1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 #define ICE_MBX_OVERFLOW_WATERMARK 64 1397 1398 /** 1399 * __ice_clean_ctrlq - helper function to clean controlq rings 1400 * @pf: ptr to struct ice_pf 1401 * @q_type: specific Control queue type 1402 */ 1403 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1404 { 1405 struct device *dev = ice_pf_to_dev(pf); 1406 struct ice_rq_event_info event; 1407 struct ice_hw *hw = &pf->hw; 1408 struct ice_ctl_q_info *cq; 1409 u16 pending, i = 0; 1410 const char *qtype; 1411 u32 oldval, val; 1412 1413 /* Do not clean control queue if/when PF reset fails */ 1414 if (test_bit(ICE_RESET_FAILED, pf->state)) 1415 return 0; 1416 1417 switch (q_type) { 1418 case ICE_CTL_Q_ADMIN: 1419 cq = &hw->adminq; 1420 qtype = "Admin"; 1421 break; 1422 case ICE_CTL_Q_SB: 1423 cq = &hw->sbq; 1424 qtype = "Sideband"; 1425 break; 1426 case ICE_CTL_Q_MAILBOX: 1427 cq = &hw->mailboxq; 1428 qtype = "Mailbox"; 1429 /* we are going to try to detect a malicious VF, so set the 1430 * state to begin detection 1431 */ 1432 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1433 break; 1434 default: 1435 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1436 return 0; 1437 } 1438 1439 /* check for error indications - PF_xx_AxQLEN register layout for 1440 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1441 */ 1442 val = rd32(hw, cq->rq.len); 1443 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1444 PF_FW_ARQLEN_ARQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ARQLEN_ARQVFE_M) 1447 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1450 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1454 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->rq.len, val); 1460 } 1461 1462 val = rd32(hw, cq->sq.len); 1463 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1464 PF_FW_ATQLEN_ATQCRIT_M)) { 1465 oldval = val; 1466 if (val & PF_FW_ATQLEN_ATQVFE_M) 1467 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1468 qtype); 1469 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1470 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1471 qtype); 1472 } 1473 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1474 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1475 qtype); 1476 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M); 1478 if (oldval != val) 1479 wr32(hw, cq->sq.len, val); 1480 } 1481 1482 event.buf_len = cq->rq_buf_size; 1483 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1484 if (!event.msg_buf) 1485 return 0; 1486 1487 do { 1488 struct ice_mbx_data data = {}; 1489 u16 opcode; 1490 int ret; 1491 1492 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1493 if (ret == -EALREADY) 1494 break; 1495 if (ret) { 1496 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1497 ret); 1498 break; 1499 } 1500 1501 opcode = le16_to_cpu(event.desc.opcode); 1502 1503 /* Notify any thread that might be waiting for this event */ 1504 ice_aq_check_events(pf, opcode, &event); 1505 1506 switch (opcode) { 1507 case ice_aqc_opc_get_link_status: 1508 if (ice_handle_link_event(pf, &event)) 1509 dev_err(dev, "Could not handle link event\n"); 1510 break; 1511 case ice_aqc_opc_event_lan_overflow: 1512 ice_vf_lan_overflow_event(pf, &event); 1513 break; 1514 case ice_mbx_opc_send_msg_to_pf: 1515 data.num_msg_proc = i; 1516 data.num_pending_arq = pending; 1517 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1518 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1519 1520 ice_vc_process_vf_msg(pf, &event, &data); 1521 break; 1522 case ice_aqc_opc_fw_logging: 1523 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1524 break; 1525 case ice_aqc_opc_lldp_set_mib_change: 1526 ice_dcb_process_lldp_set_mib_change(pf, &event); 1527 break; 1528 default: 1529 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1530 qtype, opcode); 1531 break; 1532 } 1533 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1534 1535 kfree(event.msg_buf); 1536 1537 return pending && (i == ICE_DFLT_IRQ_WORK); 1538 } 1539 1540 /** 1541 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1542 * @hw: pointer to hardware info 1543 * @cq: control queue information 1544 * 1545 * returns true if there are pending messages in a queue, false if there aren't 1546 */ 1547 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1548 { 1549 u16 ntu; 1550 1551 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1552 return cq->rq.next_to_clean != ntu; 1553 } 1554 1555 /** 1556 * ice_clean_adminq_subtask - clean the AdminQ rings 1557 * @pf: board private structure 1558 */ 1559 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1560 { 1561 struct ice_hw *hw = &pf->hw; 1562 1563 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1564 return; 1565 1566 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1567 return; 1568 1569 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1570 1571 /* There might be a situation where new messages arrive to a control 1572 * queue between processing the last message and clearing the 1573 * EVENT_PENDING bit. So before exiting, check queue head again (using 1574 * ice_ctrlq_pending) and process new messages if any. 1575 */ 1576 if (ice_ctrlq_pending(hw, &hw->adminq)) 1577 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1578 1579 ice_flush(hw); 1580 } 1581 1582 /** 1583 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1584 * @pf: board private structure 1585 */ 1586 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1587 { 1588 struct ice_hw *hw = &pf->hw; 1589 1590 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1591 return; 1592 1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1594 return; 1595 1596 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1597 1598 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1599 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1600 1601 ice_flush(hw); 1602 } 1603 1604 /** 1605 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 /* Nothing to do here if sideband queue is not supported */ 1613 if (!ice_is_sbq_supported(hw)) { 1614 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1615 return; 1616 } 1617 1618 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1619 return; 1620 1621 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1622 return; 1623 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 1626 if (ice_ctrlq_pending(hw, &hw->sbq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_service_task_schedule - schedule the service task to wake up 1634 * @pf: board private structure 1635 * 1636 * If not already scheduled, this puts the task into the work queue. 1637 */ 1638 void ice_service_task_schedule(struct ice_pf *pf) 1639 { 1640 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1641 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1642 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1643 queue_work(ice_wq, &pf->serv_task); 1644 } 1645 1646 /** 1647 * ice_service_task_complete - finish up the service task 1648 * @pf: board private structure 1649 */ 1650 static void ice_service_task_complete(struct ice_pf *pf) 1651 { 1652 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1653 1654 /* force memory (pf->state) to sync before next service task */ 1655 smp_mb__before_atomic(); 1656 clear_bit(ICE_SERVICE_SCHED, pf->state); 1657 } 1658 1659 /** 1660 * ice_service_task_stop - stop service task and cancel works 1661 * @pf: board private structure 1662 * 1663 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1664 * 1 otherwise. 1665 */ 1666 static int ice_service_task_stop(struct ice_pf *pf) 1667 { 1668 int ret; 1669 1670 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1671 1672 if (pf->serv_tmr.function) 1673 del_timer_sync(&pf->serv_tmr); 1674 if (pf->serv_task.func) 1675 cancel_work_sync(&pf->serv_task); 1676 1677 clear_bit(ICE_SERVICE_SCHED, pf->state); 1678 return ret; 1679 } 1680 1681 /** 1682 * ice_service_task_restart - restart service task and schedule works 1683 * @pf: board private structure 1684 * 1685 * This function is needed for suspend and resume works (e.g WoL scenario) 1686 */ 1687 static void ice_service_task_restart(struct ice_pf *pf) 1688 { 1689 clear_bit(ICE_SERVICE_DIS, pf->state); 1690 ice_service_task_schedule(pf); 1691 } 1692 1693 /** 1694 * ice_service_timer - timer callback to schedule service task 1695 * @t: pointer to timer_list 1696 */ 1697 static void ice_service_timer(struct timer_list *t) 1698 { 1699 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1700 1701 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_handle_mdd_event - handle malicious driver detect event 1707 * @pf: pointer to the PF structure 1708 * 1709 * Called from service task. OICR interrupt handler indicates MDD event. 1710 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1711 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1712 * disable the queue, the PF can be configured to reset the VF using ethtool 1713 * private flag mdd-auto-reset-vf. 1714 */ 1715 static void ice_handle_mdd_event(struct ice_pf *pf) 1716 { 1717 struct device *dev = ice_pf_to_dev(pf); 1718 struct ice_hw *hw = &pf->hw; 1719 struct ice_vf *vf; 1720 unsigned int bkt; 1721 u32 reg; 1722 1723 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1724 /* Since the VF MDD event logging is rate limited, check if 1725 * there are pending MDD events. 1726 */ 1727 ice_print_vfs_mdd_events(pf); 1728 return; 1729 } 1730 1731 /* find what triggered an MDD event */ 1732 reg = rd32(hw, GL_MDET_TX_PQM); 1733 if (reg & GL_MDET_TX_PQM_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1735 GL_MDET_TX_PQM_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1737 GL_MDET_TX_PQM_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1739 GL_MDET_TX_PQM_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1741 GL_MDET_TX_PQM_QNUM_S); 1742 1743 if (netif_msg_tx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1747 } 1748 1749 reg = rd32(hw, GL_MDET_TX_TCLAN); 1750 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1751 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1752 GL_MDET_TX_TCLAN_PF_NUM_S; 1753 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_VF_NUM_S; 1755 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1756 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1757 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1758 GL_MDET_TX_TCLAN_QNUM_S); 1759 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1762 event, queue, pf_num, vf_num); 1763 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1764 } 1765 1766 reg = rd32(hw, GL_MDET_RX); 1767 if (reg & GL_MDET_RX_VALID_M) { 1768 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1769 GL_MDET_RX_PF_NUM_S; 1770 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1771 GL_MDET_RX_VF_NUM_S; 1772 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1773 GL_MDET_RX_MAL_TYPE_S; 1774 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1775 GL_MDET_RX_QNUM_S); 1776 1777 if (netif_msg_rx_err(pf)) 1778 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1779 event, queue, pf_num, vf_num); 1780 wr32(hw, GL_MDET_RX, 0xffffffff); 1781 } 1782 1783 /* check to see if this PF caused an MDD event */ 1784 reg = rd32(hw, PF_MDET_TX_PQM); 1785 if (reg & PF_MDET_TX_PQM_VALID_M) { 1786 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_TX_TCLAN); 1792 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1793 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1796 } 1797 1798 reg = rd32(hw, PF_MDET_RX); 1799 if (reg & PF_MDET_RX_VALID_M) { 1800 wr32(hw, PF_MDET_RX, 0xFFFF); 1801 if (netif_msg_rx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1803 } 1804 1805 /* Check to see if one of the VFs caused an MDD event, and then 1806 * increment counters and set print pending 1807 */ 1808 mutex_lock(&pf->vfs.table_lock); 1809 ice_for_each_vf(pf, bkt, vf) { 1810 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1811 if (reg & VP_MDET_TX_PQM_VALID_M) { 1812 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1813 vf->mdd_tx_events.count++; 1814 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1817 vf->vf_id); 1818 } 1819 1820 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1821 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1822 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1841 if (reg & VP_MDET_RX_VALID_M) { 1842 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1843 vf->mdd_rx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1847 vf->vf_id); 1848 1849 /* Since the queue is disabled on VF Rx MDD events, the 1850 * PF can be configured to reset the VF through ethtool 1851 * private flag mdd-auto-reset-vf. 1852 */ 1853 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1854 /* VF MDD event counters will be cleared by 1855 * reset, so print the event prior to reset. 1856 */ 1857 ice_print_vf_rx_mdd_event(vf); 1858 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1859 } 1860 } 1861 } 1862 mutex_unlock(&pf->vfs.table_lock); 1863 1864 ice_print_vfs_mdd_events(pf); 1865 } 1866 1867 /** 1868 * ice_force_phys_link_state - Force the physical link state 1869 * @vsi: VSI to force the physical link state to up/down 1870 * @link_up: true/false indicates to set the physical link to up/down 1871 * 1872 * Force the physical link state by getting the current PHY capabilities from 1873 * hardware and setting the PHY config based on the determined capabilities. If 1874 * link changes a link event will be triggered because both the Enable Automatic 1875 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1876 * 1877 * Returns 0 on success, negative on failure 1878 */ 1879 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1880 { 1881 struct ice_aqc_get_phy_caps_data *pcaps; 1882 struct ice_aqc_set_phy_cfg_data *cfg; 1883 struct ice_port_info *pi; 1884 struct device *dev; 1885 int retcode; 1886 1887 if (!vsi || !vsi->port_info || !vsi->back) 1888 return -EINVAL; 1889 if (vsi->type != ICE_VSI_PF) 1890 return 0; 1891 1892 dev = ice_pf_to_dev(vsi->back); 1893 1894 pi = vsi->port_info; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1901 NULL); 1902 if (retcode) { 1903 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1904 vsi->vsi_num, retcode); 1905 retcode = -EIO; 1906 goto out; 1907 } 1908 1909 /* No change in link */ 1910 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1911 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1912 goto out; 1913 1914 /* Use the current user PHY configuration. The current user PHY 1915 * configuration is initialized during probe from PHY capabilities 1916 * software mode, and updated on set PHY configuration. 1917 */ 1918 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1919 if (!cfg) { 1920 retcode = -ENOMEM; 1921 goto out; 1922 } 1923 1924 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1925 if (link_up) 1926 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1927 else 1928 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1929 1930 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1931 if (retcode) { 1932 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1933 vsi->vsi_num, retcode); 1934 retcode = -EIO; 1935 } 1936 1937 kfree(cfg); 1938 out: 1939 kfree(pcaps); 1940 return retcode; 1941 } 1942 1943 /** 1944 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1945 * @pi: port info structure 1946 * 1947 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1948 */ 1949 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_pf *pf = pi->hw->back; 1953 int err; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1960 pcaps, NULL); 1961 1962 if (err) { 1963 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1964 goto out; 1965 } 1966 1967 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1968 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1969 1970 out: 1971 kfree(pcaps); 1972 return err; 1973 } 1974 1975 /** 1976 * ice_init_link_dflt_override - Initialize link default override 1977 * @pi: port info structure 1978 * 1979 * Initialize link default override and PHY total port shutdown during probe 1980 */ 1981 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1982 { 1983 struct ice_link_default_override_tlv *ldo; 1984 struct ice_pf *pf = pi->hw->back; 1985 1986 ldo = &pf->link_dflt_override; 1987 if (ice_get_link_default_override(ldo, pi)) 1988 return; 1989 1990 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1991 return; 1992 1993 /* Enable Total Port Shutdown (override/replace link-down-on-close 1994 * ethtool private flag) for ports with Port Disable bit set. 1995 */ 1996 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1997 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1998 } 1999 2000 /** 2001 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2002 * @pi: port info structure 2003 * 2004 * If default override is enabled, initialize the user PHY cfg speed and FEC 2005 * settings using the default override mask from the NVM. 2006 * 2007 * The PHY should only be configured with the default override settings the 2008 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2009 * is used to indicate that the user PHY cfg default override is initialized 2010 * and the PHY has not been configured with the default override settings. The 2011 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2012 * configured. 2013 * 2014 * This function should be called only if the FW doesn't support default 2015 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2016 */ 2017 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2018 { 2019 struct ice_link_default_override_tlv *ldo; 2020 struct ice_aqc_set_phy_cfg_data *cfg; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 2024 ldo = &pf->link_dflt_override; 2025 2026 /* If link default override is enabled, use to mask NVM PHY capabilities 2027 * for speed and FEC default configuration. 2028 */ 2029 cfg = &phy->curr_user_phy_cfg; 2030 2031 if (ldo->phy_type_low || ldo->phy_type_high) { 2032 cfg->phy_type_low = pf->nvm_phy_type_lo & 2033 cpu_to_le64(ldo->phy_type_low); 2034 cfg->phy_type_high = pf->nvm_phy_type_hi & 2035 cpu_to_le64(ldo->phy_type_high); 2036 } 2037 cfg->link_fec_opt = ldo->fec_options; 2038 phy->curr_user_fec_req = ICE_FEC_AUTO; 2039 2040 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2041 } 2042 2043 /** 2044 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2045 * @pi: port info structure 2046 * 2047 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2048 * mode to default. The PHY defaults are from get PHY capabilities topology 2049 * with media so call when media is first available. An error is returned if 2050 * called when media is not available. The PHY initialization completed state is 2051 * set here. 2052 * 2053 * These configurations are used when setting PHY 2054 * configuration. The user PHY configuration is updated on set PHY 2055 * configuration. Returns 0 on success, negative on failure 2056 */ 2057 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2058 { 2059 struct ice_aqc_get_phy_caps_data *pcaps; 2060 struct ice_phy_info *phy = &pi->phy; 2061 struct ice_pf *pf = pi->hw->back; 2062 int err; 2063 2064 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2065 return -EIO; 2066 2067 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2068 if (!pcaps) 2069 return -ENOMEM; 2070 2071 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2072 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2073 pcaps, NULL); 2074 else 2075 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2076 pcaps, NULL); 2077 if (err) { 2078 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2079 goto err_out; 2080 } 2081 2082 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2083 2084 /* check if lenient mode is supported and enabled */ 2085 if (ice_fw_supports_link_override(pi->hw) && 2086 !(pcaps->module_compliance_enforcement & 2087 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2088 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2089 2090 /* if the FW supports default PHY configuration mode, then the driver 2091 * does not have to apply link override settings. If not, 2092 * initialize user PHY configuration with link override values 2093 */ 2094 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2095 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2096 ice_init_phy_cfg_dflt_override(pi); 2097 goto out; 2098 } 2099 } 2100 2101 /* if link default override is not enabled, set user flow control and 2102 * FEC settings based on what get_phy_caps returned 2103 */ 2104 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2105 pcaps->link_fec_options); 2106 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2107 2108 out: 2109 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2110 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2111 err_out: 2112 kfree(pcaps); 2113 return err; 2114 } 2115 2116 /** 2117 * ice_configure_phy - configure PHY 2118 * @vsi: VSI of PHY 2119 * 2120 * Set the PHY configuration. If the current PHY configuration is the same as 2121 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2122 * configure the based get PHY capabilities for topology with media. 2123 */ 2124 static int ice_configure_phy(struct ice_vsi *vsi) 2125 { 2126 struct device *dev = ice_pf_to_dev(vsi->back); 2127 struct ice_port_info *pi = vsi->port_info; 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_aqc_set_phy_cfg_data *cfg; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = vsi->back; 2132 int err; 2133 2134 /* Ensure we have media as we cannot configure a medialess port */ 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EPERM; 2137 2138 ice_print_topo_conflict(vsi); 2139 2140 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2141 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2142 return -EPERM; 2143 2144 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2145 return ice_force_phys_link_state(vsi, true); 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 /* Get current PHY config */ 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2153 NULL); 2154 if (err) { 2155 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2156 vsi->vsi_num, err); 2157 goto done; 2158 } 2159 2160 /* If PHY enable link is configured and configuration has not changed, 2161 * there's nothing to do 2162 */ 2163 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2164 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2165 goto done; 2166 2167 /* Use PHY topology as baseline for configuration */ 2168 memset(pcaps, 0, sizeof(*pcaps)); 2169 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2170 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2171 pcaps, NULL); 2172 else 2173 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2174 pcaps, NULL); 2175 if (err) { 2176 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2177 vsi->vsi_num, err); 2178 goto done; 2179 } 2180 2181 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2182 if (!cfg) { 2183 err = -ENOMEM; 2184 goto done; 2185 } 2186 2187 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2188 2189 /* Speed - If default override pending, use curr_user_phy_cfg set in 2190 * ice_init_phy_user_cfg_ldo. 2191 */ 2192 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2193 vsi->back->state)) { 2194 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2195 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2196 } else { 2197 u64 phy_low = 0, phy_high = 0; 2198 2199 ice_update_phy_type(&phy_low, &phy_high, 2200 pi->phy.curr_user_speed_req); 2201 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2202 cfg->phy_type_high = pcaps->phy_type_high & 2203 cpu_to_le64(phy_high); 2204 } 2205 2206 /* Can't provide what was requested; use PHY capabilities */ 2207 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2208 cfg->phy_type_low = pcaps->phy_type_low; 2209 cfg->phy_type_high = pcaps->phy_type_high; 2210 } 2211 2212 /* FEC */ 2213 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2214 2215 /* Can't provide what was requested; use PHY capabilities */ 2216 if (cfg->link_fec_opt != 2217 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2218 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2219 cfg->link_fec_opt = pcaps->link_fec_options; 2220 } 2221 2222 /* Flow Control - always supported; no need to check against 2223 * capabilities 2224 */ 2225 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2226 2227 /* Enable link and link update */ 2228 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2229 2230 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2231 if (err) 2232 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 2235 kfree(cfg); 2236 done: 2237 kfree(pcaps); 2238 return err; 2239 } 2240 2241 /** 2242 * ice_check_media_subtask - Check for media 2243 * @pf: pointer to PF struct 2244 * 2245 * If media is available, then initialize PHY user configuration if it is not 2246 * been, and configure the PHY if the interface is up. 2247 */ 2248 static void ice_check_media_subtask(struct ice_pf *pf) 2249 { 2250 struct ice_port_info *pi; 2251 struct ice_vsi *vsi; 2252 int err; 2253 2254 /* No need to check for media if it's already present */ 2255 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2256 return; 2257 2258 vsi = ice_get_main_vsi(pf); 2259 if (!vsi) 2260 return; 2261 2262 /* Refresh link info and check if media is present */ 2263 pi = vsi->port_info; 2264 err = ice_update_link_info(pi); 2265 if (err) 2266 return; 2267 2268 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2269 2270 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2271 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2272 ice_init_phy_user_cfg(pi); 2273 2274 /* PHY settings are reset on media insertion, reconfigure 2275 * PHY to preserve settings. 2276 */ 2277 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2278 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2279 return; 2280 2281 err = ice_configure_phy(vsi); 2282 if (!err) 2283 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2284 2285 /* A Link Status Event will be generated; the event handler 2286 * will complete bringing the interface up 2287 */ 2288 } 2289 } 2290 2291 /** 2292 * ice_service_task - manage and run subtasks 2293 * @work: pointer to work_struct contained by the PF struct 2294 */ 2295 static void ice_service_task(struct work_struct *work) 2296 { 2297 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2298 unsigned long start_time = jiffies; 2299 2300 /* subtasks */ 2301 2302 /* process reset requests first */ 2303 ice_reset_subtask(pf); 2304 2305 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2306 if (ice_is_reset_in_progress(pf->state) || 2307 test_bit(ICE_SUSPENDED, pf->state) || 2308 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2309 ice_service_task_complete(pf); 2310 return; 2311 } 2312 2313 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2314 struct iidc_event *event; 2315 2316 event = kzalloc(sizeof(*event), GFP_KERNEL); 2317 if (event) { 2318 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2319 /* report the entire OICR value to AUX driver */ 2320 swap(event->reg, pf->oicr_err_reg); 2321 ice_send_event_to_aux(pf, event); 2322 kfree(event); 2323 } 2324 } 2325 2326 /* unplug aux dev per request, if an unplug request came in 2327 * while processing a plug request, this will handle it 2328 */ 2329 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2330 ice_unplug_aux_dev(pf); 2331 2332 /* Plug aux device per request */ 2333 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2334 ice_plug_aux_dev(pf); 2335 2336 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2337 struct iidc_event *event; 2338 2339 event = kzalloc(sizeof(*event), GFP_KERNEL); 2340 if (event) { 2341 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2342 ice_send_event_to_aux(pf, event); 2343 kfree(event); 2344 } 2345 } 2346 2347 ice_clean_adminq_subtask(pf); 2348 ice_check_media_subtask(pf); 2349 ice_check_for_hang_subtask(pf); 2350 ice_sync_fltr_subtask(pf); 2351 ice_handle_mdd_event(pf); 2352 ice_watchdog_subtask(pf); 2353 2354 if (ice_is_safe_mode(pf)) { 2355 ice_service_task_complete(pf); 2356 return; 2357 } 2358 2359 ice_process_vflr_event(pf); 2360 ice_clean_mailboxq_subtask(pf); 2361 ice_clean_sbq_subtask(pf); 2362 ice_sync_arfs_fltrs(pf); 2363 ice_flush_fdir_ctx(pf); 2364 2365 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2366 ice_service_task_complete(pf); 2367 2368 /* If the tasks have taken longer than one service timer period 2369 * or there is more work to be done, reset the service timer to 2370 * schedule the service task now. 2371 */ 2372 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2373 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2375 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2377 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2379 mod_timer(&pf->serv_tmr, jiffies); 2380 } 2381 2382 /** 2383 * ice_set_ctrlq_len - helper function to set controlq length 2384 * @hw: pointer to the HW instance 2385 */ 2386 static void ice_set_ctrlq_len(struct ice_hw *hw) 2387 { 2388 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2389 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2390 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2391 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2392 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2393 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2394 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2395 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2396 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2397 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2398 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2399 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2400 } 2401 2402 /** 2403 * ice_schedule_reset - schedule a reset 2404 * @pf: board private structure 2405 * @reset: reset being requested 2406 */ 2407 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2408 { 2409 struct device *dev = ice_pf_to_dev(pf); 2410 2411 /* bail out if earlier reset has failed */ 2412 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2413 dev_dbg(dev, "earlier reset has failed\n"); 2414 return -EIO; 2415 } 2416 /* bail if reset/recovery already in progress */ 2417 if (ice_is_reset_in_progress(pf->state)) { 2418 dev_dbg(dev, "Reset already in progress\n"); 2419 return -EBUSY; 2420 } 2421 2422 switch (reset) { 2423 case ICE_RESET_PFR: 2424 set_bit(ICE_PFR_REQ, pf->state); 2425 break; 2426 case ICE_RESET_CORER: 2427 set_bit(ICE_CORER_REQ, pf->state); 2428 break; 2429 case ICE_RESET_GLOBR: 2430 set_bit(ICE_GLOBR_REQ, pf->state); 2431 break; 2432 default: 2433 return -EINVAL; 2434 } 2435 2436 ice_service_task_schedule(pf); 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_irq_affinity_notify - Callback for affinity changes 2442 * @notify: context as to what irq was changed 2443 * @mask: the new affinity mask 2444 * 2445 * This is a callback function used by the irq_set_affinity_notifier function 2446 * so that we may register to receive changes to the irq affinity masks. 2447 */ 2448 static void 2449 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2450 const cpumask_t *mask) 2451 { 2452 struct ice_q_vector *q_vector = 2453 container_of(notify, struct ice_q_vector, affinity_notify); 2454 2455 cpumask_copy(&q_vector->affinity_mask, mask); 2456 } 2457 2458 /** 2459 * ice_irq_affinity_release - Callback for affinity notifier release 2460 * @ref: internal core kernel usage 2461 * 2462 * This is a callback function used by the irq_set_affinity_notifier function 2463 * to inform the current notification subscriber that they will no longer 2464 * receive notifications. 2465 */ 2466 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2467 2468 /** 2469 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2470 * @vsi: the VSI being configured 2471 */ 2472 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2473 { 2474 struct ice_hw *hw = &vsi->back->hw; 2475 int i; 2476 2477 ice_for_each_q_vector(vsi, i) 2478 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2479 2480 ice_flush(hw); 2481 return 0; 2482 } 2483 2484 /** 2485 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2486 * @vsi: the VSI being configured 2487 * @basename: name for the vector 2488 */ 2489 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2490 { 2491 int q_vectors = vsi->num_q_vectors; 2492 struct ice_pf *pf = vsi->back; 2493 struct device *dev; 2494 int rx_int_idx = 0; 2495 int tx_int_idx = 0; 2496 int vector, err; 2497 int irq_num; 2498 2499 dev = ice_pf_to_dev(pf); 2500 for (vector = 0; vector < q_vectors; vector++) { 2501 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2502 2503 irq_num = q_vector->irq.virq; 2504 2505 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2506 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2507 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2508 tx_int_idx++; 2509 } else if (q_vector->rx.rx_ring) { 2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2511 "%s-%s-%d", basename, "rx", rx_int_idx++); 2512 } else if (q_vector->tx.tx_ring) { 2513 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2514 "%s-%s-%d", basename, "tx", tx_int_idx++); 2515 } else { 2516 /* skip this unused q_vector */ 2517 continue; 2518 } 2519 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2520 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2521 IRQF_SHARED, q_vector->name, 2522 q_vector); 2523 else 2524 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2525 0, q_vector->name, q_vector); 2526 if (err) { 2527 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2528 err); 2529 goto free_q_irqs; 2530 } 2531 2532 /* register for affinity change notifications */ 2533 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2534 struct irq_affinity_notify *affinity_notify; 2535 2536 affinity_notify = &q_vector->affinity_notify; 2537 affinity_notify->notify = ice_irq_affinity_notify; 2538 affinity_notify->release = ice_irq_affinity_release; 2539 irq_set_affinity_notifier(irq_num, affinity_notify); 2540 } 2541 2542 /* assign the mask for this irq */ 2543 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2544 } 2545 2546 err = ice_set_cpu_rx_rmap(vsi); 2547 if (err) { 2548 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2549 vsi->vsi_num, ERR_PTR(err)); 2550 goto free_q_irqs; 2551 } 2552 2553 vsi->irqs_ready = true; 2554 return 0; 2555 2556 free_q_irqs: 2557 while (vector--) { 2558 irq_num = vsi->q_vectors[vector]->irq.virq; 2559 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2560 irq_set_affinity_notifier(irq_num, NULL); 2561 irq_set_affinity_hint(irq_num, NULL); 2562 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2563 } 2564 return err; 2565 } 2566 2567 /** 2568 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2569 * @vsi: VSI to setup Tx rings used by XDP 2570 * 2571 * Return 0 on success and negative value on error 2572 */ 2573 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2574 { 2575 struct device *dev = ice_pf_to_dev(vsi->back); 2576 struct ice_tx_desc *tx_desc; 2577 int i, j; 2578 2579 ice_for_each_xdp_txq(vsi, i) { 2580 u16 xdp_q_idx = vsi->alloc_txq + i; 2581 struct ice_ring_stats *ring_stats; 2582 struct ice_tx_ring *xdp_ring; 2583 2584 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2585 if (!xdp_ring) 2586 goto free_xdp_rings; 2587 2588 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2589 if (!ring_stats) { 2590 ice_free_tx_ring(xdp_ring); 2591 goto free_xdp_rings; 2592 } 2593 2594 xdp_ring->ring_stats = ring_stats; 2595 xdp_ring->q_index = xdp_q_idx; 2596 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2597 xdp_ring->vsi = vsi; 2598 xdp_ring->netdev = NULL; 2599 xdp_ring->dev = dev; 2600 xdp_ring->count = vsi->num_tx_desc; 2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2602 if (ice_setup_tx_ring(xdp_ring)) 2603 goto free_xdp_rings; 2604 ice_set_ring_xdp(xdp_ring); 2605 spin_lock_init(&xdp_ring->tx_lock); 2606 for (j = 0; j < xdp_ring->count; j++) { 2607 tx_desc = ICE_TX_DESC(xdp_ring, j); 2608 tx_desc->cmd_type_offset_bsz = 0; 2609 } 2610 } 2611 2612 return 0; 2613 2614 free_xdp_rings: 2615 for (; i >= 0; i--) { 2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2618 vsi->xdp_rings[i]->ring_stats = NULL; 2619 ice_free_tx_ring(vsi->xdp_rings[i]); 2620 } 2621 } 2622 return -ENOMEM; 2623 } 2624 2625 /** 2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2627 * @vsi: VSI to set the bpf prog on 2628 * @prog: the bpf prog pointer 2629 */ 2630 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2631 { 2632 struct bpf_prog *old_prog; 2633 int i; 2634 2635 old_prog = xchg(&vsi->xdp_prog, prog); 2636 ice_for_each_rxq(vsi, i) 2637 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2638 2639 if (old_prog) 2640 bpf_prog_put(old_prog); 2641 } 2642 2643 /** 2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2645 * @vsi: VSI to bring up Tx rings used by XDP 2646 * @prog: bpf program that will be assigned to VSI 2647 * 2648 * Return 0 on success and negative value on error 2649 */ 2650 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2651 { 2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2653 int xdp_rings_rem = vsi->num_xdp_txq; 2654 struct ice_pf *pf = vsi->back; 2655 struct ice_qs_cfg xdp_qs_cfg = { 2656 .qs_mutex = &pf->avail_q_mutex, 2657 .pf_map = pf->avail_txqs, 2658 .pf_map_size = pf->max_pf_txqs, 2659 .q_count = vsi->num_xdp_txq, 2660 .scatter_count = ICE_MAX_SCATTER_TXQS, 2661 .vsi_map = vsi->txq_map, 2662 .vsi_map_offset = vsi->alloc_txq, 2663 .mapping_mode = ICE_VSI_MAP_CONTIG 2664 }; 2665 struct device *dev; 2666 int i, v_idx; 2667 int status; 2668 2669 dev = ice_pf_to_dev(pf); 2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2671 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2672 if (!vsi->xdp_rings) 2673 return -ENOMEM; 2674 2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2676 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2677 goto err_map_xdp; 2678 2679 if (static_key_enabled(&ice_xdp_locking_key)) 2680 netdev_warn(vsi->netdev, 2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2682 2683 if (ice_xdp_alloc_setup_rings(vsi)) 2684 goto clear_xdp_rings; 2685 2686 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 int xdp_rings_per_v, q_id, q_base; 2690 2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2692 vsi->num_q_vectors - v_idx); 2693 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2694 2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2697 2698 xdp_ring->q_vector = q_vector; 2699 xdp_ring->next = q_vector->tx.tx_ring; 2700 q_vector->tx.tx_ring = xdp_ring; 2701 } 2702 xdp_rings_rem -= xdp_rings_per_v; 2703 } 2704 2705 ice_for_each_rxq(vsi, i) { 2706 if (static_key_enabled(&ice_xdp_locking_key)) { 2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2708 } else { 2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2710 struct ice_tx_ring *ring; 2711 2712 ice_for_each_tx_ring(ring, q_vector->tx) { 2713 if (ice_ring_is_xdp(ring)) { 2714 vsi->rx_rings[i]->xdp_ring = ring; 2715 break; 2716 } 2717 } 2718 } 2719 ice_tx_xsk_pool(vsi, i); 2720 } 2721 2722 /* omit the scheduler update if in reset path; XDP queues will be 2723 * taken into account at the end of ice_vsi_rebuild, where 2724 * ice_cfg_vsi_lan is being called 2725 */ 2726 if (ice_is_reset_in_progress(pf->state)) 2727 return 0; 2728 2729 /* tell the Tx scheduler that right now we have 2730 * additional queues 2731 */ 2732 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2734 2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 if (status) { 2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2739 status); 2740 goto clear_xdp_rings; 2741 } 2742 2743 /* assign the prog only when it's not already present on VSI; 2744 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2745 * VSI rebuild that happens under ethtool -L can expose us to 2746 * the bpf_prog refcount issues as we would be swapping same 2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2749 * this is not harmful as dev_xdp_install bumps the refcount 2750 * before calling the op exposed by the driver; 2751 */ 2752 if (!ice_is_xdp_ena_vsi(vsi)) 2753 ice_vsi_assign_bpf_prog(vsi, prog); 2754 2755 return 0; 2756 clear_xdp_rings: 2757 ice_for_each_xdp_txq(vsi, i) 2758 if (vsi->xdp_rings[i]) { 2759 kfree_rcu(vsi->xdp_rings[i], rcu); 2760 vsi->xdp_rings[i] = NULL; 2761 } 2762 2763 err_map_xdp: 2764 mutex_lock(&pf->avail_q_mutex); 2765 ice_for_each_xdp_txq(vsi, i) { 2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2768 } 2769 mutex_unlock(&pf->avail_q_mutex); 2770 2771 devm_kfree(dev, vsi->xdp_rings); 2772 return -ENOMEM; 2773 } 2774 2775 /** 2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2777 * @vsi: VSI to remove XDP rings 2778 * 2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2780 * resources 2781 */ 2782 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2783 { 2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2785 struct ice_pf *pf = vsi->back; 2786 int i, v_idx; 2787 2788 /* q_vectors are freed in reset path so there's no point in detaching 2789 * rings; in case of rebuild being triggered not from reset bits 2790 * in pf->state won't be set, so additionally check first q_vector 2791 * against NULL 2792 */ 2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2794 goto free_qmap; 2795 2796 ice_for_each_q_vector(vsi, v_idx) { 2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2798 struct ice_tx_ring *ring; 2799 2800 ice_for_each_tx_ring(ring, q_vector->tx) 2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2802 break; 2803 2804 /* restore the value of last node prior to XDP setup */ 2805 q_vector->tx.tx_ring = ring; 2806 } 2807 2808 free_qmap: 2809 mutex_lock(&pf->avail_q_mutex); 2810 ice_for_each_xdp_txq(vsi, i) { 2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2813 } 2814 mutex_unlock(&pf->avail_q_mutex); 2815 2816 ice_for_each_xdp_txq(vsi, i) 2817 if (vsi->xdp_rings[i]) { 2818 if (vsi->xdp_rings[i]->desc) { 2819 synchronize_rcu(); 2820 ice_free_tx_ring(vsi->xdp_rings[i]); 2821 } 2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2823 vsi->xdp_rings[i]->ring_stats = NULL; 2824 kfree_rcu(vsi->xdp_rings[i], rcu); 2825 vsi->xdp_rings[i] = NULL; 2826 } 2827 2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2829 vsi->xdp_rings = NULL; 2830 2831 if (static_key_enabled(&ice_xdp_locking_key)) 2832 static_branch_dec(&ice_xdp_locking_key); 2833 2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2835 return 0; 2836 2837 ice_vsi_assign_bpf_prog(vsi, NULL); 2838 2839 /* notify Tx scheduler that we destroyed XDP queues and bring 2840 * back the old number of child nodes 2841 */ 2842 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2843 max_txqs[i] = vsi->num_txq; 2844 2845 /* change number of XDP Tx queues to 0 */ 2846 vsi->num_xdp_txq = 0; 2847 2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2849 max_txqs); 2850 } 2851 2852 /** 2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2854 * @vsi: VSI to schedule napi on 2855 */ 2856 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2857 { 2858 int i; 2859 2860 ice_for_each_rxq(vsi, i) { 2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2862 2863 if (rx_ring->xsk_pool) 2864 napi_schedule(&rx_ring->q_vector->napi); 2865 } 2866 } 2867 2868 /** 2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2870 * @vsi: VSI to determine the count of XDP Tx qs 2871 * 2872 * returns 0 if Tx qs count is higher than at least half of CPU count, 2873 * -ENOMEM otherwise 2874 */ 2875 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2876 { 2877 u16 avail = ice_get_avail_txq_count(vsi->back); 2878 u16 cpus = num_possible_cpus(); 2879 2880 if (avail < cpus / 2) 2881 return -ENOMEM; 2882 2883 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2884 2885 if (vsi->num_xdp_txq < cpus) 2886 static_branch_inc(&ice_xdp_locking_key); 2887 2888 return 0; 2889 } 2890 2891 /** 2892 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2893 * @vsi: Pointer to VSI structure 2894 */ 2895 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2896 { 2897 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2898 return ICE_RXBUF_1664; 2899 else 2900 return ICE_RXBUF_3072; 2901 } 2902 2903 /** 2904 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2905 * @vsi: VSI to setup XDP for 2906 * @prog: XDP program 2907 * @extack: netlink extended ack 2908 */ 2909 static int 2910 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2911 struct netlink_ext_ack *extack) 2912 { 2913 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2914 bool if_running = netif_running(vsi->netdev); 2915 int ret = 0, xdp_ring_err = 0; 2916 2917 if (prog && !prog->aux->xdp_has_frags) { 2918 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2919 NL_SET_ERR_MSG_MOD(extack, 2920 "MTU is too large for linear frames and XDP prog does not support frags"); 2921 return -EOPNOTSUPP; 2922 } 2923 } 2924 2925 /* hot swap progs and avoid toggling link */ 2926 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2927 ice_vsi_assign_bpf_prog(vsi, prog); 2928 return 0; 2929 } 2930 2931 /* need to stop netdev while setting up the program for Rx rings */ 2932 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2933 ret = ice_down(vsi); 2934 if (ret) { 2935 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2936 return ret; 2937 } 2938 } 2939 2940 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2941 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2942 if (xdp_ring_err) { 2943 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2944 } else { 2945 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2946 if (xdp_ring_err) 2947 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2948 } 2949 xdp_features_set_redirect_target(vsi->netdev, true); 2950 /* reallocate Rx queues that are used for zero-copy */ 2951 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2952 if (xdp_ring_err) 2953 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2954 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2955 xdp_features_clear_redirect_target(vsi->netdev); 2956 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2957 if (xdp_ring_err) 2958 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2959 /* reallocate Rx queues that were used for zero-copy */ 2960 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2961 if (xdp_ring_err) 2962 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2963 } 2964 2965 if (if_running) 2966 ret = ice_up(vsi); 2967 2968 if (!ret && prog) 2969 ice_vsi_rx_napi_schedule(vsi); 2970 2971 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2972 } 2973 2974 /** 2975 * ice_xdp_safe_mode - XDP handler for safe mode 2976 * @dev: netdevice 2977 * @xdp: XDP command 2978 */ 2979 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2980 struct netdev_bpf *xdp) 2981 { 2982 NL_SET_ERR_MSG_MOD(xdp->extack, 2983 "Please provide working DDP firmware package in order to use XDP\n" 2984 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2985 return -EOPNOTSUPP; 2986 } 2987 2988 /** 2989 * ice_xdp - implements XDP handler 2990 * @dev: netdevice 2991 * @xdp: XDP command 2992 */ 2993 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2994 { 2995 struct ice_netdev_priv *np = netdev_priv(dev); 2996 struct ice_vsi *vsi = np->vsi; 2997 2998 if (vsi->type != ICE_VSI_PF) { 2999 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3000 return -EINVAL; 3001 } 3002 3003 switch (xdp->command) { 3004 case XDP_SETUP_PROG: 3005 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3006 case XDP_SETUP_XSK_POOL: 3007 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3008 xdp->xsk.queue_id); 3009 default: 3010 return -EINVAL; 3011 } 3012 } 3013 3014 /** 3015 * ice_ena_misc_vector - enable the non-queue interrupts 3016 * @pf: board private structure 3017 */ 3018 static void ice_ena_misc_vector(struct ice_pf *pf) 3019 { 3020 struct ice_hw *hw = &pf->hw; 3021 u32 val; 3022 3023 /* Disable anti-spoof detection interrupt to prevent spurious event 3024 * interrupts during a function reset. Anti-spoof functionally is 3025 * still supported. 3026 */ 3027 val = rd32(hw, GL_MDCK_TX_TDPU); 3028 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3029 wr32(hw, GL_MDCK_TX_TDPU, val); 3030 3031 /* clear things first */ 3032 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3033 rd32(hw, PFINT_OICR); /* read to clear */ 3034 3035 val = (PFINT_OICR_ECC_ERR_M | 3036 PFINT_OICR_MAL_DETECT_M | 3037 PFINT_OICR_GRST_M | 3038 PFINT_OICR_PCI_EXCEPTION_M | 3039 PFINT_OICR_VFLR_M | 3040 PFINT_OICR_HMC_ERR_M | 3041 PFINT_OICR_PE_PUSH_M | 3042 PFINT_OICR_PE_CRITERR_M); 3043 3044 wr32(hw, PFINT_OICR_ENA, val); 3045 3046 /* SW_ITR_IDX = 0, but don't change INTENA */ 3047 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3048 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3049 } 3050 3051 /** 3052 * ice_misc_intr - misc interrupt handler 3053 * @irq: interrupt number 3054 * @data: pointer to a q_vector 3055 */ 3056 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3057 { 3058 struct ice_pf *pf = (struct ice_pf *)data; 3059 struct ice_hw *hw = &pf->hw; 3060 struct device *dev; 3061 u32 oicr, ena_mask; 3062 3063 dev = ice_pf_to_dev(pf); 3064 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3065 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3066 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3067 3068 oicr = rd32(hw, PFINT_OICR); 3069 ena_mask = rd32(hw, PFINT_OICR_ENA); 3070 3071 if (oicr & PFINT_OICR_SWINT_M) { 3072 ena_mask &= ~PFINT_OICR_SWINT_M; 3073 pf->sw_int_count++; 3074 } 3075 3076 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3077 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3078 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3079 } 3080 if (oicr & PFINT_OICR_VFLR_M) { 3081 /* disable any further VFLR event notifications */ 3082 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3083 u32 reg = rd32(hw, PFINT_OICR_ENA); 3084 3085 reg &= ~PFINT_OICR_VFLR_M; 3086 wr32(hw, PFINT_OICR_ENA, reg); 3087 } else { 3088 ena_mask &= ~PFINT_OICR_VFLR_M; 3089 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3090 } 3091 } 3092 3093 if (oicr & PFINT_OICR_GRST_M) { 3094 u32 reset; 3095 3096 /* we have a reset warning */ 3097 ena_mask &= ~PFINT_OICR_GRST_M; 3098 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3099 GLGEN_RSTAT_RESET_TYPE_S; 3100 3101 if (reset == ICE_RESET_CORER) 3102 pf->corer_count++; 3103 else if (reset == ICE_RESET_GLOBR) 3104 pf->globr_count++; 3105 else if (reset == ICE_RESET_EMPR) 3106 pf->empr_count++; 3107 else 3108 dev_dbg(dev, "Invalid reset type %d\n", reset); 3109 3110 /* If a reset cycle isn't already in progress, we set a bit in 3111 * pf->state so that the service task can start a reset/rebuild. 3112 */ 3113 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3114 if (reset == ICE_RESET_CORER) 3115 set_bit(ICE_CORER_RECV, pf->state); 3116 else if (reset == ICE_RESET_GLOBR) 3117 set_bit(ICE_GLOBR_RECV, pf->state); 3118 else 3119 set_bit(ICE_EMPR_RECV, pf->state); 3120 3121 /* There are couple of different bits at play here. 3122 * hw->reset_ongoing indicates whether the hardware is 3123 * in reset. This is set to true when a reset interrupt 3124 * is received and set back to false after the driver 3125 * has determined that the hardware is out of reset. 3126 * 3127 * ICE_RESET_OICR_RECV in pf->state indicates 3128 * that a post reset rebuild is required before the 3129 * driver is operational again. This is set above. 3130 * 3131 * As this is the start of the reset/rebuild cycle, set 3132 * both to indicate that. 3133 */ 3134 hw->reset_ongoing = true; 3135 } 3136 } 3137 3138 if (oicr & PFINT_OICR_TSYN_TX_M) { 3139 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3140 if (!hw->reset_ongoing) 3141 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3142 } 3143 3144 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3145 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3146 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3147 3148 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3149 3150 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3151 /* Save EVENTs from GLTSYN register */ 3152 pf->ptp.ext_ts_irq |= gltsyn_stat & 3153 (GLTSYN_STAT_EVENT0_M | 3154 GLTSYN_STAT_EVENT1_M | 3155 GLTSYN_STAT_EVENT2_M); 3156 3157 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3158 } 3159 } 3160 3161 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3162 if (oicr & ICE_AUX_CRIT_ERR) { 3163 pf->oicr_err_reg |= oicr; 3164 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3165 ena_mask &= ~ICE_AUX_CRIT_ERR; 3166 } 3167 3168 /* Report any remaining unexpected interrupts */ 3169 oicr &= ena_mask; 3170 if (oicr) { 3171 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3172 /* If a critical error is pending there is no choice but to 3173 * reset the device. 3174 */ 3175 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3176 PFINT_OICR_ECC_ERR_M)) { 3177 set_bit(ICE_PFR_REQ, pf->state); 3178 } 3179 } 3180 3181 return IRQ_WAKE_THREAD; 3182 } 3183 3184 /** 3185 * ice_misc_intr_thread_fn - misc interrupt thread function 3186 * @irq: interrupt number 3187 * @data: pointer to a q_vector 3188 */ 3189 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3190 { 3191 struct ice_pf *pf = data; 3192 struct ice_hw *hw; 3193 3194 hw = &pf->hw; 3195 3196 if (ice_is_reset_in_progress(pf->state)) 3197 return IRQ_HANDLED; 3198 3199 ice_service_task_schedule(pf); 3200 3201 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3202 ice_ptp_extts_event(pf); 3203 3204 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3205 /* Process outstanding Tx timestamps. If there is more work, 3206 * re-arm the interrupt to trigger again. 3207 */ 3208 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3209 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3210 ice_flush(hw); 3211 } 3212 } 3213 3214 ice_irq_dynamic_ena(hw, NULL, NULL); 3215 3216 return IRQ_HANDLED; 3217 } 3218 3219 /** 3220 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3221 * @hw: pointer to HW structure 3222 */ 3223 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3224 { 3225 /* disable Admin queue Interrupt causes */ 3226 wr32(hw, PFINT_FW_CTL, 3227 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3228 3229 /* disable Mailbox queue Interrupt causes */ 3230 wr32(hw, PFINT_MBX_CTL, 3231 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3232 3233 wr32(hw, PFINT_SB_CTL, 3234 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3235 3236 /* disable Control queue Interrupt causes */ 3237 wr32(hw, PFINT_OICR_CTL, 3238 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3239 3240 ice_flush(hw); 3241 } 3242 3243 /** 3244 * ice_free_irq_msix_misc - Unroll misc vector setup 3245 * @pf: board private structure 3246 */ 3247 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3248 { 3249 int misc_irq_num = pf->oicr_irq.virq; 3250 struct ice_hw *hw = &pf->hw; 3251 3252 ice_dis_ctrlq_interrupts(hw); 3253 3254 /* disable OICR interrupt */ 3255 wr32(hw, PFINT_OICR_ENA, 0); 3256 ice_flush(hw); 3257 3258 synchronize_irq(misc_irq_num); 3259 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3260 3261 ice_free_irq(pf, pf->oicr_irq); 3262 } 3263 3264 /** 3265 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3266 * @hw: pointer to HW structure 3267 * @reg_idx: HW vector index to associate the control queue interrupts with 3268 */ 3269 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3270 { 3271 u32 val; 3272 3273 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3274 PFINT_OICR_CTL_CAUSE_ENA_M); 3275 wr32(hw, PFINT_OICR_CTL, val); 3276 3277 /* enable Admin queue Interrupt causes */ 3278 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3279 PFINT_FW_CTL_CAUSE_ENA_M); 3280 wr32(hw, PFINT_FW_CTL, val); 3281 3282 /* enable Mailbox queue Interrupt causes */ 3283 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3284 PFINT_MBX_CTL_CAUSE_ENA_M); 3285 wr32(hw, PFINT_MBX_CTL, val); 3286 3287 /* This enables Sideband queue Interrupt causes */ 3288 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3289 PFINT_SB_CTL_CAUSE_ENA_M); 3290 wr32(hw, PFINT_SB_CTL, val); 3291 3292 ice_flush(hw); 3293 } 3294 3295 /** 3296 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3297 * @pf: board private structure 3298 * 3299 * This sets up the handler for MSIX 0, which is used to manage the 3300 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3301 * when in MSI or Legacy interrupt mode. 3302 */ 3303 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3304 { 3305 struct device *dev = ice_pf_to_dev(pf); 3306 struct ice_hw *hw = &pf->hw; 3307 struct msi_map oicr_irq; 3308 int err = 0; 3309 3310 if (!pf->int_name[0]) 3311 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3312 dev_driver_string(dev), dev_name(dev)); 3313 3314 /* Do not request IRQ but do enable OICR interrupt since settings are 3315 * lost during reset. Note that this function is called only during 3316 * rebuild path and not while reset is in progress. 3317 */ 3318 if (ice_is_reset_in_progress(pf->state)) 3319 goto skip_req_irq; 3320 3321 /* reserve one vector in irq_tracker for misc interrupts */ 3322 oicr_irq = ice_alloc_irq(pf, false); 3323 if (oicr_irq.index < 0) 3324 return oicr_irq.index; 3325 3326 pf->oicr_irq = oicr_irq; 3327 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3328 ice_misc_intr_thread_fn, 0, 3329 pf->int_name, pf); 3330 if (err) { 3331 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3332 pf->int_name, err); 3333 ice_free_irq(pf, pf->oicr_irq); 3334 return err; 3335 } 3336 3337 skip_req_irq: 3338 ice_ena_misc_vector(pf); 3339 3340 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3341 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3342 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3343 3344 ice_flush(hw); 3345 ice_irq_dynamic_ena(hw, NULL, NULL); 3346 3347 return 0; 3348 } 3349 3350 /** 3351 * ice_napi_add - register NAPI handler for the VSI 3352 * @vsi: VSI for which NAPI handler is to be registered 3353 * 3354 * This function is only called in the driver's load path. Registering the NAPI 3355 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3356 * reset/rebuild, etc.) 3357 */ 3358 static void ice_napi_add(struct ice_vsi *vsi) 3359 { 3360 int v_idx; 3361 3362 if (!vsi->netdev) 3363 return; 3364 3365 ice_for_each_q_vector(vsi, v_idx) 3366 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3367 ice_napi_poll); 3368 } 3369 3370 /** 3371 * ice_set_ops - set netdev and ethtools ops for the given netdev 3372 * @vsi: the VSI associated with the new netdev 3373 */ 3374 static void ice_set_ops(struct ice_vsi *vsi) 3375 { 3376 struct net_device *netdev = vsi->netdev; 3377 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3378 3379 if (ice_is_safe_mode(pf)) { 3380 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3381 ice_set_ethtool_safe_mode_ops(netdev); 3382 return; 3383 } 3384 3385 netdev->netdev_ops = &ice_netdev_ops; 3386 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3387 ice_set_ethtool_ops(netdev); 3388 3389 if (vsi->type != ICE_VSI_PF) 3390 return; 3391 3392 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3393 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3394 NETDEV_XDP_ACT_RX_SG; 3395 } 3396 3397 /** 3398 * ice_set_netdev_features - set features for the given netdev 3399 * @netdev: netdev instance 3400 */ 3401 static void ice_set_netdev_features(struct net_device *netdev) 3402 { 3403 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3404 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3405 netdev_features_t csumo_features; 3406 netdev_features_t vlano_features; 3407 netdev_features_t dflt_features; 3408 netdev_features_t tso_features; 3409 3410 if (ice_is_safe_mode(pf)) { 3411 /* safe mode */ 3412 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3413 netdev->hw_features = netdev->features; 3414 return; 3415 } 3416 3417 dflt_features = NETIF_F_SG | 3418 NETIF_F_HIGHDMA | 3419 NETIF_F_NTUPLE | 3420 NETIF_F_RXHASH; 3421 3422 csumo_features = NETIF_F_RXCSUM | 3423 NETIF_F_IP_CSUM | 3424 NETIF_F_SCTP_CRC | 3425 NETIF_F_IPV6_CSUM; 3426 3427 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3428 NETIF_F_HW_VLAN_CTAG_TX | 3429 NETIF_F_HW_VLAN_CTAG_RX; 3430 3431 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3432 if (is_dvm_ena) 3433 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3434 3435 tso_features = NETIF_F_TSO | 3436 NETIF_F_TSO_ECN | 3437 NETIF_F_TSO6 | 3438 NETIF_F_GSO_GRE | 3439 NETIF_F_GSO_UDP_TUNNEL | 3440 NETIF_F_GSO_GRE_CSUM | 3441 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3442 NETIF_F_GSO_PARTIAL | 3443 NETIF_F_GSO_IPXIP4 | 3444 NETIF_F_GSO_IPXIP6 | 3445 NETIF_F_GSO_UDP_L4; 3446 3447 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3448 NETIF_F_GSO_GRE_CSUM; 3449 /* set features that user can change */ 3450 netdev->hw_features = dflt_features | csumo_features | 3451 vlano_features | tso_features; 3452 3453 /* add support for HW_CSUM on packets with MPLS header */ 3454 netdev->mpls_features = NETIF_F_HW_CSUM | 3455 NETIF_F_TSO | 3456 NETIF_F_TSO6; 3457 3458 /* enable features */ 3459 netdev->features |= netdev->hw_features; 3460 3461 netdev->hw_features |= NETIF_F_HW_TC; 3462 netdev->hw_features |= NETIF_F_LOOPBACK; 3463 3464 /* encap and VLAN devices inherit default, csumo and tso features */ 3465 netdev->hw_enc_features |= dflt_features | csumo_features | 3466 tso_features; 3467 netdev->vlan_features |= dflt_features | csumo_features | 3468 tso_features; 3469 3470 /* advertise support but don't enable by default since only one type of 3471 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3472 * type turns on the other has to be turned off. This is enforced by the 3473 * ice_fix_features() ndo callback. 3474 */ 3475 if (is_dvm_ena) 3476 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3477 NETIF_F_HW_VLAN_STAG_TX; 3478 3479 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3480 * be changed at runtime 3481 */ 3482 netdev->hw_features |= NETIF_F_RXFCS; 3483 3484 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3485 } 3486 3487 /** 3488 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3489 * @lut: Lookup table 3490 * @rss_table_size: Lookup table size 3491 * @rss_size: Range of queue number for hashing 3492 */ 3493 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3494 { 3495 u16 i; 3496 3497 for (i = 0; i < rss_table_size; i++) 3498 lut[i] = i % rss_size; 3499 } 3500 3501 /** 3502 * ice_pf_vsi_setup - Set up a PF VSI 3503 * @pf: board private structure 3504 * @pi: pointer to the port_info instance 3505 * 3506 * Returns pointer to the successfully allocated VSI software struct 3507 * on success, otherwise returns NULL on failure. 3508 */ 3509 static struct ice_vsi * 3510 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3511 { 3512 struct ice_vsi_cfg_params params = {}; 3513 3514 params.type = ICE_VSI_PF; 3515 params.pi = pi; 3516 params.flags = ICE_VSI_FLAG_INIT; 3517 3518 return ice_vsi_setup(pf, ¶ms); 3519 } 3520 3521 static struct ice_vsi * 3522 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3523 struct ice_channel *ch) 3524 { 3525 struct ice_vsi_cfg_params params = {}; 3526 3527 params.type = ICE_VSI_CHNL; 3528 params.pi = pi; 3529 params.ch = ch; 3530 params.flags = ICE_VSI_FLAG_INIT; 3531 3532 return ice_vsi_setup(pf, ¶ms); 3533 } 3534 3535 /** 3536 * ice_ctrl_vsi_setup - Set up a control VSI 3537 * @pf: board private structure 3538 * @pi: pointer to the port_info instance 3539 * 3540 * Returns pointer to the successfully allocated VSI software struct 3541 * on success, otherwise returns NULL on failure. 3542 */ 3543 static struct ice_vsi * 3544 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3545 { 3546 struct ice_vsi_cfg_params params = {}; 3547 3548 params.type = ICE_VSI_CTRL; 3549 params.pi = pi; 3550 params.flags = ICE_VSI_FLAG_INIT; 3551 3552 return ice_vsi_setup(pf, ¶ms); 3553 } 3554 3555 /** 3556 * ice_lb_vsi_setup - Set up a loopback VSI 3557 * @pf: board private structure 3558 * @pi: pointer to the port_info instance 3559 * 3560 * Returns pointer to the successfully allocated VSI software struct 3561 * on success, otherwise returns NULL on failure. 3562 */ 3563 struct ice_vsi * 3564 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3565 { 3566 struct ice_vsi_cfg_params params = {}; 3567 3568 params.type = ICE_VSI_LB; 3569 params.pi = pi; 3570 params.flags = ICE_VSI_FLAG_INIT; 3571 3572 return ice_vsi_setup(pf, ¶ms); 3573 } 3574 3575 /** 3576 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3577 * @netdev: network interface to be adjusted 3578 * @proto: VLAN TPID 3579 * @vid: VLAN ID to be added 3580 * 3581 * net_device_ops implementation for adding VLAN IDs 3582 */ 3583 static int 3584 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3585 { 3586 struct ice_netdev_priv *np = netdev_priv(netdev); 3587 struct ice_vsi_vlan_ops *vlan_ops; 3588 struct ice_vsi *vsi = np->vsi; 3589 struct ice_vlan vlan; 3590 int ret; 3591 3592 /* VLAN 0 is added by default during load/reset */ 3593 if (!vid) 3594 return 0; 3595 3596 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3597 usleep_range(1000, 2000); 3598 3599 /* Add multicast promisc rule for the VLAN ID to be added if 3600 * all-multicast is currently enabled. 3601 */ 3602 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3603 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3604 ICE_MCAST_VLAN_PROMISC_BITS, 3605 vid); 3606 if (ret) 3607 goto finish; 3608 } 3609 3610 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3611 3612 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3613 * packets aren't pruned by the device's internal switch on Rx 3614 */ 3615 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3616 ret = vlan_ops->add_vlan(vsi, &vlan); 3617 if (ret) 3618 goto finish; 3619 3620 /* If all-multicast is currently enabled and this VLAN ID is only one 3621 * besides VLAN-0 we have to update look-up type of multicast promisc 3622 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3623 */ 3624 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3625 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3626 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3627 ICE_MCAST_PROMISC_BITS, 0); 3628 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3629 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3630 } 3631 3632 finish: 3633 clear_bit(ICE_CFG_BUSY, vsi->state); 3634 3635 return ret; 3636 } 3637 3638 /** 3639 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3640 * @netdev: network interface to be adjusted 3641 * @proto: VLAN TPID 3642 * @vid: VLAN ID to be removed 3643 * 3644 * net_device_ops implementation for removing VLAN IDs 3645 */ 3646 static int 3647 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3648 { 3649 struct ice_netdev_priv *np = netdev_priv(netdev); 3650 struct ice_vsi_vlan_ops *vlan_ops; 3651 struct ice_vsi *vsi = np->vsi; 3652 struct ice_vlan vlan; 3653 int ret; 3654 3655 /* don't allow removal of VLAN 0 */ 3656 if (!vid) 3657 return 0; 3658 3659 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3660 usleep_range(1000, 2000); 3661 3662 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3663 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3664 if (ret) { 3665 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3666 vsi->vsi_num); 3667 vsi->current_netdev_flags |= IFF_ALLMULTI; 3668 } 3669 3670 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3671 3672 /* Make sure VLAN delete is successful before updating VLAN 3673 * information 3674 */ 3675 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3676 ret = vlan_ops->del_vlan(vsi, &vlan); 3677 if (ret) 3678 goto finish; 3679 3680 /* Remove multicast promisc rule for the removed VLAN ID if 3681 * all-multicast is enabled. 3682 */ 3683 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3684 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3685 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3686 3687 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3688 /* Update look-up type of multicast promisc rule for VLAN 0 3689 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3690 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3691 */ 3692 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3693 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3694 ICE_MCAST_VLAN_PROMISC_BITS, 3695 0); 3696 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3697 ICE_MCAST_PROMISC_BITS, 0); 3698 } 3699 } 3700 3701 finish: 3702 clear_bit(ICE_CFG_BUSY, vsi->state); 3703 3704 return ret; 3705 } 3706 3707 /** 3708 * ice_rep_indr_tc_block_unbind 3709 * @cb_priv: indirection block private data 3710 */ 3711 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3712 { 3713 struct ice_indr_block_priv *indr_priv = cb_priv; 3714 3715 list_del(&indr_priv->list); 3716 kfree(indr_priv); 3717 } 3718 3719 /** 3720 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3721 * @vsi: VSI struct which has the netdev 3722 */ 3723 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3724 { 3725 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3726 3727 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3728 ice_rep_indr_tc_block_unbind); 3729 } 3730 3731 /** 3732 * ice_tc_indir_block_register - Register TC indirect block notifications 3733 * @vsi: VSI struct which has the netdev 3734 * 3735 * Returns 0 on success, negative value on failure 3736 */ 3737 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3738 { 3739 struct ice_netdev_priv *np; 3740 3741 if (!vsi || !vsi->netdev) 3742 return -EINVAL; 3743 3744 np = netdev_priv(vsi->netdev); 3745 3746 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3747 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3748 } 3749 3750 /** 3751 * ice_get_avail_q_count - Get count of queues in use 3752 * @pf_qmap: bitmap to get queue use count from 3753 * @lock: pointer to a mutex that protects access to pf_qmap 3754 * @size: size of the bitmap 3755 */ 3756 static u16 3757 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3758 { 3759 unsigned long bit; 3760 u16 count = 0; 3761 3762 mutex_lock(lock); 3763 for_each_clear_bit(bit, pf_qmap, size) 3764 count++; 3765 mutex_unlock(lock); 3766 3767 return count; 3768 } 3769 3770 /** 3771 * ice_get_avail_txq_count - Get count of Tx queues in use 3772 * @pf: pointer to an ice_pf instance 3773 */ 3774 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3775 { 3776 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3777 pf->max_pf_txqs); 3778 } 3779 3780 /** 3781 * ice_get_avail_rxq_count - Get count of Rx queues in use 3782 * @pf: pointer to an ice_pf instance 3783 */ 3784 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3785 { 3786 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3787 pf->max_pf_rxqs); 3788 } 3789 3790 /** 3791 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3792 * @pf: board private structure to initialize 3793 */ 3794 static void ice_deinit_pf(struct ice_pf *pf) 3795 { 3796 ice_service_task_stop(pf); 3797 mutex_destroy(&pf->adev_mutex); 3798 mutex_destroy(&pf->sw_mutex); 3799 mutex_destroy(&pf->tc_mutex); 3800 mutex_destroy(&pf->avail_q_mutex); 3801 mutex_destroy(&pf->vfs.table_lock); 3802 3803 if (pf->avail_txqs) { 3804 bitmap_free(pf->avail_txqs); 3805 pf->avail_txqs = NULL; 3806 } 3807 3808 if (pf->avail_rxqs) { 3809 bitmap_free(pf->avail_rxqs); 3810 pf->avail_rxqs = NULL; 3811 } 3812 3813 if (pf->ptp.clock) 3814 ptp_clock_unregister(pf->ptp.clock); 3815 } 3816 3817 /** 3818 * ice_set_pf_caps - set PFs capability flags 3819 * @pf: pointer to the PF instance 3820 */ 3821 static void ice_set_pf_caps(struct ice_pf *pf) 3822 { 3823 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3824 3825 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3826 if (func_caps->common_cap.rdma) 3827 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3828 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3829 if (func_caps->common_cap.dcb) 3830 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3831 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3832 if (func_caps->common_cap.sr_iov_1_1) { 3833 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3834 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3835 ICE_MAX_SRIOV_VFS); 3836 } 3837 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3838 if (func_caps->common_cap.rss_table_size) 3839 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3840 3841 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3842 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3843 u16 unused; 3844 3845 /* ctrl_vsi_idx will be set to a valid value when flow director 3846 * is setup by ice_init_fdir 3847 */ 3848 pf->ctrl_vsi_idx = ICE_NO_VSI; 3849 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3850 /* force guaranteed filter pool for PF */ 3851 ice_alloc_fd_guar_item(&pf->hw, &unused, 3852 func_caps->fd_fltr_guar); 3853 /* force shared filter pool for PF */ 3854 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3855 func_caps->fd_fltr_best_effort); 3856 } 3857 3858 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3859 if (func_caps->common_cap.ieee_1588) 3860 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3861 3862 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3863 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3864 } 3865 3866 /** 3867 * ice_init_pf - Initialize general software structures (struct ice_pf) 3868 * @pf: board private structure to initialize 3869 */ 3870 static int ice_init_pf(struct ice_pf *pf) 3871 { 3872 ice_set_pf_caps(pf); 3873 3874 mutex_init(&pf->sw_mutex); 3875 mutex_init(&pf->tc_mutex); 3876 mutex_init(&pf->adev_mutex); 3877 3878 INIT_HLIST_HEAD(&pf->aq_wait_list); 3879 spin_lock_init(&pf->aq_wait_lock); 3880 init_waitqueue_head(&pf->aq_wait_queue); 3881 3882 init_waitqueue_head(&pf->reset_wait_queue); 3883 3884 /* setup service timer and periodic service task */ 3885 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3886 pf->serv_tmr_period = HZ; 3887 INIT_WORK(&pf->serv_task, ice_service_task); 3888 clear_bit(ICE_SERVICE_SCHED, pf->state); 3889 3890 mutex_init(&pf->avail_q_mutex); 3891 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3892 if (!pf->avail_txqs) 3893 return -ENOMEM; 3894 3895 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3896 if (!pf->avail_rxqs) { 3897 bitmap_free(pf->avail_txqs); 3898 pf->avail_txqs = NULL; 3899 return -ENOMEM; 3900 } 3901 3902 mutex_init(&pf->vfs.table_lock); 3903 hash_init(pf->vfs.table); 3904 ice_mbx_init_snapshot(&pf->hw); 3905 3906 return 0; 3907 } 3908 3909 /** 3910 * ice_is_wol_supported - check if WoL is supported 3911 * @hw: pointer to hardware info 3912 * 3913 * Check if WoL is supported based on the HW configuration. 3914 * Returns true if NVM supports and enables WoL for this port, false otherwise 3915 */ 3916 bool ice_is_wol_supported(struct ice_hw *hw) 3917 { 3918 u16 wol_ctrl; 3919 3920 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3921 * word) indicates WoL is not supported on the corresponding PF ID. 3922 */ 3923 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3924 return false; 3925 3926 return !(BIT(hw->port_info->lport) & wol_ctrl); 3927 } 3928 3929 /** 3930 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3931 * @vsi: VSI being changed 3932 * @new_rx: new number of Rx queues 3933 * @new_tx: new number of Tx queues 3934 * @locked: is adev device_lock held 3935 * 3936 * Only change the number of queues if new_tx, or new_rx is non-0. 3937 * 3938 * Returns 0 on success. 3939 */ 3940 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3941 { 3942 struct ice_pf *pf = vsi->back; 3943 int err = 0, timeout = 50; 3944 3945 if (!new_rx && !new_tx) 3946 return -EINVAL; 3947 3948 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3949 timeout--; 3950 if (!timeout) 3951 return -EBUSY; 3952 usleep_range(1000, 2000); 3953 } 3954 3955 if (new_tx) 3956 vsi->req_txq = (u16)new_tx; 3957 if (new_rx) 3958 vsi->req_rxq = (u16)new_rx; 3959 3960 /* set for the next time the netdev is started */ 3961 if (!netif_running(vsi->netdev)) { 3962 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3963 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3964 goto done; 3965 } 3966 3967 ice_vsi_close(vsi); 3968 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3969 ice_pf_dcb_recfg(pf, locked); 3970 ice_vsi_open(vsi); 3971 done: 3972 clear_bit(ICE_CFG_BUSY, pf->state); 3973 return err; 3974 } 3975 3976 /** 3977 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3978 * @pf: PF to configure 3979 * 3980 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3981 * VSI can still Tx/Rx VLAN tagged packets. 3982 */ 3983 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3984 { 3985 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3986 struct ice_vsi_ctx *ctxt; 3987 struct ice_hw *hw; 3988 int status; 3989 3990 if (!vsi) 3991 return; 3992 3993 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3994 if (!ctxt) 3995 return; 3996 3997 hw = &pf->hw; 3998 ctxt->info = vsi->info; 3999 4000 ctxt->info.valid_sections = 4001 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4002 ICE_AQ_VSI_PROP_SECURITY_VALID | 4003 ICE_AQ_VSI_PROP_SW_VALID); 4004 4005 /* disable VLAN anti-spoof */ 4006 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4007 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4008 4009 /* disable VLAN pruning and keep all other settings */ 4010 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4011 4012 /* allow all VLANs on Tx and don't strip on Rx */ 4013 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4014 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4015 4016 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4017 if (status) { 4018 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4019 status, ice_aq_str(hw->adminq.sq_last_status)); 4020 } else { 4021 vsi->info.sec_flags = ctxt->info.sec_flags; 4022 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4023 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4024 } 4025 4026 kfree(ctxt); 4027 } 4028 4029 /** 4030 * ice_log_pkg_init - log result of DDP package load 4031 * @hw: pointer to hardware info 4032 * @state: state of package load 4033 */ 4034 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4035 { 4036 struct ice_pf *pf = hw->back; 4037 struct device *dev; 4038 4039 dev = ice_pf_to_dev(pf); 4040 4041 switch (state) { 4042 case ICE_DDP_PKG_SUCCESS: 4043 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4044 hw->active_pkg_name, 4045 hw->active_pkg_ver.major, 4046 hw->active_pkg_ver.minor, 4047 hw->active_pkg_ver.update, 4048 hw->active_pkg_ver.draft); 4049 break; 4050 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4051 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4052 hw->active_pkg_name, 4053 hw->active_pkg_ver.major, 4054 hw->active_pkg_ver.minor, 4055 hw->active_pkg_ver.update, 4056 hw->active_pkg_ver.draft); 4057 break; 4058 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4059 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4060 hw->active_pkg_name, 4061 hw->active_pkg_ver.major, 4062 hw->active_pkg_ver.minor, 4063 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4064 break; 4065 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4066 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4067 hw->active_pkg_name, 4068 hw->active_pkg_ver.major, 4069 hw->active_pkg_ver.minor, 4070 hw->active_pkg_ver.update, 4071 hw->active_pkg_ver.draft, 4072 hw->pkg_name, 4073 hw->pkg_ver.major, 4074 hw->pkg_ver.minor, 4075 hw->pkg_ver.update, 4076 hw->pkg_ver.draft); 4077 break; 4078 case ICE_DDP_PKG_FW_MISMATCH: 4079 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4080 break; 4081 case ICE_DDP_PKG_INVALID_FILE: 4082 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4083 break; 4084 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4085 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4086 break; 4087 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4088 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4089 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4090 break; 4091 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4092 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4093 break; 4094 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4095 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4096 break; 4097 case ICE_DDP_PKG_LOAD_ERROR: 4098 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4099 /* poll for reset to complete */ 4100 if (ice_check_reset(hw)) 4101 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4102 break; 4103 case ICE_DDP_PKG_ERR: 4104 default: 4105 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4106 break; 4107 } 4108 } 4109 4110 /** 4111 * ice_load_pkg - load/reload the DDP Package file 4112 * @firmware: firmware structure when firmware requested or NULL for reload 4113 * @pf: pointer to the PF instance 4114 * 4115 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4116 * initialize HW tables. 4117 */ 4118 static void 4119 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4120 { 4121 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4122 struct device *dev = ice_pf_to_dev(pf); 4123 struct ice_hw *hw = &pf->hw; 4124 4125 /* Load DDP Package */ 4126 if (firmware && !hw->pkg_copy) { 4127 state = ice_copy_and_init_pkg(hw, firmware->data, 4128 firmware->size); 4129 ice_log_pkg_init(hw, state); 4130 } else if (!firmware && hw->pkg_copy) { 4131 /* Reload package during rebuild after CORER/GLOBR reset */ 4132 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4133 ice_log_pkg_init(hw, state); 4134 } else { 4135 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4136 } 4137 4138 if (!ice_is_init_pkg_successful(state)) { 4139 /* Safe Mode */ 4140 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4141 return; 4142 } 4143 4144 /* Successful download package is the precondition for advanced 4145 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4146 */ 4147 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4148 } 4149 4150 /** 4151 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4152 * @pf: pointer to the PF structure 4153 * 4154 * There is no error returned here because the driver should be able to handle 4155 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4156 * specifically with Tx. 4157 */ 4158 static void ice_verify_cacheline_size(struct ice_pf *pf) 4159 { 4160 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4161 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4162 ICE_CACHE_LINE_BYTES); 4163 } 4164 4165 /** 4166 * ice_send_version - update firmware with driver version 4167 * @pf: PF struct 4168 * 4169 * Returns 0 on success, else error code 4170 */ 4171 static int ice_send_version(struct ice_pf *pf) 4172 { 4173 struct ice_driver_ver dv; 4174 4175 dv.major_ver = 0xff; 4176 dv.minor_ver = 0xff; 4177 dv.build_ver = 0xff; 4178 dv.subbuild_ver = 0; 4179 strscpy((char *)dv.driver_string, UTS_RELEASE, 4180 sizeof(dv.driver_string)); 4181 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4182 } 4183 4184 /** 4185 * ice_init_fdir - Initialize flow director VSI and configuration 4186 * @pf: pointer to the PF instance 4187 * 4188 * returns 0 on success, negative on error 4189 */ 4190 static int ice_init_fdir(struct ice_pf *pf) 4191 { 4192 struct device *dev = ice_pf_to_dev(pf); 4193 struct ice_vsi *ctrl_vsi; 4194 int err; 4195 4196 /* Side Band Flow Director needs to have a control VSI. 4197 * Allocate it and store it in the PF. 4198 */ 4199 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4200 if (!ctrl_vsi) { 4201 dev_dbg(dev, "could not create control VSI\n"); 4202 return -ENOMEM; 4203 } 4204 4205 err = ice_vsi_open_ctrl(ctrl_vsi); 4206 if (err) { 4207 dev_dbg(dev, "could not open control VSI\n"); 4208 goto err_vsi_open; 4209 } 4210 4211 mutex_init(&pf->hw.fdir_fltr_lock); 4212 4213 err = ice_fdir_create_dflt_rules(pf); 4214 if (err) 4215 goto err_fdir_rule; 4216 4217 return 0; 4218 4219 err_fdir_rule: 4220 ice_fdir_release_flows(&pf->hw); 4221 ice_vsi_close(ctrl_vsi); 4222 err_vsi_open: 4223 ice_vsi_release(ctrl_vsi); 4224 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4225 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4226 pf->ctrl_vsi_idx = ICE_NO_VSI; 4227 } 4228 return err; 4229 } 4230 4231 static void ice_deinit_fdir(struct ice_pf *pf) 4232 { 4233 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4234 4235 if (!vsi) 4236 return; 4237 4238 ice_vsi_manage_fdir(vsi, false); 4239 ice_vsi_release(vsi); 4240 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4241 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4242 pf->ctrl_vsi_idx = ICE_NO_VSI; 4243 } 4244 4245 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4246 } 4247 4248 /** 4249 * ice_get_opt_fw_name - return optional firmware file name or NULL 4250 * @pf: pointer to the PF instance 4251 */ 4252 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4253 { 4254 /* Optional firmware name same as default with additional dash 4255 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4256 */ 4257 struct pci_dev *pdev = pf->pdev; 4258 char *opt_fw_filename; 4259 u64 dsn; 4260 4261 /* Determine the name of the optional file using the DSN (two 4262 * dwords following the start of the DSN Capability). 4263 */ 4264 dsn = pci_get_dsn(pdev); 4265 if (!dsn) 4266 return NULL; 4267 4268 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4269 if (!opt_fw_filename) 4270 return NULL; 4271 4272 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4273 ICE_DDP_PKG_PATH, dsn); 4274 4275 return opt_fw_filename; 4276 } 4277 4278 /** 4279 * ice_request_fw - Device initialization routine 4280 * @pf: pointer to the PF instance 4281 */ 4282 static void ice_request_fw(struct ice_pf *pf) 4283 { 4284 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4285 const struct firmware *firmware = NULL; 4286 struct device *dev = ice_pf_to_dev(pf); 4287 int err = 0; 4288 4289 /* optional device-specific DDP (if present) overrides the default DDP 4290 * package file. kernel logs a debug message if the file doesn't exist, 4291 * and warning messages for other errors. 4292 */ 4293 if (opt_fw_filename) { 4294 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4295 if (err) { 4296 kfree(opt_fw_filename); 4297 goto dflt_pkg_load; 4298 } 4299 4300 /* request for firmware was successful. Download to device */ 4301 ice_load_pkg(firmware, pf); 4302 kfree(opt_fw_filename); 4303 release_firmware(firmware); 4304 return; 4305 } 4306 4307 dflt_pkg_load: 4308 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4309 if (err) { 4310 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4311 return; 4312 } 4313 4314 /* request for firmware was successful. Download to device */ 4315 ice_load_pkg(firmware, pf); 4316 release_firmware(firmware); 4317 } 4318 4319 /** 4320 * ice_print_wake_reason - show the wake up cause in the log 4321 * @pf: pointer to the PF struct 4322 */ 4323 static void ice_print_wake_reason(struct ice_pf *pf) 4324 { 4325 u32 wus = pf->wakeup_reason; 4326 const char *wake_str; 4327 4328 /* if no wake event, nothing to print */ 4329 if (!wus) 4330 return; 4331 4332 if (wus & PFPM_WUS_LNKC_M) 4333 wake_str = "Link\n"; 4334 else if (wus & PFPM_WUS_MAG_M) 4335 wake_str = "Magic Packet\n"; 4336 else if (wus & PFPM_WUS_MNG_M) 4337 wake_str = "Management\n"; 4338 else if (wus & PFPM_WUS_FW_RST_WK_M) 4339 wake_str = "Firmware Reset\n"; 4340 else 4341 wake_str = "Unknown\n"; 4342 4343 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4344 } 4345 4346 /** 4347 * ice_register_netdev - register netdev 4348 * @vsi: pointer to the VSI struct 4349 */ 4350 static int ice_register_netdev(struct ice_vsi *vsi) 4351 { 4352 int err; 4353 4354 if (!vsi || !vsi->netdev) 4355 return -EIO; 4356 4357 err = register_netdev(vsi->netdev); 4358 if (err) 4359 return err; 4360 4361 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4362 netif_carrier_off(vsi->netdev); 4363 netif_tx_stop_all_queues(vsi->netdev); 4364 4365 return 0; 4366 } 4367 4368 static void ice_unregister_netdev(struct ice_vsi *vsi) 4369 { 4370 if (!vsi || !vsi->netdev) 4371 return; 4372 4373 unregister_netdev(vsi->netdev); 4374 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4375 } 4376 4377 /** 4378 * ice_cfg_netdev - Allocate, configure and register a netdev 4379 * @vsi: the VSI associated with the new netdev 4380 * 4381 * Returns 0 on success, negative value on failure 4382 */ 4383 static int ice_cfg_netdev(struct ice_vsi *vsi) 4384 { 4385 struct ice_netdev_priv *np; 4386 struct net_device *netdev; 4387 u8 mac_addr[ETH_ALEN]; 4388 4389 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4390 vsi->alloc_rxq); 4391 if (!netdev) 4392 return -ENOMEM; 4393 4394 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4395 vsi->netdev = netdev; 4396 np = netdev_priv(netdev); 4397 np->vsi = vsi; 4398 4399 ice_set_netdev_features(netdev); 4400 ice_set_ops(vsi); 4401 4402 if (vsi->type == ICE_VSI_PF) { 4403 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4404 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4405 eth_hw_addr_set(netdev, mac_addr); 4406 } 4407 4408 netdev->priv_flags |= IFF_UNICAST_FLT; 4409 4410 /* Setup netdev TC information */ 4411 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4412 4413 netdev->max_mtu = ICE_MAX_MTU; 4414 4415 return 0; 4416 } 4417 4418 static void ice_decfg_netdev(struct ice_vsi *vsi) 4419 { 4420 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4421 free_netdev(vsi->netdev); 4422 vsi->netdev = NULL; 4423 } 4424 4425 static int ice_start_eth(struct ice_vsi *vsi) 4426 { 4427 int err; 4428 4429 err = ice_init_mac_fltr(vsi->back); 4430 if (err) 4431 return err; 4432 4433 rtnl_lock(); 4434 err = ice_vsi_open(vsi); 4435 rtnl_unlock(); 4436 4437 return err; 4438 } 4439 4440 static void ice_stop_eth(struct ice_vsi *vsi) 4441 { 4442 ice_fltr_remove_all(vsi); 4443 ice_vsi_close(vsi); 4444 } 4445 4446 static int ice_init_eth(struct ice_pf *pf) 4447 { 4448 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4449 int err; 4450 4451 if (!vsi) 4452 return -EINVAL; 4453 4454 /* init channel list */ 4455 INIT_LIST_HEAD(&vsi->ch_list); 4456 4457 err = ice_cfg_netdev(vsi); 4458 if (err) 4459 return err; 4460 /* Setup DCB netlink interface */ 4461 ice_dcbnl_setup(vsi); 4462 4463 err = ice_init_mac_fltr(pf); 4464 if (err) 4465 goto err_init_mac_fltr; 4466 4467 err = ice_devlink_create_pf_port(pf); 4468 if (err) 4469 goto err_devlink_create_pf_port; 4470 4471 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4472 4473 err = ice_register_netdev(vsi); 4474 if (err) 4475 goto err_register_netdev; 4476 4477 err = ice_tc_indir_block_register(vsi); 4478 if (err) 4479 goto err_tc_indir_block_register; 4480 4481 ice_napi_add(vsi); 4482 4483 return 0; 4484 4485 err_tc_indir_block_register: 4486 ice_unregister_netdev(vsi); 4487 err_register_netdev: 4488 ice_devlink_destroy_pf_port(pf); 4489 err_devlink_create_pf_port: 4490 err_init_mac_fltr: 4491 ice_decfg_netdev(vsi); 4492 return err; 4493 } 4494 4495 static void ice_deinit_eth(struct ice_pf *pf) 4496 { 4497 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4498 4499 if (!vsi) 4500 return; 4501 4502 ice_vsi_close(vsi); 4503 ice_unregister_netdev(vsi); 4504 ice_devlink_destroy_pf_port(pf); 4505 ice_tc_indir_block_unregister(vsi); 4506 ice_decfg_netdev(vsi); 4507 } 4508 4509 static int ice_init_dev(struct ice_pf *pf) 4510 { 4511 struct device *dev = ice_pf_to_dev(pf); 4512 struct ice_hw *hw = &pf->hw; 4513 int err; 4514 4515 err = ice_init_hw(hw); 4516 if (err) { 4517 dev_err(dev, "ice_init_hw failed: %d\n", err); 4518 return err; 4519 } 4520 4521 ice_init_feature_support(pf); 4522 4523 ice_request_fw(pf); 4524 4525 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4526 * set in pf->state, which will cause ice_is_safe_mode to return 4527 * true 4528 */ 4529 if (ice_is_safe_mode(pf)) { 4530 /* we already got function/device capabilities but these don't 4531 * reflect what the driver needs to do in safe mode. Instead of 4532 * adding conditional logic everywhere to ignore these 4533 * device/function capabilities, override them. 4534 */ 4535 ice_set_safe_mode_caps(hw); 4536 } 4537 4538 err = ice_init_pf(pf); 4539 if (err) { 4540 dev_err(dev, "ice_init_pf failed: %d\n", err); 4541 goto err_init_pf; 4542 } 4543 4544 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4545 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4546 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4547 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4548 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4549 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4550 pf->hw.tnl.valid_count[TNL_VXLAN]; 4551 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4552 UDP_TUNNEL_TYPE_VXLAN; 4553 } 4554 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4555 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4556 pf->hw.tnl.valid_count[TNL_GENEVE]; 4557 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4558 UDP_TUNNEL_TYPE_GENEVE; 4559 } 4560 4561 err = ice_init_interrupt_scheme(pf); 4562 if (err) { 4563 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4564 err = -EIO; 4565 goto err_init_interrupt_scheme; 4566 } 4567 4568 /* In case of MSIX we are going to setup the misc vector right here 4569 * to handle admin queue events etc. In case of legacy and MSI 4570 * the misc functionality and queue processing is combined in 4571 * the same vector and that gets setup at open. 4572 */ 4573 err = ice_req_irq_msix_misc(pf); 4574 if (err) { 4575 dev_err(dev, "setup of misc vector failed: %d\n", err); 4576 goto err_req_irq_msix_misc; 4577 } 4578 4579 return 0; 4580 4581 err_req_irq_msix_misc: 4582 ice_clear_interrupt_scheme(pf); 4583 err_init_interrupt_scheme: 4584 ice_deinit_pf(pf); 4585 err_init_pf: 4586 ice_deinit_hw(hw); 4587 return err; 4588 } 4589 4590 static void ice_deinit_dev(struct ice_pf *pf) 4591 { 4592 ice_free_irq_msix_misc(pf); 4593 ice_deinit_pf(pf); 4594 ice_deinit_hw(&pf->hw); 4595 4596 /* Service task is already stopped, so call reset directly. */ 4597 ice_reset(&pf->hw, ICE_RESET_PFR); 4598 pci_wait_for_pending_transaction(pf->pdev); 4599 ice_clear_interrupt_scheme(pf); 4600 } 4601 4602 static void ice_init_features(struct ice_pf *pf) 4603 { 4604 struct device *dev = ice_pf_to_dev(pf); 4605 4606 if (ice_is_safe_mode(pf)) 4607 return; 4608 4609 /* initialize DDP driven features */ 4610 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4611 ice_ptp_init(pf); 4612 4613 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4614 ice_gnss_init(pf); 4615 4616 /* Note: Flow director init failure is non-fatal to load */ 4617 if (ice_init_fdir(pf)) 4618 dev_err(dev, "could not initialize flow director\n"); 4619 4620 /* Note: DCB init failure is non-fatal to load */ 4621 if (ice_init_pf_dcb(pf, false)) { 4622 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4623 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4624 } else { 4625 ice_cfg_lldp_mib_change(&pf->hw, true); 4626 } 4627 4628 if (ice_init_lag(pf)) 4629 dev_warn(dev, "Failed to init link aggregation support\n"); 4630 } 4631 4632 static void ice_deinit_features(struct ice_pf *pf) 4633 { 4634 ice_deinit_lag(pf); 4635 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4636 ice_cfg_lldp_mib_change(&pf->hw, false); 4637 ice_deinit_fdir(pf); 4638 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4639 ice_gnss_exit(pf); 4640 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4641 ice_ptp_release(pf); 4642 } 4643 4644 static void ice_init_wakeup(struct ice_pf *pf) 4645 { 4646 /* Save wakeup reason register for later use */ 4647 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4648 4649 /* check for a power management event */ 4650 ice_print_wake_reason(pf); 4651 4652 /* clear wake status, all bits */ 4653 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4654 4655 /* Disable WoL at init, wait for user to enable */ 4656 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4657 } 4658 4659 static int ice_init_link(struct ice_pf *pf) 4660 { 4661 struct device *dev = ice_pf_to_dev(pf); 4662 int err; 4663 4664 err = ice_init_link_events(pf->hw.port_info); 4665 if (err) { 4666 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4667 return err; 4668 } 4669 4670 /* not a fatal error if this fails */ 4671 err = ice_init_nvm_phy_type(pf->hw.port_info); 4672 if (err) 4673 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4674 4675 /* not a fatal error if this fails */ 4676 err = ice_update_link_info(pf->hw.port_info); 4677 if (err) 4678 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4679 4680 ice_init_link_dflt_override(pf->hw.port_info); 4681 4682 ice_check_link_cfg_err(pf, 4683 pf->hw.port_info->phy.link_info.link_cfg_err); 4684 4685 /* if media available, initialize PHY settings */ 4686 if (pf->hw.port_info->phy.link_info.link_info & 4687 ICE_AQ_MEDIA_AVAILABLE) { 4688 /* not a fatal error if this fails */ 4689 err = ice_init_phy_user_cfg(pf->hw.port_info); 4690 if (err) 4691 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4692 4693 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4694 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4695 4696 if (vsi) 4697 ice_configure_phy(vsi); 4698 } 4699 } else { 4700 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4701 } 4702 4703 return err; 4704 } 4705 4706 static int ice_init_pf_sw(struct ice_pf *pf) 4707 { 4708 bool dvm = ice_is_dvm_ena(&pf->hw); 4709 struct ice_vsi *vsi; 4710 int err; 4711 4712 /* create switch struct for the switch element created by FW on boot */ 4713 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4714 if (!pf->first_sw) 4715 return -ENOMEM; 4716 4717 if (pf->hw.evb_veb) 4718 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4719 else 4720 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4721 4722 pf->first_sw->pf = pf; 4723 4724 /* record the sw_id available for later use */ 4725 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4726 4727 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4728 if (err) 4729 goto err_aq_set_port_params; 4730 4731 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4732 if (!vsi) { 4733 err = -ENOMEM; 4734 goto err_pf_vsi_setup; 4735 } 4736 4737 return 0; 4738 4739 err_pf_vsi_setup: 4740 err_aq_set_port_params: 4741 kfree(pf->first_sw); 4742 return err; 4743 } 4744 4745 static void ice_deinit_pf_sw(struct ice_pf *pf) 4746 { 4747 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4748 4749 if (!vsi) 4750 return; 4751 4752 ice_vsi_release(vsi); 4753 kfree(pf->first_sw); 4754 } 4755 4756 static int ice_alloc_vsis(struct ice_pf *pf) 4757 { 4758 struct device *dev = ice_pf_to_dev(pf); 4759 4760 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4761 if (!pf->num_alloc_vsi) 4762 return -EIO; 4763 4764 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4765 dev_warn(dev, 4766 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4767 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4768 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4769 } 4770 4771 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4772 GFP_KERNEL); 4773 if (!pf->vsi) 4774 return -ENOMEM; 4775 4776 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4777 sizeof(*pf->vsi_stats), GFP_KERNEL); 4778 if (!pf->vsi_stats) { 4779 devm_kfree(dev, pf->vsi); 4780 return -ENOMEM; 4781 } 4782 4783 return 0; 4784 } 4785 4786 static void ice_dealloc_vsis(struct ice_pf *pf) 4787 { 4788 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4789 pf->vsi_stats = NULL; 4790 4791 pf->num_alloc_vsi = 0; 4792 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4793 pf->vsi = NULL; 4794 } 4795 4796 static int ice_init_devlink(struct ice_pf *pf) 4797 { 4798 int err; 4799 4800 err = ice_devlink_register_params(pf); 4801 if (err) 4802 return err; 4803 4804 ice_devlink_init_regions(pf); 4805 ice_devlink_register(pf); 4806 4807 return 0; 4808 } 4809 4810 static void ice_deinit_devlink(struct ice_pf *pf) 4811 { 4812 ice_devlink_unregister(pf); 4813 ice_devlink_destroy_regions(pf); 4814 ice_devlink_unregister_params(pf); 4815 } 4816 4817 static int ice_init(struct ice_pf *pf) 4818 { 4819 int err; 4820 4821 err = ice_init_dev(pf); 4822 if (err) 4823 return err; 4824 4825 err = ice_alloc_vsis(pf); 4826 if (err) 4827 goto err_alloc_vsis; 4828 4829 err = ice_init_pf_sw(pf); 4830 if (err) 4831 goto err_init_pf_sw; 4832 4833 ice_init_wakeup(pf); 4834 4835 err = ice_init_link(pf); 4836 if (err) 4837 goto err_init_link; 4838 4839 err = ice_send_version(pf); 4840 if (err) 4841 goto err_init_link; 4842 4843 ice_verify_cacheline_size(pf); 4844 4845 if (ice_is_safe_mode(pf)) 4846 ice_set_safe_mode_vlan_cfg(pf); 4847 else 4848 /* print PCI link speed and width */ 4849 pcie_print_link_status(pf->pdev); 4850 4851 /* ready to go, so clear down state bit */ 4852 clear_bit(ICE_DOWN, pf->state); 4853 clear_bit(ICE_SERVICE_DIS, pf->state); 4854 4855 /* since everything is good, start the service timer */ 4856 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4857 4858 return 0; 4859 4860 err_init_link: 4861 ice_deinit_pf_sw(pf); 4862 err_init_pf_sw: 4863 ice_dealloc_vsis(pf); 4864 err_alloc_vsis: 4865 ice_deinit_dev(pf); 4866 return err; 4867 } 4868 4869 static void ice_deinit(struct ice_pf *pf) 4870 { 4871 set_bit(ICE_SERVICE_DIS, pf->state); 4872 set_bit(ICE_DOWN, pf->state); 4873 4874 ice_deinit_pf_sw(pf); 4875 ice_dealloc_vsis(pf); 4876 ice_deinit_dev(pf); 4877 } 4878 4879 /** 4880 * ice_load - load pf by init hw and starting VSI 4881 * @pf: pointer to the pf instance 4882 */ 4883 int ice_load(struct ice_pf *pf) 4884 { 4885 struct ice_vsi_cfg_params params = {}; 4886 struct ice_vsi *vsi; 4887 int err; 4888 4889 err = ice_init_dev(pf); 4890 if (err) 4891 return err; 4892 4893 vsi = ice_get_main_vsi(pf); 4894 4895 params = ice_vsi_to_params(vsi); 4896 params.flags = ICE_VSI_FLAG_INIT; 4897 4898 err = ice_vsi_cfg(vsi, ¶ms); 4899 if (err) 4900 goto err_vsi_cfg; 4901 4902 err = ice_start_eth(ice_get_main_vsi(pf)); 4903 if (err) 4904 goto err_start_eth; 4905 4906 err = ice_init_rdma(pf); 4907 if (err) 4908 goto err_init_rdma; 4909 4910 ice_init_features(pf); 4911 ice_service_task_restart(pf); 4912 4913 clear_bit(ICE_DOWN, pf->state); 4914 4915 return 0; 4916 4917 err_init_rdma: 4918 ice_vsi_close(ice_get_main_vsi(pf)); 4919 err_start_eth: 4920 ice_vsi_decfg(ice_get_main_vsi(pf)); 4921 err_vsi_cfg: 4922 ice_deinit_dev(pf); 4923 return err; 4924 } 4925 4926 /** 4927 * ice_unload - unload pf by stopping VSI and deinit hw 4928 * @pf: pointer to the pf instance 4929 */ 4930 void ice_unload(struct ice_pf *pf) 4931 { 4932 ice_deinit_features(pf); 4933 ice_deinit_rdma(pf); 4934 ice_stop_eth(ice_get_main_vsi(pf)); 4935 ice_vsi_decfg(ice_get_main_vsi(pf)); 4936 ice_deinit_dev(pf); 4937 } 4938 4939 /** 4940 * ice_probe - Device initialization routine 4941 * @pdev: PCI device information struct 4942 * @ent: entry in ice_pci_tbl 4943 * 4944 * Returns 0 on success, negative on failure 4945 */ 4946 static int 4947 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4948 { 4949 struct device *dev = &pdev->dev; 4950 struct ice_pf *pf; 4951 struct ice_hw *hw; 4952 int err; 4953 4954 if (pdev->is_virtfn) { 4955 dev_err(dev, "can't probe a virtual function\n"); 4956 return -EINVAL; 4957 } 4958 4959 /* this driver uses devres, see 4960 * Documentation/driver-api/driver-model/devres.rst 4961 */ 4962 err = pcim_enable_device(pdev); 4963 if (err) 4964 return err; 4965 4966 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4967 if (err) { 4968 dev_err(dev, "BAR0 I/O map error %d\n", err); 4969 return err; 4970 } 4971 4972 pf = ice_allocate_pf(dev); 4973 if (!pf) 4974 return -ENOMEM; 4975 4976 /* initialize Auxiliary index to invalid value */ 4977 pf->aux_idx = -1; 4978 4979 /* set up for high or low DMA */ 4980 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4981 if (err) { 4982 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4983 return err; 4984 } 4985 4986 pci_set_master(pdev); 4987 4988 pf->pdev = pdev; 4989 pci_set_drvdata(pdev, pf); 4990 set_bit(ICE_DOWN, pf->state); 4991 /* Disable service task until DOWN bit is cleared */ 4992 set_bit(ICE_SERVICE_DIS, pf->state); 4993 4994 hw = &pf->hw; 4995 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4996 pci_save_state(pdev); 4997 4998 hw->back = pf; 4999 hw->port_info = NULL; 5000 hw->vendor_id = pdev->vendor; 5001 hw->device_id = pdev->device; 5002 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5003 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5004 hw->subsystem_device_id = pdev->subsystem_device; 5005 hw->bus.device = PCI_SLOT(pdev->devfn); 5006 hw->bus.func = PCI_FUNC(pdev->devfn); 5007 ice_set_ctrlq_len(hw); 5008 5009 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5010 5011 #ifndef CONFIG_DYNAMIC_DEBUG 5012 if (debug < -1) 5013 hw->debug_mask = debug; 5014 #endif 5015 5016 err = ice_init(pf); 5017 if (err) 5018 goto err_init; 5019 5020 err = ice_init_eth(pf); 5021 if (err) 5022 goto err_init_eth; 5023 5024 err = ice_init_rdma(pf); 5025 if (err) 5026 goto err_init_rdma; 5027 5028 err = ice_init_devlink(pf); 5029 if (err) 5030 goto err_init_devlink; 5031 5032 ice_init_features(pf); 5033 5034 return 0; 5035 5036 err_init_devlink: 5037 ice_deinit_rdma(pf); 5038 err_init_rdma: 5039 ice_deinit_eth(pf); 5040 err_init_eth: 5041 ice_deinit(pf); 5042 err_init: 5043 pci_disable_device(pdev); 5044 return err; 5045 } 5046 5047 /** 5048 * ice_set_wake - enable or disable Wake on LAN 5049 * @pf: pointer to the PF struct 5050 * 5051 * Simple helper for WoL control 5052 */ 5053 static void ice_set_wake(struct ice_pf *pf) 5054 { 5055 struct ice_hw *hw = &pf->hw; 5056 bool wol = pf->wol_ena; 5057 5058 /* clear wake state, otherwise new wake events won't fire */ 5059 wr32(hw, PFPM_WUS, U32_MAX); 5060 5061 /* enable / disable APM wake up, no RMW needed */ 5062 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5063 5064 /* set magic packet filter enabled */ 5065 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5066 } 5067 5068 /** 5069 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5070 * @pf: pointer to the PF struct 5071 * 5072 * Issue firmware command to enable multicast magic wake, making 5073 * sure that any locally administered address (LAA) is used for 5074 * wake, and that PF reset doesn't undo the LAA. 5075 */ 5076 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5077 { 5078 struct device *dev = ice_pf_to_dev(pf); 5079 struct ice_hw *hw = &pf->hw; 5080 u8 mac_addr[ETH_ALEN]; 5081 struct ice_vsi *vsi; 5082 int status; 5083 u8 flags; 5084 5085 if (!pf->wol_ena) 5086 return; 5087 5088 vsi = ice_get_main_vsi(pf); 5089 if (!vsi) 5090 return; 5091 5092 /* Get current MAC address in case it's an LAA */ 5093 if (vsi->netdev) 5094 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5095 else 5096 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5097 5098 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5099 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5100 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5101 5102 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5103 if (status) 5104 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5105 status, ice_aq_str(hw->adminq.sq_last_status)); 5106 } 5107 5108 /** 5109 * ice_remove - Device removal routine 5110 * @pdev: PCI device information struct 5111 */ 5112 static void ice_remove(struct pci_dev *pdev) 5113 { 5114 struct ice_pf *pf = pci_get_drvdata(pdev); 5115 int i; 5116 5117 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5118 if (!ice_is_reset_in_progress(pf->state)) 5119 break; 5120 msleep(100); 5121 } 5122 5123 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5124 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5125 ice_free_vfs(pf); 5126 } 5127 5128 ice_service_task_stop(pf); 5129 ice_aq_cancel_waiting_tasks(pf); 5130 set_bit(ICE_DOWN, pf->state); 5131 5132 if (!ice_is_safe_mode(pf)) 5133 ice_remove_arfs(pf); 5134 ice_deinit_features(pf); 5135 ice_deinit_devlink(pf); 5136 ice_deinit_rdma(pf); 5137 ice_deinit_eth(pf); 5138 ice_deinit(pf); 5139 5140 ice_vsi_release_all(pf); 5141 5142 ice_setup_mc_magic_wake(pf); 5143 ice_set_wake(pf); 5144 5145 pci_disable_device(pdev); 5146 } 5147 5148 /** 5149 * ice_shutdown - PCI callback for shutting down device 5150 * @pdev: PCI device information struct 5151 */ 5152 static void ice_shutdown(struct pci_dev *pdev) 5153 { 5154 struct ice_pf *pf = pci_get_drvdata(pdev); 5155 5156 ice_remove(pdev); 5157 5158 if (system_state == SYSTEM_POWER_OFF) { 5159 pci_wake_from_d3(pdev, pf->wol_ena); 5160 pci_set_power_state(pdev, PCI_D3hot); 5161 } 5162 } 5163 5164 #ifdef CONFIG_PM 5165 /** 5166 * ice_prepare_for_shutdown - prep for PCI shutdown 5167 * @pf: board private structure 5168 * 5169 * Inform or close all dependent features in prep for PCI device shutdown 5170 */ 5171 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5172 { 5173 struct ice_hw *hw = &pf->hw; 5174 u32 v; 5175 5176 /* Notify VFs of impending reset */ 5177 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5178 ice_vc_notify_reset(pf); 5179 5180 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5181 5182 /* disable the VSIs and their queues that are not already DOWN */ 5183 ice_pf_dis_all_vsi(pf, false); 5184 5185 ice_for_each_vsi(pf, v) 5186 if (pf->vsi[v]) 5187 pf->vsi[v]->vsi_num = 0; 5188 5189 ice_shutdown_all_ctrlq(hw); 5190 } 5191 5192 /** 5193 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5194 * @pf: board private structure to reinitialize 5195 * 5196 * This routine reinitialize interrupt scheme that was cleared during 5197 * power management suspend callback. 5198 * 5199 * This should be called during resume routine to re-allocate the q_vectors 5200 * and reacquire interrupts. 5201 */ 5202 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5203 { 5204 struct device *dev = ice_pf_to_dev(pf); 5205 int ret, v; 5206 5207 /* Since we clear MSIX flag during suspend, we need to 5208 * set it back during resume... 5209 */ 5210 5211 ret = ice_init_interrupt_scheme(pf); 5212 if (ret) { 5213 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5214 return ret; 5215 } 5216 5217 /* Remap vectors and rings, after successful re-init interrupts */ 5218 ice_for_each_vsi(pf, v) { 5219 if (!pf->vsi[v]) 5220 continue; 5221 5222 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5223 if (ret) 5224 goto err_reinit; 5225 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5226 } 5227 5228 ret = ice_req_irq_msix_misc(pf); 5229 if (ret) { 5230 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5231 ret); 5232 goto err_reinit; 5233 } 5234 5235 return 0; 5236 5237 err_reinit: 5238 while (v--) 5239 if (pf->vsi[v]) 5240 ice_vsi_free_q_vectors(pf->vsi[v]); 5241 5242 return ret; 5243 } 5244 5245 /** 5246 * ice_suspend 5247 * @dev: generic device information structure 5248 * 5249 * Power Management callback to quiesce the device and prepare 5250 * for D3 transition. 5251 */ 5252 static int __maybe_unused ice_suspend(struct device *dev) 5253 { 5254 struct pci_dev *pdev = to_pci_dev(dev); 5255 struct ice_pf *pf; 5256 int disabled, v; 5257 5258 pf = pci_get_drvdata(pdev); 5259 5260 if (!ice_pf_state_is_nominal(pf)) { 5261 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5262 return -EBUSY; 5263 } 5264 5265 /* Stop watchdog tasks until resume completion. 5266 * Even though it is most likely that the service task is 5267 * disabled if the device is suspended or down, the service task's 5268 * state is controlled by a different state bit, and we should 5269 * store and honor whatever state that bit is in at this point. 5270 */ 5271 disabled = ice_service_task_stop(pf); 5272 5273 ice_unplug_aux_dev(pf); 5274 5275 /* Already suspended?, then there is nothing to do */ 5276 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5277 if (!disabled) 5278 ice_service_task_restart(pf); 5279 return 0; 5280 } 5281 5282 if (test_bit(ICE_DOWN, pf->state) || 5283 ice_is_reset_in_progress(pf->state)) { 5284 dev_err(dev, "can't suspend device in reset or already down\n"); 5285 if (!disabled) 5286 ice_service_task_restart(pf); 5287 return 0; 5288 } 5289 5290 ice_setup_mc_magic_wake(pf); 5291 5292 ice_prepare_for_shutdown(pf); 5293 5294 ice_set_wake(pf); 5295 5296 /* Free vectors, clear the interrupt scheme and release IRQs 5297 * for proper hibernation, especially with large number of CPUs. 5298 * Otherwise hibernation might fail when mapping all the vectors back 5299 * to CPU0. 5300 */ 5301 ice_free_irq_msix_misc(pf); 5302 ice_for_each_vsi(pf, v) { 5303 if (!pf->vsi[v]) 5304 continue; 5305 ice_vsi_free_q_vectors(pf->vsi[v]); 5306 } 5307 ice_clear_interrupt_scheme(pf); 5308 5309 pci_save_state(pdev); 5310 pci_wake_from_d3(pdev, pf->wol_ena); 5311 pci_set_power_state(pdev, PCI_D3hot); 5312 return 0; 5313 } 5314 5315 /** 5316 * ice_resume - PM callback for waking up from D3 5317 * @dev: generic device information structure 5318 */ 5319 static int __maybe_unused ice_resume(struct device *dev) 5320 { 5321 struct pci_dev *pdev = to_pci_dev(dev); 5322 enum ice_reset_req reset_type; 5323 struct ice_pf *pf; 5324 struct ice_hw *hw; 5325 int ret; 5326 5327 pci_set_power_state(pdev, PCI_D0); 5328 pci_restore_state(pdev); 5329 pci_save_state(pdev); 5330 5331 if (!pci_device_is_present(pdev)) 5332 return -ENODEV; 5333 5334 ret = pci_enable_device_mem(pdev); 5335 if (ret) { 5336 dev_err(dev, "Cannot enable device after suspend\n"); 5337 return ret; 5338 } 5339 5340 pf = pci_get_drvdata(pdev); 5341 hw = &pf->hw; 5342 5343 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5344 ice_print_wake_reason(pf); 5345 5346 /* We cleared the interrupt scheme when we suspended, so we need to 5347 * restore it now to resume device functionality. 5348 */ 5349 ret = ice_reinit_interrupt_scheme(pf); 5350 if (ret) 5351 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5352 5353 clear_bit(ICE_DOWN, pf->state); 5354 /* Now perform PF reset and rebuild */ 5355 reset_type = ICE_RESET_PFR; 5356 /* re-enable service task for reset, but allow reset to schedule it */ 5357 clear_bit(ICE_SERVICE_DIS, pf->state); 5358 5359 if (ice_schedule_reset(pf, reset_type)) 5360 dev_err(dev, "Reset during resume failed.\n"); 5361 5362 clear_bit(ICE_SUSPENDED, pf->state); 5363 ice_service_task_restart(pf); 5364 5365 /* Restart the service task */ 5366 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5367 5368 return 0; 5369 } 5370 #endif /* CONFIG_PM */ 5371 5372 /** 5373 * ice_pci_err_detected - warning that PCI error has been detected 5374 * @pdev: PCI device information struct 5375 * @err: the type of PCI error 5376 * 5377 * Called to warn that something happened on the PCI bus and the error handling 5378 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5379 */ 5380 static pci_ers_result_t 5381 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5382 { 5383 struct ice_pf *pf = pci_get_drvdata(pdev); 5384 5385 if (!pf) { 5386 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5387 __func__, err); 5388 return PCI_ERS_RESULT_DISCONNECT; 5389 } 5390 5391 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5392 ice_service_task_stop(pf); 5393 5394 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5395 set_bit(ICE_PFR_REQ, pf->state); 5396 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5397 } 5398 } 5399 5400 return PCI_ERS_RESULT_NEED_RESET; 5401 } 5402 5403 /** 5404 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5405 * @pdev: PCI device information struct 5406 * 5407 * Called to determine if the driver can recover from the PCI slot reset by 5408 * using a register read to determine if the device is recoverable. 5409 */ 5410 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5411 { 5412 struct ice_pf *pf = pci_get_drvdata(pdev); 5413 pci_ers_result_t result; 5414 int err; 5415 u32 reg; 5416 5417 err = pci_enable_device_mem(pdev); 5418 if (err) { 5419 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5420 err); 5421 result = PCI_ERS_RESULT_DISCONNECT; 5422 } else { 5423 pci_set_master(pdev); 5424 pci_restore_state(pdev); 5425 pci_save_state(pdev); 5426 pci_wake_from_d3(pdev, false); 5427 5428 /* Check for life */ 5429 reg = rd32(&pf->hw, GLGEN_RTRIG); 5430 if (!reg) 5431 result = PCI_ERS_RESULT_RECOVERED; 5432 else 5433 result = PCI_ERS_RESULT_DISCONNECT; 5434 } 5435 5436 return result; 5437 } 5438 5439 /** 5440 * ice_pci_err_resume - restart operations after PCI error recovery 5441 * @pdev: PCI device information struct 5442 * 5443 * Called to allow the driver to bring things back up after PCI error and/or 5444 * reset recovery have finished 5445 */ 5446 static void ice_pci_err_resume(struct pci_dev *pdev) 5447 { 5448 struct ice_pf *pf = pci_get_drvdata(pdev); 5449 5450 if (!pf) { 5451 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5452 __func__); 5453 return; 5454 } 5455 5456 if (test_bit(ICE_SUSPENDED, pf->state)) { 5457 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5458 __func__); 5459 return; 5460 } 5461 5462 ice_restore_all_vfs_msi_state(pdev); 5463 5464 ice_do_reset(pf, ICE_RESET_PFR); 5465 ice_service_task_restart(pf); 5466 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5467 } 5468 5469 /** 5470 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5471 * @pdev: PCI device information struct 5472 */ 5473 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5474 { 5475 struct ice_pf *pf = pci_get_drvdata(pdev); 5476 5477 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5478 ice_service_task_stop(pf); 5479 5480 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5481 set_bit(ICE_PFR_REQ, pf->state); 5482 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5483 } 5484 } 5485 } 5486 5487 /** 5488 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5489 * @pdev: PCI device information struct 5490 */ 5491 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5492 { 5493 ice_pci_err_resume(pdev); 5494 } 5495 5496 /* ice_pci_tbl - PCI Device ID Table 5497 * 5498 * Wildcard entries (PCI_ANY_ID) should come last 5499 * Last entry must be all 0s 5500 * 5501 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5502 * Class, Class Mask, private data (not used) } 5503 */ 5504 static const struct pci_device_id ice_pci_tbl[] = { 5505 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5529 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5530 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5531 /* required last entry */ 5532 { 0, } 5533 }; 5534 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5535 5536 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5537 5538 static const struct pci_error_handlers ice_pci_err_handler = { 5539 .error_detected = ice_pci_err_detected, 5540 .slot_reset = ice_pci_err_slot_reset, 5541 .reset_prepare = ice_pci_err_reset_prepare, 5542 .reset_done = ice_pci_err_reset_done, 5543 .resume = ice_pci_err_resume 5544 }; 5545 5546 static struct pci_driver ice_driver = { 5547 .name = KBUILD_MODNAME, 5548 .id_table = ice_pci_tbl, 5549 .probe = ice_probe, 5550 .remove = ice_remove, 5551 #ifdef CONFIG_PM 5552 .driver.pm = &ice_pm_ops, 5553 #endif /* CONFIG_PM */ 5554 .shutdown = ice_shutdown, 5555 .sriov_configure = ice_sriov_configure, 5556 .err_handler = &ice_pci_err_handler 5557 }; 5558 5559 /** 5560 * ice_module_init - Driver registration routine 5561 * 5562 * ice_module_init is the first routine called when the driver is 5563 * loaded. All it does is register with the PCI subsystem. 5564 */ 5565 static int __init ice_module_init(void) 5566 { 5567 int status; 5568 5569 pr_info("%s\n", ice_driver_string); 5570 pr_info("%s\n", ice_copyright); 5571 5572 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5573 if (!ice_wq) { 5574 pr_err("Failed to create workqueue\n"); 5575 return -ENOMEM; 5576 } 5577 5578 status = pci_register_driver(&ice_driver); 5579 if (status) { 5580 pr_err("failed to register PCI driver, err %d\n", status); 5581 destroy_workqueue(ice_wq); 5582 } 5583 5584 return status; 5585 } 5586 module_init(ice_module_init); 5587 5588 /** 5589 * ice_module_exit - Driver exit cleanup routine 5590 * 5591 * ice_module_exit is called just before the driver is removed 5592 * from memory. 5593 */ 5594 static void __exit ice_module_exit(void) 5595 { 5596 pci_unregister_driver(&ice_driver); 5597 destroy_workqueue(ice_wq); 5598 pr_info("module unloaded\n"); 5599 } 5600 module_exit(ice_module_exit); 5601 5602 /** 5603 * ice_set_mac_address - NDO callback to set MAC address 5604 * @netdev: network interface device structure 5605 * @pi: pointer to an address structure 5606 * 5607 * Returns 0 on success, negative on failure 5608 */ 5609 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5610 { 5611 struct ice_netdev_priv *np = netdev_priv(netdev); 5612 struct ice_vsi *vsi = np->vsi; 5613 struct ice_pf *pf = vsi->back; 5614 struct ice_hw *hw = &pf->hw; 5615 struct sockaddr *addr = pi; 5616 u8 old_mac[ETH_ALEN]; 5617 u8 flags = 0; 5618 u8 *mac; 5619 int err; 5620 5621 mac = (u8 *)addr->sa_data; 5622 5623 if (!is_valid_ether_addr(mac)) 5624 return -EADDRNOTAVAIL; 5625 5626 if (test_bit(ICE_DOWN, pf->state) || 5627 ice_is_reset_in_progress(pf->state)) { 5628 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5629 mac); 5630 return -EBUSY; 5631 } 5632 5633 if (ice_chnl_dmac_fltr_cnt(pf)) { 5634 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5635 mac); 5636 return -EAGAIN; 5637 } 5638 5639 netif_addr_lock_bh(netdev); 5640 ether_addr_copy(old_mac, netdev->dev_addr); 5641 /* change the netdev's MAC address */ 5642 eth_hw_addr_set(netdev, mac); 5643 netif_addr_unlock_bh(netdev); 5644 5645 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5646 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5647 if (err && err != -ENOENT) { 5648 err = -EADDRNOTAVAIL; 5649 goto err_update_filters; 5650 } 5651 5652 /* Add filter for new MAC. If filter exists, return success */ 5653 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5654 if (err == -EEXIST) { 5655 /* Although this MAC filter is already present in hardware it's 5656 * possible in some cases (e.g. bonding) that dev_addr was 5657 * modified outside of the driver and needs to be restored back 5658 * to this value. 5659 */ 5660 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5661 5662 return 0; 5663 } else if (err) { 5664 /* error if the new filter addition failed */ 5665 err = -EADDRNOTAVAIL; 5666 } 5667 5668 err_update_filters: 5669 if (err) { 5670 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5671 mac); 5672 netif_addr_lock_bh(netdev); 5673 eth_hw_addr_set(netdev, old_mac); 5674 netif_addr_unlock_bh(netdev); 5675 return err; 5676 } 5677 5678 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5679 netdev->dev_addr); 5680 5681 /* write new MAC address to the firmware */ 5682 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5683 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5684 if (err) { 5685 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5686 mac, err); 5687 } 5688 return 0; 5689 } 5690 5691 /** 5692 * ice_set_rx_mode - NDO callback to set the netdev filters 5693 * @netdev: network interface device structure 5694 */ 5695 static void ice_set_rx_mode(struct net_device *netdev) 5696 { 5697 struct ice_netdev_priv *np = netdev_priv(netdev); 5698 struct ice_vsi *vsi = np->vsi; 5699 5700 if (!vsi) 5701 return; 5702 5703 /* Set the flags to synchronize filters 5704 * ndo_set_rx_mode may be triggered even without a change in netdev 5705 * flags 5706 */ 5707 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5708 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5709 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5710 5711 /* schedule our worker thread which will take care of 5712 * applying the new filter changes 5713 */ 5714 ice_service_task_schedule(vsi->back); 5715 } 5716 5717 /** 5718 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5719 * @netdev: network interface device structure 5720 * @queue_index: Queue ID 5721 * @maxrate: maximum bandwidth in Mbps 5722 */ 5723 static int 5724 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5725 { 5726 struct ice_netdev_priv *np = netdev_priv(netdev); 5727 struct ice_vsi *vsi = np->vsi; 5728 u16 q_handle; 5729 int status; 5730 u8 tc; 5731 5732 /* Validate maxrate requested is within permitted range */ 5733 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5734 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5735 maxrate, queue_index); 5736 return -EINVAL; 5737 } 5738 5739 q_handle = vsi->tx_rings[queue_index]->q_handle; 5740 tc = ice_dcb_get_tc(vsi, queue_index); 5741 5742 /* Set BW back to default, when user set maxrate to 0 */ 5743 if (!maxrate) 5744 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5745 q_handle, ICE_MAX_BW); 5746 else 5747 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5748 q_handle, ICE_MAX_BW, maxrate * 1000); 5749 if (status) 5750 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5751 status); 5752 5753 return status; 5754 } 5755 5756 /** 5757 * ice_fdb_add - add an entry to the hardware database 5758 * @ndm: the input from the stack 5759 * @tb: pointer to array of nladdr (unused) 5760 * @dev: the net device pointer 5761 * @addr: the MAC address entry being added 5762 * @vid: VLAN ID 5763 * @flags: instructions from stack about fdb operation 5764 * @extack: netlink extended ack 5765 */ 5766 static int 5767 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5768 struct net_device *dev, const unsigned char *addr, u16 vid, 5769 u16 flags, struct netlink_ext_ack __always_unused *extack) 5770 { 5771 int err; 5772 5773 if (vid) { 5774 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5775 return -EINVAL; 5776 } 5777 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5778 netdev_err(dev, "FDB only supports static addresses\n"); 5779 return -EINVAL; 5780 } 5781 5782 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5783 err = dev_uc_add_excl(dev, addr); 5784 else if (is_multicast_ether_addr(addr)) 5785 err = dev_mc_add_excl(dev, addr); 5786 else 5787 err = -EINVAL; 5788 5789 /* Only return duplicate errors if NLM_F_EXCL is set */ 5790 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5791 err = 0; 5792 5793 return err; 5794 } 5795 5796 /** 5797 * ice_fdb_del - delete an entry from the hardware database 5798 * @ndm: the input from the stack 5799 * @tb: pointer to array of nladdr (unused) 5800 * @dev: the net device pointer 5801 * @addr: the MAC address entry being added 5802 * @vid: VLAN ID 5803 * @extack: netlink extended ack 5804 */ 5805 static int 5806 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5807 struct net_device *dev, const unsigned char *addr, 5808 __always_unused u16 vid, struct netlink_ext_ack *extack) 5809 { 5810 int err; 5811 5812 if (ndm->ndm_state & NUD_PERMANENT) { 5813 netdev_err(dev, "FDB only supports static addresses\n"); 5814 return -EINVAL; 5815 } 5816 5817 if (is_unicast_ether_addr(addr)) 5818 err = dev_uc_del(dev, addr); 5819 else if (is_multicast_ether_addr(addr)) 5820 err = dev_mc_del(dev, addr); 5821 else 5822 err = -EINVAL; 5823 5824 return err; 5825 } 5826 5827 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5828 NETIF_F_HW_VLAN_CTAG_TX | \ 5829 NETIF_F_HW_VLAN_STAG_RX | \ 5830 NETIF_F_HW_VLAN_STAG_TX) 5831 5832 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5833 NETIF_F_HW_VLAN_STAG_RX) 5834 5835 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5836 NETIF_F_HW_VLAN_STAG_FILTER) 5837 5838 /** 5839 * ice_fix_features - fix the netdev features flags based on device limitations 5840 * @netdev: ptr to the netdev that flags are being fixed on 5841 * @features: features that need to be checked and possibly fixed 5842 * 5843 * Make sure any fixups are made to features in this callback. This enables the 5844 * driver to not have to check unsupported configurations throughout the driver 5845 * because that's the responsiblity of this callback. 5846 * 5847 * Single VLAN Mode (SVM) Supported Features: 5848 * NETIF_F_HW_VLAN_CTAG_FILTER 5849 * NETIF_F_HW_VLAN_CTAG_RX 5850 * NETIF_F_HW_VLAN_CTAG_TX 5851 * 5852 * Double VLAN Mode (DVM) Supported Features: 5853 * NETIF_F_HW_VLAN_CTAG_FILTER 5854 * NETIF_F_HW_VLAN_CTAG_RX 5855 * NETIF_F_HW_VLAN_CTAG_TX 5856 * 5857 * NETIF_F_HW_VLAN_STAG_FILTER 5858 * NETIF_HW_VLAN_STAG_RX 5859 * NETIF_HW_VLAN_STAG_TX 5860 * 5861 * Features that need fixing: 5862 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5863 * These are mutually exlusive as the VSI context cannot support multiple 5864 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5865 * is not done, then default to clearing the requested STAG offload 5866 * settings. 5867 * 5868 * All supported filtering has to be enabled or disabled together. For 5869 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5870 * together. If this is not done, then default to VLAN filtering disabled. 5871 * These are mutually exclusive as there is currently no way to 5872 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5873 * prune rules. 5874 */ 5875 static netdev_features_t 5876 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5877 { 5878 struct ice_netdev_priv *np = netdev_priv(netdev); 5879 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5880 bool cur_ctag, cur_stag, req_ctag, req_stag; 5881 5882 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5883 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5884 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5885 5886 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5887 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5888 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5889 5890 if (req_vlan_fltr != cur_vlan_fltr) { 5891 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5892 if (req_ctag && req_stag) { 5893 features |= NETIF_VLAN_FILTERING_FEATURES; 5894 } else if (!req_ctag && !req_stag) { 5895 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5896 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5897 (!cur_stag && req_stag && !cur_ctag)) { 5898 features |= NETIF_VLAN_FILTERING_FEATURES; 5899 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5900 } else if ((cur_ctag && !req_ctag && cur_stag) || 5901 (cur_stag && !req_stag && cur_ctag)) { 5902 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5903 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5904 } 5905 } else { 5906 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5907 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5908 5909 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5910 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5911 } 5912 } 5913 5914 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5915 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5916 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5917 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5918 NETIF_F_HW_VLAN_STAG_TX); 5919 } 5920 5921 if (!(netdev->features & NETIF_F_RXFCS) && 5922 (features & NETIF_F_RXFCS) && 5923 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5924 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5925 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5926 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5927 } 5928 5929 return features; 5930 } 5931 5932 /** 5933 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5934 * @vsi: PF's VSI 5935 * @features: features used to determine VLAN offload settings 5936 * 5937 * First, determine the vlan_ethertype based on the VLAN offload bits in 5938 * features. Then determine if stripping and insertion should be enabled or 5939 * disabled. Finally enable or disable VLAN stripping and insertion. 5940 */ 5941 static int 5942 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5943 { 5944 bool enable_stripping = true, enable_insertion = true; 5945 struct ice_vsi_vlan_ops *vlan_ops; 5946 int strip_err = 0, insert_err = 0; 5947 u16 vlan_ethertype = 0; 5948 5949 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5950 5951 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5952 vlan_ethertype = ETH_P_8021AD; 5953 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5954 vlan_ethertype = ETH_P_8021Q; 5955 5956 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5957 enable_stripping = false; 5958 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5959 enable_insertion = false; 5960 5961 if (enable_stripping) 5962 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5963 else 5964 strip_err = vlan_ops->dis_stripping(vsi); 5965 5966 if (enable_insertion) 5967 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5968 else 5969 insert_err = vlan_ops->dis_insertion(vsi); 5970 5971 if (strip_err || insert_err) 5972 return -EIO; 5973 5974 return 0; 5975 } 5976 5977 /** 5978 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5979 * @vsi: PF's VSI 5980 * @features: features used to determine VLAN filtering settings 5981 * 5982 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5983 * features. 5984 */ 5985 static int 5986 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5987 { 5988 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5989 int err = 0; 5990 5991 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5992 * if either bit is set 5993 */ 5994 if (features & 5995 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5996 err = vlan_ops->ena_rx_filtering(vsi); 5997 else 5998 err = vlan_ops->dis_rx_filtering(vsi); 5999 6000 return err; 6001 } 6002 6003 /** 6004 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6005 * @netdev: ptr to the netdev being adjusted 6006 * @features: the feature set that the stack is suggesting 6007 * 6008 * Only update VLAN settings if the requested_vlan_features are different than 6009 * the current_vlan_features. 6010 */ 6011 static int 6012 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6013 { 6014 netdev_features_t current_vlan_features, requested_vlan_features; 6015 struct ice_netdev_priv *np = netdev_priv(netdev); 6016 struct ice_vsi *vsi = np->vsi; 6017 int err; 6018 6019 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6020 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6021 if (current_vlan_features ^ requested_vlan_features) { 6022 if ((features & NETIF_F_RXFCS) && 6023 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6024 dev_err(ice_pf_to_dev(vsi->back), 6025 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6026 return -EIO; 6027 } 6028 6029 err = ice_set_vlan_offload_features(vsi, features); 6030 if (err) 6031 return err; 6032 } 6033 6034 current_vlan_features = netdev->features & 6035 NETIF_VLAN_FILTERING_FEATURES; 6036 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6037 if (current_vlan_features ^ requested_vlan_features) { 6038 err = ice_set_vlan_filtering_features(vsi, features); 6039 if (err) 6040 return err; 6041 } 6042 6043 return 0; 6044 } 6045 6046 /** 6047 * ice_set_loopback - turn on/off loopback mode on underlying PF 6048 * @vsi: ptr to VSI 6049 * @ena: flag to indicate the on/off setting 6050 */ 6051 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6052 { 6053 bool if_running = netif_running(vsi->netdev); 6054 int ret; 6055 6056 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6057 ret = ice_down(vsi); 6058 if (ret) { 6059 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6060 return ret; 6061 } 6062 } 6063 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6064 if (ret) 6065 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6066 if (if_running) 6067 ret = ice_up(vsi); 6068 6069 return ret; 6070 } 6071 6072 /** 6073 * ice_set_features - set the netdev feature flags 6074 * @netdev: ptr to the netdev being adjusted 6075 * @features: the feature set that the stack is suggesting 6076 */ 6077 static int 6078 ice_set_features(struct net_device *netdev, netdev_features_t features) 6079 { 6080 netdev_features_t changed = netdev->features ^ features; 6081 struct ice_netdev_priv *np = netdev_priv(netdev); 6082 struct ice_vsi *vsi = np->vsi; 6083 struct ice_pf *pf = vsi->back; 6084 int ret = 0; 6085 6086 /* Don't set any netdev advanced features with device in Safe Mode */ 6087 if (ice_is_safe_mode(pf)) { 6088 dev_err(ice_pf_to_dev(pf), 6089 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6090 return ret; 6091 } 6092 6093 /* Do not change setting during reset */ 6094 if (ice_is_reset_in_progress(pf->state)) { 6095 dev_err(ice_pf_to_dev(pf), 6096 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6097 return -EBUSY; 6098 } 6099 6100 /* Multiple features can be changed in one call so keep features in 6101 * separate if/else statements to guarantee each feature is checked 6102 */ 6103 if (changed & NETIF_F_RXHASH) 6104 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6105 6106 ret = ice_set_vlan_features(netdev, features); 6107 if (ret) 6108 return ret; 6109 6110 /* Turn on receive of FCS aka CRC, and after setting this 6111 * flag the packet data will have the 4 byte CRC appended 6112 */ 6113 if (changed & NETIF_F_RXFCS) { 6114 if ((features & NETIF_F_RXFCS) && 6115 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6116 dev_err(ice_pf_to_dev(vsi->back), 6117 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6118 return -EIO; 6119 } 6120 6121 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6122 ret = ice_down_up(vsi); 6123 if (ret) 6124 return ret; 6125 } 6126 6127 if (changed & NETIF_F_NTUPLE) { 6128 bool ena = !!(features & NETIF_F_NTUPLE); 6129 6130 ice_vsi_manage_fdir(vsi, ena); 6131 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6132 } 6133 6134 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6135 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6136 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6137 return -EACCES; 6138 } 6139 6140 if (changed & NETIF_F_HW_TC) { 6141 bool ena = !!(features & NETIF_F_HW_TC); 6142 6143 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6144 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6145 } 6146 6147 if (changed & NETIF_F_LOOPBACK) 6148 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6149 6150 return ret; 6151 } 6152 6153 /** 6154 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6155 * @vsi: VSI to setup VLAN properties for 6156 */ 6157 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6158 { 6159 int err; 6160 6161 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6162 if (err) 6163 return err; 6164 6165 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6166 if (err) 6167 return err; 6168 6169 return ice_vsi_add_vlan_zero(vsi); 6170 } 6171 6172 /** 6173 * ice_vsi_cfg_lan - Setup the VSI lan related config 6174 * @vsi: the VSI being configured 6175 * 6176 * Return 0 on success and negative value on error 6177 */ 6178 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6179 { 6180 int err; 6181 6182 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6183 ice_set_rx_mode(vsi->netdev); 6184 6185 err = ice_vsi_vlan_setup(vsi); 6186 if (err) 6187 return err; 6188 } 6189 ice_vsi_cfg_dcb_rings(vsi); 6190 6191 err = ice_vsi_cfg_lan_txqs(vsi); 6192 if (!err && ice_is_xdp_ena_vsi(vsi)) 6193 err = ice_vsi_cfg_xdp_txqs(vsi); 6194 if (!err) 6195 err = ice_vsi_cfg_rxqs(vsi); 6196 6197 return err; 6198 } 6199 6200 /* THEORY OF MODERATION: 6201 * The ice driver hardware works differently than the hardware that DIMLIB was 6202 * originally made for. ice hardware doesn't have packet count limits that 6203 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6204 * which is hard-coded to a limit of 250,000 ints/second. 6205 * If not using dynamic moderation, the INTRL value can be modified 6206 * by ethtool rx-usecs-high. 6207 */ 6208 struct ice_dim { 6209 /* the throttle rate for interrupts, basically worst case delay before 6210 * an initial interrupt fires, value is stored in microseconds. 6211 */ 6212 u16 itr; 6213 }; 6214 6215 /* Make a different profile for Rx that doesn't allow quite so aggressive 6216 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6217 * second. 6218 */ 6219 static const struct ice_dim rx_profile[] = { 6220 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6221 {8}, /* 125,000 ints/s */ 6222 {16}, /* 62,500 ints/s */ 6223 {62}, /* 16,129 ints/s */ 6224 {126} /* 7,936 ints/s */ 6225 }; 6226 6227 /* The transmit profile, which has the same sorts of values 6228 * as the previous struct 6229 */ 6230 static const struct ice_dim tx_profile[] = { 6231 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6232 {8}, /* 125,000 ints/s */ 6233 {40}, /* 16,125 ints/s */ 6234 {128}, /* 7,812 ints/s */ 6235 {256} /* 3,906 ints/s */ 6236 }; 6237 6238 static void ice_tx_dim_work(struct work_struct *work) 6239 { 6240 struct ice_ring_container *rc; 6241 struct dim *dim; 6242 u16 itr; 6243 6244 dim = container_of(work, struct dim, work); 6245 rc = (struct ice_ring_container *)dim->priv; 6246 6247 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6248 6249 /* look up the values in our local table */ 6250 itr = tx_profile[dim->profile_ix].itr; 6251 6252 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6253 ice_write_itr(rc, itr); 6254 6255 dim->state = DIM_START_MEASURE; 6256 } 6257 6258 static void ice_rx_dim_work(struct work_struct *work) 6259 { 6260 struct ice_ring_container *rc; 6261 struct dim *dim; 6262 u16 itr; 6263 6264 dim = container_of(work, struct dim, work); 6265 rc = (struct ice_ring_container *)dim->priv; 6266 6267 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6268 6269 /* look up the values in our local table */ 6270 itr = rx_profile[dim->profile_ix].itr; 6271 6272 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6273 ice_write_itr(rc, itr); 6274 6275 dim->state = DIM_START_MEASURE; 6276 } 6277 6278 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6279 6280 /** 6281 * ice_init_moderation - set up interrupt moderation 6282 * @q_vector: the vector containing rings to be configured 6283 * 6284 * Set up interrupt moderation registers, with the intent to do the right thing 6285 * when called from reset or from probe, and whether or not dynamic moderation 6286 * is enabled or not. Take special care to write all the registers in both 6287 * dynamic moderation mode or not in order to make sure hardware is in a known 6288 * state. 6289 */ 6290 static void ice_init_moderation(struct ice_q_vector *q_vector) 6291 { 6292 struct ice_ring_container *rc; 6293 bool tx_dynamic, rx_dynamic; 6294 6295 rc = &q_vector->tx; 6296 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6297 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6298 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6299 rc->dim.priv = rc; 6300 tx_dynamic = ITR_IS_DYNAMIC(rc); 6301 6302 /* set the initial TX ITR to match the above */ 6303 ice_write_itr(rc, tx_dynamic ? 6304 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6305 6306 rc = &q_vector->rx; 6307 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6308 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6309 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6310 rc->dim.priv = rc; 6311 rx_dynamic = ITR_IS_DYNAMIC(rc); 6312 6313 /* set the initial RX ITR to match the above */ 6314 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6315 rc->itr_setting); 6316 6317 ice_set_q_vector_intrl(q_vector); 6318 } 6319 6320 /** 6321 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6322 * @vsi: the VSI being configured 6323 */ 6324 static void ice_napi_enable_all(struct ice_vsi *vsi) 6325 { 6326 int q_idx; 6327 6328 if (!vsi->netdev) 6329 return; 6330 6331 ice_for_each_q_vector(vsi, q_idx) { 6332 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6333 6334 ice_init_moderation(q_vector); 6335 6336 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6337 napi_enable(&q_vector->napi); 6338 } 6339 } 6340 6341 /** 6342 * ice_up_complete - Finish the last steps of bringing up a connection 6343 * @vsi: The VSI being configured 6344 * 6345 * Return 0 on success and negative value on error 6346 */ 6347 static int ice_up_complete(struct ice_vsi *vsi) 6348 { 6349 struct ice_pf *pf = vsi->back; 6350 int err; 6351 6352 ice_vsi_cfg_msix(vsi); 6353 6354 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6355 * Tx queue group list was configured and the context bits were 6356 * programmed using ice_vsi_cfg_txqs 6357 */ 6358 err = ice_vsi_start_all_rx_rings(vsi); 6359 if (err) 6360 return err; 6361 6362 clear_bit(ICE_VSI_DOWN, vsi->state); 6363 ice_napi_enable_all(vsi); 6364 ice_vsi_ena_irq(vsi); 6365 6366 if (vsi->port_info && 6367 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6368 vsi->netdev && vsi->type == ICE_VSI_PF) { 6369 ice_print_link_msg(vsi, true); 6370 netif_tx_start_all_queues(vsi->netdev); 6371 netif_carrier_on(vsi->netdev); 6372 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6373 } 6374 6375 /* Perform an initial read of the statistics registers now to 6376 * set the baseline so counters are ready when interface is up 6377 */ 6378 ice_update_eth_stats(vsi); 6379 6380 if (vsi->type == ICE_VSI_PF) 6381 ice_service_task_schedule(pf); 6382 6383 return 0; 6384 } 6385 6386 /** 6387 * ice_up - Bring the connection back up after being down 6388 * @vsi: VSI being configured 6389 */ 6390 int ice_up(struct ice_vsi *vsi) 6391 { 6392 int err; 6393 6394 err = ice_vsi_cfg_lan(vsi); 6395 if (!err) 6396 err = ice_up_complete(vsi); 6397 6398 return err; 6399 } 6400 6401 /** 6402 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6403 * @syncp: pointer to u64_stats_sync 6404 * @stats: stats that pkts and bytes count will be taken from 6405 * @pkts: packets stats counter 6406 * @bytes: bytes stats counter 6407 * 6408 * This function fetches stats from the ring considering the atomic operations 6409 * that needs to be performed to read u64 values in 32 bit machine. 6410 */ 6411 void 6412 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6413 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6414 { 6415 unsigned int start; 6416 6417 do { 6418 start = u64_stats_fetch_begin(syncp); 6419 *pkts = stats.pkts; 6420 *bytes = stats.bytes; 6421 } while (u64_stats_fetch_retry(syncp, start)); 6422 } 6423 6424 /** 6425 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6426 * @vsi: the VSI to be updated 6427 * @vsi_stats: the stats struct to be updated 6428 * @rings: rings to work on 6429 * @count: number of rings 6430 */ 6431 static void 6432 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6433 struct rtnl_link_stats64 *vsi_stats, 6434 struct ice_tx_ring **rings, u16 count) 6435 { 6436 u16 i; 6437 6438 for (i = 0; i < count; i++) { 6439 struct ice_tx_ring *ring; 6440 u64 pkts = 0, bytes = 0; 6441 6442 ring = READ_ONCE(rings[i]); 6443 if (!ring || !ring->ring_stats) 6444 continue; 6445 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6446 ring->ring_stats->stats, &pkts, 6447 &bytes); 6448 vsi_stats->tx_packets += pkts; 6449 vsi_stats->tx_bytes += bytes; 6450 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6451 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6452 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6453 } 6454 } 6455 6456 /** 6457 * ice_update_vsi_ring_stats - Update VSI stats counters 6458 * @vsi: the VSI to be updated 6459 */ 6460 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6461 { 6462 struct rtnl_link_stats64 *net_stats, *stats_prev; 6463 struct rtnl_link_stats64 *vsi_stats; 6464 u64 pkts, bytes; 6465 int i; 6466 6467 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6468 if (!vsi_stats) 6469 return; 6470 6471 /* reset non-netdev (extended) stats */ 6472 vsi->tx_restart = 0; 6473 vsi->tx_busy = 0; 6474 vsi->tx_linearize = 0; 6475 vsi->rx_buf_failed = 0; 6476 vsi->rx_page_failed = 0; 6477 6478 rcu_read_lock(); 6479 6480 /* update Tx rings counters */ 6481 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6482 vsi->num_txq); 6483 6484 /* update Rx rings counters */ 6485 ice_for_each_rxq(vsi, i) { 6486 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6487 struct ice_ring_stats *ring_stats; 6488 6489 ring_stats = ring->ring_stats; 6490 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6491 ring_stats->stats, &pkts, 6492 &bytes); 6493 vsi_stats->rx_packets += pkts; 6494 vsi_stats->rx_bytes += bytes; 6495 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6496 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6497 } 6498 6499 /* update XDP Tx rings counters */ 6500 if (ice_is_xdp_ena_vsi(vsi)) 6501 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6502 vsi->num_xdp_txq); 6503 6504 rcu_read_unlock(); 6505 6506 net_stats = &vsi->net_stats; 6507 stats_prev = &vsi->net_stats_prev; 6508 6509 /* clear prev counters after reset */ 6510 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6511 vsi_stats->rx_packets < stats_prev->rx_packets) { 6512 stats_prev->tx_packets = 0; 6513 stats_prev->tx_bytes = 0; 6514 stats_prev->rx_packets = 0; 6515 stats_prev->rx_bytes = 0; 6516 } 6517 6518 /* update netdev counters */ 6519 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6520 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6521 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6522 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6523 6524 stats_prev->tx_packets = vsi_stats->tx_packets; 6525 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6526 stats_prev->rx_packets = vsi_stats->rx_packets; 6527 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6528 6529 kfree(vsi_stats); 6530 } 6531 6532 /** 6533 * ice_update_vsi_stats - Update VSI stats counters 6534 * @vsi: the VSI to be updated 6535 */ 6536 void ice_update_vsi_stats(struct ice_vsi *vsi) 6537 { 6538 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6539 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6540 struct ice_pf *pf = vsi->back; 6541 6542 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6543 test_bit(ICE_CFG_BUSY, pf->state)) 6544 return; 6545 6546 /* get stats as recorded by Tx/Rx rings */ 6547 ice_update_vsi_ring_stats(vsi); 6548 6549 /* get VSI stats as recorded by the hardware */ 6550 ice_update_eth_stats(vsi); 6551 6552 cur_ns->tx_errors = cur_es->tx_errors; 6553 cur_ns->rx_dropped = cur_es->rx_discards; 6554 cur_ns->tx_dropped = cur_es->tx_discards; 6555 cur_ns->multicast = cur_es->rx_multicast; 6556 6557 /* update some more netdev stats if this is main VSI */ 6558 if (vsi->type == ICE_VSI_PF) { 6559 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6560 cur_ns->rx_errors = pf->stats.crc_errors + 6561 pf->stats.illegal_bytes + 6562 pf->stats.rx_len_errors + 6563 pf->stats.rx_undersize + 6564 pf->hw_csum_rx_error + 6565 pf->stats.rx_jabber + 6566 pf->stats.rx_fragments + 6567 pf->stats.rx_oversize; 6568 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6569 /* record drops from the port level */ 6570 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6571 } 6572 } 6573 6574 /** 6575 * ice_update_pf_stats - Update PF port stats counters 6576 * @pf: PF whose stats needs to be updated 6577 */ 6578 void ice_update_pf_stats(struct ice_pf *pf) 6579 { 6580 struct ice_hw_port_stats *prev_ps, *cur_ps; 6581 struct ice_hw *hw = &pf->hw; 6582 u16 fd_ctr_base; 6583 u8 port; 6584 6585 port = hw->port_info->lport; 6586 prev_ps = &pf->stats_prev; 6587 cur_ps = &pf->stats; 6588 6589 if (ice_is_reset_in_progress(pf->state)) 6590 pf->stat_prev_loaded = false; 6591 6592 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6593 &prev_ps->eth.rx_bytes, 6594 &cur_ps->eth.rx_bytes); 6595 6596 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6597 &prev_ps->eth.rx_unicast, 6598 &cur_ps->eth.rx_unicast); 6599 6600 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6601 &prev_ps->eth.rx_multicast, 6602 &cur_ps->eth.rx_multicast); 6603 6604 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6605 &prev_ps->eth.rx_broadcast, 6606 &cur_ps->eth.rx_broadcast); 6607 6608 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6609 &prev_ps->eth.rx_discards, 6610 &cur_ps->eth.rx_discards); 6611 6612 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6613 &prev_ps->eth.tx_bytes, 6614 &cur_ps->eth.tx_bytes); 6615 6616 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6617 &prev_ps->eth.tx_unicast, 6618 &cur_ps->eth.tx_unicast); 6619 6620 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6621 &prev_ps->eth.tx_multicast, 6622 &cur_ps->eth.tx_multicast); 6623 6624 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6625 &prev_ps->eth.tx_broadcast, 6626 &cur_ps->eth.tx_broadcast); 6627 6628 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6629 &prev_ps->tx_dropped_link_down, 6630 &cur_ps->tx_dropped_link_down); 6631 6632 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6633 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6634 6635 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6636 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6637 6638 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6639 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6640 6641 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6642 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6643 6644 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6645 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6646 6647 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6648 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6649 6650 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6651 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6652 6653 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6654 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6655 6656 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6657 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6658 6659 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6660 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6661 6662 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6663 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6664 6665 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6666 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6667 6668 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6669 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6670 6671 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6672 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6673 6674 fd_ctr_base = hw->fd_ctr_base; 6675 6676 ice_stat_update40(hw, 6677 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6678 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6679 &cur_ps->fd_sb_match); 6680 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6681 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6682 6683 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6684 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6685 6686 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6687 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6688 6689 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6690 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6691 6692 ice_update_dcb_stats(pf); 6693 6694 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6695 &prev_ps->crc_errors, &cur_ps->crc_errors); 6696 6697 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6698 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6699 6700 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6701 &prev_ps->mac_local_faults, 6702 &cur_ps->mac_local_faults); 6703 6704 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6705 &prev_ps->mac_remote_faults, 6706 &cur_ps->mac_remote_faults); 6707 6708 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6709 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6710 6711 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6712 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6713 6714 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6715 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6716 6717 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6718 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6719 6720 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6721 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6722 6723 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6724 6725 pf->stat_prev_loaded = true; 6726 } 6727 6728 /** 6729 * ice_get_stats64 - get statistics for network device structure 6730 * @netdev: network interface device structure 6731 * @stats: main device statistics structure 6732 */ 6733 static 6734 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6735 { 6736 struct ice_netdev_priv *np = netdev_priv(netdev); 6737 struct rtnl_link_stats64 *vsi_stats; 6738 struct ice_vsi *vsi = np->vsi; 6739 6740 vsi_stats = &vsi->net_stats; 6741 6742 if (!vsi->num_txq || !vsi->num_rxq) 6743 return; 6744 6745 /* netdev packet/byte stats come from ring counter. These are obtained 6746 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6747 * But, only call the update routine and read the registers if VSI is 6748 * not down. 6749 */ 6750 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6751 ice_update_vsi_ring_stats(vsi); 6752 stats->tx_packets = vsi_stats->tx_packets; 6753 stats->tx_bytes = vsi_stats->tx_bytes; 6754 stats->rx_packets = vsi_stats->rx_packets; 6755 stats->rx_bytes = vsi_stats->rx_bytes; 6756 6757 /* The rest of the stats can be read from the hardware but instead we 6758 * just return values that the watchdog task has already obtained from 6759 * the hardware. 6760 */ 6761 stats->multicast = vsi_stats->multicast; 6762 stats->tx_errors = vsi_stats->tx_errors; 6763 stats->tx_dropped = vsi_stats->tx_dropped; 6764 stats->rx_errors = vsi_stats->rx_errors; 6765 stats->rx_dropped = vsi_stats->rx_dropped; 6766 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6767 stats->rx_length_errors = vsi_stats->rx_length_errors; 6768 } 6769 6770 /** 6771 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6772 * @vsi: VSI having NAPI disabled 6773 */ 6774 static void ice_napi_disable_all(struct ice_vsi *vsi) 6775 { 6776 int q_idx; 6777 6778 if (!vsi->netdev) 6779 return; 6780 6781 ice_for_each_q_vector(vsi, q_idx) { 6782 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6783 6784 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6785 napi_disable(&q_vector->napi); 6786 6787 cancel_work_sync(&q_vector->tx.dim.work); 6788 cancel_work_sync(&q_vector->rx.dim.work); 6789 } 6790 } 6791 6792 /** 6793 * ice_down - Shutdown the connection 6794 * @vsi: The VSI being stopped 6795 * 6796 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6797 */ 6798 int ice_down(struct ice_vsi *vsi) 6799 { 6800 int i, tx_err, rx_err, vlan_err = 0; 6801 6802 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6803 6804 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6805 vlan_err = ice_vsi_del_vlan_zero(vsi); 6806 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6807 netif_carrier_off(vsi->netdev); 6808 netif_tx_disable(vsi->netdev); 6809 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6810 ice_eswitch_stop_all_tx_queues(vsi->back); 6811 } 6812 6813 ice_vsi_dis_irq(vsi); 6814 6815 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6816 if (tx_err) 6817 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6818 vsi->vsi_num, tx_err); 6819 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6820 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6821 if (tx_err) 6822 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6823 vsi->vsi_num, tx_err); 6824 } 6825 6826 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6827 if (rx_err) 6828 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6829 vsi->vsi_num, rx_err); 6830 6831 ice_napi_disable_all(vsi); 6832 6833 ice_for_each_txq(vsi, i) 6834 ice_clean_tx_ring(vsi->tx_rings[i]); 6835 6836 if (ice_is_xdp_ena_vsi(vsi)) 6837 ice_for_each_xdp_txq(vsi, i) 6838 ice_clean_tx_ring(vsi->xdp_rings[i]); 6839 6840 ice_for_each_rxq(vsi, i) 6841 ice_clean_rx_ring(vsi->rx_rings[i]); 6842 6843 if (tx_err || rx_err || vlan_err) { 6844 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6845 vsi->vsi_num, vsi->vsw->sw_id); 6846 return -EIO; 6847 } 6848 6849 return 0; 6850 } 6851 6852 /** 6853 * ice_down_up - shutdown the VSI connection and bring it up 6854 * @vsi: the VSI to be reconnected 6855 */ 6856 int ice_down_up(struct ice_vsi *vsi) 6857 { 6858 int ret; 6859 6860 /* if DOWN already set, nothing to do */ 6861 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6862 return 0; 6863 6864 ret = ice_down(vsi); 6865 if (ret) 6866 return ret; 6867 6868 ret = ice_up(vsi); 6869 if (ret) { 6870 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6871 return ret; 6872 } 6873 6874 return 0; 6875 } 6876 6877 /** 6878 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6879 * @vsi: VSI having resources allocated 6880 * 6881 * Return 0 on success, negative on failure 6882 */ 6883 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6884 { 6885 int i, err = 0; 6886 6887 if (!vsi->num_txq) { 6888 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6889 vsi->vsi_num); 6890 return -EINVAL; 6891 } 6892 6893 ice_for_each_txq(vsi, i) { 6894 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6895 6896 if (!ring) 6897 return -EINVAL; 6898 6899 if (vsi->netdev) 6900 ring->netdev = vsi->netdev; 6901 err = ice_setup_tx_ring(ring); 6902 if (err) 6903 break; 6904 } 6905 6906 return err; 6907 } 6908 6909 /** 6910 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6911 * @vsi: VSI having resources allocated 6912 * 6913 * Return 0 on success, negative on failure 6914 */ 6915 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6916 { 6917 int i, err = 0; 6918 6919 if (!vsi->num_rxq) { 6920 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6921 vsi->vsi_num); 6922 return -EINVAL; 6923 } 6924 6925 ice_for_each_rxq(vsi, i) { 6926 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6927 6928 if (!ring) 6929 return -EINVAL; 6930 6931 if (vsi->netdev) 6932 ring->netdev = vsi->netdev; 6933 err = ice_setup_rx_ring(ring); 6934 if (err) 6935 break; 6936 } 6937 6938 return err; 6939 } 6940 6941 /** 6942 * ice_vsi_open_ctrl - open control VSI for use 6943 * @vsi: the VSI to open 6944 * 6945 * Initialization of the Control VSI 6946 * 6947 * Returns 0 on success, negative value on error 6948 */ 6949 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6950 { 6951 char int_name[ICE_INT_NAME_STR_LEN]; 6952 struct ice_pf *pf = vsi->back; 6953 struct device *dev; 6954 int err; 6955 6956 dev = ice_pf_to_dev(pf); 6957 /* allocate descriptors */ 6958 err = ice_vsi_setup_tx_rings(vsi); 6959 if (err) 6960 goto err_setup_tx; 6961 6962 err = ice_vsi_setup_rx_rings(vsi); 6963 if (err) 6964 goto err_setup_rx; 6965 6966 err = ice_vsi_cfg_lan(vsi); 6967 if (err) 6968 goto err_setup_rx; 6969 6970 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6971 dev_driver_string(dev), dev_name(dev)); 6972 err = ice_vsi_req_irq_msix(vsi, int_name); 6973 if (err) 6974 goto err_setup_rx; 6975 6976 ice_vsi_cfg_msix(vsi); 6977 6978 err = ice_vsi_start_all_rx_rings(vsi); 6979 if (err) 6980 goto err_up_complete; 6981 6982 clear_bit(ICE_VSI_DOWN, vsi->state); 6983 ice_vsi_ena_irq(vsi); 6984 6985 return 0; 6986 6987 err_up_complete: 6988 ice_down(vsi); 6989 err_setup_rx: 6990 ice_vsi_free_rx_rings(vsi); 6991 err_setup_tx: 6992 ice_vsi_free_tx_rings(vsi); 6993 6994 return err; 6995 } 6996 6997 /** 6998 * ice_vsi_open - Called when a network interface is made active 6999 * @vsi: the VSI to open 7000 * 7001 * Initialization of the VSI 7002 * 7003 * Returns 0 on success, negative value on error 7004 */ 7005 int ice_vsi_open(struct ice_vsi *vsi) 7006 { 7007 char int_name[ICE_INT_NAME_STR_LEN]; 7008 struct ice_pf *pf = vsi->back; 7009 int err; 7010 7011 /* allocate descriptors */ 7012 err = ice_vsi_setup_tx_rings(vsi); 7013 if (err) 7014 goto err_setup_tx; 7015 7016 err = ice_vsi_setup_rx_rings(vsi); 7017 if (err) 7018 goto err_setup_rx; 7019 7020 err = ice_vsi_cfg_lan(vsi); 7021 if (err) 7022 goto err_setup_rx; 7023 7024 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7025 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7026 err = ice_vsi_req_irq_msix(vsi, int_name); 7027 if (err) 7028 goto err_setup_rx; 7029 7030 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7031 7032 if (vsi->type == ICE_VSI_PF) { 7033 /* Notify the stack of the actual queue counts. */ 7034 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7035 if (err) 7036 goto err_set_qs; 7037 7038 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7039 if (err) 7040 goto err_set_qs; 7041 } 7042 7043 err = ice_up_complete(vsi); 7044 if (err) 7045 goto err_up_complete; 7046 7047 return 0; 7048 7049 err_up_complete: 7050 ice_down(vsi); 7051 err_set_qs: 7052 ice_vsi_free_irq(vsi); 7053 err_setup_rx: 7054 ice_vsi_free_rx_rings(vsi); 7055 err_setup_tx: 7056 ice_vsi_free_tx_rings(vsi); 7057 7058 return err; 7059 } 7060 7061 /** 7062 * ice_vsi_release_all - Delete all VSIs 7063 * @pf: PF from which all VSIs are being removed 7064 */ 7065 static void ice_vsi_release_all(struct ice_pf *pf) 7066 { 7067 int err, i; 7068 7069 if (!pf->vsi) 7070 return; 7071 7072 ice_for_each_vsi(pf, i) { 7073 if (!pf->vsi[i]) 7074 continue; 7075 7076 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7077 continue; 7078 7079 err = ice_vsi_release(pf->vsi[i]); 7080 if (err) 7081 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7082 i, err, pf->vsi[i]->vsi_num); 7083 } 7084 } 7085 7086 /** 7087 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7088 * @pf: pointer to the PF instance 7089 * @type: VSI type to rebuild 7090 * 7091 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7092 */ 7093 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7094 { 7095 struct device *dev = ice_pf_to_dev(pf); 7096 int i, err; 7097 7098 ice_for_each_vsi(pf, i) { 7099 struct ice_vsi *vsi = pf->vsi[i]; 7100 7101 if (!vsi || vsi->type != type) 7102 continue; 7103 7104 /* rebuild the VSI */ 7105 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7106 if (err) { 7107 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7108 err, vsi->idx, ice_vsi_type_str(type)); 7109 return err; 7110 } 7111 7112 /* replay filters for the VSI */ 7113 err = ice_replay_vsi(&pf->hw, vsi->idx); 7114 if (err) { 7115 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7116 err, vsi->idx, ice_vsi_type_str(type)); 7117 return err; 7118 } 7119 7120 /* Re-map HW VSI number, using VSI handle that has been 7121 * previously validated in ice_replay_vsi() call above 7122 */ 7123 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7124 7125 /* enable the VSI */ 7126 err = ice_ena_vsi(vsi, false); 7127 if (err) { 7128 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7129 err, vsi->idx, ice_vsi_type_str(type)); 7130 return err; 7131 } 7132 7133 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7134 ice_vsi_type_str(type)); 7135 } 7136 7137 return 0; 7138 } 7139 7140 /** 7141 * ice_update_pf_netdev_link - Update PF netdev link status 7142 * @pf: pointer to the PF instance 7143 */ 7144 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7145 { 7146 bool link_up; 7147 int i; 7148 7149 ice_for_each_vsi(pf, i) { 7150 struct ice_vsi *vsi = pf->vsi[i]; 7151 7152 if (!vsi || vsi->type != ICE_VSI_PF) 7153 return; 7154 7155 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7156 if (link_up) { 7157 netif_carrier_on(pf->vsi[i]->netdev); 7158 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7159 } else { 7160 netif_carrier_off(pf->vsi[i]->netdev); 7161 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7162 } 7163 } 7164 } 7165 7166 /** 7167 * ice_rebuild - rebuild after reset 7168 * @pf: PF to rebuild 7169 * @reset_type: type of reset 7170 * 7171 * Do not rebuild VF VSI in this flow because that is already handled via 7172 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7173 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7174 * to reset/rebuild all the VF VSI twice. 7175 */ 7176 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7177 { 7178 struct device *dev = ice_pf_to_dev(pf); 7179 struct ice_hw *hw = &pf->hw; 7180 bool dvm; 7181 int err; 7182 7183 if (test_bit(ICE_DOWN, pf->state)) 7184 goto clear_recovery; 7185 7186 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7187 7188 #define ICE_EMP_RESET_SLEEP_MS 5000 7189 if (reset_type == ICE_RESET_EMPR) { 7190 /* If an EMP reset has occurred, any previously pending flash 7191 * update will have completed. We no longer know whether or 7192 * not the NVM update EMP reset is restricted. 7193 */ 7194 pf->fw_emp_reset_disabled = false; 7195 7196 msleep(ICE_EMP_RESET_SLEEP_MS); 7197 } 7198 7199 err = ice_init_all_ctrlq(hw); 7200 if (err) { 7201 dev_err(dev, "control queues init failed %d\n", err); 7202 goto err_init_ctrlq; 7203 } 7204 7205 /* if DDP was previously loaded successfully */ 7206 if (!ice_is_safe_mode(pf)) { 7207 /* reload the SW DB of filter tables */ 7208 if (reset_type == ICE_RESET_PFR) 7209 ice_fill_blk_tbls(hw); 7210 else 7211 /* Reload DDP Package after CORER/GLOBR reset */ 7212 ice_load_pkg(NULL, pf); 7213 } 7214 7215 err = ice_clear_pf_cfg(hw); 7216 if (err) { 7217 dev_err(dev, "clear PF configuration failed %d\n", err); 7218 goto err_init_ctrlq; 7219 } 7220 7221 ice_clear_pxe_mode(hw); 7222 7223 err = ice_init_nvm(hw); 7224 if (err) { 7225 dev_err(dev, "ice_init_nvm failed %d\n", err); 7226 goto err_init_ctrlq; 7227 } 7228 7229 err = ice_get_caps(hw); 7230 if (err) { 7231 dev_err(dev, "ice_get_caps failed %d\n", err); 7232 goto err_init_ctrlq; 7233 } 7234 7235 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7236 if (err) { 7237 dev_err(dev, "set_mac_cfg failed %d\n", err); 7238 goto err_init_ctrlq; 7239 } 7240 7241 dvm = ice_is_dvm_ena(hw); 7242 7243 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7244 if (err) 7245 goto err_init_ctrlq; 7246 7247 err = ice_sched_init_port(hw->port_info); 7248 if (err) 7249 goto err_sched_init_port; 7250 7251 /* start misc vector */ 7252 err = ice_req_irq_msix_misc(pf); 7253 if (err) { 7254 dev_err(dev, "misc vector setup failed: %d\n", err); 7255 goto err_sched_init_port; 7256 } 7257 7258 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7259 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7260 if (!rd32(hw, PFQF_FD_SIZE)) { 7261 u16 unused, guar, b_effort; 7262 7263 guar = hw->func_caps.fd_fltr_guar; 7264 b_effort = hw->func_caps.fd_fltr_best_effort; 7265 7266 /* force guaranteed filter pool for PF */ 7267 ice_alloc_fd_guar_item(hw, &unused, guar); 7268 /* force shared filter pool for PF */ 7269 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7270 } 7271 } 7272 7273 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7274 ice_dcb_rebuild(pf); 7275 7276 /* If the PF previously had enabled PTP, PTP init needs to happen before 7277 * the VSI rebuild. If not, this causes the PTP link status events to 7278 * fail. 7279 */ 7280 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7281 ice_ptp_reset(pf); 7282 7283 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7284 ice_gnss_init(pf); 7285 7286 /* rebuild PF VSI */ 7287 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7288 if (err) { 7289 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7290 goto err_vsi_rebuild; 7291 } 7292 7293 /* configure PTP timestamping after VSI rebuild */ 7294 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7295 ice_ptp_cfg_timestamp(pf, false); 7296 7297 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7298 if (err) { 7299 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7300 goto err_vsi_rebuild; 7301 } 7302 7303 if (reset_type == ICE_RESET_PFR) { 7304 err = ice_rebuild_channels(pf); 7305 if (err) { 7306 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7307 err); 7308 goto err_vsi_rebuild; 7309 } 7310 } 7311 7312 /* If Flow Director is active */ 7313 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7314 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7315 if (err) { 7316 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7317 goto err_vsi_rebuild; 7318 } 7319 7320 /* replay HW Flow Director recipes */ 7321 if (hw->fdir_prof) 7322 ice_fdir_replay_flows(hw); 7323 7324 /* replay Flow Director filters */ 7325 ice_fdir_replay_fltrs(pf); 7326 7327 ice_rebuild_arfs(pf); 7328 } 7329 7330 ice_update_pf_netdev_link(pf); 7331 7332 /* tell the firmware we are up */ 7333 err = ice_send_version(pf); 7334 if (err) { 7335 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7336 err); 7337 goto err_vsi_rebuild; 7338 } 7339 7340 ice_replay_post(hw); 7341 7342 /* if we get here, reset flow is successful */ 7343 clear_bit(ICE_RESET_FAILED, pf->state); 7344 7345 ice_plug_aux_dev(pf); 7346 return; 7347 7348 err_vsi_rebuild: 7349 err_sched_init_port: 7350 ice_sched_cleanup_all(hw); 7351 err_init_ctrlq: 7352 ice_shutdown_all_ctrlq(hw); 7353 set_bit(ICE_RESET_FAILED, pf->state); 7354 clear_recovery: 7355 /* set this bit in PF state to control service task scheduling */ 7356 set_bit(ICE_NEEDS_RESTART, pf->state); 7357 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7358 } 7359 7360 /** 7361 * ice_change_mtu - NDO callback to change the MTU 7362 * @netdev: network interface device structure 7363 * @new_mtu: new value for maximum frame size 7364 * 7365 * Returns 0 on success, negative on failure 7366 */ 7367 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7368 { 7369 struct ice_netdev_priv *np = netdev_priv(netdev); 7370 struct ice_vsi *vsi = np->vsi; 7371 struct ice_pf *pf = vsi->back; 7372 struct bpf_prog *prog; 7373 u8 count = 0; 7374 int err = 0; 7375 7376 if (new_mtu == (int)netdev->mtu) { 7377 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7378 return 0; 7379 } 7380 7381 prog = vsi->xdp_prog; 7382 if (prog && !prog->aux->xdp_has_frags) { 7383 int frame_size = ice_max_xdp_frame_size(vsi); 7384 7385 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7386 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7387 frame_size - ICE_ETH_PKT_HDR_PAD); 7388 return -EINVAL; 7389 } 7390 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7391 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7392 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7393 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7394 return -EINVAL; 7395 } 7396 } 7397 7398 /* if a reset is in progress, wait for some time for it to complete */ 7399 do { 7400 if (ice_is_reset_in_progress(pf->state)) { 7401 count++; 7402 usleep_range(1000, 2000); 7403 } else { 7404 break; 7405 } 7406 7407 } while (count < 100); 7408 7409 if (count == 100) { 7410 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7411 return -EBUSY; 7412 } 7413 7414 netdev->mtu = (unsigned int)new_mtu; 7415 err = ice_down_up(vsi); 7416 if (err) 7417 return err; 7418 7419 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7420 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7421 7422 return err; 7423 } 7424 7425 /** 7426 * ice_eth_ioctl - Access the hwtstamp interface 7427 * @netdev: network interface device structure 7428 * @ifr: interface request data 7429 * @cmd: ioctl command 7430 */ 7431 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7432 { 7433 struct ice_netdev_priv *np = netdev_priv(netdev); 7434 struct ice_pf *pf = np->vsi->back; 7435 7436 switch (cmd) { 7437 case SIOCGHWTSTAMP: 7438 return ice_ptp_get_ts_config(pf, ifr); 7439 case SIOCSHWTSTAMP: 7440 return ice_ptp_set_ts_config(pf, ifr); 7441 default: 7442 return -EOPNOTSUPP; 7443 } 7444 } 7445 7446 /** 7447 * ice_aq_str - convert AQ err code to a string 7448 * @aq_err: the AQ error code to convert 7449 */ 7450 const char *ice_aq_str(enum ice_aq_err aq_err) 7451 { 7452 switch (aq_err) { 7453 case ICE_AQ_RC_OK: 7454 return "OK"; 7455 case ICE_AQ_RC_EPERM: 7456 return "ICE_AQ_RC_EPERM"; 7457 case ICE_AQ_RC_ENOENT: 7458 return "ICE_AQ_RC_ENOENT"; 7459 case ICE_AQ_RC_ENOMEM: 7460 return "ICE_AQ_RC_ENOMEM"; 7461 case ICE_AQ_RC_EBUSY: 7462 return "ICE_AQ_RC_EBUSY"; 7463 case ICE_AQ_RC_EEXIST: 7464 return "ICE_AQ_RC_EEXIST"; 7465 case ICE_AQ_RC_EINVAL: 7466 return "ICE_AQ_RC_EINVAL"; 7467 case ICE_AQ_RC_ENOSPC: 7468 return "ICE_AQ_RC_ENOSPC"; 7469 case ICE_AQ_RC_ENOSYS: 7470 return "ICE_AQ_RC_ENOSYS"; 7471 case ICE_AQ_RC_EMODE: 7472 return "ICE_AQ_RC_EMODE"; 7473 case ICE_AQ_RC_ENOSEC: 7474 return "ICE_AQ_RC_ENOSEC"; 7475 case ICE_AQ_RC_EBADSIG: 7476 return "ICE_AQ_RC_EBADSIG"; 7477 case ICE_AQ_RC_ESVN: 7478 return "ICE_AQ_RC_ESVN"; 7479 case ICE_AQ_RC_EBADMAN: 7480 return "ICE_AQ_RC_EBADMAN"; 7481 case ICE_AQ_RC_EBADBUF: 7482 return "ICE_AQ_RC_EBADBUF"; 7483 } 7484 7485 return "ICE_AQ_RC_UNKNOWN"; 7486 } 7487 7488 /** 7489 * ice_set_rss_lut - Set RSS LUT 7490 * @vsi: Pointer to VSI structure 7491 * @lut: Lookup table 7492 * @lut_size: Lookup table size 7493 * 7494 * Returns 0 on success, negative on failure 7495 */ 7496 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7497 { 7498 struct ice_aq_get_set_rss_lut_params params = {}; 7499 struct ice_hw *hw = &vsi->back->hw; 7500 int status; 7501 7502 if (!lut) 7503 return -EINVAL; 7504 7505 params.vsi_handle = vsi->idx; 7506 params.lut_size = lut_size; 7507 params.lut_type = vsi->rss_lut_type; 7508 params.lut = lut; 7509 7510 status = ice_aq_set_rss_lut(hw, ¶ms); 7511 if (status) 7512 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7513 status, ice_aq_str(hw->adminq.sq_last_status)); 7514 7515 return status; 7516 } 7517 7518 /** 7519 * ice_set_rss_key - Set RSS key 7520 * @vsi: Pointer to the VSI structure 7521 * @seed: RSS hash seed 7522 * 7523 * Returns 0 on success, negative on failure 7524 */ 7525 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7526 { 7527 struct ice_hw *hw = &vsi->back->hw; 7528 int status; 7529 7530 if (!seed) 7531 return -EINVAL; 7532 7533 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7534 if (status) 7535 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7536 status, ice_aq_str(hw->adminq.sq_last_status)); 7537 7538 return status; 7539 } 7540 7541 /** 7542 * ice_get_rss_lut - Get RSS LUT 7543 * @vsi: Pointer to VSI structure 7544 * @lut: Buffer to store the lookup table entries 7545 * @lut_size: Size of buffer to store the lookup table entries 7546 * 7547 * Returns 0 on success, negative on failure 7548 */ 7549 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7550 { 7551 struct ice_aq_get_set_rss_lut_params params = {}; 7552 struct ice_hw *hw = &vsi->back->hw; 7553 int status; 7554 7555 if (!lut) 7556 return -EINVAL; 7557 7558 params.vsi_handle = vsi->idx; 7559 params.lut_size = lut_size; 7560 params.lut_type = vsi->rss_lut_type; 7561 params.lut = lut; 7562 7563 status = ice_aq_get_rss_lut(hw, ¶ms); 7564 if (status) 7565 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7566 status, ice_aq_str(hw->adminq.sq_last_status)); 7567 7568 return status; 7569 } 7570 7571 /** 7572 * ice_get_rss_key - Get RSS key 7573 * @vsi: Pointer to VSI structure 7574 * @seed: Buffer to store the key in 7575 * 7576 * Returns 0 on success, negative on failure 7577 */ 7578 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7579 { 7580 struct ice_hw *hw = &vsi->back->hw; 7581 int status; 7582 7583 if (!seed) 7584 return -EINVAL; 7585 7586 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7587 if (status) 7588 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7589 status, ice_aq_str(hw->adminq.sq_last_status)); 7590 7591 return status; 7592 } 7593 7594 /** 7595 * ice_bridge_getlink - Get the hardware bridge mode 7596 * @skb: skb buff 7597 * @pid: process ID 7598 * @seq: RTNL message seq 7599 * @dev: the netdev being configured 7600 * @filter_mask: filter mask passed in 7601 * @nlflags: netlink flags passed in 7602 * 7603 * Return the bridge mode (VEB/VEPA) 7604 */ 7605 static int 7606 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7607 struct net_device *dev, u32 filter_mask, int nlflags) 7608 { 7609 struct ice_netdev_priv *np = netdev_priv(dev); 7610 struct ice_vsi *vsi = np->vsi; 7611 struct ice_pf *pf = vsi->back; 7612 u16 bmode; 7613 7614 bmode = pf->first_sw->bridge_mode; 7615 7616 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7617 filter_mask, NULL); 7618 } 7619 7620 /** 7621 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7622 * @vsi: Pointer to VSI structure 7623 * @bmode: Hardware bridge mode (VEB/VEPA) 7624 * 7625 * Returns 0 on success, negative on failure 7626 */ 7627 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7628 { 7629 struct ice_aqc_vsi_props *vsi_props; 7630 struct ice_hw *hw = &vsi->back->hw; 7631 struct ice_vsi_ctx *ctxt; 7632 int ret; 7633 7634 vsi_props = &vsi->info; 7635 7636 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7637 if (!ctxt) 7638 return -ENOMEM; 7639 7640 ctxt->info = vsi->info; 7641 7642 if (bmode == BRIDGE_MODE_VEB) 7643 /* change from VEPA to VEB mode */ 7644 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7645 else 7646 /* change from VEB to VEPA mode */ 7647 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7648 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7649 7650 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7651 if (ret) { 7652 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7653 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7654 goto out; 7655 } 7656 /* Update sw flags for book keeping */ 7657 vsi_props->sw_flags = ctxt->info.sw_flags; 7658 7659 out: 7660 kfree(ctxt); 7661 return ret; 7662 } 7663 7664 /** 7665 * ice_bridge_setlink - Set the hardware bridge mode 7666 * @dev: the netdev being configured 7667 * @nlh: RTNL message 7668 * @flags: bridge setlink flags 7669 * @extack: netlink extended ack 7670 * 7671 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7672 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7673 * not already set for all VSIs connected to this switch. And also update the 7674 * unicast switch filter rules for the corresponding switch of the netdev. 7675 */ 7676 static int 7677 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7678 u16 __always_unused flags, 7679 struct netlink_ext_ack __always_unused *extack) 7680 { 7681 struct ice_netdev_priv *np = netdev_priv(dev); 7682 struct ice_pf *pf = np->vsi->back; 7683 struct nlattr *attr, *br_spec; 7684 struct ice_hw *hw = &pf->hw; 7685 struct ice_sw *pf_sw; 7686 int rem, v, err = 0; 7687 7688 pf_sw = pf->first_sw; 7689 /* find the attribute in the netlink message */ 7690 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7691 7692 nla_for_each_nested(attr, br_spec, rem) { 7693 __u16 mode; 7694 7695 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7696 continue; 7697 mode = nla_get_u16(attr); 7698 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7699 return -EINVAL; 7700 /* Continue if bridge mode is not being flipped */ 7701 if (mode == pf_sw->bridge_mode) 7702 continue; 7703 /* Iterates through the PF VSI list and update the loopback 7704 * mode of the VSI 7705 */ 7706 ice_for_each_vsi(pf, v) { 7707 if (!pf->vsi[v]) 7708 continue; 7709 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7710 if (err) 7711 return err; 7712 } 7713 7714 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7715 /* Update the unicast switch filter rules for the corresponding 7716 * switch of the netdev 7717 */ 7718 err = ice_update_sw_rule_bridge_mode(hw); 7719 if (err) { 7720 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7721 mode, err, 7722 ice_aq_str(hw->adminq.sq_last_status)); 7723 /* revert hw->evb_veb */ 7724 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7725 return err; 7726 } 7727 7728 pf_sw->bridge_mode = mode; 7729 } 7730 7731 return 0; 7732 } 7733 7734 /** 7735 * ice_tx_timeout - Respond to a Tx Hang 7736 * @netdev: network interface device structure 7737 * @txqueue: Tx queue 7738 */ 7739 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7740 { 7741 struct ice_netdev_priv *np = netdev_priv(netdev); 7742 struct ice_tx_ring *tx_ring = NULL; 7743 struct ice_vsi *vsi = np->vsi; 7744 struct ice_pf *pf = vsi->back; 7745 u32 i; 7746 7747 pf->tx_timeout_count++; 7748 7749 /* Check if PFC is enabled for the TC to which the queue belongs 7750 * to. If yes then Tx timeout is not caused by a hung queue, no 7751 * need to reset and rebuild 7752 */ 7753 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7754 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7755 txqueue); 7756 return; 7757 } 7758 7759 /* now that we have an index, find the tx_ring struct */ 7760 ice_for_each_txq(vsi, i) 7761 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7762 if (txqueue == vsi->tx_rings[i]->q_index) { 7763 tx_ring = vsi->tx_rings[i]; 7764 break; 7765 } 7766 7767 /* Reset recovery level if enough time has elapsed after last timeout. 7768 * Also ensure no new reset action happens before next timeout period. 7769 */ 7770 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7771 pf->tx_timeout_recovery_level = 1; 7772 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7773 netdev->watchdog_timeo))) 7774 return; 7775 7776 if (tx_ring) { 7777 struct ice_hw *hw = &pf->hw; 7778 u32 head, val = 0; 7779 7780 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7781 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7782 /* Read interrupt register */ 7783 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7784 7785 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7786 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7787 head, tx_ring->next_to_use, val); 7788 } 7789 7790 pf->tx_timeout_last_recovery = jiffies; 7791 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7792 pf->tx_timeout_recovery_level, txqueue); 7793 7794 switch (pf->tx_timeout_recovery_level) { 7795 case 1: 7796 set_bit(ICE_PFR_REQ, pf->state); 7797 break; 7798 case 2: 7799 set_bit(ICE_CORER_REQ, pf->state); 7800 break; 7801 case 3: 7802 set_bit(ICE_GLOBR_REQ, pf->state); 7803 break; 7804 default: 7805 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7806 set_bit(ICE_DOWN, pf->state); 7807 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7808 set_bit(ICE_SERVICE_DIS, pf->state); 7809 break; 7810 } 7811 7812 ice_service_task_schedule(pf); 7813 pf->tx_timeout_recovery_level++; 7814 } 7815 7816 /** 7817 * ice_setup_tc_cls_flower - flower classifier offloads 7818 * @np: net device to configure 7819 * @filter_dev: device on which filter is added 7820 * @cls_flower: offload data 7821 */ 7822 static int 7823 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7824 struct net_device *filter_dev, 7825 struct flow_cls_offload *cls_flower) 7826 { 7827 struct ice_vsi *vsi = np->vsi; 7828 7829 if (cls_flower->common.chain_index) 7830 return -EOPNOTSUPP; 7831 7832 switch (cls_flower->command) { 7833 case FLOW_CLS_REPLACE: 7834 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7835 case FLOW_CLS_DESTROY: 7836 return ice_del_cls_flower(vsi, cls_flower); 7837 default: 7838 return -EINVAL; 7839 } 7840 } 7841 7842 /** 7843 * ice_setup_tc_block_cb - callback handler registered for TC block 7844 * @type: TC SETUP type 7845 * @type_data: TC flower offload data that contains user input 7846 * @cb_priv: netdev private data 7847 */ 7848 static int 7849 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7850 { 7851 struct ice_netdev_priv *np = cb_priv; 7852 7853 switch (type) { 7854 case TC_SETUP_CLSFLOWER: 7855 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7856 type_data); 7857 default: 7858 return -EOPNOTSUPP; 7859 } 7860 } 7861 7862 /** 7863 * ice_validate_mqprio_qopt - Validate TCF input parameters 7864 * @vsi: Pointer to VSI 7865 * @mqprio_qopt: input parameters for mqprio queue configuration 7866 * 7867 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7868 * needed), and make sure user doesn't specify qcount and BW rate limit 7869 * for TCs, which are more than "num_tc" 7870 */ 7871 static int 7872 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7873 struct tc_mqprio_qopt_offload *mqprio_qopt) 7874 { 7875 u64 sum_max_rate = 0, sum_min_rate = 0; 7876 int non_power_of_2_qcount = 0; 7877 struct ice_pf *pf = vsi->back; 7878 int max_rss_q_cnt = 0; 7879 struct device *dev; 7880 int i, speed; 7881 u8 num_tc; 7882 7883 if (vsi->type != ICE_VSI_PF) 7884 return -EINVAL; 7885 7886 if (mqprio_qopt->qopt.offset[0] != 0 || 7887 mqprio_qopt->qopt.num_tc < 1 || 7888 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7889 return -EINVAL; 7890 7891 dev = ice_pf_to_dev(pf); 7892 vsi->ch_rss_size = 0; 7893 num_tc = mqprio_qopt->qopt.num_tc; 7894 7895 for (i = 0; num_tc; i++) { 7896 int qcount = mqprio_qopt->qopt.count[i]; 7897 u64 max_rate, min_rate, rem; 7898 7899 if (!qcount) 7900 return -EINVAL; 7901 7902 if (is_power_of_2(qcount)) { 7903 if (non_power_of_2_qcount && 7904 qcount > non_power_of_2_qcount) { 7905 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7906 qcount, non_power_of_2_qcount); 7907 return -EINVAL; 7908 } 7909 if (qcount > max_rss_q_cnt) 7910 max_rss_q_cnt = qcount; 7911 } else { 7912 if (non_power_of_2_qcount && 7913 qcount != non_power_of_2_qcount) { 7914 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7915 qcount, non_power_of_2_qcount); 7916 return -EINVAL; 7917 } 7918 if (qcount < max_rss_q_cnt) { 7919 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7920 qcount, max_rss_q_cnt); 7921 return -EINVAL; 7922 } 7923 max_rss_q_cnt = qcount; 7924 non_power_of_2_qcount = qcount; 7925 } 7926 7927 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7928 * converts the bandwidth rate limit into Bytes/s when 7929 * passing it down to the driver. So convert input bandwidth 7930 * from Bytes/s to Kbps 7931 */ 7932 max_rate = mqprio_qopt->max_rate[i]; 7933 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7934 sum_max_rate += max_rate; 7935 7936 /* min_rate is minimum guaranteed rate and it can't be zero */ 7937 min_rate = mqprio_qopt->min_rate[i]; 7938 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7939 sum_min_rate += min_rate; 7940 7941 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7942 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7943 min_rate, ICE_MIN_BW_LIMIT); 7944 return -EINVAL; 7945 } 7946 7947 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7948 if (rem) { 7949 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7950 i, ICE_MIN_BW_LIMIT); 7951 return -EINVAL; 7952 } 7953 7954 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7955 if (rem) { 7956 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7957 i, ICE_MIN_BW_LIMIT); 7958 return -EINVAL; 7959 } 7960 7961 /* min_rate can't be more than max_rate, except when max_rate 7962 * is zero (implies max_rate sought is max line rate). In such 7963 * a case min_rate can be more than max. 7964 */ 7965 if (max_rate && min_rate > max_rate) { 7966 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7967 min_rate, max_rate); 7968 return -EINVAL; 7969 } 7970 7971 if (i >= mqprio_qopt->qopt.num_tc - 1) 7972 break; 7973 if (mqprio_qopt->qopt.offset[i + 1] != 7974 (mqprio_qopt->qopt.offset[i] + qcount)) 7975 return -EINVAL; 7976 } 7977 if (vsi->num_rxq < 7978 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7979 return -EINVAL; 7980 if (vsi->num_txq < 7981 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7982 return -EINVAL; 7983 7984 speed = ice_get_link_speed_kbps(vsi); 7985 if (sum_max_rate && sum_max_rate > (u64)speed) { 7986 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7987 sum_max_rate, speed); 7988 return -EINVAL; 7989 } 7990 if (sum_min_rate && sum_min_rate > (u64)speed) { 7991 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7992 sum_min_rate, speed); 7993 return -EINVAL; 7994 } 7995 7996 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7997 vsi->ch_rss_size = max_rss_q_cnt; 7998 7999 return 0; 8000 } 8001 8002 /** 8003 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8004 * @pf: ptr to PF device 8005 * @vsi: ptr to VSI 8006 */ 8007 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8008 { 8009 struct device *dev = ice_pf_to_dev(pf); 8010 bool added = false; 8011 struct ice_hw *hw; 8012 int flow; 8013 8014 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8015 return -EINVAL; 8016 8017 hw = &pf->hw; 8018 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8019 struct ice_fd_hw_prof *prof; 8020 int tun, status; 8021 u64 entry_h; 8022 8023 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8024 hw->fdir_prof[flow]->cnt)) 8025 continue; 8026 8027 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8028 enum ice_flow_priority prio; 8029 u64 prof_id; 8030 8031 /* add this VSI to FDir profile for this flow */ 8032 prio = ICE_FLOW_PRIO_NORMAL; 8033 prof = hw->fdir_prof[flow]; 8034 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8035 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8036 prof->vsi_h[0], vsi->idx, 8037 prio, prof->fdir_seg[tun], 8038 &entry_h); 8039 if (status) { 8040 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8041 vsi->idx, flow); 8042 continue; 8043 } 8044 8045 prof->entry_h[prof->cnt][tun] = entry_h; 8046 } 8047 8048 /* store VSI for filter replay and delete */ 8049 prof->vsi_h[prof->cnt] = vsi->idx; 8050 prof->cnt++; 8051 8052 added = true; 8053 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8054 flow); 8055 } 8056 8057 if (!added) 8058 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8059 8060 return 0; 8061 } 8062 8063 /** 8064 * ice_add_channel - add a channel by adding VSI 8065 * @pf: ptr to PF device 8066 * @sw_id: underlying HW switching element ID 8067 * @ch: ptr to channel structure 8068 * 8069 * Add a channel (VSI) using add_vsi and queue_map 8070 */ 8071 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8072 { 8073 struct device *dev = ice_pf_to_dev(pf); 8074 struct ice_vsi *vsi; 8075 8076 if (ch->type != ICE_VSI_CHNL) { 8077 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8078 return -EINVAL; 8079 } 8080 8081 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8082 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8083 dev_err(dev, "create chnl VSI failure\n"); 8084 return -EINVAL; 8085 } 8086 8087 ice_add_vsi_to_fdir(pf, vsi); 8088 8089 ch->sw_id = sw_id; 8090 ch->vsi_num = vsi->vsi_num; 8091 ch->info.mapping_flags = vsi->info.mapping_flags; 8092 ch->ch_vsi = vsi; 8093 /* set the back pointer of channel for newly created VSI */ 8094 vsi->ch = ch; 8095 8096 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8097 sizeof(vsi->info.q_mapping)); 8098 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8099 sizeof(vsi->info.tc_mapping)); 8100 8101 return 0; 8102 } 8103 8104 /** 8105 * ice_chnl_cfg_res 8106 * @vsi: the VSI being setup 8107 * @ch: ptr to channel structure 8108 * 8109 * Configure channel specific resources such as rings, vector. 8110 */ 8111 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8112 { 8113 int i; 8114 8115 for (i = 0; i < ch->num_txq; i++) { 8116 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8117 struct ice_ring_container *rc; 8118 struct ice_tx_ring *tx_ring; 8119 struct ice_rx_ring *rx_ring; 8120 8121 tx_ring = vsi->tx_rings[ch->base_q + i]; 8122 rx_ring = vsi->rx_rings[ch->base_q + i]; 8123 if (!tx_ring || !rx_ring) 8124 continue; 8125 8126 /* setup ring being channel enabled */ 8127 tx_ring->ch = ch; 8128 rx_ring->ch = ch; 8129 8130 /* following code block sets up vector specific attributes */ 8131 tx_q_vector = tx_ring->q_vector; 8132 rx_q_vector = rx_ring->q_vector; 8133 if (!tx_q_vector && !rx_q_vector) 8134 continue; 8135 8136 if (tx_q_vector) { 8137 tx_q_vector->ch = ch; 8138 /* setup Tx and Rx ITR setting if DIM is off */ 8139 rc = &tx_q_vector->tx; 8140 if (!ITR_IS_DYNAMIC(rc)) 8141 ice_write_itr(rc, rc->itr_setting); 8142 } 8143 if (rx_q_vector) { 8144 rx_q_vector->ch = ch; 8145 /* setup Tx and Rx ITR setting if DIM is off */ 8146 rc = &rx_q_vector->rx; 8147 if (!ITR_IS_DYNAMIC(rc)) 8148 ice_write_itr(rc, rc->itr_setting); 8149 } 8150 } 8151 8152 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8153 * GLINT_ITR register would have written to perform in-context 8154 * update, hence perform flush 8155 */ 8156 if (ch->num_txq || ch->num_rxq) 8157 ice_flush(&vsi->back->hw); 8158 } 8159 8160 /** 8161 * ice_cfg_chnl_all_res - configure channel resources 8162 * @vsi: pte to main_vsi 8163 * @ch: ptr to channel structure 8164 * 8165 * This function configures channel specific resources such as flow-director 8166 * counter index, and other resources such as queues, vectors, ITR settings 8167 */ 8168 static void 8169 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8170 { 8171 /* configure channel (aka ADQ) resources such as queues, vectors, 8172 * ITR settings for channel specific vectors and anything else 8173 */ 8174 ice_chnl_cfg_res(vsi, ch); 8175 } 8176 8177 /** 8178 * ice_setup_hw_channel - setup new channel 8179 * @pf: ptr to PF device 8180 * @vsi: the VSI being setup 8181 * @ch: ptr to channel structure 8182 * @sw_id: underlying HW switching element ID 8183 * @type: type of channel to be created (VMDq2/VF) 8184 * 8185 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8186 * and configures Tx rings accordingly 8187 */ 8188 static int 8189 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8190 struct ice_channel *ch, u16 sw_id, u8 type) 8191 { 8192 struct device *dev = ice_pf_to_dev(pf); 8193 int ret; 8194 8195 ch->base_q = vsi->next_base_q; 8196 ch->type = type; 8197 8198 ret = ice_add_channel(pf, sw_id, ch); 8199 if (ret) { 8200 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8201 return ret; 8202 } 8203 8204 /* configure/setup ADQ specific resources */ 8205 ice_cfg_chnl_all_res(vsi, ch); 8206 8207 /* make sure to update the next_base_q so that subsequent channel's 8208 * (aka ADQ) VSI queue map is correct 8209 */ 8210 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8211 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8212 ch->num_rxq); 8213 8214 return 0; 8215 } 8216 8217 /** 8218 * ice_setup_channel - setup new channel using uplink element 8219 * @pf: ptr to PF device 8220 * @vsi: the VSI being setup 8221 * @ch: ptr to channel structure 8222 * 8223 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8224 * and uplink switching element 8225 */ 8226 static bool 8227 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8228 struct ice_channel *ch) 8229 { 8230 struct device *dev = ice_pf_to_dev(pf); 8231 u16 sw_id; 8232 int ret; 8233 8234 if (vsi->type != ICE_VSI_PF) { 8235 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8236 return false; 8237 } 8238 8239 sw_id = pf->first_sw->sw_id; 8240 8241 /* create channel (VSI) */ 8242 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8243 if (ret) { 8244 dev_err(dev, "failed to setup hw_channel\n"); 8245 return false; 8246 } 8247 dev_dbg(dev, "successfully created channel()\n"); 8248 8249 return ch->ch_vsi ? true : false; 8250 } 8251 8252 /** 8253 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8254 * @vsi: VSI to be configured 8255 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8256 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8257 */ 8258 static int 8259 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8260 { 8261 int err; 8262 8263 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8264 if (err) 8265 return err; 8266 8267 return ice_set_max_bw_limit(vsi, max_tx_rate); 8268 } 8269 8270 /** 8271 * ice_create_q_channel - function to create channel 8272 * @vsi: VSI to be configured 8273 * @ch: ptr to channel (it contains channel specific params) 8274 * 8275 * This function creates channel (VSI) using num_queues specified by user, 8276 * reconfigs RSS if needed. 8277 */ 8278 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8279 { 8280 struct ice_pf *pf = vsi->back; 8281 struct device *dev; 8282 8283 if (!ch) 8284 return -EINVAL; 8285 8286 dev = ice_pf_to_dev(pf); 8287 if (!ch->num_txq || !ch->num_rxq) { 8288 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8289 return -EINVAL; 8290 } 8291 8292 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8293 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8294 vsi->cnt_q_avail, ch->num_txq); 8295 return -EINVAL; 8296 } 8297 8298 if (!ice_setup_channel(pf, vsi, ch)) { 8299 dev_info(dev, "Failed to setup channel\n"); 8300 return -EINVAL; 8301 } 8302 /* configure BW rate limit */ 8303 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8304 int ret; 8305 8306 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8307 ch->min_tx_rate); 8308 if (ret) 8309 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8310 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8311 else 8312 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8313 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8314 } 8315 8316 vsi->cnt_q_avail -= ch->num_txq; 8317 8318 return 0; 8319 } 8320 8321 /** 8322 * ice_rem_all_chnl_fltrs - removes all channel filters 8323 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8324 * 8325 * Remove all advanced switch filters only if they are channel specific 8326 * tc-flower based filter 8327 */ 8328 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8329 { 8330 struct ice_tc_flower_fltr *fltr; 8331 struct hlist_node *node; 8332 8333 /* to remove all channel filters, iterate an ordered list of filters */ 8334 hlist_for_each_entry_safe(fltr, node, 8335 &pf->tc_flower_fltr_list, 8336 tc_flower_node) { 8337 struct ice_rule_query_data rule; 8338 int status; 8339 8340 /* for now process only channel specific filters */ 8341 if (!ice_is_chnl_fltr(fltr)) 8342 continue; 8343 8344 rule.rid = fltr->rid; 8345 rule.rule_id = fltr->rule_id; 8346 rule.vsi_handle = fltr->dest_vsi_handle; 8347 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8348 if (status) { 8349 if (status == -ENOENT) 8350 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8351 rule.rule_id); 8352 else 8353 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8354 status); 8355 } else if (fltr->dest_vsi) { 8356 /* update advanced switch filter count */ 8357 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8358 u32 flags = fltr->flags; 8359 8360 fltr->dest_vsi->num_chnl_fltr--; 8361 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8362 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8363 pf->num_dmac_chnl_fltrs--; 8364 } 8365 } 8366 8367 hlist_del(&fltr->tc_flower_node); 8368 kfree(fltr); 8369 } 8370 } 8371 8372 /** 8373 * ice_remove_q_channels - Remove queue channels for the TCs 8374 * @vsi: VSI to be configured 8375 * @rem_fltr: delete advanced switch filter or not 8376 * 8377 * Remove queue channels for the TCs 8378 */ 8379 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8380 { 8381 struct ice_channel *ch, *ch_tmp; 8382 struct ice_pf *pf = vsi->back; 8383 int i; 8384 8385 /* remove all tc-flower based filter if they are channel filters only */ 8386 if (rem_fltr) 8387 ice_rem_all_chnl_fltrs(pf); 8388 8389 /* remove ntuple filters since queue configuration is being changed */ 8390 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8391 struct ice_hw *hw = &pf->hw; 8392 8393 mutex_lock(&hw->fdir_fltr_lock); 8394 ice_fdir_del_all_fltrs(vsi); 8395 mutex_unlock(&hw->fdir_fltr_lock); 8396 } 8397 8398 /* perform cleanup for channels if they exist */ 8399 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8400 struct ice_vsi *ch_vsi; 8401 8402 list_del(&ch->list); 8403 ch_vsi = ch->ch_vsi; 8404 if (!ch_vsi) { 8405 kfree(ch); 8406 continue; 8407 } 8408 8409 /* Reset queue contexts */ 8410 for (i = 0; i < ch->num_rxq; i++) { 8411 struct ice_tx_ring *tx_ring; 8412 struct ice_rx_ring *rx_ring; 8413 8414 tx_ring = vsi->tx_rings[ch->base_q + i]; 8415 rx_ring = vsi->rx_rings[ch->base_q + i]; 8416 if (tx_ring) { 8417 tx_ring->ch = NULL; 8418 if (tx_ring->q_vector) 8419 tx_ring->q_vector->ch = NULL; 8420 } 8421 if (rx_ring) { 8422 rx_ring->ch = NULL; 8423 if (rx_ring->q_vector) 8424 rx_ring->q_vector->ch = NULL; 8425 } 8426 } 8427 8428 /* Release FD resources for the channel VSI */ 8429 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8430 8431 /* clear the VSI from scheduler tree */ 8432 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8433 8434 /* Delete VSI from FW, PF and HW VSI arrays */ 8435 ice_vsi_delete(ch->ch_vsi); 8436 8437 /* free the channel */ 8438 kfree(ch); 8439 } 8440 8441 /* clear the channel VSI map which is stored in main VSI */ 8442 ice_for_each_chnl_tc(i) 8443 vsi->tc_map_vsi[i] = NULL; 8444 8445 /* reset main VSI's all TC information */ 8446 vsi->all_enatc = 0; 8447 vsi->all_numtc = 0; 8448 } 8449 8450 /** 8451 * ice_rebuild_channels - rebuild channel 8452 * @pf: ptr to PF 8453 * 8454 * Recreate channel VSIs and replay filters 8455 */ 8456 static int ice_rebuild_channels(struct ice_pf *pf) 8457 { 8458 struct device *dev = ice_pf_to_dev(pf); 8459 struct ice_vsi *main_vsi; 8460 bool rem_adv_fltr = true; 8461 struct ice_channel *ch; 8462 struct ice_vsi *vsi; 8463 int tc_idx = 1; 8464 int i, err; 8465 8466 main_vsi = ice_get_main_vsi(pf); 8467 if (!main_vsi) 8468 return 0; 8469 8470 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8471 main_vsi->old_numtc == 1) 8472 return 0; /* nothing to be done */ 8473 8474 /* reconfigure main VSI based on old value of TC and cached values 8475 * for MQPRIO opts 8476 */ 8477 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8478 if (err) { 8479 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8480 main_vsi->old_ena_tc, main_vsi->vsi_num); 8481 return err; 8482 } 8483 8484 /* rebuild ADQ VSIs */ 8485 ice_for_each_vsi(pf, i) { 8486 enum ice_vsi_type type; 8487 8488 vsi = pf->vsi[i]; 8489 if (!vsi || vsi->type != ICE_VSI_CHNL) 8490 continue; 8491 8492 type = vsi->type; 8493 8494 /* rebuild ADQ VSI */ 8495 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8496 if (err) { 8497 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8498 ice_vsi_type_str(type), vsi->idx, err); 8499 goto cleanup; 8500 } 8501 8502 /* Re-map HW VSI number, using VSI handle that has been 8503 * previously validated in ice_replay_vsi() call above 8504 */ 8505 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8506 8507 /* replay filters for the VSI */ 8508 err = ice_replay_vsi(&pf->hw, vsi->idx); 8509 if (err) { 8510 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8511 ice_vsi_type_str(type), err, vsi->idx); 8512 rem_adv_fltr = false; 8513 goto cleanup; 8514 } 8515 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8516 ice_vsi_type_str(type), vsi->idx); 8517 8518 /* store ADQ VSI at correct TC index in main VSI's 8519 * map of TC to VSI 8520 */ 8521 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8522 } 8523 8524 /* ADQ VSI(s) has been rebuilt successfully, so setup 8525 * channel for main VSI's Tx and Rx rings 8526 */ 8527 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8528 struct ice_vsi *ch_vsi; 8529 8530 ch_vsi = ch->ch_vsi; 8531 if (!ch_vsi) 8532 continue; 8533 8534 /* reconfig channel resources */ 8535 ice_cfg_chnl_all_res(main_vsi, ch); 8536 8537 /* replay BW rate limit if it is non-zero */ 8538 if (!ch->max_tx_rate && !ch->min_tx_rate) 8539 continue; 8540 8541 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8542 ch->min_tx_rate); 8543 if (err) 8544 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8545 err, ch->max_tx_rate, ch->min_tx_rate, 8546 ch_vsi->vsi_num); 8547 else 8548 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8549 ch->max_tx_rate, ch->min_tx_rate, 8550 ch_vsi->vsi_num); 8551 } 8552 8553 /* reconfig RSS for main VSI */ 8554 if (main_vsi->ch_rss_size) 8555 ice_vsi_cfg_rss_lut_key(main_vsi); 8556 8557 return 0; 8558 8559 cleanup: 8560 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8561 return err; 8562 } 8563 8564 /** 8565 * ice_create_q_channels - Add queue channel for the given TCs 8566 * @vsi: VSI to be configured 8567 * 8568 * Configures queue channel mapping to the given TCs 8569 */ 8570 static int ice_create_q_channels(struct ice_vsi *vsi) 8571 { 8572 struct ice_pf *pf = vsi->back; 8573 struct ice_channel *ch; 8574 int ret = 0, i; 8575 8576 ice_for_each_chnl_tc(i) { 8577 if (!(vsi->all_enatc & BIT(i))) 8578 continue; 8579 8580 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8581 if (!ch) { 8582 ret = -ENOMEM; 8583 goto err_free; 8584 } 8585 INIT_LIST_HEAD(&ch->list); 8586 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8587 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8588 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8589 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8590 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8591 8592 /* convert to Kbits/s */ 8593 if (ch->max_tx_rate) 8594 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8595 ICE_BW_KBPS_DIVISOR); 8596 if (ch->min_tx_rate) 8597 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8598 ICE_BW_KBPS_DIVISOR); 8599 8600 ret = ice_create_q_channel(vsi, ch); 8601 if (ret) { 8602 dev_err(ice_pf_to_dev(pf), 8603 "failed creating channel TC:%d\n", i); 8604 kfree(ch); 8605 goto err_free; 8606 } 8607 list_add_tail(&ch->list, &vsi->ch_list); 8608 vsi->tc_map_vsi[i] = ch->ch_vsi; 8609 dev_dbg(ice_pf_to_dev(pf), 8610 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8611 } 8612 return 0; 8613 8614 err_free: 8615 ice_remove_q_channels(vsi, false); 8616 8617 return ret; 8618 } 8619 8620 /** 8621 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8622 * @netdev: net device to configure 8623 * @type_data: TC offload data 8624 */ 8625 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8626 { 8627 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8628 struct ice_netdev_priv *np = netdev_priv(netdev); 8629 struct ice_vsi *vsi = np->vsi; 8630 struct ice_pf *pf = vsi->back; 8631 u16 mode, ena_tc_qdisc = 0; 8632 int cur_txq, cur_rxq; 8633 u8 hw = 0, num_tcf; 8634 struct device *dev; 8635 int ret, i; 8636 8637 dev = ice_pf_to_dev(pf); 8638 num_tcf = mqprio_qopt->qopt.num_tc; 8639 hw = mqprio_qopt->qopt.hw; 8640 mode = mqprio_qopt->mode; 8641 if (!hw) { 8642 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8643 vsi->ch_rss_size = 0; 8644 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8645 goto config_tcf; 8646 } 8647 8648 /* Generate queue region map for number of TCF requested */ 8649 for (i = 0; i < num_tcf; i++) 8650 ena_tc_qdisc |= BIT(i); 8651 8652 switch (mode) { 8653 case TC_MQPRIO_MODE_CHANNEL: 8654 8655 if (pf->hw.port_info->is_custom_tx_enabled) { 8656 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8657 return -EBUSY; 8658 } 8659 ice_tear_down_devlink_rate_tree(pf); 8660 8661 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8662 if (ret) { 8663 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8664 ret); 8665 return ret; 8666 } 8667 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8668 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8669 /* don't assume state of hw_tc_offload during driver load 8670 * and set the flag for TC flower filter if hw_tc_offload 8671 * already ON 8672 */ 8673 if (vsi->netdev->features & NETIF_F_HW_TC) 8674 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8675 break; 8676 default: 8677 return -EINVAL; 8678 } 8679 8680 config_tcf: 8681 8682 /* Requesting same TCF configuration as already enabled */ 8683 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8684 mode != TC_MQPRIO_MODE_CHANNEL) 8685 return 0; 8686 8687 /* Pause VSI queues */ 8688 ice_dis_vsi(vsi, true); 8689 8690 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8691 ice_remove_q_channels(vsi, true); 8692 8693 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8694 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8695 num_online_cpus()); 8696 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8697 num_online_cpus()); 8698 } else { 8699 /* logic to rebuild VSI, same like ethtool -L */ 8700 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8701 8702 for (i = 0; i < num_tcf; i++) { 8703 if (!(ena_tc_qdisc & BIT(i))) 8704 continue; 8705 8706 offset = vsi->mqprio_qopt.qopt.offset[i]; 8707 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8708 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8709 } 8710 vsi->req_txq = offset + qcount_tx; 8711 vsi->req_rxq = offset + qcount_rx; 8712 8713 /* store away original rss_size info, so that it gets reused 8714 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8715 * determine, what should be the rss_sizefor main VSI 8716 */ 8717 vsi->orig_rss_size = vsi->rss_size; 8718 } 8719 8720 /* save current values of Tx and Rx queues before calling VSI rebuild 8721 * for fallback option 8722 */ 8723 cur_txq = vsi->num_txq; 8724 cur_rxq = vsi->num_rxq; 8725 8726 /* proceed with rebuild main VSI using correct number of queues */ 8727 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8728 if (ret) { 8729 /* fallback to current number of queues */ 8730 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8731 vsi->req_txq = cur_txq; 8732 vsi->req_rxq = cur_rxq; 8733 clear_bit(ICE_RESET_FAILED, pf->state); 8734 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8735 dev_err(dev, "Rebuild of main VSI failed again\n"); 8736 return ret; 8737 } 8738 } 8739 8740 vsi->all_numtc = num_tcf; 8741 vsi->all_enatc = ena_tc_qdisc; 8742 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8743 if (ret) { 8744 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8745 vsi->vsi_num); 8746 goto exit; 8747 } 8748 8749 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8750 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8751 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8752 8753 /* set TC0 rate limit if specified */ 8754 if (max_tx_rate || min_tx_rate) { 8755 /* convert to Kbits/s */ 8756 if (max_tx_rate) 8757 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8758 if (min_tx_rate) 8759 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8760 8761 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8762 if (!ret) { 8763 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8764 max_tx_rate, min_tx_rate, vsi->vsi_num); 8765 } else { 8766 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8767 max_tx_rate, min_tx_rate, vsi->vsi_num); 8768 goto exit; 8769 } 8770 } 8771 ret = ice_create_q_channels(vsi); 8772 if (ret) { 8773 netdev_err(netdev, "failed configuring queue channels\n"); 8774 goto exit; 8775 } else { 8776 netdev_dbg(netdev, "successfully configured channels\n"); 8777 } 8778 } 8779 8780 if (vsi->ch_rss_size) 8781 ice_vsi_cfg_rss_lut_key(vsi); 8782 8783 exit: 8784 /* if error, reset the all_numtc and all_enatc */ 8785 if (ret) { 8786 vsi->all_numtc = 0; 8787 vsi->all_enatc = 0; 8788 } 8789 /* resume VSI */ 8790 ice_ena_vsi(vsi, true); 8791 8792 return ret; 8793 } 8794 8795 static LIST_HEAD(ice_block_cb_list); 8796 8797 static int 8798 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8799 void *type_data) 8800 { 8801 struct ice_netdev_priv *np = netdev_priv(netdev); 8802 struct ice_pf *pf = np->vsi->back; 8803 int err; 8804 8805 switch (type) { 8806 case TC_SETUP_BLOCK: 8807 return flow_block_cb_setup_simple(type_data, 8808 &ice_block_cb_list, 8809 ice_setup_tc_block_cb, 8810 np, np, true); 8811 case TC_SETUP_QDISC_MQPRIO: 8812 /* setup traffic classifier for receive side */ 8813 mutex_lock(&pf->tc_mutex); 8814 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8815 mutex_unlock(&pf->tc_mutex); 8816 return err; 8817 default: 8818 return -EOPNOTSUPP; 8819 } 8820 return -EOPNOTSUPP; 8821 } 8822 8823 static struct ice_indr_block_priv * 8824 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8825 struct net_device *netdev) 8826 { 8827 struct ice_indr_block_priv *cb_priv; 8828 8829 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8830 if (!cb_priv->netdev) 8831 return NULL; 8832 if (cb_priv->netdev == netdev) 8833 return cb_priv; 8834 } 8835 return NULL; 8836 } 8837 8838 static int 8839 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8840 void *indr_priv) 8841 { 8842 struct ice_indr_block_priv *priv = indr_priv; 8843 struct ice_netdev_priv *np = priv->np; 8844 8845 switch (type) { 8846 case TC_SETUP_CLSFLOWER: 8847 return ice_setup_tc_cls_flower(np, priv->netdev, 8848 (struct flow_cls_offload *) 8849 type_data); 8850 default: 8851 return -EOPNOTSUPP; 8852 } 8853 } 8854 8855 static int 8856 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8857 struct ice_netdev_priv *np, 8858 struct flow_block_offload *f, void *data, 8859 void (*cleanup)(struct flow_block_cb *block_cb)) 8860 { 8861 struct ice_indr_block_priv *indr_priv; 8862 struct flow_block_cb *block_cb; 8863 8864 if (!ice_is_tunnel_supported(netdev) && 8865 !(is_vlan_dev(netdev) && 8866 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8867 return -EOPNOTSUPP; 8868 8869 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8870 return -EOPNOTSUPP; 8871 8872 switch (f->command) { 8873 case FLOW_BLOCK_BIND: 8874 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8875 if (indr_priv) 8876 return -EEXIST; 8877 8878 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8879 if (!indr_priv) 8880 return -ENOMEM; 8881 8882 indr_priv->netdev = netdev; 8883 indr_priv->np = np; 8884 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8885 8886 block_cb = 8887 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8888 indr_priv, indr_priv, 8889 ice_rep_indr_tc_block_unbind, 8890 f, netdev, sch, data, np, 8891 cleanup); 8892 8893 if (IS_ERR(block_cb)) { 8894 list_del(&indr_priv->list); 8895 kfree(indr_priv); 8896 return PTR_ERR(block_cb); 8897 } 8898 flow_block_cb_add(block_cb, f); 8899 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8900 break; 8901 case FLOW_BLOCK_UNBIND: 8902 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8903 if (!indr_priv) 8904 return -ENOENT; 8905 8906 block_cb = flow_block_cb_lookup(f->block, 8907 ice_indr_setup_block_cb, 8908 indr_priv); 8909 if (!block_cb) 8910 return -ENOENT; 8911 8912 flow_indr_block_cb_remove(block_cb, f); 8913 8914 list_del(&block_cb->driver_list); 8915 break; 8916 default: 8917 return -EOPNOTSUPP; 8918 } 8919 return 0; 8920 } 8921 8922 static int 8923 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8924 void *cb_priv, enum tc_setup_type type, void *type_data, 8925 void *data, 8926 void (*cleanup)(struct flow_block_cb *block_cb)) 8927 { 8928 switch (type) { 8929 case TC_SETUP_BLOCK: 8930 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8931 data, cleanup); 8932 8933 default: 8934 return -EOPNOTSUPP; 8935 } 8936 } 8937 8938 /** 8939 * ice_open - Called when a network interface becomes active 8940 * @netdev: network interface device structure 8941 * 8942 * The open entry point is called when a network interface is made 8943 * active by the system (IFF_UP). At this point all resources needed 8944 * for transmit and receive operations are allocated, the interrupt 8945 * handler is registered with the OS, the netdev watchdog is enabled, 8946 * and the stack is notified that the interface is ready. 8947 * 8948 * Returns 0 on success, negative value on failure 8949 */ 8950 int ice_open(struct net_device *netdev) 8951 { 8952 struct ice_netdev_priv *np = netdev_priv(netdev); 8953 struct ice_pf *pf = np->vsi->back; 8954 8955 if (ice_is_reset_in_progress(pf->state)) { 8956 netdev_err(netdev, "can't open net device while reset is in progress"); 8957 return -EBUSY; 8958 } 8959 8960 return ice_open_internal(netdev); 8961 } 8962 8963 /** 8964 * ice_open_internal - Called when a network interface becomes active 8965 * @netdev: network interface device structure 8966 * 8967 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8968 * handling routine 8969 * 8970 * Returns 0 on success, negative value on failure 8971 */ 8972 int ice_open_internal(struct net_device *netdev) 8973 { 8974 struct ice_netdev_priv *np = netdev_priv(netdev); 8975 struct ice_vsi *vsi = np->vsi; 8976 struct ice_pf *pf = vsi->back; 8977 struct ice_port_info *pi; 8978 int err; 8979 8980 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8981 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8982 return -EIO; 8983 } 8984 8985 netif_carrier_off(netdev); 8986 8987 pi = vsi->port_info; 8988 err = ice_update_link_info(pi); 8989 if (err) { 8990 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8991 return err; 8992 } 8993 8994 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8995 8996 /* Set PHY if there is media, otherwise, turn off PHY */ 8997 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8998 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8999 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9000 err = ice_init_phy_user_cfg(pi); 9001 if (err) { 9002 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9003 err); 9004 return err; 9005 } 9006 } 9007 9008 err = ice_configure_phy(vsi); 9009 if (err) { 9010 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9011 err); 9012 return err; 9013 } 9014 } else { 9015 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9016 ice_set_link(vsi, false); 9017 } 9018 9019 err = ice_vsi_open(vsi); 9020 if (err) 9021 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9022 vsi->vsi_num, vsi->vsw->sw_id); 9023 9024 /* Update existing tunnels information */ 9025 udp_tunnel_get_rx_info(netdev); 9026 9027 return err; 9028 } 9029 9030 /** 9031 * ice_stop - Disables a network interface 9032 * @netdev: network interface device structure 9033 * 9034 * The stop entry point is called when an interface is de-activated by the OS, 9035 * and the netdevice enters the DOWN state. The hardware is still under the 9036 * driver's control, but the netdev interface is disabled. 9037 * 9038 * Returns success only - not allowed to fail 9039 */ 9040 int ice_stop(struct net_device *netdev) 9041 { 9042 struct ice_netdev_priv *np = netdev_priv(netdev); 9043 struct ice_vsi *vsi = np->vsi; 9044 struct ice_pf *pf = vsi->back; 9045 9046 if (ice_is_reset_in_progress(pf->state)) { 9047 netdev_err(netdev, "can't stop net device while reset is in progress"); 9048 return -EBUSY; 9049 } 9050 9051 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9052 int link_err = ice_force_phys_link_state(vsi, false); 9053 9054 if (link_err) { 9055 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9056 vsi->vsi_num, link_err); 9057 return -EIO; 9058 } 9059 } 9060 9061 ice_vsi_close(vsi); 9062 9063 return 0; 9064 } 9065 9066 /** 9067 * ice_features_check - Validate encapsulated packet conforms to limits 9068 * @skb: skb buffer 9069 * @netdev: This port's netdev 9070 * @features: Offload features that the stack believes apply 9071 */ 9072 static netdev_features_t 9073 ice_features_check(struct sk_buff *skb, 9074 struct net_device __always_unused *netdev, 9075 netdev_features_t features) 9076 { 9077 bool gso = skb_is_gso(skb); 9078 size_t len; 9079 9080 /* No point in doing any of this if neither checksum nor GSO are 9081 * being requested for this frame. We can rule out both by just 9082 * checking for CHECKSUM_PARTIAL 9083 */ 9084 if (skb->ip_summed != CHECKSUM_PARTIAL) 9085 return features; 9086 9087 /* We cannot support GSO if the MSS is going to be less than 9088 * 64 bytes. If it is then we need to drop support for GSO. 9089 */ 9090 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9091 features &= ~NETIF_F_GSO_MASK; 9092 9093 len = skb_network_offset(skb); 9094 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9095 goto out_rm_features; 9096 9097 len = skb_network_header_len(skb); 9098 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9099 goto out_rm_features; 9100 9101 if (skb->encapsulation) { 9102 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9103 * the case of IPIP frames, the transport header pointer is 9104 * after the inner header! So check to make sure that this 9105 * is a GRE or UDP_TUNNEL frame before doing that math. 9106 */ 9107 if (gso && (skb_shinfo(skb)->gso_type & 9108 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9109 len = skb_inner_network_header(skb) - 9110 skb_transport_header(skb); 9111 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9112 goto out_rm_features; 9113 } 9114 9115 len = skb_inner_network_header_len(skb); 9116 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9117 goto out_rm_features; 9118 } 9119 9120 return features; 9121 out_rm_features: 9122 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9123 } 9124 9125 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9126 .ndo_open = ice_open, 9127 .ndo_stop = ice_stop, 9128 .ndo_start_xmit = ice_start_xmit, 9129 .ndo_set_mac_address = ice_set_mac_address, 9130 .ndo_validate_addr = eth_validate_addr, 9131 .ndo_change_mtu = ice_change_mtu, 9132 .ndo_get_stats64 = ice_get_stats64, 9133 .ndo_tx_timeout = ice_tx_timeout, 9134 .ndo_bpf = ice_xdp_safe_mode, 9135 }; 9136 9137 static const struct net_device_ops ice_netdev_ops = { 9138 .ndo_open = ice_open, 9139 .ndo_stop = ice_stop, 9140 .ndo_start_xmit = ice_start_xmit, 9141 .ndo_select_queue = ice_select_queue, 9142 .ndo_features_check = ice_features_check, 9143 .ndo_fix_features = ice_fix_features, 9144 .ndo_set_rx_mode = ice_set_rx_mode, 9145 .ndo_set_mac_address = ice_set_mac_address, 9146 .ndo_validate_addr = eth_validate_addr, 9147 .ndo_change_mtu = ice_change_mtu, 9148 .ndo_get_stats64 = ice_get_stats64, 9149 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9150 .ndo_eth_ioctl = ice_eth_ioctl, 9151 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9152 .ndo_set_vf_mac = ice_set_vf_mac, 9153 .ndo_get_vf_config = ice_get_vf_cfg, 9154 .ndo_set_vf_trust = ice_set_vf_trust, 9155 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9156 .ndo_set_vf_link_state = ice_set_vf_link_state, 9157 .ndo_get_vf_stats = ice_get_vf_stats, 9158 .ndo_set_vf_rate = ice_set_vf_bw, 9159 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9160 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9161 .ndo_setup_tc = ice_setup_tc, 9162 .ndo_set_features = ice_set_features, 9163 .ndo_bridge_getlink = ice_bridge_getlink, 9164 .ndo_bridge_setlink = ice_bridge_setlink, 9165 .ndo_fdb_add = ice_fdb_add, 9166 .ndo_fdb_del = ice_fdb_del, 9167 #ifdef CONFIG_RFS_ACCEL 9168 .ndo_rx_flow_steer = ice_rx_flow_steer, 9169 #endif 9170 .ndo_tx_timeout = ice_tx_timeout, 9171 .ndo_bpf = ice_xdp, 9172 .ndo_xdp_xmit = ice_xdp_xmit, 9173 .ndo_xsk_wakeup = ice_xsk_wakeup, 9174 }; 9175