ice_setup_tc_cls_flower - flower classifier offloads
7297  * @np: net device to configure
7298  * @filter_dev: device on which filter is added
7299  * @cls_flower: offload data
7300  */
7301 static int
7302 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7303 			struct net_device *filter_dev,
7304 			struct flow_cls_offload *cls_flower)
7305 {
7306 	struct ice_vsi *vsi = np->vsi;
7307 
7308 	if (cls_flower->common.chain_index)
7309 		return -EOPNOTSUPP;
7310 
7311 	switch (cls_flower->command) {
7312 	case FLOW_CLS_REPLACE:
7313 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7314 	case FLOW_CLS_DESTROY:
7315 		return ice_del_cls_flower(vsi, cls_flower);
7316 	default:
7317 		return -EINVAL;
7318 	}
7319 }
7320 
7321 /**
7322  * ice_setup_tc_block_cb - callback handler registered for TC block
7323  * @type: TC SETUP type
7324  * @type_data: TC flower offload data that contains user input
7325  * @cb_priv: netdev private data
7326  */
7327 static int
7328 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7329 {
7330 	struct ice_netdev_priv *np = cb_priv;
7331 
7332 	switch (type) {
7333 	case TC_SETUP_CLSFLOWER:
7334 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7335 					       type_data);
7336 	default:
7337 		return -EOPNOTSUPP;
7338 	}
7339 }
7340 
7341 /**
7342  * ice_validate_mqprio_qopt - Validate TCF input parameters
7343  * @vsi: Pointer to VSI
7344  * @mqprio_qopt: input parameters for mqprio queue configuration
7345  *
7346  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7347  * needed), and make sure user doesn't specify qcount and BW rate limit
7348  * for TCs, which are more than "num_tc"
7349  */
7350 static int
7351 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7352 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7353 {
7354 	u64 sum_max_rate = 0, sum_min_rate = 0;
7355 	int non_power_of_2_qcount = 0;
7356 	struct ice_pf *pf = vsi->back;
7357 	int max_rss_q_cnt = 0;
7358 	struct device *dev;
7359 	int i, speed;
7360 	u8 num_tc;
7361 
7362 	if (vsi->type != ICE_VSI_PF)
7363 		return -EINVAL;
7364 
7365 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7366 	    mqprio_qopt->qopt.num_tc < 1 ||
7367 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7368 		return -EINVAL;
7369 
7370 	dev = ice_pf_to_dev(pf);
7371 	vsi->ch_rss_size = 0;
7372 	num_tc = mqprio_qopt->qopt.num_tc;
7373 
7374 	for (i = 0; num_tc; i++) {
7375 		int qcount = mqprio_qopt->qopt.count[i];
7376 		u64 max_rate, min_rate, rem;
7377 
7378 		if (!qcount)
7379 			return -EINVAL;
7380 
7381 		if (is_power_of_2(qcount)) {
7382 			if (non_power_of_2_qcount &&
7383 			    qcount > non_power_of_2_qcount) {
7384 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7385 					qcount, non_power_of_2_qcount);
7386 				return -EINVAL;
7387 			}
7388 			if (qcount > max_rss_q_cnt)
7389 				max_rss_q_cnt = qcount;
7390 		} else {
7391 			if (non_power_of_2_qcount &&
7392 			    qcount != non_power_of_2_qcount) {
7393 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7394 					qcount, non_power_of_2_qcount);
7395 				return -EINVAL;
7396 			}
7397 			if (qcount < max_rss_q_cnt) {
7398 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7399 					qcount, max_rss_q_cnt);
7400 				return -EINVAL;
7401 			}
7402 			max_rss_q_cnt = qcount;
7403 			non_power_of_2_qcount = qcount;
7404 		}
7405 
7406 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7407 		 * converts the bandwidth rate limit into Bytes/s when
7408 		 * passing it down to the driver. So convert input bandwidth
7409 		 * from Bytes/s to Kbps
7410 		 */
7411 		max_rate = mqprio_qopt->max_rate[i];
7412 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7413 		sum_max_rate += max_rate;
7414 
7415 		/* min_rate is minimum guaranteed rate and it can't be zero */
7416 		min_rate = mqprio_qopt->min_rate[i];
7417 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7418 		sum_min_rate += min_rate;
7419 
7420 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7421 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7422 				min_rate, ICE_MIN_BW_LIMIT);
7423 			return -EINVAL;
7424 		}
7425 
7426 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7427 		if (rem) {
7428 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7429 				i, ICE_MIN_BW_LIMIT);
7430 			return -EINVAL;
7431 		}
7432 
7433 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7434 		if (rem) {
7435 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7436 				i, ICE_MIN_BW_LIMIT);
7437 			return -EINVAL;
7438 		}
7439 
7440 		/* min_rate can't be more than max_rate, except when max_rate
7441 		 * is zero (implies max_rate sought is max line rate). In such
7442 		 * a case min_rate can be more than max.
7443 		 */
7444 		if (max_rate && min_rate > max_rate) {
7445 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7446 				min_rate, max_rate);
7447 			return -EINVAL;
7448 		}
7449 
7450 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7451 			break;
7452 		if (mqprio_qopt->qopt.offset[i + 1] !=
7453 		    (mqprio_qopt->qopt.offset[i] + qcount))
7454 			return -EINVAL;
7455 	}
7456 	if (vsi->num_rxq <
7457 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7458 		return -EINVAL;
7459 	if (vsi->num_txq <
7460 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7461 		return -EINVAL;
7462 
7463 	speed = ice_get_link_speed_kbps(vsi);
7464 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7465 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7466 			sum_max_rate, speed);
7467 		return -EINVAL;
7468 	}
7469 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7470 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7471 			sum_min_rate, speed);
7472 		return -EINVAL;
7473 	}
7474 
7475 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7476 	vsi->ch_rss_size = max_rss_q_cnt;
7477 
7478 	return 0;
7479 }
7480 
7481 /**
7482  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7483  * @pf: ptr to PF device
7484  * @vsi: ptr to VSI
7485  */
7486 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7487 {
7488 	struct device *dev = ice_pf_to_dev(pf);
7489 	bool added = false;
7490 	struct ice_hw *hw;
7491 	int flow;
7492 
7493 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7494 		return -EINVAL;
7495 
7496 	hw = &pf->hw;
7497 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7498 		struct ice_fd_hw_prof *prof;
7499 		int tun, status;
7500 		u64 entry_h;
7501 
7502 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7503 		      hw->fdir_prof[flow]->cnt))
7504 			continue;
7505 
7506 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7507 			enum ice_flow_priority prio;
7508 			u64 prof_id;
7509 
7510 			/* add this VSI to FDir profile for this flow */
7511 			prio = ICE_FLOW_PRIO_NORMAL;
7512 			prof = hw->fdir_prof[flow];
7513 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7514 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7515 						    prof->vsi_h[0], vsi->idx,
7516 						    prio, prof->fdir_seg[tun],
7517 						    &entry_h);
7518 			if (status) {
7519 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7520 					vsi->idx, flow);
7521 				continue;
7522 			}
7523 
7524 			prof->entry_h[prof->cnt][tun] = entry_h;
7525 		}
7526 
7527 		/* store VSI for filter replay and delete */
7528 		prof->vsi_h[prof->cnt] = vsi->idx;
7529 		prof->cnt++;
7530 
7531 		added = true;
7532 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7533 			flow);
7534 	}
7535 
7536 	if (!added)
7537 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7538 
7539 	return 0;
7540 }
7541 
7542 /**
7543  * ice_add_channel - add a channel by adding VSI
7544  * @pf: ptr to PF device
7545  * @sw_id: underlying HW switching element ID
7546  * @ch: ptr to channel structure
7547  *
7548  * Add a channel (VSI) using add_vsi and queue_map
7549  */
7550 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7551 {
7552 	struct device *dev = ice_pf_to_dev(pf);
7553 	struct ice_vsi *vsi;
7554 
7555 	if (ch->type != ICE_VSI_CHNL) {
7556 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7557 		return -EINVAL;
7558 	}
7559 
7560 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7561 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7562 		dev_err(dev, "create chnl VSI failure\n");
7563 		return -EINVAL;
7564 	}
7565 
7566 	ice_add_vsi_to_fdir(pf, vsi);
7567 
7568 	ch->sw_id = sw_id;
7569 	ch->vsi_num = vsi->vsi_num;
7570 	ch->info.mapping_flags = vsi->info.mapping_flags;
7571 	ch->ch_vsi = vsi;
7572 	/* set the back pointer of channel for newly created VSI */
7573 	vsi->ch = ch;
7574 
7575 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7576 	       sizeof(vsi->info.q_mapping));
7577 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7578 	       sizeof(vsi->info.tc_mapping));
7579 
7580 	return 0;
7581 }
7582 
7583 /**
7584  * ice_chnl_cfg_res
7585  * @vsi: the VSI being setup
7586  * @ch: ptr to channel structure
7587  *
7588  * Configure channel specific resources such as rings, vector.
7589  */
7590 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7591 {
7592 	int i;
7593 
7594 	for (i = 0; i < ch->num_txq; i++) {
7595 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7596 		struct ice_ring_container *rc;
7597 		struct ice_tx_ring *tx_ring;
7598 		struct ice_rx_ring *rx_ring;
7599 
7600 		tx_ring = vsi->tx_rings[ch->base_q + i];
7601 		rx_ring = vsi->rx_rings[ch->base_q + i];
7602 		if (!tx_ring || !rx_ring)
7603 			continue;
7604 
7605 		/* setup ring being channel enabled */
7606 		tx_ring->ch = ch;
7607 		rx_ring->ch = ch;
7608 
7609 		/* following code block sets up vector specific attributes */
7610 		tx_q_vector = tx_ring->q_vector;
7611 		rx_q_vector = rx_ring->q_vector;
7612 		if (!tx_q_vector && !rx_q_vector)
7613 			continue;
7614 
7615 		if (tx_q_vector) {
7616 			tx_q_vector->ch = ch;
7617 			/* setup Tx and Rx ITR setting if DIM is off */
7618 			rc = &tx_q_vector->tx;
7619 			if (!ITR_IS_DYNAMIC(rc))
7620 				ice_write_itr(rc, rc->itr_setting);
7621 		}
7622 		if (rx_q_vector) {
7623 			rx_q_vector->ch = ch;
7624 			/* setup Tx and Rx ITR setting if DIM is off */
7625 			rc = &rx_q_vector->rx;
7626 			if (!ITR_IS_DYNAMIC(rc))
7627 				ice_write_itr(rc, rc->itr_setting);
7628 		}
7629 	}
7630 
7631 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7632 	 * GLINT_ITR register would have written to perform in-context
7633 	 * update, hence perform flush
7634 	 */
7635 	if (ch->num_txq || ch->num_rxq)
7636 		ice_flush(&vsi->back->hw);
7637 }
7638 
7639 /**
7640  * ice_cfg_chnl_all_res - configure channel resources
7641  * @vsi: pte to main_vsi
7642  * @ch: ptr to channel structure
7643  *
7644  * This function configures channel specific resources such as flow-director
7645  * counter index, and other resources such as queues, vectors, ITR settings
7646  */
7647 static void
7648 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
7649 {
7650 	/* configure channel (aka ADQ) resources such as queues, vectors,
7651 	 * ITR settings for channel specific vectors and anything else
7652 	 */
7653 	ice_chnl_cfg_res(vsi, ch);
7654 }
7655 
7656 /**
7657  * ice_setup_hw_channel - setup new channel
7658  * @pf: ptr to PF device
7659  * @vsi: the VSI being setup
7660  * @ch: ptr to channel structure
7661  * @sw_id: underlying HW switching element ID
7662  * @type: type of channel to be created (VMDq2/VF)
7663  *
7664  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7665  * and configures Tx rings accordingly
7666  */
7667 static int
7668 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7669 		     struct ice_channel *ch, u16 sw_id, u8 type)
7670 {
7671 	struct device *dev = ice_pf_to_dev(pf);
7672 	int ret;
7673 
7674 	ch->base_q = vsi->next_base_q;
7675 	ch->type = type;
7676 
7677 	ret = ice_add_channel(pf, sw_id, ch);
7678 	if (ret) {
7679 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
7680 		return ret;
7681 	}
7682 
7683 	/* configure/setup ADQ specific resources */
7684 	ice_cfg_chnl_all_res(vsi, ch);
7685 
7686 	/* make sure to update the next_base_q so that subsequent channel's
7687 	 * (aka ADQ) VSI queue map is correct
7688 	 */
7689 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
7690 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
7691 		ch->num_rxq);
7692 
7693 	return 0;
7694 }
7695 
7696 /**
7697  * ice_setup_channel - setup new channel using uplink element
7698  * @pf: ptr to PF device
7699  * @vsi: the VSI being setup
7700  * @ch: ptr to channel structure
7701  *
7702  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7703  * and uplink switching element
7704  */
7705 static bool
7706 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7707 		  struct ice_channel *ch)
7708 {
7709 	struct device *dev = ice_pf_to_dev(pf);
7710 	u16 sw_id;
7711 	int ret;
7712 
7713 	if (vsi->type != ICE_VSI_PF) {
7714 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
7715 		return false;
7716 	}
7717 
7718 	sw_id = pf->first_sw->sw_id;
7719 
7720 	/* create channel (VSI) */
7721 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
7722 	if (ret) {
7723 		dev_err(dev, "failed to setup hw_channel\n");
7724 		return false;
7725 	}
7726 	dev_dbg(dev, "successfully created channel()\n");
7727 
7728 	return ch->ch_vsi ? true : false;
7729 }
7730 
7731 /**
7732  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
7733  * @vsi: VSI to be configured
7734  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
7735  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
7736  */
7737 static int
7738 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
7739 {
7740 	int err;
7741 
7742 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
7743 	if (err)
7744 		return err;
7745 
7746 	return ice_set_max_bw_limit(vsi, max_tx_rate);
7747 }
7748 
7749 /**
7750  * ice_create_q_channel - function to create channel
7751  * @vsi: VSI to be configured
7752  * @ch: ptr to channel (it contains channel specific params)
7753  *
7754  * This function creates channel (VSI) using num_queues specified by user,
7755  * reconfigs RSS if needed.
7756  */
7757 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
7758 {
7759 	struct ice_pf *pf = vsi->back;
7760 	struct device *dev;
7761 
7762 	if (!ch)
7763 		return -EINVAL;
7764 
7765 	dev = ice_pf_to_dev(pf);
7766 	if (!ch->num_txq || !ch->num_rxq) {
7767 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
7768 		return -EINVAL;
7769 	}
7770 
7771 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
7772 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
7773 			vsi->cnt_q_avail, ch->num_txq);
7774 		return -EINVAL;
7775 	}
7776 
7777 	if (!ice_setup_channel(pf, vsi, ch)) {
7778 		dev_info(dev, "Failed to setup channel\n");
7779 		return -EINVAL;
7780 	}
7781 	/* configure BW rate limit */
7782 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
7783 		int ret;
7784 
7785 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
7786 				       ch->min_tx_rate);
7787 		if (ret)
7788 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
7789 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
7790 		else
7791 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
7792 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
7793 	}
7794 
7795 	vsi->cnt_q_avail -= ch->num_txq;
7796 
7797 	return 0;
7798 }
7799 
7800 /**
7801  * ice_rem_all_chnl_fltrs - removes all channel filters
7802  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
7803  *
7804  * Remove all advanced switch filters only if they are channel specific
7805  * tc-flower based filter
7806  */
7807 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
7808 {
7809 	struct ice_tc_flower_fltr *fltr;
7810 	struct hlist_node *node;
7811 
7812 	/* to remove all channel filters, iterate an ordered list of filters */
7813 	hlist_for_each_entry_safe(fltr, node,
7814 				  &pf->tc_flower_fltr_list,
7815 				  tc_flower_node) {
7816 		struct ice_rule_query_data rule;
7817 		int status;
7818 
7819 		/* for now process only channel specific filters */
7820 		if (!ice_is_chnl_fltr(fltr))
7821 			continue;
7822 
7823 		rule.rid = fltr->rid;
7824 		rule.rule_id = fltr->rule_id;
7825 		rule.vsi_handle = fltr->dest_id;
7826 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
7827 		if (status) {
7828 			if (status == -ENOENT)
7829 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
7830 					rule.rule_id);
7831 			else
7832 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
7833 					status);
7834 		} else if (fltr->dest_vsi) {
7835 			/* update advanced switch filter count */
7836 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
7837 				u32 flags = fltr->flags;
7838 
7839 				fltr->dest_vsi->num_chnl_fltr--;
7840 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
7841 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
7842 					pf->num_dmac_chnl_fltrs--;
7843 			}
7844 		}
7845 
7846 		hlist_del(&fltr->tc_flower_node);
7847 		kfree(fltr);
7848 	}
7849 }
7850 
7851 /**
7852  * ice_remove_q_channels - Remove queue channels for the TCs
7853  * @vsi: VSI to be configured
7854  * @rem_fltr: delete advanced switch filter or not
7855  *
7856  * Remove queue channels for the TCs
7857  */
7858 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
7859 {
7860 	struct ice_channel *ch, *ch_tmp;
7861 	struct ice_pf *pf = vsi->back;
7862 	int i;
7863 
7864 	/* remove all tc-flower based filter if they are channel filters only */
7865 	if (rem_fltr)
7866 		ice_rem_all_chnl_fltrs(pf);
7867 
7868 	/* remove ntuple filters since queue configuration is being changed */
7869 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
7870 		struct ice_hw *hw = &pf->hw;
7871 
7872 		mutex_lock(&hw->fdir_fltr_lock);
7873 		ice_fdir_del_all_fltrs(vsi);
7874 		mutex_unlock(&hw->fdir_fltr_lock);
7875 	}
7876 
7877 	/* perform cleanup for channels if they exist */
7878 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
7879 		struct ice_vsi *ch_vsi;
7880 
7881 		list_del(&ch->list);
7882 		ch_vsi = ch->ch_vsi;
7883 		if (!ch_vsi) {
7884 			kfree(ch);
7885 			continue;
7886 		}
7887 
7888 		/* Reset queue contexts */
7889 		for (i = 0; i < ch->num_rxq; i++) {
7890 			struct ice_tx_ring *tx_ring;
7891 			struct ice_rx_ring *rx_ring;
7892 
7893 			tx_ring = vsi->tx_rings[ch->base_q + i];
7894 			rx_ring = vsi->rx_rings[ch->base_q + i];
7895 			if (tx_ring) {
7896 				tx_ring->ch = NULL;
7897 				if (tx_ring->q_vector)
7898 					tx_ring->q_vector->ch = NULL;
7899 			}
7900 			if (rx_ring) {
7901 				rx_ring->ch = NULL;
7902 				if (rx_ring->q_vector)
7903 					rx_ring->q_vector->ch = NULL;
7904 			}
7905 		}
7906 
7907 		/* Release FD resources for the channel VSI */
7908 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
7909 
7910 		/* clear the VSI from scheduler tree */
7911 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
7912 
7913 		/* Delete VSI from FW */
7914 		ice_vsi_delete(ch->ch_vsi);
7915 
7916 		/* Delete VSI from PF and HW VSI arrays */
7917 		ice_vsi_clear(ch->ch_vsi);
7918 
7919 		/* free the channel */
7920 		kfree(ch);
7921 	}
7922 
7923 	/* clear the channel VSI map which is stored in main VSI */
7924 	ice_for_each_chnl_tc(i)
7925 		vsi->tc_map_vsi[i] = NULL;
7926 
7927 	/* reset main VSI's all TC information */
7928 	vsi->all_enatc = 0;
7929 	vsi->all_numtc = 0;
7930 }
7931 
7932 /**
7933  * ice_rebuild_channels - rebuild channel
7934  * @pf: ptr to PF
7935  *
7936  * Recreate channel VSIs and replay filters
7937  */
7938 static int ice_rebuild_channels(struct ice_pf *pf)
7939 {
7940 	struct device *dev = ice_pf_to_dev(pf);
7941 	struct ice_vsi *main_vsi;
7942 	bool rem_adv_fltr = true;
7943 	struct ice_channel *ch;
7944 	struct ice_vsi *vsi;
7945 	int tc_idx = 1;
7946 	int i, err;
7947 
7948 	main_vsi = ice_get_main_vsi(pf);
7949 	if (!main_vsi)
7950 		return 0;
7951 
7952 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
7953 	    main_vsi->old_numtc == 1)
7954 		return 0; /* nothing to be done */
7955 
7956 	/* reconfigure main VSI based on old value of TC and cached values
7957 	 * for MQPRIO opts
7958 	 */
7959 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
7960 	if (err) {
7961 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
7962 			main_vsi->old_ena_tc, main_vsi->vsi_num);
7963 		return err;
7964 	}
7965 
7966 	/* rebuild ADQ VSIs */
7967 	ice_for_each_vsi(pf, i) {
7968 		enum ice_vsi_type type;
7969 
7970 		vsi = pf->vsi[i];
7971 		if (!vsi || vsi->type != ICE_VSI_CHNL)
7972 			continue;
7973 
7974 		type = vsi->type;
7975 
7976 		/* rebuild ADQ VSI */
7977 		err = ice_vsi_rebuild(vsi, true);
7978 		if (err) {
7979 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
7980 				ice_vsi_type_str(type), vsi->idx, err);
7981 			goto cleanup;
7982 		}
7983 
7984 		/* Re-map HW VSI number, using VSI handle that has been
7985 		 * previously validated in ice_replay_vsi() call above
7986 		 */
7987 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7988 
7989 		/* replay filters for the VSI */
7990 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7991 		if (err) {
7992 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
7993 				ice_vsi_type_str(type), err, vsi->idx);
7994 			rem_adv_fltr = false;
7995 			goto cleanup;
7996 		}
7997 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
7998 			 ice_vsi_type_str(type), vsi->idx);
7999 
8000 		/* store ADQ VSI at correct TC index in main VSI's
8001 		 * map of TC to VSI
8002 		 */
8003 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8004 	}
8005 
8006 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8007 	 * channel for main VSI's Tx and Rx rings
8008 	 */
8009 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8010 		struct ice_vsi *ch_vsi;
8011 
8012 		ch_vsi = ch->ch_vsi;
8013 		if (!ch_vsi)
8014 			continue;
8015 
8016 		/* reconfig channel resources */
8017 		ice_cfg_chnl_all_res(main_vsi, ch);
8018 
8019 		/* replay BW rate limit if it is non-zero */
8020 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8021 			continue;
8022 
8023 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8024 				       ch->min_tx_rate);
8025 		if (err)
8026 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8027 				err, ch->max_tx_rate, ch->min_tx_rate,
8028 				ch_vsi->vsi_num);
8029 		else
8030 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8031 				ch->max_tx_rate, ch->min_tx_rate,
8032 				ch_vsi->vsi_num);
8033 	}
8034 
8035 	/* reconfig RSS for main VSI */
8036 	if (main_vsi->ch_rss_size)
8037 		ice_vsi_cfg_rss_lut_key(main_vsi);
8038 
8039 	return 0;
8040 
8041 cleanup:
8042 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8043 	return err;
8044 }
8045 
8046 /**
8047  * ice_create_q_channels - Add queue channel for the given TCs
8048  * @vsi: VSI to be configured
8049  *
8050  * Configures queue channel mapping to the given TCs
8051  */
8052 static int ice_create_q_channels(struct ice_vsi *vsi)
8053 {
8054 	struct ice_pf *pf = vsi->back;
8055 	struct ice_channel *ch;
8056 	int ret = 0, i;
8057 
8058 	ice_for_each_chnl_tc(i) {
8059 		if (!(vsi->all_enatc & BIT(i)))
8060 			continue;
8061 
8062 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8063 		if (!ch) {
8064 			ret = -ENOMEM;
8065 			goto err_free;
8066 		}
8067 		INIT_LIST_HEAD(&ch->list);
8068 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8069 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8070 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8071 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8072 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8073 
8074 		/* convert to Kbits/s */
8075 		if (ch->max_tx_rate)
8076 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8077 						  ICE_BW_KBPS_DIVISOR);
8078 		if (ch->min_tx_rate)
8079 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8080 						  ICE_BW_KBPS_DIVISOR);
8081 
8082 		ret = ice_create_q_channel(vsi, ch);
8083 		if (ret) {
8084 			dev_err(ice_pf_to_dev(pf),
8085 				"failed creating channel TC:%d\n", i);
8086 			kfree(ch);
8087 			goto err_free;
8088 		}
8089 		list_add_tail(&ch->list, &vsi->ch_list);
8090 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8091 		dev_dbg(ice_pf_to_dev(pf),
8092 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8093 	}
8094 	return 0;
8095 
8096 err_free:
8097 	ice_remove_q_channels(vsi, false);
8098 
8099 	return ret;
8100 }
8101 
8102 /**
8103  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8104  * @netdev: net device to configure
8105  * @type_data: TC offload data
8106  */
8107 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8108 {
8109 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8110 	struct ice_netdev_priv *np = netdev_priv(netdev);
8111 	struct ice_vsi *vsi = np->vsi;
8112 	struct ice_pf *pf = vsi->back;
8113 	u16 mode, ena_tc_qdisc = 0;
8114 	int cur_txq, cur_rxq;
8115 	u8 hw = 0, num_tcf;
8116 	struct device *dev;
8117 	int ret, i;
8118 
8119 	dev = ice_pf_to_dev(pf);
8120 	num_tcf = mqprio_qopt->qopt.num_tc;
8121 	hw = mqprio_qopt->qopt.hw;
8122 	mode = mqprio_qopt->mode;
8123 	if (!hw) {
8124 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8125 		vsi->ch_rss_size = 0;
8126 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8127 		goto config_tcf;
8128 	}
8129 
8130 	/* Generate queue region map for number of TCF requested */
8131 	for (i = 0; i < num_tcf; i++)
8132 		ena_tc_qdisc |= BIT(i);
8133 
8134 	switch (mode) {
8135 	case TC_MQPRIO_MODE_CHANNEL:
8136 
8137 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8138 		if (ret) {
8139 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8140 				   ret);
8141 			return ret;
8142 		}
8143 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8144 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8145 		/* don't assume state of hw_tc_offload during driver load
8146 		 * and set the flag for TC flower filter if hw_tc_offload
8147 		 * already ON
8148 		 */
8149 		if (vsi->netdev->features & NETIF_F_HW_TC)
8150 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8151 		break;
8152 	default:
8153 		return -EINVAL;
8154 	}
8155 
8156 config_tcf:
8157 
8158 	/* Requesting same TCF configuration as already enabled */
8159 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8160 	    mode != TC_MQPRIO_MODE_CHANNEL)
8161 		return 0;
8162 
8163 	/* Pause VSI queues */
8164 	ice_dis_vsi(vsi, true);
8165 
8166 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8167 		ice_remove_q_channels(vsi, true);
8168 
8169 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8170 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8171 				     num_online_cpus());
8172 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8173 				     num_online_cpus());
8174 	} else {
8175 		/* logic to rebuild VSI, same like ethtool -L */
8176 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8177 
8178 		for (i = 0; i < num_tcf; i++) {
8179 			if (!(ena_tc_qdisc & BIT(i)))
8180 				continue;
8181 
8182 			offset = vsi->mqprio_qopt.qopt.offset[i];
8183 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8184 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8185 		}
8186 		vsi->req_txq = offset + qcount_tx;
8187 		vsi->req_rxq = offset + qcount_rx;
8188 
8189 		/* store away original rss_size info, so that it gets reused
8190 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8191 		 * determine, what should be the rss_sizefor main VSI
8192 		 */
8193 		vsi->orig_rss_size = vsi->rss_size;
8194 	}
8195 
8196 	/* save current values of Tx and Rx queues before calling VSI rebuild
8197 	 * for fallback option
8198 	 */
8199 	cur_txq = vsi->num_txq;
8200 	cur_rxq = vsi->num_rxq;
8201 
8202 	/* proceed with rebuild main VSI using correct number of queues */
8203 	ret = ice_vsi_rebuild(vsi, false);
8204 	if (ret) {
8205 		/* fallback to current number of queues */
8206 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8207 		vsi->req_txq = cur_txq;
8208 		vsi->req_rxq = cur_rxq;
8209 		clear_bit(ICE_RESET_FAILED, pf->state);
8210 		if (ice_vsi_rebuild(vsi, false)) {
8211 			dev_err(dev, "Rebuild of main VSI failed again\n");
8212 			return ret;
8213 		}
8214 	}
8215 
8216 	vsi->all_numtc = num_tcf;
8217 	vsi->all_enatc = ena_tc_qdisc;
8218 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8219 	if (ret) {
8220 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8221 			   vsi->vsi_num);
8222 		goto exit;
8223 	}
8224 
8225 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8226 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8227 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8228 
8229 		/* set TC0 rate limit if specified */
8230 		if (max_tx_rate || min_tx_rate) {
8231 			/* convert to Kbits/s */
8232 			if (max_tx_rate)
8233 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8234 			if (min_tx_rate)
8235 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8236 
8237 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8238 			if (!ret) {
8239 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8240 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8241 			} else {
8242 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8243 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8244 				goto exit;
8245 			}
8246 		}
8247 		ret = ice_create_q_channels(vsi);
8248 		if (ret) {
8249 			netdev_err(netdev, "failed configuring queue channels\n");
8250 			goto exit;
8251 		} else {
8252 			netdev_dbg(netdev, "successfully configured channels\n");
8253 		}
8254 	}
8255 
8256 	if (vsi->ch_rss_size)
8257 		ice_vsi_cfg_rss_lut_key(vsi);
8258 
8259 exit:
8260 	/* if error, reset the all_numtc and all_enatc */
8261 	if (ret) {
8262 		vsi->all_numtc = 0;
8263 		vsi->all_enatc = 0;
8264 	}
8265 	/* resume VSI */
8266 	ice_ena_vsi(vsi, true);
8267 
8268 	return ret;
8269 }
8270 
8271 static LIST_HEAD(ice_block_cb_list);
8272 
8273 static int
8274 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8275 	     void *type_data)
8276 {
8277 	struct ice_netdev_priv *np = netdev_priv(netdev);
8278 	struct ice_pf *pf = np->vsi->back;
8279 	int err;
8280 
8281 	switch (type) {
8282 	case TC_SETUP_BLOCK:
8283 		return flow_block_cb_setup_simple(type_data,
8284 						  &ice_block_cb_list,
8285 						  ice_setup_tc_block_cb,
8286 						  np, np, true);
8287 	case TC_SETUP_QDISC_MQPRIO:
8288 		/* setup traffic classifier for receive side */
8289 		mutex_lock(&pf->tc_mutex);
8290 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8291 		mutex_unlock(&pf->tc_mutex);
8292 		return err;
8293 	default:
8294 		return -EOPNOTSUPP;
8295 	}
8296 	return -EOPNOTSUPP;
8297 }
8298 
8299 static struct ice_indr_block_priv *
8300 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8301 			   struct net_device *netdev)
8302 {
8303 	struct ice_indr_block_priv *cb_priv;
8304 
8305 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8306 		if (!cb_priv->netdev)
8307 			return NULL;
8308 		if (cb_priv->netdev == netdev)
8309 			return cb_priv;
8310 	}
8311 	return NULL;
8312 }
8313 
8314 static int
8315 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8316 			void *indr_priv)
8317 {
8318 	struct ice_indr_block_priv *priv = indr_priv;
8319 	struct ice_netdev_priv *np = priv->np;
8320 
8321 	switch (type) {
8322 	case TC_SETUP_CLSFLOWER:
8323 		return ice_setup_tc_cls_flower(np, priv->netdev,
8324 					       (struct flow_cls_offload *)
8325 					       type_data);
8326 	default:
8327 		return -EOPNOTSUPP;
8328 	}
8329 }
8330 
8331 static int
8332 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8333 			struct ice_netdev_priv *np,
8334 			struct flow_block_offload *f, void *data,
8335 			void (*cleanup)(struct flow_block_cb *block_cb))
8336 {
8337 	struct ice_indr_block_priv *indr_priv;
8338 	struct flow_block_cb *block_cb;
8339 
8340 	if (!ice_is_tunnel_supported(netdev) &&
8341 	    !(is_vlan_dev(netdev) &&
8342 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8343 		return -EOPNOTSUPP;
8344 
8345 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8346 		return -EOPNOTSUPP;
8347 
8348 	switch (f->command) {
8349 	case FLOW_BLOCK_BIND:
8350 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8351 		if (indr_priv)
8352 			return -EEXIST;
8353 
8354 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8355 		if (!indr_priv)
8356 			return -ENOMEM;
8357 
8358 		indr_priv->netdev = netdev;
8359 		indr_priv->np = np;
8360 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8361 
8362 		block_cb =
8363 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8364 						 indr_priv, indr_priv,
8365 						 ice_rep_indr_tc_block_unbind,
8366 						 f, netdev, sch, data, np,
8367 						 cleanup);
8368 
8369 		if (IS_ERR(block_cb)) {
8370 			list_del(&indr_priv->list);
8371 			kfree(indr_priv);
8372 			return PTR_ERR(block_cb);
8373 		}
8374 		flow_block_cb_add(block_cb, f);
8375 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8376 		break;
8377 	case FLOW_BLOCK_UNBIND:
8378 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8379 		if (!indr_priv)
8380 			return -ENOENT;
8381 
8382 		block_cb = flow_block_cb_lookup(f->block,
8383 						ice_indr_setup_block_cb,
8384 						indr_priv);
8385 		if (!block_cb)
8386 			return -ENOENT;
8387 
8388 		flow_indr_block_cb_remove(block_cb, f);
8389 
8390 		list_del(&block_cb->driver_list);
8391 		break;
8392 	default:
8393 		return -EOPNOTSUPP;
8394 	}
8395 	return 0;
8396 }
8397 
8398 static int
8399 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8400 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8401 		     void *data,
8402 		     void (*cleanup)(struct flow_block_cb *block_cb))
8403 {
8404 	switch (type) {
8405 	case TC_SETUP_BLOCK:
8406 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8407 					       data, cleanup);
8408 
8409 	default:
8410 		return -EOPNOTSUPP;
8411 	}
8412 }
8413 
8414 /**
8415  * ice_open - Called when a network interface becomes active
8416  * @netdev: network interface device structure
8417  *
8418  * The open entry point is called when a network interface is made
8419  * active by the system (IFF_UP). At this point all resources needed
8420  * for transmit and receive operations are allocated, the interrupt
8421  * handler is registered with the OS, the netdev watchdog is enabled,
8422  * and the stack is notified that the interface is ready.
8423  *
8424  * Returns 0 on success, negative value on failure
8425  */
8426 int ice_open(struct net_device *netdev)
8427 {
8428 	struct ice_netdev_priv *np = netdev_priv(netdev);
8429 	struct ice_pf *pf = np->vsi->back;
8430 
8431 	if (ice_is_reset_in_progress(pf->state)) {
8432 		netdev_err(netdev, "can't open net device while reset is in progress");
8433 		return -EBUSY;
8434 	}
8435 
8436 	return ice_open_internal(netdev);
8437 }
8438 
8439 /**
8440  * ice_open_internal - Called when a network interface becomes active
8441  * @netdev: network interface device structure
8442  *
8443  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8444  * handling routine
8445  *
8446  * Returns 0 on success, negative value on failure
8447  */
8448 int ice_open_internal(struct net_device *netdev)
8449 {
8450 	struct ice_netdev_priv *np = netdev_priv(netdev);
8451 	struct ice_vsi *vsi = np->vsi;
8452 	struct ice_pf *pf = vsi->back;
8453 	struct ice_port_info *pi;
8454 	int err;
8455 
8456 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8457 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8458 		return -EIO;
8459 	}
8460 
8461 	netif_carrier_off(netdev);
8462 
8463 	pi = vsi->port_info;
8464 	err = ice_update_link_info(pi);
8465 	if (err) {
8466 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8467 		return err;
8468 	}
8469 
8470 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8471 
8472 	/* Set PHY if there is media, otherwise, turn off PHY */
8473 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8474 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8475 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8476 			err = ice_init_phy_user_cfg(pi);
8477 			if (err) {
8478 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8479 					   err);
8480 				return err;
8481 			}
8482 		}
8483 
8484 		err = ice_configure_phy(vsi);
8485 		if (err) {
8486 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8487 				   err);
8488 			return err;
8489 		}
8490 	} else {
8491 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8492 		ice_set_link(vsi, false);
8493 	}
8494 
8495 	err = ice_vsi_open(vsi);
8496 	if (err)
8497 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8498 			   vsi->vsi_num, vsi->vsw->sw_id);
8499 
8500 	/* Update existing tunnels information */
8501 	udp_tunnel_get_rx_info(netdev);
8502 
8503 	return err;
8504 }
8505 
8506 /**
8507  * ice_stop - Disables a network interface
8508  * @netdev: network interface device structure
8509  *
8510  * The stop entry point is called when an interface is de-activated by the OS,
8511  * and the netdevice enters the DOWN state. The hardware is still under the
8512  * driver's control, but the netdev interface is disabled.
8513  *
8514  * Returns success only - not allowed to fail
8515  */
8516 int ice_stop(struct net_device *netdev)
8517 {
8518 	struct ice_netdev_priv *np = netdev_priv(netdev);
8519 	struct ice_vsi *vsi = np->vsi;
8520 	struct ice_pf *pf = vsi->back;
8521 
8522 	if (ice_is_reset_in_progress(pf->state)) {
8523 		netdev_err(netdev, "can't stop net device while reset is in progress");
8524 		return -EBUSY;
8525 	}
8526 
8527 	ice_vsi_close(vsi);
8528 
8529 	return 0;
8530 }
8531 
8532 /**
8533  * ice_features_check - Validate encapsulated packet conforms to limits
8534  * @skb: skb buffer
8535  * @netdev: This port's netdev
8536  * @features: Offload features that the stack believes apply
8537  */
8538 static netdev_features_t
8539 ice_features_check(struct sk_buff *skb,
8540 		   struct net_device __always_unused *netdev,
8541 		   netdev_features_t features)
8542 {
8543 	bool gso = skb_is_gso(skb);
8544 	size_t len;
8545 
8546 	/* No point in doing any of this if neither checksum nor GSO are
8547 	 * being requested for this frame. We can rule out both by just
8548 	 * checking for CHECKSUM_PARTIAL
8549 	 */
8550 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8551 		return features;
8552 
8553 	/* We cannot support GSO if the MSS is going to be less than
8554 	 * 64 bytes. If it is then we need to drop support for GSO.
8555 	 */
8556 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8557 		features &= ~NETIF_F_GSO_MASK;
8558 
8559 	len = skb_network_offset(skb);
8560 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8561 		goto out_rm_features;
8562 
8563 	len = skb_network_header_len(skb);
8564 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8565 		goto out_rm_features;
8566 
8567 	if (skb->encapsulation) {
8568 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8569 		 * the case of IPIP frames, the transport header pointer is
8570 		 * after the inner header! So check to make sure that this
8571 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8572 		 */
8573 		if (gso && (skb_shinfo(skb)->gso_type &
8574 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8575 			len = skb_inner_network_header(skb) -
8576 			      skb_transport_header(skb);
8577 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8578 				goto out_rm_features;
8579 		}
8580 
8581 		len = skb_inner_network_header_len(skb);
8582 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8583 			goto out_rm_features;
8584 	}
8585 
8586 	return features;
8587 out_rm_features:
8588 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8589 }
8590 
8591 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8592 	.ndo_open = ice_open,
8593 	.ndo_stop = ice_stop,
8594 	.ndo_start_xmit = ice_start_xmit,
8595 	.ndo_set_mac_address = ice_set_mac_address,
8596 	.ndo_validate_addr = eth_validate_addr,
8597 	.ndo_change_mtu = ice_change_mtu,
8598 	.ndo_get_stats64 = ice_get_stats64,
8599 	.ndo_tx_timeout = ice_tx_timeout,
8600 	.ndo_bpf = ice_xdp_safe_mode,
8601 };
8602 
8603 static const struct net_device_ops ice_netdev_ops = {
8604 	.ndo_open = ice_open,
8605 	.ndo_stop = ice_stop,
8606 	.ndo_start_xmit = ice_start_xmit,
8607 	.ndo_select_queue = ice_select_queue,
8608 	.ndo_features_check = ice_features_check,
8609 	.ndo_set_rx_mode = ice_set_rx_mode,
8610 	.ndo_set_mac_address = ice_set_mac_address,
8611 	.ndo_validate_addr = eth_validate_addr,
8612 	.ndo_change_mtu = ice_change_mtu,
8613 	.ndo_get_stats64 = ice_get_stats64,
8614 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8615 	.ndo_eth_ioctl = ice_eth_ioctl,
8616 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8617 	.ndo_set_vf_mac = ice_set_vf_mac,
8618 	.ndo_get_vf_config = ice_get_vf_cfg,
8619 	.ndo_set_vf_trust = ice_set_vf_trust,
8620 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8621 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8622 	.ndo_get_vf_stats = ice_get_vf_stats,
8623 	.ndo_set_vf_rate = ice_set_vf_bw,
8624 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8625 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8626 	.ndo_setup_tc = ice_setup_tc,
8627 	.ndo_set_features = ice_set_features,
8628 	.ndo_bridge_getlink = ice_bridge_getlink,
8629 	.ndo_bridge_setlink = ice_bridge_setlink,
8630 	.ndo_fdb_add = ice_fdb_add,
8631 	.ndo_fdb_del = ice_fdb_del,
8632 #ifdef CONFIG_RFS_ACCEL
8633 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8634 #endif
8635 	.ndo_tx_timeout = ice_tx_timeout,
8636 	.ndo_bpf = ice_xdp,
8637 	.ndo_xdp_xmit = ice_xdp_xmit,
8638 	.ndo_xsk_wakeup = ice_xsk_wakeup,
8639 };
8640