1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 bool netif_is_ice(struct net_device *dev) 48 { 49 return dev && (dev->netdev_ops == &ice_netdev_ops); 50 } 51 52 /** 53 * ice_get_tx_pending - returns number of Tx descriptors not processed 54 * @ring: the ring of descriptors 55 */ 56 static u16 ice_get_tx_pending(struct ice_ring *ring) 57 { 58 u16 head, tail; 59 60 head = ring->next_to_clean; 61 tail = ring->next_to_use; 62 63 if (head != tail) 64 return (head < tail) ? 65 tail - head : (tail + ring->count - head); 66 return 0; 67 } 68 69 /** 70 * ice_check_for_hang_subtask - check for and recover hung queues 71 * @pf: pointer to PF struct 72 */ 73 static void ice_check_for_hang_subtask(struct ice_pf *pf) 74 { 75 struct ice_vsi *vsi = NULL; 76 struct ice_hw *hw; 77 unsigned int i; 78 int packets; 79 u32 v; 80 81 ice_for_each_vsi(pf, v) 82 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 83 vsi = pf->vsi[v]; 84 break; 85 } 86 87 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 88 return; 89 90 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 91 return; 92 93 hw = &vsi->back->hw; 94 95 for (i = 0; i < vsi->num_txq; i++) { 96 struct ice_ring *tx_ring = vsi->tx_rings[i]; 97 98 if (tx_ring && tx_ring->desc) { 99 /* If packet counter has not changed the queue is 100 * likely stalled, so force an interrupt for this 101 * queue. 102 * 103 * prev_pkt would be negative if there was no 104 * pending work. 105 */ 106 packets = tx_ring->stats.pkts & INT_MAX; 107 if (tx_ring->tx_stats.prev_pkt == packets) { 108 /* Trigger sw interrupt to revive the queue */ 109 ice_trigger_sw_intr(hw, tx_ring->q_vector); 110 continue; 111 } 112 113 /* Memory barrier between read of packet count and call 114 * to ice_get_tx_pending() 115 */ 116 smp_rmb(); 117 tx_ring->tx_stats.prev_pkt = 118 ice_get_tx_pending(tx_ring) ? packets : -1; 119 } 120 } 121 } 122 123 /** 124 * ice_init_mac_fltr - Set initial MAC filters 125 * @pf: board private structure 126 * 127 * Set initial set of MAC filters for PF VSI; configure filters for permanent 128 * address and broadcast address. If an error is encountered, netdevice will be 129 * unregistered. 130 */ 131 static int ice_init_mac_fltr(struct ice_pf *pf) 132 { 133 enum ice_status status; 134 struct ice_vsi *vsi; 135 u8 *perm_addr; 136 137 vsi = ice_get_main_vsi(pf); 138 if (!vsi) 139 return -EINVAL; 140 141 perm_addr = vsi->port_info->mac.perm_addr; 142 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 143 if (status) 144 return -EIO; 145 146 return 0; 147 } 148 149 /** 150 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 151 * @netdev: the net device on which the sync is happening 152 * @addr: MAC address to sync 153 * 154 * This is a callback function which is called by the in kernel device sync 155 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 156 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 157 * MAC filters from the hardware. 158 */ 159 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 160 { 161 struct ice_netdev_priv *np = netdev_priv(netdev); 162 struct ice_vsi *vsi = np->vsi; 163 164 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 165 ICE_FWD_TO_VSI)) 166 return -EINVAL; 167 168 return 0; 169 } 170 171 /** 172 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 173 * @netdev: the net device on which the unsync is happening 174 * @addr: MAC address to unsync 175 * 176 * This is a callback function which is called by the in kernel device unsync 177 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 178 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 179 * delete the MAC filters from the hardware. 180 */ 181 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 182 { 183 struct ice_netdev_priv *np = netdev_priv(netdev); 184 struct ice_vsi *vsi = np->vsi; 185 186 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 187 ICE_FWD_TO_VSI)) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 /** 194 * ice_vsi_fltr_changed - check if filter state changed 195 * @vsi: VSI to be checked 196 * 197 * returns true if filter state has changed, false otherwise. 198 */ 199 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 200 { 201 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 202 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 203 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 204 } 205 206 /** 207 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 208 * @vsi: the VSI being configured 209 * @promisc_m: mask of promiscuous config bits 210 * @set_promisc: enable or disable promisc flag request 211 * 212 */ 213 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 214 { 215 struct ice_hw *hw = &vsi->back->hw; 216 enum ice_status status = 0; 217 218 if (vsi->type != ICE_VSI_PF) 219 return 0; 220 221 if (vsi->num_vlan > 1) { 222 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 223 set_promisc); 224 } else { 225 if (set_promisc) 226 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 227 0); 228 else 229 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 230 0); 231 } 232 233 if (status) 234 return -EIO; 235 236 return 0; 237 } 238 239 /** 240 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 241 * @vsi: ptr to the VSI 242 * 243 * Push any outstanding VSI filter changes through the AdminQ. 244 */ 245 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 246 { 247 struct device *dev = ice_pf_to_dev(vsi->back); 248 struct net_device *netdev = vsi->netdev; 249 bool promisc_forced_on = false; 250 struct ice_pf *pf = vsi->back; 251 struct ice_hw *hw = &pf->hw; 252 enum ice_status status = 0; 253 u32 changed_flags = 0; 254 u8 promisc_m; 255 int err = 0; 256 257 if (!vsi->netdev) 258 return -EINVAL; 259 260 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 261 usleep_range(1000, 2000); 262 263 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 264 vsi->current_netdev_flags = vsi->netdev->flags; 265 266 INIT_LIST_HEAD(&vsi->tmp_sync_list); 267 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 268 269 if (ice_vsi_fltr_changed(vsi)) { 270 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 271 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 272 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 273 274 /* grab the netdev's addr_list_lock */ 275 netif_addr_lock_bh(netdev); 276 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 277 ice_add_mac_to_unsync_list); 278 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 279 ice_add_mac_to_unsync_list); 280 /* our temp lists are populated. release lock */ 281 netif_addr_unlock_bh(netdev); 282 } 283 284 /* Remove MAC addresses in the unsync list */ 285 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 286 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 287 if (status) { 288 netdev_err(netdev, "Failed to delete MAC filters\n"); 289 /* if we failed because of alloc failures, just bail */ 290 if (status == ICE_ERR_NO_MEMORY) { 291 err = -ENOMEM; 292 goto out; 293 } 294 } 295 296 /* Add MAC addresses in the sync list */ 297 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 298 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 299 /* If filter is added successfully or already exists, do not go into 300 * 'if' condition and report it as error. Instead continue processing 301 * rest of the function. 302 */ 303 if (status && status != ICE_ERR_ALREADY_EXISTS) { 304 netdev_err(netdev, "Failed to add MAC filters\n"); 305 /* If there is no more space for new umac filters, VSI 306 * should go into promiscuous mode. There should be some 307 * space reserved for promiscuous filters. 308 */ 309 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 310 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 311 vsi->state)) { 312 promisc_forced_on = true; 313 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 314 vsi->vsi_num); 315 } else { 316 err = -EIO; 317 goto out; 318 } 319 } 320 /* check for changes in promiscuous modes */ 321 if (changed_flags & IFF_ALLMULTI) { 322 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 323 if (vsi->num_vlan > 1) 324 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 325 else 326 promisc_m = ICE_MCAST_PROMISC_BITS; 327 328 err = ice_cfg_promisc(vsi, promisc_m, true); 329 if (err) { 330 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 331 vsi->vsi_num); 332 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 333 goto out_promisc; 334 } 335 } else { 336 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 337 if (vsi->num_vlan > 1) 338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 339 else 340 promisc_m = ICE_MCAST_PROMISC_BITS; 341 342 err = ice_cfg_promisc(vsi, promisc_m, false); 343 if (err) { 344 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 345 vsi->vsi_num); 346 vsi->current_netdev_flags |= IFF_ALLMULTI; 347 goto out_promisc; 348 } 349 } 350 } 351 352 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 353 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 354 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 355 if (vsi->current_netdev_flags & IFF_PROMISC) { 356 /* Apply Rx filter rule to get traffic from wire */ 357 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 358 err = ice_set_dflt_vsi(pf->first_sw, vsi); 359 if (err && err != -EEXIST) { 360 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 361 err, vsi->vsi_num); 362 vsi->current_netdev_flags &= 363 ~IFF_PROMISC; 364 goto out_promisc; 365 } 366 ice_cfg_vlan_pruning(vsi, false, false); 367 } 368 } else { 369 /* Clear Rx filter to remove traffic from wire */ 370 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 371 err = ice_clear_dflt_vsi(pf->first_sw); 372 if (err) { 373 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 374 err, vsi->vsi_num); 375 vsi->current_netdev_flags |= 376 IFF_PROMISC; 377 goto out_promisc; 378 } 379 if (vsi->num_vlan > 1) 380 ice_cfg_vlan_pruning(vsi, true, false); 381 } 382 } 383 } 384 goto exit; 385 386 out_promisc: 387 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 388 goto exit; 389 out: 390 /* if something went wrong then set the changed flag so we try again */ 391 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 392 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 393 exit: 394 clear_bit(ICE_CFG_BUSY, vsi->state); 395 return err; 396 } 397 398 /** 399 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 400 * @pf: board private structure 401 */ 402 static void ice_sync_fltr_subtask(struct ice_pf *pf) 403 { 404 int v; 405 406 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 407 return; 408 409 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 410 411 ice_for_each_vsi(pf, v) 412 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 413 ice_vsi_sync_fltr(pf->vsi[v])) { 414 /* come back and try again later */ 415 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 416 break; 417 } 418 } 419 420 /** 421 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 422 * @pf: the PF 423 * @locked: is the rtnl_lock already held 424 */ 425 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 426 { 427 int node; 428 int v; 429 430 ice_for_each_vsi(pf, v) 431 if (pf->vsi[v]) 432 ice_dis_vsi(pf->vsi[v], locked); 433 434 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 435 pf->pf_agg_node[node].num_vsis = 0; 436 437 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 438 pf->vf_agg_node[node].num_vsis = 0; 439 } 440 441 /** 442 * ice_prepare_for_reset - prep for the core to reset 443 * @pf: board private structure 444 * 445 * Inform or close all dependent features in prep for reset. 446 */ 447 static void 448 ice_prepare_for_reset(struct ice_pf *pf) 449 { 450 struct ice_hw *hw = &pf->hw; 451 unsigned int i; 452 453 /* already prepared for reset */ 454 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 455 return; 456 457 /* Notify VFs of impending reset */ 458 if (ice_check_sq_alive(hw, &hw->mailboxq)) 459 ice_vc_notify_reset(pf); 460 461 /* Disable VFs until reset is completed */ 462 ice_for_each_vf(pf, i) 463 ice_set_vf_state_qs_dis(&pf->vf[i]); 464 465 /* clear SW filtering DB */ 466 ice_clear_hw_tbls(hw); 467 /* disable the VSIs and their queues that are not already DOWN */ 468 ice_pf_dis_all_vsi(pf, false); 469 470 if (hw->port_info) 471 ice_sched_clear_port(hw->port_info); 472 473 ice_shutdown_all_ctrlq(hw); 474 475 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 476 } 477 478 /** 479 * ice_do_reset - Initiate one of many types of resets 480 * @pf: board private structure 481 * @reset_type: reset type requested 482 * before this function was called. 483 */ 484 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 485 { 486 struct device *dev = ice_pf_to_dev(pf); 487 struct ice_hw *hw = &pf->hw; 488 489 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 490 491 ice_prepare_for_reset(pf); 492 493 /* trigger the reset */ 494 if (ice_reset(hw, reset_type)) { 495 dev_err(dev, "reset %d failed\n", reset_type); 496 set_bit(ICE_RESET_FAILED, pf->state); 497 clear_bit(ICE_RESET_OICR_RECV, pf->state); 498 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 499 clear_bit(ICE_PFR_REQ, pf->state); 500 clear_bit(ICE_CORER_REQ, pf->state); 501 clear_bit(ICE_GLOBR_REQ, pf->state); 502 return; 503 } 504 505 /* PFR is a bit of a special case because it doesn't result in an OICR 506 * interrupt. So for PFR, rebuild after the reset and clear the reset- 507 * associated state bits. 508 */ 509 if (reset_type == ICE_RESET_PFR) { 510 pf->pfr_count++; 511 ice_rebuild(pf, reset_type); 512 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 513 clear_bit(ICE_PFR_REQ, pf->state); 514 ice_reset_all_vfs(pf, true); 515 } 516 } 517 518 /** 519 * ice_reset_subtask - Set up for resetting the device and driver 520 * @pf: board private structure 521 */ 522 static void ice_reset_subtask(struct ice_pf *pf) 523 { 524 enum ice_reset_req reset_type = ICE_RESET_INVAL; 525 526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 528 * of reset is pending and sets bits in pf->state indicating the reset 529 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 530 * prepare for pending reset if not already (for PF software-initiated 531 * global resets the software should already be prepared for it as 532 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 533 * by firmware or software on other PFs, that bit is not set so prepare 534 * for the reset now), poll for reset done, rebuild and return. 535 */ 536 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 537 /* Perform the largest reset requested */ 538 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 539 reset_type = ICE_RESET_CORER; 540 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 541 reset_type = ICE_RESET_GLOBR; 542 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 543 reset_type = ICE_RESET_EMPR; 544 /* return if no valid reset type requested */ 545 if (reset_type == ICE_RESET_INVAL) 546 return; 547 ice_prepare_for_reset(pf); 548 549 /* make sure we are ready to rebuild */ 550 if (ice_check_reset(&pf->hw)) { 551 set_bit(ICE_RESET_FAILED, pf->state); 552 } else { 553 /* done with reset. start rebuild */ 554 pf->hw.reset_ongoing = false; 555 ice_rebuild(pf, reset_type); 556 /* clear bit to resume normal operations, but 557 * ICE_NEEDS_RESTART bit is set in case rebuild failed 558 */ 559 clear_bit(ICE_RESET_OICR_RECV, pf->state); 560 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 561 clear_bit(ICE_PFR_REQ, pf->state); 562 clear_bit(ICE_CORER_REQ, pf->state); 563 clear_bit(ICE_GLOBR_REQ, pf->state); 564 ice_reset_all_vfs(pf, true); 565 } 566 567 return; 568 } 569 570 /* No pending resets to finish processing. Check for new resets */ 571 if (test_bit(ICE_PFR_REQ, pf->state)) 572 reset_type = ICE_RESET_PFR; 573 if (test_bit(ICE_CORER_REQ, pf->state)) 574 reset_type = ICE_RESET_CORER; 575 if (test_bit(ICE_GLOBR_REQ, pf->state)) 576 reset_type = ICE_RESET_GLOBR; 577 /* If no valid reset type requested just return */ 578 if (reset_type == ICE_RESET_INVAL) 579 return; 580 581 /* reset if not already down or busy */ 582 if (!test_bit(ICE_DOWN, pf->state) && 583 !test_bit(ICE_CFG_BUSY, pf->state)) { 584 ice_do_reset(pf, reset_type); 585 } 586 } 587 588 /** 589 * ice_print_topo_conflict - print topology conflict message 590 * @vsi: the VSI whose topology status is being checked 591 */ 592 static void ice_print_topo_conflict(struct ice_vsi *vsi) 593 { 594 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 595 case ICE_AQ_LINK_TOPO_CONFLICT: 596 case ICE_AQ_LINK_MEDIA_CONFLICT: 597 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 598 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 599 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 600 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 601 break; 602 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 603 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 604 break; 605 default: 606 break; 607 } 608 } 609 610 /** 611 * ice_print_link_msg - print link up or down message 612 * @vsi: the VSI whose link status is being queried 613 * @isup: boolean for if the link is now up or down 614 */ 615 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 616 { 617 struct ice_aqc_get_phy_caps_data *caps; 618 const char *an_advertised; 619 enum ice_status status; 620 const char *fec_req; 621 const char *speed; 622 const char *fec; 623 const char *fc; 624 const char *an; 625 626 if (!vsi) 627 return; 628 629 if (vsi->current_isup == isup) 630 return; 631 632 vsi->current_isup = isup; 633 634 if (!isup) { 635 netdev_info(vsi->netdev, "NIC Link is Down\n"); 636 return; 637 } 638 639 switch (vsi->port_info->phy.link_info.link_speed) { 640 case ICE_AQ_LINK_SPEED_100GB: 641 speed = "100 G"; 642 break; 643 case ICE_AQ_LINK_SPEED_50GB: 644 speed = "50 G"; 645 break; 646 case ICE_AQ_LINK_SPEED_40GB: 647 speed = "40 G"; 648 break; 649 case ICE_AQ_LINK_SPEED_25GB: 650 speed = "25 G"; 651 break; 652 case ICE_AQ_LINK_SPEED_20GB: 653 speed = "20 G"; 654 break; 655 case ICE_AQ_LINK_SPEED_10GB: 656 speed = "10 G"; 657 break; 658 case ICE_AQ_LINK_SPEED_5GB: 659 speed = "5 G"; 660 break; 661 case ICE_AQ_LINK_SPEED_2500MB: 662 speed = "2.5 G"; 663 break; 664 case ICE_AQ_LINK_SPEED_1000MB: 665 speed = "1 G"; 666 break; 667 case ICE_AQ_LINK_SPEED_100MB: 668 speed = "100 M"; 669 break; 670 default: 671 speed = "Unknown "; 672 break; 673 } 674 675 switch (vsi->port_info->fc.current_mode) { 676 case ICE_FC_FULL: 677 fc = "Rx/Tx"; 678 break; 679 case ICE_FC_TX_PAUSE: 680 fc = "Tx"; 681 break; 682 case ICE_FC_RX_PAUSE: 683 fc = "Rx"; 684 break; 685 case ICE_FC_NONE: 686 fc = "None"; 687 break; 688 default: 689 fc = "Unknown"; 690 break; 691 } 692 693 /* Get FEC mode based on negotiated link info */ 694 switch (vsi->port_info->phy.link_info.fec_info) { 695 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 696 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 697 fec = "RS-FEC"; 698 break; 699 case ICE_AQ_LINK_25G_KR_FEC_EN: 700 fec = "FC-FEC/BASE-R"; 701 break; 702 default: 703 fec = "NONE"; 704 break; 705 } 706 707 /* check if autoneg completed, might be false due to not supported */ 708 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 709 an = "True"; 710 else 711 an = "False"; 712 713 /* Get FEC mode requested based on PHY caps last SW configuration */ 714 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 715 if (!caps) { 716 fec_req = "Unknown"; 717 an_advertised = "Unknown"; 718 goto done; 719 } 720 721 status = ice_aq_get_phy_caps(vsi->port_info, false, 722 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 723 if (status) 724 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 725 726 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 727 728 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 729 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 730 fec_req = "RS-FEC"; 731 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 732 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 733 fec_req = "FC-FEC/BASE-R"; 734 else 735 fec_req = "NONE"; 736 737 kfree(caps); 738 739 done: 740 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 741 speed, fec_req, fec, an_advertised, an, fc); 742 ice_print_topo_conflict(vsi); 743 } 744 745 /** 746 * ice_vsi_link_event - update the VSI's netdev 747 * @vsi: the VSI on which the link event occurred 748 * @link_up: whether or not the VSI needs to be set up or down 749 */ 750 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 751 { 752 if (!vsi) 753 return; 754 755 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 756 return; 757 758 if (vsi->type == ICE_VSI_PF) { 759 if (link_up == netif_carrier_ok(vsi->netdev)) 760 return; 761 762 if (link_up) { 763 netif_carrier_on(vsi->netdev); 764 netif_tx_wake_all_queues(vsi->netdev); 765 } else { 766 netif_carrier_off(vsi->netdev); 767 netif_tx_stop_all_queues(vsi->netdev); 768 } 769 } 770 } 771 772 /** 773 * ice_set_dflt_mib - send a default config MIB to the FW 774 * @pf: private PF struct 775 * 776 * This function sends a default configuration MIB to the FW. 777 * 778 * If this function errors out at any point, the driver is still able to 779 * function. The main impact is that LFC may not operate as expected. 780 * Therefore an error state in this function should be treated with a DBG 781 * message and continue on with driver rebuild/reenable. 782 */ 783 static void ice_set_dflt_mib(struct ice_pf *pf) 784 { 785 struct device *dev = ice_pf_to_dev(pf); 786 u8 mib_type, *buf, *lldpmib = NULL; 787 u16 len, typelen, offset = 0; 788 struct ice_lldp_org_tlv *tlv; 789 struct ice_hw *hw = &pf->hw; 790 u32 ouisubtype; 791 792 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 793 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 794 if (!lldpmib) { 795 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 796 __func__); 797 return; 798 } 799 800 /* Add ETS CFG TLV */ 801 tlv = (struct ice_lldp_org_tlv *)lldpmib; 802 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 803 ICE_IEEE_ETS_TLV_LEN); 804 tlv->typelen = htons(typelen); 805 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 806 ICE_IEEE_SUBTYPE_ETS_CFG); 807 tlv->ouisubtype = htonl(ouisubtype); 808 809 buf = tlv->tlvinfo; 810 buf[0] = 0; 811 812 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 813 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 814 * Octets 13 - 20 are TSA values - leave as zeros 815 */ 816 buf[5] = 0x64; 817 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 818 offset += len + 2; 819 tlv = (struct ice_lldp_org_tlv *) 820 ((char *)tlv + sizeof(tlv->typelen) + len); 821 822 /* Add ETS REC TLV */ 823 buf = tlv->tlvinfo; 824 tlv->typelen = htons(typelen); 825 826 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 827 ICE_IEEE_SUBTYPE_ETS_REC); 828 tlv->ouisubtype = htonl(ouisubtype); 829 830 /* First octet of buf is reserved 831 * Octets 1 - 4 map UP to TC - all UPs map to zero 832 * Octets 5 - 12 are BW values - set TC 0 to 100%. 833 * Octets 13 - 20 are TSA value - leave as zeros 834 */ 835 buf[5] = 0x64; 836 offset += len + 2; 837 tlv = (struct ice_lldp_org_tlv *) 838 ((char *)tlv + sizeof(tlv->typelen) + len); 839 840 /* Add PFC CFG TLV */ 841 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 842 ICE_IEEE_PFC_TLV_LEN); 843 tlv->typelen = htons(typelen); 844 845 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 846 ICE_IEEE_SUBTYPE_PFC_CFG); 847 tlv->ouisubtype = htonl(ouisubtype); 848 849 /* Octet 1 left as all zeros - PFC disabled */ 850 buf[0] = 0x08; 851 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 852 offset += len + 2; 853 854 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 855 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 856 857 kfree(lldpmib); 858 } 859 860 /** 861 * ice_link_event - process the link event 862 * @pf: PF that the link event is associated with 863 * @pi: port_info for the port that the link event is associated with 864 * @link_up: true if the physical link is up and false if it is down 865 * @link_speed: current link speed received from the link event 866 * 867 * Returns 0 on success and negative on failure 868 */ 869 static int 870 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 871 u16 link_speed) 872 { 873 struct device *dev = ice_pf_to_dev(pf); 874 struct ice_phy_info *phy_info; 875 enum ice_status status; 876 struct ice_vsi *vsi; 877 u16 old_link_speed; 878 bool old_link; 879 880 phy_info = &pi->phy; 881 phy_info->link_info_old = phy_info->link_info; 882 883 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 884 old_link_speed = phy_info->link_info_old.link_speed; 885 886 /* update the link info structures and re-enable link events, 887 * don't bail on failure due to other book keeping needed 888 */ 889 status = ice_update_link_info(pi); 890 if (status) 891 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 892 pi->lport, ice_stat_str(status), 893 ice_aq_str(pi->hw->adminq.sq_last_status)); 894 895 /* Check if the link state is up after updating link info, and treat 896 * this event as an UP event since the link is actually UP now. 897 */ 898 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 899 link_up = true; 900 901 vsi = ice_get_main_vsi(pf); 902 if (!vsi || !vsi->port_info) 903 return -EINVAL; 904 905 /* turn off PHY if media was removed */ 906 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 907 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 908 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 909 ice_set_link(vsi, false); 910 } 911 912 /* if the old link up/down and speed is the same as the new */ 913 if (link_up == old_link && link_speed == old_link_speed) 914 return 0; 915 916 if (ice_is_dcb_active(pf)) { 917 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 918 ice_dcb_rebuild(pf); 919 } else { 920 if (link_up) 921 ice_set_dflt_mib(pf); 922 } 923 ice_vsi_link_event(vsi, link_up); 924 ice_print_link_msg(vsi, link_up); 925 926 ice_vc_notify_link_state(pf); 927 928 return 0; 929 } 930 931 /** 932 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 933 * @pf: board private structure 934 */ 935 static void ice_watchdog_subtask(struct ice_pf *pf) 936 { 937 int i; 938 939 /* if interface is down do nothing */ 940 if (test_bit(ICE_DOWN, pf->state) || 941 test_bit(ICE_CFG_BUSY, pf->state)) 942 return; 943 944 /* make sure we don't do these things too often */ 945 if (time_before(jiffies, 946 pf->serv_tmr_prev + pf->serv_tmr_period)) 947 return; 948 949 pf->serv_tmr_prev = jiffies; 950 951 /* Update the stats for active netdevs so the network stack 952 * can look at updated numbers whenever it cares to 953 */ 954 ice_update_pf_stats(pf); 955 ice_for_each_vsi(pf, i) 956 if (pf->vsi[i] && pf->vsi[i]->netdev) 957 ice_update_vsi_stats(pf->vsi[i]); 958 } 959 960 /** 961 * ice_init_link_events - enable/initialize link events 962 * @pi: pointer to the port_info instance 963 * 964 * Returns -EIO on failure, 0 on success 965 */ 966 static int ice_init_link_events(struct ice_port_info *pi) 967 { 968 u16 mask; 969 970 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 971 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 972 973 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 974 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 975 pi->lport); 976 return -EIO; 977 } 978 979 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 980 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 981 pi->lport); 982 return -EIO; 983 } 984 985 return 0; 986 } 987 988 /** 989 * ice_handle_link_event - handle link event via ARQ 990 * @pf: PF that the link event is associated with 991 * @event: event structure containing link status info 992 */ 993 static int 994 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 995 { 996 struct ice_aqc_get_link_status_data *link_data; 997 struct ice_port_info *port_info; 998 int status; 999 1000 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1001 port_info = pf->hw.port_info; 1002 if (!port_info) 1003 return -EINVAL; 1004 1005 status = ice_link_event(pf, port_info, 1006 !!(link_data->link_info & ICE_AQ_LINK_UP), 1007 le16_to_cpu(link_data->link_speed)); 1008 if (status) 1009 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1010 status); 1011 1012 return status; 1013 } 1014 1015 enum ice_aq_task_state { 1016 ICE_AQ_TASK_WAITING = 0, 1017 ICE_AQ_TASK_COMPLETE, 1018 ICE_AQ_TASK_CANCELED, 1019 }; 1020 1021 struct ice_aq_task { 1022 struct hlist_node entry; 1023 1024 u16 opcode; 1025 struct ice_rq_event_info *event; 1026 enum ice_aq_task_state state; 1027 }; 1028 1029 /** 1030 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1031 * @pf: pointer to the PF private structure 1032 * @opcode: the opcode to wait for 1033 * @timeout: how long to wait, in jiffies 1034 * @event: storage for the event info 1035 * 1036 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1037 * current thread will be put to sleep until the specified event occurs or 1038 * until the given timeout is reached. 1039 * 1040 * To obtain only the descriptor contents, pass an event without an allocated 1041 * msg_buf. If the complete data buffer is desired, allocate the 1042 * event->msg_buf with enough space ahead of time. 1043 * 1044 * Returns: zero on success, or a negative error code on failure. 1045 */ 1046 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1047 struct ice_rq_event_info *event) 1048 { 1049 struct device *dev = ice_pf_to_dev(pf); 1050 struct ice_aq_task *task; 1051 unsigned long start; 1052 long ret; 1053 int err; 1054 1055 task = kzalloc(sizeof(*task), GFP_KERNEL); 1056 if (!task) 1057 return -ENOMEM; 1058 1059 INIT_HLIST_NODE(&task->entry); 1060 task->opcode = opcode; 1061 task->event = event; 1062 task->state = ICE_AQ_TASK_WAITING; 1063 1064 spin_lock_bh(&pf->aq_wait_lock); 1065 hlist_add_head(&task->entry, &pf->aq_wait_list); 1066 spin_unlock_bh(&pf->aq_wait_lock); 1067 1068 start = jiffies; 1069 1070 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1071 timeout); 1072 switch (task->state) { 1073 case ICE_AQ_TASK_WAITING: 1074 err = ret < 0 ? ret : -ETIMEDOUT; 1075 break; 1076 case ICE_AQ_TASK_CANCELED: 1077 err = ret < 0 ? ret : -ECANCELED; 1078 break; 1079 case ICE_AQ_TASK_COMPLETE: 1080 err = ret < 0 ? ret : 0; 1081 break; 1082 default: 1083 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1084 err = -EINVAL; 1085 break; 1086 } 1087 1088 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1089 jiffies_to_msecs(jiffies - start), 1090 jiffies_to_msecs(timeout), 1091 opcode); 1092 1093 spin_lock_bh(&pf->aq_wait_lock); 1094 hlist_del(&task->entry); 1095 spin_unlock_bh(&pf->aq_wait_lock); 1096 kfree(task); 1097 1098 return err; 1099 } 1100 1101 /** 1102 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1103 * @pf: pointer to the PF private structure 1104 * @opcode: the opcode of the event 1105 * @event: the event to check 1106 * 1107 * Loops over the current list of pending threads waiting for an AdminQ event. 1108 * For each matching task, copy the contents of the event into the task 1109 * structure and wake up the thread. 1110 * 1111 * If multiple threads wait for the same opcode, they will all be woken up. 1112 * 1113 * Note that event->msg_buf will only be duplicated if the event has a buffer 1114 * with enough space already allocated. Otherwise, only the descriptor and 1115 * message length will be copied. 1116 * 1117 * Returns: true if an event was found, false otherwise 1118 */ 1119 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1120 struct ice_rq_event_info *event) 1121 { 1122 struct ice_aq_task *task; 1123 bool found = false; 1124 1125 spin_lock_bh(&pf->aq_wait_lock); 1126 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1127 if (task->state || task->opcode != opcode) 1128 continue; 1129 1130 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1131 task->event->msg_len = event->msg_len; 1132 1133 /* Only copy the data buffer if a destination was set */ 1134 if (task->event->msg_buf && 1135 task->event->buf_len > event->buf_len) { 1136 memcpy(task->event->msg_buf, event->msg_buf, 1137 event->buf_len); 1138 task->event->buf_len = event->buf_len; 1139 } 1140 1141 task->state = ICE_AQ_TASK_COMPLETE; 1142 found = true; 1143 } 1144 spin_unlock_bh(&pf->aq_wait_lock); 1145 1146 if (found) 1147 wake_up(&pf->aq_wait_queue); 1148 } 1149 1150 /** 1151 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1152 * @pf: the PF private structure 1153 * 1154 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1155 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1156 */ 1157 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1158 { 1159 struct ice_aq_task *task; 1160 1161 spin_lock_bh(&pf->aq_wait_lock); 1162 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1163 task->state = ICE_AQ_TASK_CANCELED; 1164 spin_unlock_bh(&pf->aq_wait_lock); 1165 1166 wake_up(&pf->aq_wait_queue); 1167 } 1168 1169 /** 1170 * __ice_clean_ctrlq - helper function to clean controlq rings 1171 * @pf: ptr to struct ice_pf 1172 * @q_type: specific Control queue type 1173 */ 1174 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1175 { 1176 struct device *dev = ice_pf_to_dev(pf); 1177 struct ice_rq_event_info event; 1178 struct ice_hw *hw = &pf->hw; 1179 struct ice_ctl_q_info *cq; 1180 u16 pending, i = 0; 1181 const char *qtype; 1182 u32 oldval, val; 1183 1184 /* Do not clean control queue if/when PF reset fails */ 1185 if (test_bit(ICE_RESET_FAILED, pf->state)) 1186 return 0; 1187 1188 switch (q_type) { 1189 case ICE_CTL_Q_ADMIN: 1190 cq = &hw->adminq; 1191 qtype = "Admin"; 1192 break; 1193 case ICE_CTL_Q_MAILBOX: 1194 cq = &hw->mailboxq; 1195 qtype = "Mailbox"; 1196 /* we are going to try to detect a malicious VF, so set the 1197 * state to begin detection 1198 */ 1199 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1200 break; 1201 default: 1202 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1203 return 0; 1204 } 1205 1206 /* check for error indications - PF_xx_AxQLEN register layout for 1207 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1208 */ 1209 val = rd32(hw, cq->rq.len); 1210 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1211 PF_FW_ARQLEN_ARQCRIT_M)) { 1212 oldval = val; 1213 if (val & PF_FW_ARQLEN_ARQVFE_M) 1214 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1215 qtype); 1216 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1217 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1218 qtype); 1219 } 1220 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1221 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1222 qtype); 1223 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1224 PF_FW_ARQLEN_ARQCRIT_M); 1225 if (oldval != val) 1226 wr32(hw, cq->rq.len, val); 1227 } 1228 1229 val = rd32(hw, cq->sq.len); 1230 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1231 PF_FW_ATQLEN_ATQCRIT_M)) { 1232 oldval = val; 1233 if (val & PF_FW_ATQLEN_ATQVFE_M) 1234 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1235 qtype); 1236 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1237 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1238 qtype); 1239 } 1240 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1241 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1242 qtype); 1243 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1244 PF_FW_ATQLEN_ATQCRIT_M); 1245 if (oldval != val) 1246 wr32(hw, cq->sq.len, val); 1247 } 1248 1249 event.buf_len = cq->rq_buf_size; 1250 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1251 if (!event.msg_buf) 1252 return 0; 1253 1254 do { 1255 enum ice_status ret; 1256 u16 opcode; 1257 1258 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1259 if (ret == ICE_ERR_AQ_NO_WORK) 1260 break; 1261 if (ret) { 1262 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1263 ice_stat_str(ret)); 1264 break; 1265 } 1266 1267 opcode = le16_to_cpu(event.desc.opcode); 1268 1269 /* Notify any thread that might be waiting for this event */ 1270 ice_aq_check_events(pf, opcode, &event); 1271 1272 switch (opcode) { 1273 case ice_aqc_opc_get_link_status: 1274 if (ice_handle_link_event(pf, &event)) 1275 dev_err(dev, "Could not handle link event\n"); 1276 break; 1277 case ice_aqc_opc_event_lan_overflow: 1278 ice_vf_lan_overflow_event(pf, &event); 1279 break; 1280 case ice_mbx_opc_send_msg_to_pf: 1281 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1282 ice_vc_process_vf_msg(pf, &event); 1283 break; 1284 case ice_aqc_opc_fw_logging: 1285 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1286 break; 1287 case ice_aqc_opc_lldp_set_mib_change: 1288 ice_dcb_process_lldp_set_mib_change(pf, &event); 1289 break; 1290 default: 1291 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1292 qtype, opcode); 1293 break; 1294 } 1295 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1296 1297 kfree(event.msg_buf); 1298 1299 return pending && (i == ICE_DFLT_IRQ_WORK); 1300 } 1301 1302 /** 1303 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1304 * @hw: pointer to hardware info 1305 * @cq: control queue information 1306 * 1307 * returns true if there are pending messages in a queue, false if there aren't 1308 */ 1309 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1310 { 1311 u16 ntu; 1312 1313 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1314 return cq->rq.next_to_clean != ntu; 1315 } 1316 1317 /** 1318 * ice_clean_adminq_subtask - clean the AdminQ rings 1319 * @pf: board private structure 1320 */ 1321 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1322 { 1323 struct ice_hw *hw = &pf->hw; 1324 1325 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1326 return; 1327 1328 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1329 return; 1330 1331 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1332 1333 /* There might be a situation where new messages arrive to a control 1334 * queue between processing the last message and clearing the 1335 * EVENT_PENDING bit. So before exiting, check queue head again (using 1336 * ice_ctrlq_pending) and process new messages if any. 1337 */ 1338 if (ice_ctrlq_pending(hw, &hw->adminq)) 1339 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1340 1341 ice_flush(hw); 1342 } 1343 1344 /** 1345 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1346 * @pf: board private structure 1347 */ 1348 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1349 { 1350 struct ice_hw *hw = &pf->hw; 1351 1352 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1353 return; 1354 1355 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1356 return; 1357 1358 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1359 1360 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1361 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1362 1363 ice_flush(hw); 1364 } 1365 1366 /** 1367 * ice_service_task_schedule - schedule the service task to wake up 1368 * @pf: board private structure 1369 * 1370 * If not already scheduled, this puts the task into the work queue. 1371 */ 1372 void ice_service_task_schedule(struct ice_pf *pf) 1373 { 1374 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1375 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1376 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1377 queue_work(ice_wq, &pf->serv_task); 1378 } 1379 1380 /** 1381 * ice_service_task_complete - finish up the service task 1382 * @pf: board private structure 1383 */ 1384 static void ice_service_task_complete(struct ice_pf *pf) 1385 { 1386 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1387 1388 /* force memory (pf->state) to sync before next service task */ 1389 smp_mb__before_atomic(); 1390 clear_bit(ICE_SERVICE_SCHED, pf->state); 1391 } 1392 1393 /** 1394 * ice_service_task_stop - stop service task and cancel works 1395 * @pf: board private structure 1396 * 1397 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1398 * 1 otherwise. 1399 */ 1400 static int ice_service_task_stop(struct ice_pf *pf) 1401 { 1402 int ret; 1403 1404 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1405 1406 if (pf->serv_tmr.function) 1407 del_timer_sync(&pf->serv_tmr); 1408 if (pf->serv_task.func) 1409 cancel_work_sync(&pf->serv_task); 1410 1411 clear_bit(ICE_SERVICE_SCHED, pf->state); 1412 return ret; 1413 } 1414 1415 /** 1416 * ice_service_task_restart - restart service task and schedule works 1417 * @pf: board private structure 1418 * 1419 * This function is needed for suspend and resume works (e.g WoL scenario) 1420 */ 1421 static void ice_service_task_restart(struct ice_pf *pf) 1422 { 1423 clear_bit(ICE_SERVICE_DIS, pf->state); 1424 ice_service_task_schedule(pf); 1425 } 1426 1427 /** 1428 * ice_service_timer - timer callback to schedule service task 1429 * @t: pointer to timer_list 1430 */ 1431 static void ice_service_timer(struct timer_list *t) 1432 { 1433 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1434 1435 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1436 ice_service_task_schedule(pf); 1437 } 1438 1439 /** 1440 * ice_handle_mdd_event - handle malicious driver detect event 1441 * @pf: pointer to the PF structure 1442 * 1443 * Called from service task. OICR interrupt handler indicates MDD event. 1444 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1445 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1446 * disable the queue, the PF can be configured to reset the VF using ethtool 1447 * private flag mdd-auto-reset-vf. 1448 */ 1449 static void ice_handle_mdd_event(struct ice_pf *pf) 1450 { 1451 struct device *dev = ice_pf_to_dev(pf); 1452 struct ice_hw *hw = &pf->hw; 1453 unsigned int i; 1454 u32 reg; 1455 1456 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1457 /* Since the VF MDD event logging is rate limited, check if 1458 * there are pending MDD events. 1459 */ 1460 ice_print_vfs_mdd_events(pf); 1461 return; 1462 } 1463 1464 /* find what triggered an MDD event */ 1465 reg = rd32(hw, GL_MDET_TX_PQM); 1466 if (reg & GL_MDET_TX_PQM_VALID_M) { 1467 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1468 GL_MDET_TX_PQM_PF_NUM_S; 1469 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1470 GL_MDET_TX_PQM_VF_NUM_S; 1471 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1472 GL_MDET_TX_PQM_MAL_TYPE_S; 1473 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1474 GL_MDET_TX_PQM_QNUM_S); 1475 1476 if (netif_msg_tx_err(pf)) 1477 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1478 event, queue, pf_num, vf_num); 1479 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1480 } 1481 1482 reg = rd32(hw, GL_MDET_TX_TCLAN); 1483 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1484 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1485 GL_MDET_TX_TCLAN_PF_NUM_S; 1486 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1487 GL_MDET_TX_TCLAN_VF_NUM_S; 1488 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1489 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1490 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1491 GL_MDET_TX_TCLAN_QNUM_S); 1492 1493 if (netif_msg_tx_err(pf)) 1494 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1495 event, queue, pf_num, vf_num); 1496 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1497 } 1498 1499 reg = rd32(hw, GL_MDET_RX); 1500 if (reg & GL_MDET_RX_VALID_M) { 1501 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1502 GL_MDET_RX_PF_NUM_S; 1503 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1504 GL_MDET_RX_VF_NUM_S; 1505 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1506 GL_MDET_RX_MAL_TYPE_S; 1507 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1508 GL_MDET_RX_QNUM_S); 1509 1510 if (netif_msg_rx_err(pf)) 1511 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1512 event, queue, pf_num, vf_num); 1513 wr32(hw, GL_MDET_RX, 0xffffffff); 1514 } 1515 1516 /* check to see if this PF caused an MDD event */ 1517 reg = rd32(hw, PF_MDET_TX_PQM); 1518 if (reg & PF_MDET_TX_PQM_VALID_M) { 1519 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1520 if (netif_msg_tx_err(pf)) 1521 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1522 } 1523 1524 reg = rd32(hw, PF_MDET_TX_TCLAN); 1525 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1526 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1527 if (netif_msg_tx_err(pf)) 1528 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1529 } 1530 1531 reg = rd32(hw, PF_MDET_RX); 1532 if (reg & PF_MDET_RX_VALID_M) { 1533 wr32(hw, PF_MDET_RX, 0xFFFF); 1534 if (netif_msg_rx_err(pf)) 1535 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1536 } 1537 1538 /* Check to see if one of the VFs caused an MDD event, and then 1539 * increment counters and set print pending 1540 */ 1541 ice_for_each_vf(pf, i) { 1542 struct ice_vf *vf = &pf->vf[i]; 1543 1544 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1545 if (reg & VP_MDET_TX_PQM_VALID_M) { 1546 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1547 vf->mdd_tx_events.count++; 1548 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1549 if (netif_msg_tx_err(pf)) 1550 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1551 i); 1552 } 1553 1554 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1555 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1556 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1557 vf->mdd_tx_events.count++; 1558 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1559 if (netif_msg_tx_err(pf)) 1560 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1561 i); 1562 } 1563 1564 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1565 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1566 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1567 vf->mdd_tx_events.count++; 1568 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1569 if (netif_msg_tx_err(pf)) 1570 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1571 i); 1572 } 1573 1574 reg = rd32(hw, VP_MDET_RX(i)); 1575 if (reg & VP_MDET_RX_VALID_M) { 1576 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1577 vf->mdd_rx_events.count++; 1578 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1579 if (netif_msg_rx_err(pf)) 1580 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1581 i); 1582 1583 /* Since the queue is disabled on VF Rx MDD events, the 1584 * PF can be configured to reset the VF through ethtool 1585 * private flag mdd-auto-reset-vf. 1586 */ 1587 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1588 /* VF MDD event counters will be cleared by 1589 * reset, so print the event prior to reset. 1590 */ 1591 ice_print_vf_rx_mdd_event(vf); 1592 ice_reset_vf(&pf->vf[i], false); 1593 } 1594 } 1595 } 1596 1597 ice_print_vfs_mdd_events(pf); 1598 } 1599 1600 /** 1601 * ice_force_phys_link_state - Force the physical link state 1602 * @vsi: VSI to force the physical link state to up/down 1603 * @link_up: true/false indicates to set the physical link to up/down 1604 * 1605 * Force the physical link state by getting the current PHY capabilities from 1606 * hardware and setting the PHY config based on the determined capabilities. If 1607 * link changes a link event will be triggered because both the Enable Automatic 1608 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1609 * 1610 * Returns 0 on success, negative on failure 1611 */ 1612 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1613 { 1614 struct ice_aqc_get_phy_caps_data *pcaps; 1615 struct ice_aqc_set_phy_cfg_data *cfg; 1616 struct ice_port_info *pi; 1617 struct device *dev; 1618 int retcode; 1619 1620 if (!vsi || !vsi->port_info || !vsi->back) 1621 return -EINVAL; 1622 if (vsi->type != ICE_VSI_PF) 1623 return 0; 1624 1625 dev = ice_pf_to_dev(vsi->back); 1626 1627 pi = vsi->port_info; 1628 1629 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1630 if (!pcaps) 1631 return -ENOMEM; 1632 1633 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1634 NULL); 1635 if (retcode) { 1636 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1637 vsi->vsi_num, retcode); 1638 retcode = -EIO; 1639 goto out; 1640 } 1641 1642 /* No change in link */ 1643 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1644 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1645 goto out; 1646 1647 /* Use the current user PHY configuration. The current user PHY 1648 * configuration is initialized during probe from PHY capabilities 1649 * software mode, and updated on set PHY configuration. 1650 */ 1651 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1652 if (!cfg) { 1653 retcode = -ENOMEM; 1654 goto out; 1655 } 1656 1657 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1658 if (link_up) 1659 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1660 else 1661 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1662 1663 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1664 if (retcode) { 1665 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1666 vsi->vsi_num, retcode); 1667 retcode = -EIO; 1668 } 1669 1670 kfree(cfg); 1671 out: 1672 kfree(pcaps); 1673 return retcode; 1674 } 1675 1676 /** 1677 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1678 * @pi: port info structure 1679 * 1680 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1681 */ 1682 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1683 { 1684 struct ice_aqc_get_phy_caps_data *pcaps; 1685 struct ice_pf *pf = pi->hw->back; 1686 enum ice_status status; 1687 int err = 0; 1688 1689 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1690 if (!pcaps) 1691 return -ENOMEM; 1692 1693 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1694 NULL); 1695 1696 if (status) { 1697 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1698 err = -EIO; 1699 goto out; 1700 } 1701 1702 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1703 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1704 1705 out: 1706 kfree(pcaps); 1707 return err; 1708 } 1709 1710 /** 1711 * ice_init_link_dflt_override - Initialize link default override 1712 * @pi: port info structure 1713 * 1714 * Initialize link default override and PHY total port shutdown during probe 1715 */ 1716 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1717 { 1718 struct ice_link_default_override_tlv *ldo; 1719 struct ice_pf *pf = pi->hw->back; 1720 1721 ldo = &pf->link_dflt_override; 1722 if (ice_get_link_default_override(ldo, pi)) 1723 return; 1724 1725 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1726 return; 1727 1728 /* Enable Total Port Shutdown (override/replace link-down-on-close 1729 * ethtool private flag) for ports with Port Disable bit set. 1730 */ 1731 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1732 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1733 } 1734 1735 /** 1736 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1737 * @pi: port info structure 1738 * 1739 * If default override is enabled, initialize the user PHY cfg speed and FEC 1740 * settings using the default override mask from the NVM. 1741 * 1742 * The PHY should only be configured with the default override settings the 1743 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1744 * is used to indicate that the user PHY cfg default override is initialized 1745 * and the PHY has not been configured with the default override settings. The 1746 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1747 * configured. 1748 * 1749 * This function should be called only if the FW doesn't support default 1750 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1751 */ 1752 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1753 { 1754 struct ice_link_default_override_tlv *ldo; 1755 struct ice_aqc_set_phy_cfg_data *cfg; 1756 struct ice_phy_info *phy = &pi->phy; 1757 struct ice_pf *pf = pi->hw->back; 1758 1759 ldo = &pf->link_dflt_override; 1760 1761 /* If link default override is enabled, use to mask NVM PHY capabilities 1762 * for speed and FEC default configuration. 1763 */ 1764 cfg = &phy->curr_user_phy_cfg; 1765 1766 if (ldo->phy_type_low || ldo->phy_type_high) { 1767 cfg->phy_type_low = pf->nvm_phy_type_lo & 1768 cpu_to_le64(ldo->phy_type_low); 1769 cfg->phy_type_high = pf->nvm_phy_type_hi & 1770 cpu_to_le64(ldo->phy_type_high); 1771 } 1772 cfg->link_fec_opt = ldo->fec_options; 1773 phy->curr_user_fec_req = ICE_FEC_AUTO; 1774 1775 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1776 } 1777 1778 /** 1779 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1780 * @pi: port info structure 1781 * 1782 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1783 * mode to default. The PHY defaults are from get PHY capabilities topology 1784 * with media so call when media is first available. An error is returned if 1785 * called when media is not available. The PHY initialization completed state is 1786 * set here. 1787 * 1788 * These configurations are used when setting PHY 1789 * configuration. The user PHY configuration is updated on set PHY 1790 * configuration. Returns 0 on success, negative on failure 1791 */ 1792 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1793 { 1794 struct ice_aqc_get_phy_caps_data *pcaps; 1795 struct ice_phy_info *phy = &pi->phy; 1796 struct ice_pf *pf = pi->hw->back; 1797 enum ice_status status; 1798 int err = 0; 1799 1800 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1801 return -EIO; 1802 1803 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1804 if (!pcaps) 1805 return -ENOMEM; 1806 1807 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1808 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1809 pcaps, NULL); 1810 else 1811 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1812 pcaps, NULL); 1813 if (status) { 1814 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1815 err = -EIO; 1816 goto err_out; 1817 } 1818 1819 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1820 1821 /* check if lenient mode is supported and enabled */ 1822 if (ice_fw_supports_link_override(pi->hw) && 1823 !(pcaps->module_compliance_enforcement & 1824 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1825 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1826 1827 /* if the FW supports default PHY configuration mode, then the driver 1828 * does not have to apply link override settings. If not, 1829 * initialize user PHY configuration with link override values 1830 */ 1831 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1832 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1833 ice_init_phy_cfg_dflt_override(pi); 1834 goto out; 1835 } 1836 } 1837 1838 /* if link default override is not enabled, set user flow control and 1839 * FEC settings based on what get_phy_caps returned 1840 */ 1841 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1842 pcaps->link_fec_options); 1843 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1844 1845 out: 1846 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1847 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1848 err_out: 1849 kfree(pcaps); 1850 return err; 1851 } 1852 1853 /** 1854 * ice_configure_phy - configure PHY 1855 * @vsi: VSI of PHY 1856 * 1857 * Set the PHY configuration. If the current PHY configuration is the same as 1858 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1859 * configure the based get PHY capabilities for topology with media. 1860 */ 1861 static int ice_configure_phy(struct ice_vsi *vsi) 1862 { 1863 struct device *dev = ice_pf_to_dev(vsi->back); 1864 struct ice_port_info *pi = vsi->port_info; 1865 struct ice_aqc_get_phy_caps_data *pcaps; 1866 struct ice_aqc_set_phy_cfg_data *cfg; 1867 struct ice_phy_info *phy = &pi->phy; 1868 struct ice_pf *pf = vsi->back; 1869 enum ice_status status; 1870 int err = 0; 1871 1872 /* Ensure we have media as we cannot configure a medialess port */ 1873 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1874 return -EPERM; 1875 1876 ice_print_topo_conflict(vsi); 1877 1878 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1879 return -EPERM; 1880 1881 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 1882 return ice_force_phys_link_state(vsi, true); 1883 1884 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1885 if (!pcaps) 1886 return -ENOMEM; 1887 1888 /* Get current PHY config */ 1889 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1890 NULL); 1891 if (status) { 1892 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1893 vsi->vsi_num, ice_stat_str(status)); 1894 err = -EIO; 1895 goto done; 1896 } 1897 1898 /* If PHY enable link is configured and configuration has not changed, 1899 * there's nothing to do 1900 */ 1901 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1902 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 1903 goto done; 1904 1905 /* Use PHY topology as baseline for configuration */ 1906 memset(pcaps, 0, sizeof(*pcaps)); 1907 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1908 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1909 pcaps, NULL); 1910 else 1911 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1912 pcaps, NULL); 1913 if (status) { 1914 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 1915 vsi->vsi_num, ice_stat_str(status)); 1916 err = -EIO; 1917 goto done; 1918 } 1919 1920 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1921 if (!cfg) { 1922 err = -ENOMEM; 1923 goto done; 1924 } 1925 1926 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1927 1928 /* Speed - If default override pending, use curr_user_phy_cfg set in 1929 * ice_init_phy_user_cfg_ldo. 1930 */ 1931 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1932 vsi->back->state)) { 1933 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 1934 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 1935 } else { 1936 u64 phy_low = 0, phy_high = 0; 1937 1938 ice_update_phy_type(&phy_low, &phy_high, 1939 pi->phy.curr_user_speed_req); 1940 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1941 cfg->phy_type_high = pcaps->phy_type_high & 1942 cpu_to_le64(phy_high); 1943 } 1944 1945 /* Can't provide what was requested; use PHY capabilities */ 1946 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1947 cfg->phy_type_low = pcaps->phy_type_low; 1948 cfg->phy_type_high = pcaps->phy_type_high; 1949 } 1950 1951 /* FEC */ 1952 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 1953 1954 /* Can't provide what was requested; use PHY capabilities */ 1955 if (cfg->link_fec_opt != 1956 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1957 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1958 cfg->link_fec_opt = pcaps->link_fec_options; 1959 } 1960 1961 /* Flow Control - always supported; no need to check against 1962 * capabilities 1963 */ 1964 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 1965 1966 /* Enable link and link update */ 1967 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1968 1969 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 1970 if (status) { 1971 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1972 vsi->vsi_num, ice_stat_str(status)); 1973 err = -EIO; 1974 } 1975 1976 kfree(cfg); 1977 done: 1978 kfree(pcaps); 1979 return err; 1980 } 1981 1982 /** 1983 * ice_check_media_subtask - Check for media 1984 * @pf: pointer to PF struct 1985 * 1986 * If media is available, then initialize PHY user configuration if it is not 1987 * been, and configure the PHY if the interface is up. 1988 */ 1989 static void ice_check_media_subtask(struct ice_pf *pf) 1990 { 1991 struct ice_port_info *pi; 1992 struct ice_vsi *vsi; 1993 int err; 1994 1995 /* No need to check for media if it's already present */ 1996 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 1997 return; 1998 1999 vsi = ice_get_main_vsi(pf); 2000 if (!vsi) 2001 return; 2002 2003 /* Refresh link info and check if media is present */ 2004 pi = vsi->port_info; 2005 err = ice_update_link_info(pi); 2006 if (err) 2007 return; 2008 2009 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2010 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2011 ice_init_phy_user_cfg(pi); 2012 2013 /* PHY settings are reset on media insertion, reconfigure 2014 * PHY to preserve settings. 2015 */ 2016 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2017 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2018 return; 2019 2020 err = ice_configure_phy(vsi); 2021 if (!err) 2022 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2023 2024 /* A Link Status Event will be generated; the event handler 2025 * will complete bringing the interface up 2026 */ 2027 } 2028 } 2029 2030 /** 2031 * ice_service_task - manage and run subtasks 2032 * @work: pointer to work_struct contained by the PF struct 2033 */ 2034 static void ice_service_task(struct work_struct *work) 2035 { 2036 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2037 unsigned long start_time = jiffies; 2038 2039 /* subtasks */ 2040 2041 /* process reset requests first */ 2042 ice_reset_subtask(pf); 2043 2044 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2045 if (ice_is_reset_in_progress(pf->state) || 2046 test_bit(ICE_SUSPENDED, pf->state) || 2047 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2048 ice_service_task_complete(pf); 2049 return; 2050 } 2051 2052 ice_clean_adminq_subtask(pf); 2053 ice_check_media_subtask(pf); 2054 ice_check_for_hang_subtask(pf); 2055 ice_sync_fltr_subtask(pf); 2056 ice_handle_mdd_event(pf); 2057 ice_watchdog_subtask(pf); 2058 2059 if (ice_is_safe_mode(pf)) { 2060 ice_service_task_complete(pf); 2061 return; 2062 } 2063 2064 ice_process_vflr_event(pf); 2065 ice_clean_mailboxq_subtask(pf); 2066 ice_sync_arfs_fltrs(pf); 2067 ice_flush_fdir_ctx(pf); 2068 2069 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2070 ice_service_task_complete(pf); 2071 2072 /* If the tasks have taken longer than one service timer period 2073 * or there is more work to be done, reset the service timer to 2074 * schedule the service task now. 2075 */ 2076 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2077 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2078 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2079 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2080 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2081 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2082 mod_timer(&pf->serv_tmr, jiffies); 2083 } 2084 2085 /** 2086 * ice_set_ctrlq_len - helper function to set controlq length 2087 * @hw: pointer to the HW instance 2088 */ 2089 static void ice_set_ctrlq_len(struct ice_hw *hw) 2090 { 2091 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2092 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2093 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2094 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2095 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2096 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2097 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2098 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2099 } 2100 2101 /** 2102 * ice_schedule_reset - schedule a reset 2103 * @pf: board private structure 2104 * @reset: reset being requested 2105 */ 2106 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2107 { 2108 struct device *dev = ice_pf_to_dev(pf); 2109 2110 /* bail out if earlier reset has failed */ 2111 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2112 dev_dbg(dev, "earlier reset has failed\n"); 2113 return -EIO; 2114 } 2115 /* bail if reset/recovery already in progress */ 2116 if (ice_is_reset_in_progress(pf->state)) { 2117 dev_dbg(dev, "Reset already in progress\n"); 2118 return -EBUSY; 2119 } 2120 2121 switch (reset) { 2122 case ICE_RESET_PFR: 2123 set_bit(ICE_PFR_REQ, pf->state); 2124 break; 2125 case ICE_RESET_CORER: 2126 set_bit(ICE_CORER_REQ, pf->state); 2127 break; 2128 case ICE_RESET_GLOBR: 2129 set_bit(ICE_GLOBR_REQ, pf->state); 2130 break; 2131 default: 2132 return -EINVAL; 2133 } 2134 2135 ice_service_task_schedule(pf); 2136 return 0; 2137 } 2138 2139 /** 2140 * ice_irq_affinity_notify - Callback for affinity changes 2141 * @notify: context as to what irq was changed 2142 * @mask: the new affinity mask 2143 * 2144 * This is a callback function used by the irq_set_affinity_notifier function 2145 * so that we may register to receive changes to the irq affinity masks. 2146 */ 2147 static void 2148 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2149 const cpumask_t *mask) 2150 { 2151 struct ice_q_vector *q_vector = 2152 container_of(notify, struct ice_q_vector, affinity_notify); 2153 2154 cpumask_copy(&q_vector->affinity_mask, mask); 2155 } 2156 2157 /** 2158 * ice_irq_affinity_release - Callback for affinity notifier release 2159 * @ref: internal core kernel usage 2160 * 2161 * This is a callback function used by the irq_set_affinity_notifier function 2162 * to inform the current notification subscriber that they will no longer 2163 * receive notifications. 2164 */ 2165 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2166 2167 /** 2168 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2169 * @vsi: the VSI being configured 2170 */ 2171 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2172 { 2173 struct ice_hw *hw = &vsi->back->hw; 2174 int i; 2175 2176 ice_for_each_q_vector(vsi, i) 2177 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2178 2179 ice_flush(hw); 2180 return 0; 2181 } 2182 2183 /** 2184 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2185 * @vsi: the VSI being configured 2186 * @basename: name for the vector 2187 */ 2188 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2189 { 2190 int q_vectors = vsi->num_q_vectors; 2191 struct ice_pf *pf = vsi->back; 2192 int base = vsi->base_vector; 2193 struct device *dev; 2194 int rx_int_idx = 0; 2195 int tx_int_idx = 0; 2196 int vector, err; 2197 int irq_num; 2198 2199 dev = ice_pf_to_dev(pf); 2200 for (vector = 0; vector < q_vectors; vector++) { 2201 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2202 2203 irq_num = pf->msix_entries[base + vector].vector; 2204 2205 if (q_vector->tx.ring && q_vector->rx.ring) { 2206 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2207 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2208 tx_int_idx++; 2209 } else if (q_vector->rx.ring) { 2210 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2211 "%s-%s-%d", basename, "rx", rx_int_idx++); 2212 } else if (q_vector->tx.ring) { 2213 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2214 "%s-%s-%d", basename, "tx", tx_int_idx++); 2215 } else { 2216 /* skip this unused q_vector */ 2217 continue; 2218 } 2219 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2220 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2221 IRQF_SHARED, q_vector->name, 2222 q_vector); 2223 else 2224 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2225 0, q_vector->name, q_vector); 2226 if (err) { 2227 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2228 err); 2229 goto free_q_irqs; 2230 } 2231 2232 /* register for affinity change notifications */ 2233 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2234 struct irq_affinity_notify *affinity_notify; 2235 2236 affinity_notify = &q_vector->affinity_notify; 2237 affinity_notify->notify = ice_irq_affinity_notify; 2238 affinity_notify->release = ice_irq_affinity_release; 2239 irq_set_affinity_notifier(irq_num, affinity_notify); 2240 } 2241 2242 /* assign the mask for this irq */ 2243 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2244 } 2245 2246 vsi->irqs_ready = true; 2247 return 0; 2248 2249 free_q_irqs: 2250 while (vector) { 2251 vector--; 2252 irq_num = pf->msix_entries[base + vector].vector; 2253 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2254 irq_set_affinity_notifier(irq_num, NULL); 2255 irq_set_affinity_hint(irq_num, NULL); 2256 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2257 } 2258 return err; 2259 } 2260 2261 /** 2262 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2263 * @vsi: VSI to setup Tx rings used by XDP 2264 * 2265 * Return 0 on success and negative value on error 2266 */ 2267 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2268 { 2269 struct device *dev = ice_pf_to_dev(vsi->back); 2270 int i; 2271 2272 for (i = 0; i < vsi->num_xdp_txq; i++) { 2273 u16 xdp_q_idx = vsi->alloc_txq + i; 2274 struct ice_ring *xdp_ring; 2275 2276 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2277 2278 if (!xdp_ring) 2279 goto free_xdp_rings; 2280 2281 xdp_ring->q_index = xdp_q_idx; 2282 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2283 xdp_ring->ring_active = false; 2284 xdp_ring->vsi = vsi; 2285 xdp_ring->netdev = NULL; 2286 xdp_ring->dev = dev; 2287 xdp_ring->count = vsi->num_tx_desc; 2288 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2289 if (ice_setup_tx_ring(xdp_ring)) 2290 goto free_xdp_rings; 2291 ice_set_ring_xdp(xdp_ring); 2292 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2293 } 2294 2295 return 0; 2296 2297 free_xdp_rings: 2298 for (; i >= 0; i--) 2299 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2300 ice_free_tx_ring(vsi->xdp_rings[i]); 2301 return -ENOMEM; 2302 } 2303 2304 /** 2305 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2306 * @vsi: VSI to set the bpf prog on 2307 * @prog: the bpf prog pointer 2308 */ 2309 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2310 { 2311 struct bpf_prog *old_prog; 2312 int i; 2313 2314 old_prog = xchg(&vsi->xdp_prog, prog); 2315 if (old_prog) 2316 bpf_prog_put(old_prog); 2317 2318 ice_for_each_rxq(vsi, i) 2319 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2320 } 2321 2322 /** 2323 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2324 * @vsi: VSI to bring up Tx rings used by XDP 2325 * @prog: bpf program that will be assigned to VSI 2326 * 2327 * Return 0 on success and negative value on error 2328 */ 2329 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2330 { 2331 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2332 int xdp_rings_rem = vsi->num_xdp_txq; 2333 struct ice_pf *pf = vsi->back; 2334 struct ice_qs_cfg xdp_qs_cfg = { 2335 .qs_mutex = &pf->avail_q_mutex, 2336 .pf_map = pf->avail_txqs, 2337 .pf_map_size = pf->max_pf_txqs, 2338 .q_count = vsi->num_xdp_txq, 2339 .scatter_count = ICE_MAX_SCATTER_TXQS, 2340 .vsi_map = vsi->txq_map, 2341 .vsi_map_offset = vsi->alloc_txq, 2342 .mapping_mode = ICE_VSI_MAP_CONTIG 2343 }; 2344 enum ice_status status; 2345 struct device *dev; 2346 int i, v_idx; 2347 2348 dev = ice_pf_to_dev(pf); 2349 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2350 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2351 if (!vsi->xdp_rings) 2352 return -ENOMEM; 2353 2354 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2355 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2356 goto err_map_xdp; 2357 2358 if (ice_xdp_alloc_setup_rings(vsi)) 2359 goto clear_xdp_rings; 2360 2361 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2362 ice_for_each_q_vector(vsi, v_idx) { 2363 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2364 int xdp_rings_per_v, q_id, q_base; 2365 2366 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2367 vsi->num_q_vectors - v_idx); 2368 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2369 2370 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2371 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2372 2373 xdp_ring->q_vector = q_vector; 2374 xdp_ring->next = q_vector->tx.ring; 2375 q_vector->tx.ring = xdp_ring; 2376 } 2377 xdp_rings_rem -= xdp_rings_per_v; 2378 } 2379 2380 /* omit the scheduler update if in reset path; XDP queues will be 2381 * taken into account at the end of ice_vsi_rebuild, where 2382 * ice_cfg_vsi_lan is being called 2383 */ 2384 if (ice_is_reset_in_progress(pf->state)) 2385 return 0; 2386 2387 /* tell the Tx scheduler that right now we have 2388 * additional queues 2389 */ 2390 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2391 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2392 2393 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2394 max_txqs); 2395 if (status) { 2396 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2397 ice_stat_str(status)); 2398 goto clear_xdp_rings; 2399 } 2400 ice_vsi_assign_bpf_prog(vsi, prog); 2401 2402 return 0; 2403 clear_xdp_rings: 2404 for (i = 0; i < vsi->num_xdp_txq; i++) 2405 if (vsi->xdp_rings[i]) { 2406 kfree_rcu(vsi->xdp_rings[i], rcu); 2407 vsi->xdp_rings[i] = NULL; 2408 } 2409 2410 err_map_xdp: 2411 mutex_lock(&pf->avail_q_mutex); 2412 for (i = 0; i < vsi->num_xdp_txq; i++) { 2413 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2414 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2415 } 2416 mutex_unlock(&pf->avail_q_mutex); 2417 2418 devm_kfree(dev, vsi->xdp_rings); 2419 return -ENOMEM; 2420 } 2421 2422 /** 2423 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2424 * @vsi: VSI to remove XDP rings 2425 * 2426 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2427 * resources 2428 */ 2429 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2430 { 2431 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2432 struct ice_pf *pf = vsi->back; 2433 int i, v_idx; 2434 2435 /* q_vectors are freed in reset path so there's no point in detaching 2436 * rings; in case of rebuild being triggered not from reset bits 2437 * in pf->state won't be set, so additionally check first q_vector 2438 * against NULL 2439 */ 2440 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2441 goto free_qmap; 2442 2443 ice_for_each_q_vector(vsi, v_idx) { 2444 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2445 struct ice_ring *ring; 2446 2447 ice_for_each_ring(ring, q_vector->tx) 2448 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2449 break; 2450 2451 /* restore the value of last node prior to XDP setup */ 2452 q_vector->tx.ring = ring; 2453 } 2454 2455 free_qmap: 2456 mutex_lock(&pf->avail_q_mutex); 2457 for (i = 0; i < vsi->num_xdp_txq; i++) { 2458 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2459 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2460 } 2461 mutex_unlock(&pf->avail_q_mutex); 2462 2463 for (i = 0; i < vsi->num_xdp_txq; i++) 2464 if (vsi->xdp_rings[i]) { 2465 if (vsi->xdp_rings[i]->desc) 2466 ice_free_tx_ring(vsi->xdp_rings[i]); 2467 kfree_rcu(vsi->xdp_rings[i], rcu); 2468 vsi->xdp_rings[i] = NULL; 2469 } 2470 2471 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2472 vsi->xdp_rings = NULL; 2473 2474 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2475 return 0; 2476 2477 ice_vsi_assign_bpf_prog(vsi, NULL); 2478 2479 /* notify Tx scheduler that we destroyed XDP queues and bring 2480 * back the old number of child nodes 2481 */ 2482 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2483 max_txqs[i] = vsi->num_txq; 2484 2485 /* change number of XDP Tx queues to 0 */ 2486 vsi->num_xdp_txq = 0; 2487 2488 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2489 max_txqs); 2490 } 2491 2492 /** 2493 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2494 * @vsi: VSI to schedule napi on 2495 */ 2496 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2497 { 2498 int i; 2499 2500 ice_for_each_rxq(vsi, i) { 2501 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2502 2503 if (rx_ring->xsk_pool) 2504 napi_schedule(&rx_ring->q_vector->napi); 2505 } 2506 } 2507 2508 /** 2509 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2510 * @vsi: VSI to setup XDP for 2511 * @prog: XDP program 2512 * @extack: netlink extended ack 2513 */ 2514 static int 2515 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2516 struct netlink_ext_ack *extack) 2517 { 2518 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2519 bool if_running = netif_running(vsi->netdev); 2520 int ret = 0, xdp_ring_err = 0; 2521 2522 if (frame_size > vsi->rx_buf_len) { 2523 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2524 return -EOPNOTSUPP; 2525 } 2526 2527 /* need to stop netdev while setting up the program for Rx rings */ 2528 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2529 ret = ice_down(vsi); 2530 if (ret) { 2531 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2532 return ret; 2533 } 2534 } 2535 2536 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2537 vsi->num_xdp_txq = vsi->alloc_rxq; 2538 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2539 if (xdp_ring_err) 2540 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2541 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2542 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2543 if (xdp_ring_err) 2544 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2545 } else { 2546 ice_vsi_assign_bpf_prog(vsi, prog); 2547 } 2548 2549 if (if_running) 2550 ret = ice_up(vsi); 2551 2552 if (!ret && prog) 2553 ice_vsi_rx_napi_schedule(vsi); 2554 2555 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2556 } 2557 2558 /** 2559 * ice_xdp - implements XDP handler 2560 * @dev: netdevice 2561 * @xdp: XDP command 2562 */ 2563 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2564 { 2565 struct ice_netdev_priv *np = netdev_priv(dev); 2566 struct ice_vsi *vsi = np->vsi; 2567 2568 if (vsi->type != ICE_VSI_PF) { 2569 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2570 return -EINVAL; 2571 } 2572 2573 switch (xdp->command) { 2574 case XDP_SETUP_PROG: 2575 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2576 case XDP_SETUP_XSK_POOL: 2577 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2578 xdp->xsk.queue_id); 2579 default: 2580 return -EINVAL; 2581 } 2582 } 2583 2584 /** 2585 * ice_ena_misc_vector - enable the non-queue interrupts 2586 * @pf: board private structure 2587 */ 2588 static void ice_ena_misc_vector(struct ice_pf *pf) 2589 { 2590 struct ice_hw *hw = &pf->hw; 2591 u32 val; 2592 2593 /* Disable anti-spoof detection interrupt to prevent spurious event 2594 * interrupts during a function reset. Anti-spoof functionally is 2595 * still supported. 2596 */ 2597 val = rd32(hw, GL_MDCK_TX_TDPU); 2598 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2599 wr32(hw, GL_MDCK_TX_TDPU, val); 2600 2601 /* clear things first */ 2602 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2603 rd32(hw, PFINT_OICR); /* read to clear */ 2604 2605 val = (PFINT_OICR_ECC_ERR_M | 2606 PFINT_OICR_MAL_DETECT_M | 2607 PFINT_OICR_GRST_M | 2608 PFINT_OICR_PCI_EXCEPTION_M | 2609 PFINT_OICR_VFLR_M | 2610 PFINT_OICR_HMC_ERR_M | 2611 PFINT_OICR_PE_CRITERR_M); 2612 2613 wr32(hw, PFINT_OICR_ENA, val); 2614 2615 /* SW_ITR_IDX = 0, but don't change INTENA */ 2616 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2617 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2618 } 2619 2620 /** 2621 * ice_misc_intr - misc interrupt handler 2622 * @irq: interrupt number 2623 * @data: pointer to a q_vector 2624 */ 2625 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2626 { 2627 struct ice_pf *pf = (struct ice_pf *)data; 2628 struct ice_hw *hw = &pf->hw; 2629 irqreturn_t ret = IRQ_NONE; 2630 struct device *dev; 2631 u32 oicr, ena_mask; 2632 2633 dev = ice_pf_to_dev(pf); 2634 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2635 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2636 2637 oicr = rd32(hw, PFINT_OICR); 2638 ena_mask = rd32(hw, PFINT_OICR_ENA); 2639 2640 if (oicr & PFINT_OICR_SWINT_M) { 2641 ena_mask &= ~PFINT_OICR_SWINT_M; 2642 pf->sw_int_count++; 2643 } 2644 2645 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2646 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2647 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2648 } 2649 if (oicr & PFINT_OICR_VFLR_M) { 2650 /* disable any further VFLR event notifications */ 2651 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2652 u32 reg = rd32(hw, PFINT_OICR_ENA); 2653 2654 reg &= ~PFINT_OICR_VFLR_M; 2655 wr32(hw, PFINT_OICR_ENA, reg); 2656 } else { 2657 ena_mask &= ~PFINT_OICR_VFLR_M; 2658 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2659 } 2660 } 2661 2662 if (oicr & PFINT_OICR_GRST_M) { 2663 u32 reset; 2664 2665 /* we have a reset warning */ 2666 ena_mask &= ~PFINT_OICR_GRST_M; 2667 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2668 GLGEN_RSTAT_RESET_TYPE_S; 2669 2670 if (reset == ICE_RESET_CORER) 2671 pf->corer_count++; 2672 else if (reset == ICE_RESET_GLOBR) 2673 pf->globr_count++; 2674 else if (reset == ICE_RESET_EMPR) 2675 pf->empr_count++; 2676 else 2677 dev_dbg(dev, "Invalid reset type %d\n", reset); 2678 2679 /* If a reset cycle isn't already in progress, we set a bit in 2680 * pf->state so that the service task can start a reset/rebuild. 2681 * We also make note of which reset happened so that peer 2682 * devices/drivers can be informed. 2683 */ 2684 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2685 if (reset == ICE_RESET_CORER) 2686 set_bit(ICE_CORER_RECV, pf->state); 2687 else if (reset == ICE_RESET_GLOBR) 2688 set_bit(ICE_GLOBR_RECV, pf->state); 2689 else 2690 set_bit(ICE_EMPR_RECV, pf->state); 2691 2692 /* There are couple of different bits at play here. 2693 * hw->reset_ongoing indicates whether the hardware is 2694 * in reset. This is set to true when a reset interrupt 2695 * is received and set back to false after the driver 2696 * has determined that the hardware is out of reset. 2697 * 2698 * ICE_RESET_OICR_RECV in pf->state indicates 2699 * that a post reset rebuild is required before the 2700 * driver is operational again. This is set above. 2701 * 2702 * As this is the start of the reset/rebuild cycle, set 2703 * both to indicate that. 2704 */ 2705 hw->reset_ongoing = true; 2706 } 2707 } 2708 2709 if (oicr & PFINT_OICR_HMC_ERR_M) { 2710 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2711 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2712 rd32(hw, PFHMC_ERRORINFO), 2713 rd32(hw, PFHMC_ERRORDATA)); 2714 } 2715 2716 /* Report any remaining unexpected interrupts */ 2717 oicr &= ena_mask; 2718 if (oicr) { 2719 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2720 /* If a critical error is pending there is no choice but to 2721 * reset the device. 2722 */ 2723 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2724 PFINT_OICR_PCI_EXCEPTION_M | 2725 PFINT_OICR_ECC_ERR_M)) { 2726 set_bit(ICE_PFR_REQ, pf->state); 2727 ice_service_task_schedule(pf); 2728 } 2729 } 2730 ret = IRQ_HANDLED; 2731 2732 ice_service_task_schedule(pf); 2733 ice_irq_dynamic_ena(hw, NULL, NULL); 2734 2735 return ret; 2736 } 2737 2738 /** 2739 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2740 * @hw: pointer to HW structure 2741 */ 2742 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2743 { 2744 /* disable Admin queue Interrupt causes */ 2745 wr32(hw, PFINT_FW_CTL, 2746 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2747 2748 /* disable Mailbox queue Interrupt causes */ 2749 wr32(hw, PFINT_MBX_CTL, 2750 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2751 2752 /* disable Control queue Interrupt causes */ 2753 wr32(hw, PFINT_OICR_CTL, 2754 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2755 2756 ice_flush(hw); 2757 } 2758 2759 /** 2760 * ice_free_irq_msix_misc - Unroll misc vector setup 2761 * @pf: board private structure 2762 */ 2763 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2764 { 2765 struct ice_hw *hw = &pf->hw; 2766 2767 ice_dis_ctrlq_interrupts(hw); 2768 2769 /* disable OICR interrupt */ 2770 wr32(hw, PFINT_OICR_ENA, 0); 2771 ice_flush(hw); 2772 2773 if (pf->msix_entries) { 2774 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2775 devm_free_irq(ice_pf_to_dev(pf), 2776 pf->msix_entries[pf->oicr_idx].vector, pf); 2777 } 2778 2779 pf->num_avail_sw_msix += 1; 2780 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2781 } 2782 2783 /** 2784 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2785 * @hw: pointer to HW structure 2786 * @reg_idx: HW vector index to associate the control queue interrupts with 2787 */ 2788 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2789 { 2790 u32 val; 2791 2792 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2793 PFINT_OICR_CTL_CAUSE_ENA_M); 2794 wr32(hw, PFINT_OICR_CTL, val); 2795 2796 /* enable Admin queue Interrupt causes */ 2797 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2798 PFINT_FW_CTL_CAUSE_ENA_M); 2799 wr32(hw, PFINT_FW_CTL, val); 2800 2801 /* enable Mailbox queue Interrupt causes */ 2802 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2803 PFINT_MBX_CTL_CAUSE_ENA_M); 2804 wr32(hw, PFINT_MBX_CTL, val); 2805 2806 ice_flush(hw); 2807 } 2808 2809 /** 2810 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2811 * @pf: board private structure 2812 * 2813 * This sets up the handler for MSIX 0, which is used to manage the 2814 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2815 * when in MSI or Legacy interrupt mode. 2816 */ 2817 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2818 { 2819 struct device *dev = ice_pf_to_dev(pf); 2820 struct ice_hw *hw = &pf->hw; 2821 int oicr_idx, err = 0; 2822 2823 if (!pf->int_name[0]) 2824 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2825 dev_driver_string(dev), dev_name(dev)); 2826 2827 /* Do not request IRQ but do enable OICR interrupt since settings are 2828 * lost during reset. Note that this function is called only during 2829 * rebuild path and not while reset is in progress. 2830 */ 2831 if (ice_is_reset_in_progress(pf->state)) 2832 goto skip_req_irq; 2833 2834 /* reserve one vector in irq_tracker for misc interrupts */ 2835 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2836 if (oicr_idx < 0) 2837 return oicr_idx; 2838 2839 pf->num_avail_sw_msix -= 1; 2840 pf->oicr_idx = (u16)oicr_idx; 2841 2842 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2843 ice_misc_intr, 0, pf->int_name, pf); 2844 if (err) { 2845 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2846 pf->int_name, err); 2847 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2848 pf->num_avail_sw_msix += 1; 2849 return err; 2850 } 2851 2852 skip_req_irq: 2853 ice_ena_misc_vector(pf); 2854 2855 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2856 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2857 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2858 2859 ice_flush(hw); 2860 ice_irq_dynamic_ena(hw, NULL, NULL); 2861 2862 return 0; 2863 } 2864 2865 /** 2866 * ice_napi_add - register NAPI handler for the VSI 2867 * @vsi: VSI for which NAPI handler is to be registered 2868 * 2869 * This function is only called in the driver's load path. Registering the NAPI 2870 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2871 * reset/rebuild, etc.) 2872 */ 2873 static void ice_napi_add(struct ice_vsi *vsi) 2874 { 2875 int v_idx; 2876 2877 if (!vsi->netdev) 2878 return; 2879 2880 ice_for_each_q_vector(vsi, v_idx) 2881 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2882 ice_napi_poll, NAPI_POLL_WEIGHT); 2883 } 2884 2885 /** 2886 * ice_set_ops - set netdev and ethtools ops for the given netdev 2887 * @netdev: netdev instance 2888 */ 2889 static void ice_set_ops(struct net_device *netdev) 2890 { 2891 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2892 2893 if (ice_is_safe_mode(pf)) { 2894 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2895 ice_set_ethtool_safe_mode_ops(netdev); 2896 return; 2897 } 2898 2899 netdev->netdev_ops = &ice_netdev_ops; 2900 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2901 ice_set_ethtool_ops(netdev); 2902 } 2903 2904 /** 2905 * ice_set_netdev_features - set features for the given netdev 2906 * @netdev: netdev instance 2907 */ 2908 static void ice_set_netdev_features(struct net_device *netdev) 2909 { 2910 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2911 netdev_features_t csumo_features; 2912 netdev_features_t vlano_features; 2913 netdev_features_t dflt_features; 2914 netdev_features_t tso_features; 2915 2916 if (ice_is_safe_mode(pf)) { 2917 /* safe mode */ 2918 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2919 netdev->hw_features = netdev->features; 2920 return; 2921 } 2922 2923 dflt_features = NETIF_F_SG | 2924 NETIF_F_HIGHDMA | 2925 NETIF_F_NTUPLE | 2926 NETIF_F_RXHASH; 2927 2928 csumo_features = NETIF_F_RXCSUM | 2929 NETIF_F_IP_CSUM | 2930 NETIF_F_SCTP_CRC | 2931 NETIF_F_IPV6_CSUM; 2932 2933 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2934 NETIF_F_HW_VLAN_CTAG_TX | 2935 NETIF_F_HW_VLAN_CTAG_RX; 2936 2937 tso_features = NETIF_F_TSO | 2938 NETIF_F_TSO_ECN | 2939 NETIF_F_TSO6 | 2940 NETIF_F_GSO_GRE | 2941 NETIF_F_GSO_UDP_TUNNEL | 2942 NETIF_F_GSO_GRE_CSUM | 2943 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2944 NETIF_F_GSO_PARTIAL | 2945 NETIF_F_GSO_IPXIP4 | 2946 NETIF_F_GSO_IPXIP6 | 2947 NETIF_F_GSO_UDP_L4; 2948 2949 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2950 NETIF_F_GSO_GRE_CSUM; 2951 /* set features that user can change */ 2952 netdev->hw_features = dflt_features | csumo_features | 2953 vlano_features | tso_features; 2954 2955 /* add support for HW_CSUM on packets with MPLS header */ 2956 netdev->mpls_features = NETIF_F_HW_CSUM; 2957 2958 /* enable features */ 2959 netdev->features |= netdev->hw_features; 2960 /* encap and VLAN devices inherit default, csumo and tso features */ 2961 netdev->hw_enc_features |= dflt_features | csumo_features | 2962 tso_features; 2963 netdev->vlan_features |= dflt_features | csumo_features | 2964 tso_features; 2965 } 2966 2967 /** 2968 * ice_cfg_netdev - Allocate, configure and register a netdev 2969 * @vsi: the VSI associated with the new netdev 2970 * 2971 * Returns 0 on success, negative value on failure 2972 */ 2973 static int ice_cfg_netdev(struct ice_vsi *vsi) 2974 { 2975 struct ice_pf *pf = vsi->back; 2976 struct ice_netdev_priv *np; 2977 struct net_device *netdev; 2978 u8 mac_addr[ETH_ALEN]; 2979 2980 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2981 vsi->alloc_rxq); 2982 if (!netdev) 2983 return -ENOMEM; 2984 2985 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2986 vsi->netdev = netdev; 2987 np = netdev_priv(netdev); 2988 np->vsi = vsi; 2989 2990 ice_set_netdev_features(netdev); 2991 2992 ice_set_ops(netdev); 2993 2994 if (vsi->type == ICE_VSI_PF) { 2995 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2996 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2997 ether_addr_copy(netdev->dev_addr, mac_addr); 2998 ether_addr_copy(netdev->perm_addr, mac_addr); 2999 } 3000 3001 netdev->priv_flags |= IFF_UNICAST_FLT; 3002 3003 /* Setup netdev TC information */ 3004 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3005 3006 /* setup watchdog timeout value to be 5 second */ 3007 netdev->watchdog_timeo = 5 * HZ; 3008 3009 netdev->min_mtu = ETH_MIN_MTU; 3010 netdev->max_mtu = ICE_MAX_MTU; 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3017 * @lut: Lookup table 3018 * @rss_table_size: Lookup table size 3019 * @rss_size: Range of queue number for hashing 3020 */ 3021 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3022 { 3023 u16 i; 3024 3025 for (i = 0; i < rss_table_size; i++) 3026 lut[i] = i % rss_size; 3027 } 3028 3029 /** 3030 * ice_pf_vsi_setup - Set up a PF VSI 3031 * @pf: board private structure 3032 * @pi: pointer to the port_info instance 3033 * 3034 * Returns pointer to the successfully allocated VSI software struct 3035 * on success, otherwise returns NULL on failure. 3036 */ 3037 static struct ice_vsi * 3038 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3039 { 3040 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3041 } 3042 3043 /** 3044 * ice_ctrl_vsi_setup - Set up a control VSI 3045 * @pf: board private structure 3046 * @pi: pointer to the port_info instance 3047 * 3048 * Returns pointer to the successfully allocated VSI software struct 3049 * on success, otherwise returns NULL on failure. 3050 */ 3051 static struct ice_vsi * 3052 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3053 { 3054 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3055 } 3056 3057 /** 3058 * ice_lb_vsi_setup - Set up a loopback VSI 3059 * @pf: board private structure 3060 * @pi: pointer to the port_info instance 3061 * 3062 * Returns pointer to the successfully allocated VSI software struct 3063 * on success, otherwise returns NULL on failure. 3064 */ 3065 struct ice_vsi * 3066 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3067 { 3068 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3069 } 3070 3071 /** 3072 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3073 * @netdev: network interface to be adjusted 3074 * @proto: unused protocol 3075 * @vid: VLAN ID to be added 3076 * 3077 * net_device_ops implementation for adding VLAN IDs 3078 */ 3079 static int 3080 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3081 u16 vid) 3082 { 3083 struct ice_netdev_priv *np = netdev_priv(netdev); 3084 struct ice_vsi *vsi = np->vsi; 3085 int ret; 3086 3087 /* VLAN 0 is added by default during load/reset */ 3088 if (!vid) 3089 return 0; 3090 3091 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3092 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3093 ret = ice_cfg_vlan_pruning(vsi, true, false); 3094 if (ret) 3095 return ret; 3096 } 3097 3098 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3099 * packets aren't pruned by the device's internal switch on Rx 3100 */ 3101 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3102 if (!ret) 3103 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3104 3105 return ret; 3106 } 3107 3108 /** 3109 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3110 * @netdev: network interface to be adjusted 3111 * @proto: unused protocol 3112 * @vid: VLAN ID to be removed 3113 * 3114 * net_device_ops implementation for removing VLAN IDs 3115 */ 3116 static int 3117 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3118 u16 vid) 3119 { 3120 struct ice_netdev_priv *np = netdev_priv(netdev); 3121 struct ice_vsi *vsi = np->vsi; 3122 int ret; 3123 3124 /* don't allow removal of VLAN 0 */ 3125 if (!vid) 3126 return 0; 3127 3128 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3129 * information 3130 */ 3131 ret = ice_vsi_kill_vlan(vsi, vid); 3132 if (ret) 3133 return ret; 3134 3135 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3136 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3137 ret = ice_cfg_vlan_pruning(vsi, false, false); 3138 3139 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3140 return ret; 3141 } 3142 3143 /** 3144 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3145 * @pf: board private structure 3146 * 3147 * Returns 0 on success, negative value on failure 3148 */ 3149 static int ice_setup_pf_sw(struct ice_pf *pf) 3150 { 3151 struct ice_vsi *vsi; 3152 int status = 0; 3153 3154 if (ice_is_reset_in_progress(pf->state)) 3155 return -EBUSY; 3156 3157 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3158 if (!vsi) 3159 return -ENOMEM; 3160 3161 status = ice_cfg_netdev(vsi); 3162 if (status) { 3163 status = -ENODEV; 3164 goto unroll_vsi_setup; 3165 } 3166 /* netdev has to be configured before setting frame size */ 3167 ice_vsi_cfg_frame_size(vsi); 3168 3169 /* Setup DCB netlink interface */ 3170 ice_dcbnl_setup(vsi); 3171 3172 /* registering the NAPI handler requires both the queues and 3173 * netdev to be created, which are done in ice_pf_vsi_setup() 3174 * and ice_cfg_netdev() respectively 3175 */ 3176 ice_napi_add(vsi); 3177 3178 status = ice_set_cpu_rx_rmap(vsi); 3179 if (status) { 3180 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3181 vsi->vsi_num, status); 3182 status = -EINVAL; 3183 goto unroll_napi_add; 3184 } 3185 status = ice_init_mac_fltr(pf); 3186 if (status) 3187 goto free_cpu_rx_map; 3188 3189 return status; 3190 3191 free_cpu_rx_map: 3192 ice_free_cpu_rx_rmap(vsi); 3193 3194 unroll_napi_add: 3195 if (vsi) { 3196 ice_napi_del(vsi); 3197 if (vsi->netdev) { 3198 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3199 free_netdev(vsi->netdev); 3200 vsi->netdev = NULL; 3201 } 3202 } 3203 3204 unroll_vsi_setup: 3205 ice_vsi_release(vsi); 3206 return status; 3207 } 3208 3209 /** 3210 * ice_get_avail_q_count - Get count of queues in use 3211 * @pf_qmap: bitmap to get queue use count from 3212 * @lock: pointer to a mutex that protects access to pf_qmap 3213 * @size: size of the bitmap 3214 */ 3215 static u16 3216 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3217 { 3218 unsigned long bit; 3219 u16 count = 0; 3220 3221 mutex_lock(lock); 3222 for_each_clear_bit(bit, pf_qmap, size) 3223 count++; 3224 mutex_unlock(lock); 3225 3226 return count; 3227 } 3228 3229 /** 3230 * ice_get_avail_txq_count - Get count of Tx queues in use 3231 * @pf: pointer to an ice_pf instance 3232 */ 3233 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3234 { 3235 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3236 pf->max_pf_txqs); 3237 } 3238 3239 /** 3240 * ice_get_avail_rxq_count - Get count of Rx queues in use 3241 * @pf: pointer to an ice_pf instance 3242 */ 3243 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3244 { 3245 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3246 pf->max_pf_rxqs); 3247 } 3248 3249 /** 3250 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3251 * @pf: board private structure to initialize 3252 */ 3253 static void ice_deinit_pf(struct ice_pf *pf) 3254 { 3255 ice_service_task_stop(pf); 3256 mutex_destroy(&pf->sw_mutex); 3257 mutex_destroy(&pf->tc_mutex); 3258 mutex_destroy(&pf->avail_q_mutex); 3259 3260 if (pf->avail_txqs) { 3261 bitmap_free(pf->avail_txqs); 3262 pf->avail_txqs = NULL; 3263 } 3264 3265 if (pf->avail_rxqs) { 3266 bitmap_free(pf->avail_rxqs); 3267 pf->avail_rxqs = NULL; 3268 } 3269 } 3270 3271 /** 3272 * ice_set_pf_caps - set PFs capability flags 3273 * @pf: pointer to the PF instance 3274 */ 3275 static void ice_set_pf_caps(struct ice_pf *pf) 3276 { 3277 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3278 3279 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3280 if (func_caps->common_cap.dcb) 3281 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3282 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3283 if (func_caps->common_cap.sr_iov_1_1) { 3284 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3285 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3286 ICE_MAX_VF_COUNT); 3287 } 3288 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3289 if (func_caps->common_cap.rss_table_size) 3290 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3291 3292 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3293 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3294 u16 unused; 3295 3296 /* ctrl_vsi_idx will be set to a valid value when flow director 3297 * is setup by ice_init_fdir 3298 */ 3299 pf->ctrl_vsi_idx = ICE_NO_VSI; 3300 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3301 /* force guaranteed filter pool for PF */ 3302 ice_alloc_fd_guar_item(&pf->hw, &unused, 3303 func_caps->fd_fltr_guar); 3304 /* force shared filter pool for PF */ 3305 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3306 func_caps->fd_fltr_best_effort); 3307 } 3308 3309 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3310 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3311 } 3312 3313 /** 3314 * ice_init_pf - Initialize general software structures (struct ice_pf) 3315 * @pf: board private structure to initialize 3316 */ 3317 static int ice_init_pf(struct ice_pf *pf) 3318 { 3319 ice_set_pf_caps(pf); 3320 3321 mutex_init(&pf->sw_mutex); 3322 mutex_init(&pf->tc_mutex); 3323 3324 INIT_HLIST_HEAD(&pf->aq_wait_list); 3325 spin_lock_init(&pf->aq_wait_lock); 3326 init_waitqueue_head(&pf->aq_wait_queue); 3327 3328 /* setup service timer and periodic service task */ 3329 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3330 pf->serv_tmr_period = HZ; 3331 INIT_WORK(&pf->serv_task, ice_service_task); 3332 clear_bit(ICE_SERVICE_SCHED, pf->state); 3333 3334 mutex_init(&pf->avail_q_mutex); 3335 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3336 if (!pf->avail_txqs) 3337 return -ENOMEM; 3338 3339 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3340 if (!pf->avail_rxqs) { 3341 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3342 pf->avail_txqs = NULL; 3343 return -ENOMEM; 3344 } 3345 3346 return 0; 3347 } 3348 3349 /** 3350 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3351 * @pf: board private structure 3352 * 3353 * compute the number of MSIX vectors required (v_budget) and request from 3354 * the OS. Return the number of vectors reserved or negative on failure 3355 */ 3356 static int ice_ena_msix_range(struct ice_pf *pf) 3357 { 3358 int v_left, v_actual, v_other, v_budget = 0; 3359 struct device *dev = ice_pf_to_dev(pf); 3360 int needed, err, i; 3361 3362 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3363 3364 /* reserve for LAN miscellaneous handler */ 3365 needed = ICE_MIN_LAN_OICR_MSIX; 3366 if (v_left < needed) 3367 goto no_hw_vecs_left_err; 3368 v_budget += needed; 3369 v_left -= needed; 3370 3371 /* reserve for flow director */ 3372 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3373 needed = ICE_FDIR_MSIX; 3374 if (v_left < needed) 3375 goto no_hw_vecs_left_err; 3376 v_budget += needed; 3377 v_left -= needed; 3378 } 3379 3380 /* total used for non-traffic vectors */ 3381 v_other = v_budget; 3382 3383 /* reserve vectors for LAN traffic */ 3384 needed = min_t(int, num_online_cpus(), v_left); 3385 if (v_left < needed) 3386 goto no_hw_vecs_left_err; 3387 pf->num_lan_msix = needed; 3388 v_budget += needed; 3389 v_left -= needed; 3390 3391 pf->msix_entries = devm_kcalloc(dev, v_budget, 3392 sizeof(*pf->msix_entries), GFP_KERNEL); 3393 if (!pf->msix_entries) { 3394 err = -ENOMEM; 3395 goto exit_err; 3396 } 3397 3398 for (i = 0; i < v_budget; i++) 3399 pf->msix_entries[i].entry = i; 3400 3401 /* actually reserve the vectors */ 3402 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3403 ICE_MIN_MSIX, v_budget); 3404 if (v_actual < 0) { 3405 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3406 err = v_actual; 3407 goto msix_err; 3408 } 3409 3410 if (v_actual < v_budget) { 3411 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3412 v_budget, v_actual); 3413 3414 if (v_actual < ICE_MIN_MSIX) { 3415 /* error if we can't get minimum vectors */ 3416 pci_disable_msix(pf->pdev); 3417 err = -ERANGE; 3418 goto msix_err; 3419 } else { 3420 int v_traffic = v_actual - v_other; 3421 3422 if (v_actual == ICE_MIN_MSIX || 3423 v_traffic < ICE_MIN_LAN_TXRX_MSIX) 3424 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3425 else 3426 pf->num_lan_msix = v_traffic; 3427 3428 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3429 pf->num_lan_msix); 3430 } 3431 } 3432 3433 return v_actual; 3434 3435 msix_err: 3436 devm_kfree(dev, pf->msix_entries); 3437 goto exit_err; 3438 3439 no_hw_vecs_left_err: 3440 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3441 needed, v_left); 3442 err = -ERANGE; 3443 exit_err: 3444 pf->num_lan_msix = 0; 3445 return err; 3446 } 3447 3448 /** 3449 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3450 * @pf: board private structure 3451 */ 3452 static void ice_dis_msix(struct ice_pf *pf) 3453 { 3454 pci_disable_msix(pf->pdev); 3455 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3456 pf->msix_entries = NULL; 3457 } 3458 3459 /** 3460 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3461 * @pf: board private structure 3462 */ 3463 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3464 { 3465 ice_dis_msix(pf); 3466 3467 if (pf->irq_tracker) { 3468 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3469 pf->irq_tracker = NULL; 3470 } 3471 } 3472 3473 /** 3474 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3475 * @pf: board private structure to initialize 3476 */ 3477 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3478 { 3479 int vectors; 3480 3481 vectors = ice_ena_msix_range(pf); 3482 3483 if (vectors < 0) 3484 return vectors; 3485 3486 /* set up vector assignment tracking */ 3487 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3488 struct_size(pf->irq_tracker, list, vectors), 3489 GFP_KERNEL); 3490 if (!pf->irq_tracker) { 3491 ice_dis_msix(pf); 3492 return -ENOMEM; 3493 } 3494 3495 /* populate SW interrupts pool with number of OS granted IRQs. */ 3496 pf->num_avail_sw_msix = (u16)vectors; 3497 pf->irq_tracker->num_entries = (u16)vectors; 3498 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3499 3500 return 0; 3501 } 3502 3503 /** 3504 * ice_is_wol_supported - check if WoL is supported 3505 * @hw: pointer to hardware info 3506 * 3507 * Check if WoL is supported based on the HW configuration. 3508 * Returns true if NVM supports and enables WoL for this port, false otherwise 3509 */ 3510 bool ice_is_wol_supported(struct ice_hw *hw) 3511 { 3512 u16 wol_ctrl; 3513 3514 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3515 * word) indicates WoL is not supported on the corresponding PF ID. 3516 */ 3517 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3518 return false; 3519 3520 return !(BIT(hw->port_info->lport) & wol_ctrl); 3521 } 3522 3523 /** 3524 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3525 * @vsi: VSI being changed 3526 * @new_rx: new number of Rx queues 3527 * @new_tx: new number of Tx queues 3528 * 3529 * Only change the number of queues if new_tx, or new_rx is non-0. 3530 * 3531 * Returns 0 on success. 3532 */ 3533 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3534 { 3535 struct ice_pf *pf = vsi->back; 3536 int err = 0, timeout = 50; 3537 3538 if (!new_rx && !new_tx) 3539 return -EINVAL; 3540 3541 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3542 timeout--; 3543 if (!timeout) 3544 return -EBUSY; 3545 usleep_range(1000, 2000); 3546 } 3547 3548 if (new_tx) 3549 vsi->req_txq = (u16)new_tx; 3550 if (new_rx) 3551 vsi->req_rxq = (u16)new_rx; 3552 3553 /* set for the next time the netdev is started */ 3554 if (!netif_running(vsi->netdev)) { 3555 ice_vsi_rebuild(vsi, false); 3556 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3557 goto done; 3558 } 3559 3560 ice_vsi_close(vsi); 3561 ice_vsi_rebuild(vsi, false); 3562 ice_pf_dcb_recfg(pf); 3563 ice_vsi_open(vsi); 3564 done: 3565 clear_bit(ICE_CFG_BUSY, pf->state); 3566 return err; 3567 } 3568 3569 /** 3570 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3571 * @pf: PF to configure 3572 * 3573 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3574 * VSI can still Tx/Rx VLAN tagged packets. 3575 */ 3576 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3577 { 3578 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3579 struct ice_vsi_ctx *ctxt; 3580 enum ice_status status; 3581 struct ice_hw *hw; 3582 3583 if (!vsi) 3584 return; 3585 3586 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3587 if (!ctxt) 3588 return; 3589 3590 hw = &pf->hw; 3591 ctxt->info = vsi->info; 3592 3593 ctxt->info.valid_sections = 3594 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3595 ICE_AQ_VSI_PROP_SECURITY_VALID | 3596 ICE_AQ_VSI_PROP_SW_VALID); 3597 3598 /* disable VLAN anti-spoof */ 3599 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3600 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3601 3602 /* disable VLAN pruning and keep all other settings */ 3603 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3604 3605 /* allow all VLANs on Tx and don't strip on Rx */ 3606 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3607 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3608 3609 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3610 if (status) { 3611 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3612 ice_stat_str(status), 3613 ice_aq_str(hw->adminq.sq_last_status)); 3614 } else { 3615 vsi->info.sec_flags = ctxt->info.sec_flags; 3616 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3617 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3618 } 3619 3620 kfree(ctxt); 3621 } 3622 3623 /** 3624 * ice_log_pkg_init - log result of DDP package load 3625 * @hw: pointer to hardware info 3626 * @status: status of package load 3627 */ 3628 static void 3629 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3630 { 3631 struct ice_pf *pf = (struct ice_pf *)hw->back; 3632 struct device *dev = ice_pf_to_dev(pf); 3633 3634 switch (*status) { 3635 case ICE_SUCCESS: 3636 /* The package download AdminQ command returned success because 3637 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3638 * already a package loaded on the device. 3639 */ 3640 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3641 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3642 hw->pkg_ver.update == hw->active_pkg_ver.update && 3643 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3644 !memcmp(hw->pkg_name, hw->active_pkg_name, 3645 sizeof(hw->pkg_name))) { 3646 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3647 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3648 hw->active_pkg_name, 3649 hw->active_pkg_ver.major, 3650 hw->active_pkg_ver.minor, 3651 hw->active_pkg_ver.update, 3652 hw->active_pkg_ver.draft); 3653 else 3654 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3655 hw->active_pkg_name, 3656 hw->active_pkg_ver.major, 3657 hw->active_pkg_ver.minor, 3658 hw->active_pkg_ver.update, 3659 hw->active_pkg_ver.draft); 3660 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3661 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3662 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3663 hw->active_pkg_name, 3664 hw->active_pkg_ver.major, 3665 hw->active_pkg_ver.minor, 3666 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3667 *status = ICE_ERR_NOT_SUPPORTED; 3668 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3669 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3670 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3671 hw->active_pkg_name, 3672 hw->active_pkg_ver.major, 3673 hw->active_pkg_ver.minor, 3674 hw->active_pkg_ver.update, 3675 hw->active_pkg_ver.draft, 3676 hw->pkg_name, 3677 hw->pkg_ver.major, 3678 hw->pkg_ver.minor, 3679 hw->pkg_ver.update, 3680 hw->pkg_ver.draft); 3681 } else { 3682 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3683 *status = ICE_ERR_NOT_SUPPORTED; 3684 } 3685 break; 3686 case ICE_ERR_FW_DDP_MISMATCH: 3687 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3688 break; 3689 case ICE_ERR_BUF_TOO_SHORT: 3690 case ICE_ERR_CFG: 3691 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3692 break; 3693 case ICE_ERR_NOT_SUPPORTED: 3694 /* Package File version not supported */ 3695 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3696 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3697 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3698 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3699 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3700 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3701 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3702 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3703 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3704 break; 3705 case ICE_ERR_AQ_ERROR: 3706 switch (hw->pkg_dwnld_status) { 3707 case ICE_AQ_RC_ENOSEC: 3708 case ICE_AQ_RC_EBADSIG: 3709 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3710 return; 3711 case ICE_AQ_RC_ESVN: 3712 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3713 return; 3714 case ICE_AQ_RC_EBADMAN: 3715 case ICE_AQ_RC_EBADBUF: 3716 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3717 /* poll for reset to complete */ 3718 if (ice_check_reset(hw)) 3719 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3720 return; 3721 default: 3722 break; 3723 } 3724 fallthrough; 3725 default: 3726 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3727 *status); 3728 break; 3729 } 3730 } 3731 3732 /** 3733 * ice_load_pkg - load/reload the DDP Package file 3734 * @firmware: firmware structure when firmware requested or NULL for reload 3735 * @pf: pointer to the PF instance 3736 * 3737 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3738 * initialize HW tables. 3739 */ 3740 static void 3741 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3742 { 3743 enum ice_status status = ICE_ERR_PARAM; 3744 struct device *dev = ice_pf_to_dev(pf); 3745 struct ice_hw *hw = &pf->hw; 3746 3747 /* Load DDP Package */ 3748 if (firmware && !hw->pkg_copy) { 3749 status = ice_copy_and_init_pkg(hw, firmware->data, 3750 firmware->size); 3751 ice_log_pkg_init(hw, &status); 3752 } else if (!firmware && hw->pkg_copy) { 3753 /* Reload package during rebuild after CORER/GLOBR reset */ 3754 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3755 ice_log_pkg_init(hw, &status); 3756 } else { 3757 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3758 } 3759 3760 if (status) { 3761 /* Safe Mode */ 3762 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3763 return; 3764 } 3765 3766 /* Successful download package is the precondition for advanced 3767 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3768 */ 3769 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3770 } 3771 3772 /** 3773 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3774 * @pf: pointer to the PF structure 3775 * 3776 * There is no error returned here because the driver should be able to handle 3777 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3778 * specifically with Tx. 3779 */ 3780 static void ice_verify_cacheline_size(struct ice_pf *pf) 3781 { 3782 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3783 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3784 ICE_CACHE_LINE_BYTES); 3785 } 3786 3787 /** 3788 * ice_send_version - update firmware with driver version 3789 * @pf: PF struct 3790 * 3791 * Returns ICE_SUCCESS on success, else error code 3792 */ 3793 static enum ice_status ice_send_version(struct ice_pf *pf) 3794 { 3795 struct ice_driver_ver dv; 3796 3797 dv.major_ver = 0xff; 3798 dv.minor_ver = 0xff; 3799 dv.build_ver = 0xff; 3800 dv.subbuild_ver = 0; 3801 strscpy((char *)dv.driver_string, UTS_RELEASE, 3802 sizeof(dv.driver_string)); 3803 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3804 } 3805 3806 /** 3807 * ice_init_fdir - Initialize flow director VSI and configuration 3808 * @pf: pointer to the PF instance 3809 * 3810 * returns 0 on success, negative on error 3811 */ 3812 static int ice_init_fdir(struct ice_pf *pf) 3813 { 3814 struct device *dev = ice_pf_to_dev(pf); 3815 struct ice_vsi *ctrl_vsi; 3816 int err; 3817 3818 /* Side Band Flow Director needs to have a control VSI. 3819 * Allocate it and store it in the PF. 3820 */ 3821 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3822 if (!ctrl_vsi) { 3823 dev_dbg(dev, "could not create control VSI\n"); 3824 return -ENOMEM; 3825 } 3826 3827 err = ice_vsi_open_ctrl(ctrl_vsi); 3828 if (err) { 3829 dev_dbg(dev, "could not open control VSI\n"); 3830 goto err_vsi_open; 3831 } 3832 3833 mutex_init(&pf->hw.fdir_fltr_lock); 3834 3835 err = ice_fdir_create_dflt_rules(pf); 3836 if (err) 3837 goto err_fdir_rule; 3838 3839 return 0; 3840 3841 err_fdir_rule: 3842 ice_fdir_release_flows(&pf->hw); 3843 ice_vsi_close(ctrl_vsi); 3844 err_vsi_open: 3845 ice_vsi_release(ctrl_vsi); 3846 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3847 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3848 pf->ctrl_vsi_idx = ICE_NO_VSI; 3849 } 3850 return err; 3851 } 3852 3853 /** 3854 * ice_get_opt_fw_name - return optional firmware file name or NULL 3855 * @pf: pointer to the PF instance 3856 */ 3857 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3858 { 3859 /* Optional firmware name same as default with additional dash 3860 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3861 */ 3862 struct pci_dev *pdev = pf->pdev; 3863 char *opt_fw_filename; 3864 u64 dsn; 3865 3866 /* Determine the name of the optional file using the DSN (two 3867 * dwords following the start of the DSN Capability). 3868 */ 3869 dsn = pci_get_dsn(pdev); 3870 if (!dsn) 3871 return NULL; 3872 3873 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3874 if (!opt_fw_filename) 3875 return NULL; 3876 3877 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3878 ICE_DDP_PKG_PATH, dsn); 3879 3880 return opt_fw_filename; 3881 } 3882 3883 /** 3884 * ice_request_fw - Device initialization routine 3885 * @pf: pointer to the PF instance 3886 */ 3887 static void ice_request_fw(struct ice_pf *pf) 3888 { 3889 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3890 const struct firmware *firmware = NULL; 3891 struct device *dev = ice_pf_to_dev(pf); 3892 int err = 0; 3893 3894 /* optional device-specific DDP (if present) overrides the default DDP 3895 * package file. kernel logs a debug message if the file doesn't exist, 3896 * and warning messages for other errors. 3897 */ 3898 if (opt_fw_filename) { 3899 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3900 if (err) { 3901 kfree(opt_fw_filename); 3902 goto dflt_pkg_load; 3903 } 3904 3905 /* request for firmware was successful. Download to device */ 3906 ice_load_pkg(firmware, pf); 3907 kfree(opt_fw_filename); 3908 release_firmware(firmware); 3909 return; 3910 } 3911 3912 dflt_pkg_load: 3913 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3914 if (err) { 3915 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3916 return; 3917 } 3918 3919 /* request for firmware was successful. Download to device */ 3920 ice_load_pkg(firmware, pf); 3921 release_firmware(firmware); 3922 } 3923 3924 /** 3925 * ice_print_wake_reason - show the wake up cause in the log 3926 * @pf: pointer to the PF struct 3927 */ 3928 static void ice_print_wake_reason(struct ice_pf *pf) 3929 { 3930 u32 wus = pf->wakeup_reason; 3931 const char *wake_str; 3932 3933 /* if no wake event, nothing to print */ 3934 if (!wus) 3935 return; 3936 3937 if (wus & PFPM_WUS_LNKC_M) 3938 wake_str = "Link\n"; 3939 else if (wus & PFPM_WUS_MAG_M) 3940 wake_str = "Magic Packet\n"; 3941 else if (wus & PFPM_WUS_MNG_M) 3942 wake_str = "Management\n"; 3943 else if (wus & PFPM_WUS_FW_RST_WK_M) 3944 wake_str = "Firmware Reset\n"; 3945 else 3946 wake_str = "Unknown\n"; 3947 3948 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 3949 } 3950 3951 /** 3952 * ice_register_netdev - register netdev and devlink port 3953 * @pf: pointer to the PF struct 3954 */ 3955 static int ice_register_netdev(struct ice_pf *pf) 3956 { 3957 struct ice_vsi *vsi; 3958 int err = 0; 3959 3960 vsi = ice_get_main_vsi(pf); 3961 if (!vsi || !vsi->netdev) 3962 return -EIO; 3963 3964 err = register_netdev(vsi->netdev); 3965 if (err) 3966 goto err_register_netdev; 3967 3968 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3969 netif_carrier_off(vsi->netdev); 3970 netif_tx_stop_all_queues(vsi->netdev); 3971 err = ice_devlink_create_port(vsi); 3972 if (err) 3973 goto err_devlink_create; 3974 3975 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 3976 3977 return 0; 3978 err_devlink_create: 3979 unregister_netdev(vsi->netdev); 3980 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3981 err_register_netdev: 3982 free_netdev(vsi->netdev); 3983 vsi->netdev = NULL; 3984 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3985 return err; 3986 } 3987 3988 /** 3989 * ice_probe - Device initialization routine 3990 * @pdev: PCI device information struct 3991 * @ent: entry in ice_pci_tbl 3992 * 3993 * Returns 0 on success, negative on failure 3994 */ 3995 static int 3996 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3997 { 3998 struct device *dev = &pdev->dev; 3999 struct ice_pf *pf; 4000 struct ice_hw *hw; 4001 int i, err; 4002 4003 /* this driver uses devres, see 4004 * Documentation/driver-api/driver-model/devres.rst 4005 */ 4006 err = pcim_enable_device(pdev); 4007 if (err) 4008 return err; 4009 4010 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4011 if (err) { 4012 dev_err(dev, "BAR0 I/O map error %d\n", err); 4013 return err; 4014 } 4015 4016 pf = ice_allocate_pf(dev); 4017 if (!pf) 4018 return -ENOMEM; 4019 4020 /* set up for high or low DMA */ 4021 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4022 if (err) 4023 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4024 if (err) { 4025 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4026 return err; 4027 } 4028 4029 pci_enable_pcie_error_reporting(pdev); 4030 pci_set_master(pdev); 4031 4032 pf->pdev = pdev; 4033 pci_set_drvdata(pdev, pf); 4034 set_bit(ICE_DOWN, pf->state); 4035 /* Disable service task until DOWN bit is cleared */ 4036 set_bit(ICE_SERVICE_DIS, pf->state); 4037 4038 hw = &pf->hw; 4039 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4040 pci_save_state(pdev); 4041 4042 hw->back = pf; 4043 hw->vendor_id = pdev->vendor; 4044 hw->device_id = pdev->device; 4045 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4046 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4047 hw->subsystem_device_id = pdev->subsystem_device; 4048 hw->bus.device = PCI_SLOT(pdev->devfn); 4049 hw->bus.func = PCI_FUNC(pdev->devfn); 4050 ice_set_ctrlq_len(hw); 4051 4052 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4053 4054 err = ice_devlink_register(pf); 4055 if (err) { 4056 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4057 goto err_exit_unroll; 4058 } 4059 4060 #ifndef CONFIG_DYNAMIC_DEBUG 4061 if (debug < -1) 4062 hw->debug_mask = debug; 4063 #endif 4064 4065 err = ice_init_hw(hw); 4066 if (err) { 4067 dev_err(dev, "ice_init_hw failed: %d\n", err); 4068 err = -EIO; 4069 goto err_exit_unroll; 4070 } 4071 4072 ice_request_fw(pf); 4073 4074 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4075 * set in pf->state, which will cause ice_is_safe_mode to return 4076 * true 4077 */ 4078 if (ice_is_safe_mode(pf)) { 4079 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4080 /* we already got function/device capabilities but these don't 4081 * reflect what the driver needs to do in safe mode. Instead of 4082 * adding conditional logic everywhere to ignore these 4083 * device/function capabilities, override them. 4084 */ 4085 ice_set_safe_mode_caps(hw); 4086 } 4087 4088 err = ice_init_pf(pf); 4089 if (err) { 4090 dev_err(dev, "ice_init_pf failed: %d\n", err); 4091 goto err_init_pf_unroll; 4092 } 4093 4094 ice_devlink_init_regions(pf); 4095 4096 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4097 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4098 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4099 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4100 i = 0; 4101 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4102 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4103 pf->hw.tnl.valid_count[TNL_VXLAN]; 4104 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4105 UDP_TUNNEL_TYPE_VXLAN; 4106 i++; 4107 } 4108 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4109 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4110 pf->hw.tnl.valid_count[TNL_GENEVE]; 4111 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4112 UDP_TUNNEL_TYPE_GENEVE; 4113 i++; 4114 } 4115 4116 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4117 if (!pf->num_alloc_vsi) { 4118 err = -EIO; 4119 goto err_init_pf_unroll; 4120 } 4121 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4122 dev_warn(&pf->pdev->dev, 4123 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4124 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4125 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4126 } 4127 4128 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4129 GFP_KERNEL); 4130 if (!pf->vsi) { 4131 err = -ENOMEM; 4132 goto err_init_pf_unroll; 4133 } 4134 4135 err = ice_init_interrupt_scheme(pf); 4136 if (err) { 4137 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4138 err = -EIO; 4139 goto err_init_vsi_unroll; 4140 } 4141 4142 /* In case of MSIX we are going to setup the misc vector right here 4143 * to handle admin queue events etc. In case of legacy and MSI 4144 * the misc functionality and queue processing is combined in 4145 * the same vector and that gets setup at open. 4146 */ 4147 err = ice_req_irq_msix_misc(pf); 4148 if (err) { 4149 dev_err(dev, "setup of misc vector failed: %d\n", err); 4150 goto err_init_interrupt_unroll; 4151 } 4152 4153 /* create switch struct for the switch element created by FW on boot */ 4154 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4155 if (!pf->first_sw) { 4156 err = -ENOMEM; 4157 goto err_msix_misc_unroll; 4158 } 4159 4160 if (hw->evb_veb) 4161 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4162 else 4163 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4164 4165 pf->first_sw->pf = pf; 4166 4167 /* record the sw_id available for later use */ 4168 pf->first_sw->sw_id = hw->port_info->sw_id; 4169 4170 err = ice_setup_pf_sw(pf); 4171 if (err) { 4172 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4173 goto err_alloc_sw_unroll; 4174 } 4175 4176 clear_bit(ICE_SERVICE_DIS, pf->state); 4177 4178 /* tell the firmware we are up */ 4179 err = ice_send_version(pf); 4180 if (err) { 4181 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4182 UTS_RELEASE, err); 4183 goto err_send_version_unroll; 4184 } 4185 4186 /* since everything is good, start the service timer */ 4187 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4188 4189 err = ice_init_link_events(pf->hw.port_info); 4190 if (err) { 4191 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4192 goto err_send_version_unroll; 4193 } 4194 4195 /* not a fatal error if this fails */ 4196 err = ice_init_nvm_phy_type(pf->hw.port_info); 4197 if (err) 4198 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4199 4200 /* not a fatal error if this fails */ 4201 err = ice_update_link_info(pf->hw.port_info); 4202 if (err) 4203 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4204 4205 ice_init_link_dflt_override(pf->hw.port_info); 4206 4207 /* if media available, initialize PHY settings */ 4208 if (pf->hw.port_info->phy.link_info.link_info & 4209 ICE_AQ_MEDIA_AVAILABLE) { 4210 /* not a fatal error if this fails */ 4211 err = ice_init_phy_user_cfg(pf->hw.port_info); 4212 if (err) 4213 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4214 4215 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4216 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4217 4218 if (vsi) 4219 ice_configure_phy(vsi); 4220 } 4221 } else { 4222 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4223 } 4224 4225 ice_verify_cacheline_size(pf); 4226 4227 /* Save wakeup reason register for later use */ 4228 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4229 4230 /* check for a power management event */ 4231 ice_print_wake_reason(pf); 4232 4233 /* clear wake status, all bits */ 4234 wr32(hw, PFPM_WUS, U32_MAX); 4235 4236 /* Disable WoL at init, wait for user to enable */ 4237 device_set_wakeup_enable(dev, false); 4238 4239 if (ice_is_safe_mode(pf)) { 4240 ice_set_safe_mode_vlan_cfg(pf); 4241 goto probe_done; 4242 } 4243 4244 /* initialize DDP driven features */ 4245 4246 /* Note: Flow director init failure is non-fatal to load */ 4247 if (ice_init_fdir(pf)) 4248 dev_err(dev, "could not initialize flow director\n"); 4249 4250 /* Note: DCB init failure is non-fatal to load */ 4251 if (ice_init_pf_dcb(pf, false)) { 4252 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4253 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4254 } else { 4255 ice_cfg_lldp_mib_change(&pf->hw, true); 4256 } 4257 4258 if (ice_init_lag(pf)) 4259 dev_warn(dev, "Failed to init link aggregation support\n"); 4260 4261 /* print PCI link speed and width */ 4262 pcie_print_link_status(pf->pdev); 4263 4264 probe_done: 4265 err = ice_register_netdev(pf); 4266 if (err) 4267 goto err_netdev_reg; 4268 4269 /* ready to go, so clear down state bit */ 4270 clear_bit(ICE_DOWN, pf->state); 4271 return 0; 4272 4273 err_netdev_reg: 4274 err_send_version_unroll: 4275 ice_vsi_release_all(pf); 4276 err_alloc_sw_unroll: 4277 set_bit(ICE_SERVICE_DIS, pf->state); 4278 set_bit(ICE_DOWN, pf->state); 4279 devm_kfree(dev, pf->first_sw); 4280 err_msix_misc_unroll: 4281 ice_free_irq_msix_misc(pf); 4282 err_init_interrupt_unroll: 4283 ice_clear_interrupt_scheme(pf); 4284 err_init_vsi_unroll: 4285 devm_kfree(dev, pf->vsi); 4286 err_init_pf_unroll: 4287 ice_deinit_pf(pf); 4288 ice_devlink_destroy_regions(pf); 4289 ice_deinit_hw(hw); 4290 err_exit_unroll: 4291 ice_devlink_unregister(pf); 4292 pci_disable_pcie_error_reporting(pdev); 4293 pci_disable_device(pdev); 4294 return err; 4295 } 4296 4297 /** 4298 * ice_set_wake - enable or disable Wake on LAN 4299 * @pf: pointer to the PF struct 4300 * 4301 * Simple helper for WoL control 4302 */ 4303 static void ice_set_wake(struct ice_pf *pf) 4304 { 4305 struct ice_hw *hw = &pf->hw; 4306 bool wol = pf->wol_ena; 4307 4308 /* clear wake state, otherwise new wake events won't fire */ 4309 wr32(hw, PFPM_WUS, U32_MAX); 4310 4311 /* enable / disable APM wake up, no RMW needed */ 4312 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4313 4314 /* set magic packet filter enabled */ 4315 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4316 } 4317 4318 /** 4319 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4320 * @pf: pointer to the PF struct 4321 * 4322 * Issue firmware command to enable multicast magic wake, making 4323 * sure that any locally administered address (LAA) is used for 4324 * wake, and that PF reset doesn't undo the LAA. 4325 */ 4326 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4327 { 4328 struct device *dev = ice_pf_to_dev(pf); 4329 struct ice_hw *hw = &pf->hw; 4330 enum ice_status status; 4331 u8 mac_addr[ETH_ALEN]; 4332 struct ice_vsi *vsi; 4333 u8 flags; 4334 4335 if (!pf->wol_ena) 4336 return; 4337 4338 vsi = ice_get_main_vsi(pf); 4339 if (!vsi) 4340 return; 4341 4342 /* Get current MAC address in case it's an LAA */ 4343 if (vsi->netdev) 4344 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4345 else 4346 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4347 4348 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4349 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4350 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4351 4352 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4353 if (status) 4354 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4355 ice_stat_str(status), 4356 ice_aq_str(hw->adminq.sq_last_status)); 4357 } 4358 4359 /** 4360 * ice_remove - Device removal routine 4361 * @pdev: PCI device information struct 4362 */ 4363 static void ice_remove(struct pci_dev *pdev) 4364 { 4365 struct ice_pf *pf = pci_get_drvdata(pdev); 4366 int i; 4367 4368 if (!pf) 4369 return; 4370 4371 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4372 if (!ice_is_reset_in_progress(pf->state)) 4373 break; 4374 msleep(100); 4375 } 4376 4377 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4378 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4379 ice_free_vfs(pf); 4380 } 4381 4382 set_bit(ICE_DOWN, pf->state); 4383 ice_service_task_stop(pf); 4384 4385 ice_aq_cancel_waiting_tasks(pf); 4386 4387 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4388 ice_deinit_lag(pf); 4389 if (!ice_is_safe_mode(pf)) 4390 ice_remove_arfs(pf); 4391 ice_setup_mc_magic_wake(pf); 4392 ice_vsi_release_all(pf); 4393 ice_set_wake(pf); 4394 ice_free_irq_msix_misc(pf); 4395 ice_for_each_vsi(pf, i) { 4396 if (!pf->vsi[i]) 4397 continue; 4398 ice_vsi_free_q_vectors(pf->vsi[i]); 4399 } 4400 ice_deinit_pf(pf); 4401 ice_devlink_destroy_regions(pf); 4402 ice_deinit_hw(&pf->hw); 4403 ice_devlink_unregister(pf); 4404 4405 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4406 * do it via ice_schedule_reset() since there is no need to rebuild 4407 * and the service task is already stopped. 4408 */ 4409 ice_reset(&pf->hw, ICE_RESET_PFR); 4410 pci_wait_for_pending_transaction(pdev); 4411 ice_clear_interrupt_scheme(pf); 4412 pci_disable_pcie_error_reporting(pdev); 4413 pci_disable_device(pdev); 4414 } 4415 4416 /** 4417 * ice_shutdown - PCI callback for shutting down device 4418 * @pdev: PCI device information struct 4419 */ 4420 static void ice_shutdown(struct pci_dev *pdev) 4421 { 4422 struct ice_pf *pf = pci_get_drvdata(pdev); 4423 4424 ice_remove(pdev); 4425 4426 if (system_state == SYSTEM_POWER_OFF) { 4427 pci_wake_from_d3(pdev, pf->wol_ena); 4428 pci_set_power_state(pdev, PCI_D3hot); 4429 } 4430 } 4431 4432 #ifdef CONFIG_PM 4433 /** 4434 * ice_prepare_for_shutdown - prep for PCI shutdown 4435 * @pf: board private structure 4436 * 4437 * Inform or close all dependent features in prep for PCI device shutdown 4438 */ 4439 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4440 { 4441 struct ice_hw *hw = &pf->hw; 4442 u32 v; 4443 4444 /* Notify VFs of impending reset */ 4445 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4446 ice_vc_notify_reset(pf); 4447 4448 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4449 4450 /* disable the VSIs and their queues that are not already DOWN */ 4451 ice_pf_dis_all_vsi(pf, false); 4452 4453 ice_for_each_vsi(pf, v) 4454 if (pf->vsi[v]) 4455 pf->vsi[v]->vsi_num = 0; 4456 4457 ice_shutdown_all_ctrlq(hw); 4458 } 4459 4460 /** 4461 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4462 * @pf: board private structure to reinitialize 4463 * 4464 * This routine reinitialize interrupt scheme that was cleared during 4465 * power management suspend callback. 4466 * 4467 * This should be called during resume routine to re-allocate the q_vectors 4468 * and reacquire interrupts. 4469 */ 4470 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4471 { 4472 struct device *dev = ice_pf_to_dev(pf); 4473 int ret, v; 4474 4475 /* Since we clear MSIX flag during suspend, we need to 4476 * set it back during resume... 4477 */ 4478 4479 ret = ice_init_interrupt_scheme(pf); 4480 if (ret) { 4481 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4482 return ret; 4483 } 4484 4485 /* Remap vectors and rings, after successful re-init interrupts */ 4486 ice_for_each_vsi(pf, v) { 4487 if (!pf->vsi[v]) 4488 continue; 4489 4490 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4491 if (ret) 4492 goto err_reinit; 4493 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4494 } 4495 4496 ret = ice_req_irq_msix_misc(pf); 4497 if (ret) { 4498 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4499 ret); 4500 goto err_reinit; 4501 } 4502 4503 return 0; 4504 4505 err_reinit: 4506 while (v--) 4507 if (pf->vsi[v]) 4508 ice_vsi_free_q_vectors(pf->vsi[v]); 4509 4510 return ret; 4511 } 4512 4513 /** 4514 * ice_suspend 4515 * @dev: generic device information structure 4516 * 4517 * Power Management callback to quiesce the device and prepare 4518 * for D3 transition. 4519 */ 4520 static int __maybe_unused ice_suspend(struct device *dev) 4521 { 4522 struct pci_dev *pdev = to_pci_dev(dev); 4523 struct ice_pf *pf; 4524 int disabled, v; 4525 4526 pf = pci_get_drvdata(pdev); 4527 4528 if (!ice_pf_state_is_nominal(pf)) { 4529 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4530 return -EBUSY; 4531 } 4532 4533 /* Stop watchdog tasks until resume completion. 4534 * Even though it is most likely that the service task is 4535 * disabled if the device is suspended or down, the service task's 4536 * state is controlled by a different state bit, and we should 4537 * store and honor whatever state that bit is in at this point. 4538 */ 4539 disabled = ice_service_task_stop(pf); 4540 4541 /* Already suspended?, then there is nothing to do */ 4542 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4543 if (!disabled) 4544 ice_service_task_restart(pf); 4545 return 0; 4546 } 4547 4548 if (test_bit(ICE_DOWN, pf->state) || 4549 ice_is_reset_in_progress(pf->state)) { 4550 dev_err(dev, "can't suspend device in reset or already down\n"); 4551 if (!disabled) 4552 ice_service_task_restart(pf); 4553 return 0; 4554 } 4555 4556 ice_setup_mc_magic_wake(pf); 4557 4558 ice_prepare_for_shutdown(pf); 4559 4560 ice_set_wake(pf); 4561 4562 /* Free vectors, clear the interrupt scheme and release IRQs 4563 * for proper hibernation, especially with large number of CPUs. 4564 * Otherwise hibernation might fail when mapping all the vectors back 4565 * to CPU0. 4566 */ 4567 ice_free_irq_msix_misc(pf); 4568 ice_for_each_vsi(pf, v) { 4569 if (!pf->vsi[v]) 4570 continue; 4571 ice_vsi_free_q_vectors(pf->vsi[v]); 4572 } 4573 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4574 ice_clear_interrupt_scheme(pf); 4575 4576 pci_save_state(pdev); 4577 pci_wake_from_d3(pdev, pf->wol_ena); 4578 pci_set_power_state(pdev, PCI_D3hot); 4579 return 0; 4580 } 4581 4582 /** 4583 * ice_resume - PM callback for waking up from D3 4584 * @dev: generic device information structure 4585 */ 4586 static int __maybe_unused ice_resume(struct device *dev) 4587 { 4588 struct pci_dev *pdev = to_pci_dev(dev); 4589 enum ice_reset_req reset_type; 4590 struct ice_pf *pf; 4591 struct ice_hw *hw; 4592 int ret; 4593 4594 pci_set_power_state(pdev, PCI_D0); 4595 pci_restore_state(pdev); 4596 pci_save_state(pdev); 4597 4598 if (!pci_device_is_present(pdev)) 4599 return -ENODEV; 4600 4601 ret = pci_enable_device_mem(pdev); 4602 if (ret) { 4603 dev_err(dev, "Cannot enable device after suspend\n"); 4604 return ret; 4605 } 4606 4607 pf = pci_get_drvdata(pdev); 4608 hw = &pf->hw; 4609 4610 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4611 ice_print_wake_reason(pf); 4612 4613 /* We cleared the interrupt scheme when we suspended, so we need to 4614 * restore it now to resume device functionality. 4615 */ 4616 ret = ice_reinit_interrupt_scheme(pf); 4617 if (ret) 4618 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4619 4620 clear_bit(ICE_DOWN, pf->state); 4621 /* Now perform PF reset and rebuild */ 4622 reset_type = ICE_RESET_PFR; 4623 /* re-enable service task for reset, but allow reset to schedule it */ 4624 clear_bit(ICE_SERVICE_DIS, pf->state); 4625 4626 if (ice_schedule_reset(pf, reset_type)) 4627 dev_err(dev, "Reset during resume failed.\n"); 4628 4629 clear_bit(ICE_SUSPENDED, pf->state); 4630 ice_service_task_restart(pf); 4631 4632 /* Restart the service task */ 4633 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4634 4635 return 0; 4636 } 4637 #endif /* CONFIG_PM */ 4638 4639 /** 4640 * ice_pci_err_detected - warning that PCI error has been detected 4641 * @pdev: PCI device information struct 4642 * @err: the type of PCI error 4643 * 4644 * Called to warn that something happened on the PCI bus and the error handling 4645 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4646 */ 4647 static pci_ers_result_t 4648 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4649 { 4650 struct ice_pf *pf = pci_get_drvdata(pdev); 4651 4652 if (!pf) { 4653 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4654 __func__, err); 4655 return PCI_ERS_RESULT_DISCONNECT; 4656 } 4657 4658 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4659 ice_service_task_stop(pf); 4660 4661 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4662 set_bit(ICE_PFR_REQ, pf->state); 4663 ice_prepare_for_reset(pf); 4664 } 4665 } 4666 4667 return PCI_ERS_RESULT_NEED_RESET; 4668 } 4669 4670 /** 4671 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4672 * @pdev: PCI device information struct 4673 * 4674 * Called to determine if the driver can recover from the PCI slot reset by 4675 * using a register read to determine if the device is recoverable. 4676 */ 4677 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4678 { 4679 struct ice_pf *pf = pci_get_drvdata(pdev); 4680 pci_ers_result_t result; 4681 int err; 4682 u32 reg; 4683 4684 err = pci_enable_device_mem(pdev); 4685 if (err) { 4686 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4687 err); 4688 result = PCI_ERS_RESULT_DISCONNECT; 4689 } else { 4690 pci_set_master(pdev); 4691 pci_restore_state(pdev); 4692 pci_save_state(pdev); 4693 pci_wake_from_d3(pdev, false); 4694 4695 /* Check for life */ 4696 reg = rd32(&pf->hw, GLGEN_RTRIG); 4697 if (!reg) 4698 result = PCI_ERS_RESULT_RECOVERED; 4699 else 4700 result = PCI_ERS_RESULT_DISCONNECT; 4701 } 4702 4703 err = pci_aer_clear_nonfatal_status(pdev); 4704 if (err) 4705 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4706 err); 4707 /* non-fatal, continue */ 4708 4709 return result; 4710 } 4711 4712 /** 4713 * ice_pci_err_resume - restart operations after PCI error recovery 4714 * @pdev: PCI device information struct 4715 * 4716 * Called to allow the driver to bring things back up after PCI error and/or 4717 * reset recovery have finished 4718 */ 4719 static void ice_pci_err_resume(struct pci_dev *pdev) 4720 { 4721 struct ice_pf *pf = pci_get_drvdata(pdev); 4722 4723 if (!pf) { 4724 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4725 __func__); 4726 return; 4727 } 4728 4729 if (test_bit(ICE_SUSPENDED, pf->state)) { 4730 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4731 __func__); 4732 return; 4733 } 4734 4735 ice_restore_all_vfs_msi_state(pdev); 4736 4737 ice_do_reset(pf, ICE_RESET_PFR); 4738 ice_service_task_restart(pf); 4739 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4740 } 4741 4742 /** 4743 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4744 * @pdev: PCI device information struct 4745 */ 4746 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4747 { 4748 struct ice_pf *pf = pci_get_drvdata(pdev); 4749 4750 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4751 ice_service_task_stop(pf); 4752 4753 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4754 set_bit(ICE_PFR_REQ, pf->state); 4755 ice_prepare_for_reset(pf); 4756 } 4757 } 4758 } 4759 4760 /** 4761 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4762 * @pdev: PCI device information struct 4763 */ 4764 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4765 { 4766 ice_pci_err_resume(pdev); 4767 } 4768 4769 /* ice_pci_tbl - PCI Device ID Table 4770 * 4771 * Wildcard entries (PCI_ANY_ID) should come last 4772 * Last entry must be all 0s 4773 * 4774 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4775 * Class, Class Mask, private data (not used) } 4776 */ 4777 static const struct pci_device_id ice_pci_tbl[] = { 4778 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4779 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4780 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4781 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4782 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4783 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4784 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4785 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4786 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4787 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4788 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4789 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4790 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4801 /* required last entry */ 4802 { 0, } 4803 }; 4804 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4805 4806 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4807 4808 static const struct pci_error_handlers ice_pci_err_handler = { 4809 .error_detected = ice_pci_err_detected, 4810 .slot_reset = ice_pci_err_slot_reset, 4811 .reset_prepare = ice_pci_err_reset_prepare, 4812 .reset_done = ice_pci_err_reset_done, 4813 .resume = ice_pci_err_resume 4814 }; 4815 4816 static struct pci_driver ice_driver = { 4817 .name = KBUILD_MODNAME, 4818 .id_table = ice_pci_tbl, 4819 .probe = ice_probe, 4820 .remove = ice_remove, 4821 #ifdef CONFIG_PM 4822 .driver.pm = &ice_pm_ops, 4823 #endif /* CONFIG_PM */ 4824 .shutdown = ice_shutdown, 4825 .sriov_configure = ice_sriov_configure, 4826 .err_handler = &ice_pci_err_handler 4827 }; 4828 4829 /** 4830 * ice_module_init - Driver registration routine 4831 * 4832 * ice_module_init is the first routine called when the driver is 4833 * loaded. All it does is register with the PCI subsystem. 4834 */ 4835 static int __init ice_module_init(void) 4836 { 4837 int status; 4838 4839 pr_info("%s\n", ice_driver_string); 4840 pr_info("%s\n", ice_copyright); 4841 4842 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4843 if (!ice_wq) { 4844 pr_err("Failed to create workqueue\n"); 4845 return -ENOMEM; 4846 } 4847 4848 status = pci_register_driver(&ice_driver); 4849 if (status) { 4850 pr_err("failed to register PCI driver, err %d\n", status); 4851 destroy_workqueue(ice_wq); 4852 } 4853 4854 return status; 4855 } 4856 module_init(ice_module_init); 4857 4858 /** 4859 * ice_module_exit - Driver exit cleanup routine 4860 * 4861 * ice_module_exit is called just before the driver is removed 4862 * from memory. 4863 */ 4864 static void __exit ice_module_exit(void) 4865 { 4866 pci_unregister_driver(&ice_driver); 4867 destroy_workqueue(ice_wq); 4868 pr_info("module unloaded\n"); 4869 } 4870 module_exit(ice_module_exit); 4871 4872 /** 4873 * ice_set_mac_address - NDO callback to set MAC address 4874 * @netdev: network interface device structure 4875 * @pi: pointer to an address structure 4876 * 4877 * Returns 0 on success, negative on failure 4878 */ 4879 static int ice_set_mac_address(struct net_device *netdev, void *pi) 4880 { 4881 struct ice_netdev_priv *np = netdev_priv(netdev); 4882 struct ice_vsi *vsi = np->vsi; 4883 struct ice_pf *pf = vsi->back; 4884 struct ice_hw *hw = &pf->hw; 4885 struct sockaddr *addr = pi; 4886 enum ice_status status; 4887 u8 flags = 0; 4888 int err = 0; 4889 u8 *mac; 4890 4891 mac = (u8 *)addr->sa_data; 4892 4893 if (!is_valid_ether_addr(mac)) 4894 return -EADDRNOTAVAIL; 4895 4896 if (ether_addr_equal(netdev->dev_addr, mac)) { 4897 netdev_warn(netdev, "already using mac %pM\n", mac); 4898 return 0; 4899 } 4900 4901 if (test_bit(ICE_DOWN, pf->state) || 4902 ice_is_reset_in_progress(pf->state)) { 4903 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4904 mac); 4905 return -EBUSY; 4906 } 4907 4908 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4909 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 4910 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4911 err = -EADDRNOTAVAIL; 4912 goto err_update_filters; 4913 } 4914 4915 /* Add filter for new MAC. If filter exists, return success */ 4916 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4917 if (status == ICE_ERR_ALREADY_EXISTS) { 4918 /* Although this MAC filter is already present in hardware it's 4919 * possible in some cases (e.g. bonding) that dev_addr was 4920 * modified outside of the driver and needs to be restored back 4921 * to this value. 4922 */ 4923 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4924 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4925 return 0; 4926 } 4927 4928 /* error if the new filter addition failed */ 4929 if (status) 4930 err = -EADDRNOTAVAIL; 4931 4932 err_update_filters: 4933 if (err) { 4934 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4935 mac); 4936 return err; 4937 } 4938 4939 /* change the netdev's MAC address */ 4940 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4941 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4942 netdev->dev_addr); 4943 4944 /* write new MAC address to the firmware */ 4945 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4946 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4947 if (status) { 4948 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4949 mac, ice_stat_str(status)); 4950 } 4951 return 0; 4952 } 4953 4954 /** 4955 * ice_set_rx_mode - NDO callback to set the netdev filters 4956 * @netdev: network interface device structure 4957 */ 4958 static void ice_set_rx_mode(struct net_device *netdev) 4959 { 4960 struct ice_netdev_priv *np = netdev_priv(netdev); 4961 struct ice_vsi *vsi = np->vsi; 4962 4963 if (!vsi) 4964 return; 4965 4966 /* Set the flags to synchronize filters 4967 * ndo_set_rx_mode may be triggered even without a change in netdev 4968 * flags 4969 */ 4970 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 4971 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 4972 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 4973 4974 /* schedule our worker thread which will take care of 4975 * applying the new filter changes 4976 */ 4977 ice_service_task_schedule(vsi->back); 4978 } 4979 4980 /** 4981 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 4982 * @netdev: network interface device structure 4983 * @queue_index: Queue ID 4984 * @maxrate: maximum bandwidth in Mbps 4985 */ 4986 static int 4987 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 4988 { 4989 struct ice_netdev_priv *np = netdev_priv(netdev); 4990 struct ice_vsi *vsi = np->vsi; 4991 enum ice_status status; 4992 u16 q_handle; 4993 u8 tc; 4994 4995 /* Validate maxrate requested is within permitted range */ 4996 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 4997 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 4998 maxrate, queue_index); 4999 return -EINVAL; 5000 } 5001 5002 q_handle = vsi->tx_rings[queue_index]->q_handle; 5003 tc = ice_dcb_get_tc(vsi, queue_index); 5004 5005 /* Set BW back to default, when user set maxrate to 0 */ 5006 if (!maxrate) 5007 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5008 q_handle, ICE_MAX_BW); 5009 else 5010 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5011 q_handle, ICE_MAX_BW, maxrate * 1000); 5012 if (status) { 5013 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5014 ice_stat_str(status)); 5015 return -EIO; 5016 } 5017 5018 return 0; 5019 } 5020 5021 /** 5022 * ice_fdb_add - add an entry to the hardware database 5023 * @ndm: the input from the stack 5024 * @tb: pointer to array of nladdr (unused) 5025 * @dev: the net device pointer 5026 * @addr: the MAC address entry being added 5027 * @vid: VLAN ID 5028 * @flags: instructions from stack about fdb operation 5029 * @extack: netlink extended ack 5030 */ 5031 static int 5032 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5033 struct net_device *dev, const unsigned char *addr, u16 vid, 5034 u16 flags, struct netlink_ext_ack __always_unused *extack) 5035 { 5036 int err; 5037 5038 if (vid) { 5039 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5040 return -EINVAL; 5041 } 5042 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5043 netdev_err(dev, "FDB only supports static addresses\n"); 5044 return -EINVAL; 5045 } 5046 5047 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5048 err = dev_uc_add_excl(dev, addr); 5049 else if (is_multicast_ether_addr(addr)) 5050 err = dev_mc_add_excl(dev, addr); 5051 else 5052 err = -EINVAL; 5053 5054 /* Only return duplicate errors if NLM_F_EXCL is set */ 5055 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5056 err = 0; 5057 5058 return err; 5059 } 5060 5061 /** 5062 * ice_fdb_del - delete an entry from the hardware database 5063 * @ndm: the input from the stack 5064 * @tb: pointer to array of nladdr (unused) 5065 * @dev: the net device pointer 5066 * @addr: the MAC address entry being added 5067 * @vid: VLAN ID 5068 */ 5069 static int 5070 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5071 struct net_device *dev, const unsigned char *addr, 5072 __always_unused u16 vid) 5073 { 5074 int err; 5075 5076 if (ndm->ndm_state & NUD_PERMANENT) { 5077 netdev_err(dev, "FDB only supports static addresses\n"); 5078 return -EINVAL; 5079 } 5080 5081 if (is_unicast_ether_addr(addr)) 5082 err = dev_uc_del(dev, addr); 5083 else if (is_multicast_ether_addr(addr)) 5084 err = dev_mc_del(dev, addr); 5085 else 5086 err = -EINVAL; 5087 5088 return err; 5089 } 5090 5091 /** 5092 * ice_set_features - set the netdev feature flags 5093 * @netdev: ptr to the netdev being adjusted 5094 * @features: the feature set that the stack is suggesting 5095 */ 5096 static int 5097 ice_set_features(struct net_device *netdev, netdev_features_t features) 5098 { 5099 struct ice_netdev_priv *np = netdev_priv(netdev); 5100 struct ice_vsi *vsi = np->vsi; 5101 struct ice_pf *pf = vsi->back; 5102 int ret = 0; 5103 5104 /* Don't set any netdev advanced features with device in Safe Mode */ 5105 if (ice_is_safe_mode(vsi->back)) { 5106 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5107 return ret; 5108 } 5109 5110 /* Do not change setting during reset */ 5111 if (ice_is_reset_in_progress(pf->state)) { 5112 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5113 return -EBUSY; 5114 } 5115 5116 /* Multiple features can be changed in one call so keep features in 5117 * separate if/else statements to guarantee each feature is checked 5118 */ 5119 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5120 ice_vsi_manage_rss_lut(vsi, true); 5121 else if (!(features & NETIF_F_RXHASH) && 5122 netdev->features & NETIF_F_RXHASH) 5123 ice_vsi_manage_rss_lut(vsi, false); 5124 5125 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5126 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5127 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5128 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5129 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5130 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5131 5132 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5133 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5134 ret = ice_vsi_manage_vlan_insertion(vsi); 5135 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5136 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5137 ret = ice_vsi_manage_vlan_insertion(vsi); 5138 5139 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5140 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5141 ret = ice_cfg_vlan_pruning(vsi, true, false); 5142 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5143 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5144 ret = ice_cfg_vlan_pruning(vsi, false, false); 5145 5146 if ((features & NETIF_F_NTUPLE) && 5147 !(netdev->features & NETIF_F_NTUPLE)) { 5148 ice_vsi_manage_fdir(vsi, true); 5149 ice_init_arfs(vsi); 5150 } else if (!(features & NETIF_F_NTUPLE) && 5151 (netdev->features & NETIF_F_NTUPLE)) { 5152 ice_vsi_manage_fdir(vsi, false); 5153 ice_clear_arfs(vsi); 5154 } 5155 5156 return ret; 5157 } 5158 5159 /** 5160 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5161 * @vsi: VSI to setup VLAN properties for 5162 */ 5163 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5164 { 5165 int ret = 0; 5166 5167 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5168 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5169 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5170 ret = ice_vsi_manage_vlan_insertion(vsi); 5171 5172 return ret; 5173 } 5174 5175 /** 5176 * ice_vsi_cfg - Setup the VSI 5177 * @vsi: the VSI being configured 5178 * 5179 * Return 0 on success and negative value on error 5180 */ 5181 int ice_vsi_cfg(struct ice_vsi *vsi) 5182 { 5183 int err; 5184 5185 if (vsi->netdev) { 5186 ice_set_rx_mode(vsi->netdev); 5187 5188 err = ice_vsi_vlan_setup(vsi); 5189 5190 if (err) 5191 return err; 5192 } 5193 ice_vsi_cfg_dcb_rings(vsi); 5194 5195 err = ice_vsi_cfg_lan_txqs(vsi); 5196 if (!err && ice_is_xdp_ena_vsi(vsi)) 5197 err = ice_vsi_cfg_xdp_txqs(vsi); 5198 if (!err) 5199 err = ice_vsi_cfg_rxqs(vsi); 5200 5201 return err; 5202 } 5203 5204 /* THEORY OF MODERATION: 5205 * The below code creates custom DIM profiles for use by this driver, because 5206 * the ice driver hardware works differently than the hardware that DIMLIB was 5207 * originally made for. ice hardware doesn't have packet count limits that 5208 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5209 * and this code adds that capability to be used by the driver when it's using 5210 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver 5211 * for how to "respond" to traffic and interrupts, so this driver uses a 5212 * slightly different set of moderation parameters to get best performance. 5213 */ 5214 struct ice_dim { 5215 /* the throttle rate for interrupts, basically worst case delay before 5216 * an initial interrupt fires, value is stored in microseconds. 5217 */ 5218 u16 itr; 5219 /* the rate limit for interrupts, which can cap a delay from a small 5220 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR 5221 * could yield as much as 500,000 interrupts per second, but with a 5222 * 10us rate limit, it limits to 100,000 interrupts per second. Value 5223 * is stored in microseconds. 5224 */ 5225 u16 intrl; 5226 }; 5227 5228 /* Make a different profile for Rx that doesn't allow quite so aggressive 5229 * moderation at the high end (it maxes out at 128us or about 8k interrupts a 5230 * second. The INTRL/rate parameters here are only useful to cap small ITR 5231 * values, which is why for larger ITR's - like 128, which can only generate 5232 * 8k interrupts per second, there is no point to rate limit and the values 5233 * are set to zero. The rate limit values do affect latency, and so must 5234 * be reasonably small so to not impact latency sensitive tests. 5235 */ 5236 static const struct ice_dim rx_profile[] = { 5237 {2, 10}, 5238 {8, 16}, 5239 {32, 0}, 5240 {96, 0}, 5241 {128, 0} 5242 }; 5243 5244 /* The transmit profile, which has the same sorts of values 5245 * as the previous struct 5246 */ 5247 static const struct ice_dim tx_profile[] = { 5248 {2, 10}, 5249 {8, 16}, 5250 {64, 0}, 5251 {128, 0}, 5252 {256, 0} 5253 }; 5254 5255 static void ice_tx_dim_work(struct work_struct *work) 5256 { 5257 struct ice_ring_container *rc; 5258 struct ice_q_vector *q_vector; 5259 struct dim *dim; 5260 u16 itr, intrl; 5261 5262 dim = container_of(work, struct dim, work); 5263 rc = container_of(dim, struct ice_ring_container, dim); 5264 q_vector = container_of(rc, struct ice_q_vector, tx); 5265 5266 if (dim->profile_ix >= ARRAY_SIZE(tx_profile)) 5267 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1; 5268 5269 /* look up the values in our local table */ 5270 itr = tx_profile[dim->profile_ix].itr; 5271 intrl = tx_profile[dim->profile_ix].intrl; 5272 5273 ice_write_itr(rc, itr); 5274 ice_write_intrl(q_vector, intrl); 5275 5276 dim->state = DIM_START_MEASURE; 5277 } 5278 5279 static void ice_rx_dim_work(struct work_struct *work) 5280 { 5281 struct ice_ring_container *rc; 5282 struct ice_q_vector *q_vector; 5283 struct dim *dim; 5284 u16 itr, intrl; 5285 5286 dim = container_of(work, struct dim, work); 5287 rc = container_of(dim, struct ice_ring_container, dim); 5288 q_vector = container_of(rc, struct ice_q_vector, rx); 5289 5290 if (dim->profile_ix >= ARRAY_SIZE(rx_profile)) 5291 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1; 5292 5293 /* look up the values in our local table */ 5294 itr = rx_profile[dim->profile_ix].itr; 5295 intrl = rx_profile[dim->profile_ix].intrl; 5296 5297 ice_write_itr(rc, itr); 5298 ice_write_intrl(q_vector, intrl); 5299 5300 dim->state = DIM_START_MEASURE; 5301 } 5302 5303 /** 5304 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5305 * @vsi: the VSI being configured 5306 */ 5307 static void ice_napi_enable_all(struct ice_vsi *vsi) 5308 { 5309 int q_idx; 5310 5311 if (!vsi->netdev) 5312 return; 5313 5314 ice_for_each_q_vector(vsi, q_idx) { 5315 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5316 5317 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work); 5318 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5319 5320 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work); 5321 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5322 5323 if (q_vector->rx.ring || q_vector->tx.ring) 5324 napi_enable(&q_vector->napi); 5325 } 5326 } 5327 5328 /** 5329 * ice_up_complete - Finish the last steps of bringing up a connection 5330 * @vsi: The VSI being configured 5331 * 5332 * Return 0 on success and negative value on error 5333 */ 5334 static int ice_up_complete(struct ice_vsi *vsi) 5335 { 5336 struct ice_pf *pf = vsi->back; 5337 int err; 5338 5339 ice_vsi_cfg_msix(vsi); 5340 5341 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5342 * Tx queue group list was configured and the context bits were 5343 * programmed using ice_vsi_cfg_txqs 5344 */ 5345 err = ice_vsi_start_all_rx_rings(vsi); 5346 if (err) 5347 return err; 5348 5349 clear_bit(ICE_VSI_DOWN, vsi->state); 5350 ice_napi_enable_all(vsi); 5351 ice_vsi_ena_irq(vsi); 5352 5353 if (vsi->port_info && 5354 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5355 vsi->netdev) { 5356 ice_print_link_msg(vsi, true); 5357 netif_tx_start_all_queues(vsi->netdev); 5358 netif_carrier_on(vsi->netdev); 5359 } 5360 5361 ice_service_task_schedule(pf); 5362 5363 return 0; 5364 } 5365 5366 /** 5367 * ice_up - Bring the connection back up after being down 5368 * @vsi: VSI being configured 5369 */ 5370 int ice_up(struct ice_vsi *vsi) 5371 { 5372 int err; 5373 5374 err = ice_vsi_cfg(vsi); 5375 if (!err) 5376 err = ice_up_complete(vsi); 5377 5378 return err; 5379 } 5380 5381 /** 5382 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5383 * @ring: Tx or Rx ring to read stats from 5384 * @pkts: packets stats counter 5385 * @bytes: bytes stats counter 5386 * 5387 * This function fetches stats from the ring considering the atomic operations 5388 * that needs to be performed to read u64 values in 32 bit machine. 5389 */ 5390 static void 5391 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5392 { 5393 unsigned int start; 5394 *pkts = 0; 5395 *bytes = 0; 5396 5397 if (!ring) 5398 return; 5399 do { 5400 start = u64_stats_fetch_begin_irq(&ring->syncp); 5401 *pkts = ring->stats.pkts; 5402 *bytes = ring->stats.bytes; 5403 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5404 } 5405 5406 /** 5407 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5408 * @vsi: the VSI to be updated 5409 * @rings: rings to work on 5410 * @count: number of rings 5411 */ 5412 static void 5413 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5414 u16 count) 5415 { 5416 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5417 u16 i; 5418 5419 for (i = 0; i < count; i++) { 5420 struct ice_ring *ring; 5421 u64 pkts, bytes; 5422 5423 ring = READ_ONCE(rings[i]); 5424 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5425 vsi_stats->tx_packets += pkts; 5426 vsi_stats->tx_bytes += bytes; 5427 vsi->tx_restart += ring->tx_stats.restart_q; 5428 vsi->tx_busy += ring->tx_stats.tx_busy; 5429 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5430 } 5431 } 5432 5433 /** 5434 * ice_update_vsi_ring_stats - Update VSI stats counters 5435 * @vsi: the VSI to be updated 5436 */ 5437 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5438 { 5439 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5440 struct ice_ring *ring; 5441 u64 pkts, bytes; 5442 int i; 5443 5444 /* reset netdev stats */ 5445 vsi_stats->tx_packets = 0; 5446 vsi_stats->tx_bytes = 0; 5447 vsi_stats->rx_packets = 0; 5448 vsi_stats->rx_bytes = 0; 5449 5450 /* reset non-netdev (extended) stats */ 5451 vsi->tx_restart = 0; 5452 vsi->tx_busy = 0; 5453 vsi->tx_linearize = 0; 5454 vsi->rx_buf_failed = 0; 5455 vsi->rx_page_failed = 0; 5456 5457 rcu_read_lock(); 5458 5459 /* update Tx rings counters */ 5460 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5461 5462 /* update Rx rings counters */ 5463 ice_for_each_rxq(vsi, i) { 5464 ring = READ_ONCE(vsi->rx_rings[i]); 5465 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5466 vsi_stats->rx_packets += pkts; 5467 vsi_stats->rx_bytes += bytes; 5468 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5469 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5470 } 5471 5472 /* update XDP Tx rings counters */ 5473 if (ice_is_xdp_ena_vsi(vsi)) 5474 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5475 vsi->num_xdp_txq); 5476 5477 rcu_read_unlock(); 5478 } 5479 5480 /** 5481 * ice_update_vsi_stats - Update VSI stats counters 5482 * @vsi: the VSI to be updated 5483 */ 5484 void ice_update_vsi_stats(struct ice_vsi *vsi) 5485 { 5486 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5487 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5488 struct ice_pf *pf = vsi->back; 5489 5490 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5491 test_bit(ICE_CFG_BUSY, pf->state)) 5492 return; 5493 5494 /* get stats as recorded by Tx/Rx rings */ 5495 ice_update_vsi_ring_stats(vsi); 5496 5497 /* get VSI stats as recorded by the hardware */ 5498 ice_update_eth_stats(vsi); 5499 5500 cur_ns->tx_errors = cur_es->tx_errors; 5501 cur_ns->rx_dropped = cur_es->rx_discards; 5502 cur_ns->tx_dropped = cur_es->tx_discards; 5503 cur_ns->multicast = cur_es->rx_multicast; 5504 5505 /* update some more netdev stats if this is main VSI */ 5506 if (vsi->type == ICE_VSI_PF) { 5507 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5508 cur_ns->rx_errors = pf->stats.crc_errors + 5509 pf->stats.illegal_bytes + 5510 pf->stats.rx_len_errors + 5511 pf->stats.rx_undersize + 5512 pf->hw_csum_rx_error + 5513 pf->stats.rx_jabber + 5514 pf->stats.rx_fragments + 5515 pf->stats.rx_oversize; 5516 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5517 /* record drops from the port level */ 5518 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5519 } 5520 } 5521 5522 /** 5523 * ice_update_pf_stats - Update PF port stats counters 5524 * @pf: PF whose stats needs to be updated 5525 */ 5526 void ice_update_pf_stats(struct ice_pf *pf) 5527 { 5528 struct ice_hw_port_stats *prev_ps, *cur_ps; 5529 struct ice_hw *hw = &pf->hw; 5530 u16 fd_ctr_base; 5531 u8 port; 5532 5533 port = hw->port_info->lport; 5534 prev_ps = &pf->stats_prev; 5535 cur_ps = &pf->stats; 5536 5537 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5538 &prev_ps->eth.rx_bytes, 5539 &cur_ps->eth.rx_bytes); 5540 5541 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5542 &prev_ps->eth.rx_unicast, 5543 &cur_ps->eth.rx_unicast); 5544 5545 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5546 &prev_ps->eth.rx_multicast, 5547 &cur_ps->eth.rx_multicast); 5548 5549 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5550 &prev_ps->eth.rx_broadcast, 5551 &cur_ps->eth.rx_broadcast); 5552 5553 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5554 &prev_ps->eth.rx_discards, 5555 &cur_ps->eth.rx_discards); 5556 5557 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5558 &prev_ps->eth.tx_bytes, 5559 &cur_ps->eth.tx_bytes); 5560 5561 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5562 &prev_ps->eth.tx_unicast, 5563 &cur_ps->eth.tx_unicast); 5564 5565 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5566 &prev_ps->eth.tx_multicast, 5567 &cur_ps->eth.tx_multicast); 5568 5569 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5570 &prev_ps->eth.tx_broadcast, 5571 &cur_ps->eth.tx_broadcast); 5572 5573 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5574 &prev_ps->tx_dropped_link_down, 5575 &cur_ps->tx_dropped_link_down); 5576 5577 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5578 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5579 5580 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5581 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5582 5583 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5584 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5585 5586 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5587 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5588 5589 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5590 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5591 5592 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5593 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5594 5595 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5596 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5597 5598 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5599 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5600 5601 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5602 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5603 5604 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5605 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5606 5607 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5608 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5609 5610 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5611 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5612 5613 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5614 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5615 5616 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5617 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5618 5619 fd_ctr_base = hw->fd_ctr_base; 5620 5621 ice_stat_update40(hw, 5622 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5623 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5624 &cur_ps->fd_sb_match); 5625 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5626 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5627 5628 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5629 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5630 5631 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5632 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5633 5634 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5635 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5636 5637 ice_update_dcb_stats(pf); 5638 5639 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5640 &prev_ps->crc_errors, &cur_ps->crc_errors); 5641 5642 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5643 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5644 5645 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5646 &prev_ps->mac_local_faults, 5647 &cur_ps->mac_local_faults); 5648 5649 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5650 &prev_ps->mac_remote_faults, 5651 &cur_ps->mac_remote_faults); 5652 5653 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5654 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5655 5656 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5657 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5658 5659 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5660 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5661 5662 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5663 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5664 5665 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5666 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5667 5668 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5669 5670 pf->stat_prev_loaded = true; 5671 } 5672 5673 /** 5674 * ice_get_stats64 - get statistics for network device structure 5675 * @netdev: network interface device structure 5676 * @stats: main device statistics structure 5677 */ 5678 static 5679 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5680 { 5681 struct ice_netdev_priv *np = netdev_priv(netdev); 5682 struct rtnl_link_stats64 *vsi_stats; 5683 struct ice_vsi *vsi = np->vsi; 5684 5685 vsi_stats = &vsi->net_stats; 5686 5687 if (!vsi->num_txq || !vsi->num_rxq) 5688 return; 5689 5690 /* netdev packet/byte stats come from ring counter. These are obtained 5691 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5692 * But, only call the update routine and read the registers if VSI is 5693 * not down. 5694 */ 5695 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 5696 ice_update_vsi_ring_stats(vsi); 5697 stats->tx_packets = vsi_stats->tx_packets; 5698 stats->tx_bytes = vsi_stats->tx_bytes; 5699 stats->rx_packets = vsi_stats->rx_packets; 5700 stats->rx_bytes = vsi_stats->rx_bytes; 5701 5702 /* The rest of the stats can be read from the hardware but instead we 5703 * just return values that the watchdog task has already obtained from 5704 * the hardware. 5705 */ 5706 stats->multicast = vsi_stats->multicast; 5707 stats->tx_errors = vsi_stats->tx_errors; 5708 stats->tx_dropped = vsi_stats->tx_dropped; 5709 stats->rx_errors = vsi_stats->rx_errors; 5710 stats->rx_dropped = vsi_stats->rx_dropped; 5711 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5712 stats->rx_length_errors = vsi_stats->rx_length_errors; 5713 } 5714 5715 /** 5716 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5717 * @vsi: VSI having NAPI disabled 5718 */ 5719 static void ice_napi_disable_all(struct ice_vsi *vsi) 5720 { 5721 int q_idx; 5722 5723 if (!vsi->netdev) 5724 return; 5725 5726 ice_for_each_q_vector(vsi, q_idx) { 5727 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5728 5729 if (q_vector->rx.ring || q_vector->tx.ring) 5730 napi_disable(&q_vector->napi); 5731 5732 cancel_work_sync(&q_vector->tx.dim.work); 5733 cancel_work_sync(&q_vector->rx.dim.work); 5734 } 5735 } 5736 5737 /** 5738 * ice_down - Shutdown the connection 5739 * @vsi: The VSI being stopped 5740 */ 5741 int ice_down(struct ice_vsi *vsi) 5742 { 5743 int i, tx_err, rx_err, link_err = 0; 5744 5745 /* Caller of this function is expected to set the 5746 * vsi->state ICE_DOWN bit 5747 */ 5748 if (vsi->netdev) { 5749 netif_carrier_off(vsi->netdev); 5750 netif_tx_disable(vsi->netdev); 5751 } 5752 5753 ice_vsi_dis_irq(vsi); 5754 5755 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5756 if (tx_err) 5757 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5758 vsi->vsi_num, tx_err); 5759 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5760 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5761 if (tx_err) 5762 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5763 vsi->vsi_num, tx_err); 5764 } 5765 5766 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5767 if (rx_err) 5768 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5769 vsi->vsi_num, rx_err); 5770 5771 ice_napi_disable_all(vsi); 5772 5773 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5774 link_err = ice_force_phys_link_state(vsi, false); 5775 if (link_err) 5776 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5777 vsi->vsi_num, link_err); 5778 } 5779 5780 ice_for_each_txq(vsi, i) 5781 ice_clean_tx_ring(vsi->tx_rings[i]); 5782 5783 ice_for_each_rxq(vsi, i) 5784 ice_clean_rx_ring(vsi->rx_rings[i]); 5785 5786 if (tx_err || rx_err || link_err) { 5787 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5788 vsi->vsi_num, vsi->vsw->sw_id); 5789 return -EIO; 5790 } 5791 5792 return 0; 5793 } 5794 5795 /** 5796 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5797 * @vsi: VSI having resources allocated 5798 * 5799 * Return 0 on success, negative on failure 5800 */ 5801 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5802 { 5803 int i, err = 0; 5804 5805 if (!vsi->num_txq) { 5806 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5807 vsi->vsi_num); 5808 return -EINVAL; 5809 } 5810 5811 ice_for_each_txq(vsi, i) { 5812 struct ice_ring *ring = vsi->tx_rings[i]; 5813 5814 if (!ring) 5815 return -EINVAL; 5816 5817 ring->netdev = vsi->netdev; 5818 err = ice_setup_tx_ring(ring); 5819 if (err) 5820 break; 5821 } 5822 5823 return err; 5824 } 5825 5826 /** 5827 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5828 * @vsi: VSI having resources allocated 5829 * 5830 * Return 0 on success, negative on failure 5831 */ 5832 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5833 { 5834 int i, err = 0; 5835 5836 if (!vsi->num_rxq) { 5837 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5838 vsi->vsi_num); 5839 return -EINVAL; 5840 } 5841 5842 ice_for_each_rxq(vsi, i) { 5843 struct ice_ring *ring = vsi->rx_rings[i]; 5844 5845 if (!ring) 5846 return -EINVAL; 5847 5848 ring->netdev = vsi->netdev; 5849 err = ice_setup_rx_ring(ring); 5850 if (err) 5851 break; 5852 } 5853 5854 return err; 5855 } 5856 5857 /** 5858 * ice_vsi_open_ctrl - open control VSI for use 5859 * @vsi: the VSI to open 5860 * 5861 * Initialization of the Control VSI 5862 * 5863 * Returns 0 on success, negative value on error 5864 */ 5865 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5866 { 5867 char int_name[ICE_INT_NAME_STR_LEN]; 5868 struct ice_pf *pf = vsi->back; 5869 struct device *dev; 5870 int err; 5871 5872 dev = ice_pf_to_dev(pf); 5873 /* allocate descriptors */ 5874 err = ice_vsi_setup_tx_rings(vsi); 5875 if (err) 5876 goto err_setup_tx; 5877 5878 err = ice_vsi_setup_rx_rings(vsi); 5879 if (err) 5880 goto err_setup_rx; 5881 5882 err = ice_vsi_cfg(vsi); 5883 if (err) 5884 goto err_setup_rx; 5885 5886 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5887 dev_driver_string(dev), dev_name(dev)); 5888 err = ice_vsi_req_irq_msix(vsi, int_name); 5889 if (err) 5890 goto err_setup_rx; 5891 5892 ice_vsi_cfg_msix(vsi); 5893 5894 err = ice_vsi_start_all_rx_rings(vsi); 5895 if (err) 5896 goto err_up_complete; 5897 5898 clear_bit(ICE_VSI_DOWN, vsi->state); 5899 ice_vsi_ena_irq(vsi); 5900 5901 return 0; 5902 5903 err_up_complete: 5904 ice_down(vsi); 5905 err_setup_rx: 5906 ice_vsi_free_rx_rings(vsi); 5907 err_setup_tx: 5908 ice_vsi_free_tx_rings(vsi); 5909 5910 return err; 5911 } 5912 5913 /** 5914 * ice_vsi_open - Called when a network interface is made active 5915 * @vsi: the VSI to open 5916 * 5917 * Initialization of the VSI 5918 * 5919 * Returns 0 on success, negative value on error 5920 */ 5921 static int ice_vsi_open(struct ice_vsi *vsi) 5922 { 5923 char int_name[ICE_INT_NAME_STR_LEN]; 5924 struct ice_pf *pf = vsi->back; 5925 int err; 5926 5927 /* allocate descriptors */ 5928 err = ice_vsi_setup_tx_rings(vsi); 5929 if (err) 5930 goto err_setup_tx; 5931 5932 err = ice_vsi_setup_rx_rings(vsi); 5933 if (err) 5934 goto err_setup_rx; 5935 5936 err = ice_vsi_cfg(vsi); 5937 if (err) 5938 goto err_setup_rx; 5939 5940 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5941 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5942 err = ice_vsi_req_irq_msix(vsi, int_name); 5943 if (err) 5944 goto err_setup_rx; 5945 5946 /* Notify the stack of the actual queue counts. */ 5947 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5948 if (err) 5949 goto err_set_qs; 5950 5951 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5952 if (err) 5953 goto err_set_qs; 5954 5955 err = ice_up_complete(vsi); 5956 if (err) 5957 goto err_up_complete; 5958 5959 return 0; 5960 5961 err_up_complete: 5962 ice_down(vsi); 5963 err_set_qs: 5964 ice_vsi_free_irq(vsi); 5965 err_setup_rx: 5966 ice_vsi_free_rx_rings(vsi); 5967 err_setup_tx: 5968 ice_vsi_free_tx_rings(vsi); 5969 5970 return err; 5971 } 5972 5973 /** 5974 * ice_vsi_release_all - Delete all VSIs 5975 * @pf: PF from which all VSIs are being removed 5976 */ 5977 static void ice_vsi_release_all(struct ice_pf *pf) 5978 { 5979 int err, i; 5980 5981 if (!pf->vsi) 5982 return; 5983 5984 ice_for_each_vsi(pf, i) { 5985 if (!pf->vsi[i]) 5986 continue; 5987 5988 err = ice_vsi_release(pf->vsi[i]); 5989 if (err) 5990 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 5991 i, err, pf->vsi[i]->vsi_num); 5992 } 5993 } 5994 5995 /** 5996 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 5997 * @pf: pointer to the PF instance 5998 * @type: VSI type to rebuild 5999 * 6000 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6001 */ 6002 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6003 { 6004 struct device *dev = ice_pf_to_dev(pf); 6005 enum ice_status status; 6006 int i, err; 6007 6008 ice_for_each_vsi(pf, i) { 6009 struct ice_vsi *vsi = pf->vsi[i]; 6010 6011 if (!vsi || vsi->type != type) 6012 continue; 6013 6014 /* rebuild the VSI */ 6015 err = ice_vsi_rebuild(vsi, true); 6016 if (err) { 6017 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6018 err, vsi->idx, ice_vsi_type_str(type)); 6019 return err; 6020 } 6021 6022 /* replay filters for the VSI */ 6023 status = ice_replay_vsi(&pf->hw, vsi->idx); 6024 if (status) { 6025 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6026 ice_stat_str(status), vsi->idx, 6027 ice_vsi_type_str(type)); 6028 return -EIO; 6029 } 6030 6031 /* Re-map HW VSI number, using VSI handle that has been 6032 * previously validated in ice_replay_vsi() call above 6033 */ 6034 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6035 6036 /* enable the VSI */ 6037 err = ice_ena_vsi(vsi, false); 6038 if (err) { 6039 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6040 err, vsi->idx, ice_vsi_type_str(type)); 6041 return err; 6042 } 6043 6044 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6045 ice_vsi_type_str(type)); 6046 } 6047 6048 return 0; 6049 } 6050 6051 /** 6052 * ice_update_pf_netdev_link - Update PF netdev link status 6053 * @pf: pointer to the PF instance 6054 */ 6055 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6056 { 6057 bool link_up; 6058 int i; 6059 6060 ice_for_each_vsi(pf, i) { 6061 struct ice_vsi *vsi = pf->vsi[i]; 6062 6063 if (!vsi || vsi->type != ICE_VSI_PF) 6064 return; 6065 6066 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6067 if (link_up) { 6068 netif_carrier_on(pf->vsi[i]->netdev); 6069 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6070 } else { 6071 netif_carrier_off(pf->vsi[i]->netdev); 6072 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6073 } 6074 } 6075 } 6076 6077 /** 6078 * ice_rebuild - rebuild after reset 6079 * @pf: PF to rebuild 6080 * @reset_type: type of reset 6081 * 6082 * Do not rebuild VF VSI in this flow because that is already handled via 6083 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6084 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6085 * to reset/rebuild all the VF VSI twice. 6086 */ 6087 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6088 { 6089 struct device *dev = ice_pf_to_dev(pf); 6090 struct ice_hw *hw = &pf->hw; 6091 enum ice_status ret; 6092 int err; 6093 6094 if (test_bit(ICE_DOWN, pf->state)) 6095 goto clear_recovery; 6096 6097 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6098 6099 ret = ice_init_all_ctrlq(hw); 6100 if (ret) { 6101 dev_err(dev, "control queues init failed %s\n", 6102 ice_stat_str(ret)); 6103 goto err_init_ctrlq; 6104 } 6105 6106 /* if DDP was previously loaded successfully */ 6107 if (!ice_is_safe_mode(pf)) { 6108 /* reload the SW DB of filter tables */ 6109 if (reset_type == ICE_RESET_PFR) 6110 ice_fill_blk_tbls(hw); 6111 else 6112 /* Reload DDP Package after CORER/GLOBR reset */ 6113 ice_load_pkg(NULL, pf); 6114 } 6115 6116 ret = ice_clear_pf_cfg(hw); 6117 if (ret) { 6118 dev_err(dev, "clear PF configuration failed %s\n", 6119 ice_stat_str(ret)); 6120 goto err_init_ctrlq; 6121 } 6122 6123 if (pf->first_sw->dflt_vsi_ena) 6124 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6125 /* clear the default VSI configuration if it exists */ 6126 pf->first_sw->dflt_vsi = NULL; 6127 pf->first_sw->dflt_vsi_ena = false; 6128 6129 ice_clear_pxe_mode(hw); 6130 6131 ret = ice_get_caps(hw); 6132 if (ret) { 6133 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6134 goto err_init_ctrlq; 6135 } 6136 6137 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6138 if (ret) { 6139 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6140 goto err_init_ctrlq; 6141 } 6142 6143 err = ice_sched_init_port(hw->port_info); 6144 if (err) 6145 goto err_sched_init_port; 6146 6147 /* start misc vector */ 6148 err = ice_req_irq_msix_misc(pf); 6149 if (err) { 6150 dev_err(dev, "misc vector setup failed: %d\n", err); 6151 goto err_sched_init_port; 6152 } 6153 6154 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6155 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6156 if (!rd32(hw, PFQF_FD_SIZE)) { 6157 u16 unused, guar, b_effort; 6158 6159 guar = hw->func_caps.fd_fltr_guar; 6160 b_effort = hw->func_caps.fd_fltr_best_effort; 6161 6162 /* force guaranteed filter pool for PF */ 6163 ice_alloc_fd_guar_item(hw, &unused, guar); 6164 /* force shared filter pool for PF */ 6165 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6166 } 6167 } 6168 6169 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6170 ice_dcb_rebuild(pf); 6171 6172 /* rebuild PF VSI */ 6173 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6174 if (err) { 6175 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6176 goto err_vsi_rebuild; 6177 } 6178 6179 /* If Flow Director is active */ 6180 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6181 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6182 if (err) { 6183 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6184 goto err_vsi_rebuild; 6185 } 6186 6187 /* replay HW Flow Director recipes */ 6188 if (hw->fdir_prof) 6189 ice_fdir_replay_flows(hw); 6190 6191 /* replay Flow Director filters */ 6192 ice_fdir_replay_fltrs(pf); 6193 6194 ice_rebuild_arfs(pf); 6195 } 6196 6197 ice_update_pf_netdev_link(pf); 6198 6199 /* tell the firmware we are up */ 6200 ret = ice_send_version(pf); 6201 if (ret) { 6202 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6203 ice_stat_str(ret)); 6204 goto err_vsi_rebuild; 6205 } 6206 6207 ice_replay_post(hw); 6208 6209 /* if we get here, reset flow is successful */ 6210 clear_bit(ICE_RESET_FAILED, pf->state); 6211 return; 6212 6213 err_vsi_rebuild: 6214 err_sched_init_port: 6215 ice_sched_cleanup_all(hw); 6216 err_init_ctrlq: 6217 ice_shutdown_all_ctrlq(hw); 6218 set_bit(ICE_RESET_FAILED, pf->state); 6219 clear_recovery: 6220 /* set this bit in PF state to control service task scheduling */ 6221 set_bit(ICE_NEEDS_RESTART, pf->state); 6222 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6223 } 6224 6225 /** 6226 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6227 * @vsi: Pointer to VSI structure 6228 */ 6229 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6230 { 6231 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6232 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6233 else 6234 return ICE_RXBUF_3072; 6235 } 6236 6237 /** 6238 * ice_change_mtu - NDO callback to change the MTU 6239 * @netdev: network interface device structure 6240 * @new_mtu: new value for maximum frame size 6241 * 6242 * Returns 0 on success, negative on failure 6243 */ 6244 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6245 { 6246 struct ice_netdev_priv *np = netdev_priv(netdev); 6247 struct ice_vsi *vsi = np->vsi; 6248 struct ice_pf *pf = vsi->back; 6249 u8 count = 0; 6250 6251 if (new_mtu == (int)netdev->mtu) { 6252 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6253 return 0; 6254 } 6255 6256 if (ice_is_xdp_ena_vsi(vsi)) { 6257 int frame_size = ice_max_xdp_frame_size(vsi); 6258 6259 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6260 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6261 frame_size - ICE_ETH_PKT_HDR_PAD); 6262 return -EINVAL; 6263 } 6264 } 6265 6266 /* if a reset is in progress, wait for some time for it to complete */ 6267 do { 6268 if (ice_is_reset_in_progress(pf->state)) { 6269 count++; 6270 usleep_range(1000, 2000); 6271 } else { 6272 break; 6273 } 6274 6275 } while (count < 100); 6276 6277 if (count == 100) { 6278 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6279 return -EBUSY; 6280 } 6281 6282 netdev->mtu = (unsigned int)new_mtu; 6283 6284 /* if VSI is up, bring it down and then back up */ 6285 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6286 int err; 6287 6288 err = ice_down(vsi); 6289 if (err) { 6290 netdev_err(netdev, "change MTU if_down err %d\n", err); 6291 return err; 6292 } 6293 6294 err = ice_up(vsi); 6295 if (err) { 6296 netdev_err(netdev, "change MTU if_up err %d\n", err); 6297 return err; 6298 } 6299 } 6300 6301 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6302 return 0; 6303 } 6304 6305 /** 6306 * ice_aq_str - convert AQ err code to a string 6307 * @aq_err: the AQ error code to convert 6308 */ 6309 const char *ice_aq_str(enum ice_aq_err aq_err) 6310 { 6311 switch (aq_err) { 6312 case ICE_AQ_RC_OK: 6313 return "OK"; 6314 case ICE_AQ_RC_EPERM: 6315 return "ICE_AQ_RC_EPERM"; 6316 case ICE_AQ_RC_ENOENT: 6317 return "ICE_AQ_RC_ENOENT"; 6318 case ICE_AQ_RC_ENOMEM: 6319 return "ICE_AQ_RC_ENOMEM"; 6320 case ICE_AQ_RC_EBUSY: 6321 return "ICE_AQ_RC_EBUSY"; 6322 case ICE_AQ_RC_EEXIST: 6323 return "ICE_AQ_RC_EEXIST"; 6324 case ICE_AQ_RC_EINVAL: 6325 return "ICE_AQ_RC_EINVAL"; 6326 case ICE_AQ_RC_ENOSPC: 6327 return "ICE_AQ_RC_ENOSPC"; 6328 case ICE_AQ_RC_ENOSYS: 6329 return "ICE_AQ_RC_ENOSYS"; 6330 case ICE_AQ_RC_EMODE: 6331 return "ICE_AQ_RC_EMODE"; 6332 case ICE_AQ_RC_ENOSEC: 6333 return "ICE_AQ_RC_ENOSEC"; 6334 case ICE_AQ_RC_EBADSIG: 6335 return "ICE_AQ_RC_EBADSIG"; 6336 case ICE_AQ_RC_ESVN: 6337 return "ICE_AQ_RC_ESVN"; 6338 case ICE_AQ_RC_EBADMAN: 6339 return "ICE_AQ_RC_EBADMAN"; 6340 case ICE_AQ_RC_EBADBUF: 6341 return "ICE_AQ_RC_EBADBUF"; 6342 } 6343 6344 return "ICE_AQ_RC_UNKNOWN"; 6345 } 6346 6347 /** 6348 * ice_stat_str - convert status err code to a string 6349 * @stat_err: the status error code to convert 6350 */ 6351 const char *ice_stat_str(enum ice_status stat_err) 6352 { 6353 switch (stat_err) { 6354 case ICE_SUCCESS: 6355 return "OK"; 6356 case ICE_ERR_PARAM: 6357 return "ICE_ERR_PARAM"; 6358 case ICE_ERR_NOT_IMPL: 6359 return "ICE_ERR_NOT_IMPL"; 6360 case ICE_ERR_NOT_READY: 6361 return "ICE_ERR_NOT_READY"; 6362 case ICE_ERR_NOT_SUPPORTED: 6363 return "ICE_ERR_NOT_SUPPORTED"; 6364 case ICE_ERR_BAD_PTR: 6365 return "ICE_ERR_BAD_PTR"; 6366 case ICE_ERR_INVAL_SIZE: 6367 return "ICE_ERR_INVAL_SIZE"; 6368 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6369 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6370 case ICE_ERR_RESET_FAILED: 6371 return "ICE_ERR_RESET_FAILED"; 6372 case ICE_ERR_FW_API_VER: 6373 return "ICE_ERR_FW_API_VER"; 6374 case ICE_ERR_NO_MEMORY: 6375 return "ICE_ERR_NO_MEMORY"; 6376 case ICE_ERR_CFG: 6377 return "ICE_ERR_CFG"; 6378 case ICE_ERR_OUT_OF_RANGE: 6379 return "ICE_ERR_OUT_OF_RANGE"; 6380 case ICE_ERR_ALREADY_EXISTS: 6381 return "ICE_ERR_ALREADY_EXISTS"; 6382 case ICE_ERR_NVM: 6383 return "ICE_ERR_NVM"; 6384 case ICE_ERR_NVM_CHECKSUM: 6385 return "ICE_ERR_NVM_CHECKSUM"; 6386 case ICE_ERR_BUF_TOO_SHORT: 6387 return "ICE_ERR_BUF_TOO_SHORT"; 6388 case ICE_ERR_NVM_BLANK_MODE: 6389 return "ICE_ERR_NVM_BLANK_MODE"; 6390 case ICE_ERR_IN_USE: 6391 return "ICE_ERR_IN_USE"; 6392 case ICE_ERR_MAX_LIMIT: 6393 return "ICE_ERR_MAX_LIMIT"; 6394 case ICE_ERR_RESET_ONGOING: 6395 return "ICE_ERR_RESET_ONGOING"; 6396 case ICE_ERR_HW_TABLE: 6397 return "ICE_ERR_HW_TABLE"; 6398 case ICE_ERR_DOES_NOT_EXIST: 6399 return "ICE_ERR_DOES_NOT_EXIST"; 6400 case ICE_ERR_FW_DDP_MISMATCH: 6401 return "ICE_ERR_FW_DDP_MISMATCH"; 6402 case ICE_ERR_AQ_ERROR: 6403 return "ICE_ERR_AQ_ERROR"; 6404 case ICE_ERR_AQ_TIMEOUT: 6405 return "ICE_ERR_AQ_TIMEOUT"; 6406 case ICE_ERR_AQ_FULL: 6407 return "ICE_ERR_AQ_FULL"; 6408 case ICE_ERR_AQ_NO_WORK: 6409 return "ICE_ERR_AQ_NO_WORK"; 6410 case ICE_ERR_AQ_EMPTY: 6411 return "ICE_ERR_AQ_EMPTY"; 6412 case ICE_ERR_AQ_FW_CRITICAL: 6413 return "ICE_ERR_AQ_FW_CRITICAL"; 6414 } 6415 6416 return "ICE_ERR_UNKNOWN"; 6417 } 6418 6419 /** 6420 * ice_set_rss_lut - Set RSS LUT 6421 * @vsi: Pointer to VSI structure 6422 * @lut: Lookup table 6423 * @lut_size: Lookup table size 6424 * 6425 * Returns 0 on success, negative on failure 6426 */ 6427 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6428 { 6429 struct ice_aq_get_set_rss_lut_params params = {}; 6430 struct ice_hw *hw = &vsi->back->hw; 6431 enum ice_status status; 6432 6433 if (!lut) 6434 return -EINVAL; 6435 6436 params.vsi_handle = vsi->idx; 6437 params.lut_size = lut_size; 6438 params.lut_type = vsi->rss_lut_type; 6439 params.lut = lut; 6440 6441 status = ice_aq_set_rss_lut(hw, ¶ms); 6442 if (status) { 6443 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6444 ice_stat_str(status), 6445 ice_aq_str(hw->adminq.sq_last_status)); 6446 return -EIO; 6447 } 6448 6449 return 0; 6450 } 6451 6452 /** 6453 * ice_set_rss_key - Set RSS key 6454 * @vsi: Pointer to the VSI structure 6455 * @seed: RSS hash seed 6456 * 6457 * Returns 0 on success, negative on failure 6458 */ 6459 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6460 { 6461 struct ice_hw *hw = &vsi->back->hw; 6462 enum ice_status status; 6463 6464 if (!seed) 6465 return -EINVAL; 6466 6467 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6468 if (status) { 6469 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6470 ice_stat_str(status), 6471 ice_aq_str(hw->adminq.sq_last_status)); 6472 return -EIO; 6473 } 6474 6475 return 0; 6476 } 6477 6478 /** 6479 * ice_get_rss_lut - Get RSS LUT 6480 * @vsi: Pointer to VSI structure 6481 * @lut: Buffer to store the lookup table entries 6482 * @lut_size: Size of buffer to store the lookup table entries 6483 * 6484 * Returns 0 on success, negative on failure 6485 */ 6486 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6487 { 6488 struct ice_aq_get_set_rss_lut_params params = {}; 6489 struct ice_hw *hw = &vsi->back->hw; 6490 enum ice_status status; 6491 6492 if (!lut) 6493 return -EINVAL; 6494 6495 params.vsi_handle = vsi->idx; 6496 params.lut_size = lut_size; 6497 params.lut_type = vsi->rss_lut_type; 6498 params.lut = lut; 6499 6500 status = ice_aq_get_rss_lut(hw, ¶ms); 6501 if (status) { 6502 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6503 ice_stat_str(status), 6504 ice_aq_str(hw->adminq.sq_last_status)); 6505 return -EIO; 6506 } 6507 6508 return 0; 6509 } 6510 6511 /** 6512 * ice_get_rss_key - Get RSS key 6513 * @vsi: Pointer to VSI structure 6514 * @seed: Buffer to store the key in 6515 * 6516 * Returns 0 on success, negative on failure 6517 */ 6518 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6519 { 6520 struct ice_hw *hw = &vsi->back->hw; 6521 enum ice_status status; 6522 6523 if (!seed) 6524 return -EINVAL; 6525 6526 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6527 if (status) { 6528 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6529 ice_stat_str(status), 6530 ice_aq_str(hw->adminq.sq_last_status)); 6531 return -EIO; 6532 } 6533 6534 return 0; 6535 } 6536 6537 /** 6538 * ice_bridge_getlink - Get the hardware bridge mode 6539 * @skb: skb buff 6540 * @pid: process ID 6541 * @seq: RTNL message seq 6542 * @dev: the netdev being configured 6543 * @filter_mask: filter mask passed in 6544 * @nlflags: netlink flags passed in 6545 * 6546 * Return the bridge mode (VEB/VEPA) 6547 */ 6548 static int 6549 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6550 struct net_device *dev, u32 filter_mask, int nlflags) 6551 { 6552 struct ice_netdev_priv *np = netdev_priv(dev); 6553 struct ice_vsi *vsi = np->vsi; 6554 struct ice_pf *pf = vsi->back; 6555 u16 bmode; 6556 6557 bmode = pf->first_sw->bridge_mode; 6558 6559 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6560 filter_mask, NULL); 6561 } 6562 6563 /** 6564 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6565 * @vsi: Pointer to VSI structure 6566 * @bmode: Hardware bridge mode (VEB/VEPA) 6567 * 6568 * Returns 0 on success, negative on failure 6569 */ 6570 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6571 { 6572 struct ice_aqc_vsi_props *vsi_props; 6573 struct ice_hw *hw = &vsi->back->hw; 6574 struct ice_vsi_ctx *ctxt; 6575 enum ice_status status; 6576 int ret = 0; 6577 6578 vsi_props = &vsi->info; 6579 6580 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6581 if (!ctxt) 6582 return -ENOMEM; 6583 6584 ctxt->info = vsi->info; 6585 6586 if (bmode == BRIDGE_MODE_VEB) 6587 /* change from VEPA to VEB mode */ 6588 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6589 else 6590 /* change from VEB to VEPA mode */ 6591 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6592 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6593 6594 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6595 if (status) { 6596 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6597 bmode, ice_stat_str(status), 6598 ice_aq_str(hw->adminq.sq_last_status)); 6599 ret = -EIO; 6600 goto out; 6601 } 6602 /* Update sw flags for book keeping */ 6603 vsi_props->sw_flags = ctxt->info.sw_flags; 6604 6605 out: 6606 kfree(ctxt); 6607 return ret; 6608 } 6609 6610 /** 6611 * ice_bridge_setlink - Set the hardware bridge mode 6612 * @dev: the netdev being configured 6613 * @nlh: RTNL message 6614 * @flags: bridge setlink flags 6615 * @extack: netlink extended ack 6616 * 6617 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6618 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6619 * not already set for all VSIs connected to this switch. And also update the 6620 * unicast switch filter rules for the corresponding switch of the netdev. 6621 */ 6622 static int 6623 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6624 u16 __always_unused flags, 6625 struct netlink_ext_ack __always_unused *extack) 6626 { 6627 struct ice_netdev_priv *np = netdev_priv(dev); 6628 struct ice_pf *pf = np->vsi->back; 6629 struct nlattr *attr, *br_spec; 6630 struct ice_hw *hw = &pf->hw; 6631 enum ice_status status; 6632 struct ice_sw *pf_sw; 6633 int rem, v, err = 0; 6634 6635 pf_sw = pf->first_sw; 6636 /* find the attribute in the netlink message */ 6637 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6638 6639 nla_for_each_nested(attr, br_spec, rem) { 6640 __u16 mode; 6641 6642 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6643 continue; 6644 mode = nla_get_u16(attr); 6645 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6646 return -EINVAL; 6647 /* Continue if bridge mode is not being flipped */ 6648 if (mode == pf_sw->bridge_mode) 6649 continue; 6650 /* Iterates through the PF VSI list and update the loopback 6651 * mode of the VSI 6652 */ 6653 ice_for_each_vsi(pf, v) { 6654 if (!pf->vsi[v]) 6655 continue; 6656 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6657 if (err) 6658 return err; 6659 } 6660 6661 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6662 /* Update the unicast switch filter rules for the corresponding 6663 * switch of the netdev 6664 */ 6665 status = ice_update_sw_rule_bridge_mode(hw); 6666 if (status) { 6667 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6668 mode, ice_stat_str(status), 6669 ice_aq_str(hw->adminq.sq_last_status)); 6670 /* revert hw->evb_veb */ 6671 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6672 return -EIO; 6673 } 6674 6675 pf_sw->bridge_mode = mode; 6676 } 6677 6678 return 0; 6679 } 6680 6681 /** 6682 * ice_tx_timeout - Respond to a Tx Hang 6683 * @netdev: network interface device structure 6684 * @txqueue: Tx queue 6685 */ 6686 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6687 { 6688 struct ice_netdev_priv *np = netdev_priv(netdev); 6689 struct ice_ring *tx_ring = NULL; 6690 struct ice_vsi *vsi = np->vsi; 6691 struct ice_pf *pf = vsi->back; 6692 u32 i; 6693 6694 pf->tx_timeout_count++; 6695 6696 /* Check if PFC is enabled for the TC to which the queue belongs 6697 * to. If yes then Tx timeout is not caused by a hung queue, no 6698 * need to reset and rebuild 6699 */ 6700 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6701 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6702 txqueue); 6703 return; 6704 } 6705 6706 /* now that we have an index, find the tx_ring struct */ 6707 for (i = 0; i < vsi->num_txq; i++) 6708 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6709 if (txqueue == vsi->tx_rings[i]->q_index) { 6710 tx_ring = vsi->tx_rings[i]; 6711 break; 6712 } 6713 6714 /* Reset recovery level if enough time has elapsed after last timeout. 6715 * Also ensure no new reset action happens before next timeout period. 6716 */ 6717 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6718 pf->tx_timeout_recovery_level = 1; 6719 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6720 netdev->watchdog_timeo))) 6721 return; 6722 6723 if (tx_ring) { 6724 struct ice_hw *hw = &pf->hw; 6725 u32 head, val = 0; 6726 6727 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6728 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6729 /* Read interrupt register */ 6730 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6731 6732 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6733 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6734 head, tx_ring->next_to_use, val); 6735 } 6736 6737 pf->tx_timeout_last_recovery = jiffies; 6738 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6739 pf->tx_timeout_recovery_level, txqueue); 6740 6741 switch (pf->tx_timeout_recovery_level) { 6742 case 1: 6743 set_bit(ICE_PFR_REQ, pf->state); 6744 break; 6745 case 2: 6746 set_bit(ICE_CORER_REQ, pf->state); 6747 break; 6748 case 3: 6749 set_bit(ICE_GLOBR_REQ, pf->state); 6750 break; 6751 default: 6752 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6753 set_bit(ICE_DOWN, pf->state); 6754 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 6755 set_bit(ICE_SERVICE_DIS, pf->state); 6756 break; 6757 } 6758 6759 ice_service_task_schedule(pf); 6760 pf->tx_timeout_recovery_level++; 6761 } 6762 6763 /** 6764 * ice_open - Called when a network interface becomes active 6765 * @netdev: network interface device structure 6766 * 6767 * The open entry point is called when a network interface is made 6768 * active by the system (IFF_UP). At this point all resources needed 6769 * for transmit and receive operations are allocated, the interrupt 6770 * handler is registered with the OS, the netdev watchdog is enabled, 6771 * and the stack is notified that the interface is ready. 6772 * 6773 * Returns 0 on success, negative value on failure 6774 */ 6775 int ice_open(struct net_device *netdev) 6776 { 6777 struct ice_netdev_priv *np = netdev_priv(netdev); 6778 struct ice_pf *pf = np->vsi->back; 6779 6780 if (ice_is_reset_in_progress(pf->state)) { 6781 netdev_err(netdev, "can't open net device while reset is in progress"); 6782 return -EBUSY; 6783 } 6784 6785 return ice_open_internal(netdev); 6786 } 6787 6788 /** 6789 * ice_open_internal - Called when a network interface becomes active 6790 * @netdev: network interface device structure 6791 * 6792 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 6793 * handling routine 6794 * 6795 * Returns 0 on success, negative value on failure 6796 */ 6797 int ice_open_internal(struct net_device *netdev) 6798 { 6799 struct ice_netdev_priv *np = netdev_priv(netdev); 6800 struct ice_vsi *vsi = np->vsi; 6801 struct ice_pf *pf = vsi->back; 6802 struct ice_port_info *pi; 6803 enum ice_status status; 6804 int err; 6805 6806 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 6807 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6808 return -EIO; 6809 } 6810 6811 netif_carrier_off(netdev); 6812 6813 pi = vsi->port_info; 6814 status = ice_update_link_info(pi); 6815 if (status) { 6816 netdev_err(netdev, "Failed to get link info, error %s\n", 6817 ice_stat_str(status)); 6818 return -EIO; 6819 } 6820 6821 /* Set PHY if there is media, otherwise, turn off PHY */ 6822 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6823 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6824 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 6825 err = ice_init_phy_user_cfg(pi); 6826 if (err) { 6827 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6828 err); 6829 return err; 6830 } 6831 } 6832 6833 err = ice_configure_phy(vsi); 6834 if (err) { 6835 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6836 err); 6837 return err; 6838 } 6839 } else { 6840 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6841 ice_set_link(vsi, false); 6842 } 6843 6844 err = ice_vsi_open(vsi); 6845 if (err) 6846 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6847 vsi->vsi_num, vsi->vsw->sw_id); 6848 6849 /* Update existing tunnels information */ 6850 udp_tunnel_get_rx_info(netdev); 6851 6852 return err; 6853 } 6854 6855 /** 6856 * ice_stop - Disables a network interface 6857 * @netdev: network interface device structure 6858 * 6859 * The stop entry point is called when an interface is de-activated by the OS, 6860 * and the netdevice enters the DOWN state. The hardware is still under the 6861 * driver's control, but the netdev interface is disabled. 6862 * 6863 * Returns success only - not allowed to fail 6864 */ 6865 int ice_stop(struct net_device *netdev) 6866 { 6867 struct ice_netdev_priv *np = netdev_priv(netdev); 6868 struct ice_vsi *vsi = np->vsi; 6869 struct ice_pf *pf = vsi->back; 6870 6871 if (ice_is_reset_in_progress(pf->state)) { 6872 netdev_err(netdev, "can't stop net device while reset is in progress"); 6873 return -EBUSY; 6874 } 6875 6876 ice_vsi_close(vsi); 6877 6878 return 0; 6879 } 6880 6881 /** 6882 * ice_features_check - Validate encapsulated packet conforms to limits 6883 * @skb: skb buffer 6884 * @netdev: This port's netdev 6885 * @features: Offload features that the stack believes apply 6886 */ 6887 static netdev_features_t 6888 ice_features_check(struct sk_buff *skb, 6889 struct net_device __always_unused *netdev, 6890 netdev_features_t features) 6891 { 6892 size_t len; 6893 6894 /* No point in doing any of this if neither checksum nor GSO are 6895 * being requested for this frame. We can rule out both by just 6896 * checking for CHECKSUM_PARTIAL 6897 */ 6898 if (skb->ip_summed != CHECKSUM_PARTIAL) 6899 return features; 6900 6901 /* We cannot support GSO if the MSS is going to be less than 6902 * 64 bytes. If it is then we need to drop support for GSO. 6903 */ 6904 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6905 features &= ~NETIF_F_GSO_MASK; 6906 6907 len = skb_network_header(skb) - skb->data; 6908 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6909 goto out_rm_features; 6910 6911 len = skb_transport_header(skb) - skb_network_header(skb); 6912 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6913 goto out_rm_features; 6914 6915 if (skb->encapsulation) { 6916 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6917 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6918 goto out_rm_features; 6919 6920 len = skb_inner_transport_header(skb) - 6921 skb_inner_network_header(skb); 6922 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6923 goto out_rm_features; 6924 } 6925 6926 return features; 6927 out_rm_features: 6928 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6929 } 6930 6931 static const struct net_device_ops ice_netdev_safe_mode_ops = { 6932 .ndo_open = ice_open, 6933 .ndo_stop = ice_stop, 6934 .ndo_start_xmit = ice_start_xmit, 6935 .ndo_set_mac_address = ice_set_mac_address, 6936 .ndo_validate_addr = eth_validate_addr, 6937 .ndo_change_mtu = ice_change_mtu, 6938 .ndo_get_stats64 = ice_get_stats64, 6939 .ndo_tx_timeout = ice_tx_timeout, 6940 }; 6941 6942 static const struct net_device_ops ice_netdev_ops = { 6943 .ndo_open = ice_open, 6944 .ndo_stop = ice_stop, 6945 .ndo_start_xmit = ice_start_xmit, 6946 .ndo_features_check = ice_features_check, 6947 .ndo_set_rx_mode = ice_set_rx_mode, 6948 .ndo_set_mac_address = ice_set_mac_address, 6949 .ndo_validate_addr = eth_validate_addr, 6950 .ndo_change_mtu = ice_change_mtu, 6951 .ndo_get_stats64 = ice_get_stats64, 6952 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6953 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6954 .ndo_set_vf_mac = ice_set_vf_mac, 6955 .ndo_get_vf_config = ice_get_vf_cfg, 6956 .ndo_set_vf_trust = ice_set_vf_trust, 6957 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6958 .ndo_set_vf_link_state = ice_set_vf_link_state, 6959 .ndo_get_vf_stats = ice_get_vf_stats, 6960 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6961 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6962 .ndo_set_features = ice_set_features, 6963 .ndo_bridge_getlink = ice_bridge_getlink, 6964 .ndo_bridge_setlink = ice_bridge_setlink, 6965 .ndo_fdb_add = ice_fdb_add, 6966 .ndo_fdb_del = ice_fdb_del, 6967 #ifdef CONFIG_RFS_ACCEL 6968 .ndo_rx_flow_steer = ice_rx_flow_steer, 6969 #endif 6970 .ndo_tx_timeout = ice_tx_timeout, 6971 .ndo_bpf = ice_xdp, 6972 .ndo_xdp_xmit = ice_xdp_xmit, 6973 .ndo_xsk_wakeup = ice_xsk_wakeup, 6974 }; 6975