1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_get_devlink_port - Get devlink port from netdev 303 * @netdev: the netdevice structure 304 */ 305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 306 { 307 struct ice_pf *pf = ice_netdev_to_pf(netdev); 308 309 if (!ice_is_switchdev_running(pf)) 310 return NULL; 311 312 return &pf->devlink_port; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 } 427 } else { 428 /* Clear Rx filter to remove traffic from wire */ 429 if (ice_is_vsi_dflt_vsi(vsi)) { 430 err = ice_clear_dflt_vsi(vsi); 431 if (err) { 432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 433 err, vsi->vsi_num); 434 vsi->current_netdev_flags |= 435 IFF_PROMISC; 436 goto out_promisc; 437 } 438 if (vsi->netdev->features & 439 NETIF_F_HW_VLAN_CTAG_FILTER) 440 vlan_ops->ena_rx_filtering(vsi); 441 } 442 } 443 } 444 goto exit; 445 446 out_promisc: 447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 448 goto exit; 449 out: 450 /* if something went wrong then set the changed flag so we try again */ 451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 453 exit: 454 clear_bit(ICE_CFG_BUSY, vsi->state); 455 return err; 456 } 457 458 /** 459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 460 * @pf: board private structure 461 */ 462 static void ice_sync_fltr_subtask(struct ice_pf *pf) 463 { 464 int v; 465 466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 467 return; 468 469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 470 471 ice_for_each_vsi(pf, v) 472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 473 ice_vsi_sync_fltr(pf->vsi[v])) { 474 /* come back and try again later */ 475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 476 break; 477 } 478 } 479 480 /** 481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 482 * @pf: the PF 483 * @locked: is the rtnl_lock already held 484 */ 485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 486 { 487 int node; 488 int v; 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v]) 492 ice_dis_vsi(pf->vsi[v], locked); 493 494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 495 pf->pf_agg_node[node].num_vsis = 0; 496 497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 498 pf->vf_agg_node[node].num_vsis = 0; 499 } 500 501 /** 502 * ice_clear_sw_switch_recipes - clear switch recipes 503 * @pf: board private structure 504 * 505 * Mark switch recipes as not created in sw structures. There are cases where 506 * rules (especially advanced rules) need to be restored, either re-read from 507 * hardware or added again. For example after the reset. 'recp_created' flag 508 * prevents from doing that and need to be cleared upfront. 509 */ 510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 511 { 512 struct ice_sw_recipe *recp; 513 u8 i; 514 515 recp = pf->hw.switch_info->recp_list; 516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 517 recp[i].recp_created = false; 518 } 519 520 /** 521 * ice_prepare_for_reset - prep for reset 522 * @pf: board private structure 523 * @reset_type: reset type requested 524 * 525 * Inform or close all dependent features in prep for reset. 526 */ 527 static void 528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 529 { 530 struct ice_hw *hw = &pf->hw; 531 struct ice_vsi *vsi; 532 struct ice_vf *vf; 533 unsigned int bkt; 534 535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 536 537 /* already prepared for reset */ 538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 539 return; 540 541 ice_unplug_aux_dev(pf); 542 543 /* Notify VFs of impending reset */ 544 if (ice_check_sq_alive(hw, &hw->mailboxq)) 545 ice_vc_notify_reset(pf); 546 547 /* Disable VFs until reset is completed */ 548 mutex_lock(&pf->vfs.table_lock); 549 ice_for_each_vf(pf, bkt, vf) 550 ice_set_vf_state_qs_dis(vf); 551 mutex_unlock(&pf->vfs.table_lock); 552 553 if (ice_is_eswitch_mode_switchdev(pf)) { 554 if (reset_type != ICE_RESET_PFR) 555 ice_clear_sw_switch_recipes(pf); 556 } 557 558 /* release ADQ specific HW and SW resources */ 559 vsi = ice_get_main_vsi(pf); 560 if (!vsi) 561 goto skip; 562 563 /* to be on safe side, reset orig_rss_size so that normal flow 564 * of deciding rss_size can take precedence 565 */ 566 vsi->orig_rss_size = 0; 567 568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 569 if (reset_type == ICE_RESET_PFR) { 570 vsi->old_ena_tc = vsi->all_enatc; 571 vsi->old_numtc = vsi->all_numtc; 572 } else { 573 ice_remove_q_channels(vsi, true); 574 575 /* for other reset type, do not support channel rebuild 576 * hence reset needed info 577 */ 578 vsi->old_ena_tc = 0; 579 vsi->all_enatc = 0; 580 vsi->old_numtc = 0; 581 vsi->all_numtc = 0; 582 vsi->req_txq = 0; 583 vsi->req_rxq = 0; 584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 586 } 587 } 588 skip: 589 590 /* clear SW filtering DB */ 591 ice_clear_hw_tbls(hw); 592 /* disable the VSIs and their queues that are not already DOWN */ 593 ice_pf_dis_all_vsi(pf, false); 594 595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 596 ice_ptp_prepare_for_reset(pf); 597 598 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 599 ice_gnss_exit(pf); 600 601 if (hw->port_info) 602 ice_sched_clear_port(hw->port_info); 603 604 ice_shutdown_all_ctrlq(hw); 605 606 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 607 } 608 609 /** 610 * ice_do_reset - Initiate one of many types of resets 611 * @pf: board private structure 612 * @reset_type: reset type requested before this function was called. 613 */ 614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 615 { 616 struct device *dev = ice_pf_to_dev(pf); 617 struct ice_hw *hw = &pf->hw; 618 619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 620 621 ice_prepare_for_reset(pf, reset_type); 622 623 /* trigger the reset */ 624 if (ice_reset(hw, reset_type)) { 625 dev_err(dev, "reset %d failed\n", reset_type); 626 set_bit(ICE_RESET_FAILED, pf->state); 627 clear_bit(ICE_RESET_OICR_RECV, pf->state); 628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 clear_bit(ICE_PFR_REQ, pf->state); 630 clear_bit(ICE_CORER_REQ, pf->state); 631 clear_bit(ICE_GLOBR_REQ, pf->state); 632 wake_up(&pf->reset_wait_queue); 633 return; 634 } 635 636 /* PFR is a bit of a special case because it doesn't result in an OICR 637 * interrupt. So for PFR, rebuild after the reset and clear the reset- 638 * associated state bits. 639 */ 640 if (reset_type == ICE_RESET_PFR) { 641 pf->pfr_count++; 642 ice_rebuild(pf, reset_type); 643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 644 clear_bit(ICE_PFR_REQ, pf->state); 645 wake_up(&pf->reset_wait_queue); 646 ice_reset_all_vfs(pf); 647 } 648 } 649 650 /** 651 * ice_reset_subtask - Set up for resetting the device and driver 652 * @pf: board private structure 653 */ 654 static void ice_reset_subtask(struct ice_pf *pf) 655 { 656 enum ice_reset_req reset_type = ICE_RESET_INVAL; 657 658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 660 * of reset is pending and sets bits in pf->state indicating the reset 661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 662 * prepare for pending reset if not already (for PF software-initiated 663 * global resets the software should already be prepared for it as 664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 665 * by firmware or software on other PFs, that bit is not set so prepare 666 * for the reset now), poll for reset done, rebuild and return. 667 */ 668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 669 /* Perform the largest reset requested */ 670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 671 reset_type = ICE_RESET_CORER; 672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 673 reset_type = ICE_RESET_GLOBR; 674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 675 reset_type = ICE_RESET_EMPR; 676 /* return if no valid reset type requested */ 677 if (reset_type == ICE_RESET_INVAL) 678 return; 679 ice_prepare_for_reset(pf, reset_type); 680 681 /* make sure we are ready to rebuild */ 682 if (ice_check_reset(&pf->hw)) { 683 set_bit(ICE_RESET_FAILED, pf->state); 684 } else { 685 /* done with reset. start rebuild */ 686 pf->hw.reset_ongoing = false; 687 ice_rebuild(pf, reset_type); 688 /* clear bit to resume normal operations, but 689 * ICE_NEEDS_RESTART bit is set in case rebuild failed 690 */ 691 clear_bit(ICE_RESET_OICR_RECV, pf->state); 692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 693 clear_bit(ICE_PFR_REQ, pf->state); 694 clear_bit(ICE_CORER_REQ, pf->state); 695 clear_bit(ICE_GLOBR_REQ, pf->state); 696 wake_up(&pf->reset_wait_queue); 697 ice_reset_all_vfs(pf); 698 } 699 700 return; 701 } 702 703 /* No pending resets to finish processing. Check for new resets */ 704 if (test_bit(ICE_PFR_REQ, pf->state)) 705 reset_type = ICE_RESET_PFR; 706 if (test_bit(ICE_CORER_REQ, pf->state)) 707 reset_type = ICE_RESET_CORER; 708 if (test_bit(ICE_GLOBR_REQ, pf->state)) 709 reset_type = ICE_RESET_GLOBR; 710 /* If no valid reset type requested just return */ 711 if (reset_type == ICE_RESET_INVAL) 712 return; 713 714 /* reset if not already down or busy */ 715 if (!test_bit(ICE_DOWN, pf->state) && 716 !test_bit(ICE_CFG_BUSY, pf->state)) { 717 ice_do_reset(pf, reset_type); 718 } 719 } 720 721 /** 722 * ice_print_topo_conflict - print topology conflict message 723 * @vsi: the VSI whose topology status is being checked 724 */ 725 static void ice_print_topo_conflict(struct ice_vsi *vsi) 726 { 727 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 728 case ICE_AQ_LINK_TOPO_CONFLICT: 729 case ICE_AQ_LINK_MEDIA_CONFLICT: 730 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 734 break; 735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 738 else 739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 740 break; 741 default: 742 break; 743 } 744 } 745 746 /** 747 * ice_print_link_msg - print link up or down message 748 * @vsi: the VSI whose link status is being queried 749 * @isup: boolean for if the link is now up or down 750 */ 751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 752 { 753 struct ice_aqc_get_phy_caps_data *caps; 754 const char *an_advertised; 755 const char *fec_req; 756 const char *speed; 757 const char *fec; 758 const char *fc; 759 const char *an; 760 int status; 761 762 if (!vsi) 763 return; 764 765 if (vsi->current_isup == isup) 766 return; 767 768 vsi->current_isup = isup; 769 770 if (!isup) { 771 netdev_info(vsi->netdev, "NIC Link is Down\n"); 772 return; 773 } 774 775 switch (vsi->port_info->phy.link_info.link_speed) { 776 case ICE_AQ_LINK_SPEED_100GB: 777 speed = "100 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_50GB: 780 speed = "50 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_40GB: 783 speed = "40 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_25GB: 786 speed = "25 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_20GB: 789 speed = "20 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_10GB: 792 speed = "10 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_5GB: 795 speed = "5 G"; 796 break; 797 case ICE_AQ_LINK_SPEED_2500MB: 798 speed = "2.5 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_1000MB: 801 speed = "1 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_100MB: 804 speed = "100 M"; 805 break; 806 default: 807 speed = "Unknown "; 808 break; 809 } 810 811 switch (vsi->port_info->fc.current_mode) { 812 case ICE_FC_FULL: 813 fc = "Rx/Tx"; 814 break; 815 case ICE_FC_TX_PAUSE: 816 fc = "Tx"; 817 break; 818 case ICE_FC_RX_PAUSE: 819 fc = "Rx"; 820 break; 821 case ICE_FC_NONE: 822 fc = "None"; 823 break; 824 default: 825 fc = "Unknown"; 826 break; 827 } 828 829 /* Get FEC mode based on negotiated link info */ 830 switch (vsi->port_info->phy.link_info.fec_info) { 831 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 832 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 833 fec = "RS-FEC"; 834 break; 835 case ICE_AQ_LINK_25G_KR_FEC_EN: 836 fec = "FC-FEC/BASE-R"; 837 break; 838 default: 839 fec = "NONE"; 840 break; 841 } 842 843 /* check if autoneg completed, might be false due to not supported */ 844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 845 an = "True"; 846 else 847 an = "False"; 848 849 /* Get FEC mode requested based on PHY caps last SW configuration */ 850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 851 if (!caps) { 852 fec_req = "Unknown"; 853 an_advertised = "Unknown"; 854 goto done; 855 } 856 857 status = ice_aq_get_phy_caps(vsi->port_info, false, 858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 859 if (status) 860 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 861 862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 863 864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 866 fec_req = "RS-FEC"; 867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 869 fec_req = "FC-FEC/BASE-R"; 870 else 871 fec_req = "NONE"; 872 873 kfree(caps); 874 875 done: 876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 877 speed, fec_req, fec, an_advertised, an, fc); 878 ice_print_topo_conflict(vsi); 879 } 880 881 /** 882 * ice_vsi_link_event - update the VSI's netdev 883 * @vsi: the VSI on which the link event occurred 884 * @link_up: whether or not the VSI needs to be set up or down 885 */ 886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 887 { 888 if (!vsi) 889 return; 890 891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 892 return; 893 894 if (vsi->type == ICE_VSI_PF) { 895 if (link_up == netif_carrier_ok(vsi->netdev)) 896 return; 897 898 if (link_up) { 899 netif_carrier_on(vsi->netdev); 900 netif_tx_wake_all_queues(vsi->netdev); 901 } else { 902 netif_carrier_off(vsi->netdev); 903 netif_tx_stop_all_queues(vsi->netdev); 904 } 905 } 906 } 907 908 /** 909 * ice_set_dflt_mib - send a default config MIB to the FW 910 * @pf: private PF struct 911 * 912 * This function sends a default configuration MIB to the FW. 913 * 914 * If this function errors out at any point, the driver is still able to 915 * function. The main impact is that LFC may not operate as expected. 916 * Therefore an error state in this function should be treated with a DBG 917 * message and continue on with driver rebuild/reenable. 918 */ 919 static void ice_set_dflt_mib(struct ice_pf *pf) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 u8 mib_type, *buf, *lldpmib = NULL; 923 u16 len, typelen, offset = 0; 924 struct ice_lldp_org_tlv *tlv; 925 struct ice_hw *hw = &pf->hw; 926 u32 ouisubtype; 927 928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 930 if (!lldpmib) { 931 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 932 __func__); 933 return; 934 } 935 936 /* Add ETS CFG TLV */ 937 tlv = (struct ice_lldp_org_tlv *)lldpmib; 938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 939 ICE_IEEE_ETS_TLV_LEN); 940 tlv->typelen = htons(typelen); 941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 942 ICE_IEEE_SUBTYPE_ETS_CFG); 943 tlv->ouisubtype = htonl(ouisubtype); 944 945 buf = tlv->tlvinfo; 946 buf[0] = 0; 947 948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 950 * Octets 13 - 20 are TSA values - leave as zeros 951 */ 952 buf[5] = 0x64; 953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 954 offset += len + 2; 955 tlv = (struct ice_lldp_org_tlv *) 956 ((char *)tlv + sizeof(tlv->typelen) + len); 957 958 /* Add ETS REC TLV */ 959 buf = tlv->tlvinfo; 960 tlv->typelen = htons(typelen); 961 962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 963 ICE_IEEE_SUBTYPE_ETS_REC); 964 tlv->ouisubtype = htonl(ouisubtype); 965 966 /* First octet of buf is reserved 967 * Octets 1 - 4 map UP to TC - all UPs map to zero 968 * Octets 5 - 12 are BW values - set TC 0 to 100%. 969 * Octets 13 - 20 are TSA value - leave as zeros 970 */ 971 buf[5] = 0x64; 972 offset += len + 2; 973 tlv = (struct ice_lldp_org_tlv *) 974 ((char *)tlv + sizeof(tlv->typelen) + len); 975 976 /* Add PFC CFG TLV */ 977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 978 ICE_IEEE_PFC_TLV_LEN); 979 tlv->typelen = htons(typelen); 980 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_PFC_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 /* Octet 1 left as all zeros - PFC disabled */ 986 buf[0] = 0x08; 987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 988 offset += len + 2; 989 990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 992 993 kfree(lldpmib); 994 } 995 996 /** 997 * ice_check_phy_fw_load - check if PHY FW load failed 998 * @pf: pointer to PF struct 999 * @link_cfg_err: bitmap from the link info structure 1000 * 1001 * check if external PHY FW load failed and print an error message if it did 1002 */ 1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 return; 1008 } 1009 1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1011 return; 1012 1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1016 } 1017 } 1018 1019 /** 1020 * ice_check_module_power 1021 * @pf: pointer to PF struct 1022 * @link_cfg_err: bitmap from the link info structure 1023 * 1024 * check module power level returned by a previous call to aq_get_link_info 1025 * and print error messages if module power level is not supported 1026 */ 1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 /* if module power level is supported, clear the flag */ 1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1033 return; 1034 } 1035 1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1037 * above block didn't clear this bit, there's nothing to do 1038 */ 1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_link_cfg_err - check if link configuration failed 1053 * @pf: pointer to the PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * print if any link configuration failure happens due to the value in the 1057 * link_cfg_err parameter in the link info structure 1058 */ 1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 ice_check_module_power(pf, link_cfg_err); 1062 ice_check_phy_fw_load(pf, link_cfg_err); 1063 } 1064 1065 /** 1066 * ice_link_event - process the link event 1067 * @pf: PF that the link event is associated with 1068 * @pi: port_info for the port that the link event is associated with 1069 * @link_up: true if the physical link is up and false if it is down 1070 * @link_speed: current link speed received from the link event 1071 * 1072 * Returns 0 on success and negative on failure 1073 */ 1074 static int 1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1076 u16 link_speed) 1077 { 1078 struct device *dev = ice_pf_to_dev(pf); 1079 struct ice_phy_info *phy_info; 1080 struct ice_vsi *vsi; 1081 u16 old_link_speed; 1082 bool old_link; 1083 int status; 1084 1085 phy_info = &pi->phy; 1086 phy_info->link_info_old = phy_info->link_info; 1087 1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1089 old_link_speed = phy_info->link_info_old.link_speed; 1090 1091 /* update the link info structures and re-enable link events, 1092 * don't bail on failure due to other book keeping needed 1093 */ 1094 status = ice_update_link_info(pi); 1095 if (status) 1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1097 pi->lport, status, 1098 ice_aq_str(pi->hw->adminq.sq_last_status)); 1099 1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1101 1102 /* Check if the link state is up after updating link info, and treat 1103 * this event as an UP event since the link is actually UP now. 1104 */ 1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1106 link_up = true; 1107 1108 vsi = ice_get_main_vsi(pf); 1109 if (!vsi || !vsi->port_info) 1110 return -EINVAL; 1111 1112 /* turn off PHY if media was removed */ 1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1116 ice_set_link(vsi, false); 1117 } 1118 1119 /* if the old link up/down and speed is the same as the new */ 1120 if (link_up == old_link && link_speed == old_link_speed) 1121 return 0; 1122 1123 if (!ice_is_e810(&pf->hw)) 1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1125 1126 if (ice_is_dcb_active(pf)) { 1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1128 ice_dcb_rebuild(pf); 1129 } else { 1130 if (link_up) 1131 ice_set_dflt_mib(pf); 1132 } 1133 ice_vsi_link_event(vsi, link_up); 1134 ice_print_link_msg(vsi, link_up); 1135 1136 ice_vc_notify_link_state(pf); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1143 * @pf: board private structure 1144 */ 1145 static void ice_watchdog_subtask(struct ice_pf *pf) 1146 { 1147 int i; 1148 1149 /* if interface is down do nothing */ 1150 if (test_bit(ICE_DOWN, pf->state) || 1151 test_bit(ICE_CFG_BUSY, pf->state)) 1152 return; 1153 1154 /* make sure we don't do these things too often */ 1155 if (time_before(jiffies, 1156 pf->serv_tmr_prev + pf->serv_tmr_period)) 1157 return; 1158 1159 pf->serv_tmr_prev = jiffies; 1160 1161 /* Update the stats for active netdevs so the network stack 1162 * can look at updated numbers whenever it cares to 1163 */ 1164 ice_update_pf_stats(pf); 1165 ice_for_each_vsi(pf, i) 1166 if (pf->vsi[i] && pf->vsi[i]->netdev) 1167 ice_update_vsi_stats(pf->vsi[i]); 1168 } 1169 1170 /** 1171 * ice_init_link_events - enable/initialize link events 1172 * @pi: pointer to the port_info instance 1173 * 1174 * Returns -EIO on failure, 0 on success 1175 */ 1176 static int ice_init_link_events(struct ice_port_info *pi) 1177 { 1178 u16 mask; 1179 1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1183 1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1186 pi->lport); 1187 return -EIO; 1188 } 1189 1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1192 pi->lport); 1193 return -EIO; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * ice_handle_link_event - handle link event via ARQ 1201 * @pf: PF that the link event is associated with 1202 * @event: event structure containing link status info 1203 */ 1204 static int 1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1206 { 1207 struct ice_aqc_get_link_status_data *link_data; 1208 struct ice_port_info *port_info; 1209 int status; 1210 1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1212 port_info = pf->hw.port_info; 1213 if (!port_info) 1214 return -EINVAL; 1215 1216 status = ice_link_event(pf, port_info, 1217 !!(link_data->link_info & ICE_AQ_LINK_UP), 1218 le16_to_cpu(link_data->link_speed)); 1219 if (status) 1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1221 status); 1222 1223 return status; 1224 } 1225 1226 enum ice_aq_task_state { 1227 ICE_AQ_TASK_WAITING = 0, 1228 ICE_AQ_TASK_COMPLETE, 1229 ICE_AQ_TASK_CANCELED, 1230 }; 1231 1232 struct ice_aq_task { 1233 struct hlist_node entry; 1234 1235 u16 opcode; 1236 struct ice_rq_event_info *event; 1237 enum ice_aq_task_state state; 1238 }; 1239 1240 /** 1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1242 * @pf: pointer to the PF private structure 1243 * @opcode: the opcode to wait for 1244 * @timeout: how long to wait, in jiffies 1245 * @event: storage for the event info 1246 * 1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1248 * current thread will be put to sleep until the specified event occurs or 1249 * until the given timeout is reached. 1250 * 1251 * To obtain only the descriptor contents, pass an event without an allocated 1252 * msg_buf. If the complete data buffer is desired, allocate the 1253 * event->msg_buf with enough space ahead of time. 1254 * 1255 * Returns: zero on success, or a negative error code on failure. 1256 */ 1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1258 struct ice_rq_event_info *event) 1259 { 1260 struct device *dev = ice_pf_to_dev(pf); 1261 struct ice_aq_task *task; 1262 unsigned long start; 1263 long ret; 1264 int err; 1265 1266 task = kzalloc(sizeof(*task), GFP_KERNEL); 1267 if (!task) 1268 return -ENOMEM; 1269 1270 INIT_HLIST_NODE(&task->entry); 1271 task->opcode = opcode; 1272 task->event = event; 1273 task->state = ICE_AQ_TASK_WAITING; 1274 1275 spin_lock_bh(&pf->aq_wait_lock); 1276 hlist_add_head(&task->entry, &pf->aq_wait_list); 1277 spin_unlock_bh(&pf->aq_wait_lock); 1278 1279 start = jiffies; 1280 1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1282 timeout); 1283 switch (task->state) { 1284 case ICE_AQ_TASK_WAITING: 1285 err = ret < 0 ? ret : -ETIMEDOUT; 1286 break; 1287 case ICE_AQ_TASK_CANCELED: 1288 err = ret < 0 ? ret : -ECANCELED; 1289 break; 1290 case ICE_AQ_TASK_COMPLETE: 1291 err = ret < 0 ? ret : 0; 1292 break; 1293 default: 1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1295 err = -EINVAL; 1296 break; 1297 } 1298 1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1300 jiffies_to_msecs(jiffies - start), 1301 jiffies_to_msecs(timeout), 1302 opcode); 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_del(&task->entry); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 kfree(task); 1308 1309 return err; 1310 } 1311 1312 /** 1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1314 * @pf: pointer to the PF private structure 1315 * @opcode: the opcode of the event 1316 * @event: the event to check 1317 * 1318 * Loops over the current list of pending threads waiting for an AdminQ event. 1319 * For each matching task, copy the contents of the event into the task 1320 * structure and wake up the thread. 1321 * 1322 * If multiple threads wait for the same opcode, they will all be woken up. 1323 * 1324 * Note that event->msg_buf will only be duplicated if the event has a buffer 1325 * with enough space already allocated. Otherwise, only the descriptor and 1326 * message length will be copied. 1327 * 1328 * Returns: true if an event was found, false otherwise 1329 */ 1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1331 struct ice_rq_event_info *event) 1332 { 1333 struct ice_aq_task *task; 1334 bool found = false; 1335 1336 spin_lock_bh(&pf->aq_wait_lock); 1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1338 if (task->state || task->opcode != opcode) 1339 continue; 1340 1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1342 task->event->msg_len = event->msg_len; 1343 1344 /* Only copy the data buffer if a destination was set */ 1345 if (task->event->msg_buf && 1346 task->event->buf_len > event->buf_len) { 1347 memcpy(task->event->msg_buf, event->msg_buf, 1348 event->buf_len); 1349 task->event->buf_len = event->buf_len; 1350 } 1351 1352 task->state = ICE_AQ_TASK_COMPLETE; 1353 found = true; 1354 } 1355 spin_unlock_bh(&pf->aq_wait_lock); 1356 1357 if (found) 1358 wake_up(&pf->aq_wait_queue); 1359 } 1360 1361 /** 1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1363 * @pf: the PF private structure 1364 * 1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1367 */ 1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1369 { 1370 struct ice_aq_task *task; 1371 1372 spin_lock_bh(&pf->aq_wait_lock); 1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1374 task->state = ICE_AQ_TASK_CANCELED; 1375 spin_unlock_bh(&pf->aq_wait_lock); 1376 1377 wake_up(&pf->aq_wait_queue); 1378 } 1379 1380 /** 1381 * __ice_clean_ctrlq - helper function to clean controlq rings 1382 * @pf: ptr to struct ice_pf 1383 * @q_type: specific Control queue type 1384 */ 1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1386 { 1387 struct device *dev = ice_pf_to_dev(pf); 1388 struct ice_rq_event_info event; 1389 struct ice_hw *hw = &pf->hw; 1390 struct ice_ctl_q_info *cq; 1391 u16 pending, i = 0; 1392 const char *qtype; 1393 u32 oldval, val; 1394 1395 /* Do not clean control queue if/when PF reset fails */ 1396 if (test_bit(ICE_RESET_FAILED, pf->state)) 1397 return 0; 1398 1399 switch (q_type) { 1400 case ICE_CTL_Q_ADMIN: 1401 cq = &hw->adminq; 1402 qtype = "Admin"; 1403 break; 1404 case ICE_CTL_Q_SB: 1405 cq = &hw->sbq; 1406 qtype = "Sideband"; 1407 break; 1408 case ICE_CTL_Q_MAILBOX: 1409 cq = &hw->mailboxq; 1410 qtype = "Mailbox"; 1411 /* we are going to try to detect a malicious VF, so set the 1412 * state to begin detection 1413 */ 1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1415 break; 1416 default: 1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1418 return 0; 1419 } 1420 1421 /* check for error indications - PF_xx_AxQLEN register layout for 1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1423 */ 1424 val = rd32(hw, cq->rq.len); 1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1426 PF_FW_ARQLEN_ARQCRIT_M)) { 1427 oldval = val; 1428 if (val & PF_FW_ARQLEN_ARQVFE_M) 1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1430 qtype); 1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1433 qtype); 1434 } 1435 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1437 qtype); 1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1439 PF_FW_ARQLEN_ARQCRIT_M); 1440 if (oldval != val) 1441 wr32(hw, cq->rq.len, val); 1442 } 1443 1444 val = rd32(hw, cq->sq.len); 1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1446 PF_FW_ATQLEN_ATQCRIT_M)) { 1447 oldval = val; 1448 if (val & PF_FW_ATQLEN_ATQVFE_M) 1449 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1450 qtype); 1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1453 qtype); 1454 } 1455 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1457 qtype); 1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1459 PF_FW_ATQLEN_ATQCRIT_M); 1460 if (oldval != val) 1461 wr32(hw, cq->sq.len, val); 1462 } 1463 1464 event.buf_len = cq->rq_buf_size; 1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1466 if (!event.msg_buf) 1467 return 0; 1468 1469 do { 1470 u16 opcode; 1471 int ret; 1472 1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1474 if (ret == -EALREADY) 1475 break; 1476 if (ret) { 1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1478 ret); 1479 break; 1480 } 1481 1482 opcode = le16_to_cpu(event.desc.opcode); 1483 1484 /* Notify any thread that might be waiting for this event */ 1485 ice_aq_check_events(pf, opcode, &event); 1486 1487 switch (opcode) { 1488 case ice_aqc_opc_get_link_status: 1489 if (ice_handle_link_event(pf, &event)) 1490 dev_err(dev, "Could not handle link event\n"); 1491 break; 1492 case ice_aqc_opc_event_lan_overflow: 1493 ice_vf_lan_overflow_event(pf, &event); 1494 break; 1495 case ice_mbx_opc_send_msg_to_pf: 1496 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1497 ice_vc_process_vf_msg(pf, &event); 1498 break; 1499 case ice_aqc_opc_fw_logging: 1500 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1501 break; 1502 case ice_aqc_opc_lldp_set_mib_change: 1503 ice_dcb_process_lldp_set_mib_change(pf, &event); 1504 break; 1505 default: 1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1507 qtype, opcode); 1508 break; 1509 } 1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1511 1512 kfree(event.msg_buf); 1513 1514 return pending && (i == ICE_DFLT_IRQ_WORK); 1515 } 1516 1517 /** 1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1519 * @hw: pointer to hardware info 1520 * @cq: control queue information 1521 * 1522 * returns true if there are pending messages in a queue, false if there aren't 1523 */ 1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1525 { 1526 u16 ntu; 1527 1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1529 return cq->rq.next_to_clean != ntu; 1530 } 1531 1532 /** 1533 * ice_clean_adminq_subtask - clean the AdminQ rings 1534 * @pf: board private structure 1535 */ 1536 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1537 { 1538 struct ice_hw *hw = &pf->hw; 1539 1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1541 return; 1542 1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1544 return; 1545 1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1547 1548 /* There might be a situation where new messages arrive to a control 1549 * queue between processing the last message and clearing the 1550 * EVENT_PENDING bit. So before exiting, check queue head again (using 1551 * ice_ctrlq_pending) and process new messages if any. 1552 */ 1553 if (ice_ctrlq_pending(hw, &hw->adminq)) 1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1555 1556 ice_flush(hw); 1557 } 1558 1559 /** 1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1561 * @pf: board private structure 1562 */ 1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1564 { 1565 struct ice_hw *hw = &pf->hw; 1566 1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1568 return; 1569 1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1571 return; 1572 1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1574 1575 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1577 1578 ice_flush(hw); 1579 } 1580 1581 /** 1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1583 * @pf: board private structure 1584 */ 1585 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1586 { 1587 struct ice_hw *hw = &pf->hw; 1588 1589 /* Nothing to do here if sideband queue is not supported */ 1590 if (!ice_is_sbq_supported(hw)) { 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 return; 1593 } 1594 1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1596 return; 1597 1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1599 return; 1600 1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1602 1603 if (ice_ctrlq_pending(hw, &hw->sbq)) 1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1605 1606 ice_flush(hw); 1607 } 1608 1609 /** 1610 * ice_service_task_schedule - schedule the service task to wake up 1611 * @pf: board private structure 1612 * 1613 * If not already scheduled, this puts the task into the work queue. 1614 */ 1615 void ice_service_task_schedule(struct ice_pf *pf) 1616 { 1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1619 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1620 queue_work(ice_wq, &pf->serv_task); 1621 } 1622 1623 /** 1624 * ice_service_task_complete - finish up the service task 1625 * @pf: board private structure 1626 */ 1627 static void ice_service_task_complete(struct ice_pf *pf) 1628 { 1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1630 1631 /* force memory (pf->state) to sync before next service task */ 1632 smp_mb__before_atomic(); 1633 clear_bit(ICE_SERVICE_SCHED, pf->state); 1634 } 1635 1636 /** 1637 * ice_service_task_stop - stop service task and cancel works 1638 * @pf: board private structure 1639 * 1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1641 * 1 otherwise. 1642 */ 1643 static int ice_service_task_stop(struct ice_pf *pf) 1644 { 1645 int ret; 1646 1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1648 1649 if (pf->serv_tmr.function) 1650 del_timer_sync(&pf->serv_tmr); 1651 if (pf->serv_task.func) 1652 cancel_work_sync(&pf->serv_task); 1653 1654 clear_bit(ICE_SERVICE_SCHED, pf->state); 1655 return ret; 1656 } 1657 1658 /** 1659 * ice_service_task_restart - restart service task and schedule works 1660 * @pf: board private structure 1661 * 1662 * This function is needed for suspend and resume works (e.g WoL scenario) 1663 */ 1664 static void ice_service_task_restart(struct ice_pf *pf) 1665 { 1666 clear_bit(ICE_SERVICE_DIS, pf->state); 1667 ice_service_task_schedule(pf); 1668 } 1669 1670 /** 1671 * ice_service_timer - timer callback to schedule service task 1672 * @t: pointer to timer_list 1673 */ 1674 static void ice_service_timer(struct timer_list *t) 1675 { 1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1677 1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1679 ice_service_task_schedule(pf); 1680 } 1681 1682 /** 1683 * ice_handle_mdd_event - handle malicious driver detect event 1684 * @pf: pointer to the PF structure 1685 * 1686 * Called from service task. OICR interrupt handler indicates MDD event. 1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1689 * disable the queue, the PF can be configured to reset the VF using ethtool 1690 * private flag mdd-auto-reset-vf. 1691 */ 1692 static void ice_handle_mdd_event(struct ice_pf *pf) 1693 { 1694 struct device *dev = ice_pf_to_dev(pf); 1695 struct ice_hw *hw = &pf->hw; 1696 struct ice_vf *vf; 1697 unsigned int bkt; 1698 u32 reg; 1699 1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1701 /* Since the VF MDD event logging is rate limited, check if 1702 * there are pending MDD events. 1703 */ 1704 ice_print_vfs_mdd_events(pf); 1705 return; 1706 } 1707 1708 /* find what triggered an MDD event */ 1709 reg = rd32(hw, GL_MDET_TX_PQM); 1710 if (reg & GL_MDET_TX_PQM_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1712 GL_MDET_TX_PQM_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1714 GL_MDET_TX_PQM_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1716 GL_MDET_TX_PQM_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1718 GL_MDET_TX_PQM_QNUM_S); 1719 1720 if (netif_msg_tx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1724 } 1725 1726 reg = rd32(hw, GL_MDET_TX_TCLAN); 1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_PF_NUM_S; 1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1731 GL_MDET_TX_TCLAN_VF_NUM_S; 1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1733 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1735 GL_MDET_TX_TCLAN_QNUM_S); 1736 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1739 event, queue, pf_num, vf_num); 1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1741 } 1742 1743 reg = rd32(hw, GL_MDET_RX); 1744 if (reg & GL_MDET_RX_VALID_M) { 1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1746 GL_MDET_RX_PF_NUM_S; 1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1748 GL_MDET_RX_VF_NUM_S; 1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1750 GL_MDET_RX_MAL_TYPE_S; 1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1752 GL_MDET_RX_QNUM_S); 1753 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1756 event, queue, pf_num, vf_num); 1757 wr32(hw, GL_MDET_RX, 0xffffffff); 1758 } 1759 1760 /* check to see if this PF caused an MDD event */ 1761 reg = rd32(hw, PF_MDET_TX_PQM); 1762 if (reg & PF_MDET_TX_PQM_VALID_M) { 1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1764 if (netif_msg_tx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1766 } 1767 1768 reg = rd32(hw, PF_MDET_TX_TCLAN); 1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1771 if (netif_msg_tx_err(pf)) 1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1773 } 1774 1775 reg = rd32(hw, PF_MDET_RX); 1776 if (reg & PF_MDET_RX_VALID_M) { 1777 wr32(hw, PF_MDET_RX, 0xFFFF); 1778 if (netif_msg_rx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1780 } 1781 1782 /* Check to see if one of the VFs caused an MDD event, and then 1783 * increment counters and set print pending 1784 */ 1785 mutex_lock(&pf->vfs.table_lock); 1786 ice_for_each_vf(pf, bkt, vf) { 1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1788 if (reg & VP_MDET_TX_PQM_VALID_M) { 1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1808 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1810 vf->mdd_tx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_tx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1814 vf->vf_id); 1815 } 1816 1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1818 if (reg & VP_MDET_RX_VALID_M) { 1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1820 vf->mdd_rx_events.count++; 1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1822 if (netif_msg_rx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1824 vf->vf_id); 1825 1826 /* Since the queue is disabled on VF Rx MDD events, the 1827 * PF can be configured to reset the VF through ethtool 1828 * private flag mdd-auto-reset-vf. 1829 */ 1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1831 /* VF MDD event counters will be cleared by 1832 * reset, so print the event prior to reset. 1833 */ 1834 ice_print_vf_rx_mdd_event(vf); 1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1836 } 1837 } 1838 } 1839 mutex_unlock(&pf->vfs.table_lock); 1840 1841 ice_print_vfs_mdd_events(pf); 1842 } 1843 1844 /** 1845 * ice_force_phys_link_state - Force the physical link state 1846 * @vsi: VSI to force the physical link state to up/down 1847 * @link_up: true/false indicates to set the physical link to up/down 1848 * 1849 * Force the physical link state by getting the current PHY capabilities from 1850 * hardware and setting the PHY config based on the determined capabilities. If 1851 * link changes a link event will be triggered because both the Enable Automatic 1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1853 * 1854 * Returns 0 on success, negative on failure 1855 */ 1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1857 { 1858 struct ice_aqc_get_phy_caps_data *pcaps; 1859 struct ice_aqc_set_phy_cfg_data *cfg; 1860 struct ice_port_info *pi; 1861 struct device *dev; 1862 int retcode; 1863 1864 if (!vsi || !vsi->port_info || !vsi->back) 1865 return -EINVAL; 1866 if (vsi->type != ICE_VSI_PF) 1867 return 0; 1868 1869 dev = ice_pf_to_dev(vsi->back); 1870 1871 pi = vsi->port_info; 1872 1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1874 if (!pcaps) 1875 return -ENOMEM; 1876 1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1878 NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 goto out; 1884 } 1885 1886 /* No change in link */ 1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1889 goto out; 1890 1891 /* Use the current user PHY configuration. The current user PHY 1892 * configuration is initialized during probe from PHY capabilities 1893 * software mode, and updated on set PHY configuration. 1894 */ 1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1896 if (!cfg) { 1897 retcode = -ENOMEM; 1898 goto out; 1899 } 1900 1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1902 if (link_up) 1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1904 else 1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1906 1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1908 if (retcode) { 1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1910 vsi->vsi_num, retcode); 1911 retcode = -EIO; 1912 } 1913 1914 kfree(cfg); 1915 out: 1916 kfree(pcaps); 1917 return retcode; 1918 } 1919 1920 /** 1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1922 * @pi: port info structure 1923 * 1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1925 */ 1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1927 { 1928 struct ice_aqc_get_phy_caps_data *pcaps; 1929 struct ice_pf *pf = pi->hw->back; 1930 int err; 1931 1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1933 if (!pcaps) 1934 return -ENOMEM; 1935 1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1937 pcaps, NULL); 1938 1939 if (err) { 1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1941 goto out; 1942 } 1943 1944 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1945 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1946 1947 out: 1948 kfree(pcaps); 1949 return err; 1950 } 1951 1952 /** 1953 * ice_init_link_dflt_override - Initialize link default override 1954 * @pi: port info structure 1955 * 1956 * Initialize link default override and PHY total port shutdown during probe 1957 */ 1958 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1959 { 1960 struct ice_link_default_override_tlv *ldo; 1961 struct ice_pf *pf = pi->hw->back; 1962 1963 ldo = &pf->link_dflt_override; 1964 if (ice_get_link_default_override(ldo, pi)) 1965 return; 1966 1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1968 return; 1969 1970 /* Enable Total Port Shutdown (override/replace link-down-on-close 1971 * ethtool private flag) for ports with Port Disable bit set. 1972 */ 1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1975 } 1976 1977 /** 1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1979 * @pi: port info structure 1980 * 1981 * If default override is enabled, initialize the user PHY cfg speed and FEC 1982 * settings using the default override mask from the NVM. 1983 * 1984 * The PHY should only be configured with the default override settings the 1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1986 * is used to indicate that the user PHY cfg default override is initialized 1987 * and the PHY has not been configured with the default override settings. The 1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1989 * configured. 1990 * 1991 * This function should be called only if the FW doesn't support default 1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1993 */ 1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_aqc_set_phy_cfg_data *cfg; 1998 struct ice_phy_info *phy = &pi->phy; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 2003 /* If link default override is enabled, use to mask NVM PHY capabilities 2004 * for speed and FEC default configuration. 2005 */ 2006 cfg = &phy->curr_user_phy_cfg; 2007 2008 if (ldo->phy_type_low || ldo->phy_type_high) { 2009 cfg->phy_type_low = pf->nvm_phy_type_lo & 2010 cpu_to_le64(ldo->phy_type_low); 2011 cfg->phy_type_high = pf->nvm_phy_type_hi & 2012 cpu_to_le64(ldo->phy_type_high); 2013 } 2014 cfg->link_fec_opt = ldo->fec_options; 2015 phy->curr_user_fec_req = ICE_FEC_AUTO; 2016 2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2018 } 2019 2020 /** 2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2022 * @pi: port info structure 2023 * 2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2025 * mode to default. The PHY defaults are from get PHY capabilities topology 2026 * with media so call when media is first available. An error is returned if 2027 * called when media is not available. The PHY initialization completed state is 2028 * set here. 2029 * 2030 * These configurations are used when setting PHY 2031 * configuration. The user PHY configuration is updated on set PHY 2032 * configuration. Returns 0 on success, negative on failure 2033 */ 2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2035 { 2036 struct ice_aqc_get_phy_caps_data *pcaps; 2037 struct ice_phy_info *phy = &pi->phy; 2038 struct ice_pf *pf = pi->hw->back; 2039 int err; 2040 2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2042 return -EIO; 2043 2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2045 if (!pcaps) 2046 return -ENOMEM; 2047 2048 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2050 pcaps, NULL); 2051 else 2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2053 pcaps, NULL); 2054 if (err) { 2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2056 goto err_out; 2057 } 2058 2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2060 2061 /* check if lenient mode is supported and enabled */ 2062 if (ice_fw_supports_link_override(pi->hw) && 2063 !(pcaps->module_compliance_enforcement & 2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2066 2067 /* if the FW supports default PHY configuration mode, then the driver 2068 * does not have to apply link override settings. If not, 2069 * initialize user PHY configuration with link override values 2070 */ 2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2073 ice_init_phy_cfg_dflt_override(pi); 2074 goto out; 2075 } 2076 } 2077 2078 /* if link default override is not enabled, set user flow control and 2079 * FEC settings based on what get_phy_caps returned 2080 */ 2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2082 pcaps->link_fec_options); 2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2084 2085 out: 2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2088 err_out: 2089 kfree(pcaps); 2090 return err; 2091 } 2092 2093 /** 2094 * ice_configure_phy - configure PHY 2095 * @vsi: VSI of PHY 2096 * 2097 * Set the PHY configuration. If the current PHY configuration is the same as 2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2099 * configure the based get PHY capabilities for topology with media. 2100 */ 2101 static int ice_configure_phy(struct ice_vsi *vsi) 2102 { 2103 struct device *dev = ice_pf_to_dev(vsi->back); 2104 struct ice_port_info *pi = vsi->port_info; 2105 struct ice_aqc_get_phy_caps_data *pcaps; 2106 struct ice_aqc_set_phy_cfg_data *cfg; 2107 struct ice_phy_info *phy = &pi->phy; 2108 struct ice_pf *pf = vsi->back; 2109 int err; 2110 2111 /* Ensure we have media as we cannot configure a medialess port */ 2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2113 return -EPERM; 2114 2115 ice_print_topo_conflict(vsi); 2116 2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2119 return -EPERM; 2120 2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2122 return ice_force_phys_link_state(vsi, true); 2123 2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2125 if (!pcaps) 2126 return -ENOMEM; 2127 2128 /* Get current PHY config */ 2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2130 NULL); 2131 if (err) { 2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2133 vsi->vsi_num, err); 2134 goto done; 2135 } 2136 2137 /* If PHY enable link is configured and configuration has not changed, 2138 * there's nothing to do 2139 */ 2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2142 goto done; 2143 2144 /* Use PHY topology as baseline for configuration */ 2145 memset(pcaps, 0, sizeof(*pcaps)); 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2154 vsi->vsi_num, err); 2155 goto done; 2156 } 2157 2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2159 if (!cfg) { 2160 err = -ENOMEM; 2161 goto done; 2162 } 2163 2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2165 2166 /* Speed - If default override pending, use curr_user_phy_cfg set in 2167 * ice_init_phy_user_cfg_ldo. 2168 */ 2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2170 vsi->back->state)) { 2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2173 } else { 2174 u64 phy_low = 0, phy_high = 0; 2175 2176 ice_update_phy_type(&phy_low, &phy_high, 2177 pi->phy.curr_user_speed_req); 2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2179 cfg->phy_type_high = pcaps->phy_type_high & 2180 cpu_to_le64(phy_high); 2181 } 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2185 cfg->phy_type_low = pcaps->phy_type_low; 2186 cfg->phy_type_high = pcaps->phy_type_high; 2187 } 2188 2189 /* FEC */ 2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2191 2192 /* Can't provide what was requested; use PHY capabilities */ 2193 if (cfg->link_fec_opt != 2194 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2196 cfg->link_fec_opt = pcaps->link_fec_options; 2197 } 2198 2199 /* Flow Control - always supported; no need to check against 2200 * capabilities 2201 */ 2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2203 2204 /* Enable link and link update */ 2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2206 2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2208 if (err) 2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2210 vsi->vsi_num, err); 2211 2212 kfree(cfg); 2213 done: 2214 kfree(pcaps); 2215 return err; 2216 } 2217 2218 /** 2219 * ice_check_media_subtask - Check for media 2220 * @pf: pointer to PF struct 2221 * 2222 * If media is available, then initialize PHY user configuration if it is not 2223 * been, and configure the PHY if the interface is up. 2224 */ 2225 static void ice_check_media_subtask(struct ice_pf *pf) 2226 { 2227 struct ice_port_info *pi; 2228 struct ice_vsi *vsi; 2229 int err; 2230 2231 /* No need to check for media if it's already present */ 2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2233 return; 2234 2235 vsi = ice_get_main_vsi(pf); 2236 if (!vsi) 2237 return; 2238 2239 /* Refresh link info and check if media is present */ 2240 pi = vsi->port_info; 2241 err = ice_update_link_info(pi); 2242 if (err) 2243 return; 2244 2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2246 2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2249 ice_init_phy_user_cfg(pi); 2250 2251 /* PHY settings are reset on media insertion, reconfigure 2252 * PHY to preserve settings. 2253 */ 2254 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2256 return; 2257 2258 err = ice_configure_phy(vsi); 2259 if (!err) 2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2261 2262 /* A Link Status Event will be generated; the event handler 2263 * will complete bringing the interface up 2264 */ 2265 } 2266 } 2267 2268 /** 2269 * ice_service_task - manage and run subtasks 2270 * @work: pointer to work_struct contained by the PF struct 2271 */ 2272 static void ice_service_task(struct work_struct *work) 2273 { 2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2275 unsigned long start_time = jiffies; 2276 2277 /* subtasks */ 2278 2279 /* process reset requests first */ 2280 ice_reset_subtask(pf); 2281 2282 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2283 if (ice_is_reset_in_progress(pf->state) || 2284 test_bit(ICE_SUSPENDED, pf->state) || 2285 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2286 ice_service_task_complete(pf); 2287 return; 2288 } 2289 2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2291 struct iidc_event *event; 2292 2293 event = kzalloc(sizeof(*event), GFP_KERNEL); 2294 if (event) { 2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2296 /* report the entire OICR value to AUX driver */ 2297 swap(event->reg, pf->oicr_err_reg); 2298 ice_send_event_to_aux(pf, event); 2299 kfree(event); 2300 } 2301 } 2302 2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2304 /* Plug aux device per request */ 2305 ice_plug_aux_dev(pf); 2306 2307 /* Mark plugging as done but check whether unplug was 2308 * requested during ice_plug_aux_dev() call 2309 * (e.g. from ice_clear_rdma_cap()) and if so then 2310 * plug aux device. 2311 */ 2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2313 ice_unplug_aux_dev(pf); 2314 } 2315 2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2317 struct iidc_event *event; 2318 2319 event = kzalloc(sizeof(*event), GFP_KERNEL); 2320 if (event) { 2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2322 ice_send_event_to_aux(pf, event); 2323 kfree(event); 2324 } 2325 } 2326 2327 ice_clean_adminq_subtask(pf); 2328 ice_check_media_subtask(pf); 2329 ice_check_for_hang_subtask(pf); 2330 ice_sync_fltr_subtask(pf); 2331 ice_handle_mdd_event(pf); 2332 ice_watchdog_subtask(pf); 2333 2334 if (ice_is_safe_mode(pf)) { 2335 ice_service_task_complete(pf); 2336 return; 2337 } 2338 2339 ice_process_vflr_event(pf); 2340 ice_clean_mailboxq_subtask(pf); 2341 ice_clean_sbq_subtask(pf); 2342 ice_sync_arfs_fltrs(pf); 2343 ice_flush_fdir_ctx(pf); 2344 2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2346 ice_service_task_complete(pf); 2347 2348 /* If the tasks have taken longer than one service timer period 2349 * or there is more work to be done, reset the service timer to 2350 * schedule the service task now. 2351 */ 2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2359 mod_timer(&pf->serv_tmr, jiffies); 2360 } 2361 2362 /** 2363 * ice_set_ctrlq_len - helper function to set controlq length 2364 * @hw: pointer to the HW instance 2365 */ 2366 static void ice_set_ctrlq_len(struct ice_hw *hw) 2367 { 2368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2380 } 2381 2382 /** 2383 * ice_schedule_reset - schedule a reset 2384 * @pf: board private structure 2385 * @reset: reset being requested 2386 */ 2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2388 { 2389 struct device *dev = ice_pf_to_dev(pf); 2390 2391 /* bail out if earlier reset has failed */ 2392 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2393 dev_dbg(dev, "earlier reset has failed\n"); 2394 return -EIO; 2395 } 2396 /* bail if reset/recovery already in progress */ 2397 if (ice_is_reset_in_progress(pf->state)) { 2398 dev_dbg(dev, "Reset already in progress\n"); 2399 return -EBUSY; 2400 } 2401 2402 switch (reset) { 2403 case ICE_RESET_PFR: 2404 set_bit(ICE_PFR_REQ, pf->state); 2405 break; 2406 case ICE_RESET_CORER: 2407 set_bit(ICE_CORER_REQ, pf->state); 2408 break; 2409 case ICE_RESET_GLOBR: 2410 set_bit(ICE_GLOBR_REQ, pf->state); 2411 break; 2412 default: 2413 return -EINVAL; 2414 } 2415 2416 ice_service_task_schedule(pf); 2417 return 0; 2418 } 2419 2420 /** 2421 * ice_irq_affinity_notify - Callback for affinity changes 2422 * @notify: context as to what irq was changed 2423 * @mask: the new affinity mask 2424 * 2425 * This is a callback function used by the irq_set_affinity_notifier function 2426 * so that we may register to receive changes to the irq affinity masks. 2427 */ 2428 static void 2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2430 const cpumask_t *mask) 2431 { 2432 struct ice_q_vector *q_vector = 2433 container_of(notify, struct ice_q_vector, affinity_notify); 2434 2435 cpumask_copy(&q_vector->affinity_mask, mask); 2436 } 2437 2438 /** 2439 * ice_irq_affinity_release - Callback for affinity notifier release 2440 * @ref: internal core kernel usage 2441 * 2442 * This is a callback function used by the irq_set_affinity_notifier function 2443 * to inform the current notification subscriber that they will no longer 2444 * receive notifications. 2445 */ 2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2447 2448 /** 2449 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2450 * @vsi: the VSI being configured 2451 */ 2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2453 { 2454 struct ice_hw *hw = &vsi->back->hw; 2455 int i; 2456 2457 ice_for_each_q_vector(vsi, i) 2458 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2459 2460 ice_flush(hw); 2461 return 0; 2462 } 2463 2464 /** 2465 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2466 * @vsi: the VSI being configured 2467 * @basename: name for the vector 2468 */ 2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2470 { 2471 int q_vectors = vsi->num_q_vectors; 2472 struct ice_pf *pf = vsi->back; 2473 int base = vsi->base_vector; 2474 struct device *dev; 2475 int rx_int_idx = 0; 2476 int tx_int_idx = 0; 2477 int vector, err; 2478 int irq_num; 2479 2480 dev = ice_pf_to_dev(pf); 2481 for (vector = 0; vector < q_vectors; vector++) { 2482 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2483 2484 irq_num = pf->msix_entries[base + vector].vector; 2485 2486 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2487 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2488 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2489 tx_int_idx++; 2490 } else if (q_vector->rx.rx_ring) { 2491 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2492 "%s-%s-%d", basename, "rx", rx_int_idx++); 2493 } else if (q_vector->tx.tx_ring) { 2494 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2495 "%s-%s-%d", basename, "tx", tx_int_idx++); 2496 } else { 2497 /* skip this unused q_vector */ 2498 continue; 2499 } 2500 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2501 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2502 IRQF_SHARED, q_vector->name, 2503 q_vector); 2504 else 2505 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2506 0, q_vector->name, q_vector); 2507 if (err) { 2508 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2509 err); 2510 goto free_q_irqs; 2511 } 2512 2513 /* register for affinity change notifications */ 2514 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2515 struct irq_affinity_notify *affinity_notify; 2516 2517 affinity_notify = &q_vector->affinity_notify; 2518 affinity_notify->notify = ice_irq_affinity_notify; 2519 affinity_notify->release = ice_irq_affinity_release; 2520 irq_set_affinity_notifier(irq_num, affinity_notify); 2521 } 2522 2523 /* assign the mask for this irq */ 2524 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2525 } 2526 2527 err = ice_set_cpu_rx_rmap(vsi); 2528 if (err) { 2529 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2530 vsi->vsi_num, ERR_PTR(err)); 2531 goto free_q_irqs; 2532 } 2533 2534 vsi->irqs_ready = true; 2535 return 0; 2536 2537 free_q_irqs: 2538 while (vector) { 2539 vector--; 2540 irq_num = pf->msix_entries[base + vector].vector; 2541 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2542 irq_set_affinity_notifier(irq_num, NULL); 2543 irq_set_affinity_hint(irq_num, NULL); 2544 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2545 } 2546 return err; 2547 } 2548 2549 /** 2550 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2551 * @vsi: VSI to setup Tx rings used by XDP 2552 * 2553 * Return 0 on success and negative value on error 2554 */ 2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2556 { 2557 struct device *dev = ice_pf_to_dev(vsi->back); 2558 struct ice_tx_desc *tx_desc; 2559 int i, j; 2560 2561 ice_for_each_xdp_txq(vsi, i) { 2562 u16 xdp_q_idx = vsi->alloc_txq + i; 2563 struct ice_tx_ring *xdp_ring; 2564 2565 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2566 2567 if (!xdp_ring) 2568 goto free_xdp_rings; 2569 2570 xdp_ring->q_index = xdp_q_idx; 2571 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2572 xdp_ring->vsi = vsi; 2573 xdp_ring->netdev = NULL; 2574 xdp_ring->dev = dev; 2575 xdp_ring->count = vsi->num_tx_desc; 2576 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2577 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2578 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2579 if (ice_setup_tx_ring(xdp_ring)) 2580 goto free_xdp_rings; 2581 ice_set_ring_xdp(xdp_ring); 2582 spin_lock_init(&xdp_ring->tx_lock); 2583 for (j = 0; j < xdp_ring->count; j++) { 2584 tx_desc = ICE_TX_DESC(xdp_ring, j); 2585 tx_desc->cmd_type_offset_bsz = 0; 2586 } 2587 } 2588 2589 return 0; 2590 2591 free_xdp_rings: 2592 for (; i >= 0; i--) 2593 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2594 ice_free_tx_ring(vsi->xdp_rings[i]); 2595 return -ENOMEM; 2596 } 2597 2598 /** 2599 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2600 * @vsi: VSI to set the bpf prog on 2601 * @prog: the bpf prog pointer 2602 */ 2603 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2604 { 2605 struct bpf_prog *old_prog; 2606 int i; 2607 2608 old_prog = xchg(&vsi->xdp_prog, prog); 2609 if (old_prog) 2610 bpf_prog_put(old_prog); 2611 2612 ice_for_each_rxq(vsi, i) 2613 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2614 } 2615 2616 /** 2617 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2618 * @vsi: VSI to bring up Tx rings used by XDP 2619 * @prog: bpf program that will be assigned to VSI 2620 * 2621 * Return 0 on success and negative value on error 2622 */ 2623 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2624 { 2625 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2626 int xdp_rings_rem = vsi->num_xdp_txq; 2627 struct ice_pf *pf = vsi->back; 2628 struct ice_qs_cfg xdp_qs_cfg = { 2629 .qs_mutex = &pf->avail_q_mutex, 2630 .pf_map = pf->avail_txqs, 2631 .pf_map_size = pf->max_pf_txqs, 2632 .q_count = vsi->num_xdp_txq, 2633 .scatter_count = ICE_MAX_SCATTER_TXQS, 2634 .vsi_map = vsi->txq_map, 2635 .vsi_map_offset = vsi->alloc_txq, 2636 .mapping_mode = ICE_VSI_MAP_CONTIG 2637 }; 2638 struct device *dev; 2639 int i, v_idx; 2640 int status; 2641 2642 dev = ice_pf_to_dev(pf); 2643 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2644 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2645 if (!vsi->xdp_rings) 2646 return -ENOMEM; 2647 2648 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2649 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2650 goto err_map_xdp; 2651 2652 if (static_key_enabled(&ice_xdp_locking_key)) 2653 netdev_warn(vsi->netdev, 2654 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2655 2656 if (ice_xdp_alloc_setup_rings(vsi)) 2657 goto clear_xdp_rings; 2658 2659 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2660 ice_for_each_q_vector(vsi, v_idx) { 2661 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2662 int xdp_rings_per_v, q_id, q_base; 2663 2664 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2665 vsi->num_q_vectors - v_idx); 2666 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2667 2668 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2669 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2670 2671 xdp_ring->q_vector = q_vector; 2672 xdp_ring->next = q_vector->tx.tx_ring; 2673 q_vector->tx.tx_ring = xdp_ring; 2674 } 2675 xdp_rings_rem -= xdp_rings_per_v; 2676 } 2677 2678 ice_for_each_rxq(vsi, i) { 2679 if (static_key_enabled(&ice_xdp_locking_key)) { 2680 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2681 } else { 2682 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2683 struct ice_tx_ring *ring; 2684 2685 ice_for_each_tx_ring(ring, q_vector->tx) { 2686 if (ice_ring_is_xdp(ring)) { 2687 vsi->rx_rings[i]->xdp_ring = ring; 2688 break; 2689 } 2690 } 2691 } 2692 ice_tx_xsk_pool(vsi, i); 2693 } 2694 2695 /* omit the scheduler update if in reset path; XDP queues will be 2696 * taken into account at the end of ice_vsi_rebuild, where 2697 * ice_cfg_vsi_lan is being called 2698 */ 2699 if (ice_is_reset_in_progress(pf->state)) 2700 return 0; 2701 2702 /* tell the Tx scheduler that right now we have 2703 * additional queues 2704 */ 2705 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2706 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2707 2708 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2709 max_txqs); 2710 if (status) { 2711 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2712 status); 2713 goto clear_xdp_rings; 2714 } 2715 2716 /* assign the prog only when it's not already present on VSI; 2717 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2718 * VSI rebuild that happens under ethtool -L can expose us to 2719 * the bpf_prog refcount issues as we would be swapping same 2720 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2721 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2722 * this is not harmful as dev_xdp_install bumps the refcount 2723 * before calling the op exposed by the driver; 2724 */ 2725 if (!ice_is_xdp_ena_vsi(vsi)) 2726 ice_vsi_assign_bpf_prog(vsi, prog); 2727 2728 return 0; 2729 clear_xdp_rings: 2730 ice_for_each_xdp_txq(vsi, i) 2731 if (vsi->xdp_rings[i]) { 2732 kfree_rcu(vsi->xdp_rings[i], rcu); 2733 vsi->xdp_rings[i] = NULL; 2734 } 2735 2736 err_map_xdp: 2737 mutex_lock(&pf->avail_q_mutex); 2738 ice_for_each_xdp_txq(vsi, i) { 2739 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2740 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2741 } 2742 mutex_unlock(&pf->avail_q_mutex); 2743 2744 devm_kfree(dev, vsi->xdp_rings); 2745 return -ENOMEM; 2746 } 2747 2748 /** 2749 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2750 * @vsi: VSI to remove XDP rings 2751 * 2752 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2753 * resources 2754 */ 2755 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2756 { 2757 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2758 struct ice_pf *pf = vsi->back; 2759 int i, v_idx; 2760 2761 /* q_vectors are freed in reset path so there's no point in detaching 2762 * rings; in case of rebuild being triggered not from reset bits 2763 * in pf->state won't be set, so additionally check first q_vector 2764 * against NULL 2765 */ 2766 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2767 goto free_qmap; 2768 2769 ice_for_each_q_vector(vsi, v_idx) { 2770 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2771 struct ice_tx_ring *ring; 2772 2773 ice_for_each_tx_ring(ring, q_vector->tx) 2774 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2775 break; 2776 2777 /* restore the value of last node prior to XDP setup */ 2778 q_vector->tx.tx_ring = ring; 2779 } 2780 2781 free_qmap: 2782 mutex_lock(&pf->avail_q_mutex); 2783 ice_for_each_xdp_txq(vsi, i) { 2784 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2785 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2786 } 2787 mutex_unlock(&pf->avail_q_mutex); 2788 2789 ice_for_each_xdp_txq(vsi, i) 2790 if (vsi->xdp_rings[i]) { 2791 if (vsi->xdp_rings[i]->desc) { 2792 synchronize_rcu(); 2793 ice_free_tx_ring(vsi->xdp_rings[i]); 2794 } 2795 kfree_rcu(vsi->xdp_rings[i], rcu); 2796 vsi->xdp_rings[i] = NULL; 2797 } 2798 2799 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2800 vsi->xdp_rings = NULL; 2801 2802 if (static_key_enabled(&ice_xdp_locking_key)) 2803 static_branch_dec(&ice_xdp_locking_key); 2804 2805 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2806 return 0; 2807 2808 ice_vsi_assign_bpf_prog(vsi, NULL); 2809 2810 /* notify Tx scheduler that we destroyed XDP queues and bring 2811 * back the old number of child nodes 2812 */ 2813 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2814 max_txqs[i] = vsi->num_txq; 2815 2816 /* change number of XDP Tx queues to 0 */ 2817 vsi->num_xdp_txq = 0; 2818 2819 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2820 max_txqs); 2821 } 2822 2823 /** 2824 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2825 * @vsi: VSI to schedule napi on 2826 */ 2827 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2828 { 2829 int i; 2830 2831 ice_for_each_rxq(vsi, i) { 2832 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2833 2834 if (rx_ring->xsk_pool) 2835 napi_schedule(&rx_ring->q_vector->napi); 2836 } 2837 } 2838 2839 /** 2840 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2841 * @vsi: VSI to determine the count of XDP Tx qs 2842 * 2843 * returns 0 if Tx qs count is higher than at least half of CPU count, 2844 * -ENOMEM otherwise 2845 */ 2846 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2847 { 2848 u16 avail = ice_get_avail_txq_count(vsi->back); 2849 u16 cpus = num_possible_cpus(); 2850 2851 if (avail < cpus / 2) 2852 return -ENOMEM; 2853 2854 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2855 2856 if (vsi->num_xdp_txq < cpus) 2857 static_branch_inc(&ice_xdp_locking_key); 2858 2859 return 0; 2860 } 2861 2862 /** 2863 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2864 * @vsi: VSI to setup XDP for 2865 * @prog: XDP program 2866 * @extack: netlink extended ack 2867 */ 2868 static int 2869 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2870 struct netlink_ext_ack *extack) 2871 { 2872 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2873 bool if_running = netif_running(vsi->netdev); 2874 int ret = 0, xdp_ring_err = 0; 2875 2876 if (frame_size > vsi->rx_buf_len) { 2877 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2878 return -EOPNOTSUPP; 2879 } 2880 2881 /* need to stop netdev while setting up the program for Rx rings */ 2882 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2883 ret = ice_down(vsi); 2884 if (ret) { 2885 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2886 return ret; 2887 } 2888 } 2889 2890 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2891 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2892 if (xdp_ring_err) { 2893 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2894 } else { 2895 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2896 if (xdp_ring_err) 2897 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2898 } 2899 /* reallocate Rx queues that are used for zero-copy */ 2900 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2901 if (xdp_ring_err) 2902 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2903 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2904 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2905 if (xdp_ring_err) 2906 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2907 /* reallocate Rx queues that were used for zero-copy */ 2908 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2909 if (xdp_ring_err) 2910 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2911 } else { 2912 /* safe to call even when prog == vsi->xdp_prog as 2913 * dev_xdp_install in net/core/dev.c incremented prog's 2914 * refcount so corresponding bpf_prog_put won't cause 2915 * underflow 2916 */ 2917 ice_vsi_assign_bpf_prog(vsi, prog); 2918 } 2919 2920 if (if_running) 2921 ret = ice_up(vsi); 2922 2923 if (!ret && prog) 2924 ice_vsi_rx_napi_schedule(vsi); 2925 2926 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2927 } 2928 2929 /** 2930 * ice_xdp_safe_mode - XDP handler for safe mode 2931 * @dev: netdevice 2932 * @xdp: XDP command 2933 */ 2934 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2935 struct netdev_bpf *xdp) 2936 { 2937 NL_SET_ERR_MSG_MOD(xdp->extack, 2938 "Please provide working DDP firmware package in order to use XDP\n" 2939 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2940 return -EOPNOTSUPP; 2941 } 2942 2943 /** 2944 * ice_xdp - implements XDP handler 2945 * @dev: netdevice 2946 * @xdp: XDP command 2947 */ 2948 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2949 { 2950 struct ice_netdev_priv *np = netdev_priv(dev); 2951 struct ice_vsi *vsi = np->vsi; 2952 2953 if (vsi->type != ICE_VSI_PF) { 2954 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2955 return -EINVAL; 2956 } 2957 2958 switch (xdp->command) { 2959 case XDP_SETUP_PROG: 2960 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2961 case XDP_SETUP_XSK_POOL: 2962 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2963 xdp->xsk.queue_id); 2964 default: 2965 return -EINVAL; 2966 } 2967 } 2968 2969 /** 2970 * ice_ena_misc_vector - enable the non-queue interrupts 2971 * @pf: board private structure 2972 */ 2973 static void ice_ena_misc_vector(struct ice_pf *pf) 2974 { 2975 struct ice_hw *hw = &pf->hw; 2976 u32 val; 2977 2978 /* Disable anti-spoof detection interrupt to prevent spurious event 2979 * interrupts during a function reset. Anti-spoof functionally is 2980 * still supported. 2981 */ 2982 val = rd32(hw, GL_MDCK_TX_TDPU); 2983 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2984 wr32(hw, GL_MDCK_TX_TDPU, val); 2985 2986 /* clear things first */ 2987 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2988 rd32(hw, PFINT_OICR); /* read to clear */ 2989 2990 val = (PFINT_OICR_ECC_ERR_M | 2991 PFINT_OICR_MAL_DETECT_M | 2992 PFINT_OICR_GRST_M | 2993 PFINT_OICR_PCI_EXCEPTION_M | 2994 PFINT_OICR_VFLR_M | 2995 PFINT_OICR_HMC_ERR_M | 2996 PFINT_OICR_PE_PUSH_M | 2997 PFINT_OICR_PE_CRITERR_M); 2998 2999 wr32(hw, PFINT_OICR_ENA, val); 3000 3001 /* SW_ITR_IDX = 0, but don't change INTENA */ 3002 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3003 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3004 } 3005 3006 /** 3007 * ice_misc_intr - misc interrupt handler 3008 * @irq: interrupt number 3009 * @data: pointer to a q_vector 3010 */ 3011 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3012 { 3013 struct ice_pf *pf = (struct ice_pf *)data; 3014 struct ice_hw *hw = &pf->hw; 3015 irqreturn_t ret = IRQ_NONE; 3016 struct device *dev; 3017 u32 oicr, ena_mask; 3018 3019 dev = ice_pf_to_dev(pf); 3020 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3021 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3022 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3023 3024 oicr = rd32(hw, PFINT_OICR); 3025 ena_mask = rd32(hw, PFINT_OICR_ENA); 3026 3027 if (oicr & PFINT_OICR_SWINT_M) { 3028 ena_mask &= ~PFINT_OICR_SWINT_M; 3029 pf->sw_int_count++; 3030 } 3031 3032 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3033 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3034 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3035 } 3036 if (oicr & PFINT_OICR_VFLR_M) { 3037 /* disable any further VFLR event notifications */ 3038 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3039 u32 reg = rd32(hw, PFINT_OICR_ENA); 3040 3041 reg &= ~PFINT_OICR_VFLR_M; 3042 wr32(hw, PFINT_OICR_ENA, reg); 3043 } else { 3044 ena_mask &= ~PFINT_OICR_VFLR_M; 3045 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3046 } 3047 } 3048 3049 if (oicr & PFINT_OICR_GRST_M) { 3050 u32 reset; 3051 3052 /* we have a reset warning */ 3053 ena_mask &= ~PFINT_OICR_GRST_M; 3054 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3055 GLGEN_RSTAT_RESET_TYPE_S; 3056 3057 if (reset == ICE_RESET_CORER) 3058 pf->corer_count++; 3059 else if (reset == ICE_RESET_GLOBR) 3060 pf->globr_count++; 3061 else if (reset == ICE_RESET_EMPR) 3062 pf->empr_count++; 3063 else 3064 dev_dbg(dev, "Invalid reset type %d\n", reset); 3065 3066 /* If a reset cycle isn't already in progress, we set a bit in 3067 * pf->state so that the service task can start a reset/rebuild. 3068 */ 3069 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3070 if (reset == ICE_RESET_CORER) 3071 set_bit(ICE_CORER_RECV, pf->state); 3072 else if (reset == ICE_RESET_GLOBR) 3073 set_bit(ICE_GLOBR_RECV, pf->state); 3074 else 3075 set_bit(ICE_EMPR_RECV, pf->state); 3076 3077 /* There are couple of different bits at play here. 3078 * hw->reset_ongoing indicates whether the hardware is 3079 * in reset. This is set to true when a reset interrupt 3080 * is received and set back to false after the driver 3081 * has determined that the hardware is out of reset. 3082 * 3083 * ICE_RESET_OICR_RECV in pf->state indicates 3084 * that a post reset rebuild is required before the 3085 * driver is operational again. This is set above. 3086 * 3087 * As this is the start of the reset/rebuild cycle, set 3088 * both to indicate that. 3089 */ 3090 hw->reset_ongoing = true; 3091 } 3092 } 3093 3094 if (oicr & PFINT_OICR_TSYN_TX_M) { 3095 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3096 ice_ptp_process_ts(pf); 3097 } 3098 3099 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3100 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3101 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3102 3103 /* Save EVENTs from GTSYN register */ 3104 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3105 GLTSYN_STAT_EVENT1_M | 3106 GLTSYN_STAT_EVENT2_M); 3107 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3108 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3109 } 3110 3111 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3112 if (oicr & ICE_AUX_CRIT_ERR) { 3113 pf->oicr_err_reg |= oicr; 3114 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3115 ena_mask &= ~ICE_AUX_CRIT_ERR; 3116 } 3117 3118 /* Report any remaining unexpected interrupts */ 3119 oicr &= ena_mask; 3120 if (oicr) { 3121 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3122 /* If a critical error is pending there is no choice but to 3123 * reset the device. 3124 */ 3125 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3126 PFINT_OICR_ECC_ERR_M)) { 3127 set_bit(ICE_PFR_REQ, pf->state); 3128 ice_service_task_schedule(pf); 3129 } 3130 } 3131 ret = IRQ_HANDLED; 3132 3133 ice_service_task_schedule(pf); 3134 ice_irq_dynamic_ena(hw, NULL, NULL); 3135 3136 return ret; 3137 } 3138 3139 /** 3140 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3141 * @hw: pointer to HW structure 3142 */ 3143 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3144 { 3145 /* disable Admin queue Interrupt causes */ 3146 wr32(hw, PFINT_FW_CTL, 3147 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3148 3149 /* disable Mailbox queue Interrupt causes */ 3150 wr32(hw, PFINT_MBX_CTL, 3151 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3152 3153 wr32(hw, PFINT_SB_CTL, 3154 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3155 3156 /* disable Control queue Interrupt causes */ 3157 wr32(hw, PFINT_OICR_CTL, 3158 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3159 3160 ice_flush(hw); 3161 } 3162 3163 /** 3164 * ice_free_irq_msix_misc - Unroll misc vector setup 3165 * @pf: board private structure 3166 */ 3167 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3168 { 3169 struct ice_hw *hw = &pf->hw; 3170 3171 ice_dis_ctrlq_interrupts(hw); 3172 3173 /* disable OICR interrupt */ 3174 wr32(hw, PFINT_OICR_ENA, 0); 3175 ice_flush(hw); 3176 3177 if (pf->msix_entries) { 3178 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3179 devm_free_irq(ice_pf_to_dev(pf), 3180 pf->msix_entries[pf->oicr_idx].vector, pf); 3181 } 3182 3183 pf->num_avail_sw_msix += 1; 3184 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3185 } 3186 3187 /** 3188 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3189 * @hw: pointer to HW structure 3190 * @reg_idx: HW vector index to associate the control queue interrupts with 3191 */ 3192 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3193 { 3194 u32 val; 3195 3196 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3197 PFINT_OICR_CTL_CAUSE_ENA_M); 3198 wr32(hw, PFINT_OICR_CTL, val); 3199 3200 /* enable Admin queue Interrupt causes */ 3201 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3202 PFINT_FW_CTL_CAUSE_ENA_M); 3203 wr32(hw, PFINT_FW_CTL, val); 3204 3205 /* enable Mailbox queue Interrupt causes */ 3206 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3207 PFINT_MBX_CTL_CAUSE_ENA_M); 3208 wr32(hw, PFINT_MBX_CTL, val); 3209 3210 /* This enables Sideband queue Interrupt causes */ 3211 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3212 PFINT_SB_CTL_CAUSE_ENA_M); 3213 wr32(hw, PFINT_SB_CTL, val); 3214 3215 ice_flush(hw); 3216 } 3217 3218 /** 3219 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3220 * @pf: board private structure 3221 * 3222 * This sets up the handler for MSIX 0, which is used to manage the 3223 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3224 * when in MSI or Legacy interrupt mode. 3225 */ 3226 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3227 { 3228 struct device *dev = ice_pf_to_dev(pf); 3229 struct ice_hw *hw = &pf->hw; 3230 int oicr_idx, err = 0; 3231 3232 if (!pf->int_name[0]) 3233 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3234 dev_driver_string(dev), dev_name(dev)); 3235 3236 /* Do not request IRQ but do enable OICR interrupt since settings are 3237 * lost during reset. Note that this function is called only during 3238 * rebuild path and not while reset is in progress. 3239 */ 3240 if (ice_is_reset_in_progress(pf->state)) 3241 goto skip_req_irq; 3242 3243 /* reserve one vector in irq_tracker for misc interrupts */ 3244 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3245 if (oicr_idx < 0) 3246 return oicr_idx; 3247 3248 pf->num_avail_sw_msix -= 1; 3249 pf->oicr_idx = (u16)oicr_idx; 3250 3251 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3252 ice_misc_intr, 0, pf->int_name, pf); 3253 if (err) { 3254 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3255 pf->int_name, err); 3256 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3257 pf->num_avail_sw_msix += 1; 3258 return err; 3259 } 3260 3261 skip_req_irq: 3262 ice_ena_misc_vector(pf); 3263 3264 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3265 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3266 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3267 3268 ice_flush(hw); 3269 ice_irq_dynamic_ena(hw, NULL, NULL); 3270 3271 return 0; 3272 } 3273 3274 /** 3275 * ice_napi_add - register NAPI handler for the VSI 3276 * @vsi: VSI for which NAPI handler is to be registered 3277 * 3278 * This function is only called in the driver's load path. Registering the NAPI 3279 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3280 * reset/rebuild, etc.) 3281 */ 3282 static void ice_napi_add(struct ice_vsi *vsi) 3283 { 3284 int v_idx; 3285 3286 if (!vsi->netdev) 3287 return; 3288 3289 ice_for_each_q_vector(vsi, v_idx) 3290 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3291 ice_napi_poll, NAPI_POLL_WEIGHT); 3292 } 3293 3294 /** 3295 * ice_set_ops - set netdev and ethtools ops for the given netdev 3296 * @netdev: netdev instance 3297 */ 3298 static void ice_set_ops(struct net_device *netdev) 3299 { 3300 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3301 3302 if (ice_is_safe_mode(pf)) { 3303 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3304 ice_set_ethtool_safe_mode_ops(netdev); 3305 return; 3306 } 3307 3308 netdev->netdev_ops = &ice_netdev_ops; 3309 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3310 ice_set_ethtool_ops(netdev); 3311 } 3312 3313 /** 3314 * ice_set_netdev_features - set features for the given netdev 3315 * @netdev: netdev instance 3316 */ 3317 static void ice_set_netdev_features(struct net_device *netdev) 3318 { 3319 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3320 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3321 netdev_features_t csumo_features; 3322 netdev_features_t vlano_features; 3323 netdev_features_t dflt_features; 3324 netdev_features_t tso_features; 3325 3326 if (ice_is_safe_mode(pf)) { 3327 /* safe mode */ 3328 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3329 netdev->hw_features = netdev->features; 3330 return; 3331 } 3332 3333 dflt_features = NETIF_F_SG | 3334 NETIF_F_HIGHDMA | 3335 NETIF_F_NTUPLE | 3336 NETIF_F_RXHASH; 3337 3338 csumo_features = NETIF_F_RXCSUM | 3339 NETIF_F_IP_CSUM | 3340 NETIF_F_SCTP_CRC | 3341 NETIF_F_IPV6_CSUM; 3342 3343 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3344 NETIF_F_HW_VLAN_CTAG_TX | 3345 NETIF_F_HW_VLAN_CTAG_RX; 3346 3347 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3348 if (is_dvm_ena) 3349 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3350 3351 tso_features = NETIF_F_TSO | 3352 NETIF_F_TSO_ECN | 3353 NETIF_F_TSO6 | 3354 NETIF_F_GSO_GRE | 3355 NETIF_F_GSO_UDP_TUNNEL | 3356 NETIF_F_GSO_GRE_CSUM | 3357 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3358 NETIF_F_GSO_PARTIAL | 3359 NETIF_F_GSO_IPXIP4 | 3360 NETIF_F_GSO_IPXIP6 | 3361 NETIF_F_GSO_UDP_L4; 3362 3363 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3364 NETIF_F_GSO_GRE_CSUM; 3365 /* set features that user can change */ 3366 netdev->hw_features = dflt_features | csumo_features | 3367 vlano_features | tso_features; 3368 3369 /* add support for HW_CSUM on packets with MPLS header */ 3370 netdev->mpls_features = NETIF_F_HW_CSUM | 3371 NETIF_F_TSO | 3372 NETIF_F_TSO6; 3373 3374 /* enable features */ 3375 netdev->features |= netdev->hw_features; 3376 3377 netdev->hw_features |= NETIF_F_HW_TC; 3378 netdev->hw_features |= NETIF_F_LOOPBACK; 3379 3380 /* encap and VLAN devices inherit default, csumo and tso features */ 3381 netdev->hw_enc_features |= dflt_features | csumo_features | 3382 tso_features; 3383 netdev->vlan_features |= dflt_features | csumo_features | 3384 tso_features; 3385 3386 /* advertise support but don't enable by default since only one type of 3387 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3388 * type turns on the other has to be turned off. This is enforced by the 3389 * ice_fix_features() ndo callback. 3390 */ 3391 if (is_dvm_ena) 3392 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3393 NETIF_F_HW_VLAN_STAG_TX; 3394 } 3395 3396 /** 3397 * ice_cfg_netdev - Allocate, configure and register a netdev 3398 * @vsi: the VSI associated with the new netdev 3399 * 3400 * Returns 0 on success, negative value on failure 3401 */ 3402 static int ice_cfg_netdev(struct ice_vsi *vsi) 3403 { 3404 struct ice_netdev_priv *np; 3405 struct net_device *netdev; 3406 u8 mac_addr[ETH_ALEN]; 3407 3408 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3409 vsi->alloc_rxq); 3410 if (!netdev) 3411 return -ENOMEM; 3412 3413 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3414 vsi->netdev = netdev; 3415 np = netdev_priv(netdev); 3416 np->vsi = vsi; 3417 3418 ice_set_netdev_features(netdev); 3419 3420 ice_set_ops(netdev); 3421 3422 if (vsi->type == ICE_VSI_PF) { 3423 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3424 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3425 eth_hw_addr_set(netdev, mac_addr); 3426 ether_addr_copy(netdev->perm_addr, mac_addr); 3427 } 3428 3429 netdev->priv_flags |= IFF_UNICAST_FLT; 3430 3431 /* Setup netdev TC information */ 3432 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3433 3434 /* setup watchdog timeout value to be 5 second */ 3435 netdev->watchdog_timeo = 5 * HZ; 3436 3437 netdev->min_mtu = ETH_MIN_MTU; 3438 netdev->max_mtu = ICE_MAX_MTU; 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3445 * @lut: Lookup table 3446 * @rss_table_size: Lookup table size 3447 * @rss_size: Range of queue number for hashing 3448 */ 3449 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3450 { 3451 u16 i; 3452 3453 for (i = 0; i < rss_table_size; i++) 3454 lut[i] = i % rss_size; 3455 } 3456 3457 /** 3458 * ice_pf_vsi_setup - Set up a PF VSI 3459 * @pf: board private structure 3460 * @pi: pointer to the port_info instance 3461 * 3462 * Returns pointer to the successfully allocated VSI software struct 3463 * on success, otherwise returns NULL on failure. 3464 */ 3465 static struct ice_vsi * 3466 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3467 { 3468 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3469 } 3470 3471 static struct ice_vsi * 3472 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3473 struct ice_channel *ch) 3474 { 3475 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3476 } 3477 3478 /** 3479 * ice_ctrl_vsi_setup - Set up a control VSI 3480 * @pf: board private structure 3481 * @pi: pointer to the port_info instance 3482 * 3483 * Returns pointer to the successfully allocated VSI software struct 3484 * on success, otherwise returns NULL on failure. 3485 */ 3486 static struct ice_vsi * 3487 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3488 { 3489 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3490 } 3491 3492 /** 3493 * ice_lb_vsi_setup - Set up a loopback VSI 3494 * @pf: board private structure 3495 * @pi: pointer to the port_info instance 3496 * 3497 * Returns pointer to the successfully allocated VSI software struct 3498 * on success, otherwise returns NULL on failure. 3499 */ 3500 struct ice_vsi * 3501 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3502 { 3503 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3504 } 3505 3506 /** 3507 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3508 * @netdev: network interface to be adjusted 3509 * @proto: VLAN TPID 3510 * @vid: VLAN ID to be added 3511 * 3512 * net_device_ops implementation for adding VLAN IDs 3513 */ 3514 static int 3515 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3516 { 3517 struct ice_netdev_priv *np = netdev_priv(netdev); 3518 struct ice_vsi_vlan_ops *vlan_ops; 3519 struct ice_vsi *vsi = np->vsi; 3520 struct ice_vlan vlan; 3521 int ret; 3522 3523 /* VLAN 0 is added by default during load/reset */ 3524 if (!vid) 3525 return 0; 3526 3527 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3528 usleep_range(1000, 2000); 3529 3530 /* Add multicast promisc rule for the VLAN ID to be added if 3531 * all-multicast is currently enabled. 3532 */ 3533 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3534 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3535 ICE_MCAST_VLAN_PROMISC_BITS, 3536 vid); 3537 if (ret) 3538 goto finish; 3539 } 3540 3541 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3542 3543 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3544 * packets aren't pruned by the device's internal switch on Rx 3545 */ 3546 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3547 ret = vlan_ops->add_vlan(vsi, &vlan); 3548 if (ret) 3549 goto finish; 3550 3551 /* If all-multicast is currently enabled and this VLAN ID is only one 3552 * besides VLAN-0 we have to update look-up type of multicast promisc 3553 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3554 */ 3555 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3556 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3557 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3558 ICE_MCAST_PROMISC_BITS, 0); 3559 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3560 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3561 } 3562 3563 finish: 3564 clear_bit(ICE_CFG_BUSY, vsi->state); 3565 3566 return ret; 3567 } 3568 3569 /** 3570 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3571 * @netdev: network interface to be adjusted 3572 * @proto: VLAN TPID 3573 * @vid: VLAN ID to be removed 3574 * 3575 * net_device_ops implementation for removing VLAN IDs 3576 */ 3577 static int 3578 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3579 { 3580 struct ice_netdev_priv *np = netdev_priv(netdev); 3581 struct ice_vsi_vlan_ops *vlan_ops; 3582 struct ice_vsi *vsi = np->vsi; 3583 struct ice_vlan vlan; 3584 int ret; 3585 3586 /* don't allow removal of VLAN 0 */ 3587 if (!vid) 3588 return 0; 3589 3590 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3591 usleep_range(1000, 2000); 3592 3593 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3594 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3595 if (ret) { 3596 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3597 vsi->vsi_num); 3598 vsi->current_netdev_flags |= IFF_ALLMULTI; 3599 } 3600 3601 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3602 3603 /* Make sure VLAN delete is successful before updating VLAN 3604 * information 3605 */ 3606 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3607 ret = vlan_ops->del_vlan(vsi, &vlan); 3608 if (ret) 3609 goto finish; 3610 3611 /* Remove multicast promisc rule for the removed VLAN ID if 3612 * all-multicast is enabled. 3613 */ 3614 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3615 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3616 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3617 3618 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3619 /* Update look-up type of multicast promisc rule for VLAN 0 3620 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3621 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3622 */ 3623 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3624 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3625 ICE_MCAST_VLAN_PROMISC_BITS, 3626 0); 3627 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3628 ICE_MCAST_PROMISC_BITS, 0); 3629 } 3630 } 3631 3632 finish: 3633 clear_bit(ICE_CFG_BUSY, vsi->state); 3634 3635 return ret; 3636 } 3637 3638 /** 3639 * ice_rep_indr_tc_block_unbind 3640 * @cb_priv: indirection block private data 3641 */ 3642 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3643 { 3644 struct ice_indr_block_priv *indr_priv = cb_priv; 3645 3646 list_del(&indr_priv->list); 3647 kfree(indr_priv); 3648 } 3649 3650 /** 3651 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3652 * @vsi: VSI struct which has the netdev 3653 */ 3654 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3655 { 3656 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3657 3658 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3659 ice_rep_indr_tc_block_unbind); 3660 } 3661 3662 /** 3663 * ice_tc_indir_block_remove - clean indirect TC block notifications 3664 * @pf: PF structure 3665 */ 3666 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3667 { 3668 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3669 3670 if (!pf_vsi) 3671 return; 3672 3673 ice_tc_indir_block_unregister(pf_vsi); 3674 } 3675 3676 /** 3677 * ice_tc_indir_block_register - Register TC indirect block notifications 3678 * @vsi: VSI struct which has the netdev 3679 * 3680 * Returns 0 on success, negative value on failure 3681 */ 3682 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3683 { 3684 struct ice_netdev_priv *np; 3685 3686 if (!vsi || !vsi->netdev) 3687 return -EINVAL; 3688 3689 np = netdev_priv(vsi->netdev); 3690 3691 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3692 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3693 } 3694 3695 /** 3696 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3697 * @pf: board private structure 3698 * 3699 * Returns 0 on success, negative value on failure 3700 */ 3701 static int ice_setup_pf_sw(struct ice_pf *pf) 3702 { 3703 struct device *dev = ice_pf_to_dev(pf); 3704 bool dvm = ice_is_dvm_ena(&pf->hw); 3705 struct ice_vsi *vsi; 3706 int status; 3707 3708 if (ice_is_reset_in_progress(pf->state)) 3709 return -EBUSY; 3710 3711 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3712 if (status) 3713 return -EIO; 3714 3715 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3716 if (!vsi) 3717 return -ENOMEM; 3718 3719 /* init channel list */ 3720 INIT_LIST_HEAD(&vsi->ch_list); 3721 3722 status = ice_cfg_netdev(vsi); 3723 if (status) 3724 goto unroll_vsi_setup; 3725 /* netdev has to be configured before setting frame size */ 3726 ice_vsi_cfg_frame_size(vsi); 3727 3728 /* init indirect block notifications */ 3729 status = ice_tc_indir_block_register(vsi); 3730 if (status) { 3731 dev_err(dev, "Failed to register netdev notifier\n"); 3732 goto unroll_cfg_netdev; 3733 } 3734 3735 /* Setup DCB netlink interface */ 3736 ice_dcbnl_setup(vsi); 3737 3738 /* registering the NAPI handler requires both the queues and 3739 * netdev to be created, which are done in ice_pf_vsi_setup() 3740 * and ice_cfg_netdev() respectively 3741 */ 3742 ice_napi_add(vsi); 3743 3744 status = ice_init_mac_fltr(pf); 3745 if (status) 3746 goto unroll_napi_add; 3747 3748 return 0; 3749 3750 unroll_napi_add: 3751 ice_tc_indir_block_unregister(vsi); 3752 unroll_cfg_netdev: 3753 if (vsi) { 3754 ice_napi_del(vsi); 3755 if (vsi->netdev) { 3756 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3757 free_netdev(vsi->netdev); 3758 vsi->netdev = NULL; 3759 } 3760 } 3761 3762 unroll_vsi_setup: 3763 ice_vsi_release(vsi); 3764 return status; 3765 } 3766 3767 /** 3768 * ice_get_avail_q_count - Get count of queues in use 3769 * @pf_qmap: bitmap to get queue use count from 3770 * @lock: pointer to a mutex that protects access to pf_qmap 3771 * @size: size of the bitmap 3772 */ 3773 static u16 3774 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3775 { 3776 unsigned long bit; 3777 u16 count = 0; 3778 3779 mutex_lock(lock); 3780 for_each_clear_bit(bit, pf_qmap, size) 3781 count++; 3782 mutex_unlock(lock); 3783 3784 return count; 3785 } 3786 3787 /** 3788 * ice_get_avail_txq_count - Get count of Tx queues in use 3789 * @pf: pointer to an ice_pf instance 3790 */ 3791 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3792 { 3793 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3794 pf->max_pf_txqs); 3795 } 3796 3797 /** 3798 * ice_get_avail_rxq_count - Get count of Rx queues in use 3799 * @pf: pointer to an ice_pf instance 3800 */ 3801 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3802 { 3803 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3804 pf->max_pf_rxqs); 3805 } 3806 3807 /** 3808 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3809 * @pf: board private structure to initialize 3810 */ 3811 static void ice_deinit_pf(struct ice_pf *pf) 3812 { 3813 ice_service_task_stop(pf); 3814 mutex_destroy(&pf->adev_mutex); 3815 mutex_destroy(&pf->sw_mutex); 3816 mutex_destroy(&pf->tc_mutex); 3817 mutex_destroy(&pf->avail_q_mutex); 3818 mutex_destroy(&pf->vfs.table_lock); 3819 3820 if (pf->avail_txqs) { 3821 bitmap_free(pf->avail_txqs); 3822 pf->avail_txqs = NULL; 3823 } 3824 3825 if (pf->avail_rxqs) { 3826 bitmap_free(pf->avail_rxqs); 3827 pf->avail_rxqs = NULL; 3828 } 3829 3830 if (pf->ptp.clock) 3831 ptp_clock_unregister(pf->ptp.clock); 3832 } 3833 3834 /** 3835 * ice_set_pf_caps - set PFs capability flags 3836 * @pf: pointer to the PF instance 3837 */ 3838 static void ice_set_pf_caps(struct ice_pf *pf) 3839 { 3840 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3841 3842 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3843 if (func_caps->common_cap.rdma) 3844 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3845 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3846 if (func_caps->common_cap.dcb) 3847 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3848 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3849 if (func_caps->common_cap.sr_iov_1_1) { 3850 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3851 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3852 ICE_MAX_SRIOV_VFS); 3853 } 3854 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3855 if (func_caps->common_cap.rss_table_size) 3856 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3857 3858 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3859 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3860 u16 unused; 3861 3862 /* ctrl_vsi_idx will be set to a valid value when flow director 3863 * is setup by ice_init_fdir 3864 */ 3865 pf->ctrl_vsi_idx = ICE_NO_VSI; 3866 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3867 /* force guaranteed filter pool for PF */ 3868 ice_alloc_fd_guar_item(&pf->hw, &unused, 3869 func_caps->fd_fltr_guar); 3870 /* force shared filter pool for PF */ 3871 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3872 func_caps->fd_fltr_best_effort); 3873 } 3874 3875 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3876 if (func_caps->common_cap.ieee_1588) 3877 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3878 3879 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3880 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3881 } 3882 3883 /** 3884 * ice_init_pf - Initialize general software structures (struct ice_pf) 3885 * @pf: board private structure to initialize 3886 */ 3887 static int ice_init_pf(struct ice_pf *pf) 3888 { 3889 ice_set_pf_caps(pf); 3890 3891 mutex_init(&pf->sw_mutex); 3892 mutex_init(&pf->tc_mutex); 3893 mutex_init(&pf->adev_mutex); 3894 3895 INIT_HLIST_HEAD(&pf->aq_wait_list); 3896 spin_lock_init(&pf->aq_wait_lock); 3897 init_waitqueue_head(&pf->aq_wait_queue); 3898 3899 init_waitqueue_head(&pf->reset_wait_queue); 3900 3901 /* setup service timer and periodic service task */ 3902 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3903 pf->serv_tmr_period = HZ; 3904 INIT_WORK(&pf->serv_task, ice_service_task); 3905 clear_bit(ICE_SERVICE_SCHED, pf->state); 3906 3907 mutex_init(&pf->avail_q_mutex); 3908 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3909 if (!pf->avail_txqs) 3910 return -ENOMEM; 3911 3912 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3913 if (!pf->avail_rxqs) { 3914 bitmap_free(pf->avail_txqs); 3915 pf->avail_txqs = NULL; 3916 return -ENOMEM; 3917 } 3918 3919 mutex_init(&pf->vfs.table_lock); 3920 hash_init(pf->vfs.table); 3921 3922 return 0; 3923 } 3924 3925 /** 3926 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3927 * @pf: board private structure 3928 * 3929 * compute the number of MSIX vectors required (v_budget) and request from 3930 * the OS. Return the number of vectors reserved or negative on failure 3931 */ 3932 static int ice_ena_msix_range(struct ice_pf *pf) 3933 { 3934 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3935 struct device *dev = ice_pf_to_dev(pf); 3936 int needed, err, i; 3937 3938 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3939 num_cpus = num_online_cpus(); 3940 3941 /* reserve for LAN miscellaneous handler */ 3942 needed = ICE_MIN_LAN_OICR_MSIX; 3943 if (v_left < needed) 3944 goto no_hw_vecs_left_err; 3945 v_budget += needed; 3946 v_left -= needed; 3947 3948 /* reserve for flow director */ 3949 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3950 needed = ICE_FDIR_MSIX; 3951 if (v_left < needed) 3952 goto no_hw_vecs_left_err; 3953 v_budget += needed; 3954 v_left -= needed; 3955 } 3956 3957 /* reserve for switchdev */ 3958 needed = ICE_ESWITCH_MSIX; 3959 if (v_left < needed) 3960 goto no_hw_vecs_left_err; 3961 v_budget += needed; 3962 v_left -= needed; 3963 3964 /* total used for non-traffic vectors */ 3965 v_other = v_budget; 3966 3967 /* reserve vectors for LAN traffic */ 3968 needed = num_cpus; 3969 if (v_left < needed) 3970 goto no_hw_vecs_left_err; 3971 pf->num_lan_msix = needed; 3972 v_budget += needed; 3973 v_left -= needed; 3974 3975 /* reserve vectors for RDMA auxiliary driver */ 3976 if (ice_is_rdma_ena(pf)) { 3977 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3978 if (v_left < needed) 3979 goto no_hw_vecs_left_err; 3980 pf->num_rdma_msix = needed; 3981 v_budget += needed; 3982 v_left -= needed; 3983 } 3984 3985 pf->msix_entries = devm_kcalloc(dev, v_budget, 3986 sizeof(*pf->msix_entries), GFP_KERNEL); 3987 if (!pf->msix_entries) { 3988 err = -ENOMEM; 3989 goto exit_err; 3990 } 3991 3992 for (i = 0; i < v_budget; i++) 3993 pf->msix_entries[i].entry = i; 3994 3995 /* actually reserve the vectors */ 3996 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3997 ICE_MIN_MSIX, v_budget); 3998 if (v_actual < 0) { 3999 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4000 err = v_actual; 4001 goto msix_err; 4002 } 4003 4004 if (v_actual < v_budget) { 4005 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4006 v_budget, v_actual); 4007 4008 if (v_actual < ICE_MIN_MSIX) { 4009 /* error if we can't get minimum vectors */ 4010 pci_disable_msix(pf->pdev); 4011 err = -ERANGE; 4012 goto msix_err; 4013 } else { 4014 int v_remain = v_actual - v_other; 4015 int v_rdma = 0, v_min_rdma = 0; 4016 4017 if (ice_is_rdma_ena(pf)) { 4018 /* Need at least 1 interrupt in addition to 4019 * AEQ MSIX 4020 */ 4021 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 4022 v_min_rdma = ICE_MIN_RDMA_MSIX; 4023 } 4024 4025 if (v_actual == ICE_MIN_MSIX || 4026 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 4027 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4028 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4029 4030 pf->num_rdma_msix = 0; 4031 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4032 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4033 (v_remain - v_rdma < v_rdma)) { 4034 /* Support minimum RDMA and give remaining 4035 * vectors to LAN MSIX 4036 */ 4037 pf->num_rdma_msix = v_min_rdma; 4038 pf->num_lan_msix = v_remain - v_min_rdma; 4039 } else { 4040 /* Split remaining MSIX with RDMA after 4041 * accounting for AEQ MSIX 4042 */ 4043 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4044 ICE_RDMA_NUM_AEQ_MSIX; 4045 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4046 } 4047 4048 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4049 pf->num_lan_msix); 4050 4051 if (ice_is_rdma_ena(pf)) 4052 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4053 pf->num_rdma_msix); 4054 } 4055 } 4056 4057 return v_actual; 4058 4059 msix_err: 4060 devm_kfree(dev, pf->msix_entries); 4061 goto exit_err; 4062 4063 no_hw_vecs_left_err: 4064 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4065 needed, v_left); 4066 err = -ERANGE; 4067 exit_err: 4068 pf->num_rdma_msix = 0; 4069 pf->num_lan_msix = 0; 4070 return err; 4071 } 4072 4073 /** 4074 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4075 * @pf: board private structure 4076 */ 4077 static void ice_dis_msix(struct ice_pf *pf) 4078 { 4079 pci_disable_msix(pf->pdev); 4080 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4081 pf->msix_entries = NULL; 4082 } 4083 4084 /** 4085 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4086 * @pf: board private structure 4087 */ 4088 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4089 { 4090 ice_dis_msix(pf); 4091 4092 if (pf->irq_tracker) { 4093 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4094 pf->irq_tracker = NULL; 4095 } 4096 } 4097 4098 /** 4099 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4100 * @pf: board private structure to initialize 4101 */ 4102 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4103 { 4104 int vectors; 4105 4106 vectors = ice_ena_msix_range(pf); 4107 4108 if (vectors < 0) 4109 return vectors; 4110 4111 /* set up vector assignment tracking */ 4112 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4113 struct_size(pf->irq_tracker, list, vectors), 4114 GFP_KERNEL); 4115 if (!pf->irq_tracker) { 4116 ice_dis_msix(pf); 4117 return -ENOMEM; 4118 } 4119 4120 /* populate SW interrupts pool with number of OS granted IRQs. */ 4121 pf->num_avail_sw_msix = (u16)vectors; 4122 pf->irq_tracker->num_entries = (u16)vectors; 4123 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4124 4125 return 0; 4126 } 4127 4128 /** 4129 * ice_is_wol_supported - check if WoL is supported 4130 * @hw: pointer to hardware info 4131 * 4132 * Check if WoL is supported based on the HW configuration. 4133 * Returns true if NVM supports and enables WoL for this port, false otherwise 4134 */ 4135 bool ice_is_wol_supported(struct ice_hw *hw) 4136 { 4137 u16 wol_ctrl; 4138 4139 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4140 * word) indicates WoL is not supported on the corresponding PF ID. 4141 */ 4142 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4143 return false; 4144 4145 return !(BIT(hw->port_info->lport) & wol_ctrl); 4146 } 4147 4148 /** 4149 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4150 * @vsi: VSI being changed 4151 * @new_rx: new number of Rx queues 4152 * @new_tx: new number of Tx queues 4153 * 4154 * Only change the number of queues if new_tx, or new_rx is non-0. 4155 * 4156 * Returns 0 on success. 4157 */ 4158 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4159 { 4160 struct ice_pf *pf = vsi->back; 4161 int err = 0, timeout = 50; 4162 4163 if (!new_rx && !new_tx) 4164 return -EINVAL; 4165 4166 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4167 timeout--; 4168 if (!timeout) 4169 return -EBUSY; 4170 usleep_range(1000, 2000); 4171 } 4172 4173 if (new_tx) 4174 vsi->req_txq = (u16)new_tx; 4175 if (new_rx) 4176 vsi->req_rxq = (u16)new_rx; 4177 4178 /* set for the next time the netdev is started */ 4179 if (!netif_running(vsi->netdev)) { 4180 ice_vsi_rebuild(vsi, false); 4181 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4182 goto done; 4183 } 4184 4185 ice_vsi_close(vsi); 4186 ice_vsi_rebuild(vsi, false); 4187 ice_pf_dcb_recfg(pf); 4188 ice_vsi_open(vsi); 4189 done: 4190 clear_bit(ICE_CFG_BUSY, pf->state); 4191 return err; 4192 } 4193 4194 /** 4195 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4196 * @pf: PF to configure 4197 * 4198 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4199 * VSI can still Tx/Rx VLAN tagged packets. 4200 */ 4201 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4202 { 4203 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4204 struct ice_vsi_ctx *ctxt; 4205 struct ice_hw *hw; 4206 int status; 4207 4208 if (!vsi) 4209 return; 4210 4211 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4212 if (!ctxt) 4213 return; 4214 4215 hw = &pf->hw; 4216 ctxt->info = vsi->info; 4217 4218 ctxt->info.valid_sections = 4219 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4220 ICE_AQ_VSI_PROP_SECURITY_VALID | 4221 ICE_AQ_VSI_PROP_SW_VALID); 4222 4223 /* disable VLAN anti-spoof */ 4224 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4225 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4226 4227 /* disable VLAN pruning and keep all other settings */ 4228 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4229 4230 /* allow all VLANs on Tx and don't strip on Rx */ 4231 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4232 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4233 4234 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4235 if (status) { 4236 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4237 status, ice_aq_str(hw->adminq.sq_last_status)); 4238 } else { 4239 vsi->info.sec_flags = ctxt->info.sec_flags; 4240 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4241 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4242 } 4243 4244 kfree(ctxt); 4245 } 4246 4247 /** 4248 * ice_log_pkg_init - log result of DDP package load 4249 * @hw: pointer to hardware info 4250 * @state: state of package load 4251 */ 4252 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4253 { 4254 struct ice_pf *pf = hw->back; 4255 struct device *dev; 4256 4257 dev = ice_pf_to_dev(pf); 4258 4259 switch (state) { 4260 case ICE_DDP_PKG_SUCCESS: 4261 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4262 hw->active_pkg_name, 4263 hw->active_pkg_ver.major, 4264 hw->active_pkg_ver.minor, 4265 hw->active_pkg_ver.update, 4266 hw->active_pkg_ver.draft); 4267 break; 4268 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4269 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4270 hw->active_pkg_name, 4271 hw->active_pkg_ver.major, 4272 hw->active_pkg_ver.minor, 4273 hw->active_pkg_ver.update, 4274 hw->active_pkg_ver.draft); 4275 break; 4276 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4277 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4278 hw->active_pkg_name, 4279 hw->active_pkg_ver.major, 4280 hw->active_pkg_ver.minor, 4281 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4282 break; 4283 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4284 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4285 hw->active_pkg_name, 4286 hw->active_pkg_ver.major, 4287 hw->active_pkg_ver.minor, 4288 hw->active_pkg_ver.update, 4289 hw->active_pkg_ver.draft, 4290 hw->pkg_name, 4291 hw->pkg_ver.major, 4292 hw->pkg_ver.minor, 4293 hw->pkg_ver.update, 4294 hw->pkg_ver.draft); 4295 break; 4296 case ICE_DDP_PKG_FW_MISMATCH: 4297 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_INVALID_FILE: 4300 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4303 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4306 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4307 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4308 break; 4309 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4310 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4311 break; 4312 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4313 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4314 break; 4315 case ICE_DDP_PKG_LOAD_ERROR: 4316 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4317 /* poll for reset to complete */ 4318 if (ice_check_reset(hw)) 4319 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4320 break; 4321 case ICE_DDP_PKG_ERR: 4322 default: 4323 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4324 break; 4325 } 4326 } 4327 4328 /** 4329 * ice_load_pkg - load/reload the DDP Package file 4330 * @firmware: firmware structure when firmware requested or NULL for reload 4331 * @pf: pointer to the PF instance 4332 * 4333 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4334 * initialize HW tables. 4335 */ 4336 static void 4337 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4338 { 4339 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4340 struct device *dev = ice_pf_to_dev(pf); 4341 struct ice_hw *hw = &pf->hw; 4342 4343 /* Load DDP Package */ 4344 if (firmware && !hw->pkg_copy) { 4345 state = ice_copy_and_init_pkg(hw, firmware->data, 4346 firmware->size); 4347 ice_log_pkg_init(hw, state); 4348 } else if (!firmware && hw->pkg_copy) { 4349 /* Reload package during rebuild after CORER/GLOBR reset */ 4350 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4351 ice_log_pkg_init(hw, state); 4352 } else { 4353 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4354 } 4355 4356 if (!ice_is_init_pkg_successful(state)) { 4357 /* Safe Mode */ 4358 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4359 return; 4360 } 4361 4362 /* Successful download package is the precondition for advanced 4363 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4364 */ 4365 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4366 } 4367 4368 /** 4369 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4370 * @pf: pointer to the PF structure 4371 * 4372 * There is no error returned here because the driver should be able to handle 4373 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4374 * specifically with Tx. 4375 */ 4376 static void ice_verify_cacheline_size(struct ice_pf *pf) 4377 { 4378 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4379 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4380 ICE_CACHE_LINE_BYTES); 4381 } 4382 4383 /** 4384 * ice_send_version - update firmware with driver version 4385 * @pf: PF struct 4386 * 4387 * Returns 0 on success, else error code 4388 */ 4389 static int ice_send_version(struct ice_pf *pf) 4390 { 4391 struct ice_driver_ver dv; 4392 4393 dv.major_ver = 0xff; 4394 dv.minor_ver = 0xff; 4395 dv.build_ver = 0xff; 4396 dv.subbuild_ver = 0; 4397 strscpy((char *)dv.driver_string, UTS_RELEASE, 4398 sizeof(dv.driver_string)); 4399 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4400 } 4401 4402 /** 4403 * ice_init_fdir - Initialize flow director VSI and configuration 4404 * @pf: pointer to the PF instance 4405 * 4406 * returns 0 on success, negative on error 4407 */ 4408 static int ice_init_fdir(struct ice_pf *pf) 4409 { 4410 struct device *dev = ice_pf_to_dev(pf); 4411 struct ice_vsi *ctrl_vsi; 4412 int err; 4413 4414 /* Side Band Flow Director needs to have a control VSI. 4415 * Allocate it and store it in the PF. 4416 */ 4417 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4418 if (!ctrl_vsi) { 4419 dev_dbg(dev, "could not create control VSI\n"); 4420 return -ENOMEM; 4421 } 4422 4423 err = ice_vsi_open_ctrl(ctrl_vsi); 4424 if (err) { 4425 dev_dbg(dev, "could not open control VSI\n"); 4426 goto err_vsi_open; 4427 } 4428 4429 mutex_init(&pf->hw.fdir_fltr_lock); 4430 4431 err = ice_fdir_create_dflt_rules(pf); 4432 if (err) 4433 goto err_fdir_rule; 4434 4435 return 0; 4436 4437 err_fdir_rule: 4438 ice_fdir_release_flows(&pf->hw); 4439 ice_vsi_close(ctrl_vsi); 4440 err_vsi_open: 4441 ice_vsi_release(ctrl_vsi); 4442 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4443 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4444 pf->ctrl_vsi_idx = ICE_NO_VSI; 4445 } 4446 return err; 4447 } 4448 4449 /** 4450 * ice_get_opt_fw_name - return optional firmware file name or NULL 4451 * @pf: pointer to the PF instance 4452 */ 4453 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4454 { 4455 /* Optional firmware name same as default with additional dash 4456 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4457 */ 4458 struct pci_dev *pdev = pf->pdev; 4459 char *opt_fw_filename; 4460 u64 dsn; 4461 4462 /* Determine the name of the optional file using the DSN (two 4463 * dwords following the start of the DSN Capability). 4464 */ 4465 dsn = pci_get_dsn(pdev); 4466 if (!dsn) 4467 return NULL; 4468 4469 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4470 if (!opt_fw_filename) 4471 return NULL; 4472 4473 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4474 ICE_DDP_PKG_PATH, dsn); 4475 4476 return opt_fw_filename; 4477 } 4478 4479 /** 4480 * ice_request_fw - Device initialization routine 4481 * @pf: pointer to the PF instance 4482 */ 4483 static void ice_request_fw(struct ice_pf *pf) 4484 { 4485 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4486 const struct firmware *firmware = NULL; 4487 struct device *dev = ice_pf_to_dev(pf); 4488 int err = 0; 4489 4490 /* optional device-specific DDP (if present) overrides the default DDP 4491 * package file. kernel logs a debug message if the file doesn't exist, 4492 * and warning messages for other errors. 4493 */ 4494 if (opt_fw_filename) { 4495 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4496 if (err) { 4497 kfree(opt_fw_filename); 4498 goto dflt_pkg_load; 4499 } 4500 4501 /* request for firmware was successful. Download to device */ 4502 ice_load_pkg(firmware, pf); 4503 kfree(opt_fw_filename); 4504 release_firmware(firmware); 4505 return; 4506 } 4507 4508 dflt_pkg_load: 4509 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4510 if (err) { 4511 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4512 return; 4513 } 4514 4515 /* request for firmware was successful. Download to device */ 4516 ice_load_pkg(firmware, pf); 4517 release_firmware(firmware); 4518 } 4519 4520 /** 4521 * ice_print_wake_reason - show the wake up cause in the log 4522 * @pf: pointer to the PF struct 4523 */ 4524 static void ice_print_wake_reason(struct ice_pf *pf) 4525 { 4526 u32 wus = pf->wakeup_reason; 4527 const char *wake_str; 4528 4529 /* if no wake event, nothing to print */ 4530 if (!wus) 4531 return; 4532 4533 if (wus & PFPM_WUS_LNKC_M) 4534 wake_str = "Link\n"; 4535 else if (wus & PFPM_WUS_MAG_M) 4536 wake_str = "Magic Packet\n"; 4537 else if (wus & PFPM_WUS_MNG_M) 4538 wake_str = "Management\n"; 4539 else if (wus & PFPM_WUS_FW_RST_WK_M) 4540 wake_str = "Firmware Reset\n"; 4541 else 4542 wake_str = "Unknown\n"; 4543 4544 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4545 } 4546 4547 /** 4548 * ice_register_netdev - register netdev and devlink port 4549 * @pf: pointer to the PF struct 4550 */ 4551 static int ice_register_netdev(struct ice_pf *pf) 4552 { 4553 struct ice_vsi *vsi; 4554 int err = 0; 4555 4556 vsi = ice_get_main_vsi(pf); 4557 if (!vsi || !vsi->netdev) 4558 return -EIO; 4559 4560 err = register_netdev(vsi->netdev); 4561 if (err) 4562 goto err_register_netdev; 4563 4564 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4565 netif_carrier_off(vsi->netdev); 4566 netif_tx_stop_all_queues(vsi->netdev); 4567 err = ice_devlink_create_pf_port(pf); 4568 if (err) 4569 goto err_devlink_create; 4570 4571 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4572 4573 return 0; 4574 err_devlink_create: 4575 unregister_netdev(vsi->netdev); 4576 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4577 err_register_netdev: 4578 free_netdev(vsi->netdev); 4579 vsi->netdev = NULL; 4580 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4581 return err; 4582 } 4583 4584 /** 4585 * ice_probe - Device initialization routine 4586 * @pdev: PCI device information struct 4587 * @ent: entry in ice_pci_tbl 4588 * 4589 * Returns 0 on success, negative on failure 4590 */ 4591 static int 4592 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4593 { 4594 struct device *dev = &pdev->dev; 4595 struct ice_pf *pf; 4596 struct ice_hw *hw; 4597 int i, err; 4598 4599 if (pdev->is_virtfn) { 4600 dev_err(dev, "can't probe a virtual function\n"); 4601 return -EINVAL; 4602 } 4603 4604 /* this driver uses devres, see 4605 * Documentation/driver-api/driver-model/devres.rst 4606 */ 4607 err = pcim_enable_device(pdev); 4608 if (err) 4609 return err; 4610 4611 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4612 if (err) { 4613 dev_err(dev, "BAR0 I/O map error %d\n", err); 4614 return err; 4615 } 4616 4617 pf = ice_allocate_pf(dev); 4618 if (!pf) 4619 return -ENOMEM; 4620 4621 /* initialize Auxiliary index to invalid value */ 4622 pf->aux_idx = -1; 4623 4624 /* set up for high or low DMA */ 4625 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4626 if (err) { 4627 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4628 return err; 4629 } 4630 4631 pci_enable_pcie_error_reporting(pdev); 4632 pci_set_master(pdev); 4633 4634 pf->pdev = pdev; 4635 pci_set_drvdata(pdev, pf); 4636 set_bit(ICE_DOWN, pf->state); 4637 /* Disable service task until DOWN bit is cleared */ 4638 set_bit(ICE_SERVICE_DIS, pf->state); 4639 4640 hw = &pf->hw; 4641 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4642 pci_save_state(pdev); 4643 4644 hw->back = pf; 4645 hw->vendor_id = pdev->vendor; 4646 hw->device_id = pdev->device; 4647 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4648 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4649 hw->subsystem_device_id = pdev->subsystem_device; 4650 hw->bus.device = PCI_SLOT(pdev->devfn); 4651 hw->bus.func = PCI_FUNC(pdev->devfn); 4652 ice_set_ctrlq_len(hw); 4653 4654 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4655 4656 #ifndef CONFIG_DYNAMIC_DEBUG 4657 if (debug < -1) 4658 hw->debug_mask = debug; 4659 #endif 4660 4661 err = ice_init_hw(hw); 4662 if (err) { 4663 dev_err(dev, "ice_init_hw failed: %d\n", err); 4664 err = -EIO; 4665 goto err_exit_unroll; 4666 } 4667 4668 ice_init_feature_support(pf); 4669 4670 ice_request_fw(pf); 4671 4672 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4673 * set in pf->state, which will cause ice_is_safe_mode to return 4674 * true 4675 */ 4676 if (ice_is_safe_mode(pf)) { 4677 /* we already got function/device capabilities but these don't 4678 * reflect what the driver needs to do in safe mode. Instead of 4679 * adding conditional logic everywhere to ignore these 4680 * device/function capabilities, override them. 4681 */ 4682 ice_set_safe_mode_caps(hw); 4683 } 4684 4685 hw->ucast_shared = true; 4686 4687 err = ice_init_pf(pf); 4688 if (err) { 4689 dev_err(dev, "ice_init_pf failed: %d\n", err); 4690 goto err_init_pf_unroll; 4691 } 4692 4693 ice_devlink_init_regions(pf); 4694 4695 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4696 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4697 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4698 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4699 i = 0; 4700 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4701 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4702 pf->hw.tnl.valid_count[TNL_VXLAN]; 4703 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4704 UDP_TUNNEL_TYPE_VXLAN; 4705 i++; 4706 } 4707 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4708 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4709 pf->hw.tnl.valid_count[TNL_GENEVE]; 4710 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4711 UDP_TUNNEL_TYPE_GENEVE; 4712 i++; 4713 } 4714 4715 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4716 if (!pf->num_alloc_vsi) { 4717 err = -EIO; 4718 goto err_init_pf_unroll; 4719 } 4720 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4721 dev_warn(&pf->pdev->dev, 4722 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4723 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4724 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4725 } 4726 4727 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4728 GFP_KERNEL); 4729 if (!pf->vsi) { 4730 err = -ENOMEM; 4731 goto err_init_pf_unroll; 4732 } 4733 4734 err = ice_init_interrupt_scheme(pf); 4735 if (err) { 4736 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4737 err = -EIO; 4738 goto err_init_vsi_unroll; 4739 } 4740 4741 /* In case of MSIX we are going to setup the misc vector right here 4742 * to handle admin queue events etc. In case of legacy and MSI 4743 * the misc functionality and queue processing is combined in 4744 * the same vector and that gets setup at open. 4745 */ 4746 err = ice_req_irq_msix_misc(pf); 4747 if (err) { 4748 dev_err(dev, "setup of misc vector failed: %d\n", err); 4749 goto err_init_interrupt_unroll; 4750 } 4751 4752 /* create switch struct for the switch element created by FW on boot */ 4753 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4754 if (!pf->first_sw) { 4755 err = -ENOMEM; 4756 goto err_msix_misc_unroll; 4757 } 4758 4759 if (hw->evb_veb) 4760 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4761 else 4762 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4763 4764 pf->first_sw->pf = pf; 4765 4766 /* record the sw_id available for later use */ 4767 pf->first_sw->sw_id = hw->port_info->sw_id; 4768 4769 err = ice_setup_pf_sw(pf); 4770 if (err) { 4771 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4772 goto err_alloc_sw_unroll; 4773 } 4774 4775 clear_bit(ICE_SERVICE_DIS, pf->state); 4776 4777 /* tell the firmware we are up */ 4778 err = ice_send_version(pf); 4779 if (err) { 4780 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4781 UTS_RELEASE, err); 4782 goto err_send_version_unroll; 4783 } 4784 4785 /* since everything is good, start the service timer */ 4786 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4787 4788 err = ice_init_link_events(pf->hw.port_info); 4789 if (err) { 4790 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4791 goto err_send_version_unroll; 4792 } 4793 4794 /* not a fatal error if this fails */ 4795 err = ice_init_nvm_phy_type(pf->hw.port_info); 4796 if (err) 4797 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4798 4799 /* not a fatal error if this fails */ 4800 err = ice_update_link_info(pf->hw.port_info); 4801 if (err) 4802 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4803 4804 ice_init_link_dflt_override(pf->hw.port_info); 4805 4806 ice_check_link_cfg_err(pf, 4807 pf->hw.port_info->phy.link_info.link_cfg_err); 4808 4809 /* if media available, initialize PHY settings */ 4810 if (pf->hw.port_info->phy.link_info.link_info & 4811 ICE_AQ_MEDIA_AVAILABLE) { 4812 /* not a fatal error if this fails */ 4813 err = ice_init_phy_user_cfg(pf->hw.port_info); 4814 if (err) 4815 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4816 4817 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4818 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4819 4820 if (vsi) 4821 ice_configure_phy(vsi); 4822 } 4823 } else { 4824 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4825 } 4826 4827 ice_verify_cacheline_size(pf); 4828 4829 /* Save wakeup reason register for later use */ 4830 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4831 4832 /* check for a power management event */ 4833 ice_print_wake_reason(pf); 4834 4835 /* clear wake status, all bits */ 4836 wr32(hw, PFPM_WUS, U32_MAX); 4837 4838 /* Disable WoL at init, wait for user to enable */ 4839 device_set_wakeup_enable(dev, false); 4840 4841 if (ice_is_safe_mode(pf)) { 4842 ice_set_safe_mode_vlan_cfg(pf); 4843 goto probe_done; 4844 } 4845 4846 /* initialize DDP driven features */ 4847 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4848 ice_ptp_init(pf); 4849 4850 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4851 ice_gnss_init(pf); 4852 4853 /* Note: Flow director init failure is non-fatal to load */ 4854 if (ice_init_fdir(pf)) 4855 dev_err(dev, "could not initialize flow director\n"); 4856 4857 /* Note: DCB init failure is non-fatal to load */ 4858 if (ice_init_pf_dcb(pf, false)) { 4859 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4860 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4861 } else { 4862 ice_cfg_lldp_mib_change(&pf->hw, true); 4863 } 4864 4865 if (ice_init_lag(pf)) 4866 dev_warn(dev, "Failed to init link aggregation support\n"); 4867 4868 /* print PCI link speed and width */ 4869 pcie_print_link_status(pf->pdev); 4870 4871 probe_done: 4872 err = ice_register_netdev(pf); 4873 if (err) 4874 goto err_netdev_reg; 4875 4876 err = ice_devlink_register_params(pf); 4877 if (err) 4878 goto err_netdev_reg; 4879 4880 /* ready to go, so clear down state bit */ 4881 clear_bit(ICE_DOWN, pf->state); 4882 if (ice_is_rdma_ena(pf)) { 4883 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4884 if (pf->aux_idx < 0) { 4885 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4886 err = -ENOMEM; 4887 goto err_devlink_reg_param; 4888 } 4889 4890 err = ice_init_rdma(pf); 4891 if (err) { 4892 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4893 err = -EIO; 4894 goto err_init_aux_unroll; 4895 } 4896 } else { 4897 dev_warn(dev, "RDMA is not supported on this device\n"); 4898 } 4899 4900 ice_devlink_register(pf); 4901 return 0; 4902 4903 err_init_aux_unroll: 4904 pf->adev = NULL; 4905 ida_free(&ice_aux_ida, pf->aux_idx); 4906 err_devlink_reg_param: 4907 ice_devlink_unregister_params(pf); 4908 err_netdev_reg: 4909 err_send_version_unroll: 4910 ice_vsi_release_all(pf); 4911 err_alloc_sw_unroll: 4912 set_bit(ICE_SERVICE_DIS, pf->state); 4913 set_bit(ICE_DOWN, pf->state); 4914 devm_kfree(dev, pf->first_sw); 4915 err_msix_misc_unroll: 4916 ice_free_irq_msix_misc(pf); 4917 err_init_interrupt_unroll: 4918 ice_clear_interrupt_scheme(pf); 4919 err_init_vsi_unroll: 4920 devm_kfree(dev, pf->vsi); 4921 err_init_pf_unroll: 4922 ice_deinit_pf(pf); 4923 ice_devlink_destroy_regions(pf); 4924 ice_deinit_hw(hw); 4925 err_exit_unroll: 4926 pci_disable_pcie_error_reporting(pdev); 4927 pci_disable_device(pdev); 4928 return err; 4929 } 4930 4931 /** 4932 * ice_set_wake - enable or disable Wake on LAN 4933 * @pf: pointer to the PF struct 4934 * 4935 * Simple helper for WoL control 4936 */ 4937 static void ice_set_wake(struct ice_pf *pf) 4938 { 4939 struct ice_hw *hw = &pf->hw; 4940 bool wol = pf->wol_ena; 4941 4942 /* clear wake state, otherwise new wake events won't fire */ 4943 wr32(hw, PFPM_WUS, U32_MAX); 4944 4945 /* enable / disable APM wake up, no RMW needed */ 4946 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4947 4948 /* set magic packet filter enabled */ 4949 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4950 } 4951 4952 /** 4953 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4954 * @pf: pointer to the PF struct 4955 * 4956 * Issue firmware command to enable multicast magic wake, making 4957 * sure that any locally administered address (LAA) is used for 4958 * wake, and that PF reset doesn't undo the LAA. 4959 */ 4960 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4961 { 4962 struct device *dev = ice_pf_to_dev(pf); 4963 struct ice_hw *hw = &pf->hw; 4964 u8 mac_addr[ETH_ALEN]; 4965 struct ice_vsi *vsi; 4966 int status; 4967 u8 flags; 4968 4969 if (!pf->wol_ena) 4970 return; 4971 4972 vsi = ice_get_main_vsi(pf); 4973 if (!vsi) 4974 return; 4975 4976 /* Get current MAC address in case it's an LAA */ 4977 if (vsi->netdev) 4978 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4979 else 4980 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4981 4982 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4983 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4984 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4985 4986 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4987 if (status) 4988 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4989 status, ice_aq_str(hw->adminq.sq_last_status)); 4990 } 4991 4992 /** 4993 * ice_remove - Device removal routine 4994 * @pdev: PCI device information struct 4995 */ 4996 static void ice_remove(struct pci_dev *pdev) 4997 { 4998 struct ice_pf *pf = pci_get_drvdata(pdev); 4999 int i; 5000 5001 ice_devlink_unregister(pf); 5002 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5003 if (!ice_is_reset_in_progress(pf->state)) 5004 break; 5005 msleep(100); 5006 } 5007 5008 ice_tc_indir_block_remove(pf); 5009 5010 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5011 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5012 ice_free_vfs(pf); 5013 } 5014 5015 ice_service_task_stop(pf); 5016 5017 ice_aq_cancel_waiting_tasks(pf); 5018 ice_unplug_aux_dev(pf); 5019 if (pf->aux_idx >= 0) 5020 ida_free(&ice_aux_ida, pf->aux_idx); 5021 ice_devlink_unregister_params(pf); 5022 set_bit(ICE_DOWN, pf->state); 5023 5024 ice_deinit_lag(pf); 5025 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5026 ice_ptp_release(pf); 5027 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5028 ice_gnss_exit(pf); 5029 if (!ice_is_safe_mode(pf)) 5030 ice_remove_arfs(pf); 5031 ice_setup_mc_magic_wake(pf); 5032 ice_vsi_release_all(pf); 5033 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5034 ice_set_wake(pf); 5035 ice_free_irq_msix_misc(pf); 5036 ice_for_each_vsi(pf, i) { 5037 if (!pf->vsi[i]) 5038 continue; 5039 ice_vsi_free_q_vectors(pf->vsi[i]); 5040 } 5041 ice_deinit_pf(pf); 5042 ice_devlink_destroy_regions(pf); 5043 ice_deinit_hw(&pf->hw); 5044 5045 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5046 * do it via ice_schedule_reset() since there is no need to rebuild 5047 * and the service task is already stopped. 5048 */ 5049 ice_reset(&pf->hw, ICE_RESET_PFR); 5050 pci_wait_for_pending_transaction(pdev); 5051 ice_clear_interrupt_scheme(pf); 5052 pci_disable_pcie_error_reporting(pdev); 5053 pci_disable_device(pdev); 5054 } 5055 5056 /** 5057 * ice_shutdown - PCI callback for shutting down device 5058 * @pdev: PCI device information struct 5059 */ 5060 static void ice_shutdown(struct pci_dev *pdev) 5061 { 5062 struct ice_pf *pf = pci_get_drvdata(pdev); 5063 5064 ice_remove(pdev); 5065 5066 if (system_state == SYSTEM_POWER_OFF) { 5067 pci_wake_from_d3(pdev, pf->wol_ena); 5068 pci_set_power_state(pdev, PCI_D3hot); 5069 } 5070 } 5071 5072 #ifdef CONFIG_PM 5073 /** 5074 * ice_prepare_for_shutdown - prep for PCI shutdown 5075 * @pf: board private structure 5076 * 5077 * Inform or close all dependent features in prep for PCI device shutdown 5078 */ 5079 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5080 { 5081 struct ice_hw *hw = &pf->hw; 5082 u32 v; 5083 5084 /* Notify VFs of impending reset */ 5085 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5086 ice_vc_notify_reset(pf); 5087 5088 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5089 5090 /* disable the VSIs and their queues that are not already DOWN */ 5091 ice_pf_dis_all_vsi(pf, false); 5092 5093 ice_for_each_vsi(pf, v) 5094 if (pf->vsi[v]) 5095 pf->vsi[v]->vsi_num = 0; 5096 5097 ice_shutdown_all_ctrlq(hw); 5098 } 5099 5100 /** 5101 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5102 * @pf: board private structure to reinitialize 5103 * 5104 * This routine reinitialize interrupt scheme that was cleared during 5105 * power management suspend callback. 5106 * 5107 * This should be called during resume routine to re-allocate the q_vectors 5108 * and reacquire interrupts. 5109 */ 5110 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5111 { 5112 struct device *dev = ice_pf_to_dev(pf); 5113 int ret, v; 5114 5115 /* Since we clear MSIX flag during suspend, we need to 5116 * set it back during resume... 5117 */ 5118 5119 ret = ice_init_interrupt_scheme(pf); 5120 if (ret) { 5121 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5122 return ret; 5123 } 5124 5125 /* Remap vectors and rings, after successful re-init interrupts */ 5126 ice_for_each_vsi(pf, v) { 5127 if (!pf->vsi[v]) 5128 continue; 5129 5130 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5131 if (ret) 5132 goto err_reinit; 5133 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5134 } 5135 5136 ret = ice_req_irq_msix_misc(pf); 5137 if (ret) { 5138 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5139 ret); 5140 goto err_reinit; 5141 } 5142 5143 return 0; 5144 5145 err_reinit: 5146 while (v--) 5147 if (pf->vsi[v]) 5148 ice_vsi_free_q_vectors(pf->vsi[v]); 5149 5150 return ret; 5151 } 5152 5153 /** 5154 * ice_suspend 5155 * @dev: generic device information structure 5156 * 5157 * Power Management callback to quiesce the device and prepare 5158 * for D3 transition. 5159 */ 5160 static int __maybe_unused ice_suspend(struct device *dev) 5161 { 5162 struct pci_dev *pdev = to_pci_dev(dev); 5163 struct ice_pf *pf; 5164 int disabled, v; 5165 5166 pf = pci_get_drvdata(pdev); 5167 5168 if (!ice_pf_state_is_nominal(pf)) { 5169 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5170 return -EBUSY; 5171 } 5172 5173 /* Stop watchdog tasks until resume completion. 5174 * Even though it is most likely that the service task is 5175 * disabled if the device is suspended or down, the service task's 5176 * state is controlled by a different state bit, and we should 5177 * store and honor whatever state that bit is in at this point. 5178 */ 5179 disabled = ice_service_task_stop(pf); 5180 5181 ice_unplug_aux_dev(pf); 5182 5183 /* Already suspended?, then there is nothing to do */ 5184 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5185 if (!disabled) 5186 ice_service_task_restart(pf); 5187 return 0; 5188 } 5189 5190 if (test_bit(ICE_DOWN, pf->state) || 5191 ice_is_reset_in_progress(pf->state)) { 5192 dev_err(dev, "can't suspend device in reset or already down\n"); 5193 if (!disabled) 5194 ice_service_task_restart(pf); 5195 return 0; 5196 } 5197 5198 ice_setup_mc_magic_wake(pf); 5199 5200 ice_prepare_for_shutdown(pf); 5201 5202 ice_set_wake(pf); 5203 5204 /* Free vectors, clear the interrupt scheme and release IRQs 5205 * for proper hibernation, especially with large number of CPUs. 5206 * Otherwise hibernation might fail when mapping all the vectors back 5207 * to CPU0. 5208 */ 5209 ice_free_irq_msix_misc(pf); 5210 ice_for_each_vsi(pf, v) { 5211 if (!pf->vsi[v]) 5212 continue; 5213 ice_vsi_free_q_vectors(pf->vsi[v]); 5214 } 5215 ice_clear_interrupt_scheme(pf); 5216 5217 pci_save_state(pdev); 5218 pci_wake_from_d3(pdev, pf->wol_ena); 5219 pci_set_power_state(pdev, PCI_D3hot); 5220 return 0; 5221 } 5222 5223 /** 5224 * ice_resume - PM callback for waking up from D3 5225 * @dev: generic device information structure 5226 */ 5227 static int __maybe_unused ice_resume(struct device *dev) 5228 { 5229 struct pci_dev *pdev = to_pci_dev(dev); 5230 enum ice_reset_req reset_type; 5231 struct ice_pf *pf; 5232 struct ice_hw *hw; 5233 int ret; 5234 5235 pci_set_power_state(pdev, PCI_D0); 5236 pci_restore_state(pdev); 5237 pci_save_state(pdev); 5238 5239 if (!pci_device_is_present(pdev)) 5240 return -ENODEV; 5241 5242 ret = pci_enable_device_mem(pdev); 5243 if (ret) { 5244 dev_err(dev, "Cannot enable device after suspend\n"); 5245 return ret; 5246 } 5247 5248 pf = pci_get_drvdata(pdev); 5249 hw = &pf->hw; 5250 5251 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5252 ice_print_wake_reason(pf); 5253 5254 /* We cleared the interrupt scheme when we suspended, so we need to 5255 * restore it now to resume device functionality. 5256 */ 5257 ret = ice_reinit_interrupt_scheme(pf); 5258 if (ret) 5259 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5260 5261 clear_bit(ICE_DOWN, pf->state); 5262 /* Now perform PF reset and rebuild */ 5263 reset_type = ICE_RESET_PFR; 5264 /* re-enable service task for reset, but allow reset to schedule it */ 5265 clear_bit(ICE_SERVICE_DIS, pf->state); 5266 5267 if (ice_schedule_reset(pf, reset_type)) 5268 dev_err(dev, "Reset during resume failed.\n"); 5269 5270 clear_bit(ICE_SUSPENDED, pf->state); 5271 ice_service_task_restart(pf); 5272 5273 /* Restart the service task */ 5274 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5275 5276 return 0; 5277 } 5278 #endif /* CONFIG_PM */ 5279 5280 /** 5281 * ice_pci_err_detected - warning that PCI error has been detected 5282 * @pdev: PCI device information struct 5283 * @err: the type of PCI error 5284 * 5285 * Called to warn that something happened on the PCI bus and the error handling 5286 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5287 */ 5288 static pci_ers_result_t 5289 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5290 { 5291 struct ice_pf *pf = pci_get_drvdata(pdev); 5292 5293 if (!pf) { 5294 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5295 __func__, err); 5296 return PCI_ERS_RESULT_DISCONNECT; 5297 } 5298 5299 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5300 ice_service_task_stop(pf); 5301 5302 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5303 set_bit(ICE_PFR_REQ, pf->state); 5304 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5305 } 5306 } 5307 5308 return PCI_ERS_RESULT_NEED_RESET; 5309 } 5310 5311 /** 5312 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5313 * @pdev: PCI device information struct 5314 * 5315 * Called to determine if the driver can recover from the PCI slot reset by 5316 * using a register read to determine if the device is recoverable. 5317 */ 5318 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5319 { 5320 struct ice_pf *pf = pci_get_drvdata(pdev); 5321 pci_ers_result_t result; 5322 int err; 5323 u32 reg; 5324 5325 err = pci_enable_device_mem(pdev); 5326 if (err) { 5327 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5328 err); 5329 result = PCI_ERS_RESULT_DISCONNECT; 5330 } else { 5331 pci_set_master(pdev); 5332 pci_restore_state(pdev); 5333 pci_save_state(pdev); 5334 pci_wake_from_d3(pdev, false); 5335 5336 /* Check for life */ 5337 reg = rd32(&pf->hw, GLGEN_RTRIG); 5338 if (!reg) 5339 result = PCI_ERS_RESULT_RECOVERED; 5340 else 5341 result = PCI_ERS_RESULT_DISCONNECT; 5342 } 5343 5344 return result; 5345 } 5346 5347 /** 5348 * ice_pci_err_resume - restart operations after PCI error recovery 5349 * @pdev: PCI device information struct 5350 * 5351 * Called to allow the driver to bring things back up after PCI error and/or 5352 * reset recovery have finished 5353 */ 5354 static void ice_pci_err_resume(struct pci_dev *pdev) 5355 { 5356 struct ice_pf *pf = pci_get_drvdata(pdev); 5357 5358 if (!pf) { 5359 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5360 __func__); 5361 return; 5362 } 5363 5364 if (test_bit(ICE_SUSPENDED, pf->state)) { 5365 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5366 __func__); 5367 return; 5368 } 5369 5370 ice_restore_all_vfs_msi_state(pdev); 5371 5372 ice_do_reset(pf, ICE_RESET_PFR); 5373 ice_service_task_restart(pf); 5374 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5375 } 5376 5377 /** 5378 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5379 * @pdev: PCI device information struct 5380 */ 5381 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5382 { 5383 struct ice_pf *pf = pci_get_drvdata(pdev); 5384 5385 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5386 ice_service_task_stop(pf); 5387 5388 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5389 set_bit(ICE_PFR_REQ, pf->state); 5390 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5391 } 5392 } 5393 } 5394 5395 /** 5396 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5397 * @pdev: PCI device information struct 5398 */ 5399 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5400 { 5401 ice_pci_err_resume(pdev); 5402 } 5403 5404 /* ice_pci_tbl - PCI Device ID Table 5405 * 5406 * Wildcard entries (PCI_ANY_ID) should come last 5407 * Last entry must be all 0s 5408 * 5409 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5410 * Class, Class Mask, private data (not used) } 5411 */ 5412 static const struct pci_device_id ice_pci_tbl[] = { 5413 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5414 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5415 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5416 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5417 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5418 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5419 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5420 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5421 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5422 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5423 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5424 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5425 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5426 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5427 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5428 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5429 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5430 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5431 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5432 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5433 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5434 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5435 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5436 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5437 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5438 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5439 /* required last entry */ 5440 { 0, } 5441 }; 5442 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5443 5444 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5445 5446 static const struct pci_error_handlers ice_pci_err_handler = { 5447 .error_detected = ice_pci_err_detected, 5448 .slot_reset = ice_pci_err_slot_reset, 5449 .reset_prepare = ice_pci_err_reset_prepare, 5450 .reset_done = ice_pci_err_reset_done, 5451 .resume = ice_pci_err_resume 5452 }; 5453 5454 static struct pci_driver ice_driver = { 5455 .name = KBUILD_MODNAME, 5456 .id_table = ice_pci_tbl, 5457 .probe = ice_probe, 5458 .remove = ice_remove, 5459 #ifdef CONFIG_PM 5460 .driver.pm = &ice_pm_ops, 5461 #endif /* CONFIG_PM */ 5462 .shutdown = ice_shutdown, 5463 .sriov_configure = ice_sriov_configure, 5464 .err_handler = &ice_pci_err_handler 5465 }; 5466 5467 /** 5468 * ice_module_init - Driver registration routine 5469 * 5470 * ice_module_init is the first routine called when the driver is 5471 * loaded. All it does is register with the PCI subsystem. 5472 */ 5473 static int __init ice_module_init(void) 5474 { 5475 int status; 5476 5477 pr_info("%s\n", ice_driver_string); 5478 pr_info("%s\n", ice_copyright); 5479 5480 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5481 if (!ice_wq) { 5482 pr_err("Failed to create workqueue\n"); 5483 return -ENOMEM; 5484 } 5485 5486 status = pci_register_driver(&ice_driver); 5487 if (status) { 5488 pr_err("failed to register PCI driver, err %d\n", status); 5489 destroy_workqueue(ice_wq); 5490 } 5491 5492 return status; 5493 } 5494 module_init(ice_module_init); 5495 5496 /** 5497 * ice_module_exit - Driver exit cleanup routine 5498 * 5499 * ice_module_exit is called just before the driver is removed 5500 * from memory. 5501 */ 5502 static void __exit ice_module_exit(void) 5503 { 5504 pci_unregister_driver(&ice_driver); 5505 destroy_workqueue(ice_wq); 5506 pr_info("module unloaded\n"); 5507 } 5508 module_exit(ice_module_exit); 5509 5510 /** 5511 * ice_set_mac_address - NDO callback to set MAC address 5512 * @netdev: network interface device structure 5513 * @pi: pointer to an address structure 5514 * 5515 * Returns 0 on success, negative on failure 5516 */ 5517 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5518 { 5519 struct ice_netdev_priv *np = netdev_priv(netdev); 5520 struct ice_vsi *vsi = np->vsi; 5521 struct ice_pf *pf = vsi->back; 5522 struct ice_hw *hw = &pf->hw; 5523 struct sockaddr *addr = pi; 5524 u8 old_mac[ETH_ALEN]; 5525 u8 flags = 0; 5526 u8 *mac; 5527 int err; 5528 5529 mac = (u8 *)addr->sa_data; 5530 5531 if (!is_valid_ether_addr(mac)) 5532 return -EADDRNOTAVAIL; 5533 5534 if (ether_addr_equal(netdev->dev_addr, mac)) { 5535 netdev_dbg(netdev, "already using mac %pM\n", mac); 5536 return 0; 5537 } 5538 5539 if (test_bit(ICE_DOWN, pf->state) || 5540 ice_is_reset_in_progress(pf->state)) { 5541 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5542 mac); 5543 return -EBUSY; 5544 } 5545 5546 if (ice_chnl_dmac_fltr_cnt(pf)) { 5547 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5548 mac); 5549 return -EAGAIN; 5550 } 5551 5552 netif_addr_lock_bh(netdev); 5553 ether_addr_copy(old_mac, netdev->dev_addr); 5554 /* change the netdev's MAC address */ 5555 eth_hw_addr_set(netdev, mac); 5556 netif_addr_unlock_bh(netdev); 5557 5558 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5559 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5560 if (err && err != -ENOENT) { 5561 err = -EADDRNOTAVAIL; 5562 goto err_update_filters; 5563 } 5564 5565 /* Add filter for new MAC. If filter exists, return success */ 5566 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5567 if (err == -EEXIST) { 5568 /* Although this MAC filter is already present in hardware it's 5569 * possible in some cases (e.g. bonding) that dev_addr was 5570 * modified outside of the driver and needs to be restored back 5571 * to this value. 5572 */ 5573 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5574 5575 return 0; 5576 } else if (err) { 5577 /* error if the new filter addition failed */ 5578 err = -EADDRNOTAVAIL; 5579 } 5580 5581 err_update_filters: 5582 if (err) { 5583 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5584 mac); 5585 netif_addr_lock_bh(netdev); 5586 eth_hw_addr_set(netdev, old_mac); 5587 netif_addr_unlock_bh(netdev); 5588 return err; 5589 } 5590 5591 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5592 netdev->dev_addr); 5593 5594 /* write new MAC address to the firmware */ 5595 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5596 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5597 if (err) { 5598 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5599 mac, err); 5600 } 5601 return 0; 5602 } 5603 5604 /** 5605 * ice_set_rx_mode - NDO callback to set the netdev filters 5606 * @netdev: network interface device structure 5607 */ 5608 static void ice_set_rx_mode(struct net_device *netdev) 5609 { 5610 struct ice_netdev_priv *np = netdev_priv(netdev); 5611 struct ice_vsi *vsi = np->vsi; 5612 5613 if (!vsi) 5614 return; 5615 5616 /* Set the flags to synchronize filters 5617 * ndo_set_rx_mode may be triggered even without a change in netdev 5618 * flags 5619 */ 5620 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5621 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5622 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5623 5624 /* schedule our worker thread which will take care of 5625 * applying the new filter changes 5626 */ 5627 ice_service_task_schedule(vsi->back); 5628 } 5629 5630 /** 5631 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5632 * @netdev: network interface device structure 5633 * @queue_index: Queue ID 5634 * @maxrate: maximum bandwidth in Mbps 5635 */ 5636 static int 5637 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5638 { 5639 struct ice_netdev_priv *np = netdev_priv(netdev); 5640 struct ice_vsi *vsi = np->vsi; 5641 u16 q_handle; 5642 int status; 5643 u8 tc; 5644 5645 /* Validate maxrate requested is within permitted range */ 5646 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5647 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5648 maxrate, queue_index); 5649 return -EINVAL; 5650 } 5651 5652 q_handle = vsi->tx_rings[queue_index]->q_handle; 5653 tc = ice_dcb_get_tc(vsi, queue_index); 5654 5655 /* Set BW back to default, when user set maxrate to 0 */ 5656 if (!maxrate) 5657 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5658 q_handle, ICE_MAX_BW); 5659 else 5660 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5661 q_handle, ICE_MAX_BW, maxrate * 1000); 5662 if (status) 5663 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5664 status); 5665 5666 return status; 5667 } 5668 5669 /** 5670 * ice_fdb_add - add an entry to the hardware database 5671 * @ndm: the input from the stack 5672 * @tb: pointer to array of nladdr (unused) 5673 * @dev: the net device pointer 5674 * @addr: the MAC address entry being added 5675 * @vid: VLAN ID 5676 * @flags: instructions from stack about fdb operation 5677 * @extack: netlink extended ack 5678 */ 5679 static int 5680 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5681 struct net_device *dev, const unsigned char *addr, u16 vid, 5682 u16 flags, struct netlink_ext_ack __always_unused *extack) 5683 { 5684 int err; 5685 5686 if (vid) { 5687 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5688 return -EINVAL; 5689 } 5690 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5691 netdev_err(dev, "FDB only supports static addresses\n"); 5692 return -EINVAL; 5693 } 5694 5695 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5696 err = dev_uc_add_excl(dev, addr); 5697 else if (is_multicast_ether_addr(addr)) 5698 err = dev_mc_add_excl(dev, addr); 5699 else 5700 err = -EINVAL; 5701 5702 /* Only return duplicate errors if NLM_F_EXCL is set */ 5703 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5704 err = 0; 5705 5706 return err; 5707 } 5708 5709 /** 5710 * ice_fdb_del - delete an entry from the hardware database 5711 * @ndm: the input from the stack 5712 * @tb: pointer to array of nladdr (unused) 5713 * @dev: the net device pointer 5714 * @addr: the MAC address entry being added 5715 * @vid: VLAN ID 5716 * @extack: netlink extended ack 5717 */ 5718 static int 5719 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5720 struct net_device *dev, const unsigned char *addr, 5721 __always_unused u16 vid, struct netlink_ext_ack *extack) 5722 { 5723 int err; 5724 5725 if (ndm->ndm_state & NUD_PERMANENT) { 5726 netdev_err(dev, "FDB only supports static addresses\n"); 5727 return -EINVAL; 5728 } 5729 5730 if (is_unicast_ether_addr(addr)) 5731 err = dev_uc_del(dev, addr); 5732 else if (is_multicast_ether_addr(addr)) 5733 err = dev_mc_del(dev, addr); 5734 else 5735 err = -EINVAL; 5736 5737 return err; 5738 } 5739 5740 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5741 NETIF_F_HW_VLAN_CTAG_TX | \ 5742 NETIF_F_HW_VLAN_STAG_RX | \ 5743 NETIF_F_HW_VLAN_STAG_TX) 5744 5745 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5746 NETIF_F_HW_VLAN_STAG_FILTER) 5747 5748 /** 5749 * ice_fix_features - fix the netdev features flags based on device limitations 5750 * @netdev: ptr to the netdev that flags are being fixed on 5751 * @features: features that need to be checked and possibly fixed 5752 * 5753 * Make sure any fixups are made to features in this callback. This enables the 5754 * driver to not have to check unsupported configurations throughout the driver 5755 * because that's the responsiblity of this callback. 5756 * 5757 * Single VLAN Mode (SVM) Supported Features: 5758 * NETIF_F_HW_VLAN_CTAG_FILTER 5759 * NETIF_F_HW_VLAN_CTAG_RX 5760 * NETIF_F_HW_VLAN_CTAG_TX 5761 * 5762 * Double VLAN Mode (DVM) Supported Features: 5763 * NETIF_F_HW_VLAN_CTAG_FILTER 5764 * NETIF_F_HW_VLAN_CTAG_RX 5765 * NETIF_F_HW_VLAN_CTAG_TX 5766 * 5767 * NETIF_F_HW_VLAN_STAG_FILTER 5768 * NETIF_HW_VLAN_STAG_RX 5769 * NETIF_HW_VLAN_STAG_TX 5770 * 5771 * Features that need fixing: 5772 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5773 * These are mutually exlusive as the VSI context cannot support multiple 5774 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5775 * is not done, then default to clearing the requested STAG offload 5776 * settings. 5777 * 5778 * All supported filtering has to be enabled or disabled together. For 5779 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5780 * together. If this is not done, then default to VLAN filtering disabled. 5781 * These are mutually exclusive as there is currently no way to 5782 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5783 * prune rules. 5784 */ 5785 static netdev_features_t 5786 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5787 { 5788 struct ice_netdev_priv *np = netdev_priv(netdev); 5789 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5790 bool cur_ctag, cur_stag, req_ctag, req_stag; 5791 5792 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5793 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5794 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5795 5796 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5797 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5798 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5799 5800 if (req_vlan_fltr != cur_vlan_fltr) { 5801 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5802 if (req_ctag && req_stag) { 5803 features |= NETIF_VLAN_FILTERING_FEATURES; 5804 } else if (!req_ctag && !req_stag) { 5805 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5806 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5807 (!cur_stag && req_stag && !cur_ctag)) { 5808 features |= NETIF_VLAN_FILTERING_FEATURES; 5809 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5810 } else if ((cur_ctag && !req_ctag && cur_stag) || 5811 (cur_stag && !req_stag && cur_ctag)) { 5812 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5813 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5814 } 5815 } else { 5816 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5817 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5818 5819 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5820 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5821 } 5822 } 5823 5824 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5825 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5826 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5827 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5828 NETIF_F_HW_VLAN_STAG_TX); 5829 } 5830 5831 return features; 5832 } 5833 5834 /** 5835 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5836 * @vsi: PF's VSI 5837 * @features: features used to determine VLAN offload settings 5838 * 5839 * First, determine the vlan_ethertype based on the VLAN offload bits in 5840 * features. Then determine if stripping and insertion should be enabled or 5841 * disabled. Finally enable or disable VLAN stripping and insertion. 5842 */ 5843 static int 5844 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5845 { 5846 bool enable_stripping = true, enable_insertion = true; 5847 struct ice_vsi_vlan_ops *vlan_ops; 5848 int strip_err = 0, insert_err = 0; 5849 u16 vlan_ethertype = 0; 5850 5851 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5852 5853 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5854 vlan_ethertype = ETH_P_8021AD; 5855 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5856 vlan_ethertype = ETH_P_8021Q; 5857 5858 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5859 enable_stripping = false; 5860 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5861 enable_insertion = false; 5862 5863 if (enable_stripping) 5864 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5865 else 5866 strip_err = vlan_ops->dis_stripping(vsi); 5867 5868 if (enable_insertion) 5869 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5870 else 5871 insert_err = vlan_ops->dis_insertion(vsi); 5872 5873 if (strip_err || insert_err) 5874 return -EIO; 5875 5876 return 0; 5877 } 5878 5879 /** 5880 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5881 * @vsi: PF's VSI 5882 * @features: features used to determine VLAN filtering settings 5883 * 5884 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5885 * features. 5886 */ 5887 static int 5888 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5889 { 5890 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5891 int err = 0; 5892 5893 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5894 * if either bit is set 5895 */ 5896 if (features & 5897 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5898 err = vlan_ops->ena_rx_filtering(vsi); 5899 else 5900 err = vlan_ops->dis_rx_filtering(vsi); 5901 5902 return err; 5903 } 5904 5905 /** 5906 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5907 * @netdev: ptr to the netdev being adjusted 5908 * @features: the feature set that the stack is suggesting 5909 * 5910 * Only update VLAN settings if the requested_vlan_features are different than 5911 * the current_vlan_features. 5912 */ 5913 static int 5914 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5915 { 5916 netdev_features_t current_vlan_features, requested_vlan_features; 5917 struct ice_netdev_priv *np = netdev_priv(netdev); 5918 struct ice_vsi *vsi = np->vsi; 5919 int err; 5920 5921 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5922 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5923 if (current_vlan_features ^ requested_vlan_features) { 5924 err = ice_set_vlan_offload_features(vsi, features); 5925 if (err) 5926 return err; 5927 } 5928 5929 current_vlan_features = netdev->features & 5930 NETIF_VLAN_FILTERING_FEATURES; 5931 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5932 if (current_vlan_features ^ requested_vlan_features) { 5933 err = ice_set_vlan_filtering_features(vsi, features); 5934 if (err) 5935 return err; 5936 } 5937 5938 return 0; 5939 } 5940 5941 /** 5942 * ice_set_loopback - turn on/off loopback mode on underlying PF 5943 * @vsi: ptr to VSI 5944 * @ena: flag to indicate the on/off setting 5945 */ 5946 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5947 { 5948 bool if_running = netif_running(vsi->netdev); 5949 int ret; 5950 5951 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5952 ret = ice_down(vsi); 5953 if (ret) { 5954 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5955 return ret; 5956 } 5957 } 5958 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 5959 if (ret) 5960 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 5961 if (if_running) 5962 ret = ice_up(vsi); 5963 5964 return ret; 5965 } 5966 5967 /** 5968 * ice_set_features - set the netdev feature flags 5969 * @netdev: ptr to the netdev being adjusted 5970 * @features: the feature set that the stack is suggesting 5971 */ 5972 static int 5973 ice_set_features(struct net_device *netdev, netdev_features_t features) 5974 { 5975 netdev_features_t changed = netdev->features ^ features; 5976 struct ice_netdev_priv *np = netdev_priv(netdev); 5977 struct ice_vsi *vsi = np->vsi; 5978 struct ice_pf *pf = vsi->back; 5979 int ret = 0; 5980 5981 /* Don't set any netdev advanced features with device in Safe Mode */ 5982 if (ice_is_safe_mode(pf)) { 5983 dev_err(ice_pf_to_dev(pf), 5984 "Device is in Safe Mode - not enabling advanced netdev features\n"); 5985 return ret; 5986 } 5987 5988 /* Do not change setting during reset */ 5989 if (ice_is_reset_in_progress(pf->state)) { 5990 dev_err(ice_pf_to_dev(pf), 5991 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5992 return -EBUSY; 5993 } 5994 5995 /* Multiple features can be changed in one call so keep features in 5996 * separate if/else statements to guarantee each feature is checked 5997 */ 5998 if (changed & NETIF_F_RXHASH) 5999 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6000 6001 ret = ice_set_vlan_features(netdev, features); 6002 if (ret) 6003 return ret; 6004 6005 if (changed & NETIF_F_NTUPLE) { 6006 bool ena = !!(features & NETIF_F_NTUPLE); 6007 6008 ice_vsi_manage_fdir(vsi, ena); 6009 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6010 } 6011 6012 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6013 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6014 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6015 return -EACCES; 6016 } 6017 6018 if (changed & NETIF_F_HW_TC) { 6019 bool ena = !!(features & NETIF_F_HW_TC); 6020 6021 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6022 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6023 } 6024 6025 if (changed & NETIF_F_LOOPBACK) 6026 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6027 6028 return ret; 6029 } 6030 6031 /** 6032 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6033 * @vsi: VSI to setup VLAN properties for 6034 */ 6035 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6036 { 6037 int err; 6038 6039 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6040 if (err) 6041 return err; 6042 6043 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6044 if (err) 6045 return err; 6046 6047 return ice_vsi_add_vlan_zero(vsi); 6048 } 6049 6050 /** 6051 * ice_vsi_cfg - Setup the VSI 6052 * @vsi: the VSI being configured 6053 * 6054 * Return 0 on success and negative value on error 6055 */ 6056 int ice_vsi_cfg(struct ice_vsi *vsi) 6057 { 6058 int err; 6059 6060 if (vsi->netdev) { 6061 ice_set_rx_mode(vsi->netdev); 6062 6063 if (vsi->type != ICE_VSI_LB) { 6064 err = ice_vsi_vlan_setup(vsi); 6065 6066 if (err) 6067 return err; 6068 } 6069 } 6070 ice_vsi_cfg_dcb_rings(vsi); 6071 6072 err = ice_vsi_cfg_lan_txqs(vsi); 6073 if (!err && ice_is_xdp_ena_vsi(vsi)) 6074 err = ice_vsi_cfg_xdp_txqs(vsi); 6075 if (!err) 6076 err = ice_vsi_cfg_rxqs(vsi); 6077 6078 return err; 6079 } 6080 6081 /* THEORY OF MODERATION: 6082 * The ice driver hardware works differently than the hardware that DIMLIB was 6083 * originally made for. ice hardware doesn't have packet count limits that 6084 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6085 * which is hard-coded to a limit of 250,000 ints/second. 6086 * If not using dynamic moderation, the INTRL value can be modified 6087 * by ethtool rx-usecs-high. 6088 */ 6089 struct ice_dim { 6090 /* the throttle rate for interrupts, basically worst case delay before 6091 * an initial interrupt fires, value is stored in microseconds. 6092 */ 6093 u16 itr; 6094 }; 6095 6096 /* Make a different profile for Rx that doesn't allow quite so aggressive 6097 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6098 * second. 6099 */ 6100 static const struct ice_dim rx_profile[] = { 6101 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6102 {8}, /* 125,000 ints/s */ 6103 {16}, /* 62,500 ints/s */ 6104 {62}, /* 16,129 ints/s */ 6105 {126} /* 7,936 ints/s */ 6106 }; 6107 6108 /* The transmit profile, which has the same sorts of values 6109 * as the previous struct 6110 */ 6111 static const struct ice_dim tx_profile[] = { 6112 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6113 {8}, /* 125,000 ints/s */ 6114 {40}, /* 16,125 ints/s */ 6115 {128}, /* 7,812 ints/s */ 6116 {256} /* 3,906 ints/s */ 6117 }; 6118 6119 static void ice_tx_dim_work(struct work_struct *work) 6120 { 6121 struct ice_ring_container *rc; 6122 struct dim *dim; 6123 u16 itr; 6124 6125 dim = container_of(work, struct dim, work); 6126 rc = (struct ice_ring_container *)dim->priv; 6127 6128 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6129 6130 /* look up the values in our local table */ 6131 itr = tx_profile[dim->profile_ix].itr; 6132 6133 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6134 ice_write_itr(rc, itr); 6135 6136 dim->state = DIM_START_MEASURE; 6137 } 6138 6139 static void ice_rx_dim_work(struct work_struct *work) 6140 { 6141 struct ice_ring_container *rc; 6142 struct dim *dim; 6143 u16 itr; 6144 6145 dim = container_of(work, struct dim, work); 6146 rc = (struct ice_ring_container *)dim->priv; 6147 6148 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6149 6150 /* look up the values in our local table */ 6151 itr = rx_profile[dim->profile_ix].itr; 6152 6153 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6154 ice_write_itr(rc, itr); 6155 6156 dim->state = DIM_START_MEASURE; 6157 } 6158 6159 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6160 6161 /** 6162 * ice_init_moderation - set up interrupt moderation 6163 * @q_vector: the vector containing rings to be configured 6164 * 6165 * Set up interrupt moderation registers, with the intent to do the right thing 6166 * when called from reset or from probe, and whether or not dynamic moderation 6167 * is enabled or not. Take special care to write all the registers in both 6168 * dynamic moderation mode or not in order to make sure hardware is in a known 6169 * state. 6170 */ 6171 static void ice_init_moderation(struct ice_q_vector *q_vector) 6172 { 6173 struct ice_ring_container *rc; 6174 bool tx_dynamic, rx_dynamic; 6175 6176 rc = &q_vector->tx; 6177 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6178 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6179 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6180 rc->dim.priv = rc; 6181 tx_dynamic = ITR_IS_DYNAMIC(rc); 6182 6183 /* set the initial TX ITR to match the above */ 6184 ice_write_itr(rc, tx_dynamic ? 6185 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6186 6187 rc = &q_vector->rx; 6188 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6189 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6190 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6191 rc->dim.priv = rc; 6192 rx_dynamic = ITR_IS_DYNAMIC(rc); 6193 6194 /* set the initial RX ITR to match the above */ 6195 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6196 rc->itr_setting); 6197 6198 ice_set_q_vector_intrl(q_vector); 6199 } 6200 6201 /** 6202 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6203 * @vsi: the VSI being configured 6204 */ 6205 static void ice_napi_enable_all(struct ice_vsi *vsi) 6206 { 6207 int q_idx; 6208 6209 if (!vsi->netdev) 6210 return; 6211 6212 ice_for_each_q_vector(vsi, q_idx) { 6213 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6214 6215 ice_init_moderation(q_vector); 6216 6217 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6218 napi_enable(&q_vector->napi); 6219 } 6220 } 6221 6222 /** 6223 * ice_up_complete - Finish the last steps of bringing up a connection 6224 * @vsi: The VSI being configured 6225 * 6226 * Return 0 on success and negative value on error 6227 */ 6228 static int ice_up_complete(struct ice_vsi *vsi) 6229 { 6230 struct ice_pf *pf = vsi->back; 6231 int err; 6232 6233 ice_vsi_cfg_msix(vsi); 6234 6235 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6236 * Tx queue group list was configured and the context bits were 6237 * programmed using ice_vsi_cfg_txqs 6238 */ 6239 err = ice_vsi_start_all_rx_rings(vsi); 6240 if (err) 6241 return err; 6242 6243 clear_bit(ICE_VSI_DOWN, vsi->state); 6244 ice_napi_enable_all(vsi); 6245 ice_vsi_ena_irq(vsi); 6246 6247 if (vsi->port_info && 6248 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6249 vsi->netdev) { 6250 ice_print_link_msg(vsi, true); 6251 netif_tx_start_all_queues(vsi->netdev); 6252 netif_carrier_on(vsi->netdev); 6253 if (!ice_is_e810(&pf->hw)) 6254 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6255 } 6256 6257 /* Perform an initial read of the statistics registers now to 6258 * set the baseline so counters are ready when interface is up 6259 */ 6260 ice_update_eth_stats(vsi); 6261 ice_service_task_schedule(pf); 6262 6263 return 0; 6264 } 6265 6266 /** 6267 * ice_up - Bring the connection back up after being down 6268 * @vsi: VSI being configured 6269 */ 6270 int ice_up(struct ice_vsi *vsi) 6271 { 6272 int err; 6273 6274 err = ice_vsi_cfg(vsi); 6275 if (!err) 6276 err = ice_up_complete(vsi); 6277 6278 return err; 6279 } 6280 6281 /** 6282 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6283 * @syncp: pointer to u64_stats_sync 6284 * @stats: stats that pkts and bytes count will be taken from 6285 * @pkts: packets stats counter 6286 * @bytes: bytes stats counter 6287 * 6288 * This function fetches stats from the ring considering the atomic operations 6289 * that needs to be performed to read u64 values in 32 bit machine. 6290 */ 6291 void 6292 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6293 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6294 { 6295 unsigned int start; 6296 6297 do { 6298 start = u64_stats_fetch_begin_irq(syncp); 6299 *pkts = stats.pkts; 6300 *bytes = stats.bytes; 6301 } while (u64_stats_fetch_retry_irq(syncp, start)); 6302 } 6303 6304 /** 6305 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6306 * @vsi: the VSI to be updated 6307 * @vsi_stats: the stats struct to be updated 6308 * @rings: rings to work on 6309 * @count: number of rings 6310 */ 6311 static void 6312 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6313 struct rtnl_link_stats64 *vsi_stats, 6314 struct ice_tx_ring **rings, u16 count) 6315 { 6316 u16 i; 6317 6318 for (i = 0; i < count; i++) { 6319 struct ice_tx_ring *ring; 6320 u64 pkts = 0, bytes = 0; 6321 6322 ring = READ_ONCE(rings[i]); 6323 if (!ring) 6324 continue; 6325 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6326 vsi_stats->tx_packets += pkts; 6327 vsi_stats->tx_bytes += bytes; 6328 vsi->tx_restart += ring->tx_stats.restart_q; 6329 vsi->tx_busy += ring->tx_stats.tx_busy; 6330 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6331 } 6332 } 6333 6334 /** 6335 * ice_update_vsi_ring_stats - Update VSI stats counters 6336 * @vsi: the VSI to be updated 6337 */ 6338 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6339 { 6340 struct rtnl_link_stats64 *vsi_stats; 6341 u64 pkts, bytes; 6342 int i; 6343 6344 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6345 if (!vsi_stats) 6346 return; 6347 6348 /* reset non-netdev (extended) stats */ 6349 vsi->tx_restart = 0; 6350 vsi->tx_busy = 0; 6351 vsi->tx_linearize = 0; 6352 vsi->rx_buf_failed = 0; 6353 vsi->rx_page_failed = 0; 6354 6355 rcu_read_lock(); 6356 6357 /* update Tx rings counters */ 6358 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6359 vsi->num_txq); 6360 6361 /* update Rx rings counters */ 6362 ice_for_each_rxq(vsi, i) { 6363 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6364 6365 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6366 vsi_stats->rx_packets += pkts; 6367 vsi_stats->rx_bytes += bytes; 6368 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6369 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6370 } 6371 6372 /* update XDP Tx rings counters */ 6373 if (ice_is_xdp_ena_vsi(vsi)) 6374 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6375 vsi->num_xdp_txq); 6376 6377 rcu_read_unlock(); 6378 6379 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6380 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6381 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6382 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6383 6384 kfree(vsi_stats); 6385 } 6386 6387 /** 6388 * ice_update_vsi_stats - Update VSI stats counters 6389 * @vsi: the VSI to be updated 6390 */ 6391 void ice_update_vsi_stats(struct ice_vsi *vsi) 6392 { 6393 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6394 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6395 struct ice_pf *pf = vsi->back; 6396 6397 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6398 test_bit(ICE_CFG_BUSY, pf->state)) 6399 return; 6400 6401 /* get stats as recorded by Tx/Rx rings */ 6402 ice_update_vsi_ring_stats(vsi); 6403 6404 /* get VSI stats as recorded by the hardware */ 6405 ice_update_eth_stats(vsi); 6406 6407 cur_ns->tx_errors = cur_es->tx_errors; 6408 cur_ns->rx_dropped = cur_es->rx_discards; 6409 cur_ns->tx_dropped = cur_es->tx_discards; 6410 cur_ns->multicast = cur_es->rx_multicast; 6411 6412 /* update some more netdev stats if this is main VSI */ 6413 if (vsi->type == ICE_VSI_PF) { 6414 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6415 cur_ns->rx_errors = pf->stats.crc_errors + 6416 pf->stats.illegal_bytes + 6417 pf->stats.rx_len_errors + 6418 pf->stats.rx_undersize + 6419 pf->hw_csum_rx_error + 6420 pf->stats.rx_jabber + 6421 pf->stats.rx_fragments + 6422 pf->stats.rx_oversize; 6423 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6424 /* record drops from the port level */ 6425 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6426 } 6427 } 6428 6429 /** 6430 * ice_update_pf_stats - Update PF port stats counters 6431 * @pf: PF whose stats needs to be updated 6432 */ 6433 void ice_update_pf_stats(struct ice_pf *pf) 6434 { 6435 struct ice_hw_port_stats *prev_ps, *cur_ps; 6436 struct ice_hw *hw = &pf->hw; 6437 u16 fd_ctr_base; 6438 u8 port; 6439 6440 port = hw->port_info->lport; 6441 prev_ps = &pf->stats_prev; 6442 cur_ps = &pf->stats; 6443 6444 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6445 &prev_ps->eth.rx_bytes, 6446 &cur_ps->eth.rx_bytes); 6447 6448 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6449 &prev_ps->eth.rx_unicast, 6450 &cur_ps->eth.rx_unicast); 6451 6452 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6453 &prev_ps->eth.rx_multicast, 6454 &cur_ps->eth.rx_multicast); 6455 6456 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6457 &prev_ps->eth.rx_broadcast, 6458 &cur_ps->eth.rx_broadcast); 6459 6460 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6461 &prev_ps->eth.rx_discards, 6462 &cur_ps->eth.rx_discards); 6463 6464 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6465 &prev_ps->eth.tx_bytes, 6466 &cur_ps->eth.tx_bytes); 6467 6468 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6469 &prev_ps->eth.tx_unicast, 6470 &cur_ps->eth.tx_unicast); 6471 6472 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6473 &prev_ps->eth.tx_multicast, 6474 &cur_ps->eth.tx_multicast); 6475 6476 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6477 &prev_ps->eth.tx_broadcast, 6478 &cur_ps->eth.tx_broadcast); 6479 6480 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6481 &prev_ps->tx_dropped_link_down, 6482 &cur_ps->tx_dropped_link_down); 6483 6484 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6485 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6486 6487 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6488 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6489 6490 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6491 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6492 6493 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6494 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6495 6496 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6497 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6498 6499 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6500 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6501 6502 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6503 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6504 6505 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6506 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6507 6508 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6509 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6510 6511 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6512 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6513 6514 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6515 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6516 6517 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6518 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6519 6520 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6521 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6522 6523 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6524 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6525 6526 fd_ctr_base = hw->fd_ctr_base; 6527 6528 ice_stat_update40(hw, 6529 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6530 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6531 &cur_ps->fd_sb_match); 6532 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6533 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6534 6535 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6536 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6537 6538 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6539 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6540 6541 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6542 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6543 6544 ice_update_dcb_stats(pf); 6545 6546 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6547 &prev_ps->crc_errors, &cur_ps->crc_errors); 6548 6549 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6550 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6551 6552 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6553 &prev_ps->mac_local_faults, 6554 &cur_ps->mac_local_faults); 6555 6556 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6557 &prev_ps->mac_remote_faults, 6558 &cur_ps->mac_remote_faults); 6559 6560 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6561 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6562 6563 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6564 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6565 6566 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6567 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6568 6569 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6570 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6571 6572 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6573 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6574 6575 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6576 6577 pf->stat_prev_loaded = true; 6578 } 6579 6580 /** 6581 * ice_get_stats64 - get statistics for network device structure 6582 * @netdev: network interface device structure 6583 * @stats: main device statistics structure 6584 */ 6585 static 6586 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6587 { 6588 struct ice_netdev_priv *np = netdev_priv(netdev); 6589 struct rtnl_link_stats64 *vsi_stats; 6590 struct ice_vsi *vsi = np->vsi; 6591 6592 vsi_stats = &vsi->net_stats; 6593 6594 if (!vsi->num_txq || !vsi->num_rxq) 6595 return; 6596 6597 /* netdev packet/byte stats come from ring counter. These are obtained 6598 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6599 * But, only call the update routine and read the registers if VSI is 6600 * not down. 6601 */ 6602 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6603 ice_update_vsi_ring_stats(vsi); 6604 stats->tx_packets = vsi_stats->tx_packets; 6605 stats->tx_bytes = vsi_stats->tx_bytes; 6606 stats->rx_packets = vsi_stats->rx_packets; 6607 stats->rx_bytes = vsi_stats->rx_bytes; 6608 6609 /* The rest of the stats can be read from the hardware but instead we 6610 * just return values that the watchdog task has already obtained from 6611 * the hardware. 6612 */ 6613 stats->multicast = vsi_stats->multicast; 6614 stats->tx_errors = vsi_stats->tx_errors; 6615 stats->tx_dropped = vsi_stats->tx_dropped; 6616 stats->rx_errors = vsi_stats->rx_errors; 6617 stats->rx_dropped = vsi_stats->rx_dropped; 6618 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6619 stats->rx_length_errors = vsi_stats->rx_length_errors; 6620 } 6621 6622 /** 6623 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6624 * @vsi: VSI having NAPI disabled 6625 */ 6626 static void ice_napi_disable_all(struct ice_vsi *vsi) 6627 { 6628 int q_idx; 6629 6630 if (!vsi->netdev) 6631 return; 6632 6633 ice_for_each_q_vector(vsi, q_idx) { 6634 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6635 6636 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6637 napi_disable(&q_vector->napi); 6638 6639 cancel_work_sync(&q_vector->tx.dim.work); 6640 cancel_work_sync(&q_vector->rx.dim.work); 6641 } 6642 } 6643 6644 /** 6645 * ice_down - Shutdown the connection 6646 * @vsi: The VSI being stopped 6647 * 6648 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6649 */ 6650 int ice_down(struct ice_vsi *vsi) 6651 { 6652 int i, tx_err, rx_err, vlan_err = 0; 6653 6654 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6655 6656 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6657 vlan_err = ice_vsi_del_vlan_zero(vsi); 6658 if (!ice_is_e810(&vsi->back->hw)) 6659 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6660 netif_carrier_off(vsi->netdev); 6661 netif_tx_disable(vsi->netdev); 6662 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6663 ice_eswitch_stop_all_tx_queues(vsi->back); 6664 } 6665 6666 ice_vsi_dis_irq(vsi); 6667 6668 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6669 if (tx_err) 6670 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6671 vsi->vsi_num, tx_err); 6672 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6673 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6674 if (tx_err) 6675 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6676 vsi->vsi_num, tx_err); 6677 } 6678 6679 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6680 if (rx_err) 6681 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6682 vsi->vsi_num, rx_err); 6683 6684 ice_napi_disable_all(vsi); 6685 6686 ice_for_each_txq(vsi, i) 6687 ice_clean_tx_ring(vsi->tx_rings[i]); 6688 6689 ice_for_each_rxq(vsi, i) 6690 ice_clean_rx_ring(vsi->rx_rings[i]); 6691 6692 if (tx_err || rx_err || vlan_err) { 6693 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6694 vsi->vsi_num, vsi->vsw->sw_id); 6695 return -EIO; 6696 } 6697 6698 return 0; 6699 } 6700 6701 /** 6702 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6703 * @vsi: VSI having resources allocated 6704 * 6705 * Return 0 on success, negative on failure 6706 */ 6707 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6708 { 6709 int i, err = 0; 6710 6711 if (!vsi->num_txq) { 6712 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6713 vsi->vsi_num); 6714 return -EINVAL; 6715 } 6716 6717 ice_for_each_txq(vsi, i) { 6718 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6719 6720 if (!ring) 6721 return -EINVAL; 6722 6723 if (vsi->netdev) 6724 ring->netdev = vsi->netdev; 6725 err = ice_setup_tx_ring(ring); 6726 if (err) 6727 break; 6728 } 6729 6730 return err; 6731 } 6732 6733 /** 6734 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6735 * @vsi: VSI having resources allocated 6736 * 6737 * Return 0 on success, negative on failure 6738 */ 6739 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6740 { 6741 int i, err = 0; 6742 6743 if (!vsi->num_rxq) { 6744 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6745 vsi->vsi_num); 6746 return -EINVAL; 6747 } 6748 6749 ice_for_each_rxq(vsi, i) { 6750 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6751 6752 if (!ring) 6753 return -EINVAL; 6754 6755 if (vsi->netdev) 6756 ring->netdev = vsi->netdev; 6757 err = ice_setup_rx_ring(ring); 6758 if (err) 6759 break; 6760 } 6761 6762 return err; 6763 } 6764 6765 /** 6766 * ice_vsi_open_ctrl - open control VSI for use 6767 * @vsi: the VSI to open 6768 * 6769 * Initialization of the Control VSI 6770 * 6771 * Returns 0 on success, negative value on error 6772 */ 6773 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6774 { 6775 char int_name[ICE_INT_NAME_STR_LEN]; 6776 struct ice_pf *pf = vsi->back; 6777 struct device *dev; 6778 int err; 6779 6780 dev = ice_pf_to_dev(pf); 6781 /* allocate descriptors */ 6782 err = ice_vsi_setup_tx_rings(vsi); 6783 if (err) 6784 goto err_setup_tx; 6785 6786 err = ice_vsi_setup_rx_rings(vsi); 6787 if (err) 6788 goto err_setup_rx; 6789 6790 err = ice_vsi_cfg(vsi); 6791 if (err) 6792 goto err_setup_rx; 6793 6794 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6795 dev_driver_string(dev), dev_name(dev)); 6796 err = ice_vsi_req_irq_msix(vsi, int_name); 6797 if (err) 6798 goto err_setup_rx; 6799 6800 ice_vsi_cfg_msix(vsi); 6801 6802 err = ice_vsi_start_all_rx_rings(vsi); 6803 if (err) 6804 goto err_up_complete; 6805 6806 clear_bit(ICE_VSI_DOWN, vsi->state); 6807 ice_vsi_ena_irq(vsi); 6808 6809 return 0; 6810 6811 err_up_complete: 6812 ice_down(vsi); 6813 err_setup_rx: 6814 ice_vsi_free_rx_rings(vsi); 6815 err_setup_tx: 6816 ice_vsi_free_tx_rings(vsi); 6817 6818 return err; 6819 } 6820 6821 /** 6822 * ice_vsi_open - Called when a network interface is made active 6823 * @vsi: the VSI to open 6824 * 6825 * Initialization of the VSI 6826 * 6827 * Returns 0 on success, negative value on error 6828 */ 6829 int ice_vsi_open(struct ice_vsi *vsi) 6830 { 6831 char int_name[ICE_INT_NAME_STR_LEN]; 6832 struct ice_pf *pf = vsi->back; 6833 int err; 6834 6835 /* allocate descriptors */ 6836 err = ice_vsi_setup_tx_rings(vsi); 6837 if (err) 6838 goto err_setup_tx; 6839 6840 err = ice_vsi_setup_rx_rings(vsi); 6841 if (err) 6842 goto err_setup_rx; 6843 6844 err = ice_vsi_cfg(vsi); 6845 if (err) 6846 goto err_setup_rx; 6847 6848 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6849 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6850 err = ice_vsi_req_irq_msix(vsi, int_name); 6851 if (err) 6852 goto err_setup_rx; 6853 6854 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 6855 6856 if (vsi->type == ICE_VSI_PF) { 6857 /* Notify the stack of the actual queue counts. */ 6858 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6859 if (err) 6860 goto err_set_qs; 6861 6862 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6863 if (err) 6864 goto err_set_qs; 6865 } 6866 6867 err = ice_up_complete(vsi); 6868 if (err) 6869 goto err_up_complete; 6870 6871 return 0; 6872 6873 err_up_complete: 6874 ice_down(vsi); 6875 err_set_qs: 6876 ice_vsi_free_irq(vsi); 6877 err_setup_rx: 6878 ice_vsi_free_rx_rings(vsi); 6879 err_setup_tx: 6880 ice_vsi_free_tx_rings(vsi); 6881 6882 return err; 6883 } 6884 6885 /** 6886 * ice_vsi_release_all - Delete all VSIs 6887 * @pf: PF from which all VSIs are being removed 6888 */ 6889 static void ice_vsi_release_all(struct ice_pf *pf) 6890 { 6891 int err, i; 6892 6893 if (!pf->vsi) 6894 return; 6895 6896 ice_for_each_vsi(pf, i) { 6897 if (!pf->vsi[i]) 6898 continue; 6899 6900 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6901 continue; 6902 6903 err = ice_vsi_release(pf->vsi[i]); 6904 if (err) 6905 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6906 i, err, pf->vsi[i]->vsi_num); 6907 } 6908 } 6909 6910 /** 6911 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6912 * @pf: pointer to the PF instance 6913 * @type: VSI type to rebuild 6914 * 6915 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6916 */ 6917 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6918 { 6919 struct device *dev = ice_pf_to_dev(pf); 6920 int i, err; 6921 6922 ice_for_each_vsi(pf, i) { 6923 struct ice_vsi *vsi = pf->vsi[i]; 6924 6925 if (!vsi || vsi->type != type) 6926 continue; 6927 6928 /* rebuild the VSI */ 6929 err = ice_vsi_rebuild(vsi, true); 6930 if (err) { 6931 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6932 err, vsi->idx, ice_vsi_type_str(type)); 6933 return err; 6934 } 6935 6936 /* replay filters for the VSI */ 6937 err = ice_replay_vsi(&pf->hw, vsi->idx); 6938 if (err) { 6939 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6940 err, vsi->idx, ice_vsi_type_str(type)); 6941 return err; 6942 } 6943 6944 /* Re-map HW VSI number, using VSI handle that has been 6945 * previously validated in ice_replay_vsi() call above 6946 */ 6947 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6948 6949 /* enable the VSI */ 6950 err = ice_ena_vsi(vsi, false); 6951 if (err) { 6952 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6953 err, vsi->idx, ice_vsi_type_str(type)); 6954 return err; 6955 } 6956 6957 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6958 ice_vsi_type_str(type)); 6959 } 6960 6961 return 0; 6962 } 6963 6964 /** 6965 * ice_update_pf_netdev_link - Update PF netdev link status 6966 * @pf: pointer to the PF instance 6967 */ 6968 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6969 { 6970 bool link_up; 6971 int i; 6972 6973 ice_for_each_vsi(pf, i) { 6974 struct ice_vsi *vsi = pf->vsi[i]; 6975 6976 if (!vsi || vsi->type != ICE_VSI_PF) 6977 return; 6978 6979 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6980 if (link_up) { 6981 netif_carrier_on(pf->vsi[i]->netdev); 6982 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6983 } else { 6984 netif_carrier_off(pf->vsi[i]->netdev); 6985 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6986 } 6987 } 6988 } 6989 6990 /** 6991 * ice_rebuild - rebuild after reset 6992 * @pf: PF to rebuild 6993 * @reset_type: type of reset 6994 * 6995 * Do not rebuild VF VSI in this flow because that is already handled via 6996 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6997 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6998 * to reset/rebuild all the VF VSI twice. 6999 */ 7000 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7001 { 7002 struct device *dev = ice_pf_to_dev(pf); 7003 struct ice_hw *hw = &pf->hw; 7004 bool dvm; 7005 int err; 7006 7007 if (test_bit(ICE_DOWN, pf->state)) 7008 goto clear_recovery; 7009 7010 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7011 7012 #define ICE_EMP_RESET_SLEEP_MS 5000 7013 if (reset_type == ICE_RESET_EMPR) { 7014 /* If an EMP reset has occurred, any previously pending flash 7015 * update will have completed. We no longer know whether or 7016 * not the NVM update EMP reset is restricted. 7017 */ 7018 pf->fw_emp_reset_disabled = false; 7019 7020 msleep(ICE_EMP_RESET_SLEEP_MS); 7021 } 7022 7023 err = ice_init_all_ctrlq(hw); 7024 if (err) { 7025 dev_err(dev, "control queues init failed %d\n", err); 7026 goto err_init_ctrlq; 7027 } 7028 7029 /* if DDP was previously loaded successfully */ 7030 if (!ice_is_safe_mode(pf)) { 7031 /* reload the SW DB of filter tables */ 7032 if (reset_type == ICE_RESET_PFR) 7033 ice_fill_blk_tbls(hw); 7034 else 7035 /* Reload DDP Package after CORER/GLOBR reset */ 7036 ice_load_pkg(NULL, pf); 7037 } 7038 7039 err = ice_clear_pf_cfg(hw); 7040 if (err) { 7041 dev_err(dev, "clear PF configuration failed %d\n", err); 7042 goto err_init_ctrlq; 7043 } 7044 7045 ice_clear_pxe_mode(hw); 7046 7047 err = ice_init_nvm(hw); 7048 if (err) { 7049 dev_err(dev, "ice_init_nvm failed %d\n", err); 7050 goto err_init_ctrlq; 7051 } 7052 7053 err = ice_get_caps(hw); 7054 if (err) { 7055 dev_err(dev, "ice_get_caps failed %d\n", err); 7056 goto err_init_ctrlq; 7057 } 7058 7059 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7060 if (err) { 7061 dev_err(dev, "set_mac_cfg failed %d\n", err); 7062 goto err_init_ctrlq; 7063 } 7064 7065 dvm = ice_is_dvm_ena(hw); 7066 7067 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7068 if (err) 7069 goto err_init_ctrlq; 7070 7071 err = ice_sched_init_port(hw->port_info); 7072 if (err) 7073 goto err_sched_init_port; 7074 7075 /* start misc vector */ 7076 err = ice_req_irq_msix_misc(pf); 7077 if (err) { 7078 dev_err(dev, "misc vector setup failed: %d\n", err); 7079 goto err_sched_init_port; 7080 } 7081 7082 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7083 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7084 if (!rd32(hw, PFQF_FD_SIZE)) { 7085 u16 unused, guar, b_effort; 7086 7087 guar = hw->func_caps.fd_fltr_guar; 7088 b_effort = hw->func_caps.fd_fltr_best_effort; 7089 7090 /* force guaranteed filter pool for PF */ 7091 ice_alloc_fd_guar_item(hw, &unused, guar); 7092 /* force shared filter pool for PF */ 7093 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7094 } 7095 } 7096 7097 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7098 ice_dcb_rebuild(pf); 7099 7100 /* If the PF previously had enabled PTP, PTP init needs to happen before 7101 * the VSI rebuild. If not, this causes the PTP link status events to 7102 * fail. 7103 */ 7104 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7105 ice_ptp_reset(pf); 7106 7107 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7108 ice_gnss_init(pf); 7109 7110 /* rebuild PF VSI */ 7111 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7112 if (err) { 7113 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7114 goto err_vsi_rebuild; 7115 } 7116 7117 /* configure PTP timestamping after VSI rebuild */ 7118 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7119 ice_ptp_cfg_timestamp(pf, false); 7120 7121 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7122 if (err) { 7123 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7124 goto err_vsi_rebuild; 7125 } 7126 7127 if (reset_type == ICE_RESET_PFR) { 7128 err = ice_rebuild_channels(pf); 7129 if (err) { 7130 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7131 err); 7132 goto err_vsi_rebuild; 7133 } 7134 } 7135 7136 /* If Flow Director is active */ 7137 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7138 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7139 if (err) { 7140 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7141 goto err_vsi_rebuild; 7142 } 7143 7144 /* replay HW Flow Director recipes */ 7145 if (hw->fdir_prof) 7146 ice_fdir_replay_flows(hw); 7147 7148 /* replay Flow Director filters */ 7149 ice_fdir_replay_fltrs(pf); 7150 7151 ice_rebuild_arfs(pf); 7152 } 7153 7154 ice_update_pf_netdev_link(pf); 7155 7156 /* tell the firmware we are up */ 7157 err = ice_send_version(pf); 7158 if (err) { 7159 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7160 err); 7161 goto err_vsi_rebuild; 7162 } 7163 7164 ice_replay_post(hw); 7165 7166 /* if we get here, reset flow is successful */ 7167 clear_bit(ICE_RESET_FAILED, pf->state); 7168 7169 ice_plug_aux_dev(pf); 7170 return; 7171 7172 err_vsi_rebuild: 7173 err_sched_init_port: 7174 ice_sched_cleanup_all(hw); 7175 err_init_ctrlq: 7176 ice_shutdown_all_ctrlq(hw); 7177 set_bit(ICE_RESET_FAILED, pf->state); 7178 clear_recovery: 7179 /* set this bit in PF state to control service task scheduling */ 7180 set_bit(ICE_NEEDS_RESTART, pf->state); 7181 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7182 } 7183 7184 /** 7185 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7186 * @vsi: Pointer to VSI structure 7187 */ 7188 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7189 { 7190 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7191 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7192 else 7193 return ICE_RXBUF_3072; 7194 } 7195 7196 /** 7197 * ice_change_mtu - NDO callback to change the MTU 7198 * @netdev: network interface device structure 7199 * @new_mtu: new value for maximum frame size 7200 * 7201 * Returns 0 on success, negative on failure 7202 */ 7203 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7204 { 7205 struct ice_netdev_priv *np = netdev_priv(netdev); 7206 struct ice_vsi *vsi = np->vsi; 7207 struct ice_pf *pf = vsi->back; 7208 u8 count = 0; 7209 int err = 0; 7210 7211 if (new_mtu == (int)netdev->mtu) { 7212 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7213 return 0; 7214 } 7215 7216 if (ice_is_xdp_ena_vsi(vsi)) { 7217 int frame_size = ice_max_xdp_frame_size(vsi); 7218 7219 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7220 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7221 frame_size - ICE_ETH_PKT_HDR_PAD); 7222 return -EINVAL; 7223 } 7224 } 7225 7226 /* if a reset is in progress, wait for some time for it to complete */ 7227 do { 7228 if (ice_is_reset_in_progress(pf->state)) { 7229 count++; 7230 usleep_range(1000, 2000); 7231 } else { 7232 break; 7233 } 7234 7235 } while (count < 100); 7236 7237 if (count == 100) { 7238 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7239 return -EBUSY; 7240 } 7241 7242 netdev->mtu = (unsigned int)new_mtu; 7243 7244 /* if VSI is up, bring it down and then back up */ 7245 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7246 err = ice_down(vsi); 7247 if (err) { 7248 netdev_err(netdev, "change MTU if_down err %d\n", err); 7249 return err; 7250 } 7251 7252 err = ice_up(vsi); 7253 if (err) { 7254 netdev_err(netdev, "change MTU if_up err %d\n", err); 7255 return err; 7256 } 7257 } 7258 7259 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7260 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7261 7262 return err; 7263 } 7264 7265 /** 7266 * ice_eth_ioctl - Access the hwtstamp interface 7267 * @netdev: network interface device structure 7268 * @ifr: interface request data 7269 * @cmd: ioctl command 7270 */ 7271 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7272 { 7273 struct ice_netdev_priv *np = netdev_priv(netdev); 7274 struct ice_pf *pf = np->vsi->back; 7275 7276 switch (cmd) { 7277 case SIOCGHWTSTAMP: 7278 return ice_ptp_get_ts_config(pf, ifr); 7279 case SIOCSHWTSTAMP: 7280 return ice_ptp_set_ts_config(pf, ifr); 7281 default: 7282 return -EOPNOTSUPP; 7283 } 7284 } 7285 7286 /** 7287 * ice_aq_str - convert AQ err code to a string 7288 * @aq_err: the AQ error code to convert 7289 */ 7290 const char *ice_aq_str(enum ice_aq_err aq_err) 7291 { 7292 switch (aq_err) { 7293 case ICE_AQ_RC_OK: 7294 return "OK"; 7295 case ICE_AQ_RC_EPERM: 7296 return "ICE_AQ_RC_EPERM"; 7297 case ICE_AQ_RC_ENOENT: 7298 return "ICE_AQ_RC_ENOENT"; 7299 case ICE_AQ_RC_ENOMEM: 7300 return "ICE_AQ_RC_ENOMEM"; 7301 case ICE_AQ_RC_EBUSY: 7302 return "ICE_AQ_RC_EBUSY"; 7303 case ICE_AQ_RC_EEXIST: 7304 return "ICE_AQ_RC_EEXIST"; 7305 case ICE_AQ_RC_EINVAL: 7306 return "ICE_AQ_RC_EINVAL"; 7307 case ICE_AQ_RC_ENOSPC: 7308 return "ICE_AQ_RC_ENOSPC"; 7309 case ICE_AQ_RC_ENOSYS: 7310 return "ICE_AQ_RC_ENOSYS"; 7311 case ICE_AQ_RC_EMODE: 7312 return "ICE_AQ_RC_EMODE"; 7313 case ICE_AQ_RC_ENOSEC: 7314 return "ICE_AQ_RC_ENOSEC"; 7315 case ICE_AQ_RC_EBADSIG: 7316 return "ICE_AQ_RC_EBADSIG"; 7317 case ICE_AQ_RC_ESVN: 7318 return "ICE_AQ_RC_ESVN"; 7319 case ICE_AQ_RC_EBADMAN: 7320 return "ICE_AQ_RC_EBADMAN"; 7321 case ICE_AQ_RC_EBADBUF: 7322 return "ICE_AQ_RC_EBADBUF"; 7323 } 7324 7325 return "ICE_AQ_RC_UNKNOWN"; 7326 } 7327 7328 /** 7329 * ice_set_rss_lut - Set RSS LUT 7330 * @vsi: Pointer to VSI structure 7331 * @lut: Lookup table 7332 * @lut_size: Lookup table size 7333 * 7334 * Returns 0 on success, negative on failure 7335 */ 7336 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7337 { 7338 struct ice_aq_get_set_rss_lut_params params = {}; 7339 struct ice_hw *hw = &vsi->back->hw; 7340 int status; 7341 7342 if (!lut) 7343 return -EINVAL; 7344 7345 params.vsi_handle = vsi->idx; 7346 params.lut_size = lut_size; 7347 params.lut_type = vsi->rss_lut_type; 7348 params.lut = lut; 7349 7350 status = ice_aq_set_rss_lut(hw, ¶ms); 7351 if (status) 7352 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7353 status, ice_aq_str(hw->adminq.sq_last_status)); 7354 7355 return status; 7356 } 7357 7358 /** 7359 * ice_set_rss_key - Set RSS key 7360 * @vsi: Pointer to the VSI structure 7361 * @seed: RSS hash seed 7362 * 7363 * Returns 0 on success, negative on failure 7364 */ 7365 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7366 { 7367 struct ice_hw *hw = &vsi->back->hw; 7368 int status; 7369 7370 if (!seed) 7371 return -EINVAL; 7372 7373 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7374 if (status) 7375 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7376 status, ice_aq_str(hw->adminq.sq_last_status)); 7377 7378 return status; 7379 } 7380 7381 /** 7382 * ice_get_rss_lut - Get RSS LUT 7383 * @vsi: Pointer to VSI structure 7384 * @lut: Buffer to store the lookup table entries 7385 * @lut_size: Size of buffer to store the lookup table entries 7386 * 7387 * Returns 0 on success, negative on failure 7388 */ 7389 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7390 { 7391 struct ice_aq_get_set_rss_lut_params params = {}; 7392 struct ice_hw *hw = &vsi->back->hw; 7393 int status; 7394 7395 if (!lut) 7396 return -EINVAL; 7397 7398 params.vsi_handle = vsi->idx; 7399 params.lut_size = lut_size; 7400 params.lut_type = vsi->rss_lut_type; 7401 params.lut = lut; 7402 7403 status = ice_aq_get_rss_lut(hw, ¶ms); 7404 if (status) 7405 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7406 status, ice_aq_str(hw->adminq.sq_last_status)); 7407 7408 return status; 7409 } 7410 7411 /** 7412 * ice_get_rss_key - Get RSS key 7413 * @vsi: Pointer to VSI structure 7414 * @seed: Buffer to store the key in 7415 * 7416 * Returns 0 on success, negative on failure 7417 */ 7418 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7419 { 7420 struct ice_hw *hw = &vsi->back->hw; 7421 int status; 7422 7423 if (!seed) 7424 return -EINVAL; 7425 7426 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7427 if (status) 7428 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7429 status, ice_aq_str(hw->adminq.sq_last_status)); 7430 7431 return status; 7432 } 7433 7434 /** 7435 * ice_bridge_getlink - Get the hardware bridge mode 7436 * @skb: skb buff 7437 * @pid: process ID 7438 * @seq: RTNL message seq 7439 * @dev: the netdev being configured 7440 * @filter_mask: filter mask passed in 7441 * @nlflags: netlink flags passed in 7442 * 7443 * Return the bridge mode (VEB/VEPA) 7444 */ 7445 static int 7446 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7447 struct net_device *dev, u32 filter_mask, int nlflags) 7448 { 7449 struct ice_netdev_priv *np = netdev_priv(dev); 7450 struct ice_vsi *vsi = np->vsi; 7451 struct ice_pf *pf = vsi->back; 7452 u16 bmode; 7453 7454 bmode = pf->first_sw->bridge_mode; 7455 7456 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7457 filter_mask, NULL); 7458 } 7459 7460 /** 7461 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7462 * @vsi: Pointer to VSI structure 7463 * @bmode: Hardware bridge mode (VEB/VEPA) 7464 * 7465 * Returns 0 on success, negative on failure 7466 */ 7467 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7468 { 7469 struct ice_aqc_vsi_props *vsi_props; 7470 struct ice_hw *hw = &vsi->back->hw; 7471 struct ice_vsi_ctx *ctxt; 7472 int ret; 7473 7474 vsi_props = &vsi->info; 7475 7476 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7477 if (!ctxt) 7478 return -ENOMEM; 7479 7480 ctxt->info = vsi->info; 7481 7482 if (bmode == BRIDGE_MODE_VEB) 7483 /* change from VEPA to VEB mode */ 7484 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7485 else 7486 /* change from VEB to VEPA mode */ 7487 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7488 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7489 7490 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7491 if (ret) { 7492 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7493 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7494 goto out; 7495 } 7496 /* Update sw flags for book keeping */ 7497 vsi_props->sw_flags = ctxt->info.sw_flags; 7498 7499 out: 7500 kfree(ctxt); 7501 return ret; 7502 } 7503 7504 /** 7505 * ice_bridge_setlink - Set the hardware bridge mode 7506 * @dev: the netdev being configured 7507 * @nlh: RTNL message 7508 * @flags: bridge setlink flags 7509 * @extack: netlink extended ack 7510 * 7511 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7512 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7513 * not already set for all VSIs connected to this switch. And also update the 7514 * unicast switch filter rules for the corresponding switch of the netdev. 7515 */ 7516 static int 7517 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7518 u16 __always_unused flags, 7519 struct netlink_ext_ack __always_unused *extack) 7520 { 7521 struct ice_netdev_priv *np = netdev_priv(dev); 7522 struct ice_pf *pf = np->vsi->back; 7523 struct nlattr *attr, *br_spec; 7524 struct ice_hw *hw = &pf->hw; 7525 struct ice_sw *pf_sw; 7526 int rem, v, err = 0; 7527 7528 pf_sw = pf->first_sw; 7529 /* find the attribute in the netlink message */ 7530 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7531 7532 nla_for_each_nested(attr, br_spec, rem) { 7533 __u16 mode; 7534 7535 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7536 continue; 7537 mode = nla_get_u16(attr); 7538 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7539 return -EINVAL; 7540 /* Continue if bridge mode is not being flipped */ 7541 if (mode == pf_sw->bridge_mode) 7542 continue; 7543 /* Iterates through the PF VSI list and update the loopback 7544 * mode of the VSI 7545 */ 7546 ice_for_each_vsi(pf, v) { 7547 if (!pf->vsi[v]) 7548 continue; 7549 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7550 if (err) 7551 return err; 7552 } 7553 7554 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7555 /* Update the unicast switch filter rules for the corresponding 7556 * switch of the netdev 7557 */ 7558 err = ice_update_sw_rule_bridge_mode(hw); 7559 if (err) { 7560 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7561 mode, err, 7562 ice_aq_str(hw->adminq.sq_last_status)); 7563 /* revert hw->evb_veb */ 7564 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7565 return err; 7566 } 7567 7568 pf_sw->bridge_mode = mode; 7569 } 7570 7571 return 0; 7572 } 7573 7574 /** 7575 * ice_tx_timeout - Respond to a Tx Hang 7576 * @netdev: network interface device structure 7577 * @txqueue: Tx queue 7578 */ 7579 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7580 { 7581 struct ice_netdev_priv *np = netdev_priv(netdev); 7582 struct ice_tx_ring *tx_ring = NULL; 7583 struct ice_vsi *vsi = np->vsi; 7584 struct ice_pf *pf = vsi->back; 7585 u32 i; 7586 7587 pf->tx_timeout_count++; 7588 7589 /* Check if PFC is enabled for the TC to which the queue belongs 7590 * to. If yes then Tx timeout is not caused by a hung queue, no 7591 * need to reset and rebuild 7592 */ 7593 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7594 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7595 txqueue); 7596 return; 7597 } 7598 7599 /* now that we have an index, find the tx_ring struct */ 7600 ice_for_each_txq(vsi, i) 7601 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7602 if (txqueue == vsi->tx_rings[i]->q_index) { 7603 tx_ring = vsi->tx_rings[i]; 7604 break; 7605 } 7606 7607 /* Reset recovery level if enough time has elapsed after last timeout. 7608 * Also ensure no new reset action happens before next timeout period. 7609 */ 7610 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7611 pf->tx_timeout_recovery_level = 1; 7612 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7613 netdev->watchdog_timeo))) 7614 return; 7615 7616 if (tx_ring) { 7617 struct ice_hw *hw = &pf->hw; 7618 u32 head, val = 0; 7619 7620 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7621 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7622 /* Read interrupt register */ 7623 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7624 7625 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7626 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7627 head, tx_ring->next_to_use, val); 7628 } 7629 7630 pf->tx_timeout_last_recovery = jiffies; 7631 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7632 pf->tx_timeout_recovery_level, txqueue); 7633 7634 switch (pf->tx_timeout_recovery_level) { 7635 case 1: 7636 set_bit(ICE_PFR_REQ, pf->state); 7637 break; 7638 case 2: 7639 set_bit(ICE_CORER_REQ, pf->state); 7640 break; 7641 case 3: 7642 set_bit(ICE_GLOBR_REQ, pf->state); 7643 break; 7644 default: 7645 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7646 set_bit(ICE_DOWN, pf->state); 7647 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7648 set_bit(ICE_SERVICE_DIS, pf->state); 7649 break; 7650 } 7651 7652 ice_service_task_schedule(pf); 7653 pf->tx_timeout_recovery_level++; 7654 } 7655 7656 /** 7657 * ice_setup_tc_cls_flower - flower classifier offloads 7658 * @np: net device to configure 7659 * @filter_dev: device on which filter is added 7660 * @cls_flower: offload data 7661 */ 7662 static int 7663 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7664 struct net_device *filter_dev, 7665 struct flow_cls_offload *cls_flower) 7666 { 7667 struct ice_vsi *vsi = np->vsi; 7668 7669 if (cls_flower->common.chain_index) 7670 return -EOPNOTSUPP; 7671 7672 switch (cls_flower->command) { 7673 case FLOW_CLS_REPLACE: 7674 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7675 case FLOW_CLS_DESTROY: 7676 return ice_del_cls_flower(vsi, cls_flower); 7677 default: 7678 return -EINVAL; 7679 } 7680 } 7681 7682 /** 7683 * ice_setup_tc_block_cb - callback handler registered for TC block 7684 * @type: TC SETUP type 7685 * @type_data: TC flower offload data that contains user input 7686 * @cb_priv: netdev private data 7687 */ 7688 static int 7689 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7690 { 7691 struct ice_netdev_priv *np = cb_priv; 7692 7693 switch (type) { 7694 case TC_SETUP_CLSFLOWER: 7695 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7696 type_data); 7697 default: 7698 return -EOPNOTSUPP; 7699 } 7700 } 7701 7702 /** 7703 * ice_validate_mqprio_qopt - Validate TCF input parameters 7704 * @vsi: Pointer to VSI 7705 * @mqprio_qopt: input parameters for mqprio queue configuration 7706 * 7707 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7708 * needed), and make sure user doesn't specify qcount and BW rate limit 7709 * for TCs, which are more than "num_tc" 7710 */ 7711 static int 7712 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7713 struct tc_mqprio_qopt_offload *mqprio_qopt) 7714 { 7715 u64 sum_max_rate = 0, sum_min_rate = 0; 7716 int non_power_of_2_qcount = 0; 7717 struct ice_pf *pf = vsi->back; 7718 int max_rss_q_cnt = 0; 7719 struct device *dev; 7720 int i, speed; 7721 u8 num_tc; 7722 7723 if (vsi->type != ICE_VSI_PF) 7724 return -EINVAL; 7725 7726 if (mqprio_qopt->qopt.offset[0] != 0 || 7727 mqprio_qopt->qopt.num_tc < 1 || 7728 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7729 return -EINVAL; 7730 7731 dev = ice_pf_to_dev(pf); 7732 vsi->ch_rss_size = 0; 7733 num_tc = mqprio_qopt->qopt.num_tc; 7734 7735 for (i = 0; num_tc; i++) { 7736 int qcount = mqprio_qopt->qopt.count[i]; 7737 u64 max_rate, min_rate, rem; 7738 7739 if (!qcount) 7740 return -EINVAL; 7741 7742 if (is_power_of_2(qcount)) { 7743 if (non_power_of_2_qcount && 7744 qcount > non_power_of_2_qcount) { 7745 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7746 qcount, non_power_of_2_qcount); 7747 return -EINVAL; 7748 } 7749 if (qcount > max_rss_q_cnt) 7750 max_rss_q_cnt = qcount; 7751 } else { 7752 if (non_power_of_2_qcount && 7753 qcount != non_power_of_2_qcount) { 7754 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7755 qcount, non_power_of_2_qcount); 7756 return -EINVAL; 7757 } 7758 if (qcount < max_rss_q_cnt) { 7759 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7760 qcount, max_rss_q_cnt); 7761 return -EINVAL; 7762 } 7763 max_rss_q_cnt = qcount; 7764 non_power_of_2_qcount = qcount; 7765 } 7766 7767 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7768 * converts the bandwidth rate limit into Bytes/s when 7769 * passing it down to the driver. So convert input bandwidth 7770 * from Bytes/s to Kbps 7771 */ 7772 max_rate = mqprio_qopt->max_rate[i]; 7773 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7774 sum_max_rate += max_rate; 7775 7776 /* min_rate is minimum guaranteed rate and it can't be zero */ 7777 min_rate = mqprio_qopt->min_rate[i]; 7778 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7779 sum_min_rate += min_rate; 7780 7781 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7782 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7783 min_rate, ICE_MIN_BW_LIMIT); 7784 return -EINVAL; 7785 } 7786 7787 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7788 if (rem) { 7789 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7790 i, ICE_MIN_BW_LIMIT); 7791 return -EINVAL; 7792 } 7793 7794 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7795 if (rem) { 7796 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7797 i, ICE_MIN_BW_LIMIT); 7798 return -EINVAL; 7799 } 7800 7801 /* min_rate can't be more than max_rate, except when max_rate 7802 * is zero (implies max_rate sought is max line rate). In such 7803 * a case min_rate can be more than max. 7804 */ 7805 if (max_rate && min_rate > max_rate) { 7806 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7807 min_rate, max_rate); 7808 return -EINVAL; 7809 } 7810 7811 if (i >= mqprio_qopt->qopt.num_tc - 1) 7812 break; 7813 if (mqprio_qopt->qopt.offset[i + 1] != 7814 (mqprio_qopt->qopt.offset[i] + qcount)) 7815 return -EINVAL; 7816 } 7817 if (vsi->num_rxq < 7818 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7819 return -EINVAL; 7820 if (vsi->num_txq < 7821 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7822 return -EINVAL; 7823 7824 speed = ice_get_link_speed_kbps(vsi); 7825 if (sum_max_rate && sum_max_rate > (u64)speed) { 7826 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7827 sum_max_rate, speed); 7828 return -EINVAL; 7829 } 7830 if (sum_min_rate && sum_min_rate > (u64)speed) { 7831 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7832 sum_min_rate, speed); 7833 return -EINVAL; 7834 } 7835 7836 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7837 vsi->ch_rss_size = max_rss_q_cnt; 7838 7839 return 0; 7840 } 7841 7842 /** 7843 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7844 * @pf: ptr to PF device 7845 * @vsi: ptr to VSI 7846 */ 7847 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7848 { 7849 struct device *dev = ice_pf_to_dev(pf); 7850 bool added = false; 7851 struct ice_hw *hw; 7852 int flow; 7853 7854 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7855 return -EINVAL; 7856 7857 hw = &pf->hw; 7858 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7859 struct ice_fd_hw_prof *prof; 7860 int tun, status; 7861 u64 entry_h; 7862 7863 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7864 hw->fdir_prof[flow]->cnt)) 7865 continue; 7866 7867 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7868 enum ice_flow_priority prio; 7869 u64 prof_id; 7870 7871 /* add this VSI to FDir profile for this flow */ 7872 prio = ICE_FLOW_PRIO_NORMAL; 7873 prof = hw->fdir_prof[flow]; 7874 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7875 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7876 prof->vsi_h[0], vsi->idx, 7877 prio, prof->fdir_seg[tun], 7878 &entry_h); 7879 if (status) { 7880 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7881 vsi->idx, flow); 7882 continue; 7883 } 7884 7885 prof->entry_h[prof->cnt][tun] = entry_h; 7886 } 7887 7888 /* store VSI for filter replay and delete */ 7889 prof->vsi_h[prof->cnt] = vsi->idx; 7890 prof->cnt++; 7891 7892 added = true; 7893 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7894 flow); 7895 } 7896 7897 if (!added) 7898 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7899 7900 return 0; 7901 } 7902 7903 /** 7904 * ice_add_channel - add a channel by adding VSI 7905 * @pf: ptr to PF device 7906 * @sw_id: underlying HW switching element ID 7907 * @ch: ptr to channel structure 7908 * 7909 * Add a channel (VSI) using add_vsi and queue_map 7910 */ 7911 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7912 { 7913 struct device *dev = ice_pf_to_dev(pf); 7914 struct ice_vsi *vsi; 7915 7916 if (ch->type != ICE_VSI_CHNL) { 7917 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7918 return -EINVAL; 7919 } 7920 7921 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7922 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7923 dev_err(dev, "create chnl VSI failure\n"); 7924 return -EINVAL; 7925 } 7926 7927 ice_add_vsi_to_fdir(pf, vsi); 7928 7929 ch->sw_id = sw_id; 7930 ch->vsi_num = vsi->vsi_num; 7931 ch->info.mapping_flags = vsi->info.mapping_flags; 7932 ch->ch_vsi = vsi; 7933 /* set the back pointer of channel for newly created VSI */ 7934 vsi->ch = ch; 7935 7936 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7937 sizeof(vsi->info.q_mapping)); 7938 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7939 sizeof(vsi->info.tc_mapping)); 7940 7941 return 0; 7942 } 7943 7944 /** 7945 * ice_chnl_cfg_res 7946 * @vsi: the VSI being setup 7947 * @ch: ptr to channel structure 7948 * 7949 * Configure channel specific resources such as rings, vector. 7950 */ 7951 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7952 { 7953 int i; 7954 7955 for (i = 0; i < ch->num_txq; i++) { 7956 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7957 struct ice_ring_container *rc; 7958 struct ice_tx_ring *tx_ring; 7959 struct ice_rx_ring *rx_ring; 7960 7961 tx_ring = vsi->tx_rings[ch->base_q + i]; 7962 rx_ring = vsi->rx_rings[ch->base_q + i]; 7963 if (!tx_ring || !rx_ring) 7964 continue; 7965 7966 /* setup ring being channel enabled */ 7967 tx_ring->ch = ch; 7968 rx_ring->ch = ch; 7969 7970 /* following code block sets up vector specific attributes */ 7971 tx_q_vector = tx_ring->q_vector; 7972 rx_q_vector = rx_ring->q_vector; 7973 if (!tx_q_vector && !rx_q_vector) 7974 continue; 7975 7976 if (tx_q_vector) { 7977 tx_q_vector->ch = ch; 7978 /* setup Tx and Rx ITR setting if DIM is off */ 7979 rc = &tx_q_vector->tx; 7980 if (!ITR_IS_DYNAMIC(rc)) 7981 ice_write_itr(rc, rc->itr_setting); 7982 } 7983 if (rx_q_vector) { 7984 rx_q_vector->ch = ch; 7985 /* setup Tx and Rx ITR setting if DIM is off */ 7986 rc = &rx_q_vector->rx; 7987 if (!ITR_IS_DYNAMIC(rc)) 7988 ice_write_itr(rc, rc->itr_setting); 7989 } 7990 } 7991 7992 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7993 * GLINT_ITR register would have written to perform in-context 7994 * update, hence perform flush 7995 */ 7996 if (ch->num_txq || ch->num_rxq) 7997 ice_flush(&vsi->back->hw); 7998 } 7999 8000 /** 8001 * ice_cfg_chnl_all_res - configure channel resources 8002 * @vsi: pte to main_vsi 8003 * @ch: ptr to channel structure 8004 * 8005 * This function configures channel specific resources such as flow-director 8006 * counter index, and other resources such as queues, vectors, ITR settings 8007 */ 8008 static void 8009 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8010 { 8011 /* configure channel (aka ADQ) resources such as queues, vectors, 8012 * ITR settings for channel specific vectors and anything else 8013 */ 8014 ice_chnl_cfg_res(vsi, ch); 8015 } 8016 8017 /** 8018 * ice_setup_hw_channel - setup new channel 8019 * @pf: ptr to PF device 8020 * @vsi: the VSI being setup 8021 * @ch: ptr to channel structure 8022 * @sw_id: underlying HW switching element ID 8023 * @type: type of channel to be created (VMDq2/VF) 8024 * 8025 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8026 * and configures Tx rings accordingly 8027 */ 8028 static int 8029 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8030 struct ice_channel *ch, u16 sw_id, u8 type) 8031 { 8032 struct device *dev = ice_pf_to_dev(pf); 8033 int ret; 8034 8035 ch->base_q = vsi->next_base_q; 8036 ch->type = type; 8037 8038 ret = ice_add_channel(pf, sw_id, ch); 8039 if (ret) { 8040 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8041 return ret; 8042 } 8043 8044 /* configure/setup ADQ specific resources */ 8045 ice_cfg_chnl_all_res(vsi, ch); 8046 8047 /* make sure to update the next_base_q so that subsequent channel's 8048 * (aka ADQ) VSI queue map is correct 8049 */ 8050 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8051 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8052 ch->num_rxq); 8053 8054 return 0; 8055 } 8056 8057 /** 8058 * ice_setup_channel - setup new channel using uplink element 8059 * @pf: ptr to PF device 8060 * @vsi: the VSI being setup 8061 * @ch: ptr to channel structure 8062 * 8063 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8064 * and uplink switching element 8065 */ 8066 static bool 8067 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8068 struct ice_channel *ch) 8069 { 8070 struct device *dev = ice_pf_to_dev(pf); 8071 u16 sw_id; 8072 int ret; 8073 8074 if (vsi->type != ICE_VSI_PF) { 8075 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8076 return false; 8077 } 8078 8079 sw_id = pf->first_sw->sw_id; 8080 8081 /* create channel (VSI) */ 8082 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8083 if (ret) { 8084 dev_err(dev, "failed to setup hw_channel\n"); 8085 return false; 8086 } 8087 dev_dbg(dev, "successfully created channel()\n"); 8088 8089 return ch->ch_vsi ? true : false; 8090 } 8091 8092 /** 8093 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8094 * @vsi: VSI to be configured 8095 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8096 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8097 */ 8098 static int 8099 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8100 { 8101 int err; 8102 8103 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8104 if (err) 8105 return err; 8106 8107 return ice_set_max_bw_limit(vsi, max_tx_rate); 8108 } 8109 8110 /** 8111 * ice_create_q_channel - function to create channel 8112 * @vsi: VSI to be configured 8113 * @ch: ptr to channel (it contains channel specific params) 8114 * 8115 * This function creates channel (VSI) using num_queues specified by user, 8116 * reconfigs RSS if needed. 8117 */ 8118 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8119 { 8120 struct ice_pf *pf = vsi->back; 8121 struct device *dev; 8122 8123 if (!ch) 8124 return -EINVAL; 8125 8126 dev = ice_pf_to_dev(pf); 8127 if (!ch->num_txq || !ch->num_rxq) { 8128 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8129 return -EINVAL; 8130 } 8131 8132 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8133 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8134 vsi->cnt_q_avail, ch->num_txq); 8135 return -EINVAL; 8136 } 8137 8138 if (!ice_setup_channel(pf, vsi, ch)) { 8139 dev_info(dev, "Failed to setup channel\n"); 8140 return -EINVAL; 8141 } 8142 /* configure BW rate limit */ 8143 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8144 int ret; 8145 8146 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8147 ch->min_tx_rate); 8148 if (ret) 8149 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8150 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8151 else 8152 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8153 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8154 } 8155 8156 vsi->cnt_q_avail -= ch->num_txq; 8157 8158 return 0; 8159 } 8160 8161 /** 8162 * ice_rem_all_chnl_fltrs - removes all channel filters 8163 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8164 * 8165 * Remove all advanced switch filters only if they are channel specific 8166 * tc-flower based filter 8167 */ 8168 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8169 { 8170 struct ice_tc_flower_fltr *fltr; 8171 struct hlist_node *node; 8172 8173 /* to remove all channel filters, iterate an ordered list of filters */ 8174 hlist_for_each_entry_safe(fltr, node, 8175 &pf->tc_flower_fltr_list, 8176 tc_flower_node) { 8177 struct ice_rule_query_data rule; 8178 int status; 8179 8180 /* for now process only channel specific filters */ 8181 if (!ice_is_chnl_fltr(fltr)) 8182 continue; 8183 8184 rule.rid = fltr->rid; 8185 rule.rule_id = fltr->rule_id; 8186 rule.vsi_handle = fltr->dest_id; 8187 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8188 if (status) { 8189 if (status == -ENOENT) 8190 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8191 rule.rule_id); 8192 else 8193 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8194 status); 8195 } else if (fltr->dest_vsi) { 8196 /* update advanced switch filter count */ 8197 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8198 u32 flags = fltr->flags; 8199 8200 fltr->dest_vsi->num_chnl_fltr--; 8201 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8202 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8203 pf->num_dmac_chnl_fltrs--; 8204 } 8205 } 8206 8207 hlist_del(&fltr->tc_flower_node); 8208 kfree(fltr); 8209 } 8210 } 8211 8212 /** 8213 * ice_remove_q_channels - Remove queue channels for the TCs 8214 * @vsi: VSI to be configured 8215 * @rem_fltr: delete advanced switch filter or not 8216 * 8217 * Remove queue channels for the TCs 8218 */ 8219 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8220 { 8221 struct ice_channel *ch, *ch_tmp; 8222 struct ice_pf *pf = vsi->back; 8223 int i; 8224 8225 /* remove all tc-flower based filter if they are channel filters only */ 8226 if (rem_fltr) 8227 ice_rem_all_chnl_fltrs(pf); 8228 8229 /* remove ntuple filters since queue configuration is being changed */ 8230 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8231 struct ice_hw *hw = &pf->hw; 8232 8233 mutex_lock(&hw->fdir_fltr_lock); 8234 ice_fdir_del_all_fltrs(vsi); 8235 mutex_unlock(&hw->fdir_fltr_lock); 8236 } 8237 8238 /* perform cleanup for channels if they exist */ 8239 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8240 struct ice_vsi *ch_vsi; 8241 8242 list_del(&ch->list); 8243 ch_vsi = ch->ch_vsi; 8244 if (!ch_vsi) { 8245 kfree(ch); 8246 continue; 8247 } 8248 8249 /* Reset queue contexts */ 8250 for (i = 0; i < ch->num_rxq; i++) { 8251 struct ice_tx_ring *tx_ring; 8252 struct ice_rx_ring *rx_ring; 8253 8254 tx_ring = vsi->tx_rings[ch->base_q + i]; 8255 rx_ring = vsi->rx_rings[ch->base_q + i]; 8256 if (tx_ring) { 8257 tx_ring->ch = NULL; 8258 if (tx_ring->q_vector) 8259 tx_ring->q_vector->ch = NULL; 8260 } 8261 if (rx_ring) { 8262 rx_ring->ch = NULL; 8263 if (rx_ring->q_vector) 8264 rx_ring->q_vector->ch = NULL; 8265 } 8266 } 8267 8268 /* Release FD resources for the channel VSI */ 8269 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8270 8271 /* clear the VSI from scheduler tree */ 8272 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8273 8274 /* Delete VSI from FW */ 8275 ice_vsi_delete(ch->ch_vsi); 8276 8277 /* Delete VSI from PF and HW VSI arrays */ 8278 ice_vsi_clear(ch->ch_vsi); 8279 8280 /* free the channel */ 8281 kfree(ch); 8282 } 8283 8284 /* clear the channel VSI map which is stored in main VSI */ 8285 ice_for_each_chnl_tc(i) 8286 vsi->tc_map_vsi[i] = NULL; 8287 8288 /* reset main VSI's all TC information */ 8289 vsi->all_enatc = 0; 8290 vsi->all_numtc = 0; 8291 } 8292 8293 /** 8294 * ice_rebuild_channels - rebuild channel 8295 * @pf: ptr to PF 8296 * 8297 * Recreate channel VSIs and replay filters 8298 */ 8299 static int ice_rebuild_channels(struct ice_pf *pf) 8300 { 8301 struct device *dev = ice_pf_to_dev(pf); 8302 struct ice_vsi *main_vsi; 8303 bool rem_adv_fltr = true; 8304 struct ice_channel *ch; 8305 struct ice_vsi *vsi; 8306 int tc_idx = 1; 8307 int i, err; 8308 8309 main_vsi = ice_get_main_vsi(pf); 8310 if (!main_vsi) 8311 return 0; 8312 8313 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8314 main_vsi->old_numtc == 1) 8315 return 0; /* nothing to be done */ 8316 8317 /* reconfigure main VSI based on old value of TC and cached values 8318 * for MQPRIO opts 8319 */ 8320 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8321 if (err) { 8322 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8323 main_vsi->old_ena_tc, main_vsi->vsi_num); 8324 return err; 8325 } 8326 8327 /* rebuild ADQ VSIs */ 8328 ice_for_each_vsi(pf, i) { 8329 enum ice_vsi_type type; 8330 8331 vsi = pf->vsi[i]; 8332 if (!vsi || vsi->type != ICE_VSI_CHNL) 8333 continue; 8334 8335 type = vsi->type; 8336 8337 /* rebuild ADQ VSI */ 8338 err = ice_vsi_rebuild(vsi, true); 8339 if (err) { 8340 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8341 ice_vsi_type_str(type), vsi->idx, err); 8342 goto cleanup; 8343 } 8344 8345 /* Re-map HW VSI number, using VSI handle that has been 8346 * previously validated in ice_replay_vsi() call above 8347 */ 8348 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8349 8350 /* replay filters for the VSI */ 8351 err = ice_replay_vsi(&pf->hw, vsi->idx); 8352 if (err) { 8353 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8354 ice_vsi_type_str(type), err, vsi->idx); 8355 rem_adv_fltr = false; 8356 goto cleanup; 8357 } 8358 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8359 ice_vsi_type_str(type), vsi->idx); 8360 8361 /* store ADQ VSI at correct TC index in main VSI's 8362 * map of TC to VSI 8363 */ 8364 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8365 } 8366 8367 /* ADQ VSI(s) has been rebuilt successfully, so setup 8368 * channel for main VSI's Tx and Rx rings 8369 */ 8370 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8371 struct ice_vsi *ch_vsi; 8372 8373 ch_vsi = ch->ch_vsi; 8374 if (!ch_vsi) 8375 continue; 8376 8377 /* reconfig channel resources */ 8378 ice_cfg_chnl_all_res(main_vsi, ch); 8379 8380 /* replay BW rate limit if it is non-zero */ 8381 if (!ch->max_tx_rate && !ch->min_tx_rate) 8382 continue; 8383 8384 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8385 ch->min_tx_rate); 8386 if (err) 8387 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8388 err, ch->max_tx_rate, ch->min_tx_rate, 8389 ch_vsi->vsi_num); 8390 else 8391 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8392 ch->max_tx_rate, ch->min_tx_rate, 8393 ch_vsi->vsi_num); 8394 } 8395 8396 /* reconfig RSS for main VSI */ 8397 if (main_vsi->ch_rss_size) 8398 ice_vsi_cfg_rss_lut_key(main_vsi); 8399 8400 return 0; 8401 8402 cleanup: 8403 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8404 return err; 8405 } 8406 8407 /** 8408 * ice_create_q_channels - Add queue channel for the given TCs 8409 * @vsi: VSI to be configured 8410 * 8411 * Configures queue channel mapping to the given TCs 8412 */ 8413 static int ice_create_q_channels(struct ice_vsi *vsi) 8414 { 8415 struct ice_pf *pf = vsi->back; 8416 struct ice_channel *ch; 8417 int ret = 0, i; 8418 8419 ice_for_each_chnl_tc(i) { 8420 if (!(vsi->all_enatc & BIT(i))) 8421 continue; 8422 8423 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8424 if (!ch) { 8425 ret = -ENOMEM; 8426 goto err_free; 8427 } 8428 INIT_LIST_HEAD(&ch->list); 8429 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8430 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8431 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8432 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8433 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8434 8435 /* convert to Kbits/s */ 8436 if (ch->max_tx_rate) 8437 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8438 ICE_BW_KBPS_DIVISOR); 8439 if (ch->min_tx_rate) 8440 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8441 ICE_BW_KBPS_DIVISOR); 8442 8443 ret = ice_create_q_channel(vsi, ch); 8444 if (ret) { 8445 dev_err(ice_pf_to_dev(pf), 8446 "failed creating channel TC:%d\n", i); 8447 kfree(ch); 8448 goto err_free; 8449 } 8450 list_add_tail(&ch->list, &vsi->ch_list); 8451 vsi->tc_map_vsi[i] = ch->ch_vsi; 8452 dev_dbg(ice_pf_to_dev(pf), 8453 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8454 } 8455 return 0; 8456 8457 err_free: 8458 ice_remove_q_channels(vsi, false); 8459 8460 return ret; 8461 } 8462 8463 /** 8464 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8465 * @netdev: net device to configure 8466 * @type_data: TC offload data 8467 */ 8468 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8469 { 8470 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8471 struct ice_netdev_priv *np = netdev_priv(netdev); 8472 struct ice_vsi *vsi = np->vsi; 8473 struct ice_pf *pf = vsi->back; 8474 u16 mode, ena_tc_qdisc = 0; 8475 int cur_txq, cur_rxq; 8476 u8 hw = 0, num_tcf; 8477 struct device *dev; 8478 int ret, i; 8479 8480 dev = ice_pf_to_dev(pf); 8481 num_tcf = mqprio_qopt->qopt.num_tc; 8482 hw = mqprio_qopt->qopt.hw; 8483 mode = mqprio_qopt->mode; 8484 if (!hw) { 8485 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8486 vsi->ch_rss_size = 0; 8487 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8488 goto config_tcf; 8489 } 8490 8491 /* Generate queue region map for number of TCF requested */ 8492 for (i = 0; i < num_tcf; i++) 8493 ena_tc_qdisc |= BIT(i); 8494 8495 switch (mode) { 8496 case TC_MQPRIO_MODE_CHANNEL: 8497 8498 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8499 if (ret) { 8500 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8501 ret); 8502 return ret; 8503 } 8504 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8505 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8506 /* don't assume state of hw_tc_offload during driver load 8507 * and set the flag for TC flower filter if hw_tc_offload 8508 * already ON 8509 */ 8510 if (vsi->netdev->features & NETIF_F_HW_TC) 8511 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8512 break; 8513 default: 8514 return -EINVAL; 8515 } 8516 8517 config_tcf: 8518 8519 /* Requesting same TCF configuration as already enabled */ 8520 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8521 mode != TC_MQPRIO_MODE_CHANNEL) 8522 return 0; 8523 8524 /* Pause VSI queues */ 8525 ice_dis_vsi(vsi, true); 8526 8527 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8528 ice_remove_q_channels(vsi, true); 8529 8530 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8531 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8532 num_online_cpus()); 8533 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8534 num_online_cpus()); 8535 } else { 8536 /* logic to rebuild VSI, same like ethtool -L */ 8537 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8538 8539 for (i = 0; i < num_tcf; i++) { 8540 if (!(ena_tc_qdisc & BIT(i))) 8541 continue; 8542 8543 offset = vsi->mqprio_qopt.qopt.offset[i]; 8544 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8545 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8546 } 8547 vsi->req_txq = offset + qcount_tx; 8548 vsi->req_rxq = offset + qcount_rx; 8549 8550 /* store away original rss_size info, so that it gets reused 8551 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8552 * determine, what should be the rss_sizefor main VSI 8553 */ 8554 vsi->orig_rss_size = vsi->rss_size; 8555 } 8556 8557 /* save current values of Tx and Rx queues before calling VSI rebuild 8558 * for fallback option 8559 */ 8560 cur_txq = vsi->num_txq; 8561 cur_rxq = vsi->num_rxq; 8562 8563 /* proceed with rebuild main VSI using correct number of queues */ 8564 ret = ice_vsi_rebuild(vsi, false); 8565 if (ret) { 8566 /* fallback to current number of queues */ 8567 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8568 vsi->req_txq = cur_txq; 8569 vsi->req_rxq = cur_rxq; 8570 clear_bit(ICE_RESET_FAILED, pf->state); 8571 if (ice_vsi_rebuild(vsi, false)) { 8572 dev_err(dev, "Rebuild of main VSI failed again\n"); 8573 return ret; 8574 } 8575 } 8576 8577 vsi->all_numtc = num_tcf; 8578 vsi->all_enatc = ena_tc_qdisc; 8579 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8580 if (ret) { 8581 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8582 vsi->vsi_num); 8583 goto exit; 8584 } 8585 8586 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8587 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8588 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8589 8590 /* set TC0 rate limit if specified */ 8591 if (max_tx_rate || min_tx_rate) { 8592 /* convert to Kbits/s */ 8593 if (max_tx_rate) 8594 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8595 if (min_tx_rate) 8596 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8597 8598 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8599 if (!ret) { 8600 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8601 max_tx_rate, min_tx_rate, vsi->vsi_num); 8602 } else { 8603 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8604 max_tx_rate, min_tx_rate, vsi->vsi_num); 8605 goto exit; 8606 } 8607 } 8608 ret = ice_create_q_channels(vsi); 8609 if (ret) { 8610 netdev_err(netdev, "failed configuring queue channels\n"); 8611 goto exit; 8612 } else { 8613 netdev_dbg(netdev, "successfully configured channels\n"); 8614 } 8615 } 8616 8617 if (vsi->ch_rss_size) 8618 ice_vsi_cfg_rss_lut_key(vsi); 8619 8620 exit: 8621 /* if error, reset the all_numtc and all_enatc */ 8622 if (ret) { 8623 vsi->all_numtc = 0; 8624 vsi->all_enatc = 0; 8625 } 8626 /* resume VSI */ 8627 ice_ena_vsi(vsi, true); 8628 8629 return ret; 8630 } 8631 8632 static LIST_HEAD(ice_block_cb_list); 8633 8634 static int 8635 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8636 void *type_data) 8637 { 8638 struct ice_netdev_priv *np = netdev_priv(netdev); 8639 struct ice_pf *pf = np->vsi->back; 8640 int err; 8641 8642 switch (type) { 8643 case TC_SETUP_BLOCK: 8644 return flow_block_cb_setup_simple(type_data, 8645 &ice_block_cb_list, 8646 ice_setup_tc_block_cb, 8647 np, np, true); 8648 case TC_SETUP_QDISC_MQPRIO: 8649 /* setup traffic classifier for receive side */ 8650 mutex_lock(&pf->tc_mutex); 8651 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8652 mutex_unlock(&pf->tc_mutex); 8653 return err; 8654 default: 8655 return -EOPNOTSUPP; 8656 } 8657 return -EOPNOTSUPP; 8658 } 8659 8660 static struct ice_indr_block_priv * 8661 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8662 struct net_device *netdev) 8663 { 8664 struct ice_indr_block_priv *cb_priv; 8665 8666 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8667 if (!cb_priv->netdev) 8668 return NULL; 8669 if (cb_priv->netdev == netdev) 8670 return cb_priv; 8671 } 8672 return NULL; 8673 } 8674 8675 static int 8676 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8677 void *indr_priv) 8678 { 8679 struct ice_indr_block_priv *priv = indr_priv; 8680 struct ice_netdev_priv *np = priv->np; 8681 8682 switch (type) { 8683 case TC_SETUP_CLSFLOWER: 8684 return ice_setup_tc_cls_flower(np, priv->netdev, 8685 (struct flow_cls_offload *) 8686 type_data); 8687 default: 8688 return -EOPNOTSUPP; 8689 } 8690 } 8691 8692 static int 8693 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8694 struct ice_netdev_priv *np, 8695 struct flow_block_offload *f, void *data, 8696 void (*cleanup)(struct flow_block_cb *block_cb)) 8697 { 8698 struct ice_indr_block_priv *indr_priv; 8699 struct flow_block_cb *block_cb; 8700 8701 if (!ice_is_tunnel_supported(netdev) && 8702 !(is_vlan_dev(netdev) && 8703 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8704 return -EOPNOTSUPP; 8705 8706 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8707 return -EOPNOTSUPP; 8708 8709 switch (f->command) { 8710 case FLOW_BLOCK_BIND: 8711 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8712 if (indr_priv) 8713 return -EEXIST; 8714 8715 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8716 if (!indr_priv) 8717 return -ENOMEM; 8718 8719 indr_priv->netdev = netdev; 8720 indr_priv->np = np; 8721 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8722 8723 block_cb = 8724 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8725 indr_priv, indr_priv, 8726 ice_rep_indr_tc_block_unbind, 8727 f, netdev, sch, data, np, 8728 cleanup); 8729 8730 if (IS_ERR(block_cb)) { 8731 list_del(&indr_priv->list); 8732 kfree(indr_priv); 8733 return PTR_ERR(block_cb); 8734 } 8735 flow_block_cb_add(block_cb, f); 8736 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8737 break; 8738 case FLOW_BLOCK_UNBIND: 8739 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8740 if (!indr_priv) 8741 return -ENOENT; 8742 8743 block_cb = flow_block_cb_lookup(f->block, 8744 ice_indr_setup_block_cb, 8745 indr_priv); 8746 if (!block_cb) 8747 return -ENOENT; 8748 8749 flow_indr_block_cb_remove(block_cb, f); 8750 8751 list_del(&block_cb->driver_list); 8752 break; 8753 default: 8754 return -EOPNOTSUPP; 8755 } 8756 return 0; 8757 } 8758 8759 static int 8760 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8761 void *cb_priv, enum tc_setup_type type, void *type_data, 8762 void *data, 8763 void (*cleanup)(struct flow_block_cb *block_cb)) 8764 { 8765 switch (type) { 8766 case TC_SETUP_BLOCK: 8767 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8768 data, cleanup); 8769 8770 default: 8771 return -EOPNOTSUPP; 8772 } 8773 } 8774 8775 /** 8776 * ice_open - Called when a network interface becomes active 8777 * @netdev: network interface device structure 8778 * 8779 * The open entry point is called when a network interface is made 8780 * active by the system (IFF_UP). At this point all resources needed 8781 * for transmit and receive operations are allocated, the interrupt 8782 * handler is registered with the OS, the netdev watchdog is enabled, 8783 * and the stack is notified that the interface is ready. 8784 * 8785 * Returns 0 on success, negative value on failure 8786 */ 8787 int ice_open(struct net_device *netdev) 8788 { 8789 struct ice_netdev_priv *np = netdev_priv(netdev); 8790 struct ice_pf *pf = np->vsi->back; 8791 8792 if (ice_is_reset_in_progress(pf->state)) { 8793 netdev_err(netdev, "can't open net device while reset is in progress"); 8794 return -EBUSY; 8795 } 8796 8797 return ice_open_internal(netdev); 8798 } 8799 8800 /** 8801 * ice_open_internal - Called when a network interface becomes active 8802 * @netdev: network interface device structure 8803 * 8804 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8805 * handling routine 8806 * 8807 * Returns 0 on success, negative value on failure 8808 */ 8809 int ice_open_internal(struct net_device *netdev) 8810 { 8811 struct ice_netdev_priv *np = netdev_priv(netdev); 8812 struct ice_vsi *vsi = np->vsi; 8813 struct ice_pf *pf = vsi->back; 8814 struct ice_port_info *pi; 8815 int err; 8816 8817 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8818 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8819 return -EIO; 8820 } 8821 8822 netif_carrier_off(netdev); 8823 8824 pi = vsi->port_info; 8825 err = ice_update_link_info(pi); 8826 if (err) { 8827 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8828 return err; 8829 } 8830 8831 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8832 8833 /* Set PHY if there is media, otherwise, turn off PHY */ 8834 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8835 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8836 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8837 err = ice_init_phy_user_cfg(pi); 8838 if (err) { 8839 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8840 err); 8841 return err; 8842 } 8843 } 8844 8845 err = ice_configure_phy(vsi); 8846 if (err) { 8847 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8848 err); 8849 return err; 8850 } 8851 } else { 8852 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8853 ice_set_link(vsi, false); 8854 } 8855 8856 err = ice_vsi_open(vsi); 8857 if (err) 8858 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8859 vsi->vsi_num, vsi->vsw->sw_id); 8860 8861 /* Update existing tunnels information */ 8862 udp_tunnel_get_rx_info(netdev); 8863 8864 return err; 8865 } 8866 8867 /** 8868 * ice_stop - Disables a network interface 8869 * @netdev: network interface device structure 8870 * 8871 * The stop entry point is called when an interface is de-activated by the OS, 8872 * and the netdevice enters the DOWN state. The hardware is still under the 8873 * driver's control, but the netdev interface is disabled. 8874 * 8875 * Returns success only - not allowed to fail 8876 */ 8877 int ice_stop(struct net_device *netdev) 8878 { 8879 struct ice_netdev_priv *np = netdev_priv(netdev); 8880 struct ice_vsi *vsi = np->vsi; 8881 struct ice_pf *pf = vsi->back; 8882 8883 if (ice_is_reset_in_progress(pf->state)) { 8884 netdev_err(netdev, "can't stop net device while reset is in progress"); 8885 return -EBUSY; 8886 } 8887 8888 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 8889 int link_err = ice_force_phys_link_state(vsi, false); 8890 8891 if (link_err) { 8892 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 8893 vsi->vsi_num, link_err); 8894 return -EIO; 8895 } 8896 } 8897 8898 ice_vsi_close(vsi); 8899 8900 return 0; 8901 } 8902 8903 /** 8904 * ice_features_check - Validate encapsulated packet conforms to limits 8905 * @skb: skb buffer 8906 * @netdev: This port's netdev 8907 * @features: Offload features that the stack believes apply 8908 */ 8909 static netdev_features_t 8910 ice_features_check(struct sk_buff *skb, 8911 struct net_device __always_unused *netdev, 8912 netdev_features_t features) 8913 { 8914 bool gso = skb_is_gso(skb); 8915 size_t len; 8916 8917 /* No point in doing any of this if neither checksum nor GSO are 8918 * being requested for this frame. We can rule out both by just 8919 * checking for CHECKSUM_PARTIAL 8920 */ 8921 if (skb->ip_summed != CHECKSUM_PARTIAL) 8922 return features; 8923 8924 /* We cannot support GSO if the MSS is going to be less than 8925 * 64 bytes. If it is then we need to drop support for GSO. 8926 */ 8927 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8928 features &= ~NETIF_F_GSO_MASK; 8929 8930 len = skb_network_offset(skb); 8931 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8932 goto out_rm_features; 8933 8934 len = skb_network_header_len(skb); 8935 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8936 goto out_rm_features; 8937 8938 if (skb->encapsulation) { 8939 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8940 * the case of IPIP frames, the transport header pointer is 8941 * after the inner header! So check to make sure that this 8942 * is a GRE or UDP_TUNNEL frame before doing that math. 8943 */ 8944 if (gso && (skb_shinfo(skb)->gso_type & 8945 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8946 len = skb_inner_network_header(skb) - 8947 skb_transport_header(skb); 8948 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8949 goto out_rm_features; 8950 } 8951 8952 len = skb_inner_network_header_len(skb); 8953 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8954 goto out_rm_features; 8955 } 8956 8957 return features; 8958 out_rm_features: 8959 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8960 } 8961 8962 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8963 .ndo_open = ice_open, 8964 .ndo_stop = ice_stop, 8965 .ndo_start_xmit = ice_start_xmit, 8966 .ndo_set_mac_address = ice_set_mac_address, 8967 .ndo_validate_addr = eth_validate_addr, 8968 .ndo_change_mtu = ice_change_mtu, 8969 .ndo_get_stats64 = ice_get_stats64, 8970 .ndo_tx_timeout = ice_tx_timeout, 8971 .ndo_bpf = ice_xdp_safe_mode, 8972 }; 8973 8974 static const struct net_device_ops ice_netdev_ops = { 8975 .ndo_open = ice_open, 8976 .ndo_stop = ice_stop, 8977 .ndo_start_xmit = ice_start_xmit, 8978 .ndo_select_queue = ice_select_queue, 8979 .ndo_features_check = ice_features_check, 8980 .ndo_fix_features = ice_fix_features, 8981 .ndo_set_rx_mode = ice_set_rx_mode, 8982 .ndo_set_mac_address = ice_set_mac_address, 8983 .ndo_validate_addr = eth_validate_addr, 8984 .ndo_change_mtu = ice_change_mtu, 8985 .ndo_get_stats64 = ice_get_stats64, 8986 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8987 .ndo_eth_ioctl = ice_eth_ioctl, 8988 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8989 .ndo_set_vf_mac = ice_set_vf_mac, 8990 .ndo_get_vf_config = ice_get_vf_cfg, 8991 .ndo_set_vf_trust = ice_set_vf_trust, 8992 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8993 .ndo_set_vf_link_state = ice_set_vf_link_state, 8994 .ndo_get_vf_stats = ice_get_vf_stats, 8995 .ndo_set_vf_rate = ice_set_vf_bw, 8996 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8997 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8998 .ndo_setup_tc = ice_setup_tc, 8999 .ndo_set_features = ice_set_features, 9000 .ndo_bridge_getlink = ice_bridge_getlink, 9001 .ndo_bridge_setlink = ice_bridge_setlink, 9002 .ndo_fdb_add = ice_fdb_add, 9003 .ndo_fdb_del = ice_fdb_del, 9004 #ifdef CONFIG_RFS_ACCEL 9005 .ndo_rx_flow_steer = ice_rx_flow_steer, 9006 #endif 9007 .ndo_tx_timeout = ice_tx_timeout, 9008 .ndo_bpf = ice_xdp, 9009 .ndo_xdp_xmit = ice_xdp_xmit, 9010 .ndo_xsk_wakeup = ice_xsk_wakeup, 9011 .ndo_get_devlink_port = ice_get_devlink_port, 9012 }; 9013