1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 18 * ice tracepoint functions. This must be done exactly once across the 19 * ice driver. 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "ice_trace.h" 23 #include "ice_eswitch.h" 24 #include "ice_tc_lib.h" 25 #include "ice_vsi_vlan_ops.h" 26 #include <net/xdp_sock_drv.h> 27 28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 29 static const char ice_driver_string[] = DRV_SUMMARY; 30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 31 32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 35 36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 37 MODULE_DESCRIPTION(DRV_SUMMARY); 38 MODULE_LICENSE("GPL v2"); 39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 40 41 static int debug = -1; 42 module_param(debug, int, 0644); 43 #ifndef CONFIG_DYNAMIC_DEBUG 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 45 #else 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 47 #endif /* !CONFIG_DYNAMIC_DEBUG */ 48 49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 50 EXPORT_SYMBOL(ice_xdp_locking_key); 51 52 /** 53 * ice_hw_to_dev - Get device pointer from the hardware structure 54 * @hw: pointer to the device HW structure 55 * 56 * Used to access the device pointer from compilation units which can't easily 57 * include the definition of struct ice_pf without leading to circular header 58 * dependencies. 59 */ 60 struct device *ice_hw_to_dev(struct ice_hw *hw) 61 { 62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 63 64 return &pf->pdev->dev; 65 } 66 67 static struct workqueue_struct *ice_wq; 68 struct workqueue_struct *ice_lag_wq; 69 static const struct net_device_ops ice_netdev_safe_mode_ops; 70 static const struct net_device_ops ice_netdev_ops; 71 72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 73 74 static void ice_vsi_release_all(struct ice_pf *pf); 75 76 static int ice_rebuild_channels(struct ice_pf *pf); 77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 78 79 static int 80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 81 void *cb_priv, enum tc_setup_type type, void *type_data, 82 void *data, 83 void (*cleanup)(struct flow_block_cb *block_cb)); 84 85 bool netif_is_ice(const struct net_device *dev) 86 { 87 return dev && (dev->netdev_ops == &ice_netdev_ops || 88 dev->netdev_ops == &ice_netdev_safe_mode_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_prepare_for_reset - prep for reset 523 * @pf: board private structure 524 * @reset_type: reset type requested 525 * 526 * Inform or close all dependent features in prep for reset. 527 */ 528 static void 529 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 530 { 531 struct ice_hw *hw = &pf->hw; 532 struct ice_vsi *vsi; 533 struct ice_vf *vf; 534 unsigned int bkt; 535 536 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 537 538 /* already prepared for reset */ 539 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 540 return; 541 542 synchronize_irq(pf->oicr_irq.virq); 543 544 ice_unplug_aux_dev(pf); 545 546 /* Notify VFs of impending reset */ 547 if (ice_check_sq_alive(hw, &hw->mailboxq)) 548 ice_vc_notify_reset(pf); 549 550 /* Disable VFs until reset is completed */ 551 mutex_lock(&pf->vfs.table_lock); 552 ice_for_each_vf(pf, bkt, vf) 553 ice_set_vf_state_dis(vf); 554 mutex_unlock(&pf->vfs.table_lock); 555 556 if (ice_is_eswitch_mode_switchdev(pf)) { 557 rtnl_lock(); 558 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 559 rtnl_unlock(); 560 } 561 562 /* release ADQ specific HW and SW resources */ 563 vsi = ice_get_main_vsi(pf); 564 if (!vsi) 565 goto skip; 566 567 /* to be on safe side, reset orig_rss_size so that normal flow 568 * of deciding rss_size can take precedence 569 */ 570 vsi->orig_rss_size = 0; 571 572 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 573 if (reset_type == ICE_RESET_PFR) { 574 vsi->old_ena_tc = vsi->all_enatc; 575 vsi->old_numtc = vsi->all_numtc; 576 } else { 577 ice_remove_q_channels(vsi, true); 578 579 /* for other reset type, do not support channel rebuild 580 * hence reset needed info 581 */ 582 vsi->old_ena_tc = 0; 583 vsi->all_enatc = 0; 584 vsi->old_numtc = 0; 585 vsi->all_numtc = 0; 586 vsi->req_txq = 0; 587 vsi->req_rxq = 0; 588 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 589 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 590 } 591 } 592 593 if (vsi->netdev) 594 netif_device_detach(vsi->netdev); 595 skip: 596 597 /* clear SW filtering DB */ 598 ice_clear_hw_tbls(hw); 599 /* disable the VSIs and their queues that are not already DOWN */ 600 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 601 ice_pf_dis_all_vsi(pf, false); 602 603 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 604 ice_ptp_prepare_for_reset(pf); 605 606 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 607 ice_gnss_exit(pf); 608 609 if (hw->port_info) 610 ice_sched_clear_port(hw->port_info); 611 612 ice_shutdown_all_ctrlq(hw); 613 614 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 615 } 616 617 /** 618 * ice_do_reset - Initiate one of many types of resets 619 * @pf: board private structure 620 * @reset_type: reset type requested before this function was called. 621 */ 622 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 623 { 624 struct device *dev = ice_pf_to_dev(pf); 625 struct ice_hw *hw = &pf->hw; 626 627 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 628 629 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 630 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 631 reset_type = ICE_RESET_CORER; 632 } 633 634 ice_prepare_for_reset(pf, reset_type); 635 636 /* trigger the reset */ 637 if (ice_reset(hw, reset_type)) { 638 dev_err(dev, "reset %d failed\n", reset_type); 639 set_bit(ICE_RESET_FAILED, pf->state); 640 clear_bit(ICE_RESET_OICR_RECV, pf->state); 641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 642 clear_bit(ICE_PFR_REQ, pf->state); 643 clear_bit(ICE_CORER_REQ, pf->state); 644 clear_bit(ICE_GLOBR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 return; 647 } 648 649 /* PFR is a bit of a special case because it doesn't result in an OICR 650 * interrupt. So for PFR, rebuild after the reset and clear the reset- 651 * associated state bits. 652 */ 653 if (reset_type == ICE_RESET_PFR) { 654 pf->pfr_count++; 655 ice_rebuild(pf, reset_type); 656 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 657 clear_bit(ICE_PFR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 ice_reset_all_vfs(pf); 660 } 661 } 662 663 /** 664 * ice_reset_subtask - Set up for resetting the device and driver 665 * @pf: board private structure 666 */ 667 static void ice_reset_subtask(struct ice_pf *pf) 668 { 669 enum ice_reset_req reset_type = ICE_RESET_INVAL; 670 671 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 672 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 673 * of reset is pending and sets bits in pf->state indicating the reset 674 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 675 * prepare for pending reset if not already (for PF software-initiated 676 * global resets the software should already be prepared for it as 677 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 678 * by firmware or software on other PFs, that bit is not set so prepare 679 * for the reset now), poll for reset done, rebuild and return. 680 */ 681 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 682 /* Perform the largest reset requested */ 683 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 684 reset_type = ICE_RESET_CORER; 685 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 686 reset_type = ICE_RESET_GLOBR; 687 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 688 reset_type = ICE_RESET_EMPR; 689 /* return if no valid reset type requested */ 690 if (reset_type == ICE_RESET_INVAL) 691 return; 692 ice_prepare_for_reset(pf, reset_type); 693 694 /* make sure we are ready to rebuild */ 695 if (ice_check_reset(&pf->hw)) { 696 set_bit(ICE_RESET_FAILED, pf->state); 697 } else { 698 /* done with reset. start rebuild */ 699 pf->hw.reset_ongoing = false; 700 ice_rebuild(pf, reset_type); 701 /* clear bit to resume normal operations, but 702 * ICE_NEEDS_RESTART bit is set in case rebuild failed 703 */ 704 clear_bit(ICE_RESET_OICR_RECV, pf->state); 705 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 706 clear_bit(ICE_PFR_REQ, pf->state); 707 clear_bit(ICE_CORER_REQ, pf->state); 708 clear_bit(ICE_GLOBR_REQ, pf->state); 709 wake_up(&pf->reset_wait_queue); 710 ice_reset_all_vfs(pf); 711 } 712 713 return; 714 } 715 716 /* No pending resets to finish processing. Check for new resets */ 717 if (test_bit(ICE_PFR_REQ, pf->state)) { 718 reset_type = ICE_RESET_PFR; 719 if (pf->lag && pf->lag->bonded) { 720 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 721 reset_type = ICE_RESET_CORER; 722 } 723 } 724 if (test_bit(ICE_CORER_REQ, pf->state)) 725 reset_type = ICE_RESET_CORER; 726 if (test_bit(ICE_GLOBR_REQ, pf->state)) 727 reset_type = ICE_RESET_GLOBR; 728 /* If no valid reset type requested just return */ 729 if (reset_type == ICE_RESET_INVAL) 730 return; 731 732 /* reset if not already down or busy */ 733 if (!test_bit(ICE_DOWN, pf->state) && 734 !test_bit(ICE_CFG_BUSY, pf->state)) { 735 ice_do_reset(pf, reset_type); 736 } 737 } 738 739 /** 740 * ice_print_topo_conflict - print topology conflict message 741 * @vsi: the VSI whose topology status is being checked 742 */ 743 static void ice_print_topo_conflict(struct ice_vsi *vsi) 744 { 745 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 746 case ICE_AQ_LINK_TOPO_CONFLICT: 747 case ICE_AQ_LINK_MEDIA_CONFLICT: 748 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 750 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 751 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 752 break; 753 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 754 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 755 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 756 else 757 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 758 break; 759 default: 760 break; 761 } 762 } 763 764 /** 765 * ice_print_link_msg - print link up or down message 766 * @vsi: the VSI whose link status is being queried 767 * @isup: boolean for if the link is now up or down 768 */ 769 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 770 { 771 struct ice_aqc_get_phy_caps_data *caps; 772 const char *an_advertised; 773 const char *fec_req; 774 const char *speed; 775 const char *fec; 776 const char *fc; 777 const char *an; 778 int status; 779 780 if (!vsi) 781 return; 782 783 if (vsi->current_isup == isup) 784 return; 785 786 vsi->current_isup = isup; 787 788 if (!isup) { 789 netdev_info(vsi->netdev, "NIC Link is Down\n"); 790 return; 791 } 792 793 switch (vsi->port_info->phy.link_info.link_speed) { 794 case ICE_AQ_LINK_SPEED_100GB: 795 speed = "100 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_50GB: 798 speed = "50 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_40GB: 801 speed = "40 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_25GB: 804 speed = "25 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_20GB: 807 speed = "20 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_10GB: 810 speed = "10 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_5GB: 813 speed = "5 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_2500MB: 816 speed = "2.5 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_1000MB: 819 speed = "1 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_100MB: 822 speed = "100 M"; 823 break; 824 default: 825 speed = "Unknown "; 826 break; 827 } 828 829 switch (vsi->port_info->fc.current_mode) { 830 case ICE_FC_FULL: 831 fc = "Rx/Tx"; 832 break; 833 case ICE_FC_TX_PAUSE: 834 fc = "Tx"; 835 break; 836 case ICE_FC_RX_PAUSE: 837 fc = "Rx"; 838 break; 839 case ICE_FC_NONE: 840 fc = "None"; 841 break; 842 default: 843 fc = "Unknown"; 844 break; 845 } 846 847 /* Get FEC mode based on negotiated link info */ 848 switch (vsi->port_info->phy.link_info.fec_info) { 849 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 850 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 851 fec = "RS-FEC"; 852 break; 853 case ICE_AQ_LINK_25G_KR_FEC_EN: 854 fec = "FC-FEC/BASE-R"; 855 break; 856 default: 857 fec = "NONE"; 858 break; 859 } 860 861 /* check if autoneg completed, might be false due to not supported */ 862 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 863 an = "True"; 864 else 865 an = "False"; 866 867 /* Get FEC mode requested based on PHY caps last SW configuration */ 868 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 869 if (!caps) { 870 fec_req = "Unknown"; 871 an_advertised = "Unknown"; 872 goto done; 873 } 874 875 status = ice_aq_get_phy_caps(vsi->port_info, false, 876 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 877 if (status) 878 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 879 880 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 881 882 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 883 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 884 fec_req = "RS-FEC"; 885 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 886 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 887 fec_req = "FC-FEC/BASE-R"; 888 else 889 fec_req = "NONE"; 890 891 kfree(caps); 892 893 done: 894 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 895 speed, fec_req, fec, an_advertised, an, fc); 896 ice_print_topo_conflict(vsi); 897 } 898 899 /** 900 * ice_vsi_link_event - update the VSI's netdev 901 * @vsi: the VSI on which the link event occurred 902 * @link_up: whether or not the VSI needs to be set up or down 903 */ 904 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 905 { 906 if (!vsi) 907 return; 908 909 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 910 return; 911 912 if (vsi->type == ICE_VSI_PF) { 913 if (link_up == netif_carrier_ok(vsi->netdev)) 914 return; 915 916 if (link_up) { 917 netif_carrier_on(vsi->netdev); 918 netif_tx_wake_all_queues(vsi->netdev); 919 } else { 920 netif_carrier_off(vsi->netdev); 921 netif_tx_stop_all_queues(vsi->netdev); 922 } 923 } 924 } 925 926 /** 927 * ice_set_dflt_mib - send a default config MIB to the FW 928 * @pf: private PF struct 929 * 930 * This function sends a default configuration MIB to the FW. 931 * 932 * If this function errors out at any point, the driver is still able to 933 * function. The main impact is that LFC may not operate as expected. 934 * Therefore an error state in this function should be treated with a DBG 935 * message and continue on with driver rebuild/reenable. 936 */ 937 static void ice_set_dflt_mib(struct ice_pf *pf) 938 { 939 struct device *dev = ice_pf_to_dev(pf); 940 u8 mib_type, *buf, *lldpmib = NULL; 941 u16 len, typelen, offset = 0; 942 struct ice_lldp_org_tlv *tlv; 943 struct ice_hw *hw = &pf->hw; 944 u32 ouisubtype; 945 946 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 947 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 948 if (!lldpmib) { 949 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 950 __func__); 951 return; 952 } 953 954 /* Add ETS CFG TLV */ 955 tlv = (struct ice_lldp_org_tlv *)lldpmib; 956 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 957 ICE_IEEE_ETS_TLV_LEN); 958 tlv->typelen = htons(typelen); 959 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 960 ICE_IEEE_SUBTYPE_ETS_CFG); 961 tlv->ouisubtype = htonl(ouisubtype); 962 963 buf = tlv->tlvinfo; 964 buf[0] = 0; 965 966 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 967 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 968 * Octets 13 - 20 are TSA values - leave as zeros 969 */ 970 buf[5] = 0x64; 971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add ETS REC TLV */ 977 buf = tlv->tlvinfo; 978 tlv->typelen = htons(typelen); 979 980 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 981 ICE_IEEE_SUBTYPE_ETS_REC); 982 tlv->ouisubtype = htonl(ouisubtype); 983 984 /* First octet of buf is reserved 985 * Octets 1 - 4 map UP to TC - all UPs map to zero 986 * Octets 5 - 12 are BW values - set TC 0 to 100%. 987 * Octets 13 - 20 are TSA value - leave as zeros 988 */ 989 buf[5] = 0x64; 990 offset += len + 2; 991 tlv = (struct ice_lldp_org_tlv *) 992 ((char *)tlv + sizeof(tlv->typelen) + len); 993 994 /* Add PFC CFG TLV */ 995 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 996 ICE_IEEE_PFC_TLV_LEN); 997 tlv->typelen = htons(typelen); 998 999 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1000 ICE_IEEE_SUBTYPE_PFC_CFG); 1001 tlv->ouisubtype = htonl(ouisubtype); 1002 1003 /* Octet 1 left as all zeros - PFC disabled */ 1004 buf[0] = 0x08; 1005 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1006 offset += len + 2; 1007 1008 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1009 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1010 1011 kfree(lldpmib); 1012 } 1013 1014 /** 1015 * ice_check_phy_fw_load - check if PHY FW load failed 1016 * @pf: pointer to PF struct 1017 * @link_cfg_err: bitmap from the link info structure 1018 * 1019 * check if external PHY FW load failed and print an error message if it did 1020 */ 1021 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1022 { 1023 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1024 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1025 return; 1026 } 1027 1028 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1029 return; 1030 1031 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1032 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1033 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1034 } 1035 } 1036 1037 /** 1038 * ice_check_module_power 1039 * @pf: pointer to PF struct 1040 * @link_cfg_err: bitmap from the link info structure 1041 * 1042 * check module power level returned by a previous call to aq_get_link_info 1043 * and print error messages if module power level is not supported 1044 */ 1045 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1046 { 1047 /* if module power level is supported, clear the flag */ 1048 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1049 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1050 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1051 return; 1052 } 1053 1054 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1055 * above block didn't clear this bit, there's nothing to do 1056 */ 1057 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1058 return; 1059 1060 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1061 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1062 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1064 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1065 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1066 } 1067 } 1068 1069 /** 1070 * ice_check_link_cfg_err - check if link configuration failed 1071 * @pf: pointer to the PF struct 1072 * @link_cfg_err: bitmap from the link info structure 1073 * 1074 * print if any link configuration failure happens due to the value in the 1075 * link_cfg_err parameter in the link info structure 1076 */ 1077 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1078 { 1079 ice_check_module_power(pf, link_cfg_err); 1080 ice_check_phy_fw_load(pf, link_cfg_err); 1081 } 1082 1083 /** 1084 * ice_link_event - process the link event 1085 * @pf: PF that the link event is associated with 1086 * @pi: port_info for the port that the link event is associated with 1087 * @link_up: true if the physical link is up and false if it is down 1088 * @link_speed: current link speed received from the link event 1089 * 1090 * Returns 0 on success and negative on failure 1091 */ 1092 static int 1093 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1094 u16 link_speed) 1095 { 1096 struct device *dev = ice_pf_to_dev(pf); 1097 struct ice_phy_info *phy_info; 1098 struct ice_vsi *vsi; 1099 u16 old_link_speed; 1100 bool old_link; 1101 int status; 1102 1103 phy_info = &pi->phy; 1104 phy_info->link_info_old = phy_info->link_info; 1105 1106 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1107 old_link_speed = phy_info->link_info_old.link_speed; 1108 1109 /* update the link info structures and re-enable link events, 1110 * don't bail on failure due to other book keeping needed 1111 */ 1112 status = ice_update_link_info(pi); 1113 if (status) 1114 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1115 pi->lport, status, 1116 ice_aq_str(pi->hw->adminq.sq_last_status)); 1117 1118 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1119 1120 /* Check if the link state is up after updating link info, and treat 1121 * this event as an UP event since the link is actually UP now. 1122 */ 1123 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1124 link_up = true; 1125 1126 vsi = ice_get_main_vsi(pf); 1127 if (!vsi || !vsi->port_info) 1128 return -EINVAL; 1129 1130 /* turn off PHY if media was removed */ 1131 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1132 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1133 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1134 ice_set_link(vsi, false); 1135 } 1136 1137 /* if the old link up/down and speed is the same as the new */ 1138 if (link_up == old_link && link_speed == old_link_speed) 1139 return 0; 1140 1141 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1142 1143 if (ice_is_dcb_active(pf)) { 1144 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1145 ice_dcb_rebuild(pf); 1146 } else { 1147 if (link_up) 1148 ice_set_dflt_mib(pf); 1149 } 1150 ice_vsi_link_event(vsi, link_up); 1151 ice_print_link_msg(vsi, link_up); 1152 1153 ice_vc_notify_link_state(pf); 1154 1155 return 0; 1156 } 1157 1158 /** 1159 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1160 * @pf: board private structure 1161 */ 1162 static void ice_watchdog_subtask(struct ice_pf *pf) 1163 { 1164 int i; 1165 1166 /* if interface is down do nothing */ 1167 if (test_bit(ICE_DOWN, pf->state) || 1168 test_bit(ICE_CFG_BUSY, pf->state)) 1169 return; 1170 1171 /* make sure we don't do these things too often */ 1172 if (time_before(jiffies, 1173 pf->serv_tmr_prev + pf->serv_tmr_period)) 1174 return; 1175 1176 pf->serv_tmr_prev = jiffies; 1177 1178 /* Update the stats for active netdevs so the network stack 1179 * can look at updated numbers whenever it cares to 1180 */ 1181 ice_update_pf_stats(pf); 1182 ice_for_each_vsi(pf, i) 1183 if (pf->vsi[i] && pf->vsi[i]->netdev) 1184 ice_update_vsi_stats(pf->vsi[i]); 1185 } 1186 1187 /** 1188 * ice_init_link_events - enable/initialize link events 1189 * @pi: pointer to the port_info instance 1190 * 1191 * Returns -EIO on failure, 0 on success 1192 */ 1193 static int ice_init_link_events(struct ice_port_info *pi) 1194 { 1195 u16 mask; 1196 1197 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1198 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1199 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1200 1201 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1202 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1203 pi->lport); 1204 return -EIO; 1205 } 1206 1207 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 return 0; 1214 } 1215 1216 /** 1217 * ice_handle_link_event - handle link event via ARQ 1218 * @pf: PF that the link event is associated with 1219 * @event: event structure containing link status info 1220 */ 1221 static int 1222 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1223 { 1224 struct ice_aqc_get_link_status_data *link_data; 1225 struct ice_port_info *port_info; 1226 int status; 1227 1228 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1229 port_info = pf->hw.port_info; 1230 if (!port_info) 1231 return -EINVAL; 1232 1233 status = ice_link_event(pf, port_info, 1234 !!(link_data->link_info & ICE_AQ_LINK_UP), 1235 le16_to_cpu(link_data->link_speed)); 1236 if (status) 1237 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1238 status); 1239 1240 return status; 1241 } 1242 1243 /** 1244 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1245 * @pf: pointer to the PF private structure 1246 * @task: intermediate helper storage and identifier for waiting 1247 * @opcode: the opcode to wait for 1248 * 1249 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1250 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1251 * 1252 * Calls are separated to allow caller registering for event before sending 1253 * the command, which mitigates a race between registering and FW responding. 1254 * 1255 * To obtain only the descriptor contents, pass an task->event with null 1256 * msg_buf. If the complete data buffer is desired, allocate the 1257 * task->event.msg_buf with enough space ahead of time. 1258 */ 1259 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1260 u16 opcode) 1261 { 1262 INIT_HLIST_NODE(&task->entry); 1263 task->opcode = opcode; 1264 task->state = ICE_AQ_TASK_WAITING; 1265 1266 spin_lock_bh(&pf->aq_wait_lock); 1267 hlist_add_head(&task->entry, &pf->aq_wait_list); 1268 spin_unlock_bh(&pf->aq_wait_lock); 1269 } 1270 1271 /** 1272 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1273 * @pf: pointer to the PF private structure 1274 * @task: ptr prepared by ice_aq_prep_for_event() 1275 * @timeout: how long to wait, in jiffies 1276 * 1277 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1278 * current thread will be put to sleep until the specified event occurs or 1279 * until the given timeout is reached. 1280 * 1281 * Returns: zero on success, or a negative error code on failure. 1282 */ 1283 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1284 unsigned long timeout) 1285 { 1286 enum ice_aq_task_state *state = &task->state; 1287 struct device *dev = ice_pf_to_dev(pf); 1288 unsigned long start = jiffies; 1289 long ret; 1290 int err; 1291 1292 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1293 *state != ICE_AQ_TASK_WAITING, 1294 timeout); 1295 switch (*state) { 1296 case ICE_AQ_TASK_NOT_PREPARED: 1297 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1298 err = -EINVAL; 1299 break; 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 task->opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 1324 return err; 1325 } 1326 1327 /** 1328 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1329 * @pf: pointer to the PF private structure 1330 * @opcode: the opcode of the event 1331 * @event: the event to check 1332 * 1333 * Loops over the current list of pending threads waiting for an AdminQ event. 1334 * For each matching task, copy the contents of the event into the task 1335 * structure and wake up the thread. 1336 * 1337 * If multiple threads wait for the same opcode, they will all be woken up. 1338 * 1339 * Note that event->msg_buf will only be duplicated if the event has a buffer 1340 * with enough space already allocated. Otherwise, only the descriptor and 1341 * message length will be copied. 1342 * 1343 * Returns: true if an event was found, false otherwise 1344 */ 1345 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1346 struct ice_rq_event_info *event) 1347 { 1348 struct ice_rq_event_info *task_ev; 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state != ICE_AQ_TASK_WAITING) 1355 continue; 1356 if (task->opcode != opcode) 1357 continue; 1358 1359 task_ev = &task->event; 1360 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1361 task_ev->msg_len = event->msg_len; 1362 1363 /* Only copy the data buffer if a destination was set */ 1364 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1365 memcpy(task_ev->msg_buf, event->msg_buf, 1366 event->buf_len); 1367 task_ev->buf_len = event->buf_len; 1368 } 1369 1370 task->state = ICE_AQ_TASK_COMPLETE; 1371 found = true; 1372 } 1373 spin_unlock_bh(&pf->aq_wait_lock); 1374 1375 if (found) 1376 wake_up(&pf->aq_wait_queue); 1377 } 1378 1379 /** 1380 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1381 * @pf: the PF private structure 1382 * 1383 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1384 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1385 */ 1386 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1387 { 1388 struct ice_aq_task *task; 1389 1390 spin_lock_bh(&pf->aq_wait_lock); 1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1392 task->state = ICE_AQ_TASK_CANCELED; 1393 spin_unlock_bh(&pf->aq_wait_lock); 1394 1395 wake_up(&pf->aq_wait_queue); 1396 } 1397 1398 #define ICE_MBX_OVERFLOW_WATERMARK 64 1399 1400 /** 1401 * __ice_clean_ctrlq - helper function to clean controlq rings 1402 * @pf: ptr to struct ice_pf 1403 * @q_type: specific Control queue type 1404 */ 1405 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1406 { 1407 struct device *dev = ice_pf_to_dev(pf); 1408 struct ice_rq_event_info event; 1409 struct ice_hw *hw = &pf->hw; 1410 struct ice_ctl_q_info *cq; 1411 u16 pending, i = 0; 1412 const char *qtype; 1413 u32 oldval, val; 1414 1415 /* Do not clean control queue if/when PF reset fails */ 1416 if (test_bit(ICE_RESET_FAILED, pf->state)) 1417 return 0; 1418 1419 switch (q_type) { 1420 case ICE_CTL_Q_ADMIN: 1421 cq = &hw->adminq; 1422 qtype = "Admin"; 1423 break; 1424 case ICE_CTL_Q_SB: 1425 cq = &hw->sbq; 1426 qtype = "Sideband"; 1427 break; 1428 case ICE_CTL_Q_MAILBOX: 1429 cq = &hw->mailboxq; 1430 qtype = "Mailbox"; 1431 /* we are going to try to detect a malicious VF, so set the 1432 * state to begin detection 1433 */ 1434 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1435 break; 1436 default: 1437 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1438 return 0; 1439 } 1440 1441 /* check for error indications - PF_xx_AxQLEN register layout for 1442 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1443 */ 1444 val = rd32(hw, cq->rq.len); 1445 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1446 PF_FW_ARQLEN_ARQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ARQLEN_ARQVFE_M) 1449 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1452 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1456 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1459 PF_FW_ARQLEN_ARQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->rq.len, val); 1462 } 1463 1464 val = rd32(hw, cq->sq.len); 1465 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1466 PF_FW_ATQLEN_ATQCRIT_M)) { 1467 oldval = val; 1468 if (val & PF_FW_ATQLEN_ATQVFE_M) 1469 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1470 qtype); 1471 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1472 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1473 qtype); 1474 } 1475 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1476 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1477 qtype); 1478 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1479 PF_FW_ATQLEN_ATQCRIT_M); 1480 if (oldval != val) 1481 wr32(hw, cq->sq.len, val); 1482 } 1483 1484 event.buf_len = cq->rq_buf_size; 1485 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1486 if (!event.msg_buf) 1487 return 0; 1488 1489 do { 1490 struct ice_mbx_data data = {}; 1491 u16 opcode; 1492 int ret; 1493 1494 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1495 if (ret == -EALREADY) 1496 break; 1497 if (ret) { 1498 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1499 ret); 1500 break; 1501 } 1502 1503 opcode = le16_to_cpu(event.desc.opcode); 1504 1505 /* Notify any thread that might be waiting for this event */ 1506 ice_aq_check_events(pf, opcode, &event); 1507 1508 switch (opcode) { 1509 case ice_aqc_opc_get_link_status: 1510 if (ice_handle_link_event(pf, &event)) 1511 dev_err(dev, "Could not handle link event\n"); 1512 break; 1513 case ice_aqc_opc_event_lan_overflow: 1514 ice_vf_lan_overflow_event(pf, &event); 1515 break; 1516 case ice_mbx_opc_send_msg_to_pf: 1517 data.num_msg_proc = i; 1518 data.num_pending_arq = pending; 1519 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1520 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1521 1522 ice_vc_process_vf_msg(pf, &event, &data); 1523 break; 1524 case ice_aqc_opc_fw_logging: 1525 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1526 break; 1527 case ice_aqc_opc_lldp_set_mib_change: 1528 ice_dcb_process_lldp_set_mib_change(pf, &event); 1529 break; 1530 default: 1531 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1532 qtype, opcode); 1533 break; 1534 } 1535 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1536 1537 kfree(event.msg_buf); 1538 1539 return pending && (i == ICE_DFLT_IRQ_WORK); 1540 } 1541 1542 /** 1543 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1544 * @hw: pointer to hardware info 1545 * @cq: control queue information 1546 * 1547 * returns true if there are pending messages in a queue, false if there aren't 1548 */ 1549 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1550 { 1551 u16 ntu; 1552 1553 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1554 return cq->rq.next_to_clean != ntu; 1555 } 1556 1557 /** 1558 * ice_clean_adminq_subtask - clean the AdminQ rings 1559 * @pf: board private structure 1560 */ 1561 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1562 { 1563 struct ice_hw *hw = &pf->hw; 1564 1565 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1566 return; 1567 1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1569 return; 1570 1571 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1572 1573 /* There might be a situation where new messages arrive to a control 1574 * queue between processing the last message and clearing the 1575 * EVENT_PENDING bit. So before exiting, check queue head again (using 1576 * ice_ctrlq_pending) and process new messages if any. 1577 */ 1578 if (ice_ctrlq_pending(hw, &hw->adminq)) 1579 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1580 1581 ice_flush(hw); 1582 } 1583 1584 /** 1585 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1586 * @pf: board private structure 1587 */ 1588 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1589 { 1590 struct ice_hw *hw = &pf->hw; 1591 1592 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1593 return; 1594 1595 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1596 return; 1597 1598 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1599 1600 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1601 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1602 1603 ice_flush(hw); 1604 } 1605 1606 /** 1607 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1608 * @pf: board private structure 1609 */ 1610 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1611 { 1612 struct ice_hw *hw = &pf->hw; 1613 1614 /* Nothing to do here if sideband queue is not supported */ 1615 if (!ice_is_sbq_supported(hw)) { 1616 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1617 return; 1618 } 1619 1620 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1621 return; 1622 1623 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1624 return; 1625 1626 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1627 1628 if (ice_ctrlq_pending(hw, &hw->sbq)) 1629 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1630 1631 ice_flush(hw); 1632 } 1633 1634 /** 1635 * ice_service_task_schedule - schedule the service task to wake up 1636 * @pf: board private structure 1637 * 1638 * If not already scheduled, this puts the task into the work queue. 1639 */ 1640 void ice_service_task_schedule(struct ice_pf *pf) 1641 { 1642 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1643 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1644 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1645 queue_work(ice_wq, &pf->serv_task); 1646 } 1647 1648 /** 1649 * ice_service_task_complete - finish up the service task 1650 * @pf: board private structure 1651 */ 1652 static void ice_service_task_complete(struct ice_pf *pf) 1653 { 1654 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1655 1656 /* force memory (pf->state) to sync before next service task */ 1657 smp_mb__before_atomic(); 1658 clear_bit(ICE_SERVICE_SCHED, pf->state); 1659 } 1660 1661 /** 1662 * ice_service_task_stop - stop service task and cancel works 1663 * @pf: board private structure 1664 * 1665 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1666 * 1 otherwise. 1667 */ 1668 static int ice_service_task_stop(struct ice_pf *pf) 1669 { 1670 int ret; 1671 1672 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1673 1674 if (pf->serv_tmr.function) 1675 del_timer_sync(&pf->serv_tmr); 1676 if (pf->serv_task.func) 1677 cancel_work_sync(&pf->serv_task); 1678 1679 clear_bit(ICE_SERVICE_SCHED, pf->state); 1680 return ret; 1681 } 1682 1683 /** 1684 * ice_service_task_restart - restart service task and schedule works 1685 * @pf: board private structure 1686 * 1687 * This function is needed for suspend and resume works (e.g WoL scenario) 1688 */ 1689 static void ice_service_task_restart(struct ice_pf *pf) 1690 { 1691 clear_bit(ICE_SERVICE_DIS, pf->state); 1692 ice_service_task_schedule(pf); 1693 } 1694 1695 /** 1696 * ice_service_timer - timer callback to schedule service task 1697 * @t: pointer to timer_list 1698 */ 1699 static void ice_service_timer(struct timer_list *t) 1700 { 1701 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1702 1703 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1704 ice_service_task_schedule(pf); 1705 } 1706 1707 /** 1708 * ice_handle_mdd_event - handle malicious driver detect event 1709 * @pf: pointer to the PF structure 1710 * 1711 * Called from service task. OICR interrupt handler indicates MDD event. 1712 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1713 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1714 * disable the queue, the PF can be configured to reset the VF using ethtool 1715 * private flag mdd-auto-reset-vf. 1716 */ 1717 static void ice_handle_mdd_event(struct ice_pf *pf) 1718 { 1719 struct device *dev = ice_pf_to_dev(pf); 1720 struct ice_hw *hw = &pf->hw; 1721 struct ice_vf *vf; 1722 unsigned int bkt; 1723 u32 reg; 1724 1725 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1726 /* Since the VF MDD event logging is rate limited, check if 1727 * there are pending MDD events. 1728 */ 1729 ice_print_vfs_mdd_events(pf); 1730 return; 1731 } 1732 1733 /* find what triggered an MDD event */ 1734 reg = rd32(hw, GL_MDET_TX_PQM); 1735 if (reg & GL_MDET_TX_PQM_VALID_M) { 1736 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1737 GL_MDET_TX_PQM_PF_NUM_S; 1738 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1739 GL_MDET_TX_PQM_VF_NUM_S; 1740 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1741 GL_MDET_TX_PQM_MAL_TYPE_S; 1742 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1743 GL_MDET_TX_PQM_QNUM_S); 1744 1745 if (netif_msg_tx_err(pf)) 1746 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1747 event, queue, pf_num, vf_num); 1748 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1749 } 1750 1751 reg = rd32(hw, GL_MDET_TX_TCLAN); 1752 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1753 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_PF_NUM_S; 1755 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1756 GL_MDET_TX_TCLAN_VF_NUM_S; 1757 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1758 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1759 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1760 GL_MDET_TX_TCLAN_QNUM_S); 1761 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1764 event, queue, pf_num, vf_num); 1765 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1766 } 1767 1768 reg = rd32(hw, GL_MDET_RX); 1769 if (reg & GL_MDET_RX_VALID_M) { 1770 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1771 GL_MDET_RX_PF_NUM_S; 1772 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1773 GL_MDET_RX_VF_NUM_S; 1774 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1775 GL_MDET_RX_MAL_TYPE_S; 1776 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1777 GL_MDET_RX_QNUM_S); 1778 1779 if (netif_msg_rx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1781 event, queue, pf_num, vf_num); 1782 wr32(hw, GL_MDET_RX, 0xffffffff); 1783 } 1784 1785 /* check to see if this PF caused an MDD event */ 1786 reg = rd32(hw, PF_MDET_TX_PQM); 1787 if (reg & PF_MDET_TX_PQM_VALID_M) { 1788 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1789 if (netif_msg_tx_err(pf)) 1790 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1791 } 1792 1793 reg = rd32(hw, PF_MDET_TX_TCLAN); 1794 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1795 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1796 if (netif_msg_tx_err(pf)) 1797 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1798 } 1799 1800 reg = rd32(hw, PF_MDET_RX); 1801 if (reg & PF_MDET_RX_VALID_M) { 1802 wr32(hw, PF_MDET_RX, 0xFFFF); 1803 if (netif_msg_rx_err(pf)) 1804 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1805 } 1806 1807 /* Check to see if one of the VFs caused an MDD event, and then 1808 * increment counters and set print pending 1809 */ 1810 mutex_lock(&pf->vfs.table_lock); 1811 ice_for_each_vf(pf, bkt, vf) { 1812 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1813 if (reg & VP_MDET_TX_PQM_VALID_M) { 1814 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1815 vf->mdd_tx_events.count++; 1816 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1817 if (netif_msg_tx_err(pf)) 1818 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1819 vf->vf_id); 1820 } 1821 1822 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1823 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1824 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1825 vf->mdd_tx_events.count++; 1826 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1827 if (netif_msg_tx_err(pf)) 1828 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1829 vf->vf_id); 1830 } 1831 1832 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1833 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1834 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1835 vf->mdd_tx_events.count++; 1836 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1837 if (netif_msg_tx_err(pf)) 1838 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1839 vf->vf_id); 1840 } 1841 1842 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1843 if (reg & VP_MDET_RX_VALID_M) { 1844 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1845 vf->mdd_rx_events.count++; 1846 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1847 if (netif_msg_rx_err(pf)) 1848 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1849 vf->vf_id); 1850 1851 /* Since the queue is disabled on VF Rx MDD events, the 1852 * PF can be configured to reset the VF through ethtool 1853 * private flag mdd-auto-reset-vf. 1854 */ 1855 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1856 /* VF MDD event counters will be cleared by 1857 * reset, so print the event prior to reset. 1858 */ 1859 ice_print_vf_rx_mdd_event(vf); 1860 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1861 } 1862 } 1863 } 1864 mutex_unlock(&pf->vfs.table_lock); 1865 1866 ice_print_vfs_mdd_events(pf); 1867 } 1868 1869 /** 1870 * ice_force_phys_link_state - Force the physical link state 1871 * @vsi: VSI to force the physical link state to up/down 1872 * @link_up: true/false indicates to set the physical link to up/down 1873 * 1874 * Force the physical link state by getting the current PHY capabilities from 1875 * hardware and setting the PHY config based on the determined capabilities. If 1876 * link changes a link event will be triggered because both the Enable Automatic 1877 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1878 * 1879 * Returns 0 on success, negative on failure 1880 */ 1881 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1882 { 1883 struct ice_aqc_get_phy_caps_data *pcaps; 1884 struct ice_aqc_set_phy_cfg_data *cfg; 1885 struct ice_port_info *pi; 1886 struct device *dev; 1887 int retcode; 1888 1889 if (!vsi || !vsi->port_info || !vsi->back) 1890 return -EINVAL; 1891 if (vsi->type != ICE_VSI_PF) 1892 return 0; 1893 1894 dev = ice_pf_to_dev(vsi->back); 1895 1896 pi = vsi->port_info; 1897 1898 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1899 if (!pcaps) 1900 return -ENOMEM; 1901 1902 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1903 NULL); 1904 if (retcode) { 1905 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1906 vsi->vsi_num, retcode); 1907 retcode = -EIO; 1908 goto out; 1909 } 1910 1911 /* No change in link */ 1912 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1913 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1914 goto out; 1915 1916 /* Use the current user PHY configuration. The current user PHY 1917 * configuration is initialized during probe from PHY capabilities 1918 * software mode, and updated on set PHY configuration. 1919 */ 1920 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1921 if (!cfg) { 1922 retcode = -ENOMEM; 1923 goto out; 1924 } 1925 1926 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1927 if (link_up) 1928 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1929 else 1930 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1931 1932 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1933 if (retcode) { 1934 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1935 vsi->vsi_num, retcode); 1936 retcode = -EIO; 1937 } 1938 1939 kfree(cfg); 1940 out: 1941 kfree(pcaps); 1942 return retcode; 1943 } 1944 1945 /** 1946 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1947 * @pi: port info structure 1948 * 1949 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1950 */ 1951 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1952 { 1953 struct ice_aqc_get_phy_caps_data *pcaps; 1954 struct ice_pf *pf = pi->hw->back; 1955 int err; 1956 1957 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1958 if (!pcaps) 1959 return -ENOMEM; 1960 1961 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1962 pcaps, NULL); 1963 1964 if (err) { 1965 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1966 goto out; 1967 } 1968 1969 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1970 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1971 1972 out: 1973 kfree(pcaps); 1974 return err; 1975 } 1976 1977 /** 1978 * ice_init_link_dflt_override - Initialize link default override 1979 * @pi: port info structure 1980 * 1981 * Initialize link default override and PHY total port shutdown during probe 1982 */ 1983 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1984 { 1985 struct ice_link_default_override_tlv *ldo; 1986 struct ice_pf *pf = pi->hw->back; 1987 1988 ldo = &pf->link_dflt_override; 1989 if (ice_get_link_default_override(ldo, pi)) 1990 return; 1991 1992 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1993 return; 1994 1995 /* Enable Total Port Shutdown (override/replace link-down-on-close 1996 * ethtool private flag) for ports with Port Disable bit set. 1997 */ 1998 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1999 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2000 } 2001 2002 /** 2003 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2004 * @pi: port info structure 2005 * 2006 * If default override is enabled, initialize the user PHY cfg speed and FEC 2007 * settings using the default override mask from the NVM. 2008 * 2009 * The PHY should only be configured with the default override settings the 2010 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2011 * is used to indicate that the user PHY cfg default override is initialized 2012 * and the PHY has not been configured with the default override settings. The 2013 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2014 * configured. 2015 * 2016 * This function should be called only if the FW doesn't support default 2017 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2018 */ 2019 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2020 { 2021 struct ice_link_default_override_tlv *ldo; 2022 struct ice_aqc_set_phy_cfg_data *cfg; 2023 struct ice_phy_info *phy = &pi->phy; 2024 struct ice_pf *pf = pi->hw->back; 2025 2026 ldo = &pf->link_dflt_override; 2027 2028 /* If link default override is enabled, use to mask NVM PHY capabilities 2029 * for speed and FEC default configuration. 2030 */ 2031 cfg = &phy->curr_user_phy_cfg; 2032 2033 if (ldo->phy_type_low || ldo->phy_type_high) { 2034 cfg->phy_type_low = pf->nvm_phy_type_lo & 2035 cpu_to_le64(ldo->phy_type_low); 2036 cfg->phy_type_high = pf->nvm_phy_type_hi & 2037 cpu_to_le64(ldo->phy_type_high); 2038 } 2039 cfg->link_fec_opt = ldo->fec_options; 2040 phy->curr_user_fec_req = ICE_FEC_AUTO; 2041 2042 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2043 } 2044 2045 /** 2046 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2047 * @pi: port info structure 2048 * 2049 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2050 * mode to default. The PHY defaults are from get PHY capabilities topology 2051 * with media so call when media is first available. An error is returned if 2052 * called when media is not available. The PHY initialization completed state is 2053 * set here. 2054 * 2055 * These configurations are used when setting PHY 2056 * configuration. The user PHY configuration is updated on set PHY 2057 * configuration. Returns 0 on success, negative on failure 2058 */ 2059 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2060 { 2061 struct ice_aqc_get_phy_caps_data *pcaps; 2062 struct ice_phy_info *phy = &pi->phy; 2063 struct ice_pf *pf = pi->hw->back; 2064 int err; 2065 2066 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2067 return -EIO; 2068 2069 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2070 if (!pcaps) 2071 return -ENOMEM; 2072 2073 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2074 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2075 pcaps, NULL); 2076 else 2077 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2078 pcaps, NULL); 2079 if (err) { 2080 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2081 goto err_out; 2082 } 2083 2084 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2085 2086 /* check if lenient mode is supported and enabled */ 2087 if (ice_fw_supports_link_override(pi->hw) && 2088 !(pcaps->module_compliance_enforcement & 2089 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2090 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2091 2092 /* if the FW supports default PHY configuration mode, then the driver 2093 * does not have to apply link override settings. If not, 2094 * initialize user PHY configuration with link override values 2095 */ 2096 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2097 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2098 ice_init_phy_cfg_dflt_override(pi); 2099 goto out; 2100 } 2101 } 2102 2103 /* if link default override is not enabled, set user flow control and 2104 * FEC settings based on what get_phy_caps returned 2105 */ 2106 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2107 pcaps->link_fec_options); 2108 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2109 2110 out: 2111 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2112 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2113 err_out: 2114 kfree(pcaps); 2115 return err; 2116 } 2117 2118 /** 2119 * ice_configure_phy - configure PHY 2120 * @vsi: VSI of PHY 2121 * 2122 * Set the PHY configuration. If the current PHY configuration is the same as 2123 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2124 * configure the based get PHY capabilities for topology with media. 2125 */ 2126 static int ice_configure_phy(struct ice_vsi *vsi) 2127 { 2128 struct device *dev = ice_pf_to_dev(vsi->back); 2129 struct ice_port_info *pi = vsi->port_info; 2130 struct ice_aqc_get_phy_caps_data *pcaps; 2131 struct ice_aqc_set_phy_cfg_data *cfg; 2132 struct ice_phy_info *phy = &pi->phy; 2133 struct ice_pf *pf = vsi->back; 2134 int err; 2135 2136 /* Ensure we have media as we cannot configure a medialess port */ 2137 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2138 return -ENOMEDIUM; 2139 2140 ice_print_topo_conflict(vsi); 2141 2142 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2143 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2144 return -EPERM; 2145 2146 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2147 return ice_force_phys_link_state(vsi, true); 2148 2149 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2150 if (!pcaps) 2151 return -ENOMEM; 2152 2153 /* Get current PHY config */ 2154 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2155 NULL); 2156 if (err) { 2157 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2158 vsi->vsi_num, err); 2159 goto done; 2160 } 2161 2162 /* If PHY enable link is configured and configuration has not changed, 2163 * there's nothing to do 2164 */ 2165 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2166 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2167 goto done; 2168 2169 /* Use PHY topology as baseline for configuration */ 2170 memset(pcaps, 0, sizeof(*pcaps)); 2171 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2172 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2173 pcaps, NULL); 2174 else 2175 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2176 pcaps, NULL); 2177 if (err) { 2178 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2179 vsi->vsi_num, err); 2180 goto done; 2181 } 2182 2183 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2184 if (!cfg) { 2185 err = -ENOMEM; 2186 goto done; 2187 } 2188 2189 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2190 2191 /* Speed - If default override pending, use curr_user_phy_cfg set in 2192 * ice_init_phy_user_cfg_ldo. 2193 */ 2194 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2195 vsi->back->state)) { 2196 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2197 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2198 } else { 2199 u64 phy_low = 0, phy_high = 0; 2200 2201 ice_update_phy_type(&phy_low, &phy_high, 2202 pi->phy.curr_user_speed_req); 2203 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2204 cfg->phy_type_high = pcaps->phy_type_high & 2205 cpu_to_le64(phy_high); 2206 } 2207 2208 /* Can't provide what was requested; use PHY capabilities */ 2209 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2210 cfg->phy_type_low = pcaps->phy_type_low; 2211 cfg->phy_type_high = pcaps->phy_type_high; 2212 } 2213 2214 /* FEC */ 2215 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2216 2217 /* Can't provide what was requested; use PHY capabilities */ 2218 if (cfg->link_fec_opt != 2219 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2220 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2221 cfg->link_fec_opt = pcaps->link_fec_options; 2222 } 2223 2224 /* Flow Control - always supported; no need to check against 2225 * capabilities 2226 */ 2227 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2228 2229 /* Enable link and link update */ 2230 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2231 2232 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2233 if (err) 2234 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2235 vsi->vsi_num, err); 2236 2237 kfree(cfg); 2238 done: 2239 kfree(pcaps); 2240 return err; 2241 } 2242 2243 /** 2244 * ice_check_media_subtask - Check for media 2245 * @pf: pointer to PF struct 2246 * 2247 * If media is available, then initialize PHY user configuration if it is not 2248 * been, and configure the PHY if the interface is up. 2249 */ 2250 static void ice_check_media_subtask(struct ice_pf *pf) 2251 { 2252 struct ice_port_info *pi; 2253 struct ice_vsi *vsi; 2254 int err; 2255 2256 /* No need to check for media if it's already present */ 2257 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2258 return; 2259 2260 vsi = ice_get_main_vsi(pf); 2261 if (!vsi) 2262 return; 2263 2264 /* Refresh link info and check if media is present */ 2265 pi = vsi->port_info; 2266 err = ice_update_link_info(pi); 2267 if (err) 2268 return; 2269 2270 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2271 2272 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2273 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2274 ice_init_phy_user_cfg(pi); 2275 2276 /* PHY settings are reset on media insertion, reconfigure 2277 * PHY to preserve settings. 2278 */ 2279 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2280 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2281 return; 2282 2283 err = ice_configure_phy(vsi); 2284 if (!err) 2285 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2286 2287 /* A Link Status Event will be generated; the event handler 2288 * will complete bringing the interface up 2289 */ 2290 } 2291 } 2292 2293 /** 2294 * ice_service_task - manage and run subtasks 2295 * @work: pointer to work_struct contained by the PF struct 2296 */ 2297 static void ice_service_task(struct work_struct *work) 2298 { 2299 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2300 unsigned long start_time = jiffies; 2301 2302 /* subtasks */ 2303 2304 /* process reset requests first */ 2305 ice_reset_subtask(pf); 2306 2307 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2308 if (ice_is_reset_in_progress(pf->state) || 2309 test_bit(ICE_SUSPENDED, pf->state) || 2310 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2311 ice_service_task_complete(pf); 2312 return; 2313 } 2314 2315 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2316 struct iidc_event *event; 2317 2318 event = kzalloc(sizeof(*event), GFP_KERNEL); 2319 if (event) { 2320 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2321 /* report the entire OICR value to AUX driver */ 2322 swap(event->reg, pf->oicr_err_reg); 2323 ice_send_event_to_aux(pf, event); 2324 kfree(event); 2325 } 2326 } 2327 2328 /* unplug aux dev per request, if an unplug request came in 2329 * while processing a plug request, this will handle it 2330 */ 2331 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2332 ice_unplug_aux_dev(pf); 2333 2334 /* Plug aux device per request */ 2335 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2336 ice_plug_aux_dev(pf); 2337 2338 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2339 struct iidc_event *event; 2340 2341 event = kzalloc(sizeof(*event), GFP_KERNEL); 2342 if (event) { 2343 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2344 ice_send_event_to_aux(pf, event); 2345 kfree(event); 2346 } 2347 } 2348 2349 ice_clean_adminq_subtask(pf); 2350 ice_check_media_subtask(pf); 2351 ice_check_for_hang_subtask(pf); 2352 ice_sync_fltr_subtask(pf); 2353 ice_handle_mdd_event(pf); 2354 ice_watchdog_subtask(pf); 2355 2356 if (ice_is_safe_mode(pf)) { 2357 ice_service_task_complete(pf); 2358 return; 2359 } 2360 2361 ice_process_vflr_event(pf); 2362 ice_clean_mailboxq_subtask(pf); 2363 ice_clean_sbq_subtask(pf); 2364 ice_sync_arfs_fltrs(pf); 2365 ice_flush_fdir_ctx(pf); 2366 2367 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2368 ice_service_task_complete(pf); 2369 2370 /* If the tasks have taken longer than one service timer period 2371 * or there is more work to be done, reset the service timer to 2372 * schedule the service task now. 2373 */ 2374 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2375 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2377 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2379 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2380 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2381 mod_timer(&pf->serv_tmr, jiffies); 2382 } 2383 2384 /** 2385 * ice_set_ctrlq_len - helper function to set controlq length 2386 * @hw: pointer to the HW instance 2387 */ 2388 static void ice_set_ctrlq_len(struct ice_hw *hw) 2389 { 2390 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2391 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2392 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2393 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2394 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2395 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2396 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2397 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2398 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2399 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2400 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2401 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2402 } 2403 2404 /** 2405 * ice_schedule_reset - schedule a reset 2406 * @pf: board private structure 2407 * @reset: reset being requested 2408 */ 2409 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2410 { 2411 struct device *dev = ice_pf_to_dev(pf); 2412 2413 /* bail out if earlier reset has failed */ 2414 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2415 dev_dbg(dev, "earlier reset has failed\n"); 2416 return -EIO; 2417 } 2418 /* bail if reset/recovery already in progress */ 2419 if (ice_is_reset_in_progress(pf->state)) { 2420 dev_dbg(dev, "Reset already in progress\n"); 2421 return -EBUSY; 2422 } 2423 2424 switch (reset) { 2425 case ICE_RESET_PFR: 2426 set_bit(ICE_PFR_REQ, pf->state); 2427 break; 2428 case ICE_RESET_CORER: 2429 set_bit(ICE_CORER_REQ, pf->state); 2430 break; 2431 case ICE_RESET_GLOBR: 2432 set_bit(ICE_GLOBR_REQ, pf->state); 2433 break; 2434 default: 2435 return -EINVAL; 2436 } 2437 2438 ice_service_task_schedule(pf); 2439 return 0; 2440 } 2441 2442 /** 2443 * ice_irq_affinity_notify - Callback for affinity changes 2444 * @notify: context as to what irq was changed 2445 * @mask: the new affinity mask 2446 * 2447 * This is a callback function used by the irq_set_affinity_notifier function 2448 * so that we may register to receive changes to the irq affinity masks. 2449 */ 2450 static void 2451 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2452 const cpumask_t *mask) 2453 { 2454 struct ice_q_vector *q_vector = 2455 container_of(notify, struct ice_q_vector, affinity_notify); 2456 2457 cpumask_copy(&q_vector->affinity_mask, mask); 2458 } 2459 2460 /** 2461 * ice_irq_affinity_release - Callback for affinity notifier release 2462 * @ref: internal core kernel usage 2463 * 2464 * This is a callback function used by the irq_set_affinity_notifier function 2465 * to inform the current notification subscriber that they will no longer 2466 * receive notifications. 2467 */ 2468 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2469 2470 /** 2471 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2472 * @vsi: the VSI being configured 2473 */ 2474 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2475 { 2476 struct ice_hw *hw = &vsi->back->hw; 2477 int i; 2478 2479 ice_for_each_q_vector(vsi, i) 2480 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2481 2482 ice_flush(hw); 2483 return 0; 2484 } 2485 2486 /** 2487 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2488 * @vsi: the VSI being configured 2489 * @basename: name for the vector 2490 */ 2491 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2492 { 2493 int q_vectors = vsi->num_q_vectors; 2494 struct ice_pf *pf = vsi->back; 2495 struct device *dev; 2496 int rx_int_idx = 0; 2497 int tx_int_idx = 0; 2498 int vector, err; 2499 int irq_num; 2500 2501 dev = ice_pf_to_dev(pf); 2502 for (vector = 0; vector < q_vectors; vector++) { 2503 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2504 2505 irq_num = q_vector->irq.virq; 2506 2507 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2508 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2509 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2510 tx_int_idx++; 2511 } else if (q_vector->rx.rx_ring) { 2512 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2513 "%s-%s-%d", basename, "rx", rx_int_idx++); 2514 } else if (q_vector->tx.tx_ring) { 2515 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2516 "%s-%s-%d", basename, "tx", tx_int_idx++); 2517 } else { 2518 /* skip this unused q_vector */ 2519 continue; 2520 } 2521 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2522 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2523 IRQF_SHARED, q_vector->name, 2524 q_vector); 2525 else 2526 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2527 0, q_vector->name, q_vector); 2528 if (err) { 2529 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2530 err); 2531 goto free_q_irqs; 2532 } 2533 2534 /* register for affinity change notifications */ 2535 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2536 struct irq_affinity_notify *affinity_notify; 2537 2538 affinity_notify = &q_vector->affinity_notify; 2539 affinity_notify->notify = ice_irq_affinity_notify; 2540 affinity_notify->release = ice_irq_affinity_release; 2541 irq_set_affinity_notifier(irq_num, affinity_notify); 2542 } 2543 2544 /* assign the mask for this irq */ 2545 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2546 } 2547 2548 err = ice_set_cpu_rx_rmap(vsi); 2549 if (err) { 2550 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2551 vsi->vsi_num, ERR_PTR(err)); 2552 goto free_q_irqs; 2553 } 2554 2555 vsi->irqs_ready = true; 2556 return 0; 2557 2558 free_q_irqs: 2559 while (vector--) { 2560 irq_num = vsi->q_vectors[vector]->irq.virq; 2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2562 irq_set_affinity_notifier(irq_num, NULL); 2563 irq_set_affinity_hint(irq_num, NULL); 2564 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2565 } 2566 return err; 2567 } 2568 2569 /** 2570 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2571 * @vsi: VSI to setup Tx rings used by XDP 2572 * 2573 * Return 0 on success and negative value on error 2574 */ 2575 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2576 { 2577 struct device *dev = ice_pf_to_dev(vsi->back); 2578 struct ice_tx_desc *tx_desc; 2579 int i, j; 2580 2581 ice_for_each_xdp_txq(vsi, i) { 2582 u16 xdp_q_idx = vsi->alloc_txq + i; 2583 struct ice_ring_stats *ring_stats; 2584 struct ice_tx_ring *xdp_ring; 2585 2586 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2587 if (!xdp_ring) 2588 goto free_xdp_rings; 2589 2590 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2591 if (!ring_stats) { 2592 ice_free_tx_ring(xdp_ring); 2593 goto free_xdp_rings; 2594 } 2595 2596 xdp_ring->ring_stats = ring_stats; 2597 xdp_ring->q_index = xdp_q_idx; 2598 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2599 xdp_ring->vsi = vsi; 2600 xdp_ring->netdev = NULL; 2601 xdp_ring->dev = dev; 2602 xdp_ring->count = vsi->num_tx_desc; 2603 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2604 if (ice_setup_tx_ring(xdp_ring)) 2605 goto free_xdp_rings; 2606 ice_set_ring_xdp(xdp_ring); 2607 spin_lock_init(&xdp_ring->tx_lock); 2608 for (j = 0; j < xdp_ring->count; j++) { 2609 tx_desc = ICE_TX_DESC(xdp_ring, j); 2610 tx_desc->cmd_type_offset_bsz = 0; 2611 } 2612 } 2613 2614 return 0; 2615 2616 free_xdp_rings: 2617 for (; i >= 0; i--) { 2618 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2619 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2620 vsi->xdp_rings[i]->ring_stats = NULL; 2621 ice_free_tx_ring(vsi->xdp_rings[i]); 2622 } 2623 } 2624 return -ENOMEM; 2625 } 2626 2627 /** 2628 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2629 * @vsi: VSI to set the bpf prog on 2630 * @prog: the bpf prog pointer 2631 */ 2632 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2633 { 2634 struct bpf_prog *old_prog; 2635 int i; 2636 2637 old_prog = xchg(&vsi->xdp_prog, prog); 2638 ice_for_each_rxq(vsi, i) 2639 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2640 2641 if (old_prog) 2642 bpf_prog_put(old_prog); 2643 } 2644 2645 /** 2646 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2647 * @vsi: VSI to bring up Tx rings used by XDP 2648 * @prog: bpf program that will be assigned to VSI 2649 * @cfg_type: create from scratch or restore the existing configuration 2650 * 2651 * Return 0 on success and negative value on error 2652 */ 2653 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2654 enum ice_xdp_cfg cfg_type) 2655 { 2656 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2657 int xdp_rings_rem = vsi->num_xdp_txq; 2658 struct ice_pf *pf = vsi->back; 2659 struct ice_qs_cfg xdp_qs_cfg = { 2660 .qs_mutex = &pf->avail_q_mutex, 2661 .pf_map = pf->avail_txqs, 2662 .pf_map_size = pf->max_pf_txqs, 2663 .q_count = vsi->num_xdp_txq, 2664 .scatter_count = ICE_MAX_SCATTER_TXQS, 2665 .vsi_map = vsi->txq_map, 2666 .vsi_map_offset = vsi->alloc_txq, 2667 .mapping_mode = ICE_VSI_MAP_CONTIG 2668 }; 2669 struct device *dev; 2670 int i, v_idx; 2671 int status; 2672 2673 dev = ice_pf_to_dev(pf); 2674 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2675 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2676 if (!vsi->xdp_rings) 2677 return -ENOMEM; 2678 2679 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2680 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2681 goto err_map_xdp; 2682 2683 if (static_key_enabled(&ice_xdp_locking_key)) 2684 netdev_warn(vsi->netdev, 2685 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2686 2687 if (ice_xdp_alloc_setup_rings(vsi)) 2688 goto clear_xdp_rings; 2689 2690 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2691 ice_for_each_q_vector(vsi, v_idx) { 2692 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2693 int xdp_rings_per_v, q_id, q_base; 2694 2695 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2696 vsi->num_q_vectors - v_idx); 2697 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2698 2699 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2700 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2701 2702 xdp_ring->q_vector = q_vector; 2703 xdp_ring->next = q_vector->tx.tx_ring; 2704 q_vector->tx.tx_ring = xdp_ring; 2705 } 2706 xdp_rings_rem -= xdp_rings_per_v; 2707 } 2708 2709 ice_for_each_rxq(vsi, i) { 2710 if (static_key_enabled(&ice_xdp_locking_key)) { 2711 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2712 } else { 2713 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2714 struct ice_tx_ring *ring; 2715 2716 ice_for_each_tx_ring(ring, q_vector->tx) { 2717 if (ice_ring_is_xdp(ring)) { 2718 vsi->rx_rings[i]->xdp_ring = ring; 2719 break; 2720 } 2721 } 2722 } 2723 ice_tx_xsk_pool(vsi, i); 2724 } 2725 2726 /* omit the scheduler update if in reset path; XDP queues will be 2727 * taken into account at the end of ice_vsi_rebuild, where 2728 * ice_cfg_vsi_lan is being called 2729 */ 2730 if (cfg_type == ICE_XDP_CFG_PART) 2731 return 0; 2732 2733 /* tell the Tx scheduler that right now we have 2734 * additional queues 2735 */ 2736 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2737 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2738 2739 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2740 max_txqs); 2741 if (status) { 2742 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2743 status); 2744 goto clear_xdp_rings; 2745 } 2746 2747 /* assign the prog only when it's not already present on VSI; 2748 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2749 * VSI rebuild that happens under ethtool -L can expose us to 2750 * the bpf_prog refcount issues as we would be swapping same 2751 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2752 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2753 * this is not harmful as dev_xdp_install bumps the refcount 2754 * before calling the op exposed by the driver; 2755 */ 2756 if (!ice_is_xdp_ena_vsi(vsi)) 2757 ice_vsi_assign_bpf_prog(vsi, prog); 2758 2759 return 0; 2760 clear_xdp_rings: 2761 ice_for_each_xdp_txq(vsi, i) 2762 if (vsi->xdp_rings[i]) { 2763 kfree_rcu(vsi->xdp_rings[i], rcu); 2764 vsi->xdp_rings[i] = NULL; 2765 } 2766 2767 err_map_xdp: 2768 mutex_lock(&pf->avail_q_mutex); 2769 ice_for_each_xdp_txq(vsi, i) { 2770 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2771 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2772 } 2773 mutex_unlock(&pf->avail_q_mutex); 2774 2775 devm_kfree(dev, vsi->xdp_rings); 2776 return -ENOMEM; 2777 } 2778 2779 /** 2780 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2781 * @vsi: VSI to remove XDP rings 2782 * @cfg_type: disable XDP permanently or allow it to be restored later 2783 * 2784 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2785 * resources 2786 */ 2787 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2788 { 2789 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2790 struct ice_pf *pf = vsi->back; 2791 int i, v_idx; 2792 2793 /* q_vectors are freed in reset path so there's no point in detaching 2794 * rings 2795 */ 2796 if (cfg_type == ICE_XDP_CFG_PART) 2797 goto free_qmap; 2798 2799 ice_for_each_q_vector(vsi, v_idx) { 2800 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2801 struct ice_tx_ring *ring; 2802 2803 ice_for_each_tx_ring(ring, q_vector->tx) 2804 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2805 break; 2806 2807 /* restore the value of last node prior to XDP setup */ 2808 q_vector->tx.tx_ring = ring; 2809 } 2810 2811 free_qmap: 2812 mutex_lock(&pf->avail_q_mutex); 2813 ice_for_each_xdp_txq(vsi, i) { 2814 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2815 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2816 } 2817 mutex_unlock(&pf->avail_q_mutex); 2818 2819 ice_for_each_xdp_txq(vsi, i) 2820 if (vsi->xdp_rings[i]) { 2821 if (vsi->xdp_rings[i]->desc) { 2822 synchronize_rcu(); 2823 ice_free_tx_ring(vsi->xdp_rings[i]); 2824 } 2825 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2826 vsi->xdp_rings[i]->ring_stats = NULL; 2827 kfree_rcu(vsi->xdp_rings[i], rcu); 2828 vsi->xdp_rings[i] = NULL; 2829 } 2830 2831 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2832 vsi->xdp_rings = NULL; 2833 2834 if (static_key_enabled(&ice_xdp_locking_key)) 2835 static_branch_dec(&ice_xdp_locking_key); 2836 2837 if (cfg_type == ICE_XDP_CFG_PART) 2838 return 0; 2839 2840 ice_vsi_assign_bpf_prog(vsi, NULL); 2841 2842 /* notify Tx scheduler that we destroyed XDP queues and bring 2843 * back the old number of child nodes 2844 */ 2845 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2846 max_txqs[i] = vsi->num_txq; 2847 2848 /* change number of XDP Tx queues to 0 */ 2849 vsi->num_xdp_txq = 0; 2850 2851 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2852 max_txqs); 2853 } 2854 2855 /** 2856 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2857 * @vsi: VSI to schedule napi on 2858 */ 2859 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2860 { 2861 int i; 2862 2863 ice_for_each_rxq(vsi, i) { 2864 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2865 2866 if (rx_ring->xsk_pool) 2867 napi_schedule(&rx_ring->q_vector->napi); 2868 } 2869 } 2870 2871 /** 2872 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2873 * @vsi: VSI to determine the count of XDP Tx qs 2874 * 2875 * returns 0 if Tx qs count is higher than at least half of CPU count, 2876 * -ENOMEM otherwise 2877 */ 2878 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2879 { 2880 u16 avail = ice_get_avail_txq_count(vsi->back); 2881 u16 cpus = num_possible_cpus(); 2882 2883 if (avail < cpus / 2) 2884 return -ENOMEM; 2885 2886 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2887 2888 if (vsi->num_xdp_txq < cpus) 2889 static_branch_inc(&ice_xdp_locking_key); 2890 2891 return 0; 2892 } 2893 2894 /** 2895 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2896 * @vsi: Pointer to VSI structure 2897 */ 2898 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2899 { 2900 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2901 return ICE_RXBUF_1664; 2902 else 2903 return ICE_RXBUF_3072; 2904 } 2905 2906 /** 2907 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2908 * @vsi: VSI to setup XDP for 2909 * @prog: XDP program 2910 * @extack: netlink extended ack 2911 */ 2912 static int 2913 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2914 struct netlink_ext_ack *extack) 2915 { 2916 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2917 int ret = 0, xdp_ring_err = 0; 2918 bool if_running; 2919 2920 if (prog && !prog->aux->xdp_has_frags) { 2921 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2922 NL_SET_ERR_MSG_MOD(extack, 2923 "MTU is too large for linear frames and XDP prog does not support frags"); 2924 return -EOPNOTSUPP; 2925 } 2926 } 2927 2928 /* hot swap progs and avoid toggling link */ 2929 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 2930 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 2931 ice_vsi_assign_bpf_prog(vsi, prog); 2932 return 0; 2933 } 2934 2935 if_running = netif_running(vsi->netdev) && 2936 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 2937 2938 /* need to stop netdev while setting up the program for Rx rings */ 2939 if (if_running) { 2940 ret = ice_down(vsi); 2941 if (ret) { 2942 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2943 return ret; 2944 } 2945 } 2946 2947 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2948 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2949 if (xdp_ring_err) { 2950 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2951 } else { 2952 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 2953 ICE_XDP_CFG_FULL); 2954 if (xdp_ring_err) 2955 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2956 } 2957 xdp_features_set_redirect_target(vsi->netdev, true); 2958 /* reallocate Rx queues that are used for zero-copy */ 2959 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2960 if (xdp_ring_err) 2961 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2962 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2963 xdp_features_clear_redirect_target(vsi->netdev); 2964 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 2965 if (xdp_ring_err) 2966 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2967 /* reallocate Rx queues that were used for zero-copy */ 2968 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2969 if (xdp_ring_err) 2970 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2971 } 2972 2973 if (if_running) 2974 ret = ice_up(vsi); 2975 2976 if (!ret && prog) 2977 ice_vsi_rx_napi_schedule(vsi); 2978 2979 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2980 } 2981 2982 /** 2983 * ice_xdp_safe_mode - XDP handler for safe mode 2984 * @dev: netdevice 2985 * @xdp: XDP command 2986 */ 2987 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2988 struct netdev_bpf *xdp) 2989 { 2990 NL_SET_ERR_MSG_MOD(xdp->extack, 2991 "Please provide working DDP firmware package in order to use XDP\n" 2992 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2993 return -EOPNOTSUPP; 2994 } 2995 2996 /** 2997 * ice_xdp - implements XDP handler 2998 * @dev: netdevice 2999 * @xdp: XDP command 3000 */ 3001 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3002 { 3003 struct ice_netdev_priv *np = netdev_priv(dev); 3004 struct ice_vsi *vsi = np->vsi; 3005 int ret; 3006 3007 if (vsi->type != ICE_VSI_PF) { 3008 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3009 return -EINVAL; 3010 } 3011 3012 mutex_lock(&vsi->xdp_state_lock); 3013 3014 switch (xdp->command) { 3015 case XDP_SETUP_PROG: 3016 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3017 break; 3018 case XDP_SETUP_XSK_POOL: 3019 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3020 break; 3021 default: 3022 ret = -EINVAL; 3023 } 3024 3025 mutex_unlock(&vsi->xdp_state_lock); 3026 return ret; 3027 } 3028 3029 /** 3030 * ice_ena_misc_vector - enable the non-queue interrupts 3031 * @pf: board private structure 3032 */ 3033 static void ice_ena_misc_vector(struct ice_pf *pf) 3034 { 3035 struct ice_hw *hw = &pf->hw; 3036 u32 val; 3037 3038 /* Disable anti-spoof detection interrupt to prevent spurious event 3039 * interrupts during a function reset. Anti-spoof functionally is 3040 * still supported. 3041 */ 3042 val = rd32(hw, GL_MDCK_TX_TDPU); 3043 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3044 wr32(hw, GL_MDCK_TX_TDPU, val); 3045 3046 /* clear things first */ 3047 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3048 rd32(hw, PFINT_OICR); /* read to clear */ 3049 3050 val = (PFINT_OICR_ECC_ERR_M | 3051 PFINT_OICR_MAL_DETECT_M | 3052 PFINT_OICR_GRST_M | 3053 PFINT_OICR_PCI_EXCEPTION_M | 3054 PFINT_OICR_VFLR_M | 3055 PFINT_OICR_HMC_ERR_M | 3056 PFINT_OICR_PE_PUSH_M | 3057 PFINT_OICR_PE_CRITERR_M); 3058 3059 wr32(hw, PFINT_OICR_ENA, val); 3060 3061 /* SW_ITR_IDX = 0, but don't change INTENA */ 3062 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3063 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3064 } 3065 3066 /** 3067 * ice_misc_intr - misc interrupt handler 3068 * @irq: interrupt number 3069 * @data: pointer to a q_vector 3070 */ 3071 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3072 { 3073 struct ice_pf *pf = (struct ice_pf *)data; 3074 struct ice_hw *hw = &pf->hw; 3075 struct device *dev; 3076 u32 oicr, ena_mask; 3077 3078 dev = ice_pf_to_dev(pf); 3079 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3080 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3081 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3082 3083 oicr = rd32(hw, PFINT_OICR); 3084 ena_mask = rd32(hw, PFINT_OICR_ENA); 3085 3086 if (oicr & PFINT_OICR_SWINT_M) { 3087 ena_mask &= ~PFINT_OICR_SWINT_M; 3088 pf->sw_int_count++; 3089 } 3090 3091 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3092 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3093 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3094 } 3095 if (oicr & PFINT_OICR_VFLR_M) { 3096 /* disable any further VFLR event notifications */ 3097 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3098 u32 reg = rd32(hw, PFINT_OICR_ENA); 3099 3100 reg &= ~PFINT_OICR_VFLR_M; 3101 wr32(hw, PFINT_OICR_ENA, reg); 3102 } else { 3103 ena_mask &= ~PFINT_OICR_VFLR_M; 3104 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3105 } 3106 } 3107 3108 if (oicr & PFINT_OICR_GRST_M) { 3109 u32 reset; 3110 3111 /* we have a reset warning */ 3112 ena_mask &= ~PFINT_OICR_GRST_M; 3113 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3114 GLGEN_RSTAT_RESET_TYPE_S; 3115 3116 if (reset == ICE_RESET_CORER) 3117 pf->corer_count++; 3118 else if (reset == ICE_RESET_GLOBR) 3119 pf->globr_count++; 3120 else if (reset == ICE_RESET_EMPR) 3121 pf->empr_count++; 3122 else 3123 dev_dbg(dev, "Invalid reset type %d\n", reset); 3124 3125 /* If a reset cycle isn't already in progress, we set a bit in 3126 * pf->state so that the service task can start a reset/rebuild. 3127 */ 3128 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3129 if (reset == ICE_RESET_CORER) 3130 set_bit(ICE_CORER_RECV, pf->state); 3131 else if (reset == ICE_RESET_GLOBR) 3132 set_bit(ICE_GLOBR_RECV, pf->state); 3133 else 3134 set_bit(ICE_EMPR_RECV, pf->state); 3135 3136 /* There are couple of different bits at play here. 3137 * hw->reset_ongoing indicates whether the hardware is 3138 * in reset. This is set to true when a reset interrupt 3139 * is received and set back to false after the driver 3140 * has determined that the hardware is out of reset. 3141 * 3142 * ICE_RESET_OICR_RECV in pf->state indicates 3143 * that a post reset rebuild is required before the 3144 * driver is operational again. This is set above. 3145 * 3146 * As this is the start of the reset/rebuild cycle, set 3147 * both to indicate that. 3148 */ 3149 hw->reset_ongoing = true; 3150 } 3151 } 3152 3153 if (oicr & PFINT_OICR_TSYN_TX_M) { 3154 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3155 if (!hw->reset_ongoing) 3156 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3157 } 3158 3159 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3160 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3161 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3162 3163 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3164 3165 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3166 /* Save EVENTs from GLTSYN register */ 3167 pf->ptp.ext_ts_irq |= gltsyn_stat & 3168 (GLTSYN_STAT_EVENT0_M | 3169 GLTSYN_STAT_EVENT1_M | 3170 GLTSYN_STAT_EVENT2_M); 3171 3172 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3173 } 3174 } 3175 3176 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3177 if (oicr & ICE_AUX_CRIT_ERR) { 3178 pf->oicr_err_reg |= oicr; 3179 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3180 ena_mask &= ~ICE_AUX_CRIT_ERR; 3181 } 3182 3183 /* Report any remaining unexpected interrupts */ 3184 oicr &= ena_mask; 3185 if (oicr) { 3186 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3187 /* If a critical error is pending there is no choice but to 3188 * reset the device. 3189 */ 3190 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3191 PFINT_OICR_ECC_ERR_M)) { 3192 set_bit(ICE_PFR_REQ, pf->state); 3193 } 3194 } 3195 3196 return IRQ_WAKE_THREAD; 3197 } 3198 3199 /** 3200 * ice_misc_intr_thread_fn - misc interrupt thread function 3201 * @irq: interrupt number 3202 * @data: pointer to a q_vector 3203 */ 3204 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3205 { 3206 struct ice_pf *pf = data; 3207 struct ice_hw *hw; 3208 3209 hw = &pf->hw; 3210 3211 if (ice_is_reset_in_progress(pf->state)) 3212 return IRQ_HANDLED; 3213 3214 ice_service_task_schedule(pf); 3215 3216 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3217 ice_ptp_extts_event(pf); 3218 3219 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3220 /* Process outstanding Tx timestamps. If there is more work, 3221 * re-arm the interrupt to trigger again. 3222 */ 3223 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3224 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3225 ice_flush(hw); 3226 } 3227 } 3228 3229 ice_irq_dynamic_ena(hw, NULL, NULL); 3230 3231 return IRQ_HANDLED; 3232 } 3233 3234 /** 3235 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3236 * @hw: pointer to HW structure 3237 */ 3238 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3239 { 3240 /* disable Admin queue Interrupt causes */ 3241 wr32(hw, PFINT_FW_CTL, 3242 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3243 3244 /* disable Mailbox queue Interrupt causes */ 3245 wr32(hw, PFINT_MBX_CTL, 3246 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3247 3248 wr32(hw, PFINT_SB_CTL, 3249 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3250 3251 /* disable Control queue Interrupt causes */ 3252 wr32(hw, PFINT_OICR_CTL, 3253 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3254 3255 ice_flush(hw); 3256 } 3257 3258 /** 3259 * ice_free_irq_msix_misc - Unroll misc vector setup 3260 * @pf: board private structure 3261 */ 3262 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3263 { 3264 int misc_irq_num = pf->oicr_irq.virq; 3265 struct ice_hw *hw = &pf->hw; 3266 3267 ice_dis_ctrlq_interrupts(hw); 3268 3269 /* disable OICR interrupt */ 3270 wr32(hw, PFINT_OICR_ENA, 0); 3271 ice_flush(hw); 3272 3273 synchronize_irq(misc_irq_num); 3274 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3275 3276 ice_free_irq(pf, pf->oicr_irq); 3277 } 3278 3279 /** 3280 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3281 * @hw: pointer to HW structure 3282 * @reg_idx: HW vector index to associate the control queue interrupts with 3283 */ 3284 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3285 { 3286 u32 val; 3287 3288 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3289 PFINT_OICR_CTL_CAUSE_ENA_M); 3290 wr32(hw, PFINT_OICR_CTL, val); 3291 3292 /* enable Admin queue Interrupt causes */ 3293 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3294 PFINT_FW_CTL_CAUSE_ENA_M); 3295 wr32(hw, PFINT_FW_CTL, val); 3296 3297 /* enable Mailbox queue Interrupt causes */ 3298 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3299 PFINT_MBX_CTL_CAUSE_ENA_M); 3300 wr32(hw, PFINT_MBX_CTL, val); 3301 3302 /* This enables Sideband queue Interrupt causes */ 3303 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3304 PFINT_SB_CTL_CAUSE_ENA_M); 3305 wr32(hw, PFINT_SB_CTL, val); 3306 3307 ice_flush(hw); 3308 } 3309 3310 /** 3311 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3312 * @pf: board private structure 3313 * 3314 * This sets up the handler for MSIX 0, which is used to manage the 3315 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3316 * when in MSI or Legacy interrupt mode. 3317 */ 3318 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3319 { 3320 struct device *dev = ice_pf_to_dev(pf); 3321 struct ice_hw *hw = &pf->hw; 3322 struct msi_map oicr_irq; 3323 int err = 0; 3324 3325 if (!pf->int_name[0]) 3326 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3327 dev_driver_string(dev), dev_name(dev)); 3328 3329 /* Do not request IRQ but do enable OICR interrupt since settings are 3330 * lost during reset. Note that this function is called only during 3331 * rebuild path and not while reset is in progress. 3332 */ 3333 if (ice_is_reset_in_progress(pf->state)) 3334 goto skip_req_irq; 3335 3336 /* reserve one vector in irq_tracker for misc interrupts */ 3337 oicr_irq = ice_alloc_irq(pf, false); 3338 if (oicr_irq.index < 0) 3339 return oicr_irq.index; 3340 3341 pf->oicr_irq = oicr_irq; 3342 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3343 ice_misc_intr_thread_fn, 0, 3344 pf->int_name, pf); 3345 if (err) { 3346 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3347 pf->int_name, err); 3348 ice_free_irq(pf, pf->oicr_irq); 3349 return err; 3350 } 3351 3352 skip_req_irq: 3353 ice_ena_misc_vector(pf); 3354 3355 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3356 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3357 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3358 3359 ice_flush(hw); 3360 ice_irq_dynamic_ena(hw, NULL, NULL); 3361 3362 return 0; 3363 } 3364 3365 /** 3366 * ice_napi_add - register NAPI handler for the VSI 3367 * @vsi: VSI for which NAPI handler is to be registered 3368 * 3369 * This function is only called in the driver's load path. Registering the NAPI 3370 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3371 * reset/rebuild, etc.) 3372 */ 3373 static void ice_napi_add(struct ice_vsi *vsi) 3374 { 3375 int v_idx; 3376 3377 if (!vsi->netdev) 3378 return; 3379 3380 ice_for_each_q_vector(vsi, v_idx) 3381 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3382 ice_napi_poll); 3383 } 3384 3385 /** 3386 * ice_set_ops - set netdev and ethtools ops for the given netdev 3387 * @vsi: the VSI associated with the new netdev 3388 */ 3389 static void ice_set_ops(struct ice_vsi *vsi) 3390 { 3391 struct net_device *netdev = vsi->netdev; 3392 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3393 3394 if (ice_is_safe_mode(pf)) { 3395 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3396 ice_set_ethtool_safe_mode_ops(netdev); 3397 return; 3398 } 3399 3400 netdev->netdev_ops = &ice_netdev_ops; 3401 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3402 ice_set_ethtool_ops(netdev); 3403 3404 if (vsi->type != ICE_VSI_PF) 3405 return; 3406 3407 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3408 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3409 NETDEV_XDP_ACT_RX_SG; 3410 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3411 } 3412 3413 /** 3414 * ice_set_netdev_features - set features for the given netdev 3415 * @netdev: netdev instance 3416 */ 3417 static void ice_set_netdev_features(struct net_device *netdev) 3418 { 3419 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3420 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3421 netdev_features_t csumo_features; 3422 netdev_features_t vlano_features; 3423 netdev_features_t dflt_features; 3424 netdev_features_t tso_features; 3425 3426 if (ice_is_safe_mode(pf)) { 3427 /* safe mode */ 3428 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3429 netdev->hw_features = netdev->features; 3430 return; 3431 } 3432 3433 dflt_features = NETIF_F_SG | 3434 NETIF_F_HIGHDMA | 3435 NETIF_F_NTUPLE | 3436 NETIF_F_RXHASH; 3437 3438 csumo_features = NETIF_F_RXCSUM | 3439 NETIF_F_IP_CSUM | 3440 NETIF_F_SCTP_CRC | 3441 NETIF_F_IPV6_CSUM; 3442 3443 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3444 NETIF_F_HW_VLAN_CTAG_TX | 3445 NETIF_F_HW_VLAN_CTAG_RX; 3446 3447 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3448 if (is_dvm_ena) 3449 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3450 3451 tso_features = NETIF_F_TSO | 3452 NETIF_F_TSO_ECN | 3453 NETIF_F_TSO6 | 3454 NETIF_F_GSO_GRE | 3455 NETIF_F_GSO_UDP_TUNNEL | 3456 NETIF_F_GSO_GRE_CSUM | 3457 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3458 NETIF_F_GSO_PARTIAL | 3459 NETIF_F_GSO_IPXIP4 | 3460 NETIF_F_GSO_IPXIP6 | 3461 NETIF_F_GSO_UDP_L4; 3462 3463 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3464 NETIF_F_GSO_GRE_CSUM; 3465 /* set features that user can change */ 3466 netdev->hw_features = dflt_features | csumo_features | 3467 vlano_features | tso_features; 3468 3469 /* add support for HW_CSUM on packets with MPLS header */ 3470 netdev->mpls_features = NETIF_F_HW_CSUM | 3471 NETIF_F_TSO | 3472 NETIF_F_TSO6; 3473 3474 /* enable features */ 3475 netdev->features |= netdev->hw_features; 3476 3477 netdev->hw_features |= NETIF_F_HW_TC; 3478 netdev->hw_features |= NETIF_F_LOOPBACK; 3479 3480 /* encap and VLAN devices inherit default, csumo and tso features */ 3481 netdev->hw_enc_features |= dflt_features | csumo_features | 3482 tso_features; 3483 netdev->vlan_features |= dflt_features | csumo_features | 3484 tso_features; 3485 3486 /* advertise support but don't enable by default since only one type of 3487 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3488 * type turns on the other has to be turned off. This is enforced by the 3489 * ice_fix_features() ndo callback. 3490 */ 3491 if (is_dvm_ena) 3492 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3493 NETIF_F_HW_VLAN_STAG_TX; 3494 3495 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3496 * be changed at runtime 3497 */ 3498 netdev->hw_features |= NETIF_F_RXFCS; 3499 3500 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3501 } 3502 3503 /** 3504 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3505 * @lut: Lookup table 3506 * @rss_table_size: Lookup table size 3507 * @rss_size: Range of queue number for hashing 3508 */ 3509 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3510 { 3511 u16 i; 3512 3513 for (i = 0; i < rss_table_size; i++) 3514 lut[i] = i % rss_size; 3515 } 3516 3517 /** 3518 * ice_pf_vsi_setup - Set up a PF VSI 3519 * @pf: board private structure 3520 * @pi: pointer to the port_info instance 3521 * 3522 * Returns pointer to the successfully allocated VSI software struct 3523 * on success, otherwise returns NULL on failure. 3524 */ 3525 static struct ice_vsi * 3526 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3527 { 3528 struct ice_vsi_cfg_params params = {}; 3529 3530 params.type = ICE_VSI_PF; 3531 params.pi = pi; 3532 params.flags = ICE_VSI_FLAG_INIT; 3533 3534 return ice_vsi_setup(pf, ¶ms); 3535 } 3536 3537 static struct ice_vsi * 3538 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3539 struct ice_channel *ch) 3540 { 3541 struct ice_vsi_cfg_params params = {}; 3542 3543 params.type = ICE_VSI_CHNL; 3544 params.pi = pi; 3545 params.ch = ch; 3546 params.flags = ICE_VSI_FLAG_INIT; 3547 3548 return ice_vsi_setup(pf, ¶ms); 3549 } 3550 3551 /** 3552 * ice_ctrl_vsi_setup - Set up a control VSI 3553 * @pf: board private structure 3554 * @pi: pointer to the port_info instance 3555 * 3556 * Returns pointer to the successfully allocated VSI software struct 3557 * on success, otherwise returns NULL on failure. 3558 */ 3559 static struct ice_vsi * 3560 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3561 { 3562 struct ice_vsi_cfg_params params = {}; 3563 3564 params.type = ICE_VSI_CTRL; 3565 params.pi = pi; 3566 params.flags = ICE_VSI_FLAG_INIT; 3567 3568 return ice_vsi_setup(pf, ¶ms); 3569 } 3570 3571 /** 3572 * ice_lb_vsi_setup - Set up a loopback VSI 3573 * @pf: board private structure 3574 * @pi: pointer to the port_info instance 3575 * 3576 * Returns pointer to the successfully allocated VSI software struct 3577 * on success, otherwise returns NULL on failure. 3578 */ 3579 struct ice_vsi * 3580 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3581 { 3582 struct ice_vsi_cfg_params params = {}; 3583 3584 params.type = ICE_VSI_LB; 3585 params.pi = pi; 3586 params.flags = ICE_VSI_FLAG_INIT; 3587 3588 return ice_vsi_setup(pf, ¶ms); 3589 } 3590 3591 /** 3592 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3593 * @netdev: network interface to be adjusted 3594 * @proto: VLAN TPID 3595 * @vid: VLAN ID to be added 3596 * 3597 * net_device_ops implementation for adding VLAN IDs 3598 */ 3599 static int 3600 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3601 { 3602 struct ice_netdev_priv *np = netdev_priv(netdev); 3603 struct ice_vsi_vlan_ops *vlan_ops; 3604 struct ice_vsi *vsi = np->vsi; 3605 struct ice_vlan vlan; 3606 int ret; 3607 3608 /* VLAN 0 is added by default during load/reset */ 3609 if (!vid) 3610 return 0; 3611 3612 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3613 usleep_range(1000, 2000); 3614 3615 /* Add multicast promisc rule for the VLAN ID to be added if 3616 * all-multicast is currently enabled. 3617 */ 3618 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3619 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3620 ICE_MCAST_VLAN_PROMISC_BITS, 3621 vid); 3622 if (ret) 3623 goto finish; 3624 } 3625 3626 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3627 3628 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3629 * packets aren't pruned by the device's internal switch on Rx 3630 */ 3631 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3632 ret = vlan_ops->add_vlan(vsi, &vlan); 3633 if (ret) 3634 goto finish; 3635 3636 /* If all-multicast is currently enabled and this VLAN ID is only one 3637 * besides VLAN-0 we have to update look-up type of multicast promisc 3638 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3639 */ 3640 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3641 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3642 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3643 ICE_MCAST_PROMISC_BITS, 0); 3644 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3645 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3646 } 3647 3648 finish: 3649 clear_bit(ICE_CFG_BUSY, vsi->state); 3650 3651 return ret; 3652 } 3653 3654 /** 3655 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3656 * @netdev: network interface to be adjusted 3657 * @proto: VLAN TPID 3658 * @vid: VLAN ID to be removed 3659 * 3660 * net_device_ops implementation for removing VLAN IDs 3661 */ 3662 static int 3663 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3664 { 3665 struct ice_netdev_priv *np = netdev_priv(netdev); 3666 struct ice_vsi_vlan_ops *vlan_ops; 3667 struct ice_vsi *vsi = np->vsi; 3668 struct ice_vlan vlan; 3669 int ret; 3670 3671 /* don't allow removal of VLAN 0 */ 3672 if (!vid) 3673 return 0; 3674 3675 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3676 usleep_range(1000, 2000); 3677 3678 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3679 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3680 if (ret) { 3681 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3682 vsi->vsi_num); 3683 vsi->current_netdev_flags |= IFF_ALLMULTI; 3684 } 3685 3686 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3687 3688 /* Make sure VLAN delete is successful before updating VLAN 3689 * information 3690 */ 3691 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3692 ret = vlan_ops->del_vlan(vsi, &vlan); 3693 if (ret) 3694 goto finish; 3695 3696 /* Remove multicast promisc rule for the removed VLAN ID if 3697 * all-multicast is enabled. 3698 */ 3699 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3700 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3701 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3702 3703 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3704 /* Update look-up type of multicast promisc rule for VLAN 0 3705 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3706 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3707 */ 3708 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3709 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3710 ICE_MCAST_VLAN_PROMISC_BITS, 3711 0); 3712 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3713 ICE_MCAST_PROMISC_BITS, 0); 3714 } 3715 } 3716 3717 finish: 3718 clear_bit(ICE_CFG_BUSY, vsi->state); 3719 3720 return ret; 3721 } 3722 3723 /** 3724 * ice_rep_indr_tc_block_unbind 3725 * @cb_priv: indirection block private data 3726 */ 3727 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3728 { 3729 struct ice_indr_block_priv *indr_priv = cb_priv; 3730 3731 list_del(&indr_priv->list); 3732 kfree(indr_priv); 3733 } 3734 3735 /** 3736 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3737 * @vsi: VSI struct which has the netdev 3738 */ 3739 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3740 { 3741 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3742 3743 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3744 ice_rep_indr_tc_block_unbind); 3745 } 3746 3747 /** 3748 * ice_tc_indir_block_register - Register TC indirect block notifications 3749 * @vsi: VSI struct which has the netdev 3750 * 3751 * Returns 0 on success, negative value on failure 3752 */ 3753 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3754 { 3755 struct ice_netdev_priv *np; 3756 3757 if (!vsi || !vsi->netdev) 3758 return -EINVAL; 3759 3760 np = netdev_priv(vsi->netdev); 3761 3762 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3763 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3764 } 3765 3766 /** 3767 * ice_get_avail_q_count - Get count of queues in use 3768 * @pf_qmap: bitmap to get queue use count from 3769 * @lock: pointer to a mutex that protects access to pf_qmap 3770 * @size: size of the bitmap 3771 */ 3772 static u16 3773 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3774 { 3775 unsigned long bit; 3776 u16 count = 0; 3777 3778 mutex_lock(lock); 3779 for_each_clear_bit(bit, pf_qmap, size) 3780 count++; 3781 mutex_unlock(lock); 3782 3783 return count; 3784 } 3785 3786 /** 3787 * ice_get_avail_txq_count - Get count of Tx queues in use 3788 * @pf: pointer to an ice_pf instance 3789 */ 3790 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3791 { 3792 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3793 pf->max_pf_txqs); 3794 } 3795 3796 /** 3797 * ice_get_avail_rxq_count - Get count of Rx queues in use 3798 * @pf: pointer to an ice_pf instance 3799 */ 3800 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3801 { 3802 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3803 pf->max_pf_rxqs); 3804 } 3805 3806 /** 3807 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3808 * @pf: board private structure to initialize 3809 */ 3810 static void ice_deinit_pf(struct ice_pf *pf) 3811 { 3812 ice_service_task_stop(pf); 3813 mutex_destroy(&pf->lag_mutex); 3814 mutex_destroy(&pf->adev_mutex); 3815 mutex_destroy(&pf->sw_mutex); 3816 mutex_destroy(&pf->tc_mutex); 3817 mutex_destroy(&pf->avail_q_mutex); 3818 mutex_destroy(&pf->vfs.table_lock); 3819 3820 if (pf->avail_txqs) { 3821 bitmap_free(pf->avail_txqs); 3822 pf->avail_txqs = NULL; 3823 } 3824 3825 if (pf->avail_rxqs) { 3826 bitmap_free(pf->avail_rxqs); 3827 pf->avail_rxqs = NULL; 3828 } 3829 3830 if (pf->ptp.clock) 3831 ptp_clock_unregister(pf->ptp.clock); 3832 } 3833 3834 /** 3835 * ice_set_pf_caps - set PFs capability flags 3836 * @pf: pointer to the PF instance 3837 */ 3838 static void ice_set_pf_caps(struct ice_pf *pf) 3839 { 3840 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3841 3842 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3843 if (func_caps->common_cap.rdma) 3844 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3845 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3846 if (func_caps->common_cap.dcb) 3847 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3848 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3849 if (func_caps->common_cap.sr_iov_1_1) { 3850 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3851 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3852 ICE_MAX_SRIOV_VFS); 3853 } 3854 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3855 if (func_caps->common_cap.rss_table_size) 3856 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3857 3858 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3859 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3860 u16 unused; 3861 3862 /* ctrl_vsi_idx will be set to a valid value when flow director 3863 * is setup by ice_init_fdir 3864 */ 3865 pf->ctrl_vsi_idx = ICE_NO_VSI; 3866 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3867 /* force guaranteed filter pool for PF */ 3868 ice_alloc_fd_guar_item(&pf->hw, &unused, 3869 func_caps->fd_fltr_guar); 3870 /* force shared filter pool for PF */ 3871 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3872 func_caps->fd_fltr_best_effort); 3873 } 3874 3875 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3876 if (func_caps->common_cap.ieee_1588) 3877 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3878 3879 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3880 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3881 } 3882 3883 /** 3884 * ice_init_pf - Initialize general software structures (struct ice_pf) 3885 * @pf: board private structure to initialize 3886 */ 3887 static int ice_init_pf(struct ice_pf *pf) 3888 { 3889 ice_set_pf_caps(pf); 3890 3891 mutex_init(&pf->sw_mutex); 3892 mutex_init(&pf->tc_mutex); 3893 mutex_init(&pf->adev_mutex); 3894 mutex_init(&pf->lag_mutex); 3895 3896 INIT_HLIST_HEAD(&pf->aq_wait_list); 3897 spin_lock_init(&pf->aq_wait_lock); 3898 init_waitqueue_head(&pf->aq_wait_queue); 3899 3900 init_waitqueue_head(&pf->reset_wait_queue); 3901 3902 /* setup service timer and periodic service task */ 3903 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3904 pf->serv_tmr_period = HZ; 3905 INIT_WORK(&pf->serv_task, ice_service_task); 3906 clear_bit(ICE_SERVICE_SCHED, pf->state); 3907 3908 mutex_init(&pf->avail_q_mutex); 3909 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3910 if (!pf->avail_txqs) 3911 return -ENOMEM; 3912 3913 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3914 if (!pf->avail_rxqs) { 3915 bitmap_free(pf->avail_txqs); 3916 pf->avail_txqs = NULL; 3917 return -ENOMEM; 3918 } 3919 3920 mutex_init(&pf->vfs.table_lock); 3921 hash_init(pf->vfs.table); 3922 ice_mbx_init_snapshot(&pf->hw); 3923 3924 return 0; 3925 } 3926 3927 /** 3928 * ice_is_wol_supported - check if WoL is supported 3929 * @hw: pointer to hardware info 3930 * 3931 * Check if WoL is supported based on the HW configuration. 3932 * Returns true if NVM supports and enables WoL for this port, false otherwise 3933 */ 3934 bool ice_is_wol_supported(struct ice_hw *hw) 3935 { 3936 u16 wol_ctrl; 3937 3938 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3939 * word) indicates WoL is not supported on the corresponding PF ID. 3940 */ 3941 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3942 return false; 3943 3944 return !(BIT(hw->port_info->lport) & wol_ctrl); 3945 } 3946 3947 /** 3948 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3949 * @vsi: VSI being changed 3950 * @new_rx: new number of Rx queues 3951 * @new_tx: new number of Tx queues 3952 * @locked: is adev device_lock held 3953 * 3954 * Only change the number of queues if new_tx, or new_rx is non-0. 3955 * 3956 * Returns 0 on success. 3957 */ 3958 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3959 { 3960 struct ice_pf *pf = vsi->back; 3961 int i, err = 0, timeout = 50; 3962 3963 if (!new_rx && !new_tx) 3964 return -EINVAL; 3965 3966 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3967 timeout--; 3968 if (!timeout) 3969 return -EBUSY; 3970 usleep_range(1000, 2000); 3971 } 3972 3973 if (new_tx) 3974 vsi->req_txq = (u16)new_tx; 3975 if (new_rx) 3976 vsi->req_rxq = (u16)new_rx; 3977 3978 /* set for the next time the netdev is started */ 3979 if (!netif_running(vsi->netdev)) { 3980 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3981 if (err) 3982 goto rebuild_err; 3983 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3984 goto done; 3985 } 3986 3987 ice_vsi_close(vsi); 3988 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3989 if (err) 3990 goto rebuild_err; 3991 3992 ice_for_each_traffic_class(i) { 3993 if (vsi->tc_cfg.ena_tc & BIT(i)) 3994 netdev_set_tc_queue(vsi->netdev, 3995 vsi->tc_cfg.tc_info[i].netdev_tc, 3996 vsi->tc_cfg.tc_info[i].qcount_tx, 3997 vsi->tc_cfg.tc_info[i].qoffset); 3998 } 3999 ice_pf_dcb_recfg(pf, locked); 4000 ice_vsi_open(vsi); 4001 goto done; 4002 4003 rebuild_err: 4004 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4005 err); 4006 done: 4007 clear_bit(ICE_CFG_BUSY, pf->state); 4008 return err; 4009 } 4010 4011 /** 4012 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4013 * @pf: PF to configure 4014 * 4015 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4016 * VSI can still Tx/Rx VLAN tagged packets. 4017 */ 4018 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4019 { 4020 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4021 struct ice_vsi_ctx *ctxt; 4022 struct ice_hw *hw; 4023 int status; 4024 4025 if (!vsi) 4026 return; 4027 4028 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4029 if (!ctxt) 4030 return; 4031 4032 hw = &pf->hw; 4033 ctxt->info = vsi->info; 4034 4035 ctxt->info.valid_sections = 4036 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4037 ICE_AQ_VSI_PROP_SECURITY_VALID | 4038 ICE_AQ_VSI_PROP_SW_VALID); 4039 4040 /* disable VLAN anti-spoof */ 4041 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4042 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4043 4044 /* disable VLAN pruning and keep all other settings */ 4045 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4046 4047 /* allow all VLANs on Tx and don't strip on Rx */ 4048 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4049 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4050 4051 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4052 if (status) { 4053 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4054 status, ice_aq_str(hw->adminq.sq_last_status)); 4055 } else { 4056 vsi->info.sec_flags = ctxt->info.sec_flags; 4057 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4058 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4059 } 4060 4061 kfree(ctxt); 4062 } 4063 4064 /** 4065 * ice_log_pkg_init - log result of DDP package load 4066 * @hw: pointer to hardware info 4067 * @state: state of package load 4068 */ 4069 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4070 { 4071 struct ice_pf *pf = hw->back; 4072 struct device *dev; 4073 4074 dev = ice_pf_to_dev(pf); 4075 4076 switch (state) { 4077 case ICE_DDP_PKG_SUCCESS: 4078 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4079 hw->active_pkg_name, 4080 hw->active_pkg_ver.major, 4081 hw->active_pkg_ver.minor, 4082 hw->active_pkg_ver.update, 4083 hw->active_pkg_ver.draft); 4084 break; 4085 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4086 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4087 hw->active_pkg_name, 4088 hw->active_pkg_ver.major, 4089 hw->active_pkg_ver.minor, 4090 hw->active_pkg_ver.update, 4091 hw->active_pkg_ver.draft); 4092 break; 4093 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4094 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4095 hw->active_pkg_name, 4096 hw->active_pkg_ver.major, 4097 hw->active_pkg_ver.minor, 4098 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4099 break; 4100 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4101 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4102 hw->active_pkg_name, 4103 hw->active_pkg_ver.major, 4104 hw->active_pkg_ver.minor, 4105 hw->active_pkg_ver.update, 4106 hw->active_pkg_ver.draft, 4107 hw->pkg_name, 4108 hw->pkg_ver.major, 4109 hw->pkg_ver.minor, 4110 hw->pkg_ver.update, 4111 hw->pkg_ver.draft); 4112 break; 4113 case ICE_DDP_PKG_FW_MISMATCH: 4114 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4115 break; 4116 case ICE_DDP_PKG_INVALID_FILE: 4117 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4118 break; 4119 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4120 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4121 break; 4122 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4123 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4124 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4125 break; 4126 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4127 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4128 break; 4129 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4130 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4131 break; 4132 case ICE_DDP_PKG_LOAD_ERROR: 4133 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4134 /* poll for reset to complete */ 4135 if (ice_check_reset(hw)) 4136 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4137 break; 4138 case ICE_DDP_PKG_ERR: 4139 default: 4140 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4141 break; 4142 } 4143 } 4144 4145 /** 4146 * ice_load_pkg - load/reload the DDP Package file 4147 * @firmware: firmware structure when firmware requested or NULL for reload 4148 * @pf: pointer to the PF instance 4149 * 4150 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4151 * initialize HW tables. 4152 */ 4153 static void 4154 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4155 { 4156 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4157 struct device *dev = ice_pf_to_dev(pf); 4158 struct ice_hw *hw = &pf->hw; 4159 4160 /* Load DDP Package */ 4161 if (firmware && !hw->pkg_copy) { 4162 state = ice_copy_and_init_pkg(hw, firmware->data, 4163 firmware->size); 4164 ice_log_pkg_init(hw, state); 4165 } else if (!firmware && hw->pkg_copy) { 4166 /* Reload package during rebuild after CORER/GLOBR reset */ 4167 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4168 ice_log_pkg_init(hw, state); 4169 } else { 4170 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4171 } 4172 4173 if (!ice_is_init_pkg_successful(state)) { 4174 /* Safe Mode */ 4175 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4176 return; 4177 } 4178 4179 /* Successful download package is the precondition for advanced 4180 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4181 */ 4182 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4183 } 4184 4185 /** 4186 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4187 * @pf: pointer to the PF structure 4188 * 4189 * There is no error returned here because the driver should be able to handle 4190 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4191 * specifically with Tx. 4192 */ 4193 static void ice_verify_cacheline_size(struct ice_pf *pf) 4194 { 4195 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4196 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4197 ICE_CACHE_LINE_BYTES); 4198 } 4199 4200 /** 4201 * ice_send_version - update firmware with driver version 4202 * @pf: PF struct 4203 * 4204 * Returns 0 on success, else error code 4205 */ 4206 static int ice_send_version(struct ice_pf *pf) 4207 { 4208 struct ice_driver_ver dv; 4209 4210 dv.major_ver = 0xff; 4211 dv.minor_ver = 0xff; 4212 dv.build_ver = 0xff; 4213 dv.subbuild_ver = 0; 4214 strscpy((char *)dv.driver_string, UTS_RELEASE, 4215 sizeof(dv.driver_string)); 4216 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4217 } 4218 4219 /** 4220 * ice_init_fdir - Initialize flow director VSI and configuration 4221 * @pf: pointer to the PF instance 4222 * 4223 * returns 0 on success, negative on error 4224 */ 4225 static int ice_init_fdir(struct ice_pf *pf) 4226 { 4227 struct device *dev = ice_pf_to_dev(pf); 4228 struct ice_vsi *ctrl_vsi; 4229 int err; 4230 4231 /* Side Band Flow Director needs to have a control VSI. 4232 * Allocate it and store it in the PF. 4233 */ 4234 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4235 if (!ctrl_vsi) { 4236 dev_dbg(dev, "could not create control VSI\n"); 4237 return -ENOMEM; 4238 } 4239 4240 err = ice_vsi_open_ctrl(ctrl_vsi); 4241 if (err) { 4242 dev_dbg(dev, "could not open control VSI\n"); 4243 goto err_vsi_open; 4244 } 4245 4246 mutex_init(&pf->hw.fdir_fltr_lock); 4247 4248 err = ice_fdir_create_dflt_rules(pf); 4249 if (err) 4250 goto err_fdir_rule; 4251 4252 return 0; 4253 4254 err_fdir_rule: 4255 ice_fdir_release_flows(&pf->hw); 4256 ice_vsi_close(ctrl_vsi); 4257 err_vsi_open: 4258 ice_vsi_release(ctrl_vsi); 4259 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4260 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4261 pf->ctrl_vsi_idx = ICE_NO_VSI; 4262 } 4263 return err; 4264 } 4265 4266 static void ice_deinit_fdir(struct ice_pf *pf) 4267 { 4268 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4269 4270 if (!vsi) 4271 return; 4272 4273 ice_vsi_manage_fdir(vsi, false); 4274 ice_vsi_release(vsi); 4275 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4276 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4277 pf->ctrl_vsi_idx = ICE_NO_VSI; 4278 } 4279 4280 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4281 } 4282 4283 /** 4284 * ice_get_opt_fw_name - return optional firmware file name or NULL 4285 * @pf: pointer to the PF instance 4286 */ 4287 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4288 { 4289 /* Optional firmware name same as default with additional dash 4290 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4291 */ 4292 struct pci_dev *pdev = pf->pdev; 4293 char *opt_fw_filename; 4294 u64 dsn; 4295 4296 /* Determine the name of the optional file using the DSN (two 4297 * dwords following the start of the DSN Capability). 4298 */ 4299 dsn = pci_get_dsn(pdev); 4300 if (!dsn) 4301 return NULL; 4302 4303 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4304 if (!opt_fw_filename) 4305 return NULL; 4306 4307 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4308 ICE_DDP_PKG_PATH, dsn); 4309 4310 return opt_fw_filename; 4311 } 4312 4313 /** 4314 * ice_request_fw - Device initialization routine 4315 * @pf: pointer to the PF instance 4316 */ 4317 static void ice_request_fw(struct ice_pf *pf) 4318 { 4319 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4320 const struct firmware *firmware = NULL; 4321 struct device *dev = ice_pf_to_dev(pf); 4322 int err = 0; 4323 4324 /* optional device-specific DDP (if present) overrides the default DDP 4325 * package file. kernel logs a debug message if the file doesn't exist, 4326 * and warning messages for other errors. 4327 */ 4328 if (opt_fw_filename) { 4329 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4330 if (err) { 4331 kfree(opt_fw_filename); 4332 goto dflt_pkg_load; 4333 } 4334 4335 /* request for firmware was successful. Download to device */ 4336 ice_load_pkg(firmware, pf); 4337 kfree(opt_fw_filename); 4338 release_firmware(firmware); 4339 return; 4340 } 4341 4342 dflt_pkg_load: 4343 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4344 if (err) { 4345 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4346 return; 4347 } 4348 4349 /* request for firmware was successful. Download to device */ 4350 ice_load_pkg(firmware, pf); 4351 release_firmware(firmware); 4352 } 4353 4354 /** 4355 * ice_print_wake_reason - show the wake up cause in the log 4356 * @pf: pointer to the PF struct 4357 */ 4358 static void ice_print_wake_reason(struct ice_pf *pf) 4359 { 4360 u32 wus = pf->wakeup_reason; 4361 const char *wake_str; 4362 4363 /* if no wake event, nothing to print */ 4364 if (!wus) 4365 return; 4366 4367 if (wus & PFPM_WUS_LNKC_M) 4368 wake_str = "Link\n"; 4369 else if (wus & PFPM_WUS_MAG_M) 4370 wake_str = "Magic Packet\n"; 4371 else if (wus & PFPM_WUS_MNG_M) 4372 wake_str = "Management\n"; 4373 else if (wus & PFPM_WUS_FW_RST_WK_M) 4374 wake_str = "Firmware Reset\n"; 4375 else 4376 wake_str = "Unknown\n"; 4377 4378 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4379 } 4380 4381 /** 4382 * ice_register_netdev - register netdev 4383 * @vsi: pointer to the VSI struct 4384 */ 4385 static int ice_register_netdev(struct ice_vsi *vsi) 4386 { 4387 int err; 4388 4389 if (!vsi || !vsi->netdev) 4390 return -EIO; 4391 4392 err = register_netdev(vsi->netdev); 4393 if (err) 4394 return err; 4395 4396 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4397 netif_carrier_off(vsi->netdev); 4398 netif_tx_stop_all_queues(vsi->netdev); 4399 4400 return 0; 4401 } 4402 4403 static void ice_unregister_netdev(struct ice_vsi *vsi) 4404 { 4405 if (!vsi || !vsi->netdev) 4406 return; 4407 4408 unregister_netdev(vsi->netdev); 4409 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4410 } 4411 4412 /** 4413 * ice_cfg_netdev - Allocate, configure and register a netdev 4414 * @vsi: the VSI associated with the new netdev 4415 * 4416 * Returns 0 on success, negative value on failure 4417 */ 4418 static int ice_cfg_netdev(struct ice_vsi *vsi) 4419 { 4420 struct ice_netdev_priv *np; 4421 struct net_device *netdev; 4422 u8 mac_addr[ETH_ALEN]; 4423 4424 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4425 vsi->alloc_rxq); 4426 if (!netdev) 4427 return -ENOMEM; 4428 4429 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4430 vsi->netdev = netdev; 4431 np = netdev_priv(netdev); 4432 np->vsi = vsi; 4433 4434 ice_set_netdev_features(netdev); 4435 ice_set_ops(vsi); 4436 4437 if (vsi->type == ICE_VSI_PF) { 4438 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4439 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4440 eth_hw_addr_set(netdev, mac_addr); 4441 } 4442 4443 netdev->priv_flags |= IFF_UNICAST_FLT; 4444 4445 /* Setup netdev TC information */ 4446 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4447 4448 netdev->max_mtu = ICE_MAX_MTU; 4449 4450 return 0; 4451 } 4452 4453 static void ice_decfg_netdev(struct ice_vsi *vsi) 4454 { 4455 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4456 free_netdev(vsi->netdev); 4457 vsi->netdev = NULL; 4458 } 4459 4460 static int ice_start_eth(struct ice_vsi *vsi) 4461 { 4462 int err; 4463 4464 err = ice_init_mac_fltr(vsi->back); 4465 if (err) 4466 return err; 4467 4468 err = ice_vsi_open(vsi); 4469 if (err) 4470 ice_fltr_remove_all(vsi); 4471 4472 return err; 4473 } 4474 4475 static void ice_stop_eth(struct ice_vsi *vsi) 4476 { 4477 ice_fltr_remove_all(vsi); 4478 ice_vsi_close(vsi); 4479 } 4480 4481 static int ice_init_eth(struct ice_pf *pf) 4482 { 4483 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4484 int err; 4485 4486 if (!vsi) 4487 return -EINVAL; 4488 4489 /* init channel list */ 4490 INIT_LIST_HEAD(&vsi->ch_list); 4491 4492 err = ice_cfg_netdev(vsi); 4493 if (err) 4494 return err; 4495 /* Setup DCB netlink interface */ 4496 ice_dcbnl_setup(vsi); 4497 4498 err = ice_init_mac_fltr(pf); 4499 if (err) 4500 goto err_init_mac_fltr; 4501 4502 err = ice_devlink_create_pf_port(pf); 4503 if (err) 4504 goto err_devlink_create_pf_port; 4505 4506 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4507 4508 err = ice_register_netdev(vsi); 4509 if (err) 4510 goto err_register_netdev; 4511 4512 err = ice_tc_indir_block_register(vsi); 4513 if (err) 4514 goto err_tc_indir_block_register; 4515 4516 ice_napi_add(vsi); 4517 4518 return 0; 4519 4520 err_tc_indir_block_register: 4521 ice_unregister_netdev(vsi); 4522 err_register_netdev: 4523 ice_devlink_destroy_pf_port(pf); 4524 err_devlink_create_pf_port: 4525 err_init_mac_fltr: 4526 ice_decfg_netdev(vsi); 4527 return err; 4528 } 4529 4530 static void ice_deinit_eth(struct ice_pf *pf) 4531 { 4532 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4533 4534 if (!vsi) 4535 return; 4536 4537 ice_vsi_close(vsi); 4538 ice_unregister_netdev(vsi); 4539 ice_devlink_destroy_pf_port(pf); 4540 ice_tc_indir_block_unregister(vsi); 4541 ice_decfg_netdev(vsi); 4542 } 4543 4544 /** 4545 * ice_wait_for_fw - wait for full FW readiness 4546 * @hw: pointer to the hardware structure 4547 * @timeout: milliseconds that can elapse before timing out 4548 */ 4549 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4550 { 4551 int fw_loading; 4552 u32 elapsed = 0; 4553 4554 while (elapsed <= timeout) { 4555 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4556 4557 /* firmware was not yet loaded, we have to wait more */ 4558 if (fw_loading) { 4559 elapsed += 100; 4560 msleep(100); 4561 continue; 4562 } 4563 return 0; 4564 } 4565 4566 return -ETIMEDOUT; 4567 } 4568 4569 static int ice_init_dev(struct ice_pf *pf) 4570 { 4571 struct device *dev = ice_pf_to_dev(pf); 4572 struct ice_hw *hw = &pf->hw; 4573 int err; 4574 4575 err = ice_init_hw(hw); 4576 if (err) { 4577 dev_err(dev, "ice_init_hw failed: %d\n", err); 4578 return err; 4579 } 4580 4581 /* Some cards require longer initialization times 4582 * due to necessity of loading FW from an external source. 4583 * This can take even half a minute. 4584 */ 4585 if (ice_is_pf_c827(hw)) { 4586 err = ice_wait_for_fw(hw, 30000); 4587 if (err) { 4588 dev_err(dev, "ice_wait_for_fw timed out"); 4589 return err; 4590 } 4591 } 4592 4593 ice_init_feature_support(pf); 4594 4595 ice_request_fw(pf); 4596 4597 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4598 * set in pf->state, which will cause ice_is_safe_mode to return 4599 * true 4600 */ 4601 if (ice_is_safe_mode(pf)) { 4602 /* we already got function/device capabilities but these don't 4603 * reflect what the driver needs to do in safe mode. Instead of 4604 * adding conditional logic everywhere to ignore these 4605 * device/function capabilities, override them. 4606 */ 4607 ice_set_safe_mode_caps(hw); 4608 } 4609 4610 err = ice_init_pf(pf); 4611 if (err) { 4612 dev_err(dev, "ice_init_pf failed: %d\n", err); 4613 goto err_init_pf; 4614 } 4615 4616 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4617 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4618 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4619 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4620 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4621 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4622 pf->hw.tnl.valid_count[TNL_VXLAN]; 4623 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4624 UDP_TUNNEL_TYPE_VXLAN; 4625 } 4626 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4627 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4628 pf->hw.tnl.valid_count[TNL_GENEVE]; 4629 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4630 UDP_TUNNEL_TYPE_GENEVE; 4631 } 4632 4633 err = ice_init_interrupt_scheme(pf); 4634 if (err) { 4635 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4636 err = -EIO; 4637 goto err_init_interrupt_scheme; 4638 } 4639 4640 /* In case of MSIX we are going to setup the misc vector right here 4641 * to handle admin queue events etc. In case of legacy and MSI 4642 * the misc functionality and queue processing is combined in 4643 * the same vector and that gets setup at open. 4644 */ 4645 err = ice_req_irq_msix_misc(pf); 4646 if (err) { 4647 dev_err(dev, "setup of misc vector failed: %d\n", err); 4648 goto err_req_irq_msix_misc; 4649 } 4650 4651 return 0; 4652 4653 err_req_irq_msix_misc: 4654 ice_clear_interrupt_scheme(pf); 4655 err_init_interrupt_scheme: 4656 ice_deinit_pf(pf); 4657 err_init_pf: 4658 ice_deinit_hw(hw); 4659 return err; 4660 } 4661 4662 static void ice_deinit_dev(struct ice_pf *pf) 4663 { 4664 ice_free_irq_msix_misc(pf); 4665 ice_deinit_pf(pf); 4666 ice_deinit_hw(&pf->hw); 4667 4668 /* Service task is already stopped, so call reset directly. */ 4669 ice_reset(&pf->hw, ICE_RESET_PFR); 4670 pci_wait_for_pending_transaction(pf->pdev); 4671 ice_clear_interrupt_scheme(pf); 4672 } 4673 4674 static void ice_init_features(struct ice_pf *pf) 4675 { 4676 struct device *dev = ice_pf_to_dev(pf); 4677 4678 if (ice_is_safe_mode(pf)) 4679 return; 4680 4681 /* initialize DDP driven features */ 4682 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4683 ice_ptp_init(pf); 4684 4685 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4686 ice_gnss_init(pf); 4687 4688 /* Note: Flow director init failure is non-fatal to load */ 4689 if (ice_init_fdir(pf)) 4690 dev_err(dev, "could not initialize flow director\n"); 4691 4692 /* Note: DCB init failure is non-fatal to load */ 4693 if (ice_init_pf_dcb(pf, false)) { 4694 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4695 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4696 } else { 4697 ice_cfg_lldp_mib_change(&pf->hw, true); 4698 } 4699 4700 if (ice_init_lag(pf)) 4701 dev_warn(dev, "Failed to init link aggregation support\n"); 4702 } 4703 4704 static void ice_deinit_features(struct ice_pf *pf) 4705 { 4706 if (ice_is_safe_mode(pf)) 4707 return; 4708 4709 ice_deinit_lag(pf); 4710 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4711 ice_cfg_lldp_mib_change(&pf->hw, false); 4712 ice_deinit_fdir(pf); 4713 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4714 ice_gnss_exit(pf); 4715 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4716 ice_ptp_release(pf); 4717 } 4718 4719 static void ice_init_wakeup(struct ice_pf *pf) 4720 { 4721 /* Save wakeup reason register for later use */ 4722 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4723 4724 /* check for a power management event */ 4725 ice_print_wake_reason(pf); 4726 4727 /* clear wake status, all bits */ 4728 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4729 4730 /* Disable WoL at init, wait for user to enable */ 4731 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4732 } 4733 4734 static int ice_init_link(struct ice_pf *pf) 4735 { 4736 struct device *dev = ice_pf_to_dev(pf); 4737 int err; 4738 4739 err = ice_init_link_events(pf->hw.port_info); 4740 if (err) { 4741 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4742 return err; 4743 } 4744 4745 /* not a fatal error if this fails */ 4746 err = ice_init_nvm_phy_type(pf->hw.port_info); 4747 if (err) 4748 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4749 4750 /* not a fatal error if this fails */ 4751 err = ice_update_link_info(pf->hw.port_info); 4752 if (err) 4753 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4754 4755 ice_init_link_dflt_override(pf->hw.port_info); 4756 4757 ice_check_link_cfg_err(pf, 4758 pf->hw.port_info->phy.link_info.link_cfg_err); 4759 4760 /* if media available, initialize PHY settings */ 4761 if (pf->hw.port_info->phy.link_info.link_info & 4762 ICE_AQ_MEDIA_AVAILABLE) { 4763 /* not a fatal error if this fails */ 4764 err = ice_init_phy_user_cfg(pf->hw.port_info); 4765 if (err) 4766 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4767 4768 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4769 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4770 4771 if (vsi) 4772 ice_configure_phy(vsi); 4773 } 4774 } else { 4775 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4776 } 4777 4778 return err; 4779 } 4780 4781 static int ice_init_pf_sw(struct ice_pf *pf) 4782 { 4783 bool dvm = ice_is_dvm_ena(&pf->hw); 4784 struct ice_vsi *vsi; 4785 int err; 4786 4787 /* create switch struct for the switch element created by FW on boot */ 4788 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4789 if (!pf->first_sw) 4790 return -ENOMEM; 4791 4792 if (pf->hw.evb_veb) 4793 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4794 else 4795 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4796 4797 pf->first_sw->pf = pf; 4798 4799 /* record the sw_id available for later use */ 4800 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4801 4802 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4803 if (err) 4804 goto err_aq_set_port_params; 4805 4806 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4807 if (!vsi) { 4808 err = -ENOMEM; 4809 goto err_pf_vsi_setup; 4810 } 4811 4812 return 0; 4813 4814 err_pf_vsi_setup: 4815 err_aq_set_port_params: 4816 kfree(pf->first_sw); 4817 return err; 4818 } 4819 4820 static void ice_deinit_pf_sw(struct ice_pf *pf) 4821 { 4822 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4823 4824 if (!vsi) 4825 return; 4826 4827 ice_vsi_release(vsi); 4828 kfree(pf->first_sw); 4829 } 4830 4831 static int ice_alloc_vsis(struct ice_pf *pf) 4832 { 4833 struct device *dev = ice_pf_to_dev(pf); 4834 4835 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4836 if (!pf->num_alloc_vsi) 4837 return -EIO; 4838 4839 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4840 dev_warn(dev, 4841 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4842 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4843 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4844 } 4845 4846 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4847 GFP_KERNEL); 4848 if (!pf->vsi) 4849 return -ENOMEM; 4850 4851 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4852 sizeof(*pf->vsi_stats), GFP_KERNEL); 4853 if (!pf->vsi_stats) { 4854 devm_kfree(dev, pf->vsi); 4855 return -ENOMEM; 4856 } 4857 4858 return 0; 4859 } 4860 4861 static void ice_dealloc_vsis(struct ice_pf *pf) 4862 { 4863 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4864 pf->vsi_stats = NULL; 4865 4866 pf->num_alloc_vsi = 0; 4867 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4868 pf->vsi = NULL; 4869 } 4870 4871 static int ice_init_devlink(struct ice_pf *pf) 4872 { 4873 int err; 4874 4875 err = ice_devlink_register_params(pf); 4876 if (err) 4877 return err; 4878 4879 ice_devlink_init_regions(pf); 4880 ice_devlink_register(pf); 4881 4882 return 0; 4883 } 4884 4885 static void ice_deinit_devlink(struct ice_pf *pf) 4886 { 4887 ice_devlink_unregister(pf); 4888 ice_devlink_destroy_regions(pf); 4889 ice_devlink_unregister_params(pf); 4890 } 4891 4892 static int ice_init(struct ice_pf *pf) 4893 { 4894 int err; 4895 4896 err = ice_init_dev(pf); 4897 if (err) 4898 return err; 4899 4900 err = ice_alloc_vsis(pf); 4901 if (err) 4902 goto err_alloc_vsis; 4903 4904 err = ice_init_pf_sw(pf); 4905 if (err) 4906 goto err_init_pf_sw; 4907 4908 ice_init_wakeup(pf); 4909 4910 err = ice_init_link(pf); 4911 if (err) 4912 goto err_init_link; 4913 4914 err = ice_send_version(pf); 4915 if (err) 4916 goto err_init_link; 4917 4918 ice_verify_cacheline_size(pf); 4919 4920 if (ice_is_safe_mode(pf)) 4921 ice_set_safe_mode_vlan_cfg(pf); 4922 else 4923 /* print PCI link speed and width */ 4924 pcie_print_link_status(pf->pdev); 4925 4926 /* ready to go, so clear down state bit */ 4927 clear_bit(ICE_DOWN, pf->state); 4928 clear_bit(ICE_SERVICE_DIS, pf->state); 4929 4930 /* since everything is good, start the service timer */ 4931 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4932 4933 return 0; 4934 4935 err_init_link: 4936 ice_deinit_pf_sw(pf); 4937 err_init_pf_sw: 4938 ice_dealloc_vsis(pf); 4939 err_alloc_vsis: 4940 ice_deinit_dev(pf); 4941 return err; 4942 } 4943 4944 static void ice_deinit(struct ice_pf *pf) 4945 { 4946 set_bit(ICE_SERVICE_DIS, pf->state); 4947 set_bit(ICE_DOWN, pf->state); 4948 4949 ice_deinit_pf_sw(pf); 4950 ice_dealloc_vsis(pf); 4951 ice_deinit_dev(pf); 4952 } 4953 4954 /** 4955 * ice_load - load pf by init hw and starting VSI 4956 * @pf: pointer to the pf instance 4957 */ 4958 int ice_load(struct ice_pf *pf) 4959 { 4960 struct ice_vsi_cfg_params params = {}; 4961 struct ice_vsi *vsi; 4962 int err; 4963 4964 err = ice_init_dev(pf); 4965 if (err) 4966 return err; 4967 4968 vsi = ice_get_main_vsi(pf); 4969 4970 params = ice_vsi_to_params(vsi); 4971 params.flags = ICE_VSI_FLAG_INIT; 4972 4973 rtnl_lock(); 4974 err = ice_vsi_cfg(vsi, ¶ms); 4975 if (err) 4976 goto err_vsi_cfg; 4977 4978 err = ice_start_eth(ice_get_main_vsi(pf)); 4979 if (err) 4980 goto err_start_eth; 4981 rtnl_unlock(); 4982 4983 err = ice_init_rdma(pf); 4984 if (err) 4985 goto err_init_rdma; 4986 4987 ice_init_features(pf); 4988 ice_service_task_restart(pf); 4989 4990 clear_bit(ICE_DOWN, pf->state); 4991 4992 return 0; 4993 4994 err_init_rdma: 4995 ice_vsi_close(ice_get_main_vsi(pf)); 4996 rtnl_lock(); 4997 err_start_eth: 4998 ice_vsi_decfg(ice_get_main_vsi(pf)); 4999 err_vsi_cfg: 5000 rtnl_unlock(); 5001 ice_deinit_dev(pf); 5002 return err; 5003 } 5004 5005 /** 5006 * ice_unload - unload pf by stopping VSI and deinit hw 5007 * @pf: pointer to the pf instance 5008 */ 5009 void ice_unload(struct ice_pf *pf) 5010 { 5011 ice_deinit_features(pf); 5012 ice_deinit_rdma(pf); 5013 rtnl_lock(); 5014 ice_stop_eth(ice_get_main_vsi(pf)); 5015 ice_vsi_decfg(ice_get_main_vsi(pf)); 5016 rtnl_unlock(); 5017 ice_deinit_dev(pf); 5018 } 5019 5020 /** 5021 * ice_probe - Device initialization routine 5022 * @pdev: PCI device information struct 5023 * @ent: entry in ice_pci_tbl 5024 * 5025 * Returns 0 on success, negative on failure 5026 */ 5027 static int 5028 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5029 { 5030 struct device *dev = &pdev->dev; 5031 struct ice_pf *pf; 5032 struct ice_hw *hw; 5033 int err; 5034 5035 if (pdev->is_virtfn) { 5036 dev_err(dev, "can't probe a virtual function\n"); 5037 return -EINVAL; 5038 } 5039 5040 /* when under a kdump kernel initiate a reset before enabling the 5041 * device in order to clear out any pending DMA transactions. These 5042 * transactions can cause some systems to machine check when doing 5043 * the pcim_enable_device() below. 5044 */ 5045 if (is_kdump_kernel()) { 5046 pci_save_state(pdev); 5047 pci_clear_master(pdev); 5048 err = pcie_flr(pdev); 5049 if (err) 5050 return err; 5051 pci_restore_state(pdev); 5052 } 5053 5054 /* this driver uses devres, see 5055 * Documentation/driver-api/driver-model/devres.rst 5056 */ 5057 err = pcim_enable_device(pdev); 5058 if (err) 5059 return err; 5060 5061 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5062 if (err) { 5063 dev_err(dev, "BAR0 I/O map error %d\n", err); 5064 return err; 5065 } 5066 5067 pf = ice_allocate_pf(dev); 5068 if (!pf) 5069 return -ENOMEM; 5070 5071 /* initialize Auxiliary index to invalid value */ 5072 pf->aux_idx = -1; 5073 5074 /* set up for high or low DMA */ 5075 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5076 if (err) { 5077 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5078 return err; 5079 } 5080 5081 pci_set_master(pdev); 5082 5083 pf->pdev = pdev; 5084 pci_set_drvdata(pdev, pf); 5085 set_bit(ICE_DOWN, pf->state); 5086 /* Disable service task until DOWN bit is cleared */ 5087 set_bit(ICE_SERVICE_DIS, pf->state); 5088 5089 hw = &pf->hw; 5090 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5091 pci_save_state(pdev); 5092 5093 hw->back = pf; 5094 hw->port_info = NULL; 5095 hw->vendor_id = pdev->vendor; 5096 hw->device_id = pdev->device; 5097 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5098 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5099 hw->subsystem_device_id = pdev->subsystem_device; 5100 hw->bus.device = PCI_SLOT(pdev->devfn); 5101 hw->bus.func = PCI_FUNC(pdev->devfn); 5102 ice_set_ctrlq_len(hw); 5103 5104 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5105 5106 #ifndef CONFIG_DYNAMIC_DEBUG 5107 if (debug < -1) 5108 hw->debug_mask = debug; 5109 #endif 5110 5111 err = ice_init(pf); 5112 if (err) 5113 goto err_init; 5114 5115 err = ice_init_eth(pf); 5116 if (err) 5117 goto err_init_eth; 5118 5119 err = ice_init_rdma(pf); 5120 if (err) 5121 goto err_init_rdma; 5122 5123 err = ice_init_devlink(pf); 5124 if (err) 5125 goto err_init_devlink; 5126 5127 ice_init_features(pf); 5128 5129 return 0; 5130 5131 err_init_devlink: 5132 ice_deinit_rdma(pf); 5133 err_init_rdma: 5134 ice_deinit_eth(pf); 5135 err_init_eth: 5136 ice_deinit(pf); 5137 err_init: 5138 pci_disable_device(pdev); 5139 return err; 5140 } 5141 5142 /** 5143 * ice_set_wake - enable or disable Wake on LAN 5144 * @pf: pointer to the PF struct 5145 * 5146 * Simple helper for WoL control 5147 */ 5148 static void ice_set_wake(struct ice_pf *pf) 5149 { 5150 struct ice_hw *hw = &pf->hw; 5151 bool wol = pf->wol_ena; 5152 5153 /* clear wake state, otherwise new wake events won't fire */ 5154 wr32(hw, PFPM_WUS, U32_MAX); 5155 5156 /* enable / disable APM wake up, no RMW needed */ 5157 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5158 5159 /* set magic packet filter enabled */ 5160 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5161 } 5162 5163 /** 5164 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5165 * @pf: pointer to the PF struct 5166 * 5167 * Issue firmware command to enable multicast magic wake, making 5168 * sure that any locally administered address (LAA) is used for 5169 * wake, and that PF reset doesn't undo the LAA. 5170 */ 5171 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5172 { 5173 struct device *dev = ice_pf_to_dev(pf); 5174 struct ice_hw *hw = &pf->hw; 5175 u8 mac_addr[ETH_ALEN]; 5176 struct ice_vsi *vsi; 5177 int status; 5178 u8 flags; 5179 5180 if (!pf->wol_ena) 5181 return; 5182 5183 vsi = ice_get_main_vsi(pf); 5184 if (!vsi) 5185 return; 5186 5187 /* Get current MAC address in case it's an LAA */ 5188 if (vsi->netdev) 5189 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5190 else 5191 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5192 5193 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5194 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5195 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5196 5197 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5198 if (status) 5199 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5200 status, ice_aq_str(hw->adminq.sq_last_status)); 5201 } 5202 5203 /** 5204 * ice_remove - Device removal routine 5205 * @pdev: PCI device information struct 5206 */ 5207 static void ice_remove(struct pci_dev *pdev) 5208 { 5209 struct ice_pf *pf = pci_get_drvdata(pdev); 5210 int i; 5211 5212 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5213 if (!ice_is_reset_in_progress(pf->state)) 5214 break; 5215 msleep(100); 5216 } 5217 5218 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5219 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5220 ice_free_vfs(pf); 5221 } 5222 5223 ice_service_task_stop(pf); 5224 ice_aq_cancel_waiting_tasks(pf); 5225 set_bit(ICE_DOWN, pf->state); 5226 5227 if (!ice_is_safe_mode(pf)) 5228 ice_remove_arfs(pf); 5229 ice_deinit_features(pf); 5230 ice_deinit_devlink(pf); 5231 ice_deinit_rdma(pf); 5232 ice_deinit_eth(pf); 5233 ice_deinit(pf); 5234 5235 ice_vsi_release_all(pf); 5236 5237 ice_setup_mc_magic_wake(pf); 5238 ice_set_wake(pf); 5239 5240 pci_disable_device(pdev); 5241 } 5242 5243 /** 5244 * ice_shutdown - PCI callback for shutting down device 5245 * @pdev: PCI device information struct 5246 */ 5247 static void ice_shutdown(struct pci_dev *pdev) 5248 { 5249 struct ice_pf *pf = pci_get_drvdata(pdev); 5250 5251 ice_remove(pdev); 5252 5253 if (system_state == SYSTEM_POWER_OFF) { 5254 pci_wake_from_d3(pdev, pf->wol_ena); 5255 pci_set_power_state(pdev, PCI_D3hot); 5256 } 5257 } 5258 5259 #ifdef CONFIG_PM 5260 /** 5261 * ice_prepare_for_shutdown - prep for PCI shutdown 5262 * @pf: board private structure 5263 * 5264 * Inform or close all dependent features in prep for PCI device shutdown 5265 */ 5266 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5267 { 5268 struct ice_hw *hw = &pf->hw; 5269 u32 v; 5270 5271 /* Notify VFs of impending reset */ 5272 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5273 ice_vc_notify_reset(pf); 5274 5275 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5276 5277 /* disable the VSIs and their queues that are not already DOWN */ 5278 ice_pf_dis_all_vsi(pf, false); 5279 5280 ice_for_each_vsi(pf, v) 5281 if (pf->vsi[v]) 5282 pf->vsi[v]->vsi_num = 0; 5283 5284 ice_shutdown_all_ctrlq(hw); 5285 } 5286 5287 /** 5288 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5289 * @pf: board private structure to reinitialize 5290 * 5291 * This routine reinitialize interrupt scheme that was cleared during 5292 * power management suspend callback. 5293 * 5294 * This should be called during resume routine to re-allocate the q_vectors 5295 * and reacquire interrupts. 5296 */ 5297 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5298 { 5299 struct device *dev = ice_pf_to_dev(pf); 5300 int ret, v; 5301 5302 /* Since we clear MSIX flag during suspend, we need to 5303 * set it back during resume... 5304 */ 5305 5306 ret = ice_init_interrupt_scheme(pf); 5307 if (ret) { 5308 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5309 return ret; 5310 } 5311 5312 /* Remap vectors and rings, after successful re-init interrupts */ 5313 ice_for_each_vsi(pf, v) { 5314 if (!pf->vsi[v]) 5315 continue; 5316 5317 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5318 if (ret) 5319 goto err_reinit; 5320 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5321 } 5322 5323 ret = ice_req_irq_msix_misc(pf); 5324 if (ret) { 5325 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5326 ret); 5327 goto err_reinit; 5328 } 5329 5330 return 0; 5331 5332 err_reinit: 5333 while (v--) 5334 if (pf->vsi[v]) 5335 ice_vsi_free_q_vectors(pf->vsi[v]); 5336 5337 return ret; 5338 } 5339 5340 /** 5341 * ice_suspend 5342 * @dev: generic device information structure 5343 * 5344 * Power Management callback to quiesce the device and prepare 5345 * for D3 transition. 5346 */ 5347 static int __maybe_unused ice_suspend(struct device *dev) 5348 { 5349 struct pci_dev *pdev = to_pci_dev(dev); 5350 struct ice_pf *pf; 5351 int disabled, v; 5352 5353 pf = pci_get_drvdata(pdev); 5354 5355 if (!ice_pf_state_is_nominal(pf)) { 5356 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5357 return -EBUSY; 5358 } 5359 5360 /* Stop watchdog tasks until resume completion. 5361 * Even though it is most likely that the service task is 5362 * disabled if the device is suspended or down, the service task's 5363 * state is controlled by a different state bit, and we should 5364 * store and honor whatever state that bit is in at this point. 5365 */ 5366 disabled = ice_service_task_stop(pf); 5367 5368 ice_deinit_rdma(pf); 5369 5370 /* Already suspended?, then there is nothing to do */ 5371 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5372 if (!disabled) 5373 ice_service_task_restart(pf); 5374 return 0; 5375 } 5376 5377 if (test_bit(ICE_DOWN, pf->state) || 5378 ice_is_reset_in_progress(pf->state)) { 5379 dev_err(dev, "can't suspend device in reset or already down\n"); 5380 if (!disabled) 5381 ice_service_task_restart(pf); 5382 return 0; 5383 } 5384 5385 ice_setup_mc_magic_wake(pf); 5386 5387 ice_prepare_for_shutdown(pf); 5388 5389 ice_set_wake(pf); 5390 5391 /* Free vectors, clear the interrupt scheme and release IRQs 5392 * for proper hibernation, especially with large number of CPUs. 5393 * Otherwise hibernation might fail when mapping all the vectors back 5394 * to CPU0. 5395 */ 5396 ice_free_irq_msix_misc(pf); 5397 ice_for_each_vsi(pf, v) { 5398 if (!pf->vsi[v]) 5399 continue; 5400 ice_vsi_free_q_vectors(pf->vsi[v]); 5401 } 5402 ice_clear_interrupt_scheme(pf); 5403 5404 pci_save_state(pdev); 5405 pci_wake_from_d3(pdev, pf->wol_ena); 5406 pci_set_power_state(pdev, PCI_D3hot); 5407 return 0; 5408 } 5409 5410 /** 5411 * ice_resume - PM callback for waking up from D3 5412 * @dev: generic device information structure 5413 */ 5414 static int __maybe_unused ice_resume(struct device *dev) 5415 { 5416 struct pci_dev *pdev = to_pci_dev(dev); 5417 enum ice_reset_req reset_type; 5418 struct ice_pf *pf; 5419 struct ice_hw *hw; 5420 int ret; 5421 5422 pci_set_power_state(pdev, PCI_D0); 5423 pci_restore_state(pdev); 5424 pci_save_state(pdev); 5425 5426 if (!pci_device_is_present(pdev)) 5427 return -ENODEV; 5428 5429 ret = pci_enable_device_mem(pdev); 5430 if (ret) { 5431 dev_err(dev, "Cannot enable device after suspend\n"); 5432 return ret; 5433 } 5434 5435 pf = pci_get_drvdata(pdev); 5436 hw = &pf->hw; 5437 5438 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5439 ice_print_wake_reason(pf); 5440 5441 /* We cleared the interrupt scheme when we suspended, so we need to 5442 * restore it now to resume device functionality. 5443 */ 5444 ret = ice_reinit_interrupt_scheme(pf); 5445 if (ret) 5446 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5447 5448 ret = ice_init_rdma(pf); 5449 if (ret) 5450 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5451 ret); 5452 5453 clear_bit(ICE_DOWN, pf->state); 5454 /* Now perform PF reset and rebuild */ 5455 reset_type = ICE_RESET_PFR; 5456 /* re-enable service task for reset, but allow reset to schedule it */ 5457 clear_bit(ICE_SERVICE_DIS, pf->state); 5458 5459 if (ice_schedule_reset(pf, reset_type)) 5460 dev_err(dev, "Reset during resume failed.\n"); 5461 5462 clear_bit(ICE_SUSPENDED, pf->state); 5463 ice_service_task_restart(pf); 5464 5465 /* Restart the service task */ 5466 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5467 5468 return 0; 5469 } 5470 #endif /* CONFIG_PM */ 5471 5472 /** 5473 * ice_pci_err_detected - warning that PCI error has been detected 5474 * @pdev: PCI device information struct 5475 * @err: the type of PCI error 5476 * 5477 * Called to warn that something happened on the PCI bus and the error handling 5478 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5479 */ 5480 static pci_ers_result_t 5481 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5482 { 5483 struct ice_pf *pf = pci_get_drvdata(pdev); 5484 5485 if (!pf) { 5486 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5487 __func__, err); 5488 return PCI_ERS_RESULT_DISCONNECT; 5489 } 5490 5491 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5492 ice_service_task_stop(pf); 5493 5494 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5495 set_bit(ICE_PFR_REQ, pf->state); 5496 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5497 } 5498 } 5499 5500 return PCI_ERS_RESULT_NEED_RESET; 5501 } 5502 5503 /** 5504 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5505 * @pdev: PCI device information struct 5506 * 5507 * Called to determine if the driver can recover from the PCI slot reset by 5508 * using a register read to determine if the device is recoverable. 5509 */ 5510 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5511 { 5512 struct ice_pf *pf = pci_get_drvdata(pdev); 5513 pci_ers_result_t result; 5514 int err; 5515 u32 reg; 5516 5517 err = pci_enable_device_mem(pdev); 5518 if (err) { 5519 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5520 err); 5521 result = PCI_ERS_RESULT_DISCONNECT; 5522 } else { 5523 pci_set_master(pdev); 5524 pci_restore_state(pdev); 5525 pci_save_state(pdev); 5526 pci_wake_from_d3(pdev, false); 5527 5528 /* Check for life */ 5529 reg = rd32(&pf->hw, GLGEN_RTRIG); 5530 if (!reg) 5531 result = PCI_ERS_RESULT_RECOVERED; 5532 else 5533 result = PCI_ERS_RESULT_DISCONNECT; 5534 } 5535 5536 return result; 5537 } 5538 5539 /** 5540 * ice_pci_err_resume - restart operations after PCI error recovery 5541 * @pdev: PCI device information struct 5542 * 5543 * Called to allow the driver to bring things back up after PCI error and/or 5544 * reset recovery have finished 5545 */ 5546 static void ice_pci_err_resume(struct pci_dev *pdev) 5547 { 5548 struct ice_pf *pf = pci_get_drvdata(pdev); 5549 5550 if (!pf) { 5551 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5552 __func__); 5553 return; 5554 } 5555 5556 if (test_bit(ICE_SUSPENDED, pf->state)) { 5557 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5558 __func__); 5559 return; 5560 } 5561 5562 ice_restore_all_vfs_msi_state(pdev); 5563 5564 ice_do_reset(pf, ICE_RESET_PFR); 5565 ice_service_task_restart(pf); 5566 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5567 } 5568 5569 /** 5570 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5571 * @pdev: PCI device information struct 5572 */ 5573 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5574 { 5575 struct ice_pf *pf = pci_get_drvdata(pdev); 5576 5577 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5578 ice_service_task_stop(pf); 5579 5580 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5581 set_bit(ICE_PFR_REQ, pf->state); 5582 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5583 } 5584 } 5585 } 5586 5587 /** 5588 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5589 * @pdev: PCI device information struct 5590 */ 5591 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5592 { 5593 ice_pci_err_resume(pdev); 5594 } 5595 5596 /* ice_pci_tbl - PCI Device ID Table 5597 * 5598 * Wildcard entries (PCI_ANY_ID) should come last 5599 * Last entry must be all 0s 5600 * 5601 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5602 * Class, Class Mask, private data (not used) } 5603 */ 5604 static const struct pci_device_id ice_pci_tbl[] = { 5605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5607 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5608 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5609 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5610 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5611 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5612 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5616 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5617 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5618 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5619 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5620 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5621 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5624 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5625 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5626 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5627 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5628 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5629 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5630 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5631 /* required last entry */ 5632 { 0, } 5633 }; 5634 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5635 5636 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5637 5638 static const struct pci_error_handlers ice_pci_err_handler = { 5639 .error_detected = ice_pci_err_detected, 5640 .slot_reset = ice_pci_err_slot_reset, 5641 .reset_prepare = ice_pci_err_reset_prepare, 5642 .reset_done = ice_pci_err_reset_done, 5643 .resume = ice_pci_err_resume 5644 }; 5645 5646 static struct pci_driver ice_driver = { 5647 .name = KBUILD_MODNAME, 5648 .id_table = ice_pci_tbl, 5649 .probe = ice_probe, 5650 .remove = ice_remove, 5651 #ifdef CONFIG_PM 5652 .driver.pm = &ice_pm_ops, 5653 #endif /* CONFIG_PM */ 5654 .shutdown = ice_shutdown, 5655 .sriov_configure = ice_sriov_configure, 5656 .err_handler = &ice_pci_err_handler 5657 }; 5658 5659 /** 5660 * ice_module_init - Driver registration routine 5661 * 5662 * ice_module_init is the first routine called when the driver is 5663 * loaded. All it does is register with the PCI subsystem. 5664 */ 5665 static int __init ice_module_init(void) 5666 { 5667 int status = -ENOMEM; 5668 5669 pr_info("%s\n", ice_driver_string); 5670 pr_info("%s\n", ice_copyright); 5671 5672 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5673 if (!ice_wq) { 5674 pr_err("Failed to create workqueue\n"); 5675 return status; 5676 } 5677 5678 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5679 if (!ice_lag_wq) { 5680 pr_err("Failed to create LAG workqueue\n"); 5681 goto err_dest_wq; 5682 } 5683 5684 status = pci_register_driver(&ice_driver); 5685 if (status) { 5686 pr_err("failed to register PCI driver, err %d\n", status); 5687 goto err_dest_lag_wq; 5688 } 5689 5690 return 0; 5691 5692 err_dest_lag_wq: 5693 destroy_workqueue(ice_lag_wq); 5694 err_dest_wq: 5695 destroy_workqueue(ice_wq); 5696 return status; 5697 } 5698 module_init(ice_module_init); 5699 5700 /** 5701 * ice_module_exit - Driver exit cleanup routine 5702 * 5703 * ice_module_exit is called just before the driver is removed 5704 * from memory. 5705 */ 5706 static void __exit ice_module_exit(void) 5707 { 5708 pci_unregister_driver(&ice_driver); 5709 destroy_workqueue(ice_wq); 5710 destroy_workqueue(ice_lag_wq); 5711 pr_info("module unloaded\n"); 5712 } 5713 module_exit(ice_module_exit); 5714 5715 /** 5716 * ice_set_mac_address - NDO callback to set MAC address 5717 * @netdev: network interface device structure 5718 * @pi: pointer to an address structure 5719 * 5720 * Returns 0 on success, negative on failure 5721 */ 5722 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5723 { 5724 struct ice_netdev_priv *np = netdev_priv(netdev); 5725 struct ice_vsi *vsi = np->vsi; 5726 struct ice_pf *pf = vsi->back; 5727 struct ice_hw *hw = &pf->hw; 5728 struct sockaddr *addr = pi; 5729 u8 old_mac[ETH_ALEN]; 5730 u8 flags = 0; 5731 u8 *mac; 5732 int err; 5733 5734 mac = (u8 *)addr->sa_data; 5735 5736 if (!is_valid_ether_addr(mac)) 5737 return -EADDRNOTAVAIL; 5738 5739 if (test_bit(ICE_DOWN, pf->state) || 5740 ice_is_reset_in_progress(pf->state)) { 5741 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5742 mac); 5743 return -EBUSY; 5744 } 5745 5746 if (ice_chnl_dmac_fltr_cnt(pf)) { 5747 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5748 mac); 5749 return -EAGAIN; 5750 } 5751 5752 netif_addr_lock_bh(netdev); 5753 ether_addr_copy(old_mac, netdev->dev_addr); 5754 /* change the netdev's MAC address */ 5755 eth_hw_addr_set(netdev, mac); 5756 netif_addr_unlock_bh(netdev); 5757 5758 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5759 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5760 if (err && err != -ENOENT) { 5761 err = -EADDRNOTAVAIL; 5762 goto err_update_filters; 5763 } 5764 5765 /* Add filter for new MAC. If filter exists, return success */ 5766 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5767 if (err == -EEXIST) { 5768 /* Although this MAC filter is already present in hardware it's 5769 * possible in some cases (e.g. bonding) that dev_addr was 5770 * modified outside of the driver and needs to be restored back 5771 * to this value. 5772 */ 5773 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5774 5775 return 0; 5776 } else if (err) { 5777 /* error if the new filter addition failed */ 5778 err = -EADDRNOTAVAIL; 5779 } 5780 5781 err_update_filters: 5782 if (err) { 5783 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5784 mac); 5785 netif_addr_lock_bh(netdev); 5786 eth_hw_addr_set(netdev, old_mac); 5787 netif_addr_unlock_bh(netdev); 5788 return err; 5789 } 5790 5791 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5792 netdev->dev_addr); 5793 5794 /* write new MAC address to the firmware */ 5795 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5796 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5797 if (err) { 5798 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5799 mac, err); 5800 } 5801 return 0; 5802 } 5803 5804 /** 5805 * ice_set_rx_mode - NDO callback to set the netdev filters 5806 * @netdev: network interface device structure 5807 */ 5808 static void ice_set_rx_mode(struct net_device *netdev) 5809 { 5810 struct ice_netdev_priv *np = netdev_priv(netdev); 5811 struct ice_vsi *vsi = np->vsi; 5812 5813 if (!vsi || ice_is_switchdev_running(vsi->back)) 5814 return; 5815 5816 /* Set the flags to synchronize filters 5817 * ndo_set_rx_mode may be triggered even without a change in netdev 5818 * flags 5819 */ 5820 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5821 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5822 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5823 5824 /* schedule our worker thread which will take care of 5825 * applying the new filter changes 5826 */ 5827 ice_service_task_schedule(vsi->back); 5828 } 5829 5830 /** 5831 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5832 * @netdev: network interface device structure 5833 * @queue_index: Queue ID 5834 * @maxrate: maximum bandwidth in Mbps 5835 */ 5836 static int 5837 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5838 { 5839 struct ice_netdev_priv *np = netdev_priv(netdev); 5840 struct ice_vsi *vsi = np->vsi; 5841 u16 q_handle; 5842 int status; 5843 u8 tc; 5844 5845 /* Validate maxrate requested is within permitted range */ 5846 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5847 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5848 maxrate, queue_index); 5849 return -EINVAL; 5850 } 5851 5852 q_handle = vsi->tx_rings[queue_index]->q_handle; 5853 tc = ice_dcb_get_tc(vsi, queue_index); 5854 5855 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5856 if (!vsi) { 5857 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5858 queue_index); 5859 return -EINVAL; 5860 } 5861 5862 /* Set BW back to default, when user set maxrate to 0 */ 5863 if (!maxrate) 5864 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5865 q_handle, ICE_MAX_BW); 5866 else 5867 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5868 q_handle, ICE_MAX_BW, maxrate * 1000); 5869 if (status) 5870 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5871 status); 5872 5873 return status; 5874 } 5875 5876 /** 5877 * ice_fdb_add - add an entry to the hardware database 5878 * @ndm: the input from the stack 5879 * @tb: pointer to array of nladdr (unused) 5880 * @dev: the net device pointer 5881 * @addr: the MAC address entry being added 5882 * @vid: VLAN ID 5883 * @flags: instructions from stack about fdb operation 5884 * @extack: netlink extended ack 5885 */ 5886 static int 5887 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5888 struct net_device *dev, const unsigned char *addr, u16 vid, 5889 u16 flags, struct netlink_ext_ack __always_unused *extack) 5890 { 5891 int err; 5892 5893 if (vid) { 5894 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5895 return -EINVAL; 5896 } 5897 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5898 netdev_err(dev, "FDB only supports static addresses\n"); 5899 return -EINVAL; 5900 } 5901 5902 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5903 err = dev_uc_add_excl(dev, addr); 5904 else if (is_multicast_ether_addr(addr)) 5905 err = dev_mc_add_excl(dev, addr); 5906 else 5907 err = -EINVAL; 5908 5909 /* Only return duplicate errors if NLM_F_EXCL is set */ 5910 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5911 err = 0; 5912 5913 return err; 5914 } 5915 5916 /** 5917 * ice_fdb_del - delete an entry from the hardware database 5918 * @ndm: the input from the stack 5919 * @tb: pointer to array of nladdr (unused) 5920 * @dev: the net device pointer 5921 * @addr: the MAC address entry being added 5922 * @vid: VLAN ID 5923 * @extack: netlink extended ack 5924 */ 5925 static int 5926 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5927 struct net_device *dev, const unsigned char *addr, 5928 __always_unused u16 vid, struct netlink_ext_ack *extack) 5929 { 5930 int err; 5931 5932 if (ndm->ndm_state & NUD_PERMANENT) { 5933 netdev_err(dev, "FDB only supports static addresses\n"); 5934 return -EINVAL; 5935 } 5936 5937 if (is_unicast_ether_addr(addr)) 5938 err = dev_uc_del(dev, addr); 5939 else if (is_multicast_ether_addr(addr)) 5940 err = dev_mc_del(dev, addr); 5941 else 5942 err = -EINVAL; 5943 5944 return err; 5945 } 5946 5947 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5948 NETIF_F_HW_VLAN_CTAG_TX | \ 5949 NETIF_F_HW_VLAN_STAG_RX | \ 5950 NETIF_F_HW_VLAN_STAG_TX) 5951 5952 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5953 NETIF_F_HW_VLAN_STAG_RX) 5954 5955 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5956 NETIF_F_HW_VLAN_STAG_FILTER) 5957 5958 /** 5959 * ice_fix_features - fix the netdev features flags based on device limitations 5960 * @netdev: ptr to the netdev that flags are being fixed on 5961 * @features: features that need to be checked and possibly fixed 5962 * 5963 * Make sure any fixups are made to features in this callback. This enables the 5964 * driver to not have to check unsupported configurations throughout the driver 5965 * because that's the responsiblity of this callback. 5966 * 5967 * Single VLAN Mode (SVM) Supported Features: 5968 * NETIF_F_HW_VLAN_CTAG_FILTER 5969 * NETIF_F_HW_VLAN_CTAG_RX 5970 * NETIF_F_HW_VLAN_CTAG_TX 5971 * 5972 * Double VLAN Mode (DVM) Supported Features: 5973 * NETIF_F_HW_VLAN_CTAG_FILTER 5974 * NETIF_F_HW_VLAN_CTAG_RX 5975 * NETIF_F_HW_VLAN_CTAG_TX 5976 * 5977 * NETIF_F_HW_VLAN_STAG_FILTER 5978 * NETIF_HW_VLAN_STAG_RX 5979 * NETIF_HW_VLAN_STAG_TX 5980 * 5981 * Features that need fixing: 5982 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5983 * These are mutually exlusive as the VSI context cannot support multiple 5984 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5985 * is not done, then default to clearing the requested STAG offload 5986 * settings. 5987 * 5988 * All supported filtering has to be enabled or disabled together. For 5989 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5990 * together. If this is not done, then default to VLAN filtering disabled. 5991 * These are mutually exclusive as there is currently no way to 5992 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5993 * prune rules. 5994 */ 5995 static netdev_features_t 5996 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5997 { 5998 struct ice_netdev_priv *np = netdev_priv(netdev); 5999 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6000 bool cur_ctag, cur_stag, req_ctag, req_stag; 6001 6002 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6003 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6004 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6005 6006 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6007 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6008 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6009 6010 if (req_vlan_fltr != cur_vlan_fltr) { 6011 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6012 if (req_ctag && req_stag) { 6013 features |= NETIF_VLAN_FILTERING_FEATURES; 6014 } else if (!req_ctag && !req_stag) { 6015 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6016 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6017 (!cur_stag && req_stag && !cur_ctag)) { 6018 features |= NETIF_VLAN_FILTERING_FEATURES; 6019 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6020 } else if ((cur_ctag && !req_ctag && cur_stag) || 6021 (cur_stag && !req_stag && cur_ctag)) { 6022 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6023 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6024 } 6025 } else { 6026 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6027 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6028 6029 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6030 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6031 } 6032 } 6033 6034 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6035 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6036 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6037 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6038 NETIF_F_HW_VLAN_STAG_TX); 6039 } 6040 6041 if (!(netdev->features & NETIF_F_RXFCS) && 6042 (features & NETIF_F_RXFCS) && 6043 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6044 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6045 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6046 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6047 } 6048 6049 return features; 6050 } 6051 6052 /** 6053 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6054 * @vsi: PF's VSI 6055 * @features: features used to determine VLAN offload settings 6056 * 6057 * First, determine the vlan_ethertype based on the VLAN offload bits in 6058 * features. Then determine if stripping and insertion should be enabled or 6059 * disabled. Finally enable or disable VLAN stripping and insertion. 6060 */ 6061 static int 6062 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6063 { 6064 bool enable_stripping = true, enable_insertion = true; 6065 struct ice_vsi_vlan_ops *vlan_ops; 6066 int strip_err = 0, insert_err = 0; 6067 u16 vlan_ethertype = 0; 6068 6069 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6070 6071 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6072 vlan_ethertype = ETH_P_8021AD; 6073 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6074 vlan_ethertype = ETH_P_8021Q; 6075 6076 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6077 enable_stripping = false; 6078 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6079 enable_insertion = false; 6080 6081 if (enable_stripping) 6082 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6083 else 6084 strip_err = vlan_ops->dis_stripping(vsi); 6085 6086 if (enable_insertion) 6087 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6088 else 6089 insert_err = vlan_ops->dis_insertion(vsi); 6090 6091 if (strip_err || insert_err) 6092 return -EIO; 6093 6094 return 0; 6095 } 6096 6097 /** 6098 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6099 * @vsi: PF's VSI 6100 * @features: features used to determine VLAN filtering settings 6101 * 6102 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6103 * features. 6104 */ 6105 static int 6106 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6107 { 6108 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6109 int err = 0; 6110 6111 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6112 * if either bit is set 6113 */ 6114 if (features & 6115 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6116 err = vlan_ops->ena_rx_filtering(vsi); 6117 else 6118 err = vlan_ops->dis_rx_filtering(vsi); 6119 6120 return err; 6121 } 6122 6123 /** 6124 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6125 * @netdev: ptr to the netdev being adjusted 6126 * @features: the feature set that the stack is suggesting 6127 * 6128 * Only update VLAN settings if the requested_vlan_features are different than 6129 * the current_vlan_features. 6130 */ 6131 static int 6132 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6133 { 6134 netdev_features_t current_vlan_features, requested_vlan_features; 6135 struct ice_netdev_priv *np = netdev_priv(netdev); 6136 struct ice_vsi *vsi = np->vsi; 6137 int err; 6138 6139 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6140 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6141 if (current_vlan_features ^ requested_vlan_features) { 6142 if ((features & NETIF_F_RXFCS) && 6143 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6144 dev_err(ice_pf_to_dev(vsi->back), 6145 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6146 return -EIO; 6147 } 6148 6149 err = ice_set_vlan_offload_features(vsi, features); 6150 if (err) 6151 return err; 6152 } 6153 6154 current_vlan_features = netdev->features & 6155 NETIF_VLAN_FILTERING_FEATURES; 6156 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6157 if (current_vlan_features ^ requested_vlan_features) { 6158 err = ice_set_vlan_filtering_features(vsi, features); 6159 if (err) 6160 return err; 6161 } 6162 6163 return 0; 6164 } 6165 6166 /** 6167 * ice_set_loopback - turn on/off loopback mode on underlying PF 6168 * @vsi: ptr to VSI 6169 * @ena: flag to indicate the on/off setting 6170 */ 6171 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6172 { 6173 bool if_running = netif_running(vsi->netdev); 6174 int ret; 6175 6176 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6177 ret = ice_down(vsi); 6178 if (ret) { 6179 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6180 return ret; 6181 } 6182 } 6183 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6184 if (ret) 6185 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6186 if (if_running) 6187 ret = ice_up(vsi); 6188 6189 return ret; 6190 } 6191 6192 /** 6193 * ice_set_features - set the netdev feature flags 6194 * @netdev: ptr to the netdev being adjusted 6195 * @features: the feature set that the stack is suggesting 6196 */ 6197 static int 6198 ice_set_features(struct net_device *netdev, netdev_features_t features) 6199 { 6200 netdev_features_t changed = netdev->features ^ features; 6201 struct ice_netdev_priv *np = netdev_priv(netdev); 6202 struct ice_vsi *vsi = np->vsi; 6203 struct ice_pf *pf = vsi->back; 6204 int ret = 0; 6205 6206 /* Don't set any netdev advanced features with device in Safe Mode */ 6207 if (ice_is_safe_mode(pf)) { 6208 dev_err(ice_pf_to_dev(pf), 6209 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6210 return ret; 6211 } 6212 6213 /* Do not change setting during reset */ 6214 if (ice_is_reset_in_progress(pf->state)) { 6215 dev_err(ice_pf_to_dev(pf), 6216 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6217 return -EBUSY; 6218 } 6219 6220 /* Multiple features can be changed in one call so keep features in 6221 * separate if/else statements to guarantee each feature is checked 6222 */ 6223 if (changed & NETIF_F_RXHASH) 6224 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6225 6226 ret = ice_set_vlan_features(netdev, features); 6227 if (ret) 6228 return ret; 6229 6230 /* Turn on receive of FCS aka CRC, and after setting this 6231 * flag the packet data will have the 4 byte CRC appended 6232 */ 6233 if (changed & NETIF_F_RXFCS) { 6234 if ((features & NETIF_F_RXFCS) && 6235 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6236 dev_err(ice_pf_to_dev(vsi->back), 6237 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6238 return -EIO; 6239 } 6240 6241 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6242 ret = ice_down_up(vsi); 6243 if (ret) 6244 return ret; 6245 } 6246 6247 if (changed & NETIF_F_NTUPLE) { 6248 bool ena = !!(features & NETIF_F_NTUPLE); 6249 6250 ice_vsi_manage_fdir(vsi, ena); 6251 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6252 } 6253 6254 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6255 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6256 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6257 return -EACCES; 6258 } 6259 6260 if (changed & NETIF_F_HW_TC) { 6261 bool ena = !!(features & NETIF_F_HW_TC); 6262 6263 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6264 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6265 } 6266 6267 if (changed & NETIF_F_LOOPBACK) 6268 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6269 6270 return ret; 6271 } 6272 6273 /** 6274 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6275 * @vsi: VSI to setup VLAN properties for 6276 */ 6277 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6278 { 6279 int err; 6280 6281 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6282 if (err) 6283 return err; 6284 6285 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6286 if (err) 6287 return err; 6288 6289 return ice_vsi_add_vlan_zero(vsi); 6290 } 6291 6292 /** 6293 * ice_vsi_cfg_lan - Setup the VSI lan related config 6294 * @vsi: the VSI being configured 6295 * 6296 * Return 0 on success and negative value on error 6297 */ 6298 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6299 { 6300 int err; 6301 6302 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6303 ice_set_rx_mode(vsi->netdev); 6304 6305 err = ice_vsi_vlan_setup(vsi); 6306 if (err) 6307 return err; 6308 } 6309 ice_vsi_cfg_dcb_rings(vsi); 6310 6311 err = ice_vsi_cfg_lan_txqs(vsi); 6312 if (!err && ice_is_xdp_ena_vsi(vsi)) 6313 err = ice_vsi_cfg_xdp_txqs(vsi); 6314 if (!err) 6315 err = ice_vsi_cfg_rxqs(vsi); 6316 6317 return err; 6318 } 6319 6320 /* THEORY OF MODERATION: 6321 * The ice driver hardware works differently than the hardware that DIMLIB was 6322 * originally made for. ice hardware doesn't have packet count limits that 6323 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6324 * which is hard-coded to a limit of 250,000 ints/second. 6325 * If not using dynamic moderation, the INTRL value can be modified 6326 * by ethtool rx-usecs-high. 6327 */ 6328 struct ice_dim { 6329 /* the throttle rate for interrupts, basically worst case delay before 6330 * an initial interrupt fires, value is stored in microseconds. 6331 */ 6332 u16 itr; 6333 }; 6334 6335 /* Make a different profile for Rx that doesn't allow quite so aggressive 6336 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6337 * second. 6338 */ 6339 static const struct ice_dim rx_profile[] = { 6340 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6341 {8}, /* 125,000 ints/s */ 6342 {16}, /* 62,500 ints/s */ 6343 {62}, /* 16,129 ints/s */ 6344 {126} /* 7,936 ints/s */ 6345 }; 6346 6347 /* The transmit profile, which has the same sorts of values 6348 * as the previous struct 6349 */ 6350 static const struct ice_dim tx_profile[] = { 6351 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6352 {8}, /* 125,000 ints/s */ 6353 {40}, /* 16,125 ints/s */ 6354 {128}, /* 7,812 ints/s */ 6355 {256} /* 3,906 ints/s */ 6356 }; 6357 6358 static void ice_tx_dim_work(struct work_struct *work) 6359 { 6360 struct ice_ring_container *rc; 6361 struct dim *dim; 6362 u16 itr; 6363 6364 dim = container_of(work, struct dim, work); 6365 rc = dim->priv; 6366 6367 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6368 6369 /* look up the values in our local table */ 6370 itr = tx_profile[dim->profile_ix].itr; 6371 6372 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6373 ice_write_itr(rc, itr); 6374 6375 dim->state = DIM_START_MEASURE; 6376 } 6377 6378 static void ice_rx_dim_work(struct work_struct *work) 6379 { 6380 struct ice_ring_container *rc; 6381 struct dim *dim; 6382 u16 itr; 6383 6384 dim = container_of(work, struct dim, work); 6385 rc = dim->priv; 6386 6387 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6388 6389 /* look up the values in our local table */ 6390 itr = rx_profile[dim->profile_ix].itr; 6391 6392 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6393 ice_write_itr(rc, itr); 6394 6395 dim->state = DIM_START_MEASURE; 6396 } 6397 6398 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6399 6400 /** 6401 * ice_init_moderation - set up interrupt moderation 6402 * @q_vector: the vector containing rings to be configured 6403 * 6404 * Set up interrupt moderation registers, with the intent to do the right thing 6405 * when called from reset or from probe, and whether or not dynamic moderation 6406 * is enabled or not. Take special care to write all the registers in both 6407 * dynamic moderation mode or not in order to make sure hardware is in a known 6408 * state. 6409 */ 6410 static void ice_init_moderation(struct ice_q_vector *q_vector) 6411 { 6412 struct ice_ring_container *rc; 6413 bool tx_dynamic, rx_dynamic; 6414 6415 rc = &q_vector->tx; 6416 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6417 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6418 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6419 rc->dim.priv = rc; 6420 tx_dynamic = ITR_IS_DYNAMIC(rc); 6421 6422 /* set the initial TX ITR to match the above */ 6423 ice_write_itr(rc, tx_dynamic ? 6424 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6425 6426 rc = &q_vector->rx; 6427 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6428 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6429 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6430 rc->dim.priv = rc; 6431 rx_dynamic = ITR_IS_DYNAMIC(rc); 6432 6433 /* set the initial RX ITR to match the above */ 6434 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6435 rc->itr_setting); 6436 6437 ice_set_q_vector_intrl(q_vector); 6438 } 6439 6440 /** 6441 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6442 * @vsi: the VSI being configured 6443 */ 6444 static void ice_napi_enable_all(struct ice_vsi *vsi) 6445 { 6446 int q_idx; 6447 6448 if (!vsi->netdev) 6449 return; 6450 6451 ice_for_each_q_vector(vsi, q_idx) { 6452 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6453 6454 ice_init_moderation(q_vector); 6455 6456 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6457 napi_enable(&q_vector->napi); 6458 } 6459 } 6460 6461 /** 6462 * ice_up_complete - Finish the last steps of bringing up a connection 6463 * @vsi: The VSI being configured 6464 * 6465 * Return 0 on success and negative value on error 6466 */ 6467 static int ice_up_complete(struct ice_vsi *vsi) 6468 { 6469 struct ice_pf *pf = vsi->back; 6470 int err; 6471 6472 ice_vsi_cfg_msix(vsi); 6473 6474 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6475 * Tx queue group list was configured and the context bits were 6476 * programmed using ice_vsi_cfg_txqs 6477 */ 6478 err = ice_vsi_start_all_rx_rings(vsi); 6479 if (err) 6480 return err; 6481 6482 clear_bit(ICE_VSI_DOWN, vsi->state); 6483 ice_napi_enable_all(vsi); 6484 ice_vsi_ena_irq(vsi); 6485 6486 if (vsi->port_info && 6487 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6488 vsi->netdev && vsi->type == ICE_VSI_PF) { 6489 ice_print_link_msg(vsi, true); 6490 netif_tx_start_all_queues(vsi->netdev); 6491 netif_carrier_on(vsi->netdev); 6492 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6493 } 6494 6495 /* Perform an initial read of the statistics registers now to 6496 * set the baseline so counters are ready when interface is up 6497 */ 6498 ice_update_eth_stats(vsi); 6499 6500 if (vsi->type == ICE_VSI_PF) 6501 ice_service_task_schedule(pf); 6502 6503 return 0; 6504 } 6505 6506 /** 6507 * ice_up - Bring the connection back up after being down 6508 * @vsi: VSI being configured 6509 */ 6510 int ice_up(struct ice_vsi *vsi) 6511 { 6512 int err; 6513 6514 err = ice_vsi_cfg_lan(vsi); 6515 if (!err) 6516 err = ice_up_complete(vsi); 6517 6518 return err; 6519 } 6520 6521 /** 6522 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6523 * @syncp: pointer to u64_stats_sync 6524 * @stats: stats that pkts and bytes count will be taken from 6525 * @pkts: packets stats counter 6526 * @bytes: bytes stats counter 6527 * 6528 * This function fetches stats from the ring considering the atomic operations 6529 * that needs to be performed to read u64 values in 32 bit machine. 6530 */ 6531 void 6532 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6533 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6534 { 6535 unsigned int start; 6536 6537 do { 6538 start = u64_stats_fetch_begin(syncp); 6539 *pkts = stats.pkts; 6540 *bytes = stats.bytes; 6541 } while (u64_stats_fetch_retry(syncp, start)); 6542 } 6543 6544 /** 6545 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6546 * @vsi: the VSI to be updated 6547 * @vsi_stats: the stats struct to be updated 6548 * @rings: rings to work on 6549 * @count: number of rings 6550 */ 6551 static void 6552 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6553 struct rtnl_link_stats64 *vsi_stats, 6554 struct ice_tx_ring **rings, u16 count) 6555 { 6556 u16 i; 6557 6558 for (i = 0; i < count; i++) { 6559 struct ice_tx_ring *ring; 6560 u64 pkts = 0, bytes = 0; 6561 6562 ring = READ_ONCE(rings[i]); 6563 if (!ring || !ring->ring_stats) 6564 continue; 6565 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6566 ring->ring_stats->stats, &pkts, 6567 &bytes); 6568 vsi_stats->tx_packets += pkts; 6569 vsi_stats->tx_bytes += bytes; 6570 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6571 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6572 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6573 } 6574 } 6575 6576 /** 6577 * ice_update_vsi_ring_stats - Update VSI stats counters 6578 * @vsi: the VSI to be updated 6579 */ 6580 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6581 { 6582 struct rtnl_link_stats64 *net_stats, *stats_prev; 6583 struct rtnl_link_stats64 *vsi_stats; 6584 struct ice_pf *pf = vsi->back; 6585 u64 pkts, bytes; 6586 int i; 6587 6588 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6589 if (!vsi_stats) 6590 return; 6591 6592 /* reset non-netdev (extended) stats */ 6593 vsi->tx_restart = 0; 6594 vsi->tx_busy = 0; 6595 vsi->tx_linearize = 0; 6596 vsi->rx_buf_failed = 0; 6597 vsi->rx_page_failed = 0; 6598 6599 rcu_read_lock(); 6600 6601 /* update Tx rings counters */ 6602 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6603 vsi->num_txq); 6604 6605 /* update Rx rings counters */ 6606 ice_for_each_rxq(vsi, i) { 6607 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6608 struct ice_ring_stats *ring_stats; 6609 6610 ring_stats = ring->ring_stats; 6611 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6612 ring_stats->stats, &pkts, 6613 &bytes); 6614 vsi_stats->rx_packets += pkts; 6615 vsi_stats->rx_bytes += bytes; 6616 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6617 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6618 } 6619 6620 /* update XDP Tx rings counters */ 6621 if (ice_is_xdp_ena_vsi(vsi)) 6622 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6623 vsi->num_xdp_txq); 6624 6625 rcu_read_unlock(); 6626 6627 net_stats = &vsi->net_stats; 6628 stats_prev = &vsi->net_stats_prev; 6629 6630 /* Update netdev counters, but keep in mind that values could start at 6631 * random value after PF reset. And as we increase the reported stat by 6632 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6633 * let's skip this round. 6634 */ 6635 if (likely(pf->stat_prev_loaded)) { 6636 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6637 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6638 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6639 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6640 } 6641 6642 stats_prev->tx_packets = vsi_stats->tx_packets; 6643 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6644 stats_prev->rx_packets = vsi_stats->rx_packets; 6645 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6646 6647 kfree(vsi_stats); 6648 } 6649 6650 /** 6651 * ice_update_vsi_stats - Update VSI stats counters 6652 * @vsi: the VSI to be updated 6653 */ 6654 void ice_update_vsi_stats(struct ice_vsi *vsi) 6655 { 6656 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6657 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6658 struct ice_pf *pf = vsi->back; 6659 6660 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6661 test_bit(ICE_CFG_BUSY, pf->state)) 6662 return; 6663 6664 /* get stats as recorded by Tx/Rx rings */ 6665 ice_update_vsi_ring_stats(vsi); 6666 6667 /* get VSI stats as recorded by the hardware */ 6668 ice_update_eth_stats(vsi); 6669 6670 cur_ns->tx_errors = cur_es->tx_errors; 6671 cur_ns->rx_dropped = cur_es->rx_discards; 6672 cur_ns->tx_dropped = cur_es->tx_discards; 6673 cur_ns->multicast = cur_es->rx_multicast; 6674 6675 /* update some more netdev stats if this is main VSI */ 6676 if (vsi->type == ICE_VSI_PF) { 6677 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6678 cur_ns->rx_errors = pf->stats.crc_errors + 6679 pf->stats.illegal_bytes + 6680 pf->stats.rx_len_errors + 6681 pf->stats.rx_undersize + 6682 pf->hw_csum_rx_error + 6683 pf->stats.rx_jabber + 6684 pf->stats.rx_fragments + 6685 pf->stats.rx_oversize; 6686 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6687 /* record drops from the port level */ 6688 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6689 } 6690 } 6691 6692 /** 6693 * ice_update_pf_stats - Update PF port stats counters 6694 * @pf: PF whose stats needs to be updated 6695 */ 6696 void ice_update_pf_stats(struct ice_pf *pf) 6697 { 6698 struct ice_hw_port_stats *prev_ps, *cur_ps; 6699 struct ice_hw *hw = &pf->hw; 6700 u16 fd_ctr_base; 6701 u8 port; 6702 6703 port = hw->port_info->lport; 6704 prev_ps = &pf->stats_prev; 6705 cur_ps = &pf->stats; 6706 6707 if (ice_is_reset_in_progress(pf->state)) 6708 pf->stat_prev_loaded = false; 6709 6710 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6711 &prev_ps->eth.rx_bytes, 6712 &cur_ps->eth.rx_bytes); 6713 6714 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6715 &prev_ps->eth.rx_unicast, 6716 &cur_ps->eth.rx_unicast); 6717 6718 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6719 &prev_ps->eth.rx_multicast, 6720 &cur_ps->eth.rx_multicast); 6721 6722 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6723 &prev_ps->eth.rx_broadcast, 6724 &cur_ps->eth.rx_broadcast); 6725 6726 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6727 &prev_ps->eth.rx_discards, 6728 &cur_ps->eth.rx_discards); 6729 6730 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6731 &prev_ps->eth.tx_bytes, 6732 &cur_ps->eth.tx_bytes); 6733 6734 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6735 &prev_ps->eth.tx_unicast, 6736 &cur_ps->eth.tx_unicast); 6737 6738 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6739 &prev_ps->eth.tx_multicast, 6740 &cur_ps->eth.tx_multicast); 6741 6742 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6743 &prev_ps->eth.tx_broadcast, 6744 &cur_ps->eth.tx_broadcast); 6745 6746 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6747 &prev_ps->tx_dropped_link_down, 6748 &cur_ps->tx_dropped_link_down); 6749 6750 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6751 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6752 6753 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6754 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6755 6756 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6757 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6758 6759 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6760 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6761 6762 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6763 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6764 6765 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6766 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6767 6768 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6769 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6770 6771 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6772 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6773 6774 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6775 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6776 6777 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6778 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6779 6780 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6781 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6782 6783 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6784 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6785 6786 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6787 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6788 6789 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6790 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6791 6792 fd_ctr_base = hw->fd_ctr_base; 6793 6794 ice_stat_update40(hw, 6795 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6796 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6797 &cur_ps->fd_sb_match); 6798 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6799 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6800 6801 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6802 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6803 6804 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6805 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6806 6807 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6808 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6809 6810 ice_update_dcb_stats(pf); 6811 6812 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6813 &prev_ps->crc_errors, &cur_ps->crc_errors); 6814 6815 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6816 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6817 6818 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6819 &prev_ps->mac_local_faults, 6820 &cur_ps->mac_local_faults); 6821 6822 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6823 &prev_ps->mac_remote_faults, 6824 &cur_ps->mac_remote_faults); 6825 6826 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6827 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6828 6829 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6830 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6831 6832 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6833 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6834 6835 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6836 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6837 6838 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6839 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6840 6841 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6842 6843 pf->stat_prev_loaded = true; 6844 } 6845 6846 /** 6847 * ice_get_stats64 - get statistics for network device structure 6848 * @netdev: network interface device structure 6849 * @stats: main device statistics structure 6850 */ 6851 static 6852 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6853 { 6854 struct ice_netdev_priv *np = netdev_priv(netdev); 6855 struct rtnl_link_stats64 *vsi_stats; 6856 struct ice_vsi *vsi = np->vsi; 6857 6858 vsi_stats = &vsi->net_stats; 6859 6860 if (!vsi->num_txq || !vsi->num_rxq) 6861 return; 6862 6863 /* netdev packet/byte stats come from ring counter. These are obtained 6864 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6865 * But, only call the update routine and read the registers if VSI is 6866 * not down. 6867 */ 6868 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6869 ice_update_vsi_ring_stats(vsi); 6870 stats->tx_packets = vsi_stats->tx_packets; 6871 stats->tx_bytes = vsi_stats->tx_bytes; 6872 stats->rx_packets = vsi_stats->rx_packets; 6873 stats->rx_bytes = vsi_stats->rx_bytes; 6874 6875 /* The rest of the stats can be read from the hardware but instead we 6876 * just return values that the watchdog task has already obtained from 6877 * the hardware. 6878 */ 6879 stats->multicast = vsi_stats->multicast; 6880 stats->tx_errors = vsi_stats->tx_errors; 6881 stats->tx_dropped = vsi_stats->tx_dropped; 6882 stats->rx_errors = vsi_stats->rx_errors; 6883 stats->rx_dropped = vsi_stats->rx_dropped; 6884 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6885 stats->rx_length_errors = vsi_stats->rx_length_errors; 6886 } 6887 6888 /** 6889 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6890 * @vsi: VSI having NAPI disabled 6891 */ 6892 static void ice_napi_disable_all(struct ice_vsi *vsi) 6893 { 6894 int q_idx; 6895 6896 if (!vsi->netdev) 6897 return; 6898 6899 ice_for_each_q_vector(vsi, q_idx) { 6900 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6901 6902 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6903 napi_disable(&q_vector->napi); 6904 6905 cancel_work_sync(&q_vector->tx.dim.work); 6906 cancel_work_sync(&q_vector->rx.dim.work); 6907 } 6908 } 6909 6910 /** 6911 * ice_down - Shutdown the connection 6912 * @vsi: The VSI being stopped 6913 * 6914 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6915 */ 6916 int ice_down(struct ice_vsi *vsi) 6917 { 6918 int i, tx_err, rx_err, vlan_err = 0; 6919 6920 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6921 6922 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6923 vlan_err = ice_vsi_del_vlan_zero(vsi); 6924 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6925 netif_carrier_off(vsi->netdev); 6926 netif_tx_disable(vsi->netdev); 6927 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6928 ice_eswitch_stop_all_tx_queues(vsi->back); 6929 } 6930 6931 ice_vsi_dis_irq(vsi); 6932 6933 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6934 if (tx_err) 6935 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6936 vsi->vsi_num, tx_err); 6937 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6938 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6939 if (tx_err) 6940 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6941 vsi->vsi_num, tx_err); 6942 } 6943 6944 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6945 if (rx_err) 6946 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6947 vsi->vsi_num, rx_err); 6948 6949 ice_napi_disable_all(vsi); 6950 6951 ice_for_each_txq(vsi, i) 6952 ice_clean_tx_ring(vsi->tx_rings[i]); 6953 6954 if (ice_is_xdp_ena_vsi(vsi)) 6955 ice_for_each_xdp_txq(vsi, i) 6956 ice_clean_tx_ring(vsi->xdp_rings[i]); 6957 6958 ice_for_each_rxq(vsi, i) 6959 ice_clean_rx_ring(vsi->rx_rings[i]); 6960 6961 if (tx_err || rx_err || vlan_err) { 6962 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6963 vsi->vsi_num, vsi->vsw->sw_id); 6964 return -EIO; 6965 } 6966 6967 return 0; 6968 } 6969 6970 /** 6971 * ice_down_up - shutdown the VSI connection and bring it up 6972 * @vsi: the VSI to be reconnected 6973 */ 6974 int ice_down_up(struct ice_vsi *vsi) 6975 { 6976 int ret; 6977 6978 /* if DOWN already set, nothing to do */ 6979 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6980 return 0; 6981 6982 ret = ice_down(vsi); 6983 if (ret) 6984 return ret; 6985 6986 ret = ice_up(vsi); 6987 if (ret) { 6988 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6989 return ret; 6990 } 6991 6992 return 0; 6993 } 6994 6995 /** 6996 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6997 * @vsi: VSI having resources allocated 6998 * 6999 * Return 0 on success, negative on failure 7000 */ 7001 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7002 { 7003 int i, err = 0; 7004 7005 if (!vsi->num_txq) { 7006 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7007 vsi->vsi_num); 7008 return -EINVAL; 7009 } 7010 7011 ice_for_each_txq(vsi, i) { 7012 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7013 7014 if (!ring) 7015 return -EINVAL; 7016 7017 if (vsi->netdev) 7018 ring->netdev = vsi->netdev; 7019 err = ice_setup_tx_ring(ring); 7020 if (err) 7021 break; 7022 } 7023 7024 return err; 7025 } 7026 7027 /** 7028 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7029 * @vsi: VSI having resources allocated 7030 * 7031 * Return 0 on success, negative on failure 7032 */ 7033 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7034 { 7035 int i, err = 0; 7036 7037 if (!vsi->num_rxq) { 7038 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7039 vsi->vsi_num); 7040 return -EINVAL; 7041 } 7042 7043 ice_for_each_rxq(vsi, i) { 7044 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7045 7046 if (!ring) 7047 return -EINVAL; 7048 7049 if (vsi->netdev) 7050 ring->netdev = vsi->netdev; 7051 err = ice_setup_rx_ring(ring); 7052 if (err) 7053 break; 7054 } 7055 7056 return err; 7057 } 7058 7059 /** 7060 * ice_vsi_open_ctrl - open control VSI for use 7061 * @vsi: the VSI to open 7062 * 7063 * Initialization of the Control VSI 7064 * 7065 * Returns 0 on success, negative value on error 7066 */ 7067 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7068 { 7069 char int_name[ICE_INT_NAME_STR_LEN]; 7070 struct ice_pf *pf = vsi->back; 7071 struct device *dev; 7072 int err; 7073 7074 dev = ice_pf_to_dev(pf); 7075 /* allocate descriptors */ 7076 err = ice_vsi_setup_tx_rings(vsi); 7077 if (err) 7078 goto err_setup_tx; 7079 7080 err = ice_vsi_setup_rx_rings(vsi); 7081 if (err) 7082 goto err_setup_rx; 7083 7084 err = ice_vsi_cfg_lan(vsi); 7085 if (err) 7086 goto err_setup_rx; 7087 7088 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7089 dev_driver_string(dev), dev_name(dev)); 7090 err = ice_vsi_req_irq_msix(vsi, int_name); 7091 if (err) 7092 goto err_setup_rx; 7093 7094 ice_vsi_cfg_msix(vsi); 7095 7096 err = ice_vsi_start_all_rx_rings(vsi); 7097 if (err) 7098 goto err_up_complete; 7099 7100 clear_bit(ICE_VSI_DOWN, vsi->state); 7101 ice_vsi_ena_irq(vsi); 7102 7103 return 0; 7104 7105 err_up_complete: 7106 ice_down(vsi); 7107 err_setup_rx: 7108 ice_vsi_free_rx_rings(vsi); 7109 err_setup_tx: 7110 ice_vsi_free_tx_rings(vsi); 7111 7112 return err; 7113 } 7114 7115 /** 7116 * ice_vsi_open - Called when a network interface is made active 7117 * @vsi: the VSI to open 7118 * 7119 * Initialization of the VSI 7120 * 7121 * Returns 0 on success, negative value on error 7122 */ 7123 int ice_vsi_open(struct ice_vsi *vsi) 7124 { 7125 char int_name[ICE_INT_NAME_STR_LEN]; 7126 struct ice_pf *pf = vsi->back; 7127 int err; 7128 7129 /* allocate descriptors */ 7130 err = ice_vsi_setup_tx_rings(vsi); 7131 if (err) 7132 goto err_setup_tx; 7133 7134 err = ice_vsi_setup_rx_rings(vsi); 7135 if (err) 7136 goto err_setup_rx; 7137 7138 err = ice_vsi_cfg_lan(vsi); 7139 if (err) 7140 goto err_setup_rx; 7141 7142 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7143 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7144 err = ice_vsi_req_irq_msix(vsi, int_name); 7145 if (err) 7146 goto err_setup_rx; 7147 7148 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7149 7150 if (vsi->type == ICE_VSI_PF) { 7151 /* Notify the stack of the actual queue counts. */ 7152 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7153 if (err) 7154 goto err_set_qs; 7155 7156 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7157 if (err) 7158 goto err_set_qs; 7159 } 7160 7161 err = ice_up_complete(vsi); 7162 if (err) 7163 goto err_up_complete; 7164 7165 return 0; 7166 7167 err_up_complete: 7168 ice_down(vsi); 7169 err_set_qs: 7170 ice_vsi_free_irq(vsi); 7171 err_setup_rx: 7172 ice_vsi_free_rx_rings(vsi); 7173 err_setup_tx: 7174 ice_vsi_free_tx_rings(vsi); 7175 7176 return err; 7177 } 7178 7179 /** 7180 * ice_vsi_release_all - Delete all VSIs 7181 * @pf: PF from which all VSIs are being removed 7182 */ 7183 static void ice_vsi_release_all(struct ice_pf *pf) 7184 { 7185 int err, i; 7186 7187 if (!pf->vsi) 7188 return; 7189 7190 ice_for_each_vsi(pf, i) { 7191 if (!pf->vsi[i]) 7192 continue; 7193 7194 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7195 continue; 7196 7197 err = ice_vsi_release(pf->vsi[i]); 7198 if (err) 7199 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7200 i, err, pf->vsi[i]->vsi_num); 7201 } 7202 } 7203 7204 /** 7205 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7206 * @pf: pointer to the PF instance 7207 * @type: VSI type to rebuild 7208 * 7209 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7210 */ 7211 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7212 { 7213 struct device *dev = ice_pf_to_dev(pf); 7214 int i, err; 7215 7216 ice_for_each_vsi(pf, i) { 7217 struct ice_vsi *vsi = pf->vsi[i]; 7218 7219 if (!vsi || vsi->type != type) 7220 continue; 7221 7222 /* rebuild the VSI */ 7223 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7224 if (err) { 7225 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7226 err, vsi->idx, ice_vsi_type_str(type)); 7227 return err; 7228 } 7229 7230 /* replay filters for the VSI */ 7231 err = ice_replay_vsi(&pf->hw, vsi->idx); 7232 if (err) { 7233 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7234 err, vsi->idx, ice_vsi_type_str(type)); 7235 return err; 7236 } 7237 7238 /* Re-map HW VSI number, using VSI handle that has been 7239 * previously validated in ice_replay_vsi() call above 7240 */ 7241 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7242 7243 /* enable the VSI */ 7244 err = ice_ena_vsi(vsi, false); 7245 if (err) { 7246 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7247 err, vsi->idx, ice_vsi_type_str(type)); 7248 return err; 7249 } 7250 7251 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7252 ice_vsi_type_str(type)); 7253 } 7254 7255 return 0; 7256 } 7257 7258 /** 7259 * ice_update_pf_netdev_link - Update PF netdev link status 7260 * @pf: pointer to the PF instance 7261 */ 7262 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7263 { 7264 bool link_up; 7265 int i; 7266 7267 ice_for_each_vsi(pf, i) { 7268 struct ice_vsi *vsi = pf->vsi[i]; 7269 7270 if (!vsi || vsi->type != ICE_VSI_PF) 7271 return; 7272 7273 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7274 if (link_up) { 7275 netif_carrier_on(pf->vsi[i]->netdev); 7276 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7277 } else { 7278 netif_carrier_off(pf->vsi[i]->netdev); 7279 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7280 } 7281 } 7282 } 7283 7284 /** 7285 * ice_rebuild - rebuild after reset 7286 * @pf: PF to rebuild 7287 * @reset_type: type of reset 7288 * 7289 * Do not rebuild VF VSI in this flow because that is already handled via 7290 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7291 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7292 * to reset/rebuild all the VF VSI twice. 7293 */ 7294 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7295 { 7296 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7297 struct device *dev = ice_pf_to_dev(pf); 7298 struct ice_hw *hw = &pf->hw; 7299 bool dvm; 7300 int err; 7301 7302 if (test_bit(ICE_DOWN, pf->state)) 7303 goto clear_recovery; 7304 7305 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7306 7307 #define ICE_EMP_RESET_SLEEP_MS 5000 7308 if (reset_type == ICE_RESET_EMPR) { 7309 /* If an EMP reset has occurred, any previously pending flash 7310 * update will have completed. We no longer know whether or 7311 * not the NVM update EMP reset is restricted. 7312 */ 7313 pf->fw_emp_reset_disabled = false; 7314 7315 msleep(ICE_EMP_RESET_SLEEP_MS); 7316 } 7317 7318 err = ice_init_all_ctrlq(hw); 7319 if (err) { 7320 dev_err(dev, "control queues init failed %d\n", err); 7321 goto err_init_ctrlq; 7322 } 7323 7324 /* if DDP was previously loaded successfully */ 7325 if (!ice_is_safe_mode(pf)) { 7326 /* reload the SW DB of filter tables */ 7327 if (reset_type == ICE_RESET_PFR) 7328 ice_fill_blk_tbls(hw); 7329 else 7330 /* Reload DDP Package after CORER/GLOBR reset */ 7331 ice_load_pkg(NULL, pf); 7332 } 7333 7334 err = ice_clear_pf_cfg(hw); 7335 if (err) { 7336 dev_err(dev, "clear PF configuration failed %d\n", err); 7337 goto err_init_ctrlq; 7338 } 7339 7340 ice_clear_pxe_mode(hw); 7341 7342 err = ice_init_nvm(hw); 7343 if (err) { 7344 dev_err(dev, "ice_init_nvm failed %d\n", err); 7345 goto err_init_ctrlq; 7346 } 7347 7348 err = ice_get_caps(hw); 7349 if (err) { 7350 dev_err(dev, "ice_get_caps failed %d\n", err); 7351 goto err_init_ctrlq; 7352 } 7353 7354 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7355 if (err) { 7356 dev_err(dev, "set_mac_cfg failed %d\n", err); 7357 goto err_init_ctrlq; 7358 } 7359 7360 dvm = ice_is_dvm_ena(hw); 7361 7362 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7363 if (err) 7364 goto err_init_ctrlq; 7365 7366 err = ice_sched_init_port(hw->port_info); 7367 if (err) 7368 goto err_sched_init_port; 7369 7370 /* start misc vector */ 7371 err = ice_req_irq_msix_misc(pf); 7372 if (err) { 7373 dev_err(dev, "misc vector setup failed: %d\n", err); 7374 goto err_sched_init_port; 7375 } 7376 7377 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7378 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7379 if (!rd32(hw, PFQF_FD_SIZE)) { 7380 u16 unused, guar, b_effort; 7381 7382 guar = hw->func_caps.fd_fltr_guar; 7383 b_effort = hw->func_caps.fd_fltr_best_effort; 7384 7385 /* force guaranteed filter pool for PF */ 7386 ice_alloc_fd_guar_item(hw, &unused, guar); 7387 /* force shared filter pool for PF */ 7388 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7389 } 7390 } 7391 7392 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7393 ice_dcb_rebuild(pf); 7394 7395 /* If the PF previously had enabled PTP, PTP init needs to happen before 7396 * the VSI rebuild. If not, this causes the PTP link status events to 7397 * fail. 7398 */ 7399 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7400 ice_ptp_reset(pf); 7401 7402 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7403 ice_gnss_init(pf); 7404 7405 /* rebuild PF VSI */ 7406 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7407 if (err) { 7408 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7409 goto err_vsi_rebuild; 7410 } 7411 7412 /* configure PTP timestamping after VSI rebuild */ 7413 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7414 ice_ptp_cfg_timestamp(pf, false); 7415 7416 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7417 if (err) { 7418 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7419 goto err_vsi_rebuild; 7420 } 7421 7422 if (reset_type == ICE_RESET_PFR) { 7423 err = ice_rebuild_channels(pf); 7424 if (err) { 7425 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7426 err); 7427 goto err_vsi_rebuild; 7428 } 7429 } 7430 7431 /* If Flow Director is active */ 7432 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7433 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7434 if (err) { 7435 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7436 goto err_vsi_rebuild; 7437 } 7438 7439 /* replay HW Flow Director recipes */ 7440 if (hw->fdir_prof) 7441 ice_fdir_replay_flows(hw); 7442 7443 /* replay Flow Director filters */ 7444 ice_fdir_replay_fltrs(pf); 7445 7446 ice_rebuild_arfs(pf); 7447 } 7448 7449 if (vsi && vsi->netdev) 7450 netif_device_attach(vsi->netdev); 7451 7452 ice_update_pf_netdev_link(pf); 7453 7454 /* tell the firmware we are up */ 7455 err = ice_send_version(pf); 7456 if (err) { 7457 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7458 err); 7459 goto err_vsi_rebuild; 7460 } 7461 7462 ice_replay_post(hw); 7463 7464 /* if we get here, reset flow is successful */ 7465 clear_bit(ICE_RESET_FAILED, pf->state); 7466 7467 ice_plug_aux_dev(pf); 7468 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7469 ice_lag_rebuild(pf); 7470 return; 7471 7472 err_vsi_rebuild: 7473 err_sched_init_port: 7474 ice_sched_cleanup_all(hw); 7475 err_init_ctrlq: 7476 ice_shutdown_all_ctrlq(hw); 7477 set_bit(ICE_RESET_FAILED, pf->state); 7478 clear_recovery: 7479 /* set this bit in PF state to control service task scheduling */ 7480 set_bit(ICE_NEEDS_RESTART, pf->state); 7481 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7482 } 7483 7484 /** 7485 * ice_change_mtu - NDO callback to change the MTU 7486 * @netdev: network interface device structure 7487 * @new_mtu: new value for maximum frame size 7488 * 7489 * Returns 0 on success, negative on failure 7490 */ 7491 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7492 { 7493 struct ice_netdev_priv *np = netdev_priv(netdev); 7494 struct ice_vsi *vsi = np->vsi; 7495 struct ice_pf *pf = vsi->back; 7496 struct bpf_prog *prog; 7497 u8 count = 0; 7498 int err = 0; 7499 7500 if (new_mtu == (int)netdev->mtu) { 7501 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7502 return 0; 7503 } 7504 7505 prog = vsi->xdp_prog; 7506 if (prog && !prog->aux->xdp_has_frags) { 7507 int frame_size = ice_max_xdp_frame_size(vsi); 7508 7509 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7510 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7511 frame_size - ICE_ETH_PKT_HDR_PAD); 7512 return -EINVAL; 7513 } 7514 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7515 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7516 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7517 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7518 return -EINVAL; 7519 } 7520 } 7521 7522 /* if a reset is in progress, wait for some time for it to complete */ 7523 do { 7524 if (ice_is_reset_in_progress(pf->state)) { 7525 count++; 7526 usleep_range(1000, 2000); 7527 } else { 7528 break; 7529 } 7530 7531 } while (count < 100); 7532 7533 if (count == 100) { 7534 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7535 return -EBUSY; 7536 } 7537 7538 netdev->mtu = (unsigned int)new_mtu; 7539 err = ice_down_up(vsi); 7540 if (err) 7541 return err; 7542 7543 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7544 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7545 7546 return err; 7547 } 7548 7549 /** 7550 * ice_eth_ioctl - Access the hwtstamp interface 7551 * @netdev: network interface device structure 7552 * @ifr: interface request data 7553 * @cmd: ioctl command 7554 */ 7555 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7556 { 7557 struct ice_netdev_priv *np = netdev_priv(netdev); 7558 struct ice_pf *pf = np->vsi->back; 7559 7560 switch (cmd) { 7561 case SIOCGHWTSTAMP: 7562 return ice_ptp_get_ts_config(pf, ifr); 7563 case SIOCSHWTSTAMP: 7564 return ice_ptp_set_ts_config(pf, ifr); 7565 default: 7566 return -EOPNOTSUPP; 7567 } 7568 } 7569 7570 /** 7571 * ice_aq_str - convert AQ err code to a string 7572 * @aq_err: the AQ error code to convert 7573 */ 7574 const char *ice_aq_str(enum ice_aq_err aq_err) 7575 { 7576 switch (aq_err) { 7577 case ICE_AQ_RC_OK: 7578 return "OK"; 7579 case ICE_AQ_RC_EPERM: 7580 return "ICE_AQ_RC_EPERM"; 7581 case ICE_AQ_RC_ENOENT: 7582 return "ICE_AQ_RC_ENOENT"; 7583 case ICE_AQ_RC_ENOMEM: 7584 return "ICE_AQ_RC_ENOMEM"; 7585 case ICE_AQ_RC_EBUSY: 7586 return "ICE_AQ_RC_EBUSY"; 7587 case ICE_AQ_RC_EEXIST: 7588 return "ICE_AQ_RC_EEXIST"; 7589 case ICE_AQ_RC_EINVAL: 7590 return "ICE_AQ_RC_EINVAL"; 7591 case ICE_AQ_RC_ENOSPC: 7592 return "ICE_AQ_RC_ENOSPC"; 7593 case ICE_AQ_RC_ENOSYS: 7594 return "ICE_AQ_RC_ENOSYS"; 7595 case ICE_AQ_RC_EMODE: 7596 return "ICE_AQ_RC_EMODE"; 7597 case ICE_AQ_RC_ENOSEC: 7598 return "ICE_AQ_RC_ENOSEC"; 7599 case ICE_AQ_RC_EBADSIG: 7600 return "ICE_AQ_RC_EBADSIG"; 7601 case ICE_AQ_RC_ESVN: 7602 return "ICE_AQ_RC_ESVN"; 7603 case ICE_AQ_RC_EBADMAN: 7604 return "ICE_AQ_RC_EBADMAN"; 7605 case ICE_AQ_RC_EBADBUF: 7606 return "ICE_AQ_RC_EBADBUF"; 7607 } 7608 7609 return "ICE_AQ_RC_UNKNOWN"; 7610 } 7611 7612 /** 7613 * ice_set_rss_lut - Set RSS LUT 7614 * @vsi: Pointer to VSI structure 7615 * @lut: Lookup table 7616 * @lut_size: Lookup table size 7617 * 7618 * Returns 0 on success, negative on failure 7619 */ 7620 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7621 { 7622 struct ice_aq_get_set_rss_lut_params params = {}; 7623 struct ice_hw *hw = &vsi->back->hw; 7624 int status; 7625 7626 if (!lut) 7627 return -EINVAL; 7628 7629 params.vsi_handle = vsi->idx; 7630 params.lut_size = lut_size; 7631 params.lut_type = vsi->rss_lut_type; 7632 params.lut = lut; 7633 7634 status = ice_aq_set_rss_lut(hw, ¶ms); 7635 if (status) 7636 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7637 status, ice_aq_str(hw->adminq.sq_last_status)); 7638 7639 return status; 7640 } 7641 7642 /** 7643 * ice_set_rss_key - Set RSS key 7644 * @vsi: Pointer to the VSI structure 7645 * @seed: RSS hash seed 7646 * 7647 * Returns 0 on success, negative on failure 7648 */ 7649 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7650 { 7651 struct ice_hw *hw = &vsi->back->hw; 7652 int status; 7653 7654 if (!seed) 7655 return -EINVAL; 7656 7657 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7658 if (status) 7659 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7660 status, ice_aq_str(hw->adminq.sq_last_status)); 7661 7662 return status; 7663 } 7664 7665 /** 7666 * ice_get_rss_lut - Get RSS LUT 7667 * @vsi: Pointer to VSI structure 7668 * @lut: Buffer to store the lookup table entries 7669 * @lut_size: Size of buffer to store the lookup table entries 7670 * 7671 * Returns 0 on success, negative on failure 7672 */ 7673 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7674 { 7675 struct ice_aq_get_set_rss_lut_params params = {}; 7676 struct ice_hw *hw = &vsi->back->hw; 7677 int status; 7678 7679 if (!lut) 7680 return -EINVAL; 7681 7682 params.vsi_handle = vsi->idx; 7683 params.lut_size = lut_size; 7684 params.lut_type = vsi->rss_lut_type; 7685 params.lut = lut; 7686 7687 status = ice_aq_get_rss_lut(hw, ¶ms); 7688 if (status) 7689 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7690 status, ice_aq_str(hw->adminq.sq_last_status)); 7691 7692 return status; 7693 } 7694 7695 /** 7696 * ice_get_rss_key - Get RSS key 7697 * @vsi: Pointer to VSI structure 7698 * @seed: Buffer to store the key in 7699 * 7700 * Returns 0 on success, negative on failure 7701 */ 7702 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7703 { 7704 struct ice_hw *hw = &vsi->back->hw; 7705 int status; 7706 7707 if (!seed) 7708 return -EINVAL; 7709 7710 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7711 if (status) 7712 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7713 status, ice_aq_str(hw->adminq.sq_last_status)); 7714 7715 return status; 7716 } 7717 7718 /** 7719 * ice_bridge_getlink - Get the hardware bridge mode 7720 * @skb: skb buff 7721 * @pid: process ID 7722 * @seq: RTNL message seq 7723 * @dev: the netdev being configured 7724 * @filter_mask: filter mask passed in 7725 * @nlflags: netlink flags passed in 7726 * 7727 * Return the bridge mode (VEB/VEPA) 7728 */ 7729 static int 7730 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7731 struct net_device *dev, u32 filter_mask, int nlflags) 7732 { 7733 struct ice_netdev_priv *np = netdev_priv(dev); 7734 struct ice_vsi *vsi = np->vsi; 7735 struct ice_pf *pf = vsi->back; 7736 u16 bmode; 7737 7738 bmode = pf->first_sw->bridge_mode; 7739 7740 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7741 filter_mask, NULL); 7742 } 7743 7744 /** 7745 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7746 * @vsi: Pointer to VSI structure 7747 * @bmode: Hardware bridge mode (VEB/VEPA) 7748 * 7749 * Returns 0 on success, negative on failure 7750 */ 7751 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7752 { 7753 struct ice_aqc_vsi_props *vsi_props; 7754 struct ice_hw *hw = &vsi->back->hw; 7755 struct ice_vsi_ctx *ctxt; 7756 int ret; 7757 7758 vsi_props = &vsi->info; 7759 7760 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7761 if (!ctxt) 7762 return -ENOMEM; 7763 7764 ctxt->info = vsi->info; 7765 7766 if (bmode == BRIDGE_MODE_VEB) 7767 /* change from VEPA to VEB mode */ 7768 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7769 else 7770 /* change from VEB to VEPA mode */ 7771 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7772 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7773 7774 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7775 if (ret) { 7776 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7777 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7778 goto out; 7779 } 7780 /* Update sw flags for book keeping */ 7781 vsi_props->sw_flags = ctxt->info.sw_flags; 7782 7783 out: 7784 kfree(ctxt); 7785 return ret; 7786 } 7787 7788 /** 7789 * ice_bridge_setlink - Set the hardware bridge mode 7790 * @dev: the netdev being configured 7791 * @nlh: RTNL message 7792 * @flags: bridge setlink flags 7793 * @extack: netlink extended ack 7794 * 7795 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7796 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7797 * not already set for all VSIs connected to this switch. And also update the 7798 * unicast switch filter rules for the corresponding switch of the netdev. 7799 */ 7800 static int 7801 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7802 u16 __always_unused flags, 7803 struct netlink_ext_ack __always_unused *extack) 7804 { 7805 struct ice_netdev_priv *np = netdev_priv(dev); 7806 struct ice_pf *pf = np->vsi->back; 7807 struct nlattr *attr, *br_spec; 7808 struct ice_hw *hw = &pf->hw; 7809 struct ice_sw *pf_sw; 7810 int rem, v, err = 0; 7811 7812 pf_sw = pf->first_sw; 7813 /* find the attribute in the netlink message */ 7814 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7815 if (!br_spec) 7816 return -EINVAL; 7817 7818 nla_for_each_nested(attr, br_spec, rem) { 7819 __u16 mode; 7820 7821 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7822 continue; 7823 mode = nla_get_u16(attr); 7824 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7825 return -EINVAL; 7826 /* Continue if bridge mode is not being flipped */ 7827 if (mode == pf_sw->bridge_mode) 7828 continue; 7829 /* Iterates through the PF VSI list and update the loopback 7830 * mode of the VSI 7831 */ 7832 ice_for_each_vsi(pf, v) { 7833 if (!pf->vsi[v]) 7834 continue; 7835 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7836 if (err) 7837 return err; 7838 } 7839 7840 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7841 /* Update the unicast switch filter rules for the corresponding 7842 * switch of the netdev 7843 */ 7844 err = ice_update_sw_rule_bridge_mode(hw); 7845 if (err) { 7846 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7847 mode, err, 7848 ice_aq_str(hw->adminq.sq_last_status)); 7849 /* revert hw->evb_veb */ 7850 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7851 return err; 7852 } 7853 7854 pf_sw->bridge_mode = mode; 7855 } 7856 7857 return 0; 7858 } 7859 7860 /** 7861 * ice_tx_timeout - Respond to a Tx Hang 7862 * @netdev: network interface device structure 7863 * @txqueue: Tx queue 7864 */ 7865 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7866 { 7867 struct ice_netdev_priv *np = netdev_priv(netdev); 7868 struct ice_tx_ring *tx_ring = NULL; 7869 struct ice_vsi *vsi = np->vsi; 7870 struct ice_pf *pf = vsi->back; 7871 u32 i; 7872 7873 pf->tx_timeout_count++; 7874 7875 /* Check if PFC is enabled for the TC to which the queue belongs 7876 * to. If yes then Tx timeout is not caused by a hung queue, no 7877 * need to reset and rebuild 7878 */ 7879 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7880 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7881 txqueue); 7882 return; 7883 } 7884 7885 /* now that we have an index, find the tx_ring struct */ 7886 ice_for_each_txq(vsi, i) 7887 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7888 if (txqueue == vsi->tx_rings[i]->q_index) { 7889 tx_ring = vsi->tx_rings[i]; 7890 break; 7891 } 7892 7893 /* Reset recovery level if enough time has elapsed after last timeout. 7894 * Also ensure no new reset action happens before next timeout period. 7895 */ 7896 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7897 pf->tx_timeout_recovery_level = 1; 7898 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7899 netdev->watchdog_timeo))) 7900 return; 7901 7902 if (tx_ring) { 7903 struct ice_hw *hw = &pf->hw; 7904 u32 head, val = 0; 7905 7906 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7907 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7908 /* Read interrupt register */ 7909 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7910 7911 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7912 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7913 head, tx_ring->next_to_use, val); 7914 } 7915 7916 pf->tx_timeout_last_recovery = jiffies; 7917 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7918 pf->tx_timeout_recovery_level, txqueue); 7919 7920 switch (pf->tx_timeout_recovery_level) { 7921 case 1: 7922 set_bit(ICE_PFR_REQ, pf->state); 7923 break; 7924 case 2: 7925 set_bit(ICE_CORER_REQ, pf->state); 7926 break; 7927 case 3: 7928 set_bit(ICE_GLOBR_REQ, pf->state); 7929 break; 7930 default: 7931 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7932 set_bit(ICE_DOWN, pf->state); 7933 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7934 set_bit(ICE_SERVICE_DIS, pf->state); 7935 break; 7936 } 7937 7938 ice_service_task_schedule(pf); 7939 pf->tx_timeout_recovery_level++; 7940 } 7941 7942 /** 7943 * ice_setup_tc_cls_flower - flower classifier offloads 7944 * @np: net device to configure 7945 * @filter_dev: device on which filter is added 7946 * @cls_flower: offload data 7947 */ 7948 static int 7949 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7950 struct net_device *filter_dev, 7951 struct flow_cls_offload *cls_flower) 7952 { 7953 struct ice_vsi *vsi = np->vsi; 7954 7955 if (cls_flower->common.chain_index) 7956 return -EOPNOTSUPP; 7957 7958 switch (cls_flower->command) { 7959 case FLOW_CLS_REPLACE: 7960 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7961 case FLOW_CLS_DESTROY: 7962 return ice_del_cls_flower(vsi, cls_flower); 7963 default: 7964 return -EINVAL; 7965 } 7966 } 7967 7968 /** 7969 * ice_setup_tc_block_cb - callback handler registered for TC block 7970 * @type: TC SETUP type 7971 * @type_data: TC flower offload data that contains user input 7972 * @cb_priv: netdev private data 7973 */ 7974 static int 7975 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7976 { 7977 struct ice_netdev_priv *np = cb_priv; 7978 7979 switch (type) { 7980 case TC_SETUP_CLSFLOWER: 7981 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7982 type_data); 7983 default: 7984 return -EOPNOTSUPP; 7985 } 7986 } 7987 7988 /** 7989 * ice_validate_mqprio_qopt - Validate TCF input parameters 7990 * @vsi: Pointer to VSI 7991 * @mqprio_qopt: input parameters for mqprio queue configuration 7992 * 7993 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7994 * needed), and make sure user doesn't specify qcount and BW rate limit 7995 * for TCs, which are more than "num_tc" 7996 */ 7997 static int 7998 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7999 struct tc_mqprio_qopt_offload *mqprio_qopt) 8000 { 8001 int non_power_of_2_qcount = 0; 8002 struct ice_pf *pf = vsi->back; 8003 int max_rss_q_cnt = 0; 8004 u64 sum_min_rate = 0; 8005 struct device *dev; 8006 int i, speed; 8007 u8 num_tc; 8008 8009 if (vsi->type != ICE_VSI_PF) 8010 return -EINVAL; 8011 8012 if (mqprio_qopt->qopt.offset[0] != 0 || 8013 mqprio_qopt->qopt.num_tc < 1 || 8014 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8015 return -EINVAL; 8016 8017 dev = ice_pf_to_dev(pf); 8018 vsi->ch_rss_size = 0; 8019 num_tc = mqprio_qopt->qopt.num_tc; 8020 speed = ice_get_link_speed_kbps(vsi); 8021 8022 for (i = 0; num_tc; i++) { 8023 int qcount = mqprio_qopt->qopt.count[i]; 8024 u64 max_rate, min_rate, rem; 8025 8026 if (!qcount) 8027 return -EINVAL; 8028 8029 if (is_power_of_2(qcount)) { 8030 if (non_power_of_2_qcount && 8031 qcount > non_power_of_2_qcount) { 8032 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8033 qcount, non_power_of_2_qcount); 8034 return -EINVAL; 8035 } 8036 if (qcount > max_rss_q_cnt) 8037 max_rss_q_cnt = qcount; 8038 } else { 8039 if (non_power_of_2_qcount && 8040 qcount != non_power_of_2_qcount) { 8041 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8042 qcount, non_power_of_2_qcount); 8043 return -EINVAL; 8044 } 8045 if (qcount < max_rss_q_cnt) { 8046 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8047 qcount, max_rss_q_cnt); 8048 return -EINVAL; 8049 } 8050 max_rss_q_cnt = qcount; 8051 non_power_of_2_qcount = qcount; 8052 } 8053 8054 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8055 * converts the bandwidth rate limit into Bytes/s when 8056 * passing it down to the driver. So convert input bandwidth 8057 * from Bytes/s to Kbps 8058 */ 8059 max_rate = mqprio_qopt->max_rate[i]; 8060 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8061 8062 /* min_rate is minimum guaranteed rate and it can't be zero */ 8063 min_rate = mqprio_qopt->min_rate[i]; 8064 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8065 sum_min_rate += min_rate; 8066 8067 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8068 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8069 min_rate, ICE_MIN_BW_LIMIT); 8070 return -EINVAL; 8071 } 8072 8073 if (max_rate && max_rate > speed) { 8074 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8075 i, max_rate, speed); 8076 return -EINVAL; 8077 } 8078 8079 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8080 if (rem) { 8081 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8082 i, ICE_MIN_BW_LIMIT); 8083 return -EINVAL; 8084 } 8085 8086 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8087 if (rem) { 8088 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8089 i, ICE_MIN_BW_LIMIT); 8090 return -EINVAL; 8091 } 8092 8093 /* min_rate can't be more than max_rate, except when max_rate 8094 * is zero (implies max_rate sought is max line rate). In such 8095 * a case min_rate can be more than max. 8096 */ 8097 if (max_rate && min_rate > max_rate) { 8098 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8099 min_rate, max_rate); 8100 return -EINVAL; 8101 } 8102 8103 if (i >= mqprio_qopt->qopt.num_tc - 1) 8104 break; 8105 if (mqprio_qopt->qopt.offset[i + 1] != 8106 (mqprio_qopt->qopt.offset[i] + qcount)) 8107 return -EINVAL; 8108 } 8109 if (vsi->num_rxq < 8110 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8111 return -EINVAL; 8112 if (vsi->num_txq < 8113 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8114 return -EINVAL; 8115 8116 if (sum_min_rate && sum_min_rate > (u64)speed) { 8117 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8118 sum_min_rate, speed); 8119 return -EINVAL; 8120 } 8121 8122 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8123 vsi->ch_rss_size = max_rss_q_cnt; 8124 8125 return 0; 8126 } 8127 8128 /** 8129 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8130 * @pf: ptr to PF device 8131 * @vsi: ptr to VSI 8132 */ 8133 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8134 { 8135 struct device *dev = ice_pf_to_dev(pf); 8136 bool added = false; 8137 struct ice_hw *hw; 8138 int flow; 8139 8140 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8141 return -EINVAL; 8142 8143 hw = &pf->hw; 8144 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8145 struct ice_fd_hw_prof *prof; 8146 int tun, status; 8147 u64 entry_h; 8148 8149 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8150 hw->fdir_prof[flow]->cnt)) 8151 continue; 8152 8153 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8154 enum ice_flow_priority prio; 8155 u64 prof_id; 8156 8157 /* add this VSI to FDir profile for this flow */ 8158 prio = ICE_FLOW_PRIO_NORMAL; 8159 prof = hw->fdir_prof[flow]; 8160 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8161 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8162 prof->vsi_h[0], vsi->idx, 8163 prio, prof->fdir_seg[tun], 8164 &entry_h); 8165 if (status) { 8166 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8167 vsi->idx, flow); 8168 continue; 8169 } 8170 8171 prof->entry_h[prof->cnt][tun] = entry_h; 8172 } 8173 8174 /* store VSI for filter replay and delete */ 8175 prof->vsi_h[prof->cnt] = vsi->idx; 8176 prof->cnt++; 8177 8178 added = true; 8179 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8180 flow); 8181 } 8182 8183 if (!added) 8184 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8185 8186 return 0; 8187 } 8188 8189 /** 8190 * ice_add_channel - add a channel by adding VSI 8191 * @pf: ptr to PF device 8192 * @sw_id: underlying HW switching element ID 8193 * @ch: ptr to channel structure 8194 * 8195 * Add a channel (VSI) using add_vsi and queue_map 8196 */ 8197 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8198 { 8199 struct device *dev = ice_pf_to_dev(pf); 8200 struct ice_vsi *vsi; 8201 8202 if (ch->type != ICE_VSI_CHNL) { 8203 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8204 return -EINVAL; 8205 } 8206 8207 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8208 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8209 dev_err(dev, "create chnl VSI failure\n"); 8210 return -EINVAL; 8211 } 8212 8213 ice_add_vsi_to_fdir(pf, vsi); 8214 8215 ch->sw_id = sw_id; 8216 ch->vsi_num = vsi->vsi_num; 8217 ch->info.mapping_flags = vsi->info.mapping_flags; 8218 ch->ch_vsi = vsi; 8219 /* set the back pointer of channel for newly created VSI */ 8220 vsi->ch = ch; 8221 8222 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8223 sizeof(vsi->info.q_mapping)); 8224 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8225 sizeof(vsi->info.tc_mapping)); 8226 8227 return 0; 8228 } 8229 8230 /** 8231 * ice_chnl_cfg_res 8232 * @vsi: the VSI being setup 8233 * @ch: ptr to channel structure 8234 * 8235 * Configure channel specific resources such as rings, vector. 8236 */ 8237 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8238 { 8239 int i; 8240 8241 for (i = 0; i < ch->num_txq; i++) { 8242 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8243 struct ice_ring_container *rc; 8244 struct ice_tx_ring *tx_ring; 8245 struct ice_rx_ring *rx_ring; 8246 8247 tx_ring = vsi->tx_rings[ch->base_q + i]; 8248 rx_ring = vsi->rx_rings[ch->base_q + i]; 8249 if (!tx_ring || !rx_ring) 8250 continue; 8251 8252 /* setup ring being channel enabled */ 8253 tx_ring->ch = ch; 8254 rx_ring->ch = ch; 8255 8256 /* following code block sets up vector specific attributes */ 8257 tx_q_vector = tx_ring->q_vector; 8258 rx_q_vector = rx_ring->q_vector; 8259 if (!tx_q_vector && !rx_q_vector) 8260 continue; 8261 8262 if (tx_q_vector) { 8263 tx_q_vector->ch = ch; 8264 /* setup Tx and Rx ITR setting if DIM is off */ 8265 rc = &tx_q_vector->tx; 8266 if (!ITR_IS_DYNAMIC(rc)) 8267 ice_write_itr(rc, rc->itr_setting); 8268 } 8269 if (rx_q_vector) { 8270 rx_q_vector->ch = ch; 8271 /* setup Tx and Rx ITR setting if DIM is off */ 8272 rc = &rx_q_vector->rx; 8273 if (!ITR_IS_DYNAMIC(rc)) 8274 ice_write_itr(rc, rc->itr_setting); 8275 } 8276 } 8277 8278 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8279 * GLINT_ITR register would have written to perform in-context 8280 * update, hence perform flush 8281 */ 8282 if (ch->num_txq || ch->num_rxq) 8283 ice_flush(&vsi->back->hw); 8284 } 8285 8286 /** 8287 * ice_cfg_chnl_all_res - configure channel resources 8288 * @vsi: pte to main_vsi 8289 * @ch: ptr to channel structure 8290 * 8291 * This function configures channel specific resources such as flow-director 8292 * counter index, and other resources such as queues, vectors, ITR settings 8293 */ 8294 static void 8295 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8296 { 8297 /* configure channel (aka ADQ) resources such as queues, vectors, 8298 * ITR settings for channel specific vectors and anything else 8299 */ 8300 ice_chnl_cfg_res(vsi, ch); 8301 } 8302 8303 /** 8304 * ice_setup_hw_channel - setup new channel 8305 * @pf: ptr to PF device 8306 * @vsi: the VSI being setup 8307 * @ch: ptr to channel structure 8308 * @sw_id: underlying HW switching element ID 8309 * @type: type of channel to be created (VMDq2/VF) 8310 * 8311 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8312 * and configures Tx rings accordingly 8313 */ 8314 static int 8315 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8316 struct ice_channel *ch, u16 sw_id, u8 type) 8317 { 8318 struct device *dev = ice_pf_to_dev(pf); 8319 int ret; 8320 8321 ch->base_q = vsi->next_base_q; 8322 ch->type = type; 8323 8324 ret = ice_add_channel(pf, sw_id, ch); 8325 if (ret) { 8326 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8327 return ret; 8328 } 8329 8330 /* configure/setup ADQ specific resources */ 8331 ice_cfg_chnl_all_res(vsi, ch); 8332 8333 /* make sure to update the next_base_q so that subsequent channel's 8334 * (aka ADQ) VSI queue map is correct 8335 */ 8336 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8337 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8338 ch->num_rxq); 8339 8340 return 0; 8341 } 8342 8343 /** 8344 * ice_setup_channel - setup new channel using uplink element 8345 * @pf: ptr to PF device 8346 * @vsi: the VSI being setup 8347 * @ch: ptr to channel structure 8348 * 8349 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8350 * and uplink switching element 8351 */ 8352 static bool 8353 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8354 struct ice_channel *ch) 8355 { 8356 struct device *dev = ice_pf_to_dev(pf); 8357 u16 sw_id; 8358 int ret; 8359 8360 if (vsi->type != ICE_VSI_PF) { 8361 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8362 return false; 8363 } 8364 8365 sw_id = pf->first_sw->sw_id; 8366 8367 /* create channel (VSI) */ 8368 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8369 if (ret) { 8370 dev_err(dev, "failed to setup hw_channel\n"); 8371 return false; 8372 } 8373 dev_dbg(dev, "successfully created channel()\n"); 8374 8375 return ch->ch_vsi ? true : false; 8376 } 8377 8378 /** 8379 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8380 * @vsi: VSI to be configured 8381 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8382 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8383 */ 8384 static int 8385 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8386 { 8387 int err; 8388 8389 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8390 if (err) 8391 return err; 8392 8393 return ice_set_max_bw_limit(vsi, max_tx_rate); 8394 } 8395 8396 /** 8397 * ice_create_q_channel - function to create channel 8398 * @vsi: VSI to be configured 8399 * @ch: ptr to channel (it contains channel specific params) 8400 * 8401 * This function creates channel (VSI) using num_queues specified by user, 8402 * reconfigs RSS if needed. 8403 */ 8404 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8405 { 8406 struct ice_pf *pf = vsi->back; 8407 struct device *dev; 8408 8409 if (!ch) 8410 return -EINVAL; 8411 8412 dev = ice_pf_to_dev(pf); 8413 if (!ch->num_txq || !ch->num_rxq) { 8414 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8415 return -EINVAL; 8416 } 8417 8418 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8419 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8420 vsi->cnt_q_avail, ch->num_txq); 8421 return -EINVAL; 8422 } 8423 8424 if (!ice_setup_channel(pf, vsi, ch)) { 8425 dev_info(dev, "Failed to setup channel\n"); 8426 return -EINVAL; 8427 } 8428 /* configure BW rate limit */ 8429 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8430 int ret; 8431 8432 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8433 ch->min_tx_rate); 8434 if (ret) 8435 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8436 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8437 else 8438 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8439 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8440 } 8441 8442 vsi->cnt_q_avail -= ch->num_txq; 8443 8444 return 0; 8445 } 8446 8447 /** 8448 * ice_rem_all_chnl_fltrs - removes all channel filters 8449 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8450 * 8451 * Remove all advanced switch filters only if they are channel specific 8452 * tc-flower based filter 8453 */ 8454 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8455 { 8456 struct ice_tc_flower_fltr *fltr; 8457 struct hlist_node *node; 8458 8459 /* to remove all channel filters, iterate an ordered list of filters */ 8460 hlist_for_each_entry_safe(fltr, node, 8461 &pf->tc_flower_fltr_list, 8462 tc_flower_node) { 8463 struct ice_rule_query_data rule; 8464 int status; 8465 8466 /* for now process only channel specific filters */ 8467 if (!ice_is_chnl_fltr(fltr)) 8468 continue; 8469 8470 rule.rid = fltr->rid; 8471 rule.rule_id = fltr->rule_id; 8472 rule.vsi_handle = fltr->dest_vsi_handle; 8473 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8474 if (status) { 8475 if (status == -ENOENT) 8476 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8477 rule.rule_id); 8478 else 8479 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8480 status); 8481 } else if (fltr->dest_vsi) { 8482 /* update advanced switch filter count */ 8483 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8484 u32 flags = fltr->flags; 8485 8486 fltr->dest_vsi->num_chnl_fltr--; 8487 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8488 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8489 pf->num_dmac_chnl_fltrs--; 8490 } 8491 } 8492 8493 hlist_del(&fltr->tc_flower_node); 8494 kfree(fltr); 8495 } 8496 } 8497 8498 /** 8499 * ice_remove_q_channels - Remove queue channels for the TCs 8500 * @vsi: VSI to be configured 8501 * @rem_fltr: delete advanced switch filter or not 8502 * 8503 * Remove queue channels for the TCs 8504 */ 8505 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8506 { 8507 struct ice_channel *ch, *ch_tmp; 8508 struct ice_pf *pf = vsi->back; 8509 int i; 8510 8511 /* remove all tc-flower based filter if they are channel filters only */ 8512 if (rem_fltr) 8513 ice_rem_all_chnl_fltrs(pf); 8514 8515 /* remove ntuple filters since queue configuration is being changed */ 8516 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8517 struct ice_hw *hw = &pf->hw; 8518 8519 mutex_lock(&hw->fdir_fltr_lock); 8520 ice_fdir_del_all_fltrs(vsi); 8521 mutex_unlock(&hw->fdir_fltr_lock); 8522 } 8523 8524 /* perform cleanup for channels if they exist */ 8525 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8526 struct ice_vsi *ch_vsi; 8527 8528 list_del(&ch->list); 8529 ch_vsi = ch->ch_vsi; 8530 if (!ch_vsi) { 8531 kfree(ch); 8532 continue; 8533 } 8534 8535 /* Reset queue contexts */ 8536 for (i = 0; i < ch->num_rxq; i++) { 8537 struct ice_tx_ring *tx_ring; 8538 struct ice_rx_ring *rx_ring; 8539 8540 tx_ring = vsi->tx_rings[ch->base_q + i]; 8541 rx_ring = vsi->rx_rings[ch->base_q + i]; 8542 if (tx_ring) { 8543 tx_ring->ch = NULL; 8544 if (tx_ring->q_vector) 8545 tx_ring->q_vector->ch = NULL; 8546 } 8547 if (rx_ring) { 8548 rx_ring->ch = NULL; 8549 if (rx_ring->q_vector) 8550 rx_ring->q_vector->ch = NULL; 8551 } 8552 } 8553 8554 /* Release FD resources for the channel VSI */ 8555 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8556 8557 /* clear the VSI from scheduler tree */ 8558 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8559 8560 /* Delete VSI from FW, PF and HW VSI arrays */ 8561 ice_vsi_delete(ch->ch_vsi); 8562 8563 /* free the channel */ 8564 kfree(ch); 8565 } 8566 8567 /* clear the channel VSI map which is stored in main VSI */ 8568 ice_for_each_chnl_tc(i) 8569 vsi->tc_map_vsi[i] = NULL; 8570 8571 /* reset main VSI's all TC information */ 8572 vsi->all_enatc = 0; 8573 vsi->all_numtc = 0; 8574 } 8575 8576 /** 8577 * ice_rebuild_channels - rebuild channel 8578 * @pf: ptr to PF 8579 * 8580 * Recreate channel VSIs and replay filters 8581 */ 8582 static int ice_rebuild_channels(struct ice_pf *pf) 8583 { 8584 struct device *dev = ice_pf_to_dev(pf); 8585 struct ice_vsi *main_vsi; 8586 bool rem_adv_fltr = true; 8587 struct ice_channel *ch; 8588 struct ice_vsi *vsi; 8589 int tc_idx = 1; 8590 int i, err; 8591 8592 main_vsi = ice_get_main_vsi(pf); 8593 if (!main_vsi) 8594 return 0; 8595 8596 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8597 main_vsi->old_numtc == 1) 8598 return 0; /* nothing to be done */ 8599 8600 /* reconfigure main VSI based on old value of TC and cached values 8601 * for MQPRIO opts 8602 */ 8603 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8604 if (err) { 8605 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8606 main_vsi->old_ena_tc, main_vsi->vsi_num); 8607 return err; 8608 } 8609 8610 /* rebuild ADQ VSIs */ 8611 ice_for_each_vsi(pf, i) { 8612 enum ice_vsi_type type; 8613 8614 vsi = pf->vsi[i]; 8615 if (!vsi || vsi->type != ICE_VSI_CHNL) 8616 continue; 8617 8618 type = vsi->type; 8619 8620 /* rebuild ADQ VSI */ 8621 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8622 if (err) { 8623 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8624 ice_vsi_type_str(type), vsi->idx, err); 8625 goto cleanup; 8626 } 8627 8628 /* Re-map HW VSI number, using VSI handle that has been 8629 * previously validated in ice_replay_vsi() call above 8630 */ 8631 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8632 8633 /* replay filters for the VSI */ 8634 err = ice_replay_vsi(&pf->hw, vsi->idx); 8635 if (err) { 8636 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8637 ice_vsi_type_str(type), err, vsi->idx); 8638 rem_adv_fltr = false; 8639 goto cleanup; 8640 } 8641 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8642 ice_vsi_type_str(type), vsi->idx); 8643 8644 /* store ADQ VSI at correct TC index in main VSI's 8645 * map of TC to VSI 8646 */ 8647 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8648 } 8649 8650 /* ADQ VSI(s) has been rebuilt successfully, so setup 8651 * channel for main VSI's Tx and Rx rings 8652 */ 8653 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8654 struct ice_vsi *ch_vsi; 8655 8656 ch_vsi = ch->ch_vsi; 8657 if (!ch_vsi) 8658 continue; 8659 8660 /* reconfig channel resources */ 8661 ice_cfg_chnl_all_res(main_vsi, ch); 8662 8663 /* replay BW rate limit if it is non-zero */ 8664 if (!ch->max_tx_rate && !ch->min_tx_rate) 8665 continue; 8666 8667 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8668 ch->min_tx_rate); 8669 if (err) 8670 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8671 err, ch->max_tx_rate, ch->min_tx_rate, 8672 ch_vsi->vsi_num); 8673 else 8674 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8675 ch->max_tx_rate, ch->min_tx_rate, 8676 ch_vsi->vsi_num); 8677 } 8678 8679 /* reconfig RSS for main VSI */ 8680 if (main_vsi->ch_rss_size) 8681 ice_vsi_cfg_rss_lut_key(main_vsi); 8682 8683 return 0; 8684 8685 cleanup: 8686 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8687 return err; 8688 } 8689 8690 /** 8691 * ice_create_q_channels - Add queue channel for the given TCs 8692 * @vsi: VSI to be configured 8693 * 8694 * Configures queue channel mapping to the given TCs 8695 */ 8696 static int ice_create_q_channels(struct ice_vsi *vsi) 8697 { 8698 struct ice_pf *pf = vsi->back; 8699 struct ice_channel *ch; 8700 int ret = 0, i; 8701 8702 ice_for_each_chnl_tc(i) { 8703 if (!(vsi->all_enatc & BIT(i))) 8704 continue; 8705 8706 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8707 if (!ch) { 8708 ret = -ENOMEM; 8709 goto err_free; 8710 } 8711 INIT_LIST_HEAD(&ch->list); 8712 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8713 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8714 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8715 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8716 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8717 8718 /* convert to Kbits/s */ 8719 if (ch->max_tx_rate) 8720 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8721 ICE_BW_KBPS_DIVISOR); 8722 if (ch->min_tx_rate) 8723 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8724 ICE_BW_KBPS_DIVISOR); 8725 8726 ret = ice_create_q_channel(vsi, ch); 8727 if (ret) { 8728 dev_err(ice_pf_to_dev(pf), 8729 "failed creating channel TC:%d\n", i); 8730 kfree(ch); 8731 goto err_free; 8732 } 8733 list_add_tail(&ch->list, &vsi->ch_list); 8734 vsi->tc_map_vsi[i] = ch->ch_vsi; 8735 dev_dbg(ice_pf_to_dev(pf), 8736 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8737 } 8738 return 0; 8739 8740 err_free: 8741 ice_remove_q_channels(vsi, false); 8742 8743 return ret; 8744 } 8745 8746 /** 8747 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8748 * @netdev: net device to configure 8749 * @type_data: TC offload data 8750 */ 8751 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8752 { 8753 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8754 struct ice_netdev_priv *np = netdev_priv(netdev); 8755 struct ice_vsi *vsi = np->vsi; 8756 struct ice_pf *pf = vsi->back; 8757 u16 mode, ena_tc_qdisc = 0; 8758 int cur_txq, cur_rxq; 8759 u8 hw = 0, num_tcf; 8760 struct device *dev; 8761 int ret, i; 8762 8763 dev = ice_pf_to_dev(pf); 8764 num_tcf = mqprio_qopt->qopt.num_tc; 8765 hw = mqprio_qopt->qopt.hw; 8766 mode = mqprio_qopt->mode; 8767 if (!hw) { 8768 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8769 vsi->ch_rss_size = 0; 8770 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8771 goto config_tcf; 8772 } 8773 8774 /* Generate queue region map for number of TCF requested */ 8775 for (i = 0; i < num_tcf; i++) 8776 ena_tc_qdisc |= BIT(i); 8777 8778 switch (mode) { 8779 case TC_MQPRIO_MODE_CHANNEL: 8780 8781 if (pf->hw.port_info->is_custom_tx_enabled) { 8782 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8783 return -EBUSY; 8784 } 8785 ice_tear_down_devlink_rate_tree(pf); 8786 8787 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8788 if (ret) { 8789 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8790 ret); 8791 return ret; 8792 } 8793 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8794 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8795 /* don't assume state of hw_tc_offload during driver load 8796 * and set the flag for TC flower filter if hw_tc_offload 8797 * already ON 8798 */ 8799 if (vsi->netdev->features & NETIF_F_HW_TC) 8800 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8801 break; 8802 default: 8803 return -EINVAL; 8804 } 8805 8806 config_tcf: 8807 8808 /* Requesting same TCF configuration as already enabled */ 8809 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8810 mode != TC_MQPRIO_MODE_CHANNEL) 8811 return 0; 8812 8813 /* Pause VSI queues */ 8814 ice_dis_vsi(vsi, true); 8815 8816 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8817 ice_remove_q_channels(vsi, true); 8818 8819 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8820 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8821 num_online_cpus()); 8822 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8823 num_online_cpus()); 8824 } else { 8825 /* logic to rebuild VSI, same like ethtool -L */ 8826 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8827 8828 for (i = 0; i < num_tcf; i++) { 8829 if (!(ena_tc_qdisc & BIT(i))) 8830 continue; 8831 8832 offset = vsi->mqprio_qopt.qopt.offset[i]; 8833 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8834 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8835 } 8836 vsi->req_txq = offset + qcount_tx; 8837 vsi->req_rxq = offset + qcount_rx; 8838 8839 /* store away original rss_size info, so that it gets reused 8840 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8841 * determine, what should be the rss_sizefor main VSI 8842 */ 8843 vsi->orig_rss_size = vsi->rss_size; 8844 } 8845 8846 /* save current values of Tx and Rx queues before calling VSI rebuild 8847 * for fallback option 8848 */ 8849 cur_txq = vsi->num_txq; 8850 cur_rxq = vsi->num_rxq; 8851 8852 /* proceed with rebuild main VSI using correct number of queues */ 8853 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8854 if (ret) { 8855 /* fallback to current number of queues */ 8856 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8857 vsi->req_txq = cur_txq; 8858 vsi->req_rxq = cur_rxq; 8859 clear_bit(ICE_RESET_FAILED, pf->state); 8860 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8861 dev_err(dev, "Rebuild of main VSI failed again\n"); 8862 return ret; 8863 } 8864 } 8865 8866 vsi->all_numtc = num_tcf; 8867 vsi->all_enatc = ena_tc_qdisc; 8868 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8869 if (ret) { 8870 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8871 vsi->vsi_num); 8872 goto exit; 8873 } 8874 8875 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8876 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8877 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8878 8879 /* set TC0 rate limit if specified */ 8880 if (max_tx_rate || min_tx_rate) { 8881 /* convert to Kbits/s */ 8882 if (max_tx_rate) 8883 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8884 if (min_tx_rate) 8885 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8886 8887 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8888 if (!ret) { 8889 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8890 max_tx_rate, min_tx_rate, vsi->vsi_num); 8891 } else { 8892 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8893 max_tx_rate, min_tx_rate, vsi->vsi_num); 8894 goto exit; 8895 } 8896 } 8897 ret = ice_create_q_channels(vsi); 8898 if (ret) { 8899 netdev_err(netdev, "failed configuring queue channels\n"); 8900 goto exit; 8901 } else { 8902 netdev_dbg(netdev, "successfully configured channels\n"); 8903 } 8904 } 8905 8906 if (vsi->ch_rss_size) 8907 ice_vsi_cfg_rss_lut_key(vsi); 8908 8909 exit: 8910 /* if error, reset the all_numtc and all_enatc */ 8911 if (ret) { 8912 vsi->all_numtc = 0; 8913 vsi->all_enatc = 0; 8914 } 8915 /* resume VSI */ 8916 ice_ena_vsi(vsi, true); 8917 8918 return ret; 8919 } 8920 8921 static LIST_HEAD(ice_block_cb_list); 8922 8923 static int 8924 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8925 void *type_data) 8926 { 8927 struct ice_netdev_priv *np = netdev_priv(netdev); 8928 struct ice_pf *pf = np->vsi->back; 8929 bool locked = false; 8930 int err; 8931 8932 switch (type) { 8933 case TC_SETUP_BLOCK: 8934 return flow_block_cb_setup_simple(type_data, 8935 &ice_block_cb_list, 8936 ice_setup_tc_block_cb, 8937 np, np, true); 8938 case TC_SETUP_QDISC_MQPRIO: 8939 if (ice_is_eswitch_mode_switchdev(pf)) { 8940 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8941 return -EOPNOTSUPP; 8942 } 8943 8944 if (pf->adev) { 8945 mutex_lock(&pf->adev_mutex); 8946 device_lock(&pf->adev->dev); 8947 locked = true; 8948 if (pf->adev->dev.driver) { 8949 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8950 err = -EBUSY; 8951 goto adev_unlock; 8952 } 8953 } 8954 8955 /* setup traffic classifier for receive side */ 8956 mutex_lock(&pf->tc_mutex); 8957 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8958 mutex_unlock(&pf->tc_mutex); 8959 8960 adev_unlock: 8961 if (locked) { 8962 device_unlock(&pf->adev->dev); 8963 mutex_unlock(&pf->adev_mutex); 8964 } 8965 return err; 8966 default: 8967 return -EOPNOTSUPP; 8968 } 8969 return -EOPNOTSUPP; 8970 } 8971 8972 static struct ice_indr_block_priv * 8973 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8974 struct net_device *netdev) 8975 { 8976 struct ice_indr_block_priv *cb_priv; 8977 8978 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8979 if (!cb_priv->netdev) 8980 return NULL; 8981 if (cb_priv->netdev == netdev) 8982 return cb_priv; 8983 } 8984 return NULL; 8985 } 8986 8987 static int 8988 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8989 void *indr_priv) 8990 { 8991 struct ice_indr_block_priv *priv = indr_priv; 8992 struct ice_netdev_priv *np = priv->np; 8993 8994 switch (type) { 8995 case TC_SETUP_CLSFLOWER: 8996 return ice_setup_tc_cls_flower(np, priv->netdev, 8997 (struct flow_cls_offload *) 8998 type_data); 8999 default: 9000 return -EOPNOTSUPP; 9001 } 9002 } 9003 9004 static int 9005 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9006 struct ice_netdev_priv *np, 9007 struct flow_block_offload *f, void *data, 9008 void (*cleanup)(struct flow_block_cb *block_cb)) 9009 { 9010 struct ice_indr_block_priv *indr_priv; 9011 struct flow_block_cb *block_cb; 9012 9013 if (!ice_is_tunnel_supported(netdev) && 9014 !(is_vlan_dev(netdev) && 9015 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9016 return -EOPNOTSUPP; 9017 9018 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9019 return -EOPNOTSUPP; 9020 9021 switch (f->command) { 9022 case FLOW_BLOCK_BIND: 9023 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9024 if (indr_priv) 9025 return -EEXIST; 9026 9027 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9028 if (!indr_priv) 9029 return -ENOMEM; 9030 9031 indr_priv->netdev = netdev; 9032 indr_priv->np = np; 9033 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9034 9035 block_cb = 9036 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9037 indr_priv, indr_priv, 9038 ice_rep_indr_tc_block_unbind, 9039 f, netdev, sch, data, np, 9040 cleanup); 9041 9042 if (IS_ERR(block_cb)) { 9043 list_del(&indr_priv->list); 9044 kfree(indr_priv); 9045 return PTR_ERR(block_cb); 9046 } 9047 flow_block_cb_add(block_cb, f); 9048 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9049 break; 9050 case FLOW_BLOCK_UNBIND: 9051 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9052 if (!indr_priv) 9053 return -ENOENT; 9054 9055 block_cb = flow_block_cb_lookup(f->block, 9056 ice_indr_setup_block_cb, 9057 indr_priv); 9058 if (!block_cb) 9059 return -ENOENT; 9060 9061 flow_indr_block_cb_remove(block_cb, f); 9062 9063 list_del(&block_cb->driver_list); 9064 break; 9065 default: 9066 return -EOPNOTSUPP; 9067 } 9068 return 0; 9069 } 9070 9071 static int 9072 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9073 void *cb_priv, enum tc_setup_type type, void *type_data, 9074 void *data, 9075 void (*cleanup)(struct flow_block_cb *block_cb)) 9076 { 9077 switch (type) { 9078 case TC_SETUP_BLOCK: 9079 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9080 data, cleanup); 9081 9082 default: 9083 return -EOPNOTSUPP; 9084 } 9085 } 9086 9087 /** 9088 * ice_open - Called when a network interface becomes active 9089 * @netdev: network interface device structure 9090 * 9091 * The open entry point is called when a network interface is made 9092 * active by the system (IFF_UP). At this point all resources needed 9093 * for transmit and receive operations are allocated, the interrupt 9094 * handler is registered with the OS, the netdev watchdog is enabled, 9095 * and the stack is notified that the interface is ready. 9096 * 9097 * Returns 0 on success, negative value on failure 9098 */ 9099 int ice_open(struct net_device *netdev) 9100 { 9101 struct ice_netdev_priv *np = netdev_priv(netdev); 9102 struct ice_pf *pf = np->vsi->back; 9103 9104 if (ice_is_reset_in_progress(pf->state)) { 9105 netdev_err(netdev, "can't open net device while reset is in progress"); 9106 return -EBUSY; 9107 } 9108 9109 return ice_open_internal(netdev); 9110 } 9111 9112 /** 9113 * ice_open_internal - Called when a network interface becomes active 9114 * @netdev: network interface device structure 9115 * 9116 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9117 * handling routine 9118 * 9119 * Returns 0 on success, negative value on failure 9120 */ 9121 int ice_open_internal(struct net_device *netdev) 9122 { 9123 struct ice_netdev_priv *np = netdev_priv(netdev); 9124 struct ice_vsi *vsi = np->vsi; 9125 struct ice_pf *pf = vsi->back; 9126 struct ice_port_info *pi; 9127 int err; 9128 9129 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9130 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9131 return -EIO; 9132 } 9133 9134 netif_carrier_off(netdev); 9135 9136 pi = vsi->port_info; 9137 err = ice_update_link_info(pi); 9138 if (err) { 9139 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9140 return err; 9141 } 9142 9143 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9144 9145 /* Set PHY if there is media, otherwise, turn off PHY */ 9146 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9147 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9148 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9149 err = ice_init_phy_user_cfg(pi); 9150 if (err) { 9151 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9152 err); 9153 return err; 9154 } 9155 } 9156 9157 err = ice_configure_phy(vsi); 9158 if (err) { 9159 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9160 err); 9161 return err; 9162 } 9163 } else { 9164 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9165 ice_set_link(vsi, false); 9166 } 9167 9168 err = ice_vsi_open(vsi); 9169 if (err) 9170 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9171 vsi->vsi_num, vsi->vsw->sw_id); 9172 9173 /* Update existing tunnels information */ 9174 udp_tunnel_get_rx_info(netdev); 9175 9176 return err; 9177 } 9178 9179 /** 9180 * ice_stop - Disables a network interface 9181 * @netdev: network interface device structure 9182 * 9183 * The stop entry point is called when an interface is de-activated by the OS, 9184 * and the netdevice enters the DOWN state. The hardware is still under the 9185 * driver's control, but the netdev interface is disabled. 9186 * 9187 * Returns success only - not allowed to fail 9188 */ 9189 int ice_stop(struct net_device *netdev) 9190 { 9191 struct ice_netdev_priv *np = netdev_priv(netdev); 9192 struct ice_vsi *vsi = np->vsi; 9193 struct ice_pf *pf = vsi->back; 9194 9195 if (ice_is_reset_in_progress(pf->state)) { 9196 netdev_err(netdev, "can't stop net device while reset is in progress"); 9197 return -EBUSY; 9198 } 9199 9200 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9201 int link_err = ice_force_phys_link_state(vsi, false); 9202 9203 if (link_err) { 9204 if (link_err == -ENOMEDIUM) 9205 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9206 vsi->vsi_num); 9207 else 9208 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9209 vsi->vsi_num, link_err); 9210 9211 ice_vsi_close(vsi); 9212 return -EIO; 9213 } 9214 } 9215 9216 ice_vsi_close(vsi); 9217 9218 return 0; 9219 } 9220 9221 /** 9222 * ice_features_check - Validate encapsulated packet conforms to limits 9223 * @skb: skb buffer 9224 * @netdev: This port's netdev 9225 * @features: Offload features that the stack believes apply 9226 */ 9227 static netdev_features_t 9228 ice_features_check(struct sk_buff *skb, 9229 struct net_device __always_unused *netdev, 9230 netdev_features_t features) 9231 { 9232 bool gso = skb_is_gso(skb); 9233 size_t len; 9234 9235 /* No point in doing any of this if neither checksum nor GSO are 9236 * being requested for this frame. We can rule out both by just 9237 * checking for CHECKSUM_PARTIAL 9238 */ 9239 if (skb->ip_summed != CHECKSUM_PARTIAL) 9240 return features; 9241 9242 /* We cannot support GSO if the MSS is going to be less than 9243 * 64 bytes. If it is then we need to drop support for GSO. 9244 */ 9245 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9246 features &= ~NETIF_F_GSO_MASK; 9247 9248 len = skb_network_offset(skb); 9249 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9250 goto out_rm_features; 9251 9252 len = skb_network_header_len(skb); 9253 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9254 goto out_rm_features; 9255 9256 if (skb->encapsulation) { 9257 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9258 * the case of IPIP frames, the transport header pointer is 9259 * after the inner header! So check to make sure that this 9260 * is a GRE or UDP_TUNNEL frame before doing that math. 9261 */ 9262 if (gso && (skb_shinfo(skb)->gso_type & 9263 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9264 len = skb_inner_network_header(skb) - 9265 skb_transport_header(skb); 9266 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9267 goto out_rm_features; 9268 } 9269 9270 len = skb_inner_network_header_len(skb); 9271 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9272 goto out_rm_features; 9273 } 9274 9275 return features; 9276 out_rm_features: 9277 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9278 } 9279 9280 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9281 .ndo_open = ice_open, 9282 .ndo_stop = ice_stop, 9283 .ndo_start_xmit = ice_start_xmit, 9284 .ndo_set_mac_address = ice_set_mac_address, 9285 .ndo_validate_addr = eth_validate_addr, 9286 .ndo_change_mtu = ice_change_mtu, 9287 .ndo_get_stats64 = ice_get_stats64, 9288 .ndo_tx_timeout = ice_tx_timeout, 9289 .ndo_bpf = ice_xdp_safe_mode, 9290 }; 9291 9292 static const struct net_device_ops ice_netdev_ops = { 9293 .ndo_open = ice_open, 9294 .ndo_stop = ice_stop, 9295 .ndo_start_xmit = ice_start_xmit, 9296 .ndo_select_queue = ice_select_queue, 9297 .ndo_features_check = ice_features_check, 9298 .ndo_fix_features = ice_fix_features, 9299 .ndo_set_rx_mode = ice_set_rx_mode, 9300 .ndo_set_mac_address = ice_set_mac_address, 9301 .ndo_validate_addr = eth_validate_addr, 9302 .ndo_change_mtu = ice_change_mtu, 9303 .ndo_get_stats64 = ice_get_stats64, 9304 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9305 .ndo_eth_ioctl = ice_eth_ioctl, 9306 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9307 .ndo_set_vf_mac = ice_set_vf_mac, 9308 .ndo_get_vf_config = ice_get_vf_cfg, 9309 .ndo_set_vf_trust = ice_set_vf_trust, 9310 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9311 .ndo_set_vf_link_state = ice_set_vf_link_state, 9312 .ndo_get_vf_stats = ice_get_vf_stats, 9313 .ndo_set_vf_rate = ice_set_vf_bw, 9314 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9315 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9316 .ndo_setup_tc = ice_setup_tc, 9317 .ndo_set_features = ice_set_features, 9318 .ndo_bridge_getlink = ice_bridge_getlink, 9319 .ndo_bridge_setlink = ice_bridge_setlink, 9320 .ndo_fdb_add = ice_fdb_add, 9321 .ndo_fdb_del = ice_fdb_del, 9322 #ifdef CONFIG_RFS_ACCEL 9323 .ndo_rx_flow_steer = ice_rx_flow_steer, 9324 #endif 9325 .ndo_tx_timeout = ice_tx_timeout, 9326 .ndo_bpf = ice_xdp, 9327 .ndo_xdp_xmit = ice_xdp_xmit, 9328 .ndo_xsk_wakeup = ice_xsk_wakeup, 9329 }; 9330