1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 271 return status; 272 } 273 274 /** 275 * ice_clear_promisc - Disable promiscuous mode for a given PF 276 * @vsi: the VSI being configured 277 * @promisc_m: mask of promiscuous config bits 278 * 279 */ 280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 281 { 282 int status; 283 284 if (vsi->type != ICE_VSI_PF) 285 return 0; 286 287 if (ice_vsi_has_non_zero_vlans(vsi)) { 288 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 289 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 290 promisc_m); 291 } else { 292 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 293 promisc_m, 0); 294 } 295 296 return status; 297 } 298 299 /** 300 * ice_get_devlink_port - Get devlink port from netdev 301 * @netdev: the netdevice structure 302 */ 303 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 304 { 305 struct ice_pf *pf = ice_netdev_to_pf(netdev); 306 307 if (!ice_is_switchdev_running(pf)) 308 return NULL; 309 310 return &pf->devlink_port; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 414 err = ice_set_dflt_vsi(pf->first_sw, vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 } 425 } else { 426 /* Clear Rx filter to remove traffic from wire */ 427 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 428 err = ice_clear_dflt_vsi(pf->first_sw); 429 if (err) { 430 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 431 err, vsi->vsi_num); 432 vsi->current_netdev_flags |= 433 IFF_PROMISC; 434 goto out_promisc; 435 } 436 if (vsi->current_netdev_flags & 437 NETIF_F_HW_VLAN_CTAG_FILTER) 438 vlan_ops->ena_rx_filtering(vsi); 439 } 440 } 441 } 442 goto exit; 443 444 out_promisc: 445 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 446 goto exit; 447 out: 448 /* if something went wrong then set the changed flag so we try again */ 449 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 450 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 451 exit: 452 clear_bit(ICE_CFG_BUSY, vsi->state); 453 return err; 454 } 455 456 /** 457 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 458 * @pf: board private structure 459 */ 460 static void ice_sync_fltr_subtask(struct ice_pf *pf) 461 { 462 int v; 463 464 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 465 return; 466 467 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 468 469 ice_for_each_vsi(pf, v) 470 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 471 ice_vsi_sync_fltr(pf->vsi[v])) { 472 /* come back and try again later */ 473 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 474 break; 475 } 476 } 477 478 /** 479 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 480 * @pf: the PF 481 * @locked: is the rtnl_lock already held 482 */ 483 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 484 { 485 int node; 486 int v; 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v]) 490 ice_dis_vsi(pf->vsi[v], locked); 491 492 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 493 pf->pf_agg_node[node].num_vsis = 0; 494 495 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 496 pf->vf_agg_node[node].num_vsis = 0; 497 } 498 499 /** 500 * ice_clear_sw_switch_recipes - clear switch recipes 501 * @pf: board private structure 502 * 503 * Mark switch recipes as not created in sw structures. There are cases where 504 * rules (especially advanced rules) need to be restored, either re-read from 505 * hardware or added again. For example after the reset. 'recp_created' flag 506 * prevents from doing that and need to be cleared upfront. 507 */ 508 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 509 { 510 struct ice_sw_recipe *recp; 511 u8 i; 512 513 recp = pf->hw.switch_info->recp_list; 514 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 515 recp[i].recp_created = false; 516 } 517 518 /** 519 * ice_prepare_for_reset - prep for reset 520 * @pf: board private structure 521 * @reset_type: reset type requested 522 * 523 * Inform or close all dependent features in prep for reset. 524 */ 525 static void 526 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 527 { 528 struct ice_hw *hw = &pf->hw; 529 struct ice_vsi *vsi; 530 struct ice_vf *vf; 531 unsigned int bkt; 532 533 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 534 535 /* already prepared for reset */ 536 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 537 return; 538 539 ice_unplug_aux_dev(pf); 540 541 /* Notify VFs of impending reset */ 542 if (ice_check_sq_alive(hw, &hw->mailboxq)) 543 ice_vc_notify_reset(pf); 544 545 /* Disable VFs until reset is completed */ 546 mutex_lock(&pf->vfs.table_lock); 547 ice_for_each_vf(pf, bkt, vf) 548 ice_set_vf_state_qs_dis(vf); 549 mutex_unlock(&pf->vfs.table_lock); 550 551 if (ice_is_eswitch_mode_switchdev(pf)) { 552 if (reset_type != ICE_RESET_PFR) 553 ice_clear_sw_switch_recipes(pf); 554 } 555 556 /* release ADQ specific HW and SW resources */ 557 vsi = ice_get_main_vsi(pf); 558 if (!vsi) 559 goto skip; 560 561 /* to be on safe side, reset orig_rss_size so that normal flow 562 * of deciding rss_size can take precedence 563 */ 564 vsi->orig_rss_size = 0; 565 566 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 567 if (reset_type == ICE_RESET_PFR) { 568 vsi->old_ena_tc = vsi->all_enatc; 569 vsi->old_numtc = vsi->all_numtc; 570 } else { 571 ice_remove_q_channels(vsi, true); 572 573 /* for other reset type, do not support channel rebuild 574 * hence reset needed info 575 */ 576 vsi->old_ena_tc = 0; 577 vsi->all_enatc = 0; 578 vsi->old_numtc = 0; 579 vsi->all_numtc = 0; 580 vsi->req_txq = 0; 581 vsi->req_rxq = 0; 582 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 583 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 584 } 585 } 586 skip: 587 588 /* clear SW filtering DB */ 589 ice_clear_hw_tbls(hw); 590 /* disable the VSIs and their queues that are not already DOWN */ 591 ice_pf_dis_all_vsi(pf, false); 592 593 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 594 ice_ptp_prepare_for_reset(pf); 595 596 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 597 ice_gnss_exit(pf); 598 599 if (hw->port_info) 600 ice_sched_clear_port(hw->port_info); 601 602 ice_shutdown_all_ctrlq(hw); 603 604 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 605 } 606 607 /** 608 * ice_do_reset - Initiate one of many types of resets 609 * @pf: board private structure 610 * @reset_type: reset type requested before this function was called. 611 */ 612 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 613 { 614 struct device *dev = ice_pf_to_dev(pf); 615 struct ice_hw *hw = &pf->hw; 616 617 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 618 619 ice_prepare_for_reset(pf, reset_type); 620 621 /* trigger the reset */ 622 if (ice_reset(hw, reset_type)) { 623 dev_err(dev, "reset %d failed\n", reset_type); 624 set_bit(ICE_RESET_FAILED, pf->state); 625 clear_bit(ICE_RESET_OICR_RECV, pf->state); 626 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 clear_bit(ICE_PFR_REQ, pf->state); 628 clear_bit(ICE_CORER_REQ, pf->state); 629 clear_bit(ICE_GLOBR_REQ, pf->state); 630 wake_up(&pf->reset_wait_queue); 631 return; 632 } 633 634 /* PFR is a bit of a special case because it doesn't result in an OICR 635 * interrupt. So for PFR, rebuild after the reset and clear the reset- 636 * associated state bits. 637 */ 638 if (reset_type == ICE_RESET_PFR) { 639 pf->pfr_count++; 640 ice_rebuild(pf, reset_type); 641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 642 clear_bit(ICE_PFR_REQ, pf->state); 643 wake_up(&pf->reset_wait_queue); 644 ice_reset_all_vfs(pf); 645 } 646 } 647 648 /** 649 * ice_reset_subtask - Set up for resetting the device and driver 650 * @pf: board private structure 651 */ 652 static void ice_reset_subtask(struct ice_pf *pf) 653 { 654 enum ice_reset_req reset_type = ICE_RESET_INVAL; 655 656 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 657 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 658 * of reset is pending and sets bits in pf->state indicating the reset 659 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 660 * prepare for pending reset if not already (for PF software-initiated 661 * global resets the software should already be prepared for it as 662 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 663 * by firmware or software on other PFs, that bit is not set so prepare 664 * for the reset now), poll for reset done, rebuild and return. 665 */ 666 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 667 /* Perform the largest reset requested */ 668 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 669 reset_type = ICE_RESET_CORER; 670 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 671 reset_type = ICE_RESET_GLOBR; 672 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 673 reset_type = ICE_RESET_EMPR; 674 /* return if no valid reset type requested */ 675 if (reset_type == ICE_RESET_INVAL) 676 return; 677 ice_prepare_for_reset(pf, reset_type); 678 679 /* make sure we are ready to rebuild */ 680 if (ice_check_reset(&pf->hw)) { 681 set_bit(ICE_RESET_FAILED, pf->state); 682 } else { 683 /* done with reset. start rebuild */ 684 pf->hw.reset_ongoing = false; 685 ice_rebuild(pf, reset_type); 686 /* clear bit to resume normal operations, but 687 * ICE_NEEDS_RESTART bit is set in case rebuild failed 688 */ 689 clear_bit(ICE_RESET_OICR_RECV, pf->state); 690 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 691 clear_bit(ICE_PFR_REQ, pf->state); 692 clear_bit(ICE_CORER_REQ, pf->state); 693 clear_bit(ICE_GLOBR_REQ, pf->state); 694 wake_up(&pf->reset_wait_queue); 695 ice_reset_all_vfs(pf); 696 } 697 698 return; 699 } 700 701 /* No pending resets to finish processing. Check for new resets */ 702 if (test_bit(ICE_PFR_REQ, pf->state)) 703 reset_type = ICE_RESET_PFR; 704 if (test_bit(ICE_CORER_REQ, pf->state)) 705 reset_type = ICE_RESET_CORER; 706 if (test_bit(ICE_GLOBR_REQ, pf->state)) 707 reset_type = ICE_RESET_GLOBR; 708 /* If no valid reset type requested just return */ 709 if (reset_type == ICE_RESET_INVAL) 710 return; 711 712 /* reset if not already down or busy */ 713 if (!test_bit(ICE_DOWN, pf->state) && 714 !test_bit(ICE_CFG_BUSY, pf->state)) { 715 ice_do_reset(pf, reset_type); 716 } 717 } 718 719 /** 720 * ice_print_topo_conflict - print topology conflict message 721 * @vsi: the VSI whose topology status is being checked 722 */ 723 static void ice_print_topo_conflict(struct ice_vsi *vsi) 724 { 725 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 726 case ICE_AQ_LINK_TOPO_CONFLICT: 727 case ICE_AQ_LINK_MEDIA_CONFLICT: 728 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 729 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 730 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 731 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 732 break; 733 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 734 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 735 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 736 else 737 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 738 break; 739 default: 740 break; 741 } 742 } 743 744 /** 745 * ice_print_link_msg - print link up or down message 746 * @vsi: the VSI whose link status is being queried 747 * @isup: boolean for if the link is now up or down 748 */ 749 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 750 { 751 struct ice_aqc_get_phy_caps_data *caps; 752 const char *an_advertised; 753 const char *fec_req; 754 const char *speed; 755 const char *fec; 756 const char *fc; 757 const char *an; 758 int status; 759 760 if (!vsi) 761 return; 762 763 if (vsi->current_isup == isup) 764 return; 765 766 vsi->current_isup = isup; 767 768 if (!isup) { 769 netdev_info(vsi->netdev, "NIC Link is Down\n"); 770 return; 771 } 772 773 switch (vsi->port_info->phy.link_info.link_speed) { 774 case ICE_AQ_LINK_SPEED_100GB: 775 speed = "100 G"; 776 break; 777 case ICE_AQ_LINK_SPEED_50GB: 778 speed = "50 G"; 779 break; 780 case ICE_AQ_LINK_SPEED_40GB: 781 speed = "40 G"; 782 break; 783 case ICE_AQ_LINK_SPEED_25GB: 784 speed = "25 G"; 785 break; 786 case ICE_AQ_LINK_SPEED_20GB: 787 speed = "20 G"; 788 break; 789 case ICE_AQ_LINK_SPEED_10GB: 790 speed = "10 G"; 791 break; 792 case ICE_AQ_LINK_SPEED_5GB: 793 speed = "5 G"; 794 break; 795 case ICE_AQ_LINK_SPEED_2500MB: 796 speed = "2.5 G"; 797 break; 798 case ICE_AQ_LINK_SPEED_1000MB: 799 speed = "1 G"; 800 break; 801 case ICE_AQ_LINK_SPEED_100MB: 802 speed = "100 M"; 803 break; 804 default: 805 speed = "Unknown "; 806 break; 807 } 808 809 switch (vsi->port_info->fc.current_mode) { 810 case ICE_FC_FULL: 811 fc = "Rx/Tx"; 812 break; 813 case ICE_FC_TX_PAUSE: 814 fc = "Tx"; 815 break; 816 case ICE_FC_RX_PAUSE: 817 fc = "Rx"; 818 break; 819 case ICE_FC_NONE: 820 fc = "None"; 821 break; 822 default: 823 fc = "Unknown"; 824 break; 825 } 826 827 /* Get FEC mode based on negotiated link info */ 828 switch (vsi->port_info->phy.link_info.fec_info) { 829 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 830 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 831 fec = "RS-FEC"; 832 break; 833 case ICE_AQ_LINK_25G_KR_FEC_EN: 834 fec = "FC-FEC/BASE-R"; 835 break; 836 default: 837 fec = "NONE"; 838 break; 839 } 840 841 /* check if autoneg completed, might be false due to not supported */ 842 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 843 an = "True"; 844 else 845 an = "False"; 846 847 /* Get FEC mode requested based on PHY caps last SW configuration */ 848 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 849 if (!caps) { 850 fec_req = "Unknown"; 851 an_advertised = "Unknown"; 852 goto done; 853 } 854 855 status = ice_aq_get_phy_caps(vsi->port_info, false, 856 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 857 if (status) 858 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 859 860 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 861 862 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 863 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 864 fec_req = "RS-FEC"; 865 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 866 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 867 fec_req = "FC-FEC/BASE-R"; 868 else 869 fec_req = "NONE"; 870 871 kfree(caps); 872 873 done: 874 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 875 speed, fec_req, fec, an_advertised, an, fc); 876 ice_print_topo_conflict(vsi); 877 } 878 879 /** 880 * ice_vsi_link_event - update the VSI's netdev 881 * @vsi: the VSI on which the link event occurred 882 * @link_up: whether or not the VSI needs to be set up or down 883 */ 884 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 885 { 886 if (!vsi) 887 return; 888 889 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 890 return; 891 892 if (vsi->type == ICE_VSI_PF) { 893 if (link_up == netif_carrier_ok(vsi->netdev)) 894 return; 895 896 if (link_up) { 897 netif_carrier_on(vsi->netdev); 898 netif_tx_wake_all_queues(vsi->netdev); 899 } else { 900 netif_carrier_off(vsi->netdev); 901 netif_tx_stop_all_queues(vsi->netdev); 902 } 903 } 904 } 905 906 /** 907 * ice_set_dflt_mib - send a default config MIB to the FW 908 * @pf: private PF struct 909 * 910 * This function sends a default configuration MIB to the FW. 911 * 912 * If this function errors out at any point, the driver is still able to 913 * function. The main impact is that LFC may not operate as expected. 914 * Therefore an error state in this function should be treated with a DBG 915 * message and continue on with driver rebuild/reenable. 916 */ 917 static void ice_set_dflt_mib(struct ice_pf *pf) 918 { 919 struct device *dev = ice_pf_to_dev(pf); 920 u8 mib_type, *buf, *lldpmib = NULL; 921 u16 len, typelen, offset = 0; 922 struct ice_lldp_org_tlv *tlv; 923 struct ice_hw *hw = &pf->hw; 924 u32 ouisubtype; 925 926 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 927 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 928 if (!lldpmib) { 929 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 930 __func__); 931 return; 932 } 933 934 /* Add ETS CFG TLV */ 935 tlv = (struct ice_lldp_org_tlv *)lldpmib; 936 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 937 ICE_IEEE_ETS_TLV_LEN); 938 tlv->typelen = htons(typelen); 939 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 940 ICE_IEEE_SUBTYPE_ETS_CFG); 941 tlv->ouisubtype = htonl(ouisubtype); 942 943 buf = tlv->tlvinfo; 944 buf[0] = 0; 945 946 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 947 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 948 * Octets 13 - 20 are TSA values - leave as zeros 949 */ 950 buf[5] = 0x64; 951 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 952 offset += len + 2; 953 tlv = (struct ice_lldp_org_tlv *) 954 ((char *)tlv + sizeof(tlv->typelen) + len); 955 956 /* Add ETS REC TLV */ 957 buf = tlv->tlvinfo; 958 tlv->typelen = htons(typelen); 959 960 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 961 ICE_IEEE_SUBTYPE_ETS_REC); 962 tlv->ouisubtype = htonl(ouisubtype); 963 964 /* First octet of buf is reserved 965 * Octets 1 - 4 map UP to TC - all UPs map to zero 966 * Octets 5 - 12 are BW values - set TC 0 to 100%. 967 * Octets 13 - 20 are TSA value - leave as zeros 968 */ 969 buf[5] = 0x64; 970 offset += len + 2; 971 tlv = (struct ice_lldp_org_tlv *) 972 ((char *)tlv + sizeof(tlv->typelen) + len); 973 974 /* Add PFC CFG TLV */ 975 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 976 ICE_IEEE_PFC_TLV_LEN); 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_PFC_CFG); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* Octet 1 left as all zeros - PFC disabled */ 984 buf[0] = 0x08; 985 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 986 offset += len + 2; 987 988 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 989 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 990 991 kfree(lldpmib); 992 } 993 994 /** 995 * ice_check_phy_fw_load - check if PHY FW load failed 996 * @pf: pointer to PF struct 997 * @link_cfg_err: bitmap from the link info structure 998 * 999 * check if external PHY FW load failed and print an error message if it did 1000 */ 1001 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1002 { 1003 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1004 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1005 return; 1006 } 1007 1008 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1009 return; 1010 1011 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1012 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1013 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1014 } 1015 } 1016 1017 /** 1018 * ice_check_module_power 1019 * @pf: pointer to PF struct 1020 * @link_cfg_err: bitmap from the link info structure 1021 * 1022 * check module power level returned by a previous call to aq_get_link_info 1023 * and print error messages if module power level is not supported 1024 */ 1025 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1026 { 1027 /* if module power level is supported, clear the flag */ 1028 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1029 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1030 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1031 return; 1032 } 1033 1034 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1035 * above block didn't clear this bit, there's nothing to do 1036 */ 1037 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1038 return; 1039 1040 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1041 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1042 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1043 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1044 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1045 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_link_cfg_err - check if link configuration failed 1051 * @pf: pointer to the PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * print if any link configuration failure happens due to the value in the 1055 * link_cfg_err parameter in the link info structure 1056 */ 1057 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 ice_check_module_power(pf, link_cfg_err); 1060 ice_check_phy_fw_load(pf, link_cfg_err); 1061 } 1062 1063 /** 1064 * ice_link_event - process the link event 1065 * @pf: PF that the link event is associated with 1066 * @pi: port_info for the port that the link event is associated with 1067 * @link_up: true if the physical link is up and false if it is down 1068 * @link_speed: current link speed received from the link event 1069 * 1070 * Returns 0 on success and negative on failure 1071 */ 1072 static int 1073 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1074 u16 link_speed) 1075 { 1076 struct device *dev = ice_pf_to_dev(pf); 1077 struct ice_phy_info *phy_info; 1078 struct ice_vsi *vsi; 1079 u16 old_link_speed; 1080 bool old_link; 1081 int status; 1082 1083 phy_info = &pi->phy; 1084 phy_info->link_info_old = phy_info->link_info; 1085 1086 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1087 old_link_speed = phy_info->link_info_old.link_speed; 1088 1089 /* update the link info structures and re-enable link events, 1090 * don't bail on failure due to other book keeping needed 1091 */ 1092 status = ice_update_link_info(pi); 1093 if (status) 1094 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1095 pi->lport, status, 1096 ice_aq_str(pi->hw->adminq.sq_last_status)); 1097 1098 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1099 1100 /* Check if the link state is up after updating link info, and treat 1101 * this event as an UP event since the link is actually UP now. 1102 */ 1103 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1104 link_up = true; 1105 1106 vsi = ice_get_main_vsi(pf); 1107 if (!vsi || !vsi->port_info) 1108 return -EINVAL; 1109 1110 /* turn off PHY if media was removed */ 1111 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1112 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1113 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1114 ice_set_link(vsi, false); 1115 } 1116 1117 /* if the old link up/down and speed is the same as the new */ 1118 if (link_up == old_link && link_speed == old_link_speed) 1119 return 0; 1120 1121 if (!ice_is_e810(&pf->hw)) 1122 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1123 1124 if (ice_is_dcb_active(pf)) { 1125 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1126 ice_dcb_rebuild(pf); 1127 } else { 1128 if (link_up) 1129 ice_set_dflt_mib(pf); 1130 } 1131 ice_vsi_link_event(vsi, link_up); 1132 ice_print_link_msg(vsi, link_up); 1133 1134 ice_vc_notify_link_state(pf); 1135 1136 return 0; 1137 } 1138 1139 /** 1140 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1141 * @pf: board private structure 1142 */ 1143 static void ice_watchdog_subtask(struct ice_pf *pf) 1144 { 1145 int i; 1146 1147 /* if interface is down do nothing */ 1148 if (test_bit(ICE_DOWN, pf->state) || 1149 test_bit(ICE_CFG_BUSY, pf->state)) 1150 return; 1151 1152 /* make sure we don't do these things too often */ 1153 if (time_before(jiffies, 1154 pf->serv_tmr_prev + pf->serv_tmr_period)) 1155 return; 1156 1157 pf->serv_tmr_prev = jiffies; 1158 1159 /* Update the stats for active netdevs so the network stack 1160 * can look at updated numbers whenever it cares to 1161 */ 1162 ice_update_pf_stats(pf); 1163 ice_for_each_vsi(pf, i) 1164 if (pf->vsi[i] && pf->vsi[i]->netdev) 1165 ice_update_vsi_stats(pf->vsi[i]); 1166 } 1167 1168 /** 1169 * ice_init_link_events - enable/initialize link events 1170 * @pi: pointer to the port_info instance 1171 * 1172 * Returns -EIO on failure, 0 on success 1173 */ 1174 static int ice_init_link_events(struct ice_port_info *pi) 1175 { 1176 u16 mask; 1177 1178 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1179 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1180 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1181 1182 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1183 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1184 pi->lport); 1185 return -EIO; 1186 } 1187 1188 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1189 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1190 pi->lport); 1191 return -EIO; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /** 1198 * ice_handle_link_event - handle link event via ARQ 1199 * @pf: PF that the link event is associated with 1200 * @event: event structure containing link status info 1201 */ 1202 static int 1203 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1204 { 1205 struct ice_aqc_get_link_status_data *link_data; 1206 struct ice_port_info *port_info; 1207 int status; 1208 1209 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1210 port_info = pf->hw.port_info; 1211 if (!port_info) 1212 return -EINVAL; 1213 1214 status = ice_link_event(pf, port_info, 1215 !!(link_data->link_info & ICE_AQ_LINK_UP), 1216 le16_to_cpu(link_data->link_speed)); 1217 if (status) 1218 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1219 status); 1220 1221 return status; 1222 } 1223 1224 enum ice_aq_task_state { 1225 ICE_AQ_TASK_WAITING = 0, 1226 ICE_AQ_TASK_COMPLETE, 1227 ICE_AQ_TASK_CANCELED, 1228 }; 1229 1230 struct ice_aq_task { 1231 struct hlist_node entry; 1232 1233 u16 opcode; 1234 struct ice_rq_event_info *event; 1235 enum ice_aq_task_state state; 1236 }; 1237 1238 /** 1239 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1240 * @pf: pointer to the PF private structure 1241 * @opcode: the opcode to wait for 1242 * @timeout: how long to wait, in jiffies 1243 * @event: storage for the event info 1244 * 1245 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1246 * current thread will be put to sleep until the specified event occurs or 1247 * until the given timeout is reached. 1248 * 1249 * To obtain only the descriptor contents, pass an event without an allocated 1250 * msg_buf. If the complete data buffer is desired, allocate the 1251 * event->msg_buf with enough space ahead of time. 1252 * 1253 * Returns: zero on success, or a negative error code on failure. 1254 */ 1255 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1256 struct ice_rq_event_info *event) 1257 { 1258 struct device *dev = ice_pf_to_dev(pf); 1259 struct ice_aq_task *task; 1260 unsigned long start; 1261 long ret; 1262 int err; 1263 1264 task = kzalloc(sizeof(*task), GFP_KERNEL); 1265 if (!task) 1266 return -ENOMEM; 1267 1268 INIT_HLIST_NODE(&task->entry); 1269 task->opcode = opcode; 1270 task->event = event; 1271 task->state = ICE_AQ_TASK_WAITING; 1272 1273 spin_lock_bh(&pf->aq_wait_lock); 1274 hlist_add_head(&task->entry, &pf->aq_wait_list); 1275 spin_unlock_bh(&pf->aq_wait_lock); 1276 1277 start = jiffies; 1278 1279 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1280 timeout); 1281 switch (task->state) { 1282 case ICE_AQ_TASK_WAITING: 1283 err = ret < 0 ? ret : -ETIMEDOUT; 1284 break; 1285 case ICE_AQ_TASK_CANCELED: 1286 err = ret < 0 ? ret : -ECANCELED; 1287 break; 1288 case ICE_AQ_TASK_COMPLETE: 1289 err = ret < 0 ? ret : 0; 1290 break; 1291 default: 1292 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1293 err = -EINVAL; 1294 break; 1295 } 1296 1297 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1298 jiffies_to_msecs(jiffies - start), 1299 jiffies_to_msecs(timeout), 1300 opcode); 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_del(&task->entry); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 kfree(task); 1306 1307 return err; 1308 } 1309 1310 /** 1311 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1312 * @pf: pointer to the PF private structure 1313 * @opcode: the opcode of the event 1314 * @event: the event to check 1315 * 1316 * Loops over the current list of pending threads waiting for an AdminQ event. 1317 * For each matching task, copy the contents of the event into the task 1318 * structure and wake up the thread. 1319 * 1320 * If multiple threads wait for the same opcode, they will all be woken up. 1321 * 1322 * Note that event->msg_buf will only be duplicated if the event has a buffer 1323 * with enough space already allocated. Otherwise, only the descriptor and 1324 * message length will be copied. 1325 * 1326 * Returns: true if an event was found, false otherwise 1327 */ 1328 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1329 struct ice_rq_event_info *event) 1330 { 1331 struct ice_aq_task *task; 1332 bool found = false; 1333 1334 spin_lock_bh(&pf->aq_wait_lock); 1335 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1336 if (task->state || task->opcode != opcode) 1337 continue; 1338 1339 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1340 task->event->msg_len = event->msg_len; 1341 1342 /* Only copy the data buffer if a destination was set */ 1343 if (task->event->msg_buf && 1344 task->event->buf_len > event->buf_len) { 1345 memcpy(task->event->msg_buf, event->msg_buf, 1346 event->buf_len); 1347 task->event->buf_len = event->buf_len; 1348 } 1349 1350 task->state = ICE_AQ_TASK_COMPLETE; 1351 found = true; 1352 } 1353 spin_unlock_bh(&pf->aq_wait_lock); 1354 1355 if (found) 1356 wake_up(&pf->aq_wait_queue); 1357 } 1358 1359 /** 1360 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1361 * @pf: the PF private structure 1362 * 1363 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1364 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1365 */ 1366 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1367 { 1368 struct ice_aq_task *task; 1369 1370 spin_lock_bh(&pf->aq_wait_lock); 1371 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1372 task->state = ICE_AQ_TASK_CANCELED; 1373 spin_unlock_bh(&pf->aq_wait_lock); 1374 1375 wake_up(&pf->aq_wait_queue); 1376 } 1377 1378 /** 1379 * __ice_clean_ctrlq - helper function to clean controlq rings 1380 * @pf: ptr to struct ice_pf 1381 * @q_type: specific Control queue type 1382 */ 1383 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1384 { 1385 struct device *dev = ice_pf_to_dev(pf); 1386 struct ice_rq_event_info event; 1387 struct ice_hw *hw = &pf->hw; 1388 struct ice_ctl_q_info *cq; 1389 u16 pending, i = 0; 1390 const char *qtype; 1391 u32 oldval, val; 1392 1393 /* Do not clean control queue if/when PF reset fails */ 1394 if (test_bit(ICE_RESET_FAILED, pf->state)) 1395 return 0; 1396 1397 switch (q_type) { 1398 case ICE_CTL_Q_ADMIN: 1399 cq = &hw->adminq; 1400 qtype = "Admin"; 1401 break; 1402 case ICE_CTL_Q_SB: 1403 cq = &hw->sbq; 1404 qtype = "Sideband"; 1405 break; 1406 case ICE_CTL_Q_MAILBOX: 1407 cq = &hw->mailboxq; 1408 qtype = "Mailbox"; 1409 /* we are going to try to detect a malicious VF, so set the 1410 * state to begin detection 1411 */ 1412 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1413 break; 1414 default: 1415 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1416 return 0; 1417 } 1418 1419 /* check for error indications - PF_xx_AxQLEN register layout for 1420 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1421 */ 1422 val = rd32(hw, cq->rq.len); 1423 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1424 PF_FW_ARQLEN_ARQCRIT_M)) { 1425 oldval = val; 1426 if (val & PF_FW_ARQLEN_ARQVFE_M) 1427 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1428 qtype); 1429 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1430 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1431 qtype); 1432 } 1433 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1434 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1435 qtype); 1436 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1437 PF_FW_ARQLEN_ARQCRIT_M); 1438 if (oldval != val) 1439 wr32(hw, cq->rq.len, val); 1440 } 1441 1442 val = rd32(hw, cq->sq.len); 1443 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1444 PF_FW_ATQLEN_ATQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ATQLEN_ATQVFE_M) 1447 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1450 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1454 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1457 PF_FW_ATQLEN_ATQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->sq.len, val); 1460 } 1461 1462 event.buf_len = cq->rq_buf_size; 1463 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1464 if (!event.msg_buf) 1465 return 0; 1466 1467 do { 1468 u16 opcode; 1469 int ret; 1470 1471 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1472 if (ret == -EALREADY) 1473 break; 1474 if (ret) { 1475 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1476 ret); 1477 break; 1478 } 1479 1480 opcode = le16_to_cpu(event.desc.opcode); 1481 1482 /* Notify any thread that might be waiting for this event */ 1483 ice_aq_check_events(pf, opcode, &event); 1484 1485 switch (opcode) { 1486 case ice_aqc_opc_get_link_status: 1487 if (ice_handle_link_event(pf, &event)) 1488 dev_err(dev, "Could not handle link event\n"); 1489 break; 1490 case ice_aqc_opc_event_lan_overflow: 1491 ice_vf_lan_overflow_event(pf, &event); 1492 break; 1493 case ice_mbx_opc_send_msg_to_pf: 1494 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1495 ice_vc_process_vf_msg(pf, &event); 1496 break; 1497 case ice_aqc_opc_fw_logging: 1498 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1499 break; 1500 case ice_aqc_opc_lldp_set_mib_change: 1501 ice_dcb_process_lldp_set_mib_change(pf, &event); 1502 break; 1503 default: 1504 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1505 qtype, opcode); 1506 break; 1507 } 1508 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1509 1510 kfree(event.msg_buf); 1511 1512 return pending && (i == ICE_DFLT_IRQ_WORK); 1513 } 1514 1515 /** 1516 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1517 * @hw: pointer to hardware info 1518 * @cq: control queue information 1519 * 1520 * returns true if there are pending messages in a queue, false if there aren't 1521 */ 1522 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1523 { 1524 u16 ntu; 1525 1526 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1527 return cq->rq.next_to_clean != ntu; 1528 } 1529 1530 /** 1531 * ice_clean_adminq_subtask - clean the AdminQ rings 1532 * @pf: board private structure 1533 */ 1534 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1535 { 1536 struct ice_hw *hw = &pf->hw; 1537 1538 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1539 return; 1540 1541 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1542 return; 1543 1544 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1545 1546 /* There might be a situation where new messages arrive to a control 1547 * queue between processing the last message and clearing the 1548 * EVENT_PENDING bit. So before exiting, check queue head again (using 1549 * ice_ctrlq_pending) and process new messages if any. 1550 */ 1551 if (ice_ctrlq_pending(hw, &hw->adminq)) 1552 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1553 1554 ice_flush(hw); 1555 } 1556 1557 /** 1558 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1559 * @pf: board private structure 1560 */ 1561 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1562 { 1563 struct ice_hw *hw = &pf->hw; 1564 1565 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1566 return; 1567 1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1569 return; 1570 1571 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1572 1573 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1574 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1575 1576 ice_flush(hw); 1577 } 1578 1579 /** 1580 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1581 * @pf: board private structure 1582 */ 1583 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1584 { 1585 struct ice_hw *hw = &pf->hw; 1586 1587 /* Nothing to do here if sideband queue is not supported */ 1588 if (!ice_is_sbq_supported(hw)) { 1589 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1590 return; 1591 } 1592 1593 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1594 return; 1595 1596 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1597 return; 1598 1599 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1600 1601 if (ice_ctrlq_pending(hw, &hw->sbq)) 1602 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1603 1604 ice_flush(hw); 1605 } 1606 1607 /** 1608 * ice_service_task_schedule - schedule the service task to wake up 1609 * @pf: board private structure 1610 * 1611 * If not already scheduled, this puts the task into the work queue. 1612 */ 1613 void ice_service_task_schedule(struct ice_pf *pf) 1614 { 1615 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1616 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1617 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1618 queue_work(ice_wq, &pf->serv_task); 1619 } 1620 1621 /** 1622 * ice_service_task_complete - finish up the service task 1623 * @pf: board private structure 1624 */ 1625 static void ice_service_task_complete(struct ice_pf *pf) 1626 { 1627 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1628 1629 /* force memory (pf->state) to sync before next service task */ 1630 smp_mb__before_atomic(); 1631 clear_bit(ICE_SERVICE_SCHED, pf->state); 1632 } 1633 1634 /** 1635 * ice_service_task_stop - stop service task and cancel works 1636 * @pf: board private structure 1637 * 1638 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1639 * 1 otherwise. 1640 */ 1641 static int ice_service_task_stop(struct ice_pf *pf) 1642 { 1643 int ret; 1644 1645 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1646 1647 if (pf->serv_tmr.function) 1648 del_timer_sync(&pf->serv_tmr); 1649 if (pf->serv_task.func) 1650 cancel_work_sync(&pf->serv_task); 1651 1652 clear_bit(ICE_SERVICE_SCHED, pf->state); 1653 return ret; 1654 } 1655 1656 /** 1657 * ice_service_task_restart - restart service task and schedule works 1658 * @pf: board private structure 1659 * 1660 * This function is needed for suspend and resume works (e.g WoL scenario) 1661 */ 1662 static void ice_service_task_restart(struct ice_pf *pf) 1663 { 1664 clear_bit(ICE_SERVICE_DIS, pf->state); 1665 ice_service_task_schedule(pf); 1666 } 1667 1668 /** 1669 * ice_service_timer - timer callback to schedule service task 1670 * @t: pointer to timer_list 1671 */ 1672 static void ice_service_timer(struct timer_list *t) 1673 { 1674 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1675 1676 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1677 ice_service_task_schedule(pf); 1678 } 1679 1680 /** 1681 * ice_handle_mdd_event - handle malicious driver detect event 1682 * @pf: pointer to the PF structure 1683 * 1684 * Called from service task. OICR interrupt handler indicates MDD event. 1685 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1686 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1687 * disable the queue, the PF can be configured to reset the VF using ethtool 1688 * private flag mdd-auto-reset-vf. 1689 */ 1690 static void ice_handle_mdd_event(struct ice_pf *pf) 1691 { 1692 struct device *dev = ice_pf_to_dev(pf); 1693 struct ice_hw *hw = &pf->hw; 1694 struct ice_vf *vf; 1695 unsigned int bkt; 1696 u32 reg; 1697 1698 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1699 /* Since the VF MDD event logging is rate limited, check if 1700 * there are pending MDD events. 1701 */ 1702 ice_print_vfs_mdd_events(pf); 1703 return; 1704 } 1705 1706 /* find what triggered an MDD event */ 1707 reg = rd32(hw, GL_MDET_TX_PQM); 1708 if (reg & GL_MDET_TX_PQM_VALID_M) { 1709 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1710 GL_MDET_TX_PQM_PF_NUM_S; 1711 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1712 GL_MDET_TX_PQM_VF_NUM_S; 1713 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1714 GL_MDET_TX_PQM_MAL_TYPE_S; 1715 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1716 GL_MDET_TX_PQM_QNUM_S); 1717 1718 if (netif_msg_tx_err(pf)) 1719 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1720 event, queue, pf_num, vf_num); 1721 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1722 } 1723 1724 reg = rd32(hw, GL_MDET_TX_TCLAN); 1725 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1726 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1727 GL_MDET_TX_TCLAN_PF_NUM_S; 1728 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_VF_NUM_S; 1730 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1731 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1732 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1733 GL_MDET_TX_TCLAN_QNUM_S); 1734 1735 if (netif_msg_tx_err(pf)) 1736 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1737 event, queue, pf_num, vf_num); 1738 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1739 } 1740 1741 reg = rd32(hw, GL_MDET_RX); 1742 if (reg & GL_MDET_RX_VALID_M) { 1743 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1744 GL_MDET_RX_PF_NUM_S; 1745 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1746 GL_MDET_RX_VF_NUM_S; 1747 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1748 GL_MDET_RX_MAL_TYPE_S; 1749 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1750 GL_MDET_RX_QNUM_S); 1751 1752 if (netif_msg_rx_err(pf)) 1753 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1754 event, queue, pf_num, vf_num); 1755 wr32(hw, GL_MDET_RX, 0xffffffff); 1756 } 1757 1758 /* check to see if this PF caused an MDD event */ 1759 reg = rd32(hw, PF_MDET_TX_PQM); 1760 if (reg & PF_MDET_TX_PQM_VALID_M) { 1761 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1764 } 1765 1766 reg = rd32(hw, PF_MDET_TX_TCLAN); 1767 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1768 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1769 if (netif_msg_tx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1771 } 1772 1773 reg = rd32(hw, PF_MDET_RX); 1774 if (reg & PF_MDET_RX_VALID_M) { 1775 wr32(hw, PF_MDET_RX, 0xFFFF); 1776 if (netif_msg_rx_err(pf)) 1777 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1778 } 1779 1780 /* Check to see if one of the VFs caused an MDD event, and then 1781 * increment counters and set print pending 1782 */ 1783 mutex_lock(&pf->vfs.table_lock); 1784 ice_for_each_vf(pf, bkt, vf) { 1785 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1786 if (reg & VP_MDET_TX_PQM_VALID_M) { 1787 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1788 vf->mdd_tx_events.count++; 1789 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1790 if (netif_msg_tx_err(pf)) 1791 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1792 vf->vf_id); 1793 } 1794 1795 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1796 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1797 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1798 vf->mdd_tx_events.count++; 1799 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1800 if (netif_msg_tx_err(pf)) 1801 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1802 vf->vf_id); 1803 } 1804 1805 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1806 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1807 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1808 vf->mdd_tx_events.count++; 1809 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1810 if (netif_msg_tx_err(pf)) 1811 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1812 vf->vf_id); 1813 } 1814 1815 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1816 if (reg & VP_MDET_RX_VALID_M) { 1817 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1818 vf->mdd_rx_events.count++; 1819 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1820 if (netif_msg_rx_err(pf)) 1821 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1822 vf->vf_id); 1823 1824 /* Since the queue is disabled on VF Rx MDD events, the 1825 * PF can be configured to reset the VF through ethtool 1826 * private flag mdd-auto-reset-vf. 1827 */ 1828 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1829 /* VF MDD event counters will be cleared by 1830 * reset, so print the event prior to reset. 1831 */ 1832 ice_print_vf_rx_mdd_event(vf); 1833 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1834 } 1835 } 1836 } 1837 mutex_unlock(&pf->vfs.table_lock); 1838 1839 ice_print_vfs_mdd_events(pf); 1840 } 1841 1842 /** 1843 * ice_force_phys_link_state - Force the physical link state 1844 * @vsi: VSI to force the physical link state to up/down 1845 * @link_up: true/false indicates to set the physical link to up/down 1846 * 1847 * Force the physical link state by getting the current PHY capabilities from 1848 * hardware and setting the PHY config based on the determined capabilities. If 1849 * link changes a link event will be triggered because both the Enable Automatic 1850 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1851 * 1852 * Returns 0 on success, negative on failure 1853 */ 1854 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1855 { 1856 struct ice_aqc_get_phy_caps_data *pcaps; 1857 struct ice_aqc_set_phy_cfg_data *cfg; 1858 struct ice_port_info *pi; 1859 struct device *dev; 1860 int retcode; 1861 1862 if (!vsi || !vsi->port_info || !vsi->back) 1863 return -EINVAL; 1864 if (vsi->type != ICE_VSI_PF) 1865 return 0; 1866 1867 dev = ice_pf_to_dev(vsi->back); 1868 1869 pi = vsi->port_info; 1870 1871 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1872 if (!pcaps) 1873 return -ENOMEM; 1874 1875 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1876 NULL); 1877 if (retcode) { 1878 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1879 vsi->vsi_num, retcode); 1880 retcode = -EIO; 1881 goto out; 1882 } 1883 1884 /* No change in link */ 1885 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1886 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1887 goto out; 1888 1889 /* Use the current user PHY configuration. The current user PHY 1890 * configuration is initialized during probe from PHY capabilities 1891 * software mode, and updated on set PHY configuration. 1892 */ 1893 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1894 if (!cfg) { 1895 retcode = -ENOMEM; 1896 goto out; 1897 } 1898 1899 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1900 if (link_up) 1901 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1902 else 1903 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1904 1905 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1906 if (retcode) { 1907 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1908 vsi->vsi_num, retcode); 1909 retcode = -EIO; 1910 } 1911 1912 kfree(cfg); 1913 out: 1914 kfree(pcaps); 1915 return retcode; 1916 } 1917 1918 /** 1919 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1920 * @pi: port info structure 1921 * 1922 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1923 */ 1924 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1925 { 1926 struct ice_aqc_get_phy_caps_data *pcaps; 1927 struct ice_pf *pf = pi->hw->back; 1928 int err; 1929 1930 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1931 if (!pcaps) 1932 return -ENOMEM; 1933 1934 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1935 pcaps, NULL); 1936 1937 if (err) { 1938 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1939 goto out; 1940 } 1941 1942 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1943 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1944 1945 out: 1946 kfree(pcaps); 1947 return err; 1948 } 1949 1950 /** 1951 * ice_init_link_dflt_override - Initialize link default override 1952 * @pi: port info structure 1953 * 1954 * Initialize link default override and PHY total port shutdown during probe 1955 */ 1956 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1957 { 1958 struct ice_link_default_override_tlv *ldo; 1959 struct ice_pf *pf = pi->hw->back; 1960 1961 ldo = &pf->link_dflt_override; 1962 if (ice_get_link_default_override(ldo, pi)) 1963 return; 1964 1965 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1966 return; 1967 1968 /* Enable Total Port Shutdown (override/replace link-down-on-close 1969 * ethtool private flag) for ports with Port Disable bit set. 1970 */ 1971 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1972 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1973 } 1974 1975 /** 1976 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1977 * @pi: port info structure 1978 * 1979 * If default override is enabled, initialize the user PHY cfg speed and FEC 1980 * settings using the default override mask from the NVM. 1981 * 1982 * The PHY should only be configured with the default override settings the 1983 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1984 * is used to indicate that the user PHY cfg default override is initialized 1985 * and the PHY has not been configured with the default override settings. The 1986 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1987 * configured. 1988 * 1989 * This function should be called only if the FW doesn't support default 1990 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1991 */ 1992 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1993 { 1994 struct ice_link_default_override_tlv *ldo; 1995 struct ice_aqc_set_phy_cfg_data *cfg; 1996 struct ice_phy_info *phy = &pi->phy; 1997 struct ice_pf *pf = pi->hw->back; 1998 1999 ldo = &pf->link_dflt_override; 2000 2001 /* If link default override is enabled, use to mask NVM PHY capabilities 2002 * for speed and FEC default configuration. 2003 */ 2004 cfg = &phy->curr_user_phy_cfg; 2005 2006 if (ldo->phy_type_low || ldo->phy_type_high) { 2007 cfg->phy_type_low = pf->nvm_phy_type_lo & 2008 cpu_to_le64(ldo->phy_type_low); 2009 cfg->phy_type_high = pf->nvm_phy_type_hi & 2010 cpu_to_le64(ldo->phy_type_high); 2011 } 2012 cfg->link_fec_opt = ldo->fec_options; 2013 phy->curr_user_fec_req = ICE_FEC_AUTO; 2014 2015 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2016 } 2017 2018 /** 2019 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2020 * @pi: port info structure 2021 * 2022 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2023 * mode to default. The PHY defaults are from get PHY capabilities topology 2024 * with media so call when media is first available. An error is returned if 2025 * called when media is not available. The PHY initialization completed state is 2026 * set here. 2027 * 2028 * These configurations are used when setting PHY 2029 * configuration. The user PHY configuration is updated on set PHY 2030 * configuration. Returns 0 on success, negative on failure 2031 */ 2032 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2033 { 2034 struct ice_aqc_get_phy_caps_data *pcaps; 2035 struct ice_phy_info *phy = &pi->phy; 2036 struct ice_pf *pf = pi->hw->back; 2037 int err; 2038 2039 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2040 return -EIO; 2041 2042 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2043 if (!pcaps) 2044 return -ENOMEM; 2045 2046 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2047 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2048 pcaps, NULL); 2049 else 2050 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2051 pcaps, NULL); 2052 if (err) { 2053 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2054 goto err_out; 2055 } 2056 2057 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2058 2059 /* check if lenient mode is supported and enabled */ 2060 if (ice_fw_supports_link_override(pi->hw) && 2061 !(pcaps->module_compliance_enforcement & 2062 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2063 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2064 2065 /* if the FW supports default PHY configuration mode, then the driver 2066 * does not have to apply link override settings. If not, 2067 * initialize user PHY configuration with link override values 2068 */ 2069 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2070 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2071 ice_init_phy_cfg_dflt_override(pi); 2072 goto out; 2073 } 2074 } 2075 2076 /* if link default override is not enabled, set user flow control and 2077 * FEC settings based on what get_phy_caps returned 2078 */ 2079 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2080 pcaps->link_fec_options); 2081 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2082 2083 out: 2084 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2085 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2086 err_out: 2087 kfree(pcaps); 2088 return err; 2089 } 2090 2091 /** 2092 * ice_configure_phy - configure PHY 2093 * @vsi: VSI of PHY 2094 * 2095 * Set the PHY configuration. If the current PHY configuration is the same as 2096 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2097 * configure the based get PHY capabilities for topology with media. 2098 */ 2099 static int ice_configure_phy(struct ice_vsi *vsi) 2100 { 2101 struct device *dev = ice_pf_to_dev(vsi->back); 2102 struct ice_port_info *pi = vsi->port_info; 2103 struct ice_aqc_get_phy_caps_data *pcaps; 2104 struct ice_aqc_set_phy_cfg_data *cfg; 2105 struct ice_phy_info *phy = &pi->phy; 2106 struct ice_pf *pf = vsi->back; 2107 int err; 2108 2109 /* Ensure we have media as we cannot configure a medialess port */ 2110 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2111 return -EPERM; 2112 2113 ice_print_topo_conflict(vsi); 2114 2115 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2116 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2117 return -EPERM; 2118 2119 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2120 return ice_force_phys_link_state(vsi, true); 2121 2122 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2123 if (!pcaps) 2124 return -ENOMEM; 2125 2126 /* Get current PHY config */ 2127 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2128 NULL); 2129 if (err) { 2130 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2131 vsi->vsi_num, err); 2132 goto done; 2133 } 2134 2135 /* If PHY enable link is configured and configuration has not changed, 2136 * there's nothing to do 2137 */ 2138 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2139 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2140 goto done; 2141 2142 /* Use PHY topology as baseline for configuration */ 2143 memset(pcaps, 0, sizeof(*pcaps)); 2144 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2146 pcaps, NULL); 2147 else 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2149 pcaps, NULL); 2150 if (err) { 2151 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2152 vsi->vsi_num, err); 2153 goto done; 2154 } 2155 2156 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2157 if (!cfg) { 2158 err = -ENOMEM; 2159 goto done; 2160 } 2161 2162 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2163 2164 /* Speed - If default override pending, use curr_user_phy_cfg set in 2165 * ice_init_phy_user_cfg_ldo. 2166 */ 2167 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2168 vsi->back->state)) { 2169 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2170 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2171 } else { 2172 u64 phy_low = 0, phy_high = 0; 2173 2174 ice_update_phy_type(&phy_low, &phy_high, 2175 pi->phy.curr_user_speed_req); 2176 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2177 cfg->phy_type_high = pcaps->phy_type_high & 2178 cpu_to_le64(phy_high); 2179 } 2180 2181 /* Can't provide what was requested; use PHY capabilities */ 2182 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2183 cfg->phy_type_low = pcaps->phy_type_low; 2184 cfg->phy_type_high = pcaps->phy_type_high; 2185 } 2186 2187 /* FEC */ 2188 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2189 2190 /* Can't provide what was requested; use PHY capabilities */ 2191 if (cfg->link_fec_opt != 2192 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2193 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2194 cfg->link_fec_opt = pcaps->link_fec_options; 2195 } 2196 2197 /* Flow Control - always supported; no need to check against 2198 * capabilities 2199 */ 2200 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2201 2202 /* Enable link and link update */ 2203 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2204 2205 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2206 if (err) 2207 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2208 vsi->vsi_num, err); 2209 2210 kfree(cfg); 2211 done: 2212 kfree(pcaps); 2213 return err; 2214 } 2215 2216 /** 2217 * ice_check_media_subtask - Check for media 2218 * @pf: pointer to PF struct 2219 * 2220 * If media is available, then initialize PHY user configuration if it is not 2221 * been, and configure the PHY if the interface is up. 2222 */ 2223 static void ice_check_media_subtask(struct ice_pf *pf) 2224 { 2225 struct ice_port_info *pi; 2226 struct ice_vsi *vsi; 2227 int err; 2228 2229 /* No need to check for media if it's already present */ 2230 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2231 return; 2232 2233 vsi = ice_get_main_vsi(pf); 2234 if (!vsi) 2235 return; 2236 2237 /* Refresh link info and check if media is present */ 2238 pi = vsi->port_info; 2239 err = ice_update_link_info(pi); 2240 if (err) 2241 return; 2242 2243 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2244 2245 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2246 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2247 ice_init_phy_user_cfg(pi); 2248 2249 /* PHY settings are reset on media insertion, reconfigure 2250 * PHY to preserve settings. 2251 */ 2252 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2253 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2254 return; 2255 2256 err = ice_configure_phy(vsi); 2257 if (!err) 2258 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2259 2260 /* A Link Status Event will be generated; the event handler 2261 * will complete bringing the interface up 2262 */ 2263 } 2264 } 2265 2266 /** 2267 * ice_service_task - manage and run subtasks 2268 * @work: pointer to work_struct contained by the PF struct 2269 */ 2270 static void ice_service_task(struct work_struct *work) 2271 { 2272 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2273 unsigned long start_time = jiffies; 2274 2275 /* subtasks */ 2276 2277 /* process reset requests first */ 2278 ice_reset_subtask(pf); 2279 2280 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2281 if (ice_is_reset_in_progress(pf->state) || 2282 test_bit(ICE_SUSPENDED, pf->state) || 2283 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2284 ice_service_task_complete(pf); 2285 return; 2286 } 2287 2288 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2289 struct iidc_event *event; 2290 2291 event = kzalloc(sizeof(*event), GFP_KERNEL); 2292 if (event) { 2293 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2294 /* report the entire OICR value to AUX driver */ 2295 swap(event->reg, pf->oicr_err_reg); 2296 ice_send_event_to_aux(pf, event); 2297 kfree(event); 2298 } 2299 } 2300 2301 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2302 /* Plug aux device per request */ 2303 ice_plug_aux_dev(pf); 2304 2305 /* Mark plugging as done but check whether unplug was 2306 * requested during ice_plug_aux_dev() call 2307 * (e.g. from ice_clear_rdma_cap()) and if so then 2308 * plug aux device. 2309 */ 2310 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2311 ice_unplug_aux_dev(pf); 2312 } 2313 2314 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2315 struct iidc_event *event; 2316 2317 event = kzalloc(sizeof(*event), GFP_KERNEL); 2318 if (event) { 2319 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2320 ice_send_event_to_aux(pf, event); 2321 kfree(event); 2322 } 2323 } 2324 2325 ice_clean_adminq_subtask(pf); 2326 ice_check_media_subtask(pf); 2327 ice_check_for_hang_subtask(pf); 2328 ice_sync_fltr_subtask(pf); 2329 ice_handle_mdd_event(pf); 2330 ice_watchdog_subtask(pf); 2331 2332 if (ice_is_safe_mode(pf)) { 2333 ice_service_task_complete(pf); 2334 return; 2335 } 2336 2337 ice_process_vflr_event(pf); 2338 ice_clean_mailboxq_subtask(pf); 2339 ice_clean_sbq_subtask(pf); 2340 ice_sync_arfs_fltrs(pf); 2341 ice_flush_fdir_ctx(pf); 2342 2343 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2344 ice_service_task_complete(pf); 2345 2346 /* If the tasks have taken longer than one service timer period 2347 * or there is more work to be done, reset the service timer to 2348 * schedule the service task now. 2349 */ 2350 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2351 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2352 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2353 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2355 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2357 mod_timer(&pf->serv_tmr, jiffies); 2358 } 2359 2360 /** 2361 * ice_set_ctrlq_len - helper function to set controlq length 2362 * @hw: pointer to the HW instance 2363 */ 2364 static void ice_set_ctrlq_len(struct ice_hw *hw) 2365 { 2366 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2367 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2368 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2369 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2370 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2371 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2372 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2373 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2374 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2375 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2376 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2377 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2378 } 2379 2380 /** 2381 * ice_schedule_reset - schedule a reset 2382 * @pf: board private structure 2383 * @reset: reset being requested 2384 */ 2385 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2386 { 2387 struct device *dev = ice_pf_to_dev(pf); 2388 2389 /* bail out if earlier reset has failed */ 2390 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2391 dev_dbg(dev, "earlier reset has failed\n"); 2392 return -EIO; 2393 } 2394 /* bail if reset/recovery already in progress */ 2395 if (ice_is_reset_in_progress(pf->state)) { 2396 dev_dbg(dev, "Reset already in progress\n"); 2397 return -EBUSY; 2398 } 2399 2400 ice_unplug_aux_dev(pf); 2401 2402 switch (reset) { 2403 case ICE_RESET_PFR: 2404 set_bit(ICE_PFR_REQ, pf->state); 2405 break; 2406 case ICE_RESET_CORER: 2407 set_bit(ICE_CORER_REQ, pf->state); 2408 break; 2409 case ICE_RESET_GLOBR: 2410 set_bit(ICE_GLOBR_REQ, pf->state); 2411 break; 2412 default: 2413 return -EINVAL; 2414 } 2415 2416 ice_service_task_schedule(pf); 2417 return 0; 2418 } 2419 2420 /** 2421 * ice_irq_affinity_notify - Callback for affinity changes 2422 * @notify: context as to what irq was changed 2423 * @mask: the new affinity mask 2424 * 2425 * This is a callback function used by the irq_set_affinity_notifier function 2426 * so that we may register to receive changes to the irq affinity masks. 2427 */ 2428 static void 2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2430 const cpumask_t *mask) 2431 { 2432 struct ice_q_vector *q_vector = 2433 container_of(notify, struct ice_q_vector, affinity_notify); 2434 2435 cpumask_copy(&q_vector->affinity_mask, mask); 2436 } 2437 2438 /** 2439 * ice_irq_affinity_release - Callback for affinity notifier release 2440 * @ref: internal core kernel usage 2441 * 2442 * This is a callback function used by the irq_set_affinity_notifier function 2443 * to inform the current notification subscriber that they will no longer 2444 * receive notifications. 2445 */ 2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2447 2448 /** 2449 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2450 * @vsi: the VSI being configured 2451 */ 2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2453 { 2454 struct ice_hw *hw = &vsi->back->hw; 2455 int i; 2456 2457 ice_for_each_q_vector(vsi, i) 2458 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2459 2460 ice_flush(hw); 2461 return 0; 2462 } 2463 2464 /** 2465 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2466 * @vsi: the VSI being configured 2467 * @basename: name for the vector 2468 */ 2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2470 { 2471 int q_vectors = vsi->num_q_vectors; 2472 struct ice_pf *pf = vsi->back; 2473 int base = vsi->base_vector; 2474 struct device *dev; 2475 int rx_int_idx = 0; 2476 int tx_int_idx = 0; 2477 int vector, err; 2478 int irq_num; 2479 2480 dev = ice_pf_to_dev(pf); 2481 for (vector = 0; vector < q_vectors; vector++) { 2482 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2483 2484 irq_num = pf->msix_entries[base + vector].vector; 2485 2486 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2487 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2488 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2489 tx_int_idx++; 2490 } else if (q_vector->rx.rx_ring) { 2491 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2492 "%s-%s-%d", basename, "rx", rx_int_idx++); 2493 } else if (q_vector->tx.tx_ring) { 2494 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2495 "%s-%s-%d", basename, "tx", tx_int_idx++); 2496 } else { 2497 /* skip this unused q_vector */ 2498 continue; 2499 } 2500 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2501 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2502 IRQF_SHARED, q_vector->name, 2503 q_vector); 2504 else 2505 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2506 0, q_vector->name, q_vector); 2507 if (err) { 2508 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2509 err); 2510 goto free_q_irqs; 2511 } 2512 2513 /* register for affinity change notifications */ 2514 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2515 struct irq_affinity_notify *affinity_notify; 2516 2517 affinity_notify = &q_vector->affinity_notify; 2518 affinity_notify->notify = ice_irq_affinity_notify; 2519 affinity_notify->release = ice_irq_affinity_release; 2520 irq_set_affinity_notifier(irq_num, affinity_notify); 2521 } 2522 2523 /* assign the mask for this irq */ 2524 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2525 } 2526 2527 err = ice_set_cpu_rx_rmap(vsi); 2528 if (err) { 2529 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2530 vsi->vsi_num, ERR_PTR(err)); 2531 goto free_q_irqs; 2532 } 2533 2534 vsi->irqs_ready = true; 2535 return 0; 2536 2537 free_q_irqs: 2538 while (vector) { 2539 vector--; 2540 irq_num = pf->msix_entries[base + vector].vector; 2541 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2542 irq_set_affinity_notifier(irq_num, NULL); 2543 irq_set_affinity_hint(irq_num, NULL); 2544 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2545 } 2546 return err; 2547 } 2548 2549 /** 2550 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2551 * @vsi: VSI to setup Tx rings used by XDP 2552 * 2553 * Return 0 on success and negative value on error 2554 */ 2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2556 { 2557 struct device *dev = ice_pf_to_dev(vsi->back); 2558 struct ice_tx_desc *tx_desc; 2559 int i, j; 2560 2561 ice_for_each_xdp_txq(vsi, i) { 2562 u16 xdp_q_idx = vsi->alloc_txq + i; 2563 struct ice_tx_ring *xdp_ring; 2564 2565 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2566 2567 if (!xdp_ring) 2568 goto free_xdp_rings; 2569 2570 xdp_ring->q_index = xdp_q_idx; 2571 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2572 xdp_ring->vsi = vsi; 2573 xdp_ring->netdev = NULL; 2574 xdp_ring->dev = dev; 2575 xdp_ring->count = vsi->num_tx_desc; 2576 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2577 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2578 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2579 if (ice_setup_tx_ring(xdp_ring)) 2580 goto free_xdp_rings; 2581 ice_set_ring_xdp(xdp_ring); 2582 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2583 spin_lock_init(&xdp_ring->tx_lock); 2584 for (j = 0; j < xdp_ring->count; j++) { 2585 tx_desc = ICE_TX_DESC(xdp_ring, j); 2586 tx_desc->cmd_type_offset_bsz = 0; 2587 } 2588 } 2589 2590 ice_for_each_rxq(vsi, i) { 2591 if (static_key_enabled(&ice_xdp_locking_key)) 2592 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2593 else 2594 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2595 } 2596 2597 return 0; 2598 2599 free_xdp_rings: 2600 for (; i >= 0; i--) 2601 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2602 ice_free_tx_ring(vsi->xdp_rings[i]); 2603 return -ENOMEM; 2604 } 2605 2606 /** 2607 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2608 * @vsi: VSI to set the bpf prog on 2609 * @prog: the bpf prog pointer 2610 */ 2611 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2612 { 2613 struct bpf_prog *old_prog; 2614 int i; 2615 2616 old_prog = xchg(&vsi->xdp_prog, prog); 2617 if (old_prog) 2618 bpf_prog_put(old_prog); 2619 2620 ice_for_each_rxq(vsi, i) 2621 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2622 } 2623 2624 /** 2625 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2626 * @vsi: VSI to bring up Tx rings used by XDP 2627 * @prog: bpf program that will be assigned to VSI 2628 * 2629 * Return 0 on success and negative value on error 2630 */ 2631 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2632 { 2633 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2634 int xdp_rings_rem = vsi->num_xdp_txq; 2635 struct ice_pf *pf = vsi->back; 2636 struct ice_qs_cfg xdp_qs_cfg = { 2637 .qs_mutex = &pf->avail_q_mutex, 2638 .pf_map = pf->avail_txqs, 2639 .pf_map_size = pf->max_pf_txqs, 2640 .q_count = vsi->num_xdp_txq, 2641 .scatter_count = ICE_MAX_SCATTER_TXQS, 2642 .vsi_map = vsi->txq_map, 2643 .vsi_map_offset = vsi->alloc_txq, 2644 .mapping_mode = ICE_VSI_MAP_CONTIG 2645 }; 2646 struct device *dev; 2647 int i, v_idx; 2648 int status; 2649 2650 dev = ice_pf_to_dev(pf); 2651 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2652 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2653 if (!vsi->xdp_rings) 2654 return -ENOMEM; 2655 2656 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2657 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2658 goto err_map_xdp; 2659 2660 if (static_key_enabled(&ice_xdp_locking_key)) 2661 netdev_warn(vsi->netdev, 2662 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2663 2664 if (ice_xdp_alloc_setup_rings(vsi)) 2665 goto clear_xdp_rings; 2666 2667 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2668 ice_for_each_q_vector(vsi, v_idx) { 2669 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2670 int xdp_rings_per_v, q_id, q_base; 2671 2672 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2673 vsi->num_q_vectors - v_idx); 2674 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2675 2676 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2677 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2678 2679 xdp_ring->q_vector = q_vector; 2680 xdp_ring->next = q_vector->tx.tx_ring; 2681 q_vector->tx.tx_ring = xdp_ring; 2682 } 2683 xdp_rings_rem -= xdp_rings_per_v; 2684 } 2685 2686 /* omit the scheduler update if in reset path; XDP queues will be 2687 * taken into account at the end of ice_vsi_rebuild, where 2688 * ice_cfg_vsi_lan is being called 2689 */ 2690 if (ice_is_reset_in_progress(pf->state)) 2691 return 0; 2692 2693 /* tell the Tx scheduler that right now we have 2694 * additional queues 2695 */ 2696 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2697 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2698 2699 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2700 max_txqs); 2701 if (status) { 2702 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2703 status); 2704 goto clear_xdp_rings; 2705 } 2706 2707 /* assign the prog only when it's not already present on VSI; 2708 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2709 * VSI rebuild that happens under ethtool -L can expose us to 2710 * the bpf_prog refcount issues as we would be swapping same 2711 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2712 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2713 * this is not harmful as dev_xdp_install bumps the refcount 2714 * before calling the op exposed by the driver; 2715 */ 2716 if (!ice_is_xdp_ena_vsi(vsi)) 2717 ice_vsi_assign_bpf_prog(vsi, prog); 2718 2719 return 0; 2720 clear_xdp_rings: 2721 ice_for_each_xdp_txq(vsi, i) 2722 if (vsi->xdp_rings[i]) { 2723 kfree_rcu(vsi->xdp_rings[i], rcu); 2724 vsi->xdp_rings[i] = NULL; 2725 } 2726 2727 err_map_xdp: 2728 mutex_lock(&pf->avail_q_mutex); 2729 ice_for_each_xdp_txq(vsi, i) { 2730 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2731 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2732 } 2733 mutex_unlock(&pf->avail_q_mutex); 2734 2735 devm_kfree(dev, vsi->xdp_rings); 2736 return -ENOMEM; 2737 } 2738 2739 /** 2740 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2741 * @vsi: VSI to remove XDP rings 2742 * 2743 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2744 * resources 2745 */ 2746 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2747 { 2748 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2749 struct ice_pf *pf = vsi->back; 2750 int i, v_idx; 2751 2752 /* q_vectors are freed in reset path so there's no point in detaching 2753 * rings; in case of rebuild being triggered not from reset bits 2754 * in pf->state won't be set, so additionally check first q_vector 2755 * against NULL 2756 */ 2757 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2758 goto free_qmap; 2759 2760 ice_for_each_q_vector(vsi, v_idx) { 2761 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2762 struct ice_tx_ring *ring; 2763 2764 ice_for_each_tx_ring(ring, q_vector->tx) 2765 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2766 break; 2767 2768 /* restore the value of last node prior to XDP setup */ 2769 q_vector->tx.tx_ring = ring; 2770 } 2771 2772 free_qmap: 2773 mutex_lock(&pf->avail_q_mutex); 2774 ice_for_each_xdp_txq(vsi, i) { 2775 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2776 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2777 } 2778 mutex_unlock(&pf->avail_q_mutex); 2779 2780 ice_for_each_xdp_txq(vsi, i) 2781 if (vsi->xdp_rings[i]) { 2782 if (vsi->xdp_rings[i]->desc) { 2783 synchronize_rcu(); 2784 ice_free_tx_ring(vsi->xdp_rings[i]); 2785 } 2786 kfree_rcu(vsi->xdp_rings[i], rcu); 2787 vsi->xdp_rings[i] = NULL; 2788 } 2789 2790 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2791 vsi->xdp_rings = NULL; 2792 2793 if (static_key_enabled(&ice_xdp_locking_key)) 2794 static_branch_dec(&ice_xdp_locking_key); 2795 2796 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2797 return 0; 2798 2799 ice_vsi_assign_bpf_prog(vsi, NULL); 2800 2801 /* notify Tx scheduler that we destroyed XDP queues and bring 2802 * back the old number of child nodes 2803 */ 2804 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2805 max_txqs[i] = vsi->num_txq; 2806 2807 /* change number of XDP Tx queues to 0 */ 2808 vsi->num_xdp_txq = 0; 2809 2810 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2811 max_txqs); 2812 } 2813 2814 /** 2815 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2816 * @vsi: VSI to schedule napi on 2817 */ 2818 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2819 { 2820 int i; 2821 2822 ice_for_each_rxq(vsi, i) { 2823 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2824 2825 if (rx_ring->xsk_pool) 2826 napi_schedule(&rx_ring->q_vector->napi); 2827 } 2828 } 2829 2830 /** 2831 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2832 * @vsi: VSI to determine the count of XDP Tx qs 2833 * 2834 * returns 0 if Tx qs count is higher than at least half of CPU count, 2835 * -ENOMEM otherwise 2836 */ 2837 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2838 { 2839 u16 avail = ice_get_avail_txq_count(vsi->back); 2840 u16 cpus = num_possible_cpus(); 2841 2842 if (avail < cpus / 2) 2843 return -ENOMEM; 2844 2845 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2846 2847 if (vsi->num_xdp_txq < cpus) 2848 static_branch_inc(&ice_xdp_locking_key); 2849 2850 return 0; 2851 } 2852 2853 /** 2854 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2855 * @vsi: VSI to setup XDP for 2856 * @prog: XDP program 2857 * @extack: netlink extended ack 2858 */ 2859 static int 2860 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2861 struct netlink_ext_ack *extack) 2862 { 2863 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2864 bool if_running = netif_running(vsi->netdev); 2865 int ret = 0, xdp_ring_err = 0; 2866 2867 if (frame_size > vsi->rx_buf_len) { 2868 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2869 return -EOPNOTSUPP; 2870 } 2871 2872 /* need to stop netdev while setting up the program for Rx rings */ 2873 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2874 ret = ice_down(vsi); 2875 if (ret) { 2876 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2877 return ret; 2878 } 2879 } 2880 2881 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2882 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2883 if (xdp_ring_err) { 2884 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2885 } else { 2886 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2887 if (xdp_ring_err) 2888 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2889 } 2890 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2891 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2892 if (xdp_ring_err) 2893 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2894 } else { 2895 /* safe to call even when prog == vsi->xdp_prog as 2896 * dev_xdp_install in net/core/dev.c incremented prog's 2897 * refcount so corresponding bpf_prog_put won't cause 2898 * underflow 2899 */ 2900 ice_vsi_assign_bpf_prog(vsi, prog); 2901 } 2902 2903 if (if_running) 2904 ret = ice_up(vsi); 2905 2906 if (!ret && prog) 2907 ice_vsi_rx_napi_schedule(vsi); 2908 2909 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2910 } 2911 2912 /** 2913 * ice_xdp_safe_mode - XDP handler for safe mode 2914 * @dev: netdevice 2915 * @xdp: XDP command 2916 */ 2917 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2918 struct netdev_bpf *xdp) 2919 { 2920 NL_SET_ERR_MSG_MOD(xdp->extack, 2921 "Please provide working DDP firmware package in order to use XDP\n" 2922 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2923 return -EOPNOTSUPP; 2924 } 2925 2926 /** 2927 * ice_xdp - implements XDP handler 2928 * @dev: netdevice 2929 * @xdp: XDP command 2930 */ 2931 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2932 { 2933 struct ice_netdev_priv *np = netdev_priv(dev); 2934 struct ice_vsi *vsi = np->vsi; 2935 2936 if (vsi->type != ICE_VSI_PF) { 2937 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2938 return -EINVAL; 2939 } 2940 2941 switch (xdp->command) { 2942 case XDP_SETUP_PROG: 2943 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2944 case XDP_SETUP_XSK_POOL: 2945 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2946 xdp->xsk.queue_id); 2947 default: 2948 return -EINVAL; 2949 } 2950 } 2951 2952 /** 2953 * ice_ena_misc_vector - enable the non-queue interrupts 2954 * @pf: board private structure 2955 */ 2956 static void ice_ena_misc_vector(struct ice_pf *pf) 2957 { 2958 struct ice_hw *hw = &pf->hw; 2959 u32 val; 2960 2961 /* Disable anti-spoof detection interrupt to prevent spurious event 2962 * interrupts during a function reset. Anti-spoof functionally is 2963 * still supported. 2964 */ 2965 val = rd32(hw, GL_MDCK_TX_TDPU); 2966 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2967 wr32(hw, GL_MDCK_TX_TDPU, val); 2968 2969 /* clear things first */ 2970 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2971 rd32(hw, PFINT_OICR); /* read to clear */ 2972 2973 val = (PFINT_OICR_ECC_ERR_M | 2974 PFINT_OICR_MAL_DETECT_M | 2975 PFINT_OICR_GRST_M | 2976 PFINT_OICR_PCI_EXCEPTION_M | 2977 PFINT_OICR_VFLR_M | 2978 PFINT_OICR_HMC_ERR_M | 2979 PFINT_OICR_PE_PUSH_M | 2980 PFINT_OICR_PE_CRITERR_M); 2981 2982 wr32(hw, PFINT_OICR_ENA, val); 2983 2984 /* SW_ITR_IDX = 0, but don't change INTENA */ 2985 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2986 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2987 } 2988 2989 /** 2990 * ice_misc_intr - misc interrupt handler 2991 * @irq: interrupt number 2992 * @data: pointer to a q_vector 2993 */ 2994 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2995 { 2996 struct ice_pf *pf = (struct ice_pf *)data; 2997 struct ice_hw *hw = &pf->hw; 2998 irqreturn_t ret = IRQ_NONE; 2999 struct device *dev; 3000 u32 oicr, ena_mask; 3001 3002 dev = ice_pf_to_dev(pf); 3003 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3004 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3005 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3006 3007 oicr = rd32(hw, PFINT_OICR); 3008 ena_mask = rd32(hw, PFINT_OICR_ENA); 3009 3010 if (oicr & PFINT_OICR_SWINT_M) { 3011 ena_mask &= ~PFINT_OICR_SWINT_M; 3012 pf->sw_int_count++; 3013 } 3014 3015 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3016 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3017 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3018 } 3019 if (oicr & PFINT_OICR_VFLR_M) { 3020 /* disable any further VFLR event notifications */ 3021 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3022 u32 reg = rd32(hw, PFINT_OICR_ENA); 3023 3024 reg &= ~PFINT_OICR_VFLR_M; 3025 wr32(hw, PFINT_OICR_ENA, reg); 3026 } else { 3027 ena_mask &= ~PFINT_OICR_VFLR_M; 3028 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3029 } 3030 } 3031 3032 if (oicr & PFINT_OICR_GRST_M) { 3033 u32 reset; 3034 3035 /* we have a reset warning */ 3036 ena_mask &= ~PFINT_OICR_GRST_M; 3037 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3038 GLGEN_RSTAT_RESET_TYPE_S; 3039 3040 if (reset == ICE_RESET_CORER) 3041 pf->corer_count++; 3042 else if (reset == ICE_RESET_GLOBR) 3043 pf->globr_count++; 3044 else if (reset == ICE_RESET_EMPR) 3045 pf->empr_count++; 3046 else 3047 dev_dbg(dev, "Invalid reset type %d\n", reset); 3048 3049 /* If a reset cycle isn't already in progress, we set a bit in 3050 * pf->state so that the service task can start a reset/rebuild. 3051 */ 3052 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3053 if (reset == ICE_RESET_CORER) 3054 set_bit(ICE_CORER_RECV, pf->state); 3055 else if (reset == ICE_RESET_GLOBR) 3056 set_bit(ICE_GLOBR_RECV, pf->state); 3057 else 3058 set_bit(ICE_EMPR_RECV, pf->state); 3059 3060 /* There are couple of different bits at play here. 3061 * hw->reset_ongoing indicates whether the hardware is 3062 * in reset. This is set to true when a reset interrupt 3063 * is received and set back to false after the driver 3064 * has determined that the hardware is out of reset. 3065 * 3066 * ICE_RESET_OICR_RECV in pf->state indicates 3067 * that a post reset rebuild is required before the 3068 * driver is operational again. This is set above. 3069 * 3070 * As this is the start of the reset/rebuild cycle, set 3071 * both to indicate that. 3072 */ 3073 hw->reset_ongoing = true; 3074 } 3075 } 3076 3077 if (oicr & PFINT_OICR_TSYN_TX_M) { 3078 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3079 ice_ptp_process_ts(pf); 3080 } 3081 3082 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3083 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3084 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3085 3086 /* Save EVENTs from GTSYN register */ 3087 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3088 GLTSYN_STAT_EVENT1_M | 3089 GLTSYN_STAT_EVENT2_M); 3090 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3091 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3092 } 3093 3094 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3095 if (oicr & ICE_AUX_CRIT_ERR) { 3096 pf->oicr_err_reg |= oicr; 3097 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3098 ena_mask &= ~ICE_AUX_CRIT_ERR; 3099 } 3100 3101 /* Report any remaining unexpected interrupts */ 3102 oicr &= ena_mask; 3103 if (oicr) { 3104 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3105 /* If a critical error is pending there is no choice but to 3106 * reset the device. 3107 */ 3108 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3109 PFINT_OICR_ECC_ERR_M)) { 3110 set_bit(ICE_PFR_REQ, pf->state); 3111 ice_service_task_schedule(pf); 3112 } 3113 } 3114 ret = IRQ_HANDLED; 3115 3116 ice_service_task_schedule(pf); 3117 ice_irq_dynamic_ena(hw, NULL, NULL); 3118 3119 return ret; 3120 } 3121 3122 /** 3123 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3124 * @hw: pointer to HW structure 3125 */ 3126 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3127 { 3128 /* disable Admin queue Interrupt causes */ 3129 wr32(hw, PFINT_FW_CTL, 3130 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3131 3132 /* disable Mailbox queue Interrupt causes */ 3133 wr32(hw, PFINT_MBX_CTL, 3134 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3135 3136 wr32(hw, PFINT_SB_CTL, 3137 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3138 3139 /* disable Control queue Interrupt causes */ 3140 wr32(hw, PFINT_OICR_CTL, 3141 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3142 3143 ice_flush(hw); 3144 } 3145 3146 /** 3147 * ice_free_irq_msix_misc - Unroll misc vector setup 3148 * @pf: board private structure 3149 */ 3150 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3151 { 3152 struct ice_hw *hw = &pf->hw; 3153 3154 ice_dis_ctrlq_interrupts(hw); 3155 3156 /* disable OICR interrupt */ 3157 wr32(hw, PFINT_OICR_ENA, 0); 3158 ice_flush(hw); 3159 3160 if (pf->msix_entries) { 3161 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3162 devm_free_irq(ice_pf_to_dev(pf), 3163 pf->msix_entries[pf->oicr_idx].vector, pf); 3164 } 3165 3166 pf->num_avail_sw_msix += 1; 3167 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3168 } 3169 3170 /** 3171 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3172 * @hw: pointer to HW structure 3173 * @reg_idx: HW vector index to associate the control queue interrupts with 3174 */ 3175 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3176 { 3177 u32 val; 3178 3179 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3180 PFINT_OICR_CTL_CAUSE_ENA_M); 3181 wr32(hw, PFINT_OICR_CTL, val); 3182 3183 /* enable Admin queue Interrupt causes */ 3184 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3185 PFINT_FW_CTL_CAUSE_ENA_M); 3186 wr32(hw, PFINT_FW_CTL, val); 3187 3188 /* enable Mailbox queue Interrupt causes */ 3189 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3190 PFINT_MBX_CTL_CAUSE_ENA_M); 3191 wr32(hw, PFINT_MBX_CTL, val); 3192 3193 /* This enables Sideband queue Interrupt causes */ 3194 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3195 PFINT_SB_CTL_CAUSE_ENA_M); 3196 wr32(hw, PFINT_SB_CTL, val); 3197 3198 ice_flush(hw); 3199 } 3200 3201 /** 3202 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3203 * @pf: board private structure 3204 * 3205 * This sets up the handler for MSIX 0, which is used to manage the 3206 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3207 * when in MSI or Legacy interrupt mode. 3208 */ 3209 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3210 { 3211 struct device *dev = ice_pf_to_dev(pf); 3212 struct ice_hw *hw = &pf->hw; 3213 int oicr_idx, err = 0; 3214 3215 if (!pf->int_name[0]) 3216 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3217 dev_driver_string(dev), dev_name(dev)); 3218 3219 /* Do not request IRQ but do enable OICR interrupt since settings are 3220 * lost during reset. Note that this function is called only during 3221 * rebuild path and not while reset is in progress. 3222 */ 3223 if (ice_is_reset_in_progress(pf->state)) 3224 goto skip_req_irq; 3225 3226 /* reserve one vector in irq_tracker for misc interrupts */ 3227 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3228 if (oicr_idx < 0) 3229 return oicr_idx; 3230 3231 pf->num_avail_sw_msix -= 1; 3232 pf->oicr_idx = (u16)oicr_idx; 3233 3234 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3235 ice_misc_intr, 0, pf->int_name, pf); 3236 if (err) { 3237 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3238 pf->int_name, err); 3239 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3240 pf->num_avail_sw_msix += 1; 3241 return err; 3242 } 3243 3244 skip_req_irq: 3245 ice_ena_misc_vector(pf); 3246 3247 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3248 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3249 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3250 3251 ice_flush(hw); 3252 ice_irq_dynamic_ena(hw, NULL, NULL); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * ice_napi_add - register NAPI handler for the VSI 3259 * @vsi: VSI for which NAPI handler is to be registered 3260 * 3261 * This function is only called in the driver's load path. Registering the NAPI 3262 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3263 * reset/rebuild, etc.) 3264 */ 3265 static void ice_napi_add(struct ice_vsi *vsi) 3266 { 3267 int v_idx; 3268 3269 if (!vsi->netdev) 3270 return; 3271 3272 ice_for_each_q_vector(vsi, v_idx) 3273 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3274 ice_napi_poll, NAPI_POLL_WEIGHT); 3275 } 3276 3277 /** 3278 * ice_set_ops - set netdev and ethtools ops for the given netdev 3279 * @netdev: netdev instance 3280 */ 3281 static void ice_set_ops(struct net_device *netdev) 3282 { 3283 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3284 3285 if (ice_is_safe_mode(pf)) { 3286 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3287 ice_set_ethtool_safe_mode_ops(netdev); 3288 return; 3289 } 3290 3291 netdev->netdev_ops = &ice_netdev_ops; 3292 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3293 ice_set_ethtool_ops(netdev); 3294 } 3295 3296 /** 3297 * ice_set_netdev_features - set features for the given netdev 3298 * @netdev: netdev instance 3299 */ 3300 static void ice_set_netdev_features(struct net_device *netdev) 3301 { 3302 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3303 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3304 netdev_features_t csumo_features; 3305 netdev_features_t vlano_features; 3306 netdev_features_t dflt_features; 3307 netdev_features_t tso_features; 3308 3309 if (ice_is_safe_mode(pf)) { 3310 /* safe mode */ 3311 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3312 netdev->hw_features = netdev->features; 3313 return; 3314 } 3315 3316 dflt_features = NETIF_F_SG | 3317 NETIF_F_HIGHDMA | 3318 NETIF_F_NTUPLE | 3319 NETIF_F_RXHASH; 3320 3321 csumo_features = NETIF_F_RXCSUM | 3322 NETIF_F_IP_CSUM | 3323 NETIF_F_SCTP_CRC | 3324 NETIF_F_IPV6_CSUM; 3325 3326 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3327 NETIF_F_HW_VLAN_CTAG_TX | 3328 NETIF_F_HW_VLAN_CTAG_RX; 3329 3330 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3331 if (is_dvm_ena) 3332 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3333 3334 tso_features = NETIF_F_TSO | 3335 NETIF_F_TSO_ECN | 3336 NETIF_F_TSO6 | 3337 NETIF_F_GSO_GRE | 3338 NETIF_F_GSO_UDP_TUNNEL | 3339 NETIF_F_GSO_GRE_CSUM | 3340 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3341 NETIF_F_GSO_PARTIAL | 3342 NETIF_F_GSO_IPXIP4 | 3343 NETIF_F_GSO_IPXIP6 | 3344 NETIF_F_GSO_UDP_L4; 3345 3346 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3347 NETIF_F_GSO_GRE_CSUM; 3348 /* set features that user can change */ 3349 netdev->hw_features = dflt_features | csumo_features | 3350 vlano_features | tso_features; 3351 3352 /* add support for HW_CSUM on packets with MPLS header */ 3353 netdev->mpls_features = NETIF_F_HW_CSUM | 3354 NETIF_F_TSO | 3355 NETIF_F_TSO6; 3356 3357 /* enable features */ 3358 netdev->features |= netdev->hw_features; 3359 3360 netdev->hw_features |= NETIF_F_HW_TC; 3361 3362 /* encap and VLAN devices inherit default, csumo and tso features */ 3363 netdev->hw_enc_features |= dflt_features | csumo_features | 3364 tso_features; 3365 netdev->vlan_features |= dflt_features | csumo_features | 3366 tso_features; 3367 3368 /* advertise support but don't enable by default since only one type of 3369 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3370 * type turns on the other has to be turned off. This is enforced by the 3371 * ice_fix_features() ndo callback. 3372 */ 3373 if (is_dvm_ena) 3374 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3375 NETIF_F_HW_VLAN_STAG_TX; 3376 } 3377 3378 /** 3379 * ice_cfg_netdev - Allocate, configure and register a netdev 3380 * @vsi: the VSI associated with the new netdev 3381 * 3382 * Returns 0 on success, negative value on failure 3383 */ 3384 static int ice_cfg_netdev(struct ice_vsi *vsi) 3385 { 3386 struct ice_netdev_priv *np; 3387 struct net_device *netdev; 3388 u8 mac_addr[ETH_ALEN]; 3389 3390 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3391 vsi->alloc_rxq); 3392 if (!netdev) 3393 return -ENOMEM; 3394 3395 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3396 vsi->netdev = netdev; 3397 np = netdev_priv(netdev); 3398 np->vsi = vsi; 3399 3400 ice_set_netdev_features(netdev); 3401 3402 ice_set_ops(netdev); 3403 3404 if (vsi->type == ICE_VSI_PF) { 3405 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3406 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3407 eth_hw_addr_set(netdev, mac_addr); 3408 ether_addr_copy(netdev->perm_addr, mac_addr); 3409 } 3410 3411 netdev->priv_flags |= IFF_UNICAST_FLT; 3412 3413 /* Setup netdev TC information */ 3414 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3415 3416 /* setup watchdog timeout value to be 5 second */ 3417 netdev->watchdog_timeo = 5 * HZ; 3418 3419 netdev->min_mtu = ETH_MIN_MTU; 3420 netdev->max_mtu = ICE_MAX_MTU; 3421 3422 return 0; 3423 } 3424 3425 /** 3426 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3427 * @lut: Lookup table 3428 * @rss_table_size: Lookup table size 3429 * @rss_size: Range of queue number for hashing 3430 */ 3431 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3432 { 3433 u16 i; 3434 3435 for (i = 0; i < rss_table_size; i++) 3436 lut[i] = i % rss_size; 3437 } 3438 3439 /** 3440 * ice_pf_vsi_setup - Set up a PF VSI 3441 * @pf: board private structure 3442 * @pi: pointer to the port_info instance 3443 * 3444 * Returns pointer to the successfully allocated VSI software struct 3445 * on success, otherwise returns NULL on failure. 3446 */ 3447 static struct ice_vsi * 3448 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3449 { 3450 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3451 } 3452 3453 static struct ice_vsi * 3454 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3455 struct ice_channel *ch) 3456 { 3457 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3458 } 3459 3460 /** 3461 * ice_ctrl_vsi_setup - Set up a control VSI 3462 * @pf: board private structure 3463 * @pi: pointer to the port_info instance 3464 * 3465 * Returns pointer to the successfully allocated VSI software struct 3466 * on success, otherwise returns NULL on failure. 3467 */ 3468 static struct ice_vsi * 3469 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3470 { 3471 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3472 } 3473 3474 /** 3475 * ice_lb_vsi_setup - Set up a loopback VSI 3476 * @pf: board private structure 3477 * @pi: pointer to the port_info instance 3478 * 3479 * Returns pointer to the successfully allocated VSI software struct 3480 * on success, otherwise returns NULL on failure. 3481 */ 3482 struct ice_vsi * 3483 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3484 { 3485 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3486 } 3487 3488 /** 3489 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3490 * @netdev: network interface to be adjusted 3491 * @proto: VLAN TPID 3492 * @vid: VLAN ID to be added 3493 * 3494 * net_device_ops implementation for adding VLAN IDs 3495 */ 3496 static int 3497 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3498 { 3499 struct ice_netdev_priv *np = netdev_priv(netdev); 3500 struct ice_vsi_vlan_ops *vlan_ops; 3501 struct ice_vsi *vsi = np->vsi; 3502 struct ice_vlan vlan; 3503 int ret; 3504 3505 /* VLAN 0 is added by default during load/reset */ 3506 if (!vid) 3507 return 0; 3508 3509 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3510 usleep_range(1000, 2000); 3511 3512 /* Add multicast promisc rule for the VLAN ID to be added if 3513 * all-multicast is currently enabled. 3514 */ 3515 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3516 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3517 ICE_MCAST_VLAN_PROMISC_BITS, 3518 vid); 3519 if (ret) 3520 goto finish; 3521 } 3522 3523 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3524 3525 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3526 * packets aren't pruned by the device's internal switch on Rx 3527 */ 3528 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3529 ret = vlan_ops->add_vlan(vsi, &vlan); 3530 if (ret) 3531 goto finish; 3532 3533 /* If all-multicast is currently enabled and this VLAN ID is only one 3534 * besides VLAN-0 we have to update look-up type of multicast promisc 3535 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3536 */ 3537 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3538 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3539 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3540 ICE_MCAST_PROMISC_BITS, 0); 3541 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3542 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3543 } 3544 3545 finish: 3546 clear_bit(ICE_CFG_BUSY, vsi->state); 3547 3548 return ret; 3549 } 3550 3551 /** 3552 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3553 * @netdev: network interface to be adjusted 3554 * @proto: VLAN TPID 3555 * @vid: VLAN ID to be removed 3556 * 3557 * net_device_ops implementation for removing VLAN IDs 3558 */ 3559 static int 3560 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3561 { 3562 struct ice_netdev_priv *np = netdev_priv(netdev); 3563 struct ice_vsi_vlan_ops *vlan_ops; 3564 struct ice_vsi *vsi = np->vsi; 3565 struct ice_vlan vlan; 3566 int ret; 3567 3568 /* don't allow removal of VLAN 0 */ 3569 if (!vid) 3570 return 0; 3571 3572 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3573 usleep_range(1000, 2000); 3574 3575 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3576 3577 /* Make sure VLAN delete is successful before updating VLAN 3578 * information 3579 */ 3580 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3581 ret = vlan_ops->del_vlan(vsi, &vlan); 3582 if (ret) 3583 goto finish; 3584 3585 /* Remove multicast promisc rule for the removed VLAN ID if 3586 * all-multicast is enabled. 3587 */ 3588 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3589 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3590 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3591 3592 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3593 /* Update look-up type of multicast promisc rule for VLAN 0 3594 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3595 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3596 */ 3597 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3598 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3599 ICE_MCAST_VLAN_PROMISC_BITS, 3600 0); 3601 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3602 ICE_MCAST_PROMISC_BITS, 0); 3603 } 3604 } 3605 3606 finish: 3607 clear_bit(ICE_CFG_BUSY, vsi->state); 3608 3609 return ret; 3610 } 3611 3612 /** 3613 * ice_rep_indr_tc_block_unbind 3614 * @cb_priv: indirection block private data 3615 */ 3616 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3617 { 3618 struct ice_indr_block_priv *indr_priv = cb_priv; 3619 3620 list_del(&indr_priv->list); 3621 kfree(indr_priv); 3622 } 3623 3624 /** 3625 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3626 * @vsi: VSI struct which has the netdev 3627 */ 3628 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3629 { 3630 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3631 3632 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3633 ice_rep_indr_tc_block_unbind); 3634 } 3635 3636 /** 3637 * ice_tc_indir_block_remove - clean indirect TC block notifications 3638 * @pf: PF structure 3639 */ 3640 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3641 { 3642 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3643 3644 if (!pf_vsi) 3645 return; 3646 3647 ice_tc_indir_block_unregister(pf_vsi); 3648 } 3649 3650 /** 3651 * ice_tc_indir_block_register - Register TC indirect block notifications 3652 * @vsi: VSI struct which has the netdev 3653 * 3654 * Returns 0 on success, negative value on failure 3655 */ 3656 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3657 { 3658 struct ice_netdev_priv *np; 3659 3660 if (!vsi || !vsi->netdev) 3661 return -EINVAL; 3662 3663 np = netdev_priv(vsi->netdev); 3664 3665 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3666 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3667 } 3668 3669 /** 3670 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3671 * @pf: board private structure 3672 * 3673 * Returns 0 on success, negative value on failure 3674 */ 3675 static int ice_setup_pf_sw(struct ice_pf *pf) 3676 { 3677 struct device *dev = ice_pf_to_dev(pf); 3678 bool dvm = ice_is_dvm_ena(&pf->hw); 3679 struct ice_vsi *vsi; 3680 int status; 3681 3682 if (ice_is_reset_in_progress(pf->state)) 3683 return -EBUSY; 3684 3685 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3686 if (status) 3687 return -EIO; 3688 3689 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3690 if (!vsi) 3691 return -ENOMEM; 3692 3693 /* init channel list */ 3694 INIT_LIST_HEAD(&vsi->ch_list); 3695 3696 status = ice_cfg_netdev(vsi); 3697 if (status) 3698 goto unroll_vsi_setup; 3699 /* netdev has to be configured before setting frame size */ 3700 ice_vsi_cfg_frame_size(vsi); 3701 3702 /* init indirect block notifications */ 3703 status = ice_tc_indir_block_register(vsi); 3704 if (status) { 3705 dev_err(dev, "Failed to register netdev notifier\n"); 3706 goto unroll_cfg_netdev; 3707 } 3708 3709 /* Setup DCB netlink interface */ 3710 ice_dcbnl_setup(vsi); 3711 3712 /* registering the NAPI handler requires both the queues and 3713 * netdev to be created, which are done in ice_pf_vsi_setup() 3714 * and ice_cfg_netdev() respectively 3715 */ 3716 ice_napi_add(vsi); 3717 3718 status = ice_init_mac_fltr(pf); 3719 if (status) 3720 goto unroll_napi_add; 3721 3722 return 0; 3723 3724 unroll_napi_add: 3725 ice_tc_indir_block_unregister(vsi); 3726 unroll_cfg_netdev: 3727 if (vsi) { 3728 ice_napi_del(vsi); 3729 if (vsi->netdev) { 3730 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3731 free_netdev(vsi->netdev); 3732 vsi->netdev = NULL; 3733 } 3734 } 3735 3736 unroll_vsi_setup: 3737 ice_vsi_release(vsi); 3738 return status; 3739 } 3740 3741 /** 3742 * ice_get_avail_q_count - Get count of queues in use 3743 * @pf_qmap: bitmap to get queue use count from 3744 * @lock: pointer to a mutex that protects access to pf_qmap 3745 * @size: size of the bitmap 3746 */ 3747 static u16 3748 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3749 { 3750 unsigned long bit; 3751 u16 count = 0; 3752 3753 mutex_lock(lock); 3754 for_each_clear_bit(bit, pf_qmap, size) 3755 count++; 3756 mutex_unlock(lock); 3757 3758 return count; 3759 } 3760 3761 /** 3762 * ice_get_avail_txq_count - Get count of Tx queues in use 3763 * @pf: pointer to an ice_pf instance 3764 */ 3765 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3766 { 3767 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3768 pf->max_pf_txqs); 3769 } 3770 3771 /** 3772 * ice_get_avail_rxq_count - Get count of Rx queues in use 3773 * @pf: pointer to an ice_pf instance 3774 */ 3775 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3776 { 3777 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3778 pf->max_pf_rxqs); 3779 } 3780 3781 /** 3782 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3783 * @pf: board private structure to initialize 3784 */ 3785 static void ice_deinit_pf(struct ice_pf *pf) 3786 { 3787 ice_service_task_stop(pf); 3788 mutex_destroy(&pf->sw_mutex); 3789 mutex_destroy(&pf->tc_mutex); 3790 mutex_destroy(&pf->avail_q_mutex); 3791 mutex_destroy(&pf->vfs.table_lock); 3792 3793 if (pf->avail_txqs) { 3794 bitmap_free(pf->avail_txqs); 3795 pf->avail_txqs = NULL; 3796 } 3797 3798 if (pf->avail_rxqs) { 3799 bitmap_free(pf->avail_rxqs); 3800 pf->avail_rxqs = NULL; 3801 } 3802 3803 if (pf->ptp.clock) 3804 ptp_clock_unregister(pf->ptp.clock); 3805 } 3806 3807 /** 3808 * ice_set_pf_caps - set PFs capability flags 3809 * @pf: pointer to the PF instance 3810 */ 3811 static void ice_set_pf_caps(struct ice_pf *pf) 3812 { 3813 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3814 3815 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3816 if (func_caps->common_cap.rdma) 3817 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3818 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3819 if (func_caps->common_cap.dcb) 3820 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3821 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3822 if (func_caps->common_cap.sr_iov_1_1) { 3823 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3824 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3825 ICE_MAX_SRIOV_VFS); 3826 } 3827 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3828 if (func_caps->common_cap.rss_table_size) 3829 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3830 3831 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3832 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3833 u16 unused; 3834 3835 /* ctrl_vsi_idx will be set to a valid value when flow director 3836 * is setup by ice_init_fdir 3837 */ 3838 pf->ctrl_vsi_idx = ICE_NO_VSI; 3839 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3840 /* force guaranteed filter pool for PF */ 3841 ice_alloc_fd_guar_item(&pf->hw, &unused, 3842 func_caps->fd_fltr_guar); 3843 /* force shared filter pool for PF */ 3844 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3845 func_caps->fd_fltr_best_effort); 3846 } 3847 3848 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3849 if (func_caps->common_cap.ieee_1588) 3850 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3851 3852 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3853 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3854 } 3855 3856 /** 3857 * ice_init_pf - Initialize general software structures (struct ice_pf) 3858 * @pf: board private structure to initialize 3859 */ 3860 static int ice_init_pf(struct ice_pf *pf) 3861 { 3862 ice_set_pf_caps(pf); 3863 3864 mutex_init(&pf->sw_mutex); 3865 mutex_init(&pf->tc_mutex); 3866 3867 INIT_HLIST_HEAD(&pf->aq_wait_list); 3868 spin_lock_init(&pf->aq_wait_lock); 3869 init_waitqueue_head(&pf->aq_wait_queue); 3870 3871 init_waitqueue_head(&pf->reset_wait_queue); 3872 3873 /* setup service timer and periodic service task */ 3874 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3875 pf->serv_tmr_period = HZ; 3876 INIT_WORK(&pf->serv_task, ice_service_task); 3877 clear_bit(ICE_SERVICE_SCHED, pf->state); 3878 3879 mutex_init(&pf->avail_q_mutex); 3880 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3881 if (!pf->avail_txqs) 3882 return -ENOMEM; 3883 3884 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3885 if (!pf->avail_rxqs) { 3886 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3887 pf->avail_txqs = NULL; 3888 return -ENOMEM; 3889 } 3890 3891 mutex_init(&pf->vfs.table_lock); 3892 hash_init(pf->vfs.table); 3893 3894 return 0; 3895 } 3896 3897 /** 3898 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3899 * @pf: board private structure 3900 * 3901 * compute the number of MSIX vectors required (v_budget) and request from 3902 * the OS. Return the number of vectors reserved or negative on failure 3903 */ 3904 static int ice_ena_msix_range(struct ice_pf *pf) 3905 { 3906 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3907 struct device *dev = ice_pf_to_dev(pf); 3908 int needed, err, i; 3909 3910 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3911 num_cpus = num_online_cpus(); 3912 3913 /* reserve for LAN miscellaneous handler */ 3914 needed = ICE_MIN_LAN_OICR_MSIX; 3915 if (v_left < needed) 3916 goto no_hw_vecs_left_err; 3917 v_budget += needed; 3918 v_left -= needed; 3919 3920 /* reserve for flow director */ 3921 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3922 needed = ICE_FDIR_MSIX; 3923 if (v_left < needed) 3924 goto no_hw_vecs_left_err; 3925 v_budget += needed; 3926 v_left -= needed; 3927 } 3928 3929 /* reserve for switchdev */ 3930 needed = ICE_ESWITCH_MSIX; 3931 if (v_left < needed) 3932 goto no_hw_vecs_left_err; 3933 v_budget += needed; 3934 v_left -= needed; 3935 3936 /* total used for non-traffic vectors */ 3937 v_other = v_budget; 3938 3939 /* reserve vectors for LAN traffic */ 3940 needed = num_cpus; 3941 if (v_left < needed) 3942 goto no_hw_vecs_left_err; 3943 pf->num_lan_msix = needed; 3944 v_budget += needed; 3945 v_left -= needed; 3946 3947 /* reserve vectors for RDMA auxiliary driver */ 3948 if (ice_is_rdma_ena(pf)) { 3949 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3950 if (v_left < needed) 3951 goto no_hw_vecs_left_err; 3952 pf->num_rdma_msix = needed; 3953 v_budget += needed; 3954 v_left -= needed; 3955 } 3956 3957 pf->msix_entries = devm_kcalloc(dev, v_budget, 3958 sizeof(*pf->msix_entries), GFP_KERNEL); 3959 if (!pf->msix_entries) { 3960 err = -ENOMEM; 3961 goto exit_err; 3962 } 3963 3964 for (i = 0; i < v_budget; i++) 3965 pf->msix_entries[i].entry = i; 3966 3967 /* actually reserve the vectors */ 3968 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3969 ICE_MIN_MSIX, v_budget); 3970 if (v_actual < 0) { 3971 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3972 err = v_actual; 3973 goto msix_err; 3974 } 3975 3976 if (v_actual < v_budget) { 3977 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3978 v_budget, v_actual); 3979 3980 if (v_actual < ICE_MIN_MSIX) { 3981 /* error if we can't get minimum vectors */ 3982 pci_disable_msix(pf->pdev); 3983 err = -ERANGE; 3984 goto msix_err; 3985 } else { 3986 int v_remain = v_actual - v_other; 3987 int v_rdma = 0, v_min_rdma = 0; 3988 3989 if (ice_is_rdma_ena(pf)) { 3990 /* Need at least 1 interrupt in addition to 3991 * AEQ MSIX 3992 */ 3993 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3994 v_min_rdma = ICE_MIN_RDMA_MSIX; 3995 } 3996 3997 if (v_actual == ICE_MIN_MSIX || 3998 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3999 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4000 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4001 4002 pf->num_rdma_msix = 0; 4003 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4004 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4005 (v_remain - v_rdma < v_rdma)) { 4006 /* Support minimum RDMA and give remaining 4007 * vectors to LAN MSIX 4008 */ 4009 pf->num_rdma_msix = v_min_rdma; 4010 pf->num_lan_msix = v_remain - v_min_rdma; 4011 } else { 4012 /* Split remaining MSIX with RDMA after 4013 * accounting for AEQ MSIX 4014 */ 4015 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4016 ICE_RDMA_NUM_AEQ_MSIX; 4017 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4018 } 4019 4020 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4021 pf->num_lan_msix); 4022 4023 if (ice_is_rdma_ena(pf)) 4024 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4025 pf->num_rdma_msix); 4026 } 4027 } 4028 4029 return v_actual; 4030 4031 msix_err: 4032 devm_kfree(dev, pf->msix_entries); 4033 goto exit_err; 4034 4035 no_hw_vecs_left_err: 4036 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4037 needed, v_left); 4038 err = -ERANGE; 4039 exit_err: 4040 pf->num_rdma_msix = 0; 4041 pf->num_lan_msix = 0; 4042 return err; 4043 } 4044 4045 /** 4046 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4047 * @pf: board private structure 4048 */ 4049 static void ice_dis_msix(struct ice_pf *pf) 4050 { 4051 pci_disable_msix(pf->pdev); 4052 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4053 pf->msix_entries = NULL; 4054 } 4055 4056 /** 4057 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4058 * @pf: board private structure 4059 */ 4060 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4061 { 4062 ice_dis_msix(pf); 4063 4064 if (pf->irq_tracker) { 4065 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4066 pf->irq_tracker = NULL; 4067 } 4068 } 4069 4070 /** 4071 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4072 * @pf: board private structure to initialize 4073 */ 4074 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4075 { 4076 int vectors; 4077 4078 vectors = ice_ena_msix_range(pf); 4079 4080 if (vectors < 0) 4081 return vectors; 4082 4083 /* set up vector assignment tracking */ 4084 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4085 struct_size(pf->irq_tracker, list, vectors), 4086 GFP_KERNEL); 4087 if (!pf->irq_tracker) { 4088 ice_dis_msix(pf); 4089 return -ENOMEM; 4090 } 4091 4092 /* populate SW interrupts pool with number of OS granted IRQs. */ 4093 pf->num_avail_sw_msix = (u16)vectors; 4094 pf->irq_tracker->num_entries = (u16)vectors; 4095 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4096 4097 return 0; 4098 } 4099 4100 /** 4101 * ice_is_wol_supported - check if WoL is supported 4102 * @hw: pointer to hardware info 4103 * 4104 * Check if WoL is supported based on the HW configuration. 4105 * Returns true if NVM supports and enables WoL for this port, false otherwise 4106 */ 4107 bool ice_is_wol_supported(struct ice_hw *hw) 4108 { 4109 u16 wol_ctrl; 4110 4111 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4112 * word) indicates WoL is not supported on the corresponding PF ID. 4113 */ 4114 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4115 return false; 4116 4117 return !(BIT(hw->port_info->lport) & wol_ctrl); 4118 } 4119 4120 /** 4121 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4122 * @vsi: VSI being changed 4123 * @new_rx: new number of Rx queues 4124 * @new_tx: new number of Tx queues 4125 * 4126 * Only change the number of queues if new_tx, or new_rx is non-0. 4127 * 4128 * Returns 0 on success. 4129 */ 4130 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4131 { 4132 struct ice_pf *pf = vsi->back; 4133 int err = 0, timeout = 50; 4134 4135 if (!new_rx && !new_tx) 4136 return -EINVAL; 4137 4138 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4139 timeout--; 4140 if (!timeout) 4141 return -EBUSY; 4142 usleep_range(1000, 2000); 4143 } 4144 4145 if (new_tx) 4146 vsi->req_txq = (u16)new_tx; 4147 if (new_rx) 4148 vsi->req_rxq = (u16)new_rx; 4149 4150 /* set for the next time the netdev is started */ 4151 if (!netif_running(vsi->netdev)) { 4152 ice_vsi_rebuild(vsi, false); 4153 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4154 goto done; 4155 } 4156 4157 ice_vsi_close(vsi); 4158 ice_vsi_rebuild(vsi, false); 4159 ice_pf_dcb_recfg(pf); 4160 ice_vsi_open(vsi); 4161 done: 4162 clear_bit(ICE_CFG_BUSY, pf->state); 4163 return err; 4164 } 4165 4166 /** 4167 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4168 * @pf: PF to configure 4169 * 4170 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4171 * VSI can still Tx/Rx VLAN tagged packets. 4172 */ 4173 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4174 { 4175 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4176 struct ice_vsi_ctx *ctxt; 4177 struct ice_hw *hw; 4178 int status; 4179 4180 if (!vsi) 4181 return; 4182 4183 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4184 if (!ctxt) 4185 return; 4186 4187 hw = &pf->hw; 4188 ctxt->info = vsi->info; 4189 4190 ctxt->info.valid_sections = 4191 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4192 ICE_AQ_VSI_PROP_SECURITY_VALID | 4193 ICE_AQ_VSI_PROP_SW_VALID); 4194 4195 /* disable VLAN anti-spoof */ 4196 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4197 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4198 4199 /* disable VLAN pruning and keep all other settings */ 4200 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4201 4202 /* allow all VLANs on Tx and don't strip on Rx */ 4203 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4204 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4205 4206 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4207 if (status) { 4208 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4209 status, ice_aq_str(hw->adminq.sq_last_status)); 4210 } else { 4211 vsi->info.sec_flags = ctxt->info.sec_flags; 4212 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4213 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4214 } 4215 4216 kfree(ctxt); 4217 } 4218 4219 /** 4220 * ice_log_pkg_init - log result of DDP package load 4221 * @hw: pointer to hardware info 4222 * @state: state of package load 4223 */ 4224 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4225 { 4226 struct ice_pf *pf = hw->back; 4227 struct device *dev; 4228 4229 dev = ice_pf_to_dev(pf); 4230 4231 switch (state) { 4232 case ICE_DDP_PKG_SUCCESS: 4233 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4234 hw->active_pkg_name, 4235 hw->active_pkg_ver.major, 4236 hw->active_pkg_ver.minor, 4237 hw->active_pkg_ver.update, 4238 hw->active_pkg_ver.draft); 4239 break; 4240 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4241 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4242 hw->active_pkg_name, 4243 hw->active_pkg_ver.major, 4244 hw->active_pkg_ver.minor, 4245 hw->active_pkg_ver.update, 4246 hw->active_pkg_ver.draft); 4247 break; 4248 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4249 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4250 hw->active_pkg_name, 4251 hw->active_pkg_ver.major, 4252 hw->active_pkg_ver.minor, 4253 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4254 break; 4255 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4256 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4257 hw->active_pkg_name, 4258 hw->active_pkg_ver.major, 4259 hw->active_pkg_ver.minor, 4260 hw->active_pkg_ver.update, 4261 hw->active_pkg_ver.draft, 4262 hw->pkg_name, 4263 hw->pkg_ver.major, 4264 hw->pkg_ver.minor, 4265 hw->pkg_ver.update, 4266 hw->pkg_ver.draft); 4267 break; 4268 case ICE_DDP_PKG_FW_MISMATCH: 4269 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4270 break; 4271 case ICE_DDP_PKG_INVALID_FILE: 4272 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4273 break; 4274 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4275 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4276 break; 4277 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4278 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4279 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4280 break; 4281 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4282 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4283 break; 4284 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4285 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4286 break; 4287 case ICE_DDP_PKG_LOAD_ERROR: 4288 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4289 /* poll for reset to complete */ 4290 if (ice_check_reset(hw)) 4291 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4292 break; 4293 case ICE_DDP_PKG_ERR: 4294 default: 4295 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4296 break; 4297 } 4298 } 4299 4300 /** 4301 * ice_load_pkg - load/reload the DDP Package file 4302 * @firmware: firmware structure when firmware requested or NULL for reload 4303 * @pf: pointer to the PF instance 4304 * 4305 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4306 * initialize HW tables. 4307 */ 4308 static void 4309 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4310 { 4311 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4312 struct device *dev = ice_pf_to_dev(pf); 4313 struct ice_hw *hw = &pf->hw; 4314 4315 /* Load DDP Package */ 4316 if (firmware && !hw->pkg_copy) { 4317 state = ice_copy_and_init_pkg(hw, firmware->data, 4318 firmware->size); 4319 ice_log_pkg_init(hw, state); 4320 } else if (!firmware && hw->pkg_copy) { 4321 /* Reload package during rebuild after CORER/GLOBR reset */ 4322 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4323 ice_log_pkg_init(hw, state); 4324 } else { 4325 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4326 } 4327 4328 if (!ice_is_init_pkg_successful(state)) { 4329 /* Safe Mode */ 4330 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4331 return; 4332 } 4333 4334 /* Successful download package is the precondition for advanced 4335 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4336 */ 4337 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4338 } 4339 4340 /** 4341 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4342 * @pf: pointer to the PF structure 4343 * 4344 * There is no error returned here because the driver should be able to handle 4345 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4346 * specifically with Tx. 4347 */ 4348 static void ice_verify_cacheline_size(struct ice_pf *pf) 4349 { 4350 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4351 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4352 ICE_CACHE_LINE_BYTES); 4353 } 4354 4355 /** 4356 * ice_send_version - update firmware with driver version 4357 * @pf: PF struct 4358 * 4359 * Returns 0 on success, else error code 4360 */ 4361 static int ice_send_version(struct ice_pf *pf) 4362 { 4363 struct ice_driver_ver dv; 4364 4365 dv.major_ver = 0xff; 4366 dv.minor_ver = 0xff; 4367 dv.build_ver = 0xff; 4368 dv.subbuild_ver = 0; 4369 strscpy((char *)dv.driver_string, UTS_RELEASE, 4370 sizeof(dv.driver_string)); 4371 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4372 } 4373 4374 /** 4375 * ice_init_fdir - Initialize flow director VSI and configuration 4376 * @pf: pointer to the PF instance 4377 * 4378 * returns 0 on success, negative on error 4379 */ 4380 static int ice_init_fdir(struct ice_pf *pf) 4381 { 4382 struct device *dev = ice_pf_to_dev(pf); 4383 struct ice_vsi *ctrl_vsi; 4384 int err; 4385 4386 /* Side Band Flow Director needs to have a control VSI. 4387 * Allocate it and store it in the PF. 4388 */ 4389 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4390 if (!ctrl_vsi) { 4391 dev_dbg(dev, "could not create control VSI\n"); 4392 return -ENOMEM; 4393 } 4394 4395 err = ice_vsi_open_ctrl(ctrl_vsi); 4396 if (err) { 4397 dev_dbg(dev, "could not open control VSI\n"); 4398 goto err_vsi_open; 4399 } 4400 4401 mutex_init(&pf->hw.fdir_fltr_lock); 4402 4403 err = ice_fdir_create_dflt_rules(pf); 4404 if (err) 4405 goto err_fdir_rule; 4406 4407 return 0; 4408 4409 err_fdir_rule: 4410 ice_fdir_release_flows(&pf->hw); 4411 ice_vsi_close(ctrl_vsi); 4412 err_vsi_open: 4413 ice_vsi_release(ctrl_vsi); 4414 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4415 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4416 pf->ctrl_vsi_idx = ICE_NO_VSI; 4417 } 4418 return err; 4419 } 4420 4421 /** 4422 * ice_get_opt_fw_name - return optional firmware file name or NULL 4423 * @pf: pointer to the PF instance 4424 */ 4425 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4426 { 4427 /* Optional firmware name same as default with additional dash 4428 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4429 */ 4430 struct pci_dev *pdev = pf->pdev; 4431 char *opt_fw_filename; 4432 u64 dsn; 4433 4434 /* Determine the name of the optional file using the DSN (two 4435 * dwords following the start of the DSN Capability). 4436 */ 4437 dsn = pci_get_dsn(pdev); 4438 if (!dsn) 4439 return NULL; 4440 4441 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4442 if (!opt_fw_filename) 4443 return NULL; 4444 4445 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4446 ICE_DDP_PKG_PATH, dsn); 4447 4448 return opt_fw_filename; 4449 } 4450 4451 /** 4452 * ice_request_fw - Device initialization routine 4453 * @pf: pointer to the PF instance 4454 */ 4455 static void ice_request_fw(struct ice_pf *pf) 4456 { 4457 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4458 const struct firmware *firmware = NULL; 4459 struct device *dev = ice_pf_to_dev(pf); 4460 int err = 0; 4461 4462 /* optional device-specific DDP (if present) overrides the default DDP 4463 * package file. kernel logs a debug message if the file doesn't exist, 4464 * and warning messages for other errors. 4465 */ 4466 if (opt_fw_filename) { 4467 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4468 if (err) { 4469 kfree(opt_fw_filename); 4470 goto dflt_pkg_load; 4471 } 4472 4473 /* request for firmware was successful. Download to device */ 4474 ice_load_pkg(firmware, pf); 4475 kfree(opt_fw_filename); 4476 release_firmware(firmware); 4477 return; 4478 } 4479 4480 dflt_pkg_load: 4481 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4482 if (err) { 4483 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4484 return; 4485 } 4486 4487 /* request for firmware was successful. Download to device */ 4488 ice_load_pkg(firmware, pf); 4489 release_firmware(firmware); 4490 } 4491 4492 /** 4493 * ice_print_wake_reason - show the wake up cause in the log 4494 * @pf: pointer to the PF struct 4495 */ 4496 static void ice_print_wake_reason(struct ice_pf *pf) 4497 { 4498 u32 wus = pf->wakeup_reason; 4499 const char *wake_str; 4500 4501 /* if no wake event, nothing to print */ 4502 if (!wus) 4503 return; 4504 4505 if (wus & PFPM_WUS_LNKC_M) 4506 wake_str = "Link\n"; 4507 else if (wus & PFPM_WUS_MAG_M) 4508 wake_str = "Magic Packet\n"; 4509 else if (wus & PFPM_WUS_MNG_M) 4510 wake_str = "Management\n"; 4511 else if (wus & PFPM_WUS_FW_RST_WK_M) 4512 wake_str = "Firmware Reset\n"; 4513 else 4514 wake_str = "Unknown\n"; 4515 4516 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4517 } 4518 4519 /** 4520 * ice_register_netdev - register netdev and devlink port 4521 * @pf: pointer to the PF struct 4522 */ 4523 static int ice_register_netdev(struct ice_pf *pf) 4524 { 4525 struct ice_vsi *vsi; 4526 int err = 0; 4527 4528 vsi = ice_get_main_vsi(pf); 4529 if (!vsi || !vsi->netdev) 4530 return -EIO; 4531 4532 err = register_netdev(vsi->netdev); 4533 if (err) 4534 goto err_register_netdev; 4535 4536 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4537 netif_carrier_off(vsi->netdev); 4538 netif_tx_stop_all_queues(vsi->netdev); 4539 err = ice_devlink_create_pf_port(pf); 4540 if (err) 4541 goto err_devlink_create; 4542 4543 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4544 4545 return 0; 4546 err_devlink_create: 4547 unregister_netdev(vsi->netdev); 4548 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4549 err_register_netdev: 4550 free_netdev(vsi->netdev); 4551 vsi->netdev = NULL; 4552 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4553 return err; 4554 } 4555 4556 /** 4557 * ice_probe - Device initialization routine 4558 * @pdev: PCI device information struct 4559 * @ent: entry in ice_pci_tbl 4560 * 4561 * Returns 0 on success, negative on failure 4562 */ 4563 static int 4564 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4565 { 4566 struct device *dev = &pdev->dev; 4567 struct ice_pf *pf; 4568 struct ice_hw *hw; 4569 int i, err; 4570 4571 if (pdev->is_virtfn) { 4572 dev_err(dev, "can't probe a virtual function\n"); 4573 return -EINVAL; 4574 } 4575 4576 /* this driver uses devres, see 4577 * Documentation/driver-api/driver-model/devres.rst 4578 */ 4579 err = pcim_enable_device(pdev); 4580 if (err) 4581 return err; 4582 4583 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4584 if (err) { 4585 dev_err(dev, "BAR0 I/O map error %d\n", err); 4586 return err; 4587 } 4588 4589 pf = ice_allocate_pf(dev); 4590 if (!pf) 4591 return -ENOMEM; 4592 4593 /* initialize Auxiliary index to invalid value */ 4594 pf->aux_idx = -1; 4595 4596 /* set up for high or low DMA */ 4597 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4598 if (err) { 4599 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4600 return err; 4601 } 4602 4603 pci_enable_pcie_error_reporting(pdev); 4604 pci_set_master(pdev); 4605 4606 pf->pdev = pdev; 4607 pci_set_drvdata(pdev, pf); 4608 set_bit(ICE_DOWN, pf->state); 4609 /* Disable service task until DOWN bit is cleared */ 4610 set_bit(ICE_SERVICE_DIS, pf->state); 4611 4612 hw = &pf->hw; 4613 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4614 pci_save_state(pdev); 4615 4616 hw->back = pf; 4617 hw->vendor_id = pdev->vendor; 4618 hw->device_id = pdev->device; 4619 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4620 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4621 hw->subsystem_device_id = pdev->subsystem_device; 4622 hw->bus.device = PCI_SLOT(pdev->devfn); 4623 hw->bus.func = PCI_FUNC(pdev->devfn); 4624 ice_set_ctrlq_len(hw); 4625 4626 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4627 4628 #ifndef CONFIG_DYNAMIC_DEBUG 4629 if (debug < -1) 4630 hw->debug_mask = debug; 4631 #endif 4632 4633 err = ice_init_hw(hw); 4634 if (err) { 4635 dev_err(dev, "ice_init_hw failed: %d\n", err); 4636 err = -EIO; 4637 goto err_exit_unroll; 4638 } 4639 4640 ice_init_feature_support(pf); 4641 4642 ice_request_fw(pf); 4643 4644 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4645 * set in pf->state, which will cause ice_is_safe_mode to return 4646 * true 4647 */ 4648 if (ice_is_safe_mode(pf)) { 4649 /* we already got function/device capabilities but these don't 4650 * reflect what the driver needs to do in safe mode. Instead of 4651 * adding conditional logic everywhere to ignore these 4652 * device/function capabilities, override them. 4653 */ 4654 ice_set_safe_mode_caps(hw); 4655 } 4656 4657 err = ice_init_pf(pf); 4658 if (err) { 4659 dev_err(dev, "ice_init_pf failed: %d\n", err); 4660 goto err_init_pf_unroll; 4661 } 4662 4663 ice_devlink_init_regions(pf); 4664 4665 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4666 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4667 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4668 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4669 i = 0; 4670 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4671 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4672 pf->hw.tnl.valid_count[TNL_VXLAN]; 4673 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4674 UDP_TUNNEL_TYPE_VXLAN; 4675 i++; 4676 } 4677 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4678 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4679 pf->hw.tnl.valid_count[TNL_GENEVE]; 4680 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4681 UDP_TUNNEL_TYPE_GENEVE; 4682 i++; 4683 } 4684 4685 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4686 if (!pf->num_alloc_vsi) { 4687 err = -EIO; 4688 goto err_init_pf_unroll; 4689 } 4690 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4691 dev_warn(&pf->pdev->dev, 4692 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4693 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4694 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4695 } 4696 4697 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4698 GFP_KERNEL); 4699 if (!pf->vsi) { 4700 err = -ENOMEM; 4701 goto err_init_pf_unroll; 4702 } 4703 4704 err = ice_init_interrupt_scheme(pf); 4705 if (err) { 4706 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4707 err = -EIO; 4708 goto err_init_vsi_unroll; 4709 } 4710 4711 /* In case of MSIX we are going to setup the misc vector right here 4712 * to handle admin queue events etc. In case of legacy and MSI 4713 * the misc functionality and queue processing is combined in 4714 * the same vector and that gets setup at open. 4715 */ 4716 err = ice_req_irq_msix_misc(pf); 4717 if (err) { 4718 dev_err(dev, "setup of misc vector failed: %d\n", err); 4719 goto err_init_interrupt_unroll; 4720 } 4721 4722 /* create switch struct for the switch element created by FW on boot */ 4723 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4724 if (!pf->first_sw) { 4725 err = -ENOMEM; 4726 goto err_msix_misc_unroll; 4727 } 4728 4729 if (hw->evb_veb) 4730 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4731 else 4732 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4733 4734 pf->first_sw->pf = pf; 4735 4736 /* record the sw_id available for later use */ 4737 pf->first_sw->sw_id = hw->port_info->sw_id; 4738 4739 err = ice_setup_pf_sw(pf); 4740 if (err) { 4741 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4742 goto err_alloc_sw_unroll; 4743 } 4744 4745 clear_bit(ICE_SERVICE_DIS, pf->state); 4746 4747 /* tell the firmware we are up */ 4748 err = ice_send_version(pf); 4749 if (err) { 4750 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4751 UTS_RELEASE, err); 4752 goto err_send_version_unroll; 4753 } 4754 4755 /* since everything is good, start the service timer */ 4756 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4757 4758 err = ice_init_link_events(pf->hw.port_info); 4759 if (err) { 4760 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4761 goto err_send_version_unroll; 4762 } 4763 4764 /* not a fatal error if this fails */ 4765 err = ice_init_nvm_phy_type(pf->hw.port_info); 4766 if (err) 4767 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4768 4769 /* not a fatal error if this fails */ 4770 err = ice_update_link_info(pf->hw.port_info); 4771 if (err) 4772 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4773 4774 ice_init_link_dflt_override(pf->hw.port_info); 4775 4776 ice_check_link_cfg_err(pf, 4777 pf->hw.port_info->phy.link_info.link_cfg_err); 4778 4779 /* if media available, initialize PHY settings */ 4780 if (pf->hw.port_info->phy.link_info.link_info & 4781 ICE_AQ_MEDIA_AVAILABLE) { 4782 /* not a fatal error if this fails */ 4783 err = ice_init_phy_user_cfg(pf->hw.port_info); 4784 if (err) 4785 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4786 4787 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4788 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4789 4790 if (vsi) 4791 ice_configure_phy(vsi); 4792 } 4793 } else { 4794 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4795 } 4796 4797 ice_verify_cacheline_size(pf); 4798 4799 /* Save wakeup reason register for later use */ 4800 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4801 4802 /* check for a power management event */ 4803 ice_print_wake_reason(pf); 4804 4805 /* clear wake status, all bits */ 4806 wr32(hw, PFPM_WUS, U32_MAX); 4807 4808 /* Disable WoL at init, wait for user to enable */ 4809 device_set_wakeup_enable(dev, false); 4810 4811 if (ice_is_safe_mode(pf)) { 4812 ice_set_safe_mode_vlan_cfg(pf); 4813 goto probe_done; 4814 } 4815 4816 /* initialize DDP driven features */ 4817 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4818 ice_ptp_init(pf); 4819 4820 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4821 ice_gnss_init(pf); 4822 4823 /* Note: Flow director init failure is non-fatal to load */ 4824 if (ice_init_fdir(pf)) 4825 dev_err(dev, "could not initialize flow director\n"); 4826 4827 /* Note: DCB init failure is non-fatal to load */ 4828 if (ice_init_pf_dcb(pf, false)) { 4829 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4830 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4831 } else { 4832 ice_cfg_lldp_mib_change(&pf->hw, true); 4833 } 4834 4835 if (ice_init_lag(pf)) 4836 dev_warn(dev, "Failed to init link aggregation support\n"); 4837 4838 /* print PCI link speed and width */ 4839 pcie_print_link_status(pf->pdev); 4840 4841 probe_done: 4842 err = ice_register_netdev(pf); 4843 if (err) 4844 goto err_netdev_reg; 4845 4846 err = ice_devlink_register_params(pf); 4847 if (err) 4848 goto err_netdev_reg; 4849 4850 /* ready to go, so clear down state bit */ 4851 clear_bit(ICE_DOWN, pf->state); 4852 if (ice_is_rdma_ena(pf)) { 4853 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4854 if (pf->aux_idx < 0) { 4855 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4856 err = -ENOMEM; 4857 goto err_devlink_reg_param; 4858 } 4859 4860 err = ice_init_rdma(pf); 4861 if (err) { 4862 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4863 err = -EIO; 4864 goto err_init_aux_unroll; 4865 } 4866 } else { 4867 dev_warn(dev, "RDMA is not supported on this device\n"); 4868 } 4869 4870 ice_devlink_register(pf); 4871 return 0; 4872 4873 err_init_aux_unroll: 4874 pf->adev = NULL; 4875 ida_free(&ice_aux_ida, pf->aux_idx); 4876 err_devlink_reg_param: 4877 ice_devlink_unregister_params(pf); 4878 err_netdev_reg: 4879 err_send_version_unroll: 4880 ice_vsi_release_all(pf); 4881 err_alloc_sw_unroll: 4882 set_bit(ICE_SERVICE_DIS, pf->state); 4883 set_bit(ICE_DOWN, pf->state); 4884 devm_kfree(dev, pf->first_sw); 4885 err_msix_misc_unroll: 4886 ice_free_irq_msix_misc(pf); 4887 err_init_interrupt_unroll: 4888 ice_clear_interrupt_scheme(pf); 4889 err_init_vsi_unroll: 4890 devm_kfree(dev, pf->vsi); 4891 err_init_pf_unroll: 4892 ice_deinit_pf(pf); 4893 ice_devlink_destroy_regions(pf); 4894 ice_deinit_hw(hw); 4895 err_exit_unroll: 4896 pci_disable_pcie_error_reporting(pdev); 4897 pci_disable_device(pdev); 4898 return err; 4899 } 4900 4901 /** 4902 * ice_set_wake - enable or disable Wake on LAN 4903 * @pf: pointer to the PF struct 4904 * 4905 * Simple helper for WoL control 4906 */ 4907 static void ice_set_wake(struct ice_pf *pf) 4908 { 4909 struct ice_hw *hw = &pf->hw; 4910 bool wol = pf->wol_ena; 4911 4912 /* clear wake state, otherwise new wake events won't fire */ 4913 wr32(hw, PFPM_WUS, U32_MAX); 4914 4915 /* enable / disable APM wake up, no RMW needed */ 4916 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4917 4918 /* set magic packet filter enabled */ 4919 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4920 } 4921 4922 /** 4923 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4924 * @pf: pointer to the PF struct 4925 * 4926 * Issue firmware command to enable multicast magic wake, making 4927 * sure that any locally administered address (LAA) is used for 4928 * wake, and that PF reset doesn't undo the LAA. 4929 */ 4930 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4931 { 4932 struct device *dev = ice_pf_to_dev(pf); 4933 struct ice_hw *hw = &pf->hw; 4934 u8 mac_addr[ETH_ALEN]; 4935 struct ice_vsi *vsi; 4936 int status; 4937 u8 flags; 4938 4939 if (!pf->wol_ena) 4940 return; 4941 4942 vsi = ice_get_main_vsi(pf); 4943 if (!vsi) 4944 return; 4945 4946 /* Get current MAC address in case it's an LAA */ 4947 if (vsi->netdev) 4948 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4949 else 4950 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4951 4952 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4953 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4954 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4955 4956 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4957 if (status) 4958 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4959 status, ice_aq_str(hw->adminq.sq_last_status)); 4960 } 4961 4962 /** 4963 * ice_remove - Device removal routine 4964 * @pdev: PCI device information struct 4965 */ 4966 static void ice_remove(struct pci_dev *pdev) 4967 { 4968 struct ice_pf *pf = pci_get_drvdata(pdev); 4969 int i; 4970 4971 ice_devlink_unregister(pf); 4972 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4973 if (!ice_is_reset_in_progress(pf->state)) 4974 break; 4975 msleep(100); 4976 } 4977 4978 ice_tc_indir_block_remove(pf); 4979 4980 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4981 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4982 ice_free_vfs(pf); 4983 } 4984 4985 ice_service_task_stop(pf); 4986 4987 ice_aq_cancel_waiting_tasks(pf); 4988 ice_unplug_aux_dev(pf); 4989 if (pf->aux_idx >= 0) 4990 ida_free(&ice_aux_ida, pf->aux_idx); 4991 ice_devlink_unregister_params(pf); 4992 set_bit(ICE_DOWN, pf->state); 4993 4994 ice_deinit_lag(pf); 4995 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4996 ice_ptp_release(pf); 4997 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4998 ice_gnss_exit(pf); 4999 if (!ice_is_safe_mode(pf)) 5000 ice_remove_arfs(pf); 5001 ice_setup_mc_magic_wake(pf); 5002 ice_vsi_release_all(pf); 5003 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5004 ice_set_wake(pf); 5005 ice_free_irq_msix_misc(pf); 5006 ice_for_each_vsi(pf, i) { 5007 if (!pf->vsi[i]) 5008 continue; 5009 ice_vsi_free_q_vectors(pf->vsi[i]); 5010 } 5011 ice_deinit_pf(pf); 5012 ice_devlink_destroy_regions(pf); 5013 ice_deinit_hw(&pf->hw); 5014 5015 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5016 * do it via ice_schedule_reset() since there is no need to rebuild 5017 * and the service task is already stopped. 5018 */ 5019 ice_reset(&pf->hw, ICE_RESET_PFR); 5020 pci_wait_for_pending_transaction(pdev); 5021 ice_clear_interrupt_scheme(pf); 5022 pci_disable_pcie_error_reporting(pdev); 5023 pci_disable_device(pdev); 5024 } 5025 5026 /** 5027 * ice_shutdown - PCI callback for shutting down device 5028 * @pdev: PCI device information struct 5029 */ 5030 static void ice_shutdown(struct pci_dev *pdev) 5031 { 5032 struct ice_pf *pf = pci_get_drvdata(pdev); 5033 5034 ice_remove(pdev); 5035 5036 if (system_state == SYSTEM_POWER_OFF) { 5037 pci_wake_from_d3(pdev, pf->wol_ena); 5038 pci_set_power_state(pdev, PCI_D3hot); 5039 } 5040 } 5041 5042 #ifdef CONFIG_PM 5043 /** 5044 * ice_prepare_for_shutdown - prep for PCI shutdown 5045 * @pf: board private structure 5046 * 5047 * Inform or close all dependent features in prep for PCI device shutdown 5048 */ 5049 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5050 { 5051 struct ice_hw *hw = &pf->hw; 5052 u32 v; 5053 5054 /* Notify VFs of impending reset */ 5055 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5056 ice_vc_notify_reset(pf); 5057 5058 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5059 5060 /* disable the VSIs and their queues that are not already DOWN */ 5061 ice_pf_dis_all_vsi(pf, false); 5062 5063 ice_for_each_vsi(pf, v) 5064 if (pf->vsi[v]) 5065 pf->vsi[v]->vsi_num = 0; 5066 5067 ice_shutdown_all_ctrlq(hw); 5068 } 5069 5070 /** 5071 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5072 * @pf: board private structure to reinitialize 5073 * 5074 * This routine reinitialize interrupt scheme that was cleared during 5075 * power management suspend callback. 5076 * 5077 * This should be called during resume routine to re-allocate the q_vectors 5078 * and reacquire interrupts. 5079 */ 5080 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5081 { 5082 struct device *dev = ice_pf_to_dev(pf); 5083 int ret, v; 5084 5085 /* Since we clear MSIX flag during suspend, we need to 5086 * set it back during resume... 5087 */ 5088 5089 ret = ice_init_interrupt_scheme(pf); 5090 if (ret) { 5091 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5092 return ret; 5093 } 5094 5095 /* Remap vectors and rings, after successful re-init interrupts */ 5096 ice_for_each_vsi(pf, v) { 5097 if (!pf->vsi[v]) 5098 continue; 5099 5100 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5101 if (ret) 5102 goto err_reinit; 5103 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5104 } 5105 5106 ret = ice_req_irq_msix_misc(pf); 5107 if (ret) { 5108 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5109 ret); 5110 goto err_reinit; 5111 } 5112 5113 return 0; 5114 5115 err_reinit: 5116 while (v--) 5117 if (pf->vsi[v]) 5118 ice_vsi_free_q_vectors(pf->vsi[v]); 5119 5120 return ret; 5121 } 5122 5123 /** 5124 * ice_suspend 5125 * @dev: generic device information structure 5126 * 5127 * Power Management callback to quiesce the device and prepare 5128 * for D3 transition. 5129 */ 5130 static int __maybe_unused ice_suspend(struct device *dev) 5131 { 5132 struct pci_dev *pdev = to_pci_dev(dev); 5133 struct ice_pf *pf; 5134 int disabled, v; 5135 5136 pf = pci_get_drvdata(pdev); 5137 5138 if (!ice_pf_state_is_nominal(pf)) { 5139 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5140 return -EBUSY; 5141 } 5142 5143 /* Stop watchdog tasks until resume completion. 5144 * Even though it is most likely that the service task is 5145 * disabled if the device is suspended or down, the service task's 5146 * state is controlled by a different state bit, and we should 5147 * store and honor whatever state that bit is in at this point. 5148 */ 5149 disabled = ice_service_task_stop(pf); 5150 5151 ice_unplug_aux_dev(pf); 5152 5153 /* Already suspended?, then there is nothing to do */ 5154 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5155 if (!disabled) 5156 ice_service_task_restart(pf); 5157 return 0; 5158 } 5159 5160 if (test_bit(ICE_DOWN, pf->state) || 5161 ice_is_reset_in_progress(pf->state)) { 5162 dev_err(dev, "can't suspend device in reset or already down\n"); 5163 if (!disabled) 5164 ice_service_task_restart(pf); 5165 return 0; 5166 } 5167 5168 ice_setup_mc_magic_wake(pf); 5169 5170 ice_prepare_for_shutdown(pf); 5171 5172 ice_set_wake(pf); 5173 5174 /* Free vectors, clear the interrupt scheme and release IRQs 5175 * for proper hibernation, especially with large number of CPUs. 5176 * Otherwise hibernation might fail when mapping all the vectors back 5177 * to CPU0. 5178 */ 5179 ice_free_irq_msix_misc(pf); 5180 ice_for_each_vsi(pf, v) { 5181 if (!pf->vsi[v]) 5182 continue; 5183 ice_vsi_free_q_vectors(pf->vsi[v]); 5184 } 5185 ice_clear_interrupt_scheme(pf); 5186 5187 pci_save_state(pdev); 5188 pci_wake_from_d3(pdev, pf->wol_ena); 5189 pci_set_power_state(pdev, PCI_D3hot); 5190 return 0; 5191 } 5192 5193 /** 5194 * ice_resume - PM callback for waking up from D3 5195 * @dev: generic device information structure 5196 */ 5197 static int __maybe_unused ice_resume(struct device *dev) 5198 { 5199 struct pci_dev *pdev = to_pci_dev(dev); 5200 enum ice_reset_req reset_type; 5201 struct ice_pf *pf; 5202 struct ice_hw *hw; 5203 int ret; 5204 5205 pci_set_power_state(pdev, PCI_D0); 5206 pci_restore_state(pdev); 5207 pci_save_state(pdev); 5208 5209 if (!pci_device_is_present(pdev)) 5210 return -ENODEV; 5211 5212 ret = pci_enable_device_mem(pdev); 5213 if (ret) { 5214 dev_err(dev, "Cannot enable device after suspend\n"); 5215 return ret; 5216 } 5217 5218 pf = pci_get_drvdata(pdev); 5219 hw = &pf->hw; 5220 5221 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5222 ice_print_wake_reason(pf); 5223 5224 /* We cleared the interrupt scheme when we suspended, so we need to 5225 * restore it now to resume device functionality. 5226 */ 5227 ret = ice_reinit_interrupt_scheme(pf); 5228 if (ret) 5229 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5230 5231 clear_bit(ICE_DOWN, pf->state); 5232 /* Now perform PF reset and rebuild */ 5233 reset_type = ICE_RESET_PFR; 5234 /* re-enable service task for reset, but allow reset to schedule it */ 5235 clear_bit(ICE_SERVICE_DIS, pf->state); 5236 5237 if (ice_schedule_reset(pf, reset_type)) 5238 dev_err(dev, "Reset during resume failed.\n"); 5239 5240 clear_bit(ICE_SUSPENDED, pf->state); 5241 ice_service_task_restart(pf); 5242 5243 /* Restart the service task */ 5244 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5245 5246 return 0; 5247 } 5248 #endif /* CONFIG_PM */ 5249 5250 /** 5251 * ice_pci_err_detected - warning that PCI error has been detected 5252 * @pdev: PCI device information struct 5253 * @err: the type of PCI error 5254 * 5255 * Called to warn that something happened on the PCI bus and the error handling 5256 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5257 */ 5258 static pci_ers_result_t 5259 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5260 { 5261 struct ice_pf *pf = pci_get_drvdata(pdev); 5262 5263 if (!pf) { 5264 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5265 __func__, err); 5266 return PCI_ERS_RESULT_DISCONNECT; 5267 } 5268 5269 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5270 ice_service_task_stop(pf); 5271 5272 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5273 set_bit(ICE_PFR_REQ, pf->state); 5274 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5275 } 5276 } 5277 5278 return PCI_ERS_RESULT_NEED_RESET; 5279 } 5280 5281 /** 5282 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5283 * @pdev: PCI device information struct 5284 * 5285 * Called to determine if the driver can recover from the PCI slot reset by 5286 * using a register read to determine if the device is recoverable. 5287 */ 5288 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5289 { 5290 struct ice_pf *pf = pci_get_drvdata(pdev); 5291 pci_ers_result_t result; 5292 int err; 5293 u32 reg; 5294 5295 err = pci_enable_device_mem(pdev); 5296 if (err) { 5297 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5298 err); 5299 result = PCI_ERS_RESULT_DISCONNECT; 5300 } else { 5301 pci_set_master(pdev); 5302 pci_restore_state(pdev); 5303 pci_save_state(pdev); 5304 pci_wake_from_d3(pdev, false); 5305 5306 /* Check for life */ 5307 reg = rd32(&pf->hw, GLGEN_RTRIG); 5308 if (!reg) 5309 result = PCI_ERS_RESULT_RECOVERED; 5310 else 5311 result = PCI_ERS_RESULT_DISCONNECT; 5312 } 5313 5314 err = pci_aer_clear_nonfatal_status(pdev); 5315 if (err) 5316 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5317 err); 5318 /* non-fatal, continue */ 5319 5320 return result; 5321 } 5322 5323 /** 5324 * ice_pci_err_resume - restart operations after PCI error recovery 5325 * @pdev: PCI device information struct 5326 * 5327 * Called to allow the driver to bring things back up after PCI error and/or 5328 * reset recovery have finished 5329 */ 5330 static void ice_pci_err_resume(struct pci_dev *pdev) 5331 { 5332 struct ice_pf *pf = pci_get_drvdata(pdev); 5333 5334 if (!pf) { 5335 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5336 __func__); 5337 return; 5338 } 5339 5340 if (test_bit(ICE_SUSPENDED, pf->state)) { 5341 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5342 __func__); 5343 return; 5344 } 5345 5346 ice_restore_all_vfs_msi_state(pdev); 5347 5348 ice_do_reset(pf, ICE_RESET_PFR); 5349 ice_service_task_restart(pf); 5350 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5351 } 5352 5353 /** 5354 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5355 * @pdev: PCI device information struct 5356 */ 5357 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5358 { 5359 struct ice_pf *pf = pci_get_drvdata(pdev); 5360 5361 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5362 ice_service_task_stop(pf); 5363 5364 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5365 set_bit(ICE_PFR_REQ, pf->state); 5366 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5367 } 5368 } 5369 } 5370 5371 /** 5372 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5373 * @pdev: PCI device information struct 5374 */ 5375 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5376 { 5377 ice_pci_err_resume(pdev); 5378 } 5379 5380 /* ice_pci_tbl - PCI Device ID Table 5381 * 5382 * Wildcard entries (PCI_ANY_ID) should come last 5383 * Last entry must be all 0s 5384 * 5385 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5386 * Class, Class Mask, private data (not used) } 5387 */ 5388 static const struct pci_device_id ice_pci_tbl[] = { 5389 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5390 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5391 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5392 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5393 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5394 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5395 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5396 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5397 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5398 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5399 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5400 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5401 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5402 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5403 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5404 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5405 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5406 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5407 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5408 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5409 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5410 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5411 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5412 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5413 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5414 /* required last entry */ 5415 { 0, } 5416 }; 5417 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5418 5419 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5420 5421 static const struct pci_error_handlers ice_pci_err_handler = { 5422 .error_detected = ice_pci_err_detected, 5423 .slot_reset = ice_pci_err_slot_reset, 5424 .reset_prepare = ice_pci_err_reset_prepare, 5425 .reset_done = ice_pci_err_reset_done, 5426 .resume = ice_pci_err_resume 5427 }; 5428 5429 static struct pci_driver ice_driver = { 5430 .name = KBUILD_MODNAME, 5431 .id_table = ice_pci_tbl, 5432 .probe = ice_probe, 5433 .remove = ice_remove, 5434 #ifdef CONFIG_PM 5435 .driver.pm = &ice_pm_ops, 5436 #endif /* CONFIG_PM */ 5437 .shutdown = ice_shutdown, 5438 .sriov_configure = ice_sriov_configure, 5439 .err_handler = &ice_pci_err_handler 5440 }; 5441 5442 /** 5443 * ice_module_init - Driver registration routine 5444 * 5445 * ice_module_init is the first routine called when the driver is 5446 * loaded. All it does is register with the PCI subsystem. 5447 */ 5448 static int __init ice_module_init(void) 5449 { 5450 int status; 5451 5452 pr_info("%s\n", ice_driver_string); 5453 pr_info("%s\n", ice_copyright); 5454 5455 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5456 if (!ice_wq) { 5457 pr_err("Failed to create workqueue\n"); 5458 return -ENOMEM; 5459 } 5460 5461 status = pci_register_driver(&ice_driver); 5462 if (status) { 5463 pr_err("failed to register PCI driver, err %d\n", status); 5464 destroy_workqueue(ice_wq); 5465 } 5466 5467 return status; 5468 } 5469 module_init(ice_module_init); 5470 5471 /** 5472 * ice_module_exit - Driver exit cleanup routine 5473 * 5474 * ice_module_exit is called just before the driver is removed 5475 * from memory. 5476 */ 5477 static void __exit ice_module_exit(void) 5478 { 5479 pci_unregister_driver(&ice_driver); 5480 destroy_workqueue(ice_wq); 5481 pr_info("module unloaded\n"); 5482 } 5483 module_exit(ice_module_exit); 5484 5485 /** 5486 * ice_set_mac_address - NDO callback to set MAC address 5487 * @netdev: network interface device structure 5488 * @pi: pointer to an address structure 5489 * 5490 * Returns 0 on success, negative on failure 5491 */ 5492 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5493 { 5494 struct ice_netdev_priv *np = netdev_priv(netdev); 5495 struct ice_vsi *vsi = np->vsi; 5496 struct ice_pf *pf = vsi->back; 5497 struct ice_hw *hw = &pf->hw; 5498 struct sockaddr *addr = pi; 5499 u8 old_mac[ETH_ALEN]; 5500 u8 flags = 0; 5501 u8 *mac; 5502 int err; 5503 5504 mac = (u8 *)addr->sa_data; 5505 5506 if (!is_valid_ether_addr(mac)) 5507 return -EADDRNOTAVAIL; 5508 5509 if (ether_addr_equal(netdev->dev_addr, mac)) { 5510 netdev_dbg(netdev, "already using mac %pM\n", mac); 5511 return 0; 5512 } 5513 5514 if (test_bit(ICE_DOWN, pf->state) || 5515 ice_is_reset_in_progress(pf->state)) { 5516 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5517 mac); 5518 return -EBUSY; 5519 } 5520 5521 if (ice_chnl_dmac_fltr_cnt(pf)) { 5522 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5523 mac); 5524 return -EAGAIN; 5525 } 5526 5527 netif_addr_lock_bh(netdev); 5528 ether_addr_copy(old_mac, netdev->dev_addr); 5529 /* change the netdev's MAC address */ 5530 eth_hw_addr_set(netdev, mac); 5531 netif_addr_unlock_bh(netdev); 5532 5533 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5534 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5535 if (err && err != -ENOENT) { 5536 err = -EADDRNOTAVAIL; 5537 goto err_update_filters; 5538 } 5539 5540 /* Add filter for new MAC. If filter exists, return success */ 5541 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5542 if (err == -EEXIST) { 5543 /* Although this MAC filter is already present in hardware it's 5544 * possible in some cases (e.g. bonding) that dev_addr was 5545 * modified outside of the driver and needs to be restored back 5546 * to this value. 5547 */ 5548 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5549 5550 return 0; 5551 } else if (err) { 5552 /* error if the new filter addition failed */ 5553 err = -EADDRNOTAVAIL; 5554 } 5555 5556 err_update_filters: 5557 if (err) { 5558 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5559 mac); 5560 netif_addr_lock_bh(netdev); 5561 eth_hw_addr_set(netdev, old_mac); 5562 netif_addr_unlock_bh(netdev); 5563 return err; 5564 } 5565 5566 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5567 netdev->dev_addr); 5568 5569 /* write new MAC address to the firmware */ 5570 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5571 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5572 if (err) { 5573 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5574 mac, err); 5575 } 5576 return 0; 5577 } 5578 5579 /** 5580 * ice_set_rx_mode - NDO callback to set the netdev filters 5581 * @netdev: network interface device structure 5582 */ 5583 static void ice_set_rx_mode(struct net_device *netdev) 5584 { 5585 struct ice_netdev_priv *np = netdev_priv(netdev); 5586 struct ice_vsi *vsi = np->vsi; 5587 5588 if (!vsi) 5589 return; 5590 5591 /* Set the flags to synchronize filters 5592 * ndo_set_rx_mode may be triggered even without a change in netdev 5593 * flags 5594 */ 5595 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5596 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5597 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5598 5599 /* schedule our worker thread which will take care of 5600 * applying the new filter changes 5601 */ 5602 ice_service_task_schedule(vsi->back); 5603 } 5604 5605 /** 5606 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5607 * @netdev: network interface device structure 5608 * @queue_index: Queue ID 5609 * @maxrate: maximum bandwidth in Mbps 5610 */ 5611 static int 5612 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5613 { 5614 struct ice_netdev_priv *np = netdev_priv(netdev); 5615 struct ice_vsi *vsi = np->vsi; 5616 u16 q_handle; 5617 int status; 5618 u8 tc; 5619 5620 /* Validate maxrate requested is within permitted range */ 5621 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5622 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5623 maxrate, queue_index); 5624 return -EINVAL; 5625 } 5626 5627 q_handle = vsi->tx_rings[queue_index]->q_handle; 5628 tc = ice_dcb_get_tc(vsi, queue_index); 5629 5630 /* Set BW back to default, when user set maxrate to 0 */ 5631 if (!maxrate) 5632 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5633 q_handle, ICE_MAX_BW); 5634 else 5635 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5636 q_handle, ICE_MAX_BW, maxrate * 1000); 5637 if (status) 5638 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5639 status); 5640 5641 return status; 5642 } 5643 5644 /** 5645 * ice_fdb_add - add an entry to the hardware database 5646 * @ndm: the input from the stack 5647 * @tb: pointer to array of nladdr (unused) 5648 * @dev: the net device pointer 5649 * @addr: the MAC address entry being added 5650 * @vid: VLAN ID 5651 * @flags: instructions from stack about fdb operation 5652 * @extack: netlink extended ack 5653 */ 5654 static int 5655 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5656 struct net_device *dev, const unsigned char *addr, u16 vid, 5657 u16 flags, struct netlink_ext_ack __always_unused *extack) 5658 { 5659 int err; 5660 5661 if (vid) { 5662 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5663 return -EINVAL; 5664 } 5665 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5666 netdev_err(dev, "FDB only supports static addresses\n"); 5667 return -EINVAL; 5668 } 5669 5670 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5671 err = dev_uc_add_excl(dev, addr); 5672 else if (is_multicast_ether_addr(addr)) 5673 err = dev_mc_add_excl(dev, addr); 5674 else 5675 err = -EINVAL; 5676 5677 /* Only return duplicate errors if NLM_F_EXCL is set */ 5678 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5679 err = 0; 5680 5681 return err; 5682 } 5683 5684 /** 5685 * ice_fdb_del - delete an entry from the hardware database 5686 * @ndm: the input from the stack 5687 * @tb: pointer to array of nladdr (unused) 5688 * @dev: the net device pointer 5689 * @addr: the MAC address entry being added 5690 * @vid: VLAN ID 5691 */ 5692 static int 5693 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5694 struct net_device *dev, const unsigned char *addr, 5695 __always_unused u16 vid) 5696 { 5697 int err; 5698 5699 if (ndm->ndm_state & NUD_PERMANENT) { 5700 netdev_err(dev, "FDB only supports static addresses\n"); 5701 return -EINVAL; 5702 } 5703 5704 if (is_unicast_ether_addr(addr)) 5705 err = dev_uc_del(dev, addr); 5706 else if (is_multicast_ether_addr(addr)) 5707 err = dev_mc_del(dev, addr); 5708 else 5709 err = -EINVAL; 5710 5711 return err; 5712 } 5713 5714 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5715 NETIF_F_HW_VLAN_CTAG_TX | \ 5716 NETIF_F_HW_VLAN_STAG_RX | \ 5717 NETIF_F_HW_VLAN_STAG_TX) 5718 5719 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5720 NETIF_F_HW_VLAN_STAG_FILTER) 5721 5722 /** 5723 * ice_fix_features - fix the netdev features flags based on device limitations 5724 * @netdev: ptr to the netdev that flags are being fixed on 5725 * @features: features that need to be checked and possibly fixed 5726 * 5727 * Make sure any fixups are made to features in this callback. This enables the 5728 * driver to not have to check unsupported configurations throughout the driver 5729 * because that's the responsiblity of this callback. 5730 * 5731 * Single VLAN Mode (SVM) Supported Features: 5732 * NETIF_F_HW_VLAN_CTAG_FILTER 5733 * NETIF_F_HW_VLAN_CTAG_RX 5734 * NETIF_F_HW_VLAN_CTAG_TX 5735 * 5736 * Double VLAN Mode (DVM) Supported Features: 5737 * NETIF_F_HW_VLAN_CTAG_FILTER 5738 * NETIF_F_HW_VLAN_CTAG_RX 5739 * NETIF_F_HW_VLAN_CTAG_TX 5740 * 5741 * NETIF_F_HW_VLAN_STAG_FILTER 5742 * NETIF_HW_VLAN_STAG_RX 5743 * NETIF_HW_VLAN_STAG_TX 5744 * 5745 * Features that need fixing: 5746 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5747 * These are mutually exlusive as the VSI context cannot support multiple 5748 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5749 * is not done, then default to clearing the requested STAG offload 5750 * settings. 5751 * 5752 * All supported filtering has to be enabled or disabled together. For 5753 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5754 * together. If this is not done, then default to VLAN filtering disabled. 5755 * These are mutually exclusive as there is currently no way to 5756 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5757 * prune rules. 5758 */ 5759 static netdev_features_t 5760 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5761 { 5762 struct ice_netdev_priv *np = netdev_priv(netdev); 5763 netdev_features_t supported_vlan_filtering; 5764 netdev_features_t requested_vlan_filtering; 5765 struct ice_vsi *vsi = np->vsi; 5766 5767 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5768 5769 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5770 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5771 if (ice_is_dvm_ena(&vsi->back->hw)) 5772 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5773 5774 if (requested_vlan_filtering && 5775 requested_vlan_filtering != supported_vlan_filtering) { 5776 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5777 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5778 features |= supported_vlan_filtering; 5779 } else { 5780 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5781 features &= ~supported_vlan_filtering; 5782 } 5783 } 5784 5785 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5786 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5787 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5788 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5789 NETIF_F_HW_VLAN_STAG_TX); 5790 } 5791 5792 return features; 5793 } 5794 5795 /** 5796 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5797 * @vsi: PF's VSI 5798 * @features: features used to determine VLAN offload settings 5799 * 5800 * First, determine the vlan_ethertype based on the VLAN offload bits in 5801 * features. Then determine if stripping and insertion should be enabled or 5802 * disabled. Finally enable or disable VLAN stripping and insertion. 5803 */ 5804 static int 5805 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5806 { 5807 bool enable_stripping = true, enable_insertion = true; 5808 struct ice_vsi_vlan_ops *vlan_ops; 5809 int strip_err = 0, insert_err = 0; 5810 u16 vlan_ethertype = 0; 5811 5812 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5813 5814 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5815 vlan_ethertype = ETH_P_8021AD; 5816 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5817 vlan_ethertype = ETH_P_8021Q; 5818 5819 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5820 enable_stripping = false; 5821 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5822 enable_insertion = false; 5823 5824 if (enable_stripping) 5825 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5826 else 5827 strip_err = vlan_ops->dis_stripping(vsi); 5828 5829 if (enable_insertion) 5830 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5831 else 5832 insert_err = vlan_ops->dis_insertion(vsi); 5833 5834 if (strip_err || insert_err) 5835 return -EIO; 5836 5837 return 0; 5838 } 5839 5840 /** 5841 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5842 * @vsi: PF's VSI 5843 * @features: features used to determine VLAN filtering settings 5844 * 5845 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5846 * features. 5847 */ 5848 static int 5849 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5850 { 5851 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5852 int err = 0; 5853 5854 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5855 * if either bit is set 5856 */ 5857 if (features & 5858 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5859 err = vlan_ops->ena_rx_filtering(vsi); 5860 else 5861 err = vlan_ops->dis_rx_filtering(vsi); 5862 5863 return err; 5864 } 5865 5866 /** 5867 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5868 * @netdev: ptr to the netdev being adjusted 5869 * @features: the feature set that the stack is suggesting 5870 * 5871 * Only update VLAN settings if the requested_vlan_features are different than 5872 * the current_vlan_features. 5873 */ 5874 static int 5875 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5876 { 5877 netdev_features_t current_vlan_features, requested_vlan_features; 5878 struct ice_netdev_priv *np = netdev_priv(netdev); 5879 struct ice_vsi *vsi = np->vsi; 5880 int err; 5881 5882 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5883 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5884 if (current_vlan_features ^ requested_vlan_features) { 5885 err = ice_set_vlan_offload_features(vsi, features); 5886 if (err) 5887 return err; 5888 } 5889 5890 current_vlan_features = netdev->features & 5891 NETIF_VLAN_FILTERING_FEATURES; 5892 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5893 if (current_vlan_features ^ requested_vlan_features) { 5894 err = ice_set_vlan_filtering_features(vsi, features); 5895 if (err) 5896 return err; 5897 } 5898 5899 return 0; 5900 } 5901 5902 /** 5903 * ice_set_features - set the netdev feature flags 5904 * @netdev: ptr to the netdev being adjusted 5905 * @features: the feature set that the stack is suggesting 5906 */ 5907 static int 5908 ice_set_features(struct net_device *netdev, netdev_features_t features) 5909 { 5910 struct ice_netdev_priv *np = netdev_priv(netdev); 5911 struct ice_vsi *vsi = np->vsi; 5912 struct ice_pf *pf = vsi->back; 5913 int ret = 0; 5914 5915 /* Don't set any netdev advanced features with device in Safe Mode */ 5916 if (ice_is_safe_mode(vsi->back)) { 5917 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5918 return ret; 5919 } 5920 5921 /* Do not change setting during reset */ 5922 if (ice_is_reset_in_progress(pf->state)) { 5923 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5924 return -EBUSY; 5925 } 5926 5927 /* Multiple features can be changed in one call so keep features in 5928 * separate if/else statements to guarantee each feature is checked 5929 */ 5930 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5931 ice_vsi_manage_rss_lut(vsi, true); 5932 else if (!(features & NETIF_F_RXHASH) && 5933 netdev->features & NETIF_F_RXHASH) 5934 ice_vsi_manage_rss_lut(vsi, false); 5935 5936 ret = ice_set_vlan_features(netdev, features); 5937 if (ret) 5938 return ret; 5939 5940 if ((features & NETIF_F_NTUPLE) && 5941 !(netdev->features & NETIF_F_NTUPLE)) { 5942 ice_vsi_manage_fdir(vsi, true); 5943 ice_init_arfs(vsi); 5944 } else if (!(features & NETIF_F_NTUPLE) && 5945 (netdev->features & NETIF_F_NTUPLE)) { 5946 ice_vsi_manage_fdir(vsi, false); 5947 ice_clear_arfs(vsi); 5948 } 5949 5950 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5951 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5952 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5953 return -EACCES; 5954 } 5955 5956 if ((features & NETIF_F_HW_TC) && 5957 !(netdev->features & NETIF_F_HW_TC)) 5958 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5959 else 5960 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5961 5962 return 0; 5963 } 5964 5965 /** 5966 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5967 * @vsi: VSI to setup VLAN properties for 5968 */ 5969 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5970 { 5971 int err; 5972 5973 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5974 if (err) 5975 return err; 5976 5977 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5978 if (err) 5979 return err; 5980 5981 return ice_vsi_add_vlan_zero(vsi); 5982 } 5983 5984 /** 5985 * ice_vsi_cfg - Setup the VSI 5986 * @vsi: the VSI being configured 5987 * 5988 * Return 0 on success and negative value on error 5989 */ 5990 int ice_vsi_cfg(struct ice_vsi *vsi) 5991 { 5992 int err; 5993 5994 if (vsi->netdev) { 5995 ice_set_rx_mode(vsi->netdev); 5996 5997 err = ice_vsi_vlan_setup(vsi); 5998 5999 if (err) 6000 return err; 6001 } 6002 ice_vsi_cfg_dcb_rings(vsi); 6003 6004 err = ice_vsi_cfg_lan_txqs(vsi); 6005 if (!err && ice_is_xdp_ena_vsi(vsi)) 6006 err = ice_vsi_cfg_xdp_txqs(vsi); 6007 if (!err) 6008 err = ice_vsi_cfg_rxqs(vsi); 6009 6010 return err; 6011 } 6012 6013 /* THEORY OF MODERATION: 6014 * The ice driver hardware works differently than the hardware that DIMLIB was 6015 * originally made for. ice hardware doesn't have packet count limits that 6016 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6017 * which is hard-coded to a limit of 250,000 ints/second. 6018 * If not using dynamic moderation, the INTRL value can be modified 6019 * by ethtool rx-usecs-high. 6020 */ 6021 struct ice_dim { 6022 /* the throttle rate for interrupts, basically worst case delay before 6023 * an initial interrupt fires, value is stored in microseconds. 6024 */ 6025 u16 itr; 6026 }; 6027 6028 /* Make a different profile for Rx that doesn't allow quite so aggressive 6029 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6030 * second. 6031 */ 6032 static const struct ice_dim rx_profile[] = { 6033 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6034 {8}, /* 125,000 ints/s */ 6035 {16}, /* 62,500 ints/s */ 6036 {62}, /* 16,129 ints/s */ 6037 {126} /* 7,936 ints/s */ 6038 }; 6039 6040 /* The transmit profile, which has the same sorts of values 6041 * as the previous struct 6042 */ 6043 static const struct ice_dim tx_profile[] = { 6044 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6045 {8}, /* 125,000 ints/s */ 6046 {40}, /* 16,125 ints/s */ 6047 {128}, /* 7,812 ints/s */ 6048 {256} /* 3,906 ints/s */ 6049 }; 6050 6051 static void ice_tx_dim_work(struct work_struct *work) 6052 { 6053 struct ice_ring_container *rc; 6054 struct dim *dim; 6055 u16 itr; 6056 6057 dim = container_of(work, struct dim, work); 6058 rc = (struct ice_ring_container *)dim->priv; 6059 6060 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6061 6062 /* look up the values in our local table */ 6063 itr = tx_profile[dim->profile_ix].itr; 6064 6065 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6066 ice_write_itr(rc, itr); 6067 6068 dim->state = DIM_START_MEASURE; 6069 } 6070 6071 static void ice_rx_dim_work(struct work_struct *work) 6072 { 6073 struct ice_ring_container *rc; 6074 struct dim *dim; 6075 u16 itr; 6076 6077 dim = container_of(work, struct dim, work); 6078 rc = (struct ice_ring_container *)dim->priv; 6079 6080 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6081 6082 /* look up the values in our local table */ 6083 itr = rx_profile[dim->profile_ix].itr; 6084 6085 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6086 ice_write_itr(rc, itr); 6087 6088 dim->state = DIM_START_MEASURE; 6089 } 6090 6091 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6092 6093 /** 6094 * ice_init_moderation - set up interrupt moderation 6095 * @q_vector: the vector containing rings to be configured 6096 * 6097 * Set up interrupt moderation registers, with the intent to do the right thing 6098 * when called from reset or from probe, and whether or not dynamic moderation 6099 * is enabled or not. Take special care to write all the registers in both 6100 * dynamic moderation mode or not in order to make sure hardware is in a known 6101 * state. 6102 */ 6103 static void ice_init_moderation(struct ice_q_vector *q_vector) 6104 { 6105 struct ice_ring_container *rc; 6106 bool tx_dynamic, rx_dynamic; 6107 6108 rc = &q_vector->tx; 6109 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6110 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6111 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6112 rc->dim.priv = rc; 6113 tx_dynamic = ITR_IS_DYNAMIC(rc); 6114 6115 /* set the initial TX ITR to match the above */ 6116 ice_write_itr(rc, tx_dynamic ? 6117 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6118 6119 rc = &q_vector->rx; 6120 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6121 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6122 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6123 rc->dim.priv = rc; 6124 rx_dynamic = ITR_IS_DYNAMIC(rc); 6125 6126 /* set the initial RX ITR to match the above */ 6127 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6128 rc->itr_setting); 6129 6130 ice_set_q_vector_intrl(q_vector); 6131 } 6132 6133 /** 6134 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6135 * @vsi: the VSI being configured 6136 */ 6137 static void ice_napi_enable_all(struct ice_vsi *vsi) 6138 { 6139 int q_idx; 6140 6141 if (!vsi->netdev) 6142 return; 6143 6144 ice_for_each_q_vector(vsi, q_idx) { 6145 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6146 6147 ice_init_moderation(q_vector); 6148 6149 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6150 napi_enable(&q_vector->napi); 6151 } 6152 } 6153 6154 /** 6155 * ice_up_complete - Finish the last steps of bringing up a connection 6156 * @vsi: The VSI being configured 6157 * 6158 * Return 0 on success and negative value on error 6159 */ 6160 static int ice_up_complete(struct ice_vsi *vsi) 6161 { 6162 struct ice_pf *pf = vsi->back; 6163 int err; 6164 6165 ice_vsi_cfg_msix(vsi); 6166 6167 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6168 * Tx queue group list was configured and the context bits were 6169 * programmed using ice_vsi_cfg_txqs 6170 */ 6171 err = ice_vsi_start_all_rx_rings(vsi); 6172 if (err) 6173 return err; 6174 6175 clear_bit(ICE_VSI_DOWN, vsi->state); 6176 ice_napi_enable_all(vsi); 6177 ice_vsi_ena_irq(vsi); 6178 6179 if (vsi->port_info && 6180 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6181 vsi->netdev) { 6182 ice_print_link_msg(vsi, true); 6183 netif_tx_start_all_queues(vsi->netdev); 6184 netif_carrier_on(vsi->netdev); 6185 if (!ice_is_e810(&pf->hw)) 6186 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6187 } 6188 6189 /* clear this now, and the first stats read will be used as baseline */ 6190 vsi->stat_offsets_loaded = false; 6191 6192 ice_service_task_schedule(pf); 6193 6194 return 0; 6195 } 6196 6197 /** 6198 * ice_up - Bring the connection back up after being down 6199 * @vsi: VSI being configured 6200 */ 6201 int ice_up(struct ice_vsi *vsi) 6202 { 6203 int err; 6204 6205 err = ice_vsi_cfg(vsi); 6206 if (!err) 6207 err = ice_up_complete(vsi); 6208 6209 return err; 6210 } 6211 6212 /** 6213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6214 * @syncp: pointer to u64_stats_sync 6215 * @stats: stats that pkts and bytes count will be taken from 6216 * @pkts: packets stats counter 6217 * @bytes: bytes stats counter 6218 * 6219 * This function fetches stats from the ring considering the atomic operations 6220 * that needs to be performed to read u64 values in 32 bit machine. 6221 */ 6222 void 6223 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6224 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6225 { 6226 unsigned int start; 6227 6228 do { 6229 start = u64_stats_fetch_begin_irq(syncp); 6230 *pkts = stats.pkts; 6231 *bytes = stats.bytes; 6232 } while (u64_stats_fetch_retry_irq(syncp, start)); 6233 } 6234 6235 /** 6236 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6237 * @vsi: the VSI to be updated 6238 * @vsi_stats: the stats struct to be updated 6239 * @rings: rings to work on 6240 * @count: number of rings 6241 */ 6242 static void 6243 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6244 struct rtnl_link_stats64 *vsi_stats, 6245 struct ice_tx_ring **rings, u16 count) 6246 { 6247 u16 i; 6248 6249 for (i = 0; i < count; i++) { 6250 struct ice_tx_ring *ring; 6251 u64 pkts = 0, bytes = 0; 6252 6253 ring = READ_ONCE(rings[i]); 6254 if (!ring) 6255 continue; 6256 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6257 vsi_stats->tx_packets += pkts; 6258 vsi_stats->tx_bytes += bytes; 6259 vsi->tx_restart += ring->tx_stats.restart_q; 6260 vsi->tx_busy += ring->tx_stats.tx_busy; 6261 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6262 } 6263 } 6264 6265 /** 6266 * ice_update_vsi_ring_stats - Update VSI stats counters 6267 * @vsi: the VSI to be updated 6268 */ 6269 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6270 { 6271 struct rtnl_link_stats64 *vsi_stats; 6272 u64 pkts, bytes; 6273 int i; 6274 6275 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6276 if (!vsi_stats) 6277 return; 6278 6279 /* reset non-netdev (extended) stats */ 6280 vsi->tx_restart = 0; 6281 vsi->tx_busy = 0; 6282 vsi->tx_linearize = 0; 6283 vsi->rx_buf_failed = 0; 6284 vsi->rx_page_failed = 0; 6285 6286 rcu_read_lock(); 6287 6288 /* update Tx rings counters */ 6289 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6290 vsi->num_txq); 6291 6292 /* update Rx rings counters */ 6293 ice_for_each_rxq(vsi, i) { 6294 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6295 6296 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6297 vsi_stats->rx_packets += pkts; 6298 vsi_stats->rx_bytes += bytes; 6299 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6300 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6301 } 6302 6303 /* update XDP Tx rings counters */ 6304 if (ice_is_xdp_ena_vsi(vsi)) 6305 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6306 vsi->num_xdp_txq); 6307 6308 rcu_read_unlock(); 6309 6310 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6311 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6312 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6313 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6314 6315 kfree(vsi_stats); 6316 } 6317 6318 /** 6319 * ice_update_vsi_stats - Update VSI stats counters 6320 * @vsi: the VSI to be updated 6321 */ 6322 void ice_update_vsi_stats(struct ice_vsi *vsi) 6323 { 6324 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6325 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6326 struct ice_pf *pf = vsi->back; 6327 6328 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6329 test_bit(ICE_CFG_BUSY, pf->state)) 6330 return; 6331 6332 /* get stats as recorded by Tx/Rx rings */ 6333 ice_update_vsi_ring_stats(vsi); 6334 6335 /* get VSI stats as recorded by the hardware */ 6336 ice_update_eth_stats(vsi); 6337 6338 cur_ns->tx_errors = cur_es->tx_errors; 6339 cur_ns->rx_dropped = cur_es->rx_discards; 6340 cur_ns->tx_dropped = cur_es->tx_discards; 6341 cur_ns->multicast = cur_es->rx_multicast; 6342 6343 /* update some more netdev stats if this is main VSI */ 6344 if (vsi->type == ICE_VSI_PF) { 6345 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6346 cur_ns->rx_errors = pf->stats.crc_errors + 6347 pf->stats.illegal_bytes + 6348 pf->stats.rx_len_errors + 6349 pf->stats.rx_undersize + 6350 pf->hw_csum_rx_error + 6351 pf->stats.rx_jabber + 6352 pf->stats.rx_fragments + 6353 pf->stats.rx_oversize; 6354 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6355 /* record drops from the port level */ 6356 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6357 } 6358 } 6359 6360 /** 6361 * ice_update_pf_stats - Update PF port stats counters 6362 * @pf: PF whose stats needs to be updated 6363 */ 6364 void ice_update_pf_stats(struct ice_pf *pf) 6365 { 6366 struct ice_hw_port_stats *prev_ps, *cur_ps; 6367 struct ice_hw *hw = &pf->hw; 6368 u16 fd_ctr_base; 6369 u8 port; 6370 6371 port = hw->port_info->lport; 6372 prev_ps = &pf->stats_prev; 6373 cur_ps = &pf->stats; 6374 6375 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6376 &prev_ps->eth.rx_bytes, 6377 &cur_ps->eth.rx_bytes); 6378 6379 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6380 &prev_ps->eth.rx_unicast, 6381 &cur_ps->eth.rx_unicast); 6382 6383 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6384 &prev_ps->eth.rx_multicast, 6385 &cur_ps->eth.rx_multicast); 6386 6387 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6388 &prev_ps->eth.rx_broadcast, 6389 &cur_ps->eth.rx_broadcast); 6390 6391 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6392 &prev_ps->eth.rx_discards, 6393 &cur_ps->eth.rx_discards); 6394 6395 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6396 &prev_ps->eth.tx_bytes, 6397 &cur_ps->eth.tx_bytes); 6398 6399 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6400 &prev_ps->eth.tx_unicast, 6401 &cur_ps->eth.tx_unicast); 6402 6403 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6404 &prev_ps->eth.tx_multicast, 6405 &cur_ps->eth.tx_multicast); 6406 6407 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6408 &prev_ps->eth.tx_broadcast, 6409 &cur_ps->eth.tx_broadcast); 6410 6411 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6412 &prev_ps->tx_dropped_link_down, 6413 &cur_ps->tx_dropped_link_down); 6414 6415 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6416 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6417 6418 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6419 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6420 6421 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6422 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6423 6424 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6425 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6426 6427 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6428 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6429 6430 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6431 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6432 6433 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6434 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6435 6436 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6437 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6438 6439 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6440 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6441 6442 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6443 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6444 6445 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6446 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6447 6448 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6449 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6450 6451 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6452 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6453 6454 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6455 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6456 6457 fd_ctr_base = hw->fd_ctr_base; 6458 6459 ice_stat_update40(hw, 6460 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6461 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6462 &cur_ps->fd_sb_match); 6463 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6464 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6465 6466 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6467 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6468 6469 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6470 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6471 6472 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6473 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6474 6475 ice_update_dcb_stats(pf); 6476 6477 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6478 &prev_ps->crc_errors, &cur_ps->crc_errors); 6479 6480 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6481 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6482 6483 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6484 &prev_ps->mac_local_faults, 6485 &cur_ps->mac_local_faults); 6486 6487 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6488 &prev_ps->mac_remote_faults, 6489 &cur_ps->mac_remote_faults); 6490 6491 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6492 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6493 6494 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6495 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6496 6497 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6498 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6499 6500 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6501 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6502 6503 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6504 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6505 6506 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6507 6508 pf->stat_prev_loaded = true; 6509 } 6510 6511 /** 6512 * ice_get_stats64 - get statistics for network device structure 6513 * @netdev: network interface device structure 6514 * @stats: main device statistics structure 6515 */ 6516 static 6517 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6518 { 6519 struct ice_netdev_priv *np = netdev_priv(netdev); 6520 struct rtnl_link_stats64 *vsi_stats; 6521 struct ice_vsi *vsi = np->vsi; 6522 6523 vsi_stats = &vsi->net_stats; 6524 6525 if (!vsi->num_txq || !vsi->num_rxq) 6526 return; 6527 6528 /* netdev packet/byte stats come from ring counter. These are obtained 6529 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6530 * But, only call the update routine and read the registers if VSI is 6531 * not down. 6532 */ 6533 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6534 ice_update_vsi_ring_stats(vsi); 6535 stats->tx_packets = vsi_stats->tx_packets; 6536 stats->tx_bytes = vsi_stats->tx_bytes; 6537 stats->rx_packets = vsi_stats->rx_packets; 6538 stats->rx_bytes = vsi_stats->rx_bytes; 6539 6540 /* The rest of the stats can be read from the hardware but instead we 6541 * just return values that the watchdog task has already obtained from 6542 * the hardware. 6543 */ 6544 stats->multicast = vsi_stats->multicast; 6545 stats->tx_errors = vsi_stats->tx_errors; 6546 stats->tx_dropped = vsi_stats->tx_dropped; 6547 stats->rx_errors = vsi_stats->rx_errors; 6548 stats->rx_dropped = vsi_stats->rx_dropped; 6549 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6550 stats->rx_length_errors = vsi_stats->rx_length_errors; 6551 } 6552 6553 /** 6554 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6555 * @vsi: VSI having NAPI disabled 6556 */ 6557 static void ice_napi_disable_all(struct ice_vsi *vsi) 6558 { 6559 int q_idx; 6560 6561 if (!vsi->netdev) 6562 return; 6563 6564 ice_for_each_q_vector(vsi, q_idx) { 6565 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6566 6567 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6568 napi_disable(&q_vector->napi); 6569 6570 cancel_work_sync(&q_vector->tx.dim.work); 6571 cancel_work_sync(&q_vector->rx.dim.work); 6572 } 6573 } 6574 6575 /** 6576 * ice_down - Shutdown the connection 6577 * @vsi: The VSI being stopped 6578 * 6579 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6580 */ 6581 int ice_down(struct ice_vsi *vsi) 6582 { 6583 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6584 6585 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6586 6587 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6588 vlan_err = ice_vsi_del_vlan_zero(vsi); 6589 if (!ice_is_e810(&vsi->back->hw)) 6590 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6591 netif_carrier_off(vsi->netdev); 6592 netif_tx_disable(vsi->netdev); 6593 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6594 ice_eswitch_stop_all_tx_queues(vsi->back); 6595 } 6596 6597 ice_vsi_dis_irq(vsi); 6598 6599 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6600 if (tx_err) 6601 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6602 vsi->vsi_num, tx_err); 6603 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6604 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6605 if (tx_err) 6606 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6607 vsi->vsi_num, tx_err); 6608 } 6609 6610 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6611 if (rx_err) 6612 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6613 vsi->vsi_num, rx_err); 6614 6615 ice_napi_disable_all(vsi); 6616 6617 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6618 link_err = ice_force_phys_link_state(vsi, false); 6619 if (link_err) 6620 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6621 vsi->vsi_num, link_err); 6622 } 6623 6624 ice_for_each_txq(vsi, i) 6625 ice_clean_tx_ring(vsi->tx_rings[i]); 6626 6627 ice_for_each_rxq(vsi, i) 6628 ice_clean_rx_ring(vsi->rx_rings[i]); 6629 6630 if (tx_err || rx_err || link_err || vlan_err) { 6631 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6632 vsi->vsi_num, vsi->vsw->sw_id); 6633 return -EIO; 6634 } 6635 6636 return 0; 6637 } 6638 6639 /** 6640 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6641 * @vsi: VSI having resources allocated 6642 * 6643 * Return 0 on success, negative on failure 6644 */ 6645 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6646 { 6647 int i, err = 0; 6648 6649 if (!vsi->num_txq) { 6650 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6651 vsi->vsi_num); 6652 return -EINVAL; 6653 } 6654 6655 ice_for_each_txq(vsi, i) { 6656 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6657 6658 if (!ring) 6659 return -EINVAL; 6660 6661 if (vsi->netdev) 6662 ring->netdev = vsi->netdev; 6663 err = ice_setup_tx_ring(ring); 6664 if (err) 6665 break; 6666 } 6667 6668 return err; 6669 } 6670 6671 /** 6672 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6673 * @vsi: VSI having resources allocated 6674 * 6675 * Return 0 on success, negative on failure 6676 */ 6677 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6678 { 6679 int i, err = 0; 6680 6681 if (!vsi->num_rxq) { 6682 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6683 vsi->vsi_num); 6684 return -EINVAL; 6685 } 6686 6687 ice_for_each_rxq(vsi, i) { 6688 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6689 6690 if (!ring) 6691 return -EINVAL; 6692 6693 if (vsi->netdev) 6694 ring->netdev = vsi->netdev; 6695 err = ice_setup_rx_ring(ring); 6696 if (err) 6697 break; 6698 } 6699 6700 return err; 6701 } 6702 6703 /** 6704 * ice_vsi_open_ctrl - open control VSI for use 6705 * @vsi: the VSI to open 6706 * 6707 * Initialization of the Control VSI 6708 * 6709 * Returns 0 on success, negative value on error 6710 */ 6711 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6712 { 6713 char int_name[ICE_INT_NAME_STR_LEN]; 6714 struct ice_pf *pf = vsi->back; 6715 struct device *dev; 6716 int err; 6717 6718 dev = ice_pf_to_dev(pf); 6719 /* allocate descriptors */ 6720 err = ice_vsi_setup_tx_rings(vsi); 6721 if (err) 6722 goto err_setup_tx; 6723 6724 err = ice_vsi_setup_rx_rings(vsi); 6725 if (err) 6726 goto err_setup_rx; 6727 6728 err = ice_vsi_cfg(vsi); 6729 if (err) 6730 goto err_setup_rx; 6731 6732 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6733 dev_driver_string(dev), dev_name(dev)); 6734 err = ice_vsi_req_irq_msix(vsi, int_name); 6735 if (err) 6736 goto err_setup_rx; 6737 6738 ice_vsi_cfg_msix(vsi); 6739 6740 err = ice_vsi_start_all_rx_rings(vsi); 6741 if (err) 6742 goto err_up_complete; 6743 6744 clear_bit(ICE_VSI_DOWN, vsi->state); 6745 ice_vsi_ena_irq(vsi); 6746 6747 return 0; 6748 6749 err_up_complete: 6750 ice_down(vsi); 6751 err_setup_rx: 6752 ice_vsi_free_rx_rings(vsi); 6753 err_setup_tx: 6754 ice_vsi_free_tx_rings(vsi); 6755 6756 return err; 6757 } 6758 6759 /** 6760 * ice_vsi_open - Called when a network interface is made active 6761 * @vsi: the VSI to open 6762 * 6763 * Initialization of the VSI 6764 * 6765 * Returns 0 on success, negative value on error 6766 */ 6767 int ice_vsi_open(struct ice_vsi *vsi) 6768 { 6769 char int_name[ICE_INT_NAME_STR_LEN]; 6770 struct ice_pf *pf = vsi->back; 6771 int err; 6772 6773 /* allocate descriptors */ 6774 err = ice_vsi_setup_tx_rings(vsi); 6775 if (err) 6776 goto err_setup_tx; 6777 6778 err = ice_vsi_setup_rx_rings(vsi); 6779 if (err) 6780 goto err_setup_rx; 6781 6782 err = ice_vsi_cfg(vsi); 6783 if (err) 6784 goto err_setup_rx; 6785 6786 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6787 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6788 err = ice_vsi_req_irq_msix(vsi, int_name); 6789 if (err) 6790 goto err_setup_rx; 6791 6792 if (vsi->type == ICE_VSI_PF) { 6793 /* Notify the stack of the actual queue counts. */ 6794 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6795 if (err) 6796 goto err_set_qs; 6797 6798 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6799 if (err) 6800 goto err_set_qs; 6801 } 6802 6803 err = ice_up_complete(vsi); 6804 if (err) 6805 goto err_up_complete; 6806 6807 return 0; 6808 6809 err_up_complete: 6810 ice_down(vsi); 6811 err_set_qs: 6812 ice_vsi_free_irq(vsi); 6813 err_setup_rx: 6814 ice_vsi_free_rx_rings(vsi); 6815 err_setup_tx: 6816 ice_vsi_free_tx_rings(vsi); 6817 6818 return err; 6819 } 6820 6821 /** 6822 * ice_vsi_release_all - Delete all VSIs 6823 * @pf: PF from which all VSIs are being removed 6824 */ 6825 static void ice_vsi_release_all(struct ice_pf *pf) 6826 { 6827 int err, i; 6828 6829 if (!pf->vsi) 6830 return; 6831 6832 ice_for_each_vsi(pf, i) { 6833 if (!pf->vsi[i]) 6834 continue; 6835 6836 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6837 continue; 6838 6839 err = ice_vsi_release(pf->vsi[i]); 6840 if (err) 6841 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6842 i, err, pf->vsi[i]->vsi_num); 6843 } 6844 } 6845 6846 /** 6847 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6848 * @pf: pointer to the PF instance 6849 * @type: VSI type to rebuild 6850 * 6851 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6852 */ 6853 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6854 { 6855 struct device *dev = ice_pf_to_dev(pf); 6856 int i, err; 6857 6858 ice_for_each_vsi(pf, i) { 6859 struct ice_vsi *vsi = pf->vsi[i]; 6860 6861 if (!vsi || vsi->type != type) 6862 continue; 6863 6864 /* rebuild the VSI */ 6865 err = ice_vsi_rebuild(vsi, true); 6866 if (err) { 6867 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6868 err, vsi->idx, ice_vsi_type_str(type)); 6869 return err; 6870 } 6871 6872 /* replay filters for the VSI */ 6873 err = ice_replay_vsi(&pf->hw, vsi->idx); 6874 if (err) { 6875 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6876 err, vsi->idx, ice_vsi_type_str(type)); 6877 return err; 6878 } 6879 6880 /* Re-map HW VSI number, using VSI handle that has been 6881 * previously validated in ice_replay_vsi() call above 6882 */ 6883 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6884 6885 /* enable the VSI */ 6886 err = ice_ena_vsi(vsi, false); 6887 if (err) { 6888 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6889 err, vsi->idx, ice_vsi_type_str(type)); 6890 return err; 6891 } 6892 6893 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6894 ice_vsi_type_str(type)); 6895 } 6896 6897 return 0; 6898 } 6899 6900 /** 6901 * ice_update_pf_netdev_link - Update PF netdev link status 6902 * @pf: pointer to the PF instance 6903 */ 6904 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6905 { 6906 bool link_up; 6907 int i; 6908 6909 ice_for_each_vsi(pf, i) { 6910 struct ice_vsi *vsi = pf->vsi[i]; 6911 6912 if (!vsi || vsi->type != ICE_VSI_PF) 6913 return; 6914 6915 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6916 if (link_up) { 6917 netif_carrier_on(pf->vsi[i]->netdev); 6918 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6919 } else { 6920 netif_carrier_off(pf->vsi[i]->netdev); 6921 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6922 } 6923 } 6924 } 6925 6926 /** 6927 * ice_rebuild - rebuild after reset 6928 * @pf: PF to rebuild 6929 * @reset_type: type of reset 6930 * 6931 * Do not rebuild VF VSI in this flow because that is already handled via 6932 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6933 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6934 * to reset/rebuild all the VF VSI twice. 6935 */ 6936 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6937 { 6938 struct device *dev = ice_pf_to_dev(pf); 6939 struct ice_hw *hw = &pf->hw; 6940 bool dvm; 6941 int err; 6942 6943 if (test_bit(ICE_DOWN, pf->state)) 6944 goto clear_recovery; 6945 6946 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6947 6948 #define ICE_EMP_RESET_SLEEP_MS 5000 6949 if (reset_type == ICE_RESET_EMPR) { 6950 /* If an EMP reset has occurred, any previously pending flash 6951 * update will have completed. We no longer know whether or 6952 * not the NVM update EMP reset is restricted. 6953 */ 6954 pf->fw_emp_reset_disabled = false; 6955 6956 msleep(ICE_EMP_RESET_SLEEP_MS); 6957 } 6958 6959 err = ice_init_all_ctrlq(hw); 6960 if (err) { 6961 dev_err(dev, "control queues init failed %d\n", err); 6962 goto err_init_ctrlq; 6963 } 6964 6965 /* if DDP was previously loaded successfully */ 6966 if (!ice_is_safe_mode(pf)) { 6967 /* reload the SW DB of filter tables */ 6968 if (reset_type == ICE_RESET_PFR) 6969 ice_fill_blk_tbls(hw); 6970 else 6971 /* Reload DDP Package after CORER/GLOBR reset */ 6972 ice_load_pkg(NULL, pf); 6973 } 6974 6975 err = ice_clear_pf_cfg(hw); 6976 if (err) { 6977 dev_err(dev, "clear PF configuration failed %d\n", err); 6978 goto err_init_ctrlq; 6979 } 6980 6981 if (pf->first_sw->dflt_vsi_ena) 6982 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6983 /* clear the default VSI configuration if it exists */ 6984 pf->first_sw->dflt_vsi = NULL; 6985 pf->first_sw->dflt_vsi_ena = false; 6986 6987 ice_clear_pxe_mode(hw); 6988 6989 err = ice_init_nvm(hw); 6990 if (err) { 6991 dev_err(dev, "ice_init_nvm failed %d\n", err); 6992 goto err_init_ctrlq; 6993 } 6994 6995 err = ice_get_caps(hw); 6996 if (err) { 6997 dev_err(dev, "ice_get_caps failed %d\n", err); 6998 goto err_init_ctrlq; 6999 } 7000 7001 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7002 if (err) { 7003 dev_err(dev, "set_mac_cfg failed %d\n", err); 7004 goto err_init_ctrlq; 7005 } 7006 7007 dvm = ice_is_dvm_ena(hw); 7008 7009 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7010 if (err) 7011 goto err_init_ctrlq; 7012 7013 err = ice_sched_init_port(hw->port_info); 7014 if (err) 7015 goto err_sched_init_port; 7016 7017 /* start misc vector */ 7018 err = ice_req_irq_msix_misc(pf); 7019 if (err) { 7020 dev_err(dev, "misc vector setup failed: %d\n", err); 7021 goto err_sched_init_port; 7022 } 7023 7024 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7025 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7026 if (!rd32(hw, PFQF_FD_SIZE)) { 7027 u16 unused, guar, b_effort; 7028 7029 guar = hw->func_caps.fd_fltr_guar; 7030 b_effort = hw->func_caps.fd_fltr_best_effort; 7031 7032 /* force guaranteed filter pool for PF */ 7033 ice_alloc_fd_guar_item(hw, &unused, guar); 7034 /* force shared filter pool for PF */ 7035 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7036 } 7037 } 7038 7039 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7040 ice_dcb_rebuild(pf); 7041 7042 /* If the PF previously had enabled PTP, PTP init needs to happen before 7043 * the VSI rebuild. If not, this causes the PTP link status events to 7044 * fail. 7045 */ 7046 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7047 ice_ptp_reset(pf); 7048 7049 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7050 ice_gnss_init(pf); 7051 7052 /* rebuild PF VSI */ 7053 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7054 if (err) { 7055 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7056 goto err_vsi_rebuild; 7057 } 7058 7059 /* configure PTP timestamping after VSI rebuild */ 7060 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7061 ice_ptp_cfg_timestamp(pf, false); 7062 7063 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7064 if (err) { 7065 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7066 goto err_vsi_rebuild; 7067 } 7068 7069 if (reset_type == ICE_RESET_PFR) { 7070 err = ice_rebuild_channels(pf); 7071 if (err) { 7072 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7073 err); 7074 goto err_vsi_rebuild; 7075 } 7076 } 7077 7078 /* If Flow Director is active */ 7079 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7080 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7081 if (err) { 7082 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7083 goto err_vsi_rebuild; 7084 } 7085 7086 /* replay HW Flow Director recipes */ 7087 if (hw->fdir_prof) 7088 ice_fdir_replay_flows(hw); 7089 7090 /* replay Flow Director filters */ 7091 ice_fdir_replay_fltrs(pf); 7092 7093 ice_rebuild_arfs(pf); 7094 } 7095 7096 ice_update_pf_netdev_link(pf); 7097 7098 /* tell the firmware we are up */ 7099 err = ice_send_version(pf); 7100 if (err) { 7101 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7102 err); 7103 goto err_vsi_rebuild; 7104 } 7105 7106 ice_replay_post(hw); 7107 7108 /* if we get here, reset flow is successful */ 7109 clear_bit(ICE_RESET_FAILED, pf->state); 7110 7111 ice_plug_aux_dev(pf); 7112 return; 7113 7114 err_vsi_rebuild: 7115 err_sched_init_port: 7116 ice_sched_cleanup_all(hw); 7117 err_init_ctrlq: 7118 ice_shutdown_all_ctrlq(hw); 7119 set_bit(ICE_RESET_FAILED, pf->state); 7120 clear_recovery: 7121 /* set this bit in PF state to control service task scheduling */ 7122 set_bit(ICE_NEEDS_RESTART, pf->state); 7123 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7124 } 7125 7126 /** 7127 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7128 * @vsi: Pointer to VSI structure 7129 */ 7130 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7131 { 7132 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7133 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7134 else 7135 return ICE_RXBUF_3072; 7136 } 7137 7138 /** 7139 * ice_change_mtu - NDO callback to change the MTU 7140 * @netdev: network interface device structure 7141 * @new_mtu: new value for maximum frame size 7142 * 7143 * Returns 0 on success, negative on failure 7144 */ 7145 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7146 { 7147 struct ice_netdev_priv *np = netdev_priv(netdev); 7148 struct ice_vsi *vsi = np->vsi; 7149 struct ice_pf *pf = vsi->back; 7150 u8 count = 0; 7151 int err = 0; 7152 7153 if (new_mtu == (int)netdev->mtu) { 7154 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7155 return 0; 7156 } 7157 7158 if (ice_is_xdp_ena_vsi(vsi)) { 7159 int frame_size = ice_max_xdp_frame_size(vsi); 7160 7161 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7162 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7163 frame_size - ICE_ETH_PKT_HDR_PAD); 7164 return -EINVAL; 7165 } 7166 } 7167 7168 /* if a reset is in progress, wait for some time for it to complete */ 7169 do { 7170 if (ice_is_reset_in_progress(pf->state)) { 7171 count++; 7172 usleep_range(1000, 2000); 7173 } else { 7174 break; 7175 } 7176 7177 } while (count < 100); 7178 7179 if (count == 100) { 7180 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7181 return -EBUSY; 7182 } 7183 7184 netdev->mtu = (unsigned int)new_mtu; 7185 7186 /* if VSI is up, bring it down and then back up */ 7187 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7188 err = ice_down(vsi); 7189 if (err) { 7190 netdev_err(netdev, "change MTU if_down err %d\n", err); 7191 return err; 7192 } 7193 7194 err = ice_up(vsi); 7195 if (err) { 7196 netdev_err(netdev, "change MTU if_up err %d\n", err); 7197 return err; 7198 } 7199 } 7200 7201 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7202 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7203 7204 return err; 7205 } 7206 7207 /** 7208 * ice_eth_ioctl - Access the hwtstamp interface 7209 * @netdev: network interface device structure 7210 * @ifr: interface request data 7211 * @cmd: ioctl command 7212 */ 7213 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7214 { 7215 struct ice_netdev_priv *np = netdev_priv(netdev); 7216 struct ice_pf *pf = np->vsi->back; 7217 7218 switch (cmd) { 7219 case SIOCGHWTSTAMP: 7220 return ice_ptp_get_ts_config(pf, ifr); 7221 case SIOCSHWTSTAMP: 7222 return ice_ptp_set_ts_config(pf, ifr); 7223 default: 7224 return -EOPNOTSUPP; 7225 } 7226 } 7227 7228 /** 7229 * ice_aq_str - convert AQ err code to a string 7230 * @aq_err: the AQ error code to convert 7231 */ 7232 const char *ice_aq_str(enum ice_aq_err aq_err) 7233 { 7234 switch (aq_err) { 7235 case ICE_AQ_RC_OK: 7236 return "OK"; 7237 case ICE_AQ_RC_EPERM: 7238 return "ICE_AQ_RC_EPERM"; 7239 case ICE_AQ_RC_ENOENT: 7240 return "ICE_AQ_RC_ENOENT"; 7241 case ICE_AQ_RC_ENOMEM: 7242 return "ICE_AQ_RC_ENOMEM"; 7243 case ICE_AQ_RC_EBUSY: 7244 return "ICE_AQ_RC_EBUSY"; 7245 case ICE_AQ_RC_EEXIST: 7246 return "ICE_AQ_RC_EEXIST"; 7247 case ICE_AQ_RC_EINVAL: 7248 return "ICE_AQ_RC_EINVAL"; 7249 case ICE_AQ_RC_ENOSPC: 7250 return "ICE_AQ_RC_ENOSPC"; 7251 case ICE_AQ_RC_ENOSYS: 7252 return "ICE_AQ_RC_ENOSYS"; 7253 case ICE_AQ_RC_EMODE: 7254 return "ICE_AQ_RC_EMODE"; 7255 case ICE_AQ_RC_ENOSEC: 7256 return "ICE_AQ_RC_ENOSEC"; 7257 case ICE_AQ_RC_EBADSIG: 7258 return "ICE_AQ_RC_EBADSIG"; 7259 case ICE_AQ_RC_ESVN: 7260 return "ICE_AQ_RC_ESVN"; 7261 case ICE_AQ_RC_EBADMAN: 7262 return "ICE_AQ_RC_EBADMAN"; 7263 case ICE_AQ_RC_EBADBUF: 7264 return "ICE_AQ_RC_EBADBUF"; 7265 } 7266 7267 return "ICE_AQ_RC_UNKNOWN"; 7268 } 7269 7270 /** 7271 * ice_set_rss_lut - Set RSS LUT 7272 * @vsi: Pointer to VSI structure 7273 * @lut: Lookup table 7274 * @lut_size: Lookup table size 7275 * 7276 * Returns 0 on success, negative on failure 7277 */ 7278 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7279 { 7280 struct ice_aq_get_set_rss_lut_params params = {}; 7281 struct ice_hw *hw = &vsi->back->hw; 7282 int status; 7283 7284 if (!lut) 7285 return -EINVAL; 7286 7287 params.vsi_handle = vsi->idx; 7288 params.lut_size = lut_size; 7289 params.lut_type = vsi->rss_lut_type; 7290 params.lut = lut; 7291 7292 status = ice_aq_set_rss_lut(hw, ¶ms); 7293 if (status) 7294 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7295 status, ice_aq_str(hw->adminq.sq_last_status)); 7296 7297 return status; 7298 } 7299 7300 /** 7301 * ice_set_rss_key - Set RSS key 7302 * @vsi: Pointer to the VSI structure 7303 * @seed: RSS hash seed 7304 * 7305 * Returns 0 on success, negative on failure 7306 */ 7307 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7308 { 7309 struct ice_hw *hw = &vsi->back->hw; 7310 int status; 7311 7312 if (!seed) 7313 return -EINVAL; 7314 7315 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7316 if (status) 7317 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7318 status, ice_aq_str(hw->adminq.sq_last_status)); 7319 7320 return status; 7321 } 7322 7323 /** 7324 * ice_get_rss_lut - Get RSS LUT 7325 * @vsi: Pointer to VSI structure 7326 * @lut: Buffer to store the lookup table entries 7327 * @lut_size: Size of buffer to store the lookup table entries 7328 * 7329 * Returns 0 on success, negative on failure 7330 */ 7331 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7332 { 7333 struct ice_aq_get_set_rss_lut_params params = {}; 7334 struct ice_hw *hw = &vsi->back->hw; 7335 int status; 7336 7337 if (!lut) 7338 return -EINVAL; 7339 7340 params.vsi_handle = vsi->idx; 7341 params.lut_size = lut_size; 7342 params.lut_type = vsi->rss_lut_type; 7343 params.lut = lut; 7344 7345 status = ice_aq_get_rss_lut(hw, ¶ms); 7346 if (status) 7347 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7348 status, ice_aq_str(hw->adminq.sq_last_status)); 7349 7350 return status; 7351 } 7352 7353 /** 7354 * ice_get_rss_key - Get RSS key 7355 * @vsi: Pointer to VSI structure 7356 * @seed: Buffer to store the key in 7357 * 7358 * Returns 0 on success, negative on failure 7359 */ 7360 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7361 { 7362 struct ice_hw *hw = &vsi->back->hw; 7363 int status; 7364 7365 if (!seed) 7366 return -EINVAL; 7367 7368 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7369 if (status) 7370 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7371 status, ice_aq_str(hw->adminq.sq_last_status)); 7372 7373 return status; 7374 } 7375 7376 /** 7377 * ice_bridge_getlink - Get the hardware bridge mode 7378 * @skb: skb buff 7379 * @pid: process ID 7380 * @seq: RTNL message seq 7381 * @dev: the netdev being configured 7382 * @filter_mask: filter mask passed in 7383 * @nlflags: netlink flags passed in 7384 * 7385 * Return the bridge mode (VEB/VEPA) 7386 */ 7387 static int 7388 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7389 struct net_device *dev, u32 filter_mask, int nlflags) 7390 { 7391 struct ice_netdev_priv *np = netdev_priv(dev); 7392 struct ice_vsi *vsi = np->vsi; 7393 struct ice_pf *pf = vsi->back; 7394 u16 bmode; 7395 7396 bmode = pf->first_sw->bridge_mode; 7397 7398 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7399 filter_mask, NULL); 7400 } 7401 7402 /** 7403 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7404 * @vsi: Pointer to VSI structure 7405 * @bmode: Hardware bridge mode (VEB/VEPA) 7406 * 7407 * Returns 0 on success, negative on failure 7408 */ 7409 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7410 { 7411 struct ice_aqc_vsi_props *vsi_props; 7412 struct ice_hw *hw = &vsi->back->hw; 7413 struct ice_vsi_ctx *ctxt; 7414 int ret; 7415 7416 vsi_props = &vsi->info; 7417 7418 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7419 if (!ctxt) 7420 return -ENOMEM; 7421 7422 ctxt->info = vsi->info; 7423 7424 if (bmode == BRIDGE_MODE_VEB) 7425 /* change from VEPA to VEB mode */ 7426 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7427 else 7428 /* change from VEB to VEPA mode */ 7429 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7430 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7431 7432 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7433 if (ret) { 7434 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7435 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7436 goto out; 7437 } 7438 /* Update sw flags for book keeping */ 7439 vsi_props->sw_flags = ctxt->info.sw_flags; 7440 7441 out: 7442 kfree(ctxt); 7443 return ret; 7444 } 7445 7446 /** 7447 * ice_bridge_setlink - Set the hardware bridge mode 7448 * @dev: the netdev being configured 7449 * @nlh: RTNL message 7450 * @flags: bridge setlink flags 7451 * @extack: netlink extended ack 7452 * 7453 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7454 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7455 * not already set for all VSIs connected to this switch. And also update the 7456 * unicast switch filter rules for the corresponding switch of the netdev. 7457 */ 7458 static int 7459 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7460 u16 __always_unused flags, 7461 struct netlink_ext_ack __always_unused *extack) 7462 { 7463 struct ice_netdev_priv *np = netdev_priv(dev); 7464 struct ice_pf *pf = np->vsi->back; 7465 struct nlattr *attr, *br_spec; 7466 struct ice_hw *hw = &pf->hw; 7467 struct ice_sw *pf_sw; 7468 int rem, v, err = 0; 7469 7470 pf_sw = pf->first_sw; 7471 /* find the attribute in the netlink message */ 7472 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7473 7474 nla_for_each_nested(attr, br_spec, rem) { 7475 __u16 mode; 7476 7477 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7478 continue; 7479 mode = nla_get_u16(attr); 7480 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7481 return -EINVAL; 7482 /* Continue if bridge mode is not being flipped */ 7483 if (mode == pf_sw->bridge_mode) 7484 continue; 7485 /* Iterates through the PF VSI list and update the loopback 7486 * mode of the VSI 7487 */ 7488 ice_for_each_vsi(pf, v) { 7489 if (!pf->vsi[v]) 7490 continue; 7491 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7492 if (err) 7493 return err; 7494 } 7495 7496 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7497 /* Update the unicast switch filter rules for the corresponding 7498 * switch of the netdev 7499 */ 7500 err = ice_update_sw_rule_bridge_mode(hw); 7501 if (err) { 7502 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7503 mode, err, 7504 ice_aq_str(hw->adminq.sq_last_status)); 7505 /* revert hw->evb_veb */ 7506 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7507 return err; 7508 } 7509 7510 pf_sw->bridge_mode = mode; 7511 } 7512 7513 return 0; 7514 } 7515 7516 /** 7517 * ice_tx_timeout - Respond to a Tx Hang 7518 * @netdev: network interface device structure 7519 * @txqueue: Tx queue 7520 */ 7521 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7522 { 7523 struct ice_netdev_priv *np = netdev_priv(netdev); 7524 struct ice_tx_ring *tx_ring = NULL; 7525 struct ice_vsi *vsi = np->vsi; 7526 struct ice_pf *pf = vsi->back; 7527 u32 i; 7528 7529 pf->tx_timeout_count++; 7530 7531 /* Check if PFC is enabled for the TC to which the queue belongs 7532 * to. If yes then Tx timeout is not caused by a hung queue, no 7533 * need to reset and rebuild 7534 */ 7535 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7536 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7537 txqueue); 7538 return; 7539 } 7540 7541 /* now that we have an index, find the tx_ring struct */ 7542 ice_for_each_txq(vsi, i) 7543 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7544 if (txqueue == vsi->tx_rings[i]->q_index) { 7545 tx_ring = vsi->tx_rings[i]; 7546 break; 7547 } 7548 7549 /* Reset recovery level if enough time has elapsed after last timeout. 7550 * Also ensure no new reset action happens before next timeout period. 7551 */ 7552 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7553 pf->tx_timeout_recovery_level = 1; 7554 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7555 netdev->watchdog_timeo))) 7556 return; 7557 7558 if (tx_ring) { 7559 struct ice_hw *hw = &pf->hw; 7560 u32 head, val = 0; 7561 7562 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7563 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7564 /* Read interrupt register */ 7565 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7566 7567 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7568 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7569 head, tx_ring->next_to_use, val); 7570 } 7571 7572 pf->tx_timeout_last_recovery = jiffies; 7573 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7574 pf->tx_timeout_recovery_level, txqueue); 7575 7576 switch (pf->tx_timeout_recovery_level) { 7577 case 1: 7578 set_bit(ICE_PFR_REQ, pf->state); 7579 break; 7580 case 2: 7581 set_bit(ICE_CORER_REQ, pf->state); 7582 break; 7583 case 3: 7584 set_bit(ICE_GLOBR_REQ, pf->state); 7585 break; 7586 default: 7587 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7588 set_bit(ICE_DOWN, pf->state); 7589 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7590 set_bit(ICE_SERVICE_DIS, pf->state); 7591 break; 7592 } 7593 7594 ice_service_task_schedule(pf); 7595 pf->tx_timeout_recovery_level++; 7596 } 7597 7598 /** 7599 * ice_setup_tc_cls_flower - flower classifier offloads 7600 * @np: net device to configure 7601 * @filter_dev: device on which filter is added 7602 * @cls_flower: offload data 7603 */ 7604 static int 7605 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7606 struct net_device *filter_dev, 7607 struct flow_cls_offload *cls_flower) 7608 { 7609 struct ice_vsi *vsi = np->vsi; 7610 7611 if (cls_flower->common.chain_index) 7612 return -EOPNOTSUPP; 7613 7614 switch (cls_flower->command) { 7615 case FLOW_CLS_REPLACE: 7616 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7617 case FLOW_CLS_DESTROY: 7618 return ice_del_cls_flower(vsi, cls_flower); 7619 default: 7620 return -EINVAL; 7621 } 7622 } 7623 7624 /** 7625 * ice_setup_tc_block_cb - callback handler registered for TC block 7626 * @type: TC SETUP type 7627 * @type_data: TC flower offload data that contains user input 7628 * @cb_priv: netdev private data 7629 */ 7630 static int 7631 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7632 { 7633 struct ice_netdev_priv *np = cb_priv; 7634 7635 switch (type) { 7636 case TC_SETUP_CLSFLOWER: 7637 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7638 type_data); 7639 default: 7640 return -EOPNOTSUPP; 7641 } 7642 } 7643 7644 /** 7645 * ice_validate_mqprio_qopt - Validate TCF input parameters 7646 * @vsi: Pointer to VSI 7647 * @mqprio_qopt: input parameters for mqprio queue configuration 7648 * 7649 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7650 * needed), and make sure user doesn't specify qcount and BW rate limit 7651 * for TCs, which are more than "num_tc" 7652 */ 7653 static int 7654 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7655 struct tc_mqprio_qopt_offload *mqprio_qopt) 7656 { 7657 u64 sum_max_rate = 0, sum_min_rate = 0; 7658 int non_power_of_2_qcount = 0; 7659 struct ice_pf *pf = vsi->back; 7660 int max_rss_q_cnt = 0; 7661 struct device *dev; 7662 int i, speed; 7663 u8 num_tc; 7664 7665 if (vsi->type != ICE_VSI_PF) 7666 return -EINVAL; 7667 7668 if (mqprio_qopt->qopt.offset[0] != 0 || 7669 mqprio_qopt->qopt.num_tc < 1 || 7670 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7671 return -EINVAL; 7672 7673 dev = ice_pf_to_dev(pf); 7674 vsi->ch_rss_size = 0; 7675 num_tc = mqprio_qopt->qopt.num_tc; 7676 7677 for (i = 0; num_tc; i++) { 7678 int qcount = mqprio_qopt->qopt.count[i]; 7679 u64 max_rate, min_rate, rem; 7680 7681 if (!qcount) 7682 return -EINVAL; 7683 7684 if (is_power_of_2(qcount)) { 7685 if (non_power_of_2_qcount && 7686 qcount > non_power_of_2_qcount) { 7687 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7688 qcount, non_power_of_2_qcount); 7689 return -EINVAL; 7690 } 7691 if (qcount > max_rss_q_cnt) 7692 max_rss_q_cnt = qcount; 7693 } else { 7694 if (non_power_of_2_qcount && 7695 qcount != non_power_of_2_qcount) { 7696 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7697 qcount, non_power_of_2_qcount); 7698 return -EINVAL; 7699 } 7700 if (qcount < max_rss_q_cnt) { 7701 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7702 qcount, max_rss_q_cnt); 7703 return -EINVAL; 7704 } 7705 max_rss_q_cnt = qcount; 7706 non_power_of_2_qcount = qcount; 7707 } 7708 7709 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7710 * converts the bandwidth rate limit into Bytes/s when 7711 * passing it down to the driver. So convert input bandwidth 7712 * from Bytes/s to Kbps 7713 */ 7714 max_rate = mqprio_qopt->max_rate[i]; 7715 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7716 sum_max_rate += max_rate; 7717 7718 /* min_rate is minimum guaranteed rate and it can't be zero */ 7719 min_rate = mqprio_qopt->min_rate[i]; 7720 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7721 sum_min_rate += min_rate; 7722 7723 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7724 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7725 min_rate, ICE_MIN_BW_LIMIT); 7726 return -EINVAL; 7727 } 7728 7729 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7730 if (rem) { 7731 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7732 i, ICE_MIN_BW_LIMIT); 7733 return -EINVAL; 7734 } 7735 7736 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7737 if (rem) { 7738 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7739 i, ICE_MIN_BW_LIMIT); 7740 return -EINVAL; 7741 } 7742 7743 /* min_rate can't be more than max_rate, except when max_rate 7744 * is zero (implies max_rate sought is max line rate). In such 7745 * a case min_rate can be more than max. 7746 */ 7747 if (max_rate && min_rate > max_rate) { 7748 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7749 min_rate, max_rate); 7750 return -EINVAL; 7751 } 7752 7753 if (i >= mqprio_qopt->qopt.num_tc - 1) 7754 break; 7755 if (mqprio_qopt->qopt.offset[i + 1] != 7756 (mqprio_qopt->qopt.offset[i] + qcount)) 7757 return -EINVAL; 7758 } 7759 if (vsi->num_rxq < 7760 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7761 return -EINVAL; 7762 if (vsi->num_txq < 7763 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7764 return -EINVAL; 7765 7766 speed = ice_get_link_speed_kbps(vsi); 7767 if (sum_max_rate && sum_max_rate > (u64)speed) { 7768 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7769 sum_max_rate, speed); 7770 return -EINVAL; 7771 } 7772 if (sum_min_rate && sum_min_rate > (u64)speed) { 7773 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7774 sum_min_rate, speed); 7775 return -EINVAL; 7776 } 7777 7778 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7779 vsi->ch_rss_size = max_rss_q_cnt; 7780 7781 return 0; 7782 } 7783 7784 /** 7785 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7786 * @pf: ptr to PF device 7787 * @vsi: ptr to VSI 7788 */ 7789 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7790 { 7791 struct device *dev = ice_pf_to_dev(pf); 7792 bool added = false; 7793 struct ice_hw *hw; 7794 int flow; 7795 7796 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7797 return -EINVAL; 7798 7799 hw = &pf->hw; 7800 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7801 struct ice_fd_hw_prof *prof; 7802 int tun, status; 7803 u64 entry_h; 7804 7805 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7806 hw->fdir_prof[flow]->cnt)) 7807 continue; 7808 7809 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7810 enum ice_flow_priority prio; 7811 u64 prof_id; 7812 7813 /* add this VSI to FDir profile for this flow */ 7814 prio = ICE_FLOW_PRIO_NORMAL; 7815 prof = hw->fdir_prof[flow]; 7816 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7817 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7818 prof->vsi_h[0], vsi->idx, 7819 prio, prof->fdir_seg[tun], 7820 &entry_h); 7821 if (status) { 7822 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7823 vsi->idx, flow); 7824 continue; 7825 } 7826 7827 prof->entry_h[prof->cnt][tun] = entry_h; 7828 } 7829 7830 /* store VSI for filter replay and delete */ 7831 prof->vsi_h[prof->cnt] = vsi->idx; 7832 prof->cnt++; 7833 7834 added = true; 7835 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7836 flow); 7837 } 7838 7839 if (!added) 7840 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7841 7842 return 0; 7843 } 7844 7845 /** 7846 * ice_add_channel - add a channel by adding VSI 7847 * @pf: ptr to PF device 7848 * @sw_id: underlying HW switching element ID 7849 * @ch: ptr to channel structure 7850 * 7851 * Add a channel (VSI) using add_vsi and queue_map 7852 */ 7853 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7854 { 7855 struct device *dev = ice_pf_to_dev(pf); 7856 struct ice_vsi *vsi; 7857 7858 if (ch->type != ICE_VSI_CHNL) { 7859 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7860 return -EINVAL; 7861 } 7862 7863 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7864 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7865 dev_err(dev, "create chnl VSI failure\n"); 7866 return -EINVAL; 7867 } 7868 7869 ice_add_vsi_to_fdir(pf, vsi); 7870 7871 ch->sw_id = sw_id; 7872 ch->vsi_num = vsi->vsi_num; 7873 ch->info.mapping_flags = vsi->info.mapping_flags; 7874 ch->ch_vsi = vsi; 7875 /* set the back pointer of channel for newly created VSI */ 7876 vsi->ch = ch; 7877 7878 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7879 sizeof(vsi->info.q_mapping)); 7880 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7881 sizeof(vsi->info.tc_mapping)); 7882 7883 return 0; 7884 } 7885 7886 /** 7887 * ice_chnl_cfg_res 7888 * @vsi: the VSI being setup 7889 * @ch: ptr to channel structure 7890 * 7891 * Configure channel specific resources such as rings, vector. 7892 */ 7893 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7894 { 7895 int i; 7896 7897 for (i = 0; i < ch->num_txq; i++) { 7898 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7899 struct ice_ring_container *rc; 7900 struct ice_tx_ring *tx_ring; 7901 struct ice_rx_ring *rx_ring; 7902 7903 tx_ring = vsi->tx_rings[ch->base_q + i]; 7904 rx_ring = vsi->rx_rings[ch->base_q + i]; 7905 if (!tx_ring || !rx_ring) 7906 continue; 7907 7908 /* setup ring being channel enabled */ 7909 tx_ring->ch = ch; 7910 rx_ring->ch = ch; 7911 7912 /* following code block sets up vector specific attributes */ 7913 tx_q_vector = tx_ring->q_vector; 7914 rx_q_vector = rx_ring->q_vector; 7915 if (!tx_q_vector && !rx_q_vector) 7916 continue; 7917 7918 if (tx_q_vector) { 7919 tx_q_vector->ch = ch; 7920 /* setup Tx and Rx ITR setting if DIM is off */ 7921 rc = &tx_q_vector->tx; 7922 if (!ITR_IS_DYNAMIC(rc)) 7923 ice_write_itr(rc, rc->itr_setting); 7924 } 7925 if (rx_q_vector) { 7926 rx_q_vector->ch = ch; 7927 /* setup Tx and Rx ITR setting if DIM is off */ 7928 rc = &rx_q_vector->rx; 7929 if (!ITR_IS_DYNAMIC(rc)) 7930 ice_write_itr(rc, rc->itr_setting); 7931 } 7932 } 7933 7934 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7935 * GLINT_ITR register would have written to perform in-context 7936 * update, hence perform flush 7937 */ 7938 if (ch->num_txq || ch->num_rxq) 7939 ice_flush(&vsi->back->hw); 7940 } 7941 7942 /** 7943 * ice_cfg_chnl_all_res - configure channel resources 7944 * @vsi: pte to main_vsi 7945 * @ch: ptr to channel structure 7946 * 7947 * This function configures channel specific resources such as flow-director 7948 * counter index, and other resources such as queues, vectors, ITR settings 7949 */ 7950 static void 7951 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7952 { 7953 /* configure channel (aka ADQ) resources such as queues, vectors, 7954 * ITR settings for channel specific vectors and anything else 7955 */ 7956 ice_chnl_cfg_res(vsi, ch); 7957 } 7958 7959 /** 7960 * ice_setup_hw_channel - setup new channel 7961 * @pf: ptr to PF device 7962 * @vsi: the VSI being setup 7963 * @ch: ptr to channel structure 7964 * @sw_id: underlying HW switching element ID 7965 * @type: type of channel to be created (VMDq2/VF) 7966 * 7967 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7968 * and configures Tx rings accordingly 7969 */ 7970 static int 7971 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7972 struct ice_channel *ch, u16 sw_id, u8 type) 7973 { 7974 struct device *dev = ice_pf_to_dev(pf); 7975 int ret; 7976 7977 ch->base_q = vsi->next_base_q; 7978 ch->type = type; 7979 7980 ret = ice_add_channel(pf, sw_id, ch); 7981 if (ret) { 7982 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7983 return ret; 7984 } 7985 7986 /* configure/setup ADQ specific resources */ 7987 ice_cfg_chnl_all_res(vsi, ch); 7988 7989 /* make sure to update the next_base_q so that subsequent channel's 7990 * (aka ADQ) VSI queue map is correct 7991 */ 7992 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7993 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7994 ch->num_rxq); 7995 7996 return 0; 7997 } 7998 7999 /** 8000 * ice_setup_channel - setup new channel using uplink element 8001 * @pf: ptr to PF device 8002 * @vsi: the VSI being setup 8003 * @ch: ptr to channel structure 8004 * 8005 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8006 * and uplink switching element 8007 */ 8008 static bool 8009 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8010 struct ice_channel *ch) 8011 { 8012 struct device *dev = ice_pf_to_dev(pf); 8013 u16 sw_id; 8014 int ret; 8015 8016 if (vsi->type != ICE_VSI_PF) { 8017 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8018 return false; 8019 } 8020 8021 sw_id = pf->first_sw->sw_id; 8022 8023 /* create channel (VSI) */ 8024 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8025 if (ret) { 8026 dev_err(dev, "failed to setup hw_channel\n"); 8027 return false; 8028 } 8029 dev_dbg(dev, "successfully created channel()\n"); 8030 8031 return ch->ch_vsi ? true : false; 8032 } 8033 8034 /** 8035 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8036 * @vsi: VSI to be configured 8037 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8038 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8039 */ 8040 static int 8041 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8042 { 8043 int err; 8044 8045 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8046 if (err) 8047 return err; 8048 8049 return ice_set_max_bw_limit(vsi, max_tx_rate); 8050 } 8051 8052 /** 8053 * ice_create_q_channel - function to create channel 8054 * @vsi: VSI to be configured 8055 * @ch: ptr to channel (it contains channel specific params) 8056 * 8057 * This function creates channel (VSI) using num_queues specified by user, 8058 * reconfigs RSS if needed. 8059 */ 8060 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8061 { 8062 struct ice_pf *pf = vsi->back; 8063 struct device *dev; 8064 8065 if (!ch) 8066 return -EINVAL; 8067 8068 dev = ice_pf_to_dev(pf); 8069 if (!ch->num_txq || !ch->num_rxq) { 8070 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8071 return -EINVAL; 8072 } 8073 8074 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8075 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8076 vsi->cnt_q_avail, ch->num_txq); 8077 return -EINVAL; 8078 } 8079 8080 if (!ice_setup_channel(pf, vsi, ch)) { 8081 dev_info(dev, "Failed to setup channel\n"); 8082 return -EINVAL; 8083 } 8084 /* configure BW rate limit */ 8085 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8086 int ret; 8087 8088 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8089 ch->min_tx_rate); 8090 if (ret) 8091 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8092 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8093 else 8094 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8095 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8096 } 8097 8098 vsi->cnt_q_avail -= ch->num_txq; 8099 8100 return 0; 8101 } 8102 8103 /** 8104 * ice_rem_all_chnl_fltrs - removes all channel filters 8105 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8106 * 8107 * Remove all advanced switch filters only if they are channel specific 8108 * tc-flower based filter 8109 */ 8110 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8111 { 8112 struct ice_tc_flower_fltr *fltr; 8113 struct hlist_node *node; 8114 8115 /* to remove all channel filters, iterate an ordered list of filters */ 8116 hlist_for_each_entry_safe(fltr, node, 8117 &pf->tc_flower_fltr_list, 8118 tc_flower_node) { 8119 struct ice_rule_query_data rule; 8120 int status; 8121 8122 /* for now process only channel specific filters */ 8123 if (!ice_is_chnl_fltr(fltr)) 8124 continue; 8125 8126 rule.rid = fltr->rid; 8127 rule.rule_id = fltr->rule_id; 8128 rule.vsi_handle = fltr->dest_id; 8129 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8130 if (status) { 8131 if (status == -ENOENT) 8132 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8133 rule.rule_id); 8134 else 8135 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8136 status); 8137 } else if (fltr->dest_vsi) { 8138 /* update advanced switch filter count */ 8139 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8140 u32 flags = fltr->flags; 8141 8142 fltr->dest_vsi->num_chnl_fltr--; 8143 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8144 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8145 pf->num_dmac_chnl_fltrs--; 8146 } 8147 } 8148 8149 hlist_del(&fltr->tc_flower_node); 8150 kfree(fltr); 8151 } 8152 } 8153 8154 /** 8155 * ice_remove_q_channels - Remove queue channels for the TCs 8156 * @vsi: VSI to be configured 8157 * @rem_fltr: delete advanced switch filter or not 8158 * 8159 * Remove queue channels for the TCs 8160 */ 8161 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8162 { 8163 struct ice_channel *ch, *ch_tmp; 8164 struct ice_pf *pf = vsi->back; 8165 int i; 8166 8167 /* remove all tc-flower based filter if they are channel filters only */ 8168 if (rem_fltr) 8169 ice_rem_all_chnl_fltrs(pf); 8170 8171 /* remove ntuple filters since queue configuration is being changed */ 8172 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8173 struct ice_hw *hw = &pf->hw; 8174 8175 mutex_lock(&hw->fdir_fltr_lock); 8176 ice_fdir_del_all_fltrs(vsi); 8177 mutex_unlock(&hw->fdir_fltr_lock); 8178 } 8179 8180 /* perform cleanup for channels if they exist */ 8181 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8182 struct ice_vsi *ch_vsi; 8183 8184 list_del(&ch->list); 8185 ch_vsi = ch->ch_vsi; 8186 if (!ch_vsi) { 8187 kfree(ch); 8188 continue; 8189 } 8190 8191 /* Reset queue contexts */ 8192 for (i = 0; i < ch->num_rxq; i++) { 8193 struct ice_tx_ring *tx_ring; 8194 struct ice_rx_ring *rx_ring; 8195 8196 tx_ring = vsi->tx_rings[ch->base_q + i]; 8197 rx_ring = vsi->rx_rings[ch->base_q + i]; 8198 if (tx_ring) { 8199 tx_ring->ch = NULL; 8200 if (tx_ring->q_vector) 8201 tx_ring->q_vector->ch = NULL; 8202 } 8203 if (rx_ring) { 8204 rx_ring->ch = NULL; 8205 if (rx_ring->q_vector) 8206 rx_ring->q_vector->ch = NULL; 8207 } 8208 } 8209 8210 /* Release FD resources for the channel VSI */ 8211 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8212 8213 /* clear the VSI from scheduler tree */ 8214 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8215 8216 /* Delete VSI from FW */ 8217 ice_vsi_delete(ch->ch_vsi); 8218 8219 /* Delete VSI from PF and HW VSI arrays */ 8220 ice_vsi_clear(ch->ch_vsi); 8221 8222 /* free the channel */ 8223 kfree(ch); 8224 } 8225 8226 /* clear the channel VSI map which is stored in main VSI */ 8227 ice_for_each_chnl_tc(i) 8228 vsi->tc_map_vsi[i] = NULL; 8229 8230 /* reset main VSI's all TC information */ 8231 vsi->all_enatc = 0; 8232 vsi->all_numtc = 0; 8233 } 8234 8235 /** 8236 * ice_rebuild_channels - rebuild channel 8237 * @pf: ptr to PF 8238 * 8239 * Recreate channel VSIs and replay filters 8240 */ 8241 static int ice_rebuild_channels(struct ice_pf *pf) 8242 { 8243 struct device *dev = ice_pf_to_dev(pf); 8244 struct ice_vsi *main_vsi; 8245 bool rem_adv_fltr = true; 8246 struct ice_channel *ch; 8247 struct ice_vsi *vsi; 8248 int tc_idx = 1; 8249 int i, err; 8250 8251 main_vsi = ice_get_main_vsi(pf); 8252 if (!main_vsi) 8253 return 0; 8254 8255 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8256 main_vsi->old_numtc == 1) 8257 return 0; /* nothing to be done */ 8258 8259 /* reconfigure main VSI based on old value of TC and cached values 8260 * for MQPRIO opts 8261 */ 8262 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8263 if (err) { 8264 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8265 main_vsi->old_ena_tc, main_vsi->vsi_num); 8266 return err; 8267 } 8268 8269 /* rebuild ADQ VSIs */ 8270 ice_for_each_vsi(pf, i) { 8271 enum ice_vsi_type type; 8272 8273 vsi = pf->vsi[i]; 8274 if (!vsi || vsi->type != ICE_VSI_CHNL) 8275 continue; 8276 8277 type = vsi->type; 8278 8279 /* rebuild ADQ VSI */ 8280 err = ice_vsi_rebuild(vsi, true); 8281 if (err) { 8282 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8283 ice_vsi_type_str(type), vsi->idx, err); 8284 goto cleanup; 8285 } 8286 8287 /* Re-map HW VSI number, using VSI handle that has been 8288 * previously validated in ice_replay_vsi() call above 8289 */ 8290 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8291 8292 /* replay filters for the VSI */ 8293 err = ice_replay_vsi(&pf->hw, vsi->idx); 8294 if (err) { 8295 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8296 ice_vsi_type_str(type), err, vsi->idx); 8297 rem_adv_fltr = false; 8298 goto cleanup; 8299 } 8300 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8301 ice_vsi_type_str(type), vsi->idx); 8302 8303 /* store ADQ VSI at correct TC index in main VSI's 8304 * map of TC to VSI 8305 */ 8306 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8307 } 8308 8309 /* ADQ VSI(s) has been rebuilt successfully, so setup 8310 * channel for main VSI's Tx and Rx rings 8311 */ 8312 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8313 struct ice_vsi *ch_vsi; 8314 8315 ch_vsi = ch->ch_vsi; 8316 if (!ch_vsi) 8317 continue; 8318 8319 /* reconfig channel resources */ 8320 ice_cfg_chnl_all_res(main_vsi, ch); 8321 8322 /* replay BW rate limit if it is non-zero */ 8323 if (!ch->max_tx_rate && !ch->min_tx_rate) 8324 continue; 8325 8326 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8327 ch->min_tx_rate); 8328 if (err) 8329 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8330 err, ch->max_tx_rate, ch->min_tx_rate, 8331 ch_vsi->vsi_num); 8332 else 8333 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8334 ch->max_tx_rate, ch->min_tx_rate, 8335 ch_vsi->vsi_num); 8336 } 8337 8338 /* reconfig RSS for main VSI */ 8339 if (main_vsi->ch_rss_size) 8340 ice_vsi_cfg_rss_lut_key(main_vsi); 8341 8342 return 0; 8343 8344 cleanup: 8345 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8346 return err; 8347 } 8348 8349 /** 8350 * ice_create_q_channels - Add queue channel for the given TCs 8351 * @vsi: VSI to be configured 8352 * 8353 * Configures queue channel mapping to the given TCs 8354 */ 8355 static int ice_create_q_channels(struct ice_vsi *vsi) 8356 { 8357 struct ice_pf *pf = vsi->back; 8358 struct ice_channel *ch; 8359 int ret = 0, i; 8360 8361 ice_for_each_chnl_tc(i) { 8362 if (!(vsi->all_enatc & BIT(i))) 8363 continue; 8364 8365 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8366 if (!ch) { 8367 ret = -ENOMEM; 8368 goto err_free; 8369 } 8370 INIT_LIST_HEAD(&ch->list); 8371 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8372 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8373 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8374 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8375 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8376 8377 /* convert to Kbits/s */ 8378 if (ch->max_tx_rate) 8379 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8380 ICE_BW_KBPS_DIVISOR); 8381 if (ch->min_tx_rate) 8382 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8383 ICE_BW_KBPS_DIVISOR); 8384 8385 ret = ice_create_q_channel(vsi, ch); 8386 if (ret) { 8387 dev_err(ice_pf_to_dev(pf), 8388 "failed creating channel TC:%d\n", i); 8389 kfree(ch); 8390 goto err_free; 8391 } 8392 list_add_tail(&ch->list, &vsi->ch_list); 8393 vsi->tc_map_vsi[i] = ch->ch_vsi; 8394 dev_dbg(ice_pf_to_dev(pf), 8395 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8396 } 8397 return 0; 8398 8399 err_free: 8400 ice_remove_q_channels(vsi, false); 8401 8402 return ret; 8403 } 8404 8405 /** 8406 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8407 * @netdev: net device to configure 8408 * @type_data: TC offload data 8409 */ 8410 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8411 { 8412 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8413 struct ice_netdev_priv *np = netdev_priv(netdev); 8414 struct ice_vsi *vsi = np->vsi; 8415 struct ice_pf *pf = vsi->back; 8416 u16 mode, ena_tc_qdisc = 0; 8417 int cur_txq, cur_rxq; 8418 u8 hw = 0, num_tcf; 8419 struct device *dev; 8420 int ret, i; 8421 8422 dev = ice_pf_to_dev(pf); 8423 num_tcf = mqprio_qopt->qopt.num_tc; 8424 hw = mqprio_qopt->qopt.hw; 8425 mode = mqprio_qopt->mode; 8426 if (!hw) { 8427 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8428 vsi->ch_rss_size = 0; 8429 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8430 goto config_tcf; 8431 } 8432 8433 /* Generate queue region map for number of TCF requested */ 8434 for (i = 0; i < num_tcf; i++) 8435 ena_tc_qdisc |= BIT(i); 8436 8437 switch (mode) { 8438 case TC_MQPRIO_MODE_CHANNEL: 8439 8440 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8441 if (ret) { 8442 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8443 ret); 8444 return ret; 8445 } 8446 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8447 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8448 /* don't assume state of hw_tc_offload during driver load 8449 * and set the flag for TC flower filter if hw_tc_offload 8450 * already ON 8451 */ 8452 if (vsi->netdev->features & NETIF_F_HW_TC) 8453 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8454 break; 8455 default: 8456 return -EINVAL; 8457 } 8458 8459 config_tcf: 8460 8461 /* Requesting same TCF configuration as already enabled */ 8462 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8463 mode != TC_MQPRIO_MODE_CHANNEL) 8464 return 0; 8465 8466 /* Pause VSI queues */ 8467 ice_dis_vsi(vsi, true); 8468 8469 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8470 ice_remove_q_channels(vsi, true); 8471 8472 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8473 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8474 num_online_cpus()); 8475 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8476 num_online_cpus()); 8477 } else { 8478 /* logic to rebuild VSI, same like ethtool -L */ 8479 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8480 8481 for (i = 0; i < num_tcf; i++) { 8482 if (!(ena_tc_qdisc & BIT(i))) 8483 continue; 8484 8485 offset = vsi->mqprio_qopt.qopt.offset[i]; 8486 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8487 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8488 } 8489 vsi->req_txq = offset + qcount_tx; 8490 vsi->req_rxq = offset + qcount_rx; 8491 8492 /* store away original rss_size info, so that it gets reused 8493 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8494 * determine, what should be the rss_sizefor main VSI 8495 */ 8496 vsi->orig_rss_size = vsi->rss_size; 8497 } 8498 8499 /* save current values of Tx and Rx queues before calling VSI rebuild 8500 * for fallback option 8501 */ 8502 cur_txq = vsi->num_txq; 8503 cur_rxq = vsi->num_rxq; 8504 8505 /* proceed with rebuild main VSI using correct number of queues */ 8506 ret = ice_vsi_rebuild(vsi, false); 8507 if (ret) { 8508 /* fallback to current number of queues */ 8509 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8510 vsi->req_txq = cur_txq; 8511 vsi->req_rxq = cur_rxq; 8512 clear_bit(ICE_RESET_FAILED, pf->state); 8513 if (ice_vsi_rebuild(vsi, false)) { 8514 dev_err(dev, "Rebuild of main VSI failed again\n"); 8515 return ret; 8516 } 8517 } 8518 8519 vsi->all_numtc = num_tcf; 8520 vsi->all_enatc = ena_tc_qdisc; 8521 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8522 if (ret) { 8523 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8524 vsi->vsi_num); 8525 goto exit; 8526 } 8527 8528 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8529 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8530 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8531 8532 /* set TC0 rate limit if specified */ 8533 if (max_tx_rate || min_tx_rate) { 8534 /* convert to Kbits/s */ 8535 if (max_tx_rate) 8536 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8537 if (min_tx_rate) 8538 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8539 8540 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8541 if (!ret) { 8542 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8543 max_tx_rate, min_tx_rate, vsi->vsi_num); 8544 } else { 8545 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8546 max_tx_rate, min_tx_rate, vsi->vsi_num); 8547 goto exit; 8548 } 8549 } 8550 ret = ice_create_q_channels(vsi); 8551 if (ret) { 8552 netdev_err(netdev, "failed configuring queue channels\n"); 8553 goto exit; 8554 } else { 8555 netdev_dbg(netdev, "successfully configured channels\n"); 8556 } 8557 } 8558 8559 if (vsi->ch_rss_size) 8560 ice_vsi_cfg_rss_lut_key(vsi); 8561 8562 exit: 8563 /* if error, reset the all_numtc and all_enatc */ 8564 if (ret) { 8565 vsi->all_numtc = 0; 8566 vsi->all_enatc = 0; 8567 } 8568 /* resume VSI */ 8569 ice_ena_vsi(vsi, true); 8570 8571 return ret; 8572 } 8573 8574 static LIST_HEAD(ice_block_cb_list); 8575 8576 static int 8577 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8578 void *type_data) 8579 { 8580 struct ice_netdev_priv *np = netdev_priv(netdev); 8581 struct ice_pf *pf = np->vsi->back; 8582 int err; 8583 8584 switch (type) { 8585 case TC_SETUP_BLOCK: 8586 return flow_block_cb_setup_simple(type_data, 8587 &ice_block_cb_list, 8588 ice_setup_tc_block_cb, 8589 np, np, true); 8590 case TC_SETUP_QDISC_MQPRIO: 8591 /* setup traffic classifier for receive side */ 8592 mutex_lock(&pf->tc_mutex); 8593 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8594 mutex_unlock(&pf->tc_mutex); 8595 return err; 8596 default: 8597 return -EOPNOTSUPP; 8598 } 8599 return -EOPNOTSUPP; 8600 } 8601 8602 static struct ice_indr_block_priv * 8603 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8604 struct net_device *netdev) 8605 { 8606 struct ice_indr_block_priv *cb_priv; 8607 8608 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8609 if (!cb_priv->netdev) 8610 return NULL; 8611 if (cb_priv->netdev == netdev) 8612 return cb_priv; 8613 } 8614 return NULL; 8615 } 8616 8617 static int 8618 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8619 void *indr_priv) 8620 { 8621 struct ice_indr_block_priv *priv = indr_priv; 8622 struct ice_netdev_priv *np = priv->np; 8623 8624 switch (type) { 8625 case TC_SETUP_CLSFLOWER: 8626 return ice_setup_tc_cls_flower(np, priv->netdev, 8627 (struct flow_cls_offload *) 8628 type_data); 8629 default: 8630 return -EOPNOTSUPP; 8631 } 8632 } 8633 8634 static int 8635 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8636 struct ice_netdev_priv *np, 8637 struct flow_block_offload *f, void *data, 8638 void (*cleanup)(struct flow_block_cb *block_cb)) 8639 { 8640 struct ice_indr_block_priv *indr_priv; 8641 struct flow_block_cb *block_cb; 8642 8643 if (!ice_is_tunnel_supported(netdev) && 8644 !(is_vlan_dev(netdev) && 8645 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8646 return -EOPNOTSUPP; 8647 8648 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8649 return -EOPNOTSUPP; 8650 8651 switch (f->command) { 8652 case FLOW_BLOCK_BIND: 8653 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8654 if (indr_priv) 8655 return -EEXIST; 8656 8657 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8658 if (!indr_priv) 8659 return -ENOMEM; 8660 8661 indr_priv->netdev = netdev; 8662 indr_priv->np = np; 8663 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8664 8665 block_cb = 8666 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8667 indr_priv, indr_priv, 8668 ice_rep_indr_tc_block_unbind, 8669 f, netdev, sch, data, np, 8670 cleanup); 8671 8672 if (IS_ERR(block_cb)) { 8673 list_del(&indr_priv->list); 8674 kfree(indr_priv); 8675 return PTR_ERR(block_cb); 8676 } 8677 flow_block_cb_add(block_cb, f); 8678 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8679 break; 8680 case FLOW_BLOCK_UNBIND: 8681 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8682 if (!indr_priv) 8683 return -ENOENT; 8684 8685 block_cb = flow_block_cb_lookup(f->block, 8686 ice_indr_setup_block_cb, 8687 indr_priv); 8688 if (!block_cb) 8689 return -ENOENT; 8690 8691 flow_indr_block_cb_remove(block_cb, f); 8692 8693 list_del(&block_cb->driver_list); 8694 break; 8695 default: 8696 return -EOPNOTSUPP; 8697 } 8698 return 0; 8699 } 8700 8701 static int 8702 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8703 void *cb_priv, enum tc_setup_type type, void *type_data, 8704 void *data, 8705 void (*cleanup)(struct flow_block_cb *block_cb)) 8706 { 8707 switch (type) { 8708 case TC_SETUP_BLOCK: 8709 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8710 data, cleanup); 8711 8712 default: 8713 return -EOPNOTSUPP; 8714 } 8715 } 8716 8717 /** 8718 * ice_open - Called when a network interface becomes active 8719 * @netdev: network interface device structure 8720 * 8721 * The open entry point is called when a network interface is made 8722 * active by the system (IFF_UP). At this point all resources needed 8723 * for transmit and receive operations are allocated, the interrupt 8724 * handler is registered with the OS, the netdev watchdog is enabled, 8725 * and the stack is notified that the interface is ready. 8726 * 8727 * Returns 0 on success, negative value on failure 8728 */ 8729 int ice_open(struct net_device *netdev) 8730 { 8731 struct ice_netdev_priv *np = netdev_priv(netdev); 8732 struct ice_pf *pf = np->vsi->back; 8733 8734 if (ice_is_reset_in_progress(pf->state)) { 8735 netdev_err(netdev, "can't open net device while reset is in progress"); 8736 return -EBUSY; 8737 } 8738 8739 return ice_open_internal(netdev); 8740 } 8741 8742 /** 8743 * ice_open_internal - Called when a network interface becomes active 8744 * @netdev: network interface device structure 8745 * 8746 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8747 * handling routine 8748 * 8749 * Returns 0 on success, negative value on failure 8750 */ 8751 int ice_open_internal(struct net_device *netdev) 8752 { 8753 struct ice_netdev_priv *np = netdev_priv(netdev); 8754 struct ice_vsi *vsi = np->vsi; 8755 struct ice_pf *pf = vsi->back; 8756 struct ice_port_info *pi; 8757 int err; 8758 8759 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8760 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8761 return -EIO; 8762 } 8763 8764 netif_carrier_off(netdev); 8765 8766 pi = vsi->port_info; 8767 err = ice_update_link_info(pi); 8768 if (err) { 8769 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8770 return err; 8771 } 8772 8773 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8774 8775 /* Set PHY if there is media, otherwise, turn off PHY */ 8776 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8777 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8778 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8779 err = ice_init_phy_user_cfg(pi); 8780 if (err) { 8781 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8782 err); 8783 return err; 8784 } 8785 } 8786 8787 err = ice_configure_phy(vsi); 8788 if (err) { 8789 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8790 err); 8791 return err; 8792 } 8793 } else { 8794 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8795 ice_set_link(vsi, false); 8796 } 8797 8798 err = ice_vsi_open(vsi); 8799 if (err) 8800 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8801 vsi->vsi_num, vsi->vsw->sw_id); 8802 8803 /* Update existing tunnels information */ 8804 udp_tunnel_get_rx_info(netdev); 8805 8806 return err; 8807 } 8808 8809 /** 8810 * ice_stop - Disables a network interface 8811 * @netdev: network interface device structure 8812 * 8813 * The stop entry point is called when an interface is de-activated by the OS, 8814 * and the netdevice enters the DOWN state. The hardware is still under the 8815 * driver's control, but the netdev interface is disabled. 8816 * 8817 * Returns success only - not allowed to fail 8818 */ 8819 int ice_stop(struct net_device *netdev) 8820 { 8821 struct ice_netdev_priv *np = netdev_priv(netdev); 8822 struct ice_vsi *vsi = np->vsi; 8823 struct ice_pf *pf = vsi->back; 8824 8825 if (ice_is_reset_in_progress(pf->state)) { 8826 netdev_err(netdev, "can't stop net device while reset is in progress"); 8827 return -EBUSY; 8828 } 8829 8830 ice_vsi_close(vsi); 8831 8832 return 0; 8833 } 8834 8835 /** 8836 * ice_features_check - Validate encapsulated packet conforms to limits 8837 * @skb: skb buffer 8838 * @netdev: This port's netdev 8839 * @features: Offload features that the stack believes apply 8840 */ 8841 static netdev_features_t 8842 ice_features_check(struct sk_buff *skb, 8843 struct net_device __always_unused *netdev, 8844 netdev_features_t features) 8845 { 8846 bool gso = skb_is_gso(skb); 8847 size_t len; 8848 8849 /* No point in doing any of this if neither checksum nor GSO are 8850 * being requested for this frame. We can rule out both by just 8851 * checking for CHECKSUM_PARTIAL 8852 */ 8853 if (skb->ip_summed != CHECKSUM_PARTIAL) 8854 return features; 8855 8856 /* We cannot support GSO if the MSS is going to be less than 8857 * 64 bytes. If it is then we need to drop support for GSO. 8858 */ 8859 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8860 features &= ~NETIF_F_GSO_MASK; 8861 8862 len = skb_network_offset(skb); 8863 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8864 goto out_rm_features; 8865 8866 len = skb_network_header_len(skb); 8867 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8868 goto out_rm_features; 8869 8870 if (skb->encapsulation) { 8871 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8872 * the case of IPIP frames, the transport header pointer is 8873 * after the inner header! So check to make sure that this 8874 * is a GRE or UDP_TUNNEL frame before doing that math. 8875 */ 8876 if (gso && (skb_shinfo(skb)->gso_type & 8877 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8878 len = skb_inner_network_header(skb) - 8879 skb_transport_header(skb); 8880 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8881 goto out_rm_features; 8882 } 8883 8884 len = skb_inner_network_header_len(skb); 8885 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8886 goto out_rm_features; 8887 } 8888 8889 return features; 8890 out_rm_features: 8891 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8892 } 8893 8894 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8895 .ndo_open = ice_open, 8896 .ndo_stop = ice_stop, 8897 .ndo_start_xmit = ice_start_xmit, 8898 .ndo_set_mac_address = ice_set_mac_address, 8899 .ndo_validate_addr = eth_validate_addr, 8900 .ndo_change_mtu = ice_change_mtu, 8901 .ndo_get_stats64 = ice_get_stats64, 8902 .ndo_tx_timeout = ice_tx_timeout, 8903 .ndo_bpf = ice_xdp_safe_mode, 8904 }; 8905 8906 static const struct net_device_ops ice_netdev_ops = { 8907 .ndo_open = ice_open, 8908 .ndo_stop = ice_stop, 8909 .ndo_start_xmit = ice_start_xmit, 8910 .ndo_select_queue = ice_select_queue, 8911 .ndo_features_check = ice_features_check, 8912 .ndo_fix_features = ice_fix_features, 8913 .ndo_set_rx_mode = ice_set_rx_mode, 8914 .ndo_set_mac_address = ice_set_mac_address, 8915 .ndo_validate_addr = eth_validate_addr, 8916 .ndo_change_mtu = ice_change_mtu, 8917 .ndo_get_stats64 = ice_get_stats64, 8918 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8919 .ndo_eth_ioctl = ice_eth_ioctl, 8920 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8921 .ndo_set_vf_mac = ice_set_vf_mac, 8922 .ndo_get_vf_config = ice_get_vf_cfg, 8923 .ndo_set_vf_trust = ice_set_vf_trust, 8924 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8925 .ndo_set_vf_link_state = ice_set_vf_link_state, 8926 .ndo_get_vf_stats = ice_get_vf_stats, 8927 .ndo_set_vf_rate = ice_set_vf_bw, 8928 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8929 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8930 .ndo_setup_tc = ice_setup_tc, 8931 .ndo_set_features = ice_set_features, 8932 .ndo_bridge_getlink = ice_bridge_getlink, 8933 .ndo_bridge_setlink = ice_bridge_setlink, 8934 .ndo_fdb_add = ice_fdb_add, 8935 .ndo_fdb_del = ice_fdb_del, 8936 #ifdef CONFIG_RFS_ACCEL 8937 .ndo_rx_flow_steer = ice_rx_flow_steer, 8938 #endif 8939 .ndo_tx_timeout = ice_tx_timeout, 8940 .ndo_bpf = ice_xdp, 8941 .ndo_xdp_xmit = ice_xdp_xmit, 8942 .ndo_xsk_wakeup = ice_xsk_wakeup, 8943 .ndo_get_devlink_port = ice_get_devlink_port, 8944 }; 8945