1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 
134 		if (!tx_ring)
135 			continue;
136 		if (ice_ring_ch_enabled(tx_ring))
137 			continue;
138 
139 		if (tx_ring->desc) {
140 			/* If packet counter has not changed the queue is
141 			 * likely stalled, so force an interrupt for this
142 			 * queue.
143 			 *
144 			 * prev_pkt would be negative if there was no
145 			 * pending work.
146 			 */
147 			packets = tx_ring->stats.pkts & INT_MAX;
148 			if (tx_ring->tx_stats.prev_pkt == packets) {
149 				/* Trigger sw interrupt to revive the queue */
150 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 				continue;
152 			}
153 
154 			/* Memory barrier between read of packet count and call
155 			 * to ice_get_tx_pending()
156 			 */
157 			smp_rmb();
158 			tx_ring->tx_stats.prev_pkt =
159 			    ice_get_tx_pending(tx_ring) ? packets : -1;
160 		}
161 	}
162 }
163 
164 /**
165  * ice_init_mac_fltr - Set initial MAC filters
166  * @pf: board private structure
167  *
168  * Set initial set of MAC filters for PF VSI; configure filters for permanent
169  * address and broadcast address. If an error is encountered, netdevice will be
170  * unregistered.
171  */
172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 	struct ice_vsi *vsi;
175 	u8 *perm_addr;
176 
177 	vsi = ice_get_main_vsi(pf);
178 	if (!vsi)
179 		return -EINVAL;
180 
181 	perm_addr = vsi->port_info->mac.perm_addr;
182 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184 
185 /**
186  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187  * @netdev: the net device on which the sync is happening
188  * @addr: MAC address to sync
189  *
190  * This is a callback function which is called by the in kernel device sync
191  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193  * MAC filters from the hardware.
194  */
195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 	struct ice_netdev_priv *np = netdev_priv(netdev);
198 	struct ice_vsi *vsi = np->vsi;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209  * @netdev: the net device on which the unsync is happening
210  * @addr: MAC address to unsync
211  *
212  * This is a callback function which is called by the in kernel device unsync
213  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215  * delete the MAC filters from the hardware.
216  */
217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 	struct ice_netdev_priv *np = netdev_priv(netdev);
220 	struct ice_vsi *vsi = np->vsi;
221 
222 	/* Under some circumstances, we might receive a request to delete our
223 	 * own device address from our uc list. Because we store the device
224 	 * address in the VSI's MAC filter list, we need to ignore such
225 	 * requests and not delete our device address from this list.
226 	 */
227 	if (ether_addr_equal(addr, netdev->dev_addr))
228 		return 0;
229 
230 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 				     ICE_FWD_TO_VSI))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
237 /**
238  * ice_vsi_fltr_changed - check if filter state changed
239  * @vsi: VSI to be checked
240  *
241  * returns true if filter state has changed, false otherwise.
242  */
243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248 
249 /**
250  * ice_set_promisc - Enable promiscuous mode for a given PF
251  * @vsi: the VSI being configured
252  * @promisc_m: mask of promiscuous config bits
253  *
254  */
255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 	int status;
258 
259 	if (vsi->type != ICE_VSI_PF)
260 		return 0;
261 
262 	if (ice_vsi_has_non_zero_vlans(vsi)) {
263 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 						       promisc_m);
266 	} else {
267 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 						  promisc_m, 0);
269 	}
270 	if (status && status != -EEXIST)
271 		return status;
272 
273 	return 0;
274 }
275 
276 /**
277  * ice_clear_promisc - Disable promiscuous mode for a given PF
278  * @vsi: the VSI being configured
279  * @promisc_m: mask of promiscuous config bits
280  *
281  */
282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
283 {
284 	int status;
285 
286 	if (vsi->type != ICE_VSI_PF)
287 		return 0;
288 
289 	if (ice_vsi_has_non_zero_vlans(vsi)) {
290 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
291 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
292 							 promisc_m);
293 	} else {
294 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
295 						    promisc_m, 0);
296 	}
297 
298 	return status;
299 }
300 
301 /**
302  * ice_get_devlink_port - Get devlink port from netdev
303  * @netdev: the netdevice structure
304  */
305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
306 {
307 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
308 
309 	if (!ice_is_switchdev_running(pf))
310 		return NULL;
311 
312 	return &pf->devlink_port;
313 }
314 
315 /**
316  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
317  * @vsi: ptr to the VSI
318  *
319  * Push any outstanding VSI filter changes through the AdminQ.
320  */
321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
322 {
323 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
324 	struct device *dev = ice_pf_to_dev(vsi->back);
325 	struct net_device *netdev = vsi->netdev;
326 	bool promisc_forced_on = false;
327 	struct ice_pf *pf = vsi->back;
328 	struct ice_hw *hw = &pf->hw;
329 	u32 changed_flags = 0;
330 	int err;
331 
332 	if (!vsi->netdev)
333 		return -EINVAL;
334 
335 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
336 		usleep_range(1000, 2000);
337 
338 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
339 	vsi->current_netdev_flags = vsi->netdev->flags;
340 
341 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
342 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
343 
344 	if (ice_vsi_fltr_changed(vsi)) {
345 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
346 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
347 
348 		/* grab the netdev's addr_list_lock */
349 		netif_addr_lock_bh(netdev);
350 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
353 			      ice_add_mac_to_unsync_list);
354 		/* our temp lists are populated. release lock */
355 		netif_addr_unlock_bh(netdev);
356 	}
357 
358 	/* Remove MAC addresses in the unsync list */
359 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
360 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
361 	if (err) {
362 		netdev_err(netdev, "Failed to delete MAC filters\n");
363 		/* if we failed because of alloc failures, just bail */
364 		if (err == -ENOMEM)
365 			goto out;
366 	}
367 
368 	/* Add MAC addresses in the sync list */
369 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
370 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
371 	/* If filter is added successfully or already exists, do not go into
372 	 * 'if' condition and report it as error. Instead continue processing
373 	 * rest of the function.
374 	 */
375 	if (err && err != -EEXIST) {
376 		netdev_err(netdev, "Failed to add MAC filters\n");
377 		/* If there is no more space for new umac filters, VSI
378 		 * should go into promiscuous mode. There should be some
379 		 * space reserved for promiscuous filters.
380 		 */
381 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
382 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
383 				      vsi->state)) {
384 			promisc_forced_on = true;
385 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
386 				    vsi->vsi_num);
387 		} else {
388 			goto out;
389 		}
390 	}
391 	err = 0;
392 	/* check for changes in promiscuous modes */
393 	if (changed_flags & IFF_ALLMULTI) {
394 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
395 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
396 			if (err) {
397 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
398 				goto out_promisc;
399 			}
400 		} else {
401 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
402 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
403 			if (err) {
404 				vsi->current_netdev_flags |= IFF_ALLMULTI;
405 				goto out_promisc;
406 			}
407 		}
408 	}
409 
410 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
411 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
412 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
413 		if (vsi->current_netdev_flags & IFF_PROMISC) {
414 			/* Apply Rx filter rule to get traffic from wire */
415 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
416 				err = ice_set_dflt_vsi(vsi);
417 				if (err && err != -EEXIST) {
418 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
419 						   err, vsi->vsi_num);
420 					vsi->current_netdev_flags &=
421 						~IFF_PROMISC;
422 					goto out_promisc;
423 				}
424 				err = 0;
425 				vlan_ops->dis_rx_filtering(vsi);
426 			}
427 		} else {
428 			/* Clear Rx filter to remove traffic from wire */
429 			if (ice_is_vsi_dflt_vsi(vsi)) {
430 				err = ice_clear_dflt_vsi(vsi);
431 				if (err) {
432 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
433 						   err, vsi->vsi_num);
434 					vsi->current_netdev_flags |=
435 						IFF_PROMISC;
436 					goto out_promisc;
437 				}
438 				if (vsi->netdev->features &
439 				    NETIF_F_HW_VLAN_CTAG_FILTER)
440 					vlan_ops->ena_rx_filtering(vsi);
441 			}
442 		}
443 	}
444 	goto exit;
445 
446 out_promisc:
447 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
448 	goto exit;
449 out:
450 	/* if something went wrong then set the changed flag so we try again */
451 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
452 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
453 exit:
454 	clear_bit(ICE_CFG_BUSY, vsi->state);
455 	return err;
456 }
457 
458 /**
459  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
460  * @pf: board private structure
461  */
462 static void ice_sync_fltr_subtask(struct ice_pf *pf)
463 {
464 	int v;
465 
466 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
467 		return;
468 
469 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
470 
471 	ice_for_each_vsi(pf, v)
472 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
473 		    ice_vsi_sync_fltr(pf->vsi[v])) {
474 			/* come back and try again later */
475 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
476 			break;
477 		}
478 }
479 
480 /**
481  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
482  * @pf: the PF
483  * @locked: is the rtnl_lock already held
484  */
485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
486 {
487 	int node;
488 	int v;
489 
490 	ice_for_each_vsi(pf, v)
491 		if (pf->vsi[v])
492 			ice_dis_vsi(pf->vsi[v], locked);
493 
494 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
495 		pf->pf_agg_node[node].num_vsis = 0;
496 
497 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
498 		pf->vf_agg_node[node].num_vsis = 0;
499 }
500 
501 /**
502  * ice_clear_sw_switch_recipes - clear switch recipes
503  * @pf: board private structure
504  *
505  * Mark switch recipes as not created in sw structures. There are cases where
506  * rules (especially advanced rules) need to be restored, either re-read from
507  * hardware or added again. For example after the reset. 'recp_created' flag
508  * prevents from doing that and need to be cleared upfront.
509  */
510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
511 {
512 	struct ice_sw_recipe *recp;
513 	u8 i;
514 
515 	recp = pf->hw.switch_info->recp_list;
516 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
517 		recp[i].recp_created = false;
518 }
519 
520 /**
521  * ice_prepare_for_reset - prep for reset
522  * @pf: board private structure
523  * @reset_type: reset type requested
524  *
525  * Inform or close all dependent features in prep for reset.
526  */
527 static void
528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
529 {
530 	struct ice_hw *hw = &pf->hw;
531 	struct ice_vsi *vsi;
532 	struct ice_vf *vf;
533 	unsigned int bkt;
534 
535 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
536 
537 	/* already prepared for reset */
538 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
539 		return;
540 
541 	ice_unplug_aux_dev(pf);
542 
543 	/* Notify VFs of impending reset */
544 	if (ice_check_sq_alive(hw, &hw->mailboxq))
545 		ice_vc_notify_reset(pf);
546 
547 	/* Disable VFs until reset is completed */
548 	mutex_lock(&pf->vfs.table_lock);
549 	ice_for_each_vf(pf, bkt, vf)
550 		ice_set_vf_state_qs_dis(vf);
551 	mutex_unlock(&pf->vfs.table_lock);
552 
553 	if (ice_is_eswitch_mode_switchdev(pf)) {
554 		if (reset_type != ICE_RESET_PFR)
555 			ice_clear_sw_switch_recipes(pf);
556 	}
557 
558 	/* release ADQ specific HW and SW resources */
559 	vsi = ice_get_main_vsi(pf);
560 	if (!vsi)
561 		goto skip;
562 
563 	/* to be on safe side, reset orig_rss_size so that normal flow
564 	 * of deciding rss_size can take precedence
565 	 */
566 	vsi->orig_rss_size = 0;
567 
568 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
569 		if (reset_type == ICE_RESET_PFR) {
570 			vsi->old_ena_tc = vsi->all_enatc;
571 			vsi->old_numtc = vsi->all_numtc;
572 		} else {
573 			ice_remove_q_channels(vsi, true);
574 
575 			/* for other reset type, do not support channel rebuild
576 			 * hence reset needed info
577 			 */
578 			vsi->old_ena_tc = 0;
579 			vsi->all_enatc = 0;
580 			vsi->old_numtc = 0;
581 			vsi->all_numtc = 0;
582 			vsi->req_txq = 0;
583 			vsi->req_rxq = 0;
584 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
585 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
586 		}
587 	}
588 skip:
589 
590 	/* clear SW filtering DB */
591 	ice_clear_hw_tbls(hw);
592 	/* disable the VSIs and their queues that are not already DOWN */
593 	ice_pf_dis_all_vsi(pf, false);
594 
595 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
596 		ice_ptp_prepare_for_reset(pf);
597 
598 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
599 		ice_gnss_exit(pf);
600 
601 	if (hw->port_info)
602 		ice_sched_clear_port(hw->port_info);
603 
604 	ice_shutdown_all_ctrlq(hw);
605 
606 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
607 }
608 
609 /**
610  * ice_do_reset - Initiate one of many types of resets
611  * @pf: board private structure
612  * @reset_type: reset type requested before this function was called.
613  */
614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
615 {
616 	struct device *dev = ice_pf_to_dev(pf);
617 	struct ice_hw *hw = &pf->hw;
618 
619 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
620 
621 	ice_prepare_for_reset(pf, reset_type);
622 
623 	/* trigger the reset */
624 	if (ice_reset(hw, reset_type)) {
625 		dev_err(dev, "reset %d failed\n", reset_type);
626 		set_bit(ICE_RESET_FAILED, pf->state);
627 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
628 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
629 		clear_bit(ICE_PFR_REQ, pf->state);
630 		clear_bit(ICE_CORER_REQ, pf->state);
631 		clear_bit(ICE_GLOBR_REQ, pf->state);
632 		wake_up(&pf->reset_wait_queue);
633 		return;
634 	}
635 
636 	/* PFR is a bit of a special case because it doesn't result in an OICR
637 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
638 	 * associated state bits.
639 	 */
640 	if (reset_type == ICE_RESET_PFR) {
641 		pf->pfr_count++;
642 		ice_rebuild(pf, reset_type);
643 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
644 		clear_bit(ICE_PFR_REQ, pf->state);
645 		wake_up(&pf->reset_wait_queue);
646 		ice_reset_all_vfs(pf);
647 	}
648 }
649 
650 /**
651  * ice_reset_subtask - Set up for resetting the device and driver
652  * @pf: board private structure
653  */
654 static void ice_reset_subtask(struct ice_pf *pf)
655 {
656 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
657 
658 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
659 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
660 	 * of reset is pending and sets bits in pf->state indicating the reset
661 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
662 	 * prepare for pending reset if not already (for PF software-initiated
663 	 * global resets the software should already be prepared for it as
664 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
665 	 * by firmware or software on other PFs, that bit is not set so prepare
666 	 * for the reset now), poll for reset done, rebuild and return.
667 	 */
668 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
669 		/* Perform the largest reset requested */
670 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
671 			reset_type = ICE_RESET_CORER;
672 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
673 			reset_type = ICE_RESET_GLOBR;
674 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
675 			reset_type = ICE_RESET_EMPR;
676 		/* return if no valid reset type requested */
677 		if (reset_type == ICE_RESET_INVAL)
678 			return;
679 		ice_prepare_for_reset(pf, reset_type);
680 
681 		/* make sure we are ready to rebuild */
682 		if (ice_check_reset(&pf->hw)) {
683 			set_bit(ICE_RESET_FAILED, pf->state);
684 		} else {
685 			/* done with reset. start rebuild */
686 			pf->hw.reset_ongoing = false;
687 			ice_rebuild(pf, reset_type);
688 			/* clear bit to resume normal operations, but
689 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
690 			 */
691 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
692 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
693 			clear_bit(ICE_PFR_REQ, pf->state);
694 			clear_bit(ICE_CORER_REQ, pf->state);
695 			clear_bit(ICE_GLOBR_REQ, pf->state);
696 			wake_up(&pf->reset_wait_queue);
697 			ice_reset_all_vfs(pf);
698 		}
699 
700 		return;
701 	}
702 
703 	/* No pending resets to finish processing. Check for new resets */
704 	if (test_bit(ICE_PFR_REQ, pf->state))
705 		reset_type = ICE_RESET_PFR;
706 	if (test_bit(ICE_CORER_REQ, pf->state))
707 		reset_type = ICE_RESET_CORER;
708 	if (test_bit(ICE_GLOBR_REQ, pf->state))
709 		reset_type = ICE_RESET_GLOBR;
710 	/* If no valid reset type requested just return */
711 	if (reset_type == ICE_RESET_INVAL)
712 		return;
713 
714 	/* reset if not already down or busy */
715 	if (!test_bit(ICE_DOWN, pf->state) &&
716 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
717 		ice_do_reset(pf, reset_type);
718 	}
719 }
720 
721 /**
722  * ice_print_topo_conflict - print topology conflict message
723  * @vsi: the VSI whose topology status is being checked
724  */
725 static void ice_print_topo_conflict(struct ice_vsi *vsi)
726 {
727 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
728 	case ICE_AQ_LINK_TOPO_CONFLICT:
729 	case ICE_AQ_LINK_MEDIA_CONFLICT:
730 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
731 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
732 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
733 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
734 		break;
735 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
736 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
737 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
738 		else
739 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
740 		break;
741 	default:
742 		break;
743 	}
744 }
745 
746 /**
747  * ice_print_link_msg - print link up or down message
748  * @vsi: the VSI whose link status is being queried
749  * @isup: boolean for if the link is now up or down
750  */
751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
752 {
753 	struct ice_aqc_get_phy_caps_data *caps;
754 	const char *an_advertised;
755 	const char *fec_req;
756 	const char *speed;
757 	const char *fec;
758 	const char *fc;
759 	const char *an;
760 	int status;
761 
762 	if (!vsi)
763 		return;
764 
765 	if (vsi->current_isup == isup)
766 		return;
767 
768 	vsi->current_isup = isup;
769 
770 	if (!isup) {
771 		netdev_info(vsi->netdev, "NIC Link is Down\n");
772 		return;
773 	}
774 
775 	switch (vsi->port_info->phy.link_info.link_speed) {
776 	case ICE_AQ_LINK_SPEED_100GB:
777 		speed = "100 G";
778 		break;
779 	case ICE_AQ_LINK_SPEED_50GB:
780 		speed = "50 G";
781 		break;
782 	case ICE_AQ_LINK_SPEED_40GB:
783 		speed = "40 G";
784 		break;
785 	case ICE_AQ_LINK_SPEED_25GB:
786 		speed = "25 G";
787 		break;
788 	case ICE_AQ_LINK_SPEED_20GB:
789 		speed = "20 G";
790 		break;
791 	case ICE_AQ_LINK_SPEED_10GB:
792 		speed = "10 G";
793 		break;
794 	case ICE_AQ_LINK_SPEED_5GB:
795 		speed = "5 G";
796 		break;
797 	case ICE_AQ_LINK_SPEED_2500MB:
798 		speed = "2.5 G";
799 		break;
800 	case ICE_AQ_LINK_SPEED_1000MB:
801 		speed = "1 G";
802 		break;
803 	case ICE_AQ_LINK_SPEED_100MB:
804 		speed = "100 M";
805 		break;
806 	default:
807 		speed = "Unknown ";
808 		break;
809 	}
810 
811 	switch (vsi->port_info->fc.current_mode) {
812 	case ICE_FC_FULL:
813 		fc = "Rx/Tx";
814 		break;
815 	case ICE_FC_TX_PAUSE:
816 		fc = "Tx";
817 		break;
818 	case ICE_FC_RX_PAUSE:
819 		fc = "Rx";
820 		break;
821 	case ICE_FC_NONE:
822 		fc = "None";
823 		break;
824 	default:
825 		fc = "Unknown";
826 		break;
827 	}
828 
829 	/* Get FEC mode based on negotiated link info */
830 	switch (vsi->port_info->phy.link_info.fec_info) {
831 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
832 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
833 		fec = "RS-FEC";
834 		break;
835 	case ICE_AQ_LINK_25G_KR_FEC_EN:
836 		fec = "FC-FEC/BASE-R";
837 		break;
838 	default:
839 		fec = "NONE";
840 		break;
841 	}
842 
843 	/* check if autoneg completed, might be false due to not supported */
844 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
845 		an = "True";
846 	else
847 		an = "False";
848 
849 	/* Get FEC mode requested based on PHY caps last SW configuration */
850 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
851 	if (!caps) {
852 		fec_req = "Unknown";
853 		an_advertised = "Unknown";
854 		goto done;
855 	}
856 
857 	status = ice_aq_get_phy_caps(vsi->port_info, false,
858 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
859 	if (status)
860 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
861 
862 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
863 
864 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
865 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
866 		fec_req = "RS-FEC";
867 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
868 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
869 		fec_req = "FC-FEC/BASE-R";
870 	else
871 		fec_req = "NONE";
872 
873 	kfree(caps);
874 
875 done:
876 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
877 		    speed, fec_req, fec, an_advertised, an, fc);
878 	ice_print_topo_conflict(vsi);
879 }
880 
881 /**
882  * ice_vsi_link_event - update the VSI's netdev
883  * @vsi: the VSI on which the link event occurred
884  * @link_up: whether or not the VSI needs to be set up or down
885  */
886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
887 {
888 	if (!vsi)
889 		return;
890 
891 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
892 		return;
893 
894 	if (vsi->type == ICE_VSI_PF) {
895 		if (link_up == netif_carrier_ok(vsi->netdev))
896 			return;
897 
898 		if (link_up) {
899 			netif_carrier_on(vsi->netdev);
900 			netif_tx_wake_all_queues(vsi->netdev);
901 		} else {
902 			netif_carrier_off(vsi->netdev);
903 			netif_tx_stop_all_queues(vsi->netdev);
904 		}
905 	}
906 }
907 
908 /**
909  * ice_set_dflt_mib - send a default config MIB to the FW
910  * @pf: private PF struct
911  *
912  * This function sends a default configuration MIB to the FW.
913  *
914  * If this function errors out at any point, the driver is still able to
915  * function.  The main impact is that LFC may not operate as expected.
916  * Therefore an error state in this function should be treated with a DBG
917  * message and continue on with driver rebuild/reenable.
918  */
919 static void ice_set_dflt_mib(struct ice_pf *pf)
920 {
921 	struct device *dev = ice_pf_to_dev(pf);
922 	u8 mib_type, *buf, *lldpmib = NULL;
923 	u16 len, typelen, offset = 0;
924 	struct ice_lldp_org_tlv *tlv;
925 	struct ice_hw *hw = &pf->hw;
926 	u32 ouisubtype;
927 
928 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
929 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
930 	if (!lldpmib) {
931 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
932 			__func__);
933 		return;
934 	}
935 
936 	/* Add ETS CFG TLV */
937 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
938 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
939 		   ICE_IEEE_ETS_TLV_LEN);
940 	tlv->typelen = htons(typelen);
941 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
942 		      ICE_IEEE_SUBTYPE_ETS_CFG);
943 	tlv->ouisubtype = htonl(ouisubtype);
944 
945 	buf = tlv->tlvinfo;
946 	buf[0] = 0;
947 
948 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
949 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
950 	 * Octets 13 - 20 are TSA values - leave as zeros
951 	 */
952 	buf[5] = 0x64;
953 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
954 	offset += len + 2;
955 	tlv = (struct ice_lldp_org_tlv *)
956 		((char *)tlv + sizeof(tlv->typelen) + len);
957 
958 	/* Add ETS REC TLV */
959 	buf = tlv->tlvinfo;
960 	tlv->typelen = htons(typelen);
961 
962 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
963 		      ICE_IEEE_SUBTYPE_ETS_REC);
964 	tlv->ouisubtype = htonl(ouisubtype);
965 
966 	/* First octet of buf is reserved
967 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
968 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
969 	 * Octets 13 - 20 are TSA value - leave as zeros
970 	 */
971 	buf[5] = 0x64;
972 	offset += len + 2;
973 	tlv = (struct ice_lldp_org_tlv *)
974 		((char *)tlv + sizeof(tlv->typelen) + len);
975 
976 	/* Add PFC CFG TLV */
977 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
978 		   ICE_IEEE_PFC_TLV_LEN);
979 	tlv->typelen = htons(typelen);
980 
981 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
982 		      ICE_IEEE_SUBTYPE_PFC_CFG);
983 	tlv->ouisubtype = htonl(ouisubtype);
984 
985 	/* Octet 1 left as all zeros - PFC disabled */
986 	buf[0] = 0x08;
987 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
988 	offset += len + 2;
989 
990 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
991 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
992 
993 	kfree(lldpmib);
994 }
995 
996 /**
997  * ice_check_phy_fw_load - check if PHY FW load failed
998  * @pf: pointer to PF struct
999  * @link_cfg_err: bitmap from the link info structure
1000  *
1001  * check if external PHY FW load failed and print an error message if it did
1002  */
1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1004 {
1005 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1006 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 		return;
1008 	}
1009 
1010 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1011 		return;
1012 
1013 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1014 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1015 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1016 	}
1017 }
1018 
1019 /**
1020  * ice_check_module_power
1021  * @pf: pointer to PF struct
1022  * @link_cfg_err: bitmap from the link info structure
1023  *
1024  * check module power level returned by a previous call to aq_get_link_info
1025  * and print error messages if module power level is not supported
1026  */
1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 	/* if module power level is supported, clear the flag */
1030 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1031 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1032 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1033 		return;
1034 	}
1035 
1036 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1037 	 * above block didn't clear this bit, there's nothing to do
1038 	 */
1039 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1040 		return;
1041 
1042 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1043 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1044 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1045 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1046 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1047 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1048 	}
1049 }
1050 
1051 /**
1052  * ice_check_link_cfg_err - check if link configuration failed
1053  * @pf: pointer to the PF struct
1054  * @link_cfg_err: bitmap from the link info structure
1055  *
1056  * print if any link configuration failure happens due to the value in the
1057  * link_cfg_err parameter in the link info structure
1058  */
1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1060 {
1061 	ice_check_module_power(pf, link_cfg_err);
1062 	ice_check_phy_fw_load(pf, link_cfg_err);
1063 }
1064 
1065 /**
1066  * ice_link_event - process the link event
1067  * @pf: PF that the link event is associated with
1068  * @pi: port_info for the port that the link event is associated with
1069  * @link_up: true if the physical link is up and false if it is down
1070  * @link_speed: current link speed received from the link event
1071  *
1072  * Returns 0 on success and negative on failure
1073  */
1074 static int
1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1076 	       u16 link_speed)
1077 {
1078 	struct device *dev = ice_pf_to_dev(pf);
1079 	struct ice_phy_info *phy_info;
1080 	struct ice_vsi *vsi;
1081 	u16 old_link_speed;
1082 	bool old_link;
1083 	int status;
1084 
1085 	phy_info = &pi->phy;
1086 	phy_info->link_info_old = phy_info->link_info;
1087 
1088 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1089 	old_link_speed = phy_info->link_info_old.link_speed;
1090 
1091 	/* update the link info structures and re-enable link events,
1092 	 * don't bail on failure due to other book keeping needed
1093 	 */
1094 	status = ice_update_link_info(pi);
1095 	if (status)
1096 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1097 			pi->lport, status,
1098 			ice_aq_str(pi->hw->adminq.sq_last_status));
1099 
1100 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1101 
1102 	/* Check if the link state is up after updating link info, and treat
1103 	 * this event as an UP event since the link is actually UP now.
1104 	 */
1105 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1106 		link_up = true;
1107 
1108 	vsi = ice_get_main_vsi(pf);
1109 	if (!vsi || !vsi->port_info)
1110 		return -EINVAL;
1111 
1112 	/* turn off PHY if media was removed */
1113 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1114 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1115 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1116 		ice_set_link(vsi, false);
1117 	}
1118 
1119 	/* if the old link up/down and speed is the same as the new */
1120 	if (link_up == old_link && link_speed == old_link_speed)
1121 		return 0;
1122 
1123 	if (!ice_is_e810(&pf->hw))
1124 		ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1125 
1126 	if (ice_is_dcb_active(pf)) {
1127 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1128 			ice_dcb_rebuild(pf);
1129 	} else {
1130 		if (link_up)
1131 			ice_set_dflt_mib(pf);
1132 	}
1133 	ice_vsi_link_event(vsi, link_up);
1134 	ice_print_link_msg(vsi, link_up);
1135 
1136 	ice_vc_notify_link_state(pf);
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1143  * @pf: board private structure
1144  */
1145 static void ice_watchdog_subtask(struct ice_pf *pf)
1146 {
1147 	int i;
1148 
1149 	/* if interface is down do nothing */
1150 	if (test_bit(ICE_DOWN, pf->state) ||
1151 	    test_bit(ICE_CFG_BUSY, pf->state))
1152 		return;
1153 
1154 	/* make sure we don't do these things too often */
1155 	if (time_before(jiffies,
1156 			pf->serv_tmr_prev + pf->serv_tmr_period))
1157 		return;
1158 
1159 	pf->serv_tmr_prev = jiffies;
1160 
1161 	/* Update the stats for active netdevs so the network stack
1162 	 * can look at updated numbers whenever it cares to
1163 	 */
1164 	ice_update_pf_stats(pf);
1165 	ice_for_each_vsi(pf, i)
1166 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1167 			ice_update_vsi_stats(pf->vsi[i]);
1168 }
1169 
1170 /**
1171  * ice_init_link_events - enable/initialize link events
1172  * @pi: pointer to the port_info instance
1173  *
1174  * Returns -EIO on failure, 0 on success
1175  */
1176 static int ice_init_link_events(struct ice_port_info *pi)
1177 {
1178 	u16 mask;
1179 
1180 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1181 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1182 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1183 
1184 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1185 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1186 			pi->lport);
1187 		return -EIO;
1188 	}
1189 
1190 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1191 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1192 			pi->lport);
1193 		return -EIO;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * ice_handle_link_event - handle link event via ARQ
1201  * @pf: PF that the link event is associated with
1202  * @event: event structure containing link status info
1203  */
1204 static int
1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1206 {
1207 	struct ice_aqc_get_link_status_data *link_data;
1208 	struct ice_port_info *port_info;
1209 	int status;
1210 
1211 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1212 	port_info = pf->hw.port_info;
1213 	if (!port_info)
1214 		return -EINVAL;
1215 
1216 	status = ice_link_event(pf, port_info,
1217 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1218 				le16_to_cpu(link_data->link_speed));
1219 	if (status)
1220 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1221 			status);
1222 
1223 	return status;
1224 }
1225 
1226 enum ice_aq_task_state {
1227 	ICE_AQ_TASK_WAITING = 0,
1228 	ICE_AQ_TASK_COMPLETE,
1229 	ICE_AQ_TASK_CANCELED,
1230 };
1231 
1232 struct ice_aq_task {
1233 	struct hlist_node entry;
1234 
1235 	u16 opcode;
1236 	struct ice_rq_event_info *event;
1237 	enum ice_aq_task_state state;
1238 };
1239 
1240 /**
1241  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1242  * @pf: pointer to the PF private structure
1243  * @opcode: the opcode to wait for
1244  * @timeout: how long to wait, in jiffies
1245  * @event: storage for the event info
1246  *
1247  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1248  * current thread will be put to sleep until the specified event occurs or
1249  * until the given timeout is reached.
1250  *
1251  * To obtain only the descriptor contents, pass an event without an allocated
1252  * msg_buf. If the complete data buffer is desired, allocate the
1253  * event->msg_buf with enough space ahead of time.
1254  *
1255  * Returns: zero on success, or a negative error code on failure.
1256  */
1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1258 			  struct ice_rq_event_info *event)
1259 {
1260 	struct device *dev = ice_pf_to_dev(pf);
1261 	struct ice_aq_task *task;
1262 	unsigned long start;
1263 	long ret;
1264 	int err;
1265 
1266 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1267 	if (!task)
1268 		return -ENOMEM;
1269 
1270 	INIT_HLIST_NODE(&task->entry);
1271 	task->opcode = opcode;
1272 	task->event = event;
1273 	task->state = ICE_AQ_TASK_WAITING;
1274 
1275 	spin_lock_bh(&pf->aq_wait_lock);
1276 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1277 	spin_unlock_bh(&pf->aq_wait_lock);
1278 
1279 	start = jiffies;
1280 
1281 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1282 					       timeout);
1283 	switch (task->state) {
1284 	case ICE_AQ_TASK_WAITING:
1285 		err = ret < 0 ? ret : -ETIMEDOUT;
1286 		break;
1287 	case ICE_AQ_TASK_CANCELED:
1288 		err = ret < 0 ? ret : -ECANCELED;
1289 		break;
1290 	case ICE_AQ_TASK_COMPLETE:
1291 		err = ret < 0 ? ret : 0;
1292 		break;
1293 	default:
1294 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1295 		err = -EINVAL;
1296 		break;
1297 	}
1298 
1299 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1300 		jiffies_to_msecs(jiffies - start),
1301 		jiffies_to_msecs(timeout),
1302 		opcode);
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_del(&task->entry);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 	kfree(task);
1308 
1309 	return err;
1310 }
1311 
1312 /**
1313  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1314  * @pf: pointer to the PF private structure
1315  * @opcode: the opcode of the event
1316  * @event: the event to check
1317  *
1318  * Loops over the current list of pending threads waiting for an AdminQ event.
1319  * For each matching task, copy the contents of the event into the task
1320  * structure and wake up the thread.
1321  *
1322  * If multiple threads wait for the same opcode, they will all be woken up.
1323  *
1324  * Note that event->msg_buf will only be duplicated if the event has a buffer
1325  * with enough space already allocated. Otherwise, only the descriptor and
1326  * message length will be copied.
1327  *
1328  * Returns: true if an event was found, false otherwise
1329  */
1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1331 				struct ice_rq_event_info *event)
1332 {
1333 	struct ice_aq_task *task;
1334 	bool found = false;
1335 
1336 	spin_lock_bh(&pf->aq_wait_lock);
1337 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1338 		if (task->state || task->opcode != opcode)
1339 			continue;
1340 
1341 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1342 		task->event->msg_len = event->msg_len;
1343 
1344 		/* Only copy the data buffer if a destination was set */
1345 		if (task->event->msg_buf &&
1346 		    task->event->buf_len > event->buf_len) {
1347 			memcpy(task->event->msg_buf, event->msg_buf,
1348 			       event->buf_len);
1349 			task->event->buf_len = event->buf_len;
1350 		}
1351 
1352 		task->state = ICE_AQ_TASK_COMPLETE;
1353 		found = true;
1354 	}
1355 	spin_unlock_bh(&pf->aq_wait_lock);
1356 
1357 	if (found)
1358 		wake_up(&pf->aq_wait_queue);
1359 }
1360 
1361 /**
1362  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1363  * @pf: the PF private structure
1364  *
1365  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1366  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1367  */
1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1369 {
1370 	struct ice_aq_task *task;
1371 
1372 	spin_lock_bh(&pf->aq_wait_lock);
1373 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1374 		task->state = ICE_AQ_TASK_CANCELED;
1375 	spin_unlock_bh(&pf->aq_wait_lock);
1376 
1377 	wake_up(&pf->aq_wait_queue);
1378 }
1379 
1380 /**
1381  * __ice_clean_ctrlq - helper function to clean controlq rings
1382  * @pf: ptr to struct ice_pf
1383  * @q_type: specific Control queue type
1384  */
1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1386 {
1387 	struct device *dev = ice_pf_to_dev(pf);
1388 	struct ice_rq_event_info event;
1389 	struct ice_hw *hw = &pf->hw;
1390 	struct ice_ctl_q_info *cq;
1391 	u16 pending, i = 0;
1392 	const char *qtype;
1393 	u32 oldval, val;
1394 
1395 	/* Do not clean control queue if/when PF reset fails */
1396 	if (test_bit(ICE_RESET_FAILED, pf->state))
1397 		return 0;
1398 
1399 	switch (q_type) {
1400 	case ICE_CTL_Q_ADMIN:
1401 		cq = &hw->adminq;
1402 		qtype = "Admin";
1403 		break;
1404 	case ICE_CTL_Q_SB:
1405 		cq = &hw->sbq;
1406 		qtype = "Sideband";
1407 		break;
1408 	case ICE_CTL_Q_MAILBOX:
1409 		cq = &hw->mailboxq;
1410 		qtype = "Mailbox";
1411 		/* we are going to try to detect a malicious VF, so set the
1412 		 * state to begin detection
1413 		 */
1414 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1415 		break;
1416 	default:
1417 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1418 		return 0;
1419 	}
1420 
1421 	/* check for error indications - PF_xx_AxQLEN register layout for
1422 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1423 	 */
1424 	val = rd32(hw, cq->rq.len);
1425 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1426 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1427 		oldval = val;
1428 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1429 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1430 				qtype);
1431 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1432 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1433 				qtype);
1434 		}
1435 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1436 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1437 				qtype);
1438 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1439 			 PF_FW_ARQLEN_ARQCRIT_M);
1440 		if (oldval != val)
1441 			wr32(hw, cq->rq.len, val);
1442 	}
1443 
1444 	val = rd32(hw, cq->sq.len);
1445 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1446 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1447 		oldval = val;
1448 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1449 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1450 				qtype);
1451 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1452 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1453 				qtype);
1454 		}
1455 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1456 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1457 				qtype);
1458 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1459 			 PF_FW_ATQLEN_ATQCRIT_M);
1460 		if (oldval != val)
1461 			wr32(hw, cq->sq.len, val);
1462 	}
1463 
1464 	event.buf_len = cq->rq_buf_size;
1465 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1466 	if (!event.msg_buf)
1467 		return 0;
1468 
1469 	do {
1470 		u16 opcode;
1471 		int ret;
1472 
1473 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1474 		if (ret == -EALREADY)
1475 			break;
1476 		if (ret) {
1477 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1478 				ret);
1479 			break;
1480 		}
1481 
1482 		opcode = le16_to_cpu(event.desc.opcode);
1483 
1484 		/* Notify any thread that might be waiting for this event */
1485 		ice_aq_check_events(pf, opcode, &event);
1486 
1487 		switch (opcode) {
1488 		case ice_aqc_opc_get_link_status:
1489 			if (ice_handle_link_event(pf, &event))
1490 				dev_err(dev, "Could not handle link event\n");
1491 			break;
1492 		case ice_aqc_opc_event_lan_overflow:
1493 			ice_vf_lan_overflow_event(pf, &event);
1494 			break;
1495 		case ice_mbx_opc_send_msg_to_pf:
1496 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1497 				ice_vc_process_vf_msg(pf, &event);
1498 			break;
1499 		case ice_aqc_opc_fw_logging:
1500 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1501 			break;
1502 		case ice_aqc_opc_lldp_set_mib_change:
1503 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1504 			break;
1505 		default:
1506 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1507 				qtype, opcode);
1508 			break;
1509 		}
1510 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1511 
1512 	kfree(event.msg_buf);
1513 
1514 	return pending && (i == ICE_DFLT_IRQ_WORK);
1515 }
1516 
1517 /**
1518  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1519  * @hw: pointer to hardware info
1520  * @cq: control queue information
1521  *
1522  * returns true if there are pending messages in a queue, false if there aren't
1523  */
1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1525 {
1526 	u16 ntu;
1527 
1528 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1529 	return cq->rq.next_to_clean != ntu;
1530 }
1531 
1532 /**
1533  * ice_clean_adminq_subtask - clean the AdminQ rings
1534  * @pf: board private structure
1535  */
1536 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1537 {
1538 	struct ice_hw *hw = &pf->hw;
1539 
1540 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1541 		return;
1542 
1543 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1544 		return;
1545 
1546 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1547 
1548 	/* There might be a situation where new messages arrive to a control
1549 	 * queue between processing the last message and clearing the
1550 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1551 	 * ice_ctrlq_pending) and process new messages if any.
1552 	 */
1553 	if (ice_ctrlq_pending(hw, &hw->adminq))
1554 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1555 
1556 	ice_flush(hw);
1557 }
1558 
1559 /**
1560  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1561  * @pf: board private structure
1562  */
1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1564 {
1565 	struct ice_hw *hw = &pf->hw;
1566 
1567 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1568 		return;
1569 
1570 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1571 		return;
1572 
1573 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1574 
1575 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1576 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1577 
1578 	ice_flush(hw);
1579 }
1580 
1581 /**
1582  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1583  * @pf: board private structure
1584  */
1585 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1586 {
1587 	struct ice_hw *hw = &pf->hw;
1588 
1589 	/* Nothing to do here if sideband queue is not supported */
1590 	if (!ice_is_sbq_supported(hw)) {
1591 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 		return;
1593 	}
1594 
1595 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1596 		return;
1597 
1598 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1599 		return;
1600 
1601 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1602 
1603 	if (ice_ctrlq_pending(hw, &hw->sbq))
1604 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1605 
1606 	ice_flush(hw);
1607 }
1608 
1609 /**
1610  * ice_service_task_schedule - schedule the service task to wake up
1611  * @pf: board private structure
1612  *
1613  * If not already scheduled, this puts the task into the work queue.
1614  */
1615 void ice_service_task_schedule(struct ice_pf *pf)
1616 {
1617 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1618 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1619 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1620 		queue_work(ice_wq, &pf->serv_task);
1621 }
1622 
1623 /**
1624  * ice_service_task_complete - finish up the service task
1625  * @pf: board private structure
1626  */
1627 static void ice_service_task_complete(struct ice_pf *pf)
1628 {
1629 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1630 
1631 	/* force memory (pf->state) to sync before next service task */
1632 	smp_mb__before_atomic();
1633 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1634 }
1635 
1636 /**
1637  * ice_service_task_stop - stop service task and cancel works
1638  * @pf: board private structure
1639  *
1640  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1641  * 1 otherwise.
1642  */
1643 static int ice_service_task_stop(struct ice_pf *pf)
1644 {
1645 	int ret;
1646 
1647 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1648 
1649 	if (pf->serv_tmr.function)
1650 		del_timer_sync(&pf->serv_tmr);
1651 	if (pf->serv_task.func)
1652 		cancel_work_sync(&pf->serv_task);
1653 
1654 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1655 	return ret;
1656 }
1657 
1658 /**
1659  * ice_service_task_restart - restart service task and schedule works
1660  * @pf: board private structure
1661  *
1662  * This function is needed for suspend and resume works (e.g WoL scenario)
1663  */
1664 static void ice_service_task_restart(struct ice_pf *pf)
1665 {
1666 	clear_bit(ICE_SERVICE_DIS, pf->state);
1667 	ice_service_task_schedule(pf);
1668 }
1669 
1670 /**
1671  * ice_service_timer - timer callback to schedule service task
1672  * @t: pointer to timer_list
1673  */
1674 static void ice_service_timer(struct timer_list *t)
1675 {
1676 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1677 
1678 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1679 	ice_service_task_schedule(pf);
1680 }
1681 
1682 /**
1683  * ice_handle_mdd_event - handle malicious driver detect event
1684  * @pf: pointer to the PF structure
1685  *
1686  * Called from service task. OICR interrupt handler indicates MDD event.
1687  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1688  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1689  * disable the queue, the PF can be configured to reset the VF using ethtool
1690  * private flag mdd-auto-reset-vf.
1691  */
1692 static void ice_handle_mdd_event(struct ice_pf *pf)
1693 {
1694 	struct device *dev = ice_pf_to_dev(pf);
1695 	struct ice_hw *hw = &pf->hw;
1696 	struct ice_vf *vf;
1697 	unsigned int bkt;
1698 	u32 reg;
1699 
1700 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1701 		/* Since the VF MDD event logging is rate limited, check if
1702 		 * there are pending MDD events.
1703 		 */
1704 		ice_print_vfs_mdd_events(pf);
1705 		return;
1706 	}
1707 
1708 	/* find what triggered an MDD event */
1709 	reg = rd32(hw, GL_MDET_TX_PQM);
1710 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1711 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1712 				GL_MDET_TX_PQM_PF_NUM_S;
1713 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1714 				GL_MDET_TX_PQM_VF_NUM_S;
1715 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1716 				GL_MDET_TX_PQM_MAL_TYPE_S;
1717 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1718 				GL_MDET_TX_PQM_QNUM_S);
1719 
1720 		if (netif_msg_tx_err(pf))
1721 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1722 				 event, queue, pf_num, vf_num);
1723 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1724 	}
1725 
1726 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1727 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1728 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1729 				GL_MDET_TX_TCLAN_PF_NUM_S;
1730 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1731 				GL_MDET_TX_TCLAN_VF_NUM_S;
1732 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1733 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1734 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1735 				GL_MDET_TX_TCLAN_QNUM_S);
1736 
1737 		if (netif_msg_tx_err(pf))
1738 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1739 				 event, queue, pf_num, vf_num);
1740 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1741 	}
1742 
1743 	reg = rd32(hw, GL_MDET_RX);
1744 	if (reg & GL_MDET_RX_VALID_M) {
1745 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1746 				GL_MDET_RX_PF_NUM_S;
1747 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1748 				GL_MDET_RX_VF_NUM_S;
1749 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1750 				GL_MDET_RX_MAL_TYPE_S;
1751 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1752 				GL_MDET_RX_QNUM_S);
1753 
1754 		if (netif_msg_rx_err(pf))
1755 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1756 				 event, queue, pf_num, vf_num);
1757 		wr32(hw, GL_MDET_RX, 0xffffffff);
1758 	}
1759 
1760 	/* check to see if this PF caused an MDD event */
1761 	reg = rd32(hw, PF_MDET_TX_PQM);
1762 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1763 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1764 		if (netif_msg_tx_err(pf))
1765 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1766 	}
1767 
1768 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1769 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1770 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1771 		if (netif_msg_tx_err(pf))
1772 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1773 	}
1774 
1775 	reg = rd32(hw, PF_MDET_RX);
1776 	if (reg & PF_MDET_RX_VALID_M) {
1777 		wr32(hw, PF_MDET_RX, 0xFFFF);
1778 		if (netif_msg_rx_err(pf))
1779 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1780 	}
1781 
1782 	/* Check to see if one of the VFs caused an MDD event, and then
1783 	 * increment counters and set print pending
1784 	 */
1785 	mutex_lock(&pf->vfs.table_lock);
1786 	ice_for_each_vf(pf, bkt, vf) {
1787 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1788 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1789 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1790 			vf->mdd_tx_events.count++;
1791 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 			if (netif_msg_tx_err(pf))
1793 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1794 					 vf->vf_id);
1795 		}
1796 
1797 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1798 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1799 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1800 			vf->mdd_tx_events.count++;
1801 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 			if (netif_msg_tx_err(pf))
1803 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1804 					 vf->vf_id);
1805 		}
1806 
1807 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1808 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1809 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1810 			vf->mdd_tx_events.count++;
1811 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 			if (netif_msg_tx_err(pf))
1813 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1814 					 vf->vf_id);
1815 		}
1816 
1817 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1818 		if (reg & VP_MDET_RX_VALID_M) {
1819 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1820 			vf->mdd_rx_events.count++;
1821 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1822 			if (netif_msg_rx_err(pf))
1823 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1824 					 vf->vf_id);
1825 
1826 			/* Since the queue is disabled on VF Rx MDD events, the
1827 			 * PF can be configured to reset the VF through ethtool
1828 			 * private flag mdd-auto-reset-vf.
1829 			 */
1830 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1831 				/* VF MDD event counters will be cleared by
1832 				 * reset, so print the event prior to reset.
1833 				 */
1834 				ice_print_vf_rx_mdd_event(vf);
1835 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1836 			}
1837 		}
1838 	}
1839 	mutex_unlock(&pf->vfs.table_lock);
1840 
1841 	ice_print_vfs_mdd_events(pf);
1842 }
1843 
1844 /**
1845  * ice_force_phys_link_state - Force the physical link state
1846  * @vsi: VSI to force the physical link state to up/down
1847  * @link_up: true/false indicates to set the physical link to up/down
1848  *
1849  * Force the physical link state by getting the current PHY capabilities from
1850  * hardware and setting the PHY config based on the determined capabilities. If
1851  * link changes a link event will be triggered because both the Enable Automatic
1852  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1853  *
1854  * Returns 0 on success, negative on failure
1855  */
1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1857 {
1858 	struct ice_aqc_get_phy_caps_data *pcaps;
1859 	struct ice_aqc_set_phy_cfg_data *cfg;
1860 	struct ice_port_info *pi;
1861 	struct device *dev;
1862 	int retcode;
1863 
1864 	if (!vsi || !vsi->port_info || !vsi->back)
1865 		return -EINVAL;
1866 	if (vsi->type != ICE_VSI_PF)
1867 		return 0;
1868 
1869 	dev = ice_pf_to_dev(vsi->back);
1870 
1871 	pi = vsi->port_info;
1872 
1873 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1874 	if (!pcaps)
1875 		return -ENOMEM;
1876 
1877 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1878 				      NULL);
1879 	if (retcode) {
1880 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1881 			vsi->vsi_num, retcode);
1882 		retcode = -EIO;
1883 		goto out;
1884 	}
1885 
1886 	/* No change in link */
1887 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1888 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1889 		goto out;
1890 
1891 	/* Use the current user PHY configuration. The current user PHY
1892 	 * configuration is initialized during probe from PHY capabilities
1893 	 * software mode, and updated on set PHY configuration.
1894 	 */
1895 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1896 	if (!cfg) {
1897 		retcode = -ENOMEM;
1898 		goto out;
1899 	}
1900 
1901 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1902 	if (link_up)
1903 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1904 	else
1905 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1906 
1907 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1908 	if (retcode) {
1909 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1910 			vsi->vsi_num, retcode);
1911 		retcode = -EIO;
1912 	}
1913 
1914 	kfree(cfg);
1915 out:
1916 	kfree(pcaps);
1917 	return retcode;
1918 }
1919 
1920 /**
1921  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1922  * @pi: port info structure
1923  *
1924  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1925  */
1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1927 {
1928 	struct ice_aqc_get_phy_caps_data *pcaps;
1929 	struct ice_pf *pf = pi->hw->back;
1930 	int err;
1931 
1932 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1933 	if (!pcaps)
1934 		return -ENOMEM;
1935 
1936 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1937 				  pcaps, NULL);
1938 
1939 	if (err) {
1940 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1941 		goto out;
1942 	}
1943 
1944 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1945 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1946 
1947 out:
1948 	kfree(pcaps);
1949 	return err;
1950 }
1951 
1952 /**
1953  * ice_init_link_dflt_override - Initialize link default override
1954  * @pi: port info structure
1955  *
1956  * Initialize link default override and PHY total port shutdown during probe
1957  */
1958 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1959 {
1960 	struct ice_link_default_override_tlv *ldo;
1961 	struct ice_pf *pf = pi->hw->back;
1962 
1963 	ldo = &pf->link_dflt_override;
1964 	if (ice_get_link_default_override(ldo, pi))
1965 		return;
1966 
1967 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1968 		return;
1969 
1970 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1971 	 * ethtool private flag) for ports with Port Disable bit set.
1972 	 */
1973 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1974 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1975 }
1976 
1977 /**
1978  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1979  * @pi: port info structure
1980  *
1981  * If default override is enabled, initialize the user PHY cfg speed and FEC
1982  * settings using the default override mask from the NVM.
1983  *
1984  * The PHY should only be configured with the default override settings the
1985  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1986  * is used to indicate that the user PHY cfg default override is initialized
1987  * and the PHY has not been configured with the default override settings. The
1988  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1989  * configured.
1990  *
1991  * This function should be called only if the FW doesn't support default
1992  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1993  */
1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1995 {
1996 	struct ice_link_default_override_tlv *ldo;
1997 	struct ice_aqc_set_phy_cfg_data *cfg;
1998 	struct ice_phy_info *phy = &pi->phy;
1999 	struct ice_pf *pf = pi->hw->back;
2000 
2001 	ldo = &pf->link_dflt_override;
2002 
2003 	/* If link default override is enabled, use to mask NVM PHY capabilities
2004 	 * for speed and FEC default configuration.
2005 	 */
2006 	cfg = &phy->curr_user_phy_cfg;
2007 
2008 	if (ldo->phy_type_low || ldo->phy_type_high) {
2009 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2010 				    cpu_to_le64(ldo->phy_type_low);
2011 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2012 				     cpu_to_le64(ldo->phy_type_high);
2013 	}
2014 	cfg->link_fec_opt = ldo->fec_options;
2015 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2016 
2017 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2018 }
2019 
2020 /**
2021  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2022  * @pi: port info structure
2023  *
2024  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2025  * mode to default. The PHY defaults are from get PHY capabilities topology
2026  * with media so call when media is first available. An error is returned if
2027  * called when media is not available. The PHY initialization completed state is
2028  * set here.
2029  *
2030  * These configurations are used when setting PHY
2031  * configuration. The user PHY configuration is updated on set PHY
2032  * configuration. Returns 0 on success, negative on failure
2033  */
2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2035 {
2036 	struct ice_aqc_get_phy_caps_data *pcaps;
2037 	struct ice_phy_info *phy = &pi->phy;
2038 	struct ice_pf *pf = pi->hw->back;
2039 	int err;
2040 
2041 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2042 		return -EIO;
2043 
2044 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2045 	if (!pcaps)
2046 		return -ENOMEM;
2047 
2048 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2049 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2050 					  pcaps, NULL);
2051 	else
2052 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2053 					  pcaps, NULL);
2054 	if (err) {
2055 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2056 		goto err_out;
2057 	}
2058 
2059 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2060 
2061 	/* check if lenient mode is supported and enabled */
2062 	if (ice_fw_supports_link_override(pi->hw) &&
2063 	    !(pcaps->module_compliance_enforcement &
2064 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2065 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2066 
2067 		/* if the FW supports default PHY configuration mode, then the driver
2068 		 * does not have to apply link override settings. If not,
2069 		 * initialize user PHY configuration with link override values
2070 		 */
2071 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2072 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2073 			ice_init_phy_cfg_dflt_override(pi);
2074 			goto out;
2075 		}
2076 	}
2077 
2078 	/* if link default override is not enabled, set user flow control and
2079 	 * FEC settings based on what get_phy_caps returned
2080 	 */
2081 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2082 						      pcaps->link_fec_options);
2083 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2084 
2085 out:
2086 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2087 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2088 err_out:
2089 	kfree(pcaps);
2090 	return err;
2091 }
2092 
2093 /**
2094  * ice_configure_phy - configure PHY
2095  * @vsi: VSI of PHY
2096  *
2097  * Set the PHY configuration. If the current PHY configuration is the same as
2098  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2099  * configure the based get PHY capabilities for topology with media.
2100  */
2101 static int ice_configure_phy(struct ice_vsi *vsi)
2102 {
2103 	struct device *dev = ice_pf_to_dev(vsi->back);
2104 	struct ice_port_info *pi = vsi->port_info;
2105 	struct ice_aqc_get_phy_caps_data *pcaps;
2106 	struct ice_aqc_set_phy_cfg_data *cfg;
2107 	struct ice_phy_info *phy = &pi->phy;
2108 	struct ice_pf *pf = vsi->back;
2109 	int err;
2110 
2111 	/* Ensure we have media as we cannot configure a medialess port */
2112 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2113 		return -EPERM;
2114 
2115 	ice_print_topo_conflict(vsi);
2116 
2117 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2118 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2119 		return -EPERM;
2120 
2121 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2122 		return ice_force_phys_link_state(vsi, true);
2123 
2124 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2125 	if (!pcaps)
2126 		return -ENOMEM;
2127 
2128 	/* Get current PHY config */
2129 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2130 				  NULL);
2131 	if (err) {
2132 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2133 			vsi->vsi_num, err);
2134 		goto done;
2135 	}
2136 
2137 	/* If PHY enable link is configured and configuration has not changed,
2138 	 * there's nothing to do
2139 	 */
2140 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2141 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2142 		goto done;
2143 
2144 	/* Use PHY topology as baseline for configuration */
2145 	memset(pcaps, 0, sizeof(*pcaps));
2146 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2147 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2148 					  pcaps, NULL);
2149 	else
2150 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2151 					  pcaps, NULL);
2152 	if (err) {
2153 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2154 			vsi->vsi_num, err);
2155 		goto done;
2156 	}
2157 
2158 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2159 	if (!cfg) {
2160 		err = -ENOMEM;
2161 		goto done;
2162 	}
2163 
2164 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2165 
2166 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2167 	 * ice_init_phy_user_cfg_ldo.
2168 	 */
2169 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2170 			       vsi->back->state)) {
2171 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2172 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2173 	} else {
2174 		u64 phy_low = 0, phy_high = 0;
2175 
2176 		ice_update_phy_type(&phy_low, &phy_high,
2177 				    pi->phy.curr_user_speed_req);
2178 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2179 		cfg->phy_type_high = pcaps->phy_type_high &
2180 				     cpu_to_le64(phy_high);
2181 	}
2182 
2183 	/* Can't provide what was requested; use PHY capabilities */
2184 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2185 		cfg->phy_type_low = pcaps->phy_type_low;
2186 		cfg->phy_type_high = pcaps->phy_type_high;
2187 	}
2188 
2189 	/* FEC */
2190 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2191 
2192 	/* Can't provide what was requested; use PHY capabilities */
2193 	if (cfg->link_fec_opt !=
2194 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2195 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2196 		cfg->link_fec_opt = pcaps->link_fec_options;
2197 	}
2198 
2199 	/* Flow Control - always supported; no need to check against
2200 	 * capabilities
2201 	 */
2202 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2203 
2204 	/* Enable link and link update */
2205 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2206 
2207 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2208 	if (err)
2209 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2210 			vsi->vsi_num, err);
2211 
2212 	kfree(cfg);
2213 done:
2214 	kfree(pcaps);
2215 	return err;
2216 }
2217 
2218 /**
2219  * ice_check_media_subtask - Check for media
2220  * @pf: pointer to PF struct
2221  *
2222  * If media is available, then initialize PHY user configuration if it is not
2223  * been, and configure the PHY if the interface is up.
2224  */
2225 static void ice_check_media_subtask(struct ice_pf *pf)
2226 {
2227 	struct ice_port_info *pi;
2228 	struct ice_vsi *vsi;
2229 	int err;
2230 
2231 	/* No need to check for media if it's already present */
2232 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2233 		return;
2234 
2235 	vsi = ice_get_main_vsi(pf);
2236 	if (!vsi)
2237 		return;
2238 
2239 	/* Refresh link info and check if media is present */
2240 	pi = vsi->port_info;
2241 	err = ice_update_link_info(pi);
2242 	if (err)
2243 		return;
2244 
2245 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2246 
2247 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2248 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2249 			ice_init_phy_user_cfg(pi);
2250 
2251 		/* PHY settings are reset on media insertion, reconfigure
2252 		 * PHY to preserve settings.
2253 		 */
2254 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2255 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2256 			return;
2257 
2258 		err = ice_configure_phy(vsi);
2259 		if (!err)
2260 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2261 
2262 		/* A Link Status Event will be generated; the event handler
2263 		 * will complete bringing the interface up
2264 		 */
2265 	}
2266 }
2267 
2268 /**
2269  * ice_service_task - manage and run subtasks
2270  * @work: pointer to work_struct contained by the PF struct
2271  */
2272 static void ice_service_task(struct work_struct *work)
2273 {
2274 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2275 	unsigned long start_time = jiffies;
2276 
2277 	/* subtasks */
2278 
2279 	/* process reset requests first */
2280 	ice_reset_subtask(pf);
2281 
2282 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2283 	if (ice_is_reset_in_progress(pf->state) ||
2284 	    test_bit(ICE_SUSPENDED, pf->state) ||
2285 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2286 		ice_service_task_complete(pf);
2287 		return;
2288 	}
2289 
2290 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2291 		struct iidc_event *event;
2292 
2293 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2294 		if (event) {
2295 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2296 			/* report the entire OICR value to AUX driver */
2297 			swap(event->reg, pf->oicr_err_reg);
2298 			ice_send_event_to_aux(pf, event);
2299 			kfree(event);
2300 		}
2301 	}
2302 
2303 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2304 		/* Plug aux device per request */
2305 		ice_plug_aux_dev(pf);
2306 
2307 		/* Mark plugging as done but check whether unplug was
2308 		 * requested during ice_plug_aux_dev() call
2309 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2310 		 * plug aux device.
2311 		 */
2312 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2313 			ice_unplug_aux_dev(pf);
2314 	}
2315 
2316 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2317 		struct iidc_event *event;
2318 
2319 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2320 		if (event) {
2321 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2322 			ice_send_event_to_aux(pf, event);
2323 			kfree(event);
2324 		}
2325 	}
2326 
2327 	ice_clean_adminq_subtask(pf);
2328 	ice_check_media_subtask(pf);
2329 	ice_check_for_hang_subtask(pf);
2330 	ice_sync_fltr_subtask(pf);
2331 	ice_handle_mdd_event(pf);
2332 	ice_watchdog_subtask(pf);
2333 
2334 	if (ice_is_safe_mode(pf)) {
2335 		ice_service_task_complete(pf);
2336 		return;
2337 	}
2338 
2339 	ice_process_vflr_event(pf);
2340 	ice_clean_mailboxq_subtask(pf);
2341 	ice_clean_sbq_subtask(pf);
2342 	ice_sync_arfs_fltrs(pf);
2343 	ice_flush_fdir_ctx(pf);
2344 
2345 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2346 	ice_service_task_complete(pf);
2347 
2348 	/* If the tasks have taken longer than one service timer period
2349 	 * or there is more work to be done, reset the service timer to
2350 	 * schedule the service task now.
2351 	 */
2352 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2353 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2354 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2355 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2356 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2357 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2358 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2359 		mod_timer(&pf->serv_tmr, jiffies);
2360 }
2361 
2362 /**
2363  * ice_set_ctrlq_len - helper function to set controlq length
2364  * @hw: pointer to the HW instance
2365  */
2366 static void ice_set_ctrlq_len(struct ice_hw *hw)
2367 {
2368 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2369 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2370 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2371 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2372 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2373 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2374 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2375 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2376 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2377 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2378 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2379 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2380 }
2381 
2382 /**
2383  * ice_schedule_reset - schedule a reset
2384  * @pf: board private structure
2385  * @reset: reset being requested
2386  */
2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2388 {
2389 	struct device *dev = ice_pf_to_dev(pf);
2390 
2391 	/* bail out if earlier reset has failed */
2392 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2393 		dev_dbg(dev, "earlier reset has failed\n");
2394 		return -EIO;
2395 	}
2396 	/* bail if reset/recovery already in progress */
2397 	if (ice_is_reset_in_progress(pf->state)) {
2398 		dev_dbg(dev, "Reset already in progress\n");
2399 		return -EBUSY;
2400 	}
2401 
2402 	ice_unplug_aux_dev(pf);
2403 
2404 	switch (reset) {
2405 	case ICE_RESET_PFR:
2406 		set_bit(ICE_PFR_REQ, pf->state);
2407 		break;
2408 	case ICE_RESET_CORER:
2409 		set_bit(ICE_CORER_REQ, pf->state);
2410 		break;
2411 	case ICE_RESET_GLOBR:
2412 		set_bit(ICE_GLOBR_REQ, pf->state);
2413 		break;
2414 	default:
2415 		return -EINVAL;
2416 	}
2417 
2418 	ice_service_task_schedule(pf);
2419 	return 0;
2420 }
2421 
2422 /**
2423  * ice_irq_affinity_notify - Callback for affinity changes
2424  * @notify: context as to what irq was changed
2425  * @mask: the new affinity mask
2426  *
2427  * This is a callback function used by the irq_set_affinity_notifier function
2428  * so that we may register to receive changes to the irq affinity masks.
2429  */
2430 static void
2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2432 			const cpumask_t *mask)
2433 {
2434 	struct ice_q_vector *q_vector =
2435 		container_of(notify, struct ice_q_vector, affinity_notify);
2436 
2437 	cpumask_copy(&q_vector->affinity_mask, mask);
2438 }
2439 
2440 /**
2441  * ice_irq_affinity_release - Callback for affinity notifier release
2442  * @ref: internal core kernel usage
2443  *
2444  * This is a callback function used by the irq_set_affinity_notifier function
2445  * to inform the current notification subscriber that they will no longer
2446  * receive notifications.
2447  */
2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2449 
2450 /**
2451  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2452  * @vsi: the VSI being configured
2453  */
2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2455 {
2456 	struct ice_hw *hw = &vsi->back->hw;
2457 	int i;
2458 
2459 	ice_for_each_q_vector(vsi, i)
2460 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2461 
2462 	ice_flush(hw);
2463 	return 0;
2464 }
2465 
2466 /**
2467  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2468  * @vsi: the VSI being configured
2469  * @basename: name for the vector
2470  */
2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2472 {
2473 	int q_vectors = vsi->num_q_vectors;
2474 	struct ice_pf *pf = vsi->back;
2475 	int base = vsi->base_vector;
2476 	struct device *dev;
2477 	int rx_int_idx = 0;
2478 	int tx_int_idx = 0;
2479 	int vector, err;
2480 	int irq_num;
2481 
2482 	dev = ice_pf_to_dev(pf);
2483 	for (vector = 0; vector < q_vectors; vector++) {
2484 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2485 
2486 		irq_num = pf->msix_entries[base + vector].vector;
2487 
2488 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2489 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2490 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2491 			tx_int_idx++;
2492 		} else if (q_vector->rx.rx_ring) {
2493 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2494 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2495 		} else if (q_vector->tx.tx_ring) {
2496 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2497 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2498 		} else {
2499 			/* skip this unused q_vector */
2500 			continue;
2501 		}
2502 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2503 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2504 					       IRQF_SHARED, q_vector->name,
2505 					       q_vector);
2506 		else
2507 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2508 					       0, q_vector->name, q_vector);
2509 		if (err) {
2510 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2511 				   err);
2512 			goto free_q_irqs;
2513 		}
2514 
2515 		/* register for affinity change notifications */
2516 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2517 			struct irq_affinity_notify *affinity_notify;
2518 
2519 			affinity_notify = &q_vector->affinity_notify;
2520 			affinity_notify->notify = ice_irq_affinity_notify;
2521 			affinity_notify->release = ice_irq_affinity_release;
2522 			irq_set_affinity_notifier(irq_num, affinity_notify);
2523 		}
2524 
2525 		/* assign the mask for this irq */
2526 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2527 	}
2528 
2529 	err = ice_set_cpu_rx_rmap(vsi);
2530 	if (err) {
2531 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2532 			   vsi->vsi_num, ERR_PTR(err));
2533 		goto free_q_irqs;
2534 	}
2535 
2536 	vsi->irqs_ready = true;
2537 	return 0;
2538 
2539 free_q_irqs:
2540 	while (vector) {
2541 		vector--;
2542 		irq_num = pf->msix_entries[base + vector].vector;
2543 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2544 			irq_set_affinity_notifier(irq_num, NULL);
2545 		irq_set_affinity_hint(irq_num, NULL);
2546 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2547 	}
2548 	return err;
2549 }
2550 
2551 /**
2552  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2553  * @vsi: VSI to setup Tx rings used by XDP
2554  *
2555  * Return 0 on success and negative value on error
2556  */
2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2558 {
2559 	struct device *dev = ice_pf_to_dev(vsi->back);
2560 	struct ice_tx_desc *tx_desc;
2561 	int i, j;
2562 
2563 	ice_for_each_xdp_txq(vsi, i) {
2564 		u16 xdp_q_idx = vsi->alloc_txq + i;
2565 		struct ice_tx_ring *xdp_ring;
2566 
2567 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2568 
2569 		if (!xdp_ring)
2570 			goto free_xdp_rings;
2571 
2572 		xdp_ring->q_index = xdp_q_idx;
2573 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2574 		xdp_ring->vsi = vsi;
2575 		xdp_ring->netdev = NULL;
2576 		xdp_ring->dev = dev;
2577 		xdp_ring->count = vsi->num_tx_desc;
2578 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2579 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2580 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2581 		if (ice_setup_tx_ring(xdp_ring))
2582 			goto free_xdp_rings;
2583 		ice_set_ring_xdp(xdp_ring);
2584 		spin_lock_init(&xdp_ring->tx_lock);
2585 		for (j = 0; j < xdp_ring->count; j++) {
2586 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2587 			tx_desc->cmd_type_offset_bsz = 0;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 
2593 free_xdp_rings:
2594 	for (; i >= 0; i--)
2595 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2596 			ice_free_tx_ring(vsi->xdp_rings[i]);
2597 	return -ENOMEM;
2598 }
2599 
2600 /**
2601  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2602  * @vsi: VSI to set the bpf prog on
2603  * @prog: the bpf prog pointer
2604  */
2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2606 {
2607 	struct bpf_prog *old_prog;
2608 	int i;
2609 
2610 	old_prog = xchg(&vsi->xdp_prog, prog);
2611 	if (old_prog)
2612 		bpf_prog_put(old_prog);
2613 
2614 	ice_for_each_rxq(vsi, i)
2615 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2616 }
2617 
2618 /**
2619  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2620  * @vsi: VSI to bring up Tx rings used by XDP
2621  * @prog: bpf program that will be assigned to VSI
2622  *
2623  * Return 0 on success and negative value on error
2624  */
2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2626 {
2627 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2628 	int xdp_rings_rem = vsi->num_xdp_txq;
2629 	struct ice_pf *pf = vsi->back;
2630 	struct ice_qs_cfg xdp_qs_cfg = {
2631 		.qs_mutex = &pf->avail_q_mutex,
2632 		.pf_map = pf->avail_txqs,
2633 		.pf_map_size = pf->max_pf_txqs,
2634 		.q_count = vsi->num_xdp_txq,
2635 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2636 		.vsi_map = vsi->txq_map,
2637 		.vsi_map_offset = vsi->alloc_txq,
2638 		.mapping_mode = ICE_VSI_MAP_CONTIG
2639 	};
2640 	struct device *dev;
2641 	int i, v_idx;
2642 	int status;
2643 
2644 	dev = ice_pf_to_dev(pf);
2645 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2646 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2647 	if (!vsi->xdp_rings)
2648 		return -ENOMEM;
2649 
2650 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2651 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2652 		goto err_map_xdp;
2653 
2654 	if (static_key_enabled(&ice_xdp_locking_key))
2655 		netdev_warn(vsi->netdev,
2656 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2657 
2658 	if (ice_xdp_alloc_setup_rings(vsi))
2659 		goto clear_xdp_rings;
2660 
2661 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2662 	ice_for_each_q_vector(vsi, v_idx) {
2663 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2664 		int xdp_rings_per_v, q_id, q_base;
2665 
2666 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2667 					       vsi->num_q_vectors - v_idx);
2668 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2669 
2670 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2671 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2672 
2673 			xdp_ring->q_vector = q_vector;
2674 			xdp_ring->next = q_vector->tx.tx_ring;
2675 			q_vector->tx.tx_ring = xdp_ring;
2676 		}
2677 		xdp_rings_rem -= xdp_rings_per_v;
2678 	}
2679 
2680 	ice_for_each_rxq(vsi, i) {
2681 		if (static_key_enabled(&ice_xdp_locking_key)) {
2682 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2683 		} else {
2684 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2685 			struct ice_tx_ring *ring;
2686 
2687 			ice_for_each_tx_ring(ring, q_vector->tx) {
2688 				if (ice_ring_is_xdp(ring)) {
2689 					vsi->rx_rings[i]->xdp_ring = ring;
2690 					break;
2691 				}
2692 			}
2693 		}
2694 		ice_tx_xsk_pool(vsi, i);
2695 	}
2696 
2697 	/* omit the scheduler update if in reset path; XDP queues will be
2698 	 * taken into account at the end of ice_vsi_rebuild, where
2699 	 * ice_cfg_vsi_lan is being called
2700 	 */
2701 	if (ice_is_reset_in_progress(pf->state))
2702 		return 0;
2703 
2704 	/* tell the Tx scheduler that right now we have
2705 	 * additional queues
2706 	 */
2707 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2708 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2709 
2710 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2711 				 max_txqs);
2712 	if (status) {
2713 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2714 			status);
2715 		goto clear_xdp_rings;
2716 	}
2717 
2718 	/* assign the prog only when it's not already present on VSI;
2719 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2720 	 * VSI rebuild that happens under ethtool -L can expose us to
2721 	 * the bpf_prog refcount issues as we would be swapping same
2722 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2723 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2724 	 * this is not harmful as dev_xdp_install bumps the refcount
2725 	 * before calling the op exposed by the driver;
2726 	 */
2727 	if (!ice_is_xdp_ena_vsi(vsi))
2728 		ice_vsi_assign_bpf_prog(vsi, prog);
2729 
2730 	return 0;
2731 clear_xdp_rings:
2732 	ice_for_each_xdp_txq(vsi, i)
2733 		if (vsi->xdp_rings[i]) {
2734 			kfree_rcu(vsi->xdp_rings[i], rcu);
2735 			vsi->xdp_rings[i] = NULL;
2736 		}
2737 
2738 err_map_xdp:
2739 	mutex_lock(&pf->avail_q_mutex);
2740 	ice_for_each_xdp_txq(vsi, i) {
2741 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2742 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2743 	}
2744 	mutex_unlock(&pf->avail_q_mutex);
2745 
2746 	devm_kfree(dev, vsi->xdp_rings);
2747 	return -ENOMEM;
2748 }
2749 
2750 /**
2751  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2752  * @vsi: VSI to remove XDP rings
2753  *
2754  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2755  * resources
2756  */
2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2758 {
2759 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2760 	struct ice_pf *pf = vsi->back;
2761 	int i, v_idx;
2762 
2763 	/* q_vectors are freed in reset path so there's no point in detaching
2764 	 * rings; in case of rebuild being triggered not from reset bits
2765 	 * in pf->state won't be set, so additionally check first q_vector
2766 	 * against NULL
2767 	 */
2768 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2769 		goto free_qmap;
2770 
2771 	ice_for_each_q_vector(vsi, v_idx) {
2772 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2773 		struct ice_tx_ring *ring;
2774 
2775 		ice_for_each_tx_ring(ring, q_vector->tx)
2776 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2777 				break;
2778 
2779 		/* restore the value of last node prior to XDP setup */
2780 		q_vector->tx.tx_ring = ring;
2781 	}
2782 
2783 free_qmap:
2784 	mutex_lock(&pf->avail_q_mutex);
2785 	ice_for_each_xdp_txq(vsi, i) {
2786 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2787 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2788 	}
2789 	mutex_unlock(&pf->avail_q_mutex);
2790 
2791 	ice_for_each_xdp_txq(vsi, i)
2792 		if (vsi->xdp_rings[i]) {
2793 			if (vsi->xdp_rings[i]->desc) {
2794 				synchronize_rcu();
2795 				ice_free_tx_ring(vsi->xdp_rings[i]);
2796 			}
2797 			kfree_rcu(vsi->xdp_rings[i], rcu);
2798 			vsi->xdp_rings[i] = NULL;
2799 		}
2800 
2801 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2802 	vsi->xdp_rings = NULL;
2803 
2804 	if (static_key_enabled(&ice_xdp_locking_key))
2805 		static_branch_dec(&ice_xdp_locking_key);
2806 
2807 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2808 		return 0;
2809 
2810 	ice_vsi_assign_bpf_prog(vsi, NULL);
2811 
2812 	/* notify Tx scheduler that we destroyed XDP queues and bring
2813 	 * back the old number of child nodes
2814 	 */
2815 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2816 		max_txqs[i] = vsi->num_txq;
2817 
2818 	/* change number of XDP Tx queues to 0 */
2819 	vsi->num_xdp_txq = 0;
2820 
2821 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2822 			       max_txqs);
2823 }
2824 
2825 /**
2826  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2827  * @vsi: VSI to schedule napi on
2828  */
2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2830 {
2831 	int i;
2832 
2833 	ice_for_each_rxq(vsi, i) {
2834 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2835 
2836 		if (rx_ring->xsk_pool)
2837 			napi_schedule(&rx_ring->q_vector->napi);
2838 	}
2839 }
2840 
2841 /**
2842  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2843  * @vsi: VSI to determine the count of XDP Tx qs
2844  *
2845  * returns 0 if Tx qs count is higher than at least half of CPU count,
2846  * -ENOMEM otherwise
2847  */
2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2849 {
2850 	u16 avail = ice_get_avail_txq_count(vsi->back);
2851 	u16 cpus = num_possible_cpus();
2852 
2853 	if (avail < cpus / 2)
2854 		return -ENOMEM;
2855 
2856 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2857 
2858 	if (vsi->num_xdp_txq < cpus)
2859 		static_branch_inc(&ice_xdp_locking_key);
2860 
2861 	return 0;
2862 }
2863 
2864 /**
2865  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2866  * @vsi: VSI to setup XDP for
2867  * @prog: XDP program
2868  * @extack: netlink extended ack
2869  */
2870 static int
2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2872 		   struct netlink_ext_ack *extack)
2873 {
2874 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2875 	bool if_running = netif_running(vsi->netdev);
2876 	int ret = 0, xdp_ring_err = 0;
2877 
2878 	if (frame_size > vsi->rx_buf_len) {
2879 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2880 		return -EOPNOTSUPP;
2881 	}
2882 
2883 	/* need to stop netdev while setting up the program for Rx rings */
2884 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2885 		ret = ice_down(vsi);
2886 		if (ret) {
2887 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2888 			return ret;
2889 		}
2890 	}
2891 
2892 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2893 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2894 		if (xdp_ring_err) {
2895 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2896 		} else {
2897 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2898 			if (xdp_ring_err)
2899 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2900 		}
2901 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2902 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2903 		if (xdp_ring_err)
2904 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2905 	} else {
2906 		/* safe to call even when prog == vsi->xdp_prog as
2907 		 * dev_xdp_install in net/core/dev.c incremented prog's
2908 		 * refcount so corresponding bpf_prog_put won't cause
2909 		 * underflow
2910 		 */
2911 		ice_vsi_assign_bpf_prog(vsi, prog);
2912 	}
2913 
2914 	if (if_running)
2915 		ret = ice_up(vsi);
2916 
2917 	if (!ret && prog)
2918 		ice_vsi_rx_napi_schedule(vsi);
2919 
2920 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2921 }
2922 
2923 /**
2924  * ice_xdp_safe_mode - XDP handler for safe mode
2925  * @dev: netdevice
2926  * @xdp: XDP command
2927  */
2928 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2929 			     struct netdev_bpf *xdp)
2930 {
2931 	NL_SET_ERR_MSG_MOD(xdp->extack,
2932 			   "Please provide working DDP firmware package in order to use XDP\n"
2933 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2934 	return -EOPNOTSUPP;
2935 }
2936 
2937 /**
2938  * ice_xdp - implements XDP handler
2939  * @dev: netdevice
2940  * @xdp: XDP command
2941  */
2942 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2943 {
2944 	struct ice_netdev_priv *np = netdev_priv(dev);
2945 	struct ice_vsi *vsi = np->vsi;
2946 
2947 	if (vsi->type != ICE_VSI_PF) {
2948 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2949 		return -EINVAL;
2950 	}
2951 
2952 	switch (xdp->command) {
2953 	case XDP_SETUP_PROG:
2954 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2955 	case XDP_SETUP_XSK_POOL:
2956 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2957 					  xdp->xsk.queue_id);
2958 	default:
2959 		return -EINVAL;
2960 	}
2961 }
2962 
2963 /**
2964  * ice_ena_misc_vector - enable the non-queue interrupts
2965  * @pf: board private structure
2966  */
2967 static void ice_ena_misc_vector(struct ice_pf *pf)
2968 {
2969 	struct ice_hw *hw = &pf->hw;
2970 	u32 val;
2971 
2972 	/* Disable anti-spoof detection interrupt to prevent spurious event
2973 	 * interrupts during a function reset. Anti-spoof functionally is
2974 	 * still supported.
2975 	 */
2976 	val = rd32(hw, GL_MDCK_TX_TDPU);
2977 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2978 	wr32(hw, GL_MDCK_TX_TDPU, val);
2979 
2980 	/* clear things first */
2981 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2982 	rd32(hw, PFINT_OICR);		/* read to clear */
2983 
2984 	val = (PFINT_OICR_ECC_ERR_M |
2985 	       PFINT_OICR_MAL_DETECT_M |
2986 	       PFINT_OICR_GRST_M |
2987 	       PFINT_OICR_PCI_EXCEPTION_M |
2988 	       PFINT_OICR_VFLR_M |
2989 	       PFINT_OICR_HMC_ERR_M |
2990 	       PFINT_OICR_PE_PUSH_M |
2991 	       PFINT_OICR_PE_CRITERR_M);
2992 
2993 	wr32(hw, PFINT_OICR_ENA, val);
2994 
2995 	/* SW_ITR_IDX = 0, but don't change INTENA */
2996 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2997 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2998 }
2999 
3000 /**
3001  * ice_misc_intr - misc interrupt handler
3002  * @irq: interrupt number
3003  * @data: pointer to a q_vector
3004  */
3005 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3006 {
3007 	struct ice_pf *pf = (struct ice_pf *)data;
3008 	struct ice_hw *hw = &pf->hw;
3009 	irqreturn_t ret = IRQ_NONE;
3010 	struct device *dev;
3011 	u32 oicr, ena_mask;
3012 
3013 	dev = ice_pf_to_dev(pf);
3014 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3015 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3016 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3017 
3018 	oicr = rd32(hw, PFINT_OICR);
3019 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3020 
3021 	if (oicr & PFINT_OICR_SWINT_M) {
3022 		ena_mask &= ~PFINT_OICR_SWINT_M;
3023 		pf->sw_int_count++;
3024 	}
3025 
3026 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3027 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3028 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3029 	}
3030 	if (oicr & PFINT_OICR_VFLR_M) {
3031 		/* disable any further VFLR event notifications */
3032 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3033 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3034 
3035 			reg &= ~PFINT_OICR_VFLR_M;
3036 			wr32(hw, PFINT_OICR_ENA, reg);
3037 		} else {
3038 			ena_mask &= ~PFINT_OICR_VFLR_M;
3039 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3040 		}
3041 	}
3042 
3043 	if (oicr & PFINT_OICR_GRST_M) {
3044 		u32 reset;
3045 
3046 		/* we have a reset warning */
3047 		ena_mask &= ~PFINT_OICR_GRST_M;
3048 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3049 			GLGEN_RSTAT_RESET_TYPE_S;
3050 
3051 		if (reset == ICE_RESET_CORER)
3052 			pf->corer_count++;
3053 		else if (reset == ICE_RESET_GLOBR)
3054 			pf->globr_count++;
3055 		else if (reset == ICE_RESET_EMPR)
3056 			pf->empr_count++;
3057 		else
3058 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3059 
3060 		/* If a reset cycle isn't already in progress, we set a bit in
3061 		 * pf->state so that the service task can start a reset/rebuild.
3062 		 */
3063 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3064 			if (reset == ICE_RESET_CORER)
3065 				set_bit(ICE_CORER_RECV, pf->state);
3066 			else if (reset == ICE_RESET_GLOBR)
3067 				set_bit(ICE_GLOBR_RECV, pf->state);
3068 			else
3069 				set_bit(ICE_EMPR_RECV, pf->state);
3070 
3071 			/* There are couple of different bits at play here.
3072 			 * hw->reset_ongoing indicates whether the hardware is
3073 			 * in reset. This is set to true when a reset interrupt
3074 			 * is received and set back to false after the driver
3075 			 * has determined that the hardware is out of reset.
3076 			 *
3077 			 * ICE_RESET_OICR_RECV in pf->state indicates
3078 			 * that a post reset rebuild is required before the
3079 			 * driver is operational again. This is set above.
3080 			 *
3081 			 * As this is the start of the reset/rebuild cycle, set
3082 			 * both to indicate that.
3083 			 */
3084 			hw->reset_ongoing = true;
3085 		}
3086 	}
3087 
3088 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3089 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3090 		ice_ptp_process_ts(pf);
3091 	}
3092 
3093 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3094 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3095 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3096 
3097 		/* Save EVENTs from GTSYN register */
3098 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3099 						     GLTSYN_STAT_EVENT1_M |
3100 						     GLTSYN_STAT_EVENT2_M);
3101 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3102 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3103 	}
3104 
3105 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3106 	if (oicr & ICE_AUX_CRIT_ERR) {
3107 		pf->oicr_err_reg |= oicr;
3108 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3109 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3110 	}
3111 
3112 	/* Report any remaining unexpected interrupts */
3113 	oicr &= ena_mask;
3114 	if (oicr) {
3115 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3116 		/* If a critical error is pending there is no choice but to
3117 		 * reset the device.
3118 		 */
3119 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3120 			    PFINT_OICR_ECC_ERR_M)) {
3121 			set_bit(ICE_PFR_REQ, pf->state);
3122 			ice_service_task_schedule(pf);
3123 		}
3124 	}
3125 	ret = IRQ_HANDLED;
3126 
3127 	ice_service_task_schedule(pf);
3128 	ice_irq_dynamic_ena(hw, NULL, NULL);
3129 
3130 	return ret;
3131 }
3132 
3133 /**
3134  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3135  * @hw: pointer to HW structure
3136  */
3137 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3138 {
3139 	/* disable Admin queue Interrupt causes */
3140 	wr32(hw, PFINT_FW_CTL,
3141 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3142 
3143 	/* disable Mailbox queue Interrupt causes */
3144 	wr32(hw, PFINT_MBX_CTL,
3145 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3146 
3147 	wr32(hw, PFINT_SB_CTL,
3148 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3149 
3150 	/* disable Control queue Interrupt causes */
3151 	wr32(hw, PFINT_OICR_CTL,
3152 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3153 
3154 	ice_flush(hw);
3155 }
3156 
3157 /**
3158  * ice_free_irq_msix_misc - Unroll misc vector setup
3159  * @pf: board private structure
3160  */
3161 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3162 {
3163 	struct ice_hw *hw = &pf->hw;
3164 
3165 	ice_dis_ctrlq_interrupts(hw);
3166 
3167 	/* disable OICR interrupt */
3168 	wr32(hw, PFINT_OICR_ENA, 0);
3169 	ice_flush(hw);
3170 
3171 	if (pf->msix_entries) {
3172 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3173 		devm_free_irq(ice_pf_to_dev(pf),
3174 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3175 	}
3176 
3177 	pf->num_avail_sw_msix += 1;
3178 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3179 }
3180 
3181 /**
3182  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3183  * @hw: pointer to HW structure
3184  * @reg_idx: HW vector index to associate the control queue interrupts with
3185  */
3186 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3187 {
3188 	u32 val;
3189 
3190 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3191 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3192 	wr32(hw, PFINT_OICR_CTL, val);
3193 
3194 	/* enable Admin queue Interrupt causes */
3195 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3196 	       PFINT_FW_CTL_CAUSE_ENA_M);
3197 	wr32(hw, PFINT_FW_CTL, val);
3198 
3199 	/* enable Mailbox queue Interrupt causes */
3200 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3201 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3202 	wr32(hw, PFINT_MBX_CTL, val);
3203 
3204 	/* This enables Sideband queue Interrupt causes */
3205 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3206 	       PFINT_SB_CTL_CAUSE_ENA_M);
3207 	wr32(hw, PFINT_SB_CTL, val);
3208 
3209 	ice_flush(hw);
3210 }
3211 
3212 /**
3213  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3214  * @pf: board private structure
3215  *
3216  * This sets up the handler for MSIX 0, which is used to manage the
3217  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3218  * when in MSI or Legacy interrupt mode.
3219  */
3220 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3221 {
3222 	struct device *dev = ice_pf_to_dev(pf);
3223 	struct ice_hw *hw = &pf->hw;
3224 	int oicr_idx, err = 0;
3225 
3226 	if (!pf->int_name[0])
3227 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3228 			 dev_driver_string(dev), dev_name(dev));
3229 
3230 	/* Do not request IRQ but do enable OICR interrupt since settings are
3231 	 * lost during reset. Note that this function is called only during
3232 	 * rebuild path and not while reset is in progress.
3233 	 */
3234 	if (ice_is_reset_in_progress(pf->state))
3235 		goto skip_req_irq;
3236 
3237 	/* reserve one vector in irq_tracker for misc interrupts */
3238 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3239 	if (oicr_idx < 0)
3240 		return oicr_idx;
3241 
3242 	pf->num_avail_sw_msix -= 1;
3243 	pf->oicr_idx = (u16)oicr_idx;
3244 
3245 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3246 			       ice_misc_intr, 0, pf->int_name, pf);
3247 	if (err) {
3248 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3249 			pf->int_name, err);
3250 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3251 		pf->num_avail_sw_msix += 1;
3252 		return err;
3253 	}
3254 
3255 skip_req_irq:
3256 	ice_ena_misc_vector(pf);
3257 
3258 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3259 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3260 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3261 
3262 	ice_flush(hw);
3263 	ice_irq_dynamic_ena(hw, NULL, NULL);
3264 
3265 	return 0;
3266 }
3267 
3268 /**
3269  * ice_napi_add - register NAPI handler for the VSI
3270  * @vsi: VSI for which NAPI handler is to be registered
3271  *
3272  * This function is only called in the driver's load path. Registering the NAPI
3273  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3274  * reset/rebuild, etc.)
3275  */
3276 static void ice_napi_add(struct ice_vsi *vsi)
3277 {
3278 	int v_idx;
3279 
3280 	if (!vsi->netdev)
3281 		return;
3282 
3283 	ice_for_each_q_vector(vsi, v_idx)
3284 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3285 			       ice_napi_poll, NAPI_POLL_WEIGHT);
3286 }
3287 
3288 /**
3289  * ice_set_ops - set netdev and ethtools ops for the given netdev
3290  * @netdev: netdev instance
3291  */
3292 static void ice_set_ops(struct net_device *netdev)
3293 {
3294 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3295 
3296 	if (ice_is_safe_mode(pf)) {
3297 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3298 		ice_set_ethtool_safe_mode_ops(netdev);
3299 		return;
3300 	}
3301 
3302 	netdev->netdev_ops = &ice_netdev_ops;
3303 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3304 	ice_set_ethtool_ops(netdev);
3305 }
3306 
3307 /**
3308  * ice_set_netdev_features - set features for the given netdev
3309  * @netdev: netdev instance
3310  */
3311 static void ice_set_netdev_features(struct net_device *netdev)
3312 {
3313 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3314 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3315 	netdev_features_t csumo_features;
3316 	netdev_features_t vlano_features;
3317 	netdev_features_t dflt_features;
3318 	netdev_features_t tso_features;
3319 
3320 	if (ice_is_safe_mode(pf)) {
3321 		/* safe mode */
3322 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3323 		netdev->hw_features = netdev->features;
3324 		return;
3325 	}
3326 
3327 	dflt_features = NETIF_F_SG	|
3328 			NETIF_F_HIGHDMA	|
3329 			NETIF_F_NTUPLE	|
3330 			NETIF_F_RXHASH;
3331 
3332 	csumo_features = NETIF_F_RXCSUM	  |
3333 			 NETIF_F_IP_CSUM  |
3334 			 NETIF_F_SCTP_CRC |
3335 			 NETIF_F_IPV6_CSUM;
3336 
3337 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3338 			 NETIF_F_HW_VLAN_CTAG_TX     |
3339 			 NETIF_F_HW_VLAN_CTAG_RX;
3340 
3341 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3342 	if (is_dvm_ena)
3343 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3344 
3345 	tso_features = NETIF_F_TSO			|
3346 		       NETIF_F_TSO_ECN			|
3347 		       NETIF_F_TSO6			|
3348 		       NETIF_F_GSO_GRE			|
3349 		       NETIF_F_GSO_UDP_TUNNEL		|
3350 		       NETIF_F_GSO_GRE_CSUM		|
3351 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3352 		       NETIF_F_GSO_PARTIAL		|
3353 		       NETIF_F_GSO_IPXIP4		|
3354 		       NETIF_F_GSO_IPXIP6		|
3355 		       NETIF_F_GSO_UDP_L4;
3356 
3357 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3358 					NETIF_F_GSO_GRE_CSUM;
3359 	/* set features that user can change */
3360 	netdev->hw_features = dflt_features | csumo_features |
3361 			      vlano_features | tso_features;
3362 
3363 	/* add support for HW_CSUM on packets with MPLS header */
3364 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3365 				 NETIF_F_TSO     |
3366 				 NETIF_F_TSO6;
3367 
3368 	/* enable features */
3369 	netdev->features |= netdev->hw_features;
3370 
3371 	netdev->hw_features |= NETIF_F_HW_TC;
3372 	netdev->hw_features |= NETIF_F_LOOPBACK;
3373 
3374 	/* encap and VLAN devices inherit default, csumo and tso features */
3375 	netdev->hw_enc_features |= dflt_features | csumo_features |
3376 				   tso_features;
3377 	netdev->vlan_features |= dflt_features | csumo_features |
3378 				 tso_features;
3379 
3380 	/* advertise support but don't enable by default since only one type of
3381 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3382 	 * type turns on the other has to be turned off. This is enforced by the
3383 	 * ice_fix_features() ndo callback.
3384 	 */
3385 	if (is_dvm_ena)
3386 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3387 			NETIF_F_HW_VLAN_STAG_TX;
3388 }
3389 
3390 /**
3391  * ice_cfg_netdev - Allocate, configure and register a netdev
3392  * @vsi: the VSI associated with the new netdev
3393  *
3394  * Returns 0 on success, negative value on failure
3395  */
3396 static int ice_cfg_netdev(struct ice_vsi *vsi)
3397 {
3398 	struct ice_netdev_priv *np;
3399 	struct net_device *netdev;
3400 	u8 mac_addr[ETH_ALEN];
3401 
3402 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3403 				    vsi->alloc_rxq);
3404 	if (!netdev)
3405 		return -ENOMEM;
3406 
3407 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3408 	vsi->netdev = netdev;
3409 	np = netdev_priv(netdev);
3410 	np->vsi = vsi;
3411 
3412 	ice_set_netdev_features(netdev);
3413 
3414 	ice_set_ops(netdev);
3415 
3416 	if (vsi->type == ICE_VSI_PF) {
3417 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3418 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3419 		eth_hw_addr_set(netdev, mac_addr);
3420 		ether_addr_copy(netdev->perm_addr, mac_addr);
3421 	}
3422 
3423 	netdev->priv_flags |= IFF_UNICAST_FLT;
3424 
3425 	/* Setup netdev TC information */
3426 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3427 
3428 	/* setup watchdog timeout value to be 5 second */
3429 	netdev->watchdog_timeo = 5 * HZ;
3430 
3431 	netdev->min_mtu = ETH_MIN_MTU;
3432 	netdev->max_mtu = ICE_MAX_MTU;
3433 
3434 	return 0;
3435 }
3436 
3437 /**
3438  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3439  * @lut: Lookup table
3440  * @rss_table_size: Lookup table size
3441  * @rss_size: Range of queue number for hashing
3442  */
3443 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3444 {
3445 	u16 i;
3446 
3447 	for (i = 0; i < rss_table_size; i++)
3448 		lut[i] = i % rss_size;
3449 }
3450 
3451 /**
3452  * ice_pf_vsi_setup - Set up a PF VSI
3453  * @pf: board private structure
3454  * @pi: pointer to the port_info instance
3455  *
3456  * Returns pointer to the successfully allocated VSI software struct
3457  * on success, otherwise returns NULL on failure.
3458  */
3459 static struct ice_vsi *
3460 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3461 {
3462 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3463 }
3464 
3465 static struct ice_vsi *
3466 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3467 		   struct ice_channel *ch)
3468 {
3469 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3470 }
3471 
3472 /**
3473  * ice_ctrl_vsi_setup - Set up a control VSI
3474  * @pf: board private structure
3475  * @pi: pointer to the port_info instance
3476  *
3477  * Returns pointer to the successfully allocated VSI software struct
3478  * on success, otherwise returns NULL on failure.
3479  */
3480 static struct ice_vsi *
3481 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3482 {
3483 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3484 }
3485 
3486 /**
3487  * ice_lb_vsi_setup - Set up a loopback VSI
3488  * @pf: board private structure
3489  * @pi: pointer to the port_info instance
3490  *
3491  * Returns pointer to the successfully allocated VSI software struct
3492  * on success, otherwise returns NULL on failure.
3493  */
3494 struct ice_vsi *
3495 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3496 {
3497 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3498 }
3499 
3500 /**
3501  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3502  * @netdev: network interface to be adjusted
3503  * @proto: VLAN TPID
3504  * @vid: VLAN ID to be added
3505  *
3506  * net_device_ops implementation for adding VLAN IDs
3507  */
3508 static int
3509 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3510 {
3511 	struct ice_netdev_priv *np = netdev_priv(netdev);
3512 	struct ice_vsi_vlan_ops *vlan_ops;
3513 	struct ice_vsi *vsi = np->vsi;
3514 	struct ice_vlan vlan;
3515 	int ret;
3516 
3517 	/* VLAN 0 is added by default during load/reset */
3518 	if (!vid)
3519 		return 0;
3520 
3521 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3522 		usleep_range(1000, 2000);
3523 
3524 	/* Add multicast promisc rule for the VLAN ID to be added if
3525 	 * all-multicast is currently enabled.
3526 	 */
3527 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3528 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3529 					       ICE_MCAST_VLAN_PROMISC_BITS,
3530 					       vid);
3531 		if (ret)
3532 			goto finish;
3533 	}
3534 
3535 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3536 
3537 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3538 	 * packets aren't pruned by the device's internal switch on Rx
3539 	 */
3540 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3541 	ret = vlan_ops->add_vlan(vsi, &vlan);
3542 	if (ret)
3543 		goto finish;
3544 
3545 	/* If all-multicast is currently enabled and this VLAN ID is only one
3546 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3547 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3548 	 */
3549 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3550 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3551 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3552 					   ICE_MCAST_PROMISC_BITS, 0);
3553 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3554 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3555 	}
3556 
3557 finish:
3558 	clear_bit(ICE_CFG_BUSY, vsi->state);
3559 
3560 	return ret;
3561 }
3562 
3563 /**
3564  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3565  * @netdev: network interface to be adjusted
3566  * @proto: VLAN TPID
3567  * @vid: VLAN ID to be removed
3568  *
3569  * net_device_ops implementation for removing VLAN IDs
3570  */
3571 static int
3572 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3573 {
3574 	struct ice_netdev_priv *np = netdev_priv(netdev);
3575 	struct ice_vsi_vlan_ops *vlan_ops;
3576 	struct ice_vsi *vsi = np->vsi;
3577 	struct ice_vlan vlan;
3578 	int ret;
3579 
3580 	/* don't allow removal of VLAN 0 */
3581 	if (!vid)
3582 		return 0;
3583 
3584 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3585 		usleep_range(1000, 2000);
3586 
3587 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3588 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3589 	if (ret) {
3590 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3591 			   vsi->vsi_num);
3592 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3593 	}
3594 
3595 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3596 
3597 	/* Make sure VLAN delete is successful before updating VLAN
3598 	 * information
3599 	 */
3600 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3601 	ret = vlan_ops->del_vlan(vsi, &vlan);
3602 	if (ret)
3603 		goto finish;
3604 
3605 	/* Remove multicast promisc rule for the removed VLAN ID if
3606 	 * all-multicast is enabled.
3607 	 */
3608 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3609 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3610 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3611 
3612 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3613 		/* Update look-up type of multicast promisc rule for VLAN 0
3614 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3615 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3616 		 */
3617 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3618 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3619 						   ICE_MCAST_VLAN_PROMISC_BITS,
3620 						   0);
3621 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3622 						 ICE_MCAST_PROMISC_BITS, 0);
3623 		}
3624 	}
3625 
3626 finish:
3627 	clear_bit(ICE_CFG_BUSY, vsi->state);
3628 
3629 	return ret;
3630 }
3631 
3632 /**
3633  * ice_rep_indr_tc_block_unbind
3634  * @cb_priv: indirection block private data
3635  */
3636 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3637 {
3638 	struct ice_indr_block_priv *indr_priv = cb_priv;
3639 
3640 	list_del(&indr_priv->list);
3641 	kfree(indr_priv);
3642 }
3643 
3644 /**
3645  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3646  * @vsi: VSI struct which has the netdev
3647  */
3648 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3649 {
3650 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3651 
3652 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3653 				 ice_rep_indr_tc_block_unbind);
3654 }
3655 
3656 /**
3657  * ice_tc_indir_block_remove - clean indirect TC block notifications
3658  * @pf: PF structure
3659  */
3660 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3661 {
3662 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3663 
3664 	if (!pf_vsi)
3665 		return;
3666 
3667 	ice_tc_indir_block_unregister(pf_vsi);
3668 }
3669 
3670 /**
3671  * ice_tc_indir_block_register - Register TC indirect block notifications
3672  * @vsi: VSI struct which has the netdev
3673  *
3674  * Returns 0 on success, negative value on failure
3675  */
3676 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3677 {
3678 	struct ice_netdev_priv *np;
3679 
3680 	if (!vsi || !vsi->netdev)
3681 		return -EINVAL;
3682 
3683 	np = netdev_priv(vsi->netdev);
3684 
3685 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3686 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3687 }
3688 
3689 /**
3690  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3691  * @pf: board private structure
3692  *
3693  * Returns 0 on success, negative value on failure
3694  */
3695 static int ice_setup_pf_sw(struct ice_pf *pf)
3696 {
3697 	struct device *dev = ice_pf_to_dev(pf);
3698 	bool dvm = ice_is_dvm_ena(&pf->hw);
3699 	struct ice_vsi *vsi;
3700 	int status;
3701 
3702 	if (ice_is_reset_in_progress(pf->state))
3703 		return -EBUSY;
3704 
3705 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3706 	if (status)
3707 		return -EIO;
3708 
3709 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3710 	if (!vsi)
3711 		return -ENOMEM;
3712 
3713 	/* init channel list */
3714 	INIT_LIST_HEAD(&vsi->ch_list);
3715 
3716 	status = ice_cfg_netdev(vsi);
3717 	if (status)
3718 		goto unroll_vsi_setup;
3719 	/* netdev has to be configured before setting frame size */
3720 	ice_vsi_cfg_frame_size(vsi);
3721 
3722 	/* init indirect block notifications */
3723 	status = ice_tc_indir_block_register(vsi);
3724 	if (status) {
3725 		dev_err(dev, "Failed to register netdev notifier\n");
3726 		goto unroll_cfg_netdev;
3727 	}
3728 
3729 	/* Setup DCB netlink interface */
3730 	ice_dcbnl_setup(vsi);
3731 
3732 	/* registering the NAPI handler requires both the queues and
3733 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3734 	 * and ice_cfg_netdev() respectively
3735 	 */
3736 	ice_napi_add(vsi);
3737 
3738 	status = ice_init_mac_fltr(pf);
3739 	if (status)
3740 		goto unroll_napi_add;
3741 
3742 	return 0;
3743 
3744 unroll_napi_add:
3745 	ice_tc_indir_block_unregister(vsi);
3746 unroll_cfg_netdev:
3747 	if (vsi) {
3748 		ice_napi_del(vsi);
3749 		if (vsi->netdev) {
3750 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3751 			free_netdev(vsi->netdev);
3752 			vsi->netdev = NULL;
3753 		}
3754 	}
3755 
3756 unroll_vsi_setup:
3757 	ice_vsi_release(vsi);
3758 	return status;
3759 }
3760 
3761 /**
3762  * ice_get_avail_q_count - Get count of queues in use
3763  * @pf_qmap: bitmap to get queue use count from
3764  * @lock: pointer to a mutex that protects access to pf_qmap
3765  * @size: size of the bitmap
3766  */
3767 static u16
3768 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3769 {
3770 	unsigned long bit;
3771 	u16 count = 0;
3772 
3773 	mutex_lock(lock);
3774 	for_each_clear_bit(bit, pf_qmap, size)
3775 		count++;
3776 	mutex_unlock(lock);
3777 
3778 	return count;
3779 }
3780 
3781 /**
3782  * ice_get_avail_txq_count - Get count of Tx queues in use
3783  * @pf: pointer to an ice_pf instance
3784  */
3785 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3786 {
3787 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3788 				     pf->max_pf_txqs);
3789 }
3790 
3791 /**
3792  * ice_get_avail_rxq_count - Get count of Rx queues in use
3793  * @pf: pointer to an ice_pf instance
3794  */
3795 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3796 {
3797 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3798 				     pf->max_pf_rxqs);
3799 }
3800 
3801 /**
3802  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3803  * @pf: board private structure to initialize
3804  */
3805 static void ice_deinit_pf(struct ice_pf *pf)
3806 {
3807 	ice_service_task_stop(pf);
3808 	mutex_destroy(&pf->adev_mutex);
3809 	mutex_destroy(&pf->sw_mutex);
3810 	mutex_destroy(&pf->tc_mutex);
3811 	mutex_destroy(&pf->avail_q_mutex);
3812 	mutex_destroy(&pf->vfs.table_lock);
3813 
3814 	if (pf->avail_txqs) {
3815 		bitmap_free(pf->avail_txqs);
3816 		pf->avail_txqs = NULL;
3817 	}
3818 
3819 	if (pf->avail_rxqs) {
3820 		bitmap_free(pf->avail_rxqs);
3821 		pf->avail_rxqs = NULL;
3822 	}
3823 
3824 	if (pf->ptp.clock)
3825 		ptp_clock_unregister(pf->ptp.clock);
3826 }
3827 
3828 /**
3829  * ice_set_pf_caps - set PFs capability flags
3830  * @pf: pointer to the PF instance
3831  */
3832 static void ice_set_pf_caps(struct ice_pf *pf)
3833 {
3834 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3835 
3836 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3837 	if (func_caps->common_cap.rdma)
3838 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3839 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3840 	if (func_caps->common_cap.dcb)
3841 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3842 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3843 	if (func_caps->common_cap.sr_iov_1_1) {
3844 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3845 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3846 					      ICE_MAX_SRIOV_VFS);
3847 	}
3848 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3849 	if (func_caps->common_cap.rss_table_size)
3850 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3851 
3852 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3853 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3854 		u16 unused;
3855 
3856 		/* ctrl_vsi_idx will be set to a valid value when flow director
3857 		 * is setup by ice_init_fdir
3858 		 */
3859 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3860 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3861 		/* force guaranteed filter pool for PF */
3862 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3863 				       func_caps->fd_fltr_guar);
3864 		/* force shared filter pool for PF */
3865 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3866 				       func_caps->fd_fltr_best_effort);
3867 	}
3868 
3869 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3870 	if (func_caps->common_cap.ieee_1588)
3871 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3872 
3873 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3874 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3875 }
3876 
3877 /**
3878  * ice_init_pf - Initialize general software structures (struct ice_pf)
3879  * @pf: board private structure to initialize
3880  */
3881 static int ice_init_pf(struct ice_pf *pf)
3882 {
3883 	ice_set_pf_caps(pf);
3884 
3885 	mutex_init(&pf->sw_mutex);
3886 	mutex_init(&pf->tc_mutex);
3887 	mutex_init(&pf->adev_mutex);
3888 
3889 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3890 	spin_lock_init(&pf->aq_wait_lock);
3891 	init_waitqueue_head(&pf->aq_wait_queue);
3892 
3893 	init_waitqueue_head(&pf->reset_wait_queue);
3894 
3895 	/* setup service timer and periodic service task */
3896 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3897 	pf->serv_tmr_period = HZ;
3898 	INIT_WORK(&pf->serv_task, ice_service_task);
3899 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3900 
3901 	mutex_init(&pf->avail_q_mutex);
3902 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3903 	if (!pf->avail_txqs)
3904 		return -ENOMEM;
3905 
3906 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3907 	if (!pf->avail_rxqs) {
3908 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3909 		pf->avail_txqs = NULL;
3910 		return -ENOMEM;
3911 	}
3912 
3913 	mutex_init(&pf->vfs.table_lock);
3914 	hash_init(pf->vfs.table);
3915 
3916 	return 0;
3917 }
3918 
3919 /**
3920  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3921  * @pf: board private structure
3922  *
3923  * compute the number of MSIX vectors required (v_budget) and request from
3924  * the OS. Return the number of vectors reserved or negative on failure
3925  */
3926 static int ice_ena_msix_range(struct ice_pf *pf)
3927 {
3928 	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3929 	struct device *dev = ice_pf_to_dev(pf);
3930 	int needed, err, i;
3931 
3932 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3933 	num_cpus = num_online_cpus();
3934 
3935 	/* reserve for LAN miscellaneous handler */
3936 	needed = ICE_MIN_LAN_OICR_MSIX;
3937 	if (v_left < needed)
3938 		goto no_hw_vecs_left_err;
3939 	v_budget += needed;
3940 	v_left -= needed;
3941 
3942 	/* reserve for flow director */
3943 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3944 		needed = ICE_FDIR_MSIX;
3945 		if (v_left < needed)
3946 			goto no_hw_vecs_left_err;
3947 		v_budget += needed;
3948 		v_left -= needed;
3949 	}
3950 
3951 	/* reserve for switchdev */
3952 	needed = ICE_ESWITCH_MSIX;
3953 	if (v_left < needed)
3954 		goto no_hw_vecs_left_err;
3955 	v_budget += needed;
3956 	v_left -= needed;
3957 
3958 	/* total used for non-traffic vectors */
3959 	v_other = v_budget;
3960 
3961 	/* reserve vectors for LAN traffic */
3962 	needed = num_cpus;
3963 	if (v_left < needed)
3964 		goto no_hw_vecs_left_err;
3965 	pf->num_lan_msix = needed;
3966 	v_budget += needed;
3967 	v_left -= needed;
3968 
3969 	/* reserve vectors for RDMA auxiliary driver */
3970 	if (ice_is_rdma_ena(pf)) {
3971 		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3972 		if (v_left < needed)
3973 			goto no_hw_vecs_left_err;
3974 		pf->num_rdma_msix = needed;
3975 		v_budget += needed;
3976 		v_left -= needed;
3977 	}
3978 
3979 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3980 					sizeof(*pf->msix_entries), GFP_KERNEL);
3981 	if (!pf->msix_entries) {
3982 		err = -ENOMEM;
3983 		goto exit_err;
3984 	}
3985 
3986 	for (i = 0; i < v_budget; i++)
3987 		pf->msix_entries[i].entry = i;
3988 
3989 	/* actually reserve the vectors */
3990 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3991 					 ICE_MIN_MSIX, v_budget);
3992 	if (v_actual < 0) {
3993 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3994 		err = v_actual;
3995 		goto msix_err;
3996 	}
3997 
3998 	if (v_actual < v_budget) {
3999 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4000 			 v_budget, v_actual);
4001 
4002 		if (v_actual < ICE_MIN_MSIX) {
4003 			/* error if we can't get minimum vectors */
4004 			pci_disable_msix(pf->pdev);
4005 			err = -ERANGE;
4006 			goto msix_err;
4007 		} else {
4008 			int v_remain = v_actual - v_other;
4009 			int v_rdma = 0, v_min_rdma = 0;
4010 
4011 			if (ice_is_rdma_ena(pf)) {
4012 				/* Need at least 1 interrupt in addition to
4013 				 * AEQ MSIX
4014 				 */
4015 				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4016 				v_min_rdma = ICE_MIN_RDMA_MSIX;
4017 			}
4018 
4019 			if (v_actual == ICE_MIN_MSIX ||
4020 			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
4021 				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4022 				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4023 
4024 				pf->num_rdma_msix = 0;
4025 				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4026 			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4027 				   (v_remain - v_rdma < v_rdma)) {
4028 				/* Support minimum RDMA and give remaining
4029 				 * vectors to LAN MSIX
4030 				 */
4031 				pf->num_rdma_msix = v_min_rdma;
4032 				pf->num_lan_msix = v_remain - v_min_rdma;
4033 			} else {
4034 				/* Split remaining MSIX with RDMA after
4035 				 * accounting for AEQ MSIX
4036 				 */
4037 				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4038 						    ICE_RDMA_NUM_AEQ_MSIX;
4039 				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4040 			}
4041 
4042 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4043 				   pf->num_lan_msix);
4044 
4045 			if (ice_is_rdma_ena(pf))
4046 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4047 					   pf->num_rdma_msix);
4048 		}
4049 	}
4050 
4051 	return v_actual;
4052 
4053 msix_err:
4054 	devm_kfree(dev, pf->msix_entries);
4055 	goto exit_err;
4056 
4057 no_hw_vecs_left_err:
4058 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4059 		needed, v_left);
4060 	err = -ERANGE;
4061 exit_err:
4062 	pf->num_rdma_msix = 0;
4063 	pf->num_lan_msix = 0;
4064 	return err;
4065 }
4066 
4067 /**
4068  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4069  * @pf: board private structure
4070  */
4071 static void ice_dis_msix(struct ice_pf *pf)
4072 {
4073 	pci_disable_msix(pf->pdev);
4074 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4075 	pf->msix_entries = NULL;
4076 }
4077 
4078 /**
4079  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4080  * @pf: board private structure
4081  */
4082 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4083 {
4084 	ice_dis_msix(pf);
4085 
4086 	if (pf->irq_tracker) {
4087 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4088 		pf->irq_tracker = NULL;
4089 	}
4090 }
4091 
4092 /**
4093  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4094  * @pf: board private structure to initialize
4095  */
4096 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4097 {
4098 	int vectors;
4099 
4100 	vectors = ice_ena_msix_range(pf);
4101 
4102 	if (vectors < 0)
4103 		return vectors;
4104 
4105 	/* set up vector assignment tracking */
4106 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4107 				       struct_size(pf->irq_tracker, list, vectors),
4108 				       GFP_KERNEL);
4109 	if (!pf->irq_tracker) {
4110 		ice_dis_msix(pf);
4111 		return -ENOMEM;
4112 	}
4113 
4114 	/* populate SW interrupts pool with number of OS granted IRQs. */
4115 	pf->num_avail_sw_msix = (u16)vectors;
4116 	pf->irq_tracker->num_entries = (u16)vectors;
4117 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4118 
4119 	return 0;
4120 }
4121 
4122 /**
4123  * ice_is_wol_supported - check if WoL is supported
4124  * @hw: pointer to hardware info
4125  *
4126  * Check if WoL is supported based on the HW configuration.
4127  * Returns true if NVM supports and enables WoL for this port, false otherwise
4128  */
4129 bool ice_is_wol_supported(struct ice_hw *hw)
4130 {
4131 	u16 wol_ctrl;
4132 
4133 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4134 	 * word) indicates WoL is not supported on the corresponding PF ID.
4135 	 */
4136 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4137 		return false;
4138 
4139 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4140 }
4141 
4142 /**
4143  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4144  * @vsi: VSI being changed
4145  * @new_rx: new number of Rx queues
4146  * @new_tx: new number of Tx queues
4147  *
4148  * Only change the number of queues if new_tx, or new_rx is non-0.
4149  *
4150  * Returns 0 on success.
4151  */
4152 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4153 {
4154 	struct ice_pf *pf = vsi->back;
4155 	int err = 0, timeout = 50;
4156 
4157 	if (!new_rx && !new_tx)
4158 		return -EINVAL;
4159 
4160 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4161 		timeout--;
4162 		if (!timeout)
4163 			return -EBUSY;
4164 		usleep_range(1000, 2000);
4165 	}
4166 
4167 	if (new_tx)
4168 		vsi->req_txq = (u16)new_tx;
4169 	if (new_rx)
4170 		vsi->req_rxq = (u16)new_rx;
4171 
4172 	/* set for the next time the netdev is started */
4173 	if (!netif_running(vsi->netdev)) {
4174 		ice_vsi_rebuild(vsi, false);
4175 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4176 		goto done;
4177 	}
4178 
4179 	ice_vsi_close(vsi);
4180 	ice_vsi_rebuild(vsi, false);
4181 	ice_pf_dcb_recfg(pf);
4182 	ice_vsi_open(vsi);
4183 done:
4184 	clear_bit(ICE_CFG_BUSY, pf->state);
4185 	return err;
4186 }
4187 
4188 /**
4189  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4190  * @pf: PF to configure
4191  *
4192  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4193  * VSI can still Tx/Rx VLAN tagged packets.
4194  */
4195 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4196 {
4197 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4198 	struct ice_vsi_ctx *ctxt;
4199 	struct ice_hw *hw;
4200 	int status;
4201 
4202 	if (!vsi)
4203 		return;
4204 
4205 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4206 	if (!ctxt)
4207 		return;
4208 
4209 	hw = &pf->hw;
4210 	ctxt->info = vsi->info;
4211 
4212 	ctxt->info.valid_sections =
4213 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4214 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4215 			    ICE_AQ_VSI_PROP_SW_VALID);
4216 
4217 	/* disable VLAN anti-spoof */
4218 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4219 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4220 
4221 	/* disable VLAN pruning and keep all other settings */
4222 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4223 
4224 	/* allow all VLANs on Tx and don't strip on Rx */
4225 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4226 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4227 
4228 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4229 	if (status) {
4230 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4231 			status, ice_aq_str(hw->adminq.sq_last_status));
4232 	} else {
4233 		vsi->info.sec_flags = ctxt->info.sec_flags;
4234 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4235 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4236 	}
4237 
4238 	kfree(ctxt);
4239 }
4240 
4241 /**
4242  * ice_log_pkg_init - log result of DDP package load
4243  * @hw: pointer to hardware info
4244  * @state: state of package load
4245  */
4246 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4247 {
4248 	struct ice_pf *pf = hw->back;
4249 	struct device *dev;
4250 
4251 	dev = ice_pf_to_dev(pf);
4252 
4253 	switch (state) {
4254 	case ICE_DDP_PKG_SUCCESS:
4255 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4256 			 hw->active_pkg_name,
4257 			 hw->active_pkg_ver.major,
4258 			 hw->active_pkg_ver.minor,
4259 			 hw->active_pkg_ver.update,
4260 			 hw->active_pkg_ver.draft);
4261 		break;
4262 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4263 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4264 			 hw->active_pkg_name,
4265 			 hw->active_pkg_ver.major,
4266 			 hw->active_pkg_ver.minor,
4267 			 hw->active_pkg_ver.update,
4268 			 hw->active_pkg_ver.draft);
4269 		break;
4270 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4271 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4272 			hw->active_pkg_name,
4273 			hw->active_pkg_ver.major,
4274 			hw->active_pkg_ver.minor,
4275 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4276 		break;
4277 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4278 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4279 			 hw->active_pkg_name,
4280 			 hw->active_pkg_ver.major,
4281 			 hw->active_pkg_ver.minor,
4282 			 hw->active_pkg_ver.update,
4283 			 hw->active_pkg_ver.draft,
4284 			 hw->pkg_name,
4285 			 hw->pkg_ver.major,
4286 			 hw->pkg_ver.minor,
4287 			 hw->pkg_ver.update,
4288 			 hw->pkg_ver.draft);
4289 		break;
4290 	case ICE_DDP_PKG_FW_MISMATCH:
4291 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4292 		break;
4293 	case ICE_DDP_PKG_INVALID_FILE:
4294 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4295 		break;
4296 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4297 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4298 		break;
4299 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4300 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4301 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4302 		break;
4303 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4304 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4305 		break;
4306 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4307 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4308 		break;
4309 	case ICE_DDP_PKG_LOAD_ERROR:
4310 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4311 		/* poll for reset to complete */
4312 		if (ice_check_reset(hw))
4313 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4314 		break;
4315 	case ICE_DDP_PKG_ERR:
4316 	default:
4317 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4318 		break;
4319 	}
4320 }
4321 
4322 /**
4323  * ice_load_pkg - load/reload the DDP Package file
4324  * @firmware: firmware structure when firmware requested or NULL for reload
4325  * @pf: pointer to the PF instance
4326  *
4327  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4328  * initialize HW tables.
4329  */
4330 static void
4331 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4332 {
4333 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4334 	struct device *dev = ice_pf_to_dev(pf);
4335 	struct ice_hw *hw = &pf->hw;
4336 
4337 	/* Load DDP Package */
4338 	if (firmware && !hw->pkg_copy) {
4339 		state = ice_copy_and_init_pkg(hw, firmware->data,
4340 					      firmware->size);
4341 		ice_log_pkg_init(hw, state);
4342 	} else if (!firmware && hw->pkg_copy) {
4343 		/* Reload package during rebuild after CORER/GLOBR reset */
4344 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4345 		ice_log_pkg_init(hw, state);
4346 	} else {
4347 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4348 	}
4349 
4350 	if (!ice_is_init_pkg_successful(state)) {
4351 		/* Safe Mode */
4352 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4353 		return;
4354 	}
4355 
4356 	/* Successful download package is the precondition for advanced
4357 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4358 	 */
4359 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4360 }
4361 
4362 /**
4363  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4364  * @pf: pointer to the PF structure
4365  *
4366  * There is no error returned here because the driver should be able to handle
4367  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4368  * specifically with Tx.
4369  */
4370 static void ice_verify_cacheline_size(struct ice_pf *pf)
4371 {
4372 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4373 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4374 			 ICE_CACHE_LINE_BYTES);
4375 }
4376 
4377 /**
4378  * ice_send_version - update firmware with driver version
4379  * @pf: PF struct
4380  *
4381  * Returns 0 on success, else error code
4382  */
4383 static int ice_send_version(struct ice_pf *pf)
4384 {
4385 	struct ice_driver_ver dv;
4386 
4387 	dv.major_ver = 0xff;
4388 	dv.minor_ver = 0xff;
4389 	dv.build_ver = 0xff;
4390 	dv.subbuild_ver = 0;
4391 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4392 		sizeof(dv.driver_string));
4393 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4394 }
4395 
4396 /**
4397  * ice_init_fdir - Initialize flow director VSI and configuration
4398  * @pf: pointer to the PF instance
4399  *
4400  * returns 0 on success, negative on error
4401  */
4402 static int ice_init_fdir(struct ice_pf *pf)
4403 {
4404 	struct device *dev = ice_pf_to_dev(pf);
4405 	struct ice_vsi *ctrl_vsi;
4406 	int err;
4407 
4408 	/* Side Band Flow Director needs to have a control VSI.
4409 	 * Allocate it and store it in the PF.
4410 	 */
4411 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4412 	if (!ctrl_vsi) {
4413 		dev_dbg(dev, "could not create control VSI\n");
4414 		return -ENOMEM;
4415 	}
4416 
4417 	err = ice_vsi_open_ctrl(ctrl_vsi);
4418 	if (err) {
4419 		dev_dbg(dev, "could not open control VSI\n");
4420 		goto err_vsi_open;
4421 	}
4422 
4423 	mutex_init(&pf->hw.fdir_fltr_lock);
4424 
4425 	err = ice_fdir_create_dflt_rules(pf);
4426 	if (err)
4427 		goto err_fdir_rule;
4428 
4429 	return 0;
4430 
4431 err_fdir_rule:
4432 	ice_fdir_release_flows(&pf->hw);
4433 	ice_vsi_close(ctrl_vsi);
4434 err_vsi_open:
4435 	ice_vsi_release(ctrl_vsi);
4436 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4437 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4438 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4439 	}
4440 	return err;
4441 }
4442 
4443 /**
4444  * ice_get_opt_fw_name - return optional firmware file name or NULL
4445  * @pf: pointer to the PF instance
4446  */
4447 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4448 {
4449 	/* Optional firmware name same as default with additional dash
4450 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4451 	 */
4452 	struct pci_dev *pdev = pf->pdev;
4453 	char *opt_fw_filename;
4454 	u64 dsn;
4455 
4456 	/* Determine the name of the optional file using the DSN (two
4457 	 * dwords following the start of the DSN Capability).
4458 	 */
4459 	dsn = pci_get_dsn(pdev);
4460 	if (!dsn)
4461 		return NULL;
4462 
4463 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4464 	if (!opt_fw_filename)
4465 		return NULL;
4466 
4467 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4468 		 ICE_DDP_PKG_PATH, dsn);
4469 
4470 	return opt_fw_filename;
4471 }
4472 
4473 /**
4474  * ice_request_fw - Device initialization routine
4475  * @pf: pointer to the PF instance
4476  */
4477 static void ice_request_fw(struct ice_pf *pf)
4478 {
4479 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4480 	const struct firmware *firmware = NULL;
4481 	struct device *dev = ice_pf_to_dev(pf);
4482 	int err = 0;
4483 
4484 	/* optional device-specific DDP (if present) overrides the default DDP
4485 	 * package file. kernel logs a debug message if the file doesn't exist,
4486 	 * and warning messages for other errors.
4487 	 */
4488 	if (opt_fw_filename) {
4489 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4490 		if (err) {
4491 			kfree(opt_fw_filename);
4492 			goto dflt_pkg_load;
4493 		}
4494 
4495 		/* request for firmware was successful. Download to device */
4496 		ice_load_pkg(firmware, pf);
4497 		kfree(opt_fw_filename);
4498 		release_firmware(firmware);
4499 		return;
4500 	}
4501 
4502 dflt_pkg_load:
4503 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4504 	if (err) {
4505 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4506 		return;
4507 	}
4508 
4509 	/* request for firmware was successful. Download to device */
4510 	ice_load_pkg(firmware, pf);
4511 	release_firmware(firmware);
4512 }
4513 
4514 /**
4515  * ice_print_wake_reason - show the wake up cause in the log
4516  * @pf: pointer to the PF struct
4517  */
4518 static void ice_print_wake_reason(struct ice_pf *pf)
4519 {
4520 	u32 wus = pf->wakeup_reason;
4521 	const char *wake_str;
4522 
4523 	/* if no wake event, nothing to print */
4524 	if (!wus)
4525 		return;
4526 
4527 	if (wus & PFPM_WUS_LNKC_M)
4528 		wake_str = "Link\n";
4529 	else if (wus & PFPM_WUS_MAG_M)
4530 		wake_str = "Magic Packet\n";
4531 	else if (wus & PFPM_WUS_MNG_M)
4532 		wake_str = "Management\n";
4533 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4534 		wake_str = "Firmware Reset\n";
4535 	else
4536 		wake_str = "Unknown\n";
4537 
4538 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4539 }
4540 
4541 /**
4542  * ice_register_netdev - register netdev and devlink port
4543  * @pf: pointer to the PF struct
4544  */
4545 static int ice_register_netdev(struct ice_pf *pf)
4546 {
4547 	struct ice_vsi *vsi;
4548 	int err = 0;
4549 
4550 	vsi = ice_get_main_vsi(pf);
4551 	if (!vsi || !vsi->netdev)
4552 		return -EIO;
4553 
4554 	err = register_netdev(vsi->netdev);
4555 	if (err)
4556 		goto err_register_netdev;
4557 
4558 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4559 	netif_carrier_off(vsi->netdev);
4560 	netif_tx_stop_all_queues(vsi->netdev);
4561 	err = ice_devlink_create_pf_port(pf);
4562 	if (err)
4563 		goto err_devlink_create;
4564 
4565 	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4566 
4567 	return 0;
4568 err_devlink_create:
4569 	unregister_netdev(vsi->netdev);
4570 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4571 err_register_netdev:
4572 	free_netdev(vsi->netdev);
4573 	vsi->netdev = NULL;
4574 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4575 	return err;
4576 }
4577 
4578 /**
4579  * ice_probe - Device initialization routine
4580  * @pdev: PCI device information struct
4581  * @ent: entry in ice_pci_tbl
4582  *
4583  * Returns 0 on success, negative on failure
4584  */
4585 static int
4586 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4587 {
4588 	struct device *dev = &pdev->dev;
4589 	struct ice_pf *pf;
4590 	struct ice_hw *hw;
4591 	int i, err;
4592 
4593 	if (pdev->is_virtfn) {
4594 		dev_err(dev, "can't probe a virtual function\n");
4595 		return -EINVAL;
4596 	}
4597 
4598 	/* this driver uses devres, see
4599 	 * Documentation/driver-api/driver-model/devres.rst
4600 	 */
4601 	err = pcim_enable_device(pdev);
4602 	if (err)
4603 		return err;
4604 
4605 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4606 	if (err) {
4607 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4608 		return err;
4609 	}
4610 
4611 	pf = ice_allocate_pf(dev);
4612 	if (!pf)
4613 		return -ENOMEM;
4614 
4615 	/* initialize Auxiliary index to invalid value */
4616 	pf->aux_idx = -1;
4617 
4618 	/* set up for high or low DMA */
4619 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4620 	if (err) {
4621 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4622 		return err;
4623 	}
4624 
4625 	pci_enable_pcie_error_reporting(pdev);
4626 	pci_set_master(pdev);
4627 
4628 	pf->pdev = pdev;
4629 	pci_set_drvdata(pdev, pf);
4630 	set_bit(ICE_DOWN, pf->state);
4631 	/* Disable service task until DOWN bit is cleared */
4632 	set_bit(ICE_SERVICE_DIS, pf->state);
4633 
4634 	hw = &pf->hw;
4635 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4636 	pci_save_state(pdev);
4637 
4638 	hw->back = pf;
4639 	hw->vendor_id = pdev->vendor;
4640 	hw->device_id = pdev->device;
4641 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4642 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4643 	hw->subsystem_device_id = pdev->subsystem_device;
4644 	hw->bus.device = PCI_SLOT(pdev->devfn);
4645 	hw->bus.func = PCI_FUNC(pdev->devfn);
4646 	ice_set_ctrlq_len(hw);
4647 
4648 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4649 
4650 #ifndef CONFIG_DYNAMIC_DEBUG
4651 	if (debug < -1)
4652 		hw->debug_mask = debug;
4653 #endif
4654 
4655 	err = ice_init_hw(hw);
4656 	if (err) {
4657 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4658 		err = -EIO;
4659 		goto err_exit_unroll;
4660 	}
4661 
4662 	ice_init_feature_support(pf);
4663 
4664 	ice_request_fw(pf);
4665 
4666 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4667 	 * set in pf->state, which will cause ice_is_safe_mode to return
4668 	 * true
4669 	 */
4670 	if (ice_is_safe_mode(pf)) {
4671 		/* we already got function/device capabilities but these don't
4672 		 * reflect what the driver needs to do in safe mode. Instead of
4673 		 * adding conditional logic everywhere to ignore these
4674 		 * device/function capabilities, override them.
4675 		 */
4676 		ice_set_safe_mode_caps(hw);
4677 	}
4678 
4679 	hw->ucast_shared = true;
4680 
4681 	err = ice_init_pf(pf);
4682 	if (err) {
4683 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4684 		goto err_init_pf_unroll;
4685 	}
4686 
4687 	ice_devlink_init_regions(pf);
4688 
4689 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4690 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4691 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4692 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4693 	i = 0;
4694 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4695 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4696 			pf->hw.tnl.valid_count[TNL_VXLAN];
4697 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4698 			UDP_TUNNEL_TYPE_VXLAN;
4699 		i++;
4700 	}
4701 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4702 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4703 			pf->hw.tnl.valid_count[TNL_GENEVE];
4704 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4705 			UDP_TUNNEL_TYPE_GENEVE;
4706 		i++;
4707 	}
4708 
4709 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4710 	if (!pf->num_alloc_vsi) {
4711 		err = -EIO;
4712 		goto err_init_pf_unroll;
4713 	}
4714 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4715 		dev_warn(&pf->pdev->dev,
4716 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4717 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4718 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4719 	}
4720 
4721 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4722 			       GFP_KERNEL);
4723 	if (!pf->vsi) {
4724 		err = -ENOMEM;
4725 		goto err_init_pf_unroll;
4726 	}
4727 
4728 	err = ice_init_interrupt_scheme(pf);
4729 	if (err) {
4730 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4731 		err = -EIO;
4732 		goto err_init_vsi_unroll;
4733 	}
4734 
4735 	/* In case of MSIX we are going to setup the misc vector right here
4736 	 * to handle admin queue events etc. In case of legacy and MSI
4737 	 * the misc functionality and queue processing is combined in
4738 	 * the same vector and that gets setup at open.
4739 	 */
4740 	err = ice_req_irq_msix_misc(pf);
4741 	if (err) {
4742 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4743 		goto err_init_interrupt_unroll;
4744 	}
4745 
4746 	/* create switch struct for the switch element created by FW on boot */
4747 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4748 	if (!pf->first_sw) {
4749 		err = -ENOMEM;
4750 		goto err_msix_misc_unroll;
4751 	}
4752 
4753 	if (hw->evb_veb)
4754 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4755 	else
4756 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4757 
4758 	pf->first_sw->pf = pf;
4759 
4760 	/* record the sw_id available for later use */
4761 	pf->first_sw->sw_id = hw->port_info->sw_id;
4762 
4763 	err = ice_setup_pf_sw(pf);
4764 	if (err) {
4765 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4766 		goto err_alloc_sw_unroll;
4767 	}
4768 
4769 	clear_bit(ICE_SERVICE_DIS, pf->state);
4770 
4771 	/* tell the firmware we are up */
4772 	err = ice_send_version(pf);
4773 	if (err) {
4774 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4775 			UTS_RELEASE, err);
4776 		goto err_send_version_unroll;
4777 	}
4778 
4779 	/* since everything is good, start the service timer */
4780 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4781 
4782 	err = ice_init_link_events(pf->hw.port_info);
4783 	if (err) {
4784 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4785 		goto err_send_version_unroll;
4786 	}
4787 
4788 	/* not a fatal error if this fails */
4789 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4790 	if (err)
4791 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4792 
4793 	/* not a fatal error if this fails */
4794 	err = ice_update_link_info(pf->hw.port_info);
4795 	if (err)
4796 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4797 
4798 	ice_init_link_dflt_override(pf->hw.port_info);
4799 
4800 	ice_check_link_cfg_err(pf,
4801 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4802 
4803 	/* if media available, initialize PHY settings */
4804 	if (pf->hw.port_info->phy.link_info.link_info &
4805 	    ICE_AQ_MEDIA_AVAILABLE) {
4806 		/* not a fatal error if this fails */
4807 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4808 		if (err)
4809 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4810 
4811 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4812 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4813 
4814 			if (vsi)
4815 				ice_configure_phy(vsi);
4816 		}
4817 	} else {
4818 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4819 	}
4820 
4821 	ice_verify_cacheline_size(pf);
4822 
4823 	/* Save wakeup reason register for later use */
4824 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4825 
4826 	/* check for a power management event */
4827 	ice_print_wake_reason(pf);
4828 
4829 	/* clear wake status, all bits */
4830 	wr32(hw, PFPM_WUS, U32_MAX);
4831 
4832 	/* Disable WoL at init, wait for user to enable */
4833 	device_set_wakeup_enable(dev, false);
4834 
4835 	if (ice_is_safe_mode(pf)) {
4836 		ice_set_safe_mode_vlan_cfg(pf);
4837 		goto probe_done;
4838 	}
4839 
4840 	/* initialize DDP driven features */
4841 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4842 		ice_ptp_init(pf);
4843 
4844 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4845 		ice_gnss_init(pf);
4846 
4847 	/* Note: Flow director init failure is non-fatal to load */
4848 	if (ice_init_fdir(pf))
4849 		dev_err(dev, "could not initialize flow director\n");
4850 
4851 	/* Note: DCB init failure is non-fatal to load */
4852 	if (ice_init_pf_dcb(pf, false)) {
4853 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4854 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4855 	} else {
4856 		ice_cfg_lldp_mib_change(&pf->hw, true);
4857 	}
4858 
4859 	if (ice_init_lag(pf))
4860 		dev_warn(dev, "Failed to init link aggregation support\n");
4861 
4862 	/* print PCI link speed and width */
4863 	pcie_print_link_status(pf->pdev);
4864 
4865 probe_done:
4866 	err = ice_register_netdev(pf);
4867 	if (err)
4868 		goto err_netdev_reg;
4869 
4870 	err = ice_devlink_register_params(pf);
4871 	if (err)
4872 		goto err_netdev_reg;
4873 
4874 	/* ready to go, so clear down state bit */
4875 	clear_bit(ICE_DOWN, pf->state);
4876 	if (ice_is_rdma_ena(pf)) {
4877 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4878 		if (pf->aux_idx < 0) {
4879 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4880 			err = -ENOMEM;
4881 			goto err_devlink_reg_param;
4882 		}
4883 
4884 		err = ice_init_rdma(pf);
4885 		if (err) {
4886 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4887 			err = -EIO;
4888 			goto err_init_aux_unroll;
4889 		}
4890 	} else {
4891 		dev_warn(dev, "RDMA is not supported on this device\n");
4892 	}
4893 
4894 	ice_devlink_register(pf);
4895 	return 0;
4896 
4897 err_init_aux_unroll:
4898 	pf->adev = NULL;
4899 	ida_free(&ice_aux_ida, pf->aux_idx);
4900 err_devlink_reg_param:
4901 	ice_devlink_unregister_params(pf);
4902 err_netdev_reg:
4903 err_send_version_unroll:
4904 	ice_vsi_release_all(pf);
4905 err_alloc_sw_unroll:
4906 	set_bit(ICE_SERVICE_DIS, pf->state);
4907 	set_bit(ICE_DOWN, pf->state);
4908 	devm_kfree(dev, pf->first_sw);
4909 err_msix_misc_unroll:
4910 	ice_free_irq_msix_misc(pf);
4911 err_init_interrupt_unroll:
4912 	ice_clear_interrupt_scheme(pf);
4913 err_init_vsi_unroll:
4914 	devm_kfree(dev, pf->vsi);
4915 err_init_pf_unroll:
4916 	ice_deinit_pf(pf);
4917 	ice_devlink_destroy_regions(pf);
4918 	ice_deinit_hw(hw);
4919 err_exit_unroll:
4920 	pci_disable_pcie_error_reporting(pdev);
4921 	pci_disable_device(pdev);
4922 	return err;
4923 }
4924 
4925 /**
4926  * ice_set_wake - enable or disable Wake on LAN
4927  * @pf: pointer to the PF struct
4928  *
4929  * Simple helper for WoL control
4930  */
4931 static void ice_set_wake(struct ice_pf *pf)
4932 {
4933 	struct ice_hw *hw = &pf->hw;
4934 	bool wol = pf->wol_ena;
4935 
4936 	/* clear wake state, otherwise new wake events won't fire */
4937 	wr32(hw, PFPM_WUS, U32_MAX);
4938 
4939 	/* enable / disable APM wake up, no RMW needed */
4940 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4941 
4942 	/* set magic packet filter enabled */
4943 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4944 }
4945 
4946 /**
4947  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4948  * @pf: pointer to the PF struct
4949  *
4950  * Issue firmware command to enable multicast magic wake, making
4951  * sure that any locally administered address (LAA) is used for
4952  * wake, and that PF reset doesn't undo the LAA.
4953  */
4954 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4955 {
4956 	struct device *dev = ice_pf_to_dev(pf);
4957 	struct ice_hw *hw = &pf->hw;
4958 	u8 mac_addr[ETH_ALEN];
4959 	struct ice_vsi *vsi;
4960 	int status;
4961 	u8 flags;
4962 
4963 	if (!pf->wol_ena)
4964 		return;
4965 
4966 	vsi = ice_get_main_vsi(pf);
4967 	if (!vsi)
4968 		return;
4969 
4970 	/* Get current MAC address in case it's an LAA */
4971 	if (vsi->netdev)
4972 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4973 	else
4974 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4975 
4976 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4977 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4978 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4979 
4980 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4981 	if (status)
4982 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4983 			status, ice_aq_str(hw->adminq.sq_last_status));
4984 }
4985 
4986 /**
4987  * ice_remove - Device removal routine
4988  * @pdev: PCI device information struct
4989  */
4990 static void ice_remove(struct pci_dev *pdev)
4991 {
4992 	struct ice_pf *pf = pci_get_drvdata(pdev);
4993 	int i;
4994 
4995 	ice_devlink_unregister(pf);
4996 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4997 		if (!ice_is_reset_in_progress(pf->state))
4998 			break;
4999 		msleep(100);
5000 	}
5001 
5002 	ice_tc_indir_block_remove(pf);
5003 
5004 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5005 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5006 		ice_free_vfs(pf);
5007 	}
5008 
5009 	ice_service_task_stop(pf);
5010 
5011 	ice_aq_cancel_waiting_tasks(pf);
5012 	ice_unplug_aux_dev(pf);
5013 	if (pf->aux_idx >= 0)
5014 		ida_free(&ice_aux_ida, pf->aux_idx);
5015 	ice_devlink_unregister_params(pf);
5016 	set_bit(ICE_DOWN, pf->state);
5017 
5018 	ice_deinit_lag(pf);
5019 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5020 		ice_ptp_release(pf);
5021 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5022 		ice_gnss_exit(pf);
5023 	if (!ice_is_safe_mode(pf))
5024 		ice_remove_arfs(pf);
5025 	ice_setup_mc_magic_wake(pf);
5026 	ice_vsi_release_all(pf);
5027 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5028 	ice_set_wake(pf);
5029 	ice_free_irq_msix_misc(pf);
5030 	ice_for_each_vsi(pf, i) {
5031 		if (!pf->vsi[i])
5032 			continue;
5033 		ice_vsi_free_q_vectors(pf->vsi[i]);
5034 	}
5035 	ice_deinit_pf(pf);
5036 	ice_devlink_destroy_regions(pf);
5037 	ice_deinit_hw(&pf->hw);
5038 
5039 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5040 	 * do it via ice_schedule_reset() since there is no need to rebuild
5041 	 * and the service task is already stopped.
5042 	 */
5043 	ice_reset(&pf->hw, ICE_RESET_PFR);
5044 	pci_wait_for_pending_transaction(pdev);
5045 	ice_clear_interrupt_scheme(pf);
5046 	pci_disable_pcie_error_reporting(pdev);
5047 	pci_disable_device(pdev);
5048 }
5049 
5050 /**
5051  * ice_shutdown - PCI callback for shutting down device
5052  * @pdev: PCI device information struct
5053  */
5054 static void ice_shutdown(struct pci_dev *pdev)
5055 {
5056 	struct ice_pf *pf = pci_get_drvdata(pdev);
5057 
5058 	ice_remove(pdev);
5059 
5060 	if (system_state == SYSTEM_POWER_OFF) {
5061 		pci_wake_from_d3(pdev, pf->wol_ena);
5062 		pci_set_power_state(pdev, PCI_D3hot);
5063 	}
5064 }
5065 
5066 #ifdef CONFIG_PM
5067 /**
5068  * ice_prepare_for_shutdown - prep for PCI shutdown
5069  * @pf: board private structure
5070  *
5071  * Inform or close all dependent features in prep for PCI device shutdown
5072  */
5073 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5074 {
5075 	struct ice_hw *hw = &pf->hw;
5076 	u32 v;
5077 
5078 	/* Notify VFs of impending reset */
5079 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5080 		ice_vc_notify_reset(pf);
5081 
5082 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5083 
5084 	/* disable the VSIs and their queues that are not already DOWN */
5085 	ice_pf_dis_all_vsi(pf, false);
5086 
5087 	ice_for_each_vsi(pf, v)
5088 		if (pf->vsi[v])
5089 			pf->vsi[v]->vsi_num = 0;
5090 
5091 	ice_shutdown_all_ctrlq(hw);
5092 }
5093 
5094 /**
5095  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5096  * @pf: board private structure to reinitialize
5097  *
5098  * This routine reinitialize interrupt scheme that was cleared during
5099  * power management suspend callback.
5100  *
5101  * This should be called during resume routine to re-allocate the q_vectors
5102  * and reacquire interrupts.
5103  */
5104 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5105 {
5106 	struct device *dev = ice_pf_to_dev(pf);
5107 	int ret, v;
5108 
5109 	/* Since we clear MSIX flag during suspend, we need to
5110 	 * set it back during resume...
5111 	 */
5112 
5113 	ret = ice_init_interrupt_scheme(pf);
5114 	if (ret) {
5115 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5116 		return ret;
5117 	}
5118 
5119 	/* Remap vectors and rings, after successful re-init interrupts */
5120 	ice_for_each_vsi(pf, v) {
5121 		if (!pf->vsi[v])
5122 			continue;
5123 
5124 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5125 		if (ret)
5126 			goto err_reinit;
5127 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5128 	}
5129 
5130 	ret = ice_req_irq_msix_misc(pf);
5131 	if (ret) {
5132 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5133 			ret);
5134 		goto err_reinit;
5135 	}
5136 
5137 	return 0;
5138 
5139 err_reinit:
5140 	while (v--)
5141 		if (pf->vsi[v])
5142 			ice_vsi_free_q_vectors(pf->vsi[v]);
5143 
5144 	return ret;
5145 }
5146 
5147 /**
5148  * ice_suspend
5149  * @dev: generic device information structure
5150  *
5151  * Power Management callback to quiesce the device and prepare
5152  * for D3 transition.
5153  */
5154 static int __maybe_unused ice_suspend(struct device *dev)
5155 {
5156 	struct pci_dev *pdev = to_pci_dev(dev);
5157 	struct ice_pf *pf;
5158 	int disabled, v;
5159 
5160 	pf = pci_get_drvdata(pdev);
5161 
5162 	if (!ice_pf_state_is_nominal(pf)) {
5163 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5164 		return -EBUSY;
5165 	}
5166 
5167 	/* Stop watchdog tasks until resume completion.
5168 	 * Even though it is most likely that the service task is
5169 	 * disabled if the device is suspended or down, the service task's
5170 	 * state is controlled by a different state bit, and we should
5171 	 * store and honor whatever state that bit is in at this point.
5172 	 */
5173 	disabled = ice_service_task_stop(pf);
5174 
5175 	ice_unplug_aux_dev(pf);
5176 
5177 	/* Already suspended?, then there is nothing to do */
5178 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5179 		if (!disabled)
5180 			ice_service_task_restart(pf);
5181 		return 0;
5182 	}
5183 
5184 	if (test_bit(ICE_DOWN, pf->state) ||
5185 	    ice_is_reset_in_progress(pf->state)) {
5186 		dev_err(dev, "can't suspend device in reset or already down\n");
5187 		if (!disabled)
5188 			ice_service_task_restart(pf);
5189 		return 0;
5190 	}
5191 
5192 	ice_setup_mc_magic_wake(pf);
5193 
5194 	ice_prepare_for_shutdown(pf);
5195 
5196 	ice_set_wake(pf);
5197 
5198 	/* Free vectors, clear the interrupt scheme and release IRQs
5199 	 * for proper hibernation, especially with large number of CPUs.
5200 	 * Otherwise hibernation might fail when mapping all the vectors back
5201 	 * to CPU0.
5202 	 */
5203 	ice_free_irq_msix_misc(pf);
5204 	ice_for_each_vsi(pf, v) {
5205 		if (!pf->vsi[v])
5206 			continue;
5207 		ice_vsi_free_q_vectors(pf->vsi[v]);
5208 	}
5209 	ice_clear_interrupt_scheme(pf);
5210 
5211 	pci_save_state(pdev);
5212 	pci_wake_from_d3(pdev, pf->wol_ena);
5213 	pci_set_power_state(pdev, PCI_D3hot);
5214 	return 0;
5215 }
5216 
5217 /**
5218  * ice_resume - PM callback for waking up from D3
5219  * @dev: generic device information structure
5220  */
5221 static int __maybe_unused ice_resume(struct device *dev)
5222 {
5223 	struct pci_dev *pdev = to_pci_dev(dev);
5224 	enum ice_reset_req reset_type;
5225 	struct ice_pf *pf;
5226 	struct ice_hw *hw;
5227 	int ret;
5228 
5229 	pci_set_power_state(pdev, PCI_D0);
5230 	pci_restore_state(pdev);
5231 	pci_save_state(pdev);
5232 
5233 	if (!pci_device_is_present(pdev))
5234 		return -ENODEV;
5235 
5236 	ret = pci_enable_device_mem(pdev);
5237 	if (ret) {
5238 		dev_err(dev, "Cannot enable device after suspend\n");
5239 		return ret;
5240 	}
5241 
5242 	pf = pci_get_drvdata(pdev);
5243 	hw = &pf->hw;
5244 
5245 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5246 	ice_print_wake_reason(pf);
5247 
5248 	/* We cleared the interrupt scheme when we suspended, so we need to
5249 	 * restore it now to resume device functionality.
5250 	 */
5251 	ret = ice_reinit_interrupt_scheme(pf);
5252 	if (ret)
5253 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5254 
5255 	clear_bit(ICE_DOWN, pf->state);
5256 	/* Now perform PF reset and rebuild */
5257 	reset_type = ICE_RESET_PFR;
5258 	/* re-enable service task for reset, but allow reset to schedule it */
5259 	clear_bit(ICE_SERVICE_DIS, pf->state);
5260 
5261 	if (ice_schedule_reset(pf, reset_type))
5262 		dev_err(dev, "Reset during resume failed.\n");
5263 
5264 	clear_bit(ICE_SUSPENDED, pf->state);
5265 	ice_service_task_restart(pf);
5266 
5267 	/* Restart the service task */
5268 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5269 
5270 	return 0;
5271 }
5272 #endif /* CONFIG_PM */
5273 
5274 /**
5275  * ice_pci_err_detected - warning that PCI error has been detected
5276  * @pdev: PCI device information struct
5277  * @err: the type of PCI error
5278  *
5279  * Called to warn that something happened on the PCI bus and the error handling
5280  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5281  */
5282 static pci_ers_result_t
5283 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5284 {
5285 	struct ice_pf *pf = pci_get_drvdata(pdev);
5286 
5287 	if (!pf) {
5288 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5289 			__func__, err);
5290 		return PCI_ERS_RESULT_DISCONNECT;
5291 	}
5292 
5293 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5294 		ice_service_task_stop(pf);
5295 
5296 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5297 			set_bit(ICE_PFR_REQ, pf->state);
5298 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5299 		}
5300 	}
5301 
5302 	return PCI_ERS_RESULT_NEED_RESET;
5303 }
5304 
5305 /**
5306  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5307  * @pdev: PCI device information struct
5308  *
5309  * Called to determine if the driver can recover from the PCI slot reset by
5310  * using a register read to determine if the device is recoverable.
5311  */
5312 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5313 {
5314 	struct ice_pf *pf = pci_get_drvdata(pdev);
5315 	pci_ers_result_t result;
5316 	int err;
5317 	u32 reg;
5318 
5319 	err = pci_enable_device_mem(pdev);
5320 	if (err) {
5321 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5322 			err);
5323 		result = PCI_ERS_RESULT_DISCONNECT;
5324 	} else {
5325 		pci_set_master(pdev);
5326 		pci_restore_state(pdev);
5327 		pci_save_state(pdev);
5328 		pci_wake_from_d3(pdev, false);
5329 
5330 		/* Check for life */
5331 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5332 		if (!reg)
5333 			result = PCI_ERS_RESULT_RECOVERED;
5334 		else
5335 			result = PCI_ERS_RESULT_DISCONNECT;
5336 	}
5337 
5338 	return result;
5339 }
5340 
5341 /**
5342  * ice_pci_err_resume - restart operations after PCI error recovery
5343  * @pdev: PCI device information struct
5344  *
5345  * Called to allow the driver to bring things back up after PCI error and/or
5346  * reset recovery have finished
5347  */
5348 static void ice_pci_err_resume(struct pci_dev *pdev)
5349 {
5350 	struct ice_pf *pf = pci_get_drvdata(pdev);
5351 
5352 	if (!pf) {
5353 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5354 			__func__);
5355 		return;
5356 	}
5357 
5358 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5359 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5360 			__func__);
5361 		return;
5362 	}
5363 
5364 	ice_restore_all_vfs_msi_state(pdev);
5365 
5366 	ice_do_reset(pf, ICE_RESET_PFR);
5367 	ice_service_task_restart(pf);
5368 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5369 }
5370 
5371 /**
5372  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5373  * @pdev: PCI device information struct
5374  */
5375 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5376 {
5377 	struct ice_pf *pf = pci_get_drvdata(pdev);
5378 
5379 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5380 		ice_service_task_stop(pf);
5381 
5382 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5383 			set_bit(ICE_PFR_REQ, pf->state);
5384 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5385 		}
5386 	}
5387 }
5388 
5389 /**
5390  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5391  * @pdev: PCI device information struct
5392  */
5393 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5394 {
5395 	ice_pci_err_resume(pdev);
5396 }
5397 
5398 /* ice_pci_tbl - PCI Device ID Table
5399  *
5400  * Wildcard entries (PCI_ANY_ID) should come last
5401  * Last entry must be all 0s
5402  *
5403  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5404  *   Class, Class Mask, private data (not used) }
5405  */
5406 static const struct pci_device_id ice_pci_tbl[] = {
5407 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5408 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5409 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5410 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5411 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5412 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5413 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5414 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5415 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5416 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5417 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5418 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5419 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5420 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5421 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5422 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5423 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5424 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5425 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5426 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5427 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5428 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5429 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5430 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5431 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5432 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5433 	/* required last entry */
5434 	{ 0, }
5435 };
5436 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5437 
5438 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5439 
5440 static const struct pci_error_handlers ice_pci_err_handler = {
5441 	.error_detected = ice_pci_err_detected,
5442 	.slot_reset = ice_pci_err_slot_reset,
5443 	.reset_prepare = ice_pci_err_reset_prepare,
5444 	.reset_done = ice_pci_err_reset_done,
5445 	.resume = ice_pci_err_resume
5446 };
5447 
5448 static struct pci_driver ice_driver = {
5449 	.name = KBUILD_MODNAME,
5450 	.id_table = ice_pci_tbl,
5451 	.probe = ice_probe,
5452 	.remove = ice_remove,
5453 #ifdef CONFIG_PM
5454 	.driver.pm = &ice_pm_ops,
5455 #endif /* CONFIG_PM */
5456 	.shutdown = ice_shutdown,
5457 	.sriov_configure = ice_sriov_configure,
5458 	.err_handler = &ice_pci_err_handler
5459 };
5460 
5461 /**
5462  * ice_module_init - Driver registration routine
5463  *
5464  * ice_module_init is the first routine called when the driver is
5465  * loaded. All it does is register with the PCI subsystem.
5466  */
5467 static int __init ice_module_init(void)
5468 {
5469 	int status;
5470 
5471 	pr_info("%s\n", ice_driver_string);
5472 	pr_info("%s\n", ice_copyright);
5473 
5474 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5475 	if (!ice_wq) {
5476 		pr_err("Failed to create workqueue\n");
5477 		return -ENOMEM;
5478 	}
5479 
5480 	status = pci_register_driver(&ice_driver);
5481 	if (status) {
5482 		pr_err("failed to register PCI driver, err %d\n", status);
5483 		destroy_workqueue(ice_wq);
5484 	}
5485 
5486 	return status;
5487 }
5488 module_init(ice_module_init);
5489 
5490 /**
5491  * ice_module_exit - Driver exit cleanup routine
5492  *
5493  * ice_module_exit is called just before the driver is removed
5494  * from memory.
5495  */
5496 static void __exit ice_module_exit(void)
5497 {
5498 	pci_unregister_driver(&ice_driver);
5499 	destroy_workqueue(ice_wq);
5500 	pr_info("module unloaded\n");
5501 }
5502 module_exit(ice_module_exit);
5503 
5504 /**
5505  * ice_set_mac_address - NDO callback to set MAC address
5506  * @netdev: network interface device structure
5507  * @pi: pointer to an address structure
5508  *
5509  * Returns 0 on success, negative on failure
5510  */
5511 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5512 {
5513 	struct ice_netdev_priv *np = netdev_priv(netdev);
5514 	struct ice_vsi *vsi = np->vsi;
5515 	struct ice_pf *pf = vsi->back;
5516 	struct ice_hw *hw = &pf->hw;
5517 	struct sockaddr *addr = pi;
5518 	u8 old_mac[ETH_ALEN];
5519 	u8 flags = 0;
5520 	u8 *mac;
5521 	int err;
5522 
5523 	mac = (u8 *)addr->sa_data;
5524 
5525 	if (!is_valid_ether_addr(mac))
5526 		return -EADDRNOTAVAIL;
5527 
5528 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5529 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5530 		return 0;
5531 	}
5532 
5533 	if (test_bit(ICE_DOWN, pf->state) ||
5534 	    ice_is_reset_in_progress(pf->state)) {
5535 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5536 			   mac);
5537 		return -EBUSY;
5538 	}
5539 
5540 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5541 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5542 			   mac);
5543 		return -EAGAIN;
5544 	}
5545 
5546 	netif_addr_lock_bh(netdev);
5547 	ether_addr_copy(old_mac, netdev->dev_addr);
5548 	/* change the netdev's MAC address */
5549 	eth_hw_addr_set(netdev, mac);
5550 	netif_addr_unlock_bh(netdev);
5551 
5552 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5553 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5554 	if (err && err != -ENOENT) {
5555 		err = -EADDRNOTAVAIL;
5556 		goto err_update_filters;
5557 	}
5558 
5559 	/* Add filter for new MAC. If filter exists, return success */
5560 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5561 	if (err == -EEXIST) {
5562 		/* Although this MAC filter is already present in hardware it's
5563 		 * possible in some cases (e.g. bonding) that dev_addr was
5564 		 * modified outside of the driver and needs to be restored back
5565 		 * to this value.
5566 		 */
5567 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5568 
5569 		return 0;
5570 	} else if (err) {
5571 		/* error if the new filter addition failed */
5572 		err = -EADDRNOTAVAIL;
5573 	}
5574 
5575 err_update_filters:
5576 	if (err) {
5577 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5578 			   mac);
5579 		netif_addr_lock_bh(netdev);
5580 		eth_hw_addr_set(netdev, old_mac);
5581 		netif_addr_unlock_bh(netdev);
5582 		return err;
5583 	}
5584 
5585 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5586 		   netdev->dev_addr);
5587 
5588 	/* write new MAC address to the firmware */
5589 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5590 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5591 	if (err) {
5592 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5593 			   mac, err);
5594 	}
5595 	return 0;
5596 }
5597 
5598 /**
5599  * ice_set_rx_mode - NDO callback to set the netdev filters
5600  * @netdev: network interface device structure
5601  */
5602 static void ice_set_rx_mode(struct net_device *netdev)
5603 {
5604 	struct ice_netdev_priv *np = netdev_priv(netdev);
5605 	struct ice_vsi *vsi = np->vsi;
5606 
5607 	if (!vsi)
5608 		return;
5609 
5610 	/* Set the flags to synchronize filters
5611 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5612 	 * flags
5613 	 */
5614 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5615 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5616 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5617 
5618 	/* schedule our worker thread which will take care of
5619 	 * applying the new filter changes
5620 	 */
5621 	ice_service_task_schedule(vsi->back);
5622 }
5623 
5624 /**
5625  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5626  * @netdev: network interface device structure
5627  * @queue_index: Queue ID
5628  * @maxrate: maximum bandwidth in Mbps
5629  */
5630 static int
5631 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5632 {
5633 	struct ice_netdev_priv *np = netdev_priv(netdev);
5634 	struct ice_vsi *vsi = np->vsi;
5635 	u16 q_handle;
5636 	int status;
5637 	u8 tc;
5638 
5639 	/* Validate maxrate requested is within permitted range */
5640 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5641 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5642 			   maxrate, queue_index);
5643 		return -EINVAL;
5644 	}
5645 
5646 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5647 	tc = ice_dcb_get_tc(vsi, queue_index);
5648 
5649 	/* Set BW back to default, when user set maxrate to 0 */
5650 	if (!maxrate)
5651 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5652 					       q_handle, ICE_MAX_BW);
5653 	else
5654 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5655 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5656 	if (status)
5657 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5658 			   status);
5659 
5660 	return status;
5661 }
5662 
5663 /**
5664  * ice_fdb_add - add an entry to the hardware database
5665  * @ndm: the input from the stack
5666  * @tb: pointer to array of nladdr (unused)
5667  * @dev: the net device pointer
5668  * @addr: the MAC address entry being added
5669  * @vid: VLAN ID
5670  * @flags: instructions from stack about fdb operation
5671  * @extack: netlink extended ack
5672  */
5673 static int
5674 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5675 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5676 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5677 {
5678 	int err;
5679 
5680 	if (vid) {
5681 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5682 		return -EINVAL;
5683 	}
5684 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5685 		netdev_err(dev, "FDB only supports static addresses\n");
5686 		return -EINVAL;
5687 	}
5688 
5689 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5690 		err = dev_uc_add_excl(dev, addr);
5691 	else if (is_multicast_ether_addr(addr))
5692 		err = dev_mc_add_excl(dev, addr);
5693 	else
5694 		err = -EINVAL;
5695 
5696 	/* Only return duplicate errors if NLM_F_EXCL is set */
5697 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5698 		err = 0;
5699 
5700 	return err;
5701 }
5702 
5703 /**
5704  * ice_fdb_del - delete an entry from the hardware database
5705  * @ndm: the input from the stack
5706  * @tb: pointer to array of nladdr (unused)
5707  * @dev: the net device pointer
5708  * @addr: the MAC address entry being added
5709  * @vid: VLAN ID
5710  * @extack: netlink extended ack
5711  */
5712 static int
5713 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5714 	    struct net_device *dev, const unsigned char *addr,
5715 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5716 {
5717 	int err;
5718 
5719 	if (ndm->ndm_state & NUD_PERMANENT) {
5720 		netdev_err(dev, "FDB only supports static addresses\n");
5721 		return -EINVAL;
5722 	}
5723 
5724 	if (is_unicast_ether_addr(addr))
5725 		err = dev_uc_del(dev, addr);
5726 	else if (is_multicast_ether_addr(addr))
5727 		err = dev_mc_del(dev, addr);
5728 	else
5729 		err = -EINVAL;
5730 
5731 	return err;
5732 }
5733 
5734 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5735 					 NETIF_F_HW_VLAN_CTAG_TX | \
5736 					 NETIF_F_HW_VLAN_STAG_RX | \
5737 					 NETIF_F_HW_VLAN_STAG_TX)
5738 
5739 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5740 					 NETIF_F_HW_VLAN_STAG_FILTER)
5741 
5742 /**
5743  * ice_fix_features - fix the netdev features flags based on device limitations
5744  * @netdev: ptr to the netdev that flags are being fixed on
5745  * @features: features that need to be checked and possibly fixed
5746  *
5747  * Make sure any fixups are made to features in this callback. This enables the
5748  * driver to not have to check unsupported configurations throughout the driver
5749  * because that's the responsiblity of this callback.
5750  *
5751  * Single VLAN Mode (SVM) Supported Features:
5752  *	NETIF_F_HW_VLAN_CTAG_FILTER
5753  *	NETIF_F_HW_VLAN_CTAG_RX
5754  *	NETIF_F_HW_VLAN_CTAG_TX
5755  *
5756  * Double VLAN Mode (DVM) Supported Features:
5757  *	NETIF_F_HW_VLAN_CTAG_FILTER
5758  *	NETIF_F_HW_VLAN_CTAG_RX
5759  *	NETIF_F_HW_VLAN_CTAG_TX
5760  *
5761  *	NETIF_F_HW_VLAN_STAG_FILTER
5762  *	NETIF_HW_VLAN_STAG_RX
5763  *	NETIF_HW_VLAN_STAG_TX
5764  *
5765  * Features that need fixing:
5766  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5767  *	These are mutually exlusive as the VSI context cannot support multiple
5768  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5769  *	is not done, then default to clearing the requested STAG offload
5770  *	settings.
5771  *
5772  *	All supported filtering has to be enabled or disabled together. For
5773  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5774  *	together. If this is not done, then default to VLAN filtering disabled.
5775  *	These are mutually exclusive as there is currently no way to
5776  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5777  *	prune rules.
5778  */
5779 static netdev_features_t
5780 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5781 {
5782 	struct ice_netdev_priv *np = netdev_priv(netdev);
5783 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5784 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5785 
5786 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5787 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5788 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5789 
5790 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5791 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5792 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5793 
5794 	if (req_vlan_fltr != cur_vlan_fltr) {
5795 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5796 			if (req_ctag && req_stag) {
5797 				features |= NETIF_VLAN_FILTERING_FEATURES;
5798 			} else if (!req_ctag && !req_stag) {
5799 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5800 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5801 				   (!cur_stag && req_stag && !cur_ctag)) {
5802 				features |= NETIF_VLAN_FILTERING_FEATURES;
5803 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5804 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5805 				   (cur_stag && !req_stag && cur_ctag)) {
5806 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5807 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5808 			}
5809 		} else {
5810 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5811 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5812 
5813 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5814 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5815 		}
5816 	}
5817 
5818 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5819 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5820 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5821 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5822 			      NETIF_F_HW_VLAN_STAG_TX);
5823 	}
5824 
5825 	return features;
5826 }
5827 
5828 /**
5829  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5830  * @vsi: PF's VSI
5831  * @features: features used to determine VLAN offload settings
5832  *
5833  * First, determine the vlan_ethertype based on the VLAN offload bits in
5834  * features. Then determine if stripping and insertion should be enabled or
5835  * disabled. Finally enable or disable VLAN stripping and insertion.
5836  */
5837 static int
5838 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5839 {
5840 	bool enable_stripping = true, enable_insertion = true;
5841 	struct ice_vsi_vlan_ops *vlan_ops;
5842 	int strip_err = 0, insert_err = 0;
5843 	u16 vlan_ethertype = 0;
5844 
5845 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5846 
5847 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5848 		vlan_ethertype = ETH_P_8021AD;
5849 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5850 		vlan_ethertype = ETH_P_8021Q;
5851 
5852 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5853 		enable_stripping = false;
5854 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5855 		enable_insertion = false;
5856 
5857 	if (enable_stripping)
5858 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5859 	else
5860 		strip_err = vlan_ops->dis_stripping(vsi);
5861 
5862 	if (enable_insertion)
5863 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5864 	else
5865 		insert_err = vlan_ops->dis_insertion(vsi);
5866 
5867 	if (strip_err || insert_err)
5868 		return -EIO;
5869 
5870 	return 0;
5871 }
5872 
5873 /**
5874  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5875  * @vsi: PF's VSI
5876  * @features: features used to determine VLAN filtering settings
5877  *
5878  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5879  * features.
5880  */
5881 static int
5882 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5883 {
5884 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5885 	int err = 0;
5886 
5887 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5888 	 * if either bit is set
5889 	 */
5890 	if (features &
5891 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5892 		err = vlan_ops->ena_rx_filtering(vsi);
5893 	else
5894 		err = vlan_ops->dis_rx_filtering(vsi);
5895 
5896 	return err;
5897 }
5898 
5899 /**
5900  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5901  * @netdev: ptr to the netdev being adjusted
5902  * @features: the feature set that the stack is suggesting
5903  *
5904  * Only update VLAN settings if the requested_vlan_features are different than
5905  * the current_vlan_features.
5906  */
5907 static int
5908 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5909 {
5910 	netdev_features_t current_vlan_features, requested_vlan_features;
5911 	struct ice_netdev_priv *np = netdev_priv(netdev);
5912 	struct ice_vsi *vsi = np->vsi;
5913 	int err;
5914 
5915 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5916 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5917 	if (current_vlan_features ^ requested_vlan_features) {
5918 		err = ice_set_vlan_offload_features(vsi, features);
5919 		if (err)
5920 			return err;
5921 	}
5922 
5923 	current_vlan_features = netdev->features &
5924 		NETIF_VLAN_FILTERING_FEATURES;
5925 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5926 	if (current_vlan_features ^ requested_vlan_features) {
5927 		err = ice_set_vlan_filtering_features(vsi, features);
5928 		if (err)
5929 			return err;
5930 	}
5931 
5932 	return 0;
5933 }
5934 
5935 /**
5936  * ice_set_loopback - turn on/off loopback mode on underlying PF
5937  * @vsi: ptr to VSI
5938  * @ena: flag to indicate the on/off setting
5939  */
5940 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
5941 {
5942 	bool if_running = netif_running(vsi->netdev);
5943 	int ret;
5944 
5945 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
5946 		ret = ice_down(vsi);
5947 		if (ret) {
5948 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
5949 			return ret;
5950 		}
5951 	}
5952 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
5953 	if (ret)
5954 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
5955 	if (if_running)
5956 		ret = ice_up(vsi);
5957 
5958 	return ret;
5959 }
5960 
5961 /**
5962  * ice_set_features - set the netdev feature flags
5963  * @netdev: ptr to the netdev being adjusted
5964  * @features: the feature set that the stack is suggesting
5965  */
5966 static int
5967 ice_set_features(struct net_device *netdev, netdev_features_t features)
5968 {
5969 	netdev_features_t changed = netdev->features ^ features;
5970 	struct ice_netdev_priv *np = netdev_priv(netdev);
5971 	struct ice_vsi *vsi = np->vsi;
5972 	struct ice_pf *pf = vsi->back;
5973 	int ret = 0;
5974 
5975 	/* Don't set any netdev advanced features with device in Safe Mode */
5976 	if (ice_is_safe_mode(pf)) {
5977 		dev_err(ice_pf_to_dev(pf),
5978 			"Device is in Safe Mode - not enabling advanced netdev features\n");
5979 		return ret;
5980 	}
5981 
5982 	/* Do not change setting during reset */
5983 	if (ice_is_reset_in_progress(pf->state)) {
5984 		dev_err(ice_pf_to_dev(pf),
5985 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5986 		return -EBUSY;
5987 	}
5988 
5989 	/* Multiple features can be changed in one call so keep features in
5990 	 * separate if/else statements to guarantee each feature is checked
5991 	 */
5992 	if (changed & NETIF_F_RXHASH)
5993 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
5994 
5995 	ret = ice_set_vlan_features(netdev, features);
5996 	if (ret)
5997 		return ret;
5998 
5999 	if (changed & NETIF_F_NTUPLE) {
6000 		bool ena = !!(features & NETIF_F_NTUPLE);
6001 
6002 		ice_vsi_manage_fdir(vsi, ena);
6003 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6004 	}
6005 
6006 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6007 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6008 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6009 		return -EACCES;
6010 	}
6011 
6012 	if (changed & NETIF_F_HW_TC) {
6013 		bool ena = !!(features & NETIF_F_HW_TC);
6014 
6015 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6016 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6017 	}
6018 
6019 	if (changed & NETIF_F_LOOPBACK)
6020 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6021 
6022 	return ret;
6023 }
6024 
6025 /**
6026  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6027  * @vsi: VSI to setup VLAN properties for
6028  */
6029 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6030 {
6031 	int err;
6032 
6033 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6034 	if (err)
6035 		return err;
6036 
6037 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6038 	if (err)
6039 		return err;
6040 
6041 	return ice_vsi_add_vlan_zero(vsi);
6042 }
6043 
6044 /**
6045  * ice_vsi_cfg - Setup the VSI
6046  * @vsi: the VSI being configured
6047  *
6048  * Return 0 on success and negative value on error
6049  */
6050 int ice_vsi_cfg(struct ice_vsi *vsi)
6051 {
6052 	int err;
6053 
6054 	if (vsi->netdev) {
6055 		ice_set_rx_mode(vsi->netdev);
6056 
6057 		if (vsi->type != ICE_VSI_LB) {
6058 			err = ice_vsi_vlan_setup(vsi);
6059 
6060 			if (err)
6061 				return err;
6062 		}
6063 	}
6064 	ice_vsi_cfg_dcb_rings(vsi);
6065 
6066 	err = ice_vsi_cfg_lan_txqs(vsi);
6067 	if (!err && ice_is_xdp_ena_vsi(vsi))
6068 		err = ice_vsi_cfg_xdp_txqs(vsi);
6069 	if (!err)
6070 		err = ice_vsi_cfg_rxqs(vsi);
6071 
6072 	return err;
6073 }
6074 
6075 /* THEORY OF MODERATION:
6076  * The ice driver hardware works differently than the hardware that DIMLIB was
6077  * originally made for. ice hardware doesn't have packet count limits that
6078  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6079  * which is hard-coded to a limit of 250,000 ints/second.
6080  * If not using dynamic moderation, the INTRL value can be modified
6081  * by ethtool rx-usecs-high.
6082  */
6083 struct ice_dim {
6084 	/* the throttle rate for interrupts, basically worst case delay before
6085 	 * an initial interrupt fires, value is stored in microseconds.
6086 	 */
6087 	u16 itr;
6088 };
6089 
6090 /* Make a different profile for Rx that doesn't allow quite so aggressive
6091  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6092  * second.
6093  */
6094 static const struct ice_dim rx_profile[] = {
6095 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6096 	{8},    /* 125,000 ints/s */
6097 	{16},   /*  62,500 ints/s */
6098 	{62},   /*  16,129 ints/s */
6099 	{126}   /*   7,936 ints/s */
6100 };
6101 
6102 /* The transmit profile, which has the same sorts of values
6103  * as the previous struct
6104  */
6105 static const struct ice_dim tx_profile[] = {
6106 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6107 	{8},    /* 125,000 ints/s */
6108 	{40},   /*  16,125 ints/s */
6109 	{128},  /*   7,812 ints/s */
6110 	{256}   /*   3,906 ints/s */
6111 };
6112 
6113 static void ice_tx_dim_work(struct work_struct *work)
6114 {
6115 	struct ice_ring_container *rc;
6116 	struct dim *dim;
6117 	u16 itr;
6118 
6119 	dim = container_of(work, struct dim, work);
6120 	rc = (struct ice_ring_container *)dim->priv;
6121 
6122 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6123 
6124 	/* look up the values in our local table */
6125 	itr = tx_profile[dim->profile_ix].itr;
6126 
6127 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6128 	ice_write_itr(rc, itr);
6129 
6130 	dim->state = DIM_START_MEASURE;
6131 }
6132 
6133 static void ice_rx_dim_work(struct work_struct *work)
6134 {
6135 	struct ice_ring_container *rc;
6136 	struct dim *dim;
6137 	u16 itr;
6138 
6139 	dim = container_of(work, struct dim, work);
6140 	rc = (struct ice_ring_container *)dim->priv;
6141 
6142 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6143 
6144 	/* look up the values in our local table */
6145 	itr = rx_profile[dim->profile_ix].itr;
6146 
6147 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6148 	ice_write_itr(rc, itr);
6149 
6150 	dim->state = DIM_START_MEASURE;
6151 }
6152 
6153 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6154 
6155 /**
6156  * ice_init_moderation - set up interrupt moderation
6157  * @q_vector: the vector containing rings to be configured
6158  *
6159  * Set up interrupt moderation registers, with the intent to do the right thing
6160  * when called from reset or from probe, and whether or not dynamic moderation
6161  * is enabled or not. Take special care to write all the registers in both
6162  * dynamic moderation mode or not in order to make sure hardware is in a known
6163  * state.
6164  */
6165 static void ice_init_moderation(struct ice_q_vector *q_vector)
6166 {
6167 	struct ice_ring_container *rc;
6168 	bool tx_dynamic, rx_dynamic;
6169 
6170 	rc = &q_vector->tx;
6171 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6172 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6173 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6174 	rc->dim.priv = rc;
6175 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6176 
6177 	/* set the initial TX ITR to match the above */
6178 	ice_write_itr(rc, tx_dynamic ?
6179 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6180 
6181 	rc = &q_vector->rx;
6182 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6183 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6184 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6185 	rc->dim.priv = rc;
6186 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6187 
6188 	/* set the initial RX ITR to match the above */
6189 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6190 				       rc->itr_setting);
6191 
6192 	ice_set_q_vector_intrl(q_vector);
6193 }
6194 
6195 /**
6196  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6197  * @vsi: the VSI being configured
6198  */
6199 static void ice_napi_enable_all(struct ice_vsi *vsi)
6200 {
6201 	int q_idx;
6202 
6203 	if (!vsi->netdev)
6204 		return;
6205 
6206 	ice_for_each_q_vector(vsi, q_idx) {
6207 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6208 
6209 		ice_init_moderation(q_vector);
6210 
6211 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6212 			napi_enable(&q_vector->napi);
6213 	}
6214 }
6215 
6216 /**
6217  * ice_up_complete - Finish the last steps of bringing up a connection
6218  * @vsi: The VSI being configured
6219  *
6220  * Return 0 on success and negative value on error
6221  */
6222 static int ice_up_complete(struct ice_vsi *vsi)
6223 {
6224 	struct ice_pf *pf = vsi->back;
6225 	int err;
6226 
6227 	ice_vsi_cfg_msix(vsi);
6228 
6229 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6230 	 * Tx queue group list was configured and the context bits were
6231 	 * programmed using ice_vsi_cfg_txqs
6232 	 */
6233 	err = ice_vsi_start_all_rx_rings(vsi);
6234 	if (err)
6235 		return err;
6236 
6237 	clear_bit(ICE_VSI_DOWN, vsi->state);
6238 	ice_napi_enable_all(vsi);
6239 	ice_vsi_ena_irq(vsi);
6240 
6241 	if (vsi->port_info &&
6242 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6243 	    vsi->netdev) {
6244 		ice_print_link_msg(vsi, true);
6245 		netif_tx_start_all_queues(vsi->netdev);
6246 		netif_carrier_on(vsi->netdev);
6247 		if (!ice_is_e810(&pf->hw))
6248 			ice_ptp_link_change(pf, pf->hw.pf_id, true);
6249 	}
6250 
6251 	/* Perform an initial read of the statistics registers now to
6252 	 * set the baseline so counters are ready when interface is up
6253 	 */
6254 	ice_update_eth_stats(vsi);
6255 	ice_service_task_schedule(pf);
6256 
6257 	return 0;
6258 }
6259 
6260 /**
6261  * ice_up - Bring the connection back up after being down
6262  * @vsi: VSI being configured
6263  */
6264 int ice_up(struct ice_vsi *vsi)
6265 {
6266 	int err;
6267 
6268 	err = ice_vsi_cfg(vsi);
6269 	if (!err)
6270 		err = ice_up_complete(vsi);
6271 
6272 	return err;
6273 }
6274 
6275 /**
6276  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6277  * @syncp: pointer to u64_stats_sync
6278  * @stats: stats that pkts and bytes count will be taken from
6279  * @pkts: packets stats counter
6280  * @bytes: bytes stats counter
6281  *
6282  * This function fetches stats from the ring considering the atomic operations
6283  * that needs to be performed to read u64 values in 32 bit machine.
6284  */
6285 void
6286 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6287 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6288 {
6289 	unsigned int start;
6290 
6291 	do {
6292 		start = u64_stats_fetch_begin_irq(syncp);
6293 		*pkts = stats.pkts;
6294 		*bytes = stats.bytes;
6295 	} while (u64_stats_fetch_retry_irq(syncp, start));
6296 }
6297 
6298 /**
6299  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6300  * @vsi: the VSI to be updated
6301  * @vsi_stats: the stats struct to be updated
6302  * @rings: rings to work on
6303  * @count: number of rings
6304  */
6305 static void
6306 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6307 			     struct rtnl_link_stats64 *vsi_stats,
6308 			     struct ice_tx_ring **rings, u16 count)
6309 {
6310 	u16 i;
6311 
6312 	for (i = 0; i < count; i++) {
6313 		struct ice_tx_ring *ring;
6314 		u64 pkts = 0, bytes = 0;
6315 
6316 		ring = READ_ONCE(rings[i]);
6317 		if (!ring)
6318 			continue;
6319 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6320 		vsi_stats->tx_packets += pkts;
6321 		vsi_stats->tx_bytes += bytes;
6322 		vsi->tx_restart += ring->tx_stats.restart_q;
6323 		vsi->tx_busy += ring->tx_stats.tx_busy;
6324 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
6325 	}
6326 }
6327 
6328 /**
6329  * ice_update_vsi_ring_stats - Update VSI stats counters
6330  * @vsi: the VSI to be updated
6331  */
6332 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6333 {
6334 	struct rtnl_link_stats64 *vsi_stats;
6335 	u64 pkts, bytes;
6336 	int i;
6337 
6338 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6339 	if (!vsi_stats)
6340 		return;
6341 
6342 	/* reset non-netdev (extended) stats */
6343 	vsi->tx_restart = 0;
6344 	vsi->tx_busy = 0;
6345 	vsi->tx_linearize = 0;
6346 	vsi->rx_buf_failed = 0;
6347 	vsi->rx_page_failed = 0;
6348 
6349 	rcu_read_lock();
6350 
6351 	/* update Tx rings counters */
6352 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6353 				     vsi->num_txq);
6354 
6355 	/* update Rx rings counters */
6356 	ice_for_each_rxq(vsi, i) {
6357 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6358 
6359 		ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6360 		vsi_stats->rx_packets += pkts;
6361 		vsi_stats->rx_bytes += bytes;
6362 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6363 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6364 	}
6365 
6366 	/* update XDP Tx rings counters */
6367 	if (ice_is_xdp_ena_vsi(vsi))
6368 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6369 					     vsi->num_xdp_txq);
6370 
6371 	rcu_read_unlock();
6372 
6373 	vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6374 	vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6375 	vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6376 	vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6377 
6378 	kfree(vsi_stats);
6379 }
6380 
6381 /**
6382  * ice_update_vsi_stats - Update VSI stats counters
6383  * @vsi: the VSI to be updated
6384  */
6385 void ice_update_vsi_stats(struct ice_vsi *vsi)
6386 {
6387 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6388 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6389 	struct ice_pf *pf = vsi->back;
6390 
6391 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6392 	    test_bit(ICE_CFG_BUSY, pf->state))
6393 		return;
6394 
6395 	/* get stats as recorded by Tx/Rx rings */
6396 	ice_update_vsi_ring_stats(vsi);
6397 
6398 	/* get VSI stats as recorded by the hardware */
6399 	ice_update_eth_stats(vsi);
6400 
6401 	cur_ns->tx_errors = cur_es->tx_errors;
6402 	cur_ns->rx_dropped = cur_es->rx_discards;
6403 	cur_ns->tx_dropped = cur_es->tx_discards;
6404 	cur_ns->multicast = cur_es->rx_multicast;
6405 
6406 	/* update some more netdev stats if this is main VSI */
6407 	if (vsi->type == ICE_VSI_PF) {
6408 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6409 		cur_ns->rx_errors = pf->stats.crc_errors +
6410 				    pf->stats.illegal_bytes +
6411 				    pf->stats.rx_len_errors +
6412 				    pf->stats.rx_undersize +
6413 				    pf->hw_csum_rx_error +
6414 				    pf->stats.rx_jabber +
6415 				    pf->stats.rx_fragments +
6416 				    pf->stats.rx_oversize;
6417 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6418 		/* record drops from the port level */
6419 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6420 	}
6421 }
6422 
6423 /**
6424  * ice_update_pf_stats - Update PF port stats counters
6425  * @pf: PF whose stats needs to be updated
6426  */
6427 void ice_update_pf_stats(struct ice_pf *pf)
6428 {
6429 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6430 	struct ice_hw *hw = &pf->hw;
6431 	u16 fd_ctr_base;
6432 	u8 port;
6433 
6434 	port = hw->port_info->lport;
6435 	prev_ps = &pf->stats_prev;
6436 	cur_ps = &pf->stats;
6437 
6438 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6439 			  &prev_ps->eth.rx_bytes,
6440 			  &cur_ps->eth.rx_bytes);
6441 
6442 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6443 			  &prev_ps->eth.rx_unicast,
6444 			  &cur_ps->eth.rx_unicast);
6445 
6446 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6447 			  &prev_ps->eth.rx_multicast,
6448 			  &cur_ps->eth.rx_multicast);
6449 
6450 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6451 			  &prev_ps->eth.rx_broadcast,
6452 			  &cur_ps->eth.rx_broadcast);
6453 
6454 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6455 			  &prev_ps->eth.rx_discards,
6456 			  &cur_ps->eth.rx_discards);
6457 
6458 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6459 			  &prev_ps->eth.tx_bytes,
6460 			  &cur_ps->eth.tx_bytes);
6461 
6462 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6463 			  &prev_ps->eth.tx_unicast,
6464 			  &cur_ps->eth.tx_unicast);
6465 
6466 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6467 			  &prev_ps->eth.tx_multicast,
6468 			  &cur_ps->eth.tx_multicast);
6469 
6470 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6471 			  &prev_ps->eth.tx_broadcast,
6472 			  &cur_ps->eth.tx_broadcast);
6473 
6474 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6475 			  &prev_ps->tx_dropped_link_down,
6476 			  &cur_ps->tx_dropped_link_down);
6477 
6478 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6479 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6480 
6481 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6482 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6483 
6484 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6485 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6486 
6487 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6488 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6489 
6490 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6491 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6492 
6493 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6494 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6495 
6496 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6497 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6498 
6499 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6500 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6501 
6502 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6503 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6504 
6505 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6506 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6507 
6508 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6509 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6510 
6511 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6512 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6513 
6514 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6515 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6516 
6517 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6518 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6519 
6520 	fd_ctr_base = hw->fd_ctr_base;
6521 
6522 	ice_stat_update40(hw,
6523 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6524 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6525 			  &cur_ps->fd_sb_match);
6526 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6527 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6528 
6529 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6530 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6531 
6532 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6533 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6534 
6535 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6536 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6537 
6538 	ice_update_dcb_stats(pf);
6539 
6540 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6541 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6542 
6543 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6544 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6545 
6546 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6547 			  &prev_ps->mac_local_faults,
6548 			  &cur_ps->mac_local_faults);
6549 
6550 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6551 			  &prev_ps->mac_remote_faults,
6552 			  &cur_ps->mac_remote_faults);
6553 
6554 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6555 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6556 
6557 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6558 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6559 
6560 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6561 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6562 
6563 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6564 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6565 
6566 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6567 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6568 
6569 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6570 
6571 	pf->stat_prev_loaded = true;
6572 }
6573 
6574 /**
6575  * ice_get_stats64 - get statistics for network device structure
6576  * @netdev: network interface device structure
6577  * @stats: main device statistics structure
6578  */
6579 static
6580 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6581 {
6582 	struct ice_netdev_priv *np = netdev_priv(netdev);
6583 	struct rtnl_link_stats64 *vsi_stats;
6584 	struct ice_vsi *vsi = np->vsi;
6585 
6586 	vsi_stats = &vsi->net_stats;
6587 
6588 	if (!vsi->num_txq || !vsi->num_rxq)
6589 		return;
6590 
6591 	/* netdev packet/byte stats come from ring counter. These are obtained
6592 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6593 	 * But, only call the update routine and read the registers if VSI is
6594 	 * not down.
6595 	 */
6596 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6597 		ice_update_vsi_ring_stats(vsi);
6598 	stats->tx_packets = vsi_stats->tx_packets;
6599 	stats->tx_bytes = vsi_stats->tx_bytes;
6600 	stats->rx_packets = vsi_stats->rx_packets;
6601 	stats->rx_bytes = vsi_stats->rx_bytes;
6602 
6603 	/* The rest of the stats can be read from the hardware but instead we
6604 	 * just return values that the watchdog task has already obtained from
6605 	 * the hardware.
6606 	 */
6607 	stats->multicast = vsi_stats->multicast;
6608 	stats->tx_errors = vsi_stats->tx_errors;
6609 	stats->tx_dropped = vsi_stats->tx_dropped;
6610 	stats->rx_errors = vsi_stats->rx_errors;
6611 	stats->rx_dropped = vsi_stats->rx_dropped;
6612 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6613 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6614 }
6615 
6616 /**
6617  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6618  * @vsi: VSI having NAPI disabled
6619  */
6620 static void ice_napi_disable_all(struct ice_vsi *vsi)
6621 {
6622 	int q_idx;
6623 
6624 	if (!vsi->netdev)
6625 		return;
6626 
6627 	ice_for_each_q_vector(vsi, q_idx) {
6628 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6629 
6630 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6631 			napi_disable(&q_vector->napi);
6632 
6633 		cancel_work_sync(&q_vector->tx.dim.work);
6634 		cancel_work_sync(&q_vector->rx.dim.work);
6635 	}
6636 }
6637 
6638 /**
6639  * ice_down - Shutdown the connection
6640  * @vsi: The VSI being stopped
6641  *
6642  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6643  */
6644 int ice_down(struct ice_vsi *vsi)
6645 {
6646 	int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6647 
6648 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6649 
6650 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6651 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6652 		if (!ice_is_e810(&vsi->back->hw))
6653 			ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6654 		netif_carrier_off(vsi->netdev);
6655 		netif_tx_disable(vsi->netdev);
6656 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6657 		ice_eswitch_stop_all_tx_queues(vsi->back);
6658 	}
6659 
6660 	ice_vsi_dis_irq(vsi);
6661 
6662 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6663 	if (tx_err)
6664 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6665 			   vsi->vsi_num, tx_err);
6666 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6667 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6668 		if (tx_err)
6669 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6670 				   vsi->vsi_num, tx_err);
6671 	}
6672 
6673 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6674 	if (rx_err)
6675 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6676 			   vsi->vsi_num, rx_err);
6677 
6678 	ice_napi_disable_all(vsi);
6679 
6680 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6681 		link_err = ice_force_phys_link_state(vsi, false);
6682 		if (link_err)
6683 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6684 				   vsi->vsi_num, link_err);
6685 	}
6686 
6687 	ice_for_each_txq(vsi, i)
6688 		ice_clean_tx_ring(vsi->tx_rings[i]);
6689 
6690 	ice_for_each_rxq(vsi, i)
6691 		ice_clean_rx_ring(vsi->rx_rings[i]);
6692 
6693 	if (tx_err || rx_err || link_err || vlan_err) {
6694 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6695 			   vsi->vsi_num, vsi->vsw->sw_id);
6696 		return -EIO;
6697 	}
6698 
6699 	return 0;
6700 }
6701 
6702 /**
6703  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6704  * @vsi: VSI having resources allocated
6705  *
6706  * Return 0 on success, negative on failure
6707  */
6708 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6709 {
6710 	int i, err = 0;
6711 
6712 	if (!vsi->num_txq) {
6713 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6714 			vsi->vsi_num);
6715 		return -EINVAL;
6716 	}
6717 
6718 	ice_for_each_txq(vsi, i) {
6719 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6720 
6721 		if (!ring)
6722 			return -EINVAL;
6723 
6724 		if (vsi->netdev)
6725 			ring->netdev = vsi->netdev;
6726 		err = ice_setup_tx_ring(ring);
6727 		if (err)
6728 			break;
6729 	}
6730 
6731 	return err;
6732 }
6733 
6734 /**
6735  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6736  * @vsi: VSI having resources allocated
6737  *
6738  * Return 0 on success, negative on failure
6739  */
6740 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6741 {
6742 	int i, err = 0;
6743 
6744 	if (!vsi->num_rxq) {
6745 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6746 			vsi->vsi_num);
6747 		return -EINVAL;
6748 	}
6749 
6750 	ice_for_each_rxq(vsi, i) {
6751 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6752 
6753 		if (!ring)
6754 			return -EINVAL;
6755 
6756 		if (vsi->netdev)
6757 			ring->netdev = vsi->netdev;
6758 		err = ice_setup_rx_ring(ring);
6759 		if (err)
6760 			break;
6761 	}
6762 
6763 	return err;
6764 }
6765 
6766 /**
6767  * ice_vsi_open_ctrl - open control VSI for use
6768  * @vsi: the VSI to open
6769  *
6770  * Initialization of the Control VSI
6771  *
6772  * Returns 0 on success, negative value on error
6773  */
6774 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6775 {
6776 	char int_name[ICE_INT_NAME_STR_LEN];
6777 	struct ice_pf *pf = vsi->back;
6778 	struct device *dev;
6779 	int err;
6780 
6781 	dev = ice_pf_to_dev(pf);
6782 	/* allocate descriptors */
6783 	err = ice_vsi_setup_tx_rings(vsi);
6784 	if (err)
6785 		goto err_setup_tx;
6786 
6787 	err = ice_vsi_setup_rx_rings(vsi);
6788 	if (err)
6789 		goto err_setup_rx;
6790 
6791 	err = ice_vsi_cfg(vsi);
6792 	if (err)
6793 		goto err_setup_rx;
6794 
6795 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6796 		 dev_driver_string(dev), dev_name(dev));
6797 	err = ice_vsi_req_irq_msix(vsi, int_name);
6798 	if (err)
6799 		goto err_setup_rx;
6800 
6801 	ice_vsi_cfg_msix(vsi);
6802 
6803 	err = ice_vsi_start_all_rx_rings(vsi);
6804 	if (err)
6805 		goto err_up_complete;
6806 
6807 	clear_bit(ICE_VSI_DOWN, vsi->state);
6808 	ice_vsi_ena_irq(vsi);
6809 
6810 	return 0;
6811 
6812 err_up_complete:
6813 	ice_down(vsi);
6814 err_setup_rx:
6815 	ice_vsi_free_rx_rings(vsi);
6816 err_setup_tx:
6817 	ice_vsi_free_tx_rings(vsi);
6818 
6819 	return err;
6820 }
6821 
6822 /**
6823  * ice_vsi_open - Called when a network interface is made active
6824  * @vsi: the VSI to open
6825  *
6826  * Initialization of the VSI
6827  *
6828  * Returns 0 on success, negative value on error
6829  */
6830 int ice_vsi_open(struct ice_vsi *vsi)
6831 {
6832 	char int_name[ICE_INT_NAME_STR_LEN];
6833 	struct ice_pf *pf = vsi->back;
6834 	int err;
6835 
6836 	/* allocate descriptors */
6837 	err = ice_vsi_setup_tx_rings(vsi);
6838 	if (err)
6839 		goto err_setup_tx;
6840 
6841 	err = ice_vsi_setup_rx_rings(vsi);
6842 	if (err)
6843 		goto err_setup_rx;
6844 
6845 	err = ice_vsi_cfg(vsi);
6846 	if (err)
6847 		goto err_setup_rx;
6848 
6849 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6850 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6851 	err = ice_vsi_req_irq_msix(vsi, int_name);
6852 	if (err)
6853 		goto err_setup_rx;
6854 
6855 	if (vsi->type == ICE_VSI_PF) {
6856 		/* Notify the stack of the actual queue counts. */
6857 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6858 		if (err)
6859 			goto err_set_qs;
6860 
6861 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6862 		if (err)
6863 			goto err_set_qs;
6864 	}
6865 
6866 	err = ice_up_complete(vsi);
6867 	if (err)
6868 		goto err_up_complete;
6869 
6870 	return 0;
6871 
6872 err_up_complete:
6873 	ice_down(vsi);
6874 err_set_qs:
6875 	ice_vsi_free_irq(vsi);
6876 err_setup_rx:
6877 	ice_vsi_free_rx_rings(vsi);
6878 err_setup_tx:
6879 	ice_vsi_free_tx_rings(vsi);
6880 
6881 	return err;
6882 }
6883 
6884 /**
6885  * ice_vsi_release_all - Delete all VSIs
6886  * @pf: PF from which all VSIs are being removed
6887  */
6888 static void ice_vsi_release_all(struct ice_pf *pf)
6889 {
6890 	int err, i;
6891 
6892 	if (!pf->vsi)
6893 		return;
6894 
6895 	ice_for_each_vsi(pf, i) {
6896 		if (!pf->vsi[i])
6897 			continue;
6898 
6899 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
6900 			continue;
6901 
6902 		err = ice_vsi_release(pf->vsi[i]);
6903 		if (err)
6904 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6905 				i, err, pf->vsi[i]->vsi_num);
6906 	}
6907 }
6908 
6909 /**
6910  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6911  * @pf: pointer to the PF instance
6912  * @type: VSI type to rebuild
6913  *
6914  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6915  */
6916 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6917 {
6918 	struct device *dev = ice_pf_to_dev(pf);
6919 	int i, err;
6920 
6921 	ice_for_each_vsi(pf, i) {
6922 		struct ice_vsi *vsi = pf->vsi[i];
6923 
6924 		if (!vsi || vsi->type != type)
6925 			continue;
6926 
6927 		/* rebuild the VSI */
6928 		err = ice_vsi_rebuild(vsi, true);
6929 		if (err) {
6930 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6931 				err, vsi->idx, ice_vsi_type_str(type));
6932 			return err;
6933 		}
6934 
6935 		/* replay filters for the VSI */
6936 		err = ice_replay_vsi(&pf->hw, vsi->idx);
6937 		if (err) {
6938 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6939 				err, vsi->idx, ice_vsi_type_str(type));
6940 			return err;
6941 		}
6942 
6943 		/* Re-map HW VSI number, using VSI handle that has been
6944 		 * previously validated in ice_replay_vsi() call above
6945 		 */
6946 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6947 
6948 		/* enable the VSI */
6949 		err = ice_ena_vsi(vsi, false);
6950 		if (err) {
6951 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6952 				err, vsi->idx, ice_vsi_type_str(type));
6953 			return err;
6954 		}
6955 
6956 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6957 			 ice_vsi_type_str(type));
6958 	}
6959 
6960 	return 0;
6961 }
6962 
6963 /**
6964  * ice_update_pf_netdev_link - Update PF netdev link status
6965  * @pf: pointer to the PF instance
6966  */
6967 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6968 {
6969 	bool link_up;
6970 	int i;
6971 
6972 	ice_for_each_vsi(pf, i) {
6973 		struct ice_vsi *vsi = pf->vsi[i];
6974 
6975 		if (!vsi || vsi->type != ICE_VSI_PF)
6976 			return;
6977 
6978 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6979 		if (link_up) {
6980 			netif_carrier_on(pf->vsi[i]->netdev);
6981 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6982 		} else {
6983 			netif_carrier_off(pf->vsi[i]->netdev);
6984 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6985 		}
6986 	}
6987 }
6988 
6989 /**
6990  * ice_rebuild - rebuild after reset
6991  * @pf: PF to rebuild
6992  * @reset_type: type of reset
6993  *
6994  * Do not rebuild VF VSI in this flow because that is already handled via
6995  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6996  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6997  * to reset/rebuild all the VF VSI twice.
6998  */
6999 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7000 {
7001 	struct device *dev = ice_pf_to_dev(pf);
7002 	struct ice_hw *hw = &pf->hw;
7003 	bool dvm;
7004 	int err;
7005 
7006 	if (test_bit(ICE_DOWN, pf->state))
7007 		goto clear_recovery;
7008 
7009 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7010 
7011 #define ICE_EMP_RESET_SLEEP_MS 5000
7012 	if (reset_type == ICE_RESET_EMPR) {
7013 		/* If an EMP reset has occurred, any previously pending flash
7014 		 * update will have completed. We no longer know whether or
7015 		 * not the NVM update EMP reset is restricted.
7016 		 */
7017 		pf->fw_emp_reset_disabled = false;
7018 
7019 		msleep(ICE_EMP_RESET_SLEEP_MS);
7020 	}
7021 
7022 	err = ice_init_all_ctrlq(hw);
7023 	if (err) {
7024 		dev_err(dev, "control queues init failed %d\n", err);
7025 		goto err_init_ctrlq;
7026 	}
7027 
7028 	/* if DDP was previously loaded successfully */
7029 	if (!ice_is_safe_mode(pf)) {
7030 		/* reload the SW DB of filter tables */
7031 		if (reset_type == ICE_RESET_PFR)
7032 			ice_fill_blk_tbls(hw);
7033 		else
7034 			/* Reload DDP Package after CORER/GLOBR reset */
7035 			ice_load_pkg(NULL, pf);
7036 	}
7037 
7038 	err = ice_clear_pf_cfg(hw);
7039 	if (err) {
7040 		dev_err(dev, "clear PF configuration failed %d\n", err);
7041 		goto err_init_ctrlq;
7042 	}
7043 
7044 	ice_clear_pxe_mode(hw);
7045 
7046 	err = ice_init_nvm(hw);
7047 	if (err) {
7048 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7049 		goto err_init_ctrlq;
7050 	}
7051 
7052 	err = ice_get_caps(hw);
7053 	if (err) {
7054 		dev_err(dev, "ice_get_caps failed %d\n", err);
7055 		goto err_init_ctrlq;
7056 	}
7057 
7058 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7059 	if (err) {
7060 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7061 		goto err_init_ctrlq;
7062 	}
7063 
7064 	dvm = ice_is_dvm_ena(hw);
7065 
7066 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7067 	if (err)
7068 		goto err_init_ctrlq;
7069 
7070 	err = ice_sched_init_port(hw->port_info);
7071 	if (err)
7072 		goto err_sched_init_port;
7073 
7074 	/* start misc vector */
7075 	err = ice_req_irq_msix_misc(pf);
7076 	if (err) {
7077 		dev_err(dev, "misc vector setup failed: %d\n", err);
7078 		goto err_sched_init_port;
7079 	}
7080 
7081 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7082 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7083 		if (!rd32(hw, PFQF_FD_SIZE)) {
7084 			u16 unused, guar, b_effort;
7085 
7086 			guar = hw->func_caps.fd_fltr_guar;
7087 			b_effort = hw->func_caps.fd_fltr_best_effort;
7088 
7089 			/* force guaranteed filter pool for PF */
7090 			ice_alloc_fd_guar_item(hw, &unused, guar);
7091 			/* force shared filter pool for PF */
7092 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7093 		}
7094 	}
7095 
7096 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7097 		ice_dcb_rebuild(pf);
7098 
7099 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7100 	 * the VSI rebuild. If not, this causes the PTP link status events to
7101 	 * fail.
7102 	 */
7103 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7104 		ice_ptp_reset(pf);
7105 
7106 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7107 		ice_gnss_init(pf);
7108 
7109 	/* rebuild PF VSI */
7110 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7111 	if (err) {
7112 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7113 		goto err_vsi_rebuild;
7114 	}
7115 
7116 	/* configure PTP timestamping after VSI rebuild */
7117 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7118 		ice_ptp_cfg_timestamp(pf, false);
7119 
7120 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7121 	if (err) {
7122 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7123 		goto err_vsi_rebuild;
7124 	}
7125 
7126 	if (reset_type == ICE_RESET_PFR) {
7127 		err = ice_rebuild_channels(pf);
7128 		if (err) {
7129 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7130 				err);
7131 			goto err_vsi_rebuild;
7132 		}
7133 	}
7134 
7135 	/* If Flow Director is active */
7136 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7137 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7138 		if (err) {
7139 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7140 			goto err_vsi_rebuild;
7141 		}
7142 
7143 		/* replay HW Flow Director recipes */
7144 		if (hw->fdir_prof)
7145 			ice_fdir_replay_flows(hw);
7146 
7147 		/* replay Flow Director filters */
7148 		ice_fdir_replay_fltrs(pf);
7149 
7150 		ice_rebuild_arfs(pf);
7151 	}
7152 
7153 	ice_update_pf_netdev_link(pf);
7154 
7155 	/* tell the firmware we are up */
7156 	err = ice_send_version(pf);
7157 	if (err) {
7158 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7159 			err);
7160 		goto err_vsi_rebuild;
7161 	}
7162 
7163 	ice_replay_post(hw);
7164 
7165 	/* if we get here, reset flow is successful */
7166 	clear_bit(ICE_RESET_FAILED, pf->state);
7167 
7168 	ice_plug_aux_dev(pf);
7169 	return;
7170 
7171 err_vsi_rebuild:
7172 err_sched_init_port:
7173 	ice_sched_cleanup_all(hw);
7174 err_init_ctrlq:
7175 	ice_shutdown_all_ctrlq(hw);
7176 	set_bit(ICE_RESET_FAILED, pf->state);
7177 clear_recovery:
7178 	/* set this bit in PF state to control service task scheduling */
7179 	set_bit(ICE_NEEDS_RESTART, pf->state);
7180 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7181 }
7182 
7183 /**
7184  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7185  * @vsi: Pointer to VSI structure
7186  */
7187 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7188 {
7189 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7190 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7191 	else
7192 		return ICE_RXBUF_3072;
7193 }
7194 
7195 /**
7196  * ice_change_mtu - NDO callback to change the MTU
7197  * @netdev: network interface device structure
7198  * @new_mtu: new value for maximum frame size
7199  *
7200  * Returns 0 on success, negative on failure
7201  */
7202 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7203 {
7204 	struct ice_netdev_priv *np = netdev_priv(netdev);
7205 	struct ice_vsi *vsi = np->vsi;
7206 	struct ice_pf *pf = vsi->back;
7207 	u8 count = 0;
7208 	int err = 0;
7209 
7210 	if (new_mtu == (int)netdev->mtu) {
7211 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7212 		return 0;
7213 	}
7214 
7215 	if (ice_is_xdp_ena_vsi(vsi)) {
7216 		int frame_size = ice_max_xdp_frame_size(vsi);
7217 
7218 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7219 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7220 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7221 			return -EINVAL;
7222 		}
7223 	}
7224 
7225 	/* if a reset is in progress, wait for some time for it to complete */
7226 	do {
7227 		if (ice_is_reset_in_progress(pf->state)) {
7228 			count++;
7229 			usleep_range(1000, 2000);
7230 		} else {
7231 			break;
7232 		}
7233 
7234 	} while (count < 100);
7235 
7236 	if (count == 100) {
7237 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7238 		return -EBUSY;
7239 	}
7240 
7241 	netdev->mtu = (unsigned int)new_mtu;
7242 
7243 	/* if VSI is up, bring it down and then back up */
7244 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7245 		err = ice_down(vsi);
7246 		if (err) {
7247 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7248 			return err;
7249 		}
7250 
7251 		err = ice_up(vsi);
7252 		if (err) {
7253 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7254 			return err;
7255 		}
7256 	}
7257 
7258 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7259 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7260 
7261 	return err;
7262 }
7263 
7264 /**
7265  * ice_eth_ioctl - Access the hwtstamp interface
7266  * @netdev: network interface device structure
7267  * @ifr: interface request data
7268  * @cmd: ioctl command
7269  */
7270 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7271 {
7272 	struct ice_netdev_priv *np = netdev_priv(netdev);
7273 	struct ice_pf *pf = np->vsi->back;
7274 
7275 	switch (cmd) {
7276 	case SIOCGHWTSTAMP:
7277 		return ice_ptp_get_ts_config(pf, ifr);
7278 	case SIOCSHWTSTAMP:
7279 		return ice_ptp_set_ts_config(pf, ifr);
7280 	default:
7281 		return -EOPNOTSUPP;
7282 	}
7283 }
7284 
7285 /**
7286  * ice_aq_str - convert AQ err code to a string
7287  * @aq_err: the AQ error code to convert
7288  */
7289 const char *ice_aq_str(enum ice_aq_err aq_err)
7290 {
7291 	switch (aq_err) {
7292 	case ICE_AQ_RC_OK:
7293 		return "OK";
7294 	case ICE_AQ_RC_EPERM:
7295 		return "ICE_AQ_RC_EPERM";
7296 	case ICE_AQ_RC_ENOENT:
7297 		return "ICE_AQ_RC_ENOENT";
7298 	case ICE_AQ_RC_ENOMEM:
7299 		return "ICE_AQ_RC_ENOMEM";
7300 	case ICE_AQ_RC_EBUSY:
7301 		return "ICE_AQ_RC_EBUSY";
7302 	case ICE_AQ_RC_EEXIST:
7303 		return "ICE_AQ_RC_EEXIST";
7304 	case ICE_AQ_RC_EINVAL:
7305 		return "ICE_AQ_RC_EINVAL";
7306 	case ICE_AQ_RC_ENOSPC:
7307 		return "ICE_AQ_RC_ENOSPC";
7308 	case ICE_AQ_RC_ENOSYS:
7309 		return "ICE_AQ_RC_ENOSYS";
7310 	case ICE_AQ_RC_EMODE:
7311 		return "ICE_AQ_RC_EMODE";
7312 	case ICE_AQ_RC_ENOSEC:
7313 		return "ICE_AQ_RC_ENOSEC";
7314 	case ICE_AQ_RC_EBADSIG:
7315 		return "ICE_AQ_RC_EBADSIG";
7316 	case ICE_AQ_RC_ESVN:
7317 		return "ICE_AQ_RC_ESVN";
7318 	case ICE_AQ_RC_EBADMAN:
7319 		return "ICE_AQ_RC_EBADMAN";
7320 	case ICE_AQ_RC_EBADBUF:
7321 		return "ICE_AQ_RC_EBADBUF";
7322 	}
7323 
7324 	return "ICE_AQ_RC_UNKNOWN";
7325 }
7326 
7327 /**
7328  * ice_set_rss_lut - Set RSS LUT
7329  * @vsi: Pointer to VSI structure
7330  * @lut: Lookup table
7331  * @lut_size: Lookup table size
7332  *
7333  * Returns 0 on success, negative on failure
7334  */
7335 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7336 {
7337 	struct ice_aq_get_set_rss_lut_params params = {};
7338 	struct ice_hw *hw = &vsi->back->hw;
7339 	int status;
7340 
7341 	if (!lut)
7342 		return -EINVAL;
7343 
7344 	params.vsi_handle = vsi->idx;
7345 	params.lut_size = lut_size;
7346 	params.lut_type = vsi->rss_lut_type;
7347 	params.lut = lut;
7348 
7349 	status = ice_aq_set_rss_lut(hw, &params);
7350 	if (status)
7351 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7352 			status, ice_aq_str(hw->adminq.sq_last_status));
7353 
7354 	return status;
7355 }
7356 
7357 /**
7358  * ice_set_rss_key - Set RSS key
7359  * @vsi: Pointer to the VSI structure
7360  * @seed: RSS hash seed
7361  *
7362  * Returns 0 on success, negative on failure
7363  */
7364 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7365 {
7366 	struct ice_hw *hw = &vsi->back->hw;
7367 	int status;
7368 
7369 	if (!seed)
7370 		return -EINVAL;
7371 
7372 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7373 	if (status)
7374 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7375 			status, ice_aq_str(hw->adminq.sq_last_status));
7376 
7377 	return status;
7378 }
7379 
7380 /**
7381  * ice_get_rss_lut - Get RSS LUT
7382  * @vsi: Pointer to VSI structure
7383  * @lut: Buffer to store the lookup table entries
7384  * @lut_size: Size of buffer to store the lookup table entries
7385  *
7386  * Returns 0 on success, negative on failure
7387  */
7388 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7389 {
7390 	struct ice_aq_get_set_rss_lut_params params = {};
7391 	struct ice_hw *hw = &vsi->back->hw;
7392 	int status;
7393 
7394 	if (!lut)
7395 		return -EINVAL;
7396 
7397 	params.vsi_handle = vsi->idx;
7398 	params.lut_size = lut_size;
7399 	params.lut_type = vsi->rss_lut_type;
7400 	params.lut = lut;
7401 
7402 	status = ice_aq_get_rss_lut(hw, &params);
7403 	if (status)
7404 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7405 			status, ice_aq_str(hw->adminq.sq_last_status));
7406 
7407 	return status;
7408 }
7409 
7410 /**
7411  * ice_get_rss_key - Get RSS key
7412  * @vsi: Pointer to VSI structure
7413  * @seed: Buffer to store the key in
7414  *
7415  * Returns 0 on success, negative on failure
7416  */
7417 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7418 {
7419 	struct ice_hw *hw = &vsi->back->hw;
7420 	int status;
7421 
7422 	if (!seed)
7423 		return -EINVAL;
7424 
7425 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7426 	if (status)
7427 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7428 			status, ice_aq_str(hw->adminq.sq_last_status));
7429 
7430 	return status;
7431 }
7432 
7433 /**
7434  * ice_bridge_getlink - Get the hardware bridge mode
7435  * @skb: skb buff
7436  * @pid: process ID
7437  * @seq: RTNL message seq
7438  * @dev: the netdev being configured
7439  * @filter_mask: filter mask passed in
7440  * @nlflags: netlink flags passed in
7441  *
7442  * Return the bridge mode (VEB/VEPA)
7443  */
7444 static int
7445 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7446 		   struct net_device *dev, u32 filter_mask, int nlflags)
7447 {
7448 	struct ice_netdev_priv *np = netdev_priv(dev);
7449 	struct ice_vsi *vsi = np->vsi;
7450 	struct ice_pf *pf = vsi->back;
7451 	u16 bmode;
7452 
7453 	bmode = pf->first_sw->bridge_mode;
7454 
7455 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7456 				       filter_mask, NULL);
7457 }
7458 
7459 /**
7460  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7461  * @vsi: Pointer to VSI structure
7462  * @bmode: Hardware bridge mode (VEB/VEPA)
7463  *
7464  * Returns 0 on success, negative on failure
7465  */
7466 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7467 {
7468 	struct ice_aqc_vsi_props *vsi_props;
7469 	struct ice_hw *hw = &vsi->back->hw;
7470 	struct ice_vsi_ctx *ctxt;
7471 	int ret;
7472 
7473 	vsi_props = &vsi->info;
7474 
7475 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7476 	if (!ctxt)
7477 		return -ENOMEM;
7478 
7479 	ctxt->info = vsi->info;
7480 
7481 	if (bmode == BRIDGE_MODE_VEB)
7482 		/* change from VEPA to VEB mode */
7483 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7484 	else
7485 		/* change from VEB to VEPA mode */
7486 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7487 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7488 
7489 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7490 	if (ret) {
7491 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7492 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7493 		goto out;
7494 	}
7495 	/* Update sw flags for book keeping */
7496 	vsi_props->sw_flags = ctxt->info.sw_flags;
7497 
7498 out:
7499 	kfree(ctxt);
7500 	return ret;
7501 }
7502 
7503 /**
7504  * ice_bridge_setlink - Set the hardware bridge mode
7505  * @dev: the netdev being configured
7506  * @nlh: RTNL message
7507  * @flags: bridge setlink flags
7508  * @extack: netlink extended ack
7509  *
7510  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7511  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7512  * not already set for all VSIs connected to this switch. And also update the
7513  * unicast switch filter rules for the corresponding switch of the netdev.
7514  */
7515 static int
7516 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7517 		   u16 __always_unused flags,
7518 		   struct netlink_ext_ack __always_unused *extack)
7519 {
7520 	struct ice_netdev_priv *np = netdev_priv(dev);
7521 	struct ice_pf *pf = np->vsi->back;
7522 	struct nlattr *attr, *br_spec;
7523 	struct ice_hw *hw = &pf->hw;
7524 	struct ice_sw *pf_sw;
7525 	int rem, v, err = 0;
7526 
7527 	pf_sw = pf->first_sw;
7528 	/* find the attribute in the netlink message */
7529 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7530 
7531 	nla_for_each_nested(attr, br_spec, rem) {
7532 		__u16 mode;
7533 
7534 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7535 			continue;
7536 		mode = nla_get_u16(attr);
7537 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7538 			return -EINVAL;
7539 		/* Continue  if bridge mode is not being flipped */
7540 		if (mode == pf_sw->bridge_mode)
7541 			continue;
7542 		/* Iterates through the PF VSI list and update the loopback
7543 		 * mode of the VSI
7544 		 */
7545 		ice_for_each_vsi(pf, v) {
7546 			if (!pf->vsi[v])
7547 				continue;
7548 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7549 			if (err)
7550 				return err;
7551 		}
7552 
7553 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7554 		/* Update the unicast switch filter rules for the corresponding
7555 		 * switch of the netdev
7556 		 */
7557 		err = ice_update_sw_rule_bridge_mode(hw);
7558 		if (err) {
7559 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7560 				   mode, err,
7561 				   ice_aq_str(hw->adminq.sq_last_status));
7562 			/* revert hw->evb_veb */
7563 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7564 			return err;
7565 		}
7566 
7567 		pf_sw->bridge_mode = mode;
7568 	}
7569 
7570 	return 0;
7571 }
7572 
7573 /**
7574  * ice_tx_timeout - Respond to a Tx Hang
7575  * @netdev: network interface device structure
7576  * @txqueue: Tx queue
7577  */
7578 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7579 {
7580 	struct ice_netdev_priv *np = netdev_priv(netdev);
7581 	struct ice_tx_ring *tx_ring = NULL;
7582 	struct ice_vsi *vsi = np->vsi;
7583 	struct ice_pf *pf = vsi->back;
7584 	u32 i;
7585 
7586 	pf->tx_timeout_count++;
7587 
7588 	/* Check if PFC is enabled for the TC to which the queue belongs
7589 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7590 	 * need to reset and rebuild
7591 	 */
7592 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7593 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7594 			 txqueue);
7595 		return;
7596 	}
7597 
7598 	/* now that we have an index, find the tx_ring struct */
7599 	ice_for_each_txq(vsi, i)
7600 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7601 			if (txqueue == vsi->tx_rings[i]->q_index) {
7602 				tx_ring = vsi->tx_rings[i];
7603 				break;
7604 			}
7605 
7606 	/* Reset recovery level if enough time has elapsed after last timeout.
7607 	 * Also ensure no new reset action happens before next timeout period.
7608 	 */
7609 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7610 		pf->tx_timeout_recovery_level = 1;
7611 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7612 				       netdev->watchdog_timeo)))
7613 		return;
7614 
7615 	if (tx_ring) {
7616 		struct ice_hw *hw = &pf->hw;
7617 		u32 head, val = 0;
7618 
7619 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7620 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7621 		/* Read interrupt register */
7622 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7623 
7624 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7625 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7626 			    head, tx_ring->next_to_use, val);
7627 	}
7628 
7629 	pf->tx_timeout_last_recovery = jiffies;
7630 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7631 		    pf->tx_timeout_recovery_level, txqueue);
7632 
7633 	switch (pf->tx_timeout_recovery_level) {
7634 	case 1:
7635 		set_bit(ICE_PFR_REQ, pf->state);
7636 		break;
7637 	case 2:
7638 		set_bit(ICE_CORER_REQ, pf->state);
7639 		break;
7640 	case 3:
7641 		set_bit(ICE_GLOBR_REQ, pf->state);
7642 		break;
7643 	default:
7644 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7645 		set_bit(ICE_DOWN, pf->state);
7646 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7647 		set_bit(ICE_SERVICE_DIS, pf->state);
7648 		break;
7649 	}
7650 
7651 	ice_service_task_schedule(pf);
7652 	pf->tx_timeout_recovery_level++;
7653 }
7654 
7655 /**
7656  * ice_setup_tc_cls_flower - flower classifier offloads
7657  * @np: net device to configure
7658  * @filter_dev: device on which filter is added
7659  * @cls_flower: offload data
7660  */
7661 static int
7662 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7663 			struct net_device *filter_dev,
7664 			struct flow_cls_offload *cls_flower)
7665 {
7666 	struct ice_vsi *vsi = np->vsi;
7667 
7668 	if (cls_flower->common.chain_index)
7669 		return -EOPNOTSUPP;
7670 
7671 	switch (cls_flower->command) {
7672 	case FLOW_CLS_REPLACE:
7673 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7674 	case FLOW_CLS_DESTROY:
7675 		return ice_del_cls_flower(vsi, cls_flower);
7676 	default:
7677 		return -EINVAL;
7678 	}
7679 }
7680 
7681 /**
7682  * ice_setup_tc_block_cb - callback handler registered for TC block
7683  * @type: TC SETUP type
7684  * @type_data: TC flower offload data that contains user input
7685  * @cb_priv: netdev private data
7686  */
7687 static int
7688 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7689 {
7690 	struct ice_netdev_priv *np = cb_priv;
7691 
7692 	switch (type) {
7693 	case TC_SETUP_CLSFLOWER:
7694 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7695 					       type_data);
7696 	default:
7697 		return -EOPNOTSUPP;
7698 	}
7699 }
7700 
7701 /**
7702  * ice_validate_mqprio_qopt - Validate TCF input parameters
7703  * @vsi: Pointer to VSI
7704  * @mqprio_qopt: input parameters for mqprio queue configuration
7705  *
7706  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7707  * needed), and make sure user doesn't specify qcount and BW rate limit
7708  * for TCs, which are more than "num_tc"
7709  */
7710 static int
7711 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7712 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7713 {
7714 	u64 sum_max_rate = 0, sum_min_rate = 0;
7715 	int non_power_of_2_qcount = 0;
7716 	struct ice_pf *pf = vsi->back;
7717 	int max_rss_q_cnt = 0;
7718 	struct device *dev;
7719 	int i, speed;
7720 	u8 num_tc;
7721 
7722 	if (vsi->type != ICE_VSI_PF)
7723 		return -EINVAL;
7724 
7725 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7726 	    mqprio_qopt->qopt.num_tc < 1 ||
7727 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7728 		return -EINVAL;
7729 
7730 	dev = ice_pf_to_dev(pf);
7731 	vsi->ch_rss_size = 0;
7732 	num_tc = mqprio_qopt->qopt.num_tc;
7733 
7734 	for (i = 0; num_tc; i++) {
7735 		int qcount = mqprio_qopt->qopt.count[i];
7736 		u64 max_rate, min_rate, rem;
7737 
7738 		if (!qcount)
7739 			return -EINVAL;
7740 
7741 		if (is_power_of_2(qcount)) {
7742 			if (non_power_of_2_qcount &&
7743 			    qcount > non_power_of_2_qcount) {
7744 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7745 					qcount, non_power_of_2_qcount);
7746 				return -EINVAL;
7747 			}
7748 			if (qcount > max_rss_q_cnt)
7749 				max_rss_q_cnt = qcount;
7750 		} else {
7751 			if (non_power_of_2_qcount &&
7752 			    qcount != non_power_of_2_qcount) {
7753 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7754 					qcount, non_power_of_2_qcount);
7755 				return -EINVAL;
7756 			}
7757 			if (qcount < max_rss_q_cnt) {
7758 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7759 					qcount, max_rss_q_cnt);
7760 				return -EINVAL;
7761 			}
7762 			max_rss_q_cnt = qcount;
7763 			non_power_of_2_qcount = qcount;
7764 		}
7765 
7766 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7767 		 * converts the bandwidth rate limit into Bytes/s when
7768 		 * passing it down to the driver. So convert input bandwidth
7769 		 * from Bytes/s to Kbps
7770 		 */
7771 		max_rate = mqprio_qopt->max_rate[i];
7772 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7773 		sum_max_rate += max_rate;
7774 
7775 		/* min_rate is minimum guaranteed rate and it can't be zero */
7776 		min_rate = mqprio_qopt->min_rate[i];
7777 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7778 		sum_min_rate += min_rate;
7779 
7780 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7781 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7782 				min_rate, ICE_MIN_BW_LIMIT);
7783 			return -EINVAL;
7784 		}
7785 
7786 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7787 		if (rem) {
7788 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7789 				i, ICE_MIN_BW_LIMIT);
7790 			return -EINVAL;
7791 		}
7792 
7793 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7794 		if (rem) {
7795 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7796 				i, ICE_MIN_BW_LIMIT);
7797 			return -EINVAL;
7798 		}
7799 
7800 		/* min_rate can't be more than max_rate, except when max_rate
7801 		 * is zero (implies max_rate sought is max line rate). In such
7802 		 * a case min_rate can be more than max.
7803 		 */
7804 		if (max_rate && min_rate > max_rate) {
7805 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7806 				min_rate, max_rate);
7807 			return -EINVAL;
7808 		}
7809 
7810 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7811 			break;
7812 		if (mqprio_qopt->qopt.offset[i + 1] !=
7813 		    (mqprio_qopt->qopt.offset[i] + qcount))
7814 			return -EINVAL;
7815 	}
7816 	if (vsi->num_rxq <
7817 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7818 		return -EINVAL;
7819 	if (vsi->num_txq <
7820 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7821 		return -EINVAL;
7822 
7823 	speed = ice_get_link_speed_kbps(vsi);
7824 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7825 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7826 			sum_max_rate, speed);
7827 		return -EINVAL;
7828 	}
7829 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7830 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7831 			sum_min_rate, speed);
7832 		return -EINVAL;
7833 	}
7834 
7835 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7836 	vsi->ch_rss_size = max_rss_q_cnt;
7837 
7838 	return 0;
7839 }
7840 
7841 /**
7842  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7843  * @pf: ptr to PF device
7844  * @vsi: ptr to VSI
7845  */
7846 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7847 {
7848 	struct device *dev = ice_pf_to_dev(pf);
7849 	bool added = false;
7850 	struct ice_hw *hw;
7851 	int flow;
7852 
7853 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7854 		return -EINVAL;
7855 
7856 	hw = &pf->hw;
7857 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7858 		struct ice_fd_hw_prof *prof;
7859 		int tun, status;
7860 		u64 entry_h;
7861 
7862 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7863 		      hw->fdir_prof[flow]->cnt))
7864 			continue;
7865 
7866 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7867 			enum ice_flow_priority prio;
7868 			u64 prof_id;
7869 
7870 			/* add this VSI to FDir profile for this flow */
7871 			prio = ICE_FLOW_PRIO_NORMAL;
7872 			prof = hw->fdir_prof[flow];
7873 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7874 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7875 						    prof->vsi_h[0], vsi->idx,
7876 						    prio, prof->fdir_seg[tun],
7877 						    &entry_h);
7878 			if (status) {
7879 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7880 					vsi->idx, flow);
7881 				continue;
7882 			}
7883 
7884 			prof->entry_h[prof->cnt][tun] = entry_h;
7885 		}
7886 
7887 		/* store VSI for filter replay and delete */
7888 		prof->vsi_h[prof->cnt] = vsi->idx;
7889 		prof->cnt++;
7890 
7891 		added = true;
7892 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7893 			flow);
7894 	}
7895 
7896 	if (!added)
7897 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7898 
7899 	return 0;
7900 }
7901 
7902 /**
7903  * ice_add_channel - add a channel by adding VSI
7904  * @pf: ptr to PF device
7905  * @sw_id: underlying HW switching element ID
7906  * @ch: ptr to channel structure
7907  *
7908  * Add a channel (VSI) using add_vsi and queue_map
7909  */
7910 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7911 {
7912 	struct device *dev = ice_pf_to_dev(pf);
7913 	struct ice_vsi *vsi;
7914 
7915 	if (ch->type != ICE_VSI_CHNL) {
7916 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7917 		return -EINVAL;
7918 	}
7919 
7920 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7921 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
7922 		dev_err(dev, "create chnl VSI failure\n");
7923 		return -EINVAL;
7924 	}
7925 
7926 	ice_add_vsi_to_fdir(pf, vsi);
7927 
7928 	ch->sw_id = sw_id;
7929 	ch->vsi_num = vsi->vsi_num;
7930 	ch->info.mapping_flags = vsi->info.mapping_flags;
7931 	ch->ch_vsi = vsi;
7932 	/* set the back pointer of channel for newly created VSI */
7933 	vsi->ch = ch;
7934 
7935 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7936 	       sizeof(vsi->info.q_mapping));
7937 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7938 	       sizeof(vsi->info.tc_mapping));
7939 
7940 	return 0;
7941 }
7942 
7943 /**
7944  * ice_chnl_cfg_res
7945  * @vsi: the VSI being setup
7946  * @ch: ptr to channel structure
7947  *
7948  * Configure channel specific resources such as rings, vector.
7949  */
7950 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7951 {
7952 	int i;
7953 
7954 	for (i = 0; i < ch->num_txq; i++) {
7955 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
7956 		struct ice_ring_container *rc;
7957 		struct ice_tx_ring *tx_ring;
7958 		struct ice_rx_ring *rx_ring;
7959 
7960 		tx_ring = vsi->tx_rings[ch->base_q + i];
7961 		rx_ring = vsi->rx_rings[ch->base_q + i];
7962 		if (!tx_ring || !rx_ring)
7963 			continue;
7964 
7965 		/* setup ring being channel enabled */
7966 		tx_ring->ch = ch;
7967 		rx_ring->ch = ch;
7968 
7969 		/* following code block sets up vector specific attributes */
7970 		tx_q_vector = tx_ring->q_vector;
7971 		rx_q_vector = rx_ring->q_vector;
7972 		if (!tx_q_vector && !rx_q_vector)
7973 			continue;
7974 
7975 		if (tx_q_vector) {
7976 			tx_q_vector->ch = ch;
7977 			/* setup Tx and Rx ITR setting if DIM is off */
7978 			rc = &tx_q_vector->tx;
7979 			if (!ITR_IS_DYNAMIC(rc))
7980 				ice_write_itr(rc, rc->itr_setting);
7981 		}
7982 		if (rx_q_vector) {
7983 			rx_q_vector->ch = ch;
7984 			/* setup Tx and Rx ITR setting if DIM is off */
7985 			rc = &rx_q_vector->rx;
7986 			if (!ITR_IS_DYNAMIC(rc))
7987 				ice_write_itr(rc, rc->itr_setting);
7988 		}
7989 	}
7990 
7991 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7992 	 * GLINT_ITR register would have written to perform in-context
7993 	 * update, hence perform flush
7994 	 */
7995 	if (ch->num_txq || ch->num_rxq)
7996 		ice_flush(&vsi->back->hw);
7997 }
7998 
7999 /**
8000  * ice_cfg_chnl_all_res - configure channel resources
8001  * @vsi: pte to main_vsi
8002  * @ch: ptr to channel structure
8003  *
8004  * This function configures channel specific resources such as flow-director
8005  * counter index, and other resources such as queues, vectors, ITR settings
8006  */
8007 static void
8008 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8009 {
8010 	/* configure channel (aka ADQ) resources such as queues, vectors,
8011 	 * ITR settings for channel specific vectors and anything else
8012 	 */
8013 	ice_chnl_cfg_res(vsi, ch);
8014 }
8015 
8016 /**
8017  * ice_setup_hw_channel - setup new channel
8018  * @pf: ptr to PF device
8019  * @vsi: the VSI being setup
8020  * @ch: ptr to channel structure
8021  * @sw_id: underlying HW switching element ID
8022  * @type: type of channel to be created (VMDq2/VF)
8023  *
8024  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8025  * and configures Tx rings accordingly
8026  */
8027 static int
8028 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8029 		     struct ice_channel *ch, u16 sw_id, u8 type)
8030 {
8031 	struct device *dev = ice_pf_to_dev(pf);
8032 	int ret;
8033 
8034 	ch->base_q = vsi->next_base_q;
8035 	ch->type = type;
8036 
8037 	ret = ice_add_channel(pf, sw_id, ch);
8038 	if (ret) {
8039 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8040 		return ret;
8041 	}
8042 
8043 	/* configure/setup ADQ specific resources */
8044 	ice_cfg_chnl_all_res(vsi, ch);
8045 
8046 	/* make sure to update the next_base_q so that subsequent channel's
8047 	 * (aka ADQ) VSI queue map is correct
8048 	 */
8049 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8050 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8051 		ch->num_rxq);
8052 
8053 	return 0;
8054 }
8055 
8056 /**
8057  * ice_setup_channel - setup new channel using uplink element
8058  * @pf: ptr to PF device
8059  * @vsi: the VSI being setup
8060  * @ch: ptr to channel structure
8061  *
8062  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8063  * and uplink switching element
8064  */
8065 static bool
8066 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8067 		  struct ice_channel *ch)
8068 {
8069 	struct device *dev = ice_pf_to_dev(pf);
8070 	u16 sw_id;
8071 	int ret;
8072 
8073 	if (vsi->type != ICE_VSI_PF) {
8074 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8075 		return false;
8076 	}
8077 
8078 	sw_id = pf->first_sw->sw_id;
8079 
8080 	/* create channel (VSI) */
8081 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8082 	if (ret) {
8083 		dev_err(dev, "failed to setup hw_channel\n");
8084 		return false;
8085 	}
8086 	dev_dbg(dev, "successfully created channel()\n");
8087 
8088 	return ch->ch_vsi ? true : false;
8089 }
8090 
8091 /**
8092  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8093  * @vsi: VSI to be configured
8094  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8095  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8096  */
8097 static int
8098 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8099 {
8100 	int err;
8101 
8102 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8103 	if (err)
8104 		return err;
8105 
8106 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8107 }
8108 
8109 /**
8110  * ice_create_q_channel - function to create channel
8111  * @vsi: VSI to be configured
8112  * @ch: ptr to channel (it contains channel specific params)
8113  *
8114  * This function creates channel (VSI) using num_queues specified by user,
8115  * reconfigs RSS if needed.
8116  */
8117 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8118 {
8119 	struct ice_pf *pf = vsi->back;
8120 	struct device *dev;
8121 
8122 	if (!ch)
8123 		return -EINVAL;
8124 
8125 	dev = ice_pf_to_dev(pf);
8126 	if (!ch->num_txq || !ch->num_rxq) {
8127 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8128 		return -EINVAL;
8129 	}
8130 
8131 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8132 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8133 			vsi->cnt_q_avail, ch->num_txq);
8134 		return -EINVAL;
8135 	}
8136 
8137 	if (!ice_setup_channel(pf, vsi, ch)) {
8138 		dev_info(dev, "Failed to setup channel\n");
8139 		return -EINVAL;
8140 	}
8141 	/* configure BW rate limit */
8142 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8143 		int ret;
8144 
8145 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8146 				       ch->min_tx_rate);
8147 		if (ret)
8148 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8149 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8150 		else
8151 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8152 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8153 	}
8154 
8155 	vsi->cnt_q_avail -= ch->num_txq;
8156 
8157 	return 0;
8158 }
8159 
8160 /**
8161  * ice_rem_all_chnl_fltrs - removes all channel filters
8162  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8163  *
8164  * Remove all advanced switch filters only if they are channel specific
8165  * tc-flower based filter
8166  */
8167 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8168 {
8169 	struct ice_tc_flower_fltr *fltr;
8170 	struct hlist_node *node;
8171 
8172 	/* to remove all channel filters, iterate an ordered list of filters */
8173 	hlist_for_each_entry_safe(fltr, node,
8174 				  &pf->tc_flower_fltr_list,
8175 				  tc_flower_node) {
8176 		struct ice_rule_query_data rule;
8177 		int status;
8178 
8179 		/* for now process only channel specific filters */
8180 		if (!ice_is_chnl_fltr(fltr))
8181 			continue;
8182 
8183 		rule.rid = fltr->rid;
8184 		rule.rule_id = fltr->rule_id;
8185 		rule.vsi_handle = fltr->dest_id;
8186 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8187 		if (status) {
8188 			if (status == -ENOENT)
8189 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8190 					rule.rule_id);
8191 			else
8192 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8193 					status);
8194 		} else if (fltr->dest_vsi) {
8195 			/* update advanced switch filter count */
8196 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8197 				u32 flags = fltr->flags;
8198 
8199 				fltr->dest_vsi->num_chnl_fltr--;
8200 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8201 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8202 					pf->num_dmac_chnl_fltrs--;
8203 			}
8204 		}
8205 
8206 		hlist_del(&fltr->tc_flower_node);
8207 		kfree(fltr);
8208 	}
8209 }
8210 
8211 /**
8212  * ice_remove_q_channels - Remove queue channels for the TCs
8213  * @vsi: VSI to be configured
8214  * @rem_fltr: delete advanced switch filter or not
8215  *
8216  * Remove queue channels for the TCs
8217  */
8218 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8219 {
8220 	struct ice_channel *ch, *ch_tmp;
8221 	struct ice_pf *pf = vsi->back;
8222 	int i;
8223 
8224 	/* remove all tc-flower based filter if they are channel filters only */
8225 	if (rem_fltr)
8226 		ice_rem_all_chnl_fltrs(pf);
8227 
8228 	/* remove ntuple filters since queue configuration is being changed */
8229 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8230 		struct ice_hw *hw = &pf->hw;
8231 
8232 		mutex_lock(&hw->fdir_fltr_lock);
8233 		ice_fdir_del_all_fltrs(vsi);
8234 		mutex_unlock(&hw->fdir_fltr_lock);
8235 	}
8236 
8237 	/* perform cleanup for channels if they exist */
8238 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8239 		struct ice_vsi *ch_vsi;
8240 
8241 		list_del(&ch->list);
8242 		ch_vsi = ch->ch_vsi;
8243 		if (!ch_vsi) {
8244 			kfree(ch);
8245 			continue;
8246 		}
8247 
8248 		/* Reset queue contexts */
8249 		for (i = 0; i < ch->num_rxq; i++) {
8250 			struct ice_tx_ring *tx_ring;
8251 			struct ice_rx_ring *rx_ring;
8252 
8253 			tx_ring = vsi->tx_rings[ch->base_q + i];
8254 			rx_ring = vsi->rx_rings[ch->base_q + i];
8255 			if (tx_ring) {
8256 				tx_ring->ch = NULL;
8257 				if (tx_ring->q_vector)
8258 					tx_ring->q_vector->ch = NULL;
8259 			}
8260 			if (rx_ring) {
8261 				rx_ring->ch = NULL;
8262 				if (rx_ring->q_vector)
8263 					rx_ring->q_vector->ch = NULL;
8264 			}
8265 		}
8266 
8267 		/* Release FD resources for the channel VSI */
8268 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8269 
8270 		/* clear the VSI from scheduler tree */
8271 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8272 
8273 		/* Delete VSI from FW */
8274 		ice_vsi_delete(ch->ch_vsi);
8275 
8276 		/* Delete VSI from PF and HW VSI arrays */
8277 		ice_vsi_clear(ch->ch_vsi);
8278 
8279 		/* free the channel */
8280 		kfree(ch);
8281 	}
8282 
8283 	/* clear the channel VSI map which is stored in main VSI */
8284 	ice_for_each_chnl_tc(i)
8285 		vsi->tc_map_vsi[i] = NULL;
8286 
8287 	/* reset main VSI's all TC information */
8288 	vsi->all_enatc = 0;
8289 	vsi->all_numtc = 0;
8290 }
8291 
8292 /**
8293  * ice_rebuild_channels - rebuild channel
8294  * @pf: ptr to PF
8295  *
8296  * Recreate channel VSIs and replay filters
8297  */
8298 static int ice_rebuild_channels(struct ice_pf *pf)
8299 {
8300 	struct device *dev = ice_pf_to_dev(pf);
8301 	struct ice_vsi *main_vsi;
8302 	bool rem_adv_fltr = true;
8303 	struct ice_channel *ch;
8304 	struct ice_vsi *vsi;
8305 	int tc_idx = 1;
8306 	int i, err;
8307 
8308 	main_vsi = ice_get_main_vsi(pf);
8309 	if (!main_vsi)
8310 		return 0;
8311 
8312 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8313 	    main_vsi->old_numtc == 1)
8314 		return 0; /* nothing to be done */
8315 
8316 	/* reconfigure main VSI based on old value of TC and cached values
8317 	 * for MQPRIO opts
8318 	 */
8319 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8320 	if (err) {
8321 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8322 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8323 		return err;
8324 	}
8325 
8326 	/* rebuild ADQ VSIs */
8327 	ice_for_each_vsi(pf, i) {
8328 		enum ice_vsi_type type;
8329 
8330 		vsi = pf->vsi[i];
8331 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8332 			continue;
8333 
8334 		type = vsi->type;
8335 
8336 		/* rebuild ADQ VSI */
8337 		err = ice_vsi_rebuild(vsi, true);
8338 		if (err) {
8339 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8340 				ice_vsi_type_str(type), vsi->idx, err);
8341 			goto cleanup;
8342 		}
8343 
8344 		/* Re-map HW VSI number, using VSI handle that has been
8345 		 * previously validated in ice_replay_vsi() call above
8346 		 */
8347 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8348 
8349 		/* replay filters for the VSI */
8350 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8351 		if (err) {
8352 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8353 				ice_vsi_type_str(type), err, vsi->idx);
8354 			rem_adv_fltr = false;
8355 			goto cleanup;
8356 		}
8357 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8358 			 ice_vsi_type_str(type), vsi->idx);
8359 
8360 		/* store ADQ VSI at correct TC index in main VSI's
8361 		 * map of TC to VSI
8362 		 */
8363 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8364 	}
8365 
8366 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8367 	 * channel for main VSI's Tx and Rx rings
8368 	 */
8369 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8370 		struct ice_vsi *ch_vsi;
8371 
8372 		ch_vsi = ch->ch_vsi;
8373 		if (!ch_vsi)
8374 			continue;
8375 
8376 		/* reconfig channel resources */
8377 		ice_cfg_chnl_all_res(main_vsi, ch);
8378 
8379 		/* replay BW rate limit if it is non-zero */
8380 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8381 			continue;
8382 
8383 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8384 				       ch->min_tx_rate);
8385 		if (err)
8386 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8387 				err, ch->max_tx_rate, ch->min_tx_rate,
8388 				ch_vsi->vsi_num);
8389 		else
8390 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8391 				ch->max_tx_rate, ch->min_tx_rate,
8392 				ch_vsi->vsi_num);
8393 	}
8394 
8395 	/* reconfig RSS for main VSI */
8396 	if (main_vsi->ch_rss_size)
8397 		ice_vsi_cfg_rss_lut_key(main_vsi);
8398 
8399 	return 0;
8400 
8401 cleanup:
8402 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8403 	return err;
8404 }
8405 
8406 /**
8407  * ice_create_q_channels - Add queue channel for the given TCs
8408  * @vsi: VSI to be configured
8409  *
8410  * Configures queue channel mapping to the given TCs
8411  */
8412 static int ice_create_q_channels(struct ice_vsi *vsi)
8413 {
8414 	struct ice_pf *pf = vsi->back;
8415 	struct ice_channel *ch;
8416 	int ret = 0, i;
8417 
8418 	ice_for_each_chnl_tc(i) {
8419 		if (!(vsi->all_enatc & BIT(i)))
8420 			continue;
8421 
8422 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8423 		if (!ch) {
8424 			ret = -ENOMEM;
8425 			goto err_free;
8426 		}
8427 		INIT_LIST_HEAD(&ch->list);
8428 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8429 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8430 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8431 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8432 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8433 
8434 		/* convert to Kbits/s */
8435 		if (ch->max_tx_rate)
8436 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8437 						  ICE_BW_KBPS_DIVISOR);
8438 		if (ch->min_tx_rate)
8439 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8440 						  ICE_BW_KBPS_DIVISOR);
8441 
8442 		ret = ice_create_q_channel(vsi, ch);
8443 		if (ret) {
8444 			dev_err(ice_pf_to_dev(pf),
8445 				"failed creating channel TC:%d\n", i);
8446 			kfree(ch);
8447 			goto err_free;
8448 		}
8449 		list_add_tail(&ch->list, &vsi->ch_list);
8450 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8451 		dev_dbg(ice_pf_to_dev(pf),
8452 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8453 	}
8454 	return 0;
8455 
8456 err_free:
8457 	ice_remove_q_channels(vsi, false);
8458 
8459 	return ret;
8460 }
8461 
8462 /**
8463  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8464  * @netdev: net device to configure
8465  * @type_data: TC offload data
8466  */
8467 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8468 {
8469 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8470 	struct ice_netdev_priv *np = netdev_priv(netdev);
8471 	struct ice_vsi *vsi = np->vsi;
8472 	struct ice_pf *pf = vsi->back;
8473 	u16 mode, ena_tc_qdisc = 0;
8474 	int cur_txq, cur_rxq;
8475 	u8 hw = 0, num_tcf;
8476 	struct device *dev;
8477 	int ret, i;
8478 
8479 	dev = ice_pf_to_dev(pf);
8480 	num_tcf = mqprio_qopt->qopt.num_tc;
8481 	hw = mqprio_qopt->qopt.hw;
8482 	mode = mqprio_qopt->mode;
8483 	if (!hw) {
8484 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8485 		vsi->ch_rss_size = 0;
8486 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8487 		goto config_tcf;
8488 	}
8489 
8490 	/* Generate queue region map for number of TCF requested */
8491 	for (i = 0; i < num_tcf; i++)
8492 		ena_tc_qdisc |= BIT(i);
8493 
8494 	switch (mode) {
8495 	case TC_MQPRIO_MODE_CHANNEL:
8496 
8497 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8498 		if (ret) {
8499 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8500 				   ret);
8501 			return ret;
8502 		}
8503 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8504 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8505 		/* don't assume state of hw_tc_offload during driver load
8506 		 * and set the flag for TC flower filter if hw_tc_offload
8507 		 * already ON
8508 		 */
8509 		if (vsi->netdev->features & NETIF_F_HW_TC)
8510 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8511 		break;
8512 	default:
8513 		return -EINVAL;
8514 	}
8515 
8516 config_tcf:
8517 
8518 	/* Requesting same TCF configuration as already enabled */
8519 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8520 	    mode != TC_MQPRIO_MODE_CHANNEL)
8521 		return 0;
8522 
8523 	/* Pause VSI queues */
8524 	ice_dis_vsi(vsi, true);
8525 
8526 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8527 		ice_remove_q_channels(vsi, true);
8528 
8529 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8530 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8531 				     num_online_cpus());
8532 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8533 				     num_online_cpus());
8534 	} else {
8535 		/* logic to rebuild VSI, same like ethtool -L */
8536 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8537 
8538 		for (i = 0; i < num_tcf; i++) {
8539 			if (!(ena_tc_qdisc & BIT(i)))
8540 				continue;
8541 
8542 			offset = vsi->mqprio_qopt.qopt.offset[i];
8543 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8544 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8545 		}
8546 		vsi->req_txq = offset + qcount_tx;
8547 		vsi->req_rxq = offset + qcount_rx;
8548 
8549 		/* store away original rss_size info, so that it gets reused
8550 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8551 		 * determine, what should be the rss_sizefor main VSI
8552 		 */
8553 		vsi->orig_rss_size = vsi->rss_size;
8554 	}
8555 
8556 	/* save current values of Tx and Rx queues before calling VSI rebuild
8557 	 * for fallback option
8558 	 */
8559 	cur_txq = vsi->num_txq;
8560 	cur_rxq = vsi->num_rxq;
8561 
8562 	/* proceed with rebuild main VSI using correct number of queues */
8563 	ret = ice_vsi_rebuild(vsi, false);
8564 	if (ret) {
8565 		/* fallback to current number of queues */
8566 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8567 		vsi->req_txq = cur_txq;
8568 		vsi->req_rxq = cur_rxq;
8569 		clear_bit(ICE_RESET_FAILED, pf->state);
8570 		if (ice_vsi_rebuild(vsi, false)) {
8571 			dev_err(dev, "Rebuild of main VSI failed again\n");
8572 			return ret;
8573 		}
8574 	}
8575 
8576 	vsi->all_numtc = num_tcf;
8577 	vsi->all_enatc = ena_tc_qdisc;
8578 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8579 	if (ret) {
8580 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8581 			   vsi->vsi_num);
8582 		goto exit;
8583 	}
8584 
8585 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8586 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8587 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8588 
8589 		/* set TC0 rate limit if specified */
8590 		if (max_tx_rate || min_tx_rate) {
8591 			/* convert to Kbits/s */
8592 			if (max_tx_rate)
8593 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8594 			if (min_tx_rate)
8595 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8596 
8597 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8598 			if (!ret) {
8599 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8600 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8601 			} else {
8602 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8603 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8604 				goto exit;
8605 			}
8606 		}
8607 		ret = ice_create_q_channels(vsi);
8608 		if (ret) {
8609 			netdev_err(netdev, "failed configuring queue channels\n");
8610 			goto exit;
8611 		} else {
8612 			netdev_dbg(netdev, "successfully configured channels\n");
8613 		}
8614 	}
8615 
8616 	if (vsi->ch_rss_size)
8617 		ice_vsi_cfg_rss_lut_key(vsi);
8618 
8619 exit:
8620 	/* if error, reset the all_numtc and all_enatc */
8621 	if (ret) {
8622 		vsi->all_numtc = 0;
8623 		vsi->all_enatc = 0;
8624 	}
8625 	/* resume VSI */
8626 	ice_ena_vsi(vsi, true);
8627 
8628 	return ret;
8629 }
8630 
8631 static LIST_HEAD(ice_block_cb_list);
8632 
8633 static int
8634 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8635 	     void *type_data)
8636 {
8637 	struct ice_netdev_priv *np = netdev_priv(netdev);
8638 	struct ice_pf *pf = np->vsi->back;
8639 	int err;
8640 
8641 	switch (type) {
8642 	case TC_SETUP_BLOCK:
8643 		return flow_block_cb_setup_simple(type_data,
8644 						  &ice_block_cb_list,
8645 						  ice_setup_tc_block_cb,
8646 						  np, np, true);
8647 	case TC_SETUP_QDISC_MQPRIO:
8648 		/* setup traffic classifier for receive side */
8649 		mutex_lock(&pf->tc_mutex);
8650 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8651 		mutex_unlock(&pf->tc_mutex);
8652 		return err;
8653 	default:
8654 		return -EOPNOTSUPP;
8655 	}
8656 	return -EOPNOTSUPP;
8657 }
8658 
8659 static struct ice_indr_block_priv *
8660 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8661 			   struct net_device *netdev)
8662 {
8663 	struct ice_indr_block_priv *cb_priv;
8664 
8665 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8666 		if (!cb_priv->netdev)
8667 			return NULL;
8668 		if (cb_priv->netdev == netdev)
8669 			return cb_priv;
8670 	}
8671 	return NULL;
8672 }
8673 
8674 static int
8675 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8676 			void *indr_priv)
8677 {
8678 	struct ice_indr_block_priv *priv = indr_priv;
8679 	struct ice_netdev_priv *np = priv->np;
8680 
8681 	switch (type) {
8682 	case TC_SETUP_CLSFLOWER:
8683 		return ice_setup_tc_cls_flower(np, priv->netdev,
8684 					       (struct flow_cls_offload *)
8685 					       type_data);
8686 	default:
8687 		return -EOPNOTSUPP;
8688 	}
8689 }
8690 
8691 static int
8692 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8693 			struct ice_netdev_priv *np,
8694 			struct flow_block_offload *f, void *data,
8695 			void (*cleanup)(struct flow_block_cb *block_cb))
8696 {
8697 	struct ice_indr_block_priv *indr_priv;
8698 	struct flow_block_cb *block_cb;
8699 
8700 	if (!ice_is_tunnel_supported(netdev) &&
8701 	    !(is_vlan_dev(netdev) &&
8702 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8703 		return -EOPNOTSUPP;
8704 
8705 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8706 		return -EOPNOTSUPP;
8707 
8708 	switch (f->command) {
8709 	case FLOW_BLOCK_BIND:
8710 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8711 		if (indr_priv)
8712 			return -EEXIST;
8713 
8714 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8715 		if (!indr_priv)
8716 			return -ENOMEM;
8717 
8718 		indr_priv->netdev = netdev;
8719 		indr_priv->np = np;
8720 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8721 
8722 		block_cb =
8723 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8724 						 indr_priv, indr_priv,
8725 						 ice_rep_indr_tc_block_unbind,
8726 						 f, netdev, sch, data, np,
8727 						 cleanup);
8728 
8729 		if (IS_ERR(block_cb)) {
8730 			list_del(&indr_priv->list);
8731 			kfree(indr_priv);
8732 			return PTR_ERR(block_cb);
8733 		}
8734 		flow_block_cb_add(block_cb, f);
8735 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8736 		break;
8737 	case FLOW_BLOCK_UNBIND:
8738 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8739 		if (!indr_priv)
8740 			return -ENOENT;
8741 
8742 		block_cb = flow_block_cb_lookup(f->block,
8743 						ice_indr_setup_block_cb,
8744 						indr_priv);
8745 		if (!block_cb)
8746 			return -ENOENT;
8747 
8748 		flow_indr_block_cb_remove(block_cb, f);
8749 
8750 		list_del(&block_cb->driver_list);
8751 		break;
8752 	default:
8753 		return -EOPNOTSUPP;
8754 	}
8755 	return 0;
8756 }
8757 
8758 static int
8759 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8760 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8761 		     void *data,
8762 		     void (*cleanup)(struct flow_block_cb *block_cb))
8763 {
8764 	switch (type) {
8765 	case TC_SETUP_BLOCK:
8766 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8767 					       data, cleanup);
8768 
8769 	default:
8770 		return -EOPNOTSUPP;
8771 	}
8772 }
8773 
8774 /**
8775  * ice_open - Called when a network interface becomes active
8776  * @netdev: network interface device structure
8777  *
8778  * The open entry point is called when a network interface is made
8779  * active by the system (IFF_UP). At this point all resources needed
8780  * for transmit and receive operations are allocated, the interrupt
8781  * handler is registered with the OS, the netdev watchdog is enabled,
8782  * and the stack is notified that the interface is ready.
8783  *
8784  * Returns 0 on success, negative value on failure
8785  */
8786 int ice_open(struct net_device *netdev)
8787 {
8788 	struct ice_netdev_priv *np = netdev_priv(netdev);
8789 	struct ice_pf *pf = np->vsi->back;
8790 
8791 	if (ice_is_reset_in_progress(pf->state)) {
8792 		netdev_err(netdev, "can't open net device while reset is in progress");
8793 		return -EBUSY;
8794 	}
8795 
8796 	return ice_open_internal(netdev);
8797 }
8798 
8799 /**
8800  * ice_open_internal - Called when a network interface becomes active
8801  * @netdev: network interface device structure
8802  *
8803  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8804  * handling routine
8805  *
8806  * Returns 0 on success, negative value on failure
8807  */
8808 int ice_open_internal(struct net_device *netdev)
8809 {
8810 	struct ice_netdev_priv *np = netdev_priv(netdev);
8811 	struct ice_vsi *vsi = np->vsi;
8812 	struct ice_pf *pf = vsi->back;
8813 	struct ice_port_info *pi;
8814 	int err;
8815 
8816 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8817 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8818 		return -EIO;
8819 	}
8820 
8821 	netif_carrier_off(netdev);
8822 
8823 	pi = vsi->port_info;
8824 	err = ice_update_link_info(pi);
8825 	if (err) {
8826 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8827 		return err;
8828 	}
8829 
8830 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8831 
8832 	/* Set PHY if there is media, otherwise, turn off PHY */
8833 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8834 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8835 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8836 			err = ice_init_phy_user_cfg(pi);
8837 			if (err) {
8838 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8839 					   err);
8840 				return err;
8841 			}
8842 		}
8843 
8844 		err = ice_configure_phy(vsi);
8845 		if (err) {
8846 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8847 				   err);
8848 			return err;
8849 		}
8850 	} else {
8851 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8852 		ice_set_link(vsi, false);
8853 	}
8854 
8855 	err = ice_vsi_open(vsi);
8856 	if (err)
8857 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8858 			   vsi->vsi_num, vsi->vsw->sw_id);
8859 
8860 	/* Update existing tunnels information */
8861 	udp_tunnel_get_rx_info(netdev);
8862 
8863 	return err;
8864 }
8865 
8866 /**
8867  * ice_stop - Disables a network interface
8868  * @netdev: network interface device structure
8869  *
8870  * The stop entry point is called when an interface is de-activated by the OS,
8871  * and the netdevice enters the DOWN state. The hardware is still under the
8872  * driver's control, but the netdev interface is disabled.
8873  *
8874  * Returns success only - not allowed to fail
8875  */
8876 int ice_stop(struct net_device *netdev)
8877 {
8878 	struct ice_netdev_priv *np = netdev_priv(netdev);
8879 	struct ice_vsi *vsi = np->vsi;
8880 	struct ice_pf *pf = vsi->back;
8881 
8882 	if (ice_is_reset_in_progress(pf->state)) {
8883 		netdev_err(netdev, "can't stop net device while reset is in progress");
8884 		return -EBUSY;
8885 	}
8886 
8887 	ice_vsi_close(vsi);
8888 
8889 	return 0;
8890 }
8891 
8892 /**
8893  * ice_features_check - Validate encapsulated packet conforms to limits
8894  * @skb: skb buffer
8895  * @netdev: This port's netdev
8896  * @features: Offload features that the stack believes apply
8897  */
8898 static netdev_features_t
8899 ice_features_check(struct sk_buff *skb,
8900 		   struct net_device __always_unused *netdev,
8901 		   netdev_features_t features)
8902 {
8903 	bool gso = skb_is_gso(skb);
8904 	size_t len;
8905 
8906 	/* No point in doing any of this if neither checksum nor GSO are
8907 	 * being requested for this frame. We can rule out both by just
8908 	 * checking for CHECKSUM_PARTIAL
8909 	 */
8910 	if (skb->ip_summed != CHECKSUM_PARTIAL)
8911 		return features;
8912 
8913 	/* We cannot support GSO if the MSS is going to be less than
8914 	 * 64 bytes. If it is then we need to drop support for GSO.
8915 	 */
8916 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8917 		features &= ~NETIF_F_GSO_MASK;
8918 
8919 	len = skb_network_offset(skb);
8920 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8921 		goto out_rm_features;
8922 
8923 	len = skb_network_header_len(skb);
8924 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8925 		goto out_rm_features;
8926 
8927 	if (skb->encapsulation) {
8928 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
8929 		 * the case of IPIP frames, the transport header pointer is
8930 		 * after the inner header! So check to make sure that this
8931 		 * is a GRE or UDP_TUNNEL frame before doing that math.
8932 		 */
8933 		if (gso && (skb_shinfo(skb)->gso_type &
8934 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8935 			len = skb_inner_network_header(skb) -
8936 			      skb_transport_header(skb);
8937 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8938 				goto out_rm_features;
8939 		}
8940 
8941 		len = skb_inner_network_header_len(skb);
8942 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8943 			goto out_rm_features;
8944 	}
8945 
8946 	return features;
8947 out_rm_features:
8948 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8949 }
8950 
8951 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8952 	.ndo_open = ice_open,
8953 	.ndo_stop = ice_stop,
8954 	.ndo_start_xmit = ice_start_xmit,
8955 	.ndo_set_mac_address = ice_set_mac_address,
8956 	.ndo_validate_addr = eth_validate_addr,
8957 	.ndo_change_mtu = ice_change_mtu,
8958 	.ndo_get_stats64 = ice_get_stats64,
8959 	.ndo_tx_timeout = ice_tx_timeout,
8960 	.ndo_bpf = ice_xdp_safe_mode,
8961 };
8962 
8963 static const struct net_device_ops ice_netdev_ops = {
8964 	.ndo_open = ice_open,
8965 	.ndo_stop = ice_stop,
8966 	.ndo_start_xmit = ice_start_xmit,
8967 	.ndo_select_queue = ice_select_queue,
8968 	.ndo_features_check = ice_features_check,
8969 	.ndo_fix_features = ice_fix_features,
8970 	.ndo_set_rx_mode = ice_set_rx_mode,
8971 	.ndo_set_mac_address = ice_set_mac_address,
8972 	.ndo_validate_addr = eth_validate_addr,
8973 	.ndo_change_mtu = ice_change_mtu,
8974 	.ndo_get_stats64 = ice_get_stats64,
8975 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
8976 	.ndo_eth_ioctl = ice_eth_ioctl,
8977 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8978 	.ndo_set_vf_mac = ice_set_vf_mac,
8979 	.ndo_get_vf_config = ice_get_vf_cfg,
8980 	.ndo_set_vf_trust = ice_set_vf_trust,
8981 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
8982 	.ndo_set_vf_link_state = ice_set_vf_link_state,
8983 	.ndo_get_vf_stats = ice_get_vf_stats,
8984 	.ndo_set_vf_rate = ice_set_vf_bw,
8985 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8986 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8987 	.ndo_setup_tc = ice_setup_tc,
8988 	.ndo_set_features = ice_set_features,
8989 	.ndo_bridge_getlink = ice_bridge_getlink,
8990 	.ndo_bridge_setlink = ice_bridge_setlink,
8991 	.ndo_fdb_add = ice_fdb_add,
8992 	.ndo_fdb_del = ice_fdb_del,
8993 #ifdef CONFIG_RFS_ACCEL
8994 	.ndo_rx_flow_steer = ice_rx_flow_steer,
8995 #endif
8996 	.ndo_tx_timeout = ice_tx_timeout,
8997 	.ndo_bpf = ice_xdp,
8998 	.ndo_xdp_xmit = ice_xdp_xmit,
8999 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9000 	.ndo_get_devlink_port = ice_get_devlink_port,
9001 };
9002