xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_main.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 
17 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20 
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
24 
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29 
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37 
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42 
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44 
45 static void ice_vsi_release_all(struct ice_pf *pf);
46 
47 bool netif_is_ice(struct net_device *dev)
48 {
49 	return dev && (dev->netdev_ops == &ice_netdev_ops);
50 }
51 
52 /**
53  * ice_get_tx_pending - returns number of Tx descriptors not processed
54  * @ring: the ring of descriptors
55  */
56 static u16 ice_get_tx_pending(struct ice_ring *ring)
57 {
58 	u16 head, tail;
59 
60 	head = ring->next_to_clean;
61 	tail = ring->next_to_use;
62 
63 	if (head != tail)
64 		return (head < tail) ?
65 			tail - head : (tail + ring->count - head);
66 	return 0;
67 }
68 
69 /**
70  * ice_check_for_hang_subtask - check for and recover hung queues
71  * @pf: pointer to PF struct
72  */
73 static void ice_check_for_hang_subtask(struct ice_pf *pf)
74 {
75 	struct ice_vsi *vsi = NULL;
76 	struct ice_hw *hw;
77 	unsigned int i;
78 	int packets;
79 	u32 v;
80 
81 	ice_for_each_vsi(pf, v)
82 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
83 			vsi = pf->vsi[v];
84 			break;
85 		}
86 
87 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
88 		return;
89 
90 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
91 		return;
92 
93 	hw = &vsi->back->hw;
94 
95 	for (i = 0; i < vsi->num_txq; i++) {
96 		struct ice_ring *tx_ring = vsi->tx_rings[i];
97 
98 		if (tx_ring && tx_ring->desc) {
99 			/* If packet counter has not changed the queue is
100 			 * likely stalled, so force an interrupt for this
101 			 * queue.
102 			 *
103 			 * prev_pkt would be negative if there was no
104 			 * pending work.
105 			 */
106 			packets = tx_ring->stats.pkts & INT_MAX;
107 			if (tx_ring->tx_stats.prev_pkt == packets) {
108 				/* Trigger sw interrupt to revive the queue */
109 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
110 				continue;
111 			}
112 
113 			/* Memory barrier between read of packet count and call
114 			 * to ice_get_tx_pending()
115 			 */
116 			smp_rmb();
117 			tx_ring->tx_stats.prev_pkt =
118 			    ice_get_tx_pending(tx_ring) ? packets : -1;
119 		}
120 	}
121 }
122 
123 /**
124  * ice_init_mac_fltr - Set initial MAC filters
125  * @pf: board private structure
126  *
127  * Set initial set of MAC filters for PF VSI; configure filters for permanent
128  * address and broadcast address. If an error is encountered, netdevice will be
129  * unregistered.
130  */
131 static int ice_init_mac_fltr(struct ice_pf *pf)
132 {
133 	enum ice_status status;
134 	struct ice_vsi *vsi;
135 	u8 *perm_addr;
136 
137 	vsi = ice_get_main_vsi(pf);
138 	if (!vsi)
139 		return -EINVAL;
140 
141 	perm_addr = vsi->port_info->mac.perm_addr;
142 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
143 	if (status)
144 		return -EIO;
145 
146 	return 0;
147 }
148 
149 /**
150  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
151  * @netdev: the net device on which the sync is happening
152  * @addr: MAC address to sync
153  *
154  * This is a callback function which is called by the in kernel device sync
155  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
156  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
157  * MAC filters from the hardware.
158  */
159 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
160 {
161 	struct ice_netdev_priv *np = netdev_priv(netdev);
162 	struct ice_vsi *vsi = np->vsi;
163 
164 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
165 				     ICE_FWD_TO_VSI))
166 		return -EINVAL;
167 
168 	return 0;
169 }
170 
171 /**
172  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
173  * @netdev: the net device on which the unsync is happening
174  * @addr: MAC address to unsync
175  *
176  * This is a callback function which is called by the in kernel device unsync
177  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
178  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
179  * delete the MAC filters from the hardware.
180  */
181 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
182 {
183 	struct ice_netdev_priv *np = netdev_priv(netdev);
184 	struct ice_vsi *vsi = np->vsi;
185 
186 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
187 				     ICE_FWD_TO_VSI))
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 /**
194  * ice_vsi_fltr_changed - check if filter state changed
195  * @vsi: VSI to be checked
196  *
197  * returns true if filter state has changed, false otherwise.
198  */
199 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
200 {
201 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
202 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
203 	       test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
204 }
205 
206 /**
207  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
208  * @vsi: the VSI being configured
209  * @promisc_m: mask of promiscuous config bits
210  * @set_promisc: enable or disable promisc flag request
211  *
212  */
213 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
214 {
215 	struct ice_hw *hw = &vsi->back->hw;
216 	enum ice_status status = 0;
217 
218 	if (vsi->type != ICE_VSI_PF)
219 		return 0;
220 
221 	if (vsi->num_vlan > 1) {
222 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
223 						  set_promisc);
224 	} else {
225 		if (set_promisc)
226 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
227 						     0);
228 		else
229 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
230 						       0);
231 	}
232 
233 	if (status)
234 		return -EIO;
235 
236 	return 0;
237 }
238 
239 /**
240  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
241  * @vsi: ptr to the VSI
242  *
243  * Push any outstanding VSI filter changes through the AdminQ.
244  */
245 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
246 {
247 	struct device *dev = ice_pf_to_dev(vsi->back);
248 	struct net_device *netdev = vsi->netdev;
249 	bool promisc_forced_on = false;
250 	struct ice_pf *pf = vsi->back;
251 	struct ice_hw *hw = &pf->hw;
252 	enum ice_status status = 0;
253 	u32 changed_flags = 0;
254 	u8 promisc_m;
255 	int err = 0;
256 
257 	if (!vsi->netdev)
258 		return -EINVAL;
259 
260 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
261 		usleep_range(1000, 2000);
262 
263 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
264 	vsi->current_netdev_flags = vsi->netdev->flags;
265 
266 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
267 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
268 
269 	if (ice_vsi_fltr_changed(vsi)) {
270 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
271 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
272 		clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
273 
274 		/* grab the netdev's addr_list_lock */
275 		netif_addr_lock_bh(netdev);
276 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
277 			      ice_add_mac_to_unsync_list);
278 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
279 			      ice_add_mac_to_unsync_list);
280 		/* our temp lists are populated. release lock */
281 		netif_addr_unlock_bh(netdev);
282 	}
283 
284 	/* Remove MAC addresses in the unsync list */
285 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
286 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
287 	if (status) {
288 		netdev_err(netdev, "Failed to delete MAC filters\n");
289 		/* if we failed because of alloc failures, just bail */
290 		if (status == ICE_ERR_NO_MEMORY) {
291 			err = -ENOMEM;
292 			goto out;
293 		}
294 	}
295 
296 	/* Add MAC addresses in the sync list */
297 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
298 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
299 	/* If filter is added successfully or already exists, do not go into
300 	 * 'if' condition and report it as error. Instead continue processing
301 	 * rest of the function.
302 	 */
303 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
304 		netdev_err(netdev, "Failed to add MAC filters\n");
305 		/* If there is no more space for new umac filters, VSI
306 		 * should go into promiscuous mode. There should be some
307 		 * space reserved for promiscuous filters.
308 		 */
309 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
310 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
311 				      vsi->state)) {
312 			promisc_forced_on = true;
313 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
314 				    vsi->vsi_num);
315 		} else {
316 			err = -EIO;
317 			goto out;
318 		}
319 	}
320 	/* check for changes in promiscuous modes */
321 	if (changed_flags & IFF_ALLMULTI) {
322 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
323 			if (vsi->num_vlan > 1)
324 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
325 			else
326 				promisc_m = ICE_MCAST_PROMISC_BITS;
327 
328 			err = ice_cfg_promisc(vsi, promisc_m, true);
329 			if (err) {
330 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
331 					   vsi->vsi_num);
332 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
333 				goto out_promisc;
334 			}
335 		} else {
336 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
337 			if (vsi->num_vlan > 1)
338 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 			else
340 				promisc_m = ICE_MCAST_PROMISC_BITS;
341 
342 			err = ice_cfg_promisc(vsi, promisc_m, false);
343 			if (err) {
344 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
345 					   vsi->vsi_num);
346 				vsi->current_netdev_flags |= IFF_ALLMULTI;
347 				goto out_promisc;
348 			}
349 		}
350 	}
351 
352 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
353 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
354 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
355 		if (vsi->current_netdev_flags & IFF_PROMISC) {
356 			/* Apply Rx filter rule to get traffic from wire */
357 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
358 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
359 				if (err && err != -EEXIST) {
360 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
361 						   err, vsi->vsi_num);
362 					vsi->current_netdev_flags &=
363 						~IFF_PROMISC;
364 					goto out_promisc;
365 				}
366 				ice_cfg_vlan_pruning(vsi, false, false);
367 			}
368 		} else {
369 			/* Clear Rx filter to remove traffic from wire */
370 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
371 				err = ice_clear_dflt_vsi(pf->first_sw);
372 				if (err) {
373 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
374 						   err, vsi->vsi_num);
375 					vsi->current_netdev_flags |=
376 						IFF_PROMISC;
377 					goto out_promisc;
378 				}
379 				if (vsi->num_vlan > 1)
380 					ice_cfg_vlan_pruning(vsi, true, false);
381 			}
382 		}
383 	}
384 	goto exit;
385 
386 out_promisc:
387 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
388 	goto exit;
389 out:
390 	/* if something went wrong then set the changed flag so we try again */
391 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
392 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
393 exit:
394 	clear_bit(ICE_CFG_BUSY, vsi->state);
395 	return err;
396 }
397 
398 /**
399  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
400  * @pf: board private structure
401  */
402 static void ice_sync_fltr_subtask(struct ice_pf *pf)
403 {
404 	int v;
405 
406 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
407 		return;
408 
409 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
410 
411 	ice_for_each_vsi(pf, v)
412 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
413 		    ice_vsi_sync_fltr(pf->vsi[v])) {
414 			/* come back and try again later */
415 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
416 			break;
417 		}
418 }
419 
420 /**
421  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
422  * @pf: the PF
423  * @locked: is the rtnl_lock already held
424  */
425 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
426 {
427 	int node;
428 	int v;
429 
430 	ice_for_each_vsi(pf, v)
431 		if (pf->vsi[v])
432 			ice_dis_vsi(pf->vsi[v], locked);
433 
434 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
435 		pf->pf_agg_node[node].num_vsis = 0;
436 
437 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
438 		pf->vf_agg_node[node].num_vsis = 0;
439 }
440 
441 /**
442  * ice_prepare_for_reset - prep for the core to reset
443  * @pf: board private structure
444  *
445  * Inform or close all dependent features in prep for reset.
446  */
447 static void
448 ice_prepare_for_reset(struct ice_pf *pf)
449 {
450 	struct ice_hw *hw = &pf->hw;
451 	unsigned int i;
452 
453 	/* already prepared for reset */
454 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
455 		return;
456 
457 	/* Notify VFs of impending reset */
458 	if (ice_check_sq_alive(hw, &hw->mailboxq))
459 		ice_vc_notify_reset(pf);
460 
461 	/* Disable VFs until reset is completed */
462 	ice_for_each_vf(pf, i)
463 		ice_set_vf_state_qs_dis(&pf->vf[i]);
464 
465 	/* clear SW filtering DB */
466 	ice_clear_hw_tbls(hw);
467 	/* disable the VSIs and their queues that are not already DOWN */
468 	ice_pf_dis_all_vsi(pf, false);
469 
470 	if (hw->port_info)
471 		ice_sched_clear_port(hw->port_info);
472 
473 	ice_shutdown_all_ctrlq(hw);
474 
475 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
476 }
477 
478 /**
479  * ice_do_reset - Initiate one of many types of resets
480  * @pf: board private structure
481  * @reset_type: reset type requested
482  * before this function was called.
483  */
484 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
485 {
486 	struct device *dev = ice_pf_to_dev(pf);
487 	struct ice_hw *hw = &pf->hw;
488 
489 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
490 
491 	ice_prepare_for_reset(pf);
492 
493 	/* trigger the reset */
494 	if (ice_reset(hw, reset_type)) {
495 		dev_err(dev, "reset %d failed\n", reset_type);
496 		set_bit(ICE_RESET_FAILED, pf->state);
497 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
498 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
499 		clear_bit(ICE_PFR_REQ, pf->state);
500 		clear_bit(ICE_CORER_REQ, pf->state);
501 		clear_bit(ICE_GLOBR_REQ, pf->state);
502 		return;
503 	}
504 
505 	/* PFR is a bit of a special case because it doesn't result in an OICR
506 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
507 	 * associated state bits.
508 	 */
509 	if (reset_type == ICE_RESET_PFR) {
510 		pf->pfr_count++;
511 		ice_rebuild(pf, reset_type);
512 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
513 		clear_bit(ICE_PFR_REQ, pf->state);
514 		ice_reset_all_vfs(pf, true);
515 	}
516 }
517 
518 /**
519  * ice_reset_subtask - Set up for resetting the device and driver
520  * @pf: board private structure
521  */
522 static void ice_reset_subtask(struct ice_pf *pf)
523 {
524 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
525 
526 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
527 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
528 	 * of reset is pending and sets bits in pf->state indicating the reset
529 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
530 	 * prepare for pending reset if not already (for PF software-initiated
531 	 * global resets the software should already be prepared for it as
532 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
533 	 * by firmware or software on other PFs, that bit is not set so prepare
534 	 * for the reset now), poll for reset done, rebuild and return.
535 	 */
536 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
537 		/* Perform the largest reset requested */
538 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
539 			reset_type = ICE_RESET_CORER;
540 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
541 			reset_type = ICE_RESET_GLOBR;
542 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
543 			reset_type = ICE_RESET_EMPR;
544 		/* return if no valid reset type requested */
545 		if (reset_type == ICE_RESET_INVAL)
546 			return;
547 		ice_prepare_for_reset(pf);
548 
549 		/* make sure we are ready to rebuild */
550 		if (ice_check_reset(&pf->hw)) {
551 			set_bit(ICE_RESET_FAILED, pf->state);
552 		} else {
553 			/* done with reset. start rebuild */
554 			pf->hw.reset_ongoing = false;
555 			ice_rebuild(pf, reset_type);
556 			/* clear bit to resume normal operations, but
557 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
558 			 */
559 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
560 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
561 			clear_bit(ICE_PFR_REQ, pf->state);
562 			clear_bit(ICE_CORER_REQ, pf->state);
563 			clear_bit(ICE_GLOBR_REQ, pf->state);
564 			ice_reset_all_vfs(pf, true);
565 		}
566 
567 		return;
568 	}
569 
570 	/* No pending resets to finish processing. Check for new resets */
571 	if (test_bit(ICE_PFR_REQ, pf->state))
572 		reset_type = ICE_RESET_PFR;
573 	if (test_bit(ICE_CORER_REQ, pf->state))
574 		reset_type = ICE_RESET_CORER;
575 	if (test_bit(ICE_GLOBR_REQ, pf->state))
576 		reset_type = ICE_RESET_GLOBR;
577 	/* If no valid reset type requested just return */
578 	if (reset_type == ICE_RESET_INVAL)
579 		return;
580 
581 	/* reset if not already down or busy */
582 	if (!test_bit(ICE_DOWN, pf->state) &&
583 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
584 		ice_do_reset(pf, reset_type);
585 	}
586 }
587 
588 /**
589  * ice_print_topo_conflict - print topology conflict message
590  * @vsi: the VSI whose topology status is being checked
591  */
592 static void ice_print_topo_conflict(struct ice_vsi *vsi)
593 {
594 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
595 	case ICE_AQ_LINK_TOPO_CONFLICT:
596 	case ICE_AQ_LINK_MEDIA_CONFLICT:
597 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
598 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
599 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
600 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
601 		break;
602 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
603 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
604 		break;
605 	default:
606 		break;
607 	}
608 }
609 
610 /**
611  * ice_print_link_msg - print link up or down message
612  * @vsi: the VSI whose link status is being queried
613  * @isup: boolean for if the link is now up or down
614  */
615 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
616 {
617 	struct ice_aqc_get_phy_caps_data *caps;
618 	const char *an_advertised;
619 	enum ice_status status;
620 	const char *fec_req;
621 	const char *speed;
622 	const char *fec;
623 	const char *fc;
624 	const char *an;
625 
626 	if (!vsi)
627 		return;
628 
629 	if (vsi->current_isup == isup)
630 		return;
631 
632 	vsi->current_isup = isup;
633 
634 	if (!isup) {
635 		netdev_info(vsi->netdev, "NIC Link is Down\n");
636 		return;
637 	}
638 
639 	switch (vsi->port_info->phy.link_info.link_speed) {
640 	case ICE_AQ_LINK_SPEED_100GB:
641 		speed = "100 G";
642 		break;
643 	case ICE_AQ_LINK_SPEED_50GB:
644 		speed = "50 G";
645 		break;
646 	case ICE_AQ_LINK_SPEED_40GB:
647 		speed = "40 G";
648 		break;
649 	case ICE_AQ_LINK_SPEED_25GB:
650 		speed = "25 G";
651 		break;
652 	case ICE_AQ_LINK_SPEED_20GB:
653 		speed = "20 G";
654 		break;
655 	case ICE_AQ_LINK_SPEED_10GB:
656 		speed = "10 G";
657 		break;
658 	case ICE_AQ_LINK_SPEED_5GB:
659 		speed = "5 G";
660 		break;
661 	case ICE_AQ_LINK_SPEED_2500MB:
662 		speed = "2.5 G";
663 		break;
664 	case ICE_AQ_LINK_SPEED_1000MB:
665 		speed = "1 G";
666 		break;
667 	case ICE_AQ_LINK_SPEED_100MB:
668 		speed = "100 M";
669 		break;
670 	default:
671 		speed = "Unknown ";
672 		break;
673 	}
674 
675 	switch (vsi->port_info->fc.current_mode) {
676 	case ICE_FC_FULL:
677 		fc = "Rx/Tx";
678 		break;
679 	case ICE_FC_TX_PAUSE:
680 		fc = "Tx";
681 		break;
682 	case ICE_FC_RX_PAUSE:
683 		fc = "Rx";
684 		break;
685 	case ICE_FC_NONE:
686 		fc = "None";
687 		break;
688 	default:
689 		fc = "Unknown";
690 		break;
691 	}
692 
693 	/* Get FEC mode based on negotiated link info */
694 	switch (vsi->port_info->phy.link_info.fec_info) {
695 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
696 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
697 		fec = "RS-FEC";
698 		break;
699 	case ICE_AQ_LINK_25G_KR_FEC_EN:
700 		fec = "FC-FEC/BASE-R";
701 		break;
702 	default:
703 		fec = "NONE";
704 		break;
705 	}
706 
707 	/* check if autoneg completed, might be false due to not supported */
708 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
709 		an = "True";
710 	else
711 		an = "False";
712 
713 	/* Get FEC mode requested based on PHY caps last SW configuration */
714 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
715 	if (!caps) {
716 		fec_req = "Unknown";
717 		an_advertised = "Unknown";
718 		goto done;
719 	}
720 
721 	status = ice_aq_get_phy_caps(vsi->port_info, false,
722 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
723 	if (status)
724 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
725 
726 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
727 
728 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
729 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
730 		fec_req = "RS-FEC";
731 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
732 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
733 		fec_req = "FC-FEC/BASE-R";
734 	else
735 		fec_req = "NONE";
736 
737 	kfree(caps);
738 
739 done:
740 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
741 		    speed, fec_req, fec, an_advertised, an, fc);
742 	ice_print_topo_conflict(vsi);
743 }
744 
745 /**
746  * ice_vsi_link_event - update the VSI's netdev
747  * @vsi: the VSI on which the link event occurred
748  * @link_up: whether or not the VSI needs to be set up or down
749  */
750 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
751 {
752 	if (!vsi)
753 		return;
754 
755 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
756 		return;
757 
758 	if (vsi->type == ICE_VSI_PF) {
759 		if (link_up == netif_carrier_ok(vsi->netdev))
760 			return;
761 
762 		if (link_up) {
763 			netif_carrier_on(vsi->netdev);
764 			netif_tx_wake_all_queues(vsi->netdev);
765 		} else {
766 			netif_carrier_off(vsi->netdev);
767 			netif_tx_stop_all_queues(vsi->netdev);
768 		}
769 	}
770 }
771 
772 /**
773  * ice_set_dflt_mib - send a default config MIB to the FW
774  * @pf: private PF struct
775  *
776  * This function sends a default configuration MIB to the FW.
777  *
778  * If this function errors out at any point, the driver is still able to
779  * function.  The main impact is that LFC may not operate as expected.
780  * Therefore an error state in this function should be treated with a DBG
781  * message and continue on with driver rebuild/reenable.
782  */
783 static void ice_set_dflt_mib(struct ice_pf *pf)
784 {
785 	struct device *dev = ice_pf_to_dev(pf);
786 	u8 mib_type, *buf, *lldpmib = NULL;
787 	u16 len, typelen, offset = 0;
788 	struct ice_lldp_org_tlv *tlv;
789 	struct ice_hw *hw = &pf->hw;
790 	u32 ouisubtype;
791 
792 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
793 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
794 	if (!lldpmib) {
795 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
796 			__func__);
797 		return;
798 	}
799 
800 	/* Add ETS CFG TLV */
801 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
802 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
803 		   ICE_IEEE_ETS_TLV_LEN);
804 	tlv->typelen = htons(typelen);
805 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
806 		      ICE_IEEE_SUBTYPE_ETS_CFG);
807 	tlv->ouisubtype = htonl(ouisubtype);
808 
809 	buf = tlv->tlvinfo;
810 	buf[0] = 0;
811 
812 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
813 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
814 	 * Octets 13 - 20 are TSA values - leave as zeros
815 	 */
816 	buf[5] = 0x64;
817 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
818 	offset += len + 2;
819 	tlv = (struct ice_lldp_org_tlv *)
820 		((char *)tlv + sizeof(tlv->typelen) + len);
821 
822 	/* Add ETS REC TLV */
823 	buf = tlv->tlvinfo;
824 	tlv->typelen = htons(typelen);
825 
826 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
827 		      ICE_IEEE_SUBTYPE_ETS_REC);
828 	tlv->ouisubtype = htonl(ouisubtype);
829 
830 	/* First octet of buf is reserved
831 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
832 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
833 	 * Octets 13 - 20 are TSA value - leave as zeros
834 	 */
835 	buf[5] = 0x64;
836 	offset += len + 2;
837 	tlv = (struct ice_lldp_org_tlv *)
838 		((char *)tlv + sizeof(tlv->typelen) + len);
839 
840 	/* Add PFC CFG TLV */
841 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
842 		   ICE_IEEE_PFC_TLV_LEN);
843 	tlv->typelen = htons(typelen);
844 
845 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
846 		      ICE_IEEE_SUBTYPE_PFC_CFG);
847 	tlv->ouisubtype = htonl(ouisubtype);
848 
849 	/* Octet 1 left as all zeros - PFC disabled */
850 	buf[0] = 0x08;
851 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
852 	offset += len + 2;
853 
854 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
855 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
856 
857 	kfree(lldpmib);
858 }
859 
860 /**
861  * ice_link_event - process the link event
862  * @pf: PF that the link event is associated with
863  * @pi: port_info for the port that the link event is associated with
864  * @link_up: true if the physical link is up and false if it is down
865  * @link_speed: current link speed received from the link event
866  *
867  * Returns 0 on success and negative on failure
868  */
869 static int
870 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
871 	       u16 link_speed)
872 {
873 	struct device *dev = ice_pf_to_dev(pf);
874 	struct ice_phy_info *phy_info;
875 	enum ice_status status;
876 	struct ice_vsi *vsi;
877 	u16 old_link_speed;
878 	bool old_link;
879 
880 	phy_info = &pi->phy;
881 	phy_info->link_info_old = phy_info->link_info;
882 
883 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
884 	old_link_speed = phy_info->link_info_old.link_speed;
885 
886 	/* update the link info structures and re-enable link events,
887 	 * don't bail on failure due to other book keeping needed
888 	 */
889 	status = ice_update_link_info(pi);
890 	if (status)
891 		dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
892 			pi->lport, ice_stat_str(status),
893 			ice_aq_str(pi->hw->adminq.sq_last_status));
894 
895 	/* Check if the link state is up after updating link info, and treat
896 	 * this event as an UP event since the link is actually UP now.
897 	 */
898 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
899 		link_up = true;
900 
901 	vsi = ice_get_main_vsi(pf);
902 	if (!vsi || !vsi->port_info)
903 		return -EINVAL;
904 
905 	/* turn off PHY if media was removed */
906 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
907 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
908 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
909 		ice_set_link(vsi, false);
910 	}
911 
912 	/* if the old link up/down and speed is the same as the new */
913 	if (link_up == old_link && link_speed == old_link_speed)
914 		return 0;
915 
916 	if (ice_is_dcb_active(pf)) {
917 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
918 			ice_dcb_rebuild(pf);
919 	} else {
920 		if (link_up)
921 			ice_set_dflt_mib(pf);
922 	}
923 	ice_vsi_link_event(vsi, link_up);
924 	ice_print_link_msg(vsi, link_up);
925 
926 	ice_vc_notify_link_state(pf);
927 
928 	return 0;
929 }
930 
931 /**
932  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
933  * @pf: board private structure
934  */
935 static void ice_watchdog_subtask(struct ice_pf *pf)
936 {
937 	int i;
938 
939 	/* if interface is down do nothing */
940 	if (test_bit(ICE_DOWN, pf->state) ||
941 	    test_bit(ICE_CFG_BUSY, pf->state))
942 		return;
943 
944 	/* make sure we don't do these things too often */
945 	if (time_before(jiffies,
946 			pf->serv_tmr_prev + pf->serv_tmr_period))
947 		return;
948 
949 	pf->serv_tmr_prev = jiffies;
950 
951 	/* Update the stats for active netdevs so the network stack
952 	 * can look at updated numbers whenever it cares to
953 	 */
954 	ice_update_pf_stats(pf);
955 	ice_for_each_vsi(pf, i)
956 		if (pf->vsi[i] && pf->vsi[i]->netdev)
957 			ice_update_vsi_stats(pf->vsi[i]);
958 }
959 
960 /**
961  * ice_init_link_events - enable/initialize link events
962  * @pi: pointer to the port_info instance
963  *
964  * Returns -EIO on failure, 0 on success
965  */
966 static int ice_init_link_events(struct ice_port_info *pi)
967 {
968 	u16 mask;
969 
970 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
971 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
972 
973 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
974 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
975 			pi->lport);
976 		return -EIO;
977 	}
978 
979 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
980 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
981 			pi->lport);
982 		return -EIO;
983 	}
984 
985 	return 0;
986 }
987 
988 /**
989  * ice_handle_link_event - handle link event via ARQ
990  * @pf: PF that the link event is associated with
991  * @event: event structure containing link status info
992  */
993 static int
994 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
995 {
996 	struct ice_aqc_get_link_status_data *link_data;
997 	struct ice_port_info *port_info;
998 	int status;
999 
1000 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1001 	port_info = pf->hw.port_info;
1002 	if (!port_info)
1003 		return -EINVAL;
1004 
1005 	status = ice_link_event(pf, port_info,
1006 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1007 				le16_to_cpu(link_data->link_speed));
1008 	if (status)
1009 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1010 			status);
1011 
1012 	return status;
1013 }
1014 
1015 enum ice_aq_task_state {
1016 	ICE_AQ_TASK_WAITING = 0,
1017 	ICE_AQ_TASK_COMPLETE,
1018 	ICE_AQ_TASK_CANCELED,
1019 };
1020 
1021 struct ice_aq_task {
1022 	struct hlist_node entry;
1023 
1024 	u16 opcode;
1025 	struct ice_rq_event_info *event;
1026 	enum ice_aq_task_state state;
1027 };
1028 
1029 /**
1030  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1031  * @pf: pointer to the PF private structure
1032  * @opcode: the opcode to wait for
1033  * @timeout: how long to wait, in jiffies
1034  * @event: storage for the event info
1035  *
1036  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1037  * current thread will be put to sleep until the specified event occurs or
1038  * until the given timeout is reached.
1039  *
1040  * To obtain only the descriptor contents, pass an event without an allocated
1041  * msg_buf. If the complete data buffer is desired, allocate the
1042  * event->msg_buf with enough space ahead of time.
1043  *
1044  * Returns: zero on success, or a negative error code on failure.
1045  */
1046 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1047 			  struct ice_rq_event_info *event)
1048 {
1049 	struct device *dev = ice_pf_to_dev(pf);
1050 	struct ice_aq_task *task;
1051 	unsigned long start;
1052 	long ret;
1053 	int err;
1054 
1055 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1056 	if (!task)
1057 		return -ENOMEM;
1058 
1059 	INIT_HLIST_NODE(&task->entry);
1060 	task->opcode = opcode;
1061 	task->event = event;
1062 	task->state = ICE_AQ_TASK_WAITING;
1063 
1064 	spin_lock_bh(&pf->aq_wait_lock);
1065 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1066 	spin_unlock_bh(&pf->aq_wait_lock);
1067 
1068 	start = jiffies;
1069 
1070 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1071 					       timeout);
1072 	switch (task->state) {
1073 	case ICE_AQ_TASK_WAITING:
1074 		err = ret < 0 ? ret : -ETIMEDOUT;
1075 		break;
1076 	case ICE_AQ_TASK_CANCELED:
1077 		err = ret < 0 ? ret : -ECANCELED;
1078 		break;
1079 	case ICE_AQ_TASK_COMPLETE:
1080 		err = ret < 0 ? ret : 0;
1081 		break;
1082 	default:
1083 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1084 		err = -EINVAL;
1085 		break;
1086 	}
1087 
1088 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1089 		jiffies_to_msecs(jiffies - start),
1090 		jiffies_to_msecs(timeout),
1091 		opcode);
1092 
1093 	spin_lock_bh(&pf->aq_wait_lock);
1094 	hlist_del(&task->entry);
1095 	spin_unlock_bh(&pf->aq_wait_lock);
1096 	kfree(task);
1097 
1098 	return err;
1099 }
1100 
1101 /**
1102  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1103  * @pf: pointer to the PF private structure
1104  * @opcode: the opcode of the event
1105  * @event: the event to check
1106  *
1107  * Loops over the current list of pending threads waiting for an AdminQ event.
1108  * For each matching task, copy the contents of the event into the task
1109  * structure and wake up the thread.
1110  *
1111  * If multiple threads wait for the same opcode, they will all be woken up.
1112  *
1113  * Note that event->msg_buf will only be duplicated if the event has a buffer
1114  * with enough space already allocated. Otherwise, only the descriptor and
1115  * message length will be copied.
1116  *
1117  * Returns: true if an event was found, false otherwise
1118  */
1119 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1120 				struct ice_rq_event_info *event)
1121 {
1122 	struct ice_aq_task *task;
1123 	bool found = false;
1124 
1125 	spin_lock_bh(&pf->aq_wait_lock);
1126 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1127 		if (task->state || task->opcode != opcode)
1128 			continue;
1129 
1130 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1131 		task->event->msg_len = event->msg_len;
1132 
1133 		/* Only copy the data buffer if a destination was set */
1134 		if (task->event->msg_buf &&
1135 		    task->event->buf_len > event->buf_len) {
1136 			memcpy(task->event->msg_buf, event->msg_buf,
1137 			       event->buf_len);
1138 			task->event->buf_len = event->buf_len;
1139 		}
1140 
1141 		task->state = ICE_AQ_TASK_COMPLETE;
1142 		found = true;
1143 	}
1144 	spin_unlock_bh(&pf->aq_wait_lock);
1145 
1146 	if (found)
1147 		wake_up(&pf->aq_wait_queue);
1148 }
1149 
1150 /**
1151  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1152  * @pf: the PF private structure
1153  *
1154  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1155  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1156  */
1157 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1158 {
1159 	struct ice_aq_task *task;
1160 
1161 	spin_lock_bh(&pf->aq_wait_lock);
1162 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1163 		task->state = ICE_AQ_TASK_CANCELED;
1164 	spin_unlock_bh(&pf->aq_wait_lock);
1165 
1166 	wake_up(&pf->aq_wait_queue);
1167 }
1168 
1169 /**
1170  * __ice_clean_ctrlq - helper function to clean controlq rings
1171  * @pf: ptr to struct ice_pf
1172  * @q_type: specific Control queue type
1173  */
1174 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1175 {
1176 	struct device *dev = ice_pf_to_dev(pf);
1177 	struct ice_rq_event_info event;
1178 	struct ice_hw *hw = &pf->hw;
1179 	struct ice_ctl_q_info *cq;
1180 	u16 pending, i = 0;
1181 	const char *qtype;
1182 	u32 oldval, val;
1183 
1184 	/* Do not clean control queue if/when PF reset fails */
1185 	if (test_bit(ICE_RESET_FAILED, pf->state))
1186 		return 0;
1187 
1188 	switch (q_type) {
1189 	case ICE_CTL_Q_ADMIN:
1190 		cq = &hw->adminq;
1191 		qtype = "Admin";
1192 		break;
1193 	case ICE_CTL_Q_MAILBOX:
1194 		cq = &hw->mailboxq;
1195 		qtype = "Mailbox";
1196 		/* we are going to try to detect a malicious VF, so set the
1197 		 * state to begin detection
1198 		 */
1199 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1200 		break;
1201 	default:
1202 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1203 		return 0;
1204 	}
1205 
1206 	/* check for error indications - PF_xx_AxQLEN register layout for
1207 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1208 	 */
1209 	val = rd32(hw, cq->rq.len);
1210 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1211 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1212 		oldval = val;
1213 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1214 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1215 				qtype);
1216 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1217 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1218 				qtype);
1219 		}
1220 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1221 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1222 				qtype);
1223 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1224 			 PF_FW_ARQLEN_ARQCRIT_M);
1225 		if (oldval != val)
1226 			wr32(hw, cq->rq.len, val);
1227 	}
1228 
1229 	val = rd32(hw, cq->sq.len);
1230 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1231 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1232 		oldval = val;
1233 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1234 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1235 				qtype);
1236 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1237 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1238 				qtype);
1239 		}
1240 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1241 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1242 				qtype);
1243 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1244 			 PF_FW_ATQLEN_ATQCRIT_M);
1245 		if (oldval != val)
1246 			wr32(hw, cq->sq.len, val);
1247 	}
1248 
1249 	event.buf_len = cq->rq_buf_size;
1250 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1251 	if (!event.msg_buf)
1252 		return 0;
1253 
1254 	do {
1255 		enum ice_status ret;
1256 		u16 opcode;
1257 
1258 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1259 		if (ret == ICE_ERR_AQ_NO_WORK)
1260 			break;
1261 		if (ret) {
1262 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1263 				ice_stat_str(ret));
1264 			break;
1265 		}
1266 
1267 		opcode = le16_to_cpu(event.desc.opcode);
1268 
1269 		/* Notify any thread that might be waiting for this event */
1270 		ice_aq_check_events(pf, opcode, &event);
1271 
1272 		switch (opcode) {
1273 		case ice_aqc_opc_get_link_status:
1274 			if (ice_handle_link_event(pf, &event))
1275 				dev_err(dev, "Could not handle link event\n");
1276 			break;
1277 		case ice_aqc_opc_event_lan_overflow:
1278 			ice_vf_lan_overflow_event(pf, &event);
1279 			break;
1280 		case ice_mbx_opc_send_msg_to_pf:
1281 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1282 				ice_vc_process_vf_msg(pf, &event);
1283 			break;
1284 		case ice_aqc_opc_fw_logging:
1285 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1286 			break;
1287 		case ice_aqc_opc_lldp_set_mib_change:
1288 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1289 			break;
1290 		default:
1291 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1292 				qtype, opcode);
1293 			break;
1294 		}
1295 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1296 
1297 	kfree(event.msg_buf);
1298 
1299 	return pending && (i == ICE_DFLT_IRQ_WORK);
1300 }
1301 
1302 /**
1303  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1304  * @hw: pointer to hardware info
1305  * @cq: control queue information
1306  *
1307  * returns true if there are pending messages in a queue, false if there aren't
1308  */
1309 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1310 {
1311 	u16 ntu;
1312 
1313 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1314 	return cq->rq.next_to_clean != ntu;
1315 }
1316 
1317 /**
1318  * ice_clean_adminq_subtask - clean the AdminQ rings
1319  * @pf: board private structure
1320  */
1321 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1322 {
1323 	struct ice_hw *hw = &pf->hw;
1324 
1325 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1326 		return;
1327 
1328 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1329 		return;
1330 
1331 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1332 
1333 	/* There might be a situation where new messages arrive to a control
1334 	 * queue between processing the last message and clearing the
1335 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1336 	 * ice_ctrlq_pending) and process new messages if any.
1337 	 */
1338 	if (ice_ctrlq_pending(hw, &hw->adminq))
1339 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1340 
1341 	ice_flush(hw);
1342 }
1343 
1344 /**
1345  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1346  * @pf: board private structure
1347  */
1348 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1349 {
1350 	struct ice_hw *hw = &pf->hw;
1351 
1352 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1353 		return;
1354 
1355 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1356 		return;
1357 
1358 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1359 
1360 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1361 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1362 
1363 	ice_flush(hw);
1364 }
1365 
1366 /**
1367  * ice_service_task_schedule - schedule the service task to wake up
1368  * @pf: board private structure
1369  *
1370  * If not already scheduled, this puts the task into the work queue.
1371  */
1372 void ice_service_task_schedule(struct ice_pf *pf)
1373 {
1374 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1375 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1376 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1377 		queue_work(ice_wq, &pf->serv_task);
1378 }
1379 
1380 /**
1381  * ice_service_task_complete - finish up the service task
1382  * @pf: board private structure
1383  */
1384 static void ice_service_task_complete(struct ice_pf *pf)
1385 {
1386 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1387 
1388 	/* force memory (pf->state) to sync before next service task */
1389 	smp_mb__before_atomic();
1390 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1391 }
1392 
1393 /**
1394  * ice_service_task_stop - stop service task and cancel works
1395  * @pf: board private structure
1396  *
1397  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1398  * 1 otherwise.
1399  */
1400 static int ice_service_task_stop(struct ice_pf *pf)
1401 {
1402 	int ret;
1403 
1404 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1405 
1406 	if (pf->serv_tmr.function)
1407 		del_timer_sync(&pf->serv_tmr);
1408 	if (pf->serv_task.func)
1409 		cancel_work_sync(&pf->serv_task);
1410 
1411 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1412 	return ret;
1413 }
1414 
1415 /**
1416  * ice_service_task_restart - restart service task and schedule works
1417  * @pf: board private structure
1418  *
1419  * This function is needed for suspend and resume works (e.g WoL scenario)
1420  */
1421 static void ice_service_task_restart(struct ice_pf *pf)
1422 {
1423 	clear_bit(ICE_SERVICE_DIS, pf->state);
1424 	ice_service_task_schedule(pf);
1425 }
1426 
1427 /**
1428  * ice_service_timer - timer callback to schedule service task
1429  * @t: pointer to timer_list
1430  */
1431 static void ice_service_timer(struct timer_list *t)
1432 {
1433 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1434 
1435 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1436 	ice_service_task_schedule(pf);
1437 }
1438 
1439 /**
1440  * ice_handle_mdd_event - handle malicious driver detect event
1441  * @pf: pointer to the PF structure
1442  *
1443  * Called from service task. OICR interrupt handler indicates MDD event.
1444  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1445  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1446  * disable the queue, the PF can be configured to reset the VF using ethtool
1447  * private flag mdd-auto-reset-vf.
1448  */
1449 static void ice_handle_mdd_event(struct ice_pf *pf)
1450 {
1451 	struct device *dev = ice_pf_to_dev(pf);
1452 	struct ice_hw *hw = &pf->hw;
1453 	unsigned int i;
1454 	u32 reg;
1455 
1456 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1457 		/* Since the VF MDD event logging is rate limited, check if
1458 		 * there are pending MDD events.
1459 		 */
1460 		ice_print_vfs_mdd_events(pf);
1461 		return;
1462 	}
1463 
1464 	/* find what triggered an MDD event */
1465 	reg = rd32(hw, GL_MDET_TX_PQM);
1466 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1467 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1468 				GL_MDET_TX_PQM_PF_NUM_S;
1469 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1470 				GL_MDET_TX_PQM_VF_NUM_S;
1471 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1472 				GL_MDET_TX_PQM_MAL_TYPE_S;
1473 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1474 				GL_MDET_TX_PQM_QNUM_S);
1475 
1476 		if (netif_msg_tx_err(pf))
1477 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1478 				 event, queue, pf_num, vf_num);
1479 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1480 	}
1481 
1482 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1483 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1484 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1485 				GL_MDET_TX_TCLAN_PF_NUM_S;
1486 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1487 				GL_MDET_TX_TCLAN_VF_NUM_S;
1488 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1489 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1490 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1491 				GL_MDET_TX_TCLAN_QNUM_S);
1492 
1493 		if (netif_msg_tx_err(pf))
1494 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1495 				 event, queue, pf_num, vf_num);
1496 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1497 	}
1498 
1499 	reg = rd32(hw, GL_MDET_RX);
1500 	if (reg & GL_MDET_RX_VALID_M) {
1501 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1502 				GL_MDET_RX_PF_NUM_S;
1503 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1504 				GL_MDET_RX_VF_NUM_S;
1505 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1506 				GL_MDET_RX_MAL_TYPE_S;
1507 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1508 				GL_MDET_RX_QNUM_S);
1509 
1510 		if (netif_msg_rx_err(pf))
1511 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1512 				 event, queue, pf_num, vf_num);
1513 		wr32(hw, GL_MDET_RX, 0xffffffff);
1514 	}
1515 
1516 	/* check to see if this PF caused an MDD event */
1517 	reg = rd32(hw, PF_MDET_TX_PQM);
1518 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1519 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1520 		if (netif_msg_tx_err(pf))
1521 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1522 	}
1523 
1524 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1525 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1526 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1527 		if (netif_msg_tx_err(pf))
1528 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1529 	}
1530 
1531 	reg = rd32(hw, PF_MDET_RX);
1532 	if (reg & PF_MDET_RX_VALID_M) {
1533 		wr32(hw, PF_MDET_RX, 0xFFFF);
1534 		if (netif_msg_rx_err(pf))
1535 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1536 	}
1537 
1538 	/* Check to see if one of the VFs caused an MDD event, and then
1539 	 * increment counters and set print pending
1540 	 */
1541 	ice_for_each_vf(pf, i) {
1542 		struct ice_vf *vf = &pf->vf[i];
1543 
1544 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1545 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1546 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1547 			vf->mdd_tx_events.count++;
1548 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1549 			if (netif_msg_tx_err(pf))
1550 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1551 					 i);
1552 		}
1553 
1554 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1555 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1556 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1557 			vf->mdd_tx_events.count++;
1558 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1559 			if (netif_msg_tx_err(pf))
1560 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1561 					 i);
1562 		}
1563 
1564 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1565 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1566 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1567 			vf->mdd_tx_events.count++;
1568 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1569 			if (netif_msg_tx_err(pf))
1570 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1571 					 i);
1572 		}
1573 
1574 		reg = rd32(hw, VP_MDET_RX(i));
1575 		if (reg & VP_MDET_RX_VALID_M) {
1576 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1577 			vf->mdd_rx_events.count++;
1578 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1579 			if (netif_msg_rx_err(pf))
1580 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1581 					 i);
1582 
1583 			/* Since the queue is disabled on VF Rx MDD events, the
1584 			 * PF can be configured to reset the VF through ethtool
1585 			 * private flag mdd-auto-reset-vf.
1586 			 */
1587 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1588 				/* VF MDD event counters will be cleared by
1589 				 * reset, so print the event prior to reset.
1590 				 */
1591 				ice_print_vf_rx_mdd_event(vf);
1592 				ice_reset_vf(&pf->vf[i], false);
1593 			}
1594 		}
1595 	}
1596 
1597 	ice_print_vfs_mdd_events(pf);
1598 }
1599 
1600 /**
1601  * ice_force_phys_link_state - Force the physical link state
1602  * @vsi: VSI to force the physical link state to up/down
1603  * @link_up: true/false indicates to set the physical link to up/down
1604  *
1605  * Force the physical link state by getting the current PHY capabilities from
1606  * hardware and setting the PHY config based on the determined capabilities. If
1607  * link changes a link event will be triggered because both the Enable Automatic
1608  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1609  *
1610  * Returns 0 on success, negative on failure
1611  */
1612 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1613 {
1614 	struct ice_aqc_get_phy_caps_data *pcaps;
1615 	struct ice_aqc_set_phy_cfg_data *cfg;
1616 	struct ice_port_info *pi;
1617 	struct device *dev;
1618 	int retcode;
1619 
1620 	if (!vsi || !vsi->port_info || !vsi->back)
1621 		return -EINVAL;
1622 	if (vsi->type != ICE_VSI_PF)
1623 		return 0;
1624 
1625 	dev = ice_pf_to_dev(vsi->back);
1626 
1627 	pi = vsi->port_info;
1628 
1629 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1630 	if (!pcaps)
1631 		return -ENOMEM;
1632 
1633 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1634 				      NULL);
1635 	if (retcode) {
1636 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1637 			vsi->vsi_num, retcode);
1638 		retcode = -EIO;
1639 		goto out;
1640 	}
1641 
1642 	/* No change in link */
1643 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1644 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1645 		goto out;
1646 
1647 	/* Use the current user PHY configuration. The current user PHY
1648 	 * configuration is initialized during probe from PHY capabilities
1649 	 * software mode, and updated on set PHY configuration.
1650 	 */
1651 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1652 	if (!cfg) {
1653 		retcode = -ENOMEM;
1654 		goto out;
1655 	}
1656 
1657 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1658 	if (link_up)
1659 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1660 	else
1661 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1662 
1663 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1664 	if (retcode) {
1665 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1666 			vsi->vsi_num, retcode);
1667 		retcode = -EIO;
1668 	}
1669 
1670 	kfree(cfg);
1671 out:
1672 	kfree(pcaps);
1673 	return retcode;
1674 }
1675 
1676 /**
1677  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1678  * @pi: port info structure
1679  *
1680  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1681  */
1682 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1683 {
1684 	struct ice_aqc_get_phy_caps_data *pcaps;
1685 	struct ice_pf *pf = pi->hw->back;
1686 	enum ice_status status;
1687 	int err = 0;
1688 
1689 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1690 	if (!pcaps)
1691 		return -ENOMEM;
1692 
1693 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1694 				     NULL);
1695 
1696 	if (status) {
1697 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1698 		err = -EIO;
1699 		goto out;
1700 	}
1701 
1702 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1703 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1704 
1705 out:
1706 	kfree(pcaps);
1707 	return err;
1708 }
1709 
1710 /**
1711  * ice_init_link_dflt_override - Initialize link default override
1712  * @pi: port info structure
1713  *
1714  * Initialize link default override and PHY total port shutdown during probe
1715  */
1716 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1717 {
1718 	struct ice_link_default_override_tlv *ldo;
1719 	struct ice_pf *pf = pi->hw->back;
1720 
1721 	ldo = &pf->link_dflt_override;
1722 	if (ice_get_link_default_override(ldo, pi))
1723 		return;
1724 
1725 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1726 		return;
1727 
1728 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1729 	 * ethtool private flag) for ports with Port Disable bit set.
1730 	 */
1731 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1732 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1733 }
1734 
1735 /**
1736  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1737  * @pi: port info structure
1738  *
1739  * If default override is enabled, initialize the user PHY cfg speed and FEC
1740  * settings using the default override mask from the NVM.
1741  *
1742  * The PHY should only be configured with the default override settings the
1743  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1744  * is used to indicate that the user PHY cfg default override is initialized
1745  * and the PHY has not been configured with the default override settings. The
1746  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1747  * configured.
1748  *
1749  * This function should be called only if the FW doesn't support default
1750  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1751  */
1752 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1753 {
1754 	struct ice_link_default_override_tlv *ldo;
1755 	struct ice_aqc_set_phy_cfg_data *cfg;
1756 	struct ice_phy_info *phy = &pi->phy;
1757 	struct ice_pf *pf = pi->hw->back;
1758 
1759 	ldo = &pf->link_dflt_override;
1760 
1761 	/* If link default override is enabled, use to mask NVM PHY capabilities
1762 	 * for speed and FEC default configuration.
1763 	 */
1764 	cfg = &phy->curr_user_phy_cfg;
1765 
1766 	if (ldo->phy_type_low || ldo->phy_type_high) {
1767 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1768 				    cpu_to_le64(ldo->phy_type_low);
1769 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1770 				     cpu_to_le64(ldo->phy_type_high);
1771 	}
1772 	cfg->link_fec_opt = ldo->fec_options;
1773 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1774 
1775 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1776 }
1777 
1778 /**
1779  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1780  * @pi: port info structure
1781  *
1782  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1783  * mode to default. The PHY defaults are from get PHY capabilities topology
1784  * with media so call when media is first available. An error is returned if
1785  * called when media is not available. The PHY initialization completed state is
1786  * set here.
1787  *
1788  * These configurations are used when setting PHY
1789  * configuration. The user PHY configuration is updated on set PHY
1790  * configuration. Returns 0 on success, negative on failure
1791  */
1792 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1793 {
1794 	struct ice_aqc_get_phy_caps_data *pcaps;
1795 	struct ice_phy_info *phy = &pi->phy;
1796 	struct ice_pf *pf = pi->hw->back;
1797 	enum ice_status status;
1798 	int err = 0;
1799 
1800 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1801 		return -EIO;
1802 
1803 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1804 	if (!pcaps)
1805 		return -ENOMEM;
1806 
1807 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1808 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1809 					     pcaps, NULL);
1810 	else
1811 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1812 					     pcaps, NULL);
1813 	if (status) {
1814 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1815 		err = -EIO;
1816 		goto err_out;
1817 	}
1818 
1819 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1820 
1821 	/* check if lenient mode is supported and enabled */
1822 	if (ice_fw_supports_link_override(pi->hw) &&
1823 	    !(pcaps->module_compliance_enforcement &
1824 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1825 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1826 
1827 		/* if the FW supports default PHY configuration mode, then the driver
1828 		 * does not have to apply link override settings. If not,
1829 		 * initialize user PHY configuration with link override values
1830 		 */
1831 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1832 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1833 			ice_init_phy_cfg_dflt_override(pi);
1834 			goto out;
1835 		}
1836 	}
1837 
1838 	/* if link default override is not enabled, set user flow control and
1839 	 * FEC settings based on what get_phy_caps returned
1840 	 */
1841 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1842 						      pcaps->link_fec_options);
1843 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1844 
1845 out:
1846 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1847 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1848 err_out:
1849 	kfree(pcaps);
1850 	return err;
1851 }
1852 
1853 /**
1854  * ice_configure_phy - configure PHY
1855  * @vsi: VSI of PHY
1856  *
1857  * Set the PHY configuration. If the current PHY configuration is the same as
1858  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1859  * configure the based get PHY capabilities for topology with media.
1860  */
1861 static int ice_configure_phy(struct ice_vsi *vsi)
1862 {
1863 	struct device *dev = ice_pf_to_dev(vsi->back);
1864 	struct ice_port_info *pi = vsi->port_info;
1865 	struct ice_aqc_get_phy_caps_data *pcaps;
1866 	struct ice_aqc_set_phy_cfg_data *cfg;
1867 	struct ice_phy_info *phy = &pi->phy;
1868 	struct ice_pf *pf = vsi->back;
1869 	enum ice_status status;
1870 	int err = 0;
1871 
1872 	/* Ensure we have media as we cannot configure a medialess port */
1873 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1874 		return -EPERM;
1875 
1876 	ice_print_topo_conflict(vsi);
1877 
1878 	if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1879 		return -EPERM;
1880 
1881 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1882 		return ice_force_phys_link_state(vsi, true);
1883 
1884 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1885 	if (!pcaps)
1886 		return -ENOMEM;
1887 
1888 	/* Get current PHY config */
1889 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1890 				     NULL);
1891 	if (status) {
1892 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1893 			vsi->vsi_num, ice_stat_str(status));
1894 		err = -EIO;
1895 		goto done;
1896 	}
1897 
1898 	/* If PHY enable link is configured and configuration has not changed,
1899 	 * there's nothing to do
1900 	 */
1901 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1902 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1903 		goto done;
1904 
1905 	/* Use PHY topology as baseline for configuration */
1906 	memset(pcaps, 0, sizeof(*pcaps));
1907 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1908 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1909 					     pcaps, NULL);
1910 	else
1911 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1912 					     pcaps, NULL);
1913 	if (status) {
1914 		dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
1915 			vsi->vsi_num, ice_stat_str(status));
1916 		err = -EIO;
1917 		goto done;
1918 	}
1919 
1920 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1921 	if (!cfg) {
1922 		err = -ENOMEM;
1923 		goto done;
1924 	}
1925 
1926 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1927 
1928 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1929 	 * ice_init_phy_user_cfg_ldo.
1930 	 */
1931 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1932 			       vsi->back->state)) {
1933 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
1934 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
1935 	} else {
1936 		u64 phy_low = 0, phy_high = 0;
1937 
1938 		ice_update_phy_type(&phy_low, &phy_high,
1939 				    pi->phy.curr_user_speed_req);
1940 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1941 		cfg->phy_type_high = pcaps->phy_type_high &
1942 				     cpu_to_le64(phy_high);
1943 	}
1944 
1945 	/* Can't provide what was requested; use PHY capabilities */
1946 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1947 		cfg->phy_type_low = pcaps->phy_type_low;
1948 		cfg->phy_type_high = pcaps->phy_type_high;
1949 	}
1950 
1951 	/* FEC */
1952 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
1953 
1954 	/* Can't provide what was requested; use PHY capabilities */
1955 	if (cfg->link_fec_opt !=
1956 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1957 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1958 		cfg->link_fec_opt = pcaps->link_fec_options;
1959 	}
1960 
1961 	/* Flow Control - always supported; no need to check against
1962 	 * capabilities
1963 	 */
1964 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
1965 
1966 	/* Enable link and link update */
1967 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1968 
1969 	status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
1970 	if (status) {
1971 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1972 			vsi->vsi_num, ice_stat_str(status));
1973 		err = -EIO;
1974 	}
1975 
1976 	kfree(cfg);
1977 done:
1978 	kfree(pcaps);
1979 	return err;
1980 }
1981 
1982 /**
1983  * ice_check_media_subtask - Check for media
1984  * @pf: pointer to PF struct
1985  *
1986  * If media is available, then initialize PHY user configuration if it is not
1987  * been, and configure the PHY if the interface is up.
1988  */
1989 static void ice_check_media_subtask(struct ice_pf *pf)
1990 {
1991 	struct ice_port_info *pi;
1992 	struct ice_vsi *vsi;
1993 	int err;
1994 
1995 	/* No need to check for media if it's already present */
1996 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1997 		return;
1998 
1999 	vsi = ice_get_main_vsi(pf);
2000 	if (!vsi)
2001 		return;
2002 
2003 	/* Refresh link info and check if media is present */
2004 	pi = vsi->port_info;
2005 	err = ice_update_link_info(pi);
2006 	if (err)
2007 		return;
2008 
2009 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2010 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2011 			ice_init_phy_user_cfg(pi);
2012 
2013 		/* PHY settings are reset on media insertion, reconfigure
2014 		 * PHY to preserve settings.
2015 		 */
2016 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2017 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2018 			return;
2019 
2020 		err = ice_configure_phy(vsi);
2021 		if (!err)
2022 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2023 
2024 		/* A Link Status Event will be generated; the event handler
2025 		 * will complete bringing the interface up
2026 		 */
2027 	}
2028 }
2029 
2030 /**
2031  * ice_service_task - manage and run subtasks
2032  * @work: pointer to work_struct contained by the PF struct
2033  */
2034 static void ice_service_task(struct work_struct *work)
2035 {
2036 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2037 	unsigned long start_time = jiffies;
2038 
2039 	/* subtasks */
2040 
2041 	/* process reset requests first */
2042 	ice_reset_subtask(pf);
2043 
2044 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2045 	if (ice_is_reset_in_progress(pf->state) ||
2046 	    test_bit(ICE_SUSPENDED, pf->state) ||
2047 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2048 		ice_service_task_complete(pf);
2049 		return;
2050 	}
2051 
2052 	ice_clean_adminq_subtask(pf);
2053 	ice_check_media_subtask(pf);
2054 	ice_check_for_hang_subtask(pf);
2055 	ice_sync_fltr_subtask(pf);
2056 	ice_handle_mdd_event(pf);
2057 	ice_watchdog_subtask(pf);
2058 
2059 	if (ice_is_safe_mode(pf)) {
2060 		ice_service_task_complete(pf);
2061 		return;
2062 	}
2063 
2064 	ice_process_vflr_event(pf);
2065 	ice_clean_mailboxq_subtask(pf);
2066 	ice_sync_arfs_fltrs(pf);
2067 	ice_flush_fdir_ctx(pf);
2068 
2069 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2070 	ice_service_task_complete(pf);
2071 
2072 	/* If the tasks have taken longer than one service timer period
2073 	 * or there is more work to be done, reset the service timer to
2074 	 * schedule the service task now.
2075 	 */
2076 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2077 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2078 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2079 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2080 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2081 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2082 		mod_timer(&pf->serv_tmr, jiffies);
2083 }
2084 
2085 /**
2086  * ice_set_ctrlq_len - helper function to set controlq length
2087  * @hw: pointer to the HW instance
2088  */
2089 static void ice_set_ctrlq_len(struct ice_hw *hw)
2090 {
2091 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2092 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2093 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2094 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2095 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2096 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2097 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2098 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2099 }
2100 
2101 /**
2102  * ice_schedule_reset - schedule a reset
2103  * @pf: board private structure
2104  * @reset: reset being requested
2105  */
2106 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2107 {
2108 	struct device *dev = ice_pf_to_dev(pf);
2109 
2110 	/* bail out if earlier reset has failed */
2111 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2112 		dev_dbg(dev, "earlier reset has failed\n");
2113 		return -EIO;
2114 	}
2115 	/* bail if reset/recovery already in progress */
2116 	if (ice_is_reset_in_progress(pf->state)) {
2117 		dev_dbg(dev, "Reset already in progress\n");
2118 		return -EBUSY;
2119 	}
2120 
2121 	switch (reset) {
2122 	case ICE_RESET_PFR:
2123 		set_bit(ICE_PFR_REQ, pf->state);
2124 		break;
2125 	case ICE_RESET_CORER:
2126 		set_bit(ICE_CORER_REQ, pf->state);
2127 		break;
2128 	case ICE_RESET_GLOBR:
2129 		set_bit(ICE_GLOBR_REQ, pf->state);
2130 		break;
2131 	default:
2132 		return -EINVAL;
2133 	}
2134 
2135 	ice_service_task_schedule(pf);
2136 	return 0;
2137 }
2138 
2139 /**
2140  * ice_irq_affinity_notify - Callback for affinity changes
2141  * @notify: context as to what irq was changed
2142  * @mask: the new affinity mask
2143  *
2144  * This is a callback function used by the irq_set_affinity_notifier function
2145  * so that we may register to receive changes to the irq affinity masks.
2146  */
2147 static void
2148 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2149 			const cpumask_t *mask)
2150 {
2151 	struct ice_q_vector *q_vector =
2152 		container_of(notify, struct ice_q_vector, affinity_notify);
2153 
2154 	cpumask_copy(&q_vector->affinity_mask, mask);
2155 }
2156 
2157 /**
2158  * ice_irq_affinity_release - Callback for affinity notifier release
2159  * @ref: internal core kernel usage
2160  *
2161  * This is a callback function used by the irq_set_affinity_notifier function
2162  * to inform the current notification subscriber that they will no longer
2163  * receive notifications.
2164  */
2165 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2166 
2167 /**
2168  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2169  * @vsi: the VSI being configured
2170  */
2171 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2172 {
2173 	struct ice_hw *hw = &vsi->back->hw;
2174 	int i;
2175 
2176 	ice_for_each_q_vector(vsi, i)
2177 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2178 
2179 	ice_flush(hw);
2180 	return 0;
2181 }
2182 
2183 /**
2184  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2185  * @vsi: the VSI being configured
2186  * @basename: name for the vector
2187  */
2188 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2189 {
2190 	int q_vectors = vsi->num_q_vectors;
2191 	struct ice_pf *pf = vsi->back;
2192 	int base = vsi->base_vector;
2193 	struct device *dev;
2194 	int rx_int_idx = 0;
2195 	int tx_int_idx = 0;
2196 	int vector, err;
2197 	int irq_num;
2198 
2199 	dev = ice_pf_to_dev(pf);
2200 	for (vector = 0; vector < q_vectors; vector++) {
2201 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2202 
2203 		irq_num = pf->msix_entries[base + vector].vector;
2204 
2205 		if (q_vector->tx.ring && q_vector->rx.ring) {
2206 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2207 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2208 			tx_int_idx++;
2209 		} else if (q_vector->rx.ring) {
2210 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2211 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2212 		} else if (q_vector->tx.ring) {
2213 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2214 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2215 		} else {
2216 			/* skip this unused q_vector */
2217 			continue;
2218 		}
2219 		if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2220 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2221 					       IRQF_SHARED, q_vector->name,
2222 					       q_vector);
2223 		else
2224 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2225 					       0, q_vector->name, q_vector);
2226 		if (err) {
2227 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2228 				   err);
2229 			goto free_q_irqs;
2230 		}
2231 
2232 		/* register for affinity change notifications */
2233 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2234 			struct irq_affinity_notify *affinity_notify;
2235 
2236 			affinity_notify = &q_vector->affinity_notify;
2237 			affinity_notify->notify = ice_irq_affinity_notify;
2238 			affinity_notify->release = ice_irq_affinity_release;
2239 			irq_set_affinity_notifier(irq_num, affinity_notify);
2240 		}
2241 
2242 		/* assign the mask for this irq */
2243 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2244 	}
2245 
2246 	vsi->irqs_ready = true;
2247 	return 0;
2248 
2249 free_q_irqs:
2250 	while (vector) {
2251 		vector--;
2252 		irq_num = pf->msix_entries[base + vector].vector;
2253 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2254 			irq_set_affinity_notifier(irq_num, NULL);
2255 		irq_set_affinity_hint(irq_num, NULL);
2256 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2257 	}
2258 	return err;
2259 }
2260 
2261 /**
2262  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2263  * @vsi: VSI to setup Tx rings used by XDP
2264  *
2265  * Return 0 on success and negative value on error
2266  */
2267 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2268 {
2269 	struct device *dev = ice_pf_to_dev(vsi->back);
2270 	int i;
2271 
2272 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2273 		u16 xdp_q_idx = vsi->alloc_txq + i;
2274 		struct ice_ring *xdp_ring;
2275 
2276 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2277 
2278 		if (!xdp_ring)
2279 			goto free_xdp_rings;
2280 
2281 		xdp_ring->q_index = xdp_q_idx;
2282 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2283 		xdp_ring->ring_active = false;
2284 		xdp_ring->vsi = vsi;
2285 		xdp_ring->netdev = NULL;
2286 		xdp_ring->dev = dev;
2287 		xdp_ring->count = vsi->num_tx_desc;
2288 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2289 		if (ice_setup_tx_ring(xdp_ring))
2290 			goto free_xdp_rings;
2291 		ice_set_ring_xdp(xdp_ring);
2292 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2293 	}
2294 
2295 	return 0;
2296 
2297 free_xdp_rings:
2298 	for (; i >= 0; i--)
2299 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2300 			ice_free_tx_ring(vsi->xdp_rings[i]);
2301 	return -ENOMEM;
2302 }
2303 
2304 /**
2305  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2306  * @vsi: VSI to set the bpf prog on
2307  * @prog: the bpf prog pointer
2308  */
2309 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2310 {
2311 	struct bpf_prog *old_prog;
2312 	int i;
2313 
2314 	old_prog = xchg(&vsi->xdp_prog, prog);
2315 	if (old_prog)
2316 		bpf_prog_put(old_prog);
2317 
2318 	ice_for_each_rxq(vsi, i)
2319 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2320 }
2321 
2322 /**
2323  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2324  * @vsi: VSI to bring up Tx rings used by XDP
2325  * @prog: bpf program that will be assigned to VSI
2326  *
2327  * Return 0 on success and negative value on error
2328  */
2329 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2330 {
2331 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2332 	int xdp_rings_rem = vsi->num_xdp_txq;
2333 	struct ice_pf *pf = vsi->back;
2334 	struct ice_qs_cfg xdp_qs_cfg = {
2335 		.qs_mutex = &pf->avail_q_mutex,
2336 		.pf_map = pf->avail_txqs,
2337 		.pf_map_size = pf->max_pf_txqs,
2338 		.q_count = vsi->num_xdp_txq,
2339 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2340 		.vsi_map = vsi->txq_map,
2341 		.vsi_map_offset = vsi->alloc_txq,
2342 		.mapping_mode = ICE_VSI_MAP_CONTIG
2343 	};
2344 	enum ice_status status;
2345 	struct device *dev;
2346 	int i, v_idx;
2347 
2348 	dev = ice_pf_to_dev(pf);
2349 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2350 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2351 	if (!vsi->xdp_rings)
2352 		return -ENOMEM;
2353 
2354 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2355 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2356 		goto err_map_xdp;
2357 
2358 	if (ice_xdp_alloc_setup_rings(vsi))
2359 		goto clear_xdp_rings;
2360 
2361 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2362 	ice_for_each_q_vector(vsi, v_idx) {
2363 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2364 		int xdp_rings_per_v, q_id, q_base;
2365 
2366 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2367 					       vsi->num_q_vectors - v_idx);
2368 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2369 
2370 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2371 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2372 
2373 			xdp_ring->q_vector = q_vector;
2374 			xdp_ring->next = q_vector->tx.ring;
2375 			q_vector->tx.ring = xdp_ring;
2376 		}
2377 		xdp_rings_rem -= xdp_rings_per_v;
2378 	}
2379 
2380 	/* omit the scheduler update if in reset path; XDP queues will be
2381 	 * taken into account at the end of ice_vsi_rebuild, where
2382 	 * ice_cfg_vsi_lan is being called
2383 	 */
2384 	if (ice_is_reset_in_progress(pf->state))
2385 		return 0;
2386 
2387 	/* tell the Tx scheduler that right now we have
2388 	 * additional queues
2389 	 */
2390 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2391 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2392 
2393 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2394 				 max_txqs);
2395 	if (status) {
2396 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2397 			ice_stat_str(status));
2398 		goto clear_xdp_rings;
2399 	}
2400 	ice_vsi_assign_bpf_prog(vsi, prog);
2401 
2402 	return 0;
2403 clear_xdp_rings:
2404 	for (i = 0; i < vsi->num_xdp_txq; i++)
2405 		if (vsi->xdp_rings[i]) {
2406 			kfree_rcu(vsi->xdp_rings[i], rcu);
2407 			vsi->xdp_rings[i] = NULL;
2408 		}
2409 
2410 err_map_xdp:
2411 	mutex_lock(&pf->avail_q_mutex);
2412 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2413 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2414 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2415 	}
2416 	mutex_unlock(&pf->avail_q_mutex);
2417 
2418 	devm_kfree(dev, vsi->xdp_rings);
2419 	return -ENOMEM;
2420 }
2421 
2422 /**
2423  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2424  * @vsi: VSI to remove XDP rings
2425  *
2426  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2427  * resources
2428  */
2429 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2430 {
2431 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432 	struct ice_pf *pf = vsi->back;
2433 	int i, v_idx;
2434 
2435 	/* q_vectors are freed in reset path so there's no point in detaching
2436 	 * rings; in case of rebuild being triggered not from reset bits
2437 	 * in pf->state won't be set, so additionally check first q_vector
2438 	 * against NULL
2439 	 */
2440 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2441 		goto free_qmap;
2442 
2443 	ice_for_each_q_vector(vsi, v_idx) {
2444 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2445 		struct ice_ring *ring;
2446 
2447 		ice_for_each_ring(ring, q_vector->tx)
2448 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2449 				break;
2450 
2451 		/* restore the value of last node prior to XDP setup */
2452 		q_vector->tx.ring = ring;
2453 	}
2454 
2455 free_qmap:
2456 	mutex_lock(&pf->avail_q_mutex);
2457 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2458 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2459 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2460 	}
2461 	mutex_unlock(&pf->avail_q_mutex);
2462 
2463 	for (i = 0; i < vsi->num_xdp_txq; i++)
2464 		if (vsi->xdp_rings[i]) {
2465 			if (vsi->xdp_rings[i]->desc)
2466 				ice_free_tx_ring(vsi->xdp_rings[i]);
2467 			kfree_rcu(vsi->xdp_rings[i], rcu);
2468 			vsi->xdp_rings[i] = NULL;
2469 		}
2470 
2471 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2472 	vsi->xdp_rings = NULL;
2473 
2474 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2475 		return 0;
2476 
2477 	ice_vsi_assign_bpf_prog(vsi, NULL);
2478 
2479 	/* notify Tx scheduler that we destroyed XDP queues and bring
2480 	 * back the old number of child nodes
2481 	 */
2482 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2483 		max_txqs[i] = vsi->num_txq;
2484 
2485 	/* change number of XDP Tx queues to 0 */
2486 	vsi->num_xdp_txq = 0;
2487 
2488 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2489 			       max_txqs);
2490 }
2491 
2492 /**
2493  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2494  * @vsi: VSI to schedule napi on
2495  */
2496 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2497 {
2498 	int i;
2499 
2500 	ice_for_each_rxq(vsi, i) {
2501 		struct ice_ring *rx_ring = vsi->rx_rings[i];
2502 
2503 		if (rx_ring->xsk_pool)
2504 			napi_schedule(&rx_ring->q_vector->napi);
2505 	}
2506 }
2507 
2508 /**
2509  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2510  * @vsi: VSI to setup XDP for
2511  * @prog: XDP program
2512  * @extack: netlink extended ack
2513  */
2514 static int
2515 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2516 		   struct netlink_ext_ack *extack)
2517 {
2518 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2519 	bool if_running = netif_running(vsi->netdev);
2520 	int ret = 0, xdp_ring_err = 0;
2521 
2522 	if (frame_size > vsi->rx_buf_len) {
2523 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2524 		return -EOPNOTSUPP;
2525 	}
2526 
2527 	/* need to stop netdev while setting up the program for Rx rings */
2528 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2529 		ret = ice_down(vsi);
2530 		if (ret) {
2531 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2532 			return ret;
2533 		}
2534 	}
2535 
2536 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2537 		vsi->num_xdp_txq = vsi->alloc_rxq;
2538 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2539 		if (xdp_ring_err)
2540 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2541 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2542 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2543 		if (xdp_ring_err)
2544 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2545 	} else {
2546 		ice_vsi_assign_bpf_prog(vsi, prog);
2547 	}
2548 
2549 	if (if_running)
2550 		ret = ice_up(vsi);
2551 
2552 	if (!ret && prog)
2553 		ice_vsi_rx_napi_schedule(vsi);
2554 
2555 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2556 }
2557 
2558 /**
2559  * ice_xdp - implements XDP handler
2560  * @dev: netdevice
2561  * @xdp: XDP command
2562  */
2563 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2564 {
2565 	struct ice_netdev_priv *np = netdev_priv(dev);
2566 	struct ice_vsi *vsi = np->vsi;
2567 
2568 	if (vsi->type != ICE_VSI_PF) {
2569 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2570 		return -EINVAL;
2571 	}
2572 
2573 	switch (xdp->command) {
2574 	case XDP_SETUP_PROG:
2575 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2576 	case XDP_SETUP_XSK_POOL:
2577 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2578 					  xdp->xsk.queue_id);
2579 	default:
2580 		return -EINVAL;
2581 	}
2582 }
2583 
2584 /**
2585  * ice_ena_misc_vector - enable the non-queue interrupts
2586  * @pf: board private structure
2587  */
2588 static void ice_ena_misc_vector(struct ice_pf *pf)
2589 {
2590 	struct ice_hw *hw = &pf->hw;
2591 	u32 val;
2592 
2593 	/* Disable anti-spoof detection interrupt to prevent spurious event
2594 	 * interrupts during a function reset. Anti-spoof functionally is
2595 	 * still supported.
2596 	 */
2597 	val = rd32(hw, GL_MDCK_TX_TDPU);
2598 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2599 	wr32(hw, GL_MDCK_TX_TDPU, val);
2600 
2601 	/* clear things first */
2602 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2603 	rd32(hw, PFINT_OICR);		/* read to clear */
2604 
2605 	val = (PFINT_OICR_ECC_ERR_M |
2606 	       PFINT_OICR_MAL_DETECT_M |
2607 	       PFINT_OICR_GRST_M |
2608 	       PFINT_OICR_PCI_EXCEPTION_M |
2609 	       PFINT_OICR_VFLR_M |
2610 	       PFINT_OICR_HMC_ERR_M |
2611 	       PFINT_OICR_PE_CRITERR_M);
2612 
2613 	wr32(hw, PFINT_OICR_ENA, val);
2614 
2615 	/* SW_ITR_IDX = 0, but don't change INTENA */
2616 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2617 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2618 }
2619 
2620 /**
2621  * ice_misc_intr - misc interrupt handler
2622  * @irq: interrupt number
2623  * @data: pointer to a q_vector
2624  */
2625 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2626 {
2627 	struct ice_pf *pf = (struct ice_pf *)data;
2628 	struct ice_hw *hw = &pf->hw;
2629 	irqreturn_t ret = IRQ_NONE;
2630 	struct device *dev;
2631 	u32 oicr, ena_mask;
2632 
2633 	dev = ice_pf_to_dev(pf);
2634 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2635 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2636 
2637 	oicr = rd32(hw, PFINT_OICR);
2638 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2639 
2640 	if (oicr & PFINT_OICR_SWINT_M) {
2641 		ena_mask &= ~PFINT_OICR_SWINT_M;
2642 		pf->sw_int_count++;
2643 	}
2644 
2645 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2646 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2647 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2648 	}
2649 	if (oicr & PFINT_OICR_VFLR_M) {
2650 		/* disable any further VFLR event notifications */
2651 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2652 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2653 
2654 			reg &= ~PFINT_OICR_VFLR_M;
2655 			wr32(hw, PFINT_OICR_ENA, reg);
2656 		} else {
2657 			ena_mask &= ~PFINT_OICR_VFLR_M;
2658 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2659 		}
2660 	}
2661 
2662 	if (oicr & PFINT_OICR_GRST_M) {
2663 		u32 reset;
2664 
2665 		/* we have a reset warning */
2666 		ena_mask &= ~PFINT_OICR_GRST_M;
2667 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2668 			GLGEN_RSTAT_RESET_TYPE_S;
2669 
2670 		if (reset == ICE_RESET_CORER)
2671 			pf->corer_count++;
2672 		else if (reset == ICE_RESET_GLOBR)
2673 			pf->globr_count++;
2674 		else if (reset == ICE_RESET_EMPR)
2675 			pf->empr_count++;
2676 		else
2677 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2678 
2679 		/* If a reset cycle isn't already in progress, we set a bit in
2680 		 * pf->state so that the service task can start a reset/rebuild.
2681 		 * We also make note of which reset happened so that peer
2682 		 * devices/drivers can be informed.
2683 		 */
2684 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2685 			if (reset == ICE_RESET_CORER)
2686 				set_bit(ICE_CORER_RECV, pf->state);
2687 			else if (reset == ICE_RESET_GLOBR)
2688 				set_bit(ICE_GLOBR_RECV, pf->state);
2689 			else
2690 				set_bit(ICE_EMPR_RECV, pf->state);
2691 
2692 			/* There are couple of different bits at play here.
2693 			 * hw->reset_ongoing indicates whether the hardware is
2694 			 * in reset. This is set to true when a reset interrupt
2695 			 * is received and set back to false after the driver
2696 			 * has determined that the hardware is out of reset.
2697 			 *
2698 			 * ICE_RESET_OICR_RECV in pf->state indicates
2699 			 * that a post reset rebuild is required before the
2700 			 * driver is operational again. This is set above.
2701 			 *
2702 			 * As this is the start of the reset/rebuild cycle, set
2703 			 * both to indicate that.
2704 			 */
2705 			hw->reset_ongoing = true;
2706 		}
2707 	}
2708 
2709 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2710 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2711 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2712 			rd32(hw, PFHMC_ERRORINFO),
2713 			rd32(hw, PFHMC_ERRORDATA));
2714 	}
2715 
2716 	/* Report any remaining unexpected interrupts */
2717 	oicr &= ena_mask;
2718 	if (oicr) {
2719 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2720 		/* If a critical error is pending there is no choice but to
2721 		 * reset the device.
2722 		 */
2723 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2724 			    PFINT_OICR_PCI_EXCEPTION_M |
2725 			    PFINT_OICR_ECC_ERR_M)) {
2726 			set_bit(ICE_PFR_REQ, pf->state);
2727 			ice_service_task_schedule(pf);
2728 		}
2729 	}
2730 	ret = IRQ_HANDLED;
2731 
2732 	ice_service_task_schedule(pf);
2733 	ice_irq_dynamic_ena(hw, NULL, NULL);
2734 
2735 	return ret;
2736 }
2737 
2738 /**
2739  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2740  * @hw: pointer to HW structure
2741  */
2742 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2743 {
2744 	/* disable Admin queue Interrupt causes */
2745 	wr32(hw, PFINT_FW_CTL,
2746 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2747 
2748 	/* disable Mailbox queue Interrupt causes */
2749 	wr32(hw, PFINT_MBX_CTL,
2750 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2751 
2752 	/* disable Control queue Interrupt causes */
2753 	wr32(hw, PFINT_OICR_CTL,
2754 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2755 
2756 	ice_flush(hw);
2757 }
2758 
2759 /**
2760  * ice_free_irq_msix_misc - Unroll misc vector setup
2761  * @pf: board private structure
2762  */
2763 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2764 {
2765 	struct ice_hw *hw = &pf->hw;
2766 
2767 	ice_dis_ctrlq_interrupts(hw);
2768 
2769 	/* disable OICR interrupt */
2770 	wr32(hw, PFINT_OICR_ENA, 0);
2771 	ice_flush(hw);
2772 
2773 	if (pf->msix_entries) {
2774 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2775 		devm_free_irq(ice_pf_to_dev(pf),
2776 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2777 	}
2778 
2779 	pf->num_avail_sw_msix += 1;
2780 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2781 }
2782 
2783 /**
2784  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2785  * @hw: pointer to HW structure
2786  * @reg_idx: HW vector index to associate the control queue interrupts with
2787  */
2788 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2789 {
2790 	u32 val;
2791 
2792 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2793 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2794 	wr32(hw, PFINT_OICR_CTL, val);
2795 
2796 	/* enable Admin queue Interrupt causes */
2797 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2798 	       PFINT_FW_CTL_CAUSE_ENA_M);
2799 	wr32(hw, PFINT_FW_CTL, val);
2800 
2801 	/* enable Mailbox queue Interrupt causes */
2802 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2803 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2804 	wr32(hw, PFINT_MBX_CTL, val);
2805 
2806 	ice_flush(hw);
2807 }
2808 
2809 /**
2810  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2811  * @pf: board private structure
2812  *
2813  * This sets up the handler for MSIX 0, which is used to manage the
2814  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2815  * when in MSI or Legacy interrupt mode.
2816  */
2817 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2818 {
2819 	struct device *dev = ice_pf_to_dev(pf);
2820 	struct ice_hw *hw = &pf->hw;
2821 	int oicr_idx, err = 0;
2822 
2823 	if (!pf->int_name[0])
2824 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2825 			 dev_driver_string(dev), dev_name(dev));
2826 
2827 	/* Do not request IRQ but do enable OICR interrupt since settings are
2828 	 * lost during reset. Note that this function is called only during
2829 	 * rebuild path and not while reset is in progress.
2830 	 */
2831 	if (ice_is_reset_in_progress(pf->state))
2832 		goto skip_req_irq;
2833 
2834 	/* reserve one vector in irq_tracker for misc interrupts */
2835 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2836 	if (oicr_idx < 0)
2837 		return oicr_idx;
2838 
2839 	pf->num_avail_sw_msix -= 1;
2840 	pf->oicr_idx = (u16)oicr_idx;
2841 
2842 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2843 			       ice_misc_intr, 0, pf->int_name, pf);
2844 	if (err) {
2845 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2846 			pf->int_name, err);
2847 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2848 		pf->num_avail_sw_msix += 1;
2849 		return err;
2850 	}
2851 
2852 skip_req_irq:
2853 	ice_ena_misc_vector(pf);
2854 
2855 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2856 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2857 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2858 
2859 	ice_flush(hw);
2860 	ice_irq_dynamic_ena(hw, NULL, NULL);
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * ice_napi_add - register NAPI handler for the VSI
2867  * @vsi: VSI for which NAPI handler is to be registered
2868  *
2869  * This function is only called in the driver's load path. Registering the NAPI
2870  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2871  * reset/rebuild, etc.)
2872  */
2873 static void ice_napi_add(struct ice_vsi *vsi)
2874 {
2875 	int v_idx;
2876 
2877 	if (!vsi->netdev)
2878 		return;
2879 
2880 	ice_for_each_q_vector(vsi, v_idx)
2881 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2882 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2883 }
2884 
2885 /**
2886  * ice_set_ops - set netdev and ethtools ops for the given netdev
2887  * @netdev: netdev instance
2888  */
2889 static void ice_set_ops(struct net_device *netdev)
2890 {
2891 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2892 
2893 	if (ice_is_safe_mode(pf)) {
2894 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2895 		ice_set_ethtool_safe_mode_ops(netdev);
2896 		return;
2897 	}
2898 
2899 	netdev->netdev_ops = &ice_netdev_ops;
2900 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2901 	ice_set_ethtool_ops(netdev);
2902 }
2903 
2904 /**
2905  * ice_set_netdev_features - set features for the given netdev
2906  * @netdev: netdev instance
2907  */
2908 static void ice_set_netdev_features(struct net_device *netdev)
2909 {
2910 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2911 	netdev_features_t csumo_features;
2912 	netdev_features_t vlano_features;
2913 	netdev_features_t dflt_features;
2914 	netdev_features_t tso_features;
2915 
2916 	if (ice_is_safe_mode(pf)) {
2917 		/* safe mode */
2918 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2919 		netdev->hw_features = netdev->features;
2920 		return;
2921 	}
2922 
2923 	dflt_features = NETIF_F_SG	|
2924 			NETIF_F_HIGHDMA	|
2925 			NETIF_F_NTUPLE	|
2926 			NETIF_F_RXHASH;
2927 
2928 	csumo_features = NETIF_F_RXCSUM	  |
2929 			 NETIF_F_IP_CSUM  |
2930 			 NETIF_F_SCTP_CRC |
2931 			 NETIF_F_IPV6_CSUM;
2932 
2933 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2934 			 NETIF_F_HW_VLAN_CTAG_TX     |
2935 			 NETIF_F_HW_VLAN_CTAG_RX;
2936 
2937 	tso_features = NETIF_F_TSO			|
2938 		       NETIF_F_TSO_ECN			|
2939 		       NETIF_F_TSO6			|
2940 		       NETIF_F_GSO_GRE			|
2941 		       NETIF_F_GSO_UDP_TUNNEL		|
2942 		       NETIF_F_GSO_GRE_CSUM		|
2943 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2944 		       NETIF_F_GSO_PARTIAL		|
2945 		       NETIF_F_GSO_IPXIP4		|
2946 		       NETIF_F_GSO_IPXIP6		|
2947 		       NETIF_F_GSO_UDP_L4;
2948 
2949 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2950 					NETIF_F_GSO_GRE_CSUM;
2951 	/* set features that user can change */
2952 	netdev->hw_features = dflt_features | csumo_features |
2953 			      vlano_features | tso_features;
2954 
2955 	/* add support for HW_CSUM on packets with MPLS header */
2956 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2957 
2958 	/* enable features */
2959 	netdev->features |= netdev->hw_features;
2960 	/* encap and VLAN devices inherit default, csumo and tso features */
2961 	netdev->hw_enc_features |= dflt_features | csumo_features |
2962 				   tso_features;
2963 	netdev->vlan_features |= dflt_features | csumo_features |
2964 				 tso_features;
2965 }
2966 
2967 /**
2968  * ice_cfg_netdev - Allocate, configure and register a netdev
2969  * @vsi: the VSI associated with the new netdev
2970  *
2971  * Returns 0 on success, negative value on failure
2972  */
2973 static int ice_cfg_netdev(struct ice_vsi *vsi)
2974 {
2975 	struct ice_pf *pf = vsi->back;
2976 	struct ice_netdev_priv *np;
2977 	struct net_device *netdev;
2978 	u8 mac_addr[ETH_ALEN];
2979 
2980 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2981 				    vsi->alloc_rxq);
2982 	if (!netdev)
2983 		return -ENOMEM;
2984 
2985 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
2986 	vsi->netdev = netdev;
2987 	np = netdev_priv(netdev);
2988 	np->vsi = vsi;
2989 
2990 	ice_set_netdev_features(netdev);
2991 
2992 	ice_set_ops(netdev);
2993 
2994 	if (vsi->type == ICE_VSI_PF) {
2995 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2996 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2997 		ether_addr_copy(netdev->dev_addr, mac_addr);
2998 		ether_addr_copy(netdev->perm_addr, mac_addr);
2999 	}
3000 
3001 	netdev->priv_flags |= IFF_UNICAST_FLT;
3002 
3003 	/* Setup netdev TC information */
3004 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3005 
3006 	/* setup watchdog timeout value to be 5 second */
3007 	netdev->watchdog_timeo = 5 * HZ;
3008 
3009 	netdev->min_mtu = ETH_MIN_MTU;
3010 	netdev->max_mtu = ICE_MAX_MTU;
3011 
3012 	return 0;
3013 }
3014 
3015 /**
3016  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3017  * @lut: Lookup table
3018  * @rss_table_size: Lookup table size
3019  * @rss_size: Range of queue number for hashing
3020  */
3021 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3022 {
3023 	u16 i;
3024 
3025 	for (i = 0; i < rss_table_size; i++)
3026 		lut[i] = i % rss_size;
3027 }
3028 
3029 /**
3030  * ice_pf_vsi_setup - Set up a PF VSI
3031  * @pf: board private structure
3032  * @pi: pointer to the port_info instance
3033  *
3034  * Returns pointer to the successfully allocated VSI software struct
3035  * on success, otherwise returns NULL on failure.
3036  */
3037 static struct ice_vsi *
3038 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3039 {
3040 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3041 }
3042 
3043 /**
3044  * ice_ctrl_vsi_setup - Set up a control VSI
3045  * @pf: board private structure
3046  * @pi: pointer to the port_info instance
3047  *
3048  * Returns pointer to the successfully allocated VSI software struct
3049  * on success, otherwise returns NULL on failure.
3050  */
3051 static struct ice_vsi *
3052 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3053 {
3054 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3055 }
3056 
3057 /**
3058  * ice_lb_vsi_setup - Set up a loopback VSI
3059  * @pf: board private structure
3060  * @pi: pointer to the port_info instance
3061  *
3062  * Returns pointer to the successfully allocated VSI software struct
3063  * on success, otherwise returns NULL on failure.
3064  */
3065 struct ice_vsi *
3066 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3067 {
3068 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3069 }
3070 
3071 /**
3072  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3073  * @netdev: network interface to be adjusted
3074  * @proto: unused protocol
3075  * @vid: VLAN ID to be added
3076  *
3077  * net_device_ops implementation for adding VLAN IDs
3078  */
3079 static int
3080 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3081 		    u16 vid)
3082 {
3083 	struct ice_netdev_priv *np = netdev_priv(netdev);
3084 	struct ice_vsi *vsi = np->vsi;
3085 	int ret;
3086 
3087 	/* VLAN 0 is added by default during load/reset */
3088 	if (!vid)
3089 		return 0;
3090 
3091 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3092 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3093 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3094 		if (ret)
3095 			return ret;
3096 	}
3097 
3098 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3099 	 * packets aren't pruned by the device's internal switch on Rx
3100 	 */
3101 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3102 	if (!ret)
3103 		set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3104 
3105 	return ret;
3106 }
3107 
3108 /**
3109  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3110  * @netdev: network interface to be adjusted
3111  * @proto: unused protocol
3112  * @vid: VLAN ID to be removed
3113  *
3114  * net_device_ops implementation for removing VLAN IDs
3115  */
3116 static int
3117 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3118 		     u16 vid)
3119 {
3120 	struct ice_netdev_priv *np = netdev_priv(netdev);
3121 	struct ice_vsi *vsi = np->vsi;
3122 	int ret;
3123 
3124 	/* don't allow removal of VLAN 0 */
3125 	if (!vid)
3126 		return 0;
3127 
3128 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3129 	 * information
3130 	 */
3131 	ret = ice_vsi_kill_vlan(vsi, vid);
3132 	if (ret)
3133 		return ret;
3134 
3135 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3136 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3137 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3138 
3139 	set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3140 	return ret;
3141 }
3142 
3143 /**
3144  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3145  * @pf: board private structure
3146  *
3147  * Returns 0 on success, negative value on failure
3148  */
3149 static int ice_setup_pf_sw(struct ice_pf *pf)
3150 {
3151 	struct ice_vsi *vsi;
3152 	int status = 0;
3153 
3154 	if (ice_is_reset_in_progress(pf->state))
3155 		return -EBUSY;
3156 
3157 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3158 	if (!vsi)
3159 		return -ENOMEM;
3160 
3161 	status = ice_cfg_netdev(vsi);
3162 	if (status) {
3163 		status = -ENODEV;
3164 		goto unroll_vsi_setup;
3165 	}
3166 	/* netdev has to be configured before setting frame size */
3167 	ice_vsi_cfg_frame_size(vsi);
3168 
3169 	/* Setup DCB netlink interface */
3170 	ice_dcbnl_setup(vsi);
3171 
3172 	/* registering the NAPI handler requires both the queues and
3173 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3174 	 * and ice_cfg_netdev() respectively
3175 	 */
3176 	ice_napi_add(vsi);
3177 
3178 	status = ice_set_cpu_rx_rmap(vsi);
3179 	if (status) {
3180 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3181 			vsi->vsi_num, status);
3182 		status = -EINVAL;
3183 		goto unroll_napi_add;
3184 	}
3185 	status = ice_init_mac_fltr(pf);
3186 	if (status)
3187 		goto free_cpu_rx_map;
3188 
3189 	return status;
3190 
3191 free_cpu_rx_map:
3192 	ice_free_cpu_rx_rmap(vsi);
3193 
3194 unroll_napi_add:
3195 	if (vsi) {
3196 		ice_napi_del(vsi);
3197 		if (vsi->netdev) {
3198 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3199 			free_netdev(vsi->netdev);
3200 			vsi->netdev = NULL;
3201 		}
3202 	}
3203 
3204 unroll_vsi_setup:
3205 	ice_vsi_release(vsi);
3206 	return status;
3207 }
3208 
3209 /**
3210  * ice_get_avail_q_count - Get count of queues in use
3211  * @pf_qmap: bitmap to get queue use count from
3212  * @lock: pointer to a mutex that protects access to pf_qmap
3213  * @size: size of the bitmap
3214  */
3215 static u16
3216 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3217 {
3218 	unsigned long bit;
3219 	u16 count = 0;
3220 
3221 	mutex_lock(lock);
3222 	for_each_clear_bit(bit, pf_qmap, size)
3223 		count++;
3224 	mutex_unlock(lock);
3225 
3226 	return count;
3227 }
3228 
3229 /**
3230  * ice_get_avail_txq_count - Get count of Tx queues in use
3231  * @pf: pointer to an ice_pf instance
3232  */
3233 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3234 {
3235 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3236 				     pf->max_pf_txqs);
3237 }
3238 
3239 /**
3240  * ice_get_avail_rxq_count - Get count of Rx queues in use
3241  * @pf: pointer to an ice_pf instance
3242  */
3243 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3244 {
3245 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3246 				     pf->max_pf_rxqs);
3247 }
3248 
3249 /**
3250  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3251  * @pf: board private structure to initialize
3252  */
3253 static void ice_deinit_pf(struct ice_pf *pf)
3254 {
3255 	ice_service_task_stop(pf);
3256 	mutex_destroy(&pf->sw_mutex);
3257 	mutex_destroy(&pf->tc_mutex);
3258 	mutex_destroy(&pf->avail_q_mutex);
3259 
3260 	if (pf->avail_txqs) {
3261 		bitmap_free(pf->avail_txqs);
3262 		pf->avail_txqs = NULL;
3263 	}
3264 
3265 	if (pf->avail_rxqs) {
3266 		bitmap_free(pf->avail_rxqs);
3267 		pf->avail_rxqs = NULL;
3268 	}
3269 }
3270 
3271 /**
3272  * ice_set_pf_caps - set PFs capability flags
3273  * @pf: pointer to the PF instance
3274  */
3275 static void ice_set_pf_caps(struct ice_pf *pf)
3276 {
3277 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3278 
3279 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3280 	if (func_caps->common_cap.dcb)
3281 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3282 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3283 	if (func_caps->common_cap.sr_iov_1_1) {
3284 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3285 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3286 					      ICE_MAX_VF_COUNT);
3287 	}
3288 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3289 	if (func_caps->common_cap.rss_table_size)
3290 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3291 
3292 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3293 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3294 		u16 unused;
3295 
3296 		/* ctrl_vsi_idx will be set to a valid value when flow director
3297 		 * is setup by ice_init_fdir
3298 		 */
3299 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3300 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3301 		/* force guaranteed filter pool for PF */
3302 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3303 				       func_caps->fd_fltr_guar);
3304 		/* force shared filter pool for PF */
3305 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3306 				       func_caps->fd_fltr_best_effort);
3307 	}
3308 
3309 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3310 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3311 }
3312 
3313 /**
3314  * ice_init_pf - Initialize general software structures (struct ice_pf)
3315  * @pf: board private structure to initialize
3316  */
3317 static int ice_init_pf(struct ice_pf *pf)
3318 {
3319 	ice_set_pf_caps(pf);
3320 
3321 	mutex_init(&pf->sw_mutex);
3322 	mutex_init(&pf->tc_mutex);
3323 
3324 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3325 	spin_lock_init(&pf->aq_wait_lock);
3326 	init_waitqueue_head(&pf->aq_wait_queue);
3327 
3328 	/* setup service timer and periodic service task */
3329 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3330 	pf->serv_tmr_period = HZ;
3331 	INIT_WORK(&pf->serv_task, ice_service_task);
3332 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3333 
3334 	mutex_init(&pf->avail_q_mutex);
3335 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3336 	if (!pf->avail_txqs)
3337 		return -ENOMEM;
3338 
3339 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3340 	if (!pf->avail_rxqs) {
3341 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3342 		pf->avail_txqs = NULL;
3343 		return -ENOMEM;
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 /**
3350  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3351  * @pf: board private structure
3352  *
3353  * compute the number of MSIX vectors required (v_budget) and request from
3354  * the OS. Return the number of vectors reserved or negative on failure
3355  */
3356 static int ice_ena_msix_range(struct ice_pf *pf)
3357 {
3358 	int v_left, v_actual, v_other, v_budget = 0;
3359 	struct device *dev = ice_pf_to_dev(pf);
3360 	int needed, err, i;
3361 
3362 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3363 
3364 	/* reserve for LAN miscellaneous handler */
3365 	needed = ICE_MIN_LAN_OICR_MSIX;
3366 	if (v_left < needed)
3367 		goto no_hw_vecs_left_err;
3368 	v_budget += needed;
3369 	v_left -= needed;
3370 
3371 	/* reserve for flow director */
3372 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3373 		needed = ICE_FDIR_MSIX;
3374 		if (v_left < needed)
3375 			goto no_hw_vecs_left_err;
3376 		v_budget += needed;
3377 		v_left -= needed;
3378 	}
3379 
3380 	/* total used for non-traffic vectors */
3381 	v_other = v_budget;
3382 
3383 	/* reserve vectors for LAN traffic */
3384 	needed = min_t(int, num_online_cpus(), v_left);
3385 	if (v_left < needed)
3386 		goto no_hw_vecs_left_err;
3387 	pf->num_lan_msix = needed;
3388 	v_budget += needed;
3389 	v_left -= needed;
3390 
3391 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3392 					sizeof(*pf->msix_entries), GFP_KERNEL);
3393 	if (!pf->msix_entries) {
3394 		err = -ENOMEM;
3395 		goto exit_err;
3396 	}
3397 
3398 	for (i = 0; i < v_budget; i++)
3399 		pf->msix_entries[i].entry = i;
3400 
3401 	/* actually reserve the vectors */
3402 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3403 					 ICE_MIN_MSIX, v_budget);
3404 	if (v_actual < 0) {
3405 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3406 		err = v_actual;
3407 		goto msix_err;
3408 	}
3409 
3410 	if (v_actual < v_budget) {
3411 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3412 			 v_budget, v_actual);
3413 
3414 		if (v_actual < ICE_MIN_MSIX) {
3415 			/* error if we can't get minimum vectors */
3416 			pci_disable_msix(pf->pdev);
3417 			err = -ERANGE;
3418 			goto msix_err;
3419 		} else {
3420 			int v_traffic = v_actual - v_other;
3421 
3422 			if (v_actual == ICE_MIN_MSIX ||
3423 			    v_traffic < ICE_MIN_LAN_TXRX_MSIX)
3424 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3425 			else
3426 				pf->num_lan_msix = v_traffic;
3427 
3428 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3429 				   pf->num_lan_msix);
3430 		}
3431 	}
3432 
3433 	return v_actual;
3434 
3435 msix_err:
3436 	devm_kfree(dev, pf->msix_entries);
3437 	goto exit_err;
3438 
3439 no_hw_vecs_left_err:
3440 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3441 		needed, v_left);
3442 	err = -ERANGE;
3443 exit_err:
3444 	pf->num_lan_msix = 0;
3445 	return err;
3446 }
3447 
3448 /**
3449  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3450  * @pf: board private structure
3451  */
3452 static void ice_dis_msix(struct ice_pf *pf)
3453 {
3454 	pci_disable_msix(pf->pdev);
3455 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3456 	pf->msix_entries = NULL;
3457 }
3458 
3459 /**
3460  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3461  * @pf: board private structure
3462  */
3463 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3464 {
3465 	ice_dis_msix(pf);
3466 
3467 	if (pf->irq_tracker) {
3468 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3469 		pf->irq_tracker = NULL;
3470 	}
3471 }
3472 
3473 /**
3474  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3475  * @pf: board private structure to initialize
3476  */
3477 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3478 {
3479 	int vectors;
3480 
3481 	vectors = ice_ena_msix_range(pf);
3482 
3483 	if (vectors < 0)
3484 		return vectors;
3485 
3486 	/* set up vector assignment tracking */
3487 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3488 				       struct_size(pf->irq_tracker, list, vectors),
3489 				       GFP_KERNEL);
3490 	if (!pf->irq_tracker) {
3491 		ice_dis_msix(pf);
3492 		return -ENOMEM;
3493 	}
3494 
3495 	/* populate SW interrupts pool with number of OS granted IRQs. */
3496 	pf->num_avail_sw_msix = (u16)vectors;
3497 	pf->irq_tracker->num_entries = (u16)vectors;
3498 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3499 
3500 	return 0;
3501 }
3502 
3503 /**
3504  * ice_is_wol_supported - check if WoL is supported
3505  * @hw: pointer to hardware info
3506  *
3507  * Check if WoL is supported based on the HW configuration.
3508  * Returns true if NVM supports and enables WoL for this port, false otherwise
3509  */
3510 bool ice_is_wol_supported(struct ice_hw *hw)
3511 {
3512 	u16 wol_ctrl;
3513 
3514 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3515 	 * word) indicates WoL is not supported on the corresponding PF ID.
3516 	 */
3517 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3518 		return false;
3519 
3520 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3521 }
3522 
3523 /**
3524  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3525  * @vsi: VSI being changed
3526  * @new_rx: new number of Rx queues
3527  * @new_tx: new number of Tx queues
3528  *
3529  * Only change the number of queues if new_tx, or new_rx is non-0.
3530  *
3531  * Returns 0 on success.
3532  */
3533 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3534 {
3535 	struct ice_pf *pf = vsi->back;
3536 	int err = 0, timeout = 50;
3537 
3538 	if (!new_rx && !new_tx)
3539 		return -EINVAL;
3540 
3541 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3542 		timeout--;
3543 		if (!timeout)
3544 			return -EBUSY;
3545 		usleep_range(1000, 2000);
3546 	}
3547 
3548 	if (new_tx)
3549 		vsi->req_txq = (u16)new_tx;
3550 	if (new_rx)
3551 		vsi->req_rxq = (u16)new_rx;
3552 
3553 	/* set for the next time the netdev is started */
3554 	if (!netif_running(vsi->netdev)) {
3555 		ice_vsi_rebuild(vsi, false);
3556 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3557 		goto done;
3558 	}
3559 
3560 	ice_vsi_close(vsi);
3561 	ice_vsi_rebuild(vsi, false);
3562 	ice_pf_dcb_recfg(pf);
3563 	ice_vsi_open(vsi);
3564 done:
3565 	clear_bit(ICE_CFG_BUSY, pf->state);
3566 	return err;
3567 }
3568 
3569 /**
3570  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3571  * @pf: PF to configure
3572  *
3573  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3574  * VSI can still Tx/Rx VLAN tagged packets.
3575  */
3576 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3577 {
3578 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3579 	struct ice_vsi_ctx *ctxt;
3580 	enum ice_status status;
3581 	struct ice_hw *hw;
3582 
3583 	if (!vsi)
3584 		return;
3585 
3586 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3587 	if (!ctxt)
3588 		return;
3589 
3590 	hw = &pf->hw;
3591 	ctxt->info = vsi->info;
3592 
3593 	ctxt->info.valid_sections =
3594 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3595 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3596 			    ICE_AQ_VSI_PROP_SW_VALID);
3597 
3598 	/* disable VLAN anti-spoof */
3599 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3600 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3601 
3602 	/* disable VLAN pruning and keep all other settings */
3603 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3604 
3605 	/* allow all VLANs on Tx and don't strip on Rx */
3606 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3607 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3608 
3609 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3610 	if (status) {
3611 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3612 			ice_stat_str(status),
3613 			ice_aq_str(hw->adminq.sq_last_status));
3614 	} else {
3615 		vsi->info.sec_flags = ctxt->info.sec_flags;
3616 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3617 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3618 	}
3619 
3620 	kfree(ctxt);
3621 }
3622 
3623 /**
3624  * ice_log_pkg_init - log result of DDP package load
3625  * @hw: pointer to hardware info
3626  * @status: status of package load
3627  */
3628 static void
3629 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3630 {
3631 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3632 	struct device *dev = ice_pf_to_dev(pf);
3633 
3634 	switch (*status) {
3635 	case ICE_SUCCESS:
3636 		/* The package download AdminQ command returned success because
3637 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3638 		 * already a package loaded on the device.
3639 		 */
3640 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3641 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3642 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3643 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3644 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3645 			    sizeof(hw->pkg_name))) {
3646 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3647 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3648 					 hw->active_pkg_name,
3649 					 hw->active_pkg_ver.major,
3650 					 hw->active_pkg_ver.minor,
3651 					 hw->active_pkg_ver.update,
3652 					 hw->active_pkg_ver.draft);
3653 			else
3654 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3655 					 hw->active_pkg_name,
3656 					 hw->active_pkg_ver.major,
3657 					 hw->active_pkg_ver.minor,
3658 					 hw->active_pkg_ver.update,
3659 					 hw->active_pkg_ver.draft);
3660 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3661 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3662 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3663 				hw->active_pkg_name,
3664 				hw->active_pkg_ver.major,
3665 				hw->active_pkg_ver.minor,
3666 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3667 			*status = ICE_ERR_NOT_SUPPORTED;
3668 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3669 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3670 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3671 				 hw->active_pkg_name,
3672 				 hw->active_pkg_ver.major,
3673 				 hw->active_pkg_ver.minor,
3674 				 hw->active_pkg_ver.update,
3675 				 hw->active_pkg_ver.draft,
3676 				 hw->pkg_name,
3677 				 hw->pkg_ver.major,
3678 				 hw->pkg_ver.minor,
3679 				 hw->pkg_ver.update,
3680 				 hw->pkg_ver.draft);
3681 		} else {
3682 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3683 			*status = ICE_ERR_NOT_SUPPORTED;
3684 		}
3685 		break;
3686 	case ICE_ERR_FW_DDP_MISMATCH:
3687 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3688 		break;
3689 	case ICE_ERR_BUF_TOO_SHORT:
3690 	case ICE_ERR_CFG:
3691 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3692 		break;
3693 	case ICE_ERR_NOT_SUPPORTED:
3694 		/* Package File version not supported */
3695 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3696 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3697 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3698 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3699 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3700 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3701 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3702 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3703 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3704 		break;
3705 	case ICE_ERR_AQ_ERROR:
3706 		switch (hw->pkg_dwnld_status) {
3707 		case ICE_AQ_RC_ENOSEC:
3708 		case ICE_AQ_RC_EBADSIG:
3709 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3710 			return;
3711 		case ICE_AQ_RC_ESVN:
3712 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3713 			return;
3714 		case ICE_AQ_RC_EBADMAN:
3715 		case ICE_AQ_RC_EBADBUF:
3716 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3717 			/* poll for reset to complete */
3718 			if (ice_check_reset(hw))
3719 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3720 			return;
3721 		default:
3722 			break;
3723 		}
3724 		fallthrough;
3725 	default:
3726 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3727 			*status);
3728 		break;
3729 	}
3730 }
3731 
3732 /**
3733  * ice_load_pkg - load/reload the DDP Package file
3734  * @firmware: firmware structure when firmware requested or NULL for reload
3735  * @pf: pointer to the PF instance
3736  *
3737  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3738  * initialize HW tables.
3739  */
3740 static void
3741 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3742 {
3743 	enum ice_status status = ICE_ERR_PARAM;
3744 	struct device *dev = ice_pf_to_dev(pf);
3745 	struct ice_hw *hw = &pf->hw;
3746 
3747 	/* Load DDP Package */
3748 	if (firmware && !hw->pkg_copy) {
3749 		status = ice_copy_and_init_pkg(hw, firmware->data,
3750 					       firmware->size);
3751 		ice_log_pkg_init(hw, &status);
3752 	} else if (!firmware && hw->pkg_copy) {
3753 		/* Reload package during rebuild after CORER/GLOBR reset */
3754 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3755 		ice_log_pkg_init(hw, &status);
3756 	} else {
3757 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3758 	}
3759 
3760 	if (status) {
3761 		/* Safe Mode */
3762 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3763 		return;
3764 	}
3765 
3766 	/* Successful download package is the precondition for advanced
3767 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3768 	 */
3769 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3770 }
3771 
3772 /**
3773  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3774  * @pf: pointer to the PF structure
3775  *
3776  * There is no error returned here because the driver should be able to handle
3777  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3778  * specifically with Tx.
3779  */
3780 static void ice_verify_cacheline_size(struct ice_pf *pf)
3781 {
3782 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3783 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3784 			 ICE_CACHE_LINE_BYTES);
3785 }
3786 
3787 /**
3788  * ice_send_version - update firmware with driver version
3789  * @pf: PF struct
3790  *
3791  * Returns ICE_SUCCESS on success, else error code
3792  */
3793 static enum ice_status ice_send_version(struct ice_pf *pf)
3794 {
3795 	struct ice_driver_ver dv;
3796 
3797 	dv.major_ver = 0xff;
3798 	dv.minor_ver = 0xff;
3799 	dv.build_ver = 0xff;
3800 	dv.subbuild_ver = 0;
3801 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3802 		sizeof(dv.driver_string));
3803 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3804 }
3805 
3806 /**
3807  * ice_init_fdir - Initialize flow director VSI and configuration
3808  * @pf: pointer to the PF instance
3809  *
3810  * returns 0 on success, negative on error
3811  */
3812 static int ice_init_fdir(struct ice_pf *pf)
3813 {
3814 	struct device *dev = ice_pf_to_dev(pf);
3815 	struct ice_vsi *ctrl_vsi;
3816 	int err;
3817 
3818 	/* Side Band Flow Director needs to have a control VSI.
3819 	 * Allocate it and store it in the PF.
3820 	 */
3821 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3822 	if (!ctrl_vsi) {
3823 		dev_dbg(dev, "could not create control VSI\n");
3824 		return -ENOMEM;
3825 	}
3826 
3827 	err = ice_vsi_open_ctrl(ctrl_vsi);
3828 	if (err) {
3829 		dev_dbg(dev, "could not open control VSI\n");
3830 		goto err_vsi_open;
3831 	}
3832 
3833 	mutex_init(&pf->hw.fdir_fltr_lock);
3834 
3835 	err = ice_fdir_create_dflt_rules(pf);
3836 	if (err)
3837 		goto err_fdir_rule;
3838 
3839 	return 0;
3840 
3841 err_fdir_rule:
3842 	ice_fdir_release_flows(&pf->hw);
3843 	ice_vsi_close(ctrl_vsi);
3844 err_vsi_open:
3845 	ice_vsi_release(ctrl_vsi);
3846 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3847 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3848 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3849 	}
3850 	return err;
3851 }
3852 
3853 /**
3854  * ice_get_opt_fw_name - return optional firmware file name or NULL
3855  * @pf: pointer to the PF instance
3856  */
3857 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3858 {
3859 	/* Optional firmware name same as default with additional dash
3860 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3861 	 */
3862 	struct pci_dev *pdev = pf->pdev;
3863 	char *opt_fw_filename;
3864 	u64 dsn;
3865 
3866 	/* Determine the name of the optional file using the DSN (two
3867 	 * dwords following the start of the DSN Capability).
3868 	 */
3869 	dsn = pci_get_dsn(pdev);
3870 	if (!dsn)
3871 		return NULL;
3872 
3873 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3874 	if (!opt_fw_filename)
3875 		return NULL;
3876 
3877 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3878 		 ICE_DDP_PKG_PATH, dsn);
3879 
3880 	return opt_fw_filename;
3881 }
3882 
3883 /**
3884  * ice_request_fw - Device initialization routine
3885  * @pf: pointer to the PF instance
3886  */
3887 static void ice_request_fw(struct ice_pf *pf)
3888 {
3889 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3890 	const struct firmware *firmware = NULL;
3891 	struct device *dev = ice_pf_to_dev(pf);
3892 	int err = 0;
3893 
3894 	/* optional device-specific DDP (if present) overrides the default DDP
3895 	 * package file. kernel logs a debug message if the file doesn't exist,
3896 	 * and warning messages for other errors.
3897 	 */
3898 	if (opt_fw_filename) {
3899 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3900 		if (err) {
3901 			kfree(opt_fw_filename);
3902 			goto dflt_pkg_load;
3903 		}
3904 
3905 		/* request for firmware was successful. Download to device */
3906 		ice_load_pkg(firmware, pf);
3907 		kfree(opt_fw_filename);
3908 		release_firmware(firmware);
3909 		return;
3910 	}
3911 
3912 dflt_pkg_load:
3913 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3914 	if (err) {
3915 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3916 		return;
3917 	}
3918 
3919 	/* request for firmware was successful. Download to device */
3920 	ice_load_pkg(firmware, pf);
3921 	release_firmware(firmware);
3922 }
3923 
3924 /**
3925  * ice_print_wake_reason - show the wake up cause in the log
3926  * @pf: pointer to the PF struct
3927  */
3928 static void ice_print_wake_reason(struct ice_pf *pf)
3929 {
3930 	u32 wus = pf->wakeup_reason;
3931 	const char *wake_str;
3932 
3933 	/* if no wake event, nothing to print */
3934 	if (!wus)
3935 		return;
3936 
3937 	if (wus & PFPM_WUS_LNKC_M)
3938 		wake_str = "Link\n";
3939 	else if (wus & PFPM_WUS_MAG_M)
3940 		wake_str = "Magic Packet\n";
3941 	else if (wus & PFPM_WUS_MNG_M)
3942 		wake_str = "Management\n";
3943 	else if (wus & PFPM_WUS_FW_RST_WK_M)
3944 		wake_str = "Firmware Reset\n";
3945 	else
3946 		wake_str = "Unknown\n";
3947 
3948 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3949 }
3950 
3951 /**
3952  * ice_register_netdev - register netdev and devlink port
3953  * @pf: pointer to the PF struct
3954  */
3955 static int ice_register_netdev(struct ice_pf *pf)
3956 {
3957 	struct ice_vsi *vsi;
3958 	int err = 0;
3959 
3960 	vsi = ice_get_main_vsi(pf);
3961 	if (!vsi || !vsi->netdev)
3962 		return -EIO;
3963 
3964 	err = register_netdev(vsi->netdev);
3965 	if (err)
3966 		goto err_register_netdev;
3967 
3968 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3969 	netif_carrier_off(vsi->netdev);
3970 	netif_tx_stop_all_queues(vsi->netdev);
3971 	err = ice_devlink_create_port(vsi);
3972 	if (err)
3973 		goto err_devlink_create;
3974 
3975 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3976 
3977 	return 0;
3978 err_devlink_create:
3979 	unregister_netdev(vsi->netdev);
3980 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3981 err_register_netdev:
3982 	free_netdev(vsi->netdev);
3983 	vsi->netdev = NULL;
3984 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3985 	return err;
3986 }
3987 
3988 /**
3989  * ice_probe - Device initialization routine
3990  * @pdev: PCI device information struct
3991  * @ent: entry in ice_pci_tbl
3992  *
3993  * Returns 0 on success, negative on failure
3994  */
3995 static int
3996 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3997 {
3998 	struct device *dev = &pdev->dev;
3999 	struct ice_pf *pf;
4000 	struct ice_hw *hw;
4001 	int i, err;
4002 
4003 	/* this driver uses devres, see
4004 	 * Documentation/driver-api/driver-model/devres.rst
4005 	 */
4006 	err = pcim_enable_device(pdev);
4007 	if (err)
4008 		return err;
4009 
4010 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4011 	if (err) {
4012 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4013 		return err;
4014 	}
4015 
4016 	pf = ice_allocate_pf(dev);
4017 	if (!pf)
4018 		return -ENOMEM;
4019 
4020 	/* set up for high or low DMA */
4021 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4022 	if (err)
4023 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4024 	if (err) {
4025 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4026 		return err;
4027 	}
4028 
4029 	pci_enable_pcie_error_reporting(pdev);
4030 	pci_set_master(pdev);
4031 
4032 	pf->pdev = pdev;
4033 	pci_set_drvdata(pdev, pf);
4034 	set_bit(ICE_DOWN, pf->state);
4035 	/* Disable service task until DOWN bit is cleared */
4036 	set_bit(ICE_SERVICE_DIS, pf->state);
4037 
4038 	hw = &pf->hw;
4039 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4040 	pci_save_state(pdev);
4041 
4042 	hw->back = pf;
4043 	hw->vendor_id = pdev->vendor;
4044 	hw->device_id = pdev->device;
4045 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4046 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4047 	hw->subsystem_device_id = pdev->subsystem_device;
4048 	hw->bus.device = PCI_SLOT(pdev->devfn);
4049 	hw->bus.func = PCI_FUNC(pdev->devfn);
4050 	ice_set_ctrlq_len(hw);
4051 
4052 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4053 
4054 	err = ice_devlink_register(pf);
4055 	if (err) {
4056 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4057 		goto err_exit_unroll;
4058 	}
4059 
4060 #ifndef CONFIG_DYNAMIC_DEBUG
4061 	if (debug < -1)
4062 		hw->debug_mask = debug;
4063 #endif
4064 
4065 	err = ice_init_hw(hw);
4066 	if (err) {
4067 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4068 		err = -EIO;
4069 		goto err_exit_unroll;
4070 	}
4071 
4072 	ice_request_fw(pf);
4073 
4074 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4075 	 * set in pf->state, which will cause ice_is_safe_mode to return
4076 	 * true
4077 	 */
4078 	if (ice_is_safe_mode(pf)) {
4079 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4080 		/* we already got function/device capabilities but these don't
4081 		 * reflect what the driver needs to do in safe mode. Instead of
4082 		 * adding conditional logic everywhere to ignore these
4083 		 * device/function capabilities, override them.
4084 		 */
4085 		ice_set_safe_mode_caps(hw);
4086 	}
4087 
4088 	err = ice_init_pf(pf);
4089 	if (err) {
4090 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4091 		goto err_init_pf_unroll;
4092 	}
4093 
4094 	ice_devlink_init_regions(pf);
4095 
4096 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4097 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4098 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4099 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4100 	i = 0;
4101 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4102 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4103 			pf->hw.tnl.valid_count[TNL_VXLAN];
4104 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4105 			UDP_TUNNEL_TYPE_VXLAN;
4106 		i++;
4107 	}
4108 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4109 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4110 			pf->hw.tnl.valid_count[TNL_GENEVE];
4111 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4112 			UDP_TUNNEL_TYPE_GENEVE;
4113 		i++;
4114 	}
4115 
4116 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4117 	if (!pf->num_alloc_vsi) {
4118 		err = -EIO;
4119 		goto err_init_pf_unroll;
4120 	}
4121 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4122 		dev_warn(&pf->pdev->dev,
4123 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4124 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4125 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4126 	}
4127 
4128 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4129 			       GFP_KERNEL);
4130 	if (!pf->vsi) {
4131 		err = -ENOMEM;
4132 		goto err_init_pf_unroll;
4133 	}
4134 
4135 	err = ice_init_interrupt_scheme(pf);
4136 	if (err) {
4137 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4138 		err = -EIO;
4139 		goto err_init_vsi_unroll;
4140 	}
4141 
4142 	/* In case of MSIX we are going to setup the misc vector right here
4143 	 * to handle admin queue events etc. In case of legacy and MSI
4144 	 * the misc functionality and queue processing is combined in
4145 	 * the same vector and that gets setup at open.
4146 	 */
4147 	err = ice_req_irq_msix_misc(pf);
4148 	if (err) {
4149 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4150 		goto err_init_interrupt_unroll;
4151 	}
4152 
4153 	/* create switch struct for the switch element created by FW on boot */
4154 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4155 	if (!pf->first_sw) {
4156 		err = -ENOMEM;
4157 		goto err_msix_misc_unroll;
4158 	}
4159 
4160 	if (hw->evb_veb)
4161 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4162 	else
4163 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4164 
4165 	pf->first_sw->pf = pf;
4166 
4167 	/* record the sw_id available for later use */
4168 	pf->first_sw->sw_id = hw->port_info->sw_id;
4169 
4170 	err = ice_setup_pf_sw(pf);
4171 	if (err) {
4172 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4173 		goto err_alloc_sw_unroll;
4174 	}
4175 
4176 	clear_bit(ICE_SERVICE_DIS, pf->state);
4177 
4178 	/* tell the firmware we are up */
4179 	err = ice_send_version(pf);
4180 	if (err) {
4181 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4182 			UTS_RELEASE, err);
4183 		goto err_send_version_unroll;
4184 	}
4185 
4186 	/* since everything is good, start the service timer */
4187 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4188 
4189 	err = ice_init_link_events(pf->hw.port_info);
4190 	if (err) {
4191 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4192 		goto err_send_version_unroll;
4193 	}
4194 
4195 	/* not a fatal error if this fails */
4196 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4197 	if (err)
4198 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4199 
4200 	/* not a fatal error if this fails */
4201 	err = ice_update_link_info(pf->hw.port_info);
4202 	if (err)
4203 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4204 
4205 	ice_init_link_dflt_override(pf->hw.port_info);
4206 
4207 	/* if media available, initialize PHY settings */
4208 	if (pf->hw.port_info->phy.link_info.link_info &
4209 	    ICE_AQ_MEDIA_AVAILABLE) {
4210 		/* not a fatal error if this fails */
4211 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4212 		if (err)
4213 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4214 
4215 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4216 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4217 
4218 			if (vsi)
4219 				ice_configure_phy(vsi);
4220 		}
4221 	} else {
4222 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4223 	}
4224 
4225 	ice_verify_cacheline_size(pf);
4226 
4227 	/* Save wakeup reason register for later use */
4228 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4229 
4230 	/* check for a power management event */
4231 	ice_print_wake_reason(pf);
4232 
4233 	/* clear wake status, all bits */
4234 	wr32(hw, PFPM_WUS, U32_MAX);
4235 
4236 	/* Disable WoL at init, wait for user to enable */
4237 	device_set_wakeup_enable(dev, false);
4238 
4239 	if (ice_is_safe_mode(pf)) {
4240 		ice_set_safe_mode_vlan_cfg(pf);
4241 		goto probe_done;
4242 	}
4243 
4244 	/* initialize DDP driven features */
4245 
4246 	/* Note: Flow director init failure is non-fatal to load */
4247 	if (ice_init_fdir(pf))
4248 		dev_err(dev, "could not initialize flow director\n");
4249 
4250 	/* Note: DCB init failure is non-fatal to load */
4251 	if (ice_init_pf_dcb(pf, false)) {
4252 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4253 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4254 	} else {
4255 		ice_cfg_lldp_mib_change(&pf->hw, true);
4256 	}
4257 
4258 	if (ice_init_lag(pf))
4259 		dev_warn(dev, "Failed to init link aggregation support\n");
4260 
4261 	/* print PCI link speed and width */
4262 	pcie_print_link_status(pf->pdev);
4263 
4264 probe_done:
4265 	err = ice_register_netdev(pf);
4266 	if (err)
4267 		goto err_netdev_reg;
4268 
4269 	/* ready to go, so clear down state bit */
4270 	clear_bit(ICE_DOWN, pf->state);
4271 	return 0;
4272 
4273 err_netdev_reg:
4274 err_send_version_unroll:
4275 	ice_vsi_release_all(pf);
4276 err_alloc_sw_unroll:
4277 	set_bit(ICE_SERVICE_DIS, pf->state);
4278 	set_bit(ICE_DOWN, pf->state);
4279 	devm_kfree(dev, pf->first_sw);
4280 err_msix_misc_unroll:
4281 	ice_free_irq_msix_misc(pf);
4282 err_init_interrupt_unroll:
4283 	ice_clear_interrupt_scheme(pf);
4284 err_init_vsi_unroll:
4285 	devm_kfree(dev, pf->vsi);
4286 err_init_pf_unroll:
4287 	ice_deinit_pf(pf);
4288 	ice_devlink_destroy_regions(pf);
4289 	ice_deinit_hw(hw);
4290 err_exit_unroll:
4291 	ice_devlink_unregister(pf);
4292 	pci_disable_pcie_error_reporting(pdev);
4293 	pci_disable_device(pdev);
4294 	return err;
4295 }
4296 
4297 /**
4298  * ice_set_wake - enable or disable Wake on LAN
4299  * @pf: pointer to the PF struct
4300  *
4301  * Simple helper for WoL control
4302  */
4303 static void ice_set_wake(struct ice_pf *pf)
4304 {
4305 	struct ice_hw *hw = &pf->hw;
4306 	bool wol = pf->wol_ena;
4307 
4308 	/* clear wake state, otherwise new wake events won't fire */
4309 	wr32(hw, PFPM_WUS, U32_MAX);
4310 
4311 	/* enable / disable APM wake up, no RMW needed */
4312 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4313 
4314 	/* set magic packet filter enabled */
4315 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4316 }
4317 
4318 /**
4319  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4320  * @pf: pointer to the PF struct
4321  *
4322  * Issue firmware command to enable multicast magic wake, making
4323  * sure that any locally administered address (LAA) is used for
4324  * wake, and that PF reset doesn't undo the LAA.
4325  */
4326 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4327 {
4328 	struct device *dev = ice_pf_to_dev(pf);
4329 	struct ice_hw *hw = &pf->hw;
4330 	enum ice_status status;
4331 	u8 mac_addr[ETH_ALEN];
4332 	struct ice_vsi *vsi;
4333 	u8 flags;
4334 
4335 	if (!pf->wol_ena)
4336 		return;
4337 
4338 	vsi = ice_get_main_vsi(pf);
4339 	if (!vsi)
4340 		return;
4341 
4342 	/* Get current MAC address in case it's an LAA */
4343 	if (vsi->netdev)
4344 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4345 	else
4346 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4347 
4348 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4349 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4350 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4351 
4352 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4353 	if (status)
4354 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4355 			ice_stat_str(status),
4356 			ice_aq_str(hw->adminq.sq_last_status));
4357 }
4358 
4359 /**
4360  * ice_remove - Device removal routine
4361  * @pdev: PCI device information struct
4362  */
4363 static void ice_remove(struct pci_dev *pdev)
4364 {
4365 	struct ice_pf *pf = pci_get_drvdata(pdev);
4366 	int i;
4367 
4368 	if (!pf)
4369 		return;
4370 
4371 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4372 		if (!ice_is_reset_in_progress(pf->state))
4373 			break;
4374 		msleep(100);
4375 	}
4376 
4377 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4378 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4379 		ice_free_vfs(pf);
4380 	}
4381 
4382 	set_bit(ICE_DOWN, pf->state);
4383 	ice_service_task_stop(pf);
4384 
4385 	ice_aq_cancel_waiting_tasks(pf);
4386 
4387 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4388 	ice_deinit_lag(pf);
4389 	if (!ice_is_safe_mode(pf))
4390 		ice_remove_arfs(pf);
4391 	ice_setup_mc_magic_wake(pf);
4392 	ice_vsi_release_all(pf);
4393 	ice_set_wake(pf);
4394 	ice_free_irq_msix_misc(pf);
4395 	ice_for_each_vsi(pf, i) {
4396 		if (!pf->vsi[i])
4397 			continue;
4398 		ice_vsi_free_q_vectors(pf->vsi[i]);
4399 	}
4400 	ice_deinit_pf(pf);
4401 	ice_devlink_destroy_regions(pf);
4402 	ice_deinit_hw(&pf->hw);
4403 	ice_devlink_unregister(pf);
4404 
4405 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4406 	 * do it via ice_schedule_reset() since there is no need to rebuild
4407 	 * and the service task is already stopped.
4408 	 */
4409 	ice_reset(&pf->hw, ICE_RESET_PFR);
4410 	pci_wait_for_pending_transaction(pdev);
4411 	ice_clear_interrupt_scheme(pf);
4412 	pci_disable_pcie_error_reporting(pdev);
4413 	pci_disable_device(pdev);
4414 }
4415 
4416 /**
4417  * ice_shutdown - PCI callback for shutting down device
4418  * @pdev: PCI device information struct
4419  */
4420 static void ice_shutdown(struct pci_dev *pdev)
4421 {
4422 	struct ice_pf *pf = pci_get_drvdata(pdev);
4423 
4424 	ice_remove(pdev);
4425 
4426 	if (system_state == SYSTEM_POWER_OFF) {
4427 		pci_wake_from_d3(pdev, pf->wol_ena);
4428 		pci_set_power_state(pdev, PCI_D3hot);
4429 	}
4430 }
4431 
4432 #ifdef CONFIG_PM
4433 /**
4434  * ice_prepare_for_shutdown - prep for PCI shutdown
4435  * @pf: board private structure
4436  *
4437  * Inform or close all dependent features in prep for PCI device shutdown
4438  */
4439 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4440 {
4441 	struct ice_hw *hw = &pf->hw;
4442 	u32 v;
4443 
4444 	/* Notify VFs of impending reset */
4445 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4446 		ice_vc_notify_reset(pf);
4447 
4448 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4449 
4450 	/* disable the VSIs and their queues that are not already DOWN */
4451 	ice_pf_dis_all_vsi(pf, false);
4452 
4453 	ice_for_each_vsi(pf, v)
4454 		if (pf->vsi[v])
4455 			pf->vsi[v]->vsi_num = 0;
4456 
4457 	ice_shutdown_all_ctrlq(hw);
4458 }
4459 
4460 /**
4461  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4462  * @pf: board private structure to reinitialize
4463  *
4464  * This routine reinitialize interrupt scheme that was cleared during
4465  * power management suspend callback.
4466  *
4467  * This should be called during resume routine to re-allocate the q_vectors
4468  * and reacquire interrupts.
4469  */
4470 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4471 {
4472 	struct device *dev = ice_pf_to_dev(pf);
4473 	int ret, v;
4474 
4475 	/* Since we clear MSIX flag during suspend, we need to
4476 	 * set it back during resume...
4477 	 */
4478 
4479 	ret = ice_init_interrupt_scheme(pf);
4480 	if (ret) {
4481 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4482 		return ret;
4483 	}
4484 
4485 	/* Remap vectors and rings, after successful re-init interrupts */
4486 	ice_for_each_vsi(pf, v) {
4487 		if (!pf->vsi[v])
4488 			continue;
4489 
4490 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4491 		if (ret)
4492 			goto err_reinit;
4493 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4494 	}
4495 
4496 	ret = ice_req_irq_msix_misc(pf);
4497 	if (ret) {
4498 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4499 			ret);
4500 		goto err_reinit;
4501 	}
4502 
4503 	return 0;
4504 
4505 err_reinit:
4506 	while (v--)
4507 		if (pf->vsi[v])
4508 			ice_vsi_free_q_vectors(pf->vsi[v]);
4509 
4510 	return ret;
4511 }
4512 
4513 /**
4514  * ice_suspend
4515  * @dev: generic device information structure
4516  *
4517  * Power Management callback to quiesce the device and prepare
4518  * for D3 transition.
4519  */
4520 static int __maybe_unused ice_suspend(struct device *dev)
4521 {
4522 	struct pci_dev *pdev = to_pci_dev(dev);
4523 	struct ice_pf *pf;
4524 	int disabled, v;
4525 
4526 	pf = pci_get_drvdata(pdev);
4527 
4528 	if (!ice_pf_state_is_nominal(pf)) {
4529 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4530 		return -EBUSY;
4531 	}
4532 
4533 	/* Stop watchdog tasks until resume completion.
4534 	 * Even though it is most likely that the service task is
4535 	 * disabled if the device is suspended or down, the service task's
4536 	 * state is controlled by a different state bit, and we should
4537 	 * store and honor whatever state that bit is in at this point.
4538 	 */
4539 	disabled = ice_service_task_stop(pf);
4540 
4541 	/* Already suspended?, then there is nothing to do */
4542 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4543 		if (!disabled)
4544 			ice_service_task_restart(pf);
4545 		return 0;
4546 	}
4547 
4548 	if (test_bit(ICE_DOWN, pf->state) ||
4549 	    ice_is_reset_in_progress(pf->state)) {
4550 		dev_err(dev, "can't suspend device in reset or already down\n");
4551 		if (!disabled)
4552 			ice_service_task_restart(pf);
4553 		return 0;
4554 	}
4555 
4556 	ice_setup_mc_magic_wake(pf);
4557 
4558 	ice_prepare_for_shutdown(pf);
4559 
4560 	ice_set_wake(pf);
4561 
4562 	/* Free vectors, clear the interrupt scheme and release IRQs
4563 	 * for proper hibernation, especially with large number of CPUs.
4564 	 * Otherwise hibernation might fail when mapping all the vectors back
4565 	 * to CPU0.
4566 	 */
4567 	ice_free_irq_msix_misc(pf);
4568 	ice_for_each_vsi(pf, v) {
4569 		if (!pf->vsi[v])
4570 			continue;
4571 		ice_vsi_free_q_vectors(pf->vsi[v]);
4572 	}
4573 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4574 	ice_clear_interrupt_scheme(pf);
4575 
4576 	pci_save_state(pdev);
4577 	pci_wake_from_d3(pdev, pf->wol_ena);
4578 	pci_set_power_state(pdev, PCI_D3hot);
4579 	return 0;
4580 }
4581 
4582 /**
4583  * ice_resume - PM callback for waking up from D3
4584  * @dev: generic device information structure
4585  */
4586 static int __maybe_unused ice_resume(struct device *dev)
4587 {
4588 	struct pci_dev *pdev = to_pci_dev(dev);
4589 	enum ice_reset_req reset_type;
4590 	struct ice_pf *pf;
4591 	struct ice_hw *hw;
4592 	int ret;
4593 
4594 	pci_set_power_state(pdev, PCI_D0);
4595 	pci_restore_state(pdev);
4596 	pci_save_state(pdev);
4597 
4598 	if (!pci_device_is_present(pdev))
4599 		return -ENODEV;
4600 
4601 	ret = pci_enable_device_mem(pdev);
4602 	if (ret) {
4603 		dev_err(dev, "Cannot enable device after suspend\n");
4604 		return ret;
4605 	}
4606 
4607 	pf = pci_get_drvdata(pdev);
4608 	hw = &pf->hw;
4609 
4610 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4611 	ice_print_wake_reason(pf);
4612 
4613 	/* We cleared the interrupt scheme when we suspended, so we need to
4614 	 * restore it now to resume device functionality.
4615 	 */
4616 	ret = ice_reinit_interrupt_scheme(pf);
4617 	if (ret)
4618 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4619 
4620 	clear_bit(ICE_DOWN, pf->state);
4621 	/* Now perform PF reset and rebuild */
4622 	reset_type = ICE_RESET_PFR;
4623 	/* re-enable service task for reset, but allow reset to schedule it */
4624 	clear_bit(ICE_SERVICE_DIS, pf->state);
4625 
4626 	if (ice_schedule_reset(pf, reset_type))
4627 		dev_err(dev, "Reset during resume failed.\n");
4628 
4629 	clear_bit(ICE_SUSPENDED, pf->state);
4630 	ice_service_task_restart(pf);
4631 
4632 	/* Restart the service task */
4633 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4634 
4635 	return 0;
4636 }
4637 #endif /* CONFIG_PM */
4638 
4639 /**
4640  * ice_pci_err_detected - warning that PCI error has been detected
4641  * @pdev: PCI device information struct
4642  * @err: the type of PCI error
4643  *
4644  * Called to warn that something happened on the PCI bus and the error handling
4645  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4646  */
4647 static pci_ers_result_t
4648 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4649 {
4650 	struct ice_pf *pf = pci_get_drvdata(pdev);
4651 
4652 	if (!pf) {
4653 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4654 			__func__, err);
4655 		return PCI_ERS_RESULT_DISCONNECT;
4656 	}
4657 
4658 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
4659 		ice_service_task_stop(pf);
4660 
4661 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4662 			set_bit(ICE_PFR_REQ, pf->state);
4663 			ice_prepare_for_reset(pf);
4664 		}
4665 	}
4666 
4667 	return PCI_ERS_RESULT_NEED_RESET;
4668 }
4669 
4670 /**
4671  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4672  * @pdev: PCI device information struct
4673  *
4674  * Called to determine if the driver can recover from the PCI slot reset by
4675  * using a register read to determine if the device is recoverable.
4676  */
4677 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4678 {
4679 	struct ice_pf *pf = pci_get_drvdata(pdev);
4680 	pci_ers_result_t result;
4681 	int err;
4682 	u32 reg;
4683 
4684 	err = pci_enable_device_mem(pdev);
4685 	if (err) {
4686 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4687 			err);
4688 		result = PCI_ERS_RESULT_DISCONNECT;
4689 	} else {
4690 		pci_set_master(pdev);
4691 		pci_restore_state(pdev);
4692 		pci_save_state(pdev);
4693 		pci_wake_from_d3(pdev, false);
4694 
4695 		/* Check for life */
4696 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4697 		if (!reg)
4698 			result = PCI_ERS_RESULT_RECOVERED;
4699 		else
4700 			result = PCI_ERS_RESULT_DISCONNECT;
4701 	}
4702 
4703 	err = pci_aer_clear_nonfatal_status(pdev);
4704 	if (err)
4705 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4706 			err);
4707 		/* non-fatal, continue */
4708 
4709 	return result;
4710 }
4711 
4712 /**
4713  * ice_pci_err_resume - restart operations after PCI error recovery
4714  * @pdev: PCI device information struct
4715  *
4716  * Called to allow the driver to bring things back up after PCI error and/or
4717  * reset recovery have finished
4718  */
4719 static void ice_pci_err_resume(struct pci_dev *pdev)
4720 {
4721 	struct ice_pf *pf = pci_get_drvdata(pdev);
4722 
4723 	if (!pf) {
4724 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4725 			__func__);
4726 		return;
4727 	}
4728 
4729 	if (test_bit(ICE_SUSPENDED, pf->state)) {
4730 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4731 			__func__);
4732 		return;
4733 	}
4734 
4735 	ice_restore_all_vfs_msi_state(pdev);
4736 
4737 	ice_do_reset(pf, ICE_RESET_PFR);
4738 	ice_service_task_restart(pf);
4739 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4740 }
4741 
4742 /**
4743  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4744  * @pdev: PCI device information struct
4745  */
4746 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4747 {
4748 	struct ice_pf *pf = pci_get_drvdata(pdev);
4749 
4750 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
4751 		ice_service_task_stop(pf);
4752 
4753 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4754 			set_bit(ICE_PFR_REQ, pf->state);
4755 			ice_prepare_for_reset(pf);
4756 		}
4757 	}
4758 }
4759 
4760 /**
4761  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4762  * @pdev: PCI device information struct
4763  */
4764 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4765 {
4766 	ice_pci_err_resume(pdev);
4767 }
4768 
4769 /* ice_pci_tbl - PCI Device ID Table
4770  *
4771  * Wildcard entries (PCI_ANY_ID) should come last
4772  * Last entry must be all 0s
4773  *
4774  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4775  *   Class, Class Mask, private data (not used) }
4776  */
4777 static const struct pci_device_id ice_pci_tbl[] = {
4778 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4779 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4780 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4781 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4782 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4783 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4784 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4785 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4786 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4787 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4788 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4789 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4790 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4791 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4792 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4793 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4794 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4795 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4796 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4797 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4798 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4799 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4800 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4801 	/* required last entry */
4802 	{ 0, }
4803 };
4804 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4805 
4806 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4807 
4808 static const struct pci_error_handlers ice_pci_err_handler = {
4809 	.error_detected = ice_pci_err_detected,
4810 	.slot_reset = ice_pci_err_slot_reset,
4811 	.reset_prepare = ice_pci_err_reset_prepare,
4812 	.reset_done = ice_pci_err_reset_done,
4813 	.resume = ice_pci_err_resume
4814 };
4815 
4816 static struct pci_driver ice_driver = {
4817 	.name = KBUILD_MODNAME,
4818 	.id_table = ice_pci_tbl,
4819 	.probe = ice_probe,
4820 	.remove = ice_remove,
4821 #ifdef CONFIG_PM
4822 	.driver.pm = &ice_pm_ops,
4823 #endif /* CONFIG_PM */
4824 	.shutdown = ice_shutdown,
4825 	.sriov_configure = ice_sriov_configure,
4826 	.err_handler = &ice_pci_err_handler
4827 };
4828 
4829 /**
4830  * ice_module_init - Driver registration routine
4831  *
4832  * ice_module_init is the first routine called when the driver is
4833  * loaded. All it does is register with the PCI subsystem.
4834  */
4835 static int __init ice_module_init(void)
4836 {
4837 	int status;
4838 
4839 	pr_info("%s\n", ice_driver_string);
4840 	pr_info("%s\n", ice_copyright);
4841 
4842 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4843 	if (!ice_wq) {
4844 		pr_err("Failed to create workqueue\n");
4845 		return -ENOMEM;
4846 	}
4847 
4848 	status = pci_register_driver(&ice_driver);
4849 	if (status) {
4850 		pr_err("failed to register PCI driver, err %d\n", status);
4851 		destroy_workqueue(ice_wq);
4852 	}
4853 
4854 	return status;
4855 }
4856 module_init(ice_module_init);
4857 
4858 /**
4859  * ice_module_exit - Driver exit cleanup routine
4860  *
4861  * ice_module_exit is called just before the driver is removed
4862  * from memory.
4863  */
4864 static void __exit ice_module_exit(void)
4865 {
4866 	pci_unregister_driver(&ice_driver);
4867 	destroy_workqueue(ice_wq);
4868 	pr_info("module unloaded\n");
4869 }
4870 module_exit(ice_module_exit);
4871 
4872 /**
4873  * ice_set_mac_address - NDO callback to set MAC address
4874  * @netdev: network interface device structure
4875  * @pi: pointer to an address structure
4876  *
4877  * Returns 0 on success, negative on failure
4878  */
4879 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4880 {
4881 	struct ice_netdev_priv *np = netdev_priv(netdev);
4882 	struct ice_vsi *vsi = np->vsi;
4883 	struct ice_pf *pf = vsi->back;
4884 	struct ice_hw *hw = &pf->hw;
4885 	struct sockaddr *addr = pi;
4886 	enum ice_status status;
4887 	u8 flags = 0;
4888 	int err = 0;
4889 	u8 *mac;
4890 
4891 	mac = (u8 *)addr->sa_data;
4892 
4893 	if (!is_valid_ether_addr(mac))
4894 		return -EADDRNOTAVAIL;
4895 
4896 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4897 		netdev_warn(netdev, "already using mac %pM\n", mac);
4898 		return 0;
4899 	}
4900 
4901 	if (test_bit(ICE_DOWN, pf->state) ||
4902 	    ice_is_reset_in_progress(pf->state)) {
4903 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4904 			   mac);
4905 		return -EBUSY;
4906 	}
4907 
4908 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4909 	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4910 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4911 		err = -EADDRNOTAVAIL;
4912 		goto err_update_filters;
4913 	}
4914 
4915 	/* Add filter for new MAC. If filter exists, return success */
4916 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4917 	if (status == ICE_ERR_ALREADY_EXISTS) {
4918 		/* Although this MAC filter is already present in hardware it's
4919 		 * possible in some cases (e.g. bonding) that dev_addr was
4920 		 * modified outside of the driver and needs to be restored back
4921 		 * to this value.
4922 		 */
4923 		memcpy(netdev->dev_addr, mac, netdev->addr_len);
4924 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4925 		return 0;
4926 	}
4927 
4928 	/* error if the new filter addition failed */
4929 	if (status)
4930 		err = -EADDRNOTAVAIL;
4931 
4932 err_update_filters:
4933 	if (err) {
4934 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4935 			   mac);
4936 		return err;
4937 	}
4938 
4939 	/* change the netdev's MAC address */
4940 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4941 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4942 		   netdev->dev_addr);
4943 
4944 	/* write new MAC address to the firmware */
4945 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4946 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4947 	if (status) {
4948 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4949 			   mac, ice_stat_str(status));
4950 	}
4951 	return 0;
4952 }
4953 
4954 /**
4955  * ice_set_rx_mode - NDO callback to set the netdev filters
4956  * @netdev: network interface device structure
4957  */
4958 static void ice_set_rx_mode(struct net_device *netdev)
4959 {
4960 	struct ice_netdev_priv *np = netdev_priv(netdev);
4961 	struct ice_vsi *vsi = np->vsi;
4962 
4963 	if (!vsi)
4964 		return;
4965 
4966 	/* Set the flags to synchronize filters
4967 	 * ndo_set_rx_mode may be triggered even without a change in netdev
4968 	 * flags
4969 	 */
4970 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
4971 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
4972 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4973 
4974 	/* schedule our worker thread which will take care of
4975 	 * applying the new filter changes
4976 	 */
4977 	ice_service_task_schedule(vsi->back);
4978 }
4979 
4980 /**
4981  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4982  * @netdev: network interface device structure
4983  * @queue_index: Queue ID
4984  * @maxrate: maximum bandwidth in Mbps
4985  */
4986 static int
4987 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4988 {
4989 	struct ice_netdev_priv *np = netdev_priv(netdev);
4990 	struct ice_vsi *vsi = np->vsi;
4991 	enum ice_status status;
4992 	u16 q_handle;
4993 	u8 tc;
4994 
4995 	/* Validate maxrate requested is within permitted range */
4996 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4997 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4998 			   maxrate, queue_index);
4999 		return -EINVAL;
5000 	}
5001 
5002 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5003 	tc = ice_dcb_get_tc(vsi, queue_index);
5004 
5005 	/* Set BW back to default, when user set maxrate to 0 */
5006 	if (!maxrate)
5007 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5008 					       q_handle, ICE_MAX_BW);
5009 	else
5010 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5011 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5012 	if (status) {
5013 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5014 			   ice_stat_str(status));
5015 		return -EIO;
5016 	}
5017 
5018 	return 0;
5019 }
5020 
5021 /**
5022  * ice_fdb_add - add an entry to the hardware database
5023  * @ndm: the input from the stack
5024  * @tb: pointer to array of nladdr (unused)
5025  * @dev: the net device pointer
5026  * @addr: the MAC address entry being added
5027  * @vid: VLAN ID
5028  * @flags: instructions from stack about fdb operation
5029  * @extack: netlink extended ack
5030  */
5031 static int
5032 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5033 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5034 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5035 {
5036 	int err;
5037 
5038 	if (vid) {
5039 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5040 		return -EINVAL;
5041 	}
5042 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5043 		netdev_err(dev, "FDB only supports static addresses\n");
5044 		return -EINVAL;
5045 	}
5046 
5047 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5048 		err = dev_uc_add_excl(dev, addr);
5049 	else if (is_multicast_ether_addr(addr))
5050 		err = dev_mc_add_excl(dev, addr);
5051 	else
5052 		err = -EINVAL;
5053 
5054 	/* Only return duplicate errors if NLM_F_EXCL is set */
5055 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5056 		err = 0;
5057 
5058 	return err;
5059 }
5060 
5061 /**
5062  * ice_fdb_del - delete an entry from the hardware database
5063  * @ndm: the input from the stack
5064  * @tb: pointer to array of nladdr (unused)
5065  * @dev: the net device pointer
5066  * @addr: the MAC address entry being added
5067  * @vid: VLAN ID
5068  */
5069 static int
5070 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5071 	    struct net_device *dev, const unsigned char *addr,
5072 	    __always_unused u16 vid)
5073 {
5074 	int err;
5075 
5076 	if (ndm->ndm_state & NUD_PERMANENT) {
5077 		netdev_err(dev, "FDB only supports static addresses\n");
5078 		return -EINVAL;
5079 	}
5080 
5081 	if (is_unicast_ether_addr(addr))
5082 		err = dev_uc_del(dev, addr);
5083 	else if (is_multicast_ether_addr(addr))
5084 		err = dev_mc_del(dev, addr);
5085 	else
5086 		err = -EINVAL;
5087 
5088 	return err;
5089 }
5090 
5091 /**
5092  * ice_set_features - set the netdev feature flags
5093  * @netdev: ptr to the netdev being adjusted
5094  * @features: the feature set that the stack is suggesting
5095  */
5096 static int
5097 ice_set_features(struct net_device *netdev, netdev_features_t features)
5098 {
5099 	struct ice_netdev_priv *np = netdev_priv(netdev);
5100 	struct ice_vsi *vsi = np->vsi;
5101 	struct ice_pf *pf = vsi->back;
5102 	int ret = 0;
5103 
5104 	/* Don't set any netdev advanced features with device in Safe Mode */
5105 	if (ice_is_safe_mode(vsi->back)) {
5106 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5107 		return ret;
5108 	}
5109 
5110 	/* Do not change setting during reset */
5111 	if (ice_is_reset_in_progress(pf->state)) {
5112 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5113 		return -EBUSY;
5114 	}
5115 
5116 	/* Multiple features can be changed in one call so keep features in
5117 	 * separate if/else statements to guarantee each feature is checked
5118 	 */
5119 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5120 		ice_vsi_manage_rss_lut(vsi, true);
5121 	else if (!(features & NETIF_F_RXHASH) &&
5122 		 netdev->features & NETIF_F_RXHASH)
5123 		ice_vsi_manage_rss_lut(vsi, false);
5124 
5125 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5126 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5127 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5128 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5129 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5130 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5131 
5132 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5133 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5134 		ret = ice_vsi_manage_vlan_insertion(vsi);
5135 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5136 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5137 		ret = ice_vsi_manage_vlan_insertion(vsi);
5138 
5139 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5140 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5141 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5142 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5143 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5144 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5145 
5146 	if ((features & NETIF_F_NTUPLE) &&
5147 	    !(netdev->features & NETIF_F_NTUPLE)) {
5148 		ice_vsi_manage_fdir(vsi, true);
5149 		ice_init_arfs(vsi);
5150 	} else if (!(features & NETIF_F_NTUPLE) &&
5151 		 (netdev->features & NETIF_F_NTUPLE)) {
5152 		ice_vsi_manage_fdir(vsi, false);
5153 		ice_clear_arfs(vsi);
5154 	}
5155 
5156 	return ret;
5157 }
5158 
5159 /**
5160  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5161  * @vsi: VSI to setup VLAN properties for
5162  */
5163 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5164 {
5165 	int ret = 0;
5166 
5167 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5168 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5169 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5170 		ret = ice_vsi_manage_vlan_insertion(vsi);
5171 
5172 	return ret;
5173 }
5174 
5175 /**
5176  * ice_vsi_cfg - Setup the VSI
5177  * @vsi: the VSI being configured
5178  *
5179  * Return 0 on success and negative value on error
5180  */
5181 int ice_vsi_cfg(struct ice_vsi *vsi)
5182 {
5183 	int err;
5184 
5185 	if (vsi->netdev) {
5186 		ice_set_rx_mode(vsi->netdev);
5187 
5188 		err = ice_vsi_vlan_setup(vsi);
5189 
5190 		if (err)
5191 			return err;
5192 	}
5193 	ice_vsi_cfg_dcb_rings(vsi);
5194 
5195 	err = ice_vsi_cfg_lan_txqs(vsi);
5196 	if (!err && ice_is_xdp_ena_vsi(vsi))
5197 		err = ice_vsi_cfg_xdp_txqs(vsi);
5198 	if (!err)
5199 		err = ice_vsi_cfg_rxqs(vsi);
5200 
5201 	return err;
5202 }
5203 
5204 /* THEORY OF MODERATION:
5205  * The below code creates custom DIM profiles for use by this driver, because
5206  * the ice driver hardware works differently than the hardware that DIMLIB was
5207  * originally made for. ice hardware doesn't have packet count limits that
5208  * can trigger an interrupt, but it *does* have interrupt rate limit support,
5209  * and this code adds that capability to be used by the driver when it's using
5210  * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5211  * for how to "respond" to traffic and interrupts, so this driver uses a
5212  * slightly different set of moderation parameters to get best performance.
5213  */
5214 struct ice_dim {
5215 	/* the throttle rate for interrupts, basically worst case delay before
5216 	 * an initial interrupt fires, value is stored in microseconds.
5217 	 */
5218 	u16 itr;
5219 	/* the rate limit for interrupts, which can cap a delay from a small
5220 	 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5221 	 * could yield as much as 500,000 interrupts per second, but with a
5222 	 * 10us rate limit, it limits to 100,000 interrupts per second. Value
5223 	 * is stored in microseconds.
5224 	 */
5225 	u16 intrl;
5226 };
5227 
5228 /* Make a different profile for Rx that doesn't allow quite so aggressive
5229  * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5230  * second. The INTRL/rate parameters here are only useful to cap small ITR
5231  * values, which is why for larger ITR's - like 128, which can only generate
5232  * 8k interrupts per second, there is no point to rate limit and the values
5233  * are set to zero. The rate limit values do affect latency, and so must
5234  * be reasonably small so to not impact latency sensitive tests.
5235  */
5236 static const struct ice_dim rx_profile[] = {
5237 	{2, 10},
5238 	{8, 16},
5239 	{32, 0},
5240 	{96, 0},
5241 	{128, 0}
5242 };
5243 
5244 /* The transmit profile, which has the same sorts of values
5245  * as the previous struct
5246  */
5247 static const struct ice_dim tx_profile[] = {
5248 	{2, 10},
5249 	{8, 16},
5250 	{64, 0},
5251 	{128, 0},
5252 	{256, 0}
5253 };
5254 
5255 static void ice_tx_dim_work(struct work_struct *work)
5256 {
5257 	struct ice_ring_container *rc;
5258 	struct ice_q_vector *q_vector;
5259 	struct dim *dim;
5260 	u16 itr, intrl;
5261 
5262 	dim = container_of(work, struct dim, work);
5263 	rc = container_of(dim, struct ice_ring_container, dim);
5264 	q_vector = container_of(rc, struct ice_q_vector, tx);
5265 
5266 	if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5267 		dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
5268 
5269 	/* look up the values in our local table */
5270 	itr = tx_profile[dim->profile_ix].itr;
5271 	intrl = tx_profile[dim->profile_ix].intrl;
5272 
5273 	ice_write_itr(rc, itr);
5274 	ice_write_intrl(q_vector, intrl);
5275 
5276 	dim->state = DIM_START_MEASURE;
5277 }
5278 
5279 static void ice_rx_dim_work(struct work_struct *work)
5280 {
5281 	struct ice_ring_container *rc;
5282 	struct ice_q_vector *q_vector;
5283 	struct dim *dim;
5284 	u16 itr, intrl;
5285 
5286 	dim = container_of(work, struct dim, work);
5287 	rc = container_of(dim, struct ice_ring_container, dim);
5288 	q_vector = container_of(rc, struct ice_q_vector, rx);
5289 
5290 	if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5291 		dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
5292 
5293 	/* look up the values in our local table */
5294 	itr = rx_profile[dim->profile_ix].itr;
5295 	intrl = rx_profile[dim->profile_ix].intrl;
5296 
5297 	ice_write_itr(rc, itr);
5298 	ice_write_intrl(q_vector, intrl);
5299 
5300 	dim->state = DIM_START_MEASURE;
5301 }
5302 
5303 /**
5304  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5305  * @vsi: the VSI being configured
5306  */
5307 static void ice_napi_enable_all(struct ice_vsi *vsi)
5308 {
5309 	int q_idx;
5310 
5311 	if (!vsi->netdev)
5312 		return;
5313 
5314 	ice_for_each_q_vector(vsi, q_idx) {
5315 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5316 
5317 		INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5318 		q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5319 
5320 		INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5321 		q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5322 
5323 		if (q_vector->rx.ring || q_vector->tx.ring)
5324 			napi_enable(&q_vector->napi);
5325 	}
5326 }
5327 
5328 /**
5329  * ice_up_complete - Finish the last steps of bringing up a connection
5330  * @vsi: The VSI being configured
5331  *
5332  * Return 0 on success and negative value on error
5333  */
5334 static int ice_up_complete(struct ice_vsi *vsi)
5335 {
5336 	struct ice_pf *pf = vsi->back;
5337 	int err;
5338 
5339 	ice_vsi_cfg_msix(vsi);
5340 
5341 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5342 	 * Tx queue group list was configured and the context bits were
5343 	 * programmed using ice_vsi_cfg_txqs
5344 	 */
5345 	err = ice_vsi_start_all_rx_rings(vsi);
5346 	if (err)
5347 		return err;
5348 
5349 	clear_bit(ICE_VSI_DOWN, vsi->state);
5350 	ice_napi_enable_all(vsi);
5351 	ice_vsi_ena_irq(vsi);
5352 
5353 	if (vsi->port_info &&
5354 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5355 	    vsi->netdev) {
5356 		ice_print_link_msg(vsi, true);
5357 		netif_tx_start_all_queues(vsi->netdev);
5358 		netif_carrier_on(vsi->netdev);
5359 	}
5360 
5361 	ice_service_task_schedule(pf);
5362 
5363 	return 0;
5364 }
5365 
5366 /**
5367  * ice_up - Bring the connection back up after being down
5368  * @vsi: VSI being configured
5369  */
5370 int ice_up(struct ice_vsi *vsi)
5371 {
5372 	int err;
5373 
5374 	err = ice_vsi_cfg(vsi);
5375 	if (!err)
5376 		err = ice_up_complete(vsi);
5377 
5378 	return err;
5379 }
5380 
5381 /**
5382  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5383  * @ring: Tx or Rx ring to read stats from
5384  * @pkts: packets stats counter
5385  * @bytes: bytes stats counter
5386  *
5387  * This function fetches stats from the ring considering the atomic operations
5388  * that needs to be performed to read u64 values in 32 bit machine.
5389  */
5390 static void
5391 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5392 {
5393 	unsigned int start;
5394 	*pkts = 0;
5395 	*bytes = 0;
5396 
5397 	if (!ring)
5398 		return;
5399 	do {
5400 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5401 		*pkts = ring->stats.pkts;
5402 		*bytes = ring->stats.bytes;
5403 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5404 }
5405 
5406 /**
5407  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5408  * @vsi: the VSI to be updated
5409  * @rings: rings to work on
5410  * @count: number of rings
5411  */
5412 static void
5413 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5414 			     u16 count)
5415 {
5416 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5417 	u16 i;
5418 
5419 	for (i = 0; i < count; i++) {
5420 		struct ice_ring *ring;
5421 		u64 pkts, bytes;
5422 
5423 		ring = READ_ONCE(rings[i]);
5424 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5425 		vsi_stats->tx_packets += pkts;
5426 		vsi_stats->tx_bytes += bytes;
5427 		vsi->tx_restart += ring->tx_stats.restart_q;
5428 		vsi->tx_busy += ring->tx_stats.tx_busy;
5429 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5430 	}
5431 }
5432 
5433 /**
5434  * ice_update_vsi_ring_stats - Update VSI stats counters
5435  * @vsi: the VSI to be updated
5436  */
5437 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5438 {
5439 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5440 	struct ice_ring *ring;
5441 	u64 pkts, bytes;
5442 	int i;
5443 
5444 	/* reset netdev stats */
5445 	vsi_stats->tx_packets = 0;
5446 	vsi_stats->tx_bytes = 0;
5447 	vsi_stats->rx_packets = 0;
5448 	vsi_stats->rx_bytes = 0;
5449 
5450 	/* reset non-netdev (extended) stats */
5451 	vsi->tx_restart = 0;
5452 	vsi->tx_busy = 0;
5453 	vsi->tx_linearize = 0;
5454 	vsi->rx_buf_failed = 0;
5455 	vsi->rx_page_failed = 0;
5456 
5457 	rcu_read_lock();
5458 
5459 	/* update Tx rings counters */
5460 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5461 
5462 	/* update Rx rings counters */
5463 	ice_for_each_rxq(vsi, i) {
5464 		ring = READ_ONCE(vsi->rx_rings[i]);
5465 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5466 		vsi_stats->rx_packets += pkts;
5467 		vsi_stats->rx_bytes += bytes;
5468 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5469 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5470 	}
5471 
5472 	/* update XDP Tx rings counters */
5473 	if (ice_is_xdp_ena_vsi(vsi))
5474 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5475 					     vsi->num_xdp_txq);
5476 
5477 	rcu_read_unlock();
5478 }
5479 
5480 /**
5481  * ice_update_vsi_stats - Update VSI stats counters
5482  * @vsi: the VSI to be updated
5483  */
5484 void ice_update_vsi_stats(struct ice_vsi *vsi)
5485 {
5486 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5487 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5488 	struct ice_pf *pf = vsi->back;
5489 
5490 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5491 	    test_bit(ICE_CFG_BUSY, pf->state))
5492 		return;
5493 
5494 	/* get stats as recorded by Tx/Rx rings */
5495 	ice_update_vsi_ring_stats(vsi);
5496 
5497 	/* get VSI stats as recorded by the hardware */
5498 	ice_update_eth_stats(vsi);
5499 
5500 	cur_ns->tx_errors = cur_es->tx_errors;
5501 	cur_ns->rx_dropped = cur_es->rx_discards;
5502 	cur_ns->tx_dropped = cur_es->tx_discards;
5503 	cur_ns->multicast = cur_es->rx_multicast;
5504 
5505 	/* update some more netdev stats if this is main VSI */
5506 	if (vsi->type == ICE_VSI_PF) {
5507 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5508 		cur_ns->rx_errors = pf->stats.crc_errors +
5509 				    pf->stats.illegal_bytes +
5510 				    pf->stats.rx_len_errors +
5511 				    pf->stats.rx_undersize +
5512 				    pf->hw_csum_rx_error +
5513 				    pf->stats.rx_jabber +
5514 				    pf->stats.rx_fragments +
5515 				    pf->stats.rx_oversize;
5516 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5517 		/* record drops from the port level */
5518 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5519 	}
5520 }
5521 
5522 /**
5523  * ice_update_pf_stats - Update PF port stats counters
5524  * @pf: PF whose stats needs to be updated
5525  */
5526 void ice_update_pf_stats(struct ice_pf *pf)
5527 {
5528 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5529 	struct ice_hw *hw = &pf->hw;
5530 	u16 fd_ctr_base;
5531 	u8 port;
5532 
5533 	port = hw->port_info->lport;
5534 	prev_ps = &pf->stats_prev;
5535 	cur_ps = &pf->stats;
5536 
5537 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5538 			  &prev_ps->eth.rx_bytes,
5539 			  &cur_ps->eth.rx_bytes);
5540 
5541 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5542 			  &prev_ps->eth.rx_unicast,
5543 			  &cur_ps->eth.rx_unicast);
5544 
5545 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5546 			  &prev_ps->eth.rx_multicast,
5547 			  &cur_ps->eth.rx_multicast);
5548 
5549 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5550 			  &prev_ps->eth.rx_broadcast,
5551 			  &cur_ps->eth.rx_broadcast);
5552 
5553 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5554 			  &prev_ps->eth.rx_discards,
5555 			  &cur_ps->eth.rx_discards);
5556 
5557 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5558 			  &prev_ps->eth.tx_bytes,
5559 			  &cur_ps->eth.tx_bytes);
5560 
5561 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5562 			  &prev_ps->eth.tx_unicast,
5563 			  &cur_ps->eth.tx_unicast);
5564 
5565 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5566 			  &prev_ps->eth.tx_multicast,
5567 			  &cur_ps->eth.tx_multicast);
5568 
5569 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5570 			  &prev_ps->eth.tx_broadcast,
5571 			  &cur_ps->eth.tx_broadcast);
5572 
5573 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5574 			  &prev_ps->tx_dropped_link_down,
5575 			  &cur_ps->tx_dropped_link_down);
5576 
5577 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5578 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5579 
5580 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5581 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5582 
5583 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5584 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5585 
5586 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5587 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5588 
5589 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5590 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5591 
5592 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5593 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5594 
5595 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5596 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5597 
5598 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5599 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5600 
5601 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5602 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5603 
5604 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5605 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5606 
5607 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5608 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5609 
5610 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5611 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5612 
5613 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5614 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5615 
5616 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5617 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5618 
5619 	fd_ctr_base = hw->fd_ctr_base;
5620 
5621 	ice_stat_update40(hw,
5622 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5623 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5624 			  &cur_ps->fd_sb_match);
5625 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5626 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5627 
5628 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5629 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5630 
5631 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5632 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5633 
5634 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5635 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5636 
5637 	ice_update_dcb_stats(pf);
5638 
5639 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5640 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5641 
5642 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5643 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5644 
5645 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5646 			  &prev_ps->mac_local_faults,
5647 			  &cur_ps->mac_local_faults);
5648 
5649 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5650 			  &prev_ps->mac_remote_faults,
5651 			  &cur_ps->mac_remote_faults);
5652 
5653 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5654 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5655 
5656 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5657 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5658 
5659 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5660 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5661 
5662 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5663 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5664 
5665 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5666 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5667 
5668 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5669 
5670 	pf->stat_prev_loaded = true;
5671 }
5672 
5673 /**
5674  * ice_get_stats64 - get statistics for network device structure
5675  * @netdev: network interface device structure
5676  * @stats: main device statistics structure
5677  */
5678 static
5679 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5680 {
5681 	struct ice_netdev_priv *np = netdev_priv(netdev);
5682 	struct rtnl_link_stats64 *vsi_stats;
5683 	struct ice_vsi *vsi = np->vsi;
5684 
5685 	vsi_stats = &vsi->net_stats;
5686 
5687 	if (!vsi->num_txq || !vsi->num_rxq)
5688 		return;
5689 
5690 	/* netdev packet/byte stats come from ring counter. These are obtained
5691 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5692 	 * But, only call the update routine and read the registers if VSI is
5693 	 * not down.
5694 	 */
5695 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
5696 		ice_update_vsi_ring_stats(vsi);
5697 	stats->tx_packets = vsi_stats->tx_packets;
5698 	stats->tx_bytes = vsi_stats->tx_bytes;
5699 	stats->rx_packets = vsi_stats->rx_packets;
5700 	stats->rx_bytes = vsi_stats->rx_bytes;
5701 
5702 	/* The rest of the stats can be read from the hardware but instead we
5703 	 * just return values that the watchdog task has already obtained from
5704 	 * the hardware.
5705 	 */
5706 	stats->multicast = vsi_stats->multicast;
5707 	stats->tx_errors = vsi_stats->tx_errors;
5708 	stats->tx_dropped = vsi_stats->tx_dropped;
5709 	stats->rx_errors = vsi_stats->rx_errors;
5710 	stats->rx_dropped = vsi_stats->rx_dropped;
5711 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5712 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5713 }
5714 
5715 /**
5716  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5717  * @vsi: VSI having NAPI disabled
5718  */
5719 static void ice_napi_disable_all(struct ice_vsi *vsi)
5720 {
5721 	int q_idx;
5722 
5723 	if (!vsi->netdev)
5724 		return;
5725 
5726 	ice_for_each_q_vector(vsi, q_idx) {
5727 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5728 
5729 		if (q_vector->rx.ring || q_vector->tx.ring)
5730 			napi_disable(&q_vector->napi);
5731 
5732 		cancel_work_sync(&q_vector->tx.dim.work);
5733 		cancel_work_sync(&q_vector->rx.dim.work);
5734 	}
5735 }
5736 
5737 /**
5738  * ice_down - Shutdown the connection
5739  * @vsi: The VSI being stopped
5740  */
5741 int ice_down(struct ice_vsi *vsi)
5742 {
5743 	int i, tx_err, rx_err, link_err = 0;
5744 
5745 	/* Caller of this function is expected to set the
5746 	 * vsi->state ICE_DOWN bit
5747 	 */
5748 	if (vsi->netdev) {
5749 		netif_carrier_off(vsi->netdev);
5750 		netif_tx_disable(vsi->netdev);
5751 	}
5752 
5753 	ice_vsi_dis_irq(vsi);
5754 
5755 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5756 	if (tx_err)
5757 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5758 			   vsi->vsi_num, tx_err);
5759 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5760 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5761 		if (tx_err)
5762 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5763 				   vsi->vsi_num, tx_err);
5764 	}
5765 
5766 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5767 	if (rx_err)
5768 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5769 			   vsi->vsi_num, rx_err);
5770 
5771 	ice_napi_disable_all(vsi);
5772 
5773 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5774 		link_err = ice_force_phys_link_state(vsi, false);
5775 		if (link_err)
5776 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5777 				   vsi->vsi_num, link_err);
5778 	}
5779 
5780 	ice_for_each_txq(vsi, i)
5781 		ice_clean_tx_ring(vsi->tx_rings[i]);
5782 
5783 	ice_for_each_rxq(vsi, i)
5784 		ice_clean_rx_ring(vsi->rx_rings[i]);
5785 
5786 	if (tx_err || rx_err || link_err) {
5787 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5788 			   vsi->vsi_num, vsi->vsw->sw_id);
5789 		return -EIO;
5790 	}
5791 
5792 	return 0;
5793 }
5794 
5795 /**
5796  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5797  * @vsi: VSI having resources allocated
5798  *
5799  * Return 0 on success, negative on failure
5800  */
5801 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5802 {
5803 	int i, err = 0;
5804 
5805 	if (!vsi->num_txq) {
5806 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5807 			vsi->vsi_num);
5808 		return -EINVAL;
5809 	}
5810 
5811 	ice_for_each_txq(vsi, i) {
5812 		struct ice_ring *ring = vsi->tx_rings[i];
5813 
5814 		if (!ring)
5815 			return -EINVAL;
5816 
5817 		ring->netdev = vsi->netdev;
5818 		err = ice_setup_tx_ring(ring);
5819 		if (err)
5820 			break;
5821 	}
5822 
5823 	return err;
5824 }
5825 
5826 /**
5827  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5828  * @vsi: VSI having resources allocated
5829  *
5830  * Return 0 on success, negative on failure
5831  */
5832 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5833 {
5834 	int i, err = 0;
5835 
5836 	if (!vsi->num_rxq) {
5837 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5838 			vsi->vsi_num);
5839 		return -EINVAL;
5840 	}
5841 
5842 	ice_for_each_rxq(vsi, i) {
5843 		struct ice_ring *ring = vsi->rx_rings[i];
5844 
5845 		if (!ring)
5846 			return -EINVAL;
5847 
5848 		ring->netdev = vsi->netdev;
5849 		err = ice_setup_rx_ring(ring);
5850 		if (err)
5851 			break;
5852 	}
5853 
5854 	return err;
5855 }
5856 
5857 /**
5858  * ice_vsi_open_ctrl - open control VSI for use
5859  * @vsi: the VSI to open
5860  *
5861  * Initialization of the Control VSI
5862  *
5863  * Returns 0 on success, negative value on error
5864  */
5865 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5866 {
5867 	char int_name[ICE_INT_NAME_STR_LEN];
5868 	struct ice_pf *pf = vsi->back;
5869 	struct device *dev;
5870 	int err;
5871 
5872 	dev = ice_pf_to_dev(pf);
5873 	/* allocate descriptors */
5874 	err = ice_vsi_setup_tx_rings(vsi);
5875 	if (err)
5876 		goto err_setup_tx;
5877 
5878 	err = ice_vsi_setup_rx_rings(vsi);
5879 	if (err)
5880 		goto err_setup_rx;
5881 
5882 	err = ice_vsi_cfg(vsi);
5883 	if (err)
5884 		goto err_setup_rx;
5885 
5886 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5887 		 dev_driver_string(dev), dev_name(dev));
5888 	err = ice_vsi_req_irq_msix(vsi, int_name);
5889 	if (err)
5890 		goto err_setup_rx;
5891 
5892 	ice_vsi_cfg_msix(vsi);
5893 
5894 	err = ice_vsi_start_all_rx_rings(vsi);
5895 	if (err)
5896 		goto err_up_complete;
5897 
5898 	clear_bit(ICE_VSI_DOWN, vsi->state);
5899 	ice_vsi_ena_irq(vsi);
5900 
5901 	return 0;
5902 
5903 err_up_complete:
5904 	ice_down(vsi);
5905 err_setup_rx:
5906 	ice_vsi_free_rx_rings(vsi);
5907 err_setup_tx:
5908 	ice_vsi_free_tx_rings(vsi);
5909 
5910 	return err;
5911 }
5912 
5913 /**
5914  * ice_vsi_open - Called when a network interface is made active
5915  * @vsi: the VSI to open
5916  *
5917  * Initialization of the VSI
5918  *
5919  * Returns 0 on success, negative value on error
5920  */
5921 static int ice_vsi_open(struct ice_vsi *vsi)
5922 {
5923 	char int_name[ICE_INT_NAME_STR_LEN];
5924 	struct ice_pf *pf = vsi->back;
5925 	int err;
5926 
5927 	/* allocate descriptors */
5928 	err = ice_vsi_setup_tx_rings(vsi);
5929 	if (err)
5930 		goto err_setup_tx;
5931 
5932 	err = ice_vsi_setup_rx_rings(vsi);
5933 	if (err)
5934 		goto err_setup_rx;
5935 
5936 	err = ice_vsi_cfg(vsi);
5937 	if (err)
5938 		goto err_setup_rx;
5939 
5940 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5941 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5942 	err = ice_vsi_req_irq_msix(vsi, int_name);
5943 	if (err)
5944 		goto err_setup_rx;
5945 
5946 	/* Notify the stack of the actual queue counts. */
5947 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5948 	if (err)
5949 		goto err_set_qs;
5950 
5951 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5952 	if (err)
5953 		goto err_set_qs;
5954 
5955 	err = ice_up_complete(vsi);
5956 	if (err)
5957 		goto err_up_complete;
5958 
5959 	return 0;
5960 
5961 err_up_complete:
5962 	ice_down(vsi);
5963 err_set_qs:
5964 	ice_vsi_free_irq(vsi);
5965 err_setup_rx:
5966 	ice_vsi_free_rx_rings(vsi);
5967 err_setup_tx:
5968 	ice_vsi_free_tx_rings(vsi);
5969 
5970 	return err;
5971 }
5972 
5973 /**
5974  * ice_vsi_release_all - Delete all VSIs
5975  * @pf: PF from which all VSIs are being removed
5976  */
5977 static void ice_vsi_release_all(struct ice_pf *pf)
5978 {
5979 	int err, i;
5980 
5981 	if (!pf->vsi)
5982 		return;
5983 
5984 	ice_for_each_vsi(pf, i) {
5985 		if (!pf->vsi[i])
5986 			continue;
5987 
5988 		err = ice_vsi_release(pf->vsi[i]);
5989 		if (err)
5990 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5991 				i, err, pf->vsi[i]->vsi_num);
5992 	}
5993 }
5994 
5995 /**
5996  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5997  * @pf: pointer to the PF instance
5998  * @type: VSI type to rebuild
5999  *
6000  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6001  */
6002 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6003 {
6004 	struct device *dev = ice_pf_to_dev(pf);
6005 	enum ice_status status;
6006 	int i, err;
6007 
6008 	ice_for_each_vsi(pf, i) {
6009 		struct ice_vsi *vsi = pf->vsi[i];
6010 
6011 		if (!vsi || vsi->type != type)
6012 			continue;
6013 
6014 		/* rebuild the VSI */
6015 		err = ice_vsi_rebuild(vsi, true);
6016 		if (err) {
6017 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6018 				err, vsi->idx, ice_vsi_type_str(type));
6019 			return err;
6020 		}
6021 
6022 		/* replay filters for the VSI */
6023 		status = ice_replay_vsi(&pf->hw, vsi->idx);
6024 		if (status) {
6025 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6026 				ice_stat_str(status), vsi->idx,
6027 				ice_vsi_type_str(type));
6028 			return -EIO;
6029 		}
6030 
6031 		/* Re-map HW VSI number, using VSI handle that has been
6032 		 * previously validated in ice_replay_vsi() call above
6033 		 */
6034 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6035 
6036 		/* enable the VSI */
6037 		err = ice_ena_vsi(vsi, false);
6038 		if (err) {
6039 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6040 				err, vsi->idx, ice_vsi_type_str(type));
6041 			return err;
6042 		}
6043 
6044 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6045 			 ice_vsi_type_str(type));
6046 	}
6047 
6048 	return 0;
6049 }
6050 
6051 /**
6052  * ice_update_pf_netdev_link - Update PF netdev link status
6053  * @pf: pointer to the PF instance
6054  */
6055 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6056 {
6057 	bool link_up;
6058 	int i;
6059 
6060 	ice_for_each_vsi(pf, i) {
6061 		struct ice_vsi *vsi = pf->vsi[i];
6062 
6063 		if (!vsi || vsi->type != ICE_VSI_PF)
6064 			return;
6065 
6066 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6067 		if (link_up) {
6068 			netif_carrier_on(pf->vsi[i]->netdev);
6069 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6070 		} else {
6071 			netif_carrier_off(pf->vsi[i]->netdev);
6072 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6073 		}
6074 	}
6075 }
6076 
6077 /**
6078  * ice_rebuild - rebuild after reset
6079  * @pf: PF to rebuild
6080  * @reset_type: type of reset
6081  *
6082  * Do not rebuild VF VSI in this flow because that is already handled via
6083  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6084  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6085  * to reset/rebuild all the VF VSI twice.
6086  */
6087 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6088 {
6089 	struct device *dev = ice_pf_to_dev(pf);
6090 	struct ice_hw *hw = &pf->hw;
6091 	enum ice_status ret;
6092 	int err;
6093 
6094 	if (test_bit(ICE_DOWN, pf->state))
6095 		goto clear_recovery;
6096 
6097 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6098 
6099 	ret = ice_init_all_ctrlq(hw);
6100 	if (ret) {
6101 		dev_err(dev, "control queues init failed %s\n",
6102 			ice_stat_str(ret));
6103 		goto err_init_ctrlq;
6104 	}
6105 
6106 	/* if DDP was previously loaded successfully */
6107 	if (!ice_is_safe_mode(pf)) {
6108 		/* reload the SW DB of filter tables */
6109 		if (reset_type == ICE_RESET_PFR)
6110 			ice_fill_blk_tbls(hw);
6111 		else
6112 			/* Reload DDP Package after CORER/GLOBR reset */
6113 			ice_load_pkg(NULL, pf);
6114 	}
6115 
6116 	ret = ice_clear_pf_cfg(hw);
6117 	if (ret) {
6118 		dev_err(dev, "clear PF configuration failed %s\n",
6119 			ice_stat_str(ret));
6120 		goto err_init_ctrlq;
6121 	}
6122 
6123 	if (pf->first_sw->dflt_vsi_ena)
6124 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6125 	/* clear the default VSI configuration if it exists */
6126 	pf->first_sw->dflt_vsi = NULL;
6127 	pf->first_sw->dflt_vsi_ena = false;
6128 
6129 	ice_clear_pxe_mode(hw);
6130 
6131 	ret = ice_get_caps(hw);
6132 	if (ret) {
6133 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6134 		goto err_init_ctrlq;
6135 	}
6136 
6137 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6138 	if (ret) {
6139 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6140 		goto err_init_ctrlq;
6141 	}
6142 
6143 	err = ice_sched_init_port(hw->port_info);
6144 	if (err)
6145 		goto err_sched_init_port;
6146 
6147 	/* start misc vector */
6148 	err = ice_req_irq_msix_misc(pf);
6149 	if (err) {
6150 		dev_err(dev, "misc vector setup failed: %d\n", err);
6151 		goto err_sched_init_port;
6152 	}
6153 
6154 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6155 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6156 		if (!rd32(hw, PFQF_FD_SIZE)) {
6157 			u16 unused, guar, b_effort;
6158 
6159 			guar = hw->func_caps.fd_fltr_guar;
6160 			b_effort = hw->func_caps.fd_fltr_best_effort;
6161 
6162 			/* force guaranteed filter pool for PF */
6163 			ice_alloc_fd_guar_item(hw, &unused, guar);
6164 			/* force shared filter pool for PF */
6165 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6166 		}
6167 	}
6168 
6169 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6170 		ice_dcb_rebuild(pf);
6171 
6172 	/* rebuild PF VSI */
6173 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6174 	if (err) {
6175 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6176 		goto err_vsi_rebuild;
6177 	}
6178 
6179 	/* If Flow Director is active */
6180 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6181 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6182 		if (err) {
6183 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6184 			goto err_vsi_rebuild;
6185 		}
6186 
6187 		/* replay HW Flow Director recipes */
6188 		if (hw->fdir_prof)
6189 			ice_fdir_replay_flows(hw);
6190 
6191 		/* replay Flow Director filters */
6192 		ice_fdir_replay_fltrs(pf);
6193 
6194 		ice_rebuild_arfs(pf);
6195 	}
6196 
6197 	ice_update_pf_netdev_link(pf);
6198 
6199 	/* tell the firmware we are up */
6200 	ret = ice_send_version(pf);
6201 	if (ret) {
6202 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6203 			ice_stat_str(ret));
6204 		goto err_vsi_rebuild;
6205 	}
6206 
6207 	ice_replay_post(hw);
6208 
6209 	/* if we get here, reset flow is successful */
6210 	clear_bit(ICE_RESET_FAILED, pf->state);
6211 	return;
6212 
6213 err_vsi_rebuild:
6214 err_sched_init_port:
6215 	ice_sched_cleanup_all(hw);
6216 err_init_ctrlq:
6217 	ice_shutdown_all_ctrlq(hw);
6218 	set_bit(ICE_RESET_FAILED, pf->state);
6219 clear_recovery:
6220 	/* set this bit in PF state to control service task scheduling */
6221 	set_bit(ICE_NEEDS_RESTART, pf->state);
6222 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6223 }
6224 
6225 /**
6226  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6227  * @vsi: Pointer to VSI structure
6228  */
6229 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6230 {
6231 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6232 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6233 	else
6234 		return ICE_RXBUF_3072;
6235 }
6236 
6237 /**
6238  * ice_change_mtu - NDO callback to change the MTU
6239  * @netdev: network interface device structure
6240  * @new_mtu: new value for maximum frame size
6241  *
6242  * Returns 0 on success, negative on failure
6243  */
6244 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6245 {
6246 	struct ice_netdev_priv *np = netdev_priv(netdev);
6247 	struct ice_vsi *vsi = np->vsi;
6248 	struct ice_pf *pf = vsi->back;
6249 	u8 count = 0;
6250 
6251 	if (new_mtu == (int)netdev->mtu) {
6252 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6253 		return 0;
6254 	}
6255 
6256 	if (ice_is_xdp_ena_vsi(vsi)) {
6257 		int frame_size = ice_max_xdp_frame_size(vsi);
6258 
6259 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6260 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6261 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6262 			return -EINVAL;
6263 		}
6264 	}
6265 
6266 	/* if a reset is in progress, wait for some time for it to complete */
6267 	do {
6268 		if (ice_is_reset_in_progress(pf->state)) {
6269 			count++;
6270 			usleep_range(1000, 2000);
6271 		} else {
6272 			break;
6273 		}
6274 
6275 	} while (count < 100);
6276 
6277 	if (count == 100) {
6278 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6279 		return -EBUSY;
6280 	}
6281 
6282 	netdev->mtu = (unsigned int)new_mtu;
6283 
6284 	/* if VSI is up, bring it down and then back up */
6285 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6286 		int err;
6287 
6288 		err = ice_down(vsi);
6289 		if (err) {
6290 			netdev_err(netdev, "change MTU if_down err %d\n", err);
6291 			return err;
6292 		}
6293 
6294 		err = ice_up(vsi);
6295 		if (err) {
6296 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6297 			return err;
6298 		}
6299 	}
6300 
6301 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6302 	return 0;
6303 }
6304 
6305 /**
6306  * ice_aq_str - convert AQ err code to a string
6307  * @aq_err: the AQ error code to convert
6308  */
6309 const char *ice_aq_str(enum ice_aq_err aq_err)
6310 {
6311 	switch (aq_err) {
6312 	case ICE_AQ_RC_OK:
6313 		return "OK";
6314 	case ICE_AQ_RC_EPERM:
6315 		return "ICE_AQ_RC_EPERM";
6316 	case ICE_AQ_RC_ENOENT:
6317 		return "ICE_AQ_RC_ENOENT";
6318 	case ICE_AQ_RC_ENOMEM:
6319 		return "ICE_AQ_RC_ENOMEM";
6320 	case ICE_AQ_RC_EBUSY:
6321 		return "ICE_AQ_RC_EBUSY";
6322 	case ICE_AQ_RC_EEXIST:
6323 		return "ICE_AQ_RC_EEXIST";
6324 	case ICE_AQ_RC_EINVAL:
6325 		return "ICE_AQ_RC_EINVAL";
6326 	case ICE_AQ_RC_ENOSPC:
6327 		return "ICE_AQ_RC_ENOSPC";
6328 	case ICE_AQ_RC_ENOSYS:
6329 		return "ICE_AQ_RC_ENOSYS";
6330 	case ICE_AQ_RC_EMODE:
6331 		return "ICE_AQ_RC_EMODE";
6332 	case ICE_AQ_RC_ENOSEC:
6333 		return "ICE_AQ_RC_ENOSEC";
6334 	case ICE_AQ_RC_EBADSIG:
6335 		return "ICE_AQ_RC_EBADSIG";
6336 	case ICE_AQ_RC_ESVN:
6337 		return "ICE_AQ_RC_ESVN";
6338 	case ICE_AQ_RC_EBADMAN:
6339 		return "ICE_AQ_RC_EBADMAN";
6340 	case ICE_AQ_RC_EBADBUF:
6341 		return "ICE_AQ_RC_EBADBUF";
6342 	}
6343 
6344 	return "ICE_AQ_RC_UNKNOWN";
6345 }
6346 
6347 /**
6348  * ice_stat_str - convert status err code to a string
6349  * @stat_err: the status error code to convert
6350  */
6351 const char *ice_stat_str(enum ice_status stat_err)
6352 {
6353 	switch (stat_err) {
6354 	case ICE_SUCCESS:
6355 		return "OK";
6356 	case ICE_ERR_PARAM:
6357 		return "ICE_ERR_PARAM";
6358 	case ICE_ERR_NOT_IMPL:
6359 		return "ICE_ERR_NOT_IMPL";
6360 	case ICE_ERR_NOT_READY:
6361 		return "ICE_ERR_NOT_READY";
6362 	case ICE_ERR_NOT_SUPPORTED:
6363 		return "ICE_ERR_NOT_SUPPORTED";
6364 	case ICE_ERR_BAD_PTR:
6365 		return "ICE_ERR_BAD_PTR";
6366 	case ICE_ERR_INVAL_SIZE:
6367 		return "ICE_ERR_INVAL_SIZE";
6368 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6369 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6370 	case ICE_ERR_RESET_FAILED:
6371 		return "ICE_ERR_RESET_FAILED";
6372 	case ICE_ERR_FW_API_VER:
6373 		return "ICE_ERR_FW_API_VER";
6374 	case ICE_ERR_NO_MEMORY:
6375 		return "ICE_ERR_NO_MEMORY";
6376 	case ICE_ERR_CFG:
6377 		return "ICE_ERR_CFG";
6378 	case ICE_ERR_OUT_OF_RANGE:
6379 		return "ICE_ERR_OUT_OF_RANGE";
6380 	case ICE_ERR_ALREADY_EXISTS:
6381 		return "ICE_ERR_ALREADY_EXISTS";
6382 	case ICE_ERR_NVM:
6383 		return "ICE_ERR_NVM";
6384 	case ICE_ERR_NVM_CHECKSUM:
6385 		return "ICE_ERR_NVM_CHECKSUM";
6386 	case ICE_ERR_BUF_TOO_SHORT:
6387 		return "ICE_ERR_BUF_TOO_SHORT";
6388 	case ICE_ERR_NVM_BLANK_MODE:
6389 		return "ICE_ERR_NVM_BLANK_MODE";
6390 	case ICE_ERR_IN_USE:
6391 		return "ICE_ERR_IN_USE";
6392 	case ICE_ERR_MAX_LIMIT:
6393 		return "ICE_ERR_MAX_LIMIT";
6394 	case ICE_ERR_RESET_ONGOING:
6395 		return "ICE_ERR_RESET_ONGOING";
6396 	case ICE_ERR_HW_TABLE:
6397 		return "ICE_ERR_HW_TABLE";
6398 	case ICE_ERR_DOES_NOT_EXIST:
6399 		return "ICE_ERR_DOES_NOT_EXIST";
6400 	case ICE_ERR_FW_DDP_MISMATCH:
6401 		return "ICE_ERR_FW_DDP_MISMATCH";
6402 	case ICE_ERR_AQ_ERROR:
6403 		return "ICE_ERR_AQ_ERROR";
6404 	case ICE_ERR_AQ_TIMEOUT:
6405 		return "ICE_ERR_AQ_TIMEOUT";
6406 	case ICE_ERR_AQ_FULL:
6407 		return "ICE_ERR_AQ_FULL";
6408 	case ICE_ERR_AQ_NO_WORK:
6409 		return "ICE_ERR_AQ_NO_WORK";
6410 	case ICE_ERR_AQ_EMPTY:
6411 		return "ICE_ERR_AQ_EMPTY";
6412 	case ICE_ERR_AQ_FW_CRITICAL:
6413 		return "ICE_ERR_AQ_FW_CRITICAL";
6414 	}
6415 
6416 	return "ICE_ERR_UNKNOWN";
6417 }
6418 
6419 /**
6420  * ice_set_rss_lut - Set RSS LUT
6421  * @vsi: Pointer to VSI structure
6422  * @lut: Lookup table
6423  * @lut_size: Lookup table size
6424  *
6425  * Returns 0 on success, negative on failure
6426  */
6427 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6428 {
6429 	struct ice_aq_get_set_rss_lut_params params = {};
6430 	struct ice_hw *hw = &vsi->back->hw;
6431 	enum ice_status status;
6432 
6433 	if (!lut)
6434 		return -EINVAL;
6435 
6436 	params.vsi_handle = vsi->idx;
6437 	params.lut_size = lut_size;
6438 	params.lut_type = vsi->rss_lut_type;
6439 	params.lut = lut;
6440 
6441 	status = ice_aq_set_rss_lut(hw, &params);
6442 	if (status) {
6443 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6444 			ice_stat_str(status),
6445 			ice_aq_str(hw->adminq.sq_last_status));
6446 		return -EIO;
6447 	}
6448 
6449 	return 0;
6450 }
6451 
6452 /**
6453  * ice_set_rss_key - Set RSS key
6454  * @vsi: Pointer to the VSI structure
6455  * @seed: RSS hash seed
6456  *
6457  * Returns 0 on success, negative on failure
6458  */
6459 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6460 {
6461 	struct ice_hw *hw = &vsi->back->hw;
6462 	enum ice_status status;
6463 
6464 	if (!seed)
6465 		return -EINVAL;
6466 
6467 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6468 	if (status) {
6469 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6470 			ice_stat_str(status),
6471 			ice_aq_str(hw->adminq.sq_last_status));
6472 		return -EIO;
6473 	}
6474 
6475 	return 0;
6476 }
6477 
6478 /**
6479  * ice_get_rss_lut - Get RSS LUT
6480  * @vsi: Pointer to VSI structure
6481  * @lut: Buffer to store the lookup table entries
6482  * @lut_size: Size of buffer to store the lookup table entries
6483  *
6484  * Returns 0 on success, negative on failure
6485  */
6486 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6487 {
6488 	struct ice_aq_get_set_rss_lut_params params = {};
6489 	struct ice_hw *hw = &vsi->back->hw;
6490 	enum ice_status status;
6491 
6492 	if (!lut)
6493 		return -EINVAL;
6494 
6495 	params.vsi_handle = vsi->idx;
6496 	params.lut_size = lut_size;
6497 	params.lut_type = vsi->rss_lut_type;
6498 	params.lut = lut;
6499 
6500 	status = ice_aq_get_rss_lut(hw, &params);
6501 	if (status) {
6502 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6503 			ice_stat_str(status),
6504 			ice_aq_str(hw->adminq.sq_last_status));
6505 		return -EIO;
6506 	}
6507 
6508 	return 0;
6509 }
6510 
6511 /**
6512  * ice_get_rss_key - Get RSS key
6513  * @vsi: Pointer to VSI structure
6514  * @seed: Buffer to store the key in
6515  *
6516  * Returns 0 on success, negative on failure
6517  */
6518 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6519 {
6520 	struct ice_hw *hw = &vsi->back->hw;
6521 	enum ice_status status;
6522 
6523 	if (!seed)
6524 		return -EINVAL;
6525 
6526 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6527 	if (status) {
6528 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6529 			ice_stat_str(status),
6530 			ice_aq_str(hw->adminq.sq_last_status));
6531 		return -EIO;
6532 	}
6533 
6534 	return 0;
6535 }
6536 
6537 /**
6538  * ice_bridge_getlink - Get the hardware bridge mode
6539  * @skb: skb buff
6540  * @pid: process ID
6541  * @seq: RTNL message seq
6542  * @dev: the netdev being configured
6543  * @filter_mask: filter mask passed in
6544  * @nlflags: netlink flags passed in
6545  *
6546  * Return the bridge mode (VEB/VEPA)
6547  */
6548 static int
6549 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6550 		   struct net_device *dev, u32 filter_mask, int nlflags)
6551 {
6552 	struct ice_netdev_priv *np = netdev_priv(dev);
6553 	struct ice_vsi *vsi = np->vsi;
6554 	struct ice_pf *pf = vsi->back;
6555 	u16 bmode;
6556 
6557 	bmode = pf->first_sw->bridge_mode;
6558 
6559 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6560 				       filter_mask, NULL);
6561 }
6562 
6563 /**
6564  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6565  * @vsi: Pointer to VSI structure
6566  * @bmode: Hardware bridge mode (VEB/VEPA)
6567  *
6568  * Returns 0 on success, negative on failure
6569  */
6570 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6571 {
6572 	struct ice_aqc_vsi_props *vsi_props;
6573 	struct ice_hw *hw = &vsi->back->hw;
6574 	struct ice_vsi_ctx *ctxt;
6575 	enum ice_status status;
6576 	int ret = 0;
6577 
6578 	vsi_props = &vsi->info;
6579 
6580 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6581 	if (!ctxt)
6582 		return -ENOMEM;
6583 
6584 	ctxt->info = vsi->info;
6585 
6586 	if (bmode == BRIDGE_MODE_VEB)
6587 		/* change from VEPA to VEB mode */
6588 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6589 	else
6590 		/* change from VEB to VEPA mode */
6591 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6592 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6593 
6594 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6595 	if (status) {
6596 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6597 			bmode, ice_stat_str(status),
6598 			ice_aq_str(hw->adminq.sq_last_status));
6599 		ret = -EIO;
6600 		goto out;
6601 	}
6602 	/* Update sw flags for book keeping */
6603 	vsi_props->sw_flags = ctxt->info.sw_flags;
6604 
6605 out:
6606 	kfree(ctxt);
6607 	return ret;
6608 }
6609 
6610 /**
6611  * ice_bridge_setlink - Set the hardware bridge mode
6612  * @dev: the netdev being configured
6613  * @nlh: RTNL message
6614  * @flags: bridge setlink flags
6615  * @extack: netlink extended ack
6616  *
6617  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6618  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6619  * not already set for all VSIs connected to this switch. And also update the
6620  * unicast switch filter rules for the corresponding switch of the netdev.
6621  */
6622 static int
6623 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6624 		   u16 __always_unused flags,
6625 		   struct netlink_ext_ack __always_unused *extack)
6626 {
6627 	struct ice_netdev_priv *np = netdev_priv(dev);
6628 	struct ice_pf *pf = np->vsi->back;
6629 	struct nlattr *attr, *br_spec;
6630 	struct ice_hw *hw = &pf->hw;
6631 	enum ice_status status;
6632 	struct ice_sw *pf_sw;
6633 	int rem, v, err = 0;
6634 
6635 	pf_sw = pf->first_sw;
6636 	/* find the attribute in the netlink message */
6637 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6638 
6639 	nla_for_each_nested(attr, br_spec, rem) {
6640 		__u16 mode;
6641 
6642 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6643 			continue;
6644 		mode = nla_get_u16(attr);
6645 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6646 			return -EINVAL;
6647 		/* Continue  if bridge mode is not being flipped */
6648 		if (mode == pf_sw->bridge_mode)
6649 			continue;
6650 		/* Iterates through the PF VSI list and update the loopback
6651 		 * mode of the VSI
6652 		 */
6653 		ice_for_each_vsi(pf, v) {
6654 			if (!pf->vsi[v])
6655 				continue;
6656 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6657 			if (err)
6658 				return err;
6659 		}
6660 
6661 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6662 		/* Update the unicast switch filter rules for the corresponding
6663 		 * switch of the netdev
6664 		 */
6665 		status = ice_update_sw_rule_bridge_mode(hw);
6666 		if (status) {
6667 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6668 				   mode, ice_stat_str(status),
6669 				   ice_aq_str(hw->adminq.sq_last_status));
6670 			/* revert hw->evb_veb */
6671 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6672 			return -EIO;
6673 		}
6674 
6675 		pf_sw->bridge_mode = mode;
6676 	}
6677 
6678 	return 0;
6679 }
6680 
6681 /**
6682  * ice_tx_timeout - Respond to a Tx Hang
6683  * @netdev: network interface device structure
6684  * @txqueue: Tx queue
6685  */
6686 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6687 {
6688 	struct ice_netdev_priv *np = netdev_priv(netdev);
6689 	struct ice_ring *tx_ring = NULL;
6690 	struct ice_vsi *vsi = np->vsi;
6691 	struct ice_pf *pf = vsi->back;
6692 	u32 i;
6693 
6694 	pf->tx_timeout_count++;
6695 
6696 	/* Check if PFC is enabled for the TC to which the queue belongs
6697 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6698 	 * need to reset and rebuild
6699 	 */
6700 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6701 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6702 			 txqueue);
6703 		return;
6704 	}
6705 
6706 	/* now that we have an index, find the tx_ring struct */
6707 	for (i = 0; i < vsi->num_txq; i++)
6708 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6709 			if (txqueue == vsi->tx_rings[i]->q_index) {
6710 				tx_ring = vsi->tx_rings[i];
6711 				break;
6712 			}
6713 
6714 	/* Reset recovery level if enough time has elapsed after last timeout.
6715 	 * Also ensure no new reset action happens before next timeout period.
6716 	 */
6717 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6718 		pf->tx_timeout_recovery_level = 1;
6719 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6720 				       netdev->watchdog_timeo)))
6721 		return;
6722 
6723 	if (tx_ring) {
6724 		struct ice_hw *hw = &pf->hw;
6725 		u32 head, val = 0;
6726 
6727 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6728 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6729 		/* Read interrupt register */
6730 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6731 
6732 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6733 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6734 			    head, tx_ring->next_to_use, val);
6735 	}
6736 
6737 	pf->tx_timeout_last_recovery = jiffies;
6738 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6739 		    pf->tx_timeout_recovery_level, txqueue);
6740 
6741 	switch (pf->tx_timeout_recovery_level) {
6742 	case 1:
6743 		set_bit(ICE_PFR_REQ, pf->state);
6744 		break;
6745 	case 2:
6746 		set_bit(ICE_CORER_REQ, pf->state);
6747 		break;
6748 	case 3:
6749 		set_bit(ICE_GLOBR_REQ, pf->state);
6750 		break;
6751 	default:
6752 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6753 		set_bit(ICE_DOWN, pf->state);
6754 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
6755 		set_bit(ICE_SERVICE_DIS, pf->state);
6756 		break;
6757 	}
6758 
6759 	ice_service_task_schedule(pf);
6760 	pf->tx_timeout_recovery_level++;
6761 }
6762 
6763 /**
6764  * ice_open - Called when a network interface becomes active
6765  * @netdev: network interface device structure
6766  *
6767  * The open entry point is called when a network interface is made
6768  * active by the system (IFF_UP). At this point all resources needed
6769  * for transmit and receive operations are allocated, the interrupt
6770  * handler is registered with the OS, the netdev watchdog is enabled,
6771  * and the stack is notified that the interface is ready.
6772  *
6773  * Returns 0 on success, negative value on failure
6774  */
6775 int ice_open(struct net_device *netdev)
6776 {
6777 	struct ice_netdev_priv *np = netdev_priv(netdev);
6778 	struct ice_pf *pf = np->vsi->back;
6779 
6780 	if (ice_is_reset_in_progress(pf->state)) {
6781 		netdev_err(netdev, "can't open net device while reset is in progress");
6782 		return -EBUSY;
6783 	}
6784 
6785 	return ice_open_internal(netdev);
6786 }
6787 
6788 /**
6789  * ice_open_internal - Called when a network interface becomes active
6790  * @netdev: network interface device structure
6791  *
6792  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6793  * handling routine
6794  *
6795  * Returns 0 on success, negative value on failure
6796  */
6797 int ice_open_internal(struct net_device *netdev)
6798 {
6799 	struct ice_netdev_priv *np = netdev_priv(netdev);
6800 	struct ice_vsi *vsi = np->vsi;
6801 	struct ice_pf *pf = vsi->back;
6802 	struct ice_port_info *pi;
6803 	enum ice_status status;
6804 	int err;
6805 
6806 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
6807 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6808 		return -EIO;
6809 	}
6810 
6811 	netif_carrier_off(netdev);
6812 
6813 	pi = vsi->port_info;
6814 	status = ice_update_link_info(pi);
6815 	if (status) {
6816 		netdev_err(netdev, "Failed to get link info, error %s\n",
6817 			   ice_stat_str(status));
6818 		return -EIO;
6819 	}
6820 
6821 	/* Set PHY if there is media, otherwise, turn off PHY */
6822 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6823 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6824 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
6825 			err = ice_init_phy_user_cfg(pi);
6826 			if (err) {
6827 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6828 					   err);
6829 				return err;
6830 			}
6831 		}
6832 
6833 		err = ice_configure_phy(vsi);
6834 		if (err) {
6835 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6836 				   err);
6837 			return err;
6838 		}
6839 	} else {
6840 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6841 		ice_set_link(vsi, false);
6842 	}
6843 
6844 	err = ice_vsi_open(vsi);
6845 	if (err)
6846 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6847 			   vsi->vsi_num, vsi->vsw->sw_id);
6848 
6849 	/* Update existing tunnels information */
6850 	udp_tunnel_get_rx_info(netdev);
6851 
6852 	return err;
6853 }
6854 
6855 /**
6856  * ice_stop - Disables a network interface
6857  * @netdev: network interface device structure
6858  *
6859  * The stop entry point is called when an interface is de-activated by the OS,
6860  * and the netdevice enters the DOWN state. The hardware is still under the
6861  * driver's control, but the netdev interface is disabled.
6862  *
6863  * Returns success only - not allowed to fail
6864  */
6865 int ice_stop(struct net_device *netdev)
6866 {
6867 	struct ice_netdev_priv *np = netdev_priv(netdev);
6868 	struct ice_vsi *vsi = np->vsi;
6869 	struct ice_pf *pf = vsi->back;
6870 
6871 	if (ice_is_reset_in_progress(pf->state)) {
6872 		netdev_err(netdev, "can't stop net device while reset is in progress");
6873 		return -EBUSY;
6874 	}
6875 
6876 	ice_vsi_close(vsi);
6877 
6878 	return 0;
6879 }
6880 
6881 /**
6882  * ice_features_check - Validate encapsulated packet conforms to limits
6883  * @skb: skb buffer
6884  * @netdev: This port's netdev
6885  * @features: Offload features that the stack believes apply
6886  */
6887 static netdev_features_t
6888 ice_features_check(struct sk_buff *skb,
6889 		   struct net_device __always_unused *netdev,
6890 		   netdev_features_t features)
6891 {
6892 	size_t len;
6893 
6894 	/* No point in doing any of this if neither checksum nor GSO are
6895 	 * being requested for this frame. We can rule out both by just
6896 	 * checking for CHECKSUM_PARTIAL
6897 	 */
6898 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6899 		return features;
6900 
6901 	/* We cannot support GSO if the MSS is going to be less than
6902 	 * 64 bytes. If it is then we need to drop support for GSO.
6903 	 */
6904 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6905 		features &= ~NETIF_F_GSO_MASK;
6906 
6907 	len = skb_network_header(skb) - skb->data;
6908 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6909 		goto out_rm_features;
6910 
6911 	len = skb_transport_header(skb) - skb_network_header(skb);
6912 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6913 		goto out_rm_features;
6914 
6915 	if (skb->encapsulation) {
6916 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6917 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6918 			goto out_rm_features;
6919 
6920 		len = skb_inner_transport_header(skb) -
6921 		      skb_inner_network_header(skb);
6922 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6923 			goto out_rm_features;
6924 	}
6925 
6926 	return features;
6927 out_rm_features:
6928 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6929 }
6930 
6931 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6932 	.ndo_open = ice_open,
6933 	.ndo_stop = ice_stop,
6934 	.ndo_start_xmit = ice_start_xmit,
6935 	.ndo_set_mac_address = ice_set_mac_address,
6936 	.ndo_validate_addr = eth_validate_addr,
6937 	.ndo_change_mtu = ice_change_mtu,
6938 	.ndo_get_stats64 = ice_get_stats64,
6939 	.ndo_tx_timeout = ice_tx_timeout,
6940 };
6941 
6942 static const struct net_device_ops ice_netdev_ops = {
6943 	.ndo_open = ice_open,
6944 	.ndo_stop = ice_stop,
6945 	.ndo_start_xmit = ice_start_xmit,
6946 	.ndo_features_check = ice_features_check,
6947 	.ndo_set_rx_mode = ice_set_rx_mode,
6948 	.ndo_set_mac_address = ice_set_mac_address,
6949 	.ndo_validate_addr = eth_validate_addr,
6950 	.ndo_change_mtu = ice_change_mtu,
6951 	.ndo_get_stats64 = ice_get_stats64,
6952 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6953 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6954 	.ndo_set_vf_mac = ice_set_vf_mac,
6955 	.ndo_get_vf_config = ice_get_vf_cfg,
6956 	.ndo_set_vf_trust = ice_set_vf_trust,
6957 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6958 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6959 	.ndo_get_vf_stats = ice_get_vf_stats,
6960 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6961 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6962 	.ndo_set_features = ice_set_features,
6963 	.ndo_bridge_getlink = ice_bridge_getlink,
6964 	.ndo_bridge_setlink = ice_bridge_setlink,
6965 	.ndo_fdb_add = ice_fdb_add,
6966 	.ndo_fdb_del = ice_fdb_del,
6967 #ifdef CONFIG_RFS_ACCEL
6968 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6969 #endif
6970 	.ndo_tx_timeout = ice_tx_timeout,
6971 	.ndo_bpf = ice_xdp,
6972 	.ndo_xdp_xmit = ice_xdp_xmit,
6973 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6974 };
6975