1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_lib.h" 10 #include "ice_dcb_lib.h" 11 12 #define DRV_VERSION "0.7.4-k" 13 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 14 const char ice_drv_ver[] = DRV_VERSION; 15 static const char ice_driver_string[] = DRV_SUMMARY; 16 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 17 18 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 19 MODULE_DESCRIPTION(DRV_SUMMARY); 20 MODULE_LICENSE("GPL v2"); 21 MODULE_VERSION(DRV_VERSION); 22 23 static int debug = -1; 24 module_param(debug, int, 0644); 25 #ifndef CONFIG_DYNAMIC_DEBUG 26 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 27 #else 28 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 29 #endif /* !CONFIG_DYNAMIC_DEBUG */ 30 31 static struct workqueue_struct *ice_wq; 32 static const struct net_device_ops ice_netdev_ops; 33 34 static void ice_rebuild(struct ice_pf *pf); 35 36 static void ice_vsi_release_all(struct ice_pf *pf); 37 static void ice_update_vsi_stats(struct ice_vsi *vsi); 38 static void ice_update_pf_stats(struct ice_pf *pf); 39 40 /** 41 * ice_get_tx_pending - returns number of Tx descriptors not processed 42 * @ring: the ring of descriptors 43 */ 44 static u32 ice_get_tx_pending(struct ice_ring *ring) 45 { 46 u32 head, tail; 47 48 head = ring->next_to_clean; 49 tail = readl(ring->tail); 50 51 if (head != tail) 52 return (head < tail) ? 53 tail - head : (tail + ring->count - head); 54 return 0; 55 } 56 57 /** 58 * ice_check_for_hang_subtask - check for and recover hung queues 59 * @pf: pointer to PF struct 60 */ 61 static void ice_check_for_hang_subtask(struct ice_pf *pf) 62 { 63 struct ice_vsi *vsi = NULL; 64 struct ice_hw *hw; 65 unsigned int i; 66 int packets; 67 u32 v; 68 69 ice_for_each_vsi(pf, v) 70 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 71 vsi = pf->vsi[v]; 72 break; 73 } 74 75 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 76 return; 77 78 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 79 return; 80 81 hw = &vsi->back->hw; 82 83 for (i = 0; i < vsi->num_txq; i++) { 84 struct ice_ring *tx_ring = vsi->tx_rings[i]; 85 86 if (tx_ring && tx_ring->desc) { 87 /* If packet counter has not changed the queue is 88 * likely stalled, so force an interrupt for this 89 * queue. 90 * 91 * prev_pkt would be negative if there was no 92 * pending work. 93 */ 94 packets = tx_ring->stats.pkts & INT_MAX; 95 if (tx_ring->tx_stats.prev_pkt == packets) { 96 /* Trigger sw interrupt to revive the queue */ 97 ice_trigger_sw_intr(hw, tx_ring->q_vector); 98 continue; 99 } 100 101 /* Memory barrier between read of packet count and call 102 * to ice_get_tx_pending() 103 */ 104 smp_rmb(); 105 tx_ring->tx_stats.prev_pkt = 106 ice_get_tx_pending(tx_ring) ? packets : -1; 107 } 108 } 109 } 110 111 /** 112 * ice_init_mac_fltr - Set initial MAC filters 113 * @pf: board private structure 114 * 115 * Set initial set of MAC filters for PF VSI; configure filters for permanent 116 * address and broadcast address. If an error is encountered, netdevice will be 117 * unregistered. 118 */ 119 static int ice_init_mac_fltr(struct ice_pf *pf) 120 { 121 LIST_HEAD(tmp_add_list); 122 u8 broadcast[ETH_ALEN]; 123 struct ice_vsi *vsi; 124 int status; 125 126 vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF); 127 if (!vsi) 128 return -EINVAL; 129 130 /* To add a MAC filter, first add the MAC to a list and then 131 * pass the list to ice_add_mac. 132 */ 133 134 /* Add a unicast MAC filter so the VSI can get its packets */ 135 status = ice_add_mac_to_list(vsi, &tmp_add_list, 136 vsi->port_info->mac.perm_addr); 137 if (status) 138 goto unregister; 139 140 /* VSI needs to receive broadcast traffic, so add the broadcast 141 * MAC address to the list as well. 142 */ 143 eth_broadcast_addr(broadcast); 144 status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); 145 if (status) 146 goto free_mac_list; 147 148 /* Program MAC filters for entries in tmp_add_list */ 149 status = ice_add_mac(&pf->hw, &tmp_add_list); 150 if (status) 151 status = -ENOMEM; 152 153 free_mac_list: 154 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 155 156 unregister: 157 /* We aren't useful with no MAC filters, so unregister if we 158 * had an error 159 */ 160 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 161 dev_err(&pf->pdev->dev, 162 "Could not add MAC filters error %d. Unregistering device\n", 163 status); 164 unregister_netdev(vsi->netdev); 165 free_netdev(vsi->netdev); 166 vsi->netdev = NULL; 167 } 168 169 return status; 170 } 171 172 /** 173 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 174 * @netdev: the net device on which the sync is happening 175 * @addr: MAC address to sync 176 * 177 * This is a callback function which is called by the in kernel device sync 178 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 179 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 180 * MAC filters from the hardware. 181 */ 182 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 183 { 184 struct ice_netdev_priv *np = netdev_priv(netdev); 185 struct ice_vsi *vsi = np->vsi; 186 187 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 /** 194 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 195 * @netdev: the net device on which the unsync is happening 196 * @addr: MAC address to unsync 197 * 198 * This is a callback function which is called by the in kernel device unsync 199 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 200 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 201 * delete the MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 /** 215 * ice_vsi_fltr_changed - check if filter state changed 216 * @vsi: VSI to be checked 217 * 218 * returns true if filter state has changed, false otherwise. 219 */ 220 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 221 { 222 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 223 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 224 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 225 } 226 227 /** 228 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 229 * @vsi: the VSI being configured 230 * @promisc_m: mask of promiscuous config bits 231 * @set_promisc: enable or disable promisc flag request 232 * 233 */ 234 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 235 { 236 struct ice_hw *hw = &vsi->back->hw; 237 enum ice_status status = 0; 238 239 if (vsi->type != ICE_VSI_PF) 240 return 0; 241 242 if (vsi->vlan_ena) { 243 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 244 set_promisc); 245 } else { 246 if (set_promisc) 247 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 248 0); 249 else 250 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 251 0); 252 } 253 254 if (status) 255 return -EIO; 256 257 return 0; 258 } 259 260 /** 261 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 262 * @vsi: ptr to the VSI 263 * 264 * Push any outstanding VSI filter changes through the AdminQ. 265 */ 266 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 267 { 268 struct device *dev = &vsi->back->pdev->dev; 269 struct net_device *netdev = vsi->netdev; 270 bool promisc_forced_on = false; 271 struct ice_pf *pf = vsi->back; 272 struct ice_hw *hw = &pf->hw; 273 enum ice_status status = 0; 274 u32 changed_flags = 0; 275 u8 promisc_m; 276 int err = 0; 277 278 if (!vsi->netdev) 279 return -EINVAL; 280 281 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 282 usleep_range(1000, 2000); 283 284 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 285 vsi->current_netdev_flags = vsi->netdev->flags; 286 287 INIT_LIST_HEAD(&vsi->tmp_sync_list); 288 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 289 290 if (ice_vsi_fltr_changed(vsi)) { 291 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 292 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 293 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 294 295 /* grab the netdev's addr_list_lock */ 296 netif_addr_lock_bh(netdev); 297 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 298 ice_add_mac_to_unsync_list); 299 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 300 ice_add_mac_to_unsync_list); 301 /* our temp lists are populated. release lock */ 302 netif_addr_unlock_bh(netdev); 303 } 304 305 /* Remove MAC addresses in the unsync list */ 306 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 307 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 308 if (status) { 309 netdev_err(netdev, "Failed to delete MAC filters\n"); 310 /* if we failed because of alloc failures, just bail */ 311 if (status == ICE_ERR_NO_MEMORY) { 312 err = -ENOMEM; 313 goto out; 314 } 315 } 316 317 /* Add MAC addresses in the sync list */ 318 status = ice_add_mac(hw, &vsi->tmp_sync_list); 319 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 320 /* If filter is added successfully or already exists, do not go into 321 * 'if' condition and report it as error. Instead continue processing 322 * rest of the function. 323 */ 324 if (status && status != ICE_ERR_ALREADY_EXISTS) { 325 netdev_err(netdev, "Failed to add MAC filters\n"); 326 /* If there is no more space for new umac filters, VSI 327 * should go into promiscuous mode. There should be some 328 * space reserved for promiscuous filters. 329 */ 330 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 331 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 332 vsi->state)) { 333 promisc_forced_on = true; 334 netdev_warn(netdev, 335 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 336 vsi->vsi_num); 337 } else { 338 err = -EIO; 339 goto out; 340 } 341 } 342 /* check for changes in promiscuous modes */ 343 if (changed_flags & IFF_ALLMULTI) { 344 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 345 if (vsi->vlan_ena) 346 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 347 else 348 promisc_m = ICE_MCAST_PROMISC_BITS; 349 350 err = ice_cfg_promisc(vsi, promisc_m, true); 351 if (err) { 352 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 353 vsi->vsi_num); 354 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 355 goto out_promisc; 356 } 357 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 358 if (vsi->vlan_ena) 359 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 360 else 361 promisc_m = ICE_MCAST_PROMISC_BITS; 362 363 err = ice_cfg_promisc(vsi, promisc_m, false); 364 if (err) { 365 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 366 vsi->vsi_num); 367 vsi->current_netdev_flags |= IFF_ALLMULTI; 368 goto out_promisc; 369 } 370 } 371 } 372 373 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 374 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 375 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 376 if (vsi->current_netdev_flags & IFF_PROMISC) { 377 /* Apply Rx filter rule to get traffic from wire */ 378 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 379 ICE_FLTR_RX); 380 if (status) { 381 netdev_err(netdev, "Error setting default VSI %i Rx rule\n", 382 vsi->vsi_num); 383 vsi->current_netdev_flags &= ~IFF_PROMISC; 384 err = -EIO; 385 goto out_promisc; 386 } 387 } else { 388 /* Clear Rx filter to remove traffic from wire */ 389 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 390 ICE_FLTR_RX); 391 if (status) { 392 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n", 393 vsi->vsi_num); 394 vsi->current_netdev_flags |= IFF_PROMISC; 395 err = -EIO; 396 goto out_promisc; 397 } 398 } 399 } 400 goto exit; 401 402 out_promisc: 403 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 404 goto exit; 405 out: 406 /* if something went wrong then set the changed flag so we try again */ 407 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 408 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 409 exit: 410 clear_bit(__ICE_CFG_BUSY, vsi->state); 411 return err; 412 } 413 414 /** 415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 416 * @pf: board private structure 417 */ 418 static void ice_sync_fltr_subtask(struct ice_pf *pf) 419 { 420 int v; 421 422 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 423 return; 424 425 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 426 427 ice_for_each_vsi(pf, v) 428 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 429 ice_vsi_sync_fltr(pf->vsi[v])) { 430 /* come back and try again later */ 431 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 432 break; 433 } 434 } 435 436 /** 437 * ice_dis_vsi - pause a VSI 438 * @vsi: the VSI being paused 439 * @locked: is the rtnl_lock already held 440 */ 441 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 442 { 443 if (test_bit(__ICE_DOWN, vsi->state)) 444 return; 445 446 set_bit(__ICE_NEEDS_RESTART, vsi->state); 447 448 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 449 if (netif_running(vsi->netdev)) { 450 if (!locked) { 451 rtnl_lock(); 452 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 453 rtnl_unlock(); 454 } else { 455 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 456 } 457 } else { 458 ice_vsi_close(vsi); 459 } 460 } 461 } 462 463 /** 464 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 465 * @pf: the PF 466 * @locked: is the rtnl_lock already held 467 */ 468 #ifdef CONFIG_DCB 469 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 470 #else 471 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 472 #endif /* CONFIG_DCB */ 473 { 474 int v; 475 476 ice_for_each_vsi(pf, v) 477 if (pf->vsi[v]) 478 ice_dis_vsi(pf->vsi[v], locked); 479 } 480 481 /** 482 * ice_prepare_for_reset - prep for the core to reset 483 * @pf: board private structure 484 * 485 * Inform or close all dependent features in prep for reset. 486 */ 487 static void 488 ice_prepare_for_reset(struct ice_pf *pf) 489 { 490 struct ice_hw *hw = &pf->hw; 491 492 /* already prepared for reset */ 493 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 494 return; 495 496 /* Notify VFs of impending reset */ 497 if (ice_check_sq_alive(hw, &hw->mailboxq)) 498 ice_vc_notify_reset(pf); 499 500 /* disable the VSIs and their queues that are not already DOWN */ 501 ice_pf_dis_all_vsi(pf, false); 502 503 if (hw->port_info) 504 ice_sched_clear_port(hw->port_info); 505 506 ice_shutdown_all_ctrlq(hw); 507 508 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 509 } 510 511 /** 512 * ice_do_reset - Initiate one of many types of resets 513 * @pf: board private structure 514 * @reset_type: reset type requested 515 * before this function was called. 516 */ 517 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 518 { 519 struct device *dev = &pf->pdev->dev; 520 struct ice_hw *hw = &pf->hw; 521 522 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 523 WARN_ON(in_interrupt()); 524 525 ice_prepare_for_reset(pf); 526 527 /* trigger the reset */ 528 if (ice_reset(hw, reset_type)) { 529 dev_err(dev, "reset %d failed\n", reset_type); 530 set_bit(__ICE_RESET_FAILED, pf->state); 531 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 532 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 533 clear_bit(__ICE_PFR_REQ, pf->state); 534 clear_bit(__ICE_CORER_REQ, pf->state); 535 clear_bit(__ICE_GLOBR_REQ, pf->state); 536 return; 537 } 538 539 /* PFR is a bit of a special case because it doesn't result in an OICR 540 * interrupt. So for PFR, rebuild after the reset and clear the reset- 541 * associated state bits. 542 */ 543 if (reset_type == ICE_RESET_PFR) { 544 pf->pfr_count++; 545 ice_rebuild(pf); 546 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 547 clear_bit(__ICE_PFR_REQ, pf->state); 548 ice_reset_all_vfs(pf, true); 549 } 550 } 551 552 /** 553 * ice_reset_subtask - Set up for resetting the device and driver 554 * @pf: board private structure 555 */ 556 static void ice_reset_subtask(struct ice_pf *pf) 557 { 558 enum ice_reset_req reset_type = ICE_RESET_INVAL; 559 560 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 561 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 562 * of reset is pending and sets bits in pf->state indicating the reset 563 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 564 * prepare for pending reset if not already (for PF software-initiated 565 * global resets the software should already be prepared for it as 566 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 567 * by firmware or software on other PFs, that bit is not set so prepare 568 * for the reset now), poll for reset done, rebuild and return. 569 */ 570 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 571 /* Perform the largest reset requested */ 572 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 573 reset_type = ICE_RESET_CORER; 574 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 575 reset_type = ICE_RESET_GLOBR; 576 /* return if no valid reset type requested */ 577 if (reset_type == ICE_RESET_INVAL) 578 return; 579 ice_prepare_for_reset(pf); 580 581 /* make sure we are ready to rebuild */ 582 if (ice_check_reset(&pf->hw)) { 583 set_bit(__ICE_RESET_FAILED, pf->state); 584 } else { 585 /* done with reset. start rebuild */ 586 pf->hw.reset_ongoing = false; 587 ice_rebuild(pf); 588 /* clear bit to resume normal operations, but 589 * ICE_NEEDS_RESTART bit is set in case rebuild failed 590 */ 591 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 592 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 593 clear_bit(__ICE_PFR_REQ, pf->state); 594 clear_bit(__ICE_CORER_REQ, pf->state); 595 clear_bit(__ICE_GLOBR_REQ, pf->state); 596 ice_reset_all_vfs(pf, true); 597 } 598 599 return; 600 } 601 602 /* No pending resets to finish processing. Check for new resets */ 603 if (test_bit(__ICE_PFR_REQ, pf->state)) 604 reset_type = ICE_RESET_PFR; 605 if (test_bit(__ICE_CORER_REQ, pf->state)) 606 reset_type = ICE_RESET_CORER; 607 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 608 reset_type = ICE_RESET_GLOBR; 609 /* If no valid reset type requested just return */ 610 if (reset_type == ICE_RESET_INVAL) 611 return; 612 613 /* reset if not already down or busy */ 614 if (!test_bit(__ICE_DOWN, pf->state) && 615 !test_bit(__ICE_CFG_BUSY, pf->state)) { 616 ice_do_reset(pf, reset_type); 617 } 618 } 619 620 /** 621 * ice_print_link_msg - print link up or down message 622 * @vsi: the VSI whose link status is being queried 623 * @isup: boolean for if the link is now up or down 624 */ 625 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 626 { 627 struct ice_aqc_get_phy_caps_data *caps; 628 enum ice_status status; 629 const char *fec_req; 630 const char *speed; 631 const char *fec; 632 const char *fc; 633 634 if (!vsi) 635 return; 636 637 if (vsi->current_isup == isup) 638 return; 639 640 vsi->current_isup = isup; 641 642 if (!isup) { 643 netdev_info(vsi->netdev, "NIC Link is Down\n"); 644 return; 645 } 646 647 switch (vsi->port_info->phy.link_info.link_speed) { 648 case ICE_AQ_LINK_SPEED_100GB: 649 speed = "100 G"; 650 break; 651 case ICE_AQ_LINK_SPEED_50GB: 652 speed = "50 G"; 653 break; 654 case ICE_AQ_LINK_SPEED_40GB: 655 speed = "40 G"; 656 break; 657 case ICE_AQ_LINK_SPEED_25GB: 658 speed = "25 G"; 659 break; 660 case ICE_AQ_LINK_SPEED_20GB: 661 speed = "20 G"; 662 break; 663 case ICE_AQ_LINK_SPEED_10GB: 664 speed = "10 G"; 665 break; 666 case ICE_AQ_LINK_SPEED_5GB: 667 speed = "5 G"; 668 break; 669 case ICE_AQ_LINK_SPEED_2500MB: 670 speed = "2.5 G"; 671 break; 672 case ICE_AQ_LINK_SPEED_1000MB: 673 speed = "1 G"; 674 break; 675 case ICE_AQ_LINK_SPEED_100MB: 676 speed = "100 M"; 677 break; 678 default: 679 speed = "Unknown"; 680 break; 681 } 682 683 switch (vsi->port_info->fc.current_mode) { 684 case ICE_FC_FULL: 685 fc = "Rx/Tx"; 686 break; 687 case ICE_FC_TX_PAUSE: 688 fc = "Tx"; 689 break; 690 case ICE_FC_RX_PAUSE: 691 fc = "Rx"; 692 break; 693 case ICE_FC_NONE: 694 fc = "None"; 695 break; 696 default: 697 fc = "Unknown"; 698 break; 699 } 700 701 /* Get FEC mode based on negotiated link info */ 702 switch (vsi->port_info->phy.link_info.fec_info) { 703 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 704 /* fall through */ 705 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 706 fec = "RS-FEC"; 707 break; 708 case ICE_AQ_LINK_25G_KR_FEC_EN: 709 fec = "FC-FEC/BASE-R"; 710 break; 711 default: 712 fec = "NONE"; 713 break; 714 } 715 716 /* Get FEC mode requested based on PHY caps last SW configuration */ 717 caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL); 718 if (!caps) { 719 fec_req = "Unknown"; 720 goto done; 721 } 722 723 status = ice_aq_get_phy_caps(vsi->port_info, false, 724 ICE_AQC_REPORT_SW_CFG, caps, NULL); 725 if (status) 726 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 727 728 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 729 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 730 fec_req = "RS-FEC"; 731 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 732 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 733 fec_req = "FC-FEC/BASE-R"; 734 else 735 fec_req = "NONE"; 736 737 devm_kfree(&vsi->back->pdev->dev, caps); 738 739 done: 740 netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Flow Control: %s\n", 741 speed, fec_req, fec, fc); 742 } 743 744 /** 745 * ice_vsi_link_event - update the VSI's netdev 746 * @vsi: the VSI on which the link event occurred 747 * @link_up: whether or not the VSI needs to be set up or down 748 */ 749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 750 { 751 if (!vsi) 752 return; 753 754 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 755 return; 756 757 if (vsi->type == ICE_VSI_PF) { 758 if (link_up == netif_carrier_ok(vsi->netdev)) 759 return; 760 761 if (link_up) { 762 netif_carrier_on(vsi->netdev); 763 netif_tx_wake_all_queues(vsi->netdev); 764 } else { 765 netif_carrier_off(vsi->netdev); 766 netif_tx_stop_all_queues(vsi->netdev); 767 } 768 } 769 } 770 771 /** 772 * ice_link_event - process the link event 773 * @pf: PF that the link event is associated with 774 * @pi: port_info for the port that the link event is associated with 775 * @link_up: true if the physical link is up and false if it is down 776 * @link_speed: current link speed received from the link event 777 * 778 * Returns 0 on success and negative on failure 779 */ 780 static int 781 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 782 u16 link_speed) 783 { 784 struct ice_phy_info *phy_info; 785 struct ice_vsi *vsi; 786 u16 old_link_speed; 787 bool old_link; 788 int result; 789 790 phy_info = &pi->phy; 791 phy_info->link_info_old = phy_info->link_info; 792 793 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 794 old_link_speed = phy_info->link_info_old.link_speed; 795 796 /* update the link info structures and re-enable link events, 797 * don't bail on failure due to other book keeping needed 798 */ 799 result = ice_update_link_info(pi); 800 if (result) 801 dev_dbg(&pf->pdev->dev, 802 "Failed to update link status and re-enable link events for port %d\n", 803 pi->lport); 804 805 /* if the old link up/down and speed is the same as the new */ 806 if (link_up == old_link && link_speed == old_link_speed) 807 return result; 808 809 vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF); 810 if (!vsi || !vsi->port_info) 811 return -EINVAL; 812 813 ice_vsi_link_event(vsi, link_up); 814 ice_print_link_msg(vsi, link_up); 815 816 if (pf->num_alloc_vfs) 817 ice_vc_notify_link_state(pf); 818 819 return result; 820 } 821 822 /** 823 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 824 * @pf: board private structure 825 */ 826 static void ice_watchdog_subtask(struct ice_pf *pf) 827 { 828 int i; 829 830 /* if interface is down do nothing */ 831 if (test_bit(__ICE_DOWN, pf->state) || 832 test_bit(__ICE_CFG_BUSY, pf->state)) 833 return; 834 835 /* make sure we don't do these things too often */ 836 if (time_before(jiffies, 837 pf->serv_tmr_prev + pf->serv_tmr_period)) 838 return; 839 840 pf->serv_tmr_prev = jiffies; 841 842 /* Update the stats for active netdevs so the network stack 843 * can look at updated numbers whenever it cares to 844 */ 845 ice_update_pf_stats(pf); 846 ice_for_each_vsi(pf, i) 847 if (pf->vsi[i] && pf->vsi[i]->netdev) 848 ice_update_vsi_stats(pf->vsi[i]); 849 } 850 851 /** 852 * ice_init_link_events - enable/initialize link events 853 * @pi: pointer to the port_info instance 854 * 855 * Returns -EIO on failure, 0 on success 856 */ 857 static int ice_init_link_events(struct ice_port_info *pi) 858 { 859 u16 mask; 860 861 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 862 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 863 864 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 865 dev_dbg(ice_hw_to_dev(pi->hw), 866 "Failed to set link event mask for port %d\n", 867 pi->lport); 868 return -EIO; 869 } 870 871 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 872 dev_dbg(ice_hw_to_dev(pi->hw), 873 "Failed to enable link events for port %d\n", 874 pi->lport); 875 return -EIO; 876 } 877 878 return 0; 879 } 880 881 /** 882 * ice_handle_link_event - handle link event via ARQ 883 * @pf: PF that the link event is associated with 884 * @event: event structure containing link status info 885 */ 886 static int 887 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 888 { 889 struct ice_aqc_get_link_status_data *link_data; 890 struct ice_port_info *port_info; 891 int status; 892 893 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 894 port_info = pf->hw.port_info; 895 if (!port_info) 896 return -EINVAL; 897 898 status = ice_link_event(pf, port_info, 899 !!(link_data->link_info & ICE_AQ_LINK_UP), 900 le16_to_cpu(link_data->link_speed)); 901 if (status) 902 dev_dbg(&pf->pdev->dev, 903 "Could not process link event, error %d\n", status); 904 905 return status; 906 } 907 908 /** 909 * __ice_clean_ctrlq - helper function to clean controlq rings 910 * @pf: ptr to struct ice_pf 911 * @q_type: specific Control queue type 912 */ 913 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 914 { 915 struct ice_rq_event_info event; 916 struct ice_hw *hw = &pf->hw; 917 struct ice_ctl_q_info *cq; 918 u16 pending, i = 0; 919 const char *qtype; 920 u32 oldval, val; 921 922 /* Do not clean control queue if/when PF reset fails */ 923 if (test_bit(__ICE_RESET_FAILED, pf->state)) 924 return 0; 925 926 switch (q_type) { 927 case ICE_CTL_Q_ADMIN: 928 cq = &hw->adminq; 929 qtype = "Admin"; 930 break; 931 case ICE_CTL_Q_MAILBOX: 932 cq = &hw->mailboxq; 933 qtype = "Mailbox"; 934 break; 935 default: 936 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 937 q_type); 938 return 0; 939 } 940 941 /* check for error indications - PF_xx_AxQLEN register layout for 942 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 943 */ 944 val = rd32(hw, cq->rq.len); 945 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 946 PF_FW_ARQLEN_ARQCRIT_M)) { 947 oldval = val; 948 if (val & PF_FW_ARQLEN_ARQVFE_M) 949 dev_dbg(&pf->pdev->dev, 950 "%s Receive Queue VF Error detected\n", qtype); 951 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 952 dev_dbg(&pf->pdev->dev, 953 "%s Receive Queue Overflow Error detected\n", 954 qtype); 955 } 956 if (val & PF_FW_ARQLEN_ARQCRIT_M) 957 dev_dbg(&pf->pdev->dev, 958 "%s Receive Queue Critical Error detected\n", 959 qtype); 960 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 961 PF_FW_ARQLEN_ARQCRIT_M); 962 if (oldval != val) 963 wr32(hw, cq->rq.len, val); 964 } 965 966 val = rd32(hw, cq->sq.len); 967 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 968 PF_FW_ATQLEN_ATQCRIT_M)) { 969 oldval = val; 970 if (val & PF_FW_ATQLEN_ATQVFE_M) 971 dev_dbg(&pf->pdev->dev, 972 "%s Send Queue VF Error detected\n", qtype); 973 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 974 dev_dbg(&pf->pdev->dev, 975 "%s Send Queue Overflow Error detected\n", 976 qtype); 977 } 978 if (val & PF_FW_ATQLEN_ATQCRIT_M) 979 dev_dbg(&pf->pdev->dev, 980 "%s Send Queue Critical Error detected\n", 981 qtype); 982 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 983 PF_FW_ATQLEN_ATQCRIT_M); 984 if (oldval != val) 985 wr32(hw, cq->sq.len, val); 986 } 987 988 event.buf_len = cq->rq_buf_size; 989 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 990 GFP_KERNEL); 991 if (!event.msg_buf) 992 return 0; 993 994 do { 995 enum ice_status ret; 996 u16 opcode; 997 998 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 999 if (ret == ICE_ERR_AQ_NO_WORK) 1000 break; 1001 if (ret) { 1002 dev_err(&pf->pdev->dev, 1003 "%s Receive Queue event error %d\n", qtype, 1004 ret); 1005 break; 1006 } 1007 1008 opcode = le16_to_cpu(event.desc.opcode); 1009 1010 switch (opcode) { 1011 case ice_aqc_opc_get_link_status: 1012 if (ice_handle_link_event(pf, &event)) 1013 dev_err(&pf->pdev->dev, 1014 "Could not handle link event\n"); 1015 break; 1016 case ice_mbx_opc_send_msg_to_pf: 1017 ice_vc_process_vf_msg(pf, &event); 1018 break; 1019 case ice_aqc_opc_fw_logging: 1020 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1021 break; 1022 case ice_aqc_opc_lldp_set_mib_change: 1023 ice_dcb_process_lldp_set_mib_change(pf, &event); 1024 break; 1025 default: 1026 dev_dbg(&pf->pdev->dev, 1027 "%s Receive Queue unknown event 0x%04x ignored\n", 1028 qtype, opcode); 1029 break; 1030 } 1031 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1032 1033 devm_kfree(&pf->pdev->dev, event.msg_buf); 1034 1035 return pending && (i == ICE_DFLT_IRQ_WORK); 1036 } 1037 1038 /** 1039 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1040 * @hw: pointer to hardware info 1041 * @cq: control queue information 1042 * 1043 * returns true if there are pending messages in a queue, false if there aren't 1044 */ 1045 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1046 { 1047 u16 ntu; 1048 1049 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1050 return cq->rq.next_to_clean != ntu; 1051 } 1052 1053 /** 1054 * ice_clean_adminq_subtask - clean the AdminQ rings 1055 * @pf: board private structure 1056 */ 1057 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1058 { 1059 struct ice_hw *hw = &pf->hw; 1060 1061 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1062 return; 1063 1064 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1065 return; 1066 1067 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1068 1069 /* There might be a situation where new messages arrive to a control 1070 * queue between processing the last message and clearing the 1071 * EVENT_PENDING bit. So before exiting, check queue head again (using 1072 * ice_ctrlq_pending) and process new messages if any. 1073 */ 1074 if (ice_ctrlq_pending(hw, &hw->adminq)) 1075 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1076 1077 ice_flush(hw); 1078 } 1079 1080 /** 1081 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1082 * @pf: board private structure 1083 */ 1084 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1085 { 1086 struct ice_hw *hw = &pf->hw; 1087 1088 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1089 return; 1090 1091 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1092 return; 1093 1094 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1095 1096 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1097 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1098 1099 ice_flush(hw); 1100 } 1101 1102 /** 1103 * ice_service_task_schedule - schedule the service task to wake up 1104 * @pf: board private structure 1105 * 1106 * If not already scheduled, this puts the task into the work queue. 1107 */ 1108 static void ice_service_task_schedule(struct ice_pf *pf) 1109 { 1110 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1111 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1112 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1113 queue_work(ice_wq, &pf->serv_task); 1114 } 1115 1116 /** 1117 * ice_service_task_complete - finish up the service task 1118 * @pf: board private structure 1119 */ 1120 static void ice_service_task_complete(struct ice_pf *pf) 1121 { 1122 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1123 1124 /* force memory (pf->state) to sync before next service task */ 1125 smp_mb__before_atomic(); 1126 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1127 } 1128 1129 /** 1130 * ice_service_task_stop - stop service task and cancel works 1131 * @pf: board private structure 1132 */ 1133 static void ice_service_task_stop(struct ice_pf *pf) 1134 { 1135 set_bit(__ICE_SERVICE_DIS, pf->state); 1136 1137 if (pf->serv_tmr.function) 1138 del_timer_sync(&pf->serv_tmr); 1139 if (pf->serv_task.func) 1140 cancel_work_sync(&pf->serv_task); 1141 1142 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1143 } 1144 1145 /** 1146 * ice_service_task_restart - restart service task and schedule works 1147 * @pf: board private structure 1148 * 1149 * This function is needed for suspend and resume works (e.g WoL scenario) 1150 */ 1151 static void ice_service_task_restart(struct ice_pf *pf) 1152 { 1153 clear_bit(__ICE_SERVICE_DIS, pf->state); 1154 ice_service_task_schedule(pf); 1155 } 1156 1157 /** 1158 * ice_service_timer - timer callback to schedule service task 1159 * @t: pointer to timer_list 1160 */ 1161 static void ice_service_timer(struct timer_list *t) 1162 { 1163 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1164 1165 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1166 ice_service_task_schedule(pf); 1167 } 1168 1169 /** 1170 * ice_handle_mdd_event - handle malicious driver detect event 1171 * @pf: pointer to the PF structure 1172 * 1173 * Called from service task. OICR interrupt handler indicates MDD event 1174 */ 1175 static void ice_handle_mdd_event(struct ice_pf *pf) 1176 { 1177 struct ice_hw *hw = &pf->hw; 1178 bool mdd_detected = false; 1179 u32 reg; 1180 int i; 1181 1182 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 1183 return; 1184 1185 /* find what triggered the MDD event */ 1186 reg = rd32(hw, GL_MDET_TX_PQM); 1187 if (reg & GL_MDET_TX_PQM_VALID_M) { 1188 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1189 GL_MDET_TX_PQM_PF_NUM_S; 1190 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1191 GL_MDET_TX_PQM_VF_NUM_S; 1192 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1193 GL_MDET_TX_PQM_MAL_TYPE_S; 1194 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1195 GL_MDET_TX_PQM_QNUM_S); 1196 1197 if (netif_msg_tx_err(pf)) 1198 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1199 event, queue, pf_num, vf_num); 1200 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1201 mdd_detected = true; 1202 } 1203 1204 reg = rd32(hw, GL_MDET_TX_TCLAN); 1205 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1206 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1207 GL_MDET_TX_TCLAN_PF_NUM_S; 1208 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1209 GL_MDET_TX_TCLAN_VF_NUM_S; 1210 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1211 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1212 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1213 GL_MDET_TX_TCLAN_QNUM_S); 1214 1215 if (netif_msg_rx_err(pf)) 1216 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1217 event, queue, pf_num, vf_num); 1218 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1219 mdd_detected = true; 1220 } 1221 1222 reg = rd32(hw, GL_MDET_RX); 1223 if (reg & GL_MDET_RX_VALID_M) { 1224 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1225 GL_MDET_RX_PF_NUM_S; 1226 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1227 GL_MDET_RX_VF_NUM_S; 1228 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1229 GL_MDET_RX_MAL_TYPE_S; 1230 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1231 GL_MDET_RX_QNUM_S); 1232 1233 if (netif_msg_rx_err(pf)) 1234 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1235 event, queue, pf_num, vf_num); 1236 wr32(hw, GL_MDET_RX, 0xffffffff); 1237 mdd_detected = true; 1238 } 1239 1240 if (mdd_detected) { 1241 bool pf_mdd_detected = false; 1242 1243 reg = rd32(hw, PF_MDET_TX_PQM); 1244 if (reg & PF_MDET_TX_PQM_VALID_M) { 1245 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1246 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1247 pf_mdd_detected = true; 1248 } 1249 1250 reg = rd32(hw, PF_MDET_TX_TCLAN); 1251 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1252 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1253 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1254 pf_mdd_detected = true; 1255 } 1256 1257 reg = rd32(hw, PF_MDET_RX); 1258 if (reg & PF_MDET_RX_VALID_M) { 1259 wr32(hw, PF_MDET_RX, 0xFFFF); 1260 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 1261 pf_mdd_detected = true; 1262 } 1263 /* Queue belongs to the PF initiate a reset */ 1264 if (pf_mdd_detected) { 1265 set_bit(__ICE_NEEDS_RESTART, pf->state); 1266 ice_service_task_schedule(pf); 1267 } 1268 } 1269 1270 /* check to see if one of the VFs caused the MDD */ 1271 for (i = 0; i < pf->num_alloc_vfs; i++) { 1272 struct ice_vf *vf = &pf->vf[i]; 1273 1274 bool vf_mdd_detected = false; 1275 1276 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1277 if (reg & VP_MDET_TX_PQM_VALID_M) { 1278 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1279 vf_mdd_detected = true; 1280 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1281 i); 1282 } 1283 1284 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1285 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1286 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1287 vf_mdd_detected = true; 1288 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1289 i); 1290 } 1291 1292 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1293 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1294 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1295 vf_mdd_detected = true; 1296 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1297 i); 1298 } 1299 1300 reg = rd32(hw, VP_MDET_RX(i)); 1301 if (reg & VP_MDET_RX_VALID_M) { 1302 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1303 vf_mdd_detected = true; 1304 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1305 i); 1306 } 1307 1308 if (vf_mdd_detected) { 1309 vf->num_mdd_events++; 1310 if (vf->num_mdd_events > 1) 1311 dev_info(&pf->pdev->dev, "VF %d has had %llu MDD events since last boot\n", 1312 i, vf->num_mdd_events); 1313 } 1314 } 1315 } 1316 1317 /** 1318 * ice_service_task - manage and run subtasks 1319 * @work: pointer to work_struct contained by the PF struct 1320 */ 1321 static void ice_service_task(struct work_struct *work) 1322 { 1323 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1324 unsigned long start_time = jiffies; 1325 1326 /* subtasks */ 1327 1328 /* process reset requests first */ 1329 ice_reset_subtask(pf); 1330 1331 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1332 if (ice_is_reset_in_progress(pf->state) || 1333 test_bit(__ICE_SUSPENDED, pf->state) || 1334 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1335 ice_service_task_complete(pf); 1336 return; 1337 } 1338 1339 ice_check_for_hang_subtask(pf); 1340 ice_sync_fltr_subtask(pf); 1341 ice_handle_mdd_event(pf); 1342 ice_process_vflr_event(pf); 1343 ice_watchdog_subtask(pf); 1344 ice_clean_adminq_subtask(pf); 1345 ice_clean_mailboxq_subtask(pf); 1346 1347 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1348 ice_service_task_complete(pf); 1349 1350 /* If the tasks have taken longer than one service timer period 1351 * or there is more work to be done, reset the service timer to 1352 * schedule the service task now. 1353 */ 1354 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1355 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1356 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1357 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1358 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1359 mod_timer(&pf->serv_tmr, jiffies); 1360 } 1361 1362 /** 1363 * ice_set_ctrlq_len - helper function to set controlq length 1364 * @hw: pointer to the HW instance 1365 */ 1366 static void ice_set_ctrlq_len(struct ice_hw *hw) 1367 { 1368 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1369 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1372 hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN; 1373 hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN; 1374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1376 } 1377 1378 /** 1379 * ice_irq_affinity_notify - Callback for affinity changes 1380 * @notify: context as to what irq was changed 1381 * @mask: the new affinity mask 1382 * 1383 * This is a callback function used by the irq_set_affinity_notifier function 1384 * so that we may register to receive changes to the irq affinity masks. 1385 */ 1386 static void 1387 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1388 const cpumask_t *mask) 1389 { 1390 struct ice_q_vector *q_vector = 1391 container_of(notify, struct ice_q_vector, affinity_notify); 1392 1393 cpumask_copy(&q_vector->affinity_mask, mask); 1394 } 1395 1396 /** 1397 * ice_irq_affinity_release - Callback for affinity notifier release 1398 * @ref: internal core kernel usage 1399 * 1400 * This is a callback function used by the irq_set_affinity_notifier function 1401 * to inform the current notification subscriber that they will no longer 1402 * receive notifications. 1403 */ 1404 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1405 1406 /** 1407 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1408 * @vsi: the VSI being configured 1409 */ 1410 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1411 { 1412 struct ice_pf *pf = vsi->back; 1413 struct ice_hw *hw = &pf->hw; 1414 1415 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1416 int i; 1417 1418 ice_for_each_q_vector(vsi, i) 1419 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1420 } 1421 1422 ice_flush(hw); 1423 return 0; 1424 } 1425 1426 /** 1427 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1428 * @vsi: the VSI being configured 1429 * @basename: name for the vector 1430 */ 1431 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1432 { 1433 int q_vectors = vsi->num_q_vectors; 1434 struct ice_pf *pf = vsi->back; 1435 int base = vsi->base_vector; 1436 int rx_int_idx = 0; 1437 int tx_int_idx = 0; 1438 int vector, err; 1439 int irq_num; 1440 1441 for (vector = 0; vector < q_vectors; vector++) { 1442 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1443 1444 irq_num = pf->msix_entries[base + vector].vector; 1445 1446 if (q_vector->tx.ring && q_vector->rx.ring) { 1447 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1448 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1449 tx_int_idx++; 1450 } else if (q_vector->rx.ring) { 1451 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1452 "%s-%s-%d", basename, "rx", rx_int_idx++); 1453 } else if (q_vector->tx.ring) { 1454 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1455 "%s-%s-%d", basename, "tx", tx_int_idx++); 1456 } else { 1457 /* skip this unused q_vector */ 1458 continue; 1459 } 1460 err = devm_request_irq(&pf->pdev->dev, irq_num, 1461 vsi->irq_handler, 0, 1462 q_vector->name, q_vector); 1463 if (err) { 1464 netdev_err(vsi->netdev, 1465 "MSIX request_irq failed, error: %d\n", err); 1466 goto free_q_irqs; 1467 } 1468 1469 /* register for affinity change notifications */ 1470 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1471 q_vector->affinity_notify.release = ice_irq_affinity_release; 1472 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1473 1474 /* assign the mask for this irq */ 1475 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1476 } 1477 1478 vsi->irqs_ready = true; 1479 return 0; 1480 1481 free_q_irqs: 1482 while (vector) { 1483 vector--; 1484 irq_num = pf->msix_entries[base + vector].vector, 1485 irq_set_affinity_notifier(irq_num, NULL); 1486 irq_set_affinity_hint(irq_num, NULL); 1487 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1488 } 1489 return err; 1490 } 1491 1492 /** 1493 * ice_ena_misc_vector - enable the non-queue interrupts 1494 * @pf: board private structure 1495 */ 1496 static void ice_ena_misc_vector(struct ice_pf *pf) 1497 { 1498 struct ice_hw *hw = &pf->hw; 1499 u32 val; 1500 1501 /* clear things first */ 1502 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1503 rd32(hw, PFINT_OICR); /* read to clear */ 1504 1505 val = (PFINT_OICR_ECC_ERR_M | 1506 PFINT_OICR_MAL_DETECT_M | 1507 PFINT_OICR_GRST_M | 1508 PFINT_OICR_PCI_EXCEPTION_M | 1509 PFINT_OICR_VFLR_M | 1510 PFINT_OICR_HMC_ERR_M | 1511 PFINT_OICR_PE_CRITERR_M); 1512 1513 wr32(hw, PFINT_OICR_ENA, val); 1514 1515 /* SW_ITR_IDX = 0, but don't change INTENA */ 1516 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 1517 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1518 } 1519 1520 /** 1521 * ice_misc_intr - misc interrupt handler 1522 * @irq: interrupt number 1523 * @data: pointer to a q_vector 1524 */ 1525 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1526 { 1527 struct ice_pf *pf = (struct ice_pf *)data; 1528 struct ice_hw *hw = &pf->hw; 1529 irqreturn_t ret = IRQ_NONE; 1530 u32 oicr, ena_mask; 1531 1532 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1533 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1534 1535 oicr = rd32(hw, PFINT_OICR); 1536 ena_mask = rd32(hw, PFINT_OICR_ENA); 1537 1538 if (oicr & PFINT_OICR_SWINT_M) { 1539 ena_mask &= ~PFINT_OICR_SWINT_M; 1540 pf->sw_int_count++; 1541 } 1542 1543 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1544 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 1545 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1546 } 1547 if (oicr & PFINT_OICR_VFLR_M) { 1548 ena_mask &= ~PFINT_OICR_VFLR_M; 1549 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 1550 } 1551 1552 if (oicr & PFINT_OICR_GRST_M) { 1553 u32 reset; 1554 1555 /* we have a reset warning */ 1556 ena_mask &= ~PFINT_OICR_GRST_M; 1557 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1558 GLGEN_RSTAT_RESET_TYPE_S; 1559 1560 if (reset == ICE_RESET_CORER) 1561 pf->corer_count++; 1562 else if (reset == ICE_RESET_GLOBR) 1563 pf->globr_count++; 1564 else if (reset == ICE_RESET_EMPR) 1565 pf->empr_count++; 1566 else 1567 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 1568 reset); 1569 1570 /* If a reset cycle isn't already in progress, we set a bit in 1571 * pf->state so that the service task can start a reset/rebuild. 1572 * We also make note of which reset happened so that peer 1573 * devices/drivers can be informed. 1574 */ 1575 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 1576 if (reset == ICE_RESET_CORER) 1577 set_bit(__ICE_CORER_RECV, pf->state); 1578 else if (reset == ICE_RESET_GLOBR) 1579 set_bit(__ICE_GLOBR_RECV, pf->state); 1580 else 1581 set_bit(__ICE_EMPR_RECV, pf->state); 1582 1583 /* There are couple of different bits at play here. 1584 * hw->reset_ongoing indicates whether the hardware is 1585 * in reset. This is set to true when a reset interrupt 1586 * is received and set back to false after the driver 1587 * has determined that the hardware is out of reset. 1588 * 1589 * __ICE_RESET_OICR_RECV in pf->state indicates 1590 * that a post reset rebuild is required before the 1591 * driver is operational again. This is set above. 1592 * 1593 * As this is the start of the reset/rebuild cycle, set 1594 * both to indicate that. 1595 */ 1596 hw->reset_ongoing = true; 1597 } 1598 } 1599 1600 if (oicr & PFINT_OICR_HMC_ERR_M) { 1601 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 1602 dev_dbg(&pf->pdev->dev, 1603 "HMC Error interrupt - info 0x%x, data 0x%x\n", 1604 rd32(hw, PFHMC_ERRORINFO), 1605 rd32(hw, PFHMC_ERRORDATA)); 1606 } 1607 1608 /* Report any remaining unexpected interrupts */ 1609 oicr &= ena_mask; 1610 if (oicr) { 1611 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 1612 oicr); 1613 /* If a critical error is pending there is no choice but to 1614 * reset the device. 1615 */ 1616 if (oicr & (PFINT_OICR_PE_CRITERR_M | 1617 PFINT_OICR_PCI_EXCEPTION_M | 1618 PFINT_OICR_ECC_ERR_M)) { 1619 set_bit(__ICE_PFR_REQ, pf->state); 1620 ice_service_task_schedule(pf); 1621 } 1622 } 1623 ret = IRQ_HANDLED; 1624 1625 if (!test_bit(__ICE_DOWN, pf->state)) { 1626 ice_service_task_schedule(pf); 1627 ice_irq_dynamic_ena(hw, NULL, NULL); 1628 } 1629 1630 return ret; 1631 } 1632 1633 /** 1634 * ice_dis_ctrlq_interrupts - disable control queue interrupts 1635 * @hw: pointer to HW structure 1636 */ 1637 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 1638 { 1639 /* disable Admin queue Interrupt causes */ 1640 wr32(hw, PFINT_FW_CTL, 1641 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 1642 1643 /* disable Mailbox queue Interrupt causes */ 1644 wr32(hw, PFINT_MBX_CTL, 1645 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 1646 1647 /* disable Control queue Interrupt causes */ 1648 wr32(hw, PFINT_OICR_CTL, 1649 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 1650 1651 ice_flush(hw); 1652 } 1653 1654 /** 1655 * ice_free_irq_msix_misc - Unroll misc vector setup 1656 * @pf: board private structure 1657 */ 1658 static void ice_free_irq_msix_misc(struct ice_pf *pf) 1659 { 1660 struct ice_hw *hw = &pf->hw; 1661 1662 ice_dis_ctrlq_interrupts(hw); 1663 1664 /* disable OICR interrupt */ 1665 wr32(hw, PFINT_OICR_ENA, 0); 1666 ice_flush(hw); 1667 1668 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 1669 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 1670 devm_free_irq(&pf->pdev->dev, 1671 pf->msix_entries[pf->oicr_idx].vector, pf); 1672 } 1673 1674 pf->num_avail_sw_msix += 1; 1675 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 1676 } 1677 1678 /** 1679 * ice_ena_ctrlq_interrupts - enable control queue interrupts 1680 * @hw: pointer to HW structure 1681 * @reg_idx: HW vector index to associate the control queue interrupts with 1682 */ 1683 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 1684 { 1685 u32 val; 1686 1687 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 1688 PFINT_OICR_CTL_CAUSE_ENA_M); 1689 wr32(hw, PFINT_OICR_CTL, val); 1690 1691 /* enable Admin queue Interrupt causes */ 1692 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 1693 PFINT_FW_CTL_CAUSE_ENA_M); 1694 wr32(hw, PFINT_FW_CTL, val); 1695 1696 /* enable Mailbox queue Interrupt causes */ 1697 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 1698 PFINT_MBX_CTL_CAUSE_ENA_M); 1699 wr32(hw, PFINT_MBX_CTL, val); 1700 1701 ice_flush(hw); 1702 } 1703 1704 /** 1705 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 1706 * @pf: board private structure 1707 * 1708 * This sets up the handler for MSIX 0, which is used to manage the 1709 * non-queue interrupts, e.g. AdminQ and errors. This is not used 1710 * when in MSI or Legacy interrupt mode. 1711 */ 1712 static int ice_req_irq_msix_misc(struct ice_pf *pf) 1713 { 1714 struct ice_hw *hw = &pf->hw; 1715 int oicr_idx, err = 0; 1716 1717 if (!pf->int_name[0]) 1718 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 1719 dev_driver_string(&pf->pdev->dev), 1720 dev_name(&pf->pdev->dev)); 1721 1722 /* Do not request IRQ but do enable OICR interrupt since settings are 1723 * lost during reset. Note that this function is called only during 1724 * rebuild path and not while reset is in progress. 1725 */ 1726 if (ice_is_reset_in_progress(pf->state)) 1727 goto skip_req_irq; 1728 1729 /* reserve one vector in irq_tracker for misc interrupts */ 1730 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1731 if (oicr_idx < 0) 1732 return oicr_idx; 1733 1734 pf->num_avail_sw_msix -= 1; 1735 pf->oicr_idx = oicr_idx; 1736 1737 err = devm_request_irq(&pf->pdev->dev, 1738 pf->msix_entries[pf->oicr_idx].vector, 1739 ice_misc_intr, 0, pf->int_name, pf); 1740 if (err) { 1741 dev_err(&pf->pdev->dev, 1742 "devm_request_irq for %s failed: %d\n", 1743 pf->int_name, err); 1744 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1745 pf->num_avail_sw_msix += 1; 1746 return err; 1747 } 1748 1749 skip_req_irq: 1750 ice_ena_misc_vector(pf); 1751 1752 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 1753 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 1754 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 1755 1756 ice_flush(hw); 1757 ice_irq_dynamic_ena(hw, NULL, NULL); 1758 1759 return 0; 1760 } 1761 1762 /** 1763 * ice_napi_add - register NAPI handler for the VSI 1764 * @vsi: VSI for which NAPI handler is to be registered 1765 * 1766 * This function is only called in the driver's load path. Registering the NAPI 1767 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 1768 * reset/rebuild, etc.) 1769 */ 1770 static void ice_napi_add(struct ice_vsi *vsi) 1771 { 1772 int v_idx; 1773 1774 if (!vsi->netdev) 1775 return; 1776 1777 ice_for_each_q_vector(vsi, v_idx) 1778 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 1779 ice_napi_poll, NAPI_POLL_WEIGHT); 1780 } 1781 1782 /** 1783 * ice_cfg_netdev - Allocate, configure and register a netdev 1784 * @vsi: the VSI associated with the new netdev 1785 * 1786 * Returns 0 on success, negative value on failure 1787 */ 1788 static int ice_cfg_netdev(struct ice_vsi *vsi) 1789 { 1790 netdev_features_t csumo_features; 1791 netdev_features_t vlano_features; 1792 netdev_features_t dflt_features; 1793 netdev_features_t tso_features; 1794 struct ice_netdev_priv *np; 1795 struct net_device *netdev; 1796 u8 mac_addr[ETH_ALEN]; 1797 int err; 1798 1799 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 1800 vsi->alloc_rxq); 1801 if (!netdev) 1802 return -ENOMEM; 1803 1804 vsi->netdev = netdev; 1805 np = netdev_priv(netdev); 1806 np->vsi = vsi; 1807 1808 dflt_features = NETIF_F_SG | 1809 NETIF_F_HIGHDMA | 1810 NETIF_F_RXHASH; 1811 1812 csumo_features = NETIF_F_RXCSUM | 1813 NETIF_F_IP_CSUM | 1814 NETIF_F_SCTP_CRC | 1815 NETIF_F_IPV6_CSUM; 1816 1817 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 1818 NETIF_F_HW_VLAN_CTAG_TX | 1819 NETIF_F_HW_VLAN_CTAG_RX; 1820 1821 tso_features = NETIF_F_TSO; 1822 1823 /* set features that user can change */ 1824 netdev->hw_features = dflt_features | csumo_features | 1825 vlano_features | tso_features; 1826 1827 /* enable features */ 1828 netdev->features |= netdev->hw_features; 1829 /* encap and VLAN devices inherit default, csumo and tso features */ 1830 netdev->hw_enc_features |= dflt_features | csumo_features | 1831 tso_features; 1832 netdev->vlan_features |= dflt_features | csumo_features | 1833 tso_features; 1834 1835 if (vsi->type == ICE_VSI_PF) { 1836 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev); 1837 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 1838 1839 ether_addr_copy(netdev->dev_addr, mac_addr); 1840 ether_addr_copy(netdev->perm_addr, mac_addr); 1841 } 1842 1843 netdev->priv_flags |= IFF_UNICAST_FLT; 1844 1845 /* assign netdev_ops */ 1846 netdev->netdev_ops = &ice_netdev_ops; 1847 1848 /* setup watchdog timeout value to be 5 second */ 1849 netdev->watchdog_timeo = 5 * HZ; 1850 1851 ice_set_ethtool_ops(netdev); 1852 1853 netdev->min_mtu = ETH_MIN_MTU; 1854 netdev->max_mtu = ICE_MAX_MTU; 1855 1856 err = register_netdev(vsi->netdev); 1857 if (err) 1858 return err; 1859 1860 netif_carrier_off(vsi->netdev); 1861 1862 /* make sure transmit queues start off as stopped */ 1863 netif_tx_stop_all_queues(vsi->netdev); 1864 1865 return 0; 1866 } 1867 1868 /** 1869 * ice_fill_rss_lut - Fill the RSS lookup table with default values 1870 * @lut: Lookup table 1871 * @rss_table_size: Lookup table size 1872 * @rss_size: Range of queue number for hashing 1873 */ 1874 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 1875 { 1876 u16 i; 1877 1878 for (i = 0; i < rss_table_size; i++) 1879 lut[i] = i % rss_size; 1880 } 1881 1882 /** 1883 * ice_pf_vsi_setup - Set up a PF VSI 1884 * @pf: board private structure 1885 * @pi: pointer to the port_info instance 1886 * 1887 * Returns pointer to the successfully allocated VSI software struct 1888 * on success, otherwise returns NULL on failure. 1889 */ 1890 static struct ice_vsi * 1891 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 1892 { 1893 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 1894 } 1895 1896 /** 1897 * ice_lb_vsi_setup - Set up a loopback VSI 1898 * @pf: board private structure 1899 * @pi: pointer to the port_info instance 1900 * 1901 * Returns pointer to the successfully allocated VSI software struct 1902 * on success, otherwise returns NULL on failure. 1903 */ 1904 struct ice_vsi * 1905 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 1906 { 1907 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 1908 } 1909 1910 /** 1911 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 1912 * @netdev: network interface to be adjusted 1913 * @proto: unused protocol 1914 * @vid: VLAN ID to be added 1915 * 1916 * net_device_ops implementation for adding VLAN IDs 1917 */ 1918 static int 1919 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 1920 u16 vid) 1921 { 1922 struct ice_netdev_priv *np = netdev_priv(netdev); 1923 struct ice_vsi *vsi = np->vsi; 1924 int ret; 1925 1926 if (vid >= VLAN_N_VID) { 1927 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 1928 vid, VLAN_N_VID); 1929 return -EINVAL; 1930 } 1931 1932 if (vsi->info.pvid) 1933 return -EINVAL; 1934 1935 /* Enable VLAN pruning when VLAN 0 is added */ 1936 if (unlikely(!vid)) { 1937 ret = ice_cfg_vlan_pruning(vsi, true, false); 1938 if (ret) 1939 return ret; 1940 } 1941 1942 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is 1943 * needed to continue allowing all untagged packets since VLAN prune 1944 * list is applied to all packets by the switch 1945 */ 1946 ret = ice_vsi_add_vlan(vsi, vid); 1947 if (!ret) { 1948 vsi->vlan_ena = true; 1949 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 1950 } 1951 1952 return ret; 1953 } 1954 1955 /** 1956 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 1957 * @netdev: network interface to be adjusted 1958 * @proto: unused protocol 1959 * @vid: VLAN ID to be removed 1960 * 1961 * net_device_ops implementation for removing VLAN IDs 1962 */ 1963 static int 1964 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 1965 u16 vid) 1966 { 1967 struct ice_netdev_priv *np = netdev_priv(netdev); 1968 struct ice_vsi *vsi = np->vsi; 1969 int ret; 1970 1971 if (vsi->info.pvid) 1972 return -EINVAL; 1973 1974 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 1975 * information 1976 */ 1977 ret = ice_vsi_kill_vlan(vsi, vid); 1978 if (ret) 1979 return ret; 1980 1981 /* Disable VLAN pruning when VLAN 0 is removed */ 1982 if (unlikely(!vid)) 1983 ret = ice_cfg_vlan_pruning(vsi, false, false); 1984 1985 vsi->vlan_ena = false; 1986 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 1987 return ret; 1988 } 1989 1990 /** 1991 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 1992 * @pf: board private structure 1993 * 1994 * Returns 0 on success, negative value on failure 1995 */ 1996 static int ice_setup_pf_sw(struct ice_pf *pf) 1997 { 1998 struct ice_vsi *vsi; 1999 int status = 0; 2000 2001 if (ice_is_reset_in_progress(pf->state)) 2002 return -EBUSY; 2003 2004 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2005 if (!vsi) { 2006 status = -ENOMEM; 2007 goto unroll_vsi_setup; 2008 } 2009 2010 status = ice_cfg_netdev(vsi); 2011 if (status) { 2012 status = -ENODEV; 2013 goto unroll_vsi_setup; 2014 } 2015 2016 /* registering the NAPI handler requires both the queues and 2017 * netdev to be created, which are done in ice_pf_vsi_setup() 2018 * and ice_cfg_netdev() respectively 2019 */ 2020 ice_napi_add(vsi); 2021 2022 status = ice_init_mac_fltr(pf); 2023 if (status) 2024 goto unroll_napi_add; 2025 2026 return status; 2027 2028 unroll_napi_add: 2029 if (vsi) { 2030 ice_napi_del(vsi); 2031 if (vsi->netdev) { 2032 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2033 unregister_netdev(vsi->netdev); 2034 free_netdev(vsi->netdev); 2035 vsi->netdev = NULL; 2036 } 2037 } 2038 2039 unroll_vsi_setup: 2040 if (vsi) { 2041 ice_vsi_free_q_vectors(vsi); 2042 ice_vsi_delete(vsi); 2043 ice_vsi_put_qs(vsi); 2044 pf->q_left_tx += vsi->alloc_txq; 2045 pf->q_left_rx += vsi->alloc_rxq; 2046 ice_vsi_clear(vsi); 2047 } 2048 return status; 2049 } 2050 2051 /** 2052 * ice_determine_q_usage - Calculate queue distribution 2053 * @pf: board private structure 2054 * 2055 * Return -ENOMEM if we don't get enough queues for all ports 2056 */ 2057 static void ice_determine_q_usage(struct ice_pf *pf) 2058 { 2059 u16 q_left_tx, q_left_rx; 2060 2061 q_left_tx = pf->hw.func_caps.common_cap.num_txq; 2062 q_left_rx = pf->hw.func_caps.common_cap.num_rxq; 2063 2064 pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus()); 2065 2066 /* only 1 Rx queue unless RSS is enabled */ 2067 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2068 pf->num_lan_rx = 1; 2069 else 2070 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus()); 2071 2072 pf->q_left_tx = q_left_tx - pf->num_lan_tx; 2073 pf->q_left_rx = q_left_rx - pf->num_lan_rx; 2074 } 2075 2076 /** 2077 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2078 * @pf: board private structure to initialize 2079 */ 2080 static void ice_deinit_pf(struct ice_pf *pf) 2081 { 2082 ice_service_task_stop(pf); 2083 mutex_destroy(&pf->sw_mutex); 2084 mutex_destroy(&pf->avail_q_mutex); 2085 } 2086 2087 /** 2088 * ice_init_pf - Initialize general software structures (struct ice_pf) 2089 * @pf: board private structure to initialize 2090 */ 2091 static void ice_init_pf(struct ice_pf *pf) 2092 { 2093 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS); 2094 set_bit(ICE_FLAG_MSIX_ENA, pf->flags); 2095 #ifdef CONFIG_PCI_IOV 2096 if (pf->hw.func_caps.common_cap.sr_iov_1_1) { 2097 struct ice_hw *hw = &pf->hw; 2098 2099 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2100 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs, 2101 ICE_MAX_VF_COUNT); 2102 } 2103 #endif /* CONFIG_PCI_IOV */ 2104 2105 mutex_init(&pf->sw_mutex); 2106 mutex_init(&pf->avail_q_mutex); 2107 2108 /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */ 2109 mutex_lock(&pf->avail_q_mutex); 2110 bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS); 2111 bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS); 2112 mutex_unlock(&pf->avail_q_mutex); 2113 2114 if (pf->hw.func_caps.common_cap.rss_table_size) 2115 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2116 2117 /* setup service timer and periodic service task */ 2118 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2119 pf->serv_tmr_period = HZ; 2120 INIT_WORK(&pf->serv_task, ice_service_task); 2121 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2122 } 2123 2124 /** 2125 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2126 * @pf: board private structure 2127 * 2128 * compute the number of MSIX vectors required (v_budget) and request from 2129 * the OS. Return the number of vectors reserved or negative on failure 2130 */ 2131 static int ice_ena_msix_range(struct ice_pf *pf) 2132 { 2133 int v_left, v_actual, v_budget = 0; 2134 int needed, err, i; 2135 2136 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2137 2138 /* reserve one vector for miscellaneous handler */ 2139 needed = 1; 2140 v_budget += needed; 2141 v_left -= needed; 2142 2143 /* reserve vectors for LAN traffic */ 2144 pf->num_lan_msix = min_t(int, num_online_cpus(), v_left); 2145 v_budget += pf->num_lan_msix; 2146 v_left -= pf->num_lan_msix; 2147 2148 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 2149 sizeof(*pf->msix_entries), GFP_KERNEL); 2150 2151 if (!pf->msix_entries) { 2152 err = -ENOMEM; 2153 goto exit_err; 2154 } 2155 2156 for (i = 0; i < v_budget; i++) 2157 pf->msix_entries[i].entry = i; 2158 2159 /* actually reserve the vectors */ 2160 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2161 ICE_MIN_MSIX, v_budget); 2162 2163 if (v_actual < 0) { 2164 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 2165 err = v_actual; 2166 goto msix_err; 2167 } 2168 2169 if (v_actual < v_budget) { 2170 dev_warn(&pf->pdev->dev, 2171 "not enough vectors. requested = %d, obtained = %d\n", 2172 v_budget, v_actual); 2173 if (v_actual >= (pf->num_lan_msix + 1)) { 2174 pf->num_avail_sw_msix = v_actual - 2175 (pf->num_lan_msix + 1); 2176 } else if (v_actual >= 2) { 2177 pf->num_lan_msix = 1; 2178 pf->num_avail_sw_msix = v_actual - 2; 2179 } else { 2180 pci_disable_msix(pf->pdev); 2181 err = -ERANGE; 2182 goto msix_err; 2183 } 2184 } 2185 2186 return v_actual; 2187 2188 msix_err: 2189 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2190 goto exit_err; 2191 2192 exit_err: 2193 pf->num_lan_msix = 0; 2194 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 2195 return err; 2196 } 2197 2198 /** 2199 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2200 * @pf: board private structure 2201 */ 2202 static void ice_dis_msix(struct ice_pf *pf) 2203 { 2204 pci_disable_msix(pf->pdev); 2205 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2206 pf->msix_entries = NULL; 2207 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 2208 } 2209 2210 /** 2211 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2212 * @pf: board private structure 2213 */ 2214 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2215 { 2216 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2217 ice_dis_msix(pf); 2218 2219 if (pf->irq_tracker) { 2220 devm_kfree(&pf->pdev->dev, pf->irq_tracker); 2221 pf->irq_tracker = NULL; 2222 } 2223 } 2224 2225 /** 2226 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2227 * @pf: board private structure to initialize 2228 */ 2229 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2230 { 2231 int vectors; 2232 2233 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2234 vectors = ice_ena_msix_range(pf); 2235 else 2236 return -ENODEV; 2237 2238 if (vectors < 0) 2239 return vectors; 2240 2241 /* set up vector assignment tracking */ 2242 pf->irq_tracker = 2243 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) + 2244 (sizeof(u16) * vectors), GFP_KERNEL); 2245 if (!pf->irq_tracker) { 2246 ice_dis_msix(pf); 2247 return -ENOMEM; 2248 } 2249 2250 /* populate SW interrupts pool with number of OS granted IRQs. */ 2251 pf->num_avail_sw_msix = vectors; 2252 pf->irq_tracker->num_entries = vectors; 2253 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2254 2255 return 0; 2256 } 2257 2258 /** 2259 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 2260 * @pf: pointer to the PF structure 2261 * 2262 * There is no error returned here because the driver should be able to handle 2263 * 128 Byte cache lines, so we only print a warning in case issues are seen, 2264 * specifically with Tx. 2265 */ 2266 static void ice_verify_cacheline_size(struct ice_pf *pf) 2267 { 2268 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 2269 dev_warn(&pf->pdev->dev, 2270 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 2271 ICE_CACHE_LINE_BYTES); 2272 } 2273 2274 /** 2275 * ice_probe - Device initialization routine 2276 * @pdev: PCI device information struct 2277 * @ent: entry in ice_pci_tbl 2278 * 2279 * Returns 0 on success, negative on failure 2280 */ 2281 static int 2282 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 2283 { 2284 struct device *dev = &pdev->dev; 2285 struct ice_pf *pf; 2286 struct ice_hw *hw; 2287 int err; 2288 2289 /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */ 2290 err = pcim_enable_device(pdev); 2291 if (err) 2292 return err; 2293 2294 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 2295 if (err) { 2296 dev_err(dev, "BAR0 I/O map error %d\n", err); 2297 return err; 2298 } 2299 2300 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 2301 if (!pf) 2302 return -ENOMEM; 2303 2304 /* set up for high or low DMA */ 2305 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 2306 if (err) 2307 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2308 if (err) { 2309 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 2310 return err; 2311 } 2312 2313 pci_enable_pcie_error_reporting(pdev); 2314 pci_set_master(pdev); 2315 2316 pf->pdev = pdev; 2317 pci_set_drvdata(pdev, pf); 2318 set_bit(__ICE_DOWN, pf->state); 2319 /* Disable service task until DOWN bit is cleared */ 2320 set_bit(__ICE_SERVICE_DIS, pf->state); 2321 2322 hw = &pf->hw; 2323 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 2324 hw->back = pf; 2325 hw->vendor_id = pdev->vendor; 2326 hw->device_id = pdev->device; 2327 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 2328 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2329 hw->subsystem_device_id = pdev->subsystem_device; 2330 hw->bus.device = PCI_SLOT(pdev->devfn); 2331 hw->bus.func = PCI_FUNC(pdev->devfn); 2332 ice_set_ctrlq_len(hw); 2333 2334 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 2335 2336 #ifndef CONFIG_DYNAMIC_DEBUG 2337 if (debug < -1) 2338 hw->debug_mask = debug; 2339 #endif 2340 2341 err = ice_init_hw(hw); 2342 if (err) { 2343 dev_err(dev, "ice_init_hw failed: %d\n", err); 2344 err = -EIO; 2345 goto err_exit_unroll; 2346 } 2347 2348 dev_info(dev, "firmware %d.%d.%05d api %d.%d\n", 2349 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, 2350 hw->api_maj_ver, hw->api_min_ver); 2351 2352 ice_init_pf(pf); 2353 2354 err = ice_init_pf_dcb(pf, false); 2355 if (err) { 2356 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2357 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 2358 2359 /* do not fail overall init if DCB init fails */ 2360 err = 0; 2361 } 2362 2363 ice_determine_q_usage(pf); 2364 2365 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 2366 if (!pf->num_alloc_vsi) { 2367 err = -EIO; 2368 goto err_init_pf_unroll; 2369 } 2370 2371 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 2372 GFP_KERNEL); 2373 if (!pf->vsi) { 2374 err = -ENOMEM; 2375 goto err_init_pf_unroll; 2376 } 2377 2378 err = ice_init_interrupt_scheme(pf); 2379 if (err) { 2380 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 2381 err = -EIO; 2382 goto err_init_interrupt_unroll; 2383 } 2384 2385 /* Driver is mostly up */ 2386 clear_bit(__ICE_DOWN, pf->state); 2387 2388 /* In case of MSIX we are going to setup the misc vector right here 2389 * to handle admin queue events etc. In case of legacy and MSI 2390 * the misc functionality and queue processing is combined in 2391 * the same vector and that gets setup at open. 2392 */ 2393 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2394 err = ice_req_irq_msix_misc(pf); 2395 if (err) { 2396 dev_err(dev, "setup of misc vector failed: %d\n", err); 2397 goto err_init_interrupt_unroll; 2398 } 2399 } 2400 2401 /* create switch struct for the switch element created by FW on boot */ 2402 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 2403 if (!pf->first_sw) { 2404 err = -ENOMEM; 2405 goto err_msix_misc_unroll; 2406 } 2407 2408 if (hw->evb_veb) 2409 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 2410 else 2411 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 2412 2413 pf->first_sw->pf = pf; 2414 2415 /* record the sw_id available for later use */ 2416 pf->first_sw->sw_id = hw->port_info->sw_id; 2417 2418 err = ice_setup_pf_sw(pf); 2419 if (err) { 2420 dev_err(dev, "probe failed due to setup PF switch:%d\n", err); 2421 goto err_alloc_sw_unroll; 2422 } 2423 2424 clear_bit(__ICE_SERVICE_DIS, pf->state); 2425 2426 /* since everything is good, start the service timer */ 2427 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2428 2429 err = ice_init_link_events(pf->hw.port_info); 2430 if (err) { 2431 dev_err(dev, "ice_init_link_events failed: %d\n", err); 2432 goto err_alloc_sw_unroll; 2433 } 2434 2435 ice_verify_cacheline_size(pf); 2436 2437 return 0; 2438 2439 err_alloc_sw_unroll: 2440 set_bit(__ICE_SERVICE_DIS, pf->state); 2441 set_bit(__ICE_DOWN, pf->state); 2442 devm_kfree(&pf->pdev->dev, pf->first_sw); 2443 err_msix_misc_unroll: 2444 ice_free_irq_msix_misc(pf); 2445 err_init_interrupt_unroll: 2446 ice_clear_interrupt_scheme(pf); 2447 devm_kfree(dev, pf->vsi); 2448 err_init_pf_unroll: 2449 ice_deinit_pf(pf); 2450 ice_deinit_hw(hw); 2451 err_exit_unroll: 2452 pci_disable_pcie_error_reporting(pdev); 2453 return err; 2454 } 2455 2456 /** 2457 * ice_remove - Device removal routine 2458 * @pdev: PCI device information struct 2459 */ 2460 static void ice_remove(struct pci_dev *pdev) 2461 { 2462 struct ice_pf *pf = pci_get_drvdata(pdev); 2463 int i; 2464 2465 if (!pf) 2466 return; 2467 2468 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 2469 if (!ice_is_reset_in_progress(pf->state)) 2470 break; 2471 msleep(100); 2472 } 2473 2474 set_bit(__ICE_DOWN, pf->state); 2475 ice_service_task_stop(pf); 2476 2477 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 2478 ice_free_vfs(pf); 2479 ice_vsi_release_all(pf); 2480 ice_free_irq_msix_misc(pf); 2481 ice_for_each_vsi(pf, i) { 2482 if (!pf->vsi[i]) 2483 continue; 2484 ice_vsi_free_q_vectors(pf->vsi[i]); 2485 } 2486 ice_clear_interrupt_scheme(pf); 2487 ice_deinit_pf(pf); 2488 ice_deinit_hw(&pf->hw); 2489 pci_disable_pcie_error_reporting(pdev); 2490 } 2491 2492 /** 2493 * ice_pci_err_detected - warning that PCI error has been detected 2494 * @pdev: PCI device information struct 2495 * @err: the type of PCI error 2496 * 2497 * Called to warn that something happened on the PCI bus and the error handling 2498 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 2499 */ 2500 static pci_ers_result_t 2501 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 2502 { 2503 struct ice_pf *pf = pci_get_drvdata(pdev); 2504 2505 if (!pf) { 2506 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 2507 __func__, err); 2508 return PCI_ERS_RESULT_DISCONNECT; 2509 } 2510 2511 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 2512 ice_service_task_stop(pf); 2513 2514 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 2515 set_bit(__ICE_PFR_REQ, pf->state); 2516 ice_prepare_for_reset(pf); 2517 } 2518 } 2519 2520 return PCI_ERS_RESULT_NEED_RESET; 2521 } 2522 2523 /** 2524 * ice_pci_err_slot_reset - a PCI slot reset has just happened 2525 * @pdev: PCI device information struct 2526 * 2527 * Called to determine if the driver can recover from the PCI slot reset by 2528 * using a register read to determine if the device is recoverable. 2529 */ 2530 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 2531 { 2532 struct ice_pf *pf = pci_get_drvdata(pdev); 2533 pci_ers_result_t result; 2534 int err; 2535 u32 reg; 2536 2537 err = pci_enable_device_mem(pdev); 2538 if (err) { 2539 dev_err(&pdev->dev, 2540 "Cannot re-enable PCI device after reset, error %d\n", 2541 err); 2542 result = PCI_ERS_RESULT_DISCONNECT; 2543 } else { 2544 pci_set_master(pdev); 2545 pci_restore_state(pdev); 2546 pci_save_state(pdev); 2547 pci_wake_from_d3(pdev, false); 2548 2549 /* Check for life */ 2550 reg = rd32(&pf->hw, GLGEN_RTRIG); 2551 if (!reg) 2552 result = PCI_ERS_RESULT_RECOVERED; 2553 else 2554 result = PCI_ERS_RESULT_DISCONNECT; 2555 } 2556 2557 err = pci_cleanup_aer_uncorrect_error_status(pdev); 2558 if (err) 2559 dev_dbg(&pdev->dev, 2560 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 2561 err); 2562 /* non-fatal, continue */ 2563 2564 return result; 2565 } 2566 2567 /** 2568 * ice_pci_err_resume - restart operations after PCI error recovery 2569 * @pdev: PCI device information struct 2570 * 2571 * Called to allow the driver to bring things back up after PCI error and/or 2572 * reset recovery have finished 2573 */ 2574 static void ice_pci_err_resume(struct pci_dev *pdev) 2575 { 2576 struct ice_pf *pf = pci_get_drvdata(pdev); 2577 2578 if (!pf) { 2579 dev_err(&pdev->dev, 2580 "%s failed, device is unrecoverable\n", __func__); 2581 return; 2582 } 2583 2584 if (test_bit(__ICE_SUSPENDED, pf->state)) { 2585 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 2586 __func__); 2587 return; 2588 } 2589 2590 ice_do_reset(pf, ICE_RESET_PFR); 2591 ice_service_task_restart(pf); 2592 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2593 } 2594 2595 /** 2596 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 2597 * @pdev: PCI device information struct 2598 */ 2599 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 2600 { 2601 struct ice_pf *pf = pci_get_drvdata(pdev); 2602 2603 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 2604 ice_service_task_stop(pf); 2605 2606 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 2607 set_bit(__ICE_PFR_REQ, pf->state); 2608 ice_prepare_for_reset(pf); 2609 } 2610 } 2611 } 2612 2613 /** 2614 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 2615 * @pdev: PCI device information struct 2616 */ 2617 static void ice_pci_err_reset_done(struct pci_dev *pdev) 2618 { 2619 ice_pci_err_resume(pdev); 2620 } 2621 2622 /* ice_pci_tbl - PCI Device ID Table 2623 * 2624 * Wildcard entries (PCI_ANY_ID) should come last 2625 * Last entry must be all 0s 2626 * 2627 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 2628 * Class, Class Mask, private data (not used) } 2629 */ 2630 static const struct pci_device_id ice_pci_tbl[] = { 2631 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 2632 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 2633 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 2634 /* required last entry */ 2635 { 0, } 2636 }; 2637 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 2638 2639 static const struct pci_error_handlers ice_pci_err_handler = { 2640 .error_detected = ice_pci_err_detected, 2641 .slot_reset = ice_pci_err_slot_reset, 2642 .reset_prepare = ice_pci_err_reset_prepare, 2643 .reset_done = ice_pci_err_reset_done, 2644 .resume = ice_pci_err_resume 2645 }; 2646 2647 static struct pci_driver ice_driver = { 2648 .name = KBUILD_MODNAME, 2649 .id_table = ice_pci_tbl, 2650 .probe = ice_probe, 2651 .remove = ice_remove, 2652 .sriov_configure = ice_sriov_configure, 2653 .err_handler = &ice_pci_err_handler 2654 }; 2655 2656 /** 2657 * ice_module_init - Driver registration routine 2658 * 2659 * ice_module_init is the first routine called when the driver is 2660 * loaded. All it does is register with the PCI subsystem. 2661 */ 2662 static int __init ice_module_init(void) 2663 { 2664 int status; 2665 2666 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 2667 pr_info("%s\n", ice_copyright); 2668 2669 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 2670 if (!ice_wq) { 2671 pr_err("Failed to create workqueue\n"); 2672 return -ENOMEM; 2673 } 2674 2675 status = pci_register_driver(&ice_driver); 2676 if (status) { 2677 pr_err("failed to register PCI driver, err %d\n", status); 2678 destroy_workqueue(ice_wq); 2679 } 2680 2681 return status; 2682 } 2683 module_init(ice_module_init); 2684 2685 /** 2686 * ice_module_exit - Driver exit cleanup routine 2687 * 2688 * ice_module_exit is called just before the driver is removed 2689 * from memory. 2690 */ 2691 static void __exit ice_module_exit(void) 2692 { 2693 pci_unregister_driver(&ice_driver); 2694 destroy_workqueue(ice_wq); 2695 pr_info("module unloaded\n"); 2696 } 2697 module_exit(ice_module_exit); 2698 2699 /** 2700 * ice_set_mac_address - NDO callback to set MAC address 2701 * @netdev: network interface device structure 2702 * @pi: pointer to an address structure 2703 * 2704 * Returns 0 on success, negative on failure 2705 */ 2706 static int ice_set_mac_address(struct net_device *netdev, void *pi) 2707 { 2708 struct ice_netdev_priv *np = netdev_priv(netdev); 2709 struct ice_vsi *vsi = np->vsi; 2710 struct ice_pf *pf = vsi->back; 2711 struct ice_hw *hw = &pf->hw; 2712 struct sockaddr *addr = pi; 2713 enum ice_status status; 2714 LIST_HEAD(a_mac_list); 2715 LIST_HEAD(r_mac_list); 2716 u8 flags = 0; 2717 int err; 2718 u8 *mac; 2719 2720 mac = (u8 *)addr->sa_data; 2721 2722 if (!is_valid_ether_addr(mac)) 2723 return -EADDRNOTAVAIL; 2724 2725 if (ether_addr_equal(netdev->dev_addr, mac)) { 2726 netdev_warn(netdev, "already using mac %pM\n", mac); 2727 return 0; 2728 } 2729 2730 if (test_bit(__ICE_DOWN, pf->state) || 2731 ice_is_reset_in_progress(pf->state)) { 2732 netdev_err(netdev, "can't set mac %pM. device not ready\n", 2733 mac); 2734 return -EBUSY; 2735 } 2736 2737 /* When we change the MAC address we also have to change the MAC address 2738 * based filter rules that were created previously for the old MAC 2739 * address. So first, we remove the old filter rule using ice_remove_mac 2740 * and then create a new filter rule using ice_add_mac. Note that for 2741 * both these operations, we first need to form a "list" of MAC 2742 * addresses (even though in this case, we have only 1 MAC address to be 2743 * added/removed) and this done using ice_add_mac_to_list. Depending on 2744 * the ensuing operation this "list" of MAC addresses is either to be 2745 * added or removed from the filter. 2746 */ 2747 err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr); 2748 if (err) { 2749 err = -EADDRNOTAVAIL; 2750 goto free_lists; 2751 } 2752 2753 status = ice_remove_mac(hw, &r_mac_list); 2754 if (status) { 2755 err = -EADDRNOTAVAIL; 2756 goto free_lists; 2757 } 2758 2759 err = ice_add_mac_to_list(vsi, &a_mac_list, mac); 2760 if (err) { 2761 err = -EADDRNOTAVAIL; 2762 goto free_lists; 2763 } 2764 2765 status = ice_add_mac(hw, &a_mac_list); 2766 if (status) { 2767 err = -EADDRNOTAVAIL; 2768 goto free_lists; 2769 } 2770 2771 free_lists: 2772 /* free list entries */ 2773 ice_free_fltr_list(&pf->pdev->dev, &r_mac_list); 2774 ice_free_fltr_list(&pf->pdev->dev, &a_mac_list); 2775 2776 if (err) { 2777 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 2778 mac); 2779 return err; 2780 } 2781 2782 /* change the netdev's MAC address */ 2783 memcpy(netdev->dev_addr, mac, netdev->addr_len); 2784 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 2785 netdev->dev_addr); 2786 2787 /* write new MAC address to the firmware */ 2788 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 2789 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 2790 if (status) { 2791 netdev_err(netdev, "can't set MAC %pM. write to firmware failed.\n", 2792 mac); 2793 } 2794 return 0; 2795 } 2796 2797 /** 2798 * ice_set_rx_mode - NDO callback to set the netdev filters 2799 * @netdev: network interface device structure 2800 */ 2801 static void ice_set_rx_mode(struct net_device *netdev) 2802 { 2803 struct ice_netdev_priv *np = netdev_priv(netdev); 2804 struct ice_vsi *vsi = np->vsi; 2805 2806 if (!vsi) 2807 return; 2808 2809 /* Set the flags to synchronize filters 2810 * ndo_set_rx_mode may be triggered even without a change in netdev 2811 * flags 2812 */ 2813 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 2814 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 2815 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 2816 2817 /* schedule our worker thread which will take care of 2818 * applying the new filter changes 2819 */ 2820 ice_service_task_schedule(vsi->back); 2821 } 2822 2823 /** 2824 * ice_fdb_add - add an entry to the hardware database 2825 * @ndm: the input from the stack 2826 * @tb: pointer to array of nladdr (unused) 2827 * @dev: the net device pointer 2828 * @addr: the MAC address entry being added 2829 * @vid: VLAN ID 2830 * @flags: instructions from stack about fdb operation 2831 * @extack: netlink extended ack 2832 */ 2833 static int 2834 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 2835 struct net_device *dev, const unsigned char *addr, u16 vid, 2836 u16 flags, struct netlink_ext_ack __always_unused *extack) 2837 { 2838 int err; 2839 2840 if (vid) { 2841 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 2842 return -EINVAL; 2843 } 2844 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 2845 netdev_err(dev, "FDB only supports static addresses\n"); 2846 return -EINVAL; 2847 } 2848 2849 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 2850 err = dev_uc_add_excl(dev, addr); 2851 else if (is_multicast_ether_addr(addr)) 2852 err = dev_mc_add_excl(dev, addr); 2853 else 2854 err = -EINVAL; 2855 2856 /* Only return duplicate errors if NLM_F_EXCL is set */ 2857 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 2858 err = 0; 2859 2860 return err; 2861 } 2862 2863 /** 2864 * ice_fdb_del - delete an entry from the hardware database 2865 * @ndm: the input from the stack 2866 * @tb: pointer to array of nladdr (unused) 2867 * @dev: the net device pointer 2868 * @addr: the MAC address entry being added 2869 * @vid: VLAN ID 2870 */ 2871 static int 2872 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 2873 struct net_device *dev, const unsigned char *addr, 2874 __always_unused u16 vid) 2875 { 2876 int err; 2877 2878 if (ndm->ndm_state & NUD_PERMANENT) { 2879 netdev_err(dev, "FDB only supports static addresses\n"); 2880 return -EINVAL; 2881 } 2882 2883 if (is_unicast_ether_addr(addr)) 2884 err = dev_uc_del(dev, addr); 2885 else if (is_multicast_ether_addr(addr)) 2886 err = dev_mc_del(dev, addr); 2887 else 2888 err = -EINVAL; 2889 2890 return err; 2891 } 2892 2893 /** 2894 * ice_set_features - set the netdev feature flags 2895 * @netdev: ptr to the netdev being adjusted 2896 * @features: the feature set that the stack is suggesting 2897 */ 2898 static int 2899 ice_set_features(struct net_device *netdev, netdev_features_t features) 2900 { 2901 struct ice_netdev_priv *np = netdev_priv(netdev); 2902 struct ice_vsi *vsi = np->vsi; 2903 int ret = 0; 2904 2905 /* Multiple features can be changed in one call so keep features in 2906 * separate if/else statements to guarantee each feature is checked 2907 */ 2908 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 2909 ret = ice_vsi_manage_rss_lut(vsi, true); 2910 else if (!(features & NETIF_F_RXHASH) && 2911 netdev->features & NETIF_F_RXHASH) 2912 ret = ice_vsi_manage_rss_lut(vsi, false); 2913 2914 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 2915 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2916 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2917 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 2918 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2919 ret = ice_vsi_manage_vlan_stripping(vsi, false); 2920 2921 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 2922 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2923 ret = ice_vsi_manage_vlan_insertion(vsi); 2924 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 2925 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2926 ret = ice_vsi_manage_vlan_insertion(vsi); 2927 2928 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 2929 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 2930 ret = ice_cfg_vlan_pruning(vsi, true, false); 2931 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 2932 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 2933 ret = ice_cfg_vlan_pruning(vsi, false, false); 2934 2935 return ret; 2936 } 2937 2938 /** 2939 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 2940 * @vsi: VSI to setup VLAN properties for 2941 */ 2942 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 2943 { 2944 int ret = 0; 2945 2946 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2947 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2948 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 2949 ret = ice_vsi_manage_vlan_insertion(vsi); 2950 2951 return ret; 2952 } 2953 2954 /** 2955 * ice_vsi_cfg - Setup the VSI 2956 * @vsi: the VSI being configured 2957 * 2958 * Return 0 on success and negative value on error 2959 */ 2960 int ice_vsi_cfg(struct ice_vsi *vsi) 2961 { 2962 int err; 2963 2964 if (vsi->netdev) { 2965 ice_set_rx_mode(vsi->netdev); 2966 2967 err = ice_vsi_vlan_setup(vsi); 2968 2969 if (err) 2970 return err; 2971 } 2972 ice_vsi_cfg_dcb_rings(vsi); 2973 2974 err = ice_vsi_cfg_lan_txqs(vsi); 2975 if (!err) 2976 err = ice_vsi_cfg_rxqs(vsi); 2977 2978 return err; 2979 } 2980 2981 /** 2982 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 2983 * @vsi: the VSI being configured 2984 */ 2985 static void ice_napi_enable_all(struct ice_vsi *vsi) 2986 { 2987 int q_idx; 2988 2989 if (!vsi->netdev) 2990 return; 2991 2992 ice_for_each_q_vector(vsi, q_idx) { 2993 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 2994 2995 if (q_vector->rx.ring || q_vector->tx.ring) 2996 napi_enable(&q_vector->napi); 2997 } 2998 } 2999 3000 /** 3001 * ice_up_complete - Finish the last steps of bringing up a connection 3002 * @vsi: The VSI being configured 3003 * 3004 * Return 0 on success and negative value on error 3005 */ 3006 static int ice_up_complete(struct ice_vsi *vsi) 3007 { 3008 struct ice_pf *pf = vsi->back; 3009 int err; 3010 3011 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3012 ice_vsi_cfg_msix(vsi); 3013 else 3014 return -ENOTSUPP; 3015 3016 /* Enable only Rx rings, Tx rings were enabled by the FW when the 3017 * Tx queue group list was configured and the context bits were 3018 * programmed using ice_vsi_cfg_txqs 3019 */ 3020 err = ice_vsi_start_rx_rings(vsi); 3021 if (err) 3022 return err; 3023 3024 clear_bit(__ICE_DOWN, vsi->state); 3025 ice_napi_enable_all(vsi); 3026 ice_vsi_ena_irq(vsi); 3027 3028 if (vsi->port_info && 3029 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 3030 vsi->netdev) { 3031 ice_print_link_msg(vsi, true); 3032 netif_tx_start_all_queues(vsi->netdev); 3033 netif_carrier_on(vsi->netdev); 3034 } 3035 3036 ice_service_task_schedule(pf); 3037 3038 return 0; 3039 } 3040 3041 /** 3042 * ice_up - Bring the connection back up after being down 3043 * @vsi: VSI being configured 3044 */ 3045 int ice_up(struct ice_vsi *vsi) 3046 { 3047 int err; 3048 3049 err = ice_vsi_cfg(vsi); 3050 if (!err) 3051 err = ice_up_complete(vsi); 3052 3053 return err; 3054 } 3055 3056 /** 3057 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 3058 * @ring: Tx or Rx ring to read stats from 3059 * @pkts: packets stats counter 3060 * @bytes: bytes stats counter 3061 * 3062 * This function fetches stats from the ring considering the atomic operations 3063 * that needs to be performed to read u64 values in 32 bit machine. 3064 */ 3065 static void 3066 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 3067 { 3068 unsigned int start; 3069 *pkts = 0; 3070 *bytes = 0; 3071 3072 if (!ring) 3073 return; 3074 do { 3075 start = u64_stats_fetch_begin_irq(&ring->syncp); 3076 *pkts = ring->stats.pkts; 3077 *bytes = ring->stats.bytes; 3078 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3079 } 3080 3081 /** 3082 * ice_update_vsi_ring_stats - Update VSI stats counters 3083 * @vsi: the VSI to be updated 3084 */ 3085 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 3086 { 3087 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 3088 struct ice_ring *ring; 3089 u64 pkts, bytes; 3090 int i; 3091 3092 /* reset netdev stats */ 3093 vsi_stats->tx_packets = 0; 3094 vsi_stats->tx_bytes = 0; 3095 vsi_stats->rx_packets = 0; 3096 vsi_stats->rx_bytes = 0; 3097 3098 /* reset non-netdev (extended) stats */ 3099 vsi->tx_restart = 0; 3100 vsi->tx_busy = 0; 3101 vsi->tx_linearize = 0; 3102 vsi->rx_buf_failed = 0; 3103 vsi->rx_page_failed = 0; 3104 3105 rcu_read_lock(); 3106 3107 /* update Tx rings counters */ 3108 ice_for_each_txq(vsi, i) { 3109 ring = READ_ONCE(vsi->tx_rings[i]); 3110 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3111 vsi_stats->tx_packets += pkts; 3112 vsi_stats->tx_bytes += bytes; 3113 vsi->tx_restart += ring->tx_stats.restart_q; 3114 vsi->tx_busy += ring->tx_stats.tx_busy; 3115 vsi->tx_linearize += ring->tx_stats.tx_linearize; 3116 } 3117 3118 /* update Rx rings counters */ 3119 ice_for_each_rxq(vsi, i) { 3120 ring = READ_ONCE(vsi->rx_rings[i]); 3121 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3122 vsi_stats->rx_packets += pkts; 3123 vsi_stats->rx_bytes += bytes; 3124 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 3125 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 3126 } 3127 3128 rcu_read_unlock(); 3129 } 3130 3131 /** 3132 * ice_update_vsi_stats - Update VSI stats counters 3133 * @vsi: the VSI to be updated 3134 */ 3135 static void ice_update_vsi_stats(struct ice_vsi *vsi) 3136 { 3137 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 3138 struct ice_eth_stats *cur_es = &vsi->eth_stats; 3139 struct ice_pf *pf = vsi->back; 3140 3141 if (test_bit(__ICE_DOWN, vsi->state) || 3142 test_bit(__ICE_CFG_BUSY, pf->state)) 3143 return; 3144 3145 /* get stats as recorded by Tx/Rx rings */ 3146 ice_update_vsi_ring_stats(vsi); 3147 3148 /* get VSI stats as recorded by the hardware */ 3149 ice_update_eth_stats(vsi); 3150 3151 cur_ns->tx_errors = cur_es->tx_errors; 3152 cur_ns->rx_dropped = cur_es->rx_discards; 3153 cur_ns->tx_dropped = cur_es->tx_discards; 3154 cur_ns->multicast = cur_es->rx_multicast; 3155 3156 /* update some more netdev stats if this is main VSI */ 3157 if (vsi->type == ICE_VSI_PF) { 3158 cur_ns->rx_crc_errors = pf->stats.crc_errors; 3159 cur_ns->rx_errors = pf->stats.crc_errors + 3160 pf->stats.illegal_bytes; 3161 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 3162 } 3163 } 3164 3165 /** 3166 * ice_update_pf_stats - Update PF port stats counters 3167 * @pf: PF whose stats needs to be updated 3168 */ 3169 static void ice_update_pf_stats(struct ice_pf *pf) 3170 { 3171 struct ice_hw_port_stats *prev_ps, *cur_ps; 3172 struct ice_hw *hw = &pf->hw; 3173 u8 pf_id; 3174 3175 prev_ps = &pf->stats_prev; 3176 cur_ps = &pf->stats; 3177 pf_id = hw->pf_id; 3178 3179 ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id), 3180 pf->stat_prev_loaded, &prev_ps->eth.rx_bytes, 3181 &cur_ps->eth.rx_bytes); 3182 3183 ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id), 3184 pf->stat_prev_loaded, &prev_ps->eth.rx_unicast, 3185 &cur_ps->eth.rx_unicast); 3186 3187 ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id), 3188 pf->stat_prev_loaded, &prev_ps->eth.rx_multicast, 3189 &cur_ps->eth.rx_multicast); 3190 3191 ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id), 3192 pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast, 3193 &cur_ps->eth.rx_broadcast); 3194 3195 ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id), 3196 pf->stat_prev_loaded, &prev_ps->eth.tx_bytes, 3197 &cur_ps->eth.tx_bytes); 3198 3199 ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id), 3200 pf->stat_prev_loaded, &prev_ps->eth.tx_unicast, 3201 &cur_ps->eth.tx_unicast); 3202 3203 ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id), 3204 pf->stat_prev_loaded, &prev_ps->eth.tx_multicast, 3205 &cur_ps->eth.tx_multicast); 3206 3207 ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id), 3208 pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast, 3209 &cur_ps->eth.tx_broadcast); 3210 3211 ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded, 3212 &prev_ps->tx_dropped_link_down, 3213 &cur_ps->tx_dropped_link_down); 3214 3215 ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id), 3216 pf->stat_prev_loaded, &prev_ps->rx_size_64, 3217 &cur_ps->rx_size_64); 3218 3219 ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id), 3220 pf->stat_prev_loaded, &prev_ps->rx_size_127, 3221 &cur_ps->rx_size_127); 3222 3223 ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id), 3224 pf->stat_prev_loaded, &prev_ps->rx_size_255, 3225 &cur_ps->rx_size_255); 3226 3227 ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id), 3228 pf->stat_prev_loaded, &prev_ps->rx_size_511, 3229 &cur_ps->rx_size_511); 3230 3231 ice_stat_update40(hw, GLPRT_PRC1023H(pf_id), 3232 GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded, 3233 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 3234 3235 ice_stat_update40(hw, GLPRT_PRC1522H(pf_id), 3236 GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded, 3237 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 3238 3239 ice_stat_update40(hw, GLPRT_PRC9522H(pf_id), 3240 GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded, 3241 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 3242 3243 ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id), 3244 pf->stat_prev_loaded, &prev_ps->tx_size_64, 3245 &cur_ps->tx_size_64); 3246 3247 ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id), 3248 pf->stat_prev_loaded, &prev_ps->tx_size_127, 3249 &cur_ps->tx_size_127); 3250 3251 ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id), 3252 pf->stat_prev_loaded, &prev_ps->tx_size_255, 3253 &cur_ps->tx_size_255); 3254 3255 ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id), 3256 pf->stat_prev_loaded, &prev_ps->tx_size_511, 3257 &cur_ps->tx_size_511); 3258 3259 ice_stat_update40(hw, GLPRT_PTC1023H(pf_id), 3260 GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded, 3261 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 3262 3263 ice_stat_update40(hw, GLPRT_PTC1522H(pf_id), 3264 GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded, 3265 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 3266 3267 ice_stat_update40(hw, GLPRT_PTC9522H(pf_id), 3268 GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded, 3269 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 3270 3271 ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded, 3272 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 3273 3274 ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded, 3275 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 3276 3277 ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded, 3278 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 3279 3280 ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded, 3281 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 3282 3283 ice_update_dcb_stats(pf); 3284 3285 ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded, 3286 &prev_ps->crc_errors, &cur_ps->crc_errors); 3287 3288 ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded, 3289 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 3290 3291 ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded, 3292 &prev_ps->mac_local_faults, 3293 &cur_ps->mac_local_faults); 3294 3295 ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded, 3296 &prev_ps->mac_remote_faults, 3297 &cur_ps->mac_remote_faults); 3298 3299 ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded, 3300 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 3301 3302 ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded, 3303 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 3304 3305 ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded, 3306 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 3307 3308 ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded, 3309 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 3310 3311 ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded, 3312 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 3313 3314 pf->stat_prev_loaded = true; 3315 } 3316 3317 /** 3318 * ice_get_stats64 - get statistics for network device structure 3319 * @netdev: network interface device structure 3320 * @stats: main device statistics structure 3321 */ 3322 static 3323 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3324 { 3325 struct ice_netdev_priv *np = netdev_priv(netdev); 3326 struct rtnl_link_stats64 *vsi_stats; 3327 struct ice_vsi *vsi = np->vsi; 3328 3329 vsi_stats = &vsi->net_stats; 3330 3331 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq) 3332 return; 3333 /* netdev packet/byte stats come from ring counter. These are obtained 3334 * by summing up ring counters (done by ice_update_vsi_ring_stats). 3335 */ 3336 ice_update_vsi_ring_stats(vsi); 3337 stats->tx_packets = vsi_stats->tx_packets; 3338 stats->tx_bytes = vsi_stats->tx_bytes; 3339 stats->rx_packets = vsi_stats->rx_packets; 3340 stats->rx_bytes = vsi_stats->rx_bytes; 3341 3342 /* The rest of the stats can be read from the hardware but instead we 3343 * just return values that the watchdog task has already obtained from 3344 * the hardware. 3345 */ 3346 stats->multicast = vsi_stats->multicast; 3347 stats->tx_errors = vsi_stats->tx_errors; 3348 stats->tx_dropped = vsi_stats->tx_dropped; 3349 stats->rx_errors = vsi_stats->rx_errors; 3350 stats->rx_dropped = vsi_stats->rx_dropped; 3351 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 3352 stats->rx_length_errors = vsi_stats->rx_length_errors; 3353 } 3354 3355 /** 3356 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 3357 * @vsi: VSI having NAPI disabled 3358 */ 3359 static void ice_napi_disable_all(struct ice_vsi *vsi) 3360 { 3361 int q_idx; 3362 3363 if (!vsi->netdev) 3364 return; 3365 3366 ice_for_each_q_vector(vsi, q_idx) { 3367 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3368 3369 if (q_vector->rx.ring || q_vector->tx.ring) 3370 napi_disable(&q_vector->napi); 3371 } 3372 } 3373 3374 /** 3375 * ice_force_phys_link_state - Force the physical link state 3376 * @vsi: VSI to force the physical link state to up/down 3377 * @link_up: true/false indicates to set the physical link to up/down 3378 * 3379 * Force the physical link state by getting the current PHY capabilities from 3380 * hardware and setting the PHY config based on the determined capabilities. If 3381 * link changes a link event will be triggered because both the Enable Automatic 3382 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 3383 * 3384 * Returns 0 on success, negative on failure 3385 */ 3386 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 3387 { 3388 struct ice_aqc_get_phy_caps_data *pcaps; 3389 struct ice_aqc_set_phy_cfg_data *cfg; 3390 struct ice_port_info *pi; 3391 struct device *dev; 3392 int retcode; 3393 3394 if (!vsi || !vsi->port_info || !vsi->back) 3395 return -EINVAL; 3396 if (vsi->type != ICE_VSI_PF) 3397 return 0; 3398 3399 dev = &vsi->back->pdev->dev; 3400 3401 pi = vsi->port_info; 3402 3403 pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL); 3404 if (!pcaps) 3405 return -ENOMEM; 3406 3407 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 3408 NULL); 3409 if (retcode) { 3410 dev_err(dev, 3411 "Failed to get phy capabilities, VSI %d error %d\n", 3412 vsi->vsi_num, retcode); 3413 retcode = -EIO; 3414 goto out; 3415 } 3416 3417 /* No change in link */ 3418 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 3419 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 3420 goto out; 3421 3422 cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL); 3423 if (!cfg) { 3424 retcode = -ENOMEM; 3425 goto out; 3426 } 3427 3428 cfg->phy_type_low = pcaps->phy_type_low; 3429 cfg->phy_type_high = pcaps->phy_type_high; 3430 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3431 cfg->low_power_ctrl = pcaps->low_power_ctrl; 3432 cfg->eee_cap = pcaps->eee_cap; 3433 cfg->eeer_value = pcaps->eeer_value; 3434 cfg->link_fec_opt = pcaps->link_fec_options; 3435 if (link_up) 3436 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 3437 else 3438 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 3439 3440 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 3441 if (retcode) { 3442 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 3443 vsi->vsi_num, retcode); 3444 retcode = -EIO; 3445 } 3446 3447 devm_kfree(dev, cfg); 3448 out: 3449 devm_kfree(dev, pcaps); 3450 return retcode; 3451 } 3452 3453 /** 3454 * ice_down - Shutdown the connection 3455 * @vsi: The VSI being stopped 3456 */ 3457 int ice_down(struct ice_vsi *vsi) 3458 { 3459 int i, tx_err, rx_err, link_err = 0; 3460 3461 /* Caller of this function is expected to set the 3462 * vsi->state __ICE_DOWN bit 3463 */ 3464 if (vsi->netdev) { 3465 netif_carrier_off(vsi->netdev); 3466 netif_tx_disable(vsi->netdev); 3467 } 3468 3469 ice_vsi_dis_irq(vsi); 3470 3471 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 3472 if (tx_err) 3473 netdev_err(vsi->netdev, 3474 "Failed stop Tx rings, VSI %d error %d\n", 3475 vsi->vsi_num, tx_err); 3476 3477 rx_err = ice_vsi_stop_rx_rings(vsi); 3478 if (rx_err) 3479 netdev_err(vsi->netdev, 3480 "Failed stop Rx rings, VSI %d error %d\n", 3481 vsi->vsi_num, rx_err); 3482 3483 ice_napi_disable_all(vsi); 3484 3485 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 3486 link_err = ice_force_phys_link_state(vsi, false); 3487 if (link_err) 3488 netdev_err(vsi->netdev, 3489 "Failed to set physical link down, VSI %d error %d\n", 3490 vsi->vsi_num, link_err); 3491 } 3492 3493 ice_for_each_txq(vsi, i) 3494 ice_clean_tx_ring(vsi->tx_rings[i]); 3495 3496 ice_for_each_rxq(vsi, i) 3497 ice_clean_rx_ring(vsi->rx_rings[i]); 3498 3499 if (tx_err || rx_err || link_err) { 3500 netdev_err(vsi->netdev, 3501 "Failed to close VSI 0x%04X on switch 0x%04X\n", 3502 vsi->vsi_num, vsi->vsw->sw_id); 3503 return -EIO; 3504 } 3505 3506 return 0; 3507 } 3508 3509 /** 3510 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 3511 * @vsi: VSI having resources allocated 3512 * 3513 * Return 0 on success, negative on failure 3514 */ 3515 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 3516 { 3517 int i, err = 0; 3518 3519 if (!vsi->num_txq) { 3520 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 3521 vsi->vsi_num); 3522 return -EINVAL; 3523 } 3524 3525 ice_for_each_txq(vsi, i) { 3526 vsi->tx_rings[i]->netdev = vsi->netdev; 3527 err = ice_setup_tx_ring(vsi->tx_rings[i]); 3528 if (err) 3529 break; 3530 } 3531 3532 return err; 3533 } 3534 3535 /** 3536 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 3537 * @vsi: VSI having resources allocated 3538 * 3539 * Return 0 on success, negative on failure 3540 */ 3541 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 3542 { 3543 int i, err = 0; 3544 3545 if (!vsi->num_rxq) { 3546 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 3547 vsi->vsi_num); 3548 return -EINVAL; 3549 } 3550 3551 ice_for_each_rxq(vsi, i) { 3552 vsi->rx_rings[i]->netdev = vsi->netdev; 3553 err = ice_setup_rx_ring(vsi->rx_rings[i]); 3554 if (err) 3555 break; 3556 } 3557 3558 return err; 3559 } 3560 3561 /** 3562 * ice_vsi_req_irq - Request IRQ from the OS 3563 * @vsi: The VSI IRQ is being requested for 3564 * @basename: name for the vector 3565 * 3566 * Return 0 on success and a negative value on error 3567 */ 3568 static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename) 3569 { 3570 struct ice_pf *pf = vsi->back; 3571 int err = -EINVAL; 3572 3573 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3574 err = ice_vsi_req_irq_msix(vsi, basename); 3575 3576 return err; 3577 } 3578 3579 /** 3580 * ice_vsi_open - Called when a network interface is made active 3581 * @vsi: the VSI to open 3582 * 3583 * Initialization of the VSI 3584 * 3585 * Returns 0 on success, negative value on error 3586 */ 3587 static int ice_vsi_open(struct ice_vsi *vsi) 3588 { 3589 char int_name[ICE_INT_NAME_STR_LEN]; 3590 struct ice_pf *pf = vsi->back; 3591 int err; 3592 3593 /* allocate descriptors */ 3594 err = ice_vsi_setup_tx_rings(vsi); 3595 if (err) 3596 goto err_setup_tx; 3597 3598 err = ice_vsi_setup_rx_rings(vsi); 3599 if (err) 3600 goto err_setup_rx; 3601 3602 err = ice_vsi_cfg(vsi); 3603 if (err) 3604 goto err_setup_rx; 3605 3606 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 3607 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 3608 err = ice_vsi_req_irq(vsi, int_name); 3609 if (err) 3610 goto err_setup_rx; 3611 3612 /* Notify the stack of the actual queue counts. */ 3613 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 3614 if (err) 3615 goto err_set_qs; 3616 3617 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 3618 if (err) 3619 goto err_set_qs; 3620 3621 err = ice_up_complete(vsi); 3622 if (err) 3623 goto err_up_complete; 3624 3625 return 0; 3626 3627 err_up_complete: 3628 ice_down(vsi); 3629 err_set_qs: 3630 ice_vsi_free_irq(vsi); 3631 err_setup_rx: 3632 ice_vsi_free_rx_rings(vsi); 3633 err_setup_tx: 3634 ice_vsi_free_tx_rings(vsi); 3635 3636 return err; 3637 } 3638 3639 /** 3640 * ice_vsi_release_all - Delete all VSIs 3641 * @pf: PF from which all VSIs are being removed 3642 */ 3643 static void ice_vsi_release_all(struct ice_pf *pf) 3644 { 3645 int err, i; 3646 3647 if (!pf->vsi) 3648 return; 3649 3650 ice_for_each_vsi(pf, i) { 3651 if (!pf->vsi[i]) 3652 continue; 3653 3654 err = ice_vsi_release(pf->vsi[i]); 3655 if (err) 3656 dev_dbg(&pf->pdev->dev, 3657 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 3658 i, err, pf->vsi[i]->vsi_num); 3659 } 3660 } 3661 3662 /** 3663 * ice_ena_vsi - resume a VSI 3664 * @vsi: the VSI being resume 3665 * @locked: is the rtnl_lock already held 3666 */ 3667 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 3668 { 3669 int err = 0; 3670 3671 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 3672 return err; 3673 3674 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 3675 3676 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 3677 struct net_device *netd = vsi->netdev; 3678 3679 if (netif_running(vsi->netdev)) { 3680 if (locked) { 3681 err = netd->netdev_ops->ndo_open(netd); 3682 } else { 3683 rtnl_lock(); 3684 err = netd->netdev_ops->ndo_open(netd); 3685 rtnl_unlock(); 3686 } 3687 } else { 3688 err = ice_vsi_open(vsi); 3689 } 3690 } 3691 3692 return err; 3693 } 3694 3695 /** 3696 * ice_pf_ena_all_vsi - Resume all VSIs on a PF 3697 * @pf: the PF 3698 * @locked: is the rtnl_lock already held 3699 */ 3700 #ifdef CONFIG_DCB 3701 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 3702 #else 3703 static int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 3704 #endif /* CONFIG_DCB */ 3705 { 3706 int v; 3707 3708 ice_for_each_vsi(pf, v) 3709 if (pf->vsi[v]) 3710 if (ice_ena_vsi(pf->vsi[v], locked)) 3711 return -EIO; 3712 3713 return 0; 3714 } 3715 3716 /** 3717 * ice_vsi_rebuild_all - rebuild all VSIs in PF 3718 * @pf: the PF 3719 */ 3720 static int ice_vsi_rebuild_all(struct ice_pf *pf) 3721 { 3722 int i; 3723 3724 /* loop through pf->vsi array and reinit the VSI if found */ 3725 ice_for_each_vsi(pf, i) { 3726 int err; 3727 3728 if (!pf->vsi[i]) 3729 continue; 3730 3731 err = ice_vsi_rebuild(pf->vsi[i]); 3732 if (err) { 3733 dev_err(&pf->pdev->dev, 3734 "VSI at index %d rebuild failed\n", 3735 pf->vsi[i]->idx); 3736 return err; 3737 } 3738 3739 dev_info(&pf->pdev->dev, 3740 "VSI at index %d rebuilt. vsi_num = 0x%x\n", 3741 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3742 } 3743 3744 return 0; 3745 } 3746 3747 /** 3748 * ice_vsi_replay_all - replay all VSIs configuration in the PF 3749 * @pf: the PF 3750 */ 3751 static int ice_vsi_replay_all(struct ice_pf *pf) 3752 { 3753 struct ice_hw *hw = &pf->hw; 3754 enum ice_status ret; 3755 int i; 3756 3757 /* loop through pf->vsi array and replay the VSI if found */ 3758 ice_for_each_vsi(pf, i) { 3759 if (!pf->vsi[i]) 3760 continue; 3761 3762 ret = ice_replay_vsi(hw, pf->vsi[i]->idx); 3763 if (ret) { 3764 dev_err(&pf->pdev->dev, 3765 "VSI at index %d replay failed %d\n", 3766 pf->vsi[i]->idx, ret); 3767 return -EIO; 3768 } 3769 3770 /* Re-map HW VSI number, using VSI handle that has been 3771 * previously validated in ice_replay_vsi() call above 3772 */ 3773 pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx); 3774 3775 dev_info(&pf->pdev->dev, 3776 "VSI at index %d filter replayed successfully - vsi_num %i\n", 3777 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3778 } 3779 3780 /* Clean up replay filter after successful re-configuration */ 3781 ice_replay_post(hw); 3782 return 0; 3783 } 3784 3785 /** 3786 * ice_rebuild - rebuild after reset 3787 * @pf: PF to rebuild 3788 */ 3789 static void ice_rebuild(struct ice_pf *pf) 3790 { 3791 struct device *dev = &pf->pdev->dev; 3792 struct ice_hw *hw = &pf->hw; 3793 enum ice_status ret; 3794 int err, i; 3795 3796 if (test_bit(__ICE_DOWN, pf->state)) 3797 goto clear_recovery; 3798 3799 dev_dbg(dev, "rebuilding PF\n"); 3800 3801 ret = ice_init_all_ctrlq(hw); 3802 if (ret) { 3803 dev_err(dev, "control queues init failed %d\n", ret); 3804 goto err_init_ctrlq; 3805 } 3806 3807 ret = ice_clear_pf_cfg(hw); 3808 if (ret) { 3809 dev_err(dev, "clear PF configuration failed %d\n", ret); 3810 goto err_init_ctrlq; 3811 } 3812 3813 ice_clear_pxe_mode(hw); 3814 3815 ret = ice_get_caps(hw); 3816 if (ret) { 3817 dev_err(dev, "ice_get_caps failed %d\n", ret); 3818 goto err_init_ctrlq; 3819 } 3820 3821 err = ice_sched_init_port(hw->port_info); 3822 if (err) 3823 goto err_sched_init_port; 3824 3825 ice_dcb_rebuild(pf); 3826 3827 err = ice_vsi_rebuild_all(pf); 3828 if (err) { 3829 dev_err(dev, "ice_vsi_rebuild_all failed\n"); 3830 goto err_vsi_rebuild; 3831 } 3832 3833 err = ice_update_link_info(hw->port_info); 3834 if (err) 3835 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 3836 3837 /* Replay all VSIs Configuration, including filters after reset */ 3838 if (ice_vsi_replay_all(pf)) { 3839 dev_err(&pf->pdev->dev, 3840 "error replaying VSI configurations with switch filter rules\n"); 3841 goto err_vsi_rebuild; 3842 } 3843 3844 /* start misc vector */ 3845 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 3846 err = ice_req_irq_msix_misc(pf); 3847 if (err) { 3848 dev_err(dev, "misc vector setup failed: %d\n", err); 3849 goto err_vsi_rebuild; 3850 } 3851 } 3852 3853 /* restart the VSIs that were rebuilt and running before the reset */ 3854 err = ice_pf_ena_all_vsi(pf, false); 3855 if (err) { 3856 dev_err(&pf->pdev->dev, "error enabling VSIs\n"); 3857 /* no need to disable VSIs in tear down path in ice_rebuild() 3858 * since its already taken care in ice_vsi_open() 3859 */ 3860 goto err_vsi_rebuild; 3861 } 3862 3863 ice_for_each_vsi(pf, i) { 3864 bool link_up; 3865 3866 if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF) 3867 continue; 3868 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 3869 if (link_up) { 3870 netif_carrier_on(pf->vsi[i]->netdev); 3871 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 3872 } else { 3873 netif_carrier_off(pf->vsi[i]->netdev); 3874 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 3875 } 3876 } 3877 3878 /* if we get here, reset flow is successful */ 3879 clear_bit(__ICE_RESET_FAILED, pf->state); 3880 return; 3881 3882 err_vsi_rebuild: 3883 ice_vsi_release_all(pf); 3884 err_sched_init_port: 3885 ice_sched_cleanup_all(hw); 3886 err_init_ctrlq: 3887 ice_shutdown_all_ctrlq(hw); 3888 set_bit(__ICE_RESET_FAILED, pf->state); 3889 clear_recovery: 3890 /* set this bit in PF state to control service task scheduling */ 3891 set_bit(__ICE_NEEDS_RESTART, pf->state); 3892 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 3893 } 3894 3895 /** 3896 * ice_change_mtu - NDO callback to change the MTU 3897 * @netdev: network interface device structure 3898 * @new_mtu: new value for maximum frame size 3899 * 3900 * Returns 0 on success, negative on failure 3901 */ 3902 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 3903 { 3904 struct ice_netdev_priv *np = netdev_priv(netdev); 3905 struct ice_vsi *vsi = np->vsi; 3906 struct ice_pf *pf = vsi->back; 3907 u8 count = 0; 3908 3909 if (new_mtu == netdev->mtu) { 3910 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 3911 return 0; 3912 } 3913 3914 if (new_mtu < netdev->min_mtu) { 3915 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 3916 netdev->min_mtu); 3917 return -EINVAL; 3918 } else if (new_mtu > netdev->max_mtu) { 3919 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 3920 netdev->min_mtu); 3921 return -EINVAL; 3922 } 3923 /* if a reset is in progress, wait for some time for it to complete */ 3924 do { 3925 if (ice_is_reset_in_progress(pf->state)) { 3926 count++; 3927 usleep_range(1000, 2000); 3928 } else { 3929 break; 3930 } 3931 3932 } while (count < 100); 3933 3934 if (count == 100) { 3935 netdev_err(netdev, "can't change MTU. Device is busy\n"); 3936 return -EBUSY; 3937 } 3938 3939 netdev->mtu = new_mtu; 3940 3941 /* if VSI is up, bring it down and then back up */ 3942 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 3943 int err; 3944 3945 err = ice_down(vsi); 3946 if (err) { 3947 netdev_err(netdev, "change MTU if_up err %d\n", err); 3948 return err; 3949 } 3950 3951 err = ice_up(vsi); 3952 if (err) { 3953 netdev_err(netdev, "change MTU if_up err %d\n", err); 3954 return err; 3955 } 3956 } 3957 3958 netdev_info(netdev, "changed MTU to %d\n", new_mtu); 3959 return 0; 3960 } 3961 3962 /** 3963 * ice_set_rss - Set RSS keys and lut 3964 * @vsi: Pointer to VSI structure 3965 * @seed: RSS hash seed 3966 * @lut: Lookup table 3967 * @lut_size: Lookup table size 3968 * 3969 * Returns 0 on success, negative on failure 3970 */ 3971 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3972 { 3973 struct ice_pf *pf = vsi->back; 3974 struct ice_hw *hw = &pf->hw; 3975 enum ice_status status; 3976 3977 if (seed) { 3978 struct ice_aqc_get_set_rss_keys *buf = 3979 (struct ice_aqc_get_set_rss_keys *)seed; 3980 3981 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 3982 3983 if (status) { 3984 dev_err(&pf->pdev->dev, 3985 "Cannot set RSS key, err %d aq_err %d\n", 3986 status, hw->adminq.rq_last_status); 3987 return -EIO; 3988 } 3989 } 3990 3991 if (lut) { 3992 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 3993 lut, lut_size); 3994 if (status) { 3995 dev_err(&pf->pdev->dev, 3996 "Cannot set RSS lut, err %d aq_err %d\n", 3997 status, hw->adminq.rq_last_status); 3998 return -EIO; 3999 } 4000 } 4001 4002 return 0; 4003 } 4004 4005 /** 4006 * ice_get_rss - Get RSS keys and lut 4007 * @vsi: Pointer to VSI structure 4008 * @seed: Buffer to store the keys 4009 * @lut: Buffer to store the lookup table entries 4010 * @lut_size: Size of buffer to store the lookup table entries 4011 * 4012 * Returns 0 on success, negative on failure 4013 */ 4014 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4015 { 4016 struct ice_pf *pf = vsi->back; 4017 struct ice_hw *hw = &pf->hw; 4018 enum ice_status status; 4019 4020 if (seed) { 4021 struct ice_aqc_get_set_rss_keys *buf = 4022 (struct ice_aqc_get_set_rss_keys *)seed; 4023 4024 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4025 if (status) { 4026 dev_err(&pf->pdev->dev, 4027 "Cannot get RSS key, err %d aq_err %d\n", 4028 status, hw->adminq.rq_last_status); 4029 return -EIO; 4030 } 4031 } 4032 4033 if (lut) { 4034 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4035 lut, lut_size); 4036 if (status) { 4037 dev_err(&pf->pdev->dev, 4038 "Cannot get RSS lut, err %d aq_err %d\n", 4039 status, hw->adminq.rq_last_status); 4040 return -EIO; 4041 } 4042 } 4043 4044 return 0; 4045 } 4046 4047 /** 4048 * ice_bridge_getlink - Get the hardware bridge mode 4049 * @skb: skb buff 4050 * @pid: process ID 4051 * @seq: RTNL message seq 4052 * @dev: the netdev being configured 4053 * @filter_mask: filter mask passed in 4054 * @nlflags: netlink flags passed in 4055 * 4056 * Return the bridge mode (VEB/VEPA) 4057 */ 4058 static int 4059 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4060 struct net_device *dev, u32 filter_mask, int nlflags) 4061 { 4062 struct ice_netdev_priv *np = netdev_priv(dev); 4063 struct ice_vsi *vsi = np->vsi; 4064 struct ice_pf *pf = vsi->back; 4065 u16 bmode; 4066 4067 bmode = pf->first_sw->bridge_mode; 4068 4069 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4070 filter_mask, NULL); 4071 } 4072 4073 /** 4074 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4075 * @vsi: Pointer to VSI structure 4076 * @bmode: Hardware bridge mode (VEB/VEPA) 4077 * 4078 * Returns 0 on success, negative on failure 4079 */ 4080 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4081 { 4082 struct device *dev = &vsi->back->pdev->dev; 4083 struct ice_aqc_vsi_props *vsi_props; 4084 struct ice_hw *hw = &vsi->back->hw; 4085 struct ice_vsi_ctx *ctxt; 4086 enum ice_status status; 4087 int ret = 0; 4088 4089 vsi_props = &vsi->info; 4090 4091 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 4092 if (!ctxt) 4093 return -ENOMEM; 4094 4095 ctxt->info = vsi->info; 4096 4097 if (bmode == BRIDGE_MODE_VEB) 4098 /* change from VEPA to VEB mode */ 4099 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4100 else 4101 /* change from VEB to VEPA mode */ 4102 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4103 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4104 4105 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4106 if (status) { 4107 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4108 bmode, status, hw->adminq.sq_last_status); 4109 ret = -EIO; 4110 goto out; 4111 } 4112 /* Update sw flags for book keeping */ 4113 vsi_props->sw_flags = ctxt->info.sw_flags; 4114 4115 out: 4116 devm_kfree(dev, ctxt); 4117 return ret; 4118 } 4119 4120 /** 4121 * ice_bridge_setlink - Set the hardware bridge mode 4122 * @dev: the netdev being configured 4123 * @nlh: RTNL message 4124 * @flags: bridge setlink flags 4125 * @extack: netlink extended ack 4126 * 4127 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4128 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4129 * not already set for all VSIs connected to this switch. And also update the 4130 * unicast switch filter rules for the corresponding switch of the netdev. 4131 */ 4132 static int 4133 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 4134 u16 __always_unused flags, 4135 struct netlink_ext_ack __always_unused *extack) 4136 { 4137 struct ice_netdev_priv *np = netdev_priv(dev); 4138 struct ice_pf *pf = np->vsi->back; 4139 struct nlattr *attr, *br_spec; 4140 struct ice_hw *hw = &pf->hw; 4141 enum ice_status status; 4142 struct ice_sw *pf_sw; 4143 int rem, v, err = 0; 4144 4145 pf_sw = pf->first_sw; 4146 /* find the attribute in the netlink message */ 4147 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 4148 4149 nla_for_each_nested(attr, br_spec, rem) { 4150 __u16 mode; 4151 4152 if (nla_type(attr) != IFLA_BRIDGE_MODE) 4153 continue; 4154 mode = nla_get_u16(attr); 4155 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 4156 return -EINVAL; 4157 /* Continue if bridge mode is not being flipped */ 4158 if (mode == pf_sw->bridge_mode) 4159 continue; 4160 /* Iterates through the PF VSI list and update the loopback 4161 * mode of the VSI 4162 */ 4163 ice_for_each_vsi(pf, v) { 4164 if (!pf->vsi[v]) 4165 continue; 4166 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 4167 if (err) 4168 return err; 4169 } 4170 4171 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 4172 /* Update the unicast switch filter rules for the corresponding 4173 * switch of the netdev 4174 */ 4175 status = ice_update_sw_rule_bridge_mode(hw); 4176 if (status) { 4177 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 4178 mode, status, hw->adminq.sq_last_status); 4179 /* revert hw->evb_veb */ 4180 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 4181 return -EIO; 4182 } 4183 4184 pf_sw->bridge_mode = mode; 4185 } 4186 4187 return 0; 4188 } 4189 4190 /** 4191 * ice_tx_timeout - Respond to a Tx Hang 4192 * @netdev: network interface device structure 4193 */ 4194 static void ice_tx_timeout(struct net_device *netdev) 4195 { 4196 struct ice_netdev_priv *np = netdev_priv(netdev); 4197 struct ice_ring *tx_ring = NULL; 4198 struct ice_vsi *vsi = np->vsi; 4199 struct ice_pf *pf = vsi->back; 4200 int hung_queue = -1; 4201 u32 i; 4202 4203 pf->tx_timeout_count++; 4204 4205 /* find the stopped queue the same way dev_watchdog() does */ 4206 for (i = 0; i < netdev->num_tx_queues; i++) { 4207 unsigned long trans_start; 4208 struct netdev_queue *q; 4209 4210 q = netdev_get_tx_queue(netdev, i); 4211 trans_start = q->trans_start; 4212 if (netif_xmit_stopped(q) && 4213 time_after(jiffies, 4214 trans_start + netdev->watchdog_timeo)) { 4215 hung_queue = i; 4216 break; 4217 } 4218 } 4219 4220 if (i == netdev->num_tx_queues) 4221 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 4222 else 4223 /* now that we have an index, find the tx_ring struct */ 4224 for (i = 0; i < vsi->num_txq; i++) 4225 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 4226 if (hung_queue == vsi->tx_rings[i]->q_index) { 4227 tx_ring = vsi->tx_rings[i]; 4228 break; 4229 } 4230 4231 /* Reset recovery level if enough time has elapsed after last timeout. 4232 * Also ensure no new reset action happens before next timeout period. 4233 */ 4234 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 4235 pf->tx_timeout_recovery_level = 1; 4236 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 4237 netdev->watchdog_timeo))) 4238 return; 4239 4240 if (tx_ring) { 4241 struct ice_hw *hw = &pf->hw; 4242 u32 head, val = 0; 4243 4244 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) & 4245 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 4246 /* Read interrupt register */ 4247 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 4248 val = rd32(hw, 4249 GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 4250 4251 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 4252 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 4253 head, tx_ring->next_to_use, val); 4254 } 4255 4256 pf->tx_timeout_last_recovery = jiffies; 4257 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 4258 pf->tx_timeout_recovery_level, hung_queue); 4259 4260 switch (pf->tx_timeout_recovery_level) { 4261 case 1: 4262 set_bit(__ICE_PFR_REQ, pf->state); 4263 break; 4264 case 2: 4265 set_bit(__ICE_CORER_REQ, pf->state); 4266 break; 4267 case 3: 4268 set_bit(__ICE_GLOBR_REQ, pf->state); 4269 break; 4270 default: 4271 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 4272 set_bit(__ICE_DOWN, pf->state); 4273 set_bit(__ICE_NEEDS_RESTART, vsi->state); 4274 set_bit(__ICE_SERVICE_DIS, pf->state); 4275 break; 4276 } 4277 4278 ice_service_task_schedule(pf); 4279 pf->tx_timeout_recovery_level++; 4280 } 4281 4282 /** 4283 * ice_open - Called when a network interface becomes active 4284 * @netdev: network interface device structure 4285 * 4286 * The open entry point is called when a network interface is made 4287 * active by the system (IFF_UP). At this point all resources needed 4288 * for transmit and receive operations are allocated, the interrupt 4289 * handler is registered with the OS, the netdev watchdog is enabled, 4290 * and the stack is notified that the interface is ready. 4291 * 4292 * Returns 0 on success, negative value on failure 4293 */ 4294 int ice_open(struct net_device *netdev) 4295 { 4296 struct ice_netdev_priv *np = netdev_priv(netdev); 4297 struct ice_vsi *vsi = np->vsi; 4298 int err; 4299 4300 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 4301 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 4302 return -EIO; 4303 } 4304 4305 netif_carrier_off(netdev); 4306 4307 err = ice_force_phys_link_state(vsi, true); 4308 if (err) { 4309 netdev_err(netdev, 4310 "Failed to set physical link up, error %d\n", err); 4311 return err; 4312 } 4313 4314 err = ice_vsi_open(vsi); 4315 if (err) 4316 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 4317 vsi->vsi_num, vsi->vsw->sw_id); 4318 return err; 4319 } 4320 4321 /** 4322 * ice_stop - Disables a network interface 4323 * @netdev: network interface device structure 4324 * 4325 * The stop entry point is called when an interface is de-activated by the OS, 4326 * and the netdevice enters the DOWN state. The hardware is still under the 4327 * driver's control, but the netdev interface is disabled. 4328 * 4329 * Returns success only - not allowed to fail 4330 */ 4331 int ice_stop(struct net_device *netdev) 4332 { 4333 struct ice_netdev_priv *np = netdev_priv(netdev); 4334 struct ice_vsi *vsi = np->vsi; 4335 4336 ice_vsi_close(vsi); 4337 4338 return 0; 4339 } 4340 4341 /** 4342 * ice_features_check - Validate encapsulated packet conforms to limits 4343 * @skb: skb buffer 4344 * @netdev: This port's netdev 4345 * @features: Offload features that the stack believes apply 4346 */ 4347 static netdev_features_t 4348 ice_features_check(struct sk_buff *skb, 4349 struct net_device __always_unused *netdev, 4350 netdev_features_t features) 4351 { 4352 size_t len; 4353 4354 /* No point in doing any of this if neither checksum nor GSO are 4355 * being requested for this frame. We can rule out both by just 4356 * checking for CHECKSUM_PARTIAL 4357 */ 4358 if (skb->ip_summed != CHECKSUM_PARTIAL) 4359 return features; 4360 4361 /* We cannot support GSO if the MSS is going to be less than 4362 * 64 bytes. If it is then we need to drop support for GSO. 4363 */ 4364 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4365 features &= ~NETIF_F_GSO_MASK; 4366 4367 len = skb_network_header(skb) - skb->data; 4368 if (len & ~(ICE_TXD_MACLEN_MAX)) 4369 goto out_rm_features; 4370 4371 len = skb_transport_header(skb) - skb_network_header(skb); 4372 if (len & ~(ICE_TXD_IPLEN_MAX)) 4373 goto out_rm_features; 4374 4375 if (skb->encapsulation) { 4376 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4377 if (len & ~(ICE_TXD_L4LEN_MAX)) 4378 goto out_rm_features; 4379 4380 len = skb_inner_transport_header(skb) - 4381 skb_inner_network_header(skb); 4382 if (len & ~(ICE_TXD_IPLEN_MAX)) 4383 goto out_rm_features; 4384 } 4385 4386 return features; 4387 out_rm_features: 4388 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4389 } 4390 4391 static const struct net_device_ops ice_netdev_ops = { 4392 .ndo_open = ice_open, 4393 .ndo_stop = ice_stop, 4394 .ndo_start_xmit = ice_start_xmit, 4395 .ndo_features_check = ice_features_check, 4396 .ndo_set_rx_mode = ice_set_rx_mode, 4397 .ndo_set_mac_address = ice_set_mac_address, 4398 .ndo_validate_addr = eth_validate_addr, 4399 .ndo_change_mtu = ice_change_mtu, 4400 .ndo_get_stats64 = ice_get_stats64, 4401 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 4402 .ndo_set_vf_mac = ice_set_vf_mac, 4403 .ndo_get_vf_config = ice_get_vf_cfg, 4404 .ndo_set_vf_trust = ice_set_vf_trust, 4405 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 4406 .ndo_set_vf_link_state = ice_set_vf_link_state, 4407 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 4408 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 4409 .ndo_set_features = ice_set_features, 4410 .ndo_bridge_getlink = ice_bridge_getlink, 4411 .ndo_bridge_setlink = ice_bridge_setlink, 4412 .ndo_fdb_add = ice_fdb_add, 4413 .ndo_fdb_del = ice_fdb_del, 4414 .ndo_tx_timeout = ice_tx_timeout, 4415 }; 4416