1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "ice.h"
9 #include "ice_lib.h"
10 #include "ice_dcb_lib.h"
11 
12 #define DRV_VERSION	"0.7.4-k"
13 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
14 const char ice_drv_ver[] = DRV_VERSION;
15 static const char ice_driver_string[] = DRV_SUMMARY;
16 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
17 
18 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
19 MODULE_DESCRIPTION(DRV_SUMMARY);
20 MODULE_LICENSE("GPL v2");
21 MODULE_VERSION(DRV_VERSION);
22 
23 static int debug = -1;
24 module_param(debug, int, 0644);
25 #ifndef CONFIG_DYNAMIC_DEBUG
26 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
27 #else
28 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
29 #endif /* !CONFIG_DYNAMIC_DEBUG */
30 
31 static struct workqueue_struct *ice_wq;
32 static const struct net_device_ops ice_netdev_ops;
33 
34 static void ice_rebuild(struct ice_pf *pf);
35 
36 static void ice_vsi_release_all(struct ice_pf *pf);
37 static void ice_update_vsi_stats(struct ice_vsi *vsi);
38 static void ice_update_pf_stats(struct ice_pf *pf);
39 
40 /**
41  * ice_get_tx_pending - returns number of Tx descriptors not processed
42  * @ring: the ring of descriptors
43  */
44 static u32 ice_get_tx_pending(struct ice_ring *ring)
45 {
46 	u32 head, tail;
47 
48 	head = ring->next_to_clean;
49 	tail = readl(ring->tail);
50 
51 	if (head != tail)
52 		return (head < tail) ?
53 			tail - head : (tail + ring->count - head);
54 	return 0;
55 }
56 
57 /**
58  * ice_check_for_hang_subtask - check for and recover hung queues
59  * @pf: pointer to PF struct
60  */
61 static void ice_check_for_hang_subtask(struct ice_pf *pf)
62 {
63 	struct ice_vsi *vsi = NULL;
64 	struct ice_hw *hw;
65 	unsigned int i;
66 	int packets;
67 	u32 v;
68 
69 	ice_for_each_vsi(pf, v)
70 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
71 			vsi = pf->vsi[v];
72 			break;
73 		}
74 
75 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
76 		return;
77 
78 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
79 		return;
80 
81 	hw = &vsi->back->hw;
82 
83 	for (i = 0; i < vsi->num_txq; i++) {
84 		struct ice_ring *tx_ring = vsi->tx_rings[i];
85 
86 		if (tx_ring && tx_ring->desc) {
87 			/* If packet counter has not changed the queue is
88 			 * likely stalled, so force an interrupt for this
89 			 * queue.
90 			 *
91 			 * prev_pkt would be negative if there was no
92 			 * pending work.
93 			 */
94 			packets = tx_ring->stats.pkts & INT_MAX;
95 			if (tx_ring->tx_stats.prev_pkt == packets) {
96 				/* Trigger sw interrupt to revive the queue */
97 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
98 				continue;
99 			}
100 
101 			/* Memory barrier between read of packet count and call
102 			 * to ice_get_tx_pending()
103 			 */
104 			smp_rmb();
105 			tx_ring->tx_stats.prev_pkt =
106 			    ice_get_tx_pending(tx_ring) ? packets : -1;
107 		}
108 	}
109 }
110 
111 /**
112  * ice_init_mac_fltr - Set initial MAC filters
113  * @pf: board private structure
114  *
115  * Set initial set of MAC filters for PF VSI; configure filters for permanent
116  * address and broadcast address. If an error is encountered, netdevice will be
117  * unregistered.
118  */
119 static int ice_init_mac_fltr(struct ice_pf *pf)
120 {
121 	LIST_HEAD(tmp_add_list);
122 	u8 broadcast[ETH_ALEN];
123 	struct ice_vsi *vsi;
124 	int status;
125 
126 	vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
127 	if (!vsi)
128 		return -EINVAL;
129 
130 	/* To add a MAC filter, first add the MAC to a list and then
131 	 * pass the list to ice_add_mac.
132 	 */
133 
134 	 /* Add a unicast MAC filter so the VSI can get its packets */
135 	status = ice_add_mac_to_list(vsi, &tmp_add_list,
136 				     vsi->port_info->mac.perm_addr);
137 	if (status)
138 		goto unregister;
139 
140 	/* VSI needs to receive broadcast traffic, so add the broadcast
141 	 * MAC address to the list as well.
142 	 */
143 	eth_broadcast_addr(broadcast);
144 	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
145 	if (status)
146 		goto free_mac_list;
147 
148 	/* Program MAC filters for entries in tmp_add_list */
149 	status = ice_add_mac(&pf->hw, &tmp_add_list);
150 	if (status)
151 		status = -ENOMEM;
152 
153 free_mac_list:
154 	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
155 
156 unregister:
157 	/* We aren't useful with no MAC filters, so unregister if we
158 	 * had an error
159 	 */
160 	if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
161 		dev_err(&pf->pdev->dev,
162 			"Could not add MAC filters error %d. Unregistering device\n",
163 			status);
164 		unregister_netdev(vsi->netdev);
165 		free_netdev(vsi->netdev);
166 		vsi->netdev = NULL;
167 	}
168 
169 	return status;
170 }
171 
172 /**
173  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
174  * @netdev: the net device on which the sync is happening
175  * @addr: MAC address to sync
176  *
177  * This is a callback function which is called by the in kernel device sync
178  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
179  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
180  * MAC filters from the hardware.
181  */
182 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
183 {
184 	struct ice_netdev_priv *np = netdev_priv(netdev);
185 	struct ice_vsi *vsi = np->vsi;
186 
187 	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 /**
194  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
195  * @netdev: the net device on which the unsync is happening
196  * @addr: MAC address to unsync
197  *
198  * This is a callback function which is called by the in kernel device unsync
199  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
200  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
201  * delete the MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
204 {
205 	struct ice_netdev_priv *np = netdev_priv(netdev);
206 	struct ice_vsi *vsi = np->vsi;
207 
208 	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 /**
215  * ice_vsi_fltr_changed - check if filter state changed
216  * @vsi: VSI to be checked
217  *
218  * returns true if filter state has changed, false otherwise.
219  */
220 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
221 {
222 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
223 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
224 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
225 }
226 
227 /**
228  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
229  * @vsi: the VSI being configured
230  * @promisc_m: mask of promiscuous config bits
231  * @set_promisc: enable or disable promisc flag request
232  *
233  */
234 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
235 {
236 	struct ice_hw *hw = &vsi->back->hw;
237 	enum ice_status status = 0;
238 
239 	if (vsi->type != ICE_VSI_PF)
240 		return 0;
241 
242 	if (vsi->vlan_ena) {
243 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
244 						  set_promisc);
245 	} else {
246 		if (set_promisc)
247 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
248 						     0);
249 		else
250 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
251 						       0);
252 	}
253 
254 	if (status)
255 		return -EIO;
256 
257 	return 0;
258 }
259 
260 /**
261  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
262  * @vsi: ptr to the VSI
263  *
264  * Push any outstanding VSI filter changes through the AdminQ.
265  */
266 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
267 {
268 	struct device *dev = &vsi->back->pdev->dev;
269 	struct net_device *netdev = vsi->netdev;
270 	bool promisc_forced_on = false;
271 	struct ice_pf *pf = vsi->back;
272 	struct ice_hw *hw = &pf->hw;
273 	enum ice_status status = 0;
274 	u32 changed_flags = 0;
275 	u8 promisc_m;
276 	int err = 0;
277 
278 	if (!vsi->netdev)
279 		return -EINVAL;
280 
281 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
282 		usleep_range(1000, 2000);
283 
284 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
285 	vsi->current_netdev_flags = vsi->netdev->flags;
286 
287 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
288 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
289 
290 	if (ice_vsi_fltr_changed(vsi)) {
291 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
292 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
293 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
294 
295 		/* grab the netdev's addr_list_lock */
296 		netif_addr_lock_bh(netdev);
297 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
298 			      ice_add_mac_to_unsync_list);
299 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
300 			      ice_add_mac_to_unsync_list);
301 		/* our temp lists are populated. release lock */
302 		netif_addr_unlock_bh(netdev);
303 	}
304 
305 	/* Remove MAC addresses in the unsync list */
306 	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
307 	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
308 	if (status) {
309 		netdev_err(netdev, "Failed to delete MAC filters\n");
310 		/* if we failed because of alloc failures, just bail */
311 		if (status == ICE_ERR_NO_MEMORY) {
312 			err = -ENOMEM;
313 			goto out;
314 		}
315 	}
316 
317 	/* Add MAC addresses in the sync list */
318 	status = ice_add_mac(hw, &vsi->tmp_sync_list);
319 	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
320 	/* If filter is added successfully or already exists, do not go into
321 	 * 'if' condition and report it as error. Instead continue processing
322 	 * rest of the function.
323 	 */
324 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
325 		netdev_err(netdev, "Failed to add MAC filters\n");
326 		/* If there is no more space for new umac filters, VSI
327 		 * should go into promiscuous mode. There should be some
328 		 * space reserved for promiscuous filters.
329 		 */
330 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
331 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
332 				      vsi->state)) {
333 			promisc_forced_on = true;
334 			netdev_warn(netdev,
335 				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
336 				    vsi->vsi_num);
337 		} else {
338 			err = -EIO;
339 			goto out;
340 		}
341 	}
342 	/* check for changes in promiscuous modes */
343 	if (changed_flags & IFF_ALLMULTI) {
344 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
345 			if (vsi->vlan_ena)
346 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
347 			else
348 				promisc_m = ICE_MCAST_PROMISC_BITS;
349 
350 			err = ice_cfg_promisc(vsi, promisc_m, true);
351 			if (err) {
352 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
353 					   vsi->vsi_num);
354 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
355 				goto out_promisc;
356 			}
357 		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
358 			if (vsi->vlan_ena)
359 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
360 			else
361 				promisc_m = ICE_MCAST_PROMISC_BITS;
362 
363 			err = ice_cfg_promisc(vsi, promisc_m, false);
364 			if (err) {
365 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
366 					   vsi->vsi_num);
367 				vsi->current_netdev_flags |= IFF_ALLMULTI;
368 				goto out_promisc;
369 			}
370 		}
371 	}
372 
373 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
374 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
375 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
376 		if (vsi->current_netdev_flags & IFF_PROMISC) {
377 			/* Apply Rx filter rule to get traffic from wire */
378 			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
379 						  ICE_FLTR_RX);
380 			if (status) {
381 				netdev_err(netdev, "Error setting default VSI %i Rx rule\n",
382 					   vsi->vsi_num);
383 				vsi->current_netdev_flags &= ~IFF_PROMISC;
384 				err = -EIO;
385 				goto out_promisc;
386 			}
387 		} else {
388 			/* Clear Rx filter to remove traffic from wire */
389 			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
390 						  ICE_FLTR_RX);
391 			if (status) {
392 				netdev_err(netdev, "Error clearing default VSI %i Rx rule\n",
393 					   vsi->vsi_num);
394 				vsi->current_netdev_flags |= IFF_PROMISC;
395 				err = -EIO;
396 				goto out_promisc;
397 			}
398 		}
399 	}
400 	goto exit;
401 
402 out_promisc:
403 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
404 	goto exit;
405 out:
406 	/* if something went wrong then set the changed flag so we try again */
407 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
408 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
409 exit:
410 	clear_bit(__ICE_CFG_BUSY, vsi->state);
411 	return err;
412 }
413 
414 /**
415  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
416  * @pf: board private structure
417  */
418 static void ice_sync_fltr_subtask(struct ice_pf *pf)
419 {
420 	int v;
421 
422 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
423 		return;
424 
425 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
426 
427 	ice_for_each_vsi(pf, v)
428 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
429 		    ice_vsi_sync_fltr(pf->vsi[v])) {
430 			/* come back and try again later */
431 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
432 			break;
433 		}
434 }
435 
436 /**
437  * ice_dis_vsi - pause a VSI
438  * @vsi: the VSI being paused
439  * @locked: is the rtnl_lock already held
440  */
441 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
442 {
443 	if (test_bit(__ICE_DOWN, vsi->state))
444 		return;
445 
446 	set_bit(__ICE_NEEDS_RESTART, vsi->state);
447 
448 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
449 		if (netif_running(vsi->netdev)) {
450 			if (!locked) {
451 				rtnl_lock();
452 				vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
453 				rtnl_unlock();
454 			} else {
455 				vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
456 			}
457 		} else {
458 			ice_vsi_close(vsi);
459 		}
460 	}
461 }
462 
463 /**
464  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
465  * @pf: the PF
466  * @locked: is the rtnl_lock already held
467  */
468 #ifdef CONFIG_DCB
469 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
470 #else
471 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
472 #endif /* CONFIG_DCB */
473 {
474 	int v;
475 
476 	ice_for_each_vsi(pf, v)
477 		if (pf->vsi[v])
478 			ice_dis_vsi(pf->vsi[v], locked);
479 }
480 
481 /**
482  * ice_prepare_for_reset - prep for the core to reset
483  * @pf: board private structure
484  *
485  * Inform or close all dependent features in prep for reset.
486  */
487 static void
488 ice_prepare_for_reset(struct ice_pf *pf)
489 {
490 	struct ice_hw *hw = &pf->hw;
491 
492 	/* already prepared for reset */
493 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
494 		return;
495 
496 	/* Notify VFs of impending reset */
497 	if (ice_check_sq_alive(hw, &hw->mailboxq))
498 		ice_vc_notify_reset(pf);
499 
500 	/* disable the VSIs and their queues that are not already DOWN */
501 	ice_pf_dis_all_vsi(pf, false);
502 
503 	if (hw->port_info)
504 		ice_sched_clear_port(hw->port_info);
505 
506 	ice_shutdown_all_ctrlq(hw);
507 
508 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
509 }
510 
511 /**
512  * ice_do_reset - Initiate one of many types of resets
513  * @pf: board private structure
514  * @reset_type: reset type requested
515  * before this function was called.
516  */
517 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
518 {
519 	struct device *dev = &pf->pdev->dev;
520 	struct ice_hw *hw = &pf->hw;
521 
522 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
523 	WARN_ON(in_interrupt());
524 
525 	ice_prepare_for_reset(pf);
526 
527 	/* trigger the reset */
528 	if (ice_reset(hw, reset_type)) {
529 		dev_err(dev, "reset %d failed\n", reset_type);
530 		set_bit(__ICE_RESET_FAILED, pf->state);
531 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
532 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
533 		clear_bit(__ICE_PFR_REQ, pf->state);
534 		clear_bit(__ICE_CORER_REQ, pf->state);
535 		clear_bit(__ICE_GLOBR_REQ, pf->state);
536 		return;
537 	}
538 
539 	/* PFR is a bit of a special case because it doesn't result in an OICR
540 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
541 	 * associated state bits.
542 	 */
543 	if (reset_type == ICE_RESET_PFR) {
544 		pf->pfr_count++;
545 		ice_rebuild(pf);
546 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
547 		clear_bit(__ICE_PFR_REQ, pf->state);
548 		ice_reset_all_vfs(pf, true);
549 	}
550 }
551 
552 /**
553  * ice_reset_subtask - Set up for resetting the device and driver
554  * @pf: board private structure
555  */
556 static void ice_reset_subtask(struct ice_pf *pf)
557 {
558 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
559 
560 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
561 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
562 	 * of reset is pending and sets bits in pf->state indicating the reset
563 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
564 	 * prepare for pending reset if not already (for PF software-initiated
565 	 * global resets the software should already be prepared for it as
566 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
567 	 * by firmware or software on other PFs, that bit is not set so prepare
568 	 * for the reset now), poll for reset done, rebuild and return.
569 	 */
570 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
571 		/* Perform the largest reset requested */
572 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
573 			reset_type = ICE_RESET_CORER;
574 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
575 			reset_type = ICE_RESET_GLOBR;
576 		/* return if no valid reset type requested */
577 		if (reset_type == ICE_RESET_INVAL)
578 			return;
579 		ice_prepare_for_reset(pf);
580 
581 		/* make sure we are ready to rebuild */
582 		if (ice_check_reset(&pf->hw)) {
583 			set_bit(__ICE_RESET_FAILED, pf->state);
584 		} else {
585 			/* done with reset. start rebuild */
586 			pf->hw.reset_ongoing = false;
587 			ice_rebuild(pf);
588 			/* clear bit to resume normal operations, but
589 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
590 			 */
591 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
592 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
593 			clear_bit(__ICE_PFR_REQ, pf->state);
594 			clear_bit(__ICE_CORER_REQ, pf->state);
595 			clear_bit(__ICE_GLOBR_REQ, pf->state);
596 			ice_reset_all_vfs(pf, true);
597 		}
598 
599 		return;
600 	}
601 
602 	/* No pending resets to finish processing. Check for new resets */
603 	if (test_bit(__ICE_PFR_REQ, pf->state))
604 		reset_type = ICE_RESET_PFR;
605 	if (test_bit(__ICE_CORER_REQ, pf->state))
606 		reset_type = ICE_RESET_CORER;
607 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
608 		reset_type = ICE_RESET_GLOBR;
609 	/* If no valid reset type requested just return */
610 	if (reset_type == ICE_RESET_INVAL)
611 		return;
612 
613 	/* reset if not already down or busy */
614 	if (!test_bit(__ICE_DOWN, pf->state) &&
615 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
616 		ice_do_reset(pf, reset_type);
617 	}
618 }
619 
620 /**
621  * ice_print_link_msg - print link up or down message
622  * @vsi: the VSI whose link status is being queried
623  * @isup: boolean for if the link is now up or down
624  */
625 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
626 {
627 	struct ice_aqc_get_phy_caps_data *caps;
628 	enum ice_status status;
629 	const char *fec_req;
630 	const char *speed;
631 	const char *fec;
632 	const char *fc;
633 
634 	if (!vsi)
635 		return;
636 
637 	if (vsi->current_isup == isup)
638 		return;
639 
640 	vsi->current_isup = isup;
641 
642 	if (!isup) {
643 		netdev_info(vsi->netdev, "NIC Link is Down\n");
644 		return;
645 	}
646 
647 	switch (vsi->port_info->phy.link_info.link_speed) {
648 	case ICE_AQ_LINK_SPEED_100GB:
649 		speed = "100 G";
650 		break;
651 	case ICE_AQ_LINK_SPEED_50GB:
652 		speed = "50 G";
653 		break;
654 	case ICE_AQ_LINK_SPEED_40GB:
655 		speed = "40 G";
656 		break;
657 	case ICE_AQ_LINK_SPEED_25GB:
658 		speed = "25 G";
659 		break;
660 	case ICE_AQ_LINK_SPEED_20GB:
661 		speed = "20 G";
662 		break;
663 	case ICE_AQ_LINK_SPEED_10GB:
664 		speed = "10 G";
665 		break;
666 	case ICE_AQ_LINK_SPEED_5GB:
667 		speed = "5 G";
668 		break;
669 	case ICE_AQ_LINK_SPEED_2500MB:
670 		speed = "2.5 G";
671 		break;
672 	case ICE_AQ_LINK_SPEED_1000MB:
673 		speed = "1 G";
674 		break;
675 	case ICE_AQ_LINK_SPEED_100MB:
676 		speed = "100 M";
677 		break;
678 	default:
679 		speed = "Unknown";
680 		break;
681 	}
682 
683 	switch (vsi->port_info->fc.current_mode) {
684 	case ICE_FC_FULL:
685 		fc = "Rx/Tx";
686 		break;
687 	case ICE_FC_TX_PAUSE:
688 		fc = "Tx";
689 		break;
690 	case ICE_FC_RX_PAUSE:
691 		fc = "Rx";
692 		break;
693 	case ICE_FC_NONE:
694 		fc = "None";
695 		break;
696 	default:
697 		fc = "Unknown";
698 		break;
699 	}
700 
701 	/* Get FEC mode based on negotiated link info */
702 	switch (vsi->port_info->phy.link_info.fec_info) {
703 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
704 		/* fall through */
705 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
706 		fec = "RS-FEC";
707 		break;
708 	case ICE_AQ_LINK_25G_KR_FEC_EN:
709 		fec = "FC-FEC/BASE-R";
710 		break;
711 	default:
712 		fec = "NONE";
713 		break;
714 	}
715 
716 	/* Get FEC mode requested based on PHY caps last SW configuration */
717 	caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL);
718 	if (!caps) {
719 		fec_req = "Unknown";
720 		goto done;
721 	}
722 
723 	status = ice_aq_get_phy_caps(vsi->port_info, false,
724 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
725 	if (status)
726 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
727 
728 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
729 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
730 		fec_req = "RS-FEC";
731 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
732 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
733 		fec_req = "FC-FEC/BASE-R";
734 	else
735 		fec_req = "NONE";
736 
737 	devm_kfree(&vsi->back->pdev->dev, caps);
738 
739 done:
740 	netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Flow Control: %s\n",
741 		    speed, fec_req, fec, fc);
742 }
743 
744 /**
745  * ice_vsi_link_event - update the VSI's netdev
746  * @vsi: the VSI on which the link event occurred
747  * @link_up: whether or not the VSI needs to be set up or down
748  */
749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
750 {
751 	if (!vsi)
752 		return;
753 
754 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
755 		return;
756 
757 	if (vsi->type == ICE_VSI_PF) {
758 		if (link_up == netif_carrier_ok(vsi->netdev))
759 			return;
760 
761 		if (link_up) {
762 			netif_carrier_on(vsi->netdev);
763 			netif_tx_wake_all_queues(vsi->netdev);
764 		} else {
765 			netif_carrier_off(vsi->netdev);
766 			netif_tx_stop_all_queues(vsi->netdev);
767 		}
768 	}
769 }
770 
771 /**
772  * ice_link_event - process the link event
773  * @pf: PF that the link event is associated with
774  * @pi: port_info for the port that the link event is associated with
775  * @link_up: true if the physical link is up and false if it is down
776  * @link_speed: current link speed received from the link event
777  *
778  * Returns 0 on success and negative on failure
779  */
780 static int
781 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
782 	       u16 link_speed)
783 {
784 	struct ice_phy_info *phy_info;
785 	struct ice_vsi *vsi;
786 	u16 old_link_speed;
787 	bool old_link;
788 	int result;
789 
790 	phy_info = &pi->phy;
791 	phy_info->link_info_old = phy_info->link_info;
792 
793 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
794 	old_link_speed = phy_info->link_info_old.link_speed;
795 
796 	/* update the link info structures and re-enable link events,
797 	 * don't bail on failure due to other book keeping needed
798 	 */
799 	result = ice_update_link_info(pi);
800 	if (result)
801 		dev_dbg(&pf->pdev->dev,
802 			"Failed to update link status and re-enable link events for port %d\n",
803 			pi->lport);
804 
805 	/* if the old link up/down and speed is the same as the new */
806 	if (link_up == old_link && link_speed == old_link_speed)
807 		return result;
808 
809 	vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
810 	if (!vsi || !vsi->port_info)
811 		return -EINVAL;
812 
813 	ice_vsi_link_event(vsi, link_up);
814 	ice_print_link_msg(vsi, link_up);
815 
816 	if (pf->num_alloc_vfs)
817 		ice_vc_notify_link_state(pf);
818 
819 	return result;
820 }
821 
822 /**
823  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
824  * @pf: board private structure
825  */
826 static void ice_watchdog_subtask(struct ice_pf *pf)
827 {
828 	int i;
829 
830 	/* if interface is down do nothing */
831 	if (test_bit(__ICE_DOWN, pf->state) ||
832 	    test_bit(__ICE_CFG_BUSY, pf->state))
833 		return;
834 
835 	/* make sure we don't do these things too often */
836 	if (time_before(jiffies,
837 			pf->serv_tmr_prev + pf->serv_tmr_period))
838 		return;
839 
840 	pf->serv_tmr_prev = jiffies;
841 
842 	/* Update the stats for active netdevs so the network stack
843 	 * can look at updated numbers whenever it cares to
844 	 */
845 	ice_update_pf_stats(pf);
846 	ice_for_each_vsi(pf, i)
847 		if (pf->vsi[i] && pf->vsi[i]->netdev)
848 			ice_update_vsi_stats(pf->vsi[i]);
849 }
850 
851 /**
852  * ice_init_link_events - enable/initialize link events
853  * @pi: pointer to the port_info instance
854  *
855  * Returns -EIO on failure, 0 on success
856  */
857 static int ice_init_link_events(struct ice_port_info *pi)
858 {
859 	u16 mask;
860 
861 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
862 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
863 
864 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
865 		dev_dbg(ice_hw_to_dev(pi->hw),
866 			"Failed to set link event mask for port %d\n",
867 			pi->lport);
868 		return -EIO;
869 	}
870 
871 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
872 		dev_dbg(ice_hw_to_dev(pi->hw),
873 			"Failed to enable link events for port %d\n",
874 			pi->lport);
875 		return -EIO;
876 	}
877 
878 	return 0;
879 }
880 
881 /**
882  * ice_handle_link_event - handle link event via ARQ
883  * @pf: PF that the link event is associated with
884  * @event: event structure containing link status info
885  */
886 static int
887 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
888 {
889 	struct ice_aqc_get_link_status_data *link_data;
890 	struct ice_port_info *port_info;
891 	int status;
892 
893 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
894 	port_info = pf->hw.port_info;
895 	if (!port_info)
896 		return -EINVAL;
897 
898 	status = ice_link_event(pf, port_info,
899 				!!(link_data->link_info & ICE_AQ_LINK_UP),
900 				le16_to_cpu(link_data->link_speed));
901 	if (status)
902 		dev_dbg(&pf->pdev->dev,
903 			"Could not process link event, error %d\n", status);
904 
905 	return status;
906 }
907 
908 /**
909  * __ice_clean_ctrlq - helper function to clean controlq rings
910  * @pf: ptr to struct ice_pf
911  * @q_type: specific Control queue type
912  */
913 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
914 {
915 	struct ice_rq_event_info event;
916 	struct ice_hw *hw = &pf->hw;
917 	struct ice_ctl_q_info *cq;
918 	u16 pending, i = 0;
919 	const char *qtype;
920 	u32 oldval, val;
921 
922 	/* Do not clean control queue if/when PF reset fails */
923 	if (test_bit(__ICE_RESET_FAILED, pf->state))
924 		return 0;
925 
926 	switch (q_type) {
927 	case ICE_CTL_Q_ADMIN:
928 		cq = &hw->adminq;
929 		qtype = "Admin";
930 		break;
931 	case ICE_CTL_Q_MAILBOX:
932 		cq = &hw->mailboxq;
933 		qtype = "Mailbox";
934 		break;
935 	default:
936 		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
937 			 q_type);
938 		return 0;
939 	}
940 
941 	/* check for error indications - PF_xx_AxQLEN register layout for
942 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
943 	 */
944 	val = rd32(hw, cq->rq.len);
945 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
946 		   PF_FW_ARQLEN_ARQCRIT_M)) {
947 		oldval = val;
948 		if (val & PF_FW_ARQLEN_ARQVFE_M)
949 			dev_dbg(&pf->pdev->dev,
950 				"%s Receive Queue VF Error detected\n", qtype);
951 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
952 			dev_dbg(&pf->pdev->dev,
953 				"%s Receive Queue Overflow Error detected\n",
954 				qtype);
955 		}
956 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
957 			dev_dbg(&pf->pdev->dev,
958 				"%s Receive Queue Critical Error detected\n",
959 				qtype);
960 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
961 			 PF_FW_ARQLEN_ARQCRIT_M);
962 		if (oldval != val)
963 			wr32(hw, cq->rq.len, val);
964 	}
965 
966 	val = rd32(hw, cq->sq.len);
967 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
968 		   PF_FW_ATQLEN_ATQCRIT_M)) {
969 		oldval = val;
970 		if (val & PF_FW_ATQLEN_ATQVFE_M)
971 			dev_dbg(&pf->pdev->dev,
972 				"%s Send Queue VF Error detected\n", qtype);
973 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
974 			dev_dbg(&pf->pdev->dev,
975 				"%s Send Queue Overflow Error detected\n",
976 				qtype);
977 		}
978 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
979 			dev_dbg(&pf->pdev->dev,
980 				"%s Send Queue Critical Error detected\n",
981 				qtype);
982 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
983 			 PF_FW_ATQLEN_ATQCRIT_M);
984 		if (oldval != val)
985 			wr32(hw, cq->sq.len, val);
986 	}
987 
988 	event.buf_len = cq->rq_buf_size;
989 	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
990 				     GFP_KERNEL);
991 	if (!event.msg_buf)
992 		return 0;
993 
994 	do {
995 		enum ice_status ret;
996 		u16 opcode;
997 
998 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
999 		if (ret == ICE_ERR_AQ_NO_WORK)
1000 			break;
1001 		if (ret) {
1002 			dev_err(&pf->pdev->dev,
1003 				"%s Receive Queue event error %d\n", qtype,
1004 				ret);
1005 			break;
1006 		}
1007 
1008 		opcode = le16_to_cpu(event.desc.opcode);
1009 
1010 		switch (opcode) {
1011 		case ice_aqc_opc_get_link_status:
1012 			if (ice_handle_link_event(pf, &event))
1013 				dev_err(&pf->pdev->dev,
1014 					"Could not handle link event\n");
1015 			break;
1016 		case ice_mbx_opc_send_msg_to_pf:
1017 			ice_vc_process_vf_msg(pf, &event);
1018 			break;
1019 		case ice_aqc_opc_fw_logging:
1020 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1021 			break;
1022 		case ice_aqc_opc_lldp_set_mib_change:
1023 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1024 			break;
1025 		default:
1026 			dev_dbg(&pf->pdev->dev,
1027 				"%s Receive Queue unknown event 0x%04x ignored\n",
1028 				qtype, opcode);
1029 			break;
1030 		}
1031 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1032 
1033 	devm_kfree(&pf->pdev->dev, event.msg_buf);
1034 
1035 	return pending && (i == ICE_DFLT_IRQ_WORK);
1036 }
1037 
1038 /**
1039  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1040  * @hw: pointer to hardware info
1041  * @cq: control queue information
1042  *
1043  * returns true if there are pending messages in a queue, false if there aren't
1044  */
1045 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1046 {
1047 	u16 ntu;
1048 
1049 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1050 	return cq->rq.next_to_clean != ntu;
1051 }
1052 
1053 /**
1054  * ice_clean_adminq_subtask - clean the AdminQ rings
1055  * @pf: board private structure
1056  */
1057 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1058 {
1059 	struct ice_hw *hw = &pf->hw;
1060 
1061 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1062 		return;
1063 
1064 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1065 		return;
1066 
1067 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1068 
1069 	/* There might be a situation where new messages arrive to a control
1070 	 * queue between processing the last message and clearing the
1071 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1072 	 * ice_ctrlq_pending) and process new messages if any.
1073 	 */
1074 	if (ice_ctrlq_pending(hw, &hw->adminq))
1075 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1076 
1077 	ice_flush(hw);
1078 }
1079 
1080 /**
1081  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1082  * @pf: board private structure
1083  */
1084 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1085 {
1086 	struct ice_hw *hw = &pf->hw;
1087 
1088 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1089 		return;
1090 
1091 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1092 		return;
1093 
1094 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1095 
1096 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1097 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1098 
1099 	ice_flush(hw);
1100 }
1101 
1102 /**
1103  * ice_service_task_schedule - schedule the service task to wake up
1104  * @pf: board private structure
1105  *
1106  * If not already scheduled, this puts the task into the work queue.
1107  */
1108 static void ice_service_task_schedule(struct ice_pf *pf)
1109 {
1110 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1111 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1112 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1113 		queue_work(ice_wq, &pf->serv_task);
1114 }
1115 
1116 /**
1117  * ice_service_task_complete - finish up the service task
1118  * @pf: board private structure
1119  */
1120 static void ice_service_task_complete(struct ice_pf *pf)
1121 {
1122 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1123 
1124 	/* force memory (pf->state) to sync before next service task */
1125 	smp_mb__before_atomic();
1126 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1127 }
1128 
1129 /**
1130  * ice_service_task_stop - stop service task and cancel works
1131  * @pf: board private structure
1132  */
1133 static void ice_service_task_stop(struct ice_pf *pf)
1134 {
1135 	set_bit(__ICE_SERVICE_DIS, pf->state);
1136 
1137 	if (pf->serv_tmr.function)
1138 		del_timer_sync(&pf->serv_tmr);
1139 	if (pf->serv_task.func)
1140 		cancel_work_sync(&pf->serv_task);
1141 
1142 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1143 }
1144 
1145 /**
1146  * ice_service_task_restart - restart service task and schedule works
1147  * @pf: board private structure
1148  *
1149  * This function is needed for suspend and resume works (e.g WoL scenario)
1150  */
1151 static void ice_service_task_restart(struct ice_pf *pf)
1152 {
1153 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1154 	ice_service_task_schedule(pf);
1155 }
1156 
1157 /**
1158  * ice_service_timer - timer callback to schedule service task
1159  * @t: pointer to timer_list
1160  */
1161 static void ice_service_timer(struct timer_list *t)
1162 {
1163 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1164 
1165 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1166 	ice_service_task_schedule(pf);
1167 }
1168 
1169 /**
1170  * ice_handle_mdd_event - handle malicious driver detect event
1171  * @pf: pointer to the PF structure
1172  *
1173  * Called from service task. OICR interrupt handler indicates MDD event
1174  */
1175 static void ice_handle_mdd_event(struct ice_pf *pf)
1176 {
1177 	struct ice_hw *hw = &pf->hw;
1178 	bool mdd_detected = false;
1179 	u32 reg;
1180 	int i;
1181 
1182 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1183 		return;
1184 
1185 	/* find what triggered the MDD event */
1186 	reg = rd32(hw, GL_MDET_TX_PQM);
1187 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1188 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1189 				GL_MDET_TX_PQM_PF_NUM_S;
1190 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1191 				GL_MDET_TX_PQM_VF_NUM_S;
1192 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1193 				GL_MDET_TX_PQM_MAL_TYPE_S;
1194 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1195 				GL_MDET_TX_PQM_QNUM_S);
1196 
1197 		if (netif_msg_tx_err(pf))
1198 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1199 				 event, queue, pf_num, vf_num);
1200 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1201 		mdd_detected = true;
1202 	}
1203 
1204 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1205 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1206 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1207 				GL_MDET_TX_TCLAN_PF_NUM_S;
1208 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1209 				GL_MDET_TX_TCLAN_VF_NUM_S;
1210 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1211 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1212 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1213 				GL_MDET_TX_TCLAN_QNUM_S);
1214 
1215 		if (netif_msg_rx_err(pf))
1216 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1217 				 event, queue, pf_num, vf_num);
1218 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1219 		mdd_detected = true;
1220 	}
1221 
1222 	reg = rd32(hw, GL_MDET_RX);
1223 	if (reg & GL_MDET_RX_VALID_M) {
1224 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1225 				GL_MDET_RX_PF_NUM_S;
1226 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1227 				GL_MDET_RX_VF_NUM_S;
1228 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1229 				GL_MDET_RX_MAL_TYPE_S;
1230 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1231 				GL_MDET_RX_QNUM_S);
1232 
1233 		if (netif_msg_rx_err(pf))
1234 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1235 				 event, queue, pf_num, vf_num);
1236 		wr32(hw, GL_MDET_RX, 0xffffffff);
1237 		mdd_detected = true;
1238 	}
1239 
1240 	if (mdd_detected) {
1241 		bool pf_mdd_detected = false;
1242 
1243 		reg = rd32(hw, PF_MDET_TX_PQM);
1244 		if (reg & PF_MDET_TX_PQM_VALID_M) {
1245 			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1246 			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1247 			pf_mdd_detected = true;
1248 		}
1249 
1250 		reg = rd32(hw, PF_MDET_TX_TCLAN);
1251 		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1252 			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1253 			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1254 			pf_mdd_detected = true;
1255 		}
1256 
1257 		reg = rd32(hw, PF_MDET_RX);
1258 		if (reg & PF_MDET_RX_VALID_M) {
1259 			wr32(hw, PF_MDET_RX, 0xFFFF);
1260 			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
1261 			pf_mdd_detected = true;
1262 		}
1263 		/* Queue belongs to the PF initiate a reset */
1264 		if (pf_mdd_detected) {
1265 			set_bit(__ICE_NEEDS_RESTART, pf->state);
1266 			ice_service_task_schedule(pf);
1267 		}
1268 	}
1269 
1270 	/* check to see if one of the VFs caused the MDD */
1271 	for (i = 0; i < pf->num_alloc_vfs; i++) {
1272 		struct ice_vf *vf = &pf->vf[i];
1273 
1274 		bool vf_mdd_detected = false;
1275 
1276 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1277 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1278 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1279 			vf_mdd_detected = true;
1280 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1281 				 i);
1282 		}
1283 
1284 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1285 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1286 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1287 			vf_mdd_detected = true;
1288 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1289 				 i);
1290 		}
1291 
1292 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1293 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1294 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1295 			vf_mdd_detected = true;
1296 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1297 				 i);
1298 		}
1299 
1300 		reg = rd32(hw, VP_MDET_RX(i));
1301 		if (reg & VP_MDET_RX_VALID_M) {
1302 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1303 			vf_mdd_detected = true;
1304 			dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
1305 				 i);
1306 		}
1307 
1308 		if (vf_mdd_detected) {
1309 			vf->num_mdd_events++;
1310 			if (vf->num_mdd_events > 1)
1311 				dev_info(&pf->pdev->dev, "VF %d has had %llu MDD events since last boot\n",
1312 					 i, vf->num_mdd_events);
1313 		}
1314 	}
1315 }
1316 
1317 /**
1318  * ice_service_task - manage and run subtasks
1319  * @work: pointer to work_struct contained by the PF struct
1320  */
1321 static void ice_service_task(struct work_struct *work)
1322 {
1323 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1324 	unsigned long start_time = jiffies;
1325 
1326 	/* subtasks */
1327 
1328 	/* process reset requests first */
1329 	ice_reset_subtask(pf);
1330 
1331 	/* bail if a reset/recovery cycle is pending or rebuild failed */
1332 	if (ice_is_reset_in_progress(pf->state) ||
1333 	    test_bit(__ICE_SUSPENDED, pf->state) ||
1334 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1335 		ice_service_task_complete(pf);
1336 		return;
1337 	}
1338 
1339 	ice_check_for_hang_subtask(pf);
1340 	ice_sync_fltr_subtask(pf);
1341 	ice_handle_mdd_event(pf);
1342 	ice_process_vflr_event(pf);
1343 	ice_watchdog_subtask(pf);
1344 	ice_clean_adminq_subtask(pf);
1345 	ice_clean_mailboxq_subtask(pf);
1346 
1347 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1348 	ice_service_task_complete(pf);
1349 
1350 	/* If the tasks have taken longer than one service timer period
1351 	 * or there is more work to be done, reset the service timer to
1352 	 * schedule the service task now.
1353 	 */
1354 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1355 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1356 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1357 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1358 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1359 		mod_timer(&pf->serv_tmr, jiffies);
1360 }
1361 
1362 /**
1363  * ice_set_ctrlq_len - helper function to set controlq length
1364  * @hw: pointer to the HW instance
1365  */
1366 static void ice_set_ctrlq_len(struct ice_hw *hw)
1367 {
1368 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1369 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1370 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1371 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1372 	hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
1373 	hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
1374 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1375 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1376 }
1377 
1378 /**
1379  * ice_irq_affinity_notify - Callback for affinity changes
1380  * @notify: context as to what irq was changed
1381  * @mask: the new affinity mask
1382  *
1383  * This is a callback function used by the irq_set_affinity_notifier function
1384  * so that we may register to receive changes to the irq affinity masks.
1385  */
1386 static void
1387 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1388 			const cpumask_t *mask)
1389 {
1390 	struct ice_q_vector *q_vector =
1391 		container_of(notify, struct ice_q_vector, affinity_notify);
1392 
1393 	cpumask_copy(&q_vector->affinity_mask, mask);
1394 }
1395 
1396 /**
1397  * ice_irq_affinity_release - Callback for affinity notifier release
1398  * @ref: internal core kernel usage
1399  *
1400  * This is a callback function used by the irq_set_affinity_notifier function
1401  * to inform the current notification subscriber that they will no longer
1402  * receive notifications.
1403  */
1404 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1405 
1406 /**
1407  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1408  * @vsi: the VSI being configured
1409  */
1410 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1411 {
1412 	struct ice_pf *pf = vsi->back;
1413 	struct ice_hw *hw = &pf->hw;
1414 
1415 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1416 		int i;
1417 
1418 		ice_for_each_q_vector(vsi, i)
1419 			ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1420 	}
1421 
1422 	ice_flush(hw);
1423 	return 0;
1424 }
1425 
1426 /**
1427  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1428  * @vsi: the VSI being configured
1429  * @basename: name for the vector
1430  */
1431 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1432 {
1433 	int q_vectors = vsi->num_q_vectors;
1434 	struct ice_pf *pf = vsi->back;
1435 	int base = vsi->base_vector;
1436 	int rx_int_idx = 0;
1437 	int tx_int_idx = 0;
1438 	int vector, err;
1439 	int irq_num;
1440 
1441 	for (vector = 0; vector < q_vectors; vector++) {
1442 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1443 
1444 		irq_num = pf->msix_entries[base + vector].vector;
1445 
1446 		if (q_vector->tx.ring && q_vector->rx.ring) {
1447 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1448 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1449 			tx_int_idx++;
1450 		} else if (q_vector->rx.ring) {
1451 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1452 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1453 		} else if (q_vector->tx.ring) {
1454 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1455 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1456 		} else {
1457 			/* skip this unused q_vector */
1458 			continue;
1459 		}
1460 		err = devm_request_irq(&pf->pdev->dev, irq_num,
1461 				       vsi->irq_handler, 0,
1462 				       q_vector->name, q_vector);
1463 		if (err) {
1464 			netdev_err(vsi->netdev,
1465 				   "MSIX request_irq failed, error: %d\n", err);
1466 			goto free_q_irqs;
1467 		}
1468 
1469 		/* register for affinity change notifications */
1470 		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1471 		q_vector->affinity_notify.release = ice_irq_affinity_release;
1472 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1473 
1474 		/* assign the mask for this irq */
1475 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1476 	}
1477 
1478 	vsi->irqs_ready = true;
1479 	return 0;
1480 
1481 free_q_irqs:
1482 	while (vector) {
1483 		vector--;
1484 		irq_num = pf->msix_entries[base + vector].vector,
1485 		irq_set_affinity_notifier(irq_num, NULL);
1486 		irq_set_affinity_hint(irq_num, NULL);
1487 		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1488 	}
1489 	return err;
1490 }
1491 
1492 /**
1493  * ice_ena_misc_vector - enable the non-queue interrupts
1494  * @pf: board private structure
1495  */
1496 static void ice_ena_misc_vector(struct ice_pf *pf)
1497 {
1498 	struct ice_hw *hw = &pf->hw;
1499 	u32 val;
1500 
1501 	/* clear things first */
1502 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
1503 	rd32(hw, PFINT_OICR);		/* read to clear */
1504 
1505 	val = (PFINT_OICR_ECC_ERR_M |
1506 	       PFINT_OICR_MAL_DETECT_M |
1507 	       PFINT_OICR_GRST_M |
1508 	       PFINT_OICR_PCI_EXCEPTION_M |
1509 	       PFINT_OICR_VFLR_M |
1510 	       PFINT_OICR_HMC_ERR_M |
1511 	       PFINT_OICR_PE_CRITERR_M);
1512 
1513 	wr32(hw, PFINT_OICR_ENA, val);
1514 
1515 	/* SW_ITR_IDX = 0, but don't change INTENA */
1516 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1517 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1518 }
1519 
1520 /**
1521  * ice_misc_intr - misc interrupt handler
1522  * @irq: interrupt number
1523  * @data: pointer to a q_vector
1524  */
1525 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1526 {
1527 	struct ice_pf *pf = (struct ice_pf *)data;
1528 	struct ice_hw *hw = &pf->hw;
1529 	irqreturn_t ret = IRQ_NONE;
1530 	u32 oicr, ena_mask;
1531 
1532 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1533 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1534 
1535 	oicr = rd32(hw, PFINT_OICR);
1536 	ena_mask = rd32(hw, PFINT_OICR_ENA);
1537 
1538 	if (oicr & PFINT_OICR_SWINT_M) {
1539 		ena_mask &= ~PFINT_OICR_SWINT_M;
1540 		pf->sw_int_count++;
1541 	}
1542 
1543 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
1544 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
1545 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
1546 	}
1547 	if (oicr & PFINT_OICR_VFLR_M) {
1548 		ena_mask &= ~PFINT_OICR_VFLR_M;
1549 		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
1550 	}
1551 
1552 	if (oicr & PFINT_OICR_GRST_M) {
1553 		u32 reset;
1554 
1555 		/* we have a reset warning */
1556 		ena_mask &= ~PFINT_OICR_GRST_M;
1557 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1558 			GLGEN_RSTAT_RESET_TYPE_S;
1559 
1560 		if (reset == ICE_RESET_CORER)
1561 			pf->corer_count++;
1562 		else if (reset == ICE_RESET_GLOBR)
1563 			pf->globr_count++;
1564 		else if (reset == ICE_RESET_EMPR)
1565 			pf->empr_count++;
1566 		else
1567 			dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
1568 				reset);
1569 
1570 		/* If a reset cycle isn't already in progress, we set a bit in
1571 		 * pf->state so that the service task can start a reset/rebuild.
1572 		 * We also make note of which reset happened so that peer
1573 		 * devices/drivers can be informed.
1574 		 */
1575 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1576 			if (reset == ICE_RESET_CORER)
1577 				set_bit(__ICE_CORER_RECV, pf->state);
1578 			else if (reset == ICE_RESET_GLOBR)
1579 				set_bit(__ICE_GLOBR_RECV, pf->state);
1580 			else
1581 				set_bit(__ICE_EMPR_RECV, pf->state);
1582 
1583 			/* There are couple of different bits at play here.
1584 			 * hw->reset_ongoing indicates whether the hardware is
1585 			 * in reset. This is set to true when a reset interrupt
1586 			 * is received and set back to false after the driver
1587 			 * has determined that the hardware is out of reset.
1588 			 *
1589 			 * __ICE_RESET_OICR_RECV in pf->state indicates
1590 			 * that a post reset rebuild is required before the
1591 			 * driver is operational again. This is set above.
1592 			 *
1593 			 * As this is the start of the reset/rebuild cycle, set
1594 			 * both to indicate that.
1595 			 */
1596 			hw->reset_ongoing = true;
1597 		}
1598 	}
1599 
1600 	if (oicr & PFINT_OICR_HMC_ERR_M) {
1601 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1602 		dev_dbg(&pf->pdev->dev,
1603 			"HMC Error interrupt - info 0x%x, data 0x%x\n",
1604 			rd32(hw, PFHMC_ERRORINFO),
1605 			rd32(hw, PFHMC_ERRORDATA));
1606 	}
1607 
1608 	/* Report any remaining unexpected interrupts */
1609 	oicr &= ena_mask;
1610 	if (oicr) {
1611 		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1612 			oicr);
1613 		/* If a critical error is pending there is no choice but to
1614 		 * reset the device.
1615 		 */
1616 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
1617 			    PFINT_OICR_PCI_EXCEPTION_M |
1618 			    PFINT_OICR_ECC_ERR_M)) {
1619 			set_bit(__ICE_PFR_REQ, pf->state);
1620 			ice_service_task_schedule(pf);
1621 		}
1622 	}
1623 	ret = IRQ_HANDLED;
1624 
1625 	if (!test_bit(__ICE_DOWN, pf->state)) {
1626 		ice_service_task_schedule(pf);
1627 		ice_irq_dynamic_ena(hw, NULL, NULL);
1628 	}
1629 
1630 	return ret;
1631 }
1632 
1633 /**
1634  * ice_dis_ctrlq_interrupts - disable control queue interrupts
1635  * @hw: pointer to HW structure
1636  */
1637 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
1638 {
1639 	/* disable Admin queue Interrupt causes */
1640 	wr32(hw, PFINT_FW_CTL,
1641 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
1642 
1643 	/* disable Mailbox queue Interrupt causes */
1644 	wr32(hw, PFINT_MBX_CTL,
1645 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
1646 
1647 	/* disable Control queue Interrupt causes */
1648 	wr32(hw, PFINT_OICR_CTL,
1649 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
1650 
1651 	ice_flush(hw);
1652 }
1653 
1654 /**
1655  * ice_free_irq_msix_misc - Unroll misc vector setup
1656  * @pf: board private structure
1657  */
1658 static void ice_free_irq_msix_misc(struct ice_pf *pf)
1659 {
1660 	struct ice_hw *hw = &pf->hw;
1661 
1662 	ice_dis_ctrlq_interrupts(hw);
1663 
1664 	/* disable OICR interrupt */
1665 	wr32(hw, PFINT_OICR_ENA, 0);
1666 	ice_flush(hw);
1667 
1668 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
1669 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
1670 		devm_free_irq(&pf->pdev->dev,
1671 			      pf->msix_entries[pf->oicr_idx].vector, pf);
1672 	}
1673 
1674 	pf->num_avail_sw_msix += 1;
1675 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
1676 }
1677 
1678 /**
1679  * ice_ena_ctrlq_interrupts - enable control queue interrupts
1680  * @hw: pointer to HW structure
1681  * @reg_idx: HW vector index to associate the control queue interrupts with
1682  */
1683 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
1684 {
1685 	u32 val;
1686 
1687 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1688 	       PFINT_OICR_CTL_CAUSE_ENA_M);
1689 	wr32(hw, PFINT_OICR_CTL, val);
1690 
1691 	/* enable Admin queue Interrupt causes */
1692 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1693 	       PFINT_FW_CTL_CAUSE_ENA_M);
1694 	wr32(hw, PFINT_FW_CTL, val);
1695 
1696 	/* enable Mailbox queue Interrupt causes */
1697 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
1698 	       PFINT_MBX_CTL_CAUSE_ENA_M);
1699 	wr32(hw, PFINT_MBX_CTL, val);
1700 
1701 	ice_flush(hw);
1702 }
1703 
1704 /**
1705  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
1706  * @pf: board private structure
1707  *
1708  * This sets up the handler for MSIX 0, which is used to manage the
1709  * non-queue interrupts, e.g. AdminQ and errors. This is not used
1710  * when in MSI or Legacy interrupt mode.
1711  */
1712 static int ice_req_irq_msix_misc(struct ice_pf *pf)
1713 {
1714 	struct ice_hw *hw = &pf->hw;
1715 	int oicr_idx, err = 0;
1716 
1717 	if (!pf->int_name[0])
1718 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
1719 			 dev_driver_string(&pf->pdev->dev),
1720 			 dev_name(&pf->pdev->dev));
1721 
1722 	/* Do not request IRQ but do enable OICR interrupt since settings are
1723 	 * lost during reset. Note that this function is called only during
1724 	 * rebuild path and not while reset is in progress.
1725 	 */
1726 	if (ice_is_reset_in_progress(pf->state))
1727 		goto skip_req_irq;
1728 
1729 	/* reserve one vector in irq_tracker for misc interrupts */
1730 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1731 	if (oicr_idx < 0)
1732 		return oicr_idx;
1733 
1734 	pf->num_avail_sw_msix -= 1;
1735 	pf->oicr_idx = oicr_idx;
1736 
1737 	err = devm_request_irq(&pf->pdev->dev,
1738 			       pf->msix_entries[pf->oicr_idx].vector,
1739 			       ice_misc_intr, 0, pf->int_name, pf);
1740 	if (err) {
1741 		dev_err(&pf->pdev->dev,
1742 			"devm_request_irq for %s failed: %d\n",
1743 			pf->int_name, err);
1744 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1745 		pf->num_avail_sw_msix += 1;
1746 		return err;
1747 	}
1748 
1749 skip_req_irq:
1750 	ice_ena_misc_vector(pf);
1751 
1752 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
1753 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
1754 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1755 
1756 	ice_flush(hw);
1757 	ice_irq_dynamic_ena(hw, NULL, NULL);
1758 
1759 	return 0;
1760 }
1761 
1762 /**
1763  * ice_napi_add - register NAPI handler for the VSI
1764  * @vsi: VSI for which NAPI handler is to be registered
1765  *
1766  * This function is only called in the driver's load path. Registering the NAPI
1767  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
1768  * reset/rebuild, etc.)
1769  */
1770 static void ice_napi_add(struct ice_vsi *vsi)
1771 {
1772 	int v_idx;
1773 
1774 	if (!vsi->netdev)
1775 		return;
1776 
1777 	ice_for_each_q_vector(vsi, v_idx)
1778 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
1779 			       ice_napi_poll, NAPI_POLL_WEIGHT);
1780 }
1781 
1782 /**
1783  * ice_cfg_netdev - Allocate, configure and register a netdev
1784  * @vsi: the VSI associated with the new netdev
1785  *
1786  * Returns 0 on success, negative value on failure
1787  */
1788 static int ice_cfg_netdev(struct ice_vsi *vsi)
1789 {
1790 	netdev_features_t csumo_features;
1791 	netdev_features_t vlano_features;
1792 	netdev_features_t dflt_features;
1793 	netdev_features_t tso_features;
1794 	struct ice_netdev_priv *np;
1795 	struct net_device *netdev;
1796 	u8 mac_addr[ETH_ALEN];
1797 	int err;
1798 
1799 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
1800 				    vsi->alloc_rxq);
1801 	if (!netdev)
1802 		return -ENOMEM;
1803 
1804 	vsi->netdev = netdev;
1805 	np = netdev_priv(netdev);
1806 	np->vsi = vsi;
1807 
1808 	dflt_features = NETIF_F_SG	|
1809 			NETIF_F_HIGHDMA	|
1810 			NETIF_F_RXHASH;
1811 
1812 	csumo_features = NETIF_F_RXCSUM	  |
1813 			 NETIF_F_IP_CSUM  |
1814 			 NETIF_F_SCTP_CRC |
1815 			 NETIF_F_IPV6_CSUM;
1816 
1817 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
1818 			 NETIF_F_HW_VLAN_CTAG_TX     |
1819 			 NETIF_F_HW_VLAN_CTAG_RX;
1820 
1821 	tso_features = NETIF_F_TSO;
1822 
1823 	/* set features that user can change */
1824 	netdev->hw_features = dflt_features | csumo_features |
1825 			      vlano_features | tso_features;
1826 
1827 	/* enable features */
1828 	netdev->features |= netdev->hw_features;
1829 	/* encap and VLAN devices inherit default, csumo and tso features */
1830 	netdev->hw_enc_features |= dflt_features | csumo_features |
1831 				   tso_features;
1832 	netdev->vlan_features |= dflt_features | csumo_features |
1833 				 tso_features;
1834 
1835 	if (vsi->type == ICE_VSI_PF) {
1836 		SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
1837 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
1838 
1839 		ether_addr_copy(netdev->dev_addr, mac_addr);
1840 		ether_addr_copy(netdev->perm_addr, mac_addr);
1841 	}
1842 
1843 	netdev->priv_flags |= IFF_UNICAST_FLT;
1844 
1845 	/* assign netdev_ops */
1846 	netdev->netdev_ops = &ice_netdev_ops;
1847 
1848 	/* setup watchdog timeout value to be 5 second */
1849 	netdev->watchdog_timeo = 5 * HZ;
1850 
1851 	ice_set_ethtool_ops(netdev);
1852 
1853 	netdev->min_mtu = ETH_MIN_MTU;
1854 	netdev->max_mtu = ICE_MAX_MTU;
1855 
1856 	err = register_netdev(vsi->netdev);
1857 	if (err)
1858 		return err;
1859 
1860 	netif_carrier_off(vsi->netdev);
1861 
1862 	/* make sure transmit queues start off as stopped */
1863 	netif_tx_stop_all_queues(vsi->netdev);
1864 
1865 	return 0;
1866 }
1867 
1868 /**
1869  * ice_fill_rss_lut - Fill the RSS lookup table with default values
1870  * @lut: Lookup table
1871  * @rss_table_size: Lookup table size
1872  * @rss_size: Range of queue number for hashing
1873  */
1874 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
1875 {
1876 	u16 i;
1877 
1878 	for (i = 0; i < rss_table_size; i++)
1879 		lut[i] = i % rss_size;
1880 }
1881 
1882 /**
1883  * ice_pf_vsi_setup - Set up a PF VSI
1884  * @pf: board private structure
1885  * @pi: pointer to the port_info instance
1886  *
1887  * Returns pointer to the successfully allocated VSI software struct
1888  * on success, otherwise returns NULL on failure.
1889  */
1890 static struct ice_vsi *
1891 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
1892 {
1893 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
1894 }
1895 
1896 /**
1897  * ice_lb_vsi_setup - Set up a loopback VSI
1898  * @pf: board private structure
1899  * @pi: pointer to the port_info instance
1900  *
1901  * Returns pointer to the successfully allocated VSI software struct
1902  * on success, otherwise returns NULL on failure.
1903  */
1904 struct ice_vsi *
1905 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
1906 {
1907 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
1908 }
1909 
1910 /**
1911  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
1912  * @netdev: network interface to be adjusted
1913  * @proto: unused protocol
1914  * @vid: VLAN ID to be added
1915  *
1916  * net_device_ops implementation for adding VLAN IDs
1917  */
1918 static int
1919 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
1920 		    u16 vid)
1921 {
1922 	struct ice_netdev_priv *np = netdev_priv(netdev);
1923 	struct ice_vsi *vsi = np->vsi;
1924 	int ret;
1925 
1926 	if (vid >= VLAN_N_VID) {
1927 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
1928 			   vid, VLAN_N_VID);
1929 		return -EINVAL;
1930 	}
1931 
1932 	if (vsi->info.pvid)
1933 		return -EINVAL;
1934 
1935 	/* Enable VLAN pruning when VLAN 0 is added */
1936 	if (unlikely(!vid)) {
1937 		ret = ice_cfg_vlan_pruning(vsi, true, false);
1938 		if (ret)
1939 			return ret;
1940 	}
1941 
1942 	/* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
1943 	 * needed to continue allowing all untagged packets since VLAN prune
1944 	 * list is applied to all packets by the switch
1945 	 */
1946 	ret = ice_vsi_add_vlan(vsi, vid);
1947 	if (!ret) {
1948 		vsi->vlan_ena = true;
1949 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
1950 	}
1951 
1952 	return ret;
1953 }
1954 
1955 /**
1956  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
1957  * @netdev: network interface to be adjusted
1958  * @proto: unused protocol
1959  * @vid: VLAN ID to be removed
1960  *
1961  * net_device_ops implementation for removing VLAN IDs
1962  */
1963 static int
1964 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
1965 		     u16 vid)
1966 {
1967 	struct ice_netdev_priv *np = netdev_priv(netdev);
1968 	struct ice_vsi *vsi = np->vsi;
1969 	int ret;
1970 
1971 	if (vsi->info.pvid)
1972 		return -EINVAL;
1973 
1974 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
1975 	 * information
1976 	 */
1977 	ret = ice_vsi_kill_vlan(vsi, vid);
1978 	if (ret)
1979 		return ret;
1980 
1981 	/* Disable VLAN pruning when VLAN 0 is removed */
1982 	if (unlikely(!vid))
1983 		ret = ice_cfg_vlan_pruning(vsi, false, false);
1984 
1985 	vsi->vlan_ena = false;
1986 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
1987 	return ret;
1988 }
1989 
1990 /**
1991  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
1992  * @pf: board private structure
1993  *
1994  * Returns 0 on success, negative value on failure
1995  */
1996 static int ice_setup_pf_sw(struct ice_pf *pf)
1997 {
1998 	struct ice_vsi *vsi;
1999 	int status = 0;
2000 
2001 	if (ice_is_reset_in_progress(pf->state))
2002 		return -EBUSY;
2003 
2004 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2005 	if (!vsi) {
2006 		status = -ENOMEM;
2007 		goto unroll_vsi_setup;
2008 	}
2009 
2010 	status = ice_cfg_netdev(vsi);
2011 	if (status) {
2012 		status = -ENODEV;
2013 		goto unroll_vsi_setup;
2014 	}
2015 
2016 	/* registering the NAPI handler requires both the queues and
2017 	 * netdev to be created, which are done in ice_pf_vsi_setup()
2018 	 * and ice_cfg_netdev() respectively
2019 	 */
2020 	ice_napi_add(vsi);
2021 
2022 	status = ice_init_mac_fltr(pf);
2023 	if (status)
2024 		goto unroll_napi_add;
2025 
2026 	return status;
2027 
2028 unroll_napi_add:
2029 	if (vsi) {
2030 		ice_napi_del(vsi);
2031 		if (vsi->netdev) {
2032 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
2033 				unregister_netdev(vsi->netdev);
2034 			free_netdev(vsi->netdev);
2035 			vsi->netdev = NULL;
2036 		}
2037 	}
2038 
2039 unroll_vsi_setup:
2040 	if (vsi) {
2041 		ice_vsi_free_q_vectors(vsi);
2042 		ice_vsi_delete(vsi);
2043 		ice_vsi_put_qs(vsi);
2044 		pf->q_left_tx += vsi->alloc_txq;
2045 		pf->q_left_rx += vsi->alloc_rxq;
2046 		ice_vsi_clear(vsi);
2047 	}
2048 	return status;
2049 }
2050 
2051 /**
2052  * ice_determine_q_usage - Calculate queue distribution
2053  * @pf: board private structure
2054  *
2055  * Return -ENOMEM if we don't get enough queues for all ports
2056  */
2057 static void ice_determine_q_usage(struct ice_pf *pf)
2058 {
2059 	u16 q_left_tx, q_left_rx;
2060 
2061 	q_left_tx = pf->hw.func_caps.common_cap.num_txq;
2062 	q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
2063 
2064 	pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
2065 
2066 	/* only 1 Rx queue unless RSS is enabled */
2067 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2068 		pf->num_lan_rx = 1;
2069 	else
2070 		pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
2071 
2072 	pf->q_left_tx = q_left_tx - pf->num_lan_tx;
2073 	pf->q_left_rx = q_left_rx - pf->num_lan_rx;
2074 }
2075 
2076 /**
2077  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2078  * @pf: board private structure to initialize
2079  */
2080 static void ice_deinit_pf(struct ice_pf *pf)
2081 {
2082 	ice_service_task_stop(pf);
2083 	mutex_destroy(&pf->sw_mutex);
2084 	mutex_destroy(&pf->avail_q_mutex);
2085 }
2086 
2087 /**
2088  * ice_init_pf - Initialize general software structures (struct ice_pf)
2089  * @pf: board private structure to initialize
2090  */
2091 static void ice_init_pf(struct ice_pf *pf)
2092 {
2093 	bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
2094 	set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2095 #ifdef CONFIG_PCI_IOV
2096 	if (pf->hw.func_caps.common_cap.sr_iov_1_1) {
2097 		struct ice_hw *hw = &pf->hw;
2098 
2099 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2100 		pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs,
2101 					      ICE_MAX_VF_COUNT);
2102 	}
2103 #endif /* CONFIG_PCI_IOV */
2104 
2105 	mutex_init(&pf->sw_mutex);
2106 	mutex_init(&pf->avail_q_mutex);
2107 
2108 	/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
2109 	mutex_lock(&pf->avail_q_mutex);
2110 	bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
2111 	bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
2112 	mutex_unlock(&pf->avail_q_mutex);
2113 
2114 	if (pf->hw.func_caps.common_cap.rss_table_size)
2115 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2116 
2117 	/* setup service timer and periodic service task */
2118 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2119 	pf->serv_tmr_period = HZ;
2120 	INIT_WORK(&pf->serv_task, ice_service_task);
2121 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
2122 }
2123 
2124 /**
2125  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2126  * @pf: board private structure
2127  *
2128  * compute the number of MSIX vectors required (v_budget) and request from
2129  * the OS. Return the number of vectors reserved or negative on failure
2130  */
2131 static int ice_ena_msix_range(struct ice_pf *pf)
2132 {
2133 	int v_left, v_actual, v_budget = 0;
2134 	int needed, err, i;
2135 
2136 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2137 
2138 	/* reserve one vector for miscellaneous handler */
2139 	needed = 1;
2140 	v_budget += needed;
2141 	v_left -= needed;
2142 
2143 	/* reserve vectors for LAN traffic */
2144 	pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
2145 	v_budget += pf->num_lan_msix;
2146 	v_left -= pf->num_lan_msix;
2147 
2148 	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
2149 					sizeof(*pf->msix_entries), GFP_KERNEL);
2150 
2151 	if (!pf->msix_entries) {
2152 		err = -ENOMEM;
2153 		goto exit_err;
2154 	}
2155 
2156 	for (i = 0; i < v_budget; i++)
2157 		pf->msix_entries[i].entry = i;
2158 
2159 	/* actually reserve the vectors */
2160 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2161 					 ICE_MIN_MSIX, v_budget);
2162 
2163 	if (v_actual < 0) {
2164 		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
2165 		err = v_actual;
2166 		goto msix_err;
2167 	}
2168 
2169 	if (v_actual < v_budget) {
2170 		dev_warn(&pf->pdev->dev,
2171 			 "not enough vectors. requested = %d, obtained = %d\n",
2172 			 v_budget, v_actual);
2173 		if (v_actual >= (pf->num_lan_msix + 1)) {
2174 			pf->num_avail_sw_msix = v_actual -
2175 						(pf->num_lan_msix + 1);
2176 		} else if (v_actual >= 2) {
2177 			pf->num_lan_msix = 1;
2178 			pf->num_avail_sw_msix = v_actual - 2;
2179 		} else {
2180 			pci_disable_msix(pf->pdev);
2181 			err = -ERANGE;
2182 			goto msix_err;
2183 		}
2184 	}
2185 
2186 	return v_actual;
2187 
2188 msix_err:
2189 	devm_kfree(&pf->pdev->dev, pf->msix_entries);
2190 	goto exit_err;
2191 
2192 exit_err:
2193 	pf->num_lan_msix = 0;
2194 	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2195 	return err;
2196 }
2197 
2198 /**
2199  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2200  * @pf: board private structure
2201  */
2202 static void ice_dis_msix(struct ice_pf *pf)
2203 {
2204 	pci_disable_msix(pf->pdev);
2205 	devm_kfree(&pf->pdev->dev, pf->msix_entries);
2206 	pf->msix_entries = NULL;
2207 	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2208 }
2209 
2210 /**
2211  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2212  * @pf: board private structure
2213  */
2214 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2215 {
2216 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2217 		ice_dis_msix(pf);
2218 
2219 	if (pf->irq_tracker) {
2220 		devm_kfree(&pf->pdev->dev, pf->irq_tracker);
2221 		pf->irq_tracker = NULL;
2222 	}
2223 }
2224 
2225 /**
2226  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2227  * @pf: board private structure to initialize
2228  */
2229 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2230 {
2231 	int vectors;
2232 
2233 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2234 		vectors = ice_ena_msix_range(pf);
2235 	else
2236 		return -ENODEV;
2237 
2238 	if (vectors < 0)
2239 		return vectors;
2240 
2241 	/* set up vector assignment tracking */
2242 	pf->irq_tracker =
2243 		devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) +
2244 			     (sizeof(u16) * vectors), GFP_KERNEL);
2245 	if (!pf->irq_tracker) {
2246 		ice_dis_msix(pf);
2247 		return -ENOMEM;
2248 	}
2249 
2250 	/* populate SW interrupts pool with number of OS granted IRQs. */
2251 	pf->num_avail_sw_msix = vectors;
2252 	pf->irq_tracker->num_entries = vectors;
2253 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
2254 
2255 	return 0;
2256 }
2257 
2258 /**
2259  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
2260  * @pf: pointer to the PF structure
2261  *
2262  * There is no error returned here because the driver should be able to handle
2263  * 128 Byte cache lines, so we only print a warning in case issues are seen,
2264  * specifically with Tx.
2265  */
2266 static void ice_verify_cacheline_size(struct ice_pf *pf)
2267 {
2268 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
2269 		dev_warn(&pf->pdev->dev,
2270 			 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
2271 			 ICE_CACHE_LINE_BYTES);
2272 }
2273 
2274 /**
2275  * ice_probe - Device initialization routine
2276  * @pdev: PCI device information struct
2277  * @ent: entry in ice_pci_tbl
2278  *
2279  * Returns 0 on success, negative on failure
2280  */
2281 static int
2282 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2283 {
2284 	struct device *dev = &pdev->dev;
2285 	struct ice_pf *pf;
2286 	struct ice_hw *hw;
2287 	int err;
2288 
2289 	/* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
2290 	err = pcim_enable_device(pdev);
2291 	if (err)
2292 		return err;
2293 
2294 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
2295 	if (err) {
2296 		dev_err(dev, "BAR0 I/O map error %d\n", err);
2297 		return err;
2298 	}
2299 
2300 	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2301 	if (!pf)
2302 		return -ENOMEM;
2303 
2304 	/* set up for high or low DMA */
2305 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2306 	if (err)
2307 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2308 	if (err) {
2309 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2310 		return err;
2311 	}
2312 
2313 	pci_enable_pcie_error_reporting(pdev);
2314 	pci_set_master(pdev);
2315 
2316 	pf->pdev = pdev;
2317 	pci_set_drvdata(pdev, pf);
2318 	set_bit(__ICE_DOWN, pf->state);
2319 	/* Disable service task until DOWN bit is cleared */
2320 	set_bit(__ICE_SERVICE_DIS, pf->state);
2321 
2322 	hw = &pf->hw;
2323 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
2324 	hw->back = pf;
2325 	hw->vendor_id = pdev->vendor;
2326 	hw->device_id = pdev->device;
2327 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2328 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2329 	hw->subsystem_device_id = pdev->subsystem_device;
2330 	hw->bus.device = PCI_SLOT(pdev->devfn);
2331 	hw->bus.func = PCI_FUNC(pdev->devfn);
2332 	ice_set_ctrlq_len(hw);
2333 
2334 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
2335 
2336 #ifndef CONFIG_DYNAMIC_DEBUG
2337 	if (debug < -1)
2338 		hw->debug_mask = debug;
2339 #endif
2340 
2341 	err = ice_init_hw(hw);
2342 	if (err) {
2343 		dev_err(dev, "ice_init_hw failed: %d\n", err);
2344 		err = -EIO;
2345 		goto err_exit_unroll;
2346 	}
2347 
2348 	dev_info(dev, "firmware %d.%d.%05d api %d.%d\n",
2349 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
2350 		 hw->api_maj_ver, hw->api_min_ver);
2351 
2352 	ice_init_pf(pf);
2353 
2354 	err = ice_init_pf_dcb(pf, false);
2355 	if (err) {
2356 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2357 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
2358 
2359 		/* do not fail overall init if DCB init fails */
2360 		err = 0;
2361 	}
2362 
2363 	ice_determine_q_usage(pf);
2364 
2365 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2366 	if (!pf->num_alloc_vsi) {
2367 		err = -EIO;
2368 		goto err_init_pf_unroll;
2369 	}
2370 
2371 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
2372 			       GFP_KERNEL);
2373 	if (!pf->vsi) {
2374 		err = -ENOMEM;
2375 		goto err_init_pf_unroll;
2376 	}
2377 
2378 	err = ice_init_interrupt_scheme(pf);
2379 	if (err) {
2380 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2381 		err = -EIO;
2382 		goto err_init_interrupt_unroll;
2383 	}
2384 
2385 	/* Driver is mostly up */
2386 	clear_bit(__ICE_DOWN, pf->state);
2387 
2388 	/* In case of MSIX we are going to setup the misc vector right here
2389 	 * to handle admin queue events etc. In case of legacy and MSI
2390 	 * the misc functionality and queue processing is combined in
2391 	 * the same vector and that gets setup at open.
2392 	 */
2393 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2394 		err = ice_req_irq_msix_misc(pf);
2395 		if (err) {
2396 			dev_err(dev, "setup of misc vector failed: %d\n", err);
2397 			goto err_init_interrupt_unroll;
2398 		}
2399 	}
2400 
2401 	/* create switch struct for the switch element created by FW on boot */
2402 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2403 	if (!pf->first_sw) {
2404 		err = -ENOMEM;
2405 		goto err_msix_misc_unroll;
2406 	}
2407 
2408 	if (hw->evb_veb)
2409 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
2410 	else
2411 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
2412 
2413 	pf->first_sw->pf = pf;
2414 
2415 	/* record the sw_id available for later use */
2416 	pf->first_sw->sw_id = hw->port_info->sw_id;
2417 
2418 	err = ice_setup_pf_sw(pf);
2419 	if (err) {
2420 		dev_err(dev, "probe failed due to setup PF switch:%d\n", err);
2421 		goto err_alloc_sw_unroll;
2422 	}
2423 
2424 	clear_bit(__ICE_SERVICE_DIS, pf->state);
2425 
2426 	/* since everything is good, start the service timer */
2427 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2428 
2429 	err = ice_init_link_events(pf->hw.port_info);
2430 	if (err) {
2431 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
2432 		goto err_alloc_sw_unroll;
2433 	}
2434 
2435 	ice_verify_cacheline_size(pf);
2436 
2437 	return 0;
2438 
2439 err_alloc_sw_unroll:
2440 	set_bit(__ICE_SERVICE_DIS, pf->state);
2441 	set_bit(__ICE_DOWN, pf->state);
2442 	devm_kfree(&pf->pdev->dev, pf->first_sw);
2443 err_msix_misc_unroll:
2444 	ice_free_irq_msix_misc(pf);
2445 err_init_interrupt_unroll:
2446 	ice_clear_interrupt_scheme(pf);
2447 	devm_kfree(dev, pf->vsi);
2448 err_init_pf_unroll:
2449 	ice_deinit_pf(pf);
2450 	ice_deinit_hw(hw);
2451 err_exit_unroll:
2452 	pci_disable_pcie_error_reporting(pdev);
2453 	return err;
2454 }
2455 
2456 /**
2457  * ice_remove - Device removal routine
2458  * @pdev: PCI device information struct
2459  */
2460 static void ice_remove(struct pci_dev *pdev)
2461 {
2462 	struct ice_pf *pf = pci_get_drvdata(pdev);
2463 	int i;
2464 
2465 	if (!pf)
2466 		return;
2467 
2468 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
2469 		if (!ice_is_reset_in_progress(pf->state))
2470 			break;
2471 		msleep(100);
2472 	}
2473 
2474 	set_bit(__ICE_DOWN, pf->state);
2475 	ice_service_task_stop(pf);
2476 
2477 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
2478 		ice_free_vfs(pf);
2479 	ice_vsi_release_all(pf);
2480 	ice_free_irq_msix_misc(pf);
2481 	ice_for_each_vsi(pf, i) {
2482 		if (!pf->vsi[i])
2483 			continue;
2484 		ice_vsi_free_q_vectors(pf->vsi[i]);
2485 	}
2486 	ice_clear_interrupt_scheme(pf);
2487 	ice_deinit_pf(pf);
2488 	ice_deinit_hw(&pf->hw);
2489 	pci_disable_pcie_error_reporting(pdev);
2490 }
2491 
2492 /**
2493  * ice_pci_err_detected - warning that PCI error has been detected
2494  * @pdev: PCI device information struct
2495  * @err: the type of PCI error
2496  *
2497  * Called to warn that something happened on the PCI bus and the error handling
2498  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
2499  */
2500 static pci_ers_result_t
2501 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
2502 {
2503 	struct ice_pf *pf = pci_get_drvdata(pdev);
2504 
2505 	if (!pf) {
2506 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
2507 			__func__, err);
2508 		return PCI_ERS_RESULT_DISCONNECT;
2509 	}
2510 
2511 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
2512 		ice_service_task_stop(pf);
2513 
2514 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
2515 			set_bit(__ICE_PFR_REQ, pf->state);
2516 			ice_prepare_for_reset(pf);
2517 		}
2518 	}
2519 
2520 	return PCI_ERS_RESULT_NEED_RESET;
2521 }
2522 
2523 /**
2524  * ice_pci_err_slot_reset - a PCI slot reset has just happened
2525  * @pdev: PCI device information struct
2526  *
2527  * Called to determine if the driver can recover from the PCI slot reset by
2528  * using a register read to determine if the device is recoverable.
2529  */
2530 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
2531 {
2532 	struct ice_pf *pf = pci_get_drvdata(pdev);
2533 	pci_ers_result_t result;
2534 	int err;
2535 	u32 reg;
2536 
2537 	err = pci_enable_device_mem(pdev);
2538 	if (err) {
2539 		dev_err(&pdev->dev,
2540 			"Cannot re-enable PCI device after reset, error %d\n",
2541 			err);
2542 		result = PCI_ERS_RESULT_DISCONNECT;
2543 	} else {
2544 		pci_set_master(pdev);
2545 		pci_restore_state(pdev);
2546 		pci_save_state(pdev);
2547 		pci_wake_from_d3(pdev, false);
2548 
2549 		/* Check for life */
2550 		reg = rd32(&pf->hw, GLGEN_RTRIG);
2551 		if (!reg)
2552 			result = PCI_ERS_RESULT_RECOVERED;
2553 		else
2554 			result = PCI_ERS_RESULT_DISCONNECT;
2555 	}
2556 
2557 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
2558 	if (err)
2559 		dev_dbg(&pdev->dev,
2560 			"pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
2561 			err);
2562 		/* non-fatal, continue */
2563 
2564 	return result;
2565 }
2566 
2567 /**
2568  * ice_pci_err_resume - restart operations after PCI error recovery
2569  * @pdev: PCI device information struct
2570  *
2571  * Called to allow the driver to bring things back up after PCI error and/or
2572  * reset recovery have finished
2573  */
2574 static void ice_pci_err_resume(struct pci_dev *pdev)
2575 {
2576 	struct ice_pf *pf = pci_get_drvdata(pdev);
2577 
2578 	if (!pf) {
2579 		dev_err(&pdev->dev,
2580 			"%s failed, device is unrecoverable\n", __func__);
2581 		return;
2582 	}
2583 
2584 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
2585 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
2586 			__func__);
2587 		return;
2588 	}
2589 
2590 	ice_do_reset(pf, ICE_RESET_PFR);
2591 	ice_service_task_restart(pf);
2592 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2593 }
2594 
2595 /**
2596  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
2597  * @pdev: PCI device information struct
2598  */
2599 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
2600 {
2601 	struct ice_pf *pf = pci_get_drvdata(pdev);
2602 
2603 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
2604 		ice_service_task_stop(pf);
2605 
2606 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
2607 			set_bit(__ICE_PFR_REQ, pf->state);
2608 			ice_prepare_for_reset(pf);
2609 		}
2610 	}
2611 }
2612 
2613 /**
2614  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
2615  * @pdev: PCI device information struct
2616  */
2617 static void ice_pci_err_reset_done(struct pci_dev *pdev)
2618 {
2619 	ice_pci_err_resume(pdev);
2620 }
2621 
2622 /* ice_pci_tbl - PCI Device ID Table
2623  *
2624  * Wildcard entries (PCI_ANY_ID) should come last
2625  * Last entry must be all 0s
2626  *
2627  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
2628  *   Class, Class Mask, private data (not used) }
2629  */
2630 static const struct pci_device_id ice_pci_tbl[] = {
2631 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
2632 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
2633 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
2634 	/* required last entry */
2635 	{ 0, }
2636 };
2637 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
2638 
2639 static const struct pci_error_handlers ice_pci_err_handler = {
2640 	.error_detected = ice_pci_err_detected,
2641 	.slot_reset = ice_pci_err_slot_reset,
2642 	.reset_prepare = ice_pci_err_reset_prepare,
2643 	.reset_done = ice_pci_err_reset_done,
2644 	.resume = ice_pci_err_resume
2645 };
2646 
2647 static struct pci_driver ice_driver = {
2648 	.name = KBUILD_MODNAME,
2649 	.id_table = ice_pci_tbl,
2650 	.probe = ice_probe,
2651 	.remove = ice_remove,
2652 	.sriov_configure = ice_sriov_configure,
2653 	.err_handler = &ice_pci_err_handler
2654 };
2655 
2656 /**
2657  * ice_module_init - Driver registration routine
2658  *
2659  * ice_module_init is the first routine called when the driver is
2660  * loaded. All it does is register with the PCI subsystem.
2661  */
2662 static int __init ice_module_init(void)
2663 {
2664 	int status;
2665 
2666 	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
2667 	pr_info("%s\n", ice_copyright);
2668 
2669 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
2670 	if (!ice_wq) {
2671 		pr_err("Failed to create workqueue\n");
2672 		return -ENOMEM;
2673 	}
2674 
2675 	status = pci_register_driver(&ice_driver);
2676 	if (status) {
2677 		pr_err("failed to register PCI driver, err %d\n", status);
2678 		destroy_workqueue(ice_wq);
2679 	}
2680 
2681 	return status;
2682 }
2683 module_init(ice_module_init);
2684 
2685 /**
2686  * ice_module_exit - Driver exit cleanup routine
2687  *
2688  * ice_module_exit is called just before the driver is removed
2689  * from memory.
2690  */
2691 static void __exit ice_module_exit(void)
2692 {
2693 	pci_unregister_driver(&ice_driver);
2694 	destroy_workqueue(ice_wq);
2695 	pr_info("module unloaded\n");
2696 }
2697 module_exit(ice_module_exit);
2698 
2699 /**
2700  * ice_set_mac_address - NDO callback to set MAC address
2701  * @netdev: network interface device structure
2702  * @pi: pointer to an address structure
2703  *
2704  * Returns 0 on success, negative on failure
2705  */
2706 static int ice_set_mac_address(struct net_device *netdev, void *pi)
2707 {
2708 	struct ice_netdev_priv *np = netdev_priv(netdev);
2709 	struct ice_vsi *vsi = np->vsi;
2710 	struct ice_pf *pf = vsi->back;
2711 	struct ice_hw *hw = &pf->hw;
2712 	struct sockaddr *addr = pi;
2713 	enum ice_status status;
2714 	LIST_HEAD(a_mac_list);
2715 	LIST_HEAD(r_mac_list);
2716 	u8 flags = 0;
2717 	int err;
2718 	u8 *mac;
2719 
2720 	mac = (u8 *)addr->sa_data;
2721 
2722 	if (!is_valid_ether_addr(mac))
2723 		return -EADDRNOTAVAIL;
2724 
2725 	if (ether_addr_equal(netdev->dev_addr, mac)) {
2726 		netdev_warn(netdev, "already using mac %pM\n", mac);
2727 		return 0;
2728 	}
2729 
2730 	if (test_bit(__ICE_DOWN, pf->state) ||
2731 	    ice_is_reset_in_progress(pf->state)) {
2732 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
2733 			   mac);
2734 		return -EBUSY;
2735 	}
2736 
2737 	/* When we change the MAC address we also have to change the MAC address
2738 	 * based filter rules that were created previously for the old MAC
2739 	 * address. So first, we remove the old filter rule using ice_remove_mac
2740 	 * and then create a new filter rule using ice_add_mac. Note that for
2741 	 * both these operations, we first need to form a "list" of MAC
2742 	 * addresses (even though in this case, we have only 1 MAC address to be
2743 	 * added/removed) and this done using ice_add_mac_to_list. Depending on
2744 	 * the ensuing operation this "list" of MAC addresses is either to be
2745 	 * added or removed from the filter.
2746 	 */
2747 	err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
2748 	if (err) {
2749 		err = -EADDRNOTAVAIL;
2750 		goto free_lists;
2751 	}
2752 
2753 	status = ice_remove_mac(hw, &r_mac_list);
2754 	if (status) {
2755 		err = -EADDRNOTAVAIL;
2756 		goto free_lists;
2757 	}
2758 
2759 	err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
2760 	if (err) {
2761 		err = -EADDRNOTAVAIL;
2762 		goto free_lists;
2763 	}
2764 
2765 	status = ice_add_mac(hw, &a_mac_list);
2766 	if (status) {
2767 		err = -EADDRNOTAVAIL;
2768 		goto free_lists;
2769 	}
2770 
2771 free_lists:
2772 	/* free list entries */
2773 	ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
2774 	ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
2775 
2776 	if (err) {
2777 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
2778 			   mac);
2779 		return err;
2780 	}
2781 
2782 	/* change the netdev's MAC address */
2783 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
2784 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
2785 		   netdev->dev_addr);
2786 
2787 	/* write new MAC address to the firmware */
2788 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
2789 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
2790 	if (status) {
2791 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed.\n",
2792 			   mac);
2793 	}
2794 	return 0;
2795 }
2796 
2797 /**
2798  * ice_set_rx_mode - NDO callback to set the netdev filters
2799  * @netdev: network interface device structure
2800  */
2801 static void ice_set_rx_mode(struct net_device *netdev)
2802 {
2803 	struct ice_netdev_priv *np = netdev_priv(netdev);
2804 	struct ice_vsi *vsi = np->vsi;
2805 
2806 	if (!vsi)
2807 		return;
2808 
2809 	/* Set the flags to synchronize filters
2810 	 * ndo_set_rx_mode may be triggered even without a change in netdev
2811 	 * flags
2812 	 */
2813 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
2814 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
2815 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
2816 
2817 	/* schedule our worker thread which will take care of
2818 	 * applying the new filter changes
2819 	 */
2820 	ice_service_task_schedule(vsi->back);
2821 }
2822 
2823 /**
2824  * ice_fdb_add - add an entry to the hardware database
2825  * @ndm: the input from the stack
2826  * @tb: pointer to array of nladdr (unused)
2827  * @dev: the net device pointer
2828  * @addr: the MAC address entry being added
2829  * @vid: VLAN ID
2830  * @flags: instructions from stack about fdb operation
2831  * @extack: netlink extended ack
2832  */
2833 static int
2834 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
2835 	    struct net_device *dev, const unsigned char *addr, u16 vid,
2836 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
2837 {
2838 	int err;
2839 
2840 	if (vid) {
2841 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
2842 		return -EINVAL;
2843 	}
2844 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
2845 		netdev_err(dev, "FDB only supports static addresses\n");
2846 		return -EINVAL;
2847 	}
2848 
2849 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
2850 		err = dev_uc_add_excl(dev, addr);
2851 	else if (is_multicast_ether_addr(addr))
2852 		err = dev_mc_add_excl(dev, addr);
2853 	else
2854 		err = -EINVAL;
2855 
2856 	/* Only return duplicate errors if NLM_F_EXCL is set */
2857 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
2858 		err = 0;
2859 
2860 	return err;
2861 }
2862 
2863 /**
2864  * ice_fdb_del - delete an entry from the hardware database
2865  * @ndm: the input from the stack
2866  * @tb: pointer to array of nladdr (unused)
2867  * @dev: the net device pointer
2868  * @addr: the MAC address entry being added
2869  * @vid: VLAN ID
2870  */
2871 static int
2872 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
2873 	    struct net_device *dev, const unsigned char *addr,
2874 	    __always_unused u16 vid)
2875 {
2876 	int err;
2877 
2878 	if (ndm->ndm_state & NUD_PERMANENT) {
2879 		netdev_err(dev, "FDB only supports static addresses\n");
2880 		return -EINVAL;
2881 	}
2882 
2883 	if (is_unicast_ether_addr(addr))
2884 		err = dev_uc_del(dev, addr);
2885 	else if (is_multicast_ether_addr(addr))
2886 		err = dev_mc_del(dev, addr);
2887 	else
2888 		err = -EINVAL;
2889 
2890 	return err;
2891 }
2892 
2893 /**
2894  * ice_set_features - set the netdev feature flags
2895  * @netdev: ptr to the netdev being adjusted
2896  * @features: the feature set that the stack is suggesting
2897  */
2898 static int
2899 ice_set_features(struct net_device *netdev, netdev_features_t features)
2900 {
2901 	struct ice_netdev_priv *np = netdev_priv(netdev);
2902 	struct ice_vsi *vsi = np->vsi;
2903 	int ret = 0;
2904 
2905 	/* Multiple features can be changed in one call so keep features in
2906 	 * separate if/else statements to guarantee each feature is checked
2907 	 */
2908 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
2909 		ret = ice_vsi_manage_rss_lut(vsi, true);
2910 	else if (!(features & NETIF_F_RXHASH) &&
2911 		 netdev->features & NETIF_F_RXHASH)
2912 		ret = ice_vsi_manage_rss_lut(vsi, false);
2913 
2914 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
2915 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
2916 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
2917 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
2918 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
2919 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
2920 
2921 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
2922 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
2923 		ret = ice_vsi_manage_vlan_insertion(vsi);
2924 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
2925 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
2926 		ret = ice_vsi_manage_vlan_insertion(vsi);
2927 
2928 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2929 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
2930 		ret = ice_cfg_vlan_pruning(vsi, true, false);
2931 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2932 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
2933 		ret = ice_cfg_vlan_pruning(vsi, false, false);
2934 
2935 	return ret;
2936 }
2937 
2938 /**
2939  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
2940  * @vsi: VSI to setup VLAN properties for
2941  */
2942 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
2943 {
2944 	int ret = 0;
2945 
2946 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2947 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
2948 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
2949 		ret = ice_vsi_manage_vlan_insertion(vsi);
2950 
2951 	return ret;
2952 }
2953 
2954 /**
2955  * ice_vsi_cfg - Setup the VSI
2956  * @vsi: the VSI being configured
2957  *
2958  * Return 0 on success and negative value on error
2959  */
2960 int ice_vsi_cfg(struct ice_vsi *vsi)
2961 {
2962 	int err;
2963 
2964 	if (vsi->netdev) {
2965 		ice_set_rx_mode(vsi->netdev);
2966 
2967 		err = ice_vsi_vlan_setup(vsi);
2968 
2969 		if (err)
2970 			return err;
2971 	}
2972 	ice_vsi_cfg_dcb_rings(vsi);
2973 
2974 	err = ice_vsi_cfg_lan_txqs(vsi);
2975 	if (!err)
2976 		err = ice_vsi_cfg_rxqs(vsi);
2977 
2978 	return err;
2979 }
2980 
2981 /**
2982  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
2983  * @vsi: the VSI being configured
2984  */
2985 static void ice_napi_enable_all(struct ice_vsi *vsi)
2986 {
2987 	int q_idx;
2988 
2989 	if (!vsi->netdev)
2990 		return;
2991 
2992 	ice_for_each_q_vector(vsi, q_idx) {
2993 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
2994 
2995 		if (q_vector->rx.ring || q_vector->tx.ring)
2996 			napi_enable(&q_vector->napi);
2997 	}
2998 }
2999 
3000 /**
3001  * ice_up_complete - Finish the last steps of bringing up a connection
3002  * @vsi: The VSI being configured
3003  *
3004  * Return 0 on success and negative value on error
3005  */
3006 static int ice_up_complete(struct ice_vsi *vsi)
3007 {
3008 	struct ice_pf *pf = vsi->back;
3009 	int err;
3010 
3011 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3012 		ice_vsi_cfg_msix(vsi);
3013 	else
3014 		return -ENOTSUPP;
3015 
3016 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
3017 	 * Tx queue group list was configured and the context bits were
3018 	 * programmed using ice_vsi_cfg_txqs
3019 	 */
3020 	err = ice_vsi_start_rx_rings(vsi);
3021 	if (err)
3022 		return err;
3023 
3024 	clear_bit(__ICE_DOWN, vsi->state);
3025 	ice_napi_enable_all(vsi);
3026 	ice_vsi_ena_irq(vsi);
3027 
3028 	if (vsi->port_info &&
3029 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3030 	    vsi->netdev) {
3031 		ice_print_link_msg(vsi, true);
3032 		netif_tx_start_all_queues(vsi->netdev);
3033 		netif_carrier_on(vsi->netdev);
3034 	}
3035 
3036 	ice_service_task_schedule(pf);
3037 
3038 	return 0;
3039 }
3040 
3041 /**
3042  * ice_up - Bring the connection back up after being down
3043  * @vsi: VSI being configured
3044  */
3045 int ice_up(struct ice_vsi *vsi)
3046 {
3047 	int err;
3048 
3049 	err = ice_vsi_cfg(vsi);
3050 	if (!err)
3051 		err = ice_up_complete(vsi);
3052 
3053 	return err;
3054 }
3055 
3056 /**
3057  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
3058  * @ring: Tx or Rx ring to read stats from
3059  * @pkts: packets stats counter
3060  * @bytes: bytes stats counter
3061  *
3062  * This function fetches stats from the ring considering the atomic operations
3063  * that needs to be performed to read u64 values in 32 bit machine.
3064  */
3065 static void
3066 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
3067 {
3068 	unsigned int start;
3069 	*pkts = 0;
3070 	*bytes = 0;
3071 
3072 	if (!ring)
3073 		return;
3074 	do {
3075 		start = u64_stats_fetch_begin_irq(&ring->syncp);
3076 		*pkts = ring->stats.pkts;
3077 		*bytes = ring->stats.bytes;
3078 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3079 }
3080 
3081 /**
3082  * ice_update_vsi_ring_stats - Update VSI stats counters
3083  * @vsi: the VSI to be updated
3084  */
3085 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
3086 {
3087 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
3088 	struct ice_ring *ring;
3089 	u64 pkts, bytes;
3090 	int i;
3091 
3092 	/* reset netdev stats */
3093 	vsi_stats->tx_packets = 0;
3094 	vsi_stats->tx_bytes = 0;
3095 	vsi_stats->rx_packets = 0;
3096 	vsi_stats->rx_bytes = 0;
3097 
3098 	/* reset non-netdev (extended) stats */
3099 	vsi->tx_restart = 0;
3100 	vsi->tx_busy = 0;
3101 	vsi->tx_linearize = 0;
3102 	vsi->rx_buf_failed = 0;
3103 	vsi->rx_page_failed = 0;
3104 
3105 	rcu_read_lock();
3106 
3107 	/* update Tx rings counters */
3108 	ice_for_each_txq(vsi, i) {
3109 		ring = READ_ONCE(vsi->tx_rings[i]);
3110 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3111 		vsi_stats->tx_packets += pkts;
3112 		vsi_stats->tx_bytes += bytes;
3113 		vsi->tx_restart += ring->tx_stats.restart_q;
3114 		vsi->tx_busy += ring->tx_stats.tx_busy;
3115 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
3116 	}
3117 
3118 	/* update Rx rings counters */
3119 	ice_for_each_rxq(vsi, i) {
3120 		ring = READ_ONCE(vsi->rx_rings[i]);
3121 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3122 		vsi_stats->rx_packets += pkts;
3123 		vsi_stats->rx_bytes += bytes;
3124 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
3125 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
3126 	}
3127 
3128 	rcu_read_unlock();
3129 }
3130 
3131 /**
3132  * ice_update_vsi_stats - Update VSI stats counters
3133  * @vsi: the VSI to be updated
3134  */
3135 static void ice_update_vsi_stats(struct ice_vsi *vsi)
3136 {
3137 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
3138 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
3139 	struct ice_pf *pf = vsi->back;
3140 
3141 	if (test_bit(__ICE_DOWN, vsi->state) ||
3142 	    test_bit(__ICE_CFG_BUSY, pf->state))
3143 		return;
3144 
3145 	/* get stats as recorded by Tx/Rx rings */
3146 	ice_update_vsi_ring_stats(vsi);
3147 
3148 	/* get VSI stats as recorded by the hardware */
3149 	ice_update_eth_stats(vsi);
3150 
3151 	cur_ns->tx_errors = cur_es->tx_errors;
3152 	cur_ns->rx_dropped = cur_es->rx_discards;
3153 	cur_ns->tx_dropped = cur_es->tx_discards;
3154 	cur_ns->multicast = cur_es->rx_multicast;
3155 
3156 	/* update some more netdev stats if this is main VSI */
3157 	if (vsi->type == ICE_VSI_PF) {
3158 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
3159 		cur_ns->rx_errors = pf->stats.crc_errors +
3160 				    pf->stats.illegal_bytes;
3161 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
3162 	}
3163 }
3164 
3165 /**
3166  * ice_update_pf_stats - Update PF port stats counters
3167  * @pf: PF whose stats needs to be updated
3168  */
3169 static void ice_update_pf_stats(struct ice_pf *pf)
3170 {
3171 	struct ice_hw_port_stats *prev_ps, *cur_ps;
3172 	struct ice_hw *hw = &pf->hw;
3173 	u8 pf_id;
3174 
3175 	prev_ps = &pf->stats_prev;
3176 	cur_ps = &pf->stats;
3177 	pf_id = hw->pf_id;
3178 
3179 	ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
3180 			  pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
3181 			  &cur_ps->eth.rx_bytes);
3182 
3183 	ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
3184 			  pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
3185 			  &cur_ps->eth.rx_unicast);
3186 
3187 	ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
3188 			  pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
3189 			  &cur_ps->eth.rx_multicast);
3190 
3191 	ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
3192 			  pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
3193 			  &cur_ps->eth.rx_broadcast);
3194 
3195 	ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
3196 			  pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
3197 			  &cur_ps->eth.tx_bytes);
3198 
3199 	ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
3200 			  pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
3201 			  &cur_ps->eth.tx_unicast);
3202 
3203 	ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
3204 			  pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
3205 			  &cur_ps->eth.tx_multicast);
3206 
3207 	ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
3208 			  pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
3209 			  &cur_ps->eth.tx_broadcast);
3210 
3211 	ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
3212 			  &prev_ps->tx_dropped_link_down,
3213 			  &cur_ps->tx_dropped_link_down);
3214 
3215 	ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
3216 			  pf->stat_prev_loaded, &prev_ps->rx_size_64,
3217 			  &cur_ps->rx_size_64);
3218 
3219 	ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
3220 			  pf->stat_prev_loaded, &prev_ps->rx_size_127,
3221 			  &cur_ps->rx_size_127);
3222 
3223 	ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
3224 			  pf->stat_prev_loaded, &prev_ps->rx_size_255,
3225 			  &cur_ps->rx_size_255);
3226 
3227 	ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
3228 			  pf->stat_prev_loaded, &prev_ps->rx_size_511,
3229 			  &cur_ps->rx_size_511);
3230 
3231 	ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
3232 			  GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
3233 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
3234 
3235 	ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
3236 			  GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
3237 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
3238 
3239 	ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
3240 			  GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
3241 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
3242 
3243 	ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
3244 			  pf->stat_prev_loaded, &prev_ps->tx_size_64,
3245 			  &cur_ps->tx_size_64);
3246 
3247 	ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
3248 			  pf->stat_prev_loaded, &prev_ps->tx_size_127,
3249 			  &cur_ps->tx_size_127);
3250 
3251 	ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
3252 			  pf->stat_prev_loaded, &prev_ps->tx_size_255,
3253 			  &cur_ps->tx_size_255);
3254 
3255 	ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
3256 			  pf->stat_prev_loaded, &prev_ps->tx_size_511,
3257 			  &cur_ps->tx_size_511);
3258 
3259 	ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
3260 			  GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
3261 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
3262 
3263 	ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
3264 			  GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
3265 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
3266 
3267 	ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
3268 			  GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
3269 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
3270 
3271 	ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
3272 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
3273 
3274 	ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
3275 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
3276 
3277 	ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
3278 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
3279 
3280 	ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
3281 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
3282 
3283 	ice_update_dcb_stats(pf);
3284 
3285 	ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
3286 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
3287 
3288 	ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
3289 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
3290 
3291 	ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
3292 			  &prev_ps->mac_local_faults,
3293 			  &cur_ps->mac_local_faults);
3294 
3295 	ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
3296 			  &prev_ps->mac_remote_faults,
3297 			  &cur_ps->mac_remote_faults);
3298 
3299 	ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
3300 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
3301 
3302 	ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
3303 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
3304 
3305 	ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
3306 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
3307 
3308 	ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
3309 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
3310 
3311 	ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
3312 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
3313 
3314 	pf->stat_prev_loaded = true;
3315 }
3316 
3317 /**
3318  * ice_get_stats64 - get statistics for network device structure
3319  * @netdev: network interface device structure
3320  * @stats: main device statistics structure
3321  */
3322 static
3323 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3324 {
3325 	struct ice_netdev_priv *np = netdev_priv(netdev);
3326 	struct rtnl_link_stats64 *vsi_stats;
3327 	struct ice_vsi *vsi = np->vsi;
3328 
3329 	vsi_stats = &vsi->net_stats;
3330 
3331 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
3332 		return;
3333 	/* netdev packet/byte stats come from ring counter. These are obtained
3334 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
3335 	 */
3336 	ice_update_vsi_ring_stats(vsi);
3337 	stats->tx_packets = vsi_stats->tx_packets;
3338 	stats->tx_bytes = vsi_stats->tx_bytes;
3339 	stats->rx_packets = vsi_stats->rx_packets;
3340 	stats->rx_bytes = vsi_stats->rx_bytes;
3341 
3342 	/* The rest of the stats can be read from the hardware but instead we
3343 	 * just return values that the watchdog task has already obtained from
3344 	 * the hardware.
3345 	 */
3346 	stats->multicast = vsi_stats->multicast;
3347 	stats->tx_errors = vsi_stats->tx_errors;
3348 	stats->tx_dropped = vsi_stats->tx_dropped;
3349 	stats->rx_errors = vsi_stats->rx_errors;
3350 	stats->rx_dropped = vsi_stats->rx_dropped;
3351 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
3352 	stats->rx_length_errors = vsi_stats->rx_length_errors;
3353 }
3354 
3355 /**
3356  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
3357  * @vsi: VSI having NAPI disabled
3358  */
3359 static void ice_napi_disable_all(struct ice_vsi *vsi)
3360 {
3361 	int q_idx;
3362 
3363 	if (!vsi->netdev)
3364 		return;
3365 
3366 	ice_for_each_q_vector(vsi, q_idx) {
3367 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3368 
3369 		if (q_vector->rx.ring || q_vector->tx.ring)
3370 			napi_disable(&q_vector->napi);
3371 	}
3372 }
3373 
3374 /**
3375  * ice_force_phys_link_state - Force the physical link state
3376  * @vsi: VSI to force the physical link state to up/down
3377  * @link_up: true/false indicates to set the physical link to up/down
3378  *
3379  * Force the physical link state by getting the current PHY capabilities from
3380  * hardware and setting the PHY config based on the determined capabilities. If
3381  * link changes a link event will be triggered because both the Enable Automatic
3382  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
3383  *
3384  * Returns 0 on success, negative on failure
3385  */
3386 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
3387 {
3388 	struct ice_aqc_get_phy_caps_data *pcaps;
3389 	struct ice_aqc_set_phy_cfg_data *cfg;
3390 	struct ice_port_info *pi;
3391 	struct device *dev;
3392 	int retcode;
3393 
3394 	if (!vsi || !vsi->port_info || !vsi->back)
3395 		return -EINVAL;
3396 	if (vsi->type != ICE_VSI_PF)
3397 		return 0;
3398 
3399 	dev = &vsi->back->pdev->dev;
3400 
3401 	pi = vsi->port_info;
3402 
3403 	pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL);
3404 	if (!pcaps)
3405 		return -ENOMEM;
3406 
3407 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
3408 				      NULL);
3409 	if (retcode) {
3410 		dev_err(dev,
3411 			"Failed to get phy capabilities, VSI %d error %d\n",
3412 			vsi->vsi_num, retcode);
3413 		retcode = -EIO;
3414 		goto out;
3415 	}
3416 
3417 	/* No change in link */
3418 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
3419 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
3420 		goto out;
3421 
3422 	cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL);
3423 	if (!cfg) {
3424 		retcode = -ENOMEM;
3425 		goto out;
3426 	}
3427 
3428 	cfg->phy_type_low = pcaps->phy_type_low;
3429 	cfg->phy_type_high = pcaps->phy_type_high;
3430 	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3431 	cfg->low_power_ctrl = pcaps->low_power_ctrl;
3432 	cfg->eee_cap = pcaps->eee_cap;
3433 	cfg->eeer_value = pcaps->eeer_value;
3434 	cfg->link_fec_opt = pcaps->link_fec_options;
3435 	if (link_up)
3436 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
3437 	else
3438 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
3439 
3440 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
3441 	if (retcode) {
3442 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
3443 			vsi->vsi_num, retcode);
3444 		retcode = -EIO;
3445 	}
3446 
3447 	devm_kfree(dev, cfg);
3448 out:
3449 	devm_kfree(dev, pcaps);
3450 	return retcode;
3451 }
3452 
3453 /**
3454  * ice_down - Shutdown the connection
3455  * @vsi: The VSI being stopped
3456  */
3457 int ice_down(struct ice_vsi *vsi)
3458 {
3459 	int i, tx_err, rx_err, link_err = 0;
3460 
3461 	/* Caller of this function is expected to set the
3462 	 * vsi->state __ICE_DOWN bit
3463 	 */
3464 	if (vsi->netdev) {
3465 		netif_carrier_off(vsi->netdev);
3466 		netif_tx_disable(vsi->netdev);
3467 	}
3468 
3469 	ice_vsi_dis_irq(vsi);
3470 
3471 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
3472 	if (tx_err)
3473 		netdev_err(vsi->netdev,
3474 			   "Failed stop Tx rings, VSI %d error %d\n",
3475 			   vsi->vsi_num, tx_err);
3476 
3477 	rx_err = ice_vsi_stop_rx_rings(vsi);
3478 	if (rx_err)
3479 		netdev_err(vsi->netdev,
3480 			   "Failed stop Rx rings, VSI %d error %d\n",
3481 			   vsi->vsi_num, rx_err);
3482 
3483 	ice_napi_disable_all(vsi);
3484 
3485 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
3486 		link_err = ice_force_phys_link_state(vsi, false);
3487 		if (link_err)
3488 			netdev_err(vsi->netdev,
3489 				   "Failed to set physical link down, VSI %d error %d\n",
3490 				   vsi->vsi_num, link_err);
3491 	}
3492 
3493 	ice_for_each_txq(vsi, i)
3494 		ice_clean_tx_ring(vsi->tx_rings[i]);
3495 
3496 	ice_for_each_rxq(vsi, i)
3497 		ice_clean_rx_ring(vsi->rx_rings[i]);
3498 
3499 	if (tx_err || rx_err || link_err) {
3500 		netdev_err(vsi->netdev,
3501 			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
3502 			   vsi->vsi_num, vsi->vsw->sw_id);
3503 		return -EIO;
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 /**
3510  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
3511  * @vsi: VSI having resources allocated
3512  *
3513  * Return 0 on success, negative on failure
3514  */
3515 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
3516 {
3517 	int i, err = 0;
3518 
3519 	if (!vsi->num_txq) {
3520 		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
3521 			vsi->vsi_num);
3522 		return -EINVAL;
3523 	}
3524 
3525 	ice_for_each_txq(vsi, i) {
3526 		vsi->tx_rings[i]->netdev = vsi->netdev;
3527 		err = ice_setup_tx_ring(vsi->tx_rings[i]);
3528 		if (err)
3529 			break;
3530 	}
3531 
3532 	return err;
3533 }
3534 
3535 /**
3536  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
3537  * @vsi: VSI having resources allocated
3538  *
3539  * Return 0 on success, negative on failure
3540  */
3541 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
3542 {
3543 	int i, err = 0;
3544 
3545 	if (!vsi->num_rxq) {
3546 		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
3547 			vsi->vsi_num);
3548 		return -EINVAL;
3549 	}
3550 
3551 	ice_for_each_rxq(vsi, i) {
3552 		vsi->rx_rings[i]->netdev = vsi->netdev;
3553 		err = ice_setup_rx_ring(vsi->rx_rings[i]);
3554 		if (err)
3555 			break;
3556 	}
3557 
3558 	return err;
3559 }
3560 
3561 /**
3562  * ice_vsi_req_irq - Request IRQ from the OS
3563  * @vsi: The VSI IRQ is being requested for
3564  * @basename: name for the vector
3565  *
3566  * Return 0 on success and a negative value on error
3567  */
3568 static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
3569 {
3570 	struct ice_pf *pf = vsi->back;
3571 	int err = -EINVAL;
3572 
3573 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3574 		err = ice_vsi_req_irq_msix(vsi, basename);
3575 
3576 	return err;
3577 }
3578 
3579 /**
3580  * ice_vsi_open - Called when a network interface is made active
3581  * @vsi: the VSI to open
3582  *
3583  * Initialization of the VSI
3584  *
3585  * Returns 0 on success, negative value on error
3586  */
3587 static int ice_vsi_open(struct ice_vsi *vsi)
3588 {
3589 	char int_name[ICE_INT_NAME_STR_LEN];
3590 	struct ice_pf *pf = vsi->back;
3591 	int err;
3592 
3593 	/* allocate descriptors */
3594 	err = ice_vsi_setup_tx_rings(vsi);
3595 	if (err)
3596 		goto err_setup_tx;
3597 
3598 	err = ice_vsi_setup_rx_rings(vsi);
3599 	if (err)
3600 		goto err_setup_rx;
3601 
3602 	err = ice_vsi_cfg(vsi);
3603 	if (err)
3604 		goto err_setup_rx;
3605 
3606 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
3607 		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
3608 	err = ice_vsi_req_irq(vsi, int_name);
3609 	if (err)
3610 		goto err_setup_rx;
3611 
3612 	/* Notify the stack of the actual queue counts. */
3613 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
3614 	if (err)
3615 		goto err_set_qs;
3616 
3617 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
3618 	if (err)
3619 		goto err_set_qs;
3620 
3621 	err = ice_up_complete(vsi);
3622 	if (err)
3623 		goto err_up_complete;
3624 
3625 	return 0;
3626 
3627 err_up_complete:
3628 	ice_down(vsi);
3629 err_set_qs:
3630 	ice_vsi_free_irq(vsi);
3631 err_setup_rx:
3632 	ice_vsi_free_rx_rings(vsi);
3633 err_setup_tx:
3634 	ice_vsi_free_tx_rings(vsi);
3635 
3636 	return err;
3637 }
3638 
3639 /**
3640  * ice_vsi_release_all - Delete all VSIs
3641  * @pf: PF from which all VSIs are being removed
3642  */
3643 static void ice_vsi_release_all(struct ice_pf *pf)
3644 {
3645 	int err, i;
3646 
3647 	if (!pf->vsi)
3648 		return;
3649 
3650 	ice_for_each_vsi(pf, i) {
3651 		if (!pf->vsi[i])
3652 			continue;
3653 
3654 		err = ice_vsi_release(pf->vsi[i]);
3655 		if (err)
3656 			dev_dbg(&pf->pdev->dev,
3657 				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
3658 				i, err, pf->vsi[i]->vsi_num);
3659 	}
3660 }
3661 
3662 /**
3663  * ice_ena_vsi - resume a VSI
3664  * @vsi: the VSI being resume
3665  * @locked: is the rtnl_lock already held
3666  */
3667 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
3668 {
3669 	int err = 0;
3670 
3671 	if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
3672 		return err;
3673 
3674 	clear_bit(__ICE_NEEDS_RESTART, vsi->state);
3675 
3676 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
3677 		struct net_device *netd = vsi->netdev;
3678 
3679 		if (netif_running(vsi->netdev)) {
3680 			if (locked) {
3681 				err = netd->netdev_ops->ndo_open(netd);
3682 			} else {
3683 				rtnl_lock();
3684 				err = netd->netdev_ops->ndo_open(netd);
3685 				rtnl_unlock();
3686 			}
3687 		} else {
3688 			err = ice_vsi_open(vsi);
3689 		}
3690 	}
3691 
3692 	return err;
3693 }
3694 
3695 /**
3696  * ice_pf_ena_all_vsi - Resume all VSIs on a PF
3697  * @pf: the PF
3698  * @locked: is the rtnl_lock already held
3699  */
3700 #ifdef CONFIG_DCB
3701 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
3702 #else
3703 static int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
3704 #endif /* CONFIG_DCB */
3705 {
3706 	int v;
3707 
3708 	ice_for_each_vsi(pf, v)
3709 		if (pf->vsi[v])
3710 			if (ice_ena_vsi(pf->vsi[v], locked))
3711 				return -EIO;
3712 
3713 	return 0;
3714 }
3715 
3716 /**
3717  * ice_vsi_rebuild_all - rebuild all VSIs in PF
3718  * @pf: the PF
3719  */
3720 static int ice_vsi_rebuild_all(struct ice_pf *pf)
3721 {
3722 	int i;
3723 
3724 	/* loop through pf->vsi array and reinit the VSI if found */
3725 	ice_for_each_vsi(pf, i) {
3726 		int err;
3727 
3728 		if (!pf->vsi[i])
3729 			continue;
3730 
3731 		err = ice_vsi_rebuild(pf->vsi[i]);
3732 		if (err) {
3733 			dev_err(&pf->pdev->dev,
3734 				"VSI at index %d rebuild failed\n",
3735 				pf->vsi[i]->idx);
3736 			return err;
3737 		}
3738 
3739 		dev_info(&pf->pdev->dev,
3740 			 "VSI at index %d rebuilt. vsi_num = 0x%x\n",
3741 			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
3742 	}
3743 
3744 	return 0;
3745 }
3746 
3747 /**
3748  * ice_vsi_replay_all - replay all VSIs configuration in the PF
3749  * @pf: the PF
3750  */
3751 static int ice_vsi_replay_all(struct ice_pf *pf)
3752 {
3753 	struct ice_hw *hw = &pf->hw;
3754 	enum ice_status ret;
3755 	int i;
3756 
3757 	/* loop through pf->vsi array and replay the VSI if found */
3758 	ice_for_each_vsi(pf, i) {
3759 		if (!pf->vsi[i])
3760 			continue;
3761 
3762 		ret = ice_replay_vsi(hw, pf->vsi[i]->idx);
3763 		if (ret) {
3764 			dev_err(&pf->pdev->dev,
3765 				"VSI at index %d replay failed %d\n",
3766 				pf->vsi[i]->idx, ret);
3767 			return -EIO;
3768 		}
3769 
3770 		/* Re-map HW VSI number, using VSI handle that has been
3771 		 * previously validated in ice_replay_vsi() call above
3772 		 */
3773 		pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx);
3774 
3775 		dev_info(&pf->pdev->dev,
3776 			 "VSI at index %d filter replayed successfully - vsi_num %i\n",
3777 			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
3778 	}
3779 
3780 	/* Clean up replay filter after successful re-configuration */
3781 	ice_replay_post(hw);
3782 	return 0;
3783 }
3784 
3785 /**
3786  * ice_rebuild - rebuild after reset
3787  * @pf: PF to rebuild
3788  */
3789 static void ice_rebuild(struct ice_pf *pf)
3790 {
3791 	struct device *dev = &pf->pdev->dev;
3792 	struct ice_hw *hw = &pf->hw;
3793 	enum ice_status ret;
3794 	int err, i;
3795 
3796 	if (test_bit(__ICE_DOWN, pf->state))
3797 		goto clear_recovery;
3798 
3799 	dev_dbg(dev, "rebuilding PF\n");
3800 
3801 	ret = ice_init_all_ctrlq(hw);
3802 	if (ret) {
3803 		dev_err(dev, "control queues init failed %d\n", ret);
3804 		goto err_init_ctrlq;
3805 	}
3806 
3807 	ret = ice_clear_pf_cfg(hw);
3808 	if (ret) {
3809 		dev_err(dev, "clear PF configuration failed %d\n", ret);
3810 		goto err_init_ctrlq;
3811 	}
3812 
3813 	ice_clear_pxe_mode(hw);
3814 
3815 	ret = ice_get_caps(hw);
3816 	if (ret) {
3817 		dev_err(dev, "ice_get_caps failed %d\n", ret);
3818 		goto err_init_ctrlq;
3819 	}
3820 
3821 	err = ice_sched_init_port(hw->port_info);
3822 	if (err)
3823 		goto err_sched_init_port;
3824 
3825 	ice_dcb_rebuild(pf);
3826 
3827 	err = ice_vsi_rebuild_all(pf);
3828 	if (err) {
3829 		dev_err(dev, "ice_vsi_rebuild_all failed\n");
3830 		goto err_vsi_rebuild;
3831 	}
3832 
3833 	err = ice_update_link_info(hw->port_info);
3834 	if (err)
3835 		dev_err(&pf->pdev->dev, "Get link status error %d\n", err);
3836 
3837 	/* Replay all VSIs Configuration, including filters after reset */
3838 	if (ice_vsi_replay_all(pf)) {
3839 		dev_err(&pf->pdev->dev,
3840 			"error replaying VSI configurations with switch filter rules\n");
3841 		goto err_vsi_rebuild;
3842 	}
3843 
3844 	/* start misc vector */
3845 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
3846 		err = ice_req_irq_msix_misc(pf);
3847 		if (err) {
3848 			dev_err(dev, "misc vector setup failed: %d\n", err);
3849 			goto err_vsi_rebuild;
3850 		}
3851 	}
3852 
3853 	/* restart the VSIs that were rebuilt and running before the reset */
3854 	err = ice_pf_ena_all_vsi(pf, false);
3855 	if (err) {
3856 		dev_err(&pf->pdev->dev, "error enabling VSIs\n");
3857 		/* no need to disable VSIs in tear down path in ice_rebuild()
3858 		 * since its already taken care in ice_vsi_open()
3859 		 */
3860 		goto err_vsi_rebuild;
3861 	}
3862 
3863 	ice_for_each_vsi(pf, i) {
3864 		bool link_up;
3865 
3866 		if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF)
3867 			continue;
3868 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
3869 		if (link_up) {
3870 			netif_carrier_on(pf->vsi[i]->netdev);
3871 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
3872 		} else {
3873 			netif_carrier_off(pf->vsi[i]->netdev);
3874 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
3875 		}
3876 	}
3877 
3878 	/* if we get here, reset flow is successful */
3879 	clear_bit(__ICE_RESET_FAILED, pf->state);
3880 	return;
3881 
3882 err_vsi_rebuild:
3883 	ice_vsi_release_all(pf);
3884 err_sched_init_port:
3885 	ice_sched_cleanup_all(hw);
3886 err_init_ctrlq:
3887 	ice_shutdown_all_ctrlq(hw);
3888 	set_bit(__ICE_RESET_FAILED, pf->state);
3889 clear_recovery:
3890 	/* set this bit in PF state to control service task scheduling */
3891 	set_bit(__ICE_NEEDS_RESTART, pf->state);
3892 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
3893 }
3894 
3895 /**
3896  * ice_change_mtu - NDO callback to change the MTU
3897  * @netdev: network interface device structure
3898  * @new_mtu: new value for maximum frame size
3899  *
3900  * Returns 0 on success, negative on failure
3901  */
3902 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
3903 {
3904 	struct ice_netdev_priv *np = netdev_priv(netdev);
3905 	struct ice_vsi *vsi = np->vsi;
3906 	struct ice_pf *pf = vsi->back;
3907 	u8 count = 0;
3908 
3909 	if (new_mtu == netdev->mtu) {
3910 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
3911 		return 0;
3912 	}
3913 
3914 	if (new_mtu < netdev->min_mtu) {
3915 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
3916 			   netdev->min_mtu);
3917 		return -EINVAL;
3918 	} else if (new_mtu > netdev->max_mtu) {
3919 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
3920 			   netdev->min_mtu);
3921 		return -EINVAL;
3922 	}
3923 	/* if a reset is in progress, wait for some time for it to complete */
3924 	do {
3925 		if (ice_is_reset_in_progress(pf->state)) {
3926 			count++;
3927 			usleep_range(1000, 2000);
3928 		} else {
3929 			break;
3930 		}
3931 
3932 	} while (count < 100);
3933 
3934 	if (count == 100) {
3935 		netdev_err(netdev, "can't change MTU. Device is busy\n");
3936 		return -EBUSY;
3937 	}
3938 
3939 	netdev->mtu = new_mtu;
3940 
3941 	/* if VSI is up, bring it down and then back up */
3942 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
3943 		int err;
3944 
3945 		err = ice_down(vsi);
3946 		if (err) {
3947 			netdev_err(netdev, "change MTU if_up err %d\n", err);
3948 			return err;
3949 		}
3950 
3951 		err = ice_up(vsi);
3952 		if (err) {
3953 			netdev_err(netdev, "change MTU if_up err %d\n", err);
3954 			return err;
3955 		}
3956 	}
3957 
3958 	netdev_info(netdev, "changed MTU to %d\n", new_mtu);
3959 	return 0;
3960 }
3961 
3962 /**
3963  * ice_set_rss - Set RSS keys and lut
3964  * @vsi: Pointer to VSI structure
3965  * @seed: RSS hash seed
3966  * @lut: Lookup table
3967  * @lut_size: Lookup table size
3968  *
3969  * Returns 0 on success, negative on failure
3970  */
3971 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
3972 {
3973 	struct ice_pf *pf = vsi->back;
3974 	struct ice_hw *hw = &pf->hw;
3975 	enum ice_status status;
3976 
3977 	if (seed) {
3978 		struct ice_aqc_get_set_rss_keys *buf =
3979 				  (struct ice_aqc_get_set_rss_keys *)seed;
3980 
3981 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
3982 
3983 		if (status) {
3984 			dev_err(&pf->pdev->dev,
3985 				"Cannot set RSS key, err %d aq_err %d\n",
3986 				status, hw->adminq.rq_last_status);
3987 			return -EIO;
3988 		}
3989 	}
3990 
3991 	if (lut) {
3992 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
3993 					    lut, lut_size);
3994 		if (status) {
3995 			dev_err(&pf->pdev->dev,
3996 				"Cannot set RSS lut, err %d aq_err %d\n",
3997 				status, hw->adminq.rq_last_status);
3998 			return -EIO;
3999 		}
4000 	}
4001 
4002 	return 0;
4003 }
4004 
4005 /**
4006  * ice_get_rss - Get RSS keys and lut
4007  * @vsi: Pointer to VSI structure
4008  * @seed: Buffer to store the keys
4009  * @lut: Buffer to store the lookup table entries
4010  * @lut_size: Size of buffer to store the lookup table entries
4011  *
4012  * Returns 0 on success, negative on failure
4013  */
4014 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4015 {
4016 	struct ice_pf *pf = vsi->back;
4017 	struct ice_hw *hw = &pf->hw;
4018 	enum ice_status status;
4019 
4020 	if (seed) {
4021 		struct ice_aqc_get_set_rss_keys *buf =
4022 				  (struct ice_aqc_get_set_rss_keys *)seed;
4023 
4024 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4025 		if (status) {
4026 			dev_err(&pf->pdev->dev,
4027 				"Cannot get RSS key, err %d aq_err %d\n",
4028 				status, hw->adminq.rq_last_status);
4029 			return -EIO;
4030 		}
4031 	}
4032 
4033 	if (lut) {
4034 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4035 					    lut, lut_size);
4036 		if (status) {
4037 			dev_err(&pf->pdev->dev,
4038 				"Cannot get RSS lut, err %d aq_err %d\n",
4039 				status, hw->adminq.rq_last_status);
4040 			return -EIO;
4041 		}
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 /**
4048  * ice_bridge_getlink - Get the hardware bridge mode
4049  * @skb: skb buff
4050  * @pid: process ID
4051  * @seq: RTNL message seq
4052  * @dev: the netdev being configured
4053  * @filter_mask: filter mask passed in
4054  * @nlflags: netlink flags passed in
4055  *
4056  * Return the bridge mode (VEB/VEPA)
4057  */
4058 static int
4059 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4060 		   struct net_device *dev, u32 filter_mask, int nlflags)
4061 {
4062 	struct ice_netdev_priv *np = netdev_priv(dev);
4063 	struct ice_vsi *vsi = np->vsi;
4064 	struct ice_pf *pf = vsi->back;
4065 	u16 bmode;
4066 
4067 	bmode = pf->first_sw->bridge_mode;
4068 
4069 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4070 				       filter_mask, NULL);
4071 }
4072 
4073 /**
4074  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4075  * @vsi: Pointer to VSI structure
4076  * @bmode: Hardware bridge mode (VEB/VEPA)
4077  *
4078  * Returns 0 on success, negative on failure
4079  */
4080 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4081 {
4082 	struct device *dev = &vsi->back->pdev->dev;
4083 	struct ice_aqc_vsi_props *vsi_props;
4084 	struct ice_hw *hw = &vsi->back->hw;
4085 	struct ice_vsi_ctx *ctxt;
4086 	enum ice_status status;
4087 	int ret = 0;
4088 
4089 	vsi_props = &vsi->info;
4090 
4091 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
4092 	if (!ctxt)
4093 		return -ENOMEM;
4094 
4095 	ctxt->info = vsi->info;
4096 
4097 	if (bmode == BRIDGE_MODE_VEB)
4098 		/* change from VEPA to VEB mode */
4099 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4100 	else
4101 		/* change from VEB to VEPA mode */
4102 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4103 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4104 
4105 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4106 	if (status) {
4107 		dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4108 			bmode, status, hw->adminq.sq_last_status);
4109 		ret = -EIO;
4110 		goto out;
4111 	}
4112 	/* Update sw flags for book keeping */
4113 	vsi_props->sw_flags = ctxt->info.sw_flags;
4114 
4115 out:
4116 	devm_kfree(dev, ctxt);
4117 	return ret;
4118 }
4119 
4120 /**
4121  * ice_bridge_setlink - Set the hardware bridge mode
4122  * @dev: the netdev being configured
4123  * @nlh: RTNL message
4124  * @flags: bridge setlink flags
4125  * @extack: netlink extended ack
4126  *
4127  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4128  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4129  * not already set for all VSIs connected to this switch. And also update the
4130  * unicast switch filter rules for the corresponding switch of the netdev.
4131  */
4132 static int
4133 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4134 		   u16 __always_unused flags,
4135 		   struct netlink_ext_ack __always_unused *extack)
4136 {
4137 	struct ice_netdev_priv *np = netdev_priv(dev);
4138 	struct ice_pf *pf = np->vsi->back;
4139 	struct nlattr *attr, *br_spec;
4140 	struct ice_hw *hw = &pf->hw;
4141 	enum ice_status status;
4142 	struct ice_sw *pf_sw;
4143 	int rem, v, err = 0;
4144 
4145 	pf_sw = pf->first_sw;
4146 	/* find the attribute in the netlink message */
4147 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
4148 
4149 	nla_for_each_nested(attr, br_spec, rem) {
4150 		__u16 mode;
4151 
4152 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
4153 			continue;
4154 		mode = nla_get_u16(attr);
4155 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
4156 			return -EINVAL;
4157 		/* Continue  if bridge mode is not being flipped */
4158 		if (mode == pf_sw->bridge_mode)
4159 			continue;
4160 		/* Iterates through the PF VSI list and update the loopback
4161 		 * mode of the VSI
4162 		 */
4163 		ice_for_each_vsi(pf, v) {
4164 			if (!pf->vsi[v])
4165 				continue;
4166 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
4167 			if (err)
4168 				return err;
4169 		}
4170 
4171 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
4172 		/* Update the unicast switch filter rules for the corresponding
4173 		 * switch of the netdev
4174 		 */
4175 		status = ice_update_sw_rule_bridge_mode(hw);
4176 		if (status) {
4177 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
4178 				   mode, status, hw->adminq.sq_last_status);
4179 			/* revert hw->evb_veb */
4180 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
4181 			return -EIO;
4182 		}
4183 
4184 		pf_sw->bridge_mode = mode;
4185 	}
4186 
4187 	return 0;
4188 }
4189 
4190 /**
4191  * ice_tx_timeout - Respond to a Tx Hang
4192  * @netdev: network interface device structure
4193  */
4194 static void ice_tx_timeout(struct net_device *netdev)
4195 {
4196 	struct ice_netdev_priv *np = netdev_priv(netdev);
4197 	struct ice_ring *tx_ring = NULL;
4198 	struct ice_vsi *vsi = np->vsi;
4199 	struct ice_pf *pf = vsi->back;
4200 	int hung_queue = -1;
4201 	u32 i;
4202 
4203 	pf->tx_timeout_count++;
4204 
4205 	/* find the stopped queue the same way dev_watchdog() does */
4206 	for (i = 0; i < netdev->num_tx_queues; i++) {
4207 		unsigned long trans_start;
4208 		struct netdev_queue *q;
4209 
4210 		q = netdev_get_tx_queue(netdev, i);
4211 		trans_start = q->trans_start;
4212 		if (netif_xmit_stopped(q) &&
4213 		    time_after(jiffies,
4214 			       trans_start + netdev->watchdog_timeo)) {
4215 			hung_queue = i;
4216 			break;
4217 		}
4218 	}
4219 
4220 	if (i == netdev->num_tx_queues)
4221 		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
4222 	else
4223 		/* now that we have an index, find the tx_ring struct */
4224 		for (i = 0; i < vsi->num_txq; i++)
4225 			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4226 				if (hung_queue == vsi->tx_rings[i]->q_index) {
4227 					tx_ring = vsi->tx_rings[i];
4228 					break;
4229 				}
4230 
4231 	/* Reset recovery level if enough time has elapsed after last timeout.
4232 	 * Also ensure no new reset action happens before next timeout period.
4233 	 */
4234 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
4235 		pf->tx_timeout_recovery_level = 1;
4236 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
4237 				       netdev->watchdog_timeo)))
4238 		return;
4239 
4240 	if (tx_ring) {
4241 		struct ice_hw *hw = &pf->hw;
4242 		u32 head, val = 0;
4243 
4244 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) &
4245 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
4246 		/* Read interrupt register */
4247 		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4248 			val = rd32(hw,
4249 				   GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
4250 
4251 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
4252 			    vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
4253 			    head, tx_ring->next_to_use, val);
4254 	}
4255 
4256 	pf->tx_timeout_last_recovery = jiffies;
4257 	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
4258 		    pf->tx_timeout_recovery_level, hung_queue);
4259 
4260 	switch (pf->tx_timeout_recovery_level) {
4261 	case 1:
4262 		set_bit(__ICE_PFR_REQ, pf->state);
4263 		break;
4264 	case 2:
4265 		set_bit(__ICE_CORER_REQ, pf->state);
4266 		break;
4267 	case 3:
4268 		set_bit(__ICE_GLOBR_REQ, pf->state);
4269 		break;
4270 	default:
4271 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
4272 		set_bit(__ICE_DOWN, pf->state);
4273 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
4274 		set_bit(__ICE_SERVICE_DIS, pf->state);
4275 		break;
4276 	}
4277 
4278 	ice_service_task_schedule(pf);
4279 	pf->tx_timeout_recovery_level++;
4280 }
4281 
4282 /**
4283  * ice_open - Called when a network interface becomes active
4284  * @netdev: network interface device structure
4285  *
4286  * The open entry point is called when a network interface is made
4287  * active by the system (IFF_UP). At this point all resources needed
4288  * for transmit and receive operations are allocated, the interrupt
4289  * handler is registered with the OS, the netdev watchdog is enabled,
4290  * and the stack is notified that the interface is ready.
4291  *
4292  * Returns 0 on success, negative value on failure
4293  */
4294 int ice_open(struct net_device *netdev)
4295 {
4296 	struct ice_netdev_priv *np = netdev_priv(netdev);
4297 	struct ice_vsi *vsi = np->vsi;
4298 	int err;
4299 
4300 	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
4301 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
4302 		return -EIO;
4303 	}
4304 
4305 	netif_carrier_off(netdev);
4306 
4307 	err = ice_force_phys_link_state(vsi, true);
4308 	if (err) {
4309 		netdev_err(netdev,
4310 			   "Failed to set physical link up, error %d\n", err);
4311 		return err;
4312 	}
4313 
4314 	err = ice_vsi_open(vsi);
4315 	if (err)
4316 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
4317 			   vsi->vsi_num, vsi->vsw->sw_id);
4318 	return err;
4319 }
4320 
4321 /**
4322  * ice_stop - Disables a network interface
4323  * @netdev: network interface device structure
4324  *
4325  * The stop entry point is called when an interface is de-activated by the OS,
4326  * and the netdevice enters the DOWN state. The hardware is still under the
4327  * driver's control, but the netdev interface is disabled.
4328  *
4329  * Returns success only - not allowed to fail
4330  */
4331 int ice_stop(struct net_device *netdev)
4332 {
4333 	struct ice_netdev_priv *np = netdev_priv(netdev);
4334 	struct ice_vsi *vsi = np->vsi;
4335 
4336 	ice_vsi_close(vsi);
4337 
4338 	return 0;
4339 }
4340 
4341 /**
4342  * ice_features_check - Validate encapsulated packet conforms to limits
4343  * @skb: skb buffer
4344  * @netdev: This port's netdev
4345  * @features: Offload features that the stack believes apply
4346  */
4347 static netdev_features_t
4348 ice_features_check(struct sk_buff *skb,
4349 		   struct net_device __always_unused *netdev,
4350 		   netdev_features_t features)
4351 {
4352 	size_t len;
4353 
4354 	/* No point in doing any of this if neither checksum nor GSO are
4355 	 * being requested for this frame. We can rule out both by just
4356 	 * checking for CHECKSUM_PARTIAL
4357 	 */
4358 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4359 		return features;
4360 
4361 	/* We cannot support GSO if the MSS is going to be less than
4362 	 * 64 bytes. If it is then we need to drop support for GSO.
4363 	 */
4364 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4365 		features &= ~NETIF_F_GSO_MASK;
4366 
4367 	len = skb_network_header(skb) - skb->data;
4368 	if (len & ~(ICE_TXD_MACLEN_MAX))
4369 		goto out_rm_features;
4370 
4371 	len = skb_transport_header(skb) - skb_network_header(skb);
4372 	if (len & ~(ICE_TXD_IPLEN_MAX))
4373 		goto out_rm_features;
4374 
4375 	if (skb->encapsulation) {
4376 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4377 		if (len & ~(ICE_TXD_L4LEN_MAX))
4378 			goto out_rm_features;
4379 
4380 		len = skb_inner_transport_header(skb) -
4381 		      skb_inner_network_header(skb);
4382 		if (len & ~(ICE_TXD_IPLEN_MAX))
4383 			goto out_rm_features;
4384 	}
4385 
4386 	return features;
4387 out_rm_features:
4388 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4389 }
4390 
4391 static const struct net_device_ops ice_netdev_ops = {
4392 	.ndo_open = ice_open,
4393 	.ndo_stop = ice_stop,
4394 	.ndo_start_xmit = ice_start_xmit,
4395 	.ndo_features_check = ice_features_check,
4396 	.ndo_set_rx_mode = ice_set_rx_mode,
4397 	.ndo_set_mac_address = ice_set_mac_address,
4398 	.ndo_validate_addr = eth_validate_addr,
4399 	.ndo_change_mtu = ice_change_mtu,
4400 	.ndo_get_stats64 = ice_get_stats64,
4401 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
4402 	.ndo_set_vf_mac = ice_set_vf_mac,
4403 	.ndo_get_vf_config = ice_get_vf_cfg,
4404 	.ndo_set_vf_trust = ice_set_vf_trust,
4405 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
4406 	.ndo_set_vf_link_state = ice_set_vf_link_state,
4407 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
4408 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
4409 	.ndo_set_features = ice_set_features,
4410 	.ndo_bridge_getlink = ice_bridge_getlink,
4411 	.ndo_bridge_setlink = ice_bridge_setlink,
4412 	.ndo_fdb_add = ice_fdb_add,
4413 	.ndo_fdb_del = ice_fdb_del,
4414 	.ndo_tx_timeout = ice_tx_timeout,
4415 };
4416