1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_get_devlink_port - Get devlink port from netdev 303 * @netdev: the netdevice structure 304 */ 305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 306 { 307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 308 309 if (!ice_is_switchdev_running(pf)) 310 return NULL; 311 312 return &pf->devlink_port; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 } 427 } else { 428 /* Clear Rx filter to remove traffic from wire */ 429 if (ice_is_vsi_dflt_vsi(vsi)) { 430 err = ice_clear_dflt_vsi(vsi); 431 if (err) { 432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 433 err, vsi->vsi_num); 434 vsi->current_netdev_flags |= 435 IFF_PROMISC; 436 goto out_promisc; 437 } 438 if (vsi->netdev->features & 439 NETIF_F_HW_VLAN_CTAG_FILTER) 440 vlan_ops->ena_rx_filtering(vsi); 441 } 442 } 443 } 444 goto exit; 445 446 out_promisc: 447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 448 goto exit; 449 out: 450 /* if something went wrong then set the changed flag so we try again */ 451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 453 exit: 454 clear_bit(ICE_CFG_BUSY, vsi->state); 455 return err; 456 } 457 458 /** 459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 460 * @pf: board private structure 461 */ 462 static void ice_sync_fltr_subtask(struct ice_pf *pf) 463 { 464 int v; 465 466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 467 return; 468 469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 470 471 ice_for_each_vsi(pf, v) 472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 473 ice_vsi_sync_fltr(pf->vsi[v])) { 474 /* come back and try again later */ 475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 476 break; 477 } 478 } 479 480 /** 481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 482 * @pf: the PF 483 * @locked: is the rtnl_lock already held 484 */ 485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 486 { 487 int node; 488 int v; 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v]) 492 ice_dis_vsi(pf->vsi[v], locked); 493 494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 495 pf->pf_agg_node[node].num_vsis = 0; 496 497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 498 pf->vf_agg_node[node].num_vsis = 0; 499 } 500 501 /** 502 * ice_clear_sw_switch_recipes - clear switch recipes 503 * @pf: board private structure 504 * 505 * Mark switch recipes as not created in sw structures. There are cases where 506 * rules (especially advanced rules) need to be restored, either re-read from 507 * hardware or added again. For example after the reset. 'recp_created' flag 508 * prevents from doing that and need to be cleared upfront. 509 */ 510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 511 { 512 struct ice_sw_recipe *recp; 513 u8 i; 514 515 recp = pf->hw.switch_info->recp_list; 516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 517 recp[i].recp_created = false; 518 } 519 520 /** 521 * ice_prepare_for_reset - prep for reset 522 * @pf: board private structure 523 * @reset_type: reset type requested 524 * 525 * Inform or close all dependent features in prep for reset. 526 */ 527 static void 528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 529 { 530 struct ice_hw *hw = &pf->hw; 531 struct ice_vsi *vsi; 532 struct ice_vf *vf; 533 unsigned int bkt; 534 535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 536 537 /* already prepared for reset */ 538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 539 return; 540 541 ice_unplug_aux_dev(pf); 542 543 /* Notify VFs of impending reset */ 544 if (ice_check_sq_alive(hw, &hw->mailboxq)) 545 ice_vc_notify_reset(pf); 546 547 /* Disable VFs until reset is completed */ 548 mutex_lock(&pf->vfs.table_lock); 549 ice_for_each_vf(pf, bkt, vf) 550 ice_set_vf_state_qs_dis(vf); 551 mutex_unlock(&pf->vfs.table_lock); 552 553 if (ice_is_eswitch_mode_switchdev(pf)) { 554 if (reset_type != ICE_RESET_PFR) 555 ice_clear_sw_switch_recipes(pf); 556 } 557 558 /* release ADQ specific HW and SW resources */ 559 vsi = ice_get_main_vsi(pf); 560 if (!vsi) 561 goto skip; 562 563 /* to be on safe side, reset orig_rss_size so that normal flow 564 * of deciding rss_size can take precedence 565 */ 566 vsi->orig_rss_size = 0; 567 568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 569 if (reset_type == ICE_RESET_PFR) { 570 vsi->old_ena_tc = vsi->all_enatc; 571 vsi->old_numtc = vsi->all_numtc; 572 } else { 573 ice_remove_q_channels(vsi, true); 574 575 /* for other reset type, do not support channel rebuild 576 * hence reset needed info 577 */ 578 vsi->old_ena_tc = 0; 579 vsi->all_enatc = 0; 580 vsi->old_numtc = 0; 581 vsi->all_numtc = 0; 582 vsi->req_txq = 0; 583 vsi->req_rxq = 0; 584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 586 } 587 } 588 skip: 589 590 /* clear SW filtering DB */ 591 ice_clear_hw_tbls(hw); 592 /* disable the VSIs and their queues that are not already DOWN */ 593 ice_pf_dis_all_vsi(pf, false); 594 595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 596 ice_ptp_prepare_for_reset(pf); 597 598 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 599 ice_gnss_exit(pf); 600 601 if (hw->port_info) 602 ice_sched_clear_port(hw->port_info); 603 604 ice_shutdown_all_ctrlq(hw); 605 606 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 607 } 608 609 /** 610 * ice_do_reset - Initiate one of many types of resets 611 * @pf: board private structure 612 * @reset_type: reset type requested before this function was called. 613 */ 614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 615 { 616 struct device *dev = ice_pf_to_dev(pf); 617 struct ice_hw *hw = &pf->hw; 618 619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 620 621 ice_prepare_for_reset(pf, reset_type); 622 623 /* trigger the reset */ 624 if (ice_reset(hw, reset_type)) { 625 dev_err(dev, "reset %d failed\n", reset_type); 626 set_bit(ICE_RESET_FAILED, pf->state); 627 clear_bit(ICE_RESET_OICR_RECV, pf->state); 628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 clear_bit(ICE_PFR_REQ, pf->state); 630 clear_bit(ICE_CORER_REQ, pf->state); 631 clear_bit(ICE_GLOBR_REQ, pf->state); 632 wake_up(&pf->reset_wait_queue); 633 return; 634 } 635 636 /* PFR is a bit of a special case because it doesn't result in an OICR 637 * interrupt. So for PFR, rebuild after the reset and clear the reset- 638 * associated state bits. 639 */ 640 if (reset_type == ICE_RESET_PFR) { 641 pf->pfr_count++; 642 ice_rebuild(pf, reset_type); 643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 644 clear_bit(ICE_PFR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 ice_reset_all_vfs(pf); 647 } 648 } 649 650 /** 651 * ice_reset_subtask - Set up for resetting the device and driver 652 * @pf: board private structure 653 */ 654 static void ice_reset_subtask(struct ice_pf *pf) 655 { 656 enum ice_reset_req reset_type = ICE_RESET_INVAL; 657 658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 660 * of reset is pending and sets bits in pf->state indicating the reset 661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 662 * prepare for pending reset if not already (for PF software-initiated 663 * global resets the software should already be prepared for it as 664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 665 * by firmware or software on other PFs, that bit is not set so prepare 666 * for the reset now), poll for reset done, rebuild and return. 667 */ 668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 669 /* Perform the largest reset requested */ 670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 671 reset_type = ICE_RESET_CORER; 672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 673 reset_type = ICE_RESET_GLOBR; 674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 675 reset_type = ICE_RESET_EMPR; 676 /* return if no valid reset type requested */ 677 if (reset_type == ICE_RESET_INVAL) 678 return; 679 ice_prepare_for_reset(pf, reset_type); 680 681 /* make sure we are ready to rebuild */ 682 if (ice_check_reset(&pf->hw)) { 683 set_bit(ICE_RESET_FAILED, pf->state); 684 } else { 685 /* done with reset. start rebuild */ 686 pf->hw.reset_ongoing = false; 687 ice_rebuild(pf, reset_type); 688 /* clear bit to resume normal operations, but 689 * ICE_NEEDS_RESTART bit is set in case rebuild failed 690 */ 691 clear_bit(ICE_RESET_OICR_RECV, pf->state); 692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 693 clear_bit(ICE_PFR_REQ, pf->state); 694 clear_bit(ICE_CORER_REQ, pf->state); 695 clear_bit(ICE_GLOBR_REQ, pf->state); 696 wake_up(&pf->reset_wait_queue); 697 ice_reset_all_vfs(pf); 698 } 699 700 return; 701 } 702 703 /* No pending resets to finish processing. Check for new resets */ 704 if (test_bit(ICE_PFR_REQ, pf->state)) 705 reset_type = ICE_RESET_PFR; 706 if (test_bit(ICE_CORER_REQ, pf->state)) 707 reset_type = ICE_RESET_CORER; 708 if (test_bit(ICE_GLOBR_REQ, pf->state)) 709 reset_type = ICE_RESET_GLOBR; 710 /* If no valid reset type requested just return */ 711 if (reset_type == ICE_RESET_INVAL) 712 return; 713 714 /* reset if not already down or busy */ 715 if (!test_bit(ICE_DOWN, pf->state) && 716 !test_bit(ICE_CFG_BUSY, pf->state)) { 717 ice_do_reset(pf, reset_type); 718 } 719 } 720 721 /** 722 * ice_print_topo_conflict - print topology conflict message 723 * @vsi: the VSI whose topology status is being checked 724 */ 725 static void ice_print_topo_conflict(struct ice_vsi *vsi) 726 { 727 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 728 case ICE_AQ_LINK_TOPO_CONFLICT: 729 case ICE_AQ_LINK_MEDIA_CONFLICT: 730 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 734 break; 735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 738 else 739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 740 break; 741 default: 742 break; 743 } 744 } 745 746 /** 747 * ice_print_link_msg - print link up or down message 748 * @vsi: the VSI whose link status is being queried 749 * @isup: boolean for if the link is now up or down 750 */ 751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 752 { 753 struct ice_aqc_get_phy_caps_data *caps; 754 const char *an_advertised; 755 const char *fec_req; 756 const char *speed; 757 const char *fec; 758 const char *fc; 759 const char *an; 760 int status; 761 762 if (!vsi) 763 return; 764 765 if (vsi->current_isup == isup) 766 return; 767 768 vsi->current_isup = isup; 769 770 if (!isup) { 771 netdev_info(vsi->netdev, "NIC Link is Down\n"); 772 return; 773 } 774 775 switch (vsi->port_info->phy.link_info.link_speed) { 776 case ICE_AQ_LINK_SPEED_100GB: 777 speed = "100 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_50GB: 780 speed = "50 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_40GB: 783 speed = "40 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_25GB: 786 speed = "25 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_20GB: 789 speed = "20 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_10GB: 792 speed = "10 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_5GB: 795 speed = "5 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_2500MB: 798 speed = "2.5 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_1000MB: 801 speed = "1 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_100MB: 804 speed = "100 M"; 805 break; 806 default: 807 speed = "Unknown "; 808 break; 809 } 810 811 switch (vsi->port_info->fc.current_mode) { 812 case ICE_FC_FULL: 813 fc = "Rx/Tx"; 814 break; 815 case ICE_FC_TX_PAUSE: 816 fc = "Tx"; 817 break; 818 case ICE_FC_RX_PAUSE: 819 fc = "Rx"; 820 break; 821 case ICE_FC_NONE: 822 fc = "None"; 823 break; 824 default: 825 fc = "Unknown"; 826 break; 827 } 828 829 /* Get FEC mode based on negotiated link info */ 830 switch (vsi->port_info->phy.link_info.fec_info) { 831 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 832 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 833 fec = "RS-FEC"; 834 break; 835 case ICE_AQ_LINK_25G_KR_FEC_EN: 836 fec = "FC-FEC/BASE-R"; 837 break; 838 default: 839 fec = "NONE"; 840 break; 841 } 842 843 /* check if autoneg completed, might be false due to not supported */ 844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 845 an = "True"; 846 else 847 an = "False"; 848 849 /* Get FEC mode requested based on PHY caps last SW configuration */ 850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 851 if (!caps) { 852 fec_req = "Unknown"; 853 an_advertised = "Unknown"; 854 goto done; 855 } 856 857 status = ice_aq_get_phy_caps(vsi->port_info, false, 858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 859 if (status) 860 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 861 862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 863 864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 866 fec_req = "RS-FEC"; 867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 869 fec_req = "FC-FEC/BASE-R"; 870 else 871 fec_req = "NONE"; 872 873 kfree(caps); 874 875 done: 876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 877 speed, fec_req, fec, an_advertised, an, fc); 878 ice_print_topo_conflict(vsi); 879 } 880 881 /** 882 * ice_vsi_link_event - update the VSI's netdev 883 * @vsi: the VSI on which the link event occurred 884 * @link_up: whether or not the VSI needs to be set up or down 885 */ 886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 887 { 888 if (!vsi) 889 return; 890 891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 892 return; 893 894 if (vsi->type == ICE_VSI_PF) { 895 if (link_up == netif_carrier_ok(vsi->netdev)) 896 return; 897 898 if (link_up) { 899 netif_carrier_on(vsi->netdev); 900 netif_tx_wake_all_queues(vsi->netdev); 901 } else { 902 netif_carrier_off(vsi->netdev); 903 netif_tx_stop_all_queues(vsi->netdev); 904 } 905 } 906 } 907 908 /** 909 * ice_set_dflt_mib - send a default config MIB to the FW 910 * @pf: private PF struct 911 * 912 * This function sends a default configuration MIB to the FW. 913 * 914 * If this function errors out at any point, the driver is still able to 915 * function. The main impact is that LFC may not operate as expected. 916 * Therefore an error state in this function should be treated with a DBG 917 * message and continue on with driver rebuild/reenable. 918 */ 919 static void ice_set_dflt_mib(struct ice_pf *pf) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 u8 mib_type, *buf, *lldpmib = NULL; 923 u16 len, typelen, offset = 0; 924 struct ice_lldp_org_tlv *tlv; 925 struct ice_hw *hw = &pf->hw; 926 u32 ouisubtype; 927 928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 930 if (!lldpmib) { 931 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 932 __func__); 933 return; 934 } 935 936 /* Add ETS CFG TLV */ 937 tlv = (struct ice_lldp_org_tlv *)lldpmib; 938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 939 ICE_IEEE_ETS_TLV_LEN); 940 tlv->typelen = htons(typelen); 941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 942 ICE_IEEE_SUBTYPE_ETS_CFG); 943 tlv->ouisubtype = htonl(ouisubtype); 944 945 buf = tlv->tlvinfo; 946 buf[0] = 0; 947 948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 950 * Octets 13 - 20 are TSA values - leave as zeros 951 */ 952 buf[5] = 0x64; 953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 954 offset += len + 2; 955 tlv = (struct ice_lldp_org_tlv *) 956 ((char *)tlv + sizeof(tlv->typelen) + len); 957 958 /* Add ETS REC TLV */ 959 buf = tlv->tlvinfo; 960 tlv->typelen = htons(typelen); 961 962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 963 ICE_IEEE_SUBTYPE_ETS_REC); 964 tlv->ouisubtype = htonl(ouisubtype); 965 966 /* First octet of buf is reserved 967 * Octets 1 - 4 map UP to TC - all UPs map to zero 968 * Octets 5 - 12 are BW values - set TC 0 to 100%. 969 * Octets 13 - 20 are TSA value - leave as zeros 970 */ 971 buf[5] = 0x64; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add PFC CFG TLV */ 977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 978 ICE_IEEE_PFC_TLV_LEN); 979 tlv->typelen = htons(typelen); 980 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_PFC_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 /* Octet 1 left as all zeros - PFC disabled */ 986 buf[0] = 0x08; 987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 988 offset += len + 2; 989 990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 992 993 kfree(lldpmib); 994 } 995 996 /** 997 * ice_check_phy_fw_load - check if PHY FW load failed 998 * @pf: pointer to PF struct 999 * @link_cfg_err: bitmap from the link info structure 1000 * 1001 * check if external PHY FW load failed and print an error message if it did 1002 */ 1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 return; 1008 } 1009 1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1011 return; 1012 1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1016 } 1017 } 1018 1019 /** 1020 * ice_check_module_power 1021 * @pf: pointer to PF struct 1022 * @link_cfg_err: bitmap from the link info structure 1023 * 1024 * check module power level returned by a previous call to aq_get_link_info 1025 * and print error messages if module power level is not supported 1026 */ 1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 /* if module power level is supported, clear the flag */ 1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1033 return; 1034 } 1035 1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1037 * above block didn't clear this bit, there's nothing to do 1038 */ 1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_link_cfg_err - check if link configuration failed 1053 * @pf: pointer to the PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * print if any link configuration failure happens due to the value in the 1057 * link_cfg_err parameter in the link info structure 1058 */ 1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 ice_check_module_power(pf, link_cfg_err); 1062 ice_check_phy_fw_load(pf, link_cfg_err); 1063 } 1064 1065 /** 1066 * ice_link_event - process the link event 1067 * @pf: PF that the link event is associated with 1068 * @pi: port_info for the port that the link event is associated with 1069 * @link_up: true if the physical link is up and false if it is down 1070 * @link_speed: current link speed received from the link event 1071 * 1072 * Returns 0 on success and negative on failure 1073 */ 1074 static int 1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1076 u16 link_speed) 1077 { 1078 struct device *dev = ice_pf_to_dev(pf); 1079 struct ice_phy_info *phy_info; 1080 struct ice_vsi *vsi; 1081 u16 old_link_speed; 1082 bool old_link; 1083 int status; 1084 1085 phy_info = &pi->phy; 1086 phy_info->link_info_old = phy_info->link_info; 1087 1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1089 old_link_speed = phy_info->link_info_old.link_speed; 1090 1091 /* update the link info structures and re-enable link events, 1092 * don't bail on failure due to other book keeping needed 1093 */ 1094 status = ice_update_link_info(pi); 1095 if (status) 1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1097 pi->lport, status, 1098 ice_aq_str(pi->hw->adminq.sq_last_status)); 1099 1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1101 1102 /* Check if the link state is up after updating link info, and treat 1103 * this event as an UP event since the link is actually UP now. 1104 */ 1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1106 link_up = true; 1107 1108 vsi = ice_get_main_vsi(pf); 1109 if (!vsi || !vsi->port_info) 1110 return -EINVAL; 1111 1112 /* turn off PHY if media was removed */ 1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1116 ice_set_link(vsi, false); 1117 } 1118 1119 /* if the old link up/down and speed is the same as the new */ 1120 if (link_up == old_link && link_speed == old_link_speed) 1121 return 0; 1122 1123 if (!ice_is_e810(&pf->hw)) 1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1125 1126 if (ice_is_dcb_active(pf)) { 1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1128 ice_dcb_rebuild(pf); 1129 } else { 1130 if (link_up) 1131 ice_set_dflt_mib(pf); 1132 } 1133 ice_vsi_link_event(vsi, link_up); 1134 ice_print_link_msg(vsi, link_up); 1135 1136 ice_vc_notify_link_state(pf); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1143 * @pf: board private structure 1144 */ 1145 static void ice_watchdog_subtask(struct ice_pf *pf) 1146 { 1147 int i; 1148 1149 /* if interface is down do nothing */ 1150 if (test_bit(ICE_DOWN, pf->state) || 1151 test_bit(ICE_CFG_BUSY, pf->state)) 1152 return; 1153 1154 /* make sure we don't do these things too often */ 1155 if (time_before(jiffies, 1156 pf->serv_tmr_prev + pf->serv_tmr_period)) 1157 return; 1158 1159 pf->serv_tmr_prev = jiffies; 1160 1161 /* Update the stats for active netdevs so the network stack 1162 * can look at updated numbers whenever it cares to 1163 */ 1164 ice_update_pf_stats(pf); 1165 ice_for_each_vsi(pf, i) 1166 if (pf->vsi[i] && pf->vsi[i]->netdev) 1167 ice_update_vsi_stats(pf->vsi[i]); 1168 } 1169 1170 /** 1171 * ice_init_link_events - enable/initialize link events 1172 * @pi: pointer to the port_info instance 1173 * 1174 * Returns -EIO on failure, 0 on success 1175 */ 1176 static int ice_init_link_events(struct ice_port_info *pi) 1177 { 1178 u16 mask; 1179 1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1183 1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1186 pi->lport); 1187 return -EIO; 1188 } 1189 1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1192 pi->lport); 1193 return -EIO; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * ice_handle_link_event - handle link event via ARQ 1201 * @pf: PF that the link event is associated with 1202 * @event: event structure containing link status info 1203 */ 1204 static int 1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1206 { 1207 struct ice_aqc_get_link_status_data *link_data; 1208 struct ice_port_info *port_info; 1209 int status; 1210 1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1212 port_info = pf->hw.port_info; 1213 if (!port_info) 1214 return -EINVAL; 1215 1216 status = ice_link_event(pf, port_info, 1217 !!(link_data->link_info & ICE_AQ_LINK_UP), 1218 le16_to_cpu(link_data->link_speed)); 1219 if (status) 1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1221 status); 1222 1223 return status; 1224 } 1225 1226 enum ice_aq_task_state { 1227 ICE_AQ_TASK_WAITING = 0, 1228 ICE_AQ_TASK_COMPLETE, 1229 ICE_AQ_TASK_CANCELED, 1230 }; 1231 1232 struct ice_aq_task { 1233 struct hlist_node entry; 1234 1235 u16 opcode; 1236 struct ice_rq_event_info *event; 1237 enum ice_aq_task_state state; 1238 }; 1239 1240 /** 1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1242 * @pf: pointer to the PF private structure 1243 * @opcode: the opcode to wait for 1244 * @timeout: how long to wait, in jiffies 1245 * @event: storage for the event info 1246 * 1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1248 * current thread will be put to sleep until the specified event occurs or 1249 * until the given timeout is reached. 1250 * 1251 * To obtain only the descriptor contents, pass an event without an allocated 1252 * msg_buf. If the complete data buffer is desired, allocate the 1253 * event->msg_buf with enough space ahead of time. 1254 * 1255 * Returns: zero on success, or a negative error code on failure. 1256 */ 1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1258 struct ice_rq_event_info *event) 1259 { 1260 struct device *dev = ice_pf_to_dev(pf); 1261 struct ice_aq_task *task; 1262 unsigned long start; 1263 long ret; 1264 int err; 1265 1266 task = kzalloc(sizeof(*task), GFP_KERNEL); 1267 if (!task) 1268 return -ENOMEM; 1269 1270 INIT_HLIST_NODE(&task->entry); 1271 task->opcode = opcode; 1272 task->event = event; 1273 task->state = ICE_AQ_TASK_WAITING; 1274 1275 spin_lock_bh(&pf->aq_wait_lock); 1276 hlist_add_head(&task->entry, &pf->aq_wait_list); 1277 spin_unlock_bh(&pf->aq_wait_lock); 1278 1279 start = jiffies; 1280 1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1282 timeout); 1283 switch (task->state) { 1284 case ICE_AQ_TASK_WAITING: 1285 err = ret < 0 ? ret : -ETIMEDOUT; 1286 break; 1287 case ICE_AQ_TASK_CANCELED: 1288 err = ret < 0 ? ret : -ECANCELED; 1289 break; 1290 case ICE_AQ_TASK_COMPLETE: 1291 err = ret < 0 ? ret : 0; 1292 break; 1293 default: 1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1295 err = -EINVAL; 1296 break; 1297 } 1298 1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1300 jiffies_to_msecs(jiffies - start), 1301 jiffies_to_msecs(timeout), 1302 opcode); 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_del(&task->entry); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 kfree(task); 1308 1309 return err; 1310 } 1311 1312 /** 1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1314 * @pf: pointer to the PF private structure 1315 * @opcode: the opcode of the event 1316 * @event: the event to check 1317 * 1318 * Loops over the current list of pending threads waiting for an AdminQ event. 1319 * For each matching task, copy the contents of the event into the task 1320 * structure and wake up the thread. 1321 * 1322 * If multiple threads wait for the same opcode, they will all be woken up. 1323 * 1324 * Note that event->msg_buf will only be duplicated if the event has a buffer 1325 * with enough space already allocated. Otherwise, only the descriptor and 1326 * message length will be copied. 1327 * 1328 * Returns: true if an event was found, false otherwise 1329 */ 1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1331 struct ice_rq_event_info *event) 1332 { 1333 struct ice_aq_task *task; 1334 bool found = false; 1335 1336 spin_lock_bh(&pf->aq_wait_lock); 1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1338 if (task->state || task->opcode != opcode) 1339 continue; 1340 1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1342 task->event->msg_len = event->msg_len; 1343 1344 /* Only copy the data buffer if a destination was set */ 1345 if (task->event->msg_buf && 1346 task->event->buf_len > event->buf_len) { 1347 memcpy(task->event->msg_buf, event->msg_buf, 1348 event->buf_len); 1349 task->event->buf_len = event->buf_len; 1350 } 1351 1352 task->state = ICE_AQ_TASK_COMPLETE; 1353 found = true; 1354 } 1355 spin_unlock_bh(&pf->aq_wait_lock); 1356 1357 if (found) 1358 wake_up(&pf->aq_wait_queue); 1359 } 1360 1361 /** 1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1363 * @pf: the PF private structure 1364 * 1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1367 */ 1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1369 { 1370 struct ice_aq_task *task; 1371 1372 spin_lock_bh(&pf->aq_wait_lock); 1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1374 task->state = ICE_AQ_TASK_CANCELED; 1375 spin_unlock_bh(&pf->aq_wait_lock); 1376 1377 wake_up(&pf->aq_wait_queue); 1378 } 1379 1380 /** 1381 * __ice_clean_ctrlq - helper function to clean controlq rings 1382 * @pf: ptr to struct ice_pf 1383 * @q_type: specific Control queue type 1384 */ 1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1386 { 1387 struct device *dev = ice_pf_to_dev(pf); 1388 struct ice_rq_event_info event; 1389 struct ice_hw *hw = &pf->hw; 1390 struct ice_ctl_q_info *cq; 1391 u16 pending, i = 0; 1392 const char *qtype; 1393 u32 oldval, val; 1394 1395 /* Do not clean control queue if/when PF reset fails */ 1396 if (test_bit(ICE_RESET_FAILED, pf->state)) 1397 return 0; 1398 1399 switch (q_type) { 1400 case ICE_CTL_Q_ADMIN: 1401 cq = &hw->adminq; 1402 qtype = "Admin"; 1403 break; 1404 case ICE_CTL_Q_SB: 1405 cq = &hw->sbq; 1406 qtype = "Sideband"; 1407 break; 1408 case ICE_CTL_Q_MAILBOX: 1409 cq = &hw->mailboxq; 1410 qtype = "Mailbox"; 1411 /* we are going to try to detect a malicious VF, so set the 1412 * state to begin detection 1413 */ 1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1415 break; 1416 default: 1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1418 return 0; 1419 } 1420 1421 /* check for error indications - PF_xx_AxQLEN register layout for 1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1423 */ 1424 val = rd32(hw, cq->rq.len); 1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1426 PF_FW_ARQLEN_ARQCRIT_M)) { 1427 oldval = val; 1428 if (val & PF_FW_ARQLEN_ARQVFE_M) 1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1430 qtype); 1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1433 qtype); 1434 } 1435 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1437 qtype); 1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1439 PF_FW_ARQLEN_ARQCRIT_M); 1440 if (oldval != val) 1441 wr32(hw, cq->rq.len, val); 1442 } 1443 1444 val = rd32(hw, cq->sq.len); 1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1446 PF_FW_ATQLEN_ATQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ATQLEN_ATQVFE_M) 1449 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1459 PF_FW_ATQLEN_ATQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->sq.len, val); 1462 } 1463 1464 event.buf_len = cq->rq_buf_size; 1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1466 if (!event.msg_buf) 1467 return 0; 1468 1469 do { 1470 u16 opcode; 1471 int ret; 1472 1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1474 if (ret == -EALREADY) 1475 break; 1476 if (ret) { 1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1478 ret); 1479 break; 1480 } 1481 1482 opcode = le16_to_cpu(event.desc.opcode); 1483 1484 /* Notify any thread that might be waiting for this event */ 1485 ice_aq_check_events(pf, opcode, &event); 1486 1487 switch (opcode) { 1488 case ice_aqc_opc_get_link_status: 1489 if (ice_handle_link_event(pf, &event)) 1490 dev_err(dev, "Could not handle link event\n"); 1491 break; 1492 case ice_aqc_opc_event_lan_overflow: 1493 ice_vf_lan_overflow_event(pf, &event); 1494 break; 1495 case ice_mbx_opc_send_msg_to_pf: 1496 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1497 ice_vc_process_vf_msg(pf, &event); 1498 break; 1499 case ice_aqc_opc_fw_logging: 1500 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1501 break; 1502 case ice_aqc_opc_lldp_set_mib_change: 1503 ice_dcb_process_lldp_set_mib_change(pf, &event); 1504 break; 1505 default: 1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1507 qtype, opcode); 1508 break; 1509 } 1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1511 1512 kfree(event.msg_buf); 1513 1514 return pending && (i == ICE_DFLT_IRQ_WORK); 1515 } 1516 1517 /** 1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1519 * @hw: pointer to hardware info 1520 * @cq: control queue information 1521 * 1522 * returns true if there are pending messages in a queue, false if there aren't 1523 */ 1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1525 { 1526 u16 ntu; 1527 1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1529 return cq->rq.next_to_clean != ntu; 1530 } 1531 1532 /** 1533 * ice_clean_adminq_subtask - clean the AdminQ rings 1534 * @pf: board private structure 1535 */ 1536 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1537 { 1538 struct ice_hw *hw = &pf->hw; 1539 1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1541 return; 1542 1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1544 return; 1545 1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1547 1548 /* There might be a situation where new messages arrive to a control 1549 * queue between processing the last message and clearing the 1550 * EVENT_PENDING bit. So before exiting, check queue head again (using 1551 * ice_ctrlq_pending) and process new messages if any. 1552 */ 1553 if (ice_ctrlq_pending(hw, &hw->adminq)) 1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1555 1556 ice_flush(hw); 1557 } 1558 1559 /** 1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1561 * @pf: board private structure 1562 */ 1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1564 { 1565 struct ice_hw *hw = &pf->hw; 1566 1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1568 return; 1569 1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1571 return; 1572 1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1574 1575 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1577 1578 ice_flush(hw); 1579 } 1580 1581 /** 1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1583 * @pf: board private structure 1584 */ 1585 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1586 { 1587 struct ice_hw *hw = &pf->hw; 1588 1589 /* Nothing to do here if sideband queue is not supported */ 1590 if (!ice_is_sbq_supported(hw)) { 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 return; 1593 } 1594 1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1596 return; 1597 1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1599 return; 1600 1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1602 1603 if (ice_ctrlq_pending(hw, &hw->sbq)) 1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1605 1606 ice_flush(hw); 1607 } 1608 1609 /** 1610 * ice_service_task_schedule - schedule the service task to wake up 1611 * @pf: board private structure 1612 * 1613 * If not already scheduled, this puts the task into the work queue. 1614 */ 1615 void ice_service_task_schedule(struct ice_pf *pf) 1616 { 1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1619 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1620 queue_work(ice_wq, &pf->serv_task); 1621 } 1622 1623 /** 1624 * ice_service_task_complete - finish up the service task 1625 * @pf: board private structure 1626 */ 1627 static void ice_service_task_complete(struct ice_pf *pf) 1628 { 1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1630 1631 /* force memory (pf->state) to sync before next service task */ 1632 smp_mb__before_atomic(); 1633 clear_bit(ICE_SERVICE_SCHED, pf->state); 1634 } 1635 1636 /** 1637 * ice_service_task_stop - stop service task and cancel works 1638 * @pf: board private structure 1639 * 1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1641 * 1 otherwise. 1642 */ 1643 static int ice_service_task_stop(struct ice_pf *pf) 1644 { 1645 int ret; 1646 1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1648 1649 if (pf->serv_tmr.function) 1650 del_timer_sync(&pf->serv_tmr); 1651 if (pf->serv_task.func) 1652 cancel_work_sync(&pf->serv_task); 1653 1654 clear_bit(ICE_SERVICE_SCHED, pf->state); 1655 return ret; 1656 } 1657 1658 /** 1659 * ice_service_task_restart - restart service task and schedule works 1660 * @pf: board private structure 1661 * 1662 * This function is needed for suspend and resume works (e.g WoL scenario) 1663 */ 1664 static void ice_service_task_restart(struct ice_pf *pf) 1665 { 1666 clear_bit(ICE_SERVICE_DIS, pf->state); 1667 ice_service_task_schedule(pf); 1668 } 1669 1670 /** 1671 * ice_service_timer - timer callback to schedule service task 1672 * @t: pointer to timer_list 1673 */ 1674 static void ice_service_timer(struct timer_list *t) 1675 { 1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1677 1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1679 ice_service_task_schedule(pf); 1680 } 1681 1682 /** 1683 * ice_handle_mdd_event - handle malicious driver detect event 1684 * @pf: pointer to the PF structure 1685 * 1686 * Called from service task. OICR interrupt handler indicates MDD event. 1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1689 * disable the queue, the PF can be configured to reset the VF using ethtool 1690 * private flag mdd-auto-reset-vf. 1691 */ 1692 static void ice_handle_mdd_event(struct ice_pf *pf) 1693 { 1694 struct device *dev = ice_pf_to_dev(pf); 1695 struct ice_hw *hw = &pf->hw; 1696 struct ice_vf *vf; 1697 unsigned int bkt; 1698 u32 reg; 1699 1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1701 /* Since the VF MDD event logging is rate limited, check if 1702 * there are pending MDD events. 1703 */ 1704 ice_print_vfs_mdd_events(pf); 1705 return; 1706 } 1707 1708 /* find what triggered an MDD event */ 1709 reg = rd32(hw, GL_MDET_TX_PQM); 1710 if (reg & GL_MDET_TX_PQM_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1712 GL_MDET_TX_PQM_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1714 GL_MDET_TX_PQM_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1716 GL_MDET_TX_PQM_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1718 GL_MDET_TX_PQM_QNUM_S); 1719 1720 if (netif_msg_tx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1724 } 1725 1726 reg = rd32(hw, GL_MDET_TX_TCLAN); 1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_PF_NUM_S; 1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1731 GL_MDET_TX_TCLAN_VF_NUM_S; 1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1733 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1735 GL_MDET_TX_TCLAN_QNUM_S); 1736 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1739 event, queue, pf_num, vf_num); 1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1741 } 1742 1743 reg = rd32(hw, GL_MDET_RX); 1744 if (reg & GL_MDET_RX_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1746 GL_MDET_RX_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1748 GL_MDET_RX_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1750 GL_MDET_RX_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1752 GL_MDET_RX_QNUM_S); 1753 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_RX, 0xffffffff); 1758 } 1759 1760 /* check to see if this PF caused an MDD event */ 1761 reg = rd32(hw, PF_MDET_TX_PQM); 1762 if (reg & PF_MDET_TX_PQM_VALID_M) { 1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1764 if (netif_msg_tx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1766 } 1767 1768 reg = rd32(hw, PF_MDET_TX_TCLAN); 1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1773 } 1774 1775 reg = rd32(hw, PF_MDET_RX); 1776 if (reg & PF_MDET_RX_VALID_M) { 1777 wr32(hw, PF_MDET_RX, 0xFFFF); 1778 if (netif_msg_rx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1780 } 1781 1782 /* Check to see if one of the VFs caused an MDD event, and then 1783 * increment counters and set print pending 1784 */ 1785 mutex_lock(&pf->vfs.table_lock); 1786 ice_for_each_vf(pf, bkt, vf) { 1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1788 if (reg & VP_MDET_TX_PQM_VALID_M) { 1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1808 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1810 vf->mdd_tx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_tx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1814 vf->vf_id); 1815 } 1816 1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1818 if (reg & VP_MDET_RX_VALID_M) { 1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1820 vf->mdd_rx_events.count++; 1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1822 if (netif_msg_rx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1824 vf->vf_id); 1825 1826 /* Since the queue is disabled on VF Rx MDD events, the 1827 * PF can be configured to reset the VF through ethtool 1828 * private flag mdd-auto-reset-vf. 1829 */ 1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1831 /* VF MDD event counters will be cleared by 1832 * reset, so print the event prior to reset. 1833 */ 1834 ice_print_vf_rx_mdd_event(vf); 1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1836 } 1837 } 1838 } 1839 mutex_unlock(&pf->vfs.table_lock); 1840 1841 ice_print_vfs_mdd_events(pf); 1842 } 1843 1844 /** 1845 * ice_force_phys_link_state - Force the physical link state 1846 * @vsi: VSI to force the physical link state to up/down 1847 * @link_up: true/false indicates to set the physical link to up/down 1848 * 1849 * Force the physical link state by getting the current PHY capabilities from 1850 * hardware and setting the PHY config based on the determined capabilities. If 1851 * link changes a link event will be triggered because both the Enable Automatic 1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1853 * 1854 * Returns 0 on success, negative on failure 1855 */ 1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1857 { 1858 struct ice_aqc_get_phy_caps_data *pcaps; 1859 struct ice_aqc_set_phy_cfg_data *cfg; 1860 struct ice_port_info *pi; 1861 struct device *dev; 1862 int retcode; 1863 1864 if (!vsi || !vsi->port_info || !vsi->back) 1865 return -EINVAL; 1866 if (vsi->type != ICE_VSI_PF) 1867 return 0; 1868 1869 dev = ice_pf_to_dev(vsi->back); 1870 1871 pi = vsi->port_info; 1872 1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1874 if (!pcaps) 1875 return -ENOMEM; 1876 1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1878 NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 goto out; 1884 } 1885 1886 /* No change in link */ 1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1889 goto out; 1890 1891 /* Use the current user PHY configuration. The current user PHY 1892 * configuration is initialized during probe from PHY capabilities 1893 * software mode, and updated on set PHY configuration. 1894 */ 1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1896 if (!cfg) { 1897 retcode = -ENOMEM; 1898 goto out; 1899 } 1900 1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1902 if (link_up) 1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1904 else 1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1906 1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1908 if (retcode) { 1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1910 vsi->vsi_num, retcode); 1911 retcode = -EIO; 1912 } 1913 1914 kfree(cfg); 1915 out: 1916 kfree(pcaps); 1917 return retcode; 1918 } 1919 1920 /** 1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1922 * @pi: port info structure 1923 * 1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1925 */ 1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1927 { 1928 struct ice_aqc_get_phy_caps_data *pcaps; 1929 struct ice_pf *pf = pi->hw->back; 1930 int err; 1931 1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1933 if (!pcaps) 1934 return -ENOMEM; 1935 1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1937 pcaps, NULL); 1938 1939 if (err) { 1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1941 goto out; 1942 } 1943 1944 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1945 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1946 1947 out: 1948 kfree(pcaps); 1949 return err; 1950 } 1951 1952 /** 1953 * ice_init_link_dflt_override - Initialize link default override 1954 * @pi: port info structure 1955 * 1956 * Initialize link default override and PHY total port shutdown during probe 1957 */ 1958 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1959 { 1960 struct ice_link_default_override_tlv *ldo; 1961 struct ice_pf *pf = pi->hw->back; 1962 1963 ldo = &pf->link_dflt_override; 1964 if (ice_get_link_default_override(ldo, pi)) 1965 return; 1966 1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1968 return; 1969 1970 /* Enable Total Port Shutdown (override/replace link-down-on-close 1971 * ethtool private flag) for ports with Port Disable bit set. 1972 */ 1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1975 } 1976 1977 /** 1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1979 * @pi: port info structure 1980 * 1981 * If default override is enabled, initialize the user PHY cfg speed and FEC 1982 * settings using the default override mask from the NVM. 1983 * 1984 * The PHY should only be configured with the default override settings the 1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1986 * is used to indicate that the user PHY cfg default override is initialized 1987 * and the PHY has not been configured with the default override settings. The 1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1989 * configured. 1990 * 1991 * This function should be called only if the FW doesn't support default 1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1993 */ 1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_aqc_set_phy_cfg_data *cfg; 1998 struct ice_phy_info *phy = &pi->phy; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 2003 /* If link default override is enabled, use to mask NVM PHY capabilities 2004 * for speed and FEC default configuration. 2005 */ 2006 cfg = &phy->curr_user_phy_cfg; 2007 2008 if (ldo->phy_type_low || ldo->phy_type_high) { 2009 cfg->phy_type_low = pf->nvm_phy_type_lo & 2010 cpu_to_le64(ldo->phy_type_low); 2011 cfg->phy_type_high = pf->nvm_phy_type_hi & 2012 cpu_to_le64(ldo->phy_type_high); 2013 } 2014 cfg->link_fec_opt = ldo->fec_options; 2015 phy->curr_user_fec_req = ICE_FEC_AUTO; 2016 2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2018 } 2019 2020 /** 2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2022 * @pi: port info structure 2023 * 2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2025 * mode to default. The PHY defaults are from get PHY capabilities topology 2026 * with media so call when media is first available. An error is returned if 2027 * called when media is not available. The PHY initialization completed state is 2028 * set here. 2029 * 2030 * These configurations are used when setting PHY 2031 * configuration. The user PHY configuration is updated on set PHY 2032 * configuration. Returns 0 on success, negative on failure 2033 */ 2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2035 { 2036 struct ice_aqc_get_phy_caps_data *pcaps; 2037 struct ice_phy_info *phy = &pi->phy; 2038 struct ice_pf *pf = pi->hw->back; 2039 int err; 2040 2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2042 return -EIO; 2043 2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2045 if (!pcaps) 2046 return -ENOMEM; 2047 2048 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2050 pcaps, NULL); 2051 else 2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2053 pcaps, NULL); 2054 if (err) { 2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2056 goto err_out; 2057 } 2058 2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2060 2061 /* check if lenient mode is supported and enabled */ 2062 if (ice_fw_supports_link_override(pi->hw) && 2063 !(pcaps->module_compliance_enforcement & 2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2066 2067 /* if the FW supports default PHY configuration mode, then the driver 2068 * does not have to apply link override settings. If not, 2069 * initialize user PHY configuration with link override values 2070 */ 2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2073 ice_init_phy_cfg_dflt_override(pi); 2074 goto out; 2075 } 2076 } 2077 2078 /* if link default override is not enabled, set user flow control and 2079 * FEC settings based on what get_phy_caps returned 2080 */ 2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2082 pcaps->link_fec_options); 2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2084 2085 out: 2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2088 err_out: 2089 kfree(pcaps); 2090 return err; 2091 } 2092 2093 /** 2094 * ice_configure_phy - configure PHY 2095 * @vsi: VSI of PHY 2096 * 2097 * Set the PHY configuration. If the current PHY configuration is the same as 2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2099 * configure the based get PHY capabilities for topology with media. 2100 */ 2101 static int ice_configure_phy(struct ice_vsi *vsi) 2102 { 2103 struct device *dev = ice_pf_to_dev(vsi->back); 2104 struct ice_port_info *pi = vsi->port_info; 2105 struct ice_aqc_get_phy_caps_data *pcaps; 2106 struct ice_aqc_set_phy_cfg_data *cfg; 2107 struct ice_phy_info *phy = &pi->phy; 2108 struct ice_pf *pf = vsi->back; 2109 int err; 2110 2111 /* Ensure we have media as we cannot configure a medialess port */ 2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2113 return -EPERM; 2114 2115 ice_print_topo_conflict(vsi); 2116 2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2119 return -EPERM; 2120 2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2122 return ice_force_phys_link_state(vsi, true); 2123 2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2125 if (!pcaps) 2126 return -ENOMEM; 2127 2128 /* Get current PHY config */ 2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2130 NULL); 2131 if (err) { 2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2133 vsi->vsi_num, err); 2134 goto done; 2135 } 2136 2137 /* If PHY enable link is configured and configuration has not changed, 2138 * there's nothing to do 2139 */ 2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2142 goto done; 2143 2144 /* Use PHY topology as baseline for configuration */ 2145 memset(pcaps, 0, sizeof(*pcaps)); 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2154 vsi->vsi_num, err); 2155 goto done; 2156 } 2157 2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2159 if (!cfg) { 2160 err = -ENOMEM; 2161 goto done; 2162 } 2163 2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2165 2166 /* Speed - If default override pending, use curr_user_phy_cfg set in 2167 * ice_init_phy_user_cfg_ldo. 2168 */ 2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2170 vsi->back->state)) { 2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2173 } else { 2174 u64 phy_low = 0, phy_high = 0; 2175 2176 ice_update_phy_type(&phy_low, &phy_high, 2177 pi->phy.curr_user_speed_req); 2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2179 cfg->phy_type_high = pcaps->phy_type_high & 2180 cpu_to_le64(phy_high); 2181 } 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2185 cfg->phy_type_low = pcaps->phy_type_low; 2186 cfg->phy_type_high = pcaps->phy_type_high; 2187 } 2188 2189 /* FEC */ 2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2191 2192 /* Can't provide what was requested; use PHY capabilities */ 2193 if (cfg->link_fec_opt != 2194 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2196 cfg->link_fec_opt = pcaps->link_fec_options; 2197 } 2198 2199 /* Flow Control - always supported; no need to check against 2200 * capabilities 2201 */ 2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2203 2204 /* Enable link and link update */ 2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2206 2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2208 if (err) 2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2210 vsi->vsi_num, err); 2211 2212 kfree(cfg); 2213 done: 2214 kfree(pcaps); 2215 return err; 2216 } 2217 2218 /** 2219 * ice_check_media_subtask - Check for media 2220 * @pf: pointer to PF struct 2221 * 2222 * If media is available, then initialize PHY user configuration if it is not 2223 * been, and configure the PHY if the interface is up. 2224 */ 2225 static void ice_check_media_subtask(struct ice_pf *pf) 2226 { 2227 struct ice_port_info *pi; 2228 struct ice_vsi *vsi; 2229 int err; 2230 2231 /* No need to check for media if it's already present */ 2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2233 return; 2234 2235 vsi = ice_get_main_vsi(pf); 2236 if (!vsi) 2237 return; 2238 2239 /* Refresh link info and check if media is present */ 2240 pi = vsi->port_info; 2241 err = ice_update_link_info(pi); 2242 if (err) 2243 return; 2244 2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2246 2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2249 ice_init_phy_user_cfg(pi); 2250 2251 /* PHY settings are reset on media insertion, reconfigure 2252 * PHY to preserve settings. 2253 */ 2254 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2256 return; 2257 2258 err = ice_configure_phy(vsi); 2259 if (!err) 2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2261 2262 /* A Link Status Event will be generated; the event handler 2263 * will complete bringing the interface up 2264 */ 2265 } 2266 } 2267 2268 /** 2269 * ice_service_task - manage and run subtasks 2270 * @work: pointer to work_struct contained by the PF struct 2271 */ 2272 static void ice_service_task(struct work_struct *work) 2273 { 2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2275 unsigned long start_time = jiffies; 2276 2277 /* subtasks */ 2278 2279 /* process reset requests first */ 2280 ice_reset_subtask(pf); 2281 2282 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2283 if (ice_is_reset_in_progress(pf->state) || 2284 test_bit(ICE_SUSPENDED, pf->state) || 2285 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2286 ice_service_task_complete(pf); 2287 return; 2288 } 2289 2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2291 struct iidc_event *event; 2292 2293 event = kzalloc(sizeof(*event), GFP_KERNEL); 2294 if (event) { 2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2296 /* report the entire OICR value to AUX driver */ 2297 swap(event->reg, pf->oicr_err_reg); 2298 ice_send_event_to_aux(pf, event); 2299 kfree(event); 2300 } 2301 } 2302 2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2304 /* Plug aux device per request */ 2305 ice_plug_aux_dev(pf); 2306 2307 /* Mark plugging as done but check whether unplug was 2308 * requested during ice_plug_aux_dev() call 2309 * (e.g. from ice_clear_rdma_cap()) and if so then 2310 * plug aux device. 2311 */ 2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2313 ice_unplug_aux_dev(pf); 2314 } 2315 2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2317 struct iidc_event *event; 2318 2319 event = kzalloc(sizeof(*event), GFP_KERNEL); 2320 if (event) { 2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2322 ice_send_event_to_aux(pf, event); 2323 kfree(event); 2324 } 2325 } 2326 2327 ice_clean_adminq_subtask(pf); 2328 ice_check_media_subtask(pf); 2329 ice_check_for_hang_subtask(pf); 2330 ice_sync_fltr_subtask(pf); 2331 ice_handle_mdd_event(pf); 2332 ice_watchdog_subtask(pf); 2333 2334 if (ice_is_safe_mode(pf)) { 2335 ice_service_task_complete(pf); 2336 return; 2337 } 2338 2339 ice_process_vflr_event(pf); 2340 ice_clean_mailboxq_subtask(pf); 2341 ice_clean_sbq_subtask(pf); 2342 ice_sync_arfs_fltrs(pf); 2343 ice_flush_fdir_ctx(pf); 2344 2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2346 ice_service_task_complete(pf); 2347 2348 /* If the tasks have taken longer than one service timer period 2349 * or there is more work to be done, reset the service timer to 2350 * schedule the service task now. 2351 */ 2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2359 mod_timer(&pf->serv_tmr, jiffies); 2360 } 2361 2362 /** 2363 * ice_set_ctrlq_len - helper function to set controlq length 2364 * @hw: pointer to the HW instance 2365 */ 2366 static void ice_set_ctrlq_len(struct ice_hw *hw) 2367 { 2368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2380 } 2381 2382 /** 2383 * ice_schedule_reset - schedule a reset 2384 * @pf: board private structure 2385 * @reset: reset being requested 2386 */ 2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2388 { 2389 struct device *dev = ice_pf_to_dev(pf); 2390 2391 /* bail out if earlier reset has failed */ 2392 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2393 dev_dbg(dev, "earlier reset has failed\n"); 2394 return -EIO; 2395 } 2396 /* bail if reset/recovery already in progress */ 2397 if (ice_is_reset_in_progress(pf->state)) { 2398 dev_dbg(dev, "Reset already in progress\n"); 2399 return -EBUSY; 2400 } 2401 2402 ice_unplug_aux_dev(pf); 2403 2404 switch (reset) { 2405 case ICE_RESET_PFR: 2406 set_bit(ICE_PFR_REQ, pf->state); 2407 break; 2408 case ICE_RESET_CORER: 2409 set_bit(ICE_CORER_REQ, pf->state); 2410 break; 2411 case ICE_RESET_GLOBR: 2412 set_bit(ICE_GLOBR_REQ, pf->state); 2413 break; 2414 default: 2415 return -EINVAL; 2416 } 2417 2418 ice_service_task_schedule(pf); 2419 return 0; 2420 } 2421 2422 /** 2423 * ice_irq_affinity_notify - Callback for affinity changes 2424 * @notify: context as to what irq was changed 2425 * @mask: the new affinity mask 2426 * 2427 * This is a callback function used by the irq_set_affinity_notifier function 2428 * so that we may register to receive changes to the irq affinity masks. 2429 */ 2430 static void 2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2432 const cpumask_t *mask) 2433 { 2434 struct ice_q_vector *q_vector = 2435 container_of(notify, struct ice_q_vector, affinity_notify); 2436 2437 cpumask_copy(&q_vector->affinity_mask, mask); 2438 } 2439 2440 /** 2441 * ice_irq_affinity_release - Callback for affinity notifier release 2442 * @ref: internal core kernel usage 2443 * 2444 * This is a callback function used by the irq_set_affinity_notifier function 2445 * to inform the current notification subscriber that they will no longer 2446 * receive notifications. 2447 */ 2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2449 2450 /** 2451 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2452 * @vsi: the VSI being configured 2453 */ 2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2455 { 2456 struct ice_hw *hw = &vsi->back->hw; 2457 int i; 2458 2459 ice_for_each_q_vector(vsi, i) 2460 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2461 2462 ice_flush(hw); 2463 return 0; 2464 } 2465 2466 /** 2467 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2468 * @vsi: the VSI being configured 2469 * @basename: name for the vector 2470 */ 2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2472 { 2473 int q_vectors = vsi->num_q_vectors; 2474 struct ice_pf *pf = vsi->back; 2475 int base = vsi->base_vector; 2476 struct device *dev; 2477 int rx_int_idx = 0; 2478 int tx_int_idx = 0; 2479 int vector, err; 2480 int irq_num; 2481 2482 dev = ice_pf_to_dev(pf); 2483 for (vector = 0; vector < q_vectors; vector++) { 2484 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2485 2486 irq_num = pf->msix_entries[base + vector].vector; 2487 2488 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2489 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2490 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2491 tx_int_idx++; 2492 } else if (q_vector->rx.rx_ring) { 2493 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2494 "%s-%s-%d", basename, "rx", rx_int_idx++); 2495 } else if (q_vector->tx.tx_ring) { 2496 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2497 "%s-%s-%d", basename, "tx", tx_int_idx++); 2498 } else { 2499 /* skip this unused q_vector */ 2500 continue; 2501 } 2502 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2503 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2504 IRQF_SHARED, q_vector->name, 2505 q_vector); 2506 else 2507 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2508 0, q_vector->name, q_vector); 2509 if (err) { 2510 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2511 err); 2512 goto free_q_irqs; 2513 } 2514 2515 /* register for affinity change notifications */ 2516 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2517 struct irq_affinity_notify *affinity_notify; 2518 2519 affinity_notify = &q_vector->affinity_notify; 2520 affinity_notify->notify = ice_irq_affinity_notify; 2521 affinity_notify->release = ice_irq_affinity_release; 2522 irq_set_affinity_notifier(irq_num, affinity_notify); 2523 } 2524 2525 /* assign the mask for this irq */ 2526 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2527 } 2528 2529 err = ice_set_cpu_rx_rmap(vsi); 2530 if (err) { 2531 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2532 vsi->vsi_num, ERR_PTR(err)); 2533 goto free_q_irqs; 2534 } 2535 2536 vsi->irqs_ready = true; 2537 return 0; 2538 2539 free_q_irqs: 2540 while (vector) { 2541 vector--; 2542 irq_num = pf->msix_entries[base + vector].vector; 2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2544 irq_set_affinity_notifier(irq_num, NULL); 2545 irq_set_affinity_hint(irq_num, NULL); 2546 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2547 } 2548 return err; 2549 } 2550 2551 /** 2552 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2553 * @vsi: VSI to setup Tx rings used by XDP 2554 * 2555 * Return 0 on success and negative value on error 2556 */ 2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2558 { 2559 struct device *dev = ice_pf_to_dev(vsi->back); 2560 struct ice_tx_desc *tx_desc; 2561 int i, j; 2562 2563 ice_for_each_xdp_txq(vsi, i) { 2564 u16 xdp_q_idx = vsi->alloc_txq + i; 2565 struct ice_tx_ring *xdp_ring; 2566 2567 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2568 2569 if (!xdp_ring) 2570 goto free_xdp_rings; 2571 2572 xdp_ring->q_index = xdp_q_idx; 2573 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2574 xdp_ring->vsi = vsi; 2575 xdp_ring->netdev = NULL; 2576 xdp_ring->dev = dev; 2577 xdp_ring->count = vsi->num_tx_desc; 2578 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2579 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2580 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2581 if (ice_setup_tx_ring(xdp_ring)) 2582 goto free_xdp_rings; 2583 ice_set_ring_xdp(xdp_ring); 2584 spin_lock_init(&xdp_ring->tx_lock); 2585 for (j = 0; j < xdp_ring->count; j++) { 2586 tx_desc = ICE_TX_DESC(xdp_ring, j); 2587 tx_desc->cmd_type_offset_bsz = 0; 2588 } 2589 } 2590 2591 return 0; 2592 2593 free_xdp_rings: 2594 for (; i >= 0; i--) 2595 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2596 ice_free_tx_ring(vsi->xdp_rings[i]); 2597 return -ENOMEM; 2598 } 2599 2600 /** 2601 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2602 * @vsi: VSI to set the bpf prog on 2603 * @prog: the bpf prog pointer 2604 */ 2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2606 { 2607 struct bpf_prog *old_prog; 2608 int i; 2609 2610 old_prog = xchg(&vsi->xdp_prog, prog); 2611 if (old_prog) 2612 bpf_prog_put(old_prog); 2613 2614 ice_for_each_rxq(vsi, i) 2615 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2616 } 2617 2618 /** 2619 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2620 * @vsi: VSI to bring up Tx rings used by XDP 2621 * @prog: bpf program that will be assigned to VSI 2622 * 2623 * Return 0 on success and negative value on error 2624 */ 2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2626 { 2627 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2628 int xdp_rings_rem = vsi->num_xdp_txq; 2629 struct ice_pf *pf = vsi->back; 2630 struct ice_qs_cfg xdp_qs_cfg = { 2631 .qs_mutex = &pf->avail_q_mutex, 2632 .pf_map = pf->avail_txqs, 2633 .pf_map_size = pf->max_pf_txqs, 2634 .q_count = vsi->num_xdp_txq, 2635 .scatter_count = ICE_MAX_SCATTER_TXQS, 2636 .vsi_map = vsi->txq_map, 2637 .vsi_map_offset = vsi->alloc_txq, 2638 .mapping_mode = ICE_VSI_MAP_CONTIG 2639 }; 2640 struct device *dev; 2641 int i, v_idx; 2642 int status; 2643 2644 dev = ice_pf_to_dev(pf); 2645 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2646 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2647 if (!vsi->xdp_rings) 2648 return -ENOMEM; 2649 2650 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2651 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2652 goto err_map_xdp; 2653 2654 if (static_key_enabled(&ice_xdp_locking_key)) 2655 netdev_warn(vsi->netdev, 2656 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2657 2658 if (ice_xdp_alloc_setup_rings(vsi)) 2659 goto clear_xdp_rings; 2660 2661 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2662 ice_for_each_q_vector(vsi, v_idx) { 2663 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2664 int xdp_rings_per_v, q_id, q_base; 2665 2666 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2667 vsi->num_q_vectors - v_idx); 2668 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2669 2670 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2671 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2672 2673 xdp_ring->q_vector = q_vector; 2674 xdp_ring->next = q_vector->tx.tx_ring; 2675 q_vector->tx.tx_ring = xdp_ring; 2676 } 2677 xdp_rings_rem -= xdp_rings_per_v; 2678 } 2679 2680 ice_for_each_rxq(vsi, i) { 2681 if (static_key_enabled(&ice_xdp_locking_key)) { 2682 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2683 } else { 2684 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2685 struct ice_tx_ring *ring; 2686 2687 ice_for_each_tx_ring(ring, q_vector->tx) { 2688 if (ice_ring_is_xdp(ring)) { 2689 vsi->rx_rings[i]->xdp_ring = ring; 2690 break; 2691 } 2692 } 2693 } 2694 ice_tx_xsk_pool(vsi, i); 2695 } 2696 2697 /* omit the scheduler update if in reset path; XDP queues will be 2698 * taken into account at the end of ice_vsi_rebuild, where 2699 * ice_cfg_vsi_lan is being called 2700 */ 2701 if (ice_is_reset_in_progress(pf->state)) 2702 return 0; 2703 2704 /* tell the Tx scheduler that right now we have 2705 * additional queues 2706 */ 2707 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2708 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2709 2710 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2711 max_txqs); 2712 if (status) { 2713 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2714 status); 2715 goto clear_xdp_rings; 2716 } 2717 2718 /* assign the prog only when it's not already present on VSI; 2719 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2720 * VSI rebuild that happens under ethtool -L can expose us to 2721 * the bpf_prog refcount issues as we would be swapping same 2722 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2723 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2724 * this is not harmful as dev_xdp_install bumps the refcount 2725 * before calling the op exposed by the driver; 2726 */ 2727 if (!ice_is_xdp_ena_vsi(vsi)) 2728 ice_vsi_assign_bpf_prog(vsi, prog); 2729 2730 return 0; 2731 clear_xdp_rings: 2732 ice_for_each_xdp_txq(vsi, i) 2733 if (vsi->xdp_rings[i]) { 2734 kfree_rcu(vsi->xdp_rings[i], rcu); 2735 vsi->xdp_rings[i] = NULL; 2736 } 2737 2738 err_map_xdp: 2739 mutex_lock(&pf->avail_q_mutex); 2740 ice_for_each_xdp_txq(vsi, i) { 2741 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2742 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2743 } 2744 mutex_unlock(&pf->avail_q_mutex); 2745 2746 devm_kfree(dev, vsi->xdp_rings); 2747 return -ENOMEM; 2748 } 2749 2750 /** 2751 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2752 * @vsi: VSI to remove XDP rings 2753 * 2754 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2755 * resources 2756 */ 2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2758 { 2759 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2760 struct ice_pf *pf = vsi->back; 2761 int i, v_idx; 2762 2763 /* q_vectors are freed in reset path so there's no point in detaching 2764 * rings; in case of rebuild being triggered not from reset bits 2765 * in pf->state won't be set, so additionally check first q_vector 2766 * against NULL 2767 */ 2768 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2769 goto free_qmap; 2770 2771 ice_for_each_q_vector(vsi, v_idx) { 2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2773 struct ice_tx_ring *ring; 2774 2775 ice_for_each_tx_ring(ring, q_vector->tx) 2776 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2777 break; 2778 2779 /* restore the value of last node prior to XDP setup */ 2780 q_vector->tx.tx_ring = ring; 2781 } 2782 2783 free_qmap: 2784 mutex_lock(&pf->avail_q_mutex); 2785 ice_for_each_xdp_txq(vsi, i) { 2786 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2787 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2788 } 2789 mutex_unlock(&pf->avail_q_mutex); 2790 2791 ice_for_each_xdp_txq(vsi, i) 2792 if (vsi->xdp_rings[i]) { 2793 if (vsi->xdp_rings[i]->desc) { 2794 synchronize_rcu(); 2795 ice_free_tx_ring(vsi->xdp_rings[i]); 2796 } 2797 kfree_rcu(vsi->xdp_rings[i], rcu); 2798 vsi->xdp_rings[i] = NULL; 2799 } 2800 2801 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2802 vsi->xdp_rings = NULL; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 static_branch_dec(&ice_xdp_locking_key); 2806 2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2808 return 0; 2809 2810 ice_vsi_assign_bpf_prog(vsi, NULL); 2811 2812 /* notify Tx scheduler that we destroyed XDP queues and bring 2813 * back the old number of child nodes 2814 */ 2815 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2816 max_txqs[i] = vsi->num_txq; 2817 2818 /* change number of XDP Tx queues to 0 */ 2819 vsi->num_xdp_txq = 0; 2820 2821 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2822 max_txqs); 2823 } 2824 2825 /** 2826 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2827 * @vsi: VSI to schedule napi on 2828 */ 2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2830 { 2831 int i; 2832 2833 ice_for_each_rxq(vsi, i) { 2834 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2835 2836 if (rx_ring->xsk_pool) 2837 napi_schedule(&rx_ring->q_vector->napi); 2838 } 2839 } 2840 2841 /** 2842 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2843 * @vsi: VSI to determine the count of XDP Tx qs 2844 * 2845 * returns 0 if Tx qs count is higher than at least half of CPU count, 2846 * -ENOMEM otherwise 2847 */ 2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2849 { 2850 u16 avail = ice_get_avail_txq_count(vsi->back); 2851 u16 cpus = num_possible_cpus(); 2852 2853 if (avail < cpus / 2) 2854 return -ENOMEM; 2855 2856 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2857 2858 if (vsi->num_xdp_txq < cpus) 2859 static_branch_inc(&ice_xdp_locking_key); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2866 * @vsi: VSI to setup XDP for 2867 * @prog: XDP program 2868 * @extack: netlink extended ack 2869 */ 2870 static int 2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2872 struct netlink_ext_ack *extack) 2873 { 2874 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2875 bool if_running = netif_running(vsi->netdev); 2876 int ret = 0, xdp_ring_err = 0; 2877 2878 if (frame_size > vsi->rx_buf_len) { 2879 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2880 return -EOPNOTSUPP; 2881 } 2882 2883 /* need to stop netdev while setting up the program for Rx rings */ 2884 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2885 ret = ice_down(vsi); 2886 if (ret) { 2887 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2888 return ret; 2889 } 2890 } 2891 2892 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2893 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2894 if (xdp_ring_err) { 2895 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2896 } else { 2897 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2898 if (xdp_ring_err) 2899 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2900 } 2901 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2902 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2903 if (xdp_ring_err) 2904 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2905 } else { 2906 /* safe to call even when prog == vsi->xdp_prog as 2907 * dev_xdp_install in net/core/dev.c incremented prog's 2908 * refcount so corresponding bpf_prog_put won't cause 2909 * underflow 2910 */ 2911 ice_vsi_assign_bpf_prog(vsi, prog); 2912 } 2913 2914 if (if_running) 2915 ret = ice_up(vsi); 2916 2917 if (!ret && prog) 2918 ice_vsi_rx_napi_schedule(vsi); 2919 2920 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2921 } 2922 2923 /** 2924 * ice_xdp_safe_mode - XDP handler for safe mode 2925 * @dev: netdevice 2926 * @xdp: XDP command 2927 */ 2928 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2929 struct netdev_bpf *xdp) 2930 { 2931 NL_SET_ERR_MSG_MOD(xdp->extack, 2932 "Please provide working DDP firmware package in order to use XDP\n" 2933 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2934 return -EOPNOTSUPP; 2935 } 2936 2937 /** 2938 * ice_xdp - implements XDP handler 2939 * @dev: netdevice 2940 * @xdp: XDP command 2941 */ 2942 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2943 { 2944 struct ice_netdev_priv *np = netdev_priv(dev); 2945 struct ice_vsi *vsi = np->vsi; 2946 2947 if (vsi->type != ICE_VSI_PF) { 2948 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2949 return -EINVAL; 2950 } 2951 2952 switch (xdp->command) { 2953 case XDP_SETUP_PROG: 2954 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2955 case XDP_SETUP_XSK_POOL: 2956 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2957 xdp->xsk.queue_id); 2958 default: 2959 return -EINVAL; 2960 } 2961 } 2962 2963 /** 2964 * ice_ena_misc_vector - enable the non-queue interrupts 2965 * @pf: board private structure 2966 */ 2967 static void ice_ena_misc_vector(struct ice_pf *pf) 2968 { 2969 struct ice_hw *hw = &pf->hw; 2970 u32 val; 2971 2972 /* Disable anti-spoof detection interrupt to prevent spurious event 2973 * interrupts during a function reset. Anti-spoof functionally is 2974 * still supported. 2975 */ 2976 val = rd32(hw, GL_MDCK_TX_TDPU); 2977 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2978 wr32(hw, GL_MDCK_TX_TDPU, val); 2979 2980 /* clear things first */ 2981 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2982 rd32(hw, PFINT_OICR); /* read to clear */ 2983 2984 val = (PFINT_OICR_ECC_ERR_M | 2985 PFINT_OICR_MAL_DETECT_M | 2986 PFINT_OICR_GRST_M | 2987 PFINT_OICR_PCI_EXCEPTION_M | 2988 PFINT_OICR_VFLR_M | 2989 PFINT_OICR_HMC_ERR_M | 2990 PFINT_OICR_PE_PUSH_M | 2991 PFINT_OICR_PE_CRITERR_M); 2992 2993 wr32(hw, PFINT_OICR_ENA, val); 2994 2995 /* SW_ITR_IDX = 0, but don't change INTENA */ 2996 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2997 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2998 } 2999 3000 /** 3001 * ice_misc_intr - misc interrupt handler 3002 * @irq: interrupt number 3003 * @data: pointer to a q_vector 3004 */ 3005 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3006 { 3007 struct ice_pf *pf = (struct ice_pf *)data; 3008 struct ice_hw *hw = &pf->hw; 3009 irqreturn_t ret = IRQ_NONE; 3010 struct device *dev; 3011 u32 oicr, ena_mask; 3012 3013 dev = ice_pf_to_dev(pf); 3014 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3015 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3016 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3017 3018 oicr = rd32(hw, PFINT_OICR); 3019 ena_mask = rd32(hw, PFINT_OICR_ENA); 3020 3021 if (oicr & PFINT_OICR_SWINT_M) { 3022 ena_mask &= ~PFINT_OICR_SWINT_M; 3023 pf->sw_int_count++; 3024 } 3025 3026 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3027 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3028 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3029 } 3030 if (oicr & PFINT_OICR_VFLR_M) { 3031 /* disable any further VFLR event notifications */ 3032 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3033 u32 reg = rd32(hw, PFINT_OICR_ENA); 3034 3035 reg &= ~PFINT_OICR_VFLR_M; 3036 wr32(hw, PFINT_OICR_ENA, reg); 3037 } else { 3038 ena_mask &= ~PFINT_OICR_VFLR_M; 3039 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3040 } 3041 } 3042 3043 if (oicr & PFINT_OICR_GRST_M) { 3044 u32 reset; 3045 3046 /* we have a reset warning */ 3047 ena_mask &= ~PFINT_OICR_GRST_M; 3048 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3049 GLGEN_RSTAT_RESET_TYPE_S; 3050 3051 if (reset == ICE_RESET_CORER) 3052 pf->corer_count++; 3053 else if (reset == ICE_RESET_GLOBR) 3054 pf->globr_count++; 3055 else if (reset == ICE_RESET_EMPR) 3056 pf->empr_count++; 3057 else 3058 dev_dbg(dev, "Invalid reset type %d\n", reset); 3059 3060 /* If a reset cycle isn't already in progress, we set a bit in 3061 * pf->state so that the service task can start a reset/rebuild. 3062 */ 3063 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3064 if (reset == ICE_RESET_CORER) 3065 set_bit(ICE_CORER_RECV, pf->state); 3066 else if (reset == ICE_RESET_GLOBR) 3067 set_bit(ICE_GLOBR_RECV, pf->state); 3068 else 3069 set_bit(ICE_EMPR_RECV, pf->state); 3070 3071 /* There are couple of different bits at play here. 3072 * hw->reset_ongoing indicates whether the hardware is 3073 * in reset. This is set to true when a reset interrupt 3074 * is received and set back to false after the driver 3075 * has determined that the hardware is out of reset. 3076 * 3077 * ICE_RESET_OICR_RECV in pf->state indicates 3078 * that a post reset rebuild is required before the 3079 * driver is operational again. This is set above. 3080 * 3081 * As this is the start of the reset/rebuild cycle, set 3082 * both to indicate that. 3083 */ 3084 hw->reset_ongoing = true; 3085 } 3086 } 3087 3088 if (oicr & PFINT_OICR_TSYN_TX_M) { 3089 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3090 ice_ptp_process_ts(pf); 3091 } 3092 3093 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3094 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3095 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3096 3097 /* Save EVENTs from GTSYN register */ 3098 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3099 GLTSYN_STAT_EVENT1_M | 3100 GLTSYN_STAT_EVENT2_M); 3101 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3102 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3103 } 3104 3105 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3106 if (oicr & ICE_AUX_CRIT_ERR) { 3107 pf->oicr_err_reg |= oicr; 3108 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3109 ena_mask &= ~ICE_AUX_CRIT_ERR; 3110 } 3111 3112 /* Report any remaining unexpected interrupts */ 3113 oicr &= ena_mask; 3114 if (oicr) { 3115 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3116 /* If a critical error is pending there is no choice but to 3117 * reset the device. 3118 */ 3119 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3120 PFINT_OICR_ECC_ERR_M)) { 3121 set_bit(ICE_PFR_REQ, pf->state); 3122 ice_service_task_schedule(pf); 3123 } 3124 } 3125 ret = IRQ_HANDLED; 3126 3127 ice_service_task_schedule(pf); 3128 ice_irq_dynamic_ena(hw, NULL, NULL); 3129 3130 return ret; 3131 } 3132 3133 /** 3134 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3135 * @hw: pointer to HW structure 3136 */ 3137 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3138 { 3139 /* disable Admin queue Interrupt causes */ 3140 wr32(hw, PFINT_FW_CTL, 3141 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3142 3143 /* disable Mailbox queue Interrupt causes */ 3144 wr32(hw, PFINT_MBX_CTL, 3145 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3146 3147 wr32(hw, PFINT_SB_CTL, 3148 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3149 3150 /* disable Control queue Interrupt causes */ 3151 wr32(hw, PFINT_OICR_CTL, 3152 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3153 3154 ice_flush(hw); 3155 } 3156 3157 /** 3158 * ice_free_irq_msix_misc - Unroll misc vector setup 3159 * @pf: board private structure 3160 */ 3161 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3162 { 3163 struct ice_hw *hw = &pf->hw; 3164 3165 ice_dis_ctrlq_interrupts(hw); 3166 3167 /* disable OICR interrupt */ 3168 wr32(hw, PFINT_OICR_ENA, 0); 3169 ice_flush(hw); 3170 3171 if (pf->msix_entries) { 3172 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3173 devm_free_irq(ice_pf_to_dev(pf), 3174 pf->msix_entries[pf->oicr_idx].vector, pf); 3175 } 3176 3177 pf->num_avail_sw_msix += 1; 3178 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3179 } 3180 3181 /** 3182 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3183 * @hw: pointer to HW structure 3184 * @reg_idx: HW vector index to associate the control queue interrupts with 3185 */ 3186 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3187 { 3188 u32 val; 3189 3190 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3191 PFINT_OICR_CTL_CAUSE_ENA_M); 3192 wr32(hw, PFINT_OICR_CTL, val); 3193 3194 /* enable Admin queue Interrupt causes */ 3195 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3196 PFINT_FW_CTL_CAUSE_ENA_M); 3197 wr32(hw, PFINT_FW_CTL, val); 3198 3199 /* enable Mailbox queue Interrupt causes */ 3200 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3201 PFINT_MBX_CTL_CAUSE_ENA_M); 3202 wr32(hw, PFINT_MBX_CTL, val); 3203 3204 /* This enables Sideband queue Interrupt causes */ 3205 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3206 PFINT_SB_CTL_CAUSE_ENA_M); 3207 wr32(hw, PFINT_SB_CTL, val); 3208 3209 ice_flush(hw); 3210 } 3211 3212 /** 3213 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3214 * @pf: board private structure 3215 * 3216 * This sets up the handler for MSIX 0, which is used to manage the 3217 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3218 * when in MSI or Legacy interrupt mode. 3219 */ 3220 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3221 { 3222 struct device *dev = ice_pf_to_dev(pf); 3223 struct ice_hw *hw = &pf->hw; 3224 int oicr_idx, err = 0; 3225 3226 if (!pf->int_name[0]) 3227 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3228 dev_driver_string(dev), dev_name(dev)); 3229 3230 /* Do not request IRQ but do enable OICR interrupt since settings are 3231 * lost during reset. Note that this function is called only during 3232 * rebuild path and not while reset is in progress. 3233 */ 3234 if (ice_is_reset_in_progress(pf->state)) 3235 goto skip_req_irq; 3236 3237 /* reserve one vector in irq_tracker for misc interrupts */ 3238 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3239 if (oicr_idx < 0) 3240 return oicr_idx; 3241 3242 pf->num_avail_sw_msix -= 1; 3243 pf->oicr_idx = (u16)oicr_idx; 3244 3245 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3246 ice_misc_intr, 0, pf->int_name, pf); 3247 if (err) { 3248 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3249 pf->int_name, err); 3250 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3251 pf->num_avail_sw_msix += 1; 3252 return err; 3253 } 3254 3255 skip_req_irq: 3256 ice_ena_misc_vector(pf); 3257 3258 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3259 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3260 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3261 3262 ice_flush(hw); 3263 ice_irq_dynamic_ena(hw, NULL, NULL); 3264 3265 return 0; 3266 } 3267 3268 /** 3269 * ice_napi_add - register NAPI handler for the VSI 3270 * @vsi: VSI for which NAPI handler is to be registered 3271 * 3272 * This function is only called in the driver's load path. Registering the NAPI 3273 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3274 * reset/rebuild, etc.) 3275 */ 3276 static void ice_napi_add(struct ice_vsi *vsi) 3277 { 3278 int v_idx; 3279 3280 if (!vsi->netdev) 3281 return; 3282 3283 ice_for_each_q_vector(vsi, v_idx) 3284 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3285 ice_napi_poll, NAPI_POLL_WEIGHT); 3286 } 3287 3288 /** 3289 * ice_set_ops - set netdev and ethtools ops for the given netdev 3290 * @netdev: netdev instance 3291 */ 3292 static void ice_set_ops(struct net_device *netdev) 3293 { 3294 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3295 3296 if (ice_is_safe_mode(pf)) { 3297 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3298 ice_set_ethtool_safe_mode_ops(netdev); 3299 return; 3300 } 3301 3302 netdev->netdev_ops = &ice_netdev_ops; 3303 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3304 ice_set_ethtool_ops(netdev); 3305 } 3306 3307 /** 3308 * ice_set_netdev_features - set features for the given netdev 3309 * @netdev: netdev instance 3310 */ 3311 static void ice_set_netdev_features(struct net_device *netdev) 3312 { 3313 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3314 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3315 netdev_features_t csumo_features; 3316 netdev_features_t vlano_features; 3317 netdev_features_t dflt_features; 3318 netdev_features_t tso_features; 3319 3320 if (ice_is_safe_mode(pf)) { 3321 /* safe mode */ 3322 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3323 netdev->hw_features = netdev->features; 3324 return; 3325 } 3326 3327 dflt_features = NETIF_F_SG | 3328 NETIF_F_HIGHDMA | 3329 NETIF_F_NTUPLE | 3330 NETIF_F_RXHASH; 3331 3332 csumo_features = NETIF_F_RXCSUM | 3333 NETIF_F_IP_CSUM | 3334 NETIF_F_SCTP_CRC | 3335 NETIF_F_IPV6_CSUM; 3336 3337 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3338 NETIF_F_HW_VLAN_CTAG_TX | 3339 NETIF_F_HW_VLAN_CTAG_RX; 3340 3341 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3342 if (is_dvm_ena) 3343 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3344 3345 tso_features = NETIF_F_TSO | 3346 NETIF_F_TSO_ECN | 3347 NETIF_F_TSO6 | 3348 NETIF_F_GSO_GRE | 3349 NETIF_F_GSO_UDP_TUNNEL | 3350 NETIF_F_GSO_GRE_CSUM | 3351 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3352 NETIF_F_GSO_PARTIAL | 3353 NETIF_F_GSO_IPXIP4 | 3354 NETIF_F_GSO_IPXIP6 | 3355 NETIF_F_GSO_UDP_L4; 3356 3357 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3358 NETIF_F_GSO_GRE_CSUM; 3359 /* set features that user can change */ 3360 netdev->hw_features = dflt_features | csumo_features | 3361 vlano_features | tso_features; 3362 3363 /* add support for HW_CSUM on packets with MPLS header */ 3364 netdev->mpls_features = NETIF_F_HW_CSUM | 3365 NETIF_F_TSO | 3366 NETIF_F_TSO6; 3367 3368 /* enable features */ 3369 netdev->features |= netdev->hw_features; 3370 3371 netdev->hw_features |= NETIF_F_HW_TC; 3372 netdev->hw_features |= NETIF_F_LOOPBACK; 3373 3374 /* encap and VLAN devices inherit default, csumo and tso features */ 3375 netdev->hw_enc_features |= dflt_features | csumo_features | 3376 tso_features; 3377 netdev->vlan_features |= dflt_features | csumo_features | 3378 tso_features; 3379 3380 /* advertise support but don't enable by default since only one type of 3381 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3382 * type turns on the other has to be turned off. This is enforced by the 3383 * ice_fix_features() ndo callback. 3384 */ 3385 if (is_dvm_ena) 3386 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3387 NETIF_F_HW_VLAN_STAG_TX; 3388 } 3389 3390 /** 3391 * ice_cfg_netdev - Allocate, configure and register a netdev 3392 * @vsi: the VSI associated with the new netdev 3393 * 3394 * Returns 0 on success, negative value on failure 3395 */ 3396 static int ice_cfg_netdev(struct ice_vsi *vsi) 3397 { 3398 struct ice_netdev_priv *np; 3399 struct net_device *netdev; 3400 u8 mac_addr[ETH_ALEN]; 3401 3402 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3403 vsi->alloc_rxq); 3404 if (!netdev) 3405 return -ENOMEM; 3406 3407 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3408 vsi->netdev = netdev; 3409 np = netdev_priv(netdev); 3410 np->vsi = vsi; 3411 3412 ice_set_netdev_features(netdev); 3413 3414 ice_set_ops(netdev); 3415 3416 if (vsi->type == ICE_VSI_PF) { 3417 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3418 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3419 eth_hw_addr_set(netdev, mac_addr); 3420 ether_addr_copy(netdev->perm_addr, mac_addr); 3421 } 3422 3423 netdev->priv_flags |= IFF_UNICAST_FLT; 3424 3425 /* Setup netdev TC information */ 3426 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3427 3428 /* setup watchdog timeout value to be 5 second */ 3429 netdev->watchdog_timeo = 5 * HZ; 3430 3431 netdev->min_mtu = ETH_MIN_MTU; 3432 netdev->max_mtu = ICE_MAX_MTU; 3433 3434 return 0; 3435 } 3436 3437 /** 3438 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3439 * @lut: Lookup table 3440 * @rss_table_size: Lookup table size 3441 * @rss_size: Range of queue number for hashing 3442 */ 3443 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3444 { 3445 u16 i; 3446 3447 for (i = 0; i < rss_table_size; i++) 3448 lut[i] = i % rss_size; 3449 } 3450 3451 /** 3452 * ice_pf_vsi_setup - Set up a PF VSI 3453 * @pf: board private structure 3454 * @pi: pointer to the port_info instance 3455 * 3456 * Returns pointer to the successfully allocated VSI software struct 3457 * on success, otherwise returns NULL on failure. 3458 */ 3459 static struct ice_vsi * 3460 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3461 { 3462 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3463 } 3464 3465 static struct ice_vsi * 3466 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3467 struct ice_channel *ch) 3468 { 3469 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3470 } 3471 3472 /** 3473 * ice_ctrl_vsi_setup - Set up a control VSI 3474 * @pf: board private structure 3475 * @pi: pointer to the port_info instance 3476 * 3477 * Returns pointer to the successfully allocated VSI software struct 3478 * on success, otherwise returns NULL on failure. 3479 */ 3480 static struct ice_vsi * 3481 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3482 { 3483 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3484 } 3485 3486 /** 3487 * ice_lb_vsi_setup - Set up a loopback VSI 3488 * @pf: board private structure 3489 * @pi: pointer to the port_info instance 3490 * 3491 * Returns pointer to the successfully allocated VSI software struct 3492 * on success, otherwise returns NULL on failure. 3493 */ 3494 struct ice_vsi * 3495 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3496 { 3497 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3498 } 3499 3500 /** 3501 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3502 * @netdev: network interface to be adjusted 3503 * @proto: VLAN TPID 3504 * @vid: VLAN ID to be added 3505 * 3506 * net_device_ops implementation for adding VLAN IDs 3507 */ 3508 static int 3509 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3510 { 3511 struct ice_netdev_priv *np = netdev_priv(netdev); 3512 struct ice_vsi_vlan_ops *vlan_ops; 3513 struct ice_vsi *vsi = np->vsi; 3514 struct ice_vlan vlan; 3515 int ret; 3516 3517 /* VLAN 0 is added by default during load/reset */ 3518 if (!vid) 3519 return 0; 3520 3521 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3522 usleep_range(1000, 2000); 3523 3524 /* Add multicast promisc rule for the VLAN ID to be added if 3525 * all-multicast is currently enabled. 3526 */ 3527 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3528 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3529 ICE_MCAST_VLAN_PROMISC_BITS, 3530 vid); 3531 if (ret) 3532 goto finish; 3533 } 3534 3535 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3536 3537 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3538 * packets aren't pruned by the device's internal switch on Rx 3539 */ 3540 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3541 ret = vlan_ops->add_vlan(vsi, &vlan); 3542 if (ret) 3543 goto finish; 3544 3545 /* If all-multicast is currently enabled and this VLAN ID is only one 3546 * besides VLAN-0 we have to update look-up type of multicast promisc 3547 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3548 */ 3549 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3550 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3551 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3552 ICE_MCAST_PROMISC_BITS, 0); 3553 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3554 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3555 } 3556 3557 finish: 3558 clear_bit(ICE_CFG_BUSY, vsi->state); 3559 3560 return ret; 3561 } 3562 3563 /** 3564 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3565 * @netdev: network interface to be adjusted 3566 * @proto: VLAN TPID 3567 * @vid: VLAN ID to be removed 3568 * 3569 * net_device_ops implementation for removing VLAN IDs 3570 */ 3571 static int 3572 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3573 { 3574 struct ice_netdev_priv *np = netdev_priv(netdev); 3575 struct ice_vsi_vlan_ops *vlan_ops; 3576 struct ice_vsi *vsi = np->vsi; 3577 struct ice_vlan vlan; 3578 int ret; 3579 3580 /* don't allow removal of VLAN 0 */ 3581 if (!vid) 3582 return 0; 3583 3584 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3585 usleep_range(1000, 2000); 3586 3587 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3588 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3589 if (ret) { 3590 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3591 vsi->vsi_num); 3592 vsi->current_netdev_flags |= IFF_ALLMULTI; 3593 } 3594 3595 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3596 3597 /* Make sure VLAN delete is successful before updating VLAN 3598 * information 3599 */ 3600 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3601 ret = vlan_ops->del_vlan(vsi, &vlan); 3602 if (ret) 3603 goto finish; 3604 3605 /* Remove multicast promisc rule for the removed VLAN ID if 3606 * all-multicast is enabled. 3607 */ 3608 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3609 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3610 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3611 3612 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3613 /* Update look-up type of multicast promisc rule for VLAN 0 3614 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3615 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3616 */ 3617 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3618 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3619 ICE_MCAST_VLAN_PROMISC_BITS, 3620 0); 3621 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3622 ICE_MCAST_PROMISC_BITS, 0); 3623 } 3624 } 3625 3626 finish: 3627 clear_bit(ICE_CFG_BUSY, vsi->state); 3628 3629 return ret; 3630 } 3631 3632 /** 3633 * ice_rep_indr_tc_block_unbind 3634 * @cb_priv: indirection block private data 3635 */ 3636 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3637 { 3638 struct ice_indr_block_priv *indr_priv = cb_priv; 3639 3640 list_del(&indr_priv->list); 3641 kfree(indr_priv); 3642 } 3643 3644 /** 3645 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3646 * @vsi: VSI struct which has the netdev 3647 */ 3648 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3649 { 3650 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3651 3652 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3653 ice_rep_indr_tc_block_unbind); 3654 } 3655 3656 /** 3657 * ice_tc_indir_block_remove - clean indirect TC block notifications 3658 * @pf: PF structure 3659 */ 3660 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3661 { 3662 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3663 3664 if (!pf_vsi) 3665 return; 3666 3667 ice_tc_indir_block_unregister(pf_vsi); 3668 } 3669 3670 /** 3671 * ice_tc_indir_block_register - Register TC indirect block notifications 3672 * @vsi: VSI struct which has the netdev 3673 * 3674 * Returns 0 on success, negative value on failure 3675 */ 3676 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3677 { 3678 struct ice_netdev_priv *np; 3679 3680 if (!vsi || !vsi->netdev) 3681 return -EINVAL; 3682 3683 np = netdev_priv(vsi->netdev); 3684 3685 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3686 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3687 } 3688 3689 /** 3690 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3691 * @pf: board private structure 3692 * 3693 * Returns 0 on success, negative value on failure 3694 */ 3695 static int ice_setup_pf_sw(struct ice_pf *pf) 3696 { 3697 struct device *dev = ice_pf_to_dev(pf); 3698 bool dvm = ice_is_dvm_ena(&pf->hw); 3699 struct ice_vsi *vsi; 3700 int status; 3701 3702 if (ice_is_reset_in_progress(pf->state)) 3703 return -EBUSY; 3704 3705 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3706 if (status) 3707 return -EIO; 3708 3709 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3710 if (!vsi) 3711 return -ENOMEM; 3712 3713 /* init channel list */ 3714 INIT_LIST_HEAD(&vsi->ch_list); 3715 3716 status = ice_cfg_netdev(vsi); 3717 if (status) 3718 goto unroll_vsi_setup; 3719 /* netdev has to be configured before setting frame size */ 3720 ice_vsi_cfg_frame_size(vsi); 3721 3722 /* init indirect block notifications */ 3723 status = ice_tc_indir_block_register(vsi); 3724 if (status) { 3725 dev_err(dev, "Failed to register netdev notifier\n"); 3726 goto unroll_cfg_netdev; 3727 } 3728 3729 /* Setup DCB netlink interface */ 3730 ice_dcbnl_setup(vsi); 3731 3732 /* registering the NAPI handler requires both the queues and 3733 * netdev to be created, which are done in ice_pf_vsi_setup() 3734 * and ice_cfg_netdev() respectively 3735 */ 3736 ice_napi_add(vsi); 3737 3738 status = ice_init_mac_fltr(pf); 3739 if (status) 3740 goto unroll_napi_add; 3741 3742 return 0; 3743 3744 unroll_napi_add: 3745 ice_tc_indir_block_unregister(vsi); 3746 unroll_cfg_netdev: 3747 if (vsi) { 3748 ice_napi_del(vsi); 3749 if (vsi->netdev) { 3750 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3751 free_netdev(vsi->netdev); 3752 vsi->netdev = NULL; 3753 } 3754 } 3755 3756 unroll_vsi_setup: 3757 ice_vsi_release(vsi); 3758 return status; 3759 } 3760 3761 /** 3762 * ice_get_avail_q_count - Get count of queues in use 3763 * @pf_qmap: bitmap to get queue use count from 3764 * @lock: pointer to a mutex that protects access to pf_qmap 3765 * @size: size of the bitmap 3766 */ 3767 static u16 3768 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3769 { 3770 unsigned long bit; 3771 u16 count = 0; 3772 3773 mutex_lock(lock); 3774 for_each_clear_bit(bit, pf_qmap, size) 3775 count++; 3776 mutex_unlock(lock); 3777 3778 return count; 3779 } 3780 3781 /** 3782 * ice_get_avail_txq_count - Get count of Tx queues in use 3783 * @pf: pointer to an ice_pf instance 3784 */ 3785 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3786 { 3787 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3788 pf->max_pf_txqs); 3789 } 3790 3791 /** 3792 * ice_get_avail_rxq_count - Get count of Rx queues in use 3793 * @pf: pointer to an ice_pf instance 3794 */ 3795 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3796 { 3797 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3798 pf->max_pf_rxqs); 3799 } 3800 3801 /** 3802 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3803 * @pf: board private structure to initialize 3804 */ 3805 static void ice_deinit_pf(struct ice_pf *pf) 3806 { 3807 ice_service_task_stop(pf); 3808 mutex_destroy(&pf->adev_mutex); 3809 mutex_destroy(&pf->sw_mutex); 3810 mutex_destroy(&pf->tc_mutex); 3811 mutex_destroy(&pf->avail_q_mutex); 3812 mutex_destroy(&pf->vfs.table_lock); 3813 3814 if (pf->avail_txqs) { 3815 bitmap_free(pf->avail_txqs); 3816 pf->avail_txqs = NULL; 3817 } 3818 3819 if (pf->avail_rxqs) { 3820 bitmap_free(pf->avail_rxqs); 3821 pf->avail_rxqs = NULL; 3822 } 3823 3824 if (pf->ptp.clock) 3825 ptp_clock_unregister(pf->ptp.clock); 3826 } 3827 3828 /** 3829 * ice_set_pf_caps - set PFs capability flags 3830 * @pf: pointer to the PF instance 3831 */ 3832 static void ice_set_pf_caps(struct ice_pf *pf) 3833 { 3834 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3835 3836 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3837 if (func_caps->common_cap.rdma) 3838 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3839 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3840 if (func_caps->common_cap.dcb) 3841 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3842 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3843 if (func_caps->common_cap.sr_iov_1_1) { 3844 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3845 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3846 ICE_MAX_SRIOV_VFS); 3847 } 3848 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3849 if (func_caps->common_cap.rss_table_size) 3850 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3851 3852 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3853 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3854 u16 unused; 3855 3856 /* ctrl_vsi_idx will be set to a valid value when flow director 3857 * is setup by ice_init_fdir 3858 */ 3859 pf->ctrl_vsi_idx = ICE_NO_VSI; 3860 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3861 /* force guaranteed filter pool for PF */ 3862 ice_alloc_fd_guar_item(&pf->hw, &unused, 3863 func_caps->fd_fltr_guar); 3864 /* force shared filter pool for PF */ 3865 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3866 func_caps->fd_fltr_best_effort); 3867 } 3868 3869 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3870 if (func_caps->common_cap.ieee_1588) 3871 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3872 3873 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3874 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3875 } 3876 3877 /** 3878 * ice_init_pf - Initialize general software structures (struct ice_pf) 3879 * @pf: board private structure to initialize 3880 */ 3881 static int ice_init_pf(struct ice_pf *pf) 3882 { 3883 ice_set_pf_caps(pf); 3884 3885 mutex_init(&pf->sw_mutex); 3886 mutex_init(&pf->tc_mutex); 3887 mutex_init(&pf->adev_mutex); 3888 3889 INIT_HLIST_HEAD(&pf->aq_wait_list); 3890 spin_lock_init(&pf->aq_wait_lock); 3891 init_waitqueue_head(&pf->aq_wait_queue); 3892 3893 init_waitqueue_head(&pf->reset_wait_queue); 3894 3895 /* setup service timer and periodic service task */ 3896 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3897 pf->serv_tmr_period = HZ; 3898 INIT_WORK(&pf->serv_task, ice_service_task); 3899 clear_bit(ICE_SERVICE_SCHED, pf->state); 3900 3901 mutex_init(&pf->avail_q_mutex); 3902 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3903 if (!pf->avail_txqs) 3904 return -ENOMEM; 3905 3906 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3907 if (!pf->avail_rxqs) { 3908 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3909 pf->avail_txqs = NULL; 3910 return -ENOMEM; 3911 } 3912 3913 mutex_init(&pf->vfs.table_lock); 3914 hash_init(pf->vfs.table); 3915 3916 return 0; 3917 } 3918 3919 /** 3920 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3921 * @pf: board private structure 3922 * 3923 * compute the number of MSIX vectors required (v_budget) and request from 3924 * the OS. Return the number of vectors reserved or negative on failure 3925 */ 3926 static int ice_ena_msix_range(struct ice_pf *pf) 3927 { 3928 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3929 struct device *dev = ice_pf_to_dev(pf); 3930 int needed, err, i; 3931 3932 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3933 num_cpus = num_online_cpus(); 3934 3935 /* reserve for LAN miscellaneous handler */ 3936 needed = ICE_MIN_LAN_OICR_MSIX; 3937 if (v_left < needed) 3938 goto no_hw_vecs_left_err; 3939 v_budget += needed; 3940 v_left -= needed; 3941 3942 /* reserve for flow director */ 3943 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3944 needed = ICE_FDIR_MSIX; 3945 if (v_left < needed) 3946 goto no_hw_vecs_left_err; 3947 v_budget += needed; 3948 v_left -= needed; 3949 } 3950 3951 /* reserve for switchdev */ 3952 needed = ICE_ESWITCH_MSIX; 3953 if (v_left < needed) 3954 goto no_hw_vecs_left_err; 3955 v_budget += needed; 3956 v_left -= needed; 3957 3958 /* total used for non-traffic vectors */ 3959 v_other = v_budget; 3960 3961 /* reserve vectors for LAN traffic */ 3962 needed = num_cpus; 3963 if (v_left < needed) 3964 goto no_hw_vecs_left_err; 3965 pf->num_lan_msix = needed; 3966 v_budget += needed; 3967 v_left -= needed; 3968 3969 /* reserve vectors for RDMA auxiliary driver */ 3970 if (ice_is_rdma_ena(pf)) { 3971 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3972 if (v_left < needed) 3973 goto no_hw_vecs_left_err; 3974 pf->num_rdma_msix = needed; 3975 v_budget += needed; 3976 v_left -= needed; 3977 } 3978 3979 pf->msix_entries = devm_kcalloc(dev, v_budget, 3980 sizeof(*pf->msix_entries), GFP_KERNEL); 3981 if (!pf->msix_entries) { 3982 err = -ENOMEM; 3983 goto exit_err; 3984 } 3985 3986 for (i = 0; i < v_budget; i++) 3987 pf->msix_entries[i].entry = i; 3988 3989 /* actually reserve the vectors */ 3990 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3991 ICE_MIN_MSIX, v_budget); 3992 if (v_actual < 0) { 3993 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3994 err = v_actual; 3995 goto msix_err; 3996 } 3997 3998 if (v_actual < v_budget) { 3999 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4000 v_budget, v_actual); 4001 4002 if (v_actual < ICE_MIN_MSIX) { 4003 /* error if we can't get minimum vectors */ 4004 pci_disable_msix(pf->pdev); 4005 err = -ERANGE; 4006 goto msix_err; 4007 } else { 4008 int v_remain = v_actual - v_other; 4009 int v_rdma = 0, v_min_rdma = 0; 4010 4011 if (ice_is_rdma_ena(pf)) { 4012 /* Need at least 1 interrupt in addition to 4013 * AEQ MSIX 4014 */ 4015 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 4016 v_min_rdma = ICE_MIN_RDMA_MSIX; 4017 } 4018 4019 if (v_actual == ICE_MIN_MSIX || 4020 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 4021 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4022 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4023 4024 pf->num_rdma_msix = 0; 4025 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4026 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4027 (v_remain - v_rdma < v_rdma)) { 4028 /* Support minimum RDMA and give remaining 4029 * vectors to LAN MSIX 4030 */ 4031 pf->num_rdma_msix = v_min_rdma; 4032 pf->num_lan_msix = v_remain - v_min_rdma; 4033 } else { 4034 /* Split remaining MSIX with RDMA after 4035 * accounting for AEQ MSIX 4036 */ 4037 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4038 ICE_RDMA_NUM_AEQ_MSIX; 4039 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4040 } 4041 4042 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4043 pf->num_lan_msix); 4044 4045 if (ice_is_rdma_ena(pf)) 4046 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4047 pf->num_rdma_msix); 4048 } 4049 } 4050 4051 return v_actual; 4052 4053 msix_err: 4054 devm_kfree(dev, pf->msix_entries); 4055 goto exit_err; 4056 4057 no_hw_vecs_left_err: 4058 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4059 needed, v_left); 4060 err = -ERANGE; 4061 exit_err: 4062 pf->num_rdma_msix = 0; 4063 pf->num_lan_msix = 0; 4064 return err; 4065 } 4066 4067 /** 4068 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4069 * @pf: board private structure 4070 */ 4071 static void ice_dis_msix(struct ice_pf *pf) 4072 { 4073 pci_disable_msix(pf->pdev); 4074 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4075 pf->msix_entries = NULL; 4076 } 4077 4078 /** 4079 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4080 * @pf: board private structure 4081 */ 4082 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4083 { 4084 ice_dis_msix(pf); 4085 4086 if (pf->irq_tracker) { 4087 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4088 pf->irq_tracker = NULL; 4089 } 4090 } 4091 4092 /** 4093 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4094 * @pf: board private structure to initialize 4095 */ 4096 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4097 { 4098 int vectors; 4099 4100 vectors = ice_ena_msix_range(pf); 4101 4102 if (vectors < 0) 4103 return vectors; 4104 4105 /* set up vector assignment tracking */ 4106 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4107 struct_size(pf->irq_tracker, list, vectors), 4108 GFP_KERNEL); 4109 if (!pf->irq_tracker) { 4110 ice_dis_msix(pf); 4111 return -ENOMEM; 4112 } 4113 4114 /* populate SW interrupts pool with number of OS granted IRQs. */ 4115 pf->num_avail_sw_msix = (u16)vectors; 4116 pf->irq_tracker->num_entries = (u16)vectors; 4117 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4118 4119 return 0; 4120 } 4121 4122 /** 4123 * ice_is_wol_supported - check if WoL is supported 4124 * @hw: pointer to hardware info 4125 * 4126 * Check if WoL is supported based on the HW configuration. 4127 * Returns true if NVM supports and enables WoL for this port, false otherwise 4128 */ 4129 bool ice_is_wol_supported(struct ice_hw *hw) 4130 { 4131 u16 wol_ctrl; 4132 4133 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4134 * word) indicates WoL is not supported on the corresponding PF ID. 4135 */ 4136 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4137 return false; 4138 4139 return !(BIT(hw->port_info->lport) & wol_ctrl); 4140 } 4141 4142 /** 4143 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4144 * @vsi: VSI being changed 4145 * @new_rx: new number of Rx queues 4146 * @new_tx: new number of Tx queues 4147 * 4148 * Only change the number of queues if new_tx, or new_rx is non-0. 4149 * 4150 * Returns 0 on success. 4151 */ 4152 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4153 { 4154 struct ice_pf *pf = vsi->back; 4155 int err = 0, timeout = 50; 4156 4157 if (!new_rx && !new_tx) 4158 return -EINVAL; 4159 4160 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4161 timeout--; 4162 if (!timeout) 4163 return -EBUSY; 4164 usleep_range(1000, 2000); 4165 } 4166 4167 if (new_tx) 4168 vsi->req_txq = (u16)new_tx; 4169 if (new_rx) 4170 vsi->req_rxq = (u16)new_rx; 4171 4172 /* set for the next time the netdev is started */ 4173 if (!netif_running(vsi->netdev)) { 4174 ice_vsi_rebuild(vsi, false); 4175 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4176 goto done; 4177 } 4178 4179 ice_vsi_close(vsi); 4180 ice_vsi_rebuild(vsi, false); 4181 ice_pf_dcb_recfg(pf); 4182 ice_vsi_open(vsi); 4183 done: 4184 clear_bit(ICE_CFG_BUSY, pf->state); 4185 return err; 4186 } 4187 4188 /** 4189 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4190 * @pf: PF to configure 4191 * 4192 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4193 * VSI can still Tx/Rx VLAN tagged packets. 4194 */ 4195 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4196 { 4197 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4198 struct ice_vsi_ctx *ctxt; 4199 struct ice_hw *hw; 4200 int status; 4201 4202 if (!vsi) 4203 return; 4204 4205 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4206 if (!ctxt) 4207 return; 4208 4209 hw = &pf->hw; 4210 ctxt->info = vsi->info; 4211 4212 ctxt->info.valid_sections = 4213 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4214 ICE_AQ_VSI_PROP_SECURITY_VALID | 4215 ICE_AQ_VSI_PROP_SW_VALID); 4216 4217 /* disable VLAN anti-spoof */ 4218 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4219 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4220 4221 /* disable VLAN pruning and keep all other settings */ 4222 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4223 4224 /* allow all VLANs on Tx and don't strip on Rx */ 4225 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4226 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4227 4228 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4229 if (status) { 4230 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4231 status, ice_aq_str(hw->adminq.sq_last_status)); 4232 } else { 4233 vsi->info.sec_flags = ctxt->info.sec_flags; 4234 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4235 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4236 } 4237 4238 kfree(ctxt); 4239 } 4240 4241 /** 4242 * ice_log_pkg_init - log result of DDP package load 4243 * @hw: pointer to hardware info 4244 * @state: state of package load 4245 */ 4246 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4247 { 4248 struct ice_pf *pf = hw->back; 4249 struct device *dev; 4250 4251 dev = ice_pf_to_dev(pf); 4252 4253 switch (state) { 4254 case ICE_DDP_PKG_SUCCESS: 4255 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4256 hw->active_pkg_name, 4257 hw->active_pkg_ver.major, 4258 hw->active_pkg_ver.minor, 4259 hw->active_pkg_ver.update, 4260 hw->active_pkg_ver.draft); 4261 break; 4262 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4263 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4264 hw->active_pkg_name, 4265 hw->active_pkg_ver.major, 4266 hw->active_pkg_ver.minor, 4267 hw->active_pkg_ver.update, 4268 hw->active_pkg_ver.draft); 4269 break; 4270 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4271 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4272 hw->active_pkg_name, 4273 hw->active_pkg_ver.major, 4274 hw->active_pkg_ver.minor, 4275 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4276 break; 4277 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4278 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4279 hw->active_pkg_name, 4280 hw->active_pkg_ver.major, 4281 hw->active_pkg_ver.minor, 4282 hw->active_pkg_ver.update, 4283 hw->active_pkg_ver.draft, 4284 hw->pkg_name, 4285 hw->pkg_ver.major, 4286 hw->pkg_ver.minor, 4287 hw->pkg_ver.update, 4288 hw->pkg_ver.draft); 4289 break; 4290 case ICE_DDP_PKG_FW_MISMATCH: 4291 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_INVALID_FILE: 4294 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4297 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4300 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4301 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4302 break; 4303 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4304 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4305 break; 4306 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4307 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4308 break; 4309 case ICE_DDP_PKG_LOAD_ERROR: 4310 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4311 /* poll for reset to complete */ 4312 if (ice_check_reset(hw)) 4313 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4314 break; 4315 case ICE_DDP_PKG_ERR: 4316 default: 4317 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4318 break; 4319 } 4320 } 4321 4322 /** 4323 * ice_load_pkg - load/reload the DDP Package file 4324 * @firmware: firmware structure when firmware requested or NULL for reload 4325 * @pf: pointer to the PF instance 4326 * 4327 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4328 * initialize HW tables. 4329 */ 4330 static void 4331 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4332 { 4333 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4334 struct device *dev = ice_pf_to_dev(pf); 4335 struct ice_hw *hw = &pf->hw; 4336 4337 /* Load DDP Package */ 4338 if (firmware && !hw->pkg_copy) { 4339 state = ice_copy_and_init_pkg(hw, firmware->data, 4340 firmware->size); 4341 ice_log_pkg_init(hw, state); 4342 } else if (!firmware && hw->pkg_copy) { 4343 /* Reload package during rebuild after CORER/GLOBR reset */ 4344 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4345 ice_log_pkg_init(hw, state); 4346 } else { 4347 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4348 } 4349 4350 if (!ice_is_init_pkg_successful(state)) { 4351 /* Safe Mode */ 4352 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4353 return; 4354 } 4355 4356 /* Successful download package is the precondition for advanced 4357 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4358 */ 4359 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4360 } 4361 4362 /** 4363 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4364 * @pf: pointer to the PF structure 4365 * 4366 * There is no error returned here because the driver should be able to handle 4367 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4368 * specifically with Tx. 4369 */ 4370 static void ice_verify_cacheline_size(struct ice_pf *pf) 4371 { 4372 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4373 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4374 ICE_CACHE_LINE_BYTES); 4375 } 4376 4377 /** 4378 * ice_send_version - update firmware with driver version 4379 * @pf: PF struct 4380 * 4381 * Returns 0 on success, else error code 4382 */ 4383 static int ice_send_version(struct ice_pf *pf) 4384 { 4385 struct ice_driver_ver dv; 4386 4387 dv.major_ver = 0xff; 4388 dv.minor_ver = 0xff; 4389 dv.build_ver = 0xff; 4390 dv.subbuild_ver = 0; 4391 strscpy((char *)dv.driver_string, UTS_RELEASE, 4392 sizeof(dv.driver_string)); 4393 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4394 } 4395 4396 /** 4397 * ice_init_fdir - Initialize flow director VSI and configuration 4398 * @pf: pointer to the PF instance 4399 * 4400 * returns 0 on success, negative on error 4401 */ 4402 static int ice_init_fdir(struct ice_pf *pf) 4403 { 4404 struct device *dev = ice_pf_to_dev(pf); 4405 struct ice_vsi *ctrl_vsi; 4406 int err; 4407 4408 /* Side Band Flow Director needs to have a control VSI. 4409 * Allocate it and store it in the PF. 4410 */ 4411 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4412 if (!ctrl_vsi) { 4413 dev_dbg(dev, "could not create control VSI\n"); 4414 return -ENOMEM; 4415 } 4416 4417 err = ice_vsi_open_ctrl(ctrl_vsi); 4418 if (err) { 4419 dev_dbg(dev, "could not open control VSI\n"); 4420 goto err_vsi_open; 4421 } 4422 4423 mutex_init(&pf->hw.fdir_fltr_lock); 4424 4425 err = ice_fdir_create_dflt_rules(pf); 4426 if (err) 4427 goto err_fdir_rule; 4428 4429 return 0; 4430 4431 err_fdir_rule: 4432 ice_fdir_release_flows(&pf->hw); 4433 ice_vsi_close(ctrl_vsi); 4434 err_vsi_open: 4435 ice_vsi_release(ctrl_vsi); 4436 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4437 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4438 pf->ctrl_vsi_idx = ICE_NO_VSI; 4439 } 4440 return err; 4441 } 4442 4443 /** 4444 * ice_get_opt_fw_name - return optional firmware file name or NULL 4445 * @pf: pointer to the PF instance 4446 */ 4447 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4448 { 4449 /* Optional firmware name same as default with additional dash 4450 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4451 */ 4452 struct pci_dev *pdev = pf->pdev; 4453 char *opt_fw_filename; 4454 u64 dsn; 4455 4456 /* Determine the name of the optional file using the DSN (two 4457 * dwords following the start of the DSN Capability). 4458 */ 4459 dsn = pci_get_dsn(pdev); 4460 if (!dsn) 4461 return NULL; 4462 4463 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4464 if (!opt_fw_filename) 4465 return NULL; 4466 4467 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4468 ICE_DDP_PKG_PATH, dsn); 4469 4470 return opt_fw_filename; 4471 } 4472 4473 /** 4474 * ice_request_fw - Device initialization routine 4475 * @pf: pointer to the PF instance 4476 */ 4477 static void ice_request_fw(struct ice_pf *pf) 4478 { 4479 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4480 const struct firmware *firmware = NULL; 4481 struct device *dev = ice_pf_to_dev(pf); 4482 int err = 0; 4483 4484 /* optional device-specific DDP (if present) overrides the default DDP 4485 * package file. kernel logs a debug message if the file doesn't exist, 4486 * and warning messages for other errors. 4487 */ 4488 if (opt_fw_filename) { 4489 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4490 if (err) { 4491 kfree(opt_fw_filename); 4492 goto dflt_pkg_load; 4493 } 4494 4495 /* request for firmware was successful. Download to device */ 4496 ice_load_pkg(firmware, pf); 4497 kfree(opt_fw_filename); 4498 release_firmware(firmware); 4499 return; 4500 } 4501 4502 dflt_pkg_load: 4503 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4504 if (err) { 4505 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4506 return; 4507 } 4508 4509 /* request for firmware was successful. Download to device */ 4510 ice_load_pkg(firmware, pf); 4511 release_firmware(firmware); 4512 } 4513 4514 /** 4515 * ice_print_wake_reason - show the wake up cause in the log 4516 * @pf: pointer to the PF struct 4517 */ 4518 static void ice_print_wake_reason(struct ice_pf *pf) 4519 { 4520 u32 wus = pf->wakeup_reason; 4521 const char *wake_str; 4522 4523 /* if no wake event, nothing to print */ 4524 if (!wus) 4525 return; 4526 4527 if (wus & PFPM_WUS_LNKC_M) 4528 wake_str = "Link\n"; 4529 else if (wus & PFPM_WUS_MAG_M) 4530 wake_str = "Magic Packet\n"; 4531 else if (wus & PFPM_WUS_MNG_M) 4532 wake_str = "Management\n"; 4533 else if (wus & PFPM_WUS_FW_RST_WK_M) 4534 wake_str = "Firmware Reset\n"; 4535 else 4536 wake_str = "Unknown\n"; 4537 4538 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4539 } 4540 4541 /** 4542 * ice_register_netdev - register netdev and devlink port 4543 * @pf: pointer to the PF struct 4544 */ 4545 static int ice_register_netdev(struct ice_pf *pf) 4546 { 4547 struct ice_vsi *vsi; 4548 int err = 0; 4549 4550 vsi = ice_get_main_vsi(pf); 4551 if (!vsi || !vsi->netdev) 4552 return -EIO; 4553 4554 err = register_netdev(vsi->netdev); 4555 if (err) 4556 goto err_register_netdev; 4557 4558 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4559 netif_carrier_off(vsi->netdev); 4560 netif_tx_stop_all_queues(vsi->netdev); 4561 err = ice_devlink_create_pf_port(pf); 4562 if (err) 4563 goto err_devlink_create; 4564 4565 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4566 4567 return 0; 4568 err_devlink_create: 4569 unregister_netdev(vsi->netdev); 4570 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4571 err_register_netdev: 4572 free_netdev(vsi->netdev); 4573 vsi->netdev = NULL; 4574 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4575 return err; 4576 } 4577 4578 /** 4579 * ice_probe - Device initialization routine 4580 * @pdev: PCI device information struct 4581 * @ent: entry in ice_pci_tbl 4582 * 4583 * Returns 0 on success, negative on failure 4584 */ 4585 static int 4586 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4587 { 4588 struct device *dev = &pdev->dev; 4589 struct ice_pf *pf; 4590 struct ice_hw *hw; 4591 int i, err; 4592 4593 if (pdev->is_virtfn) { 4594 dev_err(dev, "can't probe a virtual function\n"); 4595 return -EINVAL; 4596 } 4597 4598 /* this driver uses devres, see 4599 * Documentation/driver-api/driver-model/devres.rst 4600 */ 4601 err = pcim_enable_device(pdev); 4602 if (err) 4603 return err; 4604 4605 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4606 if (err) { 4607 dev_err(dev, "BAR0 I/O map error %d\n", err); 4608 return err; 4609 } 4610 4611 pf = ice_allocate_pf(dev); 4612 if (!pf) 4613 return -ENOMEM; 4614 4615 /* initialize Auxiliary index to invalid value */ 4616 pf->aux_idx = -1; 4617 4618 /* set up for high or low DMA */ 4619 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4620 if (err) { 4621 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4622 return err; 4623 } 4624 4625 pci_enable_pcie_error_reporting(pdev); 4626 pci_set_master(pdev); 4627 4628 pf->pdev = pdev; 4629 pci_set_drvdata(pdev, pf); 4630 set_bit(ICE_DOWN, pf->state); 4631 /* Disable service task until DOWN bit is cleared */ 4632 set_bit(ICE_SERVICE_DIS, pf->state); 4633 4634 hw = &pf->hw; 4635 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4636 pci_save_state(pdev); 4637 4638 hw->back = pf; 4639 hw->vendor_id = pdev->vendor; 4640 hw->device_id = pdev->device; 4641 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4642 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4643 hw->subsystem_device_id = pdev->subsystem_device; 4644 hw->bus.device = PCI_SLOT(pdev->devfn); 4645 hw->bus.func = PCI_FUNC(pdev->devfn); 4646 ice_set_ctrlq_len(hw); 4647 4648 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4649 4650 #ifndef CONFIG_DYNAMIC_DEBUG 4651 if (debug < -1) 4652 hw->debug_mask = debug; 4653 #endif 4654 4655 err = ice_init_hw(hw); 4656 if (err) { 4657 dev_err(dev, "ice_init_hw failed: %d\n", err); 4658 err = -EIO; 4659 goto err_exit_unroll; 4660 } 4661 4662 ice_init_feature_support(pf); 4663 4664 ice_request_fw(pf); 4665 4666 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4667 * set in pf->state, which will cause ice_is_safe_mode to return 4668 * true 4669 */ 4670 if (ice_is_safe_mode(pf)) { 4671 /* we already got function/device capabilities but these don't 4672 * reflect what the driver needs to do in safe mode. Instead of 4673 * adding conditional logic everywhere to ignore these 4674 * device/function capabilities, override them. 4675 */ 4676 ice_set_safe_mode_caps(hw); 4677 } 4678 4679 hw->ucast_shared = true; 4680 4681 err = ice_init_pf(pf); 4682 if (err) { 4683 dev_err(dev, "ice_init_pf failed: %d\n", err); 4684 goto err_init_pf_unroll; 4685 } 4686 4687 ice_devlink_init_regions(pf); 4688 4689 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4690 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4691 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4692 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4693 i = 0; 4694 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4695 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4696 pf->hw.tnl.valid_count[TNL_VXLAN]; 4697 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4698 UDP_TUNNEL_TYPE_VXLAN; 4699 i++; 4700 } 4701 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4702 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4703 pf->hw.tnl.valid_count[TNL_GENEVE]; 4704 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4705 UDP_TUNNEL_TYPE_GENEVE; 4706 i++; 4707 } 4708 4709 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4710 if (!pf->num_alloc_vsi) { 4711 err = -EIO; 4712 goto err_init_pf_unroll; 4713 } 4714 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4715 dev_warn(&pf->pdev->dev, 4716 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4717 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4718 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4719 } 4720 4721 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4722 GFP_KERNEL); 4723 if (!pf->vsi) { 4724 err = -ENOMEM; 4725 goto err_init_pf_unroll; 4726 } 4727 4728 err = ice_init_interrupt_scheme(pf); 4729 if (err) { 4730 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4731 err = -EIO; 4732 goto err_init_vsi_unroll; 4733 } 4734 4735 /* In case of MSIX we are going to setup the misc vector right here 4736 * to handle admin queue events etc. In case of legacy and MSI 4737 * the misc functionality and queue processing is combined in 4738 * the same vector and that gets setup at open. 4739 */ 4740 err = ice_req_irq_msix_misc(pf); 4741 if (err) { 4742 dev_err(dev, "setup of misc vector failed: %d\n", err); 4743 goto err_init_interrupt_unroll; 4744 } 4745 4746 /* create switch struct for the switch element created by FW on boot */ 4747 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4748 if (!pf->first_sw) { 4749 err = -ENOMEM; 4750 goto err_msix_misc_unroll; 4751 } 4752 4753 if (hw->evb_veb) 4754 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4755 else 4756 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4757 4758 pf->first_sw->pf = pf; 4759 4760 /* record the sw_id available for later use */ 4761 pf->first_sw->sw_id = hw->port_info->sw_id; 4762 4763 err = ice_setup_pf_sw(pf); 4764 if (err) { 4765 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4766 goto err_alloc_sw_unroll; 4767 } 4768 4769 clear_bit(ICE_SERVICE_DIS, pf->state); 4770 4771 /* tell the firmware we are up */ 4772 err = ice_send_version(pf); 4773 if (err) { 4774 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4775 UTS_RELEASE, err); 4776 goto err_send_version_unroll; 4777 } 4778 4779 /* since everything is good, start the service timer */ 4780 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4781 4782 err = ice_init_link_events(pf->hw.port_info); 4783 if (err) { 4784 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4785 goto err_send_version_unroll; 4786 } 4787 4788 /* not a fatal error if this fails */ 4789 err = ice_init_nvm_phy_type(pf->hw.port_info); 4790 if (err) 4791 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4792 4793 /* not a fatal error if this fails */ 4794 err = ice_update_link_info(pf->hw.port_info); 4795 if (err) 4796 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4797 4798 ice_init_link_dflt_override(pf->hw.port_info); 4799 4800 ice_check_link_cfg_err(pf, 4801 pf->hw.port_info->phy.link_info.link_cfg_err); 4802 4803 /* if media available, initialize PHY settings */ 4804 if (pf->hw.port_info->phy.link_info.link_info & 4805 ICE_AQ_MEDIA_AVAILABLE) { 4806 /* not a fatal error if this fails */ 4807 err = ice_init_phy_user_cfg(pf->hw.port_info); 4808 if (err) 4809 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4810 4811 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4812 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4813 4814 if (vsi) 4815 ice_configure_phy(vsi); 4816 } 4817 } else { 4818 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4819 } 4820 4821 ice_verify_cacheline_size(pf); 4822 4823 /* Save wakeup reason register for later use */ 4824 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4825 4826 /* check for a power management event */ 4827 ice_print_wake_reason(pf); 4828 4829 /* clear wake status, all bits */ 4830 wr32(hw, PFPM_WUS, U32_MAX); 4831 4832 /* Disable WoL at init, wait for user to enable */ 4833 device_set_wakeup_enable(dev, false); 4834 4835 if (ice_is_safe_mode(pf)) { 4836 ice_set_safe_mode_vlan_cfg(pf); 4837 goto probe_done; 4838 } 4839 4840 /* initialize DDP driven features */ 4841 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4842 ice_ptp_init(pf); 4843 4844 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4845 ice_gnss_init(pf); 4846 4847 /* Note: Flow director init failure is non-fatal to load */ 4848 if (ice_init_fdir(pf)) 4849 dev_err(dev, "could not initialize flow director\n"); 4850 4851 /* Note: DCB init failure is non-fatal to load */ 4852 if (ice_init_pf_dcb(pf, false)) { 4853 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4854 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4855 } else { 4856 ice_cfg_lldp_mib_change(&pf->hw, true); 4857 } 4858 4859 if (ice_init_lag(pf)) 4860 dev_warn(dev, "Failed to init link aggregation support\n"); 4861 4862 /* print PCI link speed and width */ 4863 pcie_print_link_status(pf->pdev); 4864 4865 probe_done: 4866 err = ice_register_netdev(pf); 4867 if (err) 4868 goto err_netdev_reg; 4869 4870 err = ice_devlink_register_params(pf); 4871 if (err) 4872 goto err_netdev_reg; 4873 4874 /* ready to go, so clear down state bit */ 4875 clear_bit(ICE_DOWN, pf->state); 4876 if (ice_is_rdma_ena(pf)) { 4877 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4878 if (pf->aux_idx < 0) { 4879 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4880 err = -ENOMEM; 4881 goto err_devlink_reg_param; 4882 } 4883 4884 err = ice_init_rdma(pf); 4885 if (err) { 4886 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4887 err = -EIO; 4888 goto err_init_aux_unroll; 4889 } 4890 } else { 4891 dev_warn(dev, "RDMA is not supported on this device\n"); 4892 } 4893 4894 ice_devlink_register(pf); 4895 return 0; 4896 4897 err_init_aux_unroll: 4898 pf->adev = NULL; 4899 ida_free(&ice_aux_ida, pf->aux_idx); 4900 err_devlink_reg_param: 4901 ice_devlink_unregister_params(pf); 4902 err_netdev_reg: 4903 err_send_version_unroll: 4904 ice_vsi_release_all(pf); 4905 err_alloc_sw_unroll: 4906 set_bit(ICE_SERVICE_DIS, pf->state); 4907 set_bit(ICE_DOWN, pf->state); 4908 devm_kfree(dev, pf->first_sw); 4909 err_msix_misc_unroll: 4910 ice_free_irq_msix_misc(pf); 4911 err_init_interrupt_unroll: 4912 ice_clear_interrupt_scheme(pf); 4913 err_init_vsi_unroll: 4914 devm_kfree(dev, pf->vsi); 4915 err_init_pf_unroll: 4916 ice_deinit_pf(pf); 4917 ice_devlink_destroy_regions(pf); 4918 ice_deinit_hw(hw); 4919 err_exit_unroll: 4920 pci_disable_pcie_error_reporting(pdev); 4921 pci_disable_device(pdev); 4922 return err; 4923 } 4924 4925 /** 4926 * ice_set_wake - enable or disable Wake on LAN 4927 * @pf: pointer to the PF struct 4928 * 4929 * Simple helper for WoL control 4930 */ 4931 static void ice_set_wake(struct ice_pf *pf) 4932 { 4933 struct ice_hw *hw = &pf->hw; 4934 bool wol = pf->wol_ena; 4935 4936 /* clear wake state, otherwise new wake events won't fire */ 4937 wr32(hw, PFPM_WUS, U32_MAX); 4938 4939 /* enable / disable APM wake up, no RMW needed */ 4940 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4941 4942 /* set magic packet filter enabled */ 4943 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4944 } 4945 4946 /** 4947 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4948 * @pf: pointer to the PF struct 4949 * 4950 * Issue firmware command to enable multicast magic wake, making 4951 * sure that any locally administered address (LAA) is used for 4952 * wake, and that PF reset doesn't undo the LAA. 4953 */ 4954 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4955 { 4956 struct device *dev = ice_pf_to_dev(pf); 4957 struct ice_hw *hw = &pf->hw; 4958 u8 mac_addr[ETH_ALEN]; 4959 struct ice_vsi *vsi; 4960 int status; 4961 u8 flags; 4962 4963 if (!pf->wol_ena) 4964 return; 4965 4966 vsi = ice_get_main_vsi(pf); 4967 if (!vsi) 4968 return; 4969 4970 /* Get current MAC address in case it's an LAA */ 4971 if (vsi->netdev) 4972 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4973 else 4974 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4975 4976 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4977 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4978 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4979 4980 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4981 if (status) 4982 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4983 status, ice_aq_str(hw->adminq.sq_last_status)); 4984 } 4985 4986 /** 4987 * ice_remove - Device removal routine 4988 * @pdev: PCI device information struct 4989 */ 4990 static void ice_remove(struct pci_dev *pdev) 4991 { 4992 struct ice_pf *pf = pci_get_drvdata(pdev); 4993 int i; 4994 4995 ice_devlink_unregister(pf); 4996 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4997 if (!ice_is_reset_in_progress(pf->state)) 4998 break; 4999 msleep(100); 5000 } 5001 5002 ice_tc_indir_block_remove(pf); 5003 5004 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5005 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5006 ice_free_vfs(pf); 5007 } 5008 5009 ice_service_task_stop(pf); 5010 5011 ice_aq_cancel_waiting_tasks(pf); 5012 ice_unplug_aux_dev(pf); 5013 if (pf->aux_idx >= 0) 5014 ida_free(&ice_aux_ida, pf->aux_idx); 5015 ice_devlink_unregister_params(pf); 5016 set_bit(ICE_DOWN, pf->state); 5017 5018 ice_deinit_lag(pf); 5019 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5020 ice_ptp_release(pf); 5021 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5022 ice_gnss_exit(pf); 5023 if (!ice_is_safe_mode(pf)) 5024 ice_remove_arfs(pf); 5025 ice_setup_mc_magic_wake(pf); 5026 ice_vsi_release_all(pf); 5027 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5028 ice_set_wake(pf); 5029 ice_free_irq_msix_misc(pf); 5030 ice_for_each_vsi(pf, i) { 5031 if (!pf->vsi[i]) 5032 continue; 5033 ice_vsi_free_q_vectors(pf->vsi[i]); 5034 } 5035 ice_deinit_pf(pf); 5036 ice_devlink_destroy_regions(pf); 5037 ice_deinit_hw(&pf->hw); 5038 5039 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5040 * do it via ice_schedule_reset() since there is no need to rebuild 5041 * and the service task is already stopped. 5042 */ 5043 ice_reset(&pf->hw, ICE_RESET_PFR); 5044 pci_wait_for_pending_transaction(pdev); 5045 ice_clear_interrupt_scheme(pf); 5046 pci_disable_pcie_error_reporting(pdev); 5047 pci_disable_device(pdev); 5048 } 5049 5050 /** 5051 * ice_shutdown - PCI callback for shutting down device 5052 * @pdev: PCI device information struct 5053 */ 5054 static void ice_shutdown(struct pci_dev *pdev) 5055 { 5056 struct ice_pf *pf = pci_get_drvdata(pdev); 5057 5058 ice_remove(pdev); 5059 5060 if (system_state == SYSTEM_POWER_OFF) { 5061 pci_wake_from_d3(pdev, pf->wol_ena); 5062 pci_set_power_state(pdev, PCI_D3hot); 5063 } 5064 } 5065 5066 #ifdef CONFIG_PM 5067 /** 5068 * ice_prepare_for_shutdown - prep for PCI shutdown 5069 * @pf: board private structure 5070 * 5071 * Inform or close all dependent features in prep for PCI device shutdown 5072 */ 5073 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5074 { 5075 struct ice_hw *hw = &pf->hw; 5076 u32 v; 5077 5078 /* Notify VFs of impending reset */ 5079 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5080 ice_vc_notify_reset(pf); 5081 5082 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5083 5084 /* disable the VSIs and their queues that are not already DOWN */ 5085 ice_pf_dis_all_vsi(pf, false); 5086 5087 ice_for_each_vsi(pf, v) 5088 if (pf->vsi[v]) 5089 pf->vsi[v]->vsi_num = 0; 5090 5091 ice_shutdown_all_ctrlq(hw); 5092 } 5093 5094 /** 5095 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5096 * @pf: board private structure to reinitialize 5097 * 5098 * This routine reinitialize interrupt scheme that was cleared during 5099 * power management suspend callback. 5100 * 5101 * This should be called during resume routine to re-allocate the q_vectors 5102 * and reacquire interrupts. 5103 */ 5104 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5105 { 5106 struct device *dev = ice_pf_to_dev(pf); 5107 int ret, v; 5108 5109 /* Since we clear MSIX flag during suspend, we need to 5110 * set it back during resume... 5111 */ 5112 5113 ret = ice_init_interrupt_scheme(pf); 5114 if (ret) { 5115 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5116 return ret; 5117 } 5118 5119 /* Remap vectors and rings, after successful re-init interrupts */ 5120 ice_for_each_vsi(pf, v) { 5121 if (!pf->vsi[v]) 5122 continue; 5123 5124 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5125 if (ret) 5126 goto err_reinit; 5127 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5128 } 5129 5130 ret = ice_req_irq_msix_misc(pf); 5131 if (ret) { 5132 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5133 ret); 5134 goto err_reinit; 5135 } 5136 5137 return 0; 5138 5139 err_reinit: 5140 while (v--) 5141 if (pf->vsi[v]) 5142 ice_vsi_free_q_vectors(pf->vsi[v]); 5143 5144 return ret; 5145 } 5146 5147 /** 5148 * ice_suspend 5149 * @dev: generic device information structure 5150 * 5151 * Power Management callback to quiesce the device and prepare 5152 * for D3 transition. 5153 */ 5154 static int __maybe_unused ice_suspend(struct device *dev) 5155 { 5156 struct pci_dev *pdev = to_pci_dev(dev); 5157 struct ice_pf *pf; 5158 int disabled, v; 5159 5160 pf = pci_get_drvdata(pdev); 5161 5162 if (!ice_pf_state_is_nominal(pf)) { 5163 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5164 return -EBUSY; 5165 } 5166 5167 /* Stop watchdog tasks until resume completion. 5168 * Even though it is most likely that the service task is 5169 * disabled if the device is suspended or down, the service task's 5170 * state is controlled by a different state bit, and we should 5171 * store and honor whatever state that bit is in at this point. 5172 */ 5173 disabled = ice_service_task_stop(pf); 5174 5175 ice_unplug_aux_dev(pf); 5176 5177 /* Already suspended?, then there is nothing to do */ 5178 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5179 if (!disabled) 5180 ice_service_task_restart(pf); 5181 return 0; 5182 } 5183 5184 if (test_bit(ICE_DOWN, pf->state) || 5185 ice_is_reset_in_progress(pf->state)) { 5186 dev_err(dev, "can't suspend device in reset or already down\n"); 5187 if (!disabled) 5188 ice_service_task_restart(pf); 5189 return 0; 5190 } 5191 5192 ice_setup_mc_magic_wake(pf); 5193 5194 ice_prepare_for_shutdown(pf); 5195 5196 ice_set_wake(pf); 5197 5198 /* Free vectors, clear the interrupt scheme and release IRQs 5199 * for proper hibernation, especially with large number of CPUs. 5200 * Otherwise hibernation might fail when mapping all the vectors back 5201 * to CPU0. 5202 */ 5203 ice_free_irq_msix_misc(pf); 5204 ice_for_each_vsi(pf, v) { 5205 if (!pf->vsi[v]) 5206 continue; 5207 ice_vsi_free_q_vectors(pf->vsi[v]); 5208 } 5209 ice_clear_interrupt_scheme(pf); 5210 5211 pci_save_state(pdev); 5212 pci_wake_from_d3(pdev, pf->wol_ena); 5213 pci_set_power_state(pdev, PCI_D3hot); 5214 return 0; 5215 } 5216 5217 /** 5218 * ice_resume - PM callback for waking up from D3 5219 * @dev: generic device information structure 5220 */ 5221 static int __maybe_unused ice_resume(struct device *dev) 5222 { 5223 struct pci_dev *pdev = to_pci_dev(dev); 5224 enum ice_reset_req reset_type; 5225 struct ice_pf *pf; 5226 struct ice_hw *hw; 5227 int ret; 5228 5229 pci_set_power_state(pdev, PCI_D0); 5230 pci_restore_state(pdev); 5231 pci_save_state(pdev); 5232 5233 if (!pci_device_is_present(pdev)) 5234 return -ENODEV; 5235 5236 ret = pci_enable_device_mem(pdev); 5237 if (ret) { 5238 dev_err(dev, "Cannot enable device after suspend\n"); 5239 return ret; 5240 } 5241 5242 pf = pci_get_drvdata(pdev); 5243 hw = &pf->hw; 5244 5245 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5246 ice_print_wake_reason(pf); 5247 5248 /* We cleared the interrupt scheme when we suspended, so we need to 5249 * restore it now to resume device functionality. 5250 */ 5251 ret = ice_reinit_interrupt_scheme(pf); 5252 if (ret) 5253 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5254 5255 clear_bit(ICE_DOWN, pf->state); 5256 /* Now perform PF reset and rebuild */ 5257 reset_type = ICE_RESET_PFR; 5258 /* re-enable service task for reset, but allow reset to schedule it */ 5259 clear_bit(ICE_SERVICE_DIS, pf->state); 5260 5261 if (ice_schedule_reset(pf, reset_type)) 5262 dev_err(dev, "Reset during resume failed.\n"); 5263 5264 clear_bit(ICE_SUSPENDED, pf->state); 5265 ice_service_task_restart(pf); 5266 5267 /* Restart the service task */ 5268 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5269 5270 return 0; 5271 } 5272 #endif /* CONFIG_PM */ 5273 5274 /** 5275 * ice_pci_err_detected - warning that PCI error has been detected 5276 * @pdev: PCI device information struct 5277 * @err: the type of PCI error 5278 * 5279 * Called to warn that something happened on the PCI bus and the error handling 5280 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5281 */ 5282 static pci_ers_result_t 5283 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5284 { 5285 struct ice_pf *pf = pci_get_drvdata(pdev); 5286 5287 if (!pf) { 5288 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5289 __func__, err); 5290 return PCI_ERS_RESULT_DISCONNECT; 5291 } 5292 5293 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5294 ice_service_task_stop(pf); 5295 5296 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5297 set_bit(ICE_PFR_REQ, pf->state); 5298 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5299 } 5300 } 5301 5302 return PCI_ERS_RESULT_NEED_RESET; 5303 } 5304 5305 /** 5306 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5307 * @pdev: PCI device information struct 5308 * 5309 * Called to determine if the driver can recover from the PCI slot reset by 5310 * using a register read to determine if the device is recoverable. 5311 */ 5312 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5313 { 5314 struct ice_pf *pf = pci_get_drvdata(pdev); 5315 pci_ers_result_t result; 5316 int err; 5317 u32 reg; 5318 5319 err = pci_enable_device_mem(pdev); 5320 if (err) { 5321 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5322 err); 5323 result = PCI_ERS_RESULT_DISCONNECT; 5324 } else { 5325 pci_set_master(pdev); 5326 pci_restore_state(pdev); 5327 pci_save_state(pdev); 5328 pci_wake_from_d3(pdev, false); 5329 5330 /* Check for life */ 5331 reg = rd32(&pf->hw, GLGEN_RTRIG); 5332 if (!reg) 5333 result = PCI_ERS_RESULT_RECOVERED; 5334 else 5335 result = PCI_ERS_RESULT_DISCONNECT; 5336 } 5337 5338 return result; 5339 } 5340 5341 /** 5342 * ice_pci_err_resume - restart operations after PCI error recovery 5343 * @pdev: PCI device information struct 5344 * 5345 * Called to allow the driver to bring things back up after PCI error and/or 5346 * reset recovery have finished 5347 */ 5348 static void ice_pci_err_resume(struct pci_dev *pdev) 5349 { 5350 struct ice_pf *pf = pci_get_drvdata(pdev); 5351 5352 if (!pf) { 5353 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5354 __func__); 5355 return; 5356 } 5357 5358 if (test_bit(ICE_SUSPENDED, pf->state)) { 5359 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5360 __func__); 5361 return; 5362 } 5363 5364 ice_restore_all_vfs_msi_state(pdev); 5365 5366 ice_do_reset(pf, ICE_RESET_PFR); 5367 ice_service_task_restart(pf); 5368 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5369 } 5370 5371 /** 5372 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5373 * @pdev: PCI device information struct 5374 */ 5375 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5376 { 5377 struct ice_pf *pf = pci_get_drvdata(pdev); 5378 5379 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5380 ice_service_task_stop(pf); 5381 5382 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5383 set_bit(ICE_PFR_REQ, pf->state); 5384 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5385 } 5386 } 5387 } 5388 5389 /** 5390 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5391 * @pdev: PCI device information struct 5392 */ 5393 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5394 { 5395 ice_pci_err_resume(pdev); 5396 } 5397 5398 /* ice_pci_tbl - PCI Device ID Table 5399 * 5400 * Wildcard entries (PCI_ANY_ID) should come last 5401 * Last entry must be all 0s 5402 * 5403 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5404 * Class, Class Mask, private data (not used) } 5405 */ 5406 static const struct pci_device_id ice_pci_tbl[] = { 5407 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5408 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5409 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5410 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5411 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5412 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5413 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5414 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5415 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5416 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5417 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5418 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5419 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5420 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5421 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5422 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5423 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5424 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5425 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5426 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5427 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5428 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5429 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5430 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5431 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5432 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5433 /* required last entry */ 5434 { 0, } 5435 }; 5436 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5437 5438 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5439 5440 static const struct pci_error_handlers ice_pci_err_handler = { 5441 .error_detected = ice_pci_err_detected, 5442 .slot_reset = ice_pci_err_slot_reset, 5443 .reset_prepare = ice_pci_err_reset_prepare, 5444 .reset_done = ice_pci_err_reset_done, 5445 .resume = ice_pci_err_resume 5446 }; 5447 5448 static struct pci_driver ice_driver = { 5449 .name = KBUILD_MODNAME, 5450 .id_table = ice_pci_tbl, 5451 .probe = ice_probe, 5452 .remove = ice_remove, 5453 #ifdef CONFIG_PM 5454 .driver.pm = &ice_pm_ops, 5455 #endif /* CONFIG_PM */ 5456 .shutdown = ice_shutdown, 5457 .sriov_configure = ice_sriov_configure, 5458 .err_handler = &ice_pci_err_handler 5459 }; 5460 5461 /** 5462 * ice_module_init - Driver registration routine 5463 * 5464 * ice_module_init is the first routine called when the driver is 5465 * loaded. All it does is register with the PCI subsystem. 5466 */ 5467 static int __init ice_module_init(void) 5468 { 5469 int status; 5470 5471 pr_info("%s\n", ice_driver_string); 5472 pr_info("%s\n", ice_copyright); 5473 5474 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5475 if (!ice_wq) { 5476 pr_err("Failed to create workqueue\n"); 5477 return -ENOMEM; 5478 } 5479 5480 status = pci_register_driver(&ice_driver); 5481 if (status) { 5482 pr_err("failed to register PCI driver, err %d\n", status); 5483 destroy_workqueue(ice_wq); 5484 } 5485 5486 return status; 5487 } 5488 module_init(ice_module_init); 5489 5490 /** 5491 * ice_module_exit - Driver exit cleanup routine 5492 * 5493 * ice_module_exit is called just before the driver is removed 5494 * from memory. 5495 */ 5496 static void __exit ice_module_exit(void) 5497 { 5498 pci_unregister_driver(&ice_driver); 5499 destroy_workqueue(ice_wq); 5500 pr_info("module unloaded\n"); 5501 } 5502 module_exit(ice_module_exit); 5503 5504 /** 5505 * ice_set_mac_address - NDO callback to set MAC address 5506 * @netdev: network interface device structure 5507 * @pi: pointer to an address structure 5508 * 5509 * Returns 0 on success, negative on failure 5510 */ 5511 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5512 { 5513 struct ice_netdev_priv *np = netdev_priv(netdev); 5514 struct ice_vsi *vsi = np->vsi; 5515 struct ice_pf *pf = vsi->back; 5516 struct ice_hw *hw = &pf->hw; 5517 struct sockaddr *addr = pi; 5518 u8 old_mac[ETH_ALEN]; 5519 u8 flags = 0; 5520 u8 *mac; 5521 int err; 5522 5523 mac = (u8 *)addr->sa_data; 5524 5525 if (!is_valid_ether_addr(mac)) 5526 return -EADDRNOTAVAIL; 5527 5528 if (ether_addr_equal(netdev->dev_addr, mac)) { 5529 netdev_dbg(netdev, "already using mac %pM\n", mac); 5530 return 0; 5531 } 5532 5533 if (test_bit(ICE_DOWN, pf->state) || 5534 ice_is_reset_in_progress(pf->state)) { 5535 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5536 mac); 5537 return -EBUSY; 5538 } 5539 5540 if (ice_chnl_dmac_fltr_cnt(pf)) { 5541 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5542 mac); 5543 return -EAGAIN; 5544 } 5545 5546 netif_addr_lock_bh(netdev); 5547 ether_addr_copy(old_mac, netdev->dev_addr); 5548 /* change the netdev's MAC address */ 5549 eth_hw_addr_set(netdev, mac); 5550 netif_addr_unlock_bh(netdev); 5551 5552 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5553 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5554 if (err && err != -ENOENT) { 5555 err = -EADDRNOTAVAIL; 5556 goto err_update_filters; 5557 } 5558 5559 /* Add filter for new MAC. If filter exists, return success */ 5560 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5561 if (err == -EEXIST) { 5562 /* Although this MAC filter is already present in hardware it's 5563 * possible in some cases (e.g. bonding) that dev_addr was 5564 * modified outside of the driver and needs to be restored back 5565 * to this value. 5566 */ 5567 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5568 5569 return 0; 5570 } else if (err) { 5571 /* error if the new filter addition failed */ 5572 err = -EADDRNOTAVAIL; 5573 } 5574 5575 err_update_filters: 5576 if (err) { 5577 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5578 mac); 5579 netif_addr_lock_bh(netdev); 5580 eth_hw_addr_set(netdev, old_mac); 5581 netif_addr_unlock_bh(netdev); 5582 return err; 5583 } 5584 5585 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5586 netdev->dev_addr); 5587 5588 /* write new MAC address to the firmware */ 5589 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5590 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5591 if (err) { 5592 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5593 mac, err); 5594 } 5595 return 0; 5596 } 5597 5598 /** 5599 * ice_set_rx_mode - NDO callback to set the netdev filters 5600 * @netdev: network interface device structure 5601 */ 5602 static void ice_set_rx_mode(struct net_device *netdev) 5603 { 5604 struct ice_netdev_priv *np = netdev_priv(netdev); 5605 struct ice_vsi *vsi = np->vsi; 5606 5607 if (!vsi) 5608 return; 5609 5610 /* Set the flags to synchronize filters 5611 * ndo_set_rx_mode may be triggered even without a change in netdev 5612 * flags 5613 */ 5614 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5615 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5616 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5617 5618 /* schedule our worker thread which will take care of 5619 * applying the new filter changes 5620 */ 5621 ice_service_task_schedule(vsi->back); 5622 } 5623 5624 /** 5625 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5626 * @netdev: network interface device structure 5627 * @queue_index: Queue ID 5628 * @maxrate: maximum bandwidth in Mbps 5629 */ 5630 static int 5631 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5632 { 5633 struct ice_netdev_priv *np = netdev_priv(netdev); 5634 struct ice_vsi *vsi = np->vsi; 5635 u16 q_handle; 5636 int status; 5637 u8 tc; 5638 5639 /* Validate maxrate requested is within permitted range */ 5640 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5641 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5642 maxrate, queue_index); 5643 return -EINVAL; 5644 } 5645 5646 q_handle = vsi->tx_rings[queue_index]->q_handle; 5647 tc = ice_dcb_get_tc(vsi, queue_index); 5648 5649 /* Set BW back to default, when user set maxrate to 0 */ 5650 if (!maxrate) 5651 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5652 q_handle, ICE_MAX_BW); 5653 else 5654 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5655 q_handle, ICE_MAX_BW, maxrate * 1000); 5656 if (status) 5657 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5658 status); 5659 5660 return status; 5661 } 5662 5663 /** 5664 * ice_fdb_add - add an entry to the hardware database 5665 * @ndm: the input from the stack 5666 * @tb: pointer to array of nladdr (unused) 5667 * @dev: the net device pointer 5668 * @addr: the MAC address entry being added 5669 * @vid: VLAN ID 5670 * @flags: instructions from stack about fdb operation 5671 * @extack: netlink extended ack 5672 */ 5673 static int 5674 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5675 struct net_device *dev, const unsigned char *addr, u16 vid, 5676 u16 flags, struct netlink_ext_ack __always_unused *extack) 5677 { 5678 int err; 5679 5680 if (vid) { 5681 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5682 return -EINVAL; 5683 } 5684 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5685 netdev_err(dev, "FDB only supports static addresses\n"); 5686 return -EINVAL; 5687 } 5688 5689 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5690 err = dev_uc_add_excl(dev, addr); 5691 else if (is_multicast_ether_addr(addr)) 5692 err = dev_mc_add_excl(dev, addr); 5693 else 5694 err = -EINVAL; 5695 5696 /* Only return duplicate errors if NLM_F_EXCL is set */ 5697 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5698 err = 0; 5699 5700 return err; 5701 } 5702 5703 /** 5704 * ice_fdb_del - delete an entry from the hardware database 5705 * @ndm: the input from the stack 5706 * @tb: pointer to array of nladdr (unused) 5707 * @dev: the net device pointer 5708 * @addr: the MAC address entry being added 5709 * @vid: VLAN ID 5710 * @extack: netlink extended ack 5711 */ 5712 static int 5713 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5714 struct net_device *dev, const unsigned char *addr, 5715 __always_unused u16 vid, struct netlink_ext_ack *extack) 5716 { 5717 int err; 5718 5719 if (ndm->ndm_state & NUD_PERMANENT) { 5720 netdev_err(dev, "FDB only supports static addresses\n"); 5721 return -EINVAL; 5722 } 5723 5724 if (is_unicast_ether_addr(addr)) 5725 err = dev_uc_del(dev, addr); 5726 else if (is_multicast_ether_addr(addr)) 5727 err = dev_mc_del(dev, addr); 5728 else 5729 err = -EINVAL; 5730 5731 return err; 5732 } 5733 5734 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5735 NETIF_F_HW_VLAN_CTAG_TX | \ 5736 NETIF_F_HW_VLAN_STAG_RX | \ 5737 NETIF_F_HW_VLAN_STAG_TX) 5738 5739 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5740 NETIF_F_HW_VLAN_STAG_FILTER) 5741 5742 /** 5743 * ice_fix_features - fix the netdev features flags based on device limitations 5744 * @netdev: ptr to the netdev that flags are being fixed on 5745 * @features: features that need to be checked and possibly fixed 5746 * 5747 * Make sure any fixups are made to features in this callback. This enables the 5748 * driver to not have to check unsupported configurations throughout the driver 5749 * because that's the responsiblity of this callback. 5750 * 5751 * Single VLAN Mode (SVM) Supported Features: 5752 * NETIF_F_HW_VLAN_CTAG_FILTER 5753 * NETIF_F_HW_VLAN_CTAG_RX 5754 * NETIF_F_HW_VLAN_CTAG_TX 5755 * 5756 * Double VLAN Mode (DVM) Supported Features: 5757 * NETIF_F_HW_VLAN_CTAG_FILTER 5758 * NETIF_F_HW_VLAN_CTAG_RX 5759 * NETIF_F_HW_VLAN_CTAG_TX 5760 * 5761 * NETIF_F_HW_VLAN_STAG_FILTER 5762 * NETIF_HW_VLAN_STAG_RX 5763 * NETIF_HW_VLAN_STAG_TX 5764 * 5765 * Features that need fixing: 5766 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5767 * These are mutually exlusive as the VSI context cannot support multiple 5768 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5769 * is not done, then default to clearing the requested STAG offload 5770 * settings. 5771 * 5772 * All supported filtering has to be enabled or disabled together. For 5773 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5774 * together. If this is not done, then default to VLAN filtering disabled. 5775 * These are mutually exclusive as there is currently no way to 5776 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5777 * prune rules. 5778 */ 5779 static netdev_features_t 5780 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5781 { 5782 struct ice_netdev_priv *np = netdev_priv(netdev); 5783 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5784 bool cur_ctag, cur_stag, req_ctag, req_stag; 5785 5786 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5787 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5788 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5789 5790 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5791 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5792 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5793 5794 if (req_vlan_fltr != cur_vlan_fltr) { 5795 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5796 if (req_ctag && req_stag) { 5797 features |= NETIF_VLAN_FILTERING_FEATURES; 5798 } else if (!req_ctag && !req_stag) { 5799 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5800 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5801 (!cur_stag && req_stag && !cur_ctag)) { 5802 features |= NETIF_VLAN_FILTERING_FEATURES; 5803 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5804 } else if ((cur_ctag && !req_ctag && cur_stag) || 5805 (cur_stag && !req_stag && cur_ctag)) { 5806 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5807 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5808 } 5809 } else { 5810 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5811 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5812 5813 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5814 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5815 } 5816 } 5817 5818 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5819 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5820 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5821 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5822 NETIF_F_HW_VLAN_STAG_TX); 5823 } 5824 5825 return features; 5826 } 5827 5828 /** 5829 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5830 * @vsi: PF's VSI 5831 * @features: features used to determine VLAN offload settings 5832 * 5833 * First, determine the vlan_ethertype based on the VLAN offload bits in 5834 * features. Then determine if stripping and insertion should be enabled or 5835 * disabled. Finally enable or disable VLAN stripping and insertion. 5836 */ 5837 static int 5838 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5839 { 5840 bool enable_stripping = true, enable_insertion = true; 5841 struct ice_vsi_vlan_ops *vlan_ops; 5842 int strip_err = 0, insert_err = 0; 5843 u16 vlan_ethertype = 0; 5844 5845 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5846 5847 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5848 vlan_ethertype = ETH_P_8021AD; 5849 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5850 vlan_ethertype = ETH_P_8021Q; 5851 5852 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5853 enable_stripping = false; 5854 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5855 enable_insertion = false; 5856 5857 if (enable_stripping) 5858 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5859 else 5860 strip_err = vlan_ops->dis_stripping(vsi); 5861 5862 if (enable_insertion) 5863 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5864 else 5865 insert_err = vlan_ops->dis_insertion(vsi); 5866 5867 if (strip_err || insert_err) 5868 return -EIO; 5869 5870 return 0; 5871 } 5872 5873 /** 5874 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5875 * @vsi: PF's VSI 5876 * @features: features used to determine VLAN filtering settings 5877 * 5878 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5879 * features. 5880 */ 5881 static int 5882 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5883 { 5884 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5885 int err = 0; 5886 5887 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5888 * if either bit is set 5889 */ 5890 if (features & 5891 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5892 err = vlan_ops->ena_rx_filtering(vsi); 5893 else 5894 err = vlan_ops->dis_rx_filtering(vsi); 5895 5896 return err; 5897 } 5898 5899 /** 5900 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5901 * @netdev: ptr to the netdev being adjusted 5902 * @features: the feature set that the stack is suggesting 5903 * 5904 * Only update VLAN settings if the requested_vlan_features are different than 5905 * the current_vlan_features. 5906 */ 5907 static int 5908 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5909 { 5910 netdev_features_t current_vlan_features, requested_vlan_features; 5911 struct ice_netdev_priv *np = netdev_priv(netdev); 5912 struct ice_vsi *vsi = np->vsi; 5913 int err; 5914 5915 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5916 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5917 if (current_vlan_features ^ requested_vlan_features) { 5918 err = ice_set_vlan_offload_features(vsi, features); 5919 if (err) 5920 return err; 5921 } 5922 5923 current_vlan_features = netdev->features & 5924 NETIF_VLAN_FILTERING_FEATURES; 5925 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5926 if (current_vlan_features ^ requested_vlan_features) { 5927 err = ice_set_vlan_filtering_features(vsi, features); 5928 if (err) 5929 return err; 5930 } 5931 5932 return 0; 5933 } 5934 5935 /** 5936 * ice_set_loopback - turn on/off loopback mode on underlying PF 5937 * @vsi: ptr to VSI 5938 * @ena: flag to indicate the on/off setting 5939 */ 5940 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5941 { 5942 bool if_running = netif_running(vsi->netdev); 5943 int ret; 5944 5945 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5946 ret = ice_down(vsi); 5947 if (ret) { 5948 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5949 return ret; 5950 } 5951 } 5952 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 5953 if (ret) 5954 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 5955 if (if_running) 5956 ret = ice_up(vsi); 5957 5958 return ret; 5959 } 5960 5961 /** 5962 * ice_set_features - set the netdev feature flags 5963 * @netdev: ptr to the netdev being adjusted 5964 * @features: the feature set that the stack is suggesting 5965 */ 5966 static int 5967 ice_set_features(struct net_device *netdev, netdev_features_t features) 5968 { 5969 netdev_features_t changed = netdev->features ^ features; 5970 struct ice_netdev_priv *np = netdev_priv(netdev); 5971 struct ice_vsi *vsi = np->vsi; 5972 struct ice_pf *pf = vsi->back; 5973 int ret = 0; 5974 5975 /* Don't set any netdev advanced features with device in Safe Mode */ 5976 if (ice_is_safe_mode(pf)) { 5977 dev_err(ice_pf_to_dev(pf), 5978 "Device is in Safe Mode - not enabling advanced netdev features\n"); 5979 return ret; 5980 } 5981 5982 /* Do not change setting during reset */ 5983 if (ice_is_reset_in_progress(pf->state)) { 5984 dev_err(ice_pf_to_dev(pf), 5985 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5986 return -EBUSY; 5987 } 5988 5989 /* Multiple features can be changed in one call so keep features in 5990 * separate if/else statements to guarantee each feature is checked 5991 */ 5992 if (changed & NETIF_F_RXHASH) 5993 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 5994 5995 ret = ice_set_vlan_features(netdev, features); 5996 if (ret) 5997 return ret; 5998 5999 if (changed & NETIF_F_NTUPLE) { 6000 bool ena = !!(features & NETIF_F_NTUPLE); 6001 6002 ice_vsi_manage_fdir(vsi, ena); 6003 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6004 } 6005 6006 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6007 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6008 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6009 return -EACCES; 6010 } 6011 6012 if (changed & NETIF_F_HW_TC) { 6013 bool ena = !!(features & NETIF_F_HW_TC); 6014 6015 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6016 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6017 } 6018 6019 if (changed & NETIF_F_LOOPBACK) 6020 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6021 6022 return ret; 6023 } 6024 6025 /** 6026 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6027 * @vsi: VSI to setup VLAN properties for 6028 */ 6029 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6030 { 6031 int err; 6032 6033 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6034 if (err) 6035 return err; 6036 6037 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6038 if (err) 6039 return err; 6040 6041 return ice_vsi_add_vlan_zero(vsi); 6042 } 6043 6044 /** 6045 * ice_vsi_cfg - Setup the VSI 6046 * @vsi: the VSI being configured 6047 * 6048 * Return 0 on success and negative value on error 6049 */ 6050 int ice_vsi_cfg(struct ice_vsi *vsi) 6051 { 6052 int err; 6053 6054 if (vsi->netdev) { 6055 ice_set_rx_mode(vsi->netdev); 6056 6057 if (vsi->type != ICE_VSI_LB) { 6058 err = ice_vsi_vlan_setup(vsi); 6059 6060 if (err) 6061 return err; 6062 } 6063 } 6064 ice_vsi_cfg_dcb_rings(vsi); 6065 6066 err = ice_vsi_cfg_lan_txqs(vsi); 6067 if (!err && ice_is_xdp_ena_vsi(vsi)) 6068 err = ice_vsi_cfg_xdp_txqs(vsi); 6069 if (!err) 6070 err = ice_vsi_cfg_rxqs(vsi); 6071 6072 return err; 6073 } 6074 6075 /* THEORY OF MODERATION: 6076 * The ice driver hardware works differently than the hardware that DIMLIB was 6077 * originally made for. ice hardware doesn't have packet count limits that 6078 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6079 * which is hard-coded to a limit of 250,000 ints/second. 6080 * If not using dynamic moderation, the INTRL value can be modified 6081 * by ethtool rx-usecs-high. 6082 */ 6083 struct ice_dim { 6084 /* the throttle rate for interrupts, basically worst case delay before 6085 * an initial interrupt fires, value is stored in microseconds. 6086 */ 6087 u16 itr; 6088 }; 6089 6090 /* Make a different profile for Rx that doesn't allow quite so aggressive 6091 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6092 * second. 6093 */ 6094 static const struct ice_dim rx_profile[] = { 6095 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6096 {8}, /* 125,000 ints/s */ 6097 {16}, /* 62,500 ints/s */ 6098 {62}, /* 16,129 ints/s */ 6099 {126} /* 7,936 ints/s */ 6100 }; 6101 6102 /* The transmit profile, which has the same sorts of values 6103 * as the previous struct 6104 */ 6105 static const struct ice_dim tx_profile[] = { 6106 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6107 {8}, /* 125,000 ints/s */ 6108 {40}, /* 16,125 ints/s */ 6109 {128}, /* 7,812 ints/s */ 6110 {256} /* 3,906 ints/s */ 6111 }; 6112 6113 static void ice_tx_dim_work(struct work_struct *work) 6114 { 6115 struct ice_ring_container *rc; 6116 struct dim *dim; 6117 u16 itr; 6118 6119 dim = container_of(work, struct dim, work); 6120 rc = (struct ice_ring_container *)dim->priv; 6121 6122 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6123 6124 /* look up the values in our local table */ 6125 itr = tx_profile[dim->profile_ix].itr; 6126 6127 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6128 ice_write_itr(rc, itr); 6129 6130 dim->state = DIM_START_MEASURE; 6131 } 6132 6133 static void ice_rx_dim_work(struct work_struct *work) 6134 { 6135 struct ice_ring_container *rc; 6136 struct dim *dim; 6137 u16 itr; 6138 6139 dim = container_of(work, struct dim, work); 6140 rc = (struct ice_ring_container *)dim->priv; 6141 6142 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6143 6144 /* look up the values in our local table */ 6145 itr = rx_profile[dim->profile_ix].itr; 6146 6147 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6148 ice_write_itr(rc, itr); 6149 6150 dim->state = DIM_START_MEASURE; 6151 } 6152 6153 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6154 6155 /** 6156 * ice_init_moderation - set up interrupt moderation 6157 * @q_vector: the vector containing rings to be configured 6158 * 6159 * Set up interrupt moderation registers, with the intent to do the right thing 6160 * when called from reset or from probe, and whether or not dynamic moderation 6161 * is enabled or not. Take special care to write all the registers in both 6162 * dynamic moderation mode or not in order to make sure hardware is in a known 6163 * state. 6164 */ 6165 static void ice_init_moderation(struct ice_q_vector *q_vector) 6166 { 6167 struct ice_ring_container *rc; 6168 bool tx_dynamic, rx_dynamic; 6169 6170 rc = &q_vector->tx; 6171 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6172 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6173 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6174 rc->dim.priv = rc; 6175 tx_dynamic = ITR_IS_DYNAMIC(rc); 6176 6177 /* set the initial TX ITR to match the above */ 6178 ice_write_itr(rc, tx_dynamic ? 6179 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6180 6181 rc = &q_vector->rx; 6182 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6183 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6184 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6185 rc->dim.priv = rc; 6186 rx_dynamic = ITR_IS_DYNAMIC(rc); 6187 6188 /* set the initial RX ITR to match the above */ 6189 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6190 rc->itr_setting); 6191 6192 ice_set_q_vector_intrl(q_vector); 6193 } 6194 6195 /** 6196 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6197 * @vsi: the VSI being configured 6198 */ 6199 static void ice_napi_enable_all(struct ice_vsi *vsi) 6200 { 6201 int q_idx; 6202 6203 if (!vsi->netdev) 6204 return; 6205 6206 ice_for_each_q_vector(vsi, q_idx) { 6207 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6208 6209 ice_init_moderation(q_vector); 6210 6211 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6212 napi_enable(&q_vector->napi); 6213 } 6214 } 6215 6216 /** 6217 * ice_up_complete - Finish the last steps of bringing up a connection 6218 * @vsi: The VSI being configured 6219 * 6220 * Return 0 on success and negative value on error 6221 */ 6222 static int ice_up_complete(struct ice_vsi *vsi) 6223 { 6224 struct ice_pf *pf = vsi->back; 6225 int err; 6226 6227 ice_vsi_cfg_msix(vsi); 6228 6229 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6230 * Tx queue group list was configured and the context bits were 6231 * programmed using ice_vsi_cfg_txqs 6232 */ 6233 err = ice_vsi_start_all_rx_rings(vsi); 6234 if (err) 6235 return err; 6236 6237 clear_bit(ICE_VSI_DOWN, vsi->state); 6238 ice_napi_enable_all(vsi); 6239 ice_vsi_ena_irq(vsi); 6240 6241 if (vsi->port_info && 6242 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6243 vsi->netdev) { 6244 ice_print_link_msg(vsi, true); 6245 netif_tx_start_all_queues(vsi->netdev); 6246 netif_carrier_on(vsi->netdev); 6247 if (!ice_is_e810(&pf->hw)) 6248 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6249 } 6250 6251 /* Perform an initial read of the statistics registers now to 6252 * set the baseline so counters are ready when interface is up 6253 */ 6254 ice_update_eth_stats(vsi); 6255 ice_service_task_schedule(pf); 6256 6257 return 0; 6258 } 6259 6260 /** 6261 * ice_up - Bring the connection back up after being down 6262 * @vsi: VSI being configured 6263 */ 6264 int ice_up(struct ice_vsi *vsi) 6265 { 6266 int err; 6267 6268 err = ice_vsi_cfg(vsi); 6269 if (!err) 6270 err = ice_up_complete(vsi); 6271 6272 return err; 6273 } 6274 6275 /** 6276 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6277 * @syncp: pointer to u64_stats_sync 6278 * @stats: stats that pkts and bytes count will be taken from 6279 * @pkts: packets stats counter 6280 * @bytes: bytes stats counter 6281 * 6282 * This function fetches stats from the ring considering the atomic operations 6283 * that needs to be performed to read u64 values in 32 bit machine. 6284 */ 6285 void 6286 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6287 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6288 { 6289 unsigned int start; 6290 6291 do { 6292 start = u64_stats_fetch_begin_irq(syncp); 6293 *pkts = stats.pkts; 6294 *bytes = stats.bytes; 6295 } while (u64_stats_fetch_retry_irq(syncp, start)); 6296 } 6297 6298 /** 6299 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6300 * @vsi: the VSI to be updated 6301 * @vsi_stats: the stats struct to be updated 6302 * @rings: rings to work on 6303 * @count: number of rings 6304 */ 6305 static void 6306 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6307 struct rtnl_link_stats64 *vsi_stats, 6308 struct ice_tx_ring **rings, u16 count) 6309 { 6310 u16 i; 6311 6312 for (i = 0; i < count; i++) { 6313 struct ice_tx_ring *ring; 6314 u64 pkts = 0, bytes = 0; 6315 6316 ring = READ_ONCE(rings[i]); 6317 if (!ring) 6318 continue; 6319 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6320 vsi_stats->tx_packets += pkts; 6321 vsi_stats->tx_bytes += bytes; 6322 vsi->tx_restart += ring->tx_stats.restart_q; 6323 vsi->tx_busy += ring->tx_stats.tx_busy; 6324 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6325 } 6326 } 6327 6328 /** 6329 * ice_update_vsi_ring_stats - Update VSI stats counters 6330 * @vsi: the VSI to be updated 6331 */ 6332 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6333 { 6334 struct rtnl_link_stats64 *vsi_stats; 6335 u64 pkts, bytes; 6336 int i; 6337 6338 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6339 if (!vsi_stats) 6340 return; 6341 6342 /* reset non-netdev (extended) stats */ 6343 vsi->tx_restart = 0; 6344 vsi->tx_busy = 0; 6345 vsi->tx_linearize = 0; 6346 vsi->rx_buf_failed = 0; 6347 vsi->rx_page_failed = 0; 6348 6349 rcu_read_lock(); 6350 6351 /* update Tx rings counters */ 6352 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6353 vsi->num_txq); 6354 6355 /* update Rx rings counters */ 6356 ice_for_each_rxq(vsi, i) { 6357 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6358 6359 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6360 vsi_stats->rx_packets += pkts; 6361 vsi_stats->rx_bytes += bytes; 6362 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6363 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6364 } 6365 6366 /* update XDP Tx rings counters */ 6367 if (ice_is_xdp_ena_vsi(vsi)) 6368 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6369 vsi->num_xdp_txq); 6370 6371 rcu_read_unlock(); 6372 6373 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6374 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6375 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6376 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6377 6378 kfree(vsi_stats); 6379 } 6380 6381 /** 6382 * ice_update_vsi_stats - Update VSI stats counters 6383 * @vsi: the VSI to be updated 6384 */ 6385 void ice_update_vsi_stats(struct ice_vsi *vsi) 6386 { 6387 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6388 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6389 struct ice_pf *pf = vsi->back; 6390 6391 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6392 test_bit(ICE_CFG_BUSY, pf->state)) 6393 return; 6394 6395 /* get stats as recorded by Tx/Rx rings */ 6396 ice_update_vsi_ring_stats(vsi); 6397 6398 /* get VSI stats as recorded by the hardware */ 6399 ice_update_eth_stats(vsi); 6400 6401 cur_ns->tx_errors = cur_es->tx_errors; 6402 cur_ns->rx_dropped = cur_es->rx_discards; 6403 cur_ns->tx_dropped = cur_es->tx_discards; 6404 cur_ns->multicast = cur_es->rx_multicast; 6405 6406 /* update some more netdev stats if this is main VSI */ 6407 if (vsi->type == ICE_VSI_PF) { 6408 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6409 cur_ns->rx_errors = pf->stats.crc_errors + 6410 pf->stats.illegal_bytes + 6411 pf->stats.rx_len_errors + 6412 pf->stats.rx_undersize + 6413 pf->hw_csum_rx_error + 6414 pf->stats.rx_jabber + 6415 pf->stats.rx_fragments + 6416 pf->stats.rx_oversize; 6417 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6418 /* record drops from the port level */ 6419 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6420 } 6421 } 6422 6423 /** 6424 * ice_update_pf_stats - Update PF port stats counters 6425 * @pf: PF whose stats needs to be updated 6426 */ 6427 void ice_update_pf_stats(struct ice_pf *pf) 6428 { 6429 struct ice_hw_port_stats *prev_ps, *cur_ps; 6430 struct ice_hw *hw = &pf->hw; 6431 u16 fd_ctr_base; 6432 u8 port; 6433 6434 port = hw->port_info->lport; 6435 prev_ps = &pf->stats_prev; 6436 cur_ps = &pf->stats; 6437 6438 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6439 &prev_ps->eth.rx_bytes, 6440 &cur_ps->eth.rx_bytes); 6441 6442 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6443 &prev_ps->eth.rx_unicast, 6444 &cur_ps->eth.rx_unicast); 6445 6446 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6447 &prev_ps->eth.rx_multicast, 6448 &cur_ps->eth.rx_multicast); 6449 6450 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6451 &prev_ps->eth.rx_broadcast, 6452 &cur_ps->eth.rx_broadcast); 6453 6454 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6455 &prev_ps->eth.rx_discards, 6456 &cur_ps->eth.rx_discards); 6457 6458 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6459 &prev_ps->eth.tx_bytes, 6460 &cur_ps->eth.tx_bytes); 6461 6462 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6463 &prev_ps->eth.tx_unicast, 6464 &cur_ps->eth.tx_unicast); 6465 6466 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6467 &prev_ps->eth.tx_multicast, 6468 &cur_ps->eth.tx_multicast); 6469 6470 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6471 &prev_ps->eth.tx_broadcast, 6472 &cur_ps->eth.tx_broadcast); 6473 6474 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6475 &prev_ps->tx_dropped_link_down, 6476 &cur_ps->tx_dropped_link_down); 6477 6478 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6479 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6480 6481 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6482 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6483 6484 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6485 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6486 6487 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6488 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6489 6490 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6491 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6492 6493 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6494 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6495 6496 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6497 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6498 6499 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6500 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6501 6502 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6503 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6504 6505 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6506 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6507 6508 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6509 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6510 6511 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6512 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6513 6514 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6515 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6516 6517 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6518 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6519 6520 fd_ctr_base = hw->fd_ctr_base; 6521 6522 ice_stat_update40(hw, 6523 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6524 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6525 &cur_ps->fd_sb_match); 6526 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6527 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6528 6529 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6530 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6531 6532 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6533 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6534 6535 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6536 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6537 6538 ice_update_dcb_stats(pf); 6539 6540 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6541 &prev_ps->crc_errors, &cur_ps->crc_errors); 6542 6543 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6544 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6545 6546 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6547 &prev_ps->mac_local_faults, 6548 &cur_ps->mac_local_faults); 6549 6550 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6551 &prev_ps->mac_remote_faults, 6552 &cur_ps->mac_remote_faults); 6553 6554 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6555 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6556 6557 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6558 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6559 6560 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6561 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6562 6563 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6564 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6565 6566 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6567 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6568 6569 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6570 6571 pf->stat_prev_loaded = true; 6572 } 6573 6574 /** 6575 * ice_get_stats64 - get statistics for network device structure 6576 * @netdev: network interface device structure 6577 * @stats: main device statistics structure 6578 */ 6579 static 6580 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6581 { 6582 struct ice_netdev_priv *np = netdev_priv(netdev); 6583 struct rtnl_link_stats64 *vsi_stats; 6584 struct ice_vsi *vsi = np->vsi; 6585 6586 vsi_stats = &vsi->net_stats; 6587 6588 if (!vsi->num_txq || !vsi->num_rxq) 6589 return; 6590 6591 /* netdev packet/byte stats come from ring counter. These are obtained 6592 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6593 * But, only call the update routine and read the registers if VSI is 6594 * not down. 6595 */ 6596 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6597 ice_update_vsi_ring_stats(vsi); 6598 stats->tx_packets = vsi_stats->tx_packets; 6599 stats->tx_bytes = vsi_stats->tx_bytes; 6600 stats->rx_packets = vsi_stats->rx_packets; 6601 stats->rx_bytes = vsi_stats->rx_bytes; 6602 6603 /* The rest of the stats can be read from the hardware but instead we 6604 * just return values that the watchdog task has already obtained from 6605 * the hardware. 6606 */ 6607 stats->multicast = vsi_stats->multicast; 6608 stats->tx_errors = vsi_stats->tx_errors; 6609 stats->tx_dropped = vsi_stats->tx_dropped; 6610 stats->rx_errors = vsi_stats->rx_errors; 6611 stats->rx_dropped = vsi_stats->rx_dropped; 6612 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6613 stats->rx_length_errors = vsi_stats->rx_length_errors; 6614 } 6615 6616 /** 6617 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6618 * @vsi: VSI having NAPI disabled 6619 */ 6620 static void ice_napi_disable_all(struct ice_vsi *vsi) 6621 { 6622 int q_idx; 6623 6624 if (!vsi->netdev) 6625 return; 6626 6627 ice_for_each_q_vector(vsi, q_idx) { 6628 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6629 6630 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6631 napi_disable(&q_vector->napi); 6632 6633 cancel_work_sync(&q_vector->tx.dim.work); 6634 cancel_work_sync(&q_vector->rx.dim.work); 6635 } 6636 } 6637 6638 /** 6639 * ice_down - Shutdown the connection 6640 * @vsi: The VSI being stopped 6641 * 6642 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6643 */ 6644 int ice_down(struct ice_vsi *vsi) 6645 { 6646 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6647 6648 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6649 6650 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6651 vlan_err = ice_vsi_del_vlan_zero(vsi); 6652 if (!ice_is_e810(&vsi->back->hw)) 6653 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6654 netif_carrier_off(vsi->netdev); 6655 netif_tx_disable(vsi->netdev); 6656 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6657 ice_eswitch_stop_all_tx_queues(vsi->back); 6658 } 6659 6660 ice_vsi_dis_irq(vsi); 6661 6662 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6663 if (tx_err) 6664 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6665 vsi->vsi_num, tx_err); 6666 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6667 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6668 if (tx_err) 6669 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6670 vsi->vsi_num, tx_err); 6671 } 6672 6673 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6674 if (rx_err) 6675 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6676 vsi->vsi_num, rx_err); 6677 6678 ice_napi_disable_all(vsi); 6679 6680 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6681 link_err = ice_force_phys_link_state(vsi, false); 6682 if (link_err) 6683 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6684 vsi->vsi_num, link_err); 6685 } 6686 6687 ice_for_each_txq(vsi, i) 6688 ice_clean_tx_ring(vsi->tx_rings[i]); 6689 6690 ice_for_each_rxq(vsi, i) 6691 ice_clean_rx_ring(vsi->rx_rings[i]); 6692 6693 if (tx_err || rx_err || link_err || vlan_err) { 6694 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6695 vsi->vsi_num, vsi->vsw->sw_id); 6696 return -EIO; 6697 } 6698 6699 return 0; 6700 } 6701 6702 /** 6703 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6704 * @vsi: VSI having resources allocated 6705 * 6706 * Return 0 on success, negative on failure 6707 */ 6708 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6709 { 6710 int i, err = 0; 6711 6712 if (!vsi->num_txq) { 6713 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6714 vsi->vsi_num); 6715 return -EINVAL; 6716 } 6717 6718 ice_for_each_txq(vsi, i) { 6719 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6720 6721 if (!ring) 6722 return -EINVAL; 6723 6724 if (vsi->netdev) 6725 ring->netdev = vsi->netdev; 6726 err = ice_setup_tx_ring(ring); 6727 if (err) 6728 break; 6729 } 6730 6731 return err; 6732 } 6733 6734 /** 6735 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6736 * @vsi: VSI having resources allocated 6737 * 6738 * Return 0 on success, negative on failure 6739 */ 6740 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6741 { 6742 int i, err = 0; 6743 6744 if (!vsi->num_rxq) { 6745 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6746 vsi->vsi_num); 6747 return -EINVAL; 6748 } 6749 6750 ice_for_each_rxq(vsi, i) { 6751 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6752 6753 if (!ring) 6754 return -EINVAL; 6755 6756 if (vsi->netdev) 6757 ring->netdev = vsi->netdev; 6758 err = ice_setup_rx_ring(ring); 6759 if (err) 6760 break; 6761 } 6762 6763 return err; 6764 } 6765 6766 /** 6767 * ice_vsi_open_ctrl - open control VSI for use 6768 * @vsi: the VSI to open 6769 * 6770 * Initialization of the Control VSI 6771 * 6772 * Returns 0 on success, negative value on error 6773 */ 6774 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6775 { 6776 char int_name[ICE_INT_NAME_STR_LEN]; 6777 struct ice_pf *pf = vsi->back; 6778 struct device *dev; 6779 int err; 6780 6781 dev = ice_pf_to_dev(pf); 6782 /* allocate descriptors */ 6783 err = ice_vsi_setup_tx_rings(vsi); 6784 if (err) 6785 goto err_setup_tx; 6786 6787 err = ice_vsi_setup_rx_rings(vsi); 6788 if (err) 6789 goto err_setup_rx; 6790 6791 err = ice_vsi_cfg(vsi); 6792 if (err) 6793 goto err_setup_rx; 6794 6795 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6796 dev_driver_string(dev), dev_name(dev)); 6797 err = ice_vsi_req_irq_msix(vsi, int_name); 6798 if (err) 6799 goto err_setup_rx; 6800 6801 ice_vsi_cfg_msix(vsi); 6802 6803 err = ice_vsi_start_all_rx_rings(vsi); 6804 if (err) 6805 goto err_up_complete; 6806 6807 clear_bit(ICE_VSI_DOWN, vsi->state); 6808 ice_vsi_ena_irq(vsi); 6809 6810 return 0; 6811 6812 err_up_complete: 6813 ice_down(vsi); 6814 err_setup_rx: 6815 ice_vsi_free_rx_rings(vsi); 6816 err_setup_tx: 6817 ice_vsi_free_tx_rings(vsi); 6818 6819 return err; 6820 } 6821 6822 /** 6823 * ice_vsi_open - Called when a network interface is made active 6824 * @vsi: the VSI to open 6825 * 6826 * Initialization of the VSI 6827 * 6828 * Returns 0 on success, negative value on error 6829 */ 6830 int ice_vsi_open(struct ice_vsi *vsi) 6831 { 6832 char int_name[ICE_INT_NAME_STR_LEN]; 6833 struct ice_pf *pf = vsi->back; 6834 int err; 6835 6836 /* allocate descriptors */ 6837 err = ice_vsi_setup_tx_rings(vsi); 6838 if (err) 6839 goto err_setup_tx; 6840 6841 err = ice_vsi_setup_rx_rings(vsi); 6842 if (err) 6843 goto err_setup_rx; 6844 6845 err = ice_vsi_cfg(vsi); 6846 if (err) 6847 goto err_setup_rx; 6848 6849 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6850 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6851 err = ice_vsi_req_irq_msix(vsi, int_name); 6852 if (err) 6853 goto err_setup_rx; 6854 6855 if (vsi->type == ICE_VSI_PF) { 6856 /* Notify the stack of the actual queue counts. */ 6857 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6858 if (err) 6859 goto err_set_qs; 6860 6861 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6862 if (err) 6863 goto err_set_qs; 6864 } 6865 6866 err = ice_up_complete(vsi); 6867 if (err) 6868 goto err_up_complete; 6869 6870 return 0; 6871 6872 err_up_complete: 6873 ice_down(vsi); 6874 err_set_qs: 6875 ice_vsi_free_irq(vsi); 6876 err_setup_rx: 6877 ice_vsi_free_rx_rings(vsi); 6878 err_setup_tx: 6879 ice_vsi_free_tx_rings(vsi); 6880 6881 return err; 6882 } 6883 6884 /** 6885 * ice_vsi_release_all - Delete all VSIs 6886 * @pf: PF from which all VSIs are being removed 6887 */ 6888 static void ice_vsi_release_all(struct ice_pf *pf) 6889 { 6890 int err, i; 6891 6892 if (!pf->vsi) 6893 return; 6894 6895 ice_for_each_vsi(pf, i) { 6896 if (!pf->vsi[i]) 6897 continue; 6898 6899 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6900 continue; 6901 6902 err = ice_vsi_release(pf->vsi[i]); 6903 if (err) 6904 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6905 i, err, pf->vsi[i]->vsi_num); 6906 } 6907 } 6908 6909 /** 6910 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6911 * @pf: pointer to the PF instance 6912 * @type: VSI type to rebuild 6913 * 6914 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6915 */ 6916 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6917 { 6918 struct device *dev = ice_pf_to_dev(pf); 6919 int i, err; 6920 6921 ice_for_each_vsi(pf, i) { 6922 struct ice_vsi *vsi = pf->vsi[i]; 6923 6924 if (!vsi || vsi->type != type) 6925 continue; 6926 6927 /* rebuild the VSI */ 6928 err = ice_vsi_rebuild(vsi, true); 6929 if (err) { 6930 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6931 err, vsi->idx, ice_vsi_type_str(type)); 6932 return err; 6933 } 6934 6935 /* replay filters for the VSI */ 6936 err = ice_replay_vsi(&pf->hw, vsi->idx); 6937 if (err) { 6938 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6939 err, vsi->idx, ice_vsi_type_str(type)); 6940 return err; 6941 } 6942 6943 /* Re-map HW VSI number, using VSI handle that has been 6944 * previously validated in ice_replay_vsi() call above 6945 */ 6946 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6947 6948 /* enable the VSI */ 6949 err = ice_ena_vsi(vsi, false); 6950 if (err) { 6951 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6952 err, vsi->idx, ice_vsi_type_str(type)); 6953 return err; 6954 } 6955 6956 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6957 ice_vsi_type_str(type)); 6958 } 6959 6960 return 0; 6961 } 6962 6963 /** 6964 * ice_update_pf_netdev_link - Update PF netdev link status 6965 * @pf: pointer to the PF instance 6966 */ 6967 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6968 { 6969 bool link_up; 6970 int i; 6971 6972 ice_for_each_vsi(pf, i) { 6973 struct ice_vsi *vsi = pf->vsi[i]; 6974 6975 if (!vsi || vsi->type != ICE_VSI_PF) 6976 return; 6977 6978 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6979 if (link_up) { 6980 netif_carrier_on(pf->vsi[i]->netdev); 6981 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6982 } else { 6983 netif_carrier_off(pf->vsi[i]->netdev); 6984 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6985 } 6986 } 6987 } 6988 6989 /** 6990 * ice_rebuild - rebuild after reset 6991 * @pf: PF to rebuild 6992 * @reset_type: type of reset 6993 * 6994 * Do not rebuild VF VSI in this flow because that is already handled via 6995 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6996 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6997 * to reset/rebuild all the VF VSI twice. 6998 */ 6999 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7000 { 7001 struct device *dev = ice_pf_to_dev(pf); 7002 struct ice_hw *hw = &pf->hw; 7003 bool dvm; 7004 int err; 7005 7006 if (test_bit(ICE_DOWN, pf->state)) 7007 goto clear_recovery; 7008 7009 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7010 7011 #define ICE_EMP_RESET_SLEEP_MS 5000 7012 if (reset_type == ICE_RESET_EMPR) { 7013 /* If an EMP reset has occurred, any previously pending flash 7014 * update will have completed. We no longer know whether or 7015 * not the NVM update EMP reset is restricted. 7016 */ 7017 pf->fw_emp_reset_disabled = false; 7018 7019 msleep(ICE_EMP_RESET_SLEEP_MS); 7020 } 7021 7022 err = ice_init_all_ctrlq(hw); 7023 if (err) { 7024 dev_err(dev, "control queues init failed %d\n", err); 7025 goto err_init_ctrlq; 7026 } 7027 7028 /* if DDP was previously loaded successfully */ 7029 if (!ice_is_safe_mode(pf)) { 7030 /* reload the SW DB of filter tables */ 7031 if (reset_type == ICE_RESET_PFR) 7032 ice_fill_blk_tbls(hw); 7033 else 7034 /* Reload DDP Package after CORER/GLOBR reset */ 7035 ice_load_pkg(NULL, pf); 7036 } 7037 7038 err = ice_clear_pf_cfg(hw); 7039 if (err) { 7040 dev_err(dev, "clear PF configuration failed %d\n", err); 7041 goto err_init_ctrlq; 7042 } 7043 7044 ice_clear_pxe_mode(hw); 7045 7046 err = ice_init_nvm(hw); 7047 if (err) { 7048 dev_err(dev, "ice_init_nvm failed %d\n", err); 7049 goto err_init_ctrlq; 7050 } 7051 7052 err = ice_get_caps(hw); 7053 if (err) { 7054 dev_err(dev, "ice_get_caps failed %d\n", err); 7055 goto err_init_ctrlq; 7056 } 7057 7058 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7059 if (err) { 7060 dev_err(dev, "set_mac_cfg failed %d\n", err); 7061 goto err_init_ctrlq; 7062 } 7063 7064 dvm = ice_is_dvm_ena(hw); 7065 7066 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7067 if (err) 7068 goto err_init_ctrlq; 7069 7070 err = ice_sched_init_port(hw->port_info); 7071 if (err) 7072 goto err_sched_init_port; 7073 7074 /* start misc vector */ 7075 err = ice_req_irq_msix_misc(pf); 7076 if (err) { 7077 dev_err(dev, "misc vector setup failed: %d\n", err); 7078 goto err_sched_init_port; 7079 } 7080 7081 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7082 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7083 if (!rd32(hw, PFQF_FD_SIZE)) { 7084 u16 unused, guar, b_effort; 7085 7086 guar = hw->func_caps.fd_fltr_guar; 7087 b_effort = hw->func_caps.fd_fltr_best_effort; 7088 7089 /* force guaranteed filter pool for PF */ 7090 ice_alloc_fd_guar_item(hw, &unused, guar); 7091 /* force shared filter pool for PF */ 7092 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7093 } 7094 } 7095 7096 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7097 ice_dcb_rebuild(pf); 7098 7099 /* If the PF previously had enabled PTP, PTP init needs to happen before 7100 * the VSI rebuild. If not, this causes the PTP link status events to 7101 * fail. 7102 */ 7103 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7104 ice_ptp_reset(pf); 7105 7106 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7107 ice_gnss_init(pf); 7108 7109 /* rebuild PF VSI */ 7110 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7111 if (err) { 7112 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7113 goto err_vsi_rebuild; 7114 } 7115 7116 /* configure PTP timestamping after VSI rebuild */ 7117 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7118 ice_ptp_cfg_timestamp(pf, false); 7119 7120 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7121 if (err) { 7122 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7123 goto err_vsi_rebuild; 7124 } 7125 7126 if (reset_type == ICE_RESET_PFR) { 7127 err = ice_rebuild_channels(pf); 7128 if (err) { 7129 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7130 err); 7131 goto err_vsi_rebuild; 7132 } 7133 } 7134 7135 /* If Flow Director is active */ 7136 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7137 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7138 if (err) { 7139 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7140 goto err_vsi_rebuild; 7141 } 7142 7143 /* replay HW Flow Director recipes */ 7144 if (hw->fdir_prof) 7145 ice_fdir_replay_flows(hw); 7146 7147 /* replay Flow Director filters */ 7148 ice_fdir_replay_fltrs(pf); 7149 7150 ice_rebuild_arfs(pf); 7151 } 7152 7153 ice_update_pf_netdev_link(pf); 7154 7155 /* tell the firmware we are up */ 7156 err = ice_send_version(pf); 7157 if (err) { 7158 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7159 err); 7160 goto err_vsi_rebuild; 7161 } 7162 7163 ice_replay_post(hw); 7164 7165 /* if we get here, reset flow is successful */ 7166 clear_bit(ICE_RESET_FAILED, pf->state); 7167 7168 ice_plug_aux_dev(pf); 7169 return; 7170 7171 err_vsi_rebuild: 7172 err_sched_init_port: 7173 ice_sched_cleanup_all(hw); 7174 err_init_ctrlq: 7175 ice_shutdown_all_ctrlq(hw); 7176 set_bit(ICE_RESET_FAILED, pf->state); 7177 clear_recovery: 7178 /* set this bit in PF state to control service task scheduling */ 7179 set_bit(ICE_NEEDS_RESTART, pf->state); 7180 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7181 } 7182 7183 /** 7184 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7185 * @vsi: Pointer to VSI structure 7186 */ 7187 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7188 { 7189 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7190 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7191 else 7192 return ICE_RXBUF_3072; 7193 } 7194 7195 /** 7196 * ice_change_mtu - NDO callback to change the MTU 7197 * @netdev: network interface device structure 7198 * @new_mtu: new value for maximum frame size 7199 * 7200 * Returns 0 on success, negative on failure 7201 */ 7202 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7203 { 7204 struct ice_netdev_priv *np = netdev_priv(netdev); 7205 struct ice_vsi *vsi = np->vsi; 7206 struct ice_pf *pf = vsi->back; 7207 u8 count = 0; 7208 int err = 0; 7209 7210 if (new_mtu == (int)netdev->mtu) { 7211 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7212 return 0; 7213 } 7214 7215 if (ice_is_xdp_ena_vsi(vsi)) { 7216 int frame_size = ice_max_xdp_frame_size(vsi); 7217 7218 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7219 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7220 frame_size - ICE_ETH_PKT_HDR_PAD); 7221 return -EINVAL; 7222 } 7223 } 7224 7225 /* if a reset is in progress, wait for some time for it to complete */ 7226 do { 7227 if (ice_is_reset_in_progress(pf->state)) { 7228 count++; 7229 usleep_range(1000, 2000); 7230 } else { 7231 break; 7232 } 7233 7234 } while (count < 100); 7235 7236 if (count == 100) { 7237 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7238 return -EBUSY; 7239 } 7240 7241 netdev->mtu = (unsigned int)new_mtu; 7242 7243 /* if VSI is up, bring it down and then back up */ 7244 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7245 err = ice_down(vsi); 7246 if (err) { 7247 netdev_err(netdev, "change MTU if_down err %d\n", err); 7248 return err; 7249 } 7250 7251 err = ice_up(vsi); 7252 if (err) { 7253 netdev_err(netdev, "change MTU if_up err %d\n", err); 7254 return err; 7255 } 7256 } 7257 7258 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7259 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7260 7261 return err; 7262 } 7263 7264 /** 7265 * ice_eth_ioctl - Access the hwtstamp interface 7266 * @netdev: network interface device structure 7267 * @ifr: interface request data 7268 * @cmd: ioctl command 7269 */ 7270 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7271 { 7272 struct ice_netdev_priv *np = netdev_priv(netdev); 7273 struct ice_pf *pf = np->vsi->back; 7274 7275 switch (cmd) { 7276 case SIOCGHWTSTAMP: 7277 return ice_ptp_get_ts_config(pf, ifr); 7278 case SIOCSHWTSTAMP: 7279 return ice_ptp_set_ts_config(pf, ifr); 7280 default: 7281 return -EOPNOTSUPP; 7282 } 7283 } 7284 7285 /** 7286 * ice_aq_str - convert AQ err code to a string 7287 * @aq_err: the AQ error code to convert 7288 */ 7289 const char *ice_aq_str(enum ice_aq_err aq_err) 7290 { 7291 switch (aq_err) { 7292 case ICE_AQ_RC_OK: 7293 return "OK"; 7294 case ICE_AQ_RC_EPERM: 7295 return "ICE_AQ_RC_EPERM"; 7296 case ICE_AQ_RC_ENOENT: 7297 return "ICE_AQ_RC_ENOENT"; 7298 case ICE_AQ_RC_ENOMEM: 7299 return "ICE_AQ_RC_ENOMEM"; 7300 case ICE_AQ_RC_EBUSY: 7301 return "ICE_AQ_RC_EBUSY"; 7302 case ICE_AQ_RC_EEXIST: 7303 return "ICE_AQ_RC_EEXIST"; 7304 case ICE_AQ_RC_EINVAL: 7305 return "ICE_AQ_RC_EINVAL"; 7306 case ICE_AQ_RC_ENOSPC: 7307 return "ICE_AQ_RC_ENOSPC"; 7308 case ICE_AQ_RC_ENOSYS: 7309 return "ICE_AQ_RC_ENOSYS"; 7310 case ICE_AQ_RC_EMODE: 7311 return "ICE_AQ_RC_EMODE"; 7312 case ICE_AQ_RC_ENOSEC: 7313 return "ICE_AQ_RC_ENOSEC"; 7314 case ICE_AQ_RC_EBADSIG: 7315 return "ICE_AQ_RC_EBADSIG"; 7316 case ICE_AQ_RC_ESVN: 7317 return "ICE_AQ_RC_ESVN"; 7318 case ICE_AQ_RC_EBADMAN: 7319 return "ICE_AQ_RC_EBADMAN"; 7320 case ICE_AQ_RC_EBADBUF: 7321 return "ICE_AQ_RC_EBADBUF"; 7322 } 7323 7324 return "ICE_AQ_RC_UNKNOWN"; 7325 } 7326 7327 /** 7328 * ice_set_rss_lut - Set RSS LUT 7329 * @vsi: Pointer to VSI structure 7330 * @lut: Lookup table 7331 * @lut_size: Lookup table size 7332 * 7333 * Returns 0 on success, negative on failure 7334 */ 7335 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7336 { 7337 struct ice_aq_get_set_rss_lut_params params = {}; 7338 struct ice_hw *hw = &vsi->back->hw; 7339 int status; 7340 7341 if (!lut) 7342 return -EINVAL; 7343 7344 params.vsi_handle = vsi->idx; 7345 params.lut_size = lut_size; 7346 params.lut_type = vsi->rss_lut_type; 7347 params.lut = lut; 7348 7349 status = ice_aq_set_rss_lut(hw, ¶ms); 7350 if (status) 7351 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7352 status, ice_aq_str(hw->adminq.sq_last_status)); 7353 7354 return status; 7355 } 7356 7357 /** 7358 * ice_set_rss_key - Set RSS key 7359 * @vsi: Pointer to the VSI structure 7360 * @seed: RSS hash seed 7361 * 7362 * Returns 0 on success, negative on failure 7363 */ 7364 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7365 { 7366 struct ice_hw *hw = &vsi->back->hw; 7367 int status; 7368 7369 if (!seed) 7370 return -EINVAL; 7371 7372 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7373 if (status) 7374 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7375 status, ice_aq_str(hw->adminq.sq_last_status)); 7376 7377 return status; 7378 } 7379 7380 /** 7381 * ice_get_rss_lut - Get RSS LUT 7382 * @vsi: Pointer to VSI structure 7383 * @lut: Buffer to store the lookup table entries 7384 * @lut_size: Size of buffer to store the lookup table entries 7385 * 7386 * Returns 0 on success, negative on failure 7387 */ 7388 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7389 { 7390 struct ice_aq_get_set_rss_lut_params params = {}; 7391 struct ice_hw *hw = &vsi->back->hw; 7392 int status; 7393 7394 if (!lut) 7395 return -EINVAL; 7396 7397 params.vsi_handle = vsi->idx; 7398 params.lut_size = lut_size; 7399 params.lut_type = vsi->rss_lut_type; 7400 params.lut = lut; 7401 7402 status = ice_aq_get_rss_lut(hw, ¶ms); 7403 if (status) 7404 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7405 status, ice_aq_str(hw->adminq.sq_last_status)); 7406 7407 return status; 7408 } 7409 7410 /** 7411 * ice_get_rss_key - Get RSS key 7412 * @vsi: Pointer to VSI structure 7413 * @seed: Buffer to store the key in 7414 * 7415 * Returns 0 on success, negative on failure 7416 */ 7417 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7418 { 7419 struct ice_hw *hw = &vsi->back->hw; 7420 int status; 7421 7422 if (!seed) 7423 return -EINVAL; 7424 7425 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7426 if (status) 7427 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7428 status, ice_aq_str(hw->adminq.sq_last_status)); 7429 7430 return status; 7431 } 7432 7433 /** 7434 * ice_bridge_getlink - Get the hardware bridge mode 7435 * @skb: skb buff 7436 * @pid: process ID 7437 * @seq: RTNL message seq 7438 * @dev: the netdev being configured 7439 * @filter_mask: filter mask passed in 7440 * @nlflags: netlink flags passed in 7441 * 7442 * Return the bridge mode (VEB/VEPA) 7443 */ 7444 static int 7445 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7446 struct net_device *dev, u32 filter_mask, int nlflags) 7447 { 7448 struct ice_netdev_priv *np = netdev_priv(dev); 7449 struct ice_vsi *vsi = np->vsi; 7450 struct ice_pf *pf = vsi->back; 7451 u16 bmode; 7452 7453 bmode = pf->first_sw->bridge_mode; 7454 7455 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7456 filter_mask, NULL); 7457 } 7458 7459 /** 7460 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7461 * @vsi: Pointer to VSI structure 7462 * @bmode: Hardware bridge mode (VEB/VEPA) 7463 * 7464 * Returns 0 on success, negative on failure 7465 */ 7466 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7467 { 7468 struct ice_aqc_vsi_props *vsi_props; 7469 struct ice_hw *hw = &vsi->back->hw; 7470 struct ice_vsi_ctx *ctxt; 7471 int ret; 7472 7473 vsi_props = &vsi->info; 7474 7475 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7476 if (!ctxt) 7477 return -ENOMEM; 7478 7479 ctxt->info = vsi->info; 7480 7481 if (bmode == BRIDGE_MODE_VEB) 7482 /* change from VEPA to VEB mode */ 7483 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7484 else 7485 /* change from VEB to VEPA mode */ 7486 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7487 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7488 7489 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7490 if (ret) { 7491 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7492 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7493 goto out; 7494 } 7495 /* Update sw flags for book keeping */ 7496 vsi_props->sw_flags = ctxt->info.sw_flags; 7497 7498 out: 7499 kfree(ctxt); 7500 return ret; 7501 } 7502 7503 /** 7504 * ice_bridge_setlink - Set the hardware bridge mode 7505 * @dev: the netdev being configured 7506 * @nlh: RTNL message 7507 * @flags: bridge setlink flags 7508 * @extack: netlink extended ack 7509 * 7510 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7511 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7512 * not already set for all VSIs connected to this switch. And also update the 7513 * unicast switch filter rules for the corresponding switch of the netdev. 7514 */ 7515 static int 7516 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7517 u16 __always_unused flags, 7518 struct netlink_ext_ack __always_unused *extack) 7519 { 7520 struct ice_netdev_priv *np = netdev_priv(dev); 7521 struct ice_pf *pf = np->vsi->back; 7522 struct nlattr *attr, *br_spec; 7523 struct ice_hw *hw = &pf->hw; 7524 struct ice_sw *pf_sw; 7525 int rem, v, err = 0; 7526 7527 pf_sw = pf->first_sw; 7528 /* find the attribute in the netlink message */ 7529 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7530 7531 nla_for_each_nested(attr, br_spec, rem) { 7532 __u16 mode; 7533 7534 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7535 continue; 7536 mode = nla_get_u16(attr); 7537 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7538 return -EINVAL; 7539 /* Continue if bridge mode is not being flipped */ 7540 if (mode == pf_sw->bridge_mode) 7541 continue; 7542 /* Iterates through the PF VSI list and update the loopback 7543 * mode of the VSI 7544 */ 7545 ice_for_each_vsi(pf, v) { 7546 if (!pf->vsi[v]) 7547 continue; 7548 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7549 if (err) 7550 return err; 7551 } 7552 7553 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7554 /* Update the unicast switch filter rules for the corresponding 7555 * switch of the netdev 7556 */ 7557 err = ice_update_sw_rule_bridge_mode(hw); 7558 if (err) { 7559 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7560 mode, err, 7561 ice_aq_str(hw->adminq.sq_last_status)); 7562 /* revert hw->evb_veb */ 7563 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7564 return err; 7565 } 7566 7567 pf_sw->bridge_mode = mode; 7568 } 7569 7570 return 0; 7571 } 7572 7573 /** 7574 * ice_tx_timeout - Respond to a Tx Hang 7575 * @netdev: network interface device structure 7576 * @txqueue: Tx queue 7577 */ 7578 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7579 { 7580 struct ice_netdev_priv *np = netdev_priv(netdev); 7581 struct ice_tx_ring *tx_ring = NULL; 7582 struct ice_vsi *vsi = np->vsi; 7583 struct ice_pf *pf = vsi->back; 7584 u32 i; 7585 7586 pf->tx_timeout_count++; 7587 7588 /* Check if PFC is enabled for the TC to which the queue belongs 7589 * to. If yes then Tx timeout is not caused by a hung queue, no 7590 * need to reset and rebuild 7591 */ 7592 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7593 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7594 txqueue); 7595 return; 7596 } 7597 7598 /* now that we have an index, find the tx_ring struct */ 7599 ice_for_each_txq(vsi, i) 7600 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7601 if (txqueue == vsi->tx_rings[i]->q_index) { 7602 tx_ring = vsi->tx_rings[i]; 7603 break; 7604 } 7605 7606 /* Reset recovery level if enough time has elapsed after last timeout. 7607 * Also ensure no new reset action happens before next timeout period. 7608 */ 7609 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7610 pf->tx_timeout_recovery_level = 1; 7611 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7612 netdev->watchdog_timeo))) 7613 return; 7614 7615 if (tx_ring) { 7616 struct ice_hw *hw = &pf->hw; 7617 u32 head, val = 0; 7618 7619 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7620 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7621 /* Read interrupt register */ 7622 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7623 7624 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7625 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7626 head, tx_ring->next_to_use, val); 7627 } 7628 7629 pf->tx_timeout_last_recovery = jiffies; 7630 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7631 pf->tx_timeout_recovery_level, txqueue); 7632 7633 switch (pf->tx_timeout_recovery_level) { 7634 case 1: 7635 set_bit(ICE_PFR_REQ, pf->state); 7636 break; 7637 case 2: 7638 set_bit(ICE_CORER_REQ, pf->state); 7639 break; 7640 case 3: 7641 set_bit(ICE_GLOBR_REQ, pf->state); 7642 break; 7643 default: 7644 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7645 set_bit(ICE_DOWN, pf->state); 7646 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7647 set_bit(ICE_SERVICE_DIS, pf->state); 7648 break; 7649 } 7650 7651 ice_service_task_schedule(pf); 7652 pf->tx_timeout_recovery_level++; 7653 } 7654 7655 /** 7656 * ice_setup_tc_cls_flower - flower classifier offloads 7657 * @np: net device to configure 7658 * @filter_dev: device on which filter is added 7659 * @cls_flower: offload data 7660 */ 7661 static int 7662 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7663 struct net_device *filter_dev, 7664 struct flow_cls_offload *cls_flower) 7665 { 7666 struct ice_vsi *vsi = np->vsi; 7667 7668 if (cls_flower->common.chain_index) 7669 return -EOPNOTSUPP; 7670 7671 switch (cls_flower->command) { 7672 case FLOW_CLS_REPLACE: 7673 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7674 case FLOW_CLS_DESTROY: 7675 return ice_del_cls_flower(vsi, cls_flower); 7676 default: 7677 return -EINVAL; 7678 } 7679 } 7680 7681 /** 7682 * ice_setup_tc_block_cb - callback handler registered for TC block 7683 * @type: TC SETUP type 7684 * @type_data: TC flower offload data that contains user input 7685 * @cb_priv: netdev private data 7686 */ 7687 static int 7688 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7689 { 7690 struct ice_netdev_priv *np = cb_priv; 7691 7692 switch (type) { 7693 case TC_SETUP_CLSFLOWER: 7694 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7695 type_data); 7696 default: 7697 return -EOPNOTSUPP; 7698 } 7699 } 7700 7701 /** 7702 * ice_validate_mqprio_qopt - Validate TCF input parameters 7703 * @vsi: Pointer to VSI 7704 * @mqprio_qopt: input parameters for mqprio queue configuration 7705 * 7706 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7707 * needed), and make sure user doesn't specify qcount and BW rate limit 7708 * for TCs, which are more than "num_tc" 7709 */ 7710 static int 7711 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7712 struct tc_mqprio_qopt_offload *mqprio_qopt) 7713 { 7714 u64 sum_max_rate = 0, sum_min_rate = 0; 7715 int non_power_of_2_qcount = 0; 7716 struct ice_pf *pf = vsi->back; 7717 int max_rss_q_cnt = 0; 7718 struct device *dev; 7719 int i, speed; 7720 u8 num_tc; 7721 7722 if (vsi->type != ICE_VSI_PF) 7723 return -EINVAL; 7724 7725 if (mqprio_qopt->qopt.offset[0] != 0 || 7726 mqprio_qopt->qopt.num_tc < 1 || 7727 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7728 return -EINVAL; 7729 7730 dev = ice_pf_to_dev(pf); 7731 vsi->ch_rss_size = 0; 7732 num_tc = mqprio_qopt->qopt.num_tc; 7733 7734 for (i = 0; num_tc; i++) { 7735 int qcount = mqprio_qopt->qopt.count[i]; 7736 u64 max_rate, min_rate, rem; 7737 7738 if (!qcount) 7739 return -EINVAL; 7740 7741 if (is_power_of_2(qcount)) { 7742 if (non_power_of_2_qcount && 7743 qcount > non_power_of_2_qcount) { 7744 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7745 qcount, non_power_of_2_qcount); 7746 return -EINVAL; 7747 } 7748 if (qcount > max_rss_q_cnt) 7749 max_rss_q_cnt = qcount; 7750 } else { 7751 if (non_power_of_2_qcount && 7752 qcount != non_power_of_2_qcount) { 7753 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7754 qcount, non_power_of_2_qcount); 7755 return -EINVAL; 7756 } 7757 if (qcount < max_rss_q_cnt) { 7758 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7759 qcount, max_rss_q_cnt); 7760 return -EINVAL; 7761 } 7762 max_rss_q_cnt = qcount; 7763 non_power_of_2_qcount = qcount; 7764 } 7765 7766 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7767 * converts the bandwidth rate limit into Bytes/s when 7768 * passing it down to the driver. So convert input bandwidth 7769 * from Bytes/s to Kbps 7770 */ 7771 max_rate = mqprio_qopt->max_rate[i]; 7772 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7773 sum_max_rate += max_rate; 7774 7775 /* min_rate is minimum guaranteed rate and it can't be zero */ 7776 min_rate = mqprio_qopt->min_rate[i]; 7777 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7778 sum_min_rate += min_rate; 7779 7780 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7781 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7782 min_rate, ICE_MIN_BW_LIMIT); 7783 return -EINVAL; 7784 } 7785 7786 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7787 if (rem) { 7788 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7789 i, ICE_MIN_BW_LIMIT); 7790 return -EINVAL; 7791 } 7792 7793 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7794 if (rem) { 7795 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7796 i, ICE_MIN_BW_LIMIT); 7797 return -EINVAL; 7798 } 7799 7800 /* min_rate can't be more than max_rate, except when max_rate 7801 * is zero (implies max_rate sought is max line rate). In such 7802 * a case min_rate can be more than max. 7803 */ 7804 if (max_rate && min_rate > max_rate) { 7805 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7806 min_rate, max_rate); 7807 return -EINVAL; 7808 } 7809 7810 if (i >= mqprio_qopt->qopt.num_tc - 1) 7811 break; 7812 if (mqprio_qopt->qopt.offset[i + 1] != 7813 (mqprio_qopt->qopt.offset[i] + qcount)) 7814 return -EINVAL; 7815 } 7816 if (vsi->num_rxq < 7817 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7818 return -EINVAL; 7819 if (vsi->num_txq < 7820 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7821 return -EINVAL; 7822 7823 speed = ice_get_link_speed_kbps(vsi); 7824 if (sum_max_rate && sum_max_rate > (u64)speed) { 7825 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7826 sum_max_rate, speed); 7827 return -EINVAL; 7828 } 7829 if (sum_min_rate && sum_min_rate > (u64)speed) { 7830 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7831 sum_min_rate, speed); 7832 return -EINVAL; 7833 } 7834 7835 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7836 vsi->ch_rss_size = max_rss_q_cnt; 7837 7838 return 0; 7839 } 7840 7841 /** 7842 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7843 * @pf: ptr to PF device 7844 * @vsi: ptr to VSI 7845 */ 7846 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7847 { 7848 struct device *dev = ice_pf_to_dev(pf); 7849 bool added = false; 7850 struct ice_hw *hw; 7851 int flow; 7852 7853 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7854 return -EINVAL; 7855 7856 hw = &pf->hw; 7857 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7858 struct ice_fd_hw_prof *prof; 7859 int tun, status; 7860 u64 entry_h; 7861 7862 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7863 hw->fdir_prof[flow]->cnt)) 7864 continue; 7865 7866 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7867 enum ice_flow_priority prio; 7868 u64 prof_id; 7869 7870 /* add this VSI to FDir profile for this flow */ 7871 prio = ICE_FLOW_PRIO_NORMAL; 7872 prof = hw->fdir_prof[flow]; 7873 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7874 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7875 prof->vsi_h[0], vsi->idx, 7876 prio, prof->fdir_seg[tun], 7877 &entry_h); 7878 if (status) { 7879 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7880 vsi->idx, flow); 7881 continue; 7882 } 7883 7884 prof->entry_h[prof->cnt][tun] = entry_h; 7885 } 7886 7887 /* store VSI for filter replay and delete */ 7888 prof->vsi_h[prof->cnt] = vsi->idx; 7889 prof->cnt++; 7890 7891 added = true; 7892 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7893 flow); 7894 } 7895 7896 if (!added) 7897 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7898 7899 return 0; 7900 } 7901 7902 /** 7903 * ice_add_channel - add a channel by adding VSI 7904 * @pf: ptr to PF device 7905 * @sw_id: underlying HW switching element ID 7906 * @ch: ptr to channel structure 7907 * 7908 * Add a channel (VSI) using add_vsi and queue_map 7909 */ 7910 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7911 { 7912 struct device *dev = ice_pf_to_dev(pf); 7913 struct ice_vsi *vsi; 7914 7915 if (ch->type != ICE_VSI_CHNL) { 7916 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7917 return -EINVAL; 7918 } 7919 7920 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7921 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7922 dev_err(dev, "create chnl VSI failure\n"); 7923 return -EINVAL; 7924 } 7925 7926 ice_add_vsi_to_fdir(pf, vsi); 7927 7928 ch->sw_id = sw_id; 7929 ch->vsi_num = vsi->vsi_num; 7930 ch->info.mapping_flags = vsi->info.mapping_flags; 7931 ch->ch_vsi = vsi; 7932 /* set the back pointer of channel for newly created VSI */ 7933 vsi->ch = ch; 7934 7935 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7936 sizeof(vsi->info.q_mapping)); 7937 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7938 sizeof(vsi->info.tc_mapping)); 7939 7940 return 0; 7941 } 7942 7943 /** 7944 * ice_chnl_cfg_res 7945 * @vsi: the VSI being setup 7946 * @ch: ptr to channel structure 7947 * 7948 * Configure channel specific resources such as rings, vector. 7949 */ 7950 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7951 { 7952 int i; 7953 7954 for (i = 0; i < ch->num_txq; i++) { 7955 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7956 struct ice_ring_container *rc; 7957 struct ice_tx_ring *tx_ring; 7958 struct ice_rx_ring *rx_ring; 7959 7960 tx_ring = vsi->tx_rings[ch->base_q + i]; 7961 rx_ring = vsi->rx_rings[ch->base_q + i]; 7962 if (!tx_ring || !rx_ring) 7963 continue; 7964 7965 /* setup ring being channel enabled */ 7966 tx_ring->ch = ch; 7967 rx_ring->ch = ch; 7968 7969 /* following code block sets up vector specific attributes */ 7970 tx_q_vector = tx_ring->q_vector; 7971 rx_q_vector = rx_ring->q_vector; 7972 if (!tx_q_vector && !rx_q_vector) 7973 continue; 7974 7975 if (tx_q_vector) { 7976 tx_q_vector->ch = ch; 7977 /* setup Tx and Rx ITR setting if DIM is off */ 7978 rc = &tx_q_vector->tx; 7979 if (!ITR_IS_DYNAMIC(rc)) 7980 ice_write_itr(rc, rc->itr_setting); 7981 } 7982 if (rx_q_vector) { 7983 rx_q_vector->ch = ch; 7984 /* setup Tx and Rx ITR setting if DIM is off */ 7985 rc = &rx_q_vector->rx; 7986 if (!ITR_IS_DYNAMIC(rc)) 7987 ice_write_itr(rc, rc->itr_setting); 7988 } 7989 } 7990 7991 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7992 * GLINT_ITR register would have written to perform in-context 7993 * update, hence perform flush 7994 */ 7995 if (ch->num_txq || ch->num_rxq) 7996 ice_flush(&vsi->back->hw); 7997 } 7998 7999 /** 8000 * ice_cfg_chnl_all_res - configure channel resources 8001 * @vsi: pte to main_vsi 8002 * @ch: ptr to channel structure 8003 * 8004 * This function configures channel specific resources such as flow-director 8005 * counter index, and other resources such as queues, vectors, ITR settings 8006 */ 8007 static void 8008 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8009 { 8010 /* configure channel (aka ADQ) resources such as queues, vectors, 8011 * ITR settings for channel specific vectors and anything else 8012 */ 8013 ice_chnl_cfg_res(vsi, ch); 8014 } 8015 8016 /** 8017 * ice_setup_hw_channel - setup new channel 8018 * @pf: ptr to PF device 8019 * @vsi: the VSI being setup 8020 * @ch: ptr to channel structure 8021 * @sw_id: underlying HW switching element ID 8022 * @type: type of channel to be created (VMDq2/VF) 8023 * 8024 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8025 * and configures Tx rings accordingly 8026 */ 8027 static int 8028 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8029 struct ice_channel *ch, u16 sw_id, u8 type) 8030 { 8031 struct device *dev = ice_pf_to_dev(pf); 8032 int ret; 8033 8034 ch->base_q = vsi->next_base_q; 8035 ch->type = type; 8036 8037 ret = ice_add_channel(pf, sw_id, ch); 8038 if (ret) { 8039 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8040 return ret; 8041 } 8042 8043 /* configure/setup ADQ specific resources */ 8044 ice_cfg_chnl_all_res(vsi, ch); 8045 8046 /* make sure to update the next_base_q so that subsequent channel's 8047 * (aka ADQ) VSI queue map is correct 8048 */ 8049 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8050 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8051 ch->num_rxq); 8052 8053 return 0; 8054 } 8055 8056 /** 8057 * ice_setup_channel - setup new channel using uplink element 8058 * @pf: ptr to PF device 8059 * @vsi: the VSI being setup 8060 * @ch: ptr to channel structure 8061 * 8062 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8063 * and uplink switching element 8064 */ 8065 static bool 8066 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8067 struct ice_channel *ch) 8068 { 8069 struct device *dev = ice_pf_to_dev(pf); 8070 u16 sw_id; 8071 int ret; 8072 8073 if (vsi->type != ICE_VSI_PF) { 8074 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8075 return false; 8076 } 8077 8078 sw_id = pf->first_sw->sw_id; 8079 8080 /* create channel (VSI) */ 8081 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8082 if (ret) { 8083 dev_err(dev, "failed to setup hw_channel\n"); 8084 return false; 8085 } 8086 dev_dbg(dev, "successfully created channel()\n"); 8087 8088 return ch->ch_vsi ? true : false; 8089 } 8090 8091 /** 8092 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8093 * @vsi: VSI to be configured 8094 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8095 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8096 */ 8097 static int 8098 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8099 { 8100 int err; 8101 8102 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8103 if (err) 8104 return err; 8105 8106 return ice_set_max_bw_limit(vsi, max_tx_rate); 8107 } 8108 8109 /** 8110 * ice_create_q_channel - function to create channel 8111 * @vsi: VSI to be configured 8112 * @ch: ptr to channel (it contains channel specific params) 8113 * 8114 * This function creates channel (VSI) using num_queues specified by user, 8115 * reconfigs RSS if needed. 8116 */ 8117 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8118 { 8119 struct ice_pf *pf = vsi->back; 8120 struct device *dev; 8121 8122 if (!ch) 8123 return -EINVAL; 8124 8125 dev = ice_pf_to_dev(pf); 8126 if (!ch->num_txq || !ch->num_rxq) { 8127 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8128 return -EINVAL; 8129 } 8130 8131 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8132 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8133 vsi->cnt_q_avail, ch->num_txq); 8134 return -EINVAL; 8135 } 8136 8137 if (!ice_setup_channel(pf, vsi, ch)) { 8138 dev_info(dev, "Failed to setup channel\n"); 8139 return -EINVAL; 8140 } 8141 /* configure BW rate limit */ 8142 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8143 int ret; 8144 8145 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8146 ch->min_tx_rate); 8147 if (ret) 8148 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8149 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8150 else 8151 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8152 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8153 } 8154 8155 vsi->cnt_q_avail -= ch->num_txq; 8156 8157 return 0; 8158 } 8159 8160 /** 8161 * ice_rem_all_chnl_fltrs - removes all channel filters 8162 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8163 * 8164 * Remove all advanced switch filters only if they are channel specific 8165 * tc-flower based filter 8166 */ 8167 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8168 { 8169 struct ice_tc_flower_fltr *fltr; 8170 struct hlist_node *node; 8171 8172 /* to remove all channel filters, iterate an ordered list of filters */ 8173 hlist_for_each_entry_safe(fltr, node, 8174 &pf->tc_flower_fltr_list, 8175 tc_flower_node) { 8176 struct ice_rule_query_data rule; 8177 int status; 8178 8179 /* for now process only channel specific filters */ 8180 if (!ice_is_chnl_fltr(fltr)) 8181 continue; 8182 8183 rule.rid = fltr->rid; 8184 rule.rule_id = fltr->rule_id; 8185 rule.vsi_handle = fltr->dest_id; 8186 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8187 if (status) { 8188 if (status == -ENOENT) 8189 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8190 rule.rule_id); 8191 else 8192 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8193 status); 8194 } else if (fltr->dest_vsi) { 8195 /* update advanced switch filter count */ 8196 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8197 u32 flags = fltr->flags; 8198 8199 fltr->dest_vsi->num_chnl_fltr--; 8200 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8201 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8202 pf->num_dmac_chnl_fltrs--; 8203 } 8204 } 8205 8206 hlist_del(&fltr->tc_flower_node); 8207 kfree(fltr); 8208 } 8209 } 8210 8211 /** 8212 * ice_remove_q_channels - Remove queue channels for the TCs 8213 * @vsi: VSI to be configured 8214 * @rem_fltr: delete advanced switch filter or not 8215 * 8216 * Remove queue channels for the TCs 8217 */ 8218 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8219 { 8220 struct ice_channel *ch, *ch_tmp; 8221 struct ice_pf *pf = vsi->back; 8222 int i; 8223 8224 /* remove all tc-flower based filter if they are channel filters only */ 8225 if (rem_fltr) 8226 ice_rem_all_chnl_fltrs(pf); 8227 8228 /* remove ntuple filters since queue configuration is being changed */ 8229 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8230 struct ice_hw *hw = &pf->hw; 8231 8232 mutex_lock(&hw->fdir_fltr_lock); 8233 ice_fdir_del_all_fltrs(vsi); 8234 mutex_unlock(&hw->fdir_fltr_lock); 8235 } 8236 8237 /* perform cleanup for channels if they exist */ 8238 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8239 struct ice_vsi *ch_vsi; 8240 8241 list_del(&ch->list); 8242 ch_vsi = ch->ch_vsi; 8243 if (!ch_vsi) { 8244 kfree(ch); 8245 continue; 8246 } 8247 8248 /* Reset queue contexts */ 8249 for (i = 0; i < ch->num_rxq; i++) { 8250 struct ice_tx_ring *tx_ring; 8251 struct ice_rx_ring *rx_ring; 8252 8253 tx_ring = vsi->tx_rings[ch->base_q + i]; 8254 rx_ring = vsi->rx_rings[ch->base_q + i]; 8255 if (tx_ring) { 8256 tx_ring->ch = NULL; 8257 if (tx_ring->q_vector) 8258 tx_ring->q_vector->ch = NULL; 8259 } 8260 if (rx_ring) { 8261 rx_ring->ch = NULL; 8262 if (rx_ring->q_vector) 8263 rx_ring->q_vector->ch = NULL; 8264 } 8265 } 8266 8267 /* Release FD resources for the channel VSI */ 8268 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8269 8270 /* clear the VSI from scheduler tree */ 8271 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8272 8273 /* Delete VSI from FW */ 8274 ice_vsi_delete(ch->ch_vsi); 8275 8276 /* Delete VSI from PF and HW VSI arrays */ 8277 ice_vsi_clear(ch->ch_vsi); 8278 8279 /* free the channel */ 8280 kfree(ch); 8281 } 8282 8283 /* clear the channel VSI map which is stored in main VSI */ 8284 ice_for_each_chnl_tc(i) 8285 vsi->tc_map_vsi[i] = NULL; 8286 8287 /* reset main VSI's all TC information */ 8288 vsi->all_enatc = 0; 8289 vsi->all_numtc = 0; 8290 } 8291 8292 /** 8293 * ice_rebuild_channels - rebuild channel 8294 * @pf: ptr to PF 8295 * 8296 * Recreate channel VSIs and replay filters 8297 */ 8298 static int ice_rebuild_channels(struct ice_pf *pf) 8299 { 8300 struct device *dev = ice_pf_to_dev(pf); 8301 struct ice_vsi *main_vsi; 8302 bool rem_adv_fltr = true; 8303 struct ice_channel *ch; 8304 struct ice_vsi *vsi; 8305 int tc_idx = 1; 8306 int i, err; 8307 8308 main_vsi = ice_get_main_vsi(pf); 8309 if (!main_vsi) 8310 return 0; 8311 8312 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8313 main_vsi->old_numtc == 1) 8314 return 0; /* nothing to be done */ 8315 8316 /* reconfigure main VSI based on old value of TC and cached values 8317 * for MQPRIO opts 8318 */ 8319 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8320 if (err) { 8321 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8322 main_vsi->old_ena_tc, main_vsi->vsi_num); 8323 return err; 8324 } 8325 8326 /* rebuild ADQ VSIs */ 8327 ice_for_each_vsi(pf, i) { 8328 enum ice_vsi_type type; 8329 8330 vsi = pf->vsi[i]; 8331 if (!vsi || vsi->type != ICE_VSI_CHNL) 8332 continue; 8333 8334 type = vsi->type; 8335 8336 /* rebuild ADQ VSI */ 8337 err = ice_vsi_rebuild(vsi, true); 8338 if (err) { 8339 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8340 ice_vsi_type_str(type), vsi->idx, err); 8341 goto cleanup; 8342 } 8343 8344 /* Re-map HW VSI number, using VSI handle that has been 8345 * previously validated in ice_replay_vsi() call above 8346 */ 8347 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8348 8349 /* replay filters for the VSI */ 8350 err = ice_replay_vsi(&pf->hw, vsi->idx); 8351 if (err) { 8352 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8353 ice_vsi_type_str(type), err, vsi->idx); 8354 rem_adv_fltr = false; 8355 goto cleanup; 8356 } 8357 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8358 ice_vsi_type_str(type), vsi->idx); 8359 8360 /* store ADQ VSI at correct TC index in main VSI's 8361 * map of TC to VSI 8362 */ 8363 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8364 } 8365 8366 /* ADQ VSI(s) has been rebuilt successfully, so setup 8367 * channel for main VSI's Tx and Rx rings 8368 */ 8369 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8370 struct ice_vsi *ch_vsi; 8371 8372 ch_vsi = ch->ch_vsi; 8373 if (!ch_vsi) 8374 continue; 8375 8376 /* reconfig channel resources */ 8377 ice_cfg_chnl_all_res(main_vsi, ch); 8378 8379 /* replay BW rate limit if it is non-zero */ 8380 if (!ch->max_tx_rate && !ch->min_tx_rate) 8381 continue; 8382 8383 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8384 ch->min_tx_rate); 8385 if (err) 8386 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8387 err, ch->max_tx_rate, ch->min_tx_rate, 8388 ch_vsi->vsi_num); 8389 else 8390 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8391 ch->max_tx_rate, ch->min_tx_rate, 8392 ch_vsi->vsi_num); 8393 } 8394 8395 /* reconfig RSS for main VSI */ 8396 if (main_vsi->ch_rss_size) 8397 ice_vsi_cfg_rss_lut_key(main_vsi); 8398 8399 return 0; 8400 8401 cleanup: 8402 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8403 return err; 8404 } 8405 8406 /** 8407 * ice_create_q_channels - Add queue channel for the given TCs 8408 * @vsi: VSI to be configured 8409 * 8410 * Configures queue channel mapping to the given TCs 8411 */ 8412 static int ice_create_q_channels(struct ice_vsi *vsi) 8413 { 8414 struct ice_pf *pf = vsi->back; 8415 struct ice_channel *ch; 8416 int ret = 0, i; 8417 8418 ice_for_each_chnl_tc(i) { 8419 if (!(vsi->all_enatc & BIT(i))) 8420 continue; 8421 8422 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8423 if (!ch) { 8424 ret = -ENOMEM; 8425 goto err_free; 8426 } 8427 INIT_LIST_HEAD(&ch->list); 8428 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8429 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8430 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8431 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8432 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8433 8434 /* convert to Kbits/s */ 8435 if (ch->max_tx_rate) 8436 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8437 ICE_BW_KBPS_DIVISOR); 8438 if (ch->min_tx_rate) 8439 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8440 ICE_BW_KBPS_DIVISOR); 8441 8442 ret = ice_create_q_channel(vsi, ch); 8443 if (ret) { 8444 dev_err(ice_pf_to_dev(pf), 8445 "failed creating channel TC:%d\n", i); 8446 kfree(ch); 8447 goto err_free; 8448 } 8449 list_add_tail(&ch->list, &vsi->ch_list); 8450 vsi->tc_map_vsi[i] = ch->ch_vsi; 8451 dev_dbg(ice_pf_to_dev(pf), 8452 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8453 } 8454 return 0; 8455 8456 err_free: 8457 ice_remove_q_channels(vsi, false); 8458 8459 return ret; 8460 } 8461 8462 /** 8463 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8464 * @netdev: net device to configure 8465 * @type_data: TC offload data 8466 */ 8467 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8468 { 8469 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8470 struct ice_netdev_priv *np = netdev_priv(netdev); 8471 struct ice_vsi *vsi = np->vsi; 8472 struct ice_pf *pf = vsi->back; 8473 u16 mode, ena_tc_qdisc = 0; 8474 int cur_txq, cur_rxq; 8475 u8 hw = 0, num_tcf; 8476 struct device *dev; 8477 int ret, i; 8478 8479 dev = ice_pf_to_dev(pf); 8480 num_tcf = mqprio_qopt->qopt.num_tc; 8481 hw = mqprio_qopt->qopt.hw; 8482 mode = mqprio_qopt->mode; 8483 if (!hw) { 8484 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8485 vsi->ch_rss_size = 0; 8486 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8487 goto config_tcf; 8488 } 8489 8490 /* Generate queue region map for number of TCF requested */ 8491 for (i = 0; i < num_tcf; i++) 8492 ena_tc_qdisc |= BIT(i); 8493 8494 switch (mode) { 8495 case TC_MQPRIO_MODE_CHANNEL: 8496 8497 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8498 if (ret) { 8499 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8500 ret); 8501 return ret; 8502 } 8503 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8504 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8505 /* don't assume state of hw_tc_offload during driver load 8506 * and set the flag for TC flower filter if hw_tc_offload 8507 * already ON 8508 */ 8509 if (vsi->netdev->features & NETIF_F_HW_TC) 8510 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8511 break; 8512 default: 8513 return -EINVAL; 8514 } 8515 8516 config_tcf: 8517 8518 /* Requesting same TCF configuration as already enabled */ 8519 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8520 mode != TC_MQPRIO_MODE_CHANNEL) 8521 return 0; 8522 8523 /* Pause VSI queues */ 8524 ice_dis_vsi(vsi, true); 8525 8526 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8527 ice_remove_q_channels(vsi, true); 8528 8529 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8530 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8531 num_online_cpus()); 8532 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8533 num_online_cpus()); 8534 } else { 8535 /* logic to rebuild VSI, same like ethtool -L */ 8536 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8537 8538 for (i = 0; i < num_tcf; i++) { 8539 if (!(ena_tc_qdisc & BIT(i))) 8540 continue; 8541 8542 offset = vsi->mqprio_qopt.qopt.offset[i]; 8543 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8544 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8545 } 8546 vsi->req_txq = offset + qcount_tx; 8547 vsi->req_rxq = offset + qcount_rx; 8548 8549 /* store away original rss_size info, so that it gets reused 8550 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8551 * determine, what should be the rss_sizefor main VSI 8552 */ 8553 vsi->orig_rss_size = vsi->rss_size; 8554 } 8555 8556 /* save current values of Tx and Rx queues before calling VSI rebuild 8557 * for fallback option 8558 */ 8559 cur_txq = vsi->num_txq; 8560 cur_rxq = vsi->num_rxq; 8561 8562 /* proceed with rebuild main VSI using correct number of queues */ 8563 ret = ice_vsi_rebuild(vsi, false); 8564 if (ret) { 8565 /* fallback to current number of queues */ 8566 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8567 vsi->req_txq = cur_txq; 8568 vsi->req_rxq = cur_rxq; 8569 clear_bit(ICE_RESET_FAILED, pf->state); 8570 if (ice_vsi_rebuild(vsi, false)) { 8571 dev_err(dev, "Rebuild of main VSI failed again\n"); 8572 return ret; 8573 } 8574 } 8575 8576 vsi->all_numtc = num_tcf; 8577 vsi->all_enatc = ena_tc_qdisc; 8578 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8579 if (ret) { 8580 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8581 vsi->vsi_num); 8582 goto exit; 8583 } 8584 8585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8586 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8587 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8588 8589 /* set TC0 rate limit if specified */ 8590 if (max_tx_rate || min_tx_rate) { 8591 /* convert to Kbits/s */ 8592 if (max_tx_rate) 8593 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8594 if (min_tx_rate) 8595 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8596 8597 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8598 if (!ret) { 8599 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8600 max_tx_rate, min_tx_rate, vsi->vsi_num); 8601 } else { 8602 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8603 max_tx_rate, min_tx_rate, vsi->vsi_num); 8604 goto exit; 8605 } 8606 } 8607 ret = ice_create_q_channels(vsi); 8608 if (ret) { 8609 netdev_err(netdev, "failed configuring queue channels\n"); 8610 goto exit; 8611 } else { 8612 netdev_dbg(netdev, "successfully configured channels\n"); 8613 } 8614 } 8615 8616 if (vsi->ch_rss_size) 8617 ice_vsi_cfg_rss_lut_key(vsi); 8618 8619 exit: 8620 /* if error, reset the all_numtc and all_enatc */ 8621 if (ret) { 8622 vsi->all_numtc = 0; 8623 vsi->all_enatc = 0; 8624 } 8625 /* resume VSI */ 8626 ice_ena_vsi(vsi, true); 8627 8628 return ret; 8629 } 8630 8631 static LIST_HEAD(ice_block_cb_list); 8632 8633 static int 8634 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8635 void *type_data) 8636 { 8637 struct ice_netdev_priv *np = netdev_priv(netdev); 8638 struct ice_pf *pf = np->vsi->back; 8639 int err; 8640 8641 switch (type) { 8642 case TC_SETUP_BLOCK: 8643 return flow_block_cb_setup_simple(type_data, 8644 &ice_block_cb_list, 8645 ice_setup_tc_block_cb, 8646 np, np, true); 8647 case TC_SETUP_QDISC_MQPRIO: 8648 /* setup traffic classifier for receive side */ 8649 mutex_lock(&pf->tc_mutex); 8650 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8651 mutex_unlock(&pf->tc_mutex); 8652 return err; 8653 default: 8654 return -EOPNOTSUPP; 8655 } 8656 return -EOPNOTSUPP; 8657 } 8658 8659 static struct ice_indr_block_priv * 8660 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8661 struct net_device *netdev) 8662 { 8663 struct ice_indr_block_priv *cb_priv; 8664 8665 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8666 if (!cb_priv->netdev) 8667 return NULL; 8668 if (cb_priv->netdev == netdev) 8669 return cb_priv; 8670 } 8671 return NULL; 8672 } 8673 8674 static int 8675 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8676 void *indr_priv) 8677 { 8678 struct ice_indr_block_priv *priv = indr_priv; 8679 struct ice_netdev_priv *np = priv->np; 8680 8681 switch (type) { 8682 case TC_SETUP_CLSFLOWER: 8683 return ice_setup_tc_cls_flower(np, priv->netdev, 8684 (struct flow_cls_offload *) 8685 type_data); 8686 default: 8687 return -EOPNOTSUPP; 8688 } 8689 } 8690 8691 static int 8692 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8693 struct ice_netdev_priv *np, 8694 struct flow_block_offload *f, void *data, 8695 void (*cleanup)(struct flow_block_cb *block_cb)) 8696 { 8697 struct ice_indr_block_priv *indr_priv; 8698 struct flow_block_cb *block_cb; 8699 8700 if (!ice_is_tunnel_supported(netdev) && 8701 !(is_vlan_dev(netdev) && 8702 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8703 return -EOPNOTSUPP; 8704 8705 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8706 return -EOPNOTSUPP; 8707 8708 switch (f->command) { 8709 case FLOW_BLOCK_BIND: 8710 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8711 if (indr_priv) 8712 return -EEXIST; 8713 8714 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8715 if (!indr_priv) 8716 return -ENOMEM; 8717 8718 indr_priv->netdev = netdev; 8719 indr_priv->np = np; 8720 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8721 8722 block_cb = 8723 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8724 indr_priv, indr_priv, 8725 ice_rep_indr_tc_block_unbind, 8726 f, netdev, sch, data, np, 8727 cleanup); 8728 8729 if (IS_ERR(block_cb)) { 8730 list_del(&indr_priv->list); 8731 kfree(indr_priv); 8732 return PTR_ERR(block_cb); 8733 } 8734 flow_block_cb_add(block_cb, f); 8735 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8736 break; 8737 case FLOW_BLOCK_UNBIND: 8738 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8739 if (!indr_priv) 8740 return -ENOENT; 8741 8742 block_cb = flow_block_cb_lookup(f->block, 8743 ice_indr_setup_block_cb, 8744 indr_priv); 8745 if (!block_cb) 8746 return -ENOENT; 8747 8748 flow_indr_block_cb_remove(block_cb, f); 8749 8750 list_del(&block_cb->driver_list); 8751 break; 8752 default: 8753 return -EOPNOTSUPP; 8754 } 8755 return 0; 8756 } 8757 8758 static int 8759 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8760 void *cb_priv, enum tc_setup_type type, void *type_data, 8761 void *data, 8762 void (*cleanup)(struct flow_block_cb *block_cb)) 8763 { 8764 switch (type) { 8765 case TC_SETUP_BLOCK: 8766 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8767 data, cleanup); 8768 8769 default: 8770 return -EOPNOTSUPP; 8771 } 8772 } 8773 8774 /** 8775 * ice_open - Called when a network interface becomes active 8776 * @netdev: network interface device structure 8777 * 8778 * The open entry point is called when a network interface is made 8779 * active by the system (IFF_UP). At this point all resources needed 8780 * for transmit and receive operations are allocated, the interrupt 8781 * handler is registered with the OS, the netdev watchdog is enabled, 8782 * and the stack is notified that the interface is ready. 8783 * 8784 * Returns 0 on success, negative value on failure 8785 */ 8786 int ice_open(struct net_device *netdev) 8787 { 8788 struct ice_netdev_priv *np = netdev_priv(netdev); 8789 struct ice_pf *pf = np->vsi->back; 8790 8791 if (ice_is_reset_in_progress(pf->state)) { 8792 netdev_err(netdev, "can't open net device while reset is in progress"); 8793 return -EBUSY; 8794 } 8795 8796 return ice_open_internal(netdev); 8797 } 8798 8799 /** 8800 * ice_open_internal - Called when a network interface becomes active 8801 * @netdev: network interface device structure 8802 * 8803 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8804 * handling routine 8805 * 8806 * Returns 0 on success, negative value on failure 8807 */ 8808 int ice_open_internal(struct net_device *netdev) 8809 { 8810 struct ice_netdev_priv *np = netdev_priv(netdev); 8811 struct ice_vsi *vsi = np->vsi; 8812 struct ice_pf *pf = vsi->back; 8813 struct ice_port_info *pi; 8814 int err; 8815 8816 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8817 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8818 return -EIO; 8819 } 8820 8821 netif_carrier_off(netdev); 8822 8823 pi = vsi->port_info; 8824 err = ice_update_link_info(pi); 8825 if (err) { 8826 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8827 return err; 8828 } 8829 8830 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8831 8832 /* Set PHY if there is media, otherwise, turn off PHY */ 8833 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8834 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8835 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8836 err = ice_init_phy_user_cfg(pi); 8837 if (err) { 8838 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8839 err); 8840 return err; 8841 } 8842 } 8843 8844 err = ice_configure_phy(vsi); 8845 if (err) { 8846 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8847 err); 8848 return err; 8849 } 8850 } else { 8851 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8852 ice_set_link(vsi, false); 8853 } 8854 8855 err = ice_vsi_open(vsi); 8856 if (err) 8857 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8858 vsi->vsi_num, vsi->vsw->sw_id); 8859 8860 /* Update existing tunnels information */ 8861 udp_tunnel_get_rx_info(netdev); 8862 8863 return err; 8864 } 8865 8866 /** 8867 * ice_stop - Disables a network interface 8868 * @netdev: network interface device structure 8869 * 8870 * The stop entry point is called when an interface is de-activated by the OS, 8871 * and the netdevice enters the DOWN state. The hardware is still under the 8872 * driver's control, but the netdev interface is disabled. 8873 * 8874 * Returns success only - not allowed to fail 8875 */ 8876 int ice_stop(struct net_device *netdev) 8877 { 8878 struct ice_netdev_priv *np = netdev_priv(netdev); 8879 struct ice_vsi *vsi = np->vsi; 8880 struct ice_pf *pf = vsi->back; 8881 8882 if (ice_is_reset_in_progress(pf->state)) { 8883 netdev_err(netdev, "can't stop net device while reset is in progress"); 8884 return -EBUSY; 8885 } 8886 8887 ice_vsi_close(vsi); 8888 8889 return 0; 8890 } 8891 8892 /** 8893 * ice_features_check - Validate encapsulated packet conforms to limits 8894 * @skb: skb buffer 8895 * @netdev: This port's netdev 8896 * @features: Offload features that the stack believes apply 8897 */ 8898 static netdev_features_t 8899 ice_features_check(struct sk_buff *skb, 8900 struct net_device __always_unused *netdev, 8901 netdev_features_t features) 8902 { 8903 bool gso = skb_is_gso(skb); 8904 size_t len; 8905 8906 /* No point in doing any of this if neither checksum nor GSO are 8907 * being requested for this frame. We can rule out both by just 8908 * checking for CHECKSUM_PARTIAL 8909 */ 8910 if (skb->ip_summed != CHECKSUM_PARTIAL) 8911 return features; 8912 8913 /* We cannot support GSO if the MSS is going to be less than 8914 * 64 bytes. If it is then we need to drop support for GSO. 8915 */ 8916 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8917 features &= ~NETIF_F_GSO_MASK; 8918 8919 len = skb_network_offset(skb); 8920 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8921 goto out_rm_features; 8922 8923 len = skb_network_header_len(skb); 8924 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8925 goto out_rm_features; 8926 8927 if (skb->encapsulation) { 8928 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8929 * the case of IPIP frames, the transport header pointer is 8930 * after the inner header! So check to make sure that this 8931 * is a GRE or UDP_TUNNEL frame before doing that math. 8932 */ 8933 if (gso && (skb_shinfo(skb)->gso_type & 8934 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8935 len = skb_inner_network_header(skb) - 8936 skb_transport_header(skb); 8937 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8938 goto out_rm_features; 8939 } 8940 8941 len = skb_inner_network_header_len(skb); 8942 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8943 goto out_rm_features; 8944 } 8945 8946 return features; 8947 out_rm_features: 8948 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8949 } 8950 8951 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8952 .ndo_open = ice_open, 8953 .ndo_stop = ice_stop, 8954 .ndo_start_xmit = ice_start_xmit, 8955 .ndo_set_mac_address = ice_set_mac_address, 8956 .ndo_validate_addr = eth_validate_addr, 8957 .ndo_change_mtu = ice_change_mtu, 8958 .ndo_get_stats64 = ice_get_stats64, 8959 .ndo_tx_timeout = ice_tx_timeout, 8960 .ndo_bpf = ice_xdp_safe_mode, 8961 }; 8962 8963 static const struct net_device_ops ice_netdev_ops = { 8964 .ndo_open = ice_open, 8965 .ndo_stop = ice_stop, 8966 .ndo_start_xmit = ice_start_xmit, 8967 .ndo_select_queue = ice_select_queue, 8968 .ndo_features_check = ice_features_check, 8969 .ndo_fix_features = ice_fix_features, 8970 .ndo_set_rx_mode = ice_set_rx_mode, 8971 .ndo_set_mac_address = ice_set_mac_address, 8972 .ndo_validate_addr = eth_validate_addr, 8973 .ndo_change_mtu = ice_change_mtu, 8974 .ndo_get_stats64 = ice_get_stats64, 8975 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8976 .ndo_eth_ioctl = ice_eth_ioctl, 8977 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8978 .ndo_set_vf_mac = ice_set_vf_mac, 8979 .ndo_get_vf_config = ice_get_vf_cfg, 8980 .ndo_set_vf_trust = ice_set_vf_trust, 8981 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8982 .ndo_set_vf_link_state = ice_set_vf_link_state, 8983 .ndo_get_vf_stats = ice_get_vf_stats, 8984 .ndo_set_vf_rate = ice_set_vf_bw, 8985 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8986 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8987 .ndo_setup_tc = ice_setup_tc, 8988 .ndo_set_features = ice_set_features, 8989 .ndo_bridge_getlink = ice_bridge_getlink, 8990 .ndo_bridge_setlink = ice_bridge_setlink, 8991 .ndo_fdb_add = ice_fdb_add, 8992 .ndo_fdb_del = ice_fdb_del, 8993 #ifdef CONFIG_RFS_ACCEL 8994 .ndo_rx_flow_steer = ice_rx_flow_steer, 8995 #endif 8996 .ndo_tx_timeout = ice_tx_timeout, 8997 .ndo_bpf = ice_xdp, 8998 .ndo_xdp_xmit = ice_xdp_xmit, 8999 .ndo_xsk_wakeup = ice_xsk_wakeup, 9000 .ndo_get_devlink_port = ice_get_devlink_port, 9001 }; 9002