1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 
134 		if (!tx_ring)
135 			continue;
136 		if (ice_ring_ch_enabled(tx_ring))
137 			continue;
138 
139 		if (tx_ring->desc) {
140 			/* If packet counter has not changed the queue is
141 			 * likely stalled, so force an interrupt for this
142 			 * queue.
143 			 *
144 			 * prev_pkt would be negative if there was no
145 			 * pending work.
146 			 */
147 			packets = tx_ring->stats.pkts & INT_MAX;
148 			if (tx_ring->tx_stats.prev_pkt == packets) {
149 				/* Trigger sw interrupt to revive the queue */
150 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 				continue;
152 			}
153 
154 			/* Memory barrier between read of packet count and call
155 			 * to ice_get_tx_pending()
156 			 */
157 			smp_rmb();
158 			tx_ring->tx_stats.prev_pkt =
159 			    ice_get_tx_pending(tx_ring) ? packets : -1;
160 		}
161 	}
162 }
163 
164 /**
165  * ice_init_mac_fltr - Set initial MAC filters
166  * @pf: board private structure
167  *
168  * Set initial set of MAC filters for PF VSI; configure filters for permanent
169  * address and broadcast address. If an error is encountered, netdevice will be
170  * unregistered.
171  */
172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 	struct ice_vsi *vsi;
175 	u8 *perm_addr;
176 
177 	vsi = ice_get_main_vsi(pf);
178 	if (!vsi)
179 		return -EINVAL;
180 
181 	perm_addr = vsi->port_info->mac.perm_addr;
182 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184 
185 /**
186  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187  * @netdev: the net device on which the sync is happening
188  * @addr: MAC address to sync
189  *
190  * This is a callback function which is called by the in kernel device sync
191  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193  * MAC filters from the hardware.
194  */
195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 	struct ice_netdev_priv *np = netdev_priv(netdev);
198 	struct ice_vsi *vsi = np->vsi;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209  * @netdev: the net device on which the unsync is happening
210  * @addr: MAC address to unsync
211  *
212  * This is a callback function which is called by the in kernel device unsync
213  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215  * delete the MAC filters from the hardware.
216  */
217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 	struct ice_netdev_priv *np = netdev_priv(netdev);
220 	struct ice_vsi *vsi = np->vsi;
221 
222 	/* Under some circumstances, we might receive a request to delete our
223 	 * own device address from our uc list. Because we store the device
224 	 * address in the VSI's MAC filter list, we need to ignore such
225 	 * requests and not delete our device address from this list.
226 	 */
227 	if (ether_addr_equal(addr, netdev->dev_addr))
228 		return 0;
229 
230 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 				     ICE_FWD_TO_VSI))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
237 /**
238  * ice_vsi_fltr_changed - check if filter state changed
239  * @vsi: VSI to be checked
240  *
241  * returns true if filter state has changed, false otherwise.
242  */
243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248 
249 /**
250  * ice_set_promisc - Enable promiscuous mode for a given PF
251  * @vsi: the VSI being configured
252  * @promisc_m: mask of promiscuous config bits
253  *
254  */
255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 	int status;
258 
259 	if (vsi->type != ICE_VSI_PF)
260 		return 0;
261 
262 	if (ice_vsi_has_non_zero_vlans(vsi)) {
263 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 						       promisc_m);
266 	} else {
267 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 						  promisc_m, 0);
269 	}
270 
271 	return status;
272 }
273 
274 /**
275  * ice_clear_promisc - Disable promiscuous mode for a given PF
276  * @vsi: the VSI being configured
277  * @promisc_m: mask of promiscuous config bits
278  *
279  */
280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
281 {
282 	int status;
283 
284 	if (vsi->type != ICE_VSI_PF)
285 		return 0;
286 
287 	if (ice_vsi_has_non_zero_vlans(vsi)) {
288 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
289 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
290 							 promisc_m);
291 	} else {
292 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
293 						    promisc_m, 0);
294 	}
295 
296 	return status;
297 }
298 
299 /**
300  * ice_get_devlink_port - Get devlink port from netdev
301  * @netdev: the netdevice structure
302  */
303 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
304 {
305 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
306 
307 	if (!ice_is_switchdev_running(pf))
308 		return NULL;
309 
310 	return &pf->devlink_port;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
414 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 			}
425 		} else {
426 			/* Clear Rx filter to remove traffic from wire */
427 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
428 				err = ice_clear_dflt_vsi(pf->first_sw);
429 				if (err) {
430 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
431 						   err, vsi->vsi_num);
432 					vsi->current_netdev_flags |=
433 						IFF_PROMISC;
434 					goto out_promisc;
435 				}
436 				if (vsi->current_netdev_flags &
437 				    NETIF_F_HW_VLAN_CTAG_FILTER)
438 					vlan_ops->ena_rx_filtering(vsi);
439 			}
440 		}
441 	}
442 	goto exit;
443 
444 out_promisc:
445 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
446 	goto exit;
447 out:
448 	/* if something went wrong then set the changed flag so we try again */
449 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
450 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
451 exit:
452 	clear_bit(ICE_CFG_BUSY, vsi->state);
453 	return err;
454 }
455 
456 /**
457  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
458  * @pf: board private structure
459  */
460 static void ice_sync_fltr_subtask(struct ice_pf *pf)
461 {
462 	int v;
463 
464 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
465 		return;
466 
467 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
468 
469 	ice_for_each_vsi(pf, v)
470 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
471 		    ice_vsi_sync_fltr(pf->vsi[v])) {
472 			/* come back and try again later */
473 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
474 			break;
475 		}
476 }
477 
478 /**
479  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
480  * @pf: the PF
481  * @locked: is the rtnl_lock already held
482  */
483 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
484 {
485 	int node;
486 	int v;
487 
488 	ice_for_each_vsi(pf, v)
489 		if (pf->vsi[v])
490 			ice_dis_vsi(pf->vsi[v], locked);
491 
492 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
493 		pf->pf_agg_node[node].num_vsis = 0;
494 
495 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
496 		pf->vf_agg_node[node].num_vsis = 0;
497 }
498 
499 /**
500  * ice_clear_sw_switch_recipes - clear switch recipes
501  * @pf: board private structure
502  *
503  * Mark switch recipes as not created in sw structures. There are cases where
504  * rules (especially advanced rules) need to be restored, either re-read from
505  * hardware or added again. For example after the reset. 'recp_created' flag
506  * prevents from doing that and need to be cleared upfront.
507  */
508 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
509 {
510 	struct ice_sw_recipe *recp;
511 	u8 i;
512 
513 	recp = pf->hw.switch_info->recp_list;
514 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
515 		recp[i].recp_created = false;
516 }
517 
518 /**
519  * ice_prepare_for_reset - prep for reset
520  * @pf: board private structure
521  * @reset_type: reset type requested
522  *
523  * Inform or close all dependent features in prep for reset.
524  */
525 static void
526 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
527 {
528 	struct ice_hw *hw = &pf->hw;
529 	struct ice_vsi *vsi;
530 	struct ice_vf *vf;
531 	unsigned int bkt;
532 
533 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
534 
535 	/* already prepared for reset */
536 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
537 		return;
538 
539 	ice_unplug_aux_dev(pf);
540 
541 	/* Notify VFs of impending reset */
542 	if (ice_check_sq_alive(hw, &hw->mailboxq))
543 		ice_vc_notify_reset(pf);
544 
545 	/* Disable VFs until reset is completed */
546 	mutex_lock(&pf->vfs.table_lock);
547 	ice_for_each_vf(pf, bkt, vf)
548 		ice_set_vf_state_qs_dis(vf);
549 	mutex_unlock(&pf->vfs.table_lock);
550 
551 	if (ice_is_eswitch_mode_switchdev(pf)) {
552 		if (reset_type != ICE_RESET_PFR)
553 			ice_clear_sw_switch_recipes(pf);
554 	}
555 
556 	/* release ADQ specific HW and SW resources */
557 	vsi = ice_get_main_vsi(pf);
558 	if (!vsi)
559 		goto skip;
560 
561 	/* to be on safe side, reset orig_rss_size so that normal flow
562 	 * of deciding rss_size can take precedence
563 	 */
564 	vsi->orig_rss_size = 0;
565 
566 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
567 		if (reset_type == ICE_RESET_PFR) {
568 			vsi->old_ena_tc = vsi->all_enatc;
569 			vsi->old_numtc = vsi->all_numtc;
570 		} else {
571 			ice_remove_q_channels(vsi, true);
572 
573 			/* for other reset type, do not support channel rebuild
574 			 * hence reset needed info
575 			 */
576 			vsi->old_ena_tc = 0;
577 			vsi->all_enatc = 0;
578 			vsi->old_numtc = 0;
579 			vsi->all_numtc = 0;
580 			vsi->req_txq = 0;
581 			vsi->req_rxq = 0;
582 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
583 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
584 		}
585 	}
586 skip:
587 
588 	/* clear SW filtering DB */
589 	ice_clear_hw_tbls(hw);
590 	/* disable the VSIs and their queues that are not already DOWN */
591 	ice_pf_dis_all_vsi(pf, false);
592 
593 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
594 		ice_ptp_prepare_for_reset(pf);
595 
596 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
597 		ice_gnss_exit(pf);
598 
599 	if (hw->port_info)
600 		ice_sched_clear_port(hw->port_info);
601 
602 	ice_shutdown_all_ctrlq(hw);
603 
604 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
605 }
606 
607 /**
608  * ice_do_reset - Initiate one of many types of resets
609  * @pf: board private structure
610  * @reset_type: reset type requested before this function was called.
611  */
612 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
613 {
614 	struct device *dev = ice_pf_to_dev(pf);
615 	struct ice_hw *hw = &pf->hw;
616 
617 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
618 
619 	ice_prepare_for_reset(pf, reset_type);
620 
621 	/* trigger the reset */
622 	if (ice_reset(hw, reset_type)) {
623 		dev_err(dev, "reset %d failed\n", reset_type);
624 		set_bit(ICE_RESET_FAILED, pf->state);
625 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
626 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 		clear_bit(ICE_PFR_REQ, pf->state);
628 		clear_bit(ICE_CORER_REQ, pf->state);
629 		clear_bit(ICE_GLOBR_REQ, pf->state);
630 		wake_up(&pf->reset_wait_queue);
631 		return;
632 	}
633 
634 	/* PFR is a bit of a special case because it doesn't result in an OICR
635 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
636 	 * associated state bits.
637 	 */
638 	if (reset_type == ICE_RESET_PFR) {
639 		pf->pfr_count++;
640 		ice_rebuild(pf, reset_type);
641 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
642 		clear_bit(ICE_PFR_REQ, pf->state);
643 		wake_up(&pf->reset_wait_queue);
644 		ice_reset_all_vfs(pf);
645 	}
646 }
647 
648 /**
649  * ice_reset_subtask - Set up for resetting the device and driver
650  * @pf: board private structure
651  */
652 static void ice_reset_subtask(struct ice_pf *pf)
653 {
654 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
655 
656 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
657 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
658 	 * of reset is pending and sets bits in pf->state indicating the reset
659 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
660 	 * prepare for pending reset if not already (for PF software-initiated
661 	 * global resets the software should already be prepared for it as
662 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
663 	 * by firmware or software on other PFs, that bit is not set so prepare
664 	 * for the reset now), poll for reset done, rebuild and return.
665 	 */
666 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
667 		/* Perform the largest reset requested */
668 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
669 			reset_type = ICE_RESET_CORER;
670 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
671 			reset_type = ICE_RESET_GLOBR;
672 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
673 			reset_type = ICE_RESET_EMPR;
674 		/* return if no valid reset type requested */
675 		if (reset_type == ICE_RESET_INVAL)
676 			return;
677 		ice_prepare_for_reset(pf, reset_type);
678 
679 		/* make sure we are ready to rebuild */
680 		if (ice_check_reset(&pf->hw)) {
681 			set_bit(ICE_RESET_FAILED, pf->state);
682 		} else {
683 			/* done with reset. start rebuild */
684 			pf->hw.reset_ongoing = false;
685 			ice_rebuild(pf, reset_type);
686 			/* clear bit to resume normal operations, but
687 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
688 			 */
689 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
690 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
691 			clear_bit(ICE_PFR_REQ, pf->state);
692 			clear_bit(ICE_CORER_REQ, pf->state);
693 			clear_bit(ICE_GLOBR_REQ, pf->state);
694 			wake_up(&pf->reset_wait_queue);
695 			ice_reset_all_vfs(pf);
696 		}
697 
698 		return;
699 	}
700 
701 	/* No pending resets to finish processing. Check for new resets */
702 	if (test_bit(ICE_PFR_REQ, pf->state))
703 		reset_type = ICE_RESET_PFR;
704 	if (test_bit(ICE_CORER_REQ, pf->state))
705 		reset_type = ICE_RESET_CORER;
706 	if (test_bit(ICE_GLOBR_REQ, pf->state))
707 		reset_type = ICE_RESET_GLOBR;
708 	/* If no valid reset type requested just return */
709 	if (reset_type == ICE_RESET_INVAL)
710 		return;
711 
712 	/* reset if not already down or busy */
713 	if (!test_bit(ICE_DOWN, pf->state) &&
714 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
715 		ice_do_reset(pf, reset_type);
716 	}
717 }
718 
719 /**
720  * ice_print_topo_conflict - print topology conflict message
721  * @vsi: the VSI whose topology status is being checked
722  */
723 static void ice_print_topo_conflict(struct ice_vsi *vsi)
724 {
725 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
726 	case ICE_AQ_LINK_TOPO_CONFLICT:
727 	case ICE_AQ_LINK_MEDIA_CONFLICT:
728 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
729 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
730 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
731 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
732 		break;
733 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
734 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
735 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
736 		else
737 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
738 		break;
739 	default:
740 		break;
741 	}
742 }
743 
744 /**
745  * ice_print_link_msg - print link up or down message
746  * @vsi: the VSI whose link status is being queried
747  * @isup: boolean for if the link is now up or down
748  */
749 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
750 {
751 	struct ice_aqc_get_phy_caps_data *caps;
752 	const char *an_advertised;
753 	const char *fec_req;
754 	const char *speed;
755 	const char *fec;
756 	const char *fc;
757 	const char *an;
758 	int status;
759 
760 	if (!vsi)
761 		return;
762 
763 	if (vsi->current_isup == isup)
764 		return;
765 
766 	vsi->current_isup = isup;
767 
768 	if (!isup) {
769 		netdev_info(vsi->netdev, "NIC Link is Down\n");
770 		return;
771 	}
772 
773 	switch (vsi->port_info->phy.link_info.link_speed) {
774 	case ICE_AQ_LINK_SPEED_100GB:
775 		speed = "100 G";
776 		break;
777 	case ICE_AQ_LINK_SPEED_50GB:
778 		speed = "50 G";
779 		break;
780 	case ICE_AQ_LINK_SPEED_40GB:
781 		speed = "40 G";
782 		break;
783 	case ICE_AQ_LINK_SPEED_25GB:
784 		speed = "25 G";
785 		break;
786 	case ICE_AQ_LINK_SPEED_20GB:
787 		speed = "20 G";
788 		break;
789 	case ICE_AQ_LINK_SPEED_10GB:
790 		speed = "10 G";
791 		break;
792 	case ICE_AQ_LINK_SPEED_5GB:
793 		speed = "5 G";
794 		break;
795 	case ICE_AQ_LINK_SPEED_2500MB:
796 		speed = "2.5 G";
797 		break;
798 	case ICE_AQ_LINK_SPEED_1000MB:
799 		speed = "1 G";
800 		break;
801 	case ICE_AQ_LINK_SPEED_100MB:
802 		speed = "100 M";
803 		break;
804 	default:
805 		speed = "Unknown ";
806 		break;
807 	}
808 
809 	switch (vsi->port_info->fc.current_mode) {
810 	case ICE_FC_FULL:
811 		fc = "Rx/Tx";
812 		break;
813 	case ICE_FC_TX_PAUSE:
814 		fc = "Tx";
815 		break;
816 	case ICE_FC_RX_PAUSE:
817 		fc = "Rx";
818 		break;
819 	case ICE_FC_NONE:
820 		fc = "None";
821 		break;
822 	default:
823 		fc = "Unknown";
824 		break;
825 	}
826 
827 	/* Get FEC mode based on negotiated link info */
828 	switch (vsi->port_info->phy.link_info.fec_info) {
829 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
830 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
831 		fec = "RS-FEC";
832 		break;
833 	case ICE_AQ_LINK_25G_KR_FEC_EN:
834 		fec = "FC-FEC/BASE-R";
835 		break;
836 	default:
837 		fec = "NONE";
838 		break;
839 	}
840 
841 	/* check if autoneg completed, might be false due to not supported */
842 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
843 		an = "True";
844 	else
845 		an = "False";
846 
847 	/* Get FEC mode requested based on PHY caps last SW configuration */
848 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
849 	if (!caps) {
850 		fec_req = "Unknown";
851 		an_advertised = "Unknown";
852 		goto done;
853 	}
854 
855 	status = ice_aq_get_phy_caps(vsi->port_info, false,
856 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
857 	if (status)
858 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
859 
860 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
861 
862 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
863 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
864 		fec_req = "RS-FEC";
865 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
866 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
867 		fec_req = "FC-FEC/BASE-R";
868 	else
869 		fec_req = "NONE";
870 
871 	kfree(caps);
872 
873 done:
874 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
875 		    speed, fec_req, fec, an_advertised, an, fc);
876 	ice_print_topo_conflict(vsi);
877 }
878 
879 /**
880  * ice_vsi_link_event - update the VSI's netdev
881  * @vsi: the VSI on which the link event occurred
882  * @link_up: whether or not the VSI needs to be set up or down
883  */
884 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
885 {
886 	if (!vsi)
887 		return;
888 
889 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
890 		return;
891 
892 	if (vsi->type == ICE_VSI_PF) {
893 		if (link_up == netif_carrier_ok(vsi->netdev))
894 			return;
895 
896 		if (link_up) {
897 			netif_carrier_on(vsi->netdev);
898 			netif_tx_wake_all_queues(vsi->netdev);
899 		} else {
900 			netif_carrier_off(vsi->netdev);
901 			netif_tx_stop_all_queues(vsi->netdev);
902 		}
903 	}
904 }
905 
906 /**
907  * ice_set_dflt_mib - send a default config MIB to the FW
908  * @pf: private PF struct
909  *
910  * This function sends a default configuration MIB to the FW.
911  *
912  * If this function errors out at any point, the driver is still able to
913  * function.  The main impact is that LFC may not operate as expected.
914  * Therefore an error state in this function should be treated with a DBG
915  * message and continue on with driver rebuild/reenable.
916  */
917 static void ice_set_dflt_mib(struct ice_pf *pf)
918 {
919 	struct device *dev = ice_pf_to_dev(pf);
920 	u8 mib_type, *buf, *lldpmib = NULL;
921 	u16 len, typelen, offset = 0;
922 	struct ice_lldp_org_tlv *tlv;
923 	struct ice_hw *hw = &pf->hw;
924 	u32 ouisubtype;
925 
926 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
927 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
928 	if (!lldpmib) {
929 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
930 			__func__);
931 		return;
932 	}
933 
934 	/* Add ETS CFG TLV */
935 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
936 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
937 		   ICE_IEEE_ETS_TLV_LEN);
938 	tlv->typelen = htons(typelen);
939 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
940 		      ICE_IEEE_SUBTYPE_ETS_CFG);
941 	tlv->ouisubtype = htonl(ouisubtype);
942 
943 	buf = tlv->tlvinfo;
944 	buf[0] = 0;
945 
946 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
947 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
948 	 * Octets 13 - 20 are TSA values - leave as zeros
949 	 */
950 	buf[5] = 0x64;
951 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
952 	offset += len + 2;
953 	tlv = (struct ice_lldp_org_tlv *)
954 		((char *)tlv + sizeof(tlv->typelen) + len);
955 
956 	/* Add ETS REC TLV */
957 	buf = tlv->tlvinfo;
958 	tlv->typelen = htons(typelen);
959 
960 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
961 		      ICE_IEEE_SUBTYPE_ETS_REC);
962 	tlv->ouisubtype = htonl(ouisubtype);
963 
964 	/* First octet of buf is reserved
965 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
966 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
967 	 * Octets 13 - 20 are TSA value - leave as zeros
968 	 */
969 	buf[5] = 0x64;
970 	offset += len + 2;
971 	tlv = (struct ice_lldp_org_tlv *)
972 		((char *)tlv + sizeof(tlv->typelen) + len);
973 
974 	/* Add PFC CFG TLV */
975 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
976 		   ICE_IEEE_PFC_TLV_LEN);
977 	tlv->typelen = htons(typelen);
978 
979 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
980 		      ICE_IEEE_SUBTYPE_PFC_CFG);
981 	tlv->ouisubtype = htonl(ouisubtype);
982 
983 	/* Octet 1 left as all zeros - PFC disabled */
984 	buf[0] = 0x08;
985 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
986 	offset += len + 2;
987 
988 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
989 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
990 
991 	kfree(lldpmib);
992 }
993 
994 /**
995  * ice_check_phy_fw_load - check if PHY FW load failed
996  * @pf: pointer to PF struct
997  * @link_cfg_err: bitmap from the link info structure
998  *
999  * check if external PHY FW load failed and print an error message if it did
1000  */
1001 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1002 {
1003 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1004 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1005 		return;
1006 	}
1007 
1008 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1009 		return;
1010 
1011 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1012 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1013 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1014 	}
1015 }
1016 
1017 /**
1018  * ice_check_module_power
1019  * @pf: pointer to PF struct
1020  * @link_cfg_err: bitmap from the link info structure
1021  *
1022  * check module power level returned by a previous call to aq_get_link_info
1023  * and print error messages if module power level is not supported
1024  */
1025 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1026 {
1027 	/* if module power level is supported, clear the flag */
1028 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1029 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1030 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1031 		return;
1032 	}
1033 
1034 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1035 	 * above block didn't clear this bit, there's nothing to do
1036 	 */
1037 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1038 		return;
1039 
1040 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1041 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1042 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1043 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1044 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1045 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_link_cfg_err - check if link configuration failed
1051  * @pf: pointer to the PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * print if any link configuration failure happens due to the value in the
1055  * link_cfg_err parameter in the link info structure
1056  */
1057 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	ice_check_module_power(pf, link_cfg_err);
1060 	ice_check_phy_fw_load(pf, link_cfg_err);
1061 }
1062 
1063 /**
1064  * ice_link_event - process the link event
1065  * @pf: PF that the link event is associated with
1066  * @pi: port_info for the port that the link event is associated with
1067  * @link_up: true if the physical link is up and false if it is down
1068  * @link_speed: current link speed received from the link event
1069  *
1070  * Returns 0 on success and negative on failure
1071  */
1072 static int
1073 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1074 	       u16 link_speed)
1075 {
1076 	struct device *dev = ice_pf_to_dev(pf);
1077 	struct ice_phy_info *phy_info;
1078 	struct ice_vsi *vsi;
1079 	u16 old_link_speed;
1080 	bool old_link;
1081 	int status;
1082 
1083 	phy_info = &pi->phy;
1084 	phy_info->link_info_old = phy_info->link_info;
1085 
1086 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1087 	old_link_speed = phy_info->link_info_old.link_speed;
1088 
1089 	/* update the link info structures and re-enable link events,
1090 	 * don't bail on failure due to other book keeping needed
1091 	 */
1092 	status = ice_update_link_info(pi);
1093 	if (status)
1094 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1095 			pi->lport, status,
1096 			ice_aq_str(pi->hw->adminq.sq_last_status));
1097 
1098 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1099 
1100 	/* Check if the link state is up after updating link info, and treat
1101 	 * this event as an UP event since the link is actually UP now.
1102 	 */
1103 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1104 		link_up = true;
1105 
1106 	vsi = ice_get_main_vsi(pf);
1107 	if (!vsi || !vsi->port_info)
1108 		return -EINVAL;
1109 
1110 	/* turn off PHY if media was removed */
1111 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1112 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1113 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1114 		ice_set_link(vsi, false);
1115 	}
1116 
1117 	/* if the old link up/down and speed is the same as the new */
1118 	if (link_up == old_link && link_speed == old_link_speed)
1119 		return 0;
1120 
1121 	if (!ice_is_e810(&pf->hw))
1122 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1123 
1124 	if (ice_is_dcb_active(pf)) {
1125 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1126 			ice_dcb_rebuild(pf);
1127 	} else {
1128 		if (link_up)
1129 			ice_set_dflt_mib(pf);
1130 	}
1131 	ice_vsi_link_event(vsi, link_up);
1132 	ice_print_link_msg(vsi, link_up);
1133 
1134 	ice_vc_notify_link_state(pf);
1135 
1136 	return 0;
1137 }
1138 
1139 /**
1140  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1141  * @pf: board private structure
1142  */
1143 static void ice_watchdog_subtask(struct ice_pf *pf)
1144 {
1145 	int i;
1146 
1147 	/* if interface is down do nothing */
1148 	if (test_bit(ICE_DOWN, pf->state) ||
1149 	    test_bit(ICE_CFG_BUSY, pf->state))
1150 		return;
1151 
1152 	/* make sure we don't do these things too often */
1153 	if (time_before(jiffies,
1154 			pf->serv_tmr_prev + pf->serv_tmr_period))
1155 		return;
1156 
1157 	pf->serv_tmr_prev = jiffies;
1158 
1159 	/* Update the stats for active netdevs so the network stack
1160 	 * can look at updated numbers whenever it cares to
1161 	 */
1162 	ice_update_pf_stats(pf);
1163 	ice_for_each_vsi(pf, i)
1164 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1165 			ice_update_vsi_stats(pf->vsi[i]);
1166 }
1167 
1168 /**
1169  * ice_init_link_events - enable/initialize link events
1170  * @pi: pointer to the port_info instance
1171  *
1172  * Returns -EIO on failure, 0 on success
1173  */
1174 static int ice_init_link_events(struct ice_port_info *pi)
1175 {
1176 	u16 mask;
1177 
1178 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1179 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1180 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1181 
1182 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1183 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1184 			pi->lport);
1185 		return -EIO;
1186 	}
1187 
1188 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1189 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1190 			pi->lport);
1191 		return -EIO;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * ice_handle_link_event - handle link event via ARQ
1199  * @pf: PF that the link event is associated with
1200  * @event: event structure containing link status info
1201  */
1202 static int
1203 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1204 {
1205 	struct ice_aqc_get_link_status_data *link_data;
1206 	struct ice_port_info *port_info;
1207 	int status;
1208 
1209 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1210 	port_info = pf->hw.port_info;
1211 	if (!port_info)
1212 		return -EINVAL;
1213 
1214 	status = ice_link_event(pf, port_info,
1215 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1216 				le16_to_cpu(link_data->link_speed));
1217 	if (status)
1218 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1219 			status);
1220 
1221 	return status;
1222 }
1223 
1224 enum ice_aq_task_state {
1225 	ICE_AQ_TASK_WAITING = 0,
1226 	ICE_AQ_TASK_COMPLETE,
1227 	ICE_AQ_TASK_CANCELED,
1228 };
1229 
1230 struct ice_aq_task {
1231 	struct hlist_node entry;
1232 
1233 	u16 opcode;
1234 	struct ice_rq_event_info *event;
1235 	enum ice_aq_task_state state;
1236 };
1237 
1238 /**
1239  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1240  * @pf: pointer to the PF private structure
1241  * @opcode: the opcode to wait for
1242  * @timeout: how long to wait, in jiffies
1243  * @event: storage for the event info
1244  *
1245  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1246  * current thread will be put to sleep until the specified event occurs or
1247  * until the given timeout is reached.
1248  *
1249  * To obtain only the descriptor contents, pass an event without an allocated
1250  * msg_buf. If the complete data buffer is desired, allocate the
1251  * event->msg_buf with enough space ahead of time.
1252  *
1253  * Returns: zero on success, or a negative error code on failure.
1254  */
1255 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1256 			  struct ice_rq_event_info *event)
1257 {
1258 	struct device *dev = ice_pf_to_dev(pf);
1259 	struct ice_aq_task *task;
1260 	unsigned long start;
1261 	long ret;
1262 	int err;
1263 
1264 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1265 	if (!task)
1266 		return -ENOMEM;
1267 
1268 	INIT_HLIST_NODE(&task->entry);
1269 	task->opcode = opcode;
1270 	task->event = event;
1271 	task->state = ICE_AQ_TASK_WAITING;
1272 
1273 	spin_lock_bh(&pf->aq_wait_lock);
1274 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1275 	spin_unlock_bh(&pf->aq_wait_lock);
1276 
1277 	start = jiffies;
1278 
1279 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1280 					       timeout);
1281 	switch (task->state) {
1282 	case ICE_AQ_TASK_WAITING:
1283 		err = ret < 0 ? ret : -ETIMEDOUT;
1284 		break;
1285 	case ICE_AQ_TASK_CANCELED:
1286 		err = ret < 0 ? ret : -ECANCELED;
1287 		break;
1288 	case ICE_AQ_TASK_COMPLETE:
1289 		err = ret < 0 ? ret : 0;
1290 		break;
1291 	default:
1292 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1293 		err = -EINVAL;
1294 		break;
1295 	}
1296 
1297 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1298 		jiffies_to_msecs(jiffies - start),
1299 		jiffies_to_msecs(timeout),
1300 		opcode);
1301 
1302 	spin_lock_bh(&pf->aq_wait_lock);
1303 	hlist_del(&task->entry);
1304 	spin_unlock_bh(&pf->aq_wait_lock);
1305 	kfree(task);
1306 
1307 	return err;
1308 }
1309 
1310 /**
1311  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1312  * @pf: pointer to the PF private structure
1313  * @opcode: the opcode of the event
1314  * @event: the event to check
1315  *
1316  * Loops over the current list of pending threads waiting for an AdminQ event.
1317  * For each matching task, copy the contents of the event into the task
1318  * structure and wake up the thread.
1319  *
1320  * If multiple threads wait for the same opcode, they will all be woken up.
1321  *
1322  * Note that event->msg_buf will only be duplicated if the event has a buffer
1323  * with enough space already allocated. Otherwise, only the descriptor and
1324  * message length will be copied.
1325  *
1326  * Returns: true if an event was found, false otherwise
1327  */
1328 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1329 				struct ice_rq_event_info *event)
1330 {
1331 	struct ice_aq_task *task;
1332 	bool found = false;
1333 
1334 	spin_lock_bh(&pf->aq_wait_lock);
1335 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1336 		if (task->state || task->opcode != opcode)
1337 			continue;
1338 
1339 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1340 		task->event->msg_len = event->msg_len;
1341 
1342 		/* Only copy the data buffer if a destination was set */
1343 		if (task->event->msg_buf &&
1344 		    task->event->buf_len > event->buf_len) {
1345 			memcpy(task->event->msg_buf, event->msg_buf,
1346 			       event->buf_len);
1347 			task->event->buf_len = event->buf_len;
1348 		}
1349 
1350 		task->state = ICE_AQ_TASK_COMPLETE;
1351 		found = true;
1352 	}
1353 	spin_unlock_bh(&pf->aq_wait_lock);
1354 
1355 	if (found)
1356 		wake_up(&pf->aq_wait_queue);
1357 }
1358 
1359 /**
1360  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1361  * @pf: the PF private structure
1362  *
1363  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1364  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1365  */
1366 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1367 {
1368 	struct ice_aq_task *task;
1369 
1370 	spin_lock_bh(&pf->aq_wait_lock);
1371 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1372 		task->state = ICE_AQ_TASK_CANCELED;
1373 	spin_unlock_bh(&pf->aq_wait_lock);
1374 
1375 	wake_up(&pf->aq_wait_queue);
1376 }
1377 
1378 /**
1379  * __ice_clean_ctrlq - helper function to clean controlq rings
1380  * @pf: ptr to struct ice_pf
1381  * @q_type: specific Control queue type
1382  */
1383 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1384 {
1385 	struct device *dev = ice_pf_to_dev(pf);
1386 	struct ice_rq_event_info event;
1387 	struct ice_hw *hw = &pf->hw;
1388 	struct ice_ctl_q_info *cq;
1389 	u16 pending, i = 0;
1390 	const char *qtype;
1391 	u32 oldval, val;
1392 
1393 	/* Do not clean control queue if/when PF reset fails */
1394 	if (test_bit(ICE_RESET_FAILED, pf->state))
1395 		return 0;
1396 
1397 	switch (q_type) {
1398 	case ICE_CTL_Q_ADMIN:
1399 		cq = &hw->adminq;
1400 		qtype = "Admin";
1401 		break;
1402 	case ICE_CTL_Q_SB:
1403 		cq = &hw->sbq;
1404 		qtype = "Sideband";
1405 		break;
1406 	case ICE_CTL_Q_MAILBOX:
1407 		cq = &hw->mailboxq;
1408 		qtype = "Mailbox";
1409 		/* we are going to try to detect a malicious VF, so set the
1410 		 * state to begin detection
1411 		 */
1412 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1413 		break;
1414 	default:
1415 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1416 		return 0;
1417 	}
1418 
1419 	/* check for error indications - PF_xx_AxQLEN register layout for
1420 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1421 	 */
1422 	val = rd32(hw, cq->rq.len);
1423 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1424 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1425 		oldval = val;
1426 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1427 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1428 				qtype);
1429 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1430 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1431 				qtype);
1432 		}
1433 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1434 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1435 				qtype);
1436 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1437 			 PF_FW_ARQLEN_ARQCRIT_M);
1438 		if (oldval != val)
1439 			wr32(hw, cq->rq.len, val);
1440 	}
1441 
1442 	val = rd32(hw, cq->sq.len);
1443 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1444 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1445 		oldval = val;
1446 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1447 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1448 				qtype);
1449 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1450 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1451 				qtype);
1452 		}
1453 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1454 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1455 				qtype);
1456 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1457 			 PF_FW_ATQLEN_ATQCRIT_M);
1458 		if (oldval != val)
1459 			wr32(hw, cq->sq.len, val);
1460 	}
1461 
1462 	event.buf_len = cq->rq_buf_size;
1463 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1464 	if (!event.msg_buf)
1465 		return 0;
1466 
1467 	do {
1468 		u16 opcode;
1469 		int ret;
1470 
1471 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1472 		if (ret == -EALREADY)
1473 			break;
1474 		if (ret) {
1475 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1476 				ret);
1477 			break;
1478 		}
1479 
1480 		opcode = le16_to_cpu(event.desc.opcode);
1481 
1482 		/* Notify any thread that might be waiting for this event */
1483 		ice_aq_check_events(pf, opcode, &event);
1484 
1485 		switch (opcode) {
1486 		case ice_aqc_opc_get_link_status:
1487 			if (ice_handle_link_event(pf, &event))
1488 				dev_err(dev, "Could not handle link event\n");
1489 			break;
1490 		case ice_aqc_opc_event_lan_overflow:
1491 			ice_vf_lan_overflow_event(pf, &event);
1492 			break;
1493 		case ice_mbx_opc_send_msg_to_pf:
1494 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1495 				ice_vc_process_vf_msg(pf, &event);
1496 			break;
1497 		case ice_aqc_opc_fw_logging:
1498 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1499 			break;
1500 		case ice_aqc_opc_lldp_set_mib_change:
1501 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1502 			break;
1503 		default:
1504 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1505 				qtype, opcode);
1506 			break;
1507 		}
1508 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1509 
1510 	kfree(event.msg_buf);
1511 
1512 	return pending && (i == ICE_DFLT_IRQ_WORK);
1513 }
1514 
1515 /**
1516  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1517  * @hw: pointer to hardware info
1518  * @cq: control queue information
1519  *
1520  * returns true if there are pending messages in a queue, false if there aren't
1521  */
1522 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1523 {
1524 	u16 ntu;
1525 
1526 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1527 	return cq->rq.next_to_clean != ntu;
1528 }
1529 
1530 /**
1531  * ice_clean_adminq_subtask - clean the AdminQ rings
1532  * @pf: board private structure
1533  */
1534 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1535 {
1536 	struct ice_hw *hw = &pf->hw;
1537 
1538 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1539 		return;
1540 
1541 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1542 		return;
1543 
1544 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1545 
1546 	/* There might be a situation where new messages arrive to a control
1547 	 * queue between processing the last message and clearing the
1548 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1549 	 * ice_ctrlq_pending) and process new messages if any.
1550 	 */
1551 	if (ice_ctrlq_pending(hw, &hw->adminq))
1552 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1553 
1554 	ice_flush(hw);
1555 }
1556 
1557 /**
1558  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1559  * @pf: board private structure
1560  */
1561 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1562 {
1563 	struct ice_hw *hw = &pf->hw;
1564 
1565 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1566 		return;
1567 
1568 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1569 		return;
1570 
1571 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1572 
1573 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1574 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1575 
1576 	ice_flush(hw);
1577 }
1578 
1579 /**
1580  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1581  * @pf: board private structure
1582  */
1583 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1584 {
1585 	struct ice_hw *hw = &pf->hw;
1586 
1587 	/* Nothing to do here if sideband queue is not supported */
1588 	if (!ice_is_sbq_supported(hw)) {
1589 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1590 		return;
1591 	}
1592 
1593 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1594 		return;
1595 
1596 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1597 		return;
1598 
1599 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1600 
1601 	if (ice_ctrlq_pending(hw, &hw->sbq))
1602 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1603 
1604 	ice_flush(hw);
1605 }
1606 
1607 /**
1608  * ice_service_task_schedule - schedule the service task to wake up
1609  * @pf: board private structure
1610  *
1611  * If not already scheduled, this puts the task into the work queue.
1612  */
1613 void ice_service_task_schedule(struct ice_pf *pf)
1614 {
1615 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1616 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1617 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1618 		queue_work(ice_wq, &pf->serv_task);
1619 }
1620 
1621 /**
1622  * ice_service_task_complete - finish up the service task
1623  * @pf: board private structure
1624  */
1625 static void ice_service_task_complete(struct ice_pf *pf)
1626 {
1627 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1628 
1629 	/* force memory (pf->state) to sync before next service task */
1630 	smp_mb__before_atomic();
1631 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1632 }
1633 
1634 /**
1635  * ice_service_task_stop - stop service task and cancel works
1636  * @pf: board private structure
1637  *
1638  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1639  * 1 otherwise.
1640  */
1641 static int ice_service_task_stop(struct ice_pf *pf)
1642 {
1643 	int ret;
1644 
1645 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1646 
1647 	if (pf->serv_tmr.function)
1648 		del_timer_sync(&pf->serv_tmr);
1649 	if (pf->serv_task.func)
1650 		cancel_work_sync(&pf->serv_task);
1651 
1652 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1653 	return ret;
1654 }
1655 
1656 /**
1657  * ice_service_task_restart - restart service task and schedule works
1658  * @pf: board private structure
1659  *
1660  * This function is needed for suspend and resume works (e.g WoL scenario)
1661  */
1662 static void ice_service_task_restart(struct ice_pf *pf)
1663 {
1664 	clear_bit(ICE_SERVICE_DIS, pf->state);
1665 	ice_service_task_schedule(pf);
1666 }
1667 
1668 /**
1669  * ice_service_timer - timer callback to schedule service task
1670  * @t: pointer to timer_list
1671  */
1672 static void ice_service_timer(struct timer_list *t)
1673 {
1674 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1675 
1676 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1677 	ice_service_task_schedule(pf);
1678 }
1679 
1680 /**
1681  * ice_handle_mdd_event - handle malicious driver detect event
1682  * @pf: pointer to the PF structure
1683  *
1684  * Called from service task. OICR interrupt handler indicates MDD event.
1685  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1686  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1687  * disable the queue, the PF can be configured to reset the VF using ethtool
1688  * private flag mdd-auto-reset-vf.
1689  */
1690 static void ice_handle_mdd_event(struct ice_pf *pf)
1691 {
1692 	struct device *dev = ice_pf_to_dev(pf);
1693 	struct ice_hw *hw = &pf->hw;
1694 	struct ice_vf *vf;
1695 	unsigned int bkt;
1696 	u32 reg;
1697 
1698 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1699 		/* Since the VF MDD event logging is rate limited, check if
1700 		 * there are pending MDD events.
1701 		 */
1702 		ice_print_vfs_mdd_events(pf);
1703 		return;
1704 	}
1705 
1706 	/* find what triggered an MDD event */
1707 	reg = rd32(hw, GL_MDET_TX_PQM);
1708 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1709 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1710 				GL_MDET_TX_PQM_PF_NUM_S;
1711 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1712 				GL_MDET_TX_PQM_VF_NUM_S;
1713 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1714 				GL_MDET_TX_PQM_MAL_TYPE_S;
1715 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1716 				GL_MDET_TX_PQM_QNUM_S);
1717 
1718 		if (netif_msg_tx_err(pf))
1719 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1720 				 event, queue, pf_num, vf_num);
1721 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1722 	}
1723 
1724 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1725 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1726 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1727 				GL_MDET_TX_TCLAN_PF_NUM_S;
1728 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1729 				GL_MDET_TX_TCLAN_VF_NUM_S;
1730 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1731 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1732 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1733 				GL_MDET_TX_TCLAN_QNUM_S);
1734 
1735 		if (netif_msg_tx_err(pf))
1736 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1737 				 event, queue, pf_num, vf_num);
1738 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1739 	}
1740 
1741 	reg = rd32(hw, GL_MDET_RX);
1742 	if (reg & GL_MDET_RX_VALID_M) {
1743 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1744 				GL_MDET_RX_PF_NUM_S;
1745 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1746 				GL_MDET_RX_VF_NUM_S;
1747 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1748 				GL_MDET_RX_MAL_TYPE_S;
1749 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1750 				GL_MDET_RX_QNUM_S);
1751 
1752 		if (netif_msg_rx_err(pf))
1753 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1754 				 event, queue, pf_num, vf_num);
1755 		wr32(hw, GL_MDET_RX, 0xffffffff);
1756 	}
1757 
1758 	/* check to see if this PF caused an MDD event */
1759 	reg = rd32(hw, PF_MDET_TX_PQM);
1760 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1761 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1762 		if (netif_msg_tx_err(pf))
1763 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1764 	}
1765 
1766 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1767 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1768 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1769 		if (netif_msg_tx_err(pf))
1770 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1771 	}
1772 
1773 	reg = rd32(hw, PF_MDET_RX);
1774 	if (reg & PF_MDET_RX_VALID_M) {
1775 		wr32(hw, PF_MDET_RX, 0xFFFF);
1776 		if (netif_msg_rx_err(pf))
1777 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1778 	}
1779 
1780 	/* Check to see if one of the VFs caused an MDD event, and then
1781 	 * increment counters and set print pending
1782 	 */
1783 	mutex_lock(&pf->vfs.table_lock);
1784 	ice_for_each_vf(pf, bkt, vf) {
1785 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1786 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1787 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1788 			vf->mdd_tx_events.count++;
1789 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1790 			if (netif_msg_tx_err(pf))
1791 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1792 					 vf->vf_id);
1793 		}
1794 
1795 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1796 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1797 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1798 			vf->mdd_tx_events.count++;
1799 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1800 			if (netif_msg_tx_err(pf))
1801 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1802 					 vf->vf_id);
1803 		}
1804 
1805 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1806 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1807 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1808 			vf->mdd_tx_events.count++;
1809 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1810 			if (netif_msg_tx_err(pf))
1811 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1812 					 vf->vf_id);
1813 		}
1814 
1815 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1816 		if (reg & VP_MDET_RX_VALID_M) {
1817 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1818 			vf->mdd_rx_events.count++;
1819 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1820 			if (netif_msg_rx_err(pf))
1821 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1822 					 vf->vf_id);
1823 
1824 			/* Since the queue is disabled on VF Rx MDD events, the
1825 			 * PF can be configured to reset the VF through ethtool
1826 			 * private flag mdd-auto-reset-vf.
1827 			 */
1828 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1829 				/* VF MDD event counters will be cleared by
1830 				 * reset, so print the event prior to reset.
1831 				 */
1832 				ice_print_vf_rx_mdd_event(vf);
1833 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1834 			}
1835 		}
1836 	}
1837 	mutex_unlock(&pf->vfs.table_lock);
1838 
1839 	ice_print_vfs_mdd_events(pf);
1840 }
1841 
1842 /**
1843  * ice_force_phys_link_state - Force the physical link state
1844  * @vsi: VSI to force the physical link state to up/down
1845  * @link_up: true/false indicates to set the physical link to up/down
1846  *
1847  * Force the physical link state by getting the current PHY capabilities from
1848  * hardware and setting the PHY config based on the determined capabilities. If
1849  * link changes a link event will be triggered because both the Enable Automatic
1850  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1851  *
1852  * Returns 0 on success, negative on failure
1853  */
1854 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1855 {
1856 	struct ice_aqc_get_phy_caps_data *pcaps;
1857 	struct ice_aqc_set_phy_cfg_data *cfg;
1858 	struct ice_port_info *pi;
1859 	struct device *dev;
1860 	int retcode;
1861 
1862 	if (!vsi || !vsi->port_info || !vsi->back)
1863 		return -EINVAL;
1864 	if (vsi->type != ICE_VSI_PF)
1865 		return 0;
1866 
1867 	dev = ice_pf_to_dev(vsi->back);
1868 
1869 	pi = vsi->port_info;
1870 
1871 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1872 	if (!pcaps)
1873 		return -ENOMEM;
1874 
1875 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1876 				      NULL);
1877 	if (retcode) {
1878 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1879 			vsi->vsi_num, retcode);
1880 		retcode = -EIO;
1881 		goto out;
1882 	}
1883 
1884 	/* No change in link */
1885 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1886 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1887 		goto out;
1888 
1889 	/* Use the current user PHY configuration. The current user PHY
1890 	 * configuration is initialized during probe from PHY capabilities
1891 	 * software mode, and updated on set PHY configuration.
1892 	 */
1893 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1894 	if (!cfg) {
1895 		retcode = -ENOMEM;
1896 		goto out;
1897 	}
1898 
1899 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1900 	if (link_up)
1901 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1902 	else
1903 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1904 
1905 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1906 	if (retcode) {
1907 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1908 			vsi->vsi_num, retcode);
1909 		retcode = -EIO;
1910 	}
1911 
1912 	kfree(cfg);
1913 out:
1914 	kfree(pcaps);
1915 	return retcode;
1916 }
1917 
1918 /**
1919  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1920  * @pi: port info structure
1921  *
1922  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1923  */
1924 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1925 {
1926 	struct ice_aqc_get_phy_caps_data *pcaps;
1927 	struct ice_pf *pf = pi->hw->back;
1928 	int err;
1929 
1930 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1931 	if (!pcaps)
1932 		return -ENOMEM;
1933 
1934 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1935 				  pcaps, NULL);
1936 
1937 	if (err) {
1938 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1939 		goto out;
1940 	}
1941 
1942 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1943 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1944 
1945 out:
1946 	kfree(pcaps);
1947 	return err;
1948 }
1949 
1950 /**
1951  * ice_init_link_dflt_override - Initialize link default override
1952  * @pi: port info structure
1953  *
1954  * Initialize link default override and PHY total port shutdown during probe
1955  */
1956 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1957 {
1958 	struct ice_link_default_override_tlv *ldo;
1959 	struct ice_pf *pf = pi->hw->back;
1960 
1961 	ldo = &pf->link_dflt_override;
1962 	if (ice_get_link_default_override(ldo, pi))
1963 		return;
1964 
1965 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1966 		return;
1967 
1968 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1969 	 * ethtool private flag) for ports with Port Disable bit set.
1970 	 */
1971 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1972 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1973 }
1974 
1975 /**
1976  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1977  * @pi: port info structure
1978  *
1979  * If default override is enabled, initialize the user PHY cfg speed and FEC
1980  * settings using the default override mask from the NVM.
1981  *
1982  * The PHY should only be configured with the default override settings the
1983  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1984  * is used to indicate that the user PHY cfg default override is initialized
1985  * and the PHY has not been configured with the default override settings. The
1986  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1987  * configured.
1988  *
1989  * This function should be called only if the FW doesn't support default
1990  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1991  */
1992 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1993 {
1994 	struct ice_link_default_override_tlv *ldo;
1995 	struct ice_aqc_set_phy_cfg_data *cfg;
1996 	struct ice_phy_info *phy = &pi->phy;
1997 	struct ice_pf *pf = pi->hw->back;
1998 
1999 	ldo = &pf->link_dflt_override;
2000 
2001 	/* If link default override is enabled, use to mask NVM PHY capabilities
2002 	 * for speed and FEC default configuration.
2003 	 */
2004 	cfg = &phy->curr_user_phy_cfg;
2005 
2006 	if (ldo->phy_type_low || ldo->phy_type_high) {
2007 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2008 				    cpu_to_le64(ldo->phy_type_low);
2009 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2010 				     cpu_to_le64(ldo->phy_type_high);
2011 	}
2012 	cfg->link_fec_opt = ldo->fec_options;
2013 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2014 
2015 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2016 }
2017 
2018 /**
2019  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2020  * @pi: port info structure
2021  *
2022  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2023  * mode to default. The PHY defaults are from get PHY capabilities topology
2024  * with media so call when media is first available. An error is returned if
2025  * called when media is not available. The PHY initialization completed state is
2026  * set here.
2027  *
2028  * These configurations are used when setting PHY
2029  * configuration. The user PHY configuration is updated on set PHY
2030  * configuration. Returns 0 on success, negative on failure
2031  */
2032 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2033 {
2034 	struct ice_aqc_get_phy_caps_data *pcaps;
2035 	struct ice_phy_info *phy = &pi->phy;
2036 	struct ice_pf *pf = pi->hw->back;
2037 	int err;
2038 
2039 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2040 		return -EIO;
2041 
2042 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2043 	if (!pcaps)
2044 		return -ENOMEM;
2045 
2046 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2047 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2048 					  pcaps, NULL);
2049 	else
2050 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2051 					  pcaps, NULL);
2052 	if (err) {
2053 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2054 		goto err_out;
2055 	}
2056 
2057 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2058 
2059 	/* check if lenient mode is supported and enabled */
2060 	if (ice_fw_supports_link_override(pi->hw) &&
2061 	    !(pcaps->module_compliance_enforcement &
2062 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2063 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2064 
2065 		/* if the FW supports default PHY configuration mode, then the driver
2066 		 * does not have to apply link override settings. If not,
2067 		 * initialize user PHY configuration with link override values
2068 		 */
2069 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2070 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2071 			ice_init_phy_cfg_dflt_override(pi);
2072 			goto out;
2073 		}
2074 	}
2075 
2076 	/* if link default override is not enabled, set user flow control and
2077 	 * FEC settings based on what get_phy_caps returned
2078 	 */
2079 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2080 						      pcaps->link_fec_options);
2081 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2082 
2083 out:
2084 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2085 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2086 err_out:
2087 	kfree(pcaps);
2088 	return err;
2089 }
2090 
2091 /**
2092  * ice_configure_phy - configure PHY
2093  * @vsi: VSI of PHY
2094  *
2095  * Set the PHY configuration. If the current PHY configuration is the same as
2096  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2097  * configure the based get PHY capabilities for topology with media.
2098  */
2099 static int ice_configure_phy(struct ice_vsi *vsi)
2100 {
2101 	struct device *dev = ice_pf_to_dev(vsi->back);
2102 	struct ice_port_info *pi = vsi->port_info;
2103 	struct ice_aqc_get_phy_caps_data *pcaps;
2104 	struct ice_aqc_set_phy_cfg_data *cfg;
2105 	struct ice_phy_info *phy = &pi->phy;
2106 	struct ice_pf *pf = vsi->back;
2107 	int err;
2108 
2109 	/* Ensure we have media as we cannot configure a medialess port */
2110 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2111 		return -EPERM;
2112 
2113 	ice_print_topo_conflict(vsi);
2114 
2115 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2116 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2117 		return -EPERM;
2118 
2119 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2120 		return ice_force_phys_link_state(vsi, true);
2121 
2122 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2123 	if (!pcaps)
2124 		return -ENOMEM;
2125 
2126 	/* Get current PHY config */
2127 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2128 				  NULL);
2129 	if (err) {
2130 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2131 			vsi->vsi_num, err);
2132 		goto done;
2133 	}
2134 
2135 	/* If PHY enable link is configured and configuration has not changed,
2136 	 * there's nothing to do
2137 	 */
2138 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2139 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2140 		goto done;
2141 
2142 	/* Use PHY topology as baseline for configuration */
2143 	memset(pcaps, 0, sizeof(*pcaps));
2144 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2145 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2146 					  pcaps, NULL);
2147 	else
2148 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2149 					  pcaps, NULL);
2150 	if (err) {
2151 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2152 			vsi->vsi_num, err);
2153 		goto done;
2154 	}
2155 
2156 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2157 	if (!cfg) {
2158 		err = -ENOMEM;
2159 		goto done;
2160 	}
2161 
2162 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2163 
2164 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2165 	 * ice_init_phy_user_cfg_ldo.
2166 	 */
2167 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2168 			       vsi->back->state)) {
2169 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2170 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2171 	} else {
2172 		u64 phy_low = 0, phy_high = 0;
2173 
2174 		ice_update_phy_type(&phy_low, &phy_high,
2175 				    pi->phy.curr_user_speed_req);
2176 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2177 		cfg->phy_type_high = pcaps->phy_type_high &
2178 				     cpu_to_le64(phy_high);
2179 	}
2180 
2181 	/* Can't provide what was requested; use PHY capabilities */
2182 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2183 		cfg->phy_type_low = pcaps->phy_type_low;
2184 		cfg->phy_type_high = pcaps->phy_type_high;
2185 	}
2186 
2187 	/* FEC */
2188 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2189 
2190 	/* Can't provide what was requested; use PHY capabilities */
2191 	if (cfg->link_fec_opt !=
2192 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2193 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2194 		cfg->link_fec_opt = pcaps->link_fec_options;
2195 	}
2196 
2197 	/* Flow Control - always supported; no need to check against
2198 	 * capabilities
2199 	 */
2200 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2201 
2202 	/* Enable link and link update */
2203 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2204 
2205 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2206 	if (err)
2207 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2208 			vsi->vsi_num, err);
2209 
2210 	kfree(cfg);
2211 done:
2212 	kfree(pcaps);
2213 	return err;
2214 }
2215 
2216 /**
2217  * ice_check_media_subtask - Check for media
2218  * @pf: pointer to PF struct
2219  *
2220  * If media is available, then initialize PHY user configuration if it is not
2221  * been, and configure the PHY if the interface is up.
2222  */
2223 static void ice_check_media_subtask(struct ice_pf *pf)
2224 {
2225 	struct ice_port_info *pi;
2226 	struct ice_vsi *vsi;
2227 	int err;
2228 
2229 	/* No need to check for media if it's already present */
2230 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2231 		return;
2232 
2233 	vsi = ice_get_main_vsi(pf);
2234 	if (!vsi)
2235 		return;
2236 
2237 	/* Refresh link info and check if media is present */
2238 	pi = vsi->port_info;
2239 	err = ice_update_link_info(pi);
2240 	if (err)
2241 		return;
2242 
2243 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2244 
2245 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2246 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2247 			ice_init_phy_user_cfg(pi);
2248 
2249 		/* PHY settings are reset on media insertion, reconfigure
2250 		 * PHY to preserve settings.
2251 		 */
2252 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2253 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2254 			return;
2255 
2256 		err = ice_configure_phy(vsi);
2257 		if (!err)
2258 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2259 
2260 		/* A Link Status Event will be generated; the event handler
2261 		 * will complete bringing the interface up
2262 		 */
2263 	}
2264 }
2265 
2266 /**
2267  * ice_service_task - manage and run subtasks
2268  * @work: pointer to work_struct contained by the PF struct
2269  */
2270 static void ice_service_task(struct work_struct *work)
2271 {
2272 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2273 	unsigned long start_time = jiffies;
2274 
2275 	/* subtasks */
2276 
2277 	/* process reset requests first */
2278 	ice_reset_subtask(pf);
2279 
2280 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2281 	if (ice_is_reset_in_progress(pf->state) ||
2282 	    test_bit(ICE_SUSPENDED, pf->state) ||
2283 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2284 		ice_service_task_complete(pf);
2285 		return;
2286 	}
2287 
2288 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2289 		struct iidc_event *event;
2290 
2291 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2292 		if (event) {
2293 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2294 			/* report the entire OICR value to AUX driver */
2295 			swap(event->reg, pf->oicr_err_reg);
2296 			ice_send_event_to_aux(pf, event);
2297 			kfree(event);
2298 		}
2299 	}
2300 
2301 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2302 		/* Plug aux device per request */
2303 		ice_plug_aux_dev(pf);
2304 
2305 		/* Mark plugging as done but check whether unplug was
2306 		 * requested during ice_plug_aux_dev() call
2307 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2308 		 * plug aux device.
2309 		 */
2310 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2311 			ice_unplug_aux_dev(pf);
2312 	}
2313 
2314 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2315 		struct iidc_event *event;
2316 
2317 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2318 		if (event) {
2319 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2320 			ice_send_event_to_aux(pf, event);
2321 			kfree(event);
2322 		}
2323 	}
2324 
2325 	ice_clean_adminq_subtask(pf);
2326 	ice_check_media_subtask(pf);
2327 	ice_check_for_hang_subtask(pf);
2328 	ice_sync_fltr_subtask(pf);
2329 	ice_handle_mdd_event(pf);
2330 	ice_watchdog_subtask(pf);
2331 
2332 	if (ice_is_safe_mode(pf)) {
2333 		ice_service_task_complete(pf);
2334 		return;
2335 	}
2336 
2337 	ice_process_vflr_event(pf);
2338 	ice_clean_mailboxq_subtask(pf);
2339 	ice_clean_sbq_subtask(pf);
2340 	ice_sync_arfs_fltrs(pf);
2341 	ice_flush_fdir_ctx(pf);
2342 
2343 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2344 	ice_service_task_complete(pf);
2345 
2346 	/* If the tasks have taken longer than one service timer period
2347 	 * or there is more work to be done, reset the service timer to
2348 	 * schedule the service task now.
2349 	 */
2350 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2351 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2352 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2353 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2354 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2355 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2356 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2357 		mod_timer(&pf->serv_tmr, jiffies);
2358 }
2359 
2360 /**
2361  * ice_set_ctrlq_len - helper function to set controlq length
2362  * @hw: pointer to the HW instance
2363  */
2364 static void ice_set_ctrlq_len(struct ice_hw *hw)
2365 {
2366 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2367 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2368 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2369 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2370 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2371 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2372 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2373 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2374 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2375 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2376 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2377 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2378 }
2379 
2380 /**
2381  * ice_schedule_reset - schedule a reset
2382  * @pf: board private structure
2383  * @reset: reset being requested
2384  */
2385 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2386 {
2387 	struct device *dev = ice_pf_to_dev(pf);
2388 
2389 	/* bail out if earlier reset has failed */
2390 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2391 		dev_dbg(dev, "earlier reset has failed\n");
2392 		return -EIO;
2393 	}
2394 	/* bail if reset/recovery already in progress */
2395 	if (ice_is_reset_in_progress(pf->state)) {
2396 		dev_dbg(dev, "Reset already in progress\n");
2397 		return -EBUSY;
2398 	}
2399 
2400 	ice_unplug_aux_dev(pf);
2401 
2402 	switch (reset) {
2403 	case ICE_RESET_PFR:
2404 		set_bit(ICE_PFR_REQ, pf->state);
2405 		break;
2406 	case ICE_RESET_CORER:
2407 		set_bit(ICE_CORER_REQ, pf->state);
2408 		break;
2409 	case ICE_RESET_GLOBR:
2410 		set_bit(ICE_GLOBR_REQ, pf->state);
2411 		break;
2412 	default:
2413 		return -EINVAL;
2414 	}
2415 
2416 	ice_service_task_schedule(pf);
2417 	return 0;
2418 }
2419 
2420 /**
2421  * ice_irq_affinity_notify - Callback for affinity changes
2422  * @notify: context as to what irq was changed
2423  * @mask: the new affinity mask
2424  *
2425  * This is a callback function used by the irq_set_affinity_notifier function
2426  * so that we may register to receive changes to the irq affinity masks.
2427  */
2428 static void
2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2430 			const cpumask_t *mask)
2431 {
2432 	struct ice_q_vector *q_vector =
2433 		container_of(notify, struct ice_q_vector, affinity_notify);
2434 
2435 	cpumask_copy(&q_vector->affinity_mask, mask);
2436 }
2437 
2438 /**
2439  * ice_irq_affinity_release - Callback for affinity notifier release
2440  * @ref: internal core kernel usage
2441  *
2442  * This is a callback function used by the irq_set_affinity_notifier function
2443  * to inform the current notification subscriber that they will no longer
2444  * receive notifications.
2445  */
2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2447 
2448 /**
2449  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2450  * @vsi: the VSI being configured
2451  */
2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2453 {
2454 	struct ice_hw *hw = &vsi->back->hw;
2455 	int i;
2456 
2457 	ice_for_each_q_vector(vsi, i)
2458 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2459 
2460 	ice_flush(hw);
2461 	return 0;
2462 }
2463 
2464 /**
2465  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2466  * @vsi: the VSI being configured
2467  * @basename: name for the vector
2468  */
2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2470 {
2471 	int q_vectors = vsi->num_q_vectors;
2472 	struct ice_pf *pf = vsi->back;
2473 	int base = vsi->base_vector;
2474 	struct device *dev;
2475 	int rx_int_idx = 0;
2476 	int tx_int_idx = 0;
2477 	int vector, err;
2478 	int irq_num;
2479 
2480 	dev = ice_pf_to_dev(pf);
2481 	for (vector = 0; vector < q_vectors; vector++) {
2482 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2483 
2484 		irq_num = pf->msix_entries[base + vector].vector;
2485 
2486 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2487 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2488 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2489 			tx_int_idx++;
2490 		} else if (q_vector->rx.rx_ring) {
2491 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2492 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2493 		} else if (q_vector->tx.tx_ring) {
2494 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2495 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2496 		} else {
2497 			/* skip this unused q_vector */
2498 			continue;
2499 		}
2500 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2501 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2502 					       IRQF_SHARED, q_vector->name,
2503 					       q_vector);
2504 		else
2505 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2506 					       0, q_vector->name, q_vector);
2507 		if (err) {
2508 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2509 				   err);
2510 			goto free_q_irqs;
2511 		}
2512 
2513 		/* register for affinity change notifications */
2514 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2515 			struct irq_affinity_notify *affinity_notify;
2516 
2517 			affinity_notify = &q_vector->affinity_notify;
2518 			affinity_notify->notify = ice_irq_affinity_notify;
2519 			affinity_notify->release = ice_irq_affinity_release;
2520 			irq_set_affinity_notifier(irq_num, affinity_notify);
2521 		}
2522 
2523 		/* assign the mask for this irq */
2524 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2525 	}
2526 
2527 	err = ice_set_cpu_rx_rmap(vsi);
2528 	if (err) {
2529 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2530 			   vsi->vsi_num, ERR_PTR(err));
2531 		goto free_q_irqs;
2532 	}
2533 
2534 	vsi->irqs_ready = true;
2535 	return 0;
2536 
2537 free_q_irqs:
2538 	while (vector) {
2539 		vector--;
2540 		irq_num = pf->msix_entries[base + vector].vector;
2541 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2542 			irq_set_affinity_notifier(irq_num, NULL);
2543 		irq_set_affinity_hint(irq_num, NULL);
2544 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2545 	}
2546 	return err;
2547 }
2548 
2549 /**
2550  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2551  * @vsi: VSI to setup Tx rings used by XDP
2552  *
2553  * Return 0 on success and negative value on error
2554  */
2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2556 {
2557 	struct device *dev = ice_pf_to_dev(vsi->back);
2558 	struct ice_tx_desc *tx_desc;
2559 	int i, j;
2560 
2561 	ice_for_each_xdp_txq(vsi, i) {
2562 		u16 xdp_q_idx = vsi->alloc_txq + i;
2563 		struct ice_tx_ring *xdp_ring;
2564 
2565 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2566 
2567 		if (!xdp_ring)
2568 			goto free_xdp_rings;
2569 
2570 		xdp_ring->q_index = xdp_q_idx;
2571 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2572 		xdp_ring->vsi = vsi;
2573 		xdp_ring->netdev = NULL;
2574 		xdp_ring->dev = dev;
2575 		xdp_ring->count = vsi->num_tx_desc;
2576 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2577 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2578 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2579 		if (ice_setup_tx_ring(xdp_ring))
2580 			goto free_xdp_rings;
2581 		ice_set_ring_xdp(xdp_ring);
2582 		xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
2583 		spin_lock_init(&xdp_ring->tx_lock);
2584 		for (j = 0; j < xdp_ring->count; j++) {
2585 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2586 			tx_desc->cmd_type_offset_bsz = 0;
2587 		}
2588 	}
2589 
2590 	ice_for_each_rxq(vsi, i) {
2591 		if (static_key_enabled(&ice_xdp_locking_key))
2592 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2593 		else
2594 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i];
2595 	}
2596 
2597 	return 0;
2598 
2599 free_xdp_rings:
2600 	for (; i >= 0; i--)
2601 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2602 			ice_free_tx_ring(vsi->xdp_rings[i]);
2603 	return -ENOMEM;
2604 }
2605 
2606 /**
2607  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2608  * @vsi: VSI to set the bpf prog on
2609  * @prog: the bpf prog pointer
2610  */
2611 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2612 {
2613 	struct bpf_prog *old_prog;
2614 	int i;
2615 
2616 	old_prog = xchg(&vsi->xdp_prog, prog);
2617 	if (old_prog)
2618 		bpf_prog_put(old_prog);
2619 
2620 	ice_for_each_rxq(vsi, i)
2621 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2622 }
2623 
2624 /**
2625  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2626  * @vsi: VSI to bring up Tx rings used by XDP
2627  * @prog: bpf program that will be assigned to VSI
2628  *
2629  * Return 0 on success and negative value on error
2630  */
2631 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2632 {
2633 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2634 	int xdp_rings_rem = vsi->num_xdp_txq;
2635 	struct ice_pf *pf = vsi->back;
2636 	struct ice_qs_cfg xdp_qs_cfg = {
2637 		.qs_mutex = &pf->avail_q_mutex,
2638 		.pf_map = pf->avail_txqs,
2639 		.pf_map_size = pf->max_pf_txqs,
2640 		.q_count = vsi->num_xdp_txq,
2641 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2642 		.vsi_map = vsi->txq_map,
2643 		.vsi_map_offset = vsi->alloc_txq,
2644 		.mapping_mode = ICE_VSI_MAP_CONTIG
2645 	};
2646 	struct device *dev;
2647 	int i, v_idx;
2648 	int status;
2649 
2650 	dev = ice_pf_to_dev(pf);
2651 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2652 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2653 	if (!vsi->xdp_rings)
2654 		return -ENOMEM;
2655 
2656 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2657 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2658 		goto err_map_xdp;
2659 
2660 	if (static_key_enabled(&ice_xdp_locking_key))
2661 		netdev_warn(vsi->netdev,
2662 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2663 
2664 	if (ice_xdp_alloc_setup_rings(vsi))
2665 		goto clear_xdp_rings;
2666 
2667 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2668 	ice_for_each_q_vector(vsi, v_idx) {
2669 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2670 		int xdp_rings_per_v, q_id, q_base;
2671 
2672 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2673 					       vsi->num_q_vectors - v_idx);
2674 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2675 
2676 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2677 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2678 
2679 			xdp_ring->q_vector = q_vector;
2680 			xdp_ring->next = q_vector->tx.tx_ring;
2681 			q_vector->tx.tx_ring = xdp_ring;
2682 		}
2683 		xdp_rings_rem -= xdp_rings_per_v;
2684 	}
2685 
2686 	/* omit the scheduler update if in reset path; XDP queues will be
2687 	 * taken into account at the end of ice_vsi_rebuild, where
2688 	 * ice_cfg_vsi_lan is being called
2689 	 */
2690 	if (ice_is_reset_in_progress(pf->state))
2691 		return 0;
2692 
2693 	/* tell the Tx scheduler that right now we have
2694 	 * additional queues
2695 	 */
2696 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2697 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2698 
2699 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2700 				 max_txqs);
2701 	if (status) {
2702 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2703 			status);
2704 		goto clear_xdp_rings;
2705 	}
2706 
2707 	/* assign the prog only when it's not already present on VSI;
2708 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2709 	 * VSI rebuild that happens under ethtool -L can expose us to
2710 	 * the bpf_prog refcount issues as we would be swapping same
2711 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2712 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2713 	 * this is not harmful as dev_xdp_install bumps the refcount
2714 	 * before calling the op exposed by the driver;
2715 	 */
2716 	if (!ice_is_xdp_ena_vsi(vsi))
2717 		ice_vsi_assign_bpf_prog(vsi, prog);
2718 
2719 	return 0;
2720 clear_xdp_rings:
2721 	ice_for_each_xdp_txq(vsi, i)
2722 		if (vsi->xdp_rings[i]) {
2723 			kfree_rcu(vsi->xdp_rings[i], rcu);
2724 			vsi->xdp_rings[i] = NULL;
2725 		}
2726 
2727 err_map_xdp:
2728 	mutex_lock(&pf->avail_q_mutex);
2729 	ice_for_each_xdp_txq(vsi, i) {
2730 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2731 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2732 	}
2733 	mutex_unlock(&pf->avail_q_mutex);
2734 
2735 	devm_kfree(dev, vsi->xdp_rings);
2736 	return -ENOMEM;
2737 }
2738 
2739 /**
2740  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2741  * @vsi: VSI to remove XDP rings
2742  *
2743  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2744  * resources
2745  */
2746 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2747 {
2748 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2749 	struct ice_pf *pf = vsi->back;
2750 	int i, v_idx;
2751 
2752 	/* q_vectors are freed in reset path so there's no point in detaching
2753 	 * rings; in case of rebuild being triggered not from reset bits
2754 	 * in pf->state won't be set, so additionally check first q_vector
2755 	 * against NULL
2756 	 */
2757 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2758 		goto free_qmap;
2759 
2760 	ice_for_each_q_vector(vsi, v_idx) {
2761 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2762 		struct ice_tx_ring *ring;
2763 
2764 		ice_for_each_tx_ring(ring, q_vector->tx)
2765 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2766 				break;
2767 
2768 		/* restore the value of last node prior to XDP setup */
2769 		q_vector->tx.tx_ring = ring;
2770 	}
2771 
2772 free_qmap:
2773 	mutex_lock(&pf->avail_q_mutex);
2774 	ice_for_each_xdp_txq(vsi, i) {
2775 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2776 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2777 	}
2778 	mutex_unlock(&pf->avail_q_mutex);
2779 
2780 	ice_for_each_xdp_txq(vsi, i)
2781 		if (vsi->xdp_rings[i]) {
2782 			if (vsi->xdp_rings[i]->desc) {
2783 				synchronize_rcu();
2784 				ice_free_tx_ring(vsi->xdp_rings[i]);
2785 			}
2786 			kfree_rcu(vsi->xdp_rings[i], rcu);
2787 			vsi->xdp_rings[i] = NULL;
2788 		}
2789 
2790 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2791 	vsi->xdp_rings = NULL;
2792 
2793 	if (static_key_enabled(&ice_xdp_locking_key))
2794 		static_branch_dec(&ice_xdp_locking_key);
2795 
2796 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2797 		return 0;
2798 
2799 	ice_vsi_assign_bpf_prog(vsi, NULL);
2800 
2801 	/* notify Tx scheduler that we destroyed XDP queues and bring
2802 	 * back the old number of child nodes
2803 	 */
2804 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2805 		max_txqs[i] = vsi->num_txq;
2806 
2807 	/* change number of XDP Tx queues to 0 */
2808 	vsi->num_xdp_txq = 0;
2809 
2810 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2811 			       max_txqs);
2812 }
2813 
2814 /**
2815  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2816  * @vsi: VSI to schedule napi on
2817  */
2818 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2819 {
2820 	int i;
2821 
2822 	ice_for_each_rxq(vsi, i) {
2823 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2824 
2825 		if (rx_ring->xsk_pool)
2826 			napi_schedule(&rx_ring->q_vector->napi);
2827 	}
2828 }
2829 
2830 /**
2831  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2832  * @vsi: VSI to determine the count of XDP Tx qs
2833  *
2834  * returns 0 if Tx qs count is higher than at least half of CPU count,
2835  * -ENOMEM otherwise
2836  */
2837 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2838 {
2839 	u16 avail = ice_get_avail_txq_count(vsi->back);
2840 	u16 cpus = num_possible_cpus();
2841 
2842 	if (avail < cpus / 2)
2843 		return -ENOMEM;
2844 
2845 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2846 
2847 	if (vsi->num_xdp_txq < cpus)
2848 		static_branch_inc(&ice_xdp_locking_key);
2849 
2850 	return 0;
2851 }
2852 
2853 /**
2854  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2855  * @vsi: VSI to setup XDP for
2856  * @prog: XDP program
2857  * @extack: netlink extended ack
2858  */
2859 static int
2860 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2861 		   struct netlink_ext_ack *extack)
2862 {
2863 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2864 	bool if_running = netif_running(vsi->netdev);
2865 	int ret = 0, xdp_ring_err = 0;
2866 
2867 	if (frame_size > vsi->rx_buf_len) {
2868 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2869 		return -EOPNOTSUPP;
2870 	}
2871 
2872 	/* need to stop netdev while setting up the program for Rx rings */
2873 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2874 		ret = ice_down(vsi);
2875 		if (ret) {
2876 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2877 			return ret;
2878 		}
2879 	}
2880 
2881 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2882 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2883 		if (xdp_ring_err) {
2884 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2885 		} else {
2886 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2887 			if (xdp_ring_err)
2888 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2889 		}
2890 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2891 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2892 		if (xdp_ring_err)
2893 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2894 	} else {
2895 		/* safe to call even when prog == vsi->xdp_prog as
2896 		 * dev_xdp_install in net/core/dev.c incremented prog's
2897 		 * refcount so corresponding bpf_prog_put won't cause
2898 		 * underflow
2899 		 */
2900 		ice_vsi_assign_bpf_prog(vsi, prog);
2901 	}
2902 
2903 	if (if_running)
2904 		ret = ice_up(vsi);
2905 
2906 	if (!ret && prog)
2907 		ice_vsi_rx_napi_schedule(vsi);
2908 
2909 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2910 }
2911 
2912 /**
2913  * ice_xdp_safe_mode - XDP handler for safe mode
2914  * @dev: netdevice
2915  * @xdp: XDP command
2916  */
2917 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2918 			     struct netdev_bpf *xdp)
2919 {
2920 	NL_SET_ERR_MSG_MOD(xdp->extack,
2921 			   "Please provide working DDP firmware package in order to use XDP\n"
2922 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2923 	return -EOPNOTSUPP;
2924 }
2925 
2926 /**
2927  * ice_xdp - implements XDP handler
2928  * @dev: netdevice
2929  * @xdp: XDP command
2930  */
2931 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2932 {
2933 	struct ice_netdev_priv *np = netdev_priv(dev);
2934 	struct ice_vsi *vsi = np->vsi;
2935 
2936 	if (vsi->type != ICE_VSI_PF) {
2937 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2938 		return -EINVAL;
2939 	}
2940 
2941 	switch (xdp->command) {
2942 	case XDP_SETUP_PROG:
2943 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2944 	case XDP_SETUP_XSK_POOL:
2945 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2946 					  xdp->xsk.queue_id);
2947 	default:
2948 		return -EINVAL;
2949 	}
2950 }
2951 
2952 /**
2953  * ice_ena_misc_vector - enable the non-queue interrupts
2954  * @pf: board private structure
2955  */
2956 static void ice_ena_misc_vector(struct ice_pf *pf)
2957 {
2958 	struct ice_hw *hw = &pf->hw;
2959 	u32 val;
2960 
2961 	/* Disable anti-spoof detection interrupt to prevent spurious event
2962 	 * interrupts during a function reset. Anti-spoof functionally is
2963 	 * still supported.
2964 	 */
2965 	val = rd32(hw, GL_MDCK_TX_TDPU);
2966 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2967 	wr32(hw, GL_MDCK_TX_TDPU, val);
2968 
2969 	/* clear things first */
2970 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2971 	rd32(hw, PFINT_OICR);		/* read to clear */
2972 
2973 	val = (PFINT_OICR_ECC_ERR_M |
2974 	       PFINT_OICR_MAL_DETECT_M |
2975 	       PFINT_OICR_GRST_M |
2976 	       PFINT_OICR_PCI_EXCEPTION_M |
2977 	       PFINT_OICR_VFLR_M |
2978 	       PFINT_OICR_HMC_ERR_M |
2979 	       PFINT_OICR_PE_PUSH_M |
2980 	       PFINT_OICR_PE_CRITERR_M);
2981 
2982 	wr32(hw, PFINT_OICR_ENA, val);
2983 
2984 	/* SW_ITR_IDX = 0, but don't change INTENA */
2985 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2986 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2987 }
2988 
2989 /**
2990  * ice_misc_intr - misc interrupt handler
2991  * @irq: interrupt number
2992  * @data: pointer to a q_vector
2993  */
2994 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2995 {
2996 	struct ice_pf *pf = (struct ice_pf *)data;
2997 	struct ice_hw *hw = &pf->hw;
2998 	irqreturn_t ret = IRQ_NONE;
2999 	struct device *dev;
3000 	u32 oicr, ena_mask;
3001 
3002 	dev = ice_pf_to_dev(pf);
3003 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3004 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3005 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3006 
3007 	oicr = rd32(hw, PFINT_OICR);
3008 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3009 
3010 	if (oicr & PFINT_OICR_SWINT_M) {
3011 		ena_mask &= ~PFINT_OICR_SWINT_M;
3012 		pf->sw_int_count++;
3013 	}
3014 
3015 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3016 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3017 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3018 	}
3019 	if (oicr & PFINT_OICR_VFLR_M) {
3020 		/* disable any further VFLR event notifications */
3021 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3022 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3023 
3024 			reg &= ~PFINT_OICR_VFLR_M;
3025 			wr32(hw, PFINT_OICR_ENA, reg);
3026 		} else {
3027 			ena_mask &= ~PFINT_OICR_VFLR_M;
3028 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3029 		}
3030 	}
3031 
3032 	if (oicr & PFINT_OICR_GRST_M) {
3033 		u32 reset;
3034 
3035 		/* we have a reset warning */
3036 		ena_mask &= ~PFINT_OICR_GRST_M;
3037 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3038 			GLGEN_RSTAT_RESET_TYPE_S;
3039 
3040 		if (reset == ICE_RESET_CORER)
3041 			pf->corer_count++;
3042 		else if (reset == ICE_RESET_GLOBR)
3043 			pf->globr_count++;
3044 		else if (reset == ICE_RESET_EMPR)
3045 			pf->empr_count++;
3046 		else
3047 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3048 
3049 		/* If a reset cycle isn't already in progress, we set a bit in
3050 		 * pf->state so that the service task can start a reset/rebuild.
3051 		 */
3052 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3053 			if (reset == ICE_RESET_CORER)
3054 				set_bit(ICE_CORER_RECV, pf->state);
3055 			else if (reset == ICE_RESET_GLOBR)
3056 				set_bit(ICE_GLOBR_RECV, pf->state);
3057 			else
3058 				set_bit(ICE_EMPR_RECV, pf->state);
3059 
3060 			/* There are couple of different bits at play here.
3061 			 * hw->reset_ongoing indicates whether the hardware is
3062 			 * in reset. This is set to true when a reset interrupt
3063 			 * is received and set back to false after the driver
3064 			 * has determined that the hardware is out of reset.
3065 			 *
3066 			 * ICE_RESET_OICR_RECV in pf->state indicates
3067 			 * that a post reset rebuild is required before the
3068 			 * driver is operational again. This is set above.
3069 			 *
3070 			 * As this is the start of the reset/rebuild cycle, set
3071 			 * both to indicate that.
3072 			 */
3073 			hw->reset_ongoing = true;
3074 		}
3075 	}
3076 
3077 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3078 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3079 		ice_ptp_process_ts(pf);
3080 	}
3081 
3082 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3083 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3084 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3085 
3086 		/* Save EVENTs from GTSYN register */
3087 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3088 						     GLTSYN_STAT_EVENT1_M |
3089 						     GLTSYN_STAT_EVENT2_M);
3090 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3091 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3092 	}
3093 
3094 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3095 	if (oicr & ICE_AUX_CRIT_ERR) {
3096 		pf->oicr_err_reg |= oicr;
3097 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3098 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3099 	}
3100 
3101 	/* Report any remaining unexpected interrupts */
3102 	oicr &= ena_mask;
3103 	if (oicr) {
3104 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3105 		/* If a critical error is pending there is no choice but to
3106 		 * reset the device.
3107 		 */
3108 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3109 			    PFINT_OICR_ECC_ERR_M)) {
3110 			set_bit(ICE_PFR_REQ, pf->state);
3111 			ice_service_task_schedule(pf);
3112 		}
3113 	}
3114 	ret = IRQ_HANDLED;
3115 
3116 	ice_service_task_schedule(pf);
3117 	ice_irq_dynamic_ena(hw, NULL, NULL);
3118 
3119 	return ret;
3120 }
3121 
3122 /**
3123  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3124  * @hw: pointer to HW structure
3125  */
3126 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3127 {
3128 	/* disable Admin queue Interrupt causes */
3129 	wr32(hw, PFINT_FW_CTL,
3130 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3131 
3132 	/* disable Mailbox queue Interrupt causes */
3133 	wr32(hw, PFINT_MBX_CTL,
3134 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3135 
3136 	wr32(hw, PFINT_SB_CTL,
3137 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3138 
3139 	/* disable Control queue Interrupt causes */
3140 	wr32(hw, PFINT_OICR_CTL,
3141 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3142 
3143 	ice_flush(hw);
3144 }
3145 
3146 /**
3147  * ice_free_irq_msix_misc - Unroll misc vector setup
3148  * @pf: board private structure
3149  */
3150 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3151 {
3152 	struct ice_hw *hw = &pf->hw;
3153 
3154 	ice_dis_ctrlq_interrupts(hw);
3155 
3156 	/* disable OICR interrupt */
3157 	wr32(hw, PFINT_OICR_ENA, 0);
3158 	ice_flush(hw);
3159 
3160 	if (pf->msix_entries) {
3161 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3162 		devm_free_irq(ice_pf_to_dev(pf),
3163 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3164 	}
3165 
3166 	pf->num_avail_sw_msix += 1;
3167 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3168 }
3169 
3170 /**
3171  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3172  * @hw: pointer to HW structure
3173  * @reg_idx: HW vector index to associate the control queue interrupts with
3174  */
3175 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3176 {
3177 	u32 val;
3178 
3179 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3180 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3181 	wr32(hw, PFINT_OICR_CTL, val);
3182 
3183 	/* enable Admin queue Interrupt causes */
3184 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3185 	       PFINT_FW_CTL_CAUSE_ENA_M);
3186 	wr32(hw, PFINT_FW_CTL, val);
3187 
3188 	/* enable Mailbox queue Interrupt causes */
3189 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3190 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3191 	wr32(hw, PFINT_MBX_CTL, val);
3192 
3193 	/* This enables Sideband queue Interrupt causes */
3194 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3195 	       PFINT_SB_CTL_CAUSE_ENA_M);
3196 	wr32(hw, PFINT_SB_CTL, val);
3197 
3198 	ice_flush(hw);
3199 }
3200 
3201 /**
3202  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3203  * @pf: board private structure
3204  *
3205  * This sets up the handler for MSIX 0, which is used to manage the
3206  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3207  * when in MSI or Legacy interrupt mode.
3208  */
3209 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3210 {
3211 	struct device *dev = ice_pf_to_dev(pf);
3212 	struct ice_hw *hw = &pf->hw;
3213 	int oicr_idx, err = 0;
3214 
3215 	if (!pf->int_name[0])
3216 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3217 			 dev_driver_string(dev), dev_name(dev));
3218 
3219 	/* Do not request IRQ but do enable OICR interrupt since settings are
3220 	 * lost during reset. Note that this function is called only during
3221 	 * rebuild path and not while reset is in progress.
3222 	 */
3223 	if (ice_is_reset_in_progress(pf->state))
3224 		goto skip_req_irq;
3225 
3226 	/* reserve one vector in irq_tracker for misc interrupts */
3227 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3228 	if (oicr_idx < 0)
3229 		return oicr_idx;
3230 
3231 	pf->num_avail_sw_msix -= 1;
3232 	pf->oicr_idx = (u16)oicr_idx;
3233 
3234 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3235 			       ice_misc_intr, 0, pf->int_name, pf);
3236 	if (err) {
3237 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3238 			pf->int_name, err);
3239 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3240 		pf->num_avail_sw_msix += 1;
3241 		return err;
3242 	}
3243 
3244 skip_req_irq:
3245 	ice_ena_misc_vector(pf);
3246 
3247 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3248 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3249 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3250 
3251 	ice_flush(hw);
3252 	ice_irq_dynamic_ena(hw, NULL, NULL);
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * ice_napi_add - register NAPI handler for the VSI
3259  * @vsi: VSI for which NAPI handler is to be registered
3260  *
3261  * This function is only called in the driver's load path. Registering the NAPI
3262  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3263  * reset/rebuild, etc.)
3264  */
3265 static void ice_napi_add(struct ice_vsi *vsi)
3266 {
3267 	int v_idx;
3268 
3269 	if (!vsi->netdev)
3270 		return;
3271 
3272 	ice_for_each_q_vector(vsi, v_idx)
3273 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3274 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3275 }
3276 
3277 /**
3278  * ice_set_ops - set netdev and ethtools ops for the given netdev
3279  * @netdev: netdev instance
3280  */
3281 static void ice_set_ops(struct net_device *netdev)
3282 {
3283 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3284 
3285 	if (ice_is_safe_mode(pf)) {
3286 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3287 		ice_set_ethtool_safe_mode_ops(netdev);
3288 		return;
3289 	}
3290 
3291 	netdev->netdev_ops = &ice_netdev_ops;
3292 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3293 	ice_set_ethtool_ops(netdev);
3294 }
3295 
3296 /**
3297  * ice_set_netdev_features - set features for the given netdev
3298  * @netdev: netdev instance
3299  */
3300 static void ice_set_netdev_features(struct net_device *netdev)
3301 {
3302 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3303 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3304 	netdev_features_t csumo_features;
3305 	netdev_features_t vlano_features;
3306 	netdev_features_t dflt_features;
3307 	netdev_features_t tso_features;
3308 
3309 	if (ice_is_safe_mode(pf)) {
3310 		/* safe mode */
3311 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3312 		netdev->hw_features = netdev->features;
3313 		return;
3314 	}
3315 
3316 	dflt_features = NETIF_F_SG	|
3317 			NETIF_F_HIGHDMA	|
3318 			NETIF_F_NTUPLE	|
3319 			NETIF_F_RXHASH;
3320 
3321 	csumo_features = NETIF_F_RXCSUM	  |
3322 			 NETIF_F_IP_CSUM  |
3323 			 NETIF_F_SCTP_CRC |
3324 			 NETIF_F_IPV6_CSUM;
3325 
3326 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3327 			 NETIF_F_HW_VLAN_CTAG_TX     |
3328 			 NETIF_F_HW_VLAN_CTAG_RX;
3329 
3330 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3331 	if (is_dvm_ena)
3332 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3333 
3334 	tso_features = NETIF_F_TSO			|
3335 		       NETIF_F_TSO_ECN			|
3336 		       NETIF_F_TSO6			|
3337 		       NETIF_F_GSO_GRE			|
3338 		       NETIF_F_GSO_UDP_TUNNEL		|
3339 		       NETIF_F_GSO_GRE_CSUM		|
3340 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3341 		       NETIF_F_GSO_PARTIAL		|
3342 		       NETIF_F_GSO_IPXIP4		|
3343 		       NETIF_F_GSO_IPXIP6		|
3344 		       NETIF_F_GSO_UDP_L4;
3345 
3346 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3347 					NETIF_F_GSO_GRE_CSUM;
3348 	/* set features that user can change */
3349 	netdev->hw_features = dflt_features | csumo_features |
3350 			      vlano_features | tso_features;
3351 
3352 	/* add support for HW_CSUM on packets with MPLS header */
3353 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3354 				 NETIF_F_TSO     |
3355 				 NETIF_F_TSO6;
3356 
3357 	/* enable features */
3358 	netdev->features |= netdev->hw_features;
3359 
3360 	netdev->hw_features |= NETIF_F_HW_TC;
3361 
3362 	/* encap and VLAN devices inherit default, csumo and tso features */
3363 	netdev->hw_enc_features |= dflt_features | csumo_features |
3364 				   tso_features;
3365 	netdev->vlan_features |= dflt_features | csumo_features |
3366 				 tso_features;
3367 
3368 	/* advertise support but don't enable by default since only one type of
3369 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3370 	 * type turns on the other has to be turned off. This is enforced by the
3371 	 * ice_fix_features() ndo callback.
3372 	 */
3373 	if (is_dvm_ena)
3374 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3375 			NETIF_F_HW_VLAN_STAG_TX;
3376 }
3377 
3378 /**
3379  * ice_cfg_netdev - Allocate, configure and register a netdev
3380  * @vsi: the VSI associated with the new netdev
3381  *
3382  * Returns 0 on success, negative value on failure
3383  */
3384 static int ice_cfg_netdev(struct ice_vsi *vsi)
3385 {
3386 	struct ice_netdev_priv *np;
3387 	struct net_device *netdev;
3388 	u8 mac_addr[ETH_ALEN];
3389 
3390 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3391 				    vsi->alloc_rxq);
3392 	if (!netdev)
3393 		return -ENOMEM;
3394 
3395 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3396 	vsi->netdev = netdev;
3397 	np = netdev_priv(netdev);
3398 	np->vsi = vsi;
3399 
3400 	ice_set_netdev_features(netdev);
3401 
3402 	ice_set_ops(netdev);
3403 
3404 	if (vsi->type == ICE_VSI_PF) {
3405 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3406 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3407 		eth_hw_addr_set(netdev, mac_addr);
3408 		ether_addr_copy(netdev->perm_addr, mac_addr);
3409 	}
3410 
3411 	netdev->priv_flags |= IFF_UNICAST_FLT;
3412 
3413 	/* Setup netdev TC information */
3414 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3415 
3416 	/* setup watchdog timeout value to be 5 second */
3417 	netdev->watchdog_timeo = 5 * HZ;
3418 
3419 	netdev->min_mtu = ETH_MIN_MTU;
3420 	netdev->max_mtu = ICE_MAX_MTU;
3421 
3422 	return 0;
3423 }
3424 
3425 /**
3426  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3427  * @lut: Lookup table
3428  * @rss_table_size: Lookup table size
3429  * @rss_size: Range of queue number for hashing
3430  */
3431 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3432 {
3433 	u16 i;
3434 
3435 	for (i = 0; i < rss_table_size; i++)
3436 		lut[i] = i % rss_size;
3437 }
3438 
3439 /**
3440  * ice_pf_vsi_setup - Set up a PF VSI
3441  * @pf: board private structure
3442  * @pi: pointer to the port_info instance
3443  *
3444  * Returns pointer to the successfully allocated VSI software struct
3445  * on success, otherwise returns NULL on failure.
3446  */
3447 static struct ice_vsi *
3448 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3449 {
3450 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3451 }
3452 
3453 static struct ice_vsi *
3454 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3455 		   struct ice_channel *ch)
3456 {
3457 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3458 }
3459 
3460 /**
3461  * ice_ctrl_vsi_setup - Set up a control VSI
3462  * @pf: board private structure
3463  * @pi: pointer to the port_info instance
3464  *
3465  * Returns pointer to the successfully allocated VSI software struct
3466  * on success, otherwise returns NULL on failure.
3467  */
3468 static struct ice_vsi *
3469 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3470 {
3471 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3472 }
3473 
3474 /**
3475  * ice_lb_vsi_setup - Set up a loopback VSI
3476  * @pf: board private structure
3477  * @pi: pointer to the port_info instance
3478  *
3479  * Returns pointer to the successfully allocated VSI software struct
3480  * on success, otherwise returns NULL on failure.
3481  */
3482 struct ice_vsi *
3483 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3484 {
3485 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3486 }
3487 
3488 /**
3489  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3490  * @netdev: network interface to be adjusted
3491  * @proto: VLAN TPID
3492  * @vid: VLAN ID to be added
3493  *
3494  * net_device_ops implementation for adding VLAN IDs
3495  */
3496 static int
3497 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3498 {
3499 	struct ice_netdev_priv *np = netdev_priv(netdev);
3500 	struct ice_vsi_vlan_ops *vlan_ops;
3501 	struct ice_vsi *vsi = np->vsi;
3502 	struct ice_vlan vlan;
3503 	int ret;
3504 
3505 	/* VLAN 0 is added by default during load/reset */
3506 	if (!vid)
3507 		return 0;
3508 
3509 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3510 		usleep_range(1000, 2000);
3511 
3512 	/* Add multicast promisc rule for the VLAN ID to be added if
3513 	 * all-multicast is currently enabled.
3514 	 */
3515 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3516 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3517 					       ICE_MCAST_VLAN_PROMISC_BITS,
3518 					       vid);
3519 		if (ret)
3520 			goto finish;
3521 	}
3522 
3523 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3524 
3525 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3526 	 * packets aren't pruned by the device's internal switch on Rx
3527 	 */
3528 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3529 	ret = vlan_ops->add_vlan(vsi, &vlan);
3530 	if (ret)
3531 		goto finish;
3532 
3533 	/* If all-multicast is currently enabled and this VLAN ID is only one
3534 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3535 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3536 	 */
3537 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3538 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3539 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3540 					   ICE_MCAST_PROMISC_BITS, 0);
3541 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3542 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3543 	}
3544 
3545 finish:
3546 	clear_bit(ICE_CFG_BUSY, vsi->state);
3547 
3548 	return ret;
3549 }
3550 
3551 /**
3552  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3553  * @netdev: network interface to be adjusted
3554  * @proto: VLAN TPID
3555  * @vid: VLAN ID to be removed
3556  *
3557  * net_device_ops implementation for removing VLAN IDs
3558  */
3559 static int
3560 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3561 {
3562 	struct ice_netdev_priv *np = netdev_priv(netdev);
3563 	struct ice_vsi_vlan_ops *vlan_ops;
3564 	struct ice_vsi *vsi = np->vsi;
3565 	struct ice_vlan vlan;
3566 	int ret;
3567 
3568 	/* don't allow removal of VLAN 0 */
3569 	if (!vid)
3570 		return 0;
3571 
3572 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3573 		usleep_range(1000, 2000);
3574 
3575 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3576 
3577 	/* Make sure VLAN delete is successful before updating VLAN
3578 	 * information
3579 	 */
3580 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3581 	ret = vlan_ops->del_vlan(vsi, &vlan);
3582 	if (ret)
3583 		goto finish;
3584 
3585 	/* Remove multicast promisc rule for the removed VLAN ID if
3586 	 * all-multicast is enabled.
3587 	 */
3588 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3589 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3590 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3591 
3592 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3593 		/* Update look-up type of multicast promisc rule for VLAN 0
3594 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3595 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3596 		 */
3597 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3598 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3599 						   ICE_MCAST_VLAN_PROMISC_BITS,
3600 						   0);
3601 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3602 						 ICE_MCAST_PROMISC_BITS, 0);
3603 		}
3604 	}
3605 
3606 finish:
3607 	clear_bit(ICE_CFG_BUSY, vsi->state);
3608 
3609 	return ret;
3610 }
3611 
3612 /**
3613  * ice_rep_indr_tc_block_unbind
3614  * @cb_priv: indirection block private data
3615  */
3616 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3617 {
3618 	struct ice_indr_block_priv *indr_priv = cb_priv;
3619 
3620 	list_del(&indr_priv->list);
3621 	kfree(indr_priv);
3622 }
3623 
3624 /**
3625  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3626  * @vsi: VSI struct which has the netdev
3627  */
3628 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3629 {
3630 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3631 
3632 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3633 				 ice_rep_indr_tc_block_unbind);
3634 }
3635 
3636 /**
3637  * ice_tc_indir_block_remove - clean indirect TC block notifications
3638  * @pf: PF structure
3639  */
3640 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3641 {
3642 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3643 
3644 	if (!pf_vsi)
3645 		return;
3646 
3647 	ice_tc_indir_block_unregister(pf_vsi);
3648 }
3649 
3650 /**
3651  * ice_tc_indir_block_register - Register TC indirect block notifications
3652  * @vsi: VSI struct which has the netdev
3653  *
3654  * Returns 0 on success, negative value on failure
3655  */
3656 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3657 {
3658 	struct ice_netdev_priv *np;
3659 
3660 	if (!vsi || !vsi->netdev)
3661 		return -EINVAL;
3662 
3663 	np = netdev_priv(vsi->netdev);
3664 
3665 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3666 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3667 }
3668 
3669 /**
3670  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3671  * @pf: board private structure
3672  *
3673  * Returns 0 on success, negative value on failure
3674  */
3675 static int ice_setup_pf_sw(struct ice_pf *pf)
3676 {
3677 	struct device *dev = ice_pf_to_dev(pf);
3678 	bool dvm = ice_is_dvm_ena(&pf->hw);
3679 	struct ice_vsi *vsi;
3680 	int status;
3681 
3682 	if (ice_is_reset_in_progress(pf->state))
3683 		return -EBUSY;
3684 
3685 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3686 	if (status)
3687 		return -EIO;
3688 
3689 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3690 	if (!vsi)
3691 		return -ENOMEM;
3692 
3693 	/* init channel list */
3694 	INIT_LIST_HEAD(&vsi->ch_list);
3695 
3696 	status = ice_cfg_netdev(vsi);
3697 	if (status)
3698 		goto unroll_vsi_setup;
3699 	/* netdev has to be configured before setting frame size */
3700 	ice_vsi_cfg_frame_size(vsi);
3701 
3702 	/* init indirect block notifications */
3703 	status = ice_tc_indir_block_register(vsi);
3704 	if (status) {
3705 		dev_err(dev, "Failed to register netdev notifier\n");
3706 		goto unroll_cfg_netdev;
3707 	}
3708 
3709 	/* Setup DCB netlink interface */
3710 	ice_dcbnl_setup(vsi);
3711 
3712 	/* registering the NAPI handler requires both the queues and
3713 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3714 	 * and ice_cfg_netdev() respectively
3715 	 */
3716 	ice_napi_add(vsi);
3717 
3718 	status = ice_init_mac_fltr(pf);
3719 	if (status)
3720 		goto unroll_napi_add;
3721 
3722 	return 0;
3723 
3724 unroll_napi_add:
3725 	ice_tc_indir_block_unregister(vsi);
3726 unroll_cfg_netdev:
3727 	if (vsi) {
3728 		ice_napi_del(vsi);
3729 		if (vsi->netdev) {
3730 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3731 			free_netdev(vsi->netdev);
3732 			vsi->netdev = NULL;
3733 		}
3734 	}
3735 
3736 unroll_vsi_setup:
3737 	ice_vsi_release(vsi);
3738 	return status;
3739 }
3740 
3741 /**
3742  * ice_get_avail_q_count - Get count of queues in use
3743  * @pf_qmap: bitmap to get queue use count from
3744  * @lock: pointer to a mutex that protects access to pf_qmap
3745  * @size: size of the bitmap
3746  */
3747 static u16
3748 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3749 {
3750 	unsigned long bit;
3751 	u16 count = 0;
3752 
3753 	mutex_lock(lock);
3754 	for_each_clear_bit(bit, pf_qmap, size)
3755 		count++;
3756 	mutex_unlock(lock);
3757 
3758 	return count;
3759 }
3760 
3761 /**
3762  * ice_get_avail_txq_count - Get count of Tx queues in use
3763  * @pf: pointer to an ice_pf instance
3764  */
3765 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3766 {
3767 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3768 				     pf->max_pf_txqs);
3769 }
3770 
3771 /**
3772  * ice_get_avail_rxq_count - Get count of Rx queues in use
3773  * @pf: pointer to an ice_pf instance
3774  */
3775 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3776 {
3777 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3778 				     pf->max_pf_rxqs);
3779 }
3780 
3781 /**
3782  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3783  * @pf: board private structure to initialize
3784  */
3785 static void ice_deinit_pf(struct ice_pf *pf)
3786 {
3787 	ice_service_task_stop(pf);
3788 	mutex_destroy(&pf->sw_mutex);
3789 	mutex_destroy(&pf->tc_mutex);
3790 	mutex_destroy(&pf->avail_q_mutex);
3791 	mutex_destroy(&pf->vfs.table_lock);
3792 
3793 	if (pf->avail_txqs) {
3794 		bitmap_free(pf->avail_txqs);
3795 		pf->avail_txqs = NULL;
3796 	}
3797 
3798 	if (pf->avail_rxqs) {
3799 		bitmap_free(pf->avail_rxqs);
3800 		pf->avail_rxqs = NULL;
3801 	}
3802 
3803 	if (pf->ptp.clock)
3804 		ptp_clock_unregister(pf->ptp.clock);
3805 }
3806 
3807 /**
3808  * ice_set_pf_caps - set PFs capability flags
3809  * @pf: pointer to the PF instance
3810  */
3811 static void ice_set_pf_caps(struct ice_pf *pf)
3812 {
3813 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3814 
3815 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3816 	if (func_caps->common_cap.rdma)
3817 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3818 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3819 	if (func_caps->common_cap.dcb)
3820 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3821 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3822 	if (func_caps->common_cap.sr_iov_1_1) {
3823 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3824 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3825 					      ICE_MAX_SRIOV_VFS);
3826 	}
3827 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3828 	if (func_caps->common_cap.rss_table_size)
3829 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3830 
3831 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3832 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3833 		u16 unused;
3834 
3835 		/* ctrl_vsi_idx will be set to a valid value when flow director
3836 		 * is setup by ice_init_fdir
3837 		 */
3838 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3839 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3840 		/* force guaranteed filter pool for PF */
3841 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3842 				       func_caps->fd_fltr_guar);
3843 		/* force shared filter pool for PF */
3844 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3845 				       func_caps->fd_fltr_best_effort);
3846 	}
3847 
3848 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3849 	if (func_caps->common_cap.ieee_1588)
3850 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3851 
3852 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3853 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3854 }
3855 
3856 /**
3857  * ice_init_pf - Initialize general software structures (struct ice_pf)
3858  * @pf: board private structure to initialize
3859  */
3860 static int ice_init_pf(struct ice_pf *pf)
3861 {
3862 	ice_set_pf_caps(pf);
3863 
3864 	mutex_init(&pf->sw_mutex);
3865 	mutex_init(&pf->tc_mutex);
3866 
3867 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3868 	spin_lock_init(&pf->aq_wait_lock);
3869 	init_waitqueue_head(&pf->aq_wait_queue);
3870 
3871 	init_waitqueue_head(&pf->reset_wait_queue);
3872 
3873 	/* setup service timer and periodic service task */
3874 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3875 	pf->serv_tmr_period = HZ;
3876 	INIT_WORK(&pf->serv_task, ice_service_task);
3877 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3878 
3879 	mutex_init(&pf->avail_q_mutex);
3880 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3881 	if (!pf->avail_txqs)
3882 		return -ENOMEM;
3883 
3884 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3885 	if (!pf->avail_rxqs) {
3886 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3887 		pf->avail_txqs = NULL;
3888 		return -ENOMEM;
3889 	}
3890 
3891 	mutex_init(&pf->vfs.table_lock);
3892 	hash_init(pf->vfs.table);
3893 
3894 	return 0;
3895 }
3896 
3897 /**
3898  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3899  * @pf: board private structure
3900  *
3901  * compute the number of MSIX vectors required (v_budget) and request from
3902  * the OS. Return the number of vectors reserved or negative on failure
3903  */
3904 static int ice_ena_msix_range(struct ice_pf *pf)
3905 {
3906 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3907 	struct device *dev = ice_pf_to_dev(pf);
3908 	int needed, err, i;
3909 
3910 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3911 	num_cpus = num_online_cpus();
3912 
3913 	/* reserve for LAN miscellaneous handler */
3914 	needed = ICE_MIN_LAN_OICR_MSIX;
3915 	if (v_left < needed)
3916 		goto no_hw_vecs_left_err;
3917 	v_budget += needed;
3918 	v_left -= needed;
3919 
3920 	/* reserve for flow director */
3921 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3922 		needed = ICE_FDIR_MSIX;
3923 		if (v_left < needed)
3924 			goto no_hw_vecs_left_err;
3925 		v_budget += needed;
3926 		v_left -= needed;
3927 	}
3928 
3929 	/* reserve for switchdev */
3930 	needed = ICE_ESWITCH_MSIX;
3931 	if (v_left < needed)
3932 		goto no_hw_vecs_left_err;
3933 	v_budget += needed;
3934 	v_left -= needed;
3935 
3936 	/* total used for non-traffic vectors */
3937 	v_other = v_budget;
3938 
3939 	/* reserve vectors for LAN traffic */
3940 	needed = num_cpus;
3941 	if (v_left < needed)
3942 		goto no_hw_vecs_left_err;
3943 	pf->num_lan_msix = needed;
3944 	v_budget += needed;
3945 	v_left -= needed;
3946 
3947 	/* reserve vectors for RDMA auxiliary driver */
3948 	if (ice_is_rdma_ena(pf)) {
3949 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3950 		if (v_left < needed)
3951 			goto no_hw_vecs_left_err;
3952 		pf->num_rdma_msix = needed;
3953 		v_budget += needed;
3954 		v_left -= needed;
3955 	}
3956 
3957 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3958 					sizeof(*pf->msix_entries), GFP_KERNEL);
3959 	if (!pf->msix_entries) {
3960 		err = -ENOMEM;
3961 		goto exit_err;
3962 	}
3963 
3964 	for (i = 0; i < v_budget; i++)
3965 		pf->msix_entries[i].entry = i;
3966 
3967 	/* actually reserve the vectors */
3968 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3969 					 ICE_MIN_MSIX, v_budget);
3970 	if (v_actual < 0) {
3971 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3972 		err = v_actual;
3973 		goto msix_err;
3974 	}
3975 
3976 	if (v_actual < v_budget) {
3977 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3978 			 v_budget, v_actual);
3979 
3980 		if (v_actual < ICE_MIN_MSIX) {
3981 			/* error if we can't get minimum vectors */
3982 			pci_disable_msix(pf->pdev);
3983 			err = -ERANGE;
3984 			goto msix_err;
3985 		} else {
3986 			int v_remain = v_actual - v_other;
3987 			int v_rdma = 0, v_min_rdma = 0;
3988 
3989 			if (ice_is_rdma_ena(pf)) {
3990 				/* Need at least 1 interrupt in addition to
3991 				 * AEQ MSIX
3992 				 */
3993 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3994 				v_min_rdma = ICE_MIN_RDMA_MSIX;
3995 			}
3996 
3997 			if (v_actual == ICE_MIN_MSIX ||
3998 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3999 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4000 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4001 
4002 				pf->num_rdma_msix = 0;
4003 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4004 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4005 				   (v_remain - v_rdma < v_rdma)) {
4006 				/* Support minimum RDMA and give remaining
4007 				 * vectors to LAN MSIX
4008 				 */
4009 				pf->num_rdma_msix = v_min_rdma;
4010 				pf->num_lan_msix = v_remain - v_min_rdma;
4011 			} else {
4012 				/* Split remaining MSIX with RDMA after
4013 				 * accounting for AEQ MSIX
4014 				 */
4015 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4016 						    ICE_RDMA_NUM_AEQ_MSIX;
4017 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4018 			}
4019 
4020 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4021 				   pf->num_lan_msix);
4022 
4023 			if (ice_is_rdma_ena(pf))
4024 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4025 					   pf->num_rdma_msix);
4026 		}
4027 	}
4028 
4029 	return v_actual;
4030 
4031 msix_err:
4032 	devm_kfree(dev, pf->msix_entries);
4033 	goto exit_err;
4034 
4035 no_hw_vecs_left_err:
4036 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4037 		needed, v_left);
4038 	err = -ERANGE;
4039 exit_err:
4040 	pf->num_rdma_msix = 0;
4041 	pf->num_lan_msix = 0;
4042 	return err;
4043 }
4044 
4045 /**
4046  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4047  * @pf: board private structure
4048  */
4049 static void ice_dis_msix(struct ice_pf *pf)
4050 {
4051 	pci_disable_msix(pf->pdev);
4052 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4053 	pf->msix_entries = NULL;
4054 }
4055 
4056 /**
4057  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4058  * @pf: board private structure
4059  */
4060 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4061 {
4062 	ice_dis_msix(pf);
4063 
4064 	if (pf->irq_tracker) {
4065 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4066 		pf->irq_tracker = NULL;
4067 	}
4068 }
4069 
4070 /**
4071  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4072  * @pf: board private structure to initialize
4073  */
4074 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4075 {
4076 	int vectors;
4077 
4078 	vectors = ice_ena_msix_range(pf);
4079 
4080 	if (vectors < 0)
4081 		return vectors;
4082 
4083 	/* set up vector assignment tracking */
4084 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4085 				       struct_size(pf->irq_tracker, list, vectors),
4086 				       GFP_KERNEL);
4087 	if (!pf->irq_tracker) {
4088 		ice_dis_msix(pf);
4089 		return -ENOMEM;
4090 	}
4091 
4092 	/* populate SW interrupts pool with number of OS granted IRQs. */
4093 	pf->num_avail_sw_msix = (u16)vectors;
4094 	pf->irq_tracker->num_entries = (u16)vectors;
4095 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4096 
4097 	return 0;
4098 }
4099 
4100 /**
4101  * ice_is_wol_supported - check if WoL is supported
4102  * @hw: pointer to hardware info
4103  *
4104  * Check if WoL is supported based on the HW configuration.
4105  * Returns true if NVM supports and enables WoL for this port, false otherwise
4106  */
4107 bool ice_is_wol_supported(struct ice_hw *hw)
4108 {
4109 	u16 wol_ctrl;
4110 
4111 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4112 	 * word) indicates WoL is not supported on the corresponding PF ID.
4113 	 */
4114 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4115 		return false;
4116 
4117 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4118 }
4119 
4120 /**
4121  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4122  * @vsi: VSI being changed
4123  * @new_rx: new number of Rx queues
4124  * @new_tx: new number of Tx queues
4125  *
4126  * Only change the number of queues if new_tx, or new_rx is non-0.
4127  *
4128  * Returns 0 on success.
4129  */
4130 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4131 {
4132 	struct ice_pf *pf = vsi->back;
4133 	int err = 0, timeout = 50;
4134 
4135 	if (!new_rx && !new_tx)
4136 		return -EINVAL;
4137 
4138 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4139 		timeout--;
4140 		if (!timeout)
4141 			return -EBUSY;
4142 		usleep_range(1000, 2000);
4143 	}
4144 
4145 	if (new_tx)
4146 		vsi->req_txq = (u16)new_tx;
4147 	if (new_rx)
4148 		vsi->req_rxq = (u16)new_rx;
4149 
4150 	/* set for the next time the netdev is started */
4151 	if (!netif_running(vsi->netdev)) {
4152 		ice_vsi_rebuild(vsi, false);
4153 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4154 		goto done;
4155 	}
4156 
4157 	ice_vsi_close(vsi);
4158 	ice_vsi_rebuild(vsi, false);
4159 	ice_pf_dcb_recfg(pf);
4160 	ice_vsi_open(vsi);
4161 done:
4162 	clear_bit(ICE_CFG_BUSY, pf->state);
4163 	return err;
4164 }
4165 
4166 /**
4167  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4168  * @pf: PF to configure
4169  *
4170  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4171  * VSI can still Tx/Rx VLAN tagged packets.
4172  */
4173 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4174 {
4175 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4176 	struct ice_vsi_ctx *ctxt;
4177 	struct ice_hw *hw;
4178 	int status;
4179 
4180 	if (!vsi)
4181 		return;
4182 
4183 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4184 	if (!ctxt)
4185 		return;
4186 
4187 	hw = &pf->hw;
4188 	ctxt->info = vsi->info;
4189 
4190 	ctxt->info.valid_sections =
4191 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4192 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4193 			    ICE_AQ_VSI_PROP_SW_VALID);
4194 
4195 	/* disable VLAN anti-spoof */
4196 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4197 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4198 
4199 	/* disable VLAN pruning and keep all other settings */
4200 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4201 
4202 	/* allow all VLANs on Tx and don't strip on Rx */
4203 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4204 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4205 
4206 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4207 	if (status) {
4208 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4209 			status, ice_aq_str(hw->adminq.sq_last_status));
4210 	} else {
4211 		vsi->info.sec_flags = ctxt->info.sec_flags;
4212 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4213 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4214 	}
4215 
4216 	kfree(ctxt);
4217 }
4218 
4219 /**
4220  * ice_log_pkg_init - log result of DDP package load
4221  * @hw: pointer to hardware info
4222  * @state: state of package load
4223  */
4224 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4225 {
4226 	struct ice_pf *pf = hw->back;
4227 	struct device *dev;
4228 
4229 	dev = ice_pf_to_dev(pf);
4230 
4231 	switch (state) {
4232 	case ICE_DDP_PKG_SUCCESS:
4233 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4234 			 hw->active_pkg_name,
4235 			 hw->active_pkg_ver.major,
4236 			 hw->active_pkg_ver.minor,
4237 			 hw->active_pkg_ver.update,
4238 			 hw->active_pkg_ver.draft);
4239 		break;
4240 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4241 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4242 			 hw->active_pkg_name,
4243 			 hw->active_pkg_ver.major,
4244 			 hw->active_pkg_ver.minor,
4245 			 hw->active_pkg_ver.update,
4246 			 hw->active_pkg_ver.draft);
4247 		break;
4248 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4249 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4250 			hw->active_pkg_name,
4251 			hw->active_pkg_ver.major,
4252 			hw->active_pkg_ver.minor,
4253 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4254 		break;
4255 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4256 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4257 			 hw->active_pkg_name,
4258 			 hw->active_pkg_ver.major,
4259 			 hw->active_pkg_ver.minor,
4260 			 hw->active_pkg_ver.update,
4261 			 hw->active_pkg_ver.draft,
4262 			 hw->pkg_name,
4263 			 hw->pkg_ver.major,
4264 			 hw->pkg_ver.minor,
4265 			 hw->pkg_ver.update,
4266 			 hw->pkg_ver.draft);
4267 		break;
4268 	case ICE_DDP_PKG_FW_MISMATCH:
4269 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4270 		break;
4271 	case ICE_DDP_PKG_INVALID_FILE:
4272 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4273 		break;
4274 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4275 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4276 		break;
4277 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4278 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4279 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4280 		break;
4281 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4282 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4283 		break;
4284 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4285 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4286 		break;
4287 	case ICE_DDP_PKG_LOAD_ERROR:
4288 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4289 		/* poll for reset to complete */
4290 		if (ice_check_reset(hw))
4291 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4292 		break;
4293 	case ICE_DDP_PKG_ERR:
4294 	default:
4295 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4296 		break;
4297 	}
4298 }
4299 
4300 /**
4301  * ice_load_pkg - load/reload the DDP Package file
4302  * @firmware: firmware structure when firmware requested or NULL for reload
4303  * @pf: pointer to the PF instance
4304  *
4305  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4306  * initialize HW tables.
4307  */
4308 static void
4309 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4310 {
4311 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4312 	struct device *dev = ice_pf_to_dev(pf);
4313 	struct ice_hw *hw = &pf->hw;
4314 
4315 	/* Load DDP Package */
4316 	if (firmware && !hw->pkg_copy) {
4317 		state = ice_copy_and_init_pkg(hw, firmware->data,
4318 					      firmware->size);
4319 		ice_log_pkg_init(hw, state);
4320 	} else if (!firmware && hw->pkg_copy) {
4321 		/* Reload package during rebuild after CORER/GLOBR reset */
4322 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4323 		ice_log_pkg_init(hw, state);
4324 	} else {
4325 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4326 	}
4327 
4328 	if (!ice_is_init_pkg_successful(state)) {
4329 		/* Safe Mode */
4330 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4331 		return;
4332 	}
4333 
4334 	/* Successful download package is the precondition for advanced
4335 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4336 	 */
4337 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4338 }
4339 
4340 /**
4341  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4342  * @pf: pointer to the PF structure
4343  *
4344  * There is no error returned here because the driver should be able to handle
4345  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4346  * specifically with Tx.
4347  */
4348 static void ice_verify_cacheline_size(struct ice_pf *pf)
4349 {
4350 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4351 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4352 			 ICE_CACHE_LINE_BYTES);
4353 }
4354 
4355 /**
4356  * ice_send_version - update firmware with driver version
4357  * @pf: PF struct
4358  *
4359  * Returns 0 on success, else error code
4360  */
4361 static int ice_send_version(struct ice_pf *pf)
4362 {
4363 	struct ice_driver_ver dv;
4364 
4365 	dv.major_ver = 0xff;
4366 	dv.minor_ver = 0xff;
4367 	dv.build_ver = 0xff;
4368 	dv.subbuild_ver = 0;
4369 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4370 		sizeof(dv.driver_string));
4371 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4372 }
4373 
4374 /**
4375  * ice_init_fdir - Initialize flow director VSI and configuration
4376  * @pf: pointer to the PF instance
4377  *
4378  * returns 0 on success, negative on error
4379  */
4380 static int ice_init_fdir(struct ice_pf *pf)
4381 {
4382 	struct device *dev = ice_pf_to_dev(pf);
4383 	struct ice_vsi *ctrl_vsi;
4384 	int err;
4385 
4386 	/* Side Band Flow Director needs to have a control VSI.
4387 	 * Allocate it and store it in the PF.
4388 	 */
4389 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4390 	if (!ctrl_vsi) {
4391 		dev_dbg(dev, "could not create control VSI\n");
4392 		return -ENOMEM;
4393 	}
4394 
4395 	err = ice_vsi_open_ctrl(ctrl_vsi);
4396 	if (err) {
4397 		dev_dbg(dev, "could not open control VSI\n");
4398 		goto err_vsi_open;
4399 	}
4400 
4401 	mutex_init(&pf->hw.fdir_fltr_lock);
4402 
4403 	err = ice_fdir_create_dflt_rules(pf);
4404 	if (err)
4405 		goto err_fdir_rule;
4406 
4407 	return 0;
4408 
4409 err_fdir_rule:
4410 	ice_fdir_release_flows(&pf->hw);
4411 	ice_vsi_close(ctrl_vsi);
4412 err_vsi_open:
4413 	ice_vsi_release(ctrl_vsi);
4414 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4415 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4416 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4417 	}
4418 	return err;
4419 }
4420 
4421 /**
4422  * ice_get_opt_fw_name - return optional firmware file name or NULL
4423  * @pf: pointer to the PF instance
4424  */
4425 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4426 {
4427 	/* Optional firmware name same as default with additional dash
4428 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4429 	 */
4430 	struct pci_dev *pdev = pf->pdev;
4431 	char *opt_fw_filename;
4432 	u64 dsn;
4433 
4434 	/* Determine the name of the optional file using the DSN (two
4435 	 * dwords following the start of the DSN Capability).
4436 	 */
4437 	dsn = pci_get_dsn(pdev);
4438 	if (!dsn)
4439 		return NULL;
4440 
4441 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4442 	if (!opt_fw_filename)
4443 		return NULL;
4444 
4445 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4446 		 ICE_DDP_PKG_PATH, dsn);
4447 
4448 	return opt_fw_filename;
4449 }
4450 
4451 /**
4452  * ice_request_fw - Device initialization routine
4453  * @pf: pointer to the PF instance
4454  */
4455 static void ice_request_fw(struct ice_pf *pf)
4456 {
4457 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4458 	const struct firmware *firmware = NULL;
4459 	struct device *dev = ice_pf_to_dev(pf);
4460 	int err = 0;
4461 
4462 	/* optional device-specific DDP (if present) overrides the default DDP
4463 	 * package file. kernel logs a debug message if the file doesn't exist,
4464 	 * and warning messages for other errors.
4465 	 */
4466 	if (opt_fw_filename) {
4467 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4468 		if (err) {
4469 			kfree(opt_fw_filename);
4470 			goto dflt_pkg_load;
4471 		}
4472 
4473 		/* request for firmware was successful. Download to device */
4474 		ice_load_pkg(firmware, pf);
4475 		kfree(opt_fw_filename);
4476 		release_firmware(firmware);
4477 		return;
4478 	}
4479 
4480 dflt_pkg_load:
4481 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4482 	if (err) {
4483 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4484 		return;
4485 	}
4486 
4487 	/* request for firmware was successful. Download to device */
4488 	ice_load_pkg(firmware, pf);
4489 	release_firmware(firmware);
4490 }
4491 
4492 /**
4493  * ice_print_wake_reason - show the wake up cause in the log
4494  * @pf: pointer to the PF struct
4495  */
4496 static void ice_print_wake_reason(struct ice_pf *pf)
4497 {
4498 	u32 wus = pf->wakeup_reason;
4499 	const char *wake_str;
4500 
4501 	/* if no wake event, nothing to print */
4502 	if (!wus)
4503 		return;
4504 
4505 	if (wus & PFPM_WUS_LNKC_M)
4506 		wake_str = "Link\n";
4507 	else if (wus & PFPM_WUS_MAG_M)
4508 		wake_str = "Magic Packet\n";
4509 	else if (wus & PFPM_WUS_MNG_M)
4510 		wake_str = "Management\n";
4511 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4512 		wake_str = "Firmware Reset\n";
4513 	else
4514 		wake_str = "Unknown\n";
4515 
4516 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4517 }
4518 
4519 /**
4520  * ice_register_netdev - register netdev and devlink port
4521  * @pf: pointer to the PF struct
4522  */
4523 static int ice_register_netdev(struct ice_pf *pf)
4524 {
4525 	struct ice_vsi *vsi;
4526 	int err = 0;
4527 
4528 	vsi = ice_get_main_vsi(pf);
4529 	if (!vsi || !vsi->netdev)
4530 		return -EIO;
4531 
4532 	err = register_netdev(vsi->netdev);
4533 	if (err)
4534 		goto err_register_netdev;
4535 
4536 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4537 	netif_carrier_off(vsi->netdev);
4538 	netif_tx_stop_all_queues(vsi->netdev);
4539 	err = ice_devlink_create_pf_port(pf);
4540 	if (err)
4541 		goto err_devlink_create;
4542 
4543 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4544 
4545 	return 0;
4546 err_devlink_create:
4547 	unregister_netdev(vsi->netdev);
4548 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4549 err_register_netdev:
4550 	free_netdev(vsi->netdev);
4551 	vsi->netdev = NULL;
4552 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4553 	return err;
4554 }
4555 
4556 /**
4557  * ice_probe - Device initialization routine
4558  * @pdev: PCI device information struct
4559  * @ent: entry in ice_pci_tbl
4560  *
4561  * Returns 0 on success, negative on failure
4562  */
4563 static int
4564 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4565 {
4566 	struct device *dev = &pdev->dev;
4567 	struct ice_pf *pf;
4568 	struct ice_hw *hw;
4569 	int i, err;
4570 
4571 	if (pdev->is_virtfn) {
4572 		dev_err(dev, "can't probe a virtual function\n");
4573 		return -EINVAL;
4574 	}
4575 
4576 	/* this driver uses devres, see
4577 	 * Documentation/driver-api/driver-model/devres.rst
4578 	 */
4579 	err = pcim_enable_device(pdev);
4580 	if (err)
4581 		return err;
4582 
4583 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4584 	if (err) {
4585 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4586 		return err;
4587 	}
4588 
4589 	pf = ice_allocate_pf(dev);
4590 	if (!pf)
4591 		return -ENOMEM;
4592 
4593 	/* initialize Auxiliary index to invalid value */
4594 	pf->aux_idx = -1;
4595 
4596 	/* set up for high or low DMA */
4597 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4598 	if (err) {
4599 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4600 		return err;
4601 	}
4602 
4603 	pci_enable_pcie_error_reporting(pdev);
4604 	pci_set_master(pdev);
4605 
4606 	pf->pdev = pdev;
4607 	pci_set_drvdata(pdev, pf);
4608 	set_bit(ICE_DOWN, pf->state);
4609 	/* Disable service task until DOWN bit is cleared */
4610 	set_bit(ICE_SERVICE_DIS, pf->state);
4611 
4612 	hw = &pf->hw;
4613 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4614 	pci_save_state(pdev);
4615 
4616 	hw->back = pf;
4617 	hw->vendor_id = pdev->vendor;
4618 	hw->device_id = pdev->device;
4619 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4620 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4621 	hw->subsystem_device_id = pdev->subsystem_device;
4622 	hw->bus.device = PCI_SLOT(pdev->devfn);
4623 	hw->bus.func = PCI_FUNC(pdev->devfn);
4624 	ice_set_ctrlq_len(hw);
4625 
4626 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4627 
4628 #ifndef CONFIG_DYNAMIC_DEBUG
4629 	if (debug < -1)
4630 		hw->debug_mask = debug;
4631 #endif
4632 
4633 	err = ice_init_hw(hw);
4634 	if (err) {
4635 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4636 		err = -EIO;
4637 		goto err_exit_unroll;
4638 	}
4639 
4640 	ice_init_feature_support(pf);
4641 
4642 	ice_request_fw(pf);
4643 
4644 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4645 	 * set in pf->state, which will cause ice_is_safe_mode to return
4646 	 * true
4647 	 */
4648 	if (ice_is_safe_mode(pf)) {
4649 		/* we already got function/device capabilities but these don't
4650 		 * reflect what the driver needs to do in safe mode. Instead of
4651 		 * adding conditional logic everywhere to ignore these
4652 		 * device/function capabilities, override them.
4653 		 */
4654 		ice_set_safe_mode_caps(hw);
4655 	}
4656 
4657 	err = ice_init_pf(pf);
4658 	if (err) {
4659 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4660 		goto err_init_pf_unroll;
4661 	}
4662 
4663 	ice_devlink_init_regions(pf);
4664 
4665 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4666 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4667 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4668 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4669 	i = 0;
4670 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4671 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4672 			pf->hw.tnl.valid_count[TNL_VXLAN];
4673 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4674 			UDP_TUNNEL_TYPE_VXLAN;
4675 		i++;
4676 	}
4677 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4678 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4679 			pf->hw.tnl.valid_count[TNL_GENEVE];
4680 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4681 			UDP_TUNNEL_TYPE_GENEVE;
4682 		i++;
4683 	}
4684 
4685 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4686 	if (!pf->num_alloc_vsi) {
4687 		err = -EIO;
4688 		goto err_init_pf_unroll;
4689 	}
4690 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4691 		dev_warn(&pf->pdev->dev,
4692 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4693 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4694 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4695 	}
4696 
4697 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4698 			       GFP_KERNEL);
4699 	if (!pf->vsi) {
4700 		err = -ENOMEM;
4701 		goto err_init_pf_unroll;
4702 	}
4703 
4704 	err = ice_init_interrupt_scheme(pf);
4705 	if (err) {
4706 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4707 		err = -EIO;
4708 		goto err_init_vsi_unroll;
4709 	}
4710 
4711 	/* In case of MSIX we are going to setup the misc vector right here
4712 	 * to handle admin queue events etc. In case of legacy and MSI
4713 	 * the misc functionality and queue processing is combined in
4714 	 * the same vector and that gets setup at open.
4715 	 */
4716 	err = ice_req_irq_msix_misc(pf);
4717 	if (err) {
4718 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4719 		goto err_init_interrupt_unroll;
4720 	}
4721 
4722 	/* create switch struct for the switch element created by FW on boot */
4723 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4724 	if (!pf->first_sw) {
4725 		err = -ENOMEM;
4726 		goto err_msix_misc_unroll;
4727 	}
4728 
4729 	if (hw->evb_veb)
4730 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4731 	else
4732 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4733 
4734 	pf->first_sw->pf = pf;
4735 
4736 	/* record the sw_id available for later use */
4737 	pf->first_sw->sw_id = hw->port_info->sw_id;
4738 
4739 	err = ice_setup_pf_sw(pf);
4740 	if (err) {
4741 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4742 		goto err_alloc_sw_unroll;
4743 	}
4744 
4745 	clear_bit(ICE_SERVICE_DIS, pf->state);
4746 
4747 	/* tell the firmware we are up */
4748 	err = ice_send_version(pf);
4749 	if (err) {
4750 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4751 			UTS_RELEASE, err);
4752 		goto err_send_version_unroll;
4753 	}
4754 
4755 	/* since everything is good, start the service timer */
4756 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4757 
4758 	err = ice_init_link_events(pf->hw.port_info);
4759 	if (err) {
4760 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4761 		goto err_send_version_unroll;
4762 	}
4763 
4764 	/* not a fatal error if this fails */
4765 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4766 	if (err)
4767 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4768 
4769 	/* not a fatal error if this fails */
4770 	err = ice_update_link_info(pf->hw.port_info);
4771 	if (err)
4772 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4773 
4774 	ice_init_link_dflt_override(pf->hw.port_info);
4775 
4776 	ice_check_link_cfg_err(pf,
4777 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4778 
4779 	/* if media available, initialize PHY settings */
4780 	if (pf->hw.port_info->phy.link_info.link_info &
4781 	    ICE_AQ_MEDIA_AVAILABLE) {
4782 		/* not a fatal error if this fails */
4783 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4784 		if (err)
4785 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4786 
4787 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4788 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4789 
4790 			if (vsi)
4791 				ice_configure_phy(vsi);
4792 		}
4793 	} else {
4794 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4795 	}
4796 
4797 	ice_verify_cacheline_size(pf);
4798 
4799 	/* Save wakeup reason register for later use */
4800 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4801 
4802 	/* check for a power management event */
4803 	ice_print_wake_reason(pf);
4804 
4805 	/* clear wake status, all bits */
4806 	wr32(hw, PFPM_WUS, U32_MAX);
4807 
4808 	/* Disable WoL at init, wait for user to enable */
4809 	device_set_wakeup_enable(dev, false);
4810 
4811 	if (ice_is_safe_mode(pf)) {
4812 		ice_set_safe_mode_vlan_cfg(pf);
4813 		goto probe_done;
4814 	}
4815 
4816 	/* initialize DDP driven features */
4817 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4818 		ice_ptp_init(pf);
4819 
4820 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4821 		ice_gnss_init(pf);
4822 
4823 	/* Note: Flow director init failure is non-fatal to load */
4824 	if (ice_init_fdir(pf))
4825 		dev_err(dev, "could not initialize flow director\n");
4826 
4827 	/* Note: DCB init failure is non-fatal to load */
4828 	if (ice_init_pf_dcb(pf, false)) {
4829 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4830 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4831 	} else {
4832 		ice_cfg_lldp_mib_change(&pf->hw, true);
4833 	}
4834 
4835 	if (ice_init_lag(pf))
4836 		dev_warn(dev, "Failed to init link aggregation support\n");
4837 
4838 	/* print PCI link speed and width */
4839 	pcie_print_link_status(pf->pdev);
4840 
4841 probe_done:
4842 	err = ice_register_netdev(pf);
4843 	if (err)
4844 		goto err_netdev_reg;
4845 
4846 	err = ice_devlink_register_params(pf);
4847 	if (err)
4848 		goto err_netdev_reg;
4849 
4850 	/* ready to go, so clear down state bit */
4851 	clear_bit(ICE_DOWN, pf->state);
4852 	if (ice_is_rdma_ena(pf)) {
4853 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4854 		if (pf->aux_idx < 0) {
4855 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4856 			err = -ENOMEM;
4857 			goto err_devlink_reg_param;
4858 		}
4859 
4860 		err = ice_init_rdma(pf);
4861 		if (err) {
4862 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4863 			err = -EIO;
4864 			goto err_init_aux_unroll;
4865 		}
4866 	} else {
4867 		dev_warn(dev, "RDMA is not supported on this device\n");
4868 	}
4869 
4870 	ice_devlink_register(pf);
4871 	return 0;
4872 
4873 err_init_aux_unroll:
4874 	pf->adev = NULL;
4875 	ida_free(&ice_aux_ida, pf->aux_idx);
4876 err_devlink_reg_param:
4877 	ice_devlink_unregister_params(pf);
4878 err_netdev_reg:
4879 err_send_version_unroll:
4880 	ice_vsi_release_all(pf);
4881 err_alloc_sw_unroll:
4882 	set_bit(ICE_SERVICE_DIS, pf->state);
4883 	set_bit(ICE_DOWN, pf->state);
4884 	devm_kfree(dev, pf->first_sw);
4885 err_msix_misc_unroll:
4886 	ice_free_irq_msix_misc(pf);
4887 err_init_interrupt_unroll:
4888 	ice_clear_interrupt_scheme(pf);
4889 err_init_vsi_unroll:
4890 	devm_kfree(dev, pf->vsi);
4891 err_init_pf_unroll:
4892 	ice_deinit_pf(pf);
4893 	ice_devlink_destroy_regions(pf);
4894 	ice_deinit_hw(hw);
4895 err_exit_unroll:
4896 	pci_disable_pcie_error_reporting(pdev);
4897 	pci_disable_device(pdev);
4898 	return err;
4899 }
4900 
4901 /**
4902  * ice_set_wake - enable or disable Wake on LAN
4903  * @pf: pointer to the PF struct
4904  *
4905  * Simple helper for WoL control
4906  */
4907 static void ice_set_wake(struct ice_pf *pf)
4908 {
4909 	struct ice_hw *hw = &pf->hw;
4910 	bool wol = pf->wol_ena;
4911 
4912 	/* clear wake state, otherwise new wake events won't fire */
4913 	wr32(hw, PFPM_WUS, U32_MAX);
4914 
4915 	/* enable / disable APM wake up, no RMW needed */
4916 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4917 
4918 	/* set magic packet filter enabled */
4919 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4920 }
4921 
4922 /**
4923  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4924  * @pf: pointer to the PF struct
4925  *
4926  * Issue firmware command to enable multicast magic wake, making
4927  * sure that any locally administered address (LAA) is used for
4928  * wake, and that PF reset doesn't undo the LAA.
4929  */
4930 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4931 {
4932 	struct device *dev = ice_pf_to_dev(pf);
4933 	struct ice_hw *hw = &pf->hw;
4934 	u8 mac_addr[ETH_ALEN];
4935 	struct ice_vsi *vsi;
4936 	int status;
4937 	u8 flags;
4938 
4939 	if (!pf->wol_ena)
4940 		return;
4941 
4942 	vsi = ice_get_main_vsi(pf);
4943 	if (!vsi)
4944 		return;
4945 
4946 	/* Get current MAC address in case it's an LAA */
4947 	if (vsi->netdev)
4948 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4949 	else
4950 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4951 
4952 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4953 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4954 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4955 
4956 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4957 	if (status)
4958 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4959 			status, ice_aq_str(hw->adminq.sq_last_status));
4960 }
4961 
4962 /**
4963  * ice_remove - Device removal routine
4964  * @pdev: PCI device information struct
4965  */
4966 static void ice_remove(struct pci_dev *pdev)
4967 {
4968 	struct ice_pf *pf = pci_get_drvdata(pdev);
4969 	int i;
4970 
4971 	ice_devlink_unregister(pf);
4972 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4973 		if (!ice_is_reset_in_progress(pf->state))
4974 			break;
4975 		msleep(100);
4976 	}
4977 
4978 	ice_tc_indir_block_remove(pf);
4979 
4980 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4981 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4982 		ice_free_vfs(pf);
4983 	}
4984 
4985 	ice_service_task_stop(pf);
4986 
4987 	ice_aq_cancel_waiting_tasks(pf);
4988 	ice_unplug_aux_dev(pf);
4989 	if (pf->aux_idx >= 0)
4990 		ida_free(&ice_aux_ida, pf->aux_idx);
4991 	ice_devlink_unregister_params(pf);
4992 	set_bit(ICE_DOWN, pf->state);
4993 
4994 	ice_deinit_lag(pf);
4995 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4996 		ice_ptp_release(pf);
4997 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4998 		ice_gnss_exit(pf);
4999 	if (!ice_is_safe_mode(pf))
5000 		ice_remove_arfs(pf);
5001 	ice_setup_mc_magic_wake(pf);
5002 	ice_vsi_release_all(pf);
5003 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5004 	ice_set_wake(pf);
5005 	ice_free_irq_msix_misc(pf);
5006 	ice_for_each_vsi(pf, i) {
5007 		if (!pf->vsi[i])
5008 			continue;
5009 		ice_vsi_free_q_vectors(pf->vsi[i]);
5010 	}
5011 	ice_deinit_pf(pf);
5012 	ice_devlink_destroy_regions(pf);
5013 	ice_deinit_hw(&pf->hw);
5014 
5015 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5016 	 * do it via ice_schedule_reset() since there is no need to rebuild
5017 	 * and the service task is already stopped.
5018 	 */
5019 	ice_reset(&pf->hw, ICE_RESET_PFR);
5020 	pci_wait_for_pending_transaction(pdev);
5021 	ice_clear_interrupt_scheme(pf);
5022 	pci_disable_pcie_error_reporting(pdev);
5023 	pci_disable_device(pdev);
5024 }
5025 
5026 /**
5027  * ice_shutdown - PCI callback for shutting down device
5028  * @pdev: PCI device information struct
5029  */
5030 static void ice_shutdown(struct pci_dev *pdev)
5031 {
5032 	struct ice_pf *pf = pci_get_drvdata(pdev);
5033 
5034 	ice_remove(pdev);
5035 
5036 	if (system_state == SYSTEM_POWER_OFF) {
5037 		pci_wake_from_d3(pdev, pf->wol_ena);
5038 		pci_set_power_state(pdev, PCI_D3hot);
5039 	}
5040 }
5041 
5042 #ifdef CONFIG_PM
5043 /**
5044  * ice_prepare_for_shutdown - prep for PCI shutdown
5045  * @pf: board private structure
5046  *
5047  * Inform or close all dependent features in prep for PCI device shutdown
5048  */
5049 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5050 {
5051 	struct ice_hw *hw = &pf->hw;
5052 	u32 v;
5053 
5054 	/* Notify VFs of impending reset */
5055 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5056 		ice_vc_notify_reset(pf);
5057 
5058 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5059 
5060 	/* disable the VSIs and their queues that are not already DOWN */
5061 	ice_pf_dis_all_vsi(pf, false);
5062 
5063 	ice_for_each_vsi(pf, v)
5064 		if (pf->vsi[v])
5065 			pf->vsi[v]->vsi_num = 0;
5066 
5067 	ice_shutdown_all_ctrlq(hw);
5068 }
5069 
5070 /**
5071  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5072  * @pf: board private structure to reinitialize
5073  *
5074  * This routine reinitialize interrupt scheme that was cleared during
5075  * power management suspend callback.
5076  *
5077  * This should be called during resume routine to re-allocate the q_vectors
5078  * and reacquire interrupts.
5079  */
5080 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5081 {
5082 	struct device *dev = ice_pf_to_dev(pf);
5083 	int ret, v;
5084 
5085 	/* Since we clear MSIX flag during suspend, we need to
5086 	 * set it back during resume...
5087 	 */
5088 
5089 	ret = ice_init_interrupt_scheme(pf);
5090 	if (ret) {
5091 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5092 		return ret;
5093 	}
5094 
5095 	/* Remap vectors and rings, after successful re-init interrupts */
5096 	ice_for_each_vsi(pf, v) {
5097 		if (!pf->vsi[v])
5098 			continue;
5099 
5100 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5101 		if (ret)
5102 			goto err_reinit;
5103 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5104 	}
5105 
5106 	ret = ice_req_irq_msix_misc(pf);
5107 	if (ret) {
5108 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5109 			ret);
5110 		goto err_reinit;
5111 	}
5112 
5113 	return 0;
5114 
5115 err_reinit:
5116 	while (v--)
5117 		if (pf->vsi[v])
5118 			ice_vsi_free_q_vectors(pf->vsi[v]);
5119 
5120 	return ret;
5121 }
5122 
5123 /**
5124  * ice_suspend
5125  * @dev: generic device information structure
5126  *
5127  * Power Management callback to quiesce the device and prepare
5128  * for D3 transition.
5129  */
5130 static int __maybe_unused ice_suspend(struct device *dev)
5131 {
5132 	struct pci_dev *pdev = to_pci_dev(dev);
5133 	struct ice_pf *pf;
5134 	int disabled, v;
5135 
5136 	pf = pci_get_drvdata(pdev);
5137 
5138 	if (!ice_pf_state_is_nominal(pf)) {
5139 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5140 		return -EBUSY;
5141 	}
5142 
5143 	/* Stop watchdog tasks until resume completion.
5144 	 * Even though it is most likely that the service task is
5145 	 * disabled if the device is suspended or down, the service task's
5146 	 * state is controlled by a different state bit, and we should
5147 	 * store and honor whatever state that bit is in at this point.
5148 	 */
5149 	disabled = ice_service_task_stop(pf);
5150 
5151 	ice_unplug_aux_dev(pf);
5152 
5153 	/* Already suspended?, then there is nothing to do */
5154 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5155 		if (!disabled)
5156 			ice_service_task_restart(pf);
5157 		return 0;
5158 	}
5159 
5160 	if (test_bit(ICE_DOWN, pf->state) ||
5161 	    ice_is_reset_in_progress(pf->state)) {
5162 		dev_err(dev, "can't suspend device in reset or already down\n");
5163 		if (!disabled)
5164 			ice_service_task_restart(pf);
5165 		return 0;
5166 	}
5167 
5168 	ice_setup_mc_magic_wake(pf);
5169 
5170 	ice_prepare_for_shutdown(pf);
5171 
5172 	ice_set_wake(pf);
5173 
5174 	/* Free vectors, clear the interrupt scheme and release IRQs
5175 	 * for proper hibernation, especially with large number of CPUs.
5176 	 * Otherwise hibernation might fail when mapping all the vectors back
5177 	 * to CPU0.
5178 	 */
5179 	ice_free_irq_msix_misc(pf);
5180 	ice_for_each_vsi(pf, v) {
5181 		if (!pf->vsi[v])
5182 			continue;
5183 		ice_vsi_free_q_vectors(pf->vsi[v]);
5184 	}
5185 	ice_clear_interrupt_scheme(pf);
5186 
5187 	pci_save_state(pdev);
5188 	pci_wake_from_d3(pdev, pf->wol_ena);
5189 	pci_set_power_state(pdev, PCI_D3hot);
5190 	return 0;
5191 }
5192 
5193 /**
5194  * ice_resume - PM callback for waking up from D3
5195  * @dev: generic device information structure
5196  */
5197 static int __maybe_unused ice_resume(struct device *dev)
5198 {
5199 	struct pci_dev *pdev = to_pci_dev(dev);
5200 	enum ice_reset_req reset_type;
5201 	struct ice_pf *pf;
5202 	struct ice_hw *hw;
5203 	int ret;
5204 
5205 	pci_set_power_state(pdev, PCI_D0);
5206 	pci_restore_state(pdev);
5207 	pci_save_state(pdev);
5208 
5209 	if (!pci_device_is_present(pdev))
5210 		return -ENODEV;
5211 
5212 	ret = pci_enable_device_mem(pdev);
5213 	if (ret) {
5214 		dev_err(dev, "Cannot enable device after suspend\n");
5215 		return ret;
5216 	}
5217 
5218 	pf = pci_get_drvdata(pdev);
5219 	hw = &pf->hw;
5220 
5221 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5222 	ice_print_wake_reason(pf);
5223 
5224 	/* We cleared the interrupt scheme when we suspended, so we need to
5225 	 * restore it now to resume device functionality.
5226 	 */
5227 	ret = ice_reinit_interrupt_scheme(pf);
5228 	if (ret)
5229 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5230 
5231 	clear_bit(ICE_DOWN, pf->state);
5232 	/* Now perform PF reset and rebuild */
5233 	reset_type = ICE_RESET_PFR;
5234 	/* re-enable service task for reset, but allow reset to schedule it */
5235 	clear_bit(ICE_SERVICE_DIS, pf->state);
5236 
5237 	if (ice_schedule_reset(pf, reset_type))
5238 		dev_err(dev, "Reset during resume failed.\n");
5239 
5240 	clear_bit(ICE_SUSPENDED, pf->state);
5241 	ice_service_task_restart(pf);
5242 
5243 	/* Restart the service task */
5244 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5245 
5246 	return 0;
5247 }
5248 #endif /* CONFIG_PM */
5249 
5250 /**
5251  * ice_pci_err_detected - warning that PCI error has been detected
5252  * @pdev: PCI device information struct
5253  * @err: the type of PCI error
5254  *
5255  * Called to warn that something happened on the PCI bus and the error handling
5256  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5257  */
5258 static pci_ers_result_t
5259 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5260 {
5261 	struct ice_pf *pf = pci_get_drvdata(pdev);
5262 
5263 	if (!pf) {
5264 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5265 			__func__, err);
5266 		return PCI_ERS_RESULT_DISCONNECT;
5267 	}
5268 
5269 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5270 		ice_service_task_stop(pf);
5271 
5272 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5273 			set_bit(ICE_PFR_REQ, pf->state);
5274 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5275 		}
5276 	}
5277 
5278 	return PCI_ERS_RESULT_NEED_RESET;
5279 }
5280 
5281 /**
5282  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5283  * @pdev: PCI device information struct
5284  *
5285  * Called to determine if the driver can recover from the PCI slot reset by
5286  * using a register read to determine if the device is recoverable.
5287  */
5288 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5289 {
5290 	struct ice_pf *pf = pci_get_drvdata(pdev);
5291 	pci_ers_result_t result;
5292 	int err;
5293 	u32 reg;
5294 
5295 	err = pci_enable_device_mem(pdev);
5296 	if (err) {
5297 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5298 			err);
5299 		result = PCI_ERS_RESULT_DISCONNECT;
5300 	} else {
5301 		pci_set_master(pdev);
5302 		pci_restore_state(pdev);
5303 		pci_save_state(pdev);
5304 		pci_wake_from_d3(pdev, false);
5305 
5306 		/* Check for life */
5307 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5308 		if (!reg)
5309 			result = PCI_ERS_RESULT_RECOVERED;
5310 		else
5311 			result = PCI_ERS_RESULT_DISCONNECT;
5312 	}
5313 
5314 	err = pci_aer_clear_nonfatal_status(pdev);
5315 	if (err)
5316 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
5317 			err);
5318 		/* non-fatal, continue */
5319 
5320 	return result;
5321 }
5322 
5323 /**
5324  * ice_pci_err_resume - restart operations after PCI error recovery
5325  * @pdev: PCI device information struct
5326  *
5327  * Called to allow the driver to bring things back up after PCI error and/or
5328  * reset recovery have finished
5329  */
5330 static void ice_pci_err_resume(struct pci_dev *pdev)
5331 {
5332 	struct ice_pf *pf = pci_get_drvdata(pdev);
5333 
5334 	if (!pf) {
5335 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5336 			__func__);
5337 		return;
5338 	}
5339 
5340 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5341 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5342 			__func__);
5343 		return;
5344 	}
5345 
5346 	ice_restore_all_vfs_msi_state(pdev);
5347 
5348 	ice_do_reset(pf, ICE_RESET_PFR);
5349 	ice_service_task_restart(pf);
5350 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5351 }
5352 
5353 /**
5354  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5355  * @pdev: PCI device information struct
5356  */
5357 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5358 {
5359 	struct ice_pf *pf = pci_get_drvdata(pdev);
5360 
5361 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5362 		ice_service_task_stop(pf);
5363 
5364 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5365 			set_bit(ICE_PFR_REQ, pf->state);
5366 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5367 		}
5368 	}
5369 }
5370 
5371 /**
5372  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5373  * @pdev: PCI device information struct
5374  */
5375 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5376 {
5377 	ice_pci_err_resume(pdev);
5378 }
5379 
5380 /* ice_pci_tbl - PCI Device ID Table
5381  *
5382  * Wildcard entries (PCI_ANY_ID) should come last
5383  * Last entry must be all 0s
5384  *
5385  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5386  *   Class, Class Mask, private data (not used) }
5387  */
5388 static const struct pci_device_id ice_pci_tbl[] = {
5389 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5390 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5391 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5392 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5393 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5394 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5395 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5396 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5397 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5398 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5399 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5400 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5401 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5402 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5403 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5404 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5405 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5406 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5407 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5408 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5409 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5410 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5411 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5412 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5413 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5414 	/* required last entry */
5415 	{ 0, }
5416 };
5417 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5418 
5419 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5420 
5421 static const struct pci_error_handlers ice_pci_err_handler = {
5422 	.error_detected = ice_pci_err_detected,
5423 	.slot_reset = ice_pci_err_slot_reset,
5424 	.reset_prepare = ice_pci_err_reset_prepare,
5425 	.reset_done = ice_pci_err_reset_done,
5426 	.resume = ice_pci_err_resume
5427 };
5428 
5429 static struct pci_driver ice_driver = {
5430 	.name = KBUILD_MODNAME,
5431 	.id_table = ice_pci_tbl,
5432 	.probe = ice_probe,
5433 	.remove = ice_remove,
5434 #ifdef CONFIG_PM
5435 	.driver.pm = &ice_pm_ops,
5436 #endif /* CONFIG_PM */
5437 	.shutdown = ice_shutdown,
5438 	.sriov_configure = ice_sriov_configure,
5439 	.err_handler = &ice_pci_err_handler
5440 };
5441 
5442 /**
5443  * ice_module_init - Driver registration routine
5444  *
5445  * ice_module_init is the first routine called when the driver is
5446  * loaded. All it does is register with the PCI subsystem.
5447  */
5448 static int __init ice_module_init(void)
5449 {
5450 	int status;
5451 
5452 	pr_info("%s\n", ice_driver_string);
5453 	pr_info("%s\n", ice_copyright);
5454 
5455 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5456 	if (!ice_wq) {
5457 		pr_err("Failed to create workqueue\n");
5458 		return -ENOMEM;
5459 	}
5460 
5461 	status = pci_register_driver(&ice_driver);
5462 	if (status) {
5463 		pr_err("failed to register PCI driver, err %d\n", status);
5464 		destroy_workqueue(ice_wq);
5465 	}
5466 
5467 	return status;
5468 }
5469 module_init(ice_module_init);
5470 
5471 /**
5472  * ice_module_exit - Driver exit cleanup routine
5473  *
5474  * ice_module_exit is called just before the driver is removed
5475  * from memory.
5476  */
5477 static void __exit ice_module_exit(void)
5478 {
5479 	pci_unregister_driver(&ice_driver);
5480 	destroy_workqueue(ice_wq);
5481 	pr_info("module unloaded\n");
5482 }
5483 module_exit(ice_module_exit);
5484 
5485 /**
5486  * ice_set_mac_address - NDO callback to set MAC address
5487  * @netdev: network interface device structure
5488  * @pi: pointer to an address structure
5489  *
5490  * Returns 0 on success, negative on failure
5491  */
5492 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5493 {
5494 	struct ice_netdev_priv *np = netdev_priv(netdev);
5495 	struct ice_vsi *vsi = np->vsi;
5496 	struct ice_pf *pf = vsi->back;
5497 	struct ice_hw *hw = &pf->hw;
5498 	struct sockaddr *addr = pi;
5499 	u8 old_mac[ETH_ALEN];
5500 	u8 flags = 0;
5501 	u8 *mac;
5502 	int err;
5503 
5504 	mac = (u8 *)addr->sa_data;
5505 
5506 	if (!is_valid_ether_addr(mac))
5507 		return -EADDRNOTAVAIL;
5508 
5509 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5510 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5511 		return 0;
5512 	}
5513 
5514 	if (test_bit(ICE_DOWN, pf->state) ||
5515 	    ice_is_reset_in_progress(pf->state)) {
5516 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5517 			   mac);
5518 		return -EBUSY;
5519 	}
5520 
5521 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5522 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5523 			   mac);
5524 		return -EAGAIN;
5525 	}
5526 
5527 	netif_addr_lock_bh(netdev);
5528 	ether_addr_copy(old_mac, netdev->dev_addr);
5529 	/* change the netdev's MAC address */
5530 	eth_hw_addr_set(netdev, mac);
5531 	netif_addr_unlock_bh(netdev);
5532 
5533 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5534 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5535 	if (err && err != -ENOENT) {
5536 		err = -EADDRNOTAVAIL;
5537 		goto err_update_filters;
5538 	}
5539 
5540 	/* Add filter for new MAC. If filter exists, return success */
5541 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5542 	if (err == -EEXIST) {
5543 		/* Although this MAC filter is already present in hardware it's
5544 		 * possible in some cases (e.g. bonding) that dev_addr was
5545 		 * modified outside of the driver and needs to be restored back
5546 		 * to this value.
5547 		 */
5548 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5549 
5550 		return 0;
5551 	} else if (err) {
5552 		/* error if the new filter addition failed */
5553 		err = -EADDRNOTAVAIL;
5554 	}
5555 
5556 err_update_filters:
5557 	if (err) {
5558 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5559 			   mac);
5560 		netif_addr_lock_bh(netdev);
5561 		eth_hw_addr_set(netdev, old_mac);
5562 		netif_addr_unlock_bh(netdev);
5563 		return err;
5564 	}
5565 
5566 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5567 		   netdev->dev_addr);
5568 
5569 	/* write new MAC address to the firmware */
5570 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5571 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5572 	if (err) {
5573 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5574 			   mac, err);
5575 	}
5576 	return 0;
5577 }
5578 
5579 /**
5580  * ice_set_rx_mode - NDO callback to set the netdev filters
5581  * @netdev: network interface device structure
5582  */
5583 static void ice_set_rx_mode(struct net_device *netdev)
5584 {
5585 	struct ice_netdev_priv *np = netdev_priv(netdev);
5586 	struct ice_vsi *vsi = np->vsi;
5587 
5588 	if (!vsi)
5589 		return;
5590 
5591 	/* Set the flags to synchronize filters
5592 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5593 	 * flags
5594 	 */
5595 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5596 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5597 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5598 
5599 	/* schedule our worker thread which will take care of
5600 	 * applying the new filter changes
5601 	 */
5602 	ice_service_task_schedule(vsi->back);
5603 }
5604 
5605 /**
5606  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5607  * @netdev: network interface device structure
5608  * @queue_index: Queue ID
5609  * @maxrate: maximum bandwidth in Mbps
5610  */
5611 static int
5612 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5613 {
5614 	struct ice_netdev_priv *np = netdev_priv(netdev);
5615 	struct ice_vsi *vsi = np->vsi;
5616 	u16 q_handle;
5617 	int status;
5618 	u8 tc;
5619 
5620 	/* Validate maxrate requested is within permitted range */
5621 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5622 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5623 			   maxrate, queue_index);
5624 		return -EINVAL;
5625 	}
5626 
5627 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5628 	tc = ice_dcb_get_tc(vsi, queue_index);
5629 
5630 	/* Set BW back to default, when user set maxrate to 0 */
5631 	if (!maxrate)
5632 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5633 					       q_handle, ICE_MAX_BW);
5634 	else
5635 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5636 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5637 	if (status)
5638 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5639 			   status);
5640 
5641 	return status;
5642 }
5643 
5644 /**
5645  * ice_fdb_add - add an entry to the hardware database
5646  * @ndm: the input from the stack
5647  * @tb: pointer to array of nladdr (unused)
5648  * @dev: the net device pointer
5649  * @addr: the MAC address entry being added
5650  * @vid: VLAN ID
5651  * @flags: instructions from stack about fdb operation
5652  * @extack: netlink extended ack
5653  */
5654 static int
5655 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5656 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5657 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5658 {
5659 	int err;
5660 
5661 	if (vid) {
5662 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5663 		return -EINVAL;
5664 	}
5665 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5666 		netdev_err(dev, "FDB only supports static addresses\n");
5667 		return -EINVAL;
5668 	}
5669 
5670 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5671 		err = dev_uc_add_excl(dev, addr);
5672 	else if (is_multicast_ether_addr(addr))
5673 		err = dev_mc_add_excl(dev, addr);
5674 	else
5675 		err = -EINVAL;
5676 
5677 	/* Only return duplicate errors if NLM_F_EXCL is set */
5678 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5679 		err = 0;
5680 
5681 	return err;
5682 }
5683 
5684 /**
5685  * ice_fdb_del - delete an entry from the hardware database
5686  * @ndm: the input from the stack
5687  * @tb: pointer to array of nladdr (unused)
5688  * @dev: the net device pointer
5689  * @addr: the MAC address entry being added
5690  * @vid: VLAN ID
5691  */
5692 static int
5693 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5694 	    struct net_device *dev, const unsigned char *addr,
5695 	    __always_unused u16 vid)
5696 {
5697 	int err;
5698 
5699 	if (ndm->ndm_state & NUD_PERMANENT) {
5700 		netdev_err(dev, "FDB only supports static addresses\n");
5701 		return -EINVAL;
5702 	}
5703 
5704 	if (is_unicast_ether_addr(addr))
5705 		err = dev_uc_del(dev, addr);
5706 	else if (is_multicast_ether_addr(addr))
5707 		err = dev_mc_del(dev, addr);
5708 	else
5709 		err = -EINVAL;
5710 
5711 	return err;
5712 }
5713 
5714 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5715 					 NETIF_F_HW_VLAN_CTAG_TX | \
5716 					 NETIF_F_HW_VLAN_STAG_RX | \
5717 					 NETIF_F_HW_VLAN_STAG_TX)
5718 
5719 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5720 					 NETIF_F_HW_VLAN_STAG_FILTER)
5721 
5722 /**
5723  * ice_fix_features - fix the netdev features flags based on device limitations
5724  * @netdev: ptr to the netdev that flags are being fixed on
5725  * @features: features that need to be checked and possibly fixed
5726  *
5727  * Make sure any fixups are made to features in this callback. This enables the
5728  * driver to not have to check unsupported configurations throughout the driver
5729  * because that's the responsiblity of this callback.
5730  *
5731  * Single VLAN Mode (SVM) Supported Features:
5732  *	NETIF_F_HW_VLAN_CTAG_FILTER
5733  *	NETIF_F_HW_VLAN_CTAG_RX
5734  *	NETIF_F_HW_VLAN_CTAG_TX
5735  *
5736  * Double VLAN Mode (DVM) Supported Features:
5737  *	NETIF_F_HW_VLAN_CTAG_FILTER
5738  *	NETIF_F_HW_VLAN_CTAG_RX
5739  *	NETIF_F_HW_VLAN_CTAG_TX
5740  *
5741  *	NETIF_F_HW_VLAN_STAG_FILTER
5742  *	NETIF_HW_VLAN_STAG_RX
5743  *	NETIF_HW_VLAN_STAG_TX
5744  *
5745  * Features that need fixing:
5746  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5747  *	These are mutually exlusive as the VSI context cannot support multiple
5748  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5749  *	is not done, then default to clearing the requested STAG offload
5750  *	settings.
5751  *
5752  *	All supported filtering has to be enabled or disabled together. For
5753  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5754  *	together. If this is not done, then default to VLAN filtering disabled.
5755  *	These are mutually exclusive as there is currently no way to
5756  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5757  *	prune rules.
5758  */
5759 static netdev_features_t
5760 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5761 {
5762 	struct ice_netdev_priv *np = netdev_priv(netdev);
5763 	netdev_features_t supported_vlan_filtering;
5764 	netdev_features_t requested_vlan_filtering;
5765 	struct ice_vsi *vsi = np->vsi;
5766 
5767 	requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES;
5768 
5769 	/* make sure supported_vlan_filtering works for both SVM and DVM */
5770 	supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER;
5771 	if (ice_is_dvm_ena(&vsi->back->hw))
5772 		supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER;
5773 
5774 	if (requested_vlan_filtering &&
5775 	    requested_vlan_filtering != supported_vlan_filtering) {
5776 		if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) {
5777 			netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n");
5778 			features |= supported_vlan_filtering;
5779 		} else {
5780 			netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n");
5781 			features &= ~supported_vlan_filtering;
5782 		}
5783 	}
5784 
5785 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5786 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5787 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5788 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5789 			      NETIF_F_HW_VLAN_STAG_TX);
5790 	}
5791 
5792 	return features;
5793 }
5794 
5795 /**
5796  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5797  * @vsi: PF's VSI
5798  * @features: features used to determine VLAN offload settings
5799  *
5800  * First, determine the vlan_ethertype based on the VLAN offload bits in
5801  * features. Then determine if stripping and insertion should be enabled or
5802  * disabled. Finally enable or disable VLAN stripping and insertion.
5803  */
5804 static int
5805 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5806 {
5807 	bool enable_stripping = true, enable_insertion = true;
5808 	struct ice_vsi_vlan_ops *vlan_ops;
5809 	int strip_err = 0, insert_err = 0;
5810 	u16 vlan_ethertype = 0;
5811 
5812 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5813 
5814 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5815 		vlan_ethertype = ETH_P_8021AD;
5816 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5817 		vlan_ethertype = ETH_P_8021Q;
5818 
5819 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5820 		enable_stripping = false;
5821 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5822 		enable_insertion = false;
5823 
5824 	if (enable_stripping)
5825 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5826 	else
5827 		strip_err = vlan_ops->dis_stripping(vsi);
5828 
5829 	if (enable_insertion)
5830 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5831 	else
5832 		insert_err = vlan_ops->dis_insertion(vsi);
5833 
5834 	if (strip_err || insert_err)
5835 		return -EIO;
5836 
5837 	return 0;
5838 }
5839 
5840 /**
5841  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5842  * @vsi: PF's VSI
5843  * @features: features used to determine VLAN filtering settings
5844  *
5845  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5846  * features.
5847  */
5848 static int
5849 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5850 {
5851 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5852 	int err = 0;
5853 
5854 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5855 	 * if either bit is set
5856 	 */
5857 	if (features &
5858 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5859 		err = vlan_ops->ena_rx_filtering(vsi);
5860 	else
5861 		err = vlan_ops->dis_rx_filtering(vsi);
5862 
5863 	return err;
5864 }
5865 
5866 /**
5867  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5868  * @netdev: ptr to the netdev being adjusted
5869  * @features: the feature set that the stack is suggesting
5870  *
5871  * Only update VLAN settings if the requested_vlan_features are different than
5872  * the current_vlan_features.
5873  */
5874 static int
5875 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5876 {
5877 	netdev_features_t current_vlan_features, requested_vlan_features;
5878 	struct ice_netdev_priv *np = netdev_priv(netdev);
5879 	struct ice_vsi *vsi = np->vsi;
5880 	int err;
5881 
5882 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5883 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5884 	if (current_vlan_features ^ requested_vlan_features) {
5885 		err = ice_set_vlan_offload_features(vsi, features);
5886 		if (err)
5887 			return err;
5888 	}
5889 
5890 	current_vlan_features = netdev->features &
5891 		NETIF_VLAN_FILTERING_FEATURES;
5892 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5893 	if (current_vlan_features ^ requested_vlan_features) {
5894 		err = ice_set_vlan_filtering_features(vsi, features);
5895 		if (err)
5896 			return err;
5897 	}
5898 
5899 	return 0;
5900 }
5901 
5902 /**
5903  * ice_set_features - set the netdev feature flags
5904  * @netdev: ptr to the netdev being adjusted
5905  * @features: the feature set that the stack is suggesting
5906  */
5907 static int
5908 ice_set_features(struct net_device *netdev, netdev_features_t features)
5909 {
5910 	struct ice_netdev_priv *np = netdev_priv(netdev);
5911 	struct ice_vsi *vsi = np->vsi;
5912 	struct ice_pf *pf = vsi->back;
5913 	int ret = 0;
5914 
5915 	/* Don't set any netdev advanced features with device in Safe Mode */
5916 	if (ice_is_safe_mode(vsi->back)) {
5917 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5918 		return ret;
5919 	}
5920 
5921 	/* Do not change setting during reset */
5922 	if (ice_is_reset_in_progress(pf->state)) {
5923 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5924 		return -EBUSY;
5925 	}
5926 
5927 	/* Multiple features can be changed in one call so keep features in
5928 	 * separate if/else statements to guarantee each feature is checked
5929 	 */
5930 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5931 		ice_vsi_manage_rss_lut(vsi, true);
5932 	else if (!(features & NETIF_F_RXHASH) &&
5933 		 netdev->features & NETIF_F_RXHASH)
5934 		ice_vsi_manage_rss_lut(vsi, false);
5935 
5936 	ret = ice_set_vlan_features(netdev, features);
5937 	if (ret)
5938 		return ret;
5939 
5940 	if ((features & NETIF_F_NTUPLE) &&
5941 	    !(netdev->features & NETIF_F_NTUPLE)) {
5942 		ice_vsi_manage_fdir(vsi, true);
5943 		ice_init_arfs(vsi);
5944 	} else if (!(features & NETIF_F_NTUPLE) &&
5945 		 (netdev->features & NETIF_F_NTUPLE)) {
5946 		ice_vsi_manage_fdir(vsi, false);
5947 		ice_clear_arfs(vsi);
5948 	}
5949 
5950 	/* don't turn off hw_tc_offload when ADQ is already enabled */
5951 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5952 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5953 		return -EACCES;
5954 	}
5955 
5956 	if ((features & NETIF_F_HW_TC) &&
5957 	    !(netdev->features & NETIF_F_HW_TC))
5958 		set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5959 	else
5960 		clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
5961 
5962 	return 0;
5963 }
5964 
5965 /**
5966  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
5967  * @vsi: VSI to setup VLAN properties for
5968  */
5969 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5970 {
5971 	int err;
5972 
5973 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
5974 	if (err)
5975 		return err;
5976 
5977 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
5978 	if (err)
5979 		return err;
5980 
5981 	return ice_vsi_add_vlan_zero(vsi);
5982 }
5983 
5984 /**
5985  * ice_vsi_cfg - Setup the VSI
5986  * @vsi: the VSI being configured
5987  *
5988  * Return 0 on success and negative value on error
5989  */
5990 int ice_vsi_cfg(struct ice_vsi *vsi)
5991 {
5992 	int err;
5993 
5994 	if (vsi->netdev) {
5995 		ice_set_rx_mode(vsi->netdev);
5996 
5997 		err = ice_vsi_vlan_setup(vsi);
5998 
5999 		if (err)
6000 			return err;
6001 	}
6002 	ice_vsi_cfg_dcb_rings(vsi);
6003 
6004 	err = ice_vsi_cfg_lan_txqs(vsi);
6005 	if (!err && ice_is_xdp_ena_vsi(vsi))
6006 		err = ice_vsi_cfg_xdp_txqs(vsi);
6007 	if (!err)
6008 		err = ice_vsi_cfg_rxqs(vsi);
6009 
6010 	return err;
6011 }
6012 
6013 /* THEORY OF MODERATION:
6014  * The ice driver hardware works differently than the hardware that DIMLIB was
6015  * originally made for. ice hardware doesn't have packet count limits that
6016  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6017  * which is hard-coded to a limit of 250,000 ints/second.
6018  * If not using dynamic moderation, the INTRL value can be modified
6019  * by ethtool rx-usecs-high.
6020  */
6021 struct ice_dim {
6022 	/* the throttle rate for interrupts, basically worst case delay before
6023 	 * an initial interrupt fires, value is stored in microseconds.
6024 	 */
6025 	u16 itr;
6026 };
6027 
6028 /* Make a different profile for Rx that doesn't allow quite so aggressive
6029  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6030  * second.
6031  */
6032 static const struct ice_dim rx_profile[] = {
6033 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6034 	{8},    /* 125,000 ints/s */
6035 	{16},   /*  62,500 ints/s */
6036 	{62},   /*  16,129 ints/s */
6037 	{126}   /*   7,936 ints/s */
6038 };
6039 
6040 /* The transmit profile, which has the same sorts of values
6041  * as the previous struct
6042  */
6043 static const struct ice_dim tx_profile[] = {
6044 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6045 	{8},    /* 125,000 ints/s */
6046 	{40},   /*  16,125 ints/s */
6047 	{128},  /*   7,812 ints/s */
6048 	{256}   /*   3,906 ints/s */
6049 };
6050 
6051 static void ice_tx_dim_work(struct work_struct *work)
6052 {
6053 	struct ice_ring_container *rc;
6054 	struct dim *dim;
6055 	u16 itr;
6056 
6057 	dim = container_of(work, struct dim, work);
6058 	rc = (struct ice_ring_container *)dim->priv;
6059 
6060 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6061 
6062 	/* look up the values in our local table */
6063 	itr = tx_profile[dim->profile_ix].itr;
6064 
6065 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6066 	ice_write_itr(rc, itr);
6067 
6068 	dim->state = DIM_START_MEASURE;
6069 }
6070 
6071 static void ice_rx_dim_work(struct work_struct *work)
6072 {
6073 	struct ice_ring_container *rc;
6074 	struct dim *dim;
6075 	u16 itr;
6076 
6077 	dim = container_of(work, struct dim, work);
6078 	rc = (struct ice_ring_container *)dim->priv;
6079 
6080 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6081 
6082 	/* look up the values in our local table */
6083 	itr = rx_profile[dim->profile_ix].itr;
6084 
6085 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6086 	ice_write_itr(rc, itr);
6087 
6088 	dim->state = DIM_START_MEASURE;
6089 }
6090 
6091 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6092 
6093 /**
6094  * ice_init_moderation - set up interrupt moderation
6095  * @q_vector: the vector containing rings to be configured
6096  *
6097  * Set up interrupt moderation registers, with the intent to do the right thing
6098  * when called from reset or from probe, and whether or not dynamic moderation
6099  * is enabled or not. Take special care to write all the registers in both
6100  * dynamic moderation mode or not in order to make sure hardware is in a known
6101  * state.
6102  */
6103 static void ice_init_moderation(struct ice_q_vector *q_vector)
6104 {
6105 	struct ice_ring_container *rc;
6106 	bool tx_dynamic, rx_dynamic;
6107 
6108 	rc = &q_vector->tx;
6109 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6110 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6111 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6112 	rc->dim.priv = rc;
6113 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6114 
6115 	/* set the initial TX ITR to match the above */
6116 	ice_write_itr(rc, tx_dynamic ?
6117 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6118 
6119 	rc = &q_vector->rx;
6120 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6121 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6122 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6123 	rc->dim.priv = rc;
6124 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6125 
6126 	/* set the initial RX ITR to match the above */
6127 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6128 				       rc->itr_setting);
6129 
6130 	ice_set_q_vector_intrl(q_vector);
6131 }
6132 
6133 /**
6134  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6135  * @vsi: the VSI being configured
6136  */
6137 static void ice_napi_enable_all(struct ice_vsi *vsi)
6138 {
6139 	int q_idx;
6140 
6141 	if (!vsi->netdev)
6142 		return;
6143 
6144 	ice_for_each_q_vector(vsi, q_idx) {
6145 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6146 
6147 		ice_init_moderation(q_vector);
6148 
6149 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6150 			napi_enable(&q_vector->napi);
6151 	}
6152 }
6153 
6154 /**
6155  * ice_up_complete - Finish the last steps of bringing up a connection
6156  * @vsi: The VSI being configured
6157  *
6158  * Return 0 on success and negative value on error
6159  */
6160 static int ice_up_complete(struct ice_vsi *vsi)
6161 {
6162 	struct ice_pf *pf = vsi->back;
6163 	int err;
6164 
6165 	ice_vsi_cfg_msix(vsi);
6166 
6167 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6168 	 * Tx queue group list was configured and the context bits were
6169 	 * programmed using ice_vsi_cfg_txqs
6170 	 */
6171 	err = ice_vsi_start_all_rx_rings(vsi);
6172 	if (err)
6173 		return err;
6174 
6175 	clear_bit(ICE_VSI_DOWN, vsi->state);
6176 	ice_napi_enable_all(vsi);
6177 	ice_vsi_ena_irq(vsi);
6178 
6179 	if (vsi->port_info &&
6180 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6181 	    vsi->netdev) {
6182 		ice_print_link_msg(vsi, true);
6183 		netif_tx_start_all_queues(vsi->netdev);
6184 		netif_carrier_on(vsi->netdev);
6185 		if (!ice_is_e810(&pf->hw))
6186 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
6187 	}
6188 
6189 	/* clear this now, and the first stats read will be used as baseline */
6190 	vsi->stat_offsets_loaded = false;
6191 
6192 	ice_service_task_schedule(pf);
6193 
6194 	return 0;
6195 }
6196 
6197 /**
6198  * ice_up - Bring the connection back up after being down
6199  * @vsi: VSI being configured
6200  */
6201 int ice_up(struct ice_vsi *vsi)
6202 {
6203 	int err;
6204 
6205 	err = ice_vsi_cfg(vsi);
6206 	if (!err)
6207 		err = ice_up_complete(vsi);
6208 
6209 	return err;
6210 }
6211 
6212 /**
6213  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6214  * @syncp: pointer to u64_stats_sync
6215  * @stats: stats that pkts and bytes count will be taken from
6216  * @pkts: packets stats counter
6217  * @bytes: bytes stats counter
6218  *
6219  * This function fetches stats from the ring considering the atomic operations
6220  * that needs to be performed to read u64 values in 32 bit machine.
6221  */
6222 void
6223 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6224 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6225 {
6226 	unsigned int start;
6227 
6228 	do {
6229 		start = u64_stats_fetch_begin_irq(syncp);
6230 		*pkts = stats.pkts;
6231 		*bytes = stats.bytes;
6232 	} while (u64_stats_fetch_retry_irq(syncp, start));
6233 }
6234 
6235 /**
6236  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6237  * @vsi: the VSI to be updated
6238  * @vsi_stats: the stats struct to be updated
6239  * @rings: rings to work on
6240  * @count: number of rings
6241  */
6242 static void
6243 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6244 			     struct rtnl_link_stats64 *vsi_stats,
6245 			     struct ice_tx_ring **rings, u16 count)
6246 {
6247 	u16 i;
6248 
6249 	for (i = 0; i < count; i++) {
6250 		struct ice_tx_ring *ring;
6251 		u64 pkts = 0, bytes = 0;
6252 
6253 		ring = READ_ONCE(rings[i]);
6254 		if (!ring)
6255 			continue;
6256 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6257 		vsi_stats->tx_packets += pkts;
6258 		vsi_stats->tx_bytes += bytes;
6259 		vsi->tx_restart += ring->tx_stats.restart_q;
6260 		vsi->tx_busy += ring->tx_stats.tx_busy;
6261 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
6262 	}
6263 }
6264 
6265 /**
6266  * ice_update_vsi_ring_stats - Update VSI stats counters
6267  * @vsi: the VSI to be updated
6268  */
6269 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6270 {
6271 	struct rtnl_link_stats64 *vsi_stats;
6272 	u64 pkts, bytes;
6273 	int i;
6274 
6275 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6276 	if (!vsi_stats)
6277 		return;
6278 
6279 	/* reset non-netdev (extended) stats */
6280 	vsi->tx_restart = 0;
6281 	vsi->tx_busy = 0;
6282 	vsi->tx_linearize = 0;
6283 	vsi->rx_buf_failed = 0;
6284 	vsi->rx_page_failed = 0;
6285 
6286 	rcu_read_lock();
6287 
6288 	/* update Tx rings counters */
6289 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6290 				     vsi->num_txq);
6291 
6292 	/* update Rx rings counters */
6293 	ice_for_each_rxq(vsi, i) {
6294 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6295 
6296 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6297 		vsi_stats->rx_packets += pkts;
6298 		vsi_stats->rx_bytes += bytes;
6299 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6300 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6301 	}
6302 
6303 	/* update XDP Tx rings counters */
6304 	if (ice_is_xdp_ena_vsi(vsi))
6305 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6306 					     vsi->num_xdp_txq);
6307 
6308 	rcu_read_unlock();
6309 
6310 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6311 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6312 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6313 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6314 
6315 	kfree(vsi_stats);
6316 }
6317 
6318 /**
6319  * ice_update_vsi_stats - Update VSI stats counters
6320  * @vsi: the VSI to be updated
6321  */
6322 void ice_update_vsi_stats(struct ice_vsi *vsi)
6323 {
6324 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6325 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6326 	struct ice_pf *pf = vsi->back;
6327 
6328 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6329 	    test_bit(ICE_CFG_BUSY, pf->state))
6330 		return;
6331 
6332 	/* get stats as recorded by Tx/Rx rings */
6333 	ice_update_vsi_ring_stats(vsi);
6334 
6335 	/* get VSI stats as recorded by the hardware */
6336 	ice_update_eth_stats(vsi);
6337 
6338 	cur_ns->tx_errors = cur_es->tx_errors;
6339 	cur_ns->rx_dropped = cur_es->rx_discards;
6340 	cur_ns->tx_dropped = cur_es->tx_discards;
6341 	cur_ns->multicast = cur_es->rx_multicast;
6342 
6343 	/* update some more netdev stats if this is main VSI */
6344 	if (vsi->type == ICE_VSI_PF) {
6345 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6346 		cur_ns->rx_errors = pf->stats.crc_errors +
6347 				    pf->stats.illegal_bytes +
6348 				    pf->stats.rx_len_errors +
6349 				    pf->stats.rx_undersize +
6350 				    pf->hw_csum_rx_error +
6351 				    pf->stats.rx_jabber +
6352 				    pf->stats.rx_fragments +
6353 				    pf->stats.rx_oversize;
6354 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6355 		/* record drops from the port level */
6356 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6357 	}
6358 }
6359 
6360 /**
6361  * ice_update_pf_stats - Update PF port stats counters
6362  * @pf: PF whose stats needs to be updated
6363  */
6364 void ice_update_pf_stats(struct ice_pf *pf)
6365 {
6366 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6367 	struct ice_hw *hw = &pf->hw;
6368 	u16 fd_ctr_base;
6369 	u8 port;
6370 
6371 	port = hw->port_info->lport;
6372 	prev_ps = &pf->stats_prev;
6373 	cur_ps = &pf->stats;
6374 
6375 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6376 			  &prev_ps->eth.rx_bytes,
6377 			  &cur_ps->eth.rx_bytes);
6378 
6379 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6380 			  &prev_ps->eth.rx_unicast,
6381 			  &cur_ps->eth.rx_unicast);
6382 
6383 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6384 			  &prev_ps->eth.rx_multicast,
6385 			  &cur_ps->eth.rx_multicast);
6386 
6387 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6388 			  &prev_ps->eth.rx_broadcast,
6389 			  &cur_ps->eth.rx_broadcast);
6390 
6391 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6392 			  &prev_ps->eth.rx_discards,
6393 			  &cur_ps->eth.rx_discards);
6394 
6395 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6396 			  &prev_ps->eth.tx_bytes,
6397 			  &cur_ps->eth.tx_bytes);
6398 
6399 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6400 			  &prev_ps->eth.tx_unicast,
6401 			  &cur_ps->eth.tx_unicast);
6402 
6403 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6404 			  &prev_ps->eth.tx_multicast,
6405 			  &cur_ps->eth.tx_multicast);
6406 
6407 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6408 			  &prev_ps->eth.tx_broadcast,
6409 			  &cur_ps->eth.tx_broadcast);
6410 
6411 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6412 			  &prev_ps->tx_dropped_link_down,
6413 			  &cur_ps->tx_dropped_link_down);
6414 
6415 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6416 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6417 
6418 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6419 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6420 
6421 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6422 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6423 
6424 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6425 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6426 
6427 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6428 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6429 
6430 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6431 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6432 
6433 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6434 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6435 
6436 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6437 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6438 
6439 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6440 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6441 
6442 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6443 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6444 
6445 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6446 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6447 
6448 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6449 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6450 
6451 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6452 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6453 
6454 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6455 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6456 
6457 	fd_ctr_base = hw->fd_ctr_base;
6458 
6459 	ice_stat_update40(hw,
6460 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6461 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6462 			  &cur_ps->fd_sb_match);
6463 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6464 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6465 
6466 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6467 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6468 
6469 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6470 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6471 
6472 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6473 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6474 
6475 	ice_update_dcb_stats(pf);
6476 
6477 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6478 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6479 
6480 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6481 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6482 
6483 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6484 			  &prev_ps->mac_local_faults,
6485 			  &cur_ps->mac_local_faults);
6486 
6487 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6488 			  &prev_ps->mac_remote_faults,
6489 			  &cur_ps->mac_remote_faults);
6490 
6491 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6492 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6493 
6494 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6495 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6496 
6497 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6498 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6499 
6500 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6501 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6502 
6503 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6504 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6505 
6506 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6507 
6508 	pf->stat_prev_loaded = true;
6509 }
6510 
6511 /**
6512  * ice_get_stats64 - get statistics for network device structure
6513  * @netdev: network interface device structure
6514  * @stats: main device statistics structure
6515  */
6516 static
6517 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6518 {
6519 	struct ice_netdev_priv *np = netdev_priv(netdev);
6520 	struct rtnl_link_stats64 *vsi_stats;
6521 	struct ice_vsi *vsi = np->vsi;
6522 
6523 	vsi_stats = &vsi->net_stats;
6524 
6525 	if (!vsi->num_txq || !vsi->num_rxq)
6526 		return;
6527 
6528 	/* netdev packet/byte stats come from ring counter. These are obtained
6529 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6530 	 * But, only call the update routine and read the registers if VSI is
6531 	 * not down.
6532 	 */
6533 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6534 		ice_update_vsi_ring_stats(vsi);
6535 	stats->tx_packets = vsi_stats->tx_packets;
6536 	stats->tx_bytes = vsi_stats->tx_bytes;
6537 	stats->rx_packets = vsi_stats->rx_packets;
6538 	stats->rx_bytes = vsi_stats->rx_bytes;
6539 
6540 	/* The rest of the stats can be read from the hardware but instead we
6541 	 * just return values that the watchdog task has already obtained from
6542 	 * the hardware.
6543 	 */
6544 	stats->multicast = vsi_stats->multicast;
6545 	stats->tx_errors = vsi_stats->tx_errors;
6546 	stats->tx_dropped = vsi_stats->tx_dropped;
6547 	stats->rx_errors = vsi_stats->rx_errors;
6548 	stats->rx_dropped = vsi_stats->rx_dropped;
6549 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6550 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6551 }
6552 
6553 /**
6554  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6555  * @vsi: VSI having NAPI disabled
6556  */
6557 static void ice_napi_disable_all(struct ice_vsi *vsi)
6558 {
6559 	int q_idx;
6560 
6561 	if (!vsi->netdev)
6562 		return;
6563 
6564 	ice_for_each_q_vector(vsi, q_idx) {
6565 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6566 
6567 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6568 			napi_disable(&q_vector->napi);
6569 
6570 		cancel_work_sync(&q_vector->tx.dim.work);
6571 		cancel_work_sync(&q_vector->rx.dim.work);
6572 	}
6573 }
6574 
6575 /**
6576  * ice_down - Shutdown the connection
6577  * @vsi: The VSI being stopped
6578  *
6579  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6580  */
6581 int ice_down(struct ice_vsi *vsi)
6582 {
6583 	int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6584 
6585 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6586 
6587 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6588 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6589 		if (!ice_is_e810(&vsi->back->hw))
6590 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6591 		netif_carrier_off(vsi->netdev);
6592 		netif_tx_disable(vsi->netdev);
6593 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6594 		ice_eswitch_stop_all_tx_queues(vsi->back);
6595 	}
6596 
6597 	ice_vsi_dis_irq(vsi);
6598 
6599 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6600 	if (tx_err)
6601 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6602 			   vsi->vsi_num, tx_err);
6603 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6604 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6605 		if (tx_err)
6606 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6607 				   vsi->vsi_num, tx_err);
6608 	}
6609 
6610 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6611 	if (rx_err)
6612 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6613 			   vsi->vsi_num, rx_err);
6614 
6615 	ice_napi_disable_all(vsi);
6616 
6617 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6618 		link_err = ice_force_phys_link_state(vsi, false);
6619 		if (link_err)
6620 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6621 				   vsi->vsi_num, link_err);
6622 	}
6623 
6624 	ice_for_each_txq(vsi, i)
6625 		ice_clean_tx_ring(vsi->tx_rings[i]);
6626 
6627 	ice_for_each_rxq(vsi, i)
6628 		ice_clean_rx_ring(vsi->rx_rings[i]);
6629 
6630 	if (tx_err || rx_err || link_err || vlan_err) {
6631 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6632 			   vsi->vsi_num, vsi->vsw->sw_id);
6633 		return -EIO;
6634 	}
6635 
6636 	return 0;
6637 }
6638 
6639 /**
6640  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6641  * @vsi: VSI having resources allocated
6642  *
6643  * Return 0 on success, negative on failure
6644  */
6645 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6646 {
6647 	int i, err = 0;
6648 
6649 	if (!vsi->num_txq) {
6650 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6651 			vsi->vsi_num);
6652 		return -EINVAL;
6653 	}
6654 
6655 	ice_for_each_txq(vsi, i) {
6656 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6657 
6658 		if (!ring)
6659 			return -EINVAL;
6660 
6661 		if (vsi->netdev)
6662 			ring->netdev = vsi->netdev;
6663 		err = ice_setup_tx_ring(ring);
6664 		if (err)
6665 			break;
6666 	}
6667 
6668 	return err;
6669 }
6670 
6671 /**
6672  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6673  * @vsi: VSI having resources allocated
6674  *
6675  * Return 0 on success, negative on failure
6676  */
6677 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6678 {
6679 	int i, err = 0;
6680 
6681 	if (!vsi->num_rxq) {
6682 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6683 			vsi->vsi_num);
6684 		return -EINVAL;
6685 	}
6686 
6687 	ice_for_each_rxq(vsi, i) {
6688 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6689 
6690 		if (!ring)
6691 			return -EINVAL;
6692 
6693 		if (vsi->netdev)
6694 			ring->netdev = vsi->netdev;
6695 		err = ice_setup_rx_ring(ring);
6696 		if (err)
6697 			break;
6698 	}
6699 
6700 	return err;
6701 }
6702 
6703 /**
6704  * ice_vsi_open_ctrl - open control VSI for use
6705  * @vsi: the VSI to open
6706  *
6707  * Initialization of the Control VSI
6708  *
6709  * Returns 0 on success, negative value on error
6710  */
6711 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6712 {
6713 	char int_name[ICE_INT_NAME_STR_LEN];
6714 	struct ice_pf *pf = vsi->back;
6715 	struct device *dev;
6716 	int err;
6717 
6718 	dev = ice_pf_to_dev(pf);
6719 	/* allocate descriptors */
6720 	err = ice_vsi_setup_tx_rings(vsi);
6721 	if (err)
6722 		goto err_setup_tx;
6723 
6724 	err = ice_vsi_setup_rx_rings(vsi);
6725 	if (err)
6726 		goto err_setup_rx;
6727 
6728 	err = ice_vsi_cfg(vsi);
6729 	if (err)
6730 		goto err_setup_rx;
6731 
6732 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6733 		 dev_driver_string(dev), dev_name(dev));
6734 	err = ice_vsi_req_irq_msix(vsi, int_name);
6735 	if (err)
6736 		goto err_setup_rx;
6737 
6738 	ice_vsi_cfg_msix(vsi);
6739 
6740 	err = ice_vsi_start_all_rx_rings(vsi);
6741 	if (err)
6742 		goto err_up_complete;
6743 
6744 	clear_bit(ICE_VSI_DOWN, vsi->state);
6745 	ice_vsi_ena_irq(vsi);
6746 
6747 	return 0;
6748 
6749 err_up_complete:
6750 	ice_down(vsi);
6751 err_setup_rx:
6752 	ice_vsi_free_rx_rings(vsi);
6753 err_setup_tx:
6754 	ice_vsi_free_tx_rings(vsi);
6755 
6756 	return err;
6757 }
6758 
6759 /**
6760  * ice_vsi_open - Called when a network interface is made active
6761  * @vsi: the VSI to open
6762  *
6763  * Initialization of the VSI
6764  *
6765  * Returns 0 on success, negative value on error
6766  */
6767 int ice_vsi_open(struct ice_vsi *vsi)
6768 {
6769 	char int_name[ICE_INT_NAME_STR_LEN];
6770 	struct ice_pf *pf = vsi->back;
6771 	int err;
6772 
6773 	/* allocate descriptors */
6774 	err = ice_vsi_setup_tx_rings(vsi);
6775 	if (err)
6776 		goto err_setup_tx;
6777 
6778 	err = ice_vsi_setup_rx_rings(vsi);
6779 	if (err)
6780 		goto err_setup_rx;
6781 
6782 	err = ice_vsi_cfg(vsi);
6783 	if (err)
6784 		goto err_setup_rx;
6785 
6786 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6787 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6788 	err = ice_vsi_req_irq_msix(vsi, int_name);
6789 	if (err)
6790 		goto err_setup_rx;
6791 
6792 	if (vsi->type == ICE_VSI_PF) {
6793 		/* Notify the stack of the actual queue counts. */
6794 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6795 		if (err)
6796 			goto err_set_qs;
6797 
6798 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6799 		if (err)
6800 			goto err_set_qs;
6801 	}
6802 
6803 	err = ice_up_complete(vsi);
6804 	if (err)
6805 		goto err_up_complete;
6806 
6807 	return 0;
6808 
6809 err_up_complete:
6810 	ice_down(vsi);
6811 err_set_qs:
6812 	ice_vsi_free_irq(vsi);
6813 err_setup_rx:
6814 	ice_vsi_free_rx_rings(vsi);
6815 err_setup_tx:
6816 	ice_vsi_free_tx_rings(vsi);
6817 
6818 	return err;
6819 }
6820 
6821 /**
6822  * ice_vsi_release_all - Delete all VSIs
6823  * @pf: PF from which all VSIs are being removed
6824  */
6825 static void ice_vsi_release_all(struct ice_pf *pf)
6826 {
6827 	int err, i;
6828 
6829 	if (!pf->vsi)
6830 		return;
6831 
6832 	ice_for_each_vsi(pf, i) {
6833 		if (!pf->vsi[i])
6834 			continue;
6835 
6836 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6837 			continue;
6838 
6839 		err = ice_vsi_release(pf->vsi[i]);
6840 		if (err)
6841 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6842 				i, err, pf->vsi[i]->vsi_num);
6843 	}
6844 }
6845 
6846 /**
6847  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6848  * @pf: pointer to the PF instance
6849  * @type: VSI type to rebuild
6850  *
6851  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6852  */
6853 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6854 {
6855 	struct device *dev = ice_pf_to_dev(pf);
6856 	int i, err;
6857 
6858 	ice_for_each_vsi(pf, i) {
6859 		struct ice_vsi *vsi = pf->vsi[i];
6860 
6861 		if (!vsi || vsi->type != type)
6862 			continue;
6863 
6864 		/* rebuild the VSI */
6865 		err = ice_vsi_rebuild(vsi, true);
6866 		if (err) {
6867 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6868 				err, vsi->idx, ice_vsi_type_str(type));
6869 			return err;
6870 		}
6871 
6872 		/* replay filters for the VSI */
6873 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6874 		if (err) {
6875 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6876 				err, vsi->idx, ice_vsi_type_str(type));
6877 			return err;
6878 		}
6879 
6880 		/* Re-map HW VSI number, using VSI handle that has been
6881 		 * previously validated in ice_replay_vsi() call above
6882 		 */
6883 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6884 
6885 		/* enable the VSI */
6886 		err = ice_ena_vsi(vsi, false);
6887 		if (err) {
6888 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6889 				err, vsi->idx, ice_vsi_type_str(type));
6890 			return err;
6891 		}
6892 
6893 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6894 			 ice_vsi_type_str(type));
6895 	}
6896 
6897 	return 0;
6898 }
6899 
6900 /**
6901  * ice_update_pf_netdev_link - Update PF netdev link status
6902  * @pf: pointer to the PF instance
6903  */
6904 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6905 {
6906 	bool link_up;
6907 	int i;
6908 
6909 	ice_for_each_vsi(pf, i) {
6910 		struct ice_vsi *vsi = pf->vsi[i];
6911 
6912 		if (!vsi || vsi->type != ICE_VSI_PF)
6913 			return;
6914 
6915 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6916 		if (link_up) {
6917 			netif_carrier_on(pf->vsi[i]->netdev);
6918 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6919 		} else {
6920 			netif_carrier_off(pf->vsi[i]->netdev);
6921 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6922 		}
6923 	}
6924 }
6925 
6926 /**
6927  * ice_rebuild - rebuild after reset
6928  * @pf: PF to rebuild
6929  * @reset_type: type of reset
6930  *
6931  * Do not rebuild VF VSI in this flow because that is already handled via
6932  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6933  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6934  * to reset/rebuild all the VF VSI twice.
6935  */
6936 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6937 {
6938 	struct device *dev = ice_pf_to_dev(pf);
6939 	struct ice_hw *hw = &pf->hw;
6940 	bool dvm;
6941 	int err;
6942 
6943 	if (test_bit(ICE_DOWN, pf->state))
6944 		goto clear_recovery;
6945 
6946 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6947 
6948 #define ICE_EMP_RESET_SLEEP_MS 5000
6949 	if (reset_type == ICE_RESET_EMPR) {
6950 		/* If an EMP reset has occurred, any previously pending flash
6951 		 * update will have completed. We no longer know whether or
6952 		 * not the NVM update EMP reset is restricted.
6953 		 */
6954 		pf->fw_emp_reset_disabled = false;
6955 
6956 		msleep(ICE_EMP_RESET_SLEEP_MS);
6957 	}
6958 
6959 	err = ice_init_all_ctrlq(hw);
6960 	if (err) {
6961 		dev_err(dev, "control queues init failed %d\n", err);
6962 		goto err_init_ctrlq;
6963 	}
6964 
6965 	/* if DDP was previously loaded successfully */
6966 	if (!ice_is_safe_mode(pf)) {
6967 		/* reload the SW DB of filter tables */
6968 		if (reset_type == ICE_RESET_PFR)
6969 			ice_fill_blk_tbls(hw);
6970 		else
6971 			/* Reload DDP Package after CORER/GLOBR reset */
6972 			ice_load_pkg(NULL, pf);
6973 	}
6974 
6975 	err = ice_clear_pf_cfg(hw);
6976 	if (err) {
6977 		dev_err(dev, "clear PF configuration failed %d\n", err);
6978 		goto err_init_ctrlq;
6979 	}
6980 
6981 	if (pf->first_sw->dflt_vsi_ena)
6982 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6983 	/* clear the default VSI configuration if it exists */
6984 	pf->first_sw->dflt_vsi = NULL;
6985 	pf->first_sw->dflt_vsi_ena = false;
6986 
6987 	ice_clear_pxe_mode(hw);
6988 
6989 	err = ice_init_nvm(hw);
6990 	if (err) {
6991 		dev_err(dev, "ice_init_nvm failed %d\n", err);
6992 		goto err_init_ctrlq;
6993 	}
6994 
6995 	err = ice_get_caps(hw);
6996 	if (err) {
6997 		dev_err(dev, "ice_get_caps failed %d\n", err);
6998 		goto err_init_ctrlq;
6999 	}
7000 
7001 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7002 	if (err) {
7003 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7004 		goto err_init_ctrlq;
7005 	}
7006 
7007 	dvm = ice_is_dvm_ena(hw);
7008 
7009 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7010 	if (err)
7011 		goto err_init_ctrlq;
7012 
7013 	err = ice_sched_init_port(hw->port_info);
7014 	if (err)
7015 		goto err_sched_init_port;
7016 
7017 	/* start misc vector */
7018 	err = ice_req_irq_msix_misc(pf);
7019 	if (err) {
7020 		dev_err(dev, "misc vector setup failed: %d\n", err);
7021 		goto err_sched_init_port;
7022 	}
7023 
7024 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7025 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7026 		if (!rd32(hw, PFQF_FD_SIZE)) {
7027 			u16 unused, guar, b_effort;
7028 
7029 			guar = hw->func_caps.fd_fltr_guar;
7030 			b_effort = hw->func_caps.fd_fltr_best_effort;
7031 
7032 			/* force guaranteed filter pool for PF */
7033 			ice_alloc_fd_guar_item(hw, &unused, guar);
7034 			/* force shared filter pool for PF */
7035 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7036 		}
7037 	}
7038 
7039 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7040 		ice_dcb_rebuild(pf);
7041 
7042 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7043 	 * the VSI rebuild. If not, this causes the PTP link status events to
7044 	 * fail.
7045 	 */
7046 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7047 		ice_ptp_reset(pf);
7048 
7049 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7050 		ice_gnss_init(pf);
7051 
7052 	/* rebuild PF VSI */
7053 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7054 	if (err) {
7055 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7056 		goto err_vsi_rebuild;
7057 	}
7058 
7059 	/* configure PTP timestamping after VSI rebuild */
7060 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7061 		ice_ptp_cfg_timestamp(pf, false);
7062 
7063 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7064 	if (err) {
7065 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7066 		goto err_vsi_rebuild;
7067 	}
7068 
7069 	if (reset_type == ICE_RESET_PFR) {
7070 		err = ice_rebuild_channels(pf);
7071 		if (err) {
7072 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7073 				err);
7074 			goto err_vsi_rebuild;
7075 		}
7076 	}
7077 
7078 	/* If Flow Director is active */
7079 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7080 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7081 		if (err) {
7082 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7083 			goto err_vsi_rebuild;
7084 		}
7085 
7086 		/* replay HW Flow Director recipes */
7087 		if (hw->fdir_prof)
7088 			ice_fdir_replay_flows(hw);
7089 
7090 		/* replay Flow Director filters */
7091 		ice_fdir_replay_fltrs(pf);
7092 
7093 		ice_rebuild_arfs(pf);
7094 	}
7095 
7096 	ice_update_pf_netdev_link(pf);
7097 
7098 	/* tell the firmware we are up */
7099 	err = ice_send_version(pf);
7100 	if (err) {
7101 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7102 			err);
7103 		goto err_vsi_rebuild;
7104 	}
7105 
7106 	ice_replay_post(hw);
7107 
7108 	/* if we get here, reset flow is successful */
7109 	clear_bit(ICE_RESET_FAILED, pf->state);
7110 
7111 	ice_plug_aux_dev(pf);
7112 	return;
7113 
7114 err_vsi_rebuild:
7115 err_sched_init_port:
7116 	ice_sched_cleanup_all(hw);
7117 err_init_ctrlq:
7118 	ice_shutdown_all_ctrlq(hw);
7119 	set_bit(ICE_RESET_FAILED, pf->state);
7120 clear_recovery:
7121 	/* set this bit in PF state to control service task scheduling */
7122 	set_bit(ICE_NEEDS_RESTART, pf->state);
7123 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7124 }
7125 
7126 /**
7127  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7128  * @vsi: Pointer to VSI structure
7129  */
7130 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7131 {
7132 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7133 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7134 	else
7135 		return ICE_RXBUF_3072;
7136 }
7137 
7138 /**
7139  * ice_change_mtu - NDO callback to change the MTU
7140  * @netdev: network interface device structure
7141  * @new_mtu: new value for maximum frame size
7142  *
7143  * Returns 0 on success, negative on failure
7144  */
7145 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7146 {
7147 	struct ice_netdev_priv *np = netdev_priv(netdev);
7148 	struct ice_vsi *vsi = np->vsi;
7149 	struct ice_pf *pf = vsi->back;
7150 	u8 count = 0;
7151 	int err = 0;
7152 
7153 	if (new_mtu == (int)netdev->mtu) {
7154 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7155 		return 0;
7156 	}
7157 
7158 	if (ice_is_xdp_ena_vsi(vsi)) {
7159 		int frame_size = ice_max_xdp_frame_size(vsi);
7160 
7161 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7162 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7163 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7164 			return -EINVAL;
7165 		}
7166 	}
7167 
7168 	/* if a reset is in progress, wait for some time for it to complete */
7169 	do {
7170 		if (ice_is_reset_in_progress(pf->state)) {
7171 			count++;
7172 			usleep_range(1000, 2000);
7173 		} else {
7174 			break;
7175 		}
7176 
7177 	} while (count < 100);
7178 
7179 	if (count == 100) {
7180 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7181 		return -EBUSY;
7182 	}
7183 
7184 	netdev->mtu = (unsigned int)new_mtu;
7185 
7186 	/* if VSI is up, bring it down and then back up */
7187 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7188 		err = ice_down(vsi);
7189 		if (err) {
7190 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7191 			return err;
7192 		}
7193 
7194 		err = ice_up(vsi);
7195 		if (err) {
7196 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7197 			return err;
7198 		}
7199 	}
7200 
7201 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7202 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7203 
7204 	return err;
7205 }
7206 
7207 /**
7208  * ice_eth_ioctl - Access the hwtstamp interface
7209  * @netdev: network interface device structure
7210  * @ifr: interface request data
7211  * @cmd: ioctl command
7212  */
7213 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7214 {
7215 	struct ice_netdev_priv *np = netdev_priv(netdev);
7216 	struct ice_pf *pf = np->vsi->back;
7217 
7218 	switch (cmd) {
7219 	case SIOCGHWTSTAMP:
7220 		return ice_ptp_get_ts_config(pf, ifr);
7221 	case SIOCSHWTSTAMP:
7222 		return ice_ptp_set_ts_config(pf, ifr);
7223 	default:
7224 		return -EOPNOTSUPP;
7225 	}
7226 }
7227 
7228 /**
7229  * ice_aq_str - convert AQ err code to a string
7230  * @aq_err: the AQ error code to convert
7231  */
7232 const char *ice_aq_str(enum ice_aq_err aq_err)
7233 {
7234 	switch (aq_err) {
7235 	case ICE_AQ_RC_OK:
7236 		return "OK";
7237 	case ICE_AQ_RC_EPERM:
7238 		return "ICE_AQ_RC_EPERM";
7239 	case ICE_AQ_RC_ENOENT:
7240 		return "ICE_AQ_RC_ENOENT";
7241 	case ICE_AQ_RC_ENOMEM:
7242 		return "ICE_AQ_RC_ENOMEM";
7243 	case ICE_AQ_RC_EBUSY:
7244 		return "ICE_AQ_RC_EBUSY";
7245 	case ICE_AQ_RC_EEXIST:
7246 		return "ICE_AQ_RC_EEXIST";
7247 	case ICE_AQ_RC_EINVAL:
7248 		return "ICE_AQ_RC_EINVAL";
7249 	case ICE_AQ_RC_ENOSPC:
7250 		return "ICE_AQ_RC_ENOSPC";
7251 	case ICE_AQ_RC_ENOSYS:
7252 		return "ICE_AQ_RC_ENOSYS";
7253 	case ICE_AQ_RC_EMODE:
7254 		return "ICE_AQ_RC_EMODE";
7255 	case ICE_AQ_RC_ENOSEC:
7256 		return "ICE_AQ_RC_ENOSEC";
7257 	case ICE_AQ_RC_EBADSIG:
7258 		return "ICE_AQ_RC_EBADSIG";
7259 	case ICE_AQ_RC_ESVN:
7260 		return "ICE_AQ_RC_ESVN";
7261 	case ICE_AQ_RC_EBADMAN:
7262 		return "ICE_AQ_RC_EBADMAN";
7263 	case ICE_AQ_RC_EBADBUF:
7264 		return "ICE_AQ_RC_EBADBUF";
7265 	}
7266 
7267 	return "ICE_AQ_RC_UNKNOWN";
7268 }
7269 
7270 /**
7271  * ice_set_rss_lut - Set RSS LUT
7272  * @vsi: Pointer to VSI structure
7273  * @lut: Lookup table
7274  * @lut_size: Lookup table size
7275  *
7276  * Returns 0 on success, negative on failure
7277  */
7278 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7279 {
7280 	struct ice_aq_get_set_rss_lut_params params = {};
7281 	struct ice_hw *hw = &vsi->back->hw;
7282 	int status;
7283 
7284 	if (!lut)
7285 		return -EINVAL;
7286 
7287 	params.vsi_handle = vsi->idx;
7288 	params.lut_size = lut_size;
7289 	params.lut_type = vsi->rss_lut_type;
7290 	params.lut = lut;
7291 
7292 	status = ice_aq_set_rss_lut(hw, &params);
7293 	if (status)
7294 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7295 			status, ice_aq_str(hw->adminq.sq_last_status));
7296 
7297 	return status;
7298 }
7299 
7300 /**
7301  * ice_set_rss_key - Set RSS key
7302  * @vsi: Pointer to the VSI structure
7303  * @seed: RSS hash seed
7304  *
7305  * Returns 0 on success, negative on failure
7306  */
7307 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7308 {
7309 	struct ice_hw *hw = &vsi->back->hw;
7310 	int status;
7311 
7312 	if (!seed)
7313 		return -EINVAL;
7314 
7315 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7316 	if (status)
7317 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7318 			status, ice_aq_str(hw->adminq.sq_last_status));
7319 
7320 	return status;
7321 }
7322 
7323 /**
7324  * ice_get_rss_lut - Get RSS LUT
7325  * @vsi: Pointer to VSI structure
7326  * @lut: Buffer to store the lookup table entries
7327  * @lut_size: Size of buffer to store the lookup table entries
7328  *
7329  * Returns 0 on success, negative on failure
7330  */
7331 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7332 {
7333 	struct ice_aq_get_set_rss_lut_params params = {};
7334 	struct ice_hw *hw = &vsi->back->hw;
7335 	int status;
7336 
7337 	if (!lut)
7338 		return -EINVAL;
7339 
7340 	params.vsi_handle = vsi->idx;
7341 	params.lut_size = lut_size;
7342 	params.lut_type = vsi->rss_lut_type;
7343 	params.lut = lut;
7344 
7345 	status = ice_aq_get_rss_lut(hw, &params);
7346 	if (status)
7347 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7348 			status, ice_aq_str(hw->adminq.sq_last_status));
7349 
7350 	return status;
7351 }
7352 
7353 /**
7354  * ice_get_rss_key - Get RSS key
7355  * @vsi: Pointer to VSI structure
7356  * @seed: Buffer to store the key in
7357  *
7358  * Returns 0 on success, negative on failure
7359  */
7360 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7361 {
7362 	struct ice_hw *hw = &vsi->back->hw;
7363 	int status;
7364 
7365 	if (!seed)
7366 		return -EINVAL;
7367 
7368 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7369 	if (status)
7370 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7371 			status, ice_aq_str(hw->adminq.sq_last_status));
7372 
7373 	return status;
7374 }
7375 
7376 /**
7377  * ice_bridge_getlink - Get the hardware bridge mode
7378  * @skb: skb buff
7379  * @pid: process ID
7380  * @seq: RTNL message seq
7381  * @dev: the netdev being configured
7382  * @filter_mask: filter mask passed in
7383  * @nlflags: netlink flags passed in
7384  *
7385  * Return the bridge mode (VEB/VEPA)
7386  */
7387 static int
7388 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7389 		   struct net_device *dev, u32 filter_mask, int nlflags)
7390 {
7391 	struct ice_netdev_priv *np = netdev_priv(dev);
7392 	struct ice_vsi *vsi = np->vsi;
7393 	struct ice_pf *pf = vsi->back;
7394 	u16 bmode;
7395 
7396 	bmode = pf->first_sw->bridge_mode;
7397 
7398 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7399 				       filter_mask, NULL);
7400 }
7401 
7402 /**
7403  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7404  * @vsi: Pointer to VSI structure
7405  * @bmode: Hardware bridge mode (VEB/VEPA)
7406  *
7407  * Returns 0 on success, negative on failure
7408  */
7409 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7410 {
7411 	struct ice_aqc_vsi_props *vsi_props;
7412 	struct ice_hw *hw = &vsi->back->hw;
7413 	struct ice_vsi_ctx *ctxt;
7414 	int ret;
7415 
7416 	vsi_props = &vsi->info;
7417 
7418 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7419 	if (!ctxt)
7420 		return -ENOMEM;
7421 
7422 	ctxt->info = vsi->info;
7423 
7424 	if (bmode == BRIDGE_MODE_VEB)
7425 		/* change from VEPA to VEB mode */
7426 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7427 	else
7428 		/* change from VEB to VEPA mode */
7429 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7430 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7431 
7432 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7433 	if (ret) {
7434 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7435 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7436 		goto out;
7437 	}
7438 	/* Update sw flags for book keeping */
7439 	vsi_props->sw_flags = ctxt->info.sw_flags;
7440 
7441 out:
7442 	kfree(ctxt);
7443 	return ret;
7444 }
7445 
7446 /**
7447  * ice_bridge_setlink - Set the hardware bridge mode
7448  * @dev: the netdev being configured
7449  * @nlh: RTNL message
7450  * @flags: bridge setlink flags
7451  * @extack: netlink extended ack
7452  *
7453  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7454  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7455  * not already set for all VSIs connected to this switch. And also update the
7456  * unicast switch filter rules for the corresponding switch of the netdev.
7457  */
7458 static int
7459 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7460 		   u16 __always_unused flags,
7461 		   struct netlink_ext_ack __always_unused *extack)
7462 {
7463 	struct ice_netdev_priv *np = netdev_priv(dev);
7464 	struct ice_pf *pf = np->vsi->back;
7465 	struct nlattr *attr, *br_spec;
7466 	struct ice_hw *hw = &pf->hw;
7467 	struct ice_sw *pf_sw;
7468 	int rem, v, err = 0;
7469 
7470 	pf_sw = pf->first_sw;
7471 	/* find the attribute in the netlink message */
7472 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7473 
7474 	nla_for_each_nested(attr, br_spec, rem) {
7475 		__u16 mode;
7476 
7477 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7478 			continue;
7479 		mode = nla_get_u16(attr);
7480 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7481 			return -EINVAL;
7482 		/* Continue  if bridge mode is not being flipped */
7483 		if (mode == pf_sw->bridge_mode)
7484 			continue;
7485 		/* Iterates through the PF VSI list and update the loopback
7486 		 * mode of the VSI
7487 		 */
7488 		ice_for_each_vsi(pf, v) {
7489 			if (!pf->vsi[v])
7490 				continue;
7491 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7492 			if (err)
7493 				return err;
7494 		}
7495 
7496 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7497 		/* Update the unicast switch filter rules for the corresponding
7498 		 * switch of the netdev
7499 		 */
7500 		err = ice_update_sw_rule_bridge_mode(hw);
7501 		if (err) {
7502 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7503 				   mode, err,
7504 				   ice_aq_str(hw->adminq.sq_last_status));
7505 			/* revert hw->evb_veb */
7506 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7507 			return err;
7508 		}
7509 
7510 		pf_sw->bridge_mode = mode;
7511 	}
7512 
7513 	return 0;
7514 }
7515 
7516 /**
7517  * ice_tx_timeout - Respond to a Tx Hang
7518  * @netdev: network interface device structure
7519  * @txqueue: Tx queue
7520  */
7521 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7522 {
7523 	struct ice_netdev_priv *np = netdev_priv(netdev);
7524 	struct ice_tx_ring *tx_ring = NULL;
7525 	struct ice_vsi *vsi = np->vsi;
7526 	struct ice_pf *pf = vsi->back;
7527 	u32 i;
7528 
7529 	pf->tx_timeout_count++;
7530 
7531 	/* Check if PFC is enabled for the TC to which the queue belongs
7532 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7533 	 * need to reset and rebuild
7534 	 */
7535 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7536 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7537 			 txqueue);
7538 		return;
7539 	}
7540 
7541 	/* now that we have an index, find the tx_ring struct */
7542 	ice_for_each_txq(vsi, i)
7543 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7544 			if (txqueue == vsi->tx_rings[i]->q_index) {
7545 				tx_ring = vsi->tx_rings[i];
7546 				break;
7547 			}
7548 
7549 	/* Reset recovery level if enough time has elapsed after last timeout.
7550 	 * Also ensure no new reset action happens before next timeout period.
7551 	 */
7552 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7553 		pf->tx_timeout_recovery_level = 1;
7554 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7555 				       netdev->watchdog_timeo)))
7556 		return;
7557 
7558 	if (tx_ring) {
7559 		struct ice_hw *hw = &pf->hw;
7560 		u32 head, val = 0;
7561 
7562 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7563 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7564 		/* Read interrupt register */
7565 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7566 
7567 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7568 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7569 			    head, tx_ring->next_to_use, val);
7570 	}
7571 
7572 	pf->tx_timeout_last_recovery = jiffies;
7573 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7574 		    pf->tx_timeout_recovery_level, txqueue);
7575 
7576 	switch (pf->tx_timeout_recovery_level) {
7577 	case 1:
7578 		set_bit(ICE_PFR_REQ, pf->state);
7579 		break;
7580 	case 2:
7581 		set_bit(ICE_CORER_REQ, pf->state);
7582 		break;
7583 	case 3:
7584 		set_bit(ICE_GLOBR_REQ, pf->state);
7585 		break;
7586 	default:
7587 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7588 		set_bit(ICE_DOWN, pf->state);
7589 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7590 		set_bit(ICE_SERVICE_DIS, pf->state);
7591 		break;
7592 	}
7593 
7594 	ice_service_task_schedule(pf);
7595 	pf->tx_timeout_recovery_level++;
7596 }
7597 
7598 /**
7599  * ice_setup_tc_cls_flower - flower classifier offloads
7600  * @np: net device to configure
7601  * @filter_dev: device on which filter is added
7602  * @cls_flower: offload data
7603  */
7604 static int
7605 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7606 			struct net_device *filter_dev,
7607 			struct flow_cls_offload *cls_flower)
7608 {
7609 	struct ice_vsi *vsi = np->vsi;
7610 
7611 	if (cls_flower->common.chain_index)
7612 		return -EOPNOTSUPP;
7613 
7614 	switch (cls_flower->command) {
7615 	case FLOW_CLS_REPLACE:
7616 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7617 	case FLOW_CLS_DESTROY:
7618 		return ice_del_cls_flower(vsi, cls_flower);
7619 	default:
7620 		return -EINVAL;
7621 	}
7622 }
7623 
7624 /**
7625  * ice_setup_tc_block_cb - callback handler registered for TC block
7626  * @type: TC SETUP type
7627  * @type_data: TC flower offload data that contains user input
7628  * @cb_priv: netdev private data
7629  */
7630 static int
7631 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7632 {
7633 	struct ice_netdev_priv *np = cb_priv;
7634 
7635 	switch (type) {
7636 	case TC_SETUP_CLSFLOWER:
7637 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7638 					       type_data);
7639 	default:
7640 		return -EOPNOTSUPP;
7641 	}
7642 }
7643 
7644 /**
7645  * ice_validate_mqprio_qopt - Validate TCF input parameters
7646  * @vsi: Pointer to VSI
7647  * @mqprio_qopt: input parameters for mqprio queue configuration
7648  *
7649  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7650  * needed), and make sure user doesn't specify qcount and BW rate limit
7651  * for TCs, which are more than "num_tc"
7652  */
7653 static int
7654 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7655 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7656 {
7657 	u64 sum_max_rate = 0, sum_min_rate = 0;
7658 	int non_power_of_2_qcount = 0;
7659 	struct ice_pf *pf = vsi->back;
7660 	int max_rss_q_cnt = 0;
7661 	struct device *dev;
7662 	int i, speed;
7663 	u8 num_tc;
7664 
7665 	if (vsi->type != ICE_VSI_PF)
7666 		return -EINVAL;
7667 
7668 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7669 	    mqprio_qopt->qopt.num_tc < 1 ||
7670 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7671 		return -EINVAL;
7672 
7673 	dev = ice_pf_to_dev(pf);
7674 	vsi->ch_rss_size = 0;
7675 	num_tc = mqprio_qopt->qopt.num_tc;
7676 
7677 	for (i = 0; num_tc; i++) {
7678 		int qcount = mqprio_qopt->qopt.count[i];
7679 		u64 max_rate, min_rate, rem;
7680 
7681 		if (!qcount)
7682 			return -EINVAL;
7683 
7684 		if (is_power_of_2(qcount)) {
7685 			if (non_power_of_2_qcount &&
7686 			    qcount > non_power_of_2_qcount) {
7687 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7688 					qcount, non_power_of_2_qcount);
7689 				return -EINVAL;
7690 			}
7691 			if (qcount > max_rss_q_cnt)
7692 				max_rss_q_cnt = qcount;
7693 		} else {
7694 			if (non_power_of_2_qcount &&
7695 			    qcount != non_power_of_2_qcount) {
7696 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7697 					qcount, non_power_of_2_qcount);
7698 				return -EINVAL;
7699 			}
7700 			if (qcount < max_rss_q_cnt) {
7701 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7702 					qcount, max_rss_q_cnt);
7703 				return -EINVAL;
7704 			}
7705 			max_rss_q_cnt = qcount;
7706 			non_power_of_2_qcount = qcount;
7707 		}
7708 
7709 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7710 		 * converts the bandwidth rate limit into Bytes/s when
7711 		 * passing it down to the driver. So convert input bandwidth
7712 		 * from Bytes/s to Kbps
7713 		 */
7714 		max_rate = mqprio_qopt->max_rate[i];
7715 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7716 		sum_max_rate += max_rate;
7717 
7718 		/* min_rate is minimum guaranteed rate and it can't be zero */
7719 		min_rate = mqprio_qopt->min_rate[i];
7720 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7721 		sum_min_rate += min_rate;
7722 
7723 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7724 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7725 				min_rate, ICE_MIN_BW_LIMIT);
7726 			return -EINVAL;
7727 		}
7728 
7729 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7730 		if (rem) {
7731 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7732 				i, ICE_MIN_BW_LIMIT);
7733 			return -EINVAL;
7734 		}
7735 
7736 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7737 		if (rem) {
7738 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7739 				i, ICE_MIN_BW_LIMIT);
7740 			return -EINVAL;
7741 		}
7742 
7743 		/* min_rate can't be more than max_rate, except when max_rate
7744 		 * is zero (implies max_rate sought is max line rate). In such
7745 		 * a case min_rate can be more than max.
7746 		 */
7747 		if (max_rate && min_rate > max_rate) {
7748 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7749 				min_rate, max_rate);
7750 			return -EINVAL;
7751 		}
7752 
7753 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7754 			break;
7755 		if (mqprio_qopt->qopt.offset[i + 1] !=
7756 		    (mqprio_qopt->qopt.offset[i] + qcount))
7757 			return -EINVAL;
7758 	}
7759 	if (vsi->num_rxq <
7760 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7761 		return -EINVAL;
7762 	if (vsi->num_txq <
7763 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7764 		return -EINVAL;
7765 
7766 	speed = ice_get_link_speed_kbps(vsi);
7767 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7768 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7769 			sum_max_rate, speed);
7770 		return -EINVAL;
7771 	}
7772 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7773 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7774 			sum_min_rate, speed);
7775 		return -EINVAL;
7776 	}
7777 
7778 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7779 	vsi->ch_rss_size = max_rss_q_cnt;
7780 
7781 	return 0;
7782 }
7783 
7784 /**
7785  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7786  * @pf: ptr to PF device
7787  * @vsi: ptr to VSI
7788  */
7789 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7790 {
7791 	struct device *dev = ice_pf_to_dev(pf);
7792 	bool added = false;
7793 	struct ice_hw *hw;
7794 	int flow;
7795 
7796 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7797 		return -EINVAL;
7798 
7799 	hw = &pf->hw;
7800 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7801 		struct ice_fd_hw_prof *prof;
7802 		int tun, status;
7803 		u64 entry_h;
7804 
7805 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7806 		      hw->fdir_prof[flow]->cnt))
7807 			continue;
7808 
7809 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7810 			enum ice_flow_priority prio;
7811 			u64 prof_id;
7812 
7813 			/* add this VSI to FDir profile for this flow */
7814 			prio = ICE_FLOW_PRIO_NORMAL;
7815 			prof = hw->fdir_prof[flow];
7816 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7817 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7818 						    prof->vsi_h[0], vsi->idx,
7819 						    prio, prof->fdir_seg[tun],
7820 						    &entry_h);
7821 			if (status) {
7822 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7823 					vsi->idx, flow);
7824 				continue;
7825 			}
7826 
7827 			prof->entry_h[prof->cnt][tun] = entry_h;
7828 		}
7829 
7830 		/* store VSI for filter replay and delete */
7831 		prof->vsi_h[prof->cnt] = vsi->idx;
7832 		prof->cnt++;
7833 
7834 		added = true;
7835 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7836 			flow);
7837 	}
7838 
7839 	if (!added)
7840 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7841 
7842 	return 0;
7843 }
7844 
7845 /**
7846  * ice_add_channel - add a channel by adding VSI
7847  * @pf: ptr to PF device
7848  * @sw_id: underlying HW switching element ID
7849  * @ch: ptr to channel structure
7850  *
7851  * Add a channel (VSI) using add_vsi and queue_map
7852  */
7853 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7854 {
7855 	struct device *dev = ice_pf_to_dev(pf);
7856 	struct ice_vsi *vsi;
7857 
7858 	if (ch->type != ICE_VSI_CHNL) {
7859 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7860 		return -EINVAL;
7861 	}
7862 
7863 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7864 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7865 		dev_err(dev, "create chnl VSI failure\n");
7866 		return -EINVAL;
7867 	}
7868 
7869 	ice_add_vsi_to_fdir(pf, vsi);
7870 
7871 	ch->sw_id = sw_id;
7872 	ch->vsi_num = vsi->vsi_num;
7873 	ch->info.mapping_flags = vsi->info.mapping_flags;
7874 	ch->ch_vsi = vsi;
7875 	/* set the back pointer of channel for newly created VSI */
7876 	vsi->ch = ch;
7877 
7878 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7879 	       sizeof(vsi->info.q_mapping));
7880 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7881 	       sizeof(vsi->info.tc_mapping));
7882 
7883 	return 0;
7884 }
7885 
7886 /**
7887  * ice_chnl_cfg_res
7888  * @vsi: the VSI being setup
7889  * @ch: ptr to channel structure
7890  *
7891  * Configure channel specific resources such as rings, vector.
7892  */
7893 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7894 {
7895 	int i;
7896 
7897 	for (i = 0; i < ch->num_txq; i++) {
7898 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7899 		struct ice_ring_container *rc;
7900 		struct ice_tx_ring *tx_ring;
7901 		struct ice_rx_ring *rx_ring;
7902 
7903 		tx_ring = vsi->tx_rings[ch->base_q + i];
7904 		rx_ring = vsi->rx_rings[ch->base_q + i];
7905 		if (!tx_ring || !rx_ring)
7906 			continue;
7907 
7908 		/* setup ring being channel enabled */
7909 		tx_ring->ch = ch;
7910 		rx_ring->ch = ch;
7911 
7912 		/* following code block sets up vector specific attributes */
7913 		tx_q_vector = tx_ring->q_vector;
7914 		rx_q_vector = rx_ring->q_vector;
7915 		if (!tx_q_vector && !rx_q_vector)
7916 			continue;
7917 
7918 		if (tx_q_vector) {
7919 			tx_q_vector->ch = ch;
7920 			/* setup Tx and Rx ITR setting if DIM is off */
7921 			rc = &tx_q_vector->tx;
7922 			if (!ITR_IS_DYNAMIC(rc))
7923 				ice_write_itr(rc, rc->itr_setting);
7924 		}
7925 		if (rx_q_vector) {
7926 			rx_q_vector->ch = ch;
7927 			/* setup Tx and Rx ITR setting if DIM is off */
7928 			rc = &rx_q_vector->rx;
7929 			if (!ITR_IS_DYNAMIC(rc))
7930 				ice_write_itr(rc, rc->itr_setting);
7931 		}
7932 	}
7933 
7934 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7935 	 * GLINT_ITR register would have written to perform in-context
7936 	 * update, hence perform flush
7937 	 */
7938 	if (ch->num_txq || ch->num_rxq)
7939 		ice_flush(&vsi->back->hw);
7940 }
7941 
7942 /**
7943  * ice_cfg_chnl_all_res - configure channel resources
7944  * @vsi: pte to main_vsi
7945  * @ch: ptr to channel structure
7946  *
7947  * This function configures channel specific resources such as flow-director
7948  * counter index, and other resources such as queues, vectors, ITR settings
7949  */
7950 static void
7951 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
7952 {
7953 	/* configure channel (aka ADQ) resources such as queues, vectors,
7954 	 * ITR settings for channel specific vectors and anything else
7955 	 */
7956 	ice_chnl_cfg_res(vsi, ch);
7957 }
7958 
7959 /**
7960  * ice_setup_hw_channel - setup new channel
7961  * @pf: ptr to PF device
7962  * @vsi: the VSI being setup
7963  * @ch: ptr to channel structure
7964  * @sw_id: underlying HW switching element ID
7965  * @type: type of channel to be created (VMDq2/VF)
7966  *
7967  * Setup new channel (VSI) based on specified type (VMDq2/VF)
7968  * and configures Tx rings accordingly
7969  */
7970 static int
7971 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
7972 		     struct ice_channel *ch, u16 sw_id, u8 type)
7973 {
7974 	struct device *dev = ice_pf_to_dev(pf);
7975 	int ret;
7976 
7977 	ch->base_q = vsi->next_base_q;
7978 	ch->type = type;
7979 
7980 	ret = ice_add_channel(pf, sw_id, ch);
7981 	if (ret) {
7982 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
7983 		return ret;
7984 	}
7985 
7986 	/* configure/setup ADQ specific resources */
7987 	ice_cfg_chnl_all_res(vsi, ch);
7988 
7989 	/* make sure to update the next_base_q so that subsequent channel's
7990 	 * (aka ADQ) VSI queue map is correct
7991 	 */
7992 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
7993 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
7994 		ch->num_rxq);
7995 
7996 	return 0;
7997 }
7998 
7999 /**
8000  * ice_setup_channel - setup new channel using uplink element
8001  * @pf: ptr to PF device
8002  * @vsi: the VSI being setup
8003  * @ch: ptr to channel structure
8004  *
8005  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8006  * and uplink switching element
8007  */
8008 static bool
8009 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8010 		  struct ice_channel *ch)
8011 {
8012 	struct device *dev = ice_pf_to_dev(pf);
8013 	u16 sw_id;
8014 	int ret;
8015 
8016 	if (vsi->type != ICE_VSI_PF) {
8017 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8018 		return false;
8019 	}
8020 
8021 	sw_id = pf->first_sw->sw_id;
8022 
8023 	/* create channel (VSI) */
8024 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8025 	if (ret) {
8026 		dev_err(dev, "failed to setup hw_channel\n");
8027 		return false;
8028 	}
8029 	dev_dbg(dev, "successfully created channel()\n");
8030 
8031 	return ch->ch_vsi ? true : false;
8032 }
8033 
8034 /**
8035  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8036  * @vsi: VSI to be configured
8037  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8038  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8039  */
8040 static int
8041 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8042 {
8043 	int err;
8044 
8045 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8046 	if (err)
8047 		return err;
8048 
8049 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8050 }
8051 
8052 /**
8053  * ice_create_q_channel - function to create channel
8054  * @vsi: VSI to be configured
8055  * @ch: ptr to channel (it contains channel specific params)
8056  *
8057  * This function creates channel (VSI) using num_queues specified by user,
8058  * reconfigs RSS if needed.
8059  */
8060 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8061 {
8062 	struct ice_pf *pf = vsi->back;
8063 	struct device *dev;
8064 
8065 	if (!ch)
8066 		return -EINVAL;
8067 
8068 	dev = ice_pf_to_dev(pf);
8069 	if (!ch->num_txq || !ch->num_rxq) {
8070 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8071 		return -EINVAL;
8072 	}
8073 
8074 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8075 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8076 			vsi->cnt_q_avail, ch->num_txq);
8077 		return -EINVAL;
8078 	}
8079 
8080 	if (!ice_setup_channel(pf, vsi, ch)) {
8081 		dev_info(dev, "Failed to setup channel\n");
8082 		return -EINVAL;
8083 	}
8084 	/* configure BW rate limit */
8085 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8086 		int ret;
8087 
8088 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8089 				       ch->min_tx_rate);
8090 		if (ret)
8091 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8092 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8093 		else
8094 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8095 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8096 	}
8097 
8098 	vsi->cnt_q_avail -= ch->num_txq;
8099 
8100 	return 0;
8101 }
8102 
8103 /**
8104  * ice_rem_all_chnl_fltrs - removes all channel filters
8105  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8106  *
8107  * Remove all advanced switch filters only if they are channel specific
8108  * tc-flower based filter
8109  */
8110 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8111 {
8112 	struct ice_tc_flower_fltr *fltr;
8113 	struct hlist_node *node;
8114 
8115 	/* to remove all channel filters, iterate an ordered list of filters */
8116 	hlist_for_each_entry_safe(fltr, node,
8117 				  &pf->tc_flower_fltr_list,
8118 				  tc_flower_node) {
8119 		struct ice_rule_query_data rule;
8120 		int status;
8121 
8122 		/* for now process only channel specific filters */
8123 		if (!ice_is_chnl_fltr(fltr))
8124 			continue;
8125 
8126 		rule.rid = fltr->rid;
8127 		rule.rule_id = fltr->rule_id;
8128 		rule.vsi_handle = fltr->dest_id;
8129 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8130 		if (status) {
8131 			if (status == -ENOENT)
8132 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8133 					rule.rule_id);
8134 			else
8135 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8136 					status);
8137 		} else if (fltr->dest_vsi) {
8138 			/* update advanced switch filter count */
8139 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8140 				u32 flags = fltr->flags;
8141 
8142 				fltr->dest_vsi->num_chnl_fltr--;
8143 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8144 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8145 					pf->num_dmac_chnl_fltrs--;
8146 			}
8147 		}
8148 
8149 		hlist_del(&fltr->tc_flower_node);
8150 		kfree(fltr);
8151 	}
8152 }
8153 
8154 /**
8155  * ice_remove_q_channels - Remove queue channels for the TCs
8156  * @vsi: VSI to be configured
8157  * @rem_fltr: delete advanced switch filter or not
8158  *
8159  * Remove queue channels for the TCs
8160  */
8161 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8162 {
8163 	struct ice_channel *ch, *ch_tmp;
8164 	struct ice_pf *pf = vsi->back;
8165 	int i;
8166 
8167 	/* remove all tc-flower based filter if they are channel filters only */
8168 	if (rem_fltr)
8169 		ice_rem_all_chnl_fltrs(pf);
8170 
8171 	/* remove ntuple filters since queue configuration is being changed */
8172 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8173 		struct ice_hw *hw = &pf->hw;
8174 
8175 		mutex_lock(&hw->fdir_fltr_lock);
8176 		ice_fdir_del_all_fltrs(vsi);
8177 		mutex_unlock(&hw->fdir_fltr_lock);
8178 	}
8179 
8180 	/* perform cleanup for channels if they exist */
8181 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8182 		struct ice_vsi *ch_vsi;
8183 
8184 		list_del(&ch->list);
8185 		ch_vsi = ch->ch_vsi;
8186 		if (!ch_vsi) {
8187 			kfree(ch);
8188 			continue;
8189 		}
8190 
8191 		/* Reset queue contexts */
8192 		for (i = 0; i < ch->num_rxq; i++) {
8193 			struct ice_tx_ring *tx_ring;
8194 			struct ice_rx_ring *rx_ring;
8195 
8196 			tx_ring = vsi->tx_rings[ch->base_q + i];
8197 			rx_ring = vsi->rx_rings[ch->base_q + i];
8198 			if (tx_ring) {
8199 				tx_ring->ch = NULL;
8200 				if (tx_ring->q_vector)
8201 					tx_ring->q_vector->ch = NULL;
8202 			}
8203 			if (rx_ring) {
8204 				rx_ring->ch = NULL;
8205 				if (rx_ring->q_vector)
8206 					rx_ring->q_vector->ch = NULL;
8207 			}
8208 		}
8209 
8210 		/* Release FD resources for the channel VSI */
8211 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8212 
8213 		/* clear the VSI from scheduler tree */
8214 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8215 
8216 		/* Delete VSI from FW */
8217 		ice_vsi_delete(ch->ch_vsi);
8218 
8219 		/* Delete VSI from PF and HW VSI arrays */
8220 		ice_vsi_clear(ch->ch_vsi);
8221 
8222 		/* free the channel */
8223 		kfree(ch);
8224 	}
8225 
8226 	/* clear the channel VSI map which is stored in main VSI */
8227 	ice_for_each_chnl_tc(i)
8228 		vsi->tc_map_vsi[i] = NULL;
8229 
8230 	/* reset main VSI's all TC information */
8231 	vsi->all_enatc = 0;
8232 	vsi->all_numtc = 0;
8233 }
8234 
8235 /**
8236  * ice_rebuild_channels - rebuild channel
8237  * @pf: ptr to PF
8238  *
8239  * Recreate channel VSIs and replay filters
8240  */
8241 static int ice_rebuild_channels(struct ice_pf *pf)
8242 {
8243 	struct device *dev = ice_pf_to_dev(pf);
8244 	struct ice_vsi *main_vsi;
8245 	bool rem_adv_fltr = true;
8246 	struct ice_channel *ch;
8247 	struct ice_vsi *vsi;
8248 	int tc_idx = 1;
8249 	int i, err;
8250 
8251 	main_vsi = ice_get_main_vsi(pf);
8252 	if (!main_vsi)
8253 		return 0;
8254 
8255 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8256 	    main_vsi->old_numtc == 1)
8257 		return 0; /* nothing to be done */
8258 
8259 	/* reconfigure main VSI based on old value of TC and cached values
8260 	 * for MQPRIO opts
8261 	 */
8262 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8263 	if (err) {
8264 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8265 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8266 		return err;
8267 	}
8268 
8269 	/* rebuild ADQ VSIs */
8270 	ice_for_each_vsi(pf, i) {
8271 		enum ice_vsi_type type;
8272 
8273 		vsi = pf->vsi[i];
8274 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8275 			continue;
8276 
8277 		type = vsi->type;
8278 
8279 		/* rebuild ADQ VSI */
8280 		err = ice_vsi_rebuild(vsi, true);
8281 		if (err) {
8282 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8283 				ice_vsi_type_str(type), vsi->idx, err);
8284 			goto cleanup;
8285 		}
8286 
8287 		/* Re-map HW VSI number, using VSI handle that has been
8288 		 * previously validated in ice_replay_vsi() call above
8289 		 */
8290 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8291 
8292 		/* replay filters for the VSI */
8293 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8294 		if (err) {
8295 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8296 				ice_vsi_type_str(type), err, vsi->idx);
8297 			rem_adv_fltr = false;
8298 			goto cleanup;
8299 		}
8300 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8301 			 ice_vsi_type_str(type), vsi->idx);
8302 
8303 		/* store ADQ VSI at correct TC index in main VSI's
8304 		 * map of TC to VSI
8305 		 */
8306 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8307 	}
8308 
8309 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8310 	 * channel for main VSI's Tx and Rx rings
8311 	 */
8312 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8313 		struct ice_vsi *ch_vsi;
8314 
8315 		ch_vsi = ch->ch_vsi;
8316 		if (!ch_vsi)
8317 			continue;
8318 
8319 		/* reconfig channel resources */
8320 		ice_cfg_chnl_all_res(main_vsi, ch);
8321 
8322 		/* replay BW rate limit if it is non-zero */
8323 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8324 			continue;
8325 
8326 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8327 				       ch->min_tx_rate);
8328 		if (err)
8329 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8330 				err, ch->max_tx_rate, ch->min_tx_rate,
8331 				ch_vsi->vsi_num);
8332 		else
8333 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8334 				ch->max_tx_rate, ch->min_tx_rate,
8335 				ch_vsi->vsi_num);
8336 	}
8337 
8338 	/* reconfig RSS for main VSI */
8339 	if (main_vsi->ch_rss_size)
8340 		ice_vsi_cfg_rss_lut_key(main_vsi);
8341 
8342 	return 0;
8343 
8344 cleanup:
8345 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8346 	return err;
8347 }
8348 
8349 /**
8350  * ice_create_q_channels - Add queue channel for the given TCs
8351  * @vsi: VSI to be configured
8352  *
8353  * Configures queue channel mapping to the given TCs
8354  */
8355 static int ice_create_q_channels(struct ice_vsi *vsi)
8356 {
8357 	struct ice_pf *pf = vsi->back;
8358 	struct ice_channel *ch;
8359 	int ret = 0, i;
8360 
8361 	ice_for_each_chnl_tc(i) {
8362 		if (!(vsi->all_enatc & BIT(i)))
8363 			continue;
8364 
8365 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8366 		if (!ch) {
8367 			ret = -ENOMEM;
8368 			goto err_free;
8369 		}
8370 		INIT_LIST_HEAD(&ch->list);
8371 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8372 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8373 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8374 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8375 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8376 
8377 		/* convert to Kbits/s */
8378 		if (ch->max_tx_rate)
8379 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8380 						  ICE_BW_KBPS_DIVISOR);
8381 		if (ch->min_tx_rate)
8382 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8383 						  ICE_BW_KBPS_DIVISOR);
8384 
8385 		ret = ice_create_q_channel(vsi, ch);
8386 		if (ret) {
8387 			dev_err(ice_pf_to_dev(pf),
8388 				"failed creating channel TC:%d\n", i);
8389 			kfree(ch);
8390 			goto err_free;
8391 		}
8392 		list_add_tail(&ch->list, &vsi->ch_list);
8393 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8394 		dev_dbg(ice_pf_to_dev(pf),
8395 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8396 	}
8397 	return 0;
8398 
8399 err_free:
8400 	ice_remove_q_channels(vsi, false);
8401 
8402 	return ret;
8403 }
8404 
8405 /**
8406  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8407  * @netdev: net device to configure
8408  * @type_data: TC offload data
8409  */
8410 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8411 {
8412 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8413 	struct ice_netdev_priv *np = netdev_priv(netdev);
8414 	struct ice_vsi *vsi = np->vsi;
8415 	struct ice_pf *pf = vsi->back;
8416 	u16 mode, ena_tc_qdisc = 0;
8417 	int cur_txq, cur_rxq;
8418 	u8 hw = 0, num_tcf;
8419 	struct device *dev;
8420 	int ret, i;
8421 
8422 	dev = ice_pf_to_dev(pf);
8423 	num_tcf = mqprio_qopt->qopt.num_tc;
8424 	hw = mqprio_qopt->qopt.hw;
8425 	mode = mqprio_qopt->mode;
8426 	if (!hw) {
8427 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8428 		vsi->ch_rss_size = 0;
8429 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8430 		goto config_tcf;
8431 	}
8432 
8433 	/* Generate queue region map for number of TCF requested */
8434 	for (i = 0; i < num_tcf; i++)
8435 		ena_tc_qdisc |= BIT(i);
8436 
8437 	switch (mode) {
8438 	case TC_MQPRIO_MODE_CHANNEL:
8439 
8440 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8441 		if (ret) {
8442 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8443 				   ret);
8444 			return ret;
8445 		}
8446 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8447 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8448 		/* don't assume state of hw_tc_offload during driver load
8449 		 * and set the flag for TC flower filter if hw_tc_offload
8450 		 * already ON
8451 		 */
8452 		if (vsi->netdev->features & NETIF_F_HW_TC)
8453 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8454 		break;
8455 	default:
8456 		return -EINVAL;
8457 	}
8458 
8459 config_tcf:
8460 
8461 	/* Requesting same TCF configuration as already enabled */
8462 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8463 	    mode != TC_MQPRIO_MODE_CHANNEL)
8464 		return 0;
8465 
8466 	/* Pause VSI queues */
8467 	ice_dis_vsi(vsi, true);
8468 
8469 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8470 		ice_remove_q_channels(vsi, true);
8471 
8472 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8473 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8474 				     num_online_cpus());
8475 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8476 				     num_online_cpus());
8477 	} else {
8478 		/* logic to rebuild VSI, same like ethtool -L */
8479 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8480 
8481 		for (i = 0; i < num_tcf; i++) {
8482 			if (!(ena_tc_qdisc & BIT(i)))
8483 				continue;
8484 
8485 			offset = vsi->mqprio_qopt.qopt.offset[i];
8486 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8487 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8488 		}
8489 		vsi->req_txq = offset + qcount_tx;
8490 		vsi->req_rxq = offset + qcount_rx;
8491 
8492 		/* store away original rss_size info, so that it gets reused
8493 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8494 		 * determine, what should be the rss_sizefor main VSI
8495 		 */
8496 		vsi->orig_rss_size = vsi->rss_size;
8497 	}
8498 
8499 	/* save current values of Tx and Rx queues before calling VSI rebuild
8500 	 * for fallback option
8501 	 */
8502 	cur_txq = vsi->num_txq;
8503 	cur_rxq = vsi->num_rxq;
8504 
8505 	/* proceed with rebuild main VSI using correct number of queues */
8506 	ret = ice_vsi_rebuild(vsi, false);
8507 	if (ret) {
8508 		/* fallback to current number of queues */
8509 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8510 		vsi->req_txq = cur_txq;
8511 		vsi->req_rxq = cur_rxq;
8512 		clear_bit(ICE_RESET_FAILED, pf->state);
8513 		if (ice_vsi_rebuild(vsi, false)) {
8514 			dev_err(dev, "Rebuild of main VSI failed again\n");
8515 			return ret;
8516 		}
8517 	}
8518 
8519 	vsi->all_numtc = num_tcf;
8520 	vsi->all_enatc = ena_tc_qdisc;
8521 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8522 	if (ret) {
8523 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8524 			   vsi->vsi_num);
8525 		goto exit;
8526 	}
8527 
8528 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8529 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8530 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8531 
8532 		/* set TC0 rate limit if specified */
8533 		if (max_tx_rate || min_tx_rate) {
8534 			/* convert to Kbits/s */
8535 			if (max_tx_rate)
8536 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8537 			if (min_tx_rate)
8538 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8539 
8540 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8541 			if (!ret) {
8542 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8543 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8544 			} else {
8545 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8546 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8547 				goto exit;
8548 			}
8549 		}
8550 		ret = ice_create_q_channels(vsi);
8551 		if (ret) {
8552 			netdev_err(netdev, "failed configuring queue channels\n");
8553 			goto exit;
8554 		} else {
8555 			netdev_dbg(netdev, "successfully configured channels\n");
8556 		}
8557 	}
8558 
8559 	if (vsi->ch_rss_size)
8560 		ice_vsi_cfg_rss_lut_key(vsi);
8561 
8562 exit:
8563 	/* if error, reset the all_numtc and all_enatc */
8564 	if (ret) {
8565 		vsi->all_numtc = 0;
8566 		vsi->all_enatc = 0;
8567 	}
8568 	/* resume VSI */
8569 	ice_ena_vsi(vsi, true);
8570 
8571 	return ret;
8572 }
8573 
8574 static LIST_HEAD(ice_block_cb_list);
8575 
8576 static int
8577 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8578 	     void *type_data)
8579 {
8580 	struct ice_netdev_priv *np = netdev_priv(netdev);
8581 	struct ice_pf *pf = np->vsi->back;
8582 	int err;
8583 
8584 	switch (type) {
8585 	case TC_SETUP_BLOCK:
8586 		return flow_block_cb_setup_simple(type_data,
8587 						  &ice_block_cb_list,
8588 						  ice_setup_tc_block_cb,
8589 						  np, np, true);
8590 	case TC_SETUP_QDISC_MQPRIO:
8591 		/* setup traffic classifier for receive side */
8592 		mutex_lock(&pf->tc_mutex);
8593 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8594 		mutex_unlock(&pf->tc_mutex);
8595 		return err;
8596 	default:
8597 		return -EOPNOTSUPP;
8598 	}
8599 	return -EOPNOTSUPP;
8600 }
8601 
8602 static struct ice_indr_block_priv *
8603 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8604 			   struct net_device *netdev)
8605 {
8606 	struct ice_indr_block_priv *cb_priv;
8607 
8608 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8609 		if (!cb_priv->netdev)
8610 			return NULL;
8611 		if (cb_priv->netdev == netdev)
8612 			return cb_priv;
8613 	}
8614 	return NULL;
8615 }
8616 
8617 static int
8618 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8619 			void *indr_priv)
8620 {
8621 	struct ice_indr_block_priv *priv = indr_priv;
8622 	struct ice_netdev_priv *np = priv->np;
8623 
8624 	switch (type) {
8625 	case TC_SETUP_CLSFLOWER:
8626 		return ice_setup_tc_cls_flower(np, priv->netdev,
8627 					       (struct flow_cls_offload *)
8628 					       type_data);
8629 	default:
8630 		return -EOPNOTSUPP;
8631 	}
8632 }
8633 
8634 static int
8635 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8636 			struct ice_netdev_priv *np,
8637 			struct flow_block_offload *f, void *data,
8638 			void (*cleanup)(struct flow_block_cb *block_cb))
8639 {
8640 	struct ice_indr_block_priv *indr_priv;
8641 	struct flow_block_cb *block_cb;
8642 
8643 	if (!ice_is_tunnel_supported(netdev) &&
8644 	    !(is_vlan_dev(netdev) &&
8645 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8646 		return -EOPNOTSUPP;
8647 
8648 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8649 		return -EOPNOTSUPP;
8650 
8651 	switch (f->command) {
8652 	case FLOW_BLOCK_BIND:
8653 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8654 		if (indr_priv)
8655 			return -EEXIST;
8656 
8657 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8658 		if (!indr_priv)
8659 			return -ENOMEM;
8660 
8661 		indr_priv->netdev = netdev;
8662 		indr_priv->np = np;
8663 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8664 
8665 		block_cb =
8666 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8667 						 indr_priv, indr_priv,
8668 						 ice_rep_indr_tc_block_unbind,
8669 						 f, netdev, sch, data, np,
8670 						 cleanup);
8671 
8672 		if (IS_ERR(block_cb)) {
8673 			list_del(&indr_priv->list);
8674 			kfree(indr_priv);
8675 			return PTR_ERR(block_cb);
8676 		}
8677 		flow_block_cb_add(block_cb, f);
8678 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8679 		break;
8680 	case FLOW_BLOCK_UNBIND:
8681 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8682 		if (!indr_priv)
8683 			return -ENOENT;
8684 
8685 		block_cb = flow_block_cb_lookup(f->block,
8686 						ice_indr_setup_block_cb,
8687 						indr_priv);
8688 		if (!block_cb)
8689 			return -ENOENT;
8690 
8691 		flow_indr_block_cb_remove(block_cb, f);
8692 
8693 		list_del(&block_cb->driver_list);
8694 		break;
8695 	default:
8696 		return -EOPNOTSUPP;
8697 	}
8698 	return 0;
8699 }
8700 
8701 static int
8702 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8703 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8704 		     void *data,
8705 		     void (*cleanup)(struct flow_block_cb *block_cb))
8706 {
8707 	switch (type) {
8708 	case TC_SETUP_BLOCK:
8709 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8710 					       data, cleanup);
8711 
8712 	default:
8713 		return -EOPNOTSUPP;
8714 	}
8715 }
8716 
8717 /**
8718  * ice_open - Called when a network interface becomes active
8719  * @netdev: network interface device structure
8720  *
8721  * The open entry point is called when a network interface is made
8722  * active by the system (IFF_UP). At this point all resources needed
8723  * for transmit and receive operations are allocated, the interrupt
8724  * handler is registered with the OS, the netdev watchdog is enabled,
8725  * and the stack is notified that the interface is ready.
8726  *
8727  * Returns 0 on success, negative value on failure
8728  */
8729 int ice_open(struct net_device *netdev)
8730 {
8731 	struct ice_netdev_priv *np = netdev_priv(netdev);
8732 	struct ice_pf *pf = np->vsi->back;
8733 
8734 	if (ice_is_reset_in_progress(pf->state)) {
8735 		netdev_err(netdev, "can't open net device while reset is in progress");
8736 		return -EBUSY;
8737 	}
8738 
8739 	return ice_open_internal(netdev);
8740 }
8741 
8742 /**
8743  * ice_open_internal - Called when a network interface becomes active
8744  * @netdev: network interface device structure
8745  *
8746  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8747  * handling routine
8748  *
8749  * Returns 0 on success, negative value on failure
8750  */
8751 int ice_open_internal(struct net_device *netdev)
8752 {
8753 	struct ice_netdev_priv *np = netdev_priv(netdev);
8754 	struct ice_vsi *vsi = np->vsi;
8755 	struct ice_pf *pf = vsi->back;
8756 	struct ice_port_info *pi;
8757 	int err;
8758 
8759 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8760 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8761 		return -EIO;
8762 	}
8763 
8764 	netif_carrier_off(netdev);
8765 
8766 	pi = vsi->port_info;
8767 	err = ice_update_link_info(pi);
8768 	if (err) {
8769 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8770 		return err;
8771 	}
8772 
8773 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8774 
8775 	/* Set PHY if there is media, otherwise, turn off PHY */
8776 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8777 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8778 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8779 			err = ice_init_phy_user_cfg(pi);
8780 			if (err) {
8781 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8782 					   err);
8783 				return err;
8784 			}
8785 		}
8786 
8787 		err = ice_configure_phy(vsi);
8788 		if (err) {
8789 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8790 				   err);
8791 			return err;
8792 		}
8793 	} else {
8794 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8795 		ice_set_link(vsi, false);
8796 	}
8797 
8798 	err = ice_vsi_open(vsi);
8799 	if (err)
8800 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8801 			   vsi->vsi_num, vsi->vsw->sw_id);
8802 
8803 	/* Update existing tunnels information */
8804 	udp_tunnel_get_rx_info(netdev);
8805 
8806 	return err;
8807 }
8808 
8809 /**
8810  * ice_stop - Disables a network interface
8811  * @netdev: network interface device structure
8812  *
8813  * The stop entry point is called when an interface is de-activated by the OS,
8814  * and the netdevice enters the DOWN state. The hardware is still under the
8815  * driver's control, but the netdev interface is disabled.
8816  *
8817  * Returns success only - not allowed to fail
8818  */
8819 int ice_stop(struct net_device *netdev)
8820 {
8821 	struct ice_netdev_priv *np = netdev_priv(netdev);
8822 	struct ice_vsi *vsi = np->vsi;
8823 	struct ice_pf *pf = vsi->back;
8824 
8825 	if (ice_is_reset_in_progress(pf->state)) {
8826 		netdev_err(netdev, "can't stop net device while reset is in progress");
8827 		return -EBUSY;
8828 	}
8829 
8830 	ice_vsi_close(vsi);
8831 
8832 	return 0;
8833 }
8834 
8835 /**
8836  * ice_features_check - Validate encapsulated packet conforms to limits
8837  * @skb: skb buffer
8838  * @netdev: This port's netdev
8839  * @features: Offload features that the stack believes apply
8840  */
8841 static netdev_features_t
8842 ice_features_check(struct sk_buff *skb,
8843 		   struct net_device __always_unused *netdev,
8844 		   netdev_features_t features)
8845 {
8846 	bool gso = skb_is_gso(skb);
8847 	size_t len;
8848 
8849 	/* No point in doing any of this if neither checksum nor GSO are
8850 	 * being requested for this frame. We can rule out both by just
8851 	 * checking for CHECKSUM_PARTIAL
8852 	 */
8853 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8854 		return features;
8855 
8856 	/* We cannot support GSO if the MSS is going to be less than
8857 	 * 64 bytes. If it is then we need to drop support for GSO.
8858 	 */
8859 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8860 		features &= ~NETIF_F_GSO_MASK;
8861 
8862 	len = skb_network_offset(skb);
8863 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8864 		goto out_rm_features;
8865 
8866 	len = skb_network_header_len(skb);
8867 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8868 		goto out_rm_features;
8869 
8870 	if (skb->encapsulation) {
8871 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8872 		 * the case of IPIP frames, the transport header pointer is
8873 		 * after the inner header! So check to make sure that this
8874 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8875 		 */
8876 		if (gso && (skb_shinfo(skb)->gso_type &
8877 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8878 			len = skb_inner_network_header(skb) -
8879 			      skb_transport_header(skb);
8880 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8881 				goto out_rm_features;
8882 		}
8883 
8884 		len = skb_inner_network_header_len(skb);
8885 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8886 			goto out_rm_features;
8887 	}
8888 
8889 	return features;
8890 out_rm_features:
8891 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8892 }
8893 
8894 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8895 	.ndo_open = ice_open,
8896 	.ndo_stop = ice_stop,
8897 	.ndo_start_xmit = ice_start_xmit,
8898 	.ndo_set_mac_address = ice_set_mac_address,
8899 	.ndo_validate_addr = eth_validate_addr,
8900 	.ndo_change_mtu = ice_change_mtu,
8901 	.ndo_get_stats64 = ice_get_stats64,
8902 	.ndo_tx_timeout = ice_tx_timeout,
8903 	.ndo_bpf = ice_xdp_safe_mode,
8904 };
8905 
8906 static const struct net_device_ops ice_netdev_ops = {
8907 	.ndo_open = ice_open,
8908 	.ndo_stop = ice_stop,
8909 	.ndo_start_xmit = ice_start_xmit,
8910 	.ndo_select_queue = ice_select_queue,
8911 	.ndo_features_check = ice_features_check,
8912 	.ndo_fix_features = ice_fix_features,
8913 	.ndo_set_rx_mode = ice_set_rx_mode,
8914 	.ndo_set_mac_address = ice_set_mac_address,
8915 	.ndo_validate_addr = eth_validate_addr,
8916 	.ndo_change_mtu = ice_change_mtu,
8917 	.ndo_get_stats64 = ice_get_stats64,
8918 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8919 	.ndo_eth_ioctl = ice_eth_ioctl,
8920 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8921 	.ndo_set_vf_mac = ice_set_vf_mac,
8922 	.ndo_get_vf_config = ice_get_vf_cfg,
8923 	.ndo_set_vf_trust = ice_set_vf_trust,
8924 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8925 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8926 	.ndo_get_vf_stats = ice_get_vf_stats,
8927 	.ndo_set_vf_rate = ice_set_vf_bw,
8928 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8929 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8930 	.ndo_setup_tc = ice_setup_tc,
8931 	.ndo_set_features = ice_set_features,
8932 	.ndo_bridge_getlink = ice_bridge_getlink,
8933 	.ndo_bridge_setlink = ice_bridge_setlink,
8934 	.ndo_fdb_add = ice_fdb_add,
8935 	.ndo_fdb_del = ice_fdb_del,
8936 #ifdef CONFIG_RFS_ACCEL
8937 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8938 #endif
8939 	.ndo_tx_timeout = ice_tx_timeout,
8940 	.ndo_bpf = ice_xdp,
8941 	.ndo_xdp_xmit = ice_xdp_xmit,
8942 	.ndo_xsk_wakeup = ice_xsk_wakeup,
8943 	.ndo_get_devlink_port = ice_get_devlink_port,
8944 };
8945