1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 /** 48 * ice_get_tx_pending - returns number of Tx descriptors not processed 49 * @ring: the ring of descriptors 50 */ 51 static u16 ice_get_tx_pending(struct ice_ring *ring) 52 { 53 u16 head, tail; 54 55 head = ring->next_to_clean; 56 tail = ring->next_to_use; 57 58 if (head != tail) 59 return (head < tail) ? 60 tail - head : (tail + ring->count - head); 61 return 0; 62 } 63 64 /** 65 * ice_check_for_hang_subtask - check for and recover hung queues 66 * @pf: pointer to PF struct 67 */ 68 static void ice_check_for_hang_subtask(struct ice_pf *pf) 69 { 70 struct ice_vsi *vsi = NULL; 71 struct ice_hw *hw; 72 unsigned int i; 73 int packets; 74 u32 v; 75 76 ice_for_each_vsi(pf, v) 77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 78 vsi = pf->vsi[v]; 79 break; 80 } 81 82 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 83 return; 84 85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 86 return; 87 88 hw = &vsi->back->hw; 89 90 for (i = 0; i < vsi->num_txq; i++) { 91 struct ice_ring *tx_ring = vsi->tx_rings[i]; 92 93 if (tx_ring && tx_ring->desc) { 94 /* If packet counter has not changed the queue is 95 * likely stalled, so force an interrupt for this 96 * queue. 97 * 98 * prev_pkt would be negative if there was no 99 * pending work. 100 */ 101 packets = tx_ring->stats.pkts & INT_MAX; 102 if (tx_ring->tx_stats.prev_pkt == packets) { 103 /* Trigger sw interrupt to revive the queue */ 104 ice_trigger_sw_intr(hw, tx_ring->q_vector); 105 continue; 106 } 107 108 /* Memory barrier between read of packet count and call 109 * to ice_get_tx_pending() 110 */ 111 smp_rmb(); 112 tx_ring->tx_stats.prev_pkt = 113 ice_get_tx_pending(tx_ring) ? packets : -1; 114 } 115 } 116 } 117 118 /** 119 * ice_init_mac_fltr - Set initial MAC filters 120 * @pf: board private structure 121 * 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent 123 * address and broadcast address. If an error is encountered, netdevice will be 124 * unregistered. 125 */ 126 static int ice_init_mac_fltr(struct ice_pf *pf) 127 { 128 enum ice_status status; 129 struct ice_vsi *vsi; 130 u8 *perm_addr; 131 132 vsi = ice_get_main_vsi(pf); 133 if (!vsi) 134 return -EINVAL; 135 136 perm_addr = vsi->port_info->mac.perm_addr; 137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 138 if (!status) 139 return 0; 140 141 /* We aren't useful with no MAC filters, so unregister if we 142 * had an error 143 */ 144 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 146 ice_stat_str(status)); 147 unregister_netdev(vsi->netdev); 148 free_netdev(vsi->netdev); 149 vsi->netdev = NULL; 150 } 151 152 return -EIO; 153 } 154 155 /** 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 157 * @netdev: the net device on which the sync is happening 158 * @addr: MAC address to sync 159 * 160 * This is a callback function which is called by the in kernel device sync 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 163 * MAC filters from the hardware. 164 */ 165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 166 { 167 struct ice_netdev_priv *np = netdev_priv(netdev); 168 struct ice_vsi *vsi = np->vsi; 169 170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 171 ICE_FWD_TO_VSI)) 172 return -EINVAL; 173 174 return 0; 175 } 176 177 /** 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 179 * @netdev: the net device on which the unsync is happening 180 * @addr: MAC address to unsync 181 * 182 * This is a callback function which is called by the in kernel device unsync 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 185 * delete the MAC filters from the hardware. 186 */ 187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 188 { 189 struct ice_netdev_priv *np = netdev_priv(netdev); 190 struct ice_vsi *vsi = np->vsi; 191 192 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 193 ICE_FWD_TO_VSI)) 194 return -EINVAL; 195 196 return 0; 197 } 198 199 /** 200 * ice_vsi_fltr_changed - check if filter state changed 201 * @vsi: VSI to be checked 202 * 203 * returns true if filter state has changed, false otherwise. 204 */ 205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 206 { 207 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 208 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 209 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 210 } 211 212 /** 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 214 * @vsi: the VSI being configured 215 * @promisc_m: mask of promiscuous config bits 216 * @set_promisc: enable or disable promisc flag request 217 * 218 */ 219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 220 { 221 struct ice_hw *hw = &vsi->back->hw; 222 enum ice_status status = 0; 223 224 if (vsi->type != ICE_VSI_PF) 225 return 0; 226 227 if (vsi->vlan_ena) { 228 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 229 set_promisc); 230 } else { 231 if (set_promisc) 232 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 233 0); 234 else 235 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 236 0); 237 } 238 239 if (status) 240 return -EIO; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 247 * @vsi: ptr to the VSI 248 * 249 * Push any outstanding VSI filter changes through the AdminQ. 250 */ 251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 252 { 253 struct device *dev = ice_pf_to_dev(vsi->back); 254 struct net_device *netdev = vsi->netdev; 255 bool promisc_forced_on = false; 256 struct ice_pf *pf = vsi->back; 257 struct ice_hw *hw = &pf->hw; 258 enum ice_status status = 0; 259 u32 changed_flags = 0; 260 u8 promisc_m; 261 int err = 0; 262 263 if (!vsi->netdev) 264 return -EINVAL; 265 266 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 267 usleep_range(1000, 2000); 268 269 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 270 vsi->current_netdev_flags = vsi->netdev->flags; 271 272 INIT_LIST_HEAD(&vsi->tmp_sync_list); 273 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 274 275 if (ice_vsi_fltr_changed(vsi)) { 276 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 277 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 278 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 279 280 /* grab the netdev's addr_list_lock */ 281 netif_addr_lock_bh(netdev); 282 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 283 ice_add_mac_to_unsync_list); 284 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 285 ice_add_mac_to_unsync_list); 286 /* our temp lists are populated. release lock */ 287 netif_addr_unlock_bh(netdev); 288 } 289 290 /* Remove MAC addresses in the unsync list */ 291 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 292 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 293 if (status) { 294 netdev_err(netdev, "Failed to delete MAC filters\n"); 295 /* if we failed because of alloc failures, just bail */ 296 if (status == ICE_ERR_NO_MEMORY) { 297 err = -ENOMEM; 298 goto out; 299 } 300 } 301 302 /* Add MAC addresses in the sync list */ 303 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 304 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 305 /* If filter is added successfully or already exists, do not go into 306 * 'if' condition and report it as error. Instead continue processing 307 * rest of the function. 308 */ 309 if (status && status != ICE_ERR_ALREADY_EXISTS) { 310 netdev_err(netdev, "Failed to add MAC filters\n"); 311 /* If there is no more space for new umac filters, VSI 312 * should go into promiscuous mode. There should be some 313 * space reserved for promiscuous filters. 314 */ 315 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 316 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 317 vsi->state)) { 318 promisc_forced_on = true; 319 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 320 vsi->vsi_num); 321 } else { 322 err = -EIO; 323 goto out; 324 } 325 } 326 /* check for changes in promiscuous modes */ 327 if (changed_flags & IFF_ALLMULTI) { 328 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 329 if (vsi->vlan_ena) 330 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 331 else 332 promisc_m = ICE_MCAST_PROMISC_BITS; 333 334 err = ice_cfg_promisc(vsi, promisc_m, true); 335 if (err) { 336 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 337 vsi->vsi_num); 338 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 339 goto out_promisc; 340 } 341 } else { 342 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 343 if (vsi->vlan_ena) 344 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 345 else 346 promisc_m = ICE_MCAST_PROMISC_BITS; 347 348 err = ice_cfg_promisc(vsi, promisc_m, false); 349 if (err) { 350 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 351 vsi->vsi_num); 352 vsi->current_netdev_flags |= IFF_ALLMULTI; 353 goto out_promisc; 354 } 355 } 356 } 357 358 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 359 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 360 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 361 if (vsi->current_netdev_flags & IFF_PROMISC) { 362 /* Apply Rx filter rule to get traffic from wire */ 363 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 364 err = ice_set_dflt_vsi(pf->first_sw, vsi); 365 if (err && err != -EEXIST) { 366 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 367 err, vsi->vsi_num); 368 vsi->current_netdev_flags &= 369 ~IFF_PROMISC; 370 goto out_promisc; 371 } 372 } 373 } else { 374 /* Clear Rx filter to remove traffic from wire */ 375 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 376 err = ice_clear_dflt_vsi(pf->first_sw); 377 if (err) { 378 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 379 err, vsi->vsi_num); 380 vsi->current_netdev_flags |= 381 IFF_PROMISC; 382 goto out_promisc; 383 } 384 } 385 } 386 } 387 goto exit; 388 389 out_promisc: 390 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 391 goto exit; 392 out: 393 /* if something went wrong then set the changed flag so we try again */ 394 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 395 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 396 exit: 397 clear_bit(__ICE_CFG_BUSY, vsi->state); 398 return err; 399 } 400 401 /** 402 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 403 * @pf: board private structure 404 */ 405 static void ice_sync_fltr_subtask(struct ice_pf *pf) 406 { 407 int v; 408 409 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 410 return; 411 412 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 413 414 ice_for_each_vsi(pf, v) 415 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 416 ice_vsi_sync_fltr(pf->vsi[v])) { 417 /* come back and try again later */ 418 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 419 break; 420 } 421 } 422 423 /** 424 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 425 * @pf: the PF 426 * @locked: is the rtnl_lock already held 427 */ 428 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 429 { 430 int v; 431 432 ice_for_each_vsi(pf, v) 433 if (pf->vsi[v]) 434 ice_dis_vsi(pf->vsi[v], locked); 435 } 436 437 /** 438 * ice_prepare_for_reset - prep for the core to reset 439 * @pf: board private structure 440 * 441 * Inform or close all dependent features in prep for reset. 442 */ 443 static void 444 ice_prepare_for_reset(struct ice_pf *pf) 445 { 446 struct ice_hw *hw = &pf->hw; 447 unsigned int i; 448 449 /* already prepared for reset */ 450 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 451 return; 452 453 /* Notify VFs of impending reset */ 454 if (ice_check_sq_alive(hw, &hw->mailboxq)) 455 ice_vc_notify_reset(pf); 456 457 /* Disable VFs until reset is completed */ 458 ice_for_each_vf(pf, i) 459 ice_set_vf_state_qs_dis(&pf->vf[i]); 460 461 /* clear SW filtering DB */ 462 ice_clear_hw_tbls(hw); 463 /* disable the VSIs and their queues that are not already DOWN */ 464 ice_pf_dis_all_vsi(pf, false); 465 466 if (hw->port_info) 467 ice_sched_clear_port(hw->port_info); 468 469 ice_shutdown_all_ctrlq(hw); 470 471 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 472 } 473 474 /** 475 * ice_do_reset - Initiate one of many types of resets 476 * @pf: board private structure 477 * @reset_type: reset type requested 478 * before this function was called. 479 */ 480 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 481 { 482 struct device *dev = ice_pf_to_dev(pf); 483 struct ice_hw *hw = &pf->hw; 484 485 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 486 WARN_ON(in_interrupt()); 487 488 ice_prepare_for_reset(pf); 489 490 /* trigger the reset */ 491 if (ice_reset(hw, reset_type)) { 492 dev_err(dev, "reset %d failed\n", reset_type); 493 set_bit(__ICE_RESET_FAILED, pf->state); 494 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 495 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 496 clear_bit(__ICE_PFR_REQ, pf->state); 497 clear_bit(__ICE_CORER_REQ, pf->state); 498 clear_bit(__ICE_GLOBR_REQ, pf->state); 499 return; 500 } 501 502 /* PFR is a bit of a special case because it doesn't result in an OICR 503 * interrupt. So for PFR, rebuild after the reset and clear the reset- 504 * associated state bits. 505 */ 506 if (reset_type == ICE_RESET_PFR) { 507 pf->pfr_count++; 508 ice_rebuild(pf, reset_type); 509 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 510 clear_bit(__ICE_PFR_REQ, pf->state); 511 ice_reset_all_vfs(pf, true); 512 } 513 } 514 515 /** 516 * ice_reset_subtask - Set up for resetting the device and driver 517 * @pf: board private structure 518 */ 519 static void ice_reset_subtask(struct ice_pf *pf) 520 { 521 enum ice_reset_req reset_type = ICE_RESET_INVAL; 522 523 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 524 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 525 * of reset is pending and sets bits in pf->state indicating the reset 526 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 527 * prepare for pending reset if not already (for PF software-initiated 528 * global resets the software should already be prepared for it as 529 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 530 * by firmware or software on other PFs, that bit is not set so prepare 531 * for the reset now), poll for reset done, rebuild and return. 532 */ 533 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 534 /* Perform the largest reset requested */ 535 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 536 reset_type = ICE_RESET_CORER; 537 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 538 reset_type = ICE_RESET_GLOBR; 539 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 540 reset_type = ICE_RESET_EMPR; 541 /* return if no valid reset type requested */ 542 if (reset_type == ICE_RESET_INVAL) 543 return; 544 ice_prepare_for_reset(pf); 545 546 /* make sure we are ready to rebuild */ 547 if (ice_check_reset(&pf->hw)) { 548 set_bit(__ICE_RESET_FAILED, pf->state); 549 } else { 550 /* done with reset. start rebuild */ 551 pf->hw.reset_ongoing = false; 552 ice_rebuild(pf, reset_type); 553 /* clear bit to resume normal operations, but 554 * ICE_NEEDS_RESTART bit is set in case rebuild failed 555 */ 556 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 557 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 558 clear_bit(__ICE_PFR_REQ, pf->state); 559 clear_bit(__ICE_CORER_REQ, pf->state); 560 clear_bit(__ICE_GLOBR_REQ, pf->state); 561 ice_reset_all_vfs(pf, true); 562 } 563 564 return; 565 } 566 567 /* No pending resets to finish processing. Check for new resets */ 568 if (test_bit(__ICE_PFR_REQ, pf->state)) 569 reset_type = ICE_RESET_PFR; 570 if (test_bit(__ICE_CORER_REQ, pf->state)) 571 reset_type = ICE_RESET_CORER; 572 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 573 reset_type = ICE_RESET_GLOBR; 574 /* If no valid reset type requested just return */ 575 if (reset_type == ICE_RESET_INVAL) 576 return; 577 578 /* reset if not already down or busy */ 579 if (!test_bit(__ICE_DOWN, pf->state) && 580 !test_bit(__ICE_CFG_BUSY, pf->state)) { 581 ice_do_reset(pf, reset_type); 582 } 583 } 584 585 /** 586 * ice_print_topo_conflict - print topology conflict message 587 * @vsi: the VSI whose topology status is being checked 588 */ 589 static void ice_print_topo_conflict(struct ice_vsi *vsi) 590 { 591 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 592 case ICE_AQ_LINK_TOPO_CONFLICT: 593 case ICE_AQ_LINK_MEDIA_CONFLICT: 594 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 595 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 596 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 597 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 598 break; 599 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 600 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 601 break; 602 default: 603 break; 604 } 605 } 606 607 /** 608 * ice_print_link_msg - print link up or down message 609 * @vsi: the VSI whose link status is being queried 610 * @isup: boolean for if the link is now up or down 611 */ 612 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 613 { 614 struct ice_aqc_get_phy_caps_data *caps; 615 enum ice_status status; 616 const char *fec_req; 617 const char *speed; 618 const char *fec; 619 const char *fc; 620 const char *an; 621 622 if (!vsi) 623 return; 624 625 if (vsi->current_isup == isup) 626 return; 627 628 vsi->current_isup = isup; 629 630 if (!isup) { 631 netdev_info(vsi->netdev, "NIC Link is Down\n"); 632 return; 633 } 634 635 switch (vsi->port_info->phy.link_info.link_speed) { 636 case ICE_AQ_LINK_SPEED_100GB: 637 speed = "100 G"; 638 break; 639 case ICE_AQ_LINK_SPEED_50GB: 640 speed = "50 G"; 641 break; 642 case ICE_AQ_LINK_SPEED_40GB: 643 speed = "40 G"; 644 break; 645 case ICE_AQ_LINK_SPEED_25GB: 646 speed = "25 G"; 647 break; 648 case ICE_AQ_LINK_SPEED_20GB: 649 speed = "20 G"; 650 break; 651 case ICE_AQ_LINK_SPEED_10GB: 652 speed = "10 G"; 653 break; 654 case ICE_AQ_LINK_SPEED_5GB: 655 speed = "5 G"; 656 break; 657 case ICE_AQ_LINK_SPEED_2500MB: 658 speed = "2.5 G"; 659 break; 660 case ICE_AQ_LINK_SPEED_1000MB: 661 speed = "1 G"; 662 break; 663 case ICE_AQ_LINK_SPEED_100MB: 664 speed = "100 M"; 665 break; 666 default: 667 speed = "Unknown"; 668 break; 669 } 670 671 switch (vsi->port_info->fc.current_mode) { 672 case ICE_FC_FULL: 673 fc = "Rx/Tx"; 674 break; 675 case ICE_FC_TX_PAUSE: 676 fc = "Tx"; 677 break; 678 case ICE_FC_RX_PAUSE: 679 fc = "Rx"; 680 break; 681 case ICE_FC_NONE: 682 fc = "None"; 683 break; 684 default: 685 fc = "Unknown"; 686 break; 687 } 688 689 /* Get FEC mode based on negotiated link info */ 690 switch (vsi->port_info->phy.link_info.fec_info) { 691 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 692 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 693 fec = "RS-FEC"; 694 break; 695 case ICE_AQ_LINK_25G_KR_FEC_EN: 696 fec = "FC-FEC/BASE-R"; 697 break; 698 default: 699 fec = "NONE"; 700 break; 701 } 702 703 /* check if autoneg completed, might be false due to not supported */ 704 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 705 an = "True"; 706 else 707 an = "False"; 708 709 /* Get FEC mode requested based on PHY caps last SW configuration */ 710 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 711 if (!caps) { 712 fec_req = "Unknown"; 713 goto done; 714 } 715 716 status = ice_aq_get_phy_caps(vsi->port_info, false, 717 ICE_AQC_REPORT_SW_CFG, caps, NULL); 718 if (status) 719 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 720 721 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 722 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 723 fec_req = "RS-FEC"; 724 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 725 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 726 fec_req = "FC-FEC/BASE-R"; 727 else 728 fec_req = "NONE"; 729 730 kfree(caps); 731 732 done: 733 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 734 speed, fec_req, fec, an, fc); 735 ice_print_topo_conflict(vsi); 736 } 737 738 /** 739 * ice_vsi_link_event - update the VSI's netdev 740 * @vsi: the VSI on which the link event occurred 741 * @link_up: whether or not the VSI needs to be set up or down 742 */ 743 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 744 { 745 if (!vsi) 746 return; 747 748 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 749 return; 750 751 if (vsi->type == ICE_VSI_PF) { 752 if (link_up == netif_carrier_ok(vsi->netdev)) 753 return; 754 755 if (link_up) { 756 netif_carrier_on(vsi->netdev); 757 netif_tx_wake_all_queues(vsi->netdev); 758 } else { 759 netif_carrier_off(vsi->netdev); 760 netif_tx_stop_all_queues(vsi->netdev); 761 } 762 } 763 } 764 765 /** 766 * ice_link_event - process the link event 767 * @pf: PF that the link event is associated with 768 * @pi: port_info for the port that the link event is associated with 769 * @link_up: true if the physical link is up and false if it is down 770 * @link_speed: current link speed received from the link event 771 * 772 * Returns 0 on success and negative on failure 773 */ 774 static int 775 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 776 u16 link_speed) 777 { 778 struct device *dev = ice_pf_to_dev(pf); 779 struct ice_phy_info *phy_info; 780 struct ice_vsi *vsi; 781 u16 old_link_speed; 782 bool old_link; 783 int result; 784 785 phy_info = &pi->phy; 786 phy_info->link_info_old = phy_info->link_info; 787 788 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 789 old_link_speed = phy_info->link_info_old.link_speed; 790 791 /* update the link info structures and re-enable link events, 792 * don't bail on failure due to other book keeping needed 793 */ 794 result = ice_update_link_info(pi); 795 if (result) 796 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 797 pi->lport); 798 799 /* if the old link up/down and speed is the same as the new */ 800 if (link_up == old_link && link_speed == old_link_speed) 801 return result; 802 803 vsi = ice_get_main_vsi(pf); 804 if (!vsi || !vsi->port_info) 805 return -EINVAL; 806 807 /* turn off PHY if media was removed */ 808 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 809 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 810 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 811 812 result = ice_aq_set_link_restart_an(pi, false, NULL); 813 if (result) { 814 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 815 vsi->vsi_num, result); 816 return result; 817 } 818 } 819 820 ice_dcb_rebuild(pf); 821 ice_vsi_link_event(vsi, link_up); 822 ice_print_link_msg(vsi, link_up); 823 824 ice_vc_notify_link_state(pf); 825 826 return result; 827 } 828 829 /** 830 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 831 * @pf: board private structure 832 */ 833 static void ice_watchdog_subtask(struct ice_pf *pf) 834 { 835 int i; 836 837 /* if interface is down do nothing */ 838 if (test_bit(__ICE_DOWN, pf->state) || 839 test_bit(__ICE_CFG_BUSY, pf->state)) 840 return; 841 842 /* make sure we don't do these things too often */ 843 if (time_before(jiffies, 844 pf->serv_tmr_prev + pf->serv_tmr_period)) 845 return; 846 847 pf->serv_tmr_prev = jiffies; 848 849 /* Update the stats for active netdevs so the network stack 850 * can look at updated numbers whenever it cares to 851 */ 852 ice_update_pf_stats(pf); 853 ice_for_each_vsi(pf, i) 854 if (pf->vsi[i] && pf->vsi[i]->netdev) 855 ice_update_vsi_stats(pf->vsi[i]); 856 } 857 858 /** 859 * ice_init_link_events - enable/initialize link events 860 * @pi: pointer to the port_info instance 861 * 862 * Returns -EIO on failure, 0 on success 863 */ 864 static int ice_init_link_events(struct ice_port_info *pi) 865 { 866 u16 mask; 867 868 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 869 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 870 871 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 872 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 873 pi->lport); 874 return -EIO; 875 } 876 877 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 878 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 879 pi->lport); 880 return -EIO; 881 } 882 883 return 0; 884 } 885 886 /** 887 * ice_handle_link_event - handle link event via ARQ 888 * @pf: PF that the link event is associated with 889 * @event: event structure containing link status info 890 */ 891 static int 892 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 893 { 894 struct ice_aqc_get_link_status_data *link_data; 895 struct ice_port_info *port_info; 896 int status; 897 898 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 899 port_info = pf->hw.port_info; 900 if (!port_info) 901 return -EINVAL; 902 903 status = ice_link_event(pf, port_info, 904 !!(link_data->link_info & ICE_AQ_LINK_UP), 905 le16_to_cpu(link_data->link_speed)); 906 if (status) 907 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 908 status); 909 910 return status; 911 } 912 913 /** 914 * __ice_clean_ctrlq - helper function to clean controlq rings 915 * @pf: ptr to struct ice_pf 916 * @q_type: specific Control queue type 917 */ 918 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 919 { 920 struct device *dev = ice_pf_to_dev(pf); 921 struct ice_rq_event_info event; 922 struct ice_hw *hw = &pf->hw; 923 struct ice_ctl_q_info *cq; 924 u16 pending, i = 0; 925 const char *qtype; 926 u32 oldval, val; 927 928 /* Do not clean control queue if/when PF reset fails */ 929 if (test_bit(__ICE_RESET_FAILED, pf->state)) 930 return 0; 931 932 switch (q_type) { 933 case ICE_CTL_Q_ADMIN: 934 cq = &hw->adminq; 935 qtype = "Admin"; 936 break; 937 case ICE_CTL_Q_MAILBOX: 938 cq = &hw->mailboxq; 939 qtype = "Mailbox"; 940 break; 941 default: 942 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 943 return 0; 944 } 945 946 /* check for error indications - PF_xx_AxQLEN register layout for 947 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 948 */ 949 val = rd32(hw, cq->rq.len); 950 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 951 PF_FW_ARQLEN_ARQCRIT_M)) { 952 oldval = val; 953 if (val & PF_FW_ARQLEN_ARQVFE_M) 954 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 955 qtype); 956 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 957 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 958 qtype); 959 } 960 if (val & PF_FW_ARQLEN_ARQCRIT_M) 961 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 962 qtype); 963 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 964 PF_FW_ARQLEN_ARQCRIT_M); 965 if (oldval != val) 966 wr32(hw, cq->rq.len, val); 967 } 968 969 val = rd32(hw, cq->sq.len); 970 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 971 PF_FW_ATQLEN_ATQCRIT_M)) { 972 oldval = val; 973 if (val & PF_FW_ATQLEN_ATQVFE_M) 974 dev_dbg(dev, "%s Send Queue VF Error detected\n", 975 qtype); 976 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 977 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 978 qtype); 979 } 980 if (val & PF_FW_ATQLEN_ATQCRIT_M) 981 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 982 qtype); 983 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 984 PF_FW_ATQLEN_ATQCRIT_M); 985 if (oldval != val) 986 wr32(hw, cq->sq.len, val); 987 } 988 989 event.buf_len = cq->rq_buf_size; 990 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 991 if (!event.msg_buf) 992 return 0; 993 994 do { 995 enum ice_status ret; 996 u16 opcode; 997 998 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 999 if (ret == ICE_ERR_AQ_NO_WORK) 1000 break; 1001 if (ret) { 1002 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1003 ice_stat_str(ret)); 1004 break; 1005 } 1006 1007 opcode = le16_to_cpu(event.desc.opcode); 1008 1009 switch (opcode) { 1010 case ice_aqc_opc_get_link_status: 1011 if (ice_handle_link_event(pf, &event)) 1012 dev_err(dev, "Could not handle link event\n"); 1013 break; 1014 case ice_aqc_opc_event_lan_overflow: 1015 ice_vf_lan_overflow_event(pf, &event); 1016 break; 1017 case ice_mbx_opc_send_msg_to_pf: 1018 ice_vc_process_vf_msg(pf, &event); 1019 break; 1020 case ice_aqc_opc_fw_logging: 1021 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1022 break; 1023 case ice_aqc_opc_lldp_set_mib_change: 1024 ice_dcb_process_lldp_set_mib_change(pf, &event); 1025 break; 1026 default: 1027 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1028 qtype, opcode); 1029 break; 1030 } 1031 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1032 1033 kfree(event.msg_buf); 1034 1035 return pending && (i == ICE_DFLT_IRQ_WORK); 1036 } 1037 1038 /** 1039 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1040 * @hw: pointer to hardware info 1041 * @cq: control queue information 1042 * 1043 * returns true if there are pending messages in a queue, false if there aren't 1044 */ 1045 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1046 { 1047 u16 ntu; 1048 1049 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1050 return cq->rq.next_to_clean != ntu; 1051 } 1052 1053 /** 1054 * ice_clean_adminq_subtask - clean the AdminQ rings 1055 * @pf: board private structure 1056 */ 1057 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1058 { 1059 struct ice_hw *hw = &pf->hw; 1060 1061 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1062 return; 1063 1064 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1065 return; 1066 1067 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1068 1069 /* There might be a situation where new messages arrive to a control 1070 * queue between processing the last message and clearing the 1071 * EVENT_PENDING bit. So before exiting, check queue head again (using 1072 * ice_ctrlq_pending) and process new messages if any. 1073 */ 1074 if (ice_ctrlq_pending(hw, &hw->adminq)) 1075 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1076 1077 ice_flush(hw); 1078 } 1079 1080 /** 1081 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1082 * @pf: board private structure 1083 */ 1084 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1085 { 1086 struct ice_hw *hw = &pf->hw; 1087 1088 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1089 return; 1090 1091 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1092 return; 1093 1094 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1095 1096 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1097 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1098 1099 ice_flush(hw); 1100 } 1101 1102 /** 1103 * ice_service_task_schedule - schedule the service task to wake up 1104 * @pf: board private structure 1105 * 1106 * If not already scheduled, this puts the task into the work queue. 1107 */ 1108 void ice_service_task_schedule(struct ice_pf *pf) 1109 { 1110 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1111 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1112 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1113 queue_work(ice_wq, &pf->serv_task); 1114 } 1115 1116 /** 1117 * ice_service_task_complete - finish up the service task 1118 * @pf: board private structure 1119 */ 1120 static void ice_service_task_complete(struct ice_pf *pf) 1121 { 1122 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1123 1124 /* force memory (pf->state) to sync before next service task */ 1125 smp_mb__before_atomic(); 1126 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1127 } 1128 1129 /** 1130 * ice_service_task_stop - stop service task and cancel works 1131 * @pf: board private structure 1132 */ 1133 static void ice_service_task_stop(struct ice_pf *pf) 1134 { 1135 set_bit(__ICE_SERVICE_DIS, pf->state); 1136 1137 if (pf->serv_tmr.function) 1138 del_timer_sync(&pf->serv_tmr); 1139 if (pf->serv_task.func) 1140 cancel_work_sync(&pf->serv_task); 1141 1142 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1143 } 1144 1145 /** 1146 * ice_service_task_restart - restart service task and schedule works 1147 * @pf: board private structure 1148 * 1149 * This function is needed for suspend and resume works (e.g WoL scenario) 1150 */ 1151 static void ice_service_task_restart(struct ice_pf *pf) 1152 { 1153 clear_bit(__ICE_SERVICE_DIS, pf->state); 1154 ice_service_task_schedule(pf); 1155 } 1156 1157 /** 1158 * ice_service_timer - timer callback to schedule service task 1159 * @t: pointer to timer_list 1160 */ 1161 static void ice_service_timer(struct timer_list *t) 1162 { 1163 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1164 1165 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1166 ice_service_task_schedule(pf); 1167 } 1168 1169 /** 1170 * ice_handle_mdd_event - handle malicious driver detect event 1171 * @pf: pointer to the PF structure 1172 * 1173 * Called from service task. OICR interrupt handler indicates MDD event. 1174 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1175 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1176 * disable the queue, the PF can be configured to reset the VF using ethtool 1177 * private flag mdd-auto-reset-vf. 1178 */ 1179 static void ice_handle_mdd_event(struct ice_pf *pf) 1180 { 1181 struct device *dev = ice_pf_to_dev(pf); 1182 struct ice_hw *hw = &pf->hw; 1183 unsigned int i; 1184 u32 reg; 1185 1186 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1187 /* Since the VF MDD event logging is rate limited, check if 1188 * there are pending MDD events. 1189 */ 1190 ice_print_vfs_mdd_events(pf); 1191 return; 1192 } 1193 1194 /* find what triggered an MDD event */ 1195 reg = rd32(hw, GL_MDET_TX_PQM); 1196 if (reg & GL_MDET_TX_PQM_VALID_M) { 1197 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1198 GL_MDET_TX_PQM_PF_NUM_S; 1199 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1200 GL_MDET_TX_PQM_VF_NUM_S; 1201 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1202 GL_MDET_TX_PQM_MAL_TYPE_S; 1203 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1204 GL_MDET_TX_PQM_QNUM_S); 1205 1206 if (netif_msg_tx_err(pf)) 1207 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1208 event, queue, pf_num, vf_num); 1209 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1210 } 1211 1212 reg = rd32(hw, GL_MDET_TX_TCLAN); 1213 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1214 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1215 GL_MDET_TX_TCLAN_PF_NUM_S; 1216 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1217 GL_MDET_TX_TCLAN_VF_NUM_S; 1218 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1219 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1220 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1221 GL_MDET_TX_TCLAN_QNUM_S); 1222 1223 if (netif_msg_tx_err(pf)) 1224 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1225 event, queue, pf_num, vf_num); 1226 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1227 } 1228 1229 reg = rd32(hw, GL_MDET_RX); 1230 if (reg & GL_MDET_RX_VALID_M) { 1231 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1232 GL_MDET_RX_PF_NUM_S; 1233 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1234 GL_MDET_RX_VF_NUM_S; 1235 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1236 GL_MDET_RX_MAL_TYPE_S; 1237 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1238 GL_MDET_RX_QNUM_S); 1239 1240 if (netif_msg_rx_err(pf)) 1241 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1242 event, queue, pf_num, vf_num); 1243 wr32(hw, GL_MDET_RX, 0xffffffff); 1244 } 1245 1246 /* check to see if this PF caused an MDD event */ 1247 reg = rd32(hw, PF_MDET_TX_PQM); 1248 if (reg & PF_MDET_TX_PQM_VALID_M) { 1249 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1250 if (netif_msg_tx_err(pf)) 1251 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1252 } 1253 1254 reg = rd32(hw, PF_MDET_TX_TCLAN); 1255 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1256 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1257 if (netif_msg_tx_err(pf)) 1258 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1259 } 1260 1261 reg = rd32(hw, PF_MDET_RX); 1262 if (reg & PF_MDET_RX_VALID_M) { 1263 wr32(hw, PF_MDET_RX, 0xFFFF); 1264 if (netif_msg_rx_err(pf)) 1265 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1266 } 1267 1268 /* Check to see if one of the VFs caused an MDD event, and then 1269 * increment counters and set print pending 1270 */ 1271 ice_for_each_vf(pf, i) { 1272 struct ice_vf *vf = &pf->vf[i]; 1273 1274 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1275 if (reg & VP_MDET_TX_PQM_VALID_M) { 1276 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1277 vf->mdd_tx_events.count++; 1278 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1279 if (netif_msg_tx_err(pf)) 1280 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1281 i); 1282 } 1283 1284 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1285 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1286 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1287 vf->mdd_tx_events.count++; 1288 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1289 if (netif_msg_tx_err(pf)) 1290 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1291 i); 1292 } 1293 1294 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1295 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1296 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1297 vf->mdd_tx_events.count++; 1298 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1299 if (netif_msg_tx_err(pf)) 1300 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1301 i); 1302 } 1303 1304 reg = rd32(hw, VP_MDET_RX(i)); 1305 if (reg & VP_MDET_RX_VALID_M) { 1306 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1307 vf->mdd_rx_events.count++; 1308 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1309 if (netif_msg_rx_err(pf)) 1310 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1311 i); 1312 1313 /* Since the queue is disabled on VF Rx MDD events, the 1314 * PF can be configured to reset the VF through ethtool 1315 * private flag mdd-auto-reset-vf. 1316 */ 1317 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1318 /* VF MDD event counters will be cleared by 1319 * reset, so print the event prior to reset. 1320 */ 1321 ice_print_vf_rx_mdd_event(vf); 1322 ice_reset_vf(&pf->vf[i], false); 1323 } 1324 } 1325 } 1326 1327 ice_print_vfs_mdd_events(pf); 1328 } 1329 1330 /** 1331 * ice_force_phys_link_state - Force the physical link state 1332 * @vsi: VSI to force the physical link state to up/down 1333 * @link_up: true/false indicates to set the physical link to up/down 1334 * 1335 * Force the physical link state by getting the current PHY capabilities from 1336 * hardware and setting the PHY config based on the determined capabilities. If 1337 * link changes a link event will be triggered because both the Enable Automatic 1338 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1339 * 1340 * Returns 0 on success, negative on failure 1341 */ 1342 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1343 { 1344 struct ice_aqc_get_phy_caps_data *pcaps; 1345 struct ice_aqc_set_phy_cfg_data *cfg; 1346 struct ice_port_info *pi; 1347 struct device *dev; 1348 int retcode; 1349 1350 if (!vsi || !vsi->port_info || !vsi->back) 1351 return -EINVAL; 1352 if (vsi->type != ICE_VSI_PF) 1353 return 0; 1354 1355 dev = ice_pf_to_dev(vsi->back); 1356 1357 pi = vsi->port_info; 1358 1359 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1360 if (!pcaps) 1361 return -ENOMEM; 1362 1363 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1364 NULL); 1365 if (retcode) { 1366 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1367 vsi->vsi_num, retcode); 1368 retcode = -EIO; 1369 goto out; 1370 } 1371 1372 /* No change in link */ 1373 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1374 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1375 goto out; 1376 1377 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1378 if (!cfg) { 1379 retcode = -ENOMEM; 1380 goto out; 1381 } 1382 1383 cfg->phy_type_low = pcaps->phy_type_low; 1384 cfg->phy_type_high = pcaps->phy_type_high; 1385 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1386 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1387 cfg->eee_cap = pcaps->eee_cap; 1388 cfg->eeer_value = pcaps->eeer_value; 1389 cfg->link_fec_opt = pcaps->link_fec_options; 1390 if (link_up) 1391 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1392 else 1393 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1394 1395 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1396 if (retcode) { 1397 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1398 vsi->vsi_num, retcode); 1399 retcode = -EIO; 1400 } 1401 1402 kfree(cfg); 1403 out: 1404 kfree(pcaps); 1405 return retcode; 1406 } 1407 1408 /** 1409 * ice_check_media_subtask - Check for media; bring link up if detected. 1410 * @pf: pointer to PF struct 1411 */ 1412 static void ice_check_media_subtask(struct ice_pf *pf) 1413 { 1414 struct ice_port_info *pi; 1415 struct ice_vsi *vsi; 1416 int err; 1417 1418 vsi = ice_get_main_vsi(pf); 1419 if (!vsi) 1420 return; 1421 1422 /* No need to check for media if it's already present or the interface 1423 * is down 1424 */ 1425 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1426 test_bit(__ICE_DOWN, vsi->state)) 1427 return; 1428 1429 /* Refresh link info and check if media is present */ 1430 pi = vsi->port_info; 1431 err = ice_update_link_info(pi); 1432 if (err) 1433 return; 1434 1435 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1436 err = ice_force_phys_link_state(vsi, true); 1437 if (err) 1438 return; 1439 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1440 1441 /* A Link Status Event will be generated; the event handler 1442 * will complete bringing the interface up 1443 */ 1444 } 1445 } 1446 1447 /** 1448 * ice_service_task - manage and run subtasks 1449 * @work: pointer to work_struct contained by the PF struct 1450 */ 1451 static void ice_service_task(struct work_struct *work) 1452 { 1453 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1454 unsigned long start_time = jiffies; 1455 1456 /* subtasks */ 1457 1458 /* process reset requests first */ 1459 ice_reset_subtask(pf); 1460 1461 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1462 if (ice_is_reset_in_progress(pf->state) || 1463 test_bit(__ICE_SUSPENDED, pf->state) || 1464 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1465 ice_service_task_complete(pf); 1466 return; 1467 } 1468 1469 ice_clean_adminq_subtask(pf); 1470 ice_check_media_subtask(pf); 1471 ice_check_for_hang_subtask(pf); 1472 ice_sync_fltr_subtask(pf); 1473 ice_handle_mdd_event(pf); 1474 ice_watchdog_subtask(pf); 1475 1476 if (ice_is_safe_mode(pf)) { 1477 ice_service_task_complete(pf); 1478 return; 1479 } 1480 1481 ice_process_vflr_event(pf); 1482 ice_clean_mailboxq_subtask(pf); 1483 ice_sync_arfs_fltrs(pf); 1484 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1485 ice_service_task_complete(pf); 1486 1487 /* If the tasks have taken longer than one service timer period 1488 * or there is more work to be done, reset the service timer to 1489 * schedule the service task now. 1490 */ 1491 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1492 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1493 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1494 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1495 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1496 mod_timer(&pf->serv_tmr, jiffies); 1497 } 1498 1499 /** 1500 * ice_set_ctrlq_len - helper function to set controlq length 1501 * @hw: pointer to the HW instance 1502 */ 1503 static void ice_set_ctrlq_len(struct ice_hw *hw) 1504 { 1505 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1506 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1507 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1508 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1509 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 1510 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1511 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1512 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1513 } 1514 1515 /** 1516 * ice_schedule_reset - schedule a reset 1517 * @pf: board private structure 1518 * @reset: reset being requested 1519 */ 1520 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 1521 { 1522 struct device *dev = ice_pf_to_dev(pf); 1523 1524 /* bail out if earlier reset has failed */ 1525 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 1526 dev_dbg(dev, "earlier reset has failed\n"); 1527 return -EIO; 1528 } 1529 /* bail if reset/recovery already in progress */ 1530 if (ice_is_reset_in_progress(pf->state)) { 1531 dev_dbg(dev, "Reset already in progress\n"); 1532 return -EBUSY; 1533 } 1534 1535 switch (reset) { 1536 case ICE_RESET_PFR: 1537 set_bit(__ICE_PFR_REQ, pf->state); 1538 break; 1539 case ICE_RESET_CORER: 1540 set_bit(__ICE_CORER_REQ, pf->state); 1541 break; 1542 case ICE_RESET_GLOBR: 1543 set_bit(__ICE_GLOBR_REQ, pf->state); 1544 break; 1545 default: 1546 return -EINVAL; 1547 } 1548 1549 ice_service_task_schedule(pf); 1550 return 0; 1551 } 1552 1553 /** 1554 * ice_irq_affinity_notify - Callback for affinity changes 1555 * @notify: context as to what irq was changed 1556 * @mask: the new affinity mask 1557 * 1558 * This is a callback function used by the irq_set_affinity_notifier function 1559 * so that we may register to receive changes to the irq affinity masks. 1560 */ 1561 static void 1562 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1563 const cpumask_t *mask) 1564 { 1565 struct ice_q_vector *q_vector = 1566 container_of(notify, struct ice_q_vector, affinity_notify); 1567 1568 cpumask_copy(&q_vector->affinity_mask, mask); 1569 } 1570 1571 /** 1572 * ice_irq_affinity_release - Callback for affinity notifier release 1573 * @ref: internal core kernel usage 1574 * 1575 * This is a callback function used by the irq_set_affinity_notifier function 1576 * to inform the current notification subscriber that they will no longer 1577 * receive notifications. 1578 */ 1579 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1580 1581 /** 1582 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1583 * @vsi: the VSI being configured 1584 */ 1585 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1586 { 1587 struct ice_hw *hw = &vsi->back->hw; 1588 int i; 1589 1590 ice_for_each_q_vector(vsi, i) 1591 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1592 1593 ice_flush(hw); 1594 return 0; 1595 } 1596 1597 /** 1598 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1599 * @vsi: the VSI being configured 1600 * @basename: name for the vector 1601 */ 1602 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1603 { 1604 int q_vectors = vsi->num_q_vectors; 1605 struct ice_pf *pf = vsi->back; 1606 int base = vsi->base_vector; 1607 struct device *dev; 1608 int rx_int_idx = 0; 1609 int tx_int_idx = 0; 1610 int vector, err; 1611 int irq_num; 1612 1613 dev = ice_pf_to_dev(pf); 1614 for (vector = 0; vector < q_vectors; vector++) { 1615 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1616 1617 irq_num = pf->msix_entries[base + vector].vector; 1618 1619 if (q_vector->tx.ring && q_vector->rx.ring) { 1620 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1621 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1622 tx_int_idx++; 1623 } else if (q_vector->rx.ring) { 1624 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1625 "%s-%s-%d", basename, "rx", rx_int_idx++); 1626 } else if (q_vector->tx.ring) { 1627 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1628 "%s-%s-%d", basename, "tx", tx_int_idx++); 1629 } else { 1630 /* skip this unused q_vector */ 1631 continue; 1632 } 1633 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 1634 q_vector->name, q_vector); 1635 if (err) { 1636 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 1637 err); 1638 goto free_q_irqs; 1639 } 1640 1641 /* register for affinity change notifications */ 1642 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 1643 struct irq_affinity_notify *affinity_notify; 1644 1645 affinity_notify = &q_vector->affinity_notify; 1646 affinity_notify->notify = ice_irq_affinity_notify; 1647 affinity_notify->release = ice_irq_affinity_release; 1648 irq_set_affinity_notifier(irq_num, affinity_notify); 1649 } 1650 1651 /* assign the mask for this irq */ 1652 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1653 } 1654 1655 vsi->irqs_ready = true; 1656 return 0; 1657 1658 free_q_irqs: 1659 while (vector) { 1660 vector--; 1661 irq_num = pf->msix_entries[base + vector].vector; 1662 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 1663 irq_set_affinity_notifier(irq_num, NULL); 1664 irq_set_affinity_hint(irq_num, NULL); 1665 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 1666 } 1667 return err; 1668 } 1669 1670 /** 1671 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 1672 * @vsi: VSI to setup Tx rings used by XDP 1673 * 1674 * Return 0 on success and negative value on error 1675 */ 1676 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 1677 { 1678 struct device *dev = ice_pf_to_dev(vsi->back); 1679 int i; 1680 1681 for (i = 0; i < vsi->num_xdp_txq; i++) { 1682 u16 xdp_q_idx = vsi->alloc_txq + i; 1683 struct ice_ring *xdp_ring; 1684 1685 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 1686 1687 if (!xdp_ring) 1688 goto free_xdp_rings; 1689 1690 xdp_ring->q_index = xdp_q_idx; 1691 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 1692 xdp_ring->ring_active = false; 1693 xdp_ring->vsi = vsi; 1694 xdp_ring->netdev = NULL; 1695 xdp_ring->dev = dev; 1696 xdp_ring->count = vsi->num_tx_desc; 1697 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 1698 if (ice_setup_tx_ring(xdp_ring)) 1699 goto free_xdp_rings; 1700 ice_set_ring_xdp(xdp_ring); 1701 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 1702 } 1703 1704 return 0; 1705 1706 free_xdp_rings: 1707 for (; i >= 0; i--) 1708 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 1709 ice_free_tx_ring(vsi->xdp_rings[i]); 1710 return -ENOMEM; 1711 } 1712 1713 /** 1714 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 1715 * @vsi: VSI to set the bpf prog on 1716 * @prog: the bpf prog pointer 1717 */ 1718 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 1719 { 1720 struct bpf_prog *old_prog; 1721 int i; 1722 1723 old_prog = xchg(&vsi->xdp_prog, prog); 1724 if (old_prog) 1725 bpf_prog_put(old_prog); 1726 1727 ice_for_each_rxq(vsi, i) 1728 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 1729 } 1730 1731 /** 1732 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 1733 * @vsi: VSI to bring up Tx rings used by XDP 1734 * @prog: bpf program that will be assigned to VSI 1735 * 1736 * Return 0 on success and negative value on error 1737 */ 1738 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 1739 { 1740 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1741 int xdp_rings_rem = vsi->num_xdp_txq; 1742 struct ice_pf *pf = vsi->back; 1743 struct ice_qs_cfg xdp_qs_cfg = { 1744 .qs_mutex = &pf->avail_q_mutex, 1745 .pf_map = pf->avail_txqs, 1746 .pf_map_size = pf->max_pf_txqs, 1747 .q_count = vsi->num_xdp_txq, 1748 .scatter_count = ICE_MAX_SCATTER_TXQS, 1749 .vsi_map = vsi->txq_map, 1750 .vsi_map_offset = vsi->alloc_txq, 1751 .mapping_mode = ICE_VSI_MAP_CONTIG 1752 }; 1753 enum ice_status status; 1754 struct device *dev; 1755 int i, v_idx; 1756 1757 dev = ice_pf_to_dev(pf); 1758 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 1759 sizeof(*vsi->xdp_rings), GFP_KERNEL); 1760 if (!vsi->xdp_rings) 1761 return -ENOMEM; 1762 1763 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 1764 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 1765 goto err_map_xdp; 1766 1767 if (ice_xdp_alloc_setup_rings(vsi)) 1768 goto clear_xdp_rings; 1769 1770 /* follow the logic from ice_vsi_map_rings_to_vectors */ 1771 ice_for_each_q_vector(vsi, v_idx) { 1772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1773 int xdp_rings_per_v, q_id, q_base; 1774 1775 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 1776 vsi->num_q_vectors - v_idx); 1777 q_base = vsi->num_xdp_txq - xdp_rings_rem; 1778 1779 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 1780 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 1781 1782 xdp_ring->q_vector = q_vector; 1783 xdp_ring->next = q_vector->tx.ring; 1784 q_vector->tx.ring = xdp_ring; 1785 } 1786 xdp_rings_rem -= xdp_rings_per_v; 1787 } 1788 1789 /* omit the scheduler update if in reset path; XDP queues will be 1790 * taken into account at the end of ice_vsi_rebuild, where 1791 * ice_cfg_vsi_lan is being called 1792 */ 1793 if (ice_is_reset_in_progress(pf->state)) 1794 return 0; 1795 1796 /* tell the Tx scheduler that right now we have 1797 * additional queues 1798 */ 1799 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1800 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 1801 1802 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1803 max_txqs); 1804 if (status) { 1805 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 1806 ice_stat_str(status)); 1807 goto clear_xdp_rings; 1808 } 1809 ice_vsi_assign_bpf_prog(vsi, prog); 1810 1811 return 0; 1812 clear_xdp_rings: 1813 for (i = 0; i < vsi->num_xdp_txq; i++) 1814 if (vsi->xdp_rings[i]) { 1815 kfree_rcu(vsi->xdp_rings[i], rcu); 1816 vsi->xdp_rings[i] = NULL; 1817 } 1818 1819 err_map_xdp: 1820 mutex_lock(&pf->avail_q_mutex); 1821 for (i = 0; i < vsi->num_xdp_txq; i++) { 1822 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1823 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1824 } 1825 mutex_unlock(&pf->avail_q_mutex); 1826 1827 devm_kfree(dev, vsi->xdp_rings); 1828 return -ENOMEM; 1829 } 1830 1831 /** 1832 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 1833 * @vsi: VSI to remove XDP rings 1834 * 1835 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 1836 * resources 1837 */ 1838 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 1839 { 1840 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1841 struct ice_pf *pf = vsi->back; 1842 int i, v_idx; 1843 1844 /* q_vectors are freed in reset path so there's no point in detaching 1845 * rings; in case of rebuild being triggered not from reset reset bits 1846 * in pf->state won't be set, so additionally check first q_vector 1847 * against NULL 1848 */ 1849 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1850 goto free_qmap; 1851 1852 ice_for_each_q_vector(vsi, v_idx) { 1853 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1854 struct ice_ring *ring; 1855 1856 ice_for_each_ring(ring, q_vector->tx) 1857 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 1858 break; 1859 1860 /* restore the value of last node prior to XDP setup */ 1861 q_vector->tx.ring = ring; 1862 } 1863 1864 free_qmap: 1865 mutex_lock(&pf->avail_q_mutex); 1866 for (i = 0; i < vsi->num_xdp_txq; i++) { 1867 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1868 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1869 } 1870 mutex_unlock(&pf->avail_q_mutex); 1871 1872 for (i = 0; i < vsi->num_xdp_txq; i++) 1873 if (vsi->xdp_rings[i]) { 1874 if (vsi->xdp_rings[i]->desc) 1875 ice_free_tx_ring(vsi->xdp_rings[i]); 1876 kfree_rcu(vsi->xdp_rings[i], rcu); 1877 vsi->xdp_rings[i] = NULL; 1878 } 1879 1880 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 1881 vsi->xdp_rings = NULL; 1882 1883 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1884 return 0; 1885 1886 ice_vsi_assign_bpf_prog(vsi, NULL); 1887 1888 /* notify Tx scheduler that we destroyed XDP queues and bring 1889 * back the old number of child nodes 1890 */ 1891 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1892 max_txqs[i] = vsi->num_txq; 1893 1894 /* change number of XDP Tx queues to 0 */ 1895 vsi->num_xdp_txq = 0; 1896 1897 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1898 max_txqs); 1899 } 1900 1901 /** 1902 * ice_xdp_setup_prog - Add or remove XDP eBPF program 1903 * @vsi: VSI to setup XDP for 1904 * @prog: XDP program 1905 * @extack: netlink extended ack 1906 */ 1907 static int 1908 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 1909 struct netlink_ext_ack *extack) 1910 { 1911 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 1912 bool if_running = netif_running(vsi->netdev); 1913 int ret = 0, xdp_ring_err = 0; 1914 1915 if (frame_size > vsi->rx_buf_len) { 1916 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 1917 return -EOPNOTSUPP; 1918 } 1919 1920 /* need to stop netdev while setting up the program for Rx rings */ 1921 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 1922 ret = ice_down(vsi); 1923 if (ret) { 1924 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 1925 return ret; 1926 } 1927 } 1928 1929 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 1930 vsi->num_xdp_txq = vsi->alloc_rxq; 1931 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 1932 if (xdp_ring_err) 1933 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 1934 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 1935 xdp_ring_err = ice_destroy_xdp_rings(vsi); 1936 if (xdp_ring_err) 1937 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 1938 } else { 1939 ice_vsi_assign_bpf_prog(vsi, prog); 1940 } 1941 1942 if (if_running) 1943 ret = ice_up(vsi); 1944 1945 if (!ret && prog && vsi->xsk_umems) { 1946 int i; 1947 1948 ice_for_each_rxq(vsi, i) { 1949 struct ice_ring *rx_ring = vsi->rx_rings[i]; 1950 1951 if (rx_ring->xsk_umem) 1952 napi_schedule(&rx_ring->q_vector->napi); 1953 } 1954 } 1955 1956 return (ret || xdp_ring_err) ? -ENOMEM : 0; 1957 } 1958 1959 /** 1960 * ice_xdp - implements XDP handler 1961 * @dev: netdevice 1962 * @xdp: XDP command 1963 */ 1964 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1965 { 1966 struct ice_netdev_priv *np = netdev_priv(dev); 1967 struct ice_vsi *vsi = np->vsi; 1968 1969 if (vsi->type != ICE_VSI_PF) { 1970 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 1971 return -EINVAL; 1972 } 1973 1974 switch (xdp->command) { 1975 case XDP_SETUP_PROG: 1976 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 1977 case XDP_QUERY_PROG: 1978 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 1979 return 0; 1980 case XDP_SETUP_XSK_UMEM: 1981 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 1982 xdp->xsk.queue_id); 1983 default: 1984 return -EINVAL; 1985 } 1986 } 1987 1988 /** 1989 * ice_ena_misc_vector - enable the non-queue interrupts 1990 * @pf: board private structure 1991 */ 1992 static void ice_ena_misc_vector(struct ice_pf *pf) 1993 { 1994 struct ice_hw *hw = &pf->hw; 1995 u32 val; 1996 1997 /* Disable anti-spoof detection interrupt to prevent spurious event 1998 * interrupts during a function reset. Anti-spoof functionally is 1999 * still supported. 2000 */ 2001 val = rd32(hw, GL_MDCK_TX_TDPU); 2002 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2003 wr32(hw, GL_MDCK_TX_TDPU, val); 2004 2005 /* clear things first */ 2006 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2007 rd32(hw, PFINT_OICR); /* read to clear */ 2008 2009 val = (PFINT_OICR_ECC_ERR_M | 2010 PFINT_OICR_MAL_DETECT_M | 2011 PFINT_OICR_GRST_M | 2012 PFINT_OICR_PCI_EXCEPTION_M | 2013 PFINT_OICR_VFLR_M | 2014 PFINT_OICR_HMC_ERR_M | 2015 PFINT_OICR_PE_CRITERR_M); 2016 2017 wr32(hw, PFINT_OICR_ENA, val); 2018 2019 /* SW_ITR_IDX = 0, but don't change INTENA */ 2020 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2021 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2022 } 2023 2024 /** 2025 * ice_misc_intr - misc interrupt handler 2026 * @irq: interrupt number 2027 * @data: pointer to a q_vector 2028 */ 2029 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2030 { 2031 struct ice_pf *pf = (struct ice_pf *)data; 2032 struct ice_hw *hw = &pf->hw; 2033 irqreturn_t ret = IRQ_NONE; 2034 struct device *dev; 2035 u32 oicr, ena_mask; 2036 2037 dev = ice_pf_to_dev(pf); 2038 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2039 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2040 2041 oicr = rd32(hw, PFINT_OICR); 2042 ena_mask = rd32(hw, PFINT_OICR_ENA); 2043 2044 if (oicr & PFINT_OICR_SWINT_M) { 2045 ena_mask &= ~PFINT_OICR_SWINT_M; 2046 pf->sw_int_count++; 2047 } 2048 2049 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2050 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2051 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2052 } 2053 if (oicr & PFINT_OICR_VFLR_M) { 2054 /* disable any further VFLR event notifications */ 2055 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2056 u32 reg = rd32(hw, PFINT_OICR_ENA); 2057 2058 reg &= ~PFINT_OICR_VFLR_M; 2059 wr32(hw, PFINT_OICR_ENA, reg); 2060 } else { 2061 ena_mask &= ~PFINT_OICR_VFLR_M; 2062 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2063 } 2064 } 2065 2066 if (oicr & PFINT_OICR_GRST_M) { 2067 u32 reset; 2068 2069 /* we have a reset warning */ 2070 ena_mask &= ~PFINT_OICR_GRST_M; 2071 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2072 GLGEN_RSTAT_RESET_TYPE_S; 2073 2074 if (reset == ICE_RESET_CORER) 2075 pf->corer_count++; 2076 else if (reset == ICE_RESET_GLOBR) 2077 pf->globr_count++; 2078 else if (reset == ICE_RESET_EMPR) 2079 pf->empr_count++; 2080 else 2081 dev_dbg(dev, "Invalid reset type %d\n", reset); 2082 2083 /* If a reset cycle isn't already in progress, we set a bit in 2084 * pf->state so that the service task can start a reset/rebuild. 2085 * We also make note of which reset happened so that peer 2086 * devices/drivers can be informed. 2087 */ 2088 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2089 if (reset == ICE_RESET_CORER) 2090 set_bit(__ICE_CORER_RECV, pf->state); 2091 else if (reset == ICE_RESET_GLOBR) 2092 set_bit(__ICE_GLOBR_RECV, pf->state); 2093 else 2094 set_bit(__ICE_EMPR_RECV, pf->state); 2095 2096 /* There are couple of different bits at play here. 2097 * hw->reset_ongoing indicates whether the hardware is 2098 * in reset. This is set to true when a reset interrupt 2099 * is received and set back to false after the driver 2100 * has determined that the hardware is out of reset. 2101 * 2102 * __ICE_RESET_OICR_RECV in pf->state indicates 2103 * that a post reset rebuild is required before the 2104 * driver is operational again. This is set above. 2105 * 2106 * As this is the start of the reset/rebuild cycle, set 2107 * both to indicate that. 2108 */ 2109 hw->reset_ongoing = true; 2110 } 2111 } 2112 2113 if (oicr & PFINT_OICR_HMC_ERR_M) { 2114 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2115 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2116 rd32(hw, PFHMC_ERRORINFO), 2117 rd32(hw, PFHMC_ERRORDATA)); 2118 } 2119 2120 /* Report any remaining unexpected interrupts */ 2121 oicr &= ena_mask; 2122 if (oicr) { 2123 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2124 /* If a critical error is pending there is no choice but to 2125 * reset the device. 2126 */ 2127 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2128 PFINT_OICR_PCI_EXCEPTION_M | 2129 PFINT_OICR_ECC_ERR_M)) { 2130 set_bit(__ICE_PFR_REQ, pf->state); 2131 ice_service_task_schedule(pf); 2132 } 2133 } 2134 ret = IRQ_HANDLED; 2135 2136 ice_service_task_schedule(pf); 2137 ice_irq_dynamic_ena(hw, NULL, NULL); 2138 2139 return ret; 2140 } 2141 2142 /** 2143 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2144 * @hw: pointer to HW structure 2145 */ 2146 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2147 { 2148 /* disable Admin queue Interrupt causes */ 2149 wr32(hw, PFINT_FW_CTL, 2150 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2151 2152 /* disable Mailbox queue Interrupt causes */ 2153 wr32(hw, PFINT_MBX_CTL, 2154 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2155 2156 /* disable Control queue Interrupt causes */ 2157 wr32(hw, PFINT_OICR_CTL, 2158 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2159 2160 ice_flush(hw); 2161 } 2162 2163 /** 2164 * ice_free_irq_msix_misc - Unroll misc vector setup 2165 * @pf: board private structure 2166 */ 2167 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2168 { 2169 struct ice_hw *hw = &pf->hw; 2170 2171 ice_dis_ctrlq_interrupts(hw); 2172 2173 /* disable OICR interrupt */ 2174 wr32(hw, PFINT_OICR_ENA, 0); 2175 ice_flush(hw); 2176 2177 if (pf->msix_entries) { 2178 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2179 devm_free_irq(ice_pf_to_dev(pf), 2180 pf->msix_entries[pf->oicr_idx].vector, pf); 2181 } 2182 2183 pf->num_avail_sw_msix += 1; 2184 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2185 } 2186 2187 /** 2188 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2189 * @hw: pointer to HW structure 2190 * @reg_idx: HW vector index to associate the control queue interrupts with 2191 */ 2192 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2193 { 2194 u32 val; 2195 2196 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2197 PFINT_OICR_CTL_CAUSE_ENA_M); 2198 wr32(hw, PFINT_OICR_CTL, val); 2199 2200 /* enable Admin queue Interrupt causes */ 2201 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2202 PFINT_FW_CTL_CAUSE_ENA_M); 2203 wr32(hw, PFINT_FW_CTL, val); 2204 2205 /* enable Mailbox queue Interrupt causes */ 2206 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2207 PFINT_MBX_CTL_CAUSE_ENA_M); 2208 wr32(hw, PFINT_MBX_CTL, val); 2209 2210 ice_flush(hw); 2211 } 2212 2213 /** 2214 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2215 * @pf: board private structure 2216 * 2217 * This sets up the handler for MSIX 0, which is used to manage the 2218 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2219 * when in MSI or Legacy interrupt mode. 2220 */ 2221 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2222 { 2223 struct device *dev = ice_pf_to_dev(pf); 2224 struct ice_hw *hw = &pf->hw; 2225 int oicr_idx, err = 0; 2226 2227 if (!pf->int_name[0]) 2228 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2229 dev_driver_string(dev), dev_name(dev)); 2230 2231 /* Do not request IRQ but do enable OICR interrupt since settings are 2232 * lost during reset. Note that this function is called only during 2233 * rebuild path and not while reset is in progress. 2234 */ 2235 if (ice_is_reset_in_progress(pf->state)) 2236 goto skip_req_irq; 2237 2238 /* reserve one vector in irq_tracker for misc interrupts */ 2239 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2240 if (oicr_idx < 0) 2241 return oicr_idx; 2242 2243 pf->num_avail_sw_msix -= 1; 2244 pf->oicr_idx = (u16)oicr_idx; 2245 2246 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2247 ice_misc_intr, 0, pf->int_name, pf); 2248 if (err) { 2249 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2250 pf->int_name, err); 2251 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2252 pf->num_avail_sw_msix += 1; 2253 return err; 2254 } 2255 2256 skip_req_irq: 2257 ice_ena_misc_vector(pf); 2258 2259 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2260 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2261 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2262 2263 ice_flush(hw); 2264 ice_irq_dynamic_ena(hw, NULL, NULL); 2265 2266 return 0; 2267 } 2268 2269 /** 2270 * ice_napi_add - register NAPI handler for the VSI 2271 * @vsi: VSI for which NAPI handler is to be registered 2272 * 2273 * This function is only called in the driver's load path. Registering the NAPI 2274 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2275 * reset/rebuild, etc.) 2276 */ 2277 static void ice_napi_add(struct ice_vsi *vsi) 2278 { 2279 int v_idx; 2280 2281 if (!vsi->netdev) 2282 return; 2283 2284 ice_for_each_q_vector(vsi, v_idx) 2285 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2286 ice_napi_poll, NAPI_POLL_WEIGHT); 2287 } 2288 2289 /** 2290 * ice_set_ops - set netdev and ethtools ops for the given netdev 2291 * @netdev: netdev instance 2292 */ 2293 static void ice_set_ops(struct net_device *netdev) 2294 { 2295 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2296 2297 if (ice_is_safe_mode(pf)) { 2298 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2299 ice_set_ethtool_safe_mode_ops(netdev); 2300 return; 2301 } 2302 2303 netdev->netdev_ops = &ice_netdev_ops; 2304 ice_set_ethtool_ops(netdev); 2305 } 2306 2307 /** 2308 * ice_set_netdev_features - set features for the given netdev 2309 * @netdev: netdev instance 2310 */ 2311 static void ice_set_netdev_features(struct net_device *netdev) 2312 { 2313 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2314 netdev_features_t csumo_features; 2315 netdev_features_t vlano_features; 2316 netdev_features_t dflt_features; 2317 netdev_features_t tso_features; 2318 2319 if (ice_is_safe_mode(pf)) { 2320 /* safe mode */ 2321 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2322 netdev->hw_features = netdev->features; 2323 return; 2324 } 2325 2326 dflt_features = NETIF_F_SG | 2327 NETIF_F_HIGHDMA | 2328 NETIF_F_NTUPLE | 2329 NETIF_F_RXHASH; 2330 2331 csumo_features = NETIF_F_RXCSUM | 2332 NETIF_F_IP_CSUM | 2333 NETIF_F_SCTP_CRC | 2334 NETIF_F_IPV6_CSUM; 2335 2336 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2337 NETIF_F_HW_VLAN_CTAG_TX | 2338 NETIF_F_HW_VLAN_CTAG_RX; 2339 2340 tso_features = NETIF_F_TSO | 2341 NETIF_F_TSO_ECN | 2342 NETIF_F_TSO6 | 2343 NETIF_F_GSO_GRE | 2344 NETIF_F_GSO_UDP_TUNNEL | 2345 NETIF_F_GSO_GRE_CSUM | 2346 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2347 NETIF_F_GSO_PARTIAL | 2348 NETIF_F_GSO_IPXIP4 | 2349 NETIF_F_GSO_IPXIP6 | 2350 NETIF_F_GSO_UDP_L4; 2351 2352 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2353 NETIF_F_GSO_GRE_CSUM; 2354 /* set features that user can change */ 2355 netdev->hw_features = dflt_features | csumo_features | 2356 vlano_features | tso_features; 2357 2358 /* add support for HW_CSUM on packets with MPLS header */ 2359 netdev->mpls_features = NETIF_F_HW_CSUM; 2360 2361 /* enable features */ 2362 netdev->features |= netdev->hw_features; 2363 /* encap and VLAN devices inherit default, csumo and tso features */ 2364 netdev->hw_enc_features |= dflt_features | csumo_features | 2365 tso_features; 2366 netdev->vlan_features |= dflt_features | csumo_features | 2367 tso_features; 2368 } 2369 2370 /** 2371 * ice_cfg_netdev - Allocate, configure and register a netdev 2372 * @vsi: the VSI associated with the new netdev 2373 * 2374 * Returns 0 on success, negative value on failure 2375 */ 2376 static int ice_cfg_netdev(struct ice_vsi *vsi) 2377 { 2378 struct ice_pf *pf = vsi->back; 2379 struct ice_netdev_priv *np; 2380 struct net_device *netdev; 2381 u8 mac_addr[ETH_ALEN]; 2382 int err; 2383 2384 err = ice_devlink_create_port(pf); 2385 if (err) 2386 return err; 2387 2388 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2389 vsi->alloc_rxq); 2390 if (!netdev) { 2391 err = -ENOMEM; 2392 goto err_destroy_devlink_port; 2393 } 2394 2395 vsi->netdev = netdev; 2396 np = netdev_priv(netdev); 2397 np->vsi = vsi; 2398 2399 ice_set_netdev_features(netdev); 2400 2401 ice_set_ops(netdev); 2402 2403 if (vsi->type == ICE_VSI_PF) { 2404 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2405 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2406 ether_addr_copy(netdev->dev_addr, mac_addr); 2407 ether_addr_copy(netdev->perm_addr, mac_addr); 2408 } 2409 2410 netdev->priv_flags |= IFF_UNICAST_FLT; 2411 2412 /* Setup netdev TC information */ 2413 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2414 2415 /* setup watchdog timeout value to be 5 second */ 2416 netdev->watchdog_timeo = 5 * HZ; 2417 2418 netdev->min_mtu = ETH_MIN_MTU; 2419 netdev->max_mtu = ICE_MAX_MTU; 2420 2421 err = register_netdev(vsi->netdev); 2422 if (err) 2423 goto err_free_netdev; 2424 2425 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 2426 2427 netif_carrier_off(vsi->netdev); 2428 2429 /* make sure transmit queues start off as stopped */ 2430 netif_tx_stop_all_queues(vsi->netdev); 2431 2432 return 0; 2433 2434 err_free_netdev: 2435 free_netdev(vsi->netdev); 2436 vsi->netdev = NULL; 2437 err_destroy_devlink_port: 2438 ice_devlink_destroy_port(pf); 2439 return err; 2440 } 2441 2442 /** 2443 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2444 * @lut: Lookup table 2445 * @rss_table_size: Lookup table size 2446 * @rss_size: Range of queue number for hashing 2447 */ 2448 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2449 { 2450 u16 i; 2451 2452 for (i = 0; i < rss_table_size; i++) 2453 lut[i] = i % rss_size; 2454 } 2455 2456 /** 2457 * ice_pf_vsi_setup - Set up a PF VSI 2458 * @pf: board private structure 2459 * @pi: pointer to the port_info instance 2460 * 2461 * Returns pointer to the successfully allocated VSI software struct 2462 * on success, otherwise returns NULL on failure. 2463 */ 2464 static struct ice_vsi * 2465 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2466 { 2467 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2468 } 2469 2470 /** 2471 * ice_ctrl_vsi_setup - Set up a control VSI 2472 * @pf: board private structure 2473 * @pi: pointer to the port_info instance 2474 * 2475 * Returns pointer to the successfully allocated VSI software struct 2476 * on success, otherwise returns NULL on failure. 2477 */ 2478 static struct ice_vsi * 2479 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2480 { 2481 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 2482 } 2483 2484 /** 2485 * ice_lb_vsi_setup - Set up a loopback VSI 2486 * @pf: board private structure 2487 * @pi: pointer to the port_info instance 2488 * 2489 * Returns pointer to the successfully allocated VSI software struct 2490 * on success, otherwise returns NULL on failure. 2491 */ 2492 struct ice_vsi * 2493 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2494 { 2495 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2496 } 2497 2498 /** 2499 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2500 * @netdev: network interface to be adjusted 2501 * @proto: unused protocol 2502 * @vid: VLAN ID to be added 2503 * 2504 * net_device_ops implementation for adding VLAN IDs 2505 */ 2506 static int 2507 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2508 u16 vid) 2509 { 2510 struct ice_netdev_priv *np = netdev_priv(netdev); 2511 struct ice_vsi *vsi = np->vsi; 2512 int ret; 2513 2514 if (vid >= VLAN_N_VID) { 2515 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2516 vid, VLAN_N_VID); 2517 return -EINVAL; 2518 } 2519 2520 if (vsi->info.pvid) 2521 return -EINVAL; 2522 2523 /* VLAN 0 is added by default during load/reset */ 2524 if (!vid) 2525 return 0; 2526 2527 /* Enable VLAN pruning when a VLAN other than 0 is added */ 2528 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 2529 ret = ice_cfg_vlan_pruning(vsi, true, false); 2530 if (ret) 2531 return ret; 2532 } 2533 2534 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 2535 * packets aren't pruned by the device's internal switch on Rx 2536 */ 2537 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 2538 if (!ret) { 2539 vsi->vlan_ena = true; 2540 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2541 } 2542 2543 return ret; 2544 } 2545 2546 /** 2547 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2548 * @netdev: network interface to be adjusted 2549 * @proto: unused protocol 2550 * @vid: VLAN ID to be removed 2551 * 2552 * net_device_ops implementation for removing VLAN IDs 2553 */ 2554 static int 2555 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2556 u16 vid) 2557 { 2558 struct ice_netdev_priv *np = netdev_priv(netdev); 2559 struct ice_vsi *vsi = np->vsi; 2560 int ret; 2561 2562 if (vsi->info.pvid) 2563 return -EINVAL; 2564 2565 /* don't allow removal of VLAN 0 */ 2566 if (!vid) 2567 return 0; 2568 2569 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2570 * information 2571 */ 2572 ret = ice_vsi_kill_vlan(vsi, vid); 2573 if (ret) 2574 return ret; 2575 2576 /* Disable pruning when VLAN 0 is the only VLAN rule */ 2577 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 2578 ret = ice_cfg_vlan_pruning(vsi, false, false); 2579 2580 vsi->vlan_ena = false; 2581 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2582 return ret; 2583 } 2584 2585 /** 2586 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2587 * @pf: board private structure 2588 * 2589 * Returns 0 on success, negative value on failure 2590 */ 2591 static int ice_setup_pf_sw(struct ice_pf *pf) 2592 { 2593 struct ice_vsi *vsi; 2594 int status = 0; 2595 2596 if (ice_is_reset_in_progress(pf->state)) 2597 return -EBUSY; 2598 2599 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2600 if (!vsi) { 2601 status = -ENOMEM; 2602 goto unroll_vsi_setup; 2603 } 2604 2605 status = ice_cfg_netdev(vsi); 2606 if (status) { 2607 status = -ENODEV; 2608 goto unroll_vsi_setup; 2609 } 2610 /* netdev has to be configured before setting frame size */ 2611 ice_vsi_cfg_frame_size(vsi); 2612 2613 /* Setup DCB netlink interface */ 2614 ice_dcbnl_setup(vsi); 2615 2616 /* registering the NAPI handler requires both the queues and 2617 * netdev to be created, which are done in ice_pf_vsi_setup() 2618 * and ice_cfg_netdev() respectively 2619 */ 2620 ice_napi_add(vsi); 2621 2622 status = ice_set_cpu_rx_rmap(vsi); 2623 if (status) { 2624 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 2625 vsi->vsi_num, status); 2626 status = -EINVAL; 2627 goto unroll_napi_add; 2628 } 2629 status = ice_init_mac_fltr(pf); 2630 if (status) 2631 goto free_cpu_rx_map; 2632 2633 return status; 2634 2635 free_cpu_rx_map: 2636 ice_free_cpu_rx_rmap(vsi); 2637 2638 unroll_napi_add: 2639 if (vsi) { 2640 ice_napi_del(vsi); 2641 if (vsi->netdev) { 2642 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2643 unregister_netdev(vsi->netdev); 2644 free_netdev(vsi->netdev); 2645 vsi->netdev = NULL; 2646 } 2647 } 2648 2649 unroll_vsi_setup: 2650 if (vsi) { 2651 ice_vsi_free_q_vectors(vsi); 2652 ice_vsi_delete(vsi); 2653 ice_vsi_put_qs(vsi); 2654 ice_vsi_clear(vsi); 2655 } 2656 return status; 2657 } 2658 2659 /** 2660 * ice_get_avail_q_count - Get count of queues in use 2661 * @pf_qmap: bitmap to get queue use count from 2662 * @lock: pointer to a mutex that protects access to pf_qmap 2663 * @size: size of the bitmap 2664 */ 2665 static u16 2666 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2667 { 2668 unsigned long bit; 2669 u16 count = 0; 2670 2671 mutex_lock(lock); 2672 for_each_clear_bit(bit, pf_qmap, size) 2673 count++; 2674 mutex_unlock(lock); 2675 2676 return count; 2677 } 2678 2679 /** 2680 * ice_get_avail_txq_count - Get count of Tx queues in use 2681 * @pf: pointer to an ice_pf instance 2682 */ 2683 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2684 { 2685 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2686 pf->max_pf_txqs); 2687 } 2688 2689 /** 2690 * ice_get_avail_rxq_count - Get count of Rx queues in use 2691 * @pf: pointer to an ice_pf instance 2692 */ 2693 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2694 { 2695 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2696 pf->max_pf_rxqs); 2697 } 2698 2699 /** 2700 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2701 * @pf: board private structure to initialize 2702 */ 2703 static void ice_deinit_pf(struct ice_pf *pf) 2704 { 2705 ice_service_task_stop(pf); 2706 mutex_destroy(&pf->sw_mutex); 2707 mutex_destroy(&pf->tc_mutex); 2708 mutex_destroy(&pf->avail_q_mutex); 2709 2710 if (pf->avail_txqs) { 2711 bitmap_free(pf->avail_txqs); 2712 pf->avail_txqs = NULL; 2713 } 2714 2715 if (pf->avail_rxqs) { 2716 bitmap_free(pf->avail_rxqs); 2717 pf->avail_rxqs = NULL; 2718 } 2719 } 2720 2721 /** 2722 * ice_set_pf_caps - set PFs capability flags 2723 * @pf: pointer to the PF instance 2724 */ 2725 static void ice_set_pf_caps(struct ice_pf *pf) 2726 { 2727 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2728 2729 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2730 if (func_caps->common_cap.dcb) 2731 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2732 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2733 if (func_caps->common_cap.sr_iov_1_1) { 2734 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2735 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2736 ICE_MAX_VF_COUNT); 2737 } 2738 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2739 if (func_caps->common_cap.rss_table_size) 2740 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2741 2742 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 2743 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 2744 u16 unused; 2745 2746 /* ctrl_vsi_idx will be set to a valid value when flow director 2747 * is setup by ice_init_fdir 2748 */ 2749 pf->ctrl_vsi_idx = ICE_NO_VSI; 2750 set_bit(ICE_FLAG_FD_ENA, pf->flags); 2751 /* force guaranteed filter pool for PF */ 2752 ice_alloc_fd_guar_item(&pf->hw, &unused, 2753 func_caps->fd_fltr_guar); 2754 /* force shared filter pool for PF */ 2755 ice_alloc_fd_shrd_item(&pf->hw, &unused, 2756 func_caps->fd_fltr_best_effort); 2757 } 2758 2759 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2760 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2761 } 2762 2763 /** 2764 * ice_init_pf - Initialize general software structures (struct ice_pf) 2765 * @pf: board private structure to initialize 2766 */ 2767 static int ice_init_pf(struct ice_pf *pf) 2768 { 2769 ice_set_pf_caps(pf); 2770 2771 mutex_init(&pf->sw_mutex); 2772 mutex_init(&pf->tc_mutex); 2773 2774 /* setup service timer and periodic service task */ 2775 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2776 pf->serv_tmr_period = HZ; 2777 INIT_WORK(&pf->serv_task, ice_service_task); 2778 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2779 2780 mutex_init(&pf->avail_q_mutex); 2781 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2782 if (!pf->avail_txqs) 2783 return -ENOMEM; 2784 2785 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2786 if (!pf->avail_rxqs) { 2787 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 2788 pf->avail_txqs = NULL; 2789 return -ENOMEM; 2790 } 2791 2792 return 0; 2793 } 2794 2795 /** 2796 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2797 * @pf: board private structure 2798 * 2799 * compute the number of MSIX vectors required (v_budget) and request from 2800 * the OS. Return the number of vectors reserved or negative on failure 2801 */ 2802 static int ice_ena_msix_range(struct ice_pf *pf) 2803 { 2804 struct device *dev = ice_pf_to_dev(pf); 2805 int v_left, v_actual, v_budget = 0; 2806 int needed, err, i; 2807 2808 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2809 2810 /* reserve one vector for miscellaneous handler */ 2811 needed = 1; 2812 if (v_left < needed) 2813 goto no_hw_vecs_left_err; 2814 v_budget += needed; 2815 v_left -= needed; 2816 2817 /* reserve vectors for LAN traffic */ 2818 needed = min_t(int, num_online_cpus(), v_left); 2819 if (v_left < needed) 2820 goto no_hw_vecs_left_err; 2821 pf->num_lan_msix = needed; 2822 v_budget += needed; 2823 v_left -= needed; 2824 2825 /* reserve one vector for flow director */ 2826 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 2827 needed = ICE_FDIR_MSIX; 2828 if (v_left < needed) 2829 goto no_hw_vecs_left_err; 2830 v_budget += needed; 2831 v_left -= needed; 2832 } 2833 2834 pf->msix_entries = devm_kcalloc(dev, v_budget, 2835 sizeof(*pf->msix_entries), GFP_KERNEL); 2836 2837 if (!pf->msix_entries) { 2838 err = -ENOMEM; 2839 goto exit_err; 2840 } 2841 2842 for (i = 0; i < v_budget; i++) 2843 pf->msix_entries[i].entry = i; 2844 2845 /* actually reserve the vectors */ 2846 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2847 ICE_MIN_MSIX, v_budget); 2848 2849 if (v_actual < 0) { 2850 dev_err(dev, "unable to reserve MSI-X vectors\n"); 2851 err = v_actual; 2852 goto msix_err; 2853 } 2854 2855 if (v_actual < v_budget) { 2856 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2857 v_budget, v_actual); 2858 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */ 2859 #define ICE_MIN_LAN_VECS 2 2860 #define ICE_MIN_RDMA_VECS 2 2861 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1) 2862 2863 if (v_actual < ICE_MIN_LAN_VECS) { 2864 /* error if we can't get minimum vectors */ 2865 pci_disable_msix(pf->pdev); 2866 err = -ERANGE; 2867 goto msix_err; 2868 } else { 2869 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2870 } 2871 } 2872 2873 return v_actual; 2874 2875 msix_err: 2876 devm_kfree(dev, pf->msix_entries); 2877 goto exit_err; 2878 2879 no_hw_vecs_left_err: 2880 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 2881 needed, v_left); 2882 err = -ERANGE; 2883 exit_err: 2884 pf->num_lan_msix = 0; 2885 return err; 2886 } 2887 2888 /** 2889 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2890 * @pf: board private structure 2891 */ 2892 static void ice_dis_msix(struct ice_pf *pf) 2893 { 2894 pci_disable_msix(pf->pdev); 2895 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 2896 pf->msix_entries = NULL; 2897 } 2898 2899 /** 2900 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2901 * @pf: board private structure 2902 */ 2903 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2904 { 2905 ice_dis_msix(pf); 2906 2907 if (pf->irq_tracker) { 2908 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 2909 pf->irq_tracker = NULL; 2910 } 2911 } 2912 2913 /** 2914 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2915 * @pf: board private structure to initialize 2916 */ 2917 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2918 { 2919 int vectors; 2920 2921 vectors = ice_ena_msix_range(pf); 2922 2923 if (vectors < 0) 2924 return vectors; 2925 2926 /* set up vector assignment tracking */ 2927 pf->irq_tracker = 2928 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 2929 (sizeof(u16) * vectors), GFP_KERNEL); 2930 if (!pf->irq_tracker) { 2931 ice_dis_msix(pf); 2932 return -ENOMEM; 2933 } 2934 2935 /* populate SW interrupts pool with number of OS granted IRQs. */ 2936 pf->num_avail_sw_msix = (u16)vectors; 2937 pf->irq_tracker->num_entries = (u16)vectors; 2938 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2939 2940 return 0; 2941 } 2942 2943 /** 2944 * ice_vsi_recfg_qs - Change the number of queues on a VSI 2945 * @vsi: VSI being changed 2946 * @new_rx: new number of Rx queues 2947 * @new_tx: new number of Tx queues 2948 * 2949 * Only change the number of queues if new_tx, or new_rx is non-0. 2950 * 2951 * Returns 0 on success. 2952 */ 2953 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 2954 { 2955 struct ice_pf *pf = vsi->back; 2956 int err = 0, timeout = 50; 2957 2958 if (!new_rx && !new_tx) 2959 return -EINVAL; 2960 2961 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 2962 timeout--; 2963 if (!timeout) 2964 return -EBUSY; 2965 usleep_range(1000, 2000); 2966 } 2967 2968 if (new_tx) 2969 vsi->req_txq = (u16)new_tx; 2970 if (new_rx) 2971 vsi->req_rxq = (u16)new_rx; 2972 2973 /* set for the next time the netdev is started */ 2974 if (!netif_running(vsi->netdev)) { 2975 ice_vsi_rebuild(vsi, false); 2976 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 2977 goto done; 2978 } 2979 2980 ice_vsi_close(vsi); 2981 ice_vsi_rebuild(vsi, false); 2982 ice_pf_dcb_recfg(pf); 2983 ice_vsi_open(vsi); 2984 done: 2985 clear_bit(__ICE_CFG_BUSY, pf->state); 2986 return err; 2987 } 2988 2989 /** 2990 * ice_log_pkg_init - log result of DDP package load 2991 * @hw: pointer to hardware info 2992 * @status: status of package load 2993 */ 2994 static void 2995 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 2996 { 2997 struct ice_pf *pf = (struct ice_pf *)hw->back; 2998 struct device *dev = ice_pf_to_dev(pf); 2999 3000 switch (*status) { 3001 case ICE_SUCCESS: 3002 /* The package download AdminQ command returned success because 3003 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3004 * already a package loaded on the device. 3005 */ 3006 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3007 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3008 hw->pkg_ver.update == hw->active_pkg_ver.update && 3009 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3010 !memcmp(hw->pkg_name, hw->active_pkg_name, 3011 sizeof(hw->pkg_name))) { 3012 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3013 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3014 hw->active_pkg_name, 3015 hw->active_pkg_ver.major, 3016 hw->active_pkg_ver.minor, 3017 hw->active_pkg_ver.update, 3018 hw->active_pkg_ver.draft); 3019 else 3020 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3021 hw->active_pkg_name, 3022 hw->active_pkg_ver.major, 3023 hw->active_pkg_ver.minor, 3024 hw->active_pkg_ver.update, 3025 hw->active_pkg_ver.draft); 3026 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3027 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3028 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3029 hw->active_pkg_name, 3030 hw->active_pkg_ver.major, 3031 hw->active_pkg_ver.minor, 3032 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3033 *status = ICE_ERR_NOT_SUPPORTED; 3034 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3035 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3036 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3037 hw->active_pkg_name, 3038 hw->active_pkg_ver.major, 3039 hw->active_pkg_ver.minor, 3040 hw->active_pkg_ver.update, 3041 hw->active_pkg_ver.draft, 3042 hw->pkg_name, 3043 hw->pkg_ver.major, 3044 hw->pkg_ver.minor, 3045 hw->pkg_ver.update, 3046 hw->pkg_ver.draft); 3047 } else { 3048 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3049 *status = ICE_ERR_NOT_SUPPORTED; 3050 } 3051 break; 3052 case ICE_ERR_FW_DDP_MISMATCH: 3053 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3054 break; 3055 case ICE_ERR_BUF_TOO_SHORT: 3056 case ICE_ERR_CFG: 3057 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3058 break; 3059 case ICE_ERR_NOT_SUPPORTED: 3060 /* Package File version not supported */ 3061 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3062 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3063 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3064 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3065 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3066 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3067 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3068 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3069 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3070 break; 3071 case ICE_ERR_AQ_ERROR: 3072 switch (hw->pkg_dwnld_status) { 3073 case ICE_AQ_RC_ENOSEC: 3074 case ICE_AQ_RC_EBADSIG: 3075 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3076 return; 3077 case ICE_AQ_RC_ESVN: 3078 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3079 return; 3080 case ICE_AQ_RC_EBADMAN: 3081 case ICE_AQ_RC_EBADBUF: 3082 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3083 /* poll for reset to complete */ 3084 if (ice_check_reset(hw)) 3085 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3086 return; 3087 default: 3088 break; 3089 } 3090 fallthrough; 3091 default: 3092 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3093 *status); 3094 break; 3095 } 3096 } 3097 3098 /** 3099 * ice_load_pkg - load/reload the DDP Package file 3100 * @firmware: firmware structure when firmware requested or NULL for reload 3101 * @pf: pointer to the PF instance 3102 * 3103 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3104 * initialize HW tables. 3105 */ 3106 static void 3107 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3108 { 3109 enum ice_status status = ICE_ERR_PARAM; 3110 struct device *dev = ice_pf_to_dev(pf); 3111 struct ice_hw *hw = &pf->hw; 3112 3113 /* Load DDP Package */ 3114 if (firmware && !hw->pkg_copy) { 3115 status = ice_copy_and_init_pkg(hw, firmware->data, 3116 firmware->size); 3117 ice_log_pkg_init(hw, &status); 3118 } else if (!firmware && hw->pkg_copy) { 3119 /* Reload package during rebuild after CORER/GLOBR reset */ 3120 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3121 ice_log_pkg_init(hw, &status); 3122 } else { 3123 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3124 } 3125 3126 if (status) { 3127 /* Safe Mode */ 3128 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3129 return; 3130 } 3131 3132 /* Successful download package is the precondition for advanced 3133 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3134 */ 3135 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3136 } 3137 3138 /** 3139 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3140 * @pf: pointer to the PF structure 3141 * 3142 * There is no error returned here because the driver should be able to handle 3143 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3144 * specifically with Tx. 3145 */ 3146 static void ice_verify_cacheline_size(struct ice_pf *pf) 3147 { 3148 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3149 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3150 ICE_CACHE_LINE_BYTES); 3151 } 3152 3153 /** 3154 * ice_send_version - update firmware with driver version 3155 * @pf: PF struct 3156 * 3157 * Returns ICE_SUCCESS on success, else error code 3158 */ 3159 static enum ice_status ice_send_version(struct ice_pf *pf) 3160 { 3161 struct ice_driver_ver dv; 3162 3163 dv.major_ver = 0xff; 3164 dv.minor_ver = 0xff; 3165 dv.build_ver = 0xff; 3166 dv.subbuild_ver = 0; 3167 strscpy((char *)dv.driver_string, UTS_RELEASE, 3168 sizeof(dv.driver_string)); 3169 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3170 } 3171 3172 /** 3173 * ice_init_fdir - Initialize flow director VSI and configuration 3174 * @pf: pointer to the PF instance 3175 * 3176 * returns 0 on success, negative on error 3177 */ 3178 static int ice_init_fdir(struct ice_pf *pf) 3179 { 3180 struct device *dev = ice_pf_to_dev(pf); 3181 struct ice_vsi *ctrl_vsi; 3182 int err; 3183 3184 /* Side Band Flow Director needs to have a control VSI. 3185 * Allocate it and store it in the PF. 3186 */ 3187 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3188 if (!ctrl_vsi) { 3189 dev_dbg(dev, "could not create control VSI\n"); 3190 return -ENOMEM; 3191 } 3192 3193 err = ice_vsi_open_ctrl(ctrl_vsi); 3194 if (err) { 3195 dev_dbg(dev, "could not open control VSI\n"); 3196 goto err_vsi_open; 3197 } 3198 3199 mutex_init(&pf->hw.fdir_fltr_lock); 3200 3201 err = ice_fdir_create_dflt_rules(pf); 3202 if (err) 3203 goto err_fdir_rule; 3204 3205 return 0; 3206 3207 err_fdir_rule: 3208 ice_fdir_release_flows(&pf->hw); 3209 ice_vsi_close(ctrl_vsi); 3210 err_vsi_open: 3211 ice_vsi_release(ctrl_vsi); 3212 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3213 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3214 pf->ctrl_vsi_idx = ICE_NO_VSI; 3215 } 3216 return err; 3217 } 3218 3219 /** 3220 * ice_get_opt_fw_name - return optional firmware file name or NULL 3221 * @pf: pointer to the PF instance 3222 */ 3223 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3224 { 3225 /* Optional firmware name same as default with additional dash 3226 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3227 */ 3228 struct pci_dev *pdev = pf->pdev; 3229 char *opt_fw_filename; 3230 u64 dsn; 3231 3232 /* Determine the name of the optional file using the DSN (two 3233 * dwords following the start of the DSN Capability). 3234 */ 3235 dsn = pci_get_dsn(pdev); 3236 if (!dsn) 3237 return NULL; 3238 3239 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3240 if (!opt_fw_filename) 3241 return NULL; 3242 3243 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3244 ICE_DDP_PKG_PATH, dsn); 3245 3246 return opt_fw_filename; 3247 } 3248 3249 /** 3250 * ice_request_fw - Device initialization routine 3251 * @pf: pointer to the PF instance 3252 */ 3253 static void ice_request_fw(struct ice_pf *pf) 3254 { 3255 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3256 const struct firmware *firmware = NULL; 3257 struct device *dev = ice_pf_to_dev(pf); 3258 int err = 0; 3259 3260 /* optional device-specific DDP (if present) overrides the default DDP 3261 * package file. kernel logs a debug message if the file doesn't exist, 3262 * and warning messages for other errors. 3263 */ 3264 if (opt_fw_filename) { 3265 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3266 if (err) { 3267 kfree(opt_fw_filename); 3268 goto dflt_pkg_load; 3269 } 3270 3271 /* request for firmware was successful. Download to device */ 3272 ice_load_pkg(firmware, pf); 3273 kfree(opt_fw_filename); 3274 release_firmware(firmware); 3275 return; 3276 } 3277 3278 dflt_pkg_load: 3279 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3280 if (err) { 3281 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3282 return; 3283 } 3284 3285 /* request for firmware was successful. Download to device */ 3286 ice_load_pkg(firmware, pf); 3287 release_firmware(firmware); 3288 } 3289 3290 /** 3291 * ice_probe - Device initialization routine 3292 * @pdev: PCI device information struct 3293 * @ent: entry in ice_pci_tbl 3294 * 3295 * Returns 0 on success, negative on failure 3296 */ 3297 static int 3298 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3299 { 3300 struct device *dev = &pdev->dev; 3301 struct ice_pf *pf; 3302 struct ice_hw *hw; 3303 int err; 3304 3305 /* this driver uses devres, see 3306 * Documentation/driver-api/driver-model/devres.rst 3307 */ 3308 err = pcim_enable_device(pdev); 3309 if (err) 3310 return err; 3311 3312 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3313 if (err) { 3314 dev_err(dev, "BAR0 I/O map error %d\n", err); 3315 return err; 3316 } 3317 3318 pf = ice_allocate_pf(dev); 3319 if (!pf) 3320 return -ENOMEM; 3321 3322 /* set up for high or low DMA */ 3323 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3324 if (err) 3325 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3326 if (err) { 3327 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3328 return err; 3329 } 3330 3331 pci_enable_pcie_error_reporting(pdev); 3332 pci_set_master(pdev); 3333 3334 pf->pdev = pdev; 3335 pci_set_drvdata(pdev, pf); 3336 set_bit(__ICE_DOWN, pf->state); 3337 /* Disable service task until DOWN bit is cleared */ 3338 set_bit(__ICE_SERVICE_DIS, pf->state); 3339 3340 hw = &pf->hw; 3341 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 3342 pci_save_state(pdev); 3343 3344 hw->back = pf; 3345 hw->vendor_id = pdev->vendor; 3346 hw->device_id = pdev->device; 3347 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3348 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3349 hw->subsystem_device_id = pdev->subsystem_device; 3350 hw->bus.device = PCI_SLOT(pdev->devfn); 3351 hw->bus.func = PCI_FUNC(pdev->devfn); 3352 ice_set_ctrlq_len(hw); 3353 3354 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 3355 3356 err = ice_devlink_register(pf); 3357 if (err) { 3358 dev_err(dev, "ice_devlink_register failed: %d\n", err); 3359 goto err_exit_unroll; 3360 } 3361 3362 #ifndef CONFIG_DYNAMIC_DEBUG 3363 if (debug < -1) 3364 hw->debug_mask = debug; 3365 #endif 3366 3367 err = ice_init_hw(hw); 3368 if (err) { 3369 dev_err(dev, "ice_init_hw failed: %d\n", err); 3370 err = -EIO; 3371 goto err_exit_unroll; 3372 } 3373 3374 ice_request_fw(pf); 3375 3376 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 3377 * set in pf->state, which will cause ice_is_safe_mode to return 3378 * true 3379 */ 3380 if (ice_is_safe_mode(pf)) { 3381 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 3382 /* we already got function/device capabilities but these don't 3383 * reflect what the driver needs to do in safe mode. Instead of 3384 * adding conditional logic everywhere to ignore these 3385 * device/function capabilities, override them. 3386 */ 3387 ice_set_safe_mode_caps(hw); 3388 } 3389 3390 err = ice_init_pf(pf); 3391 if (err) { 3392 dev_err(dev, "ice_init_pf failed: %d\n", err); 3393 goto err_init_pf_unroll; 3394 } 3395 3396 ice_devlink_init_regions(pf); 3397 3398 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 3399 if (!pf->num_alloc_vsi) { 3400 err = -EIO; 3401 goto err_init_pf_unroll; 3402 } 3403 3404 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 3405 GFP_KERNEL); 3406 if (!pf->vsi) { 3407 err = -ENOMEM; 3408 goto err_init_pf_unroll; 3409 } 3410 3411 err = ice_init_interrupt_scheme(pf); 3412 if (err) { 3413 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 3414 err = -EIO; 3415 goto err_init_vsi_unroll; 3416 } 3417 3418 /* In case of MSIX we are going to setup the misc vector right here 3419 * to handle admin queue events etc. In case of legacy and MSI 3420 * the misc functionality and queue processing is combined in 3421 * the same vector and that gets setup at open. 3422 */ 3423 err = ice_req_irq_msix_misc(pf); 3424 if (err) { 3425 dev_err(dev, "setup of misc vector failed: %d\n", err); 3426 goto err_init_interrupt_unroll; 3427 } 3428 3429 /* create switch struct for the switch element created by FW on boot */ 3430 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 3431 if (!pf->first_sw) { 3432 err = -ENOMEM; 3433 goto err_msix_misc_unroll; 3434 } 3435 3436 if (hw->evb_veb) 3437 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 3438 else 3439 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 3440 3441 pf->first_sw->pf = pf; 3442 3443 /* record the sw_id available for later use */ 3444 pf->first_sw->sw_id = hw->port_info->sw_id; 3445 3446 err = ice_setup_pf_sw(pf); 3447 if (err) { 3448 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 3449 goto err_alloc_sw_unroll; 3450 } 3451 3452 clear_bit(__ICE_SERVICE_DIS, pf->state); 3453 3454 /* tell the firmware we are up */ 3455 err = ice_send_version(pf); 3456 if (err) { 3457 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 3458 UTS_RELEASE, err); 3459 goto err_alloc_sw_unroll; 3460 } 3461 3462 /* since everything is good, start the service timer */ 3463 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3464 3465 err = ice_init_link_events(pf->hw.port_info); 3466 if (err) { 3467 dev_err(dev, "ice_init_link_events failed: %d\n", err); 3468 goto err_alloc_sw_unroll; 3469 } 3470 3471 ice_verify_cacheline_size(pf); 3472 3473 /* If no DDP driven features have to be setup, we are done with probe */ 3474 if (ice_is_safe_mode(pf)) 3475 goto probe_done; 3476 3477 /* initialize DDP driven features */ 3478 3479 /* Note: Flow director init failure is non-fatal to load */ 3480 if (ice_init_fdir(pf)) 3481 dev_err(dev, "could not initialize flow director\n"); 3482 3483 /* Note: DCB init failure is non-fatal to load */ 3484 if (ice_init_pf_dcb(pf, false)) { 3485 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3486 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 3487 } else { 3488 ice_cfg_lldp_mib_change(&pf->hw, true); 3489 } 3490 3491 /* print PCI link speed and width */ 3492 pcie_print_link_status(pf->pdev); 3493 3494 probe_done: 3495 /* ready to go, so clear down state bit */ 3496 clear_bit(__ICE_DOWN, pf->state); 3497 return 0; 3498 3499 err_alloc_sw_unroll: 3500 ice_devlink_destroy_port(pf); 3501 set_bit(__ICE_SERVICE_DIS, pf->state); 3502 set_bit(__ICE_DOWN, pf->state); 3503 devm_kfree(dev, pf->first_sw); 3504 err_msix_misc_unroll: 3505 ice_free_irq_msix_misc(pf); 3506 err_init_interrupt_unroll: 3507 ice_clear_interrupt_scheme(pf); 3508 err_init_vsi_unroll: 3509 devm_kfree(dev, pf->vsi); 3510 err_init_pf_unroll: 3511 ice_deinit_pf(pf); 3512 ice_devlink_destroy_regions(pf); 3513 ice_deinit_hw(hw); 3514 err_exit_unroll: 3515 ice_devlink_unregister(pf); 3516 pci_disable_pcie_error_reporting(pdev); 3517 return err; 3518 } 3519 3520 /** 3521 * ice_remove - Device removal routine 3522 * @pdev: PCI device information struct 3523 */ 3524 static void ice_remove(struct pci_dev *pdev) 3525 { 3526 struct ice_pf *pf = pci_get_drvdata(pdev); 3527 int i; 3528 3529 if (!pf) 3530 return; 3531 3532 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3533 if (!ice_is_reset_in_progress(pf->state)) 3534 break; 3535 msleep(100); 3536 } 3537 3538 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 3539 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 3540 ice_free_vfs(pf); 3541 } 3542 3543 set_bit(__ICE_DOWN, pf->state); 3544 ice_service_task_stop(pf); 3545 3546 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 3547 if (!ice_is_safe_mode(pf)) 3548 ice_remove_arfs(pf); 3549 ice_devlink_destroy_port(pf); 3550 ice_vsi_release_all(pf); 3551 ice_free_irq_msix_misc(pf); 3552 ice_for_each_vsi(pf, i) { 3553 if (!pf->vsi[i]) 3554 continue; 3555 ice_vsi_free_q_vectors(pf->vsi[i]); 3556 } 3557 ice_deinit_pf(pf); 3558 ice_devlink_destroy_regions(pf); 3559 ice_deinit_hw(&pf->hw); 3560 ice_devlink_unregister(pf); 3561 3562 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3563 * do it via ice_schedule_reset() since there is no need to rebuild 3564 * and the service task is already stopped. 3565 */ 3566 ice_reset(&pf->hw, ICE_RESET_PFR); 3567 pci_wait_for_pending_transaction(pdev); 3568 ice_clear_interrupt_scheme(pf); 3569 pci_disable_pcie_error_reporting(pdev); 3570 } 3571 3572 /** 3573 * ice_pci_err_detected - warning that PCI error has been detected 3574 * @pdev: PCI device information struct 3575 * @err: the type of PCI error 3576 * 3577 * Called to warn that something happened on the PCI bus and the error handling 3578 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3579 */ 3580 static pci_ers_result_t 3581 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3582 { 3583 struct ice_pf *pf = pci_get_drvdata(pdev); 3584 3585 if (!pf) { 3586 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3587 __func__, err); 3588 return PCI_ERS_RESULT_DISCONNECT; 3589 } 3590 3591 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3592 ice_service_task_stop(pf); 3593 3594 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3595 set_bit(__ICE_PFR_REQ, pf->state); 3596 ice_prepare_for_reset(pf); 3597 } 3598 } 3599 3600 return PCI_ERS_RESULT_NEED_RESET; 3601 } 3602 3603 /** 3604 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3605 * @pdev: PCI device information struct 3606 * 3607 * Called to determine if the driver can recover from the PCI slot reset by 3608 * using a register read to determine if the device is recoverable. 3609 */ 3610 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3611 { 3612 struct ice_pf *pf = pci_get_drvdata(pdev); 3613 pci_ers_result_t result; 3614 int err; 3615 u32 reg; 3616 3617 err = pci_enable_device_mem(pdev); 3618 if (err) { 3619 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 3620 err); 3621 result = PCI_ERS_RESULT_DISCONNECT; 3622 } else { 3623 pci_set_master(pdev); 3624 pci_restore_state(pdev); 3625 pci_save_state(pdev); 3626 pci_wake_from_d3(pdev, false); 3627 3628 /* Check for life */ 3629 reg = rd32(&pf->hw, GLGEN_RTRIG); 3630 if (!reg) 3631 result = PCI_ERS_RESULT_RECOVERED; 3632 else 3633 result = PCI_ERS_RESULT_DISCONNECT; 3634 } 3635 3636 err = pci_aer_clear_nonfatal_status(pdev); 3637 if (err) 3638 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 3639 err); 3640 /* non-fatal, continue */ 3641 3642 return result; 3643 } 3644 3645 /** 3646 * ice_pci_err_resume - restart operations after PCI error recovery 3647 * @pdev: PCI device information struct 3648 * 3649 * Called to allow the driver to bring things back up after PCI error and/or 3650 * reset recovery have finished 3651 */ 3652 static void ice_pci_err_resume(struct pci_dev *pdev) 3653 { 3654 struct ice_pf *pf = pci_get_drvdata(pdev); 3655 3656 if (!pf) { 3657 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 3658 __func__); 3659 return; 3660 } 3661 3662 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3663 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3664 __func__); 3665 return; 3666 } 3667 3668 ice_do_reset(pf, ICE_RESET_PFR); 3669 ice_service_task_restart(pf); 3670 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3671 } 3672 3673 /** 3674 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3675 * @pdev: PCI device information struct 3676 */ 3677 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3678 { 3679 struct ice_pf *pf = pci_get_drvdata(pdev); 3680 3681 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3682 ice_service_task_stop(pf); 3683 3684 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3685 set_bit(__ICE_PFR_REQ, pf->state); 3686 ice_prepare_for_reset(pf); 3687 } 3688 } 3689 } 3690 3691 /** 3692 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3693 * @pdev: PCI device information struct 3694 */ 3695 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3696 { 3697 ice_pci_err_resume(pdev); 3698 } 3699 3700 /* ice_pci_tbl - PCI Device ID Table 3701 * 3702 * Wildcard entries (PCI_ANY_ID) should come last 3703 * Last entry must be all 0s 3704 * 3705 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3706 * Class, Class Mask, private data (not used) } 3707 */ 3708 static const struct pci_device_id ice_pci_tbl[] = { 3709 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3710 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3711 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3712 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 3713 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 3714 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 3715 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 3716 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 3717 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 3718 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 3719 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 3720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 3721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 3722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 3723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 3724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 3725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 3726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 3727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 3728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 3729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 3730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 3731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 3732 /* required last entry */ 3733 { 0, } 3734 }; 3735 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3736 3737 static const struct pci_error_handlers ice_pci_err_handler = { 3738 .error_detected = ice_pci_err_detected, 3739 .slot_reset = ice_pci_err_slot_reset, 3740 .reset_prepare = ice_pci_err_reset_prepare, 3741 .reset_done = ice_pci_err_reset_done, 3742 .resume = ice_pci_err_resume 3743 }; 3744 3745 static struct pci_driver ice_driver = { 3746 .name = KBUILD_MODNAME, 3747 .id_table = ice_pci_tbl, 3748 .probe = ice_probe, 3749 .remove = ice_remove, 3750 .sriov_configure = ice_sriov_configure, 3751 .err_handler = &ice_pci_err_handler 3752 }; 3753 3754 /** 3755 * ice_module_init - Driver registration routine 3756 * 3757 * ice_module_init is the first routine called when the driver is 3758 * loaded. All it does is register with the PCI subsystem. 3759 */ 3760 static int __init ice_module_init(void) 3761 { 3762 int status; 3763 3764 pr_info("%s\n", ice_driver_string); 3765 pr_info("%s\n", ice_copyright); 3766 3767 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3768 if (!ice_wq) { 3769 pr_err("Failed to create workqueue\n"); 3770 return -ENOMEM; 3771 } 3772 3773 status = pci_register_driver(&ice_driver); 3774 if (status) { 3775 pr_err("failed to register PCI driver, err %d\n", status); 3776 destroy_workqueue(ice_wq); 3777 } 3778 3779 return status; 3780 } 3781 module_init(ice_module_init); 3782 3783 /** 3784 * ice_module_exit - Driver exit cleanup routine 3785 * 3786 * ice_module_exit is called just before the driver is removed 3787 * from memory. 3788 */ 3789 static void __exit ice_module_exit(void) 3790 { 3791 pci_unregister_driver(&ice_driver); 3792 destroy_workqueue(ice_wq); 3793 pr_info("module unloaded\n"); 3794 } 3795 module_exit(ice_module_exit); 3796 3797 /** 3798 * ice_set_mac_address - NDO callback to set MAC address 3799 * @netdev: network interface device structure 3800 * @pi: pointer to an address structure 3801 * 3802 * Returns 0 on success, negative on failure 3803 */ 3804 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3805 { 3806 struct ice_netdev_priv *np = netdev_priv(netdev); 3807 struct ice_vsi *vsi = np->vsi; 3808 struct ice_pf *pf = vsi->back; 3809 struct ice_hw *hw = &pf->hw; 3810 struct sockaddr *addr = pi; 3811 enum ice_status status; 3812 u8 flags = 0; 3813 int err = 0; 3814 u8 *mac; 3815 3816 mac = (u8 *)addr->sa_data; 3817 3818 if (!is_valid_ether_addr(mac)) 3819 return -EADDRNOTAVAIL; 3820 3821 if (ether_addr_equal(netdev->dev_addr, mac)) { 3822 netdev_warn(netdev, "already using mac %pM\n", mac); 3823 return 0; 3824 } 3825 3826 if (test_bit(__ICE_DOWN, pf->state) || 3827 ice_is_reset_in_progress(pf->state)) { 3828 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3829 mac); 3830 return -EBUSY; 3831 } 3832 3833 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 3834 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 3835 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 3836 err = -EADDRNOTAVAIL; 3837 goto err_update_filters; 3838 } 3839 3840 /* Add filter for new MAC. If filter exists, just return success */ 3841 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 3842 if (status == ICE_ERR_ALREADY_EXISTS) { 3843 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 3844 return 0; 3845 } 3846 3847 /* error if the new filter addition failed */ 3848 if (status) 3849 err = -EADDRNOTAVAIL; 3850 3851 err_update_filters: 3852 if (err) { 3853 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3854 mac); 3855 return err; 3856 } 3857 3858 /* change the netdev's MAC address */ 3859 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3860 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3861 netdev->dev_addr); 3862 3863 /* write new MAC address to the firmware */ 3864 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3865 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3866 if (status) { 3867 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 3868 mac, ice_stat_str(status)); 3869 } 3870 return 0; 3871 } 3872 3873 /** 3874 * ice_set_rx_mode - NDO callback to set the netdev filters 3875 * @netdev: network interface device structure 3876 */ 3877 static void ice_set_rx_mode(struct net_device *netdev) 3878 { 3879 struct ice_netdev_priv *np = netdev_priv(netdev); 3880 struct ice_vsi *vsi = np->vsi; 3881 3882 if (!vsi) 3883 return; 3884 3885 /* Set the flags to synchronize filters 3886 * ndo_set_rx_mode may be triggered even without a change in netdev 3887 * flags 3888 */ 3889 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3890 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3891 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3892 3893 /* schedule our worker thread which will take care of 3894 * applying the new filter changes 3895 */ 3896 ice_service_task_schedule(vsi->back); 3897 } 3898 3899 /** 3900 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 3901 * @netdev: network interface device structure 3902 * @queue_index: Queue ID 3903 * @maxrate: maximum bandwidth in Mbps 3904 */ 3905 static int 3906 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 3907 { 3908 struct ice_netdev_priv *np = netdev_priv(netdev); 3909 struct ice_vsi *vsi = np->vsi; 3910 enum ice_status status; 3911 u16 q_handle; 3912 u8 tc; 3913 3914 /* Validate maxrate requested is within permitted range */ 3915 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 3916 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 3917 maxrate, queue_index); 3918 return -EINVAL; 3919 } 3920 3921 q_handle = vsi->tx_rings[queue_index]->q_handle; 3922 tc = ice_dcb_get_tc(vsi, queue_index); 3923 3924 /* Set BW back to default, when user set maxrate to 0 */ 3925 if (!maxrate) 3926 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 3927 q_handle, ICE_MAX_BW); 3928 else 3929 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 3930 q_handle, ICE_MAX_BW, maxrate * 1000); 3931 if (status) { 3932 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 3933 ice_stat_str(status)); 3934 return -EIO; 3935 } 3936 3937 return 0; 3938 } 3939 3940 /** 3941 * ice_fdb_add - add an entry to the hardware database 3942 * @ndm: the input from the stack 3943 * @tb: pointer to array of nladdr (unused) 3944 * @dev: the net device pointer 3945 * @addr: the MAC address entry being added 3946 * @vid: VLAN ID 3947 * @flags: instructions from stack about fdb operation 3948 * @extack: netlink extended ack 3949 */ 3950 static int 3951 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3952 struct net_device *dev, const unsigned char *addr, u16 vid, 3953 u16 flags, struct netlink_ext_ack __always_unused *extack) 3954 { 3955 int err; 3956 3957 if (vid) { 3958 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3959 return -EINVAL; 3960 } 3961 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3962 netdev_err(dev, "FDB only supports static addresses\n"); 3963 return -EINVAL; 3964 } 3965 3966 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3967 err = dev_uc_add_excl(dev, addr); 3968 else if (is_multicast_ether_addr(addr)) 3969 err = dev_mc_add_excl(dev, addr); 3970 else 3971 err = -EINVAL; 3972 3973 /* Only return duplicate errors if NLM_F_EXCL is set */ 3974 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3975 err = 0; 3976 3977 return err; 3978 } 3979 3980 /** 3981 * ice_fdb_del - delete an entry from the hardware database 3982 * @ndm: the input from the stack 3983 * @tb: pointer to array of nladdr (unused) 3984 * @dev: the net device pointer 3985 * @addr: the MAC address entry being added 3986 * @vid: VLAN ID 3987 */ 3988 static int 3989 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3990 struct net_device *dev, const unsigned char *addr, 3991 __always_unused u16 vid) 3992 { 3993 int err; 3994 3995 if (ndm->ndm_state & NUD_PERMANENT) { 3996 netdev_err(dev, "FDB only supports static addresses\n"); 3997 return -EINVAL; 3998 } 3999 4000 if (is_unicast_ether_addr(addr)) 4001 err = dev_uc_del(dev, addr); 4002 else if (is_multicast_ether_addr(addr)) 4003 err = dev_mc_del(dev, addr); 4004 else 4005 err = -EINVAL; 4006 4007 return err; 4008 } 4009 4010 /** 4011 * ice_set_features - set the netdev feature flags 4012 * @netdev: ptr to the netdev being adjusted 4013 * @features: the feature set that the stack is suggesting 4014 */ 4015 static int 4016 ice_set_features(struct net_device *netdev, netdev_features_t features) 4017 { 4018 struct ice_netdev_priv *np = netdev_priv(netdev); 4019 struct ice_vsi *vsi = np->vsi; 4020 struct ice_pf *pf = vsi->back; 4021 int ret = 0; 4022 4023 /* Don't set any netdev advanced features with device in Safe Mode */ 4024 if (ice_is_safe_mode(vsi->back)) { 4025 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 4026 return ret; 4027 } 4028 4029 /* Do not change setting during reset */ 4030 if (ice_is_reset_in_progress(pf->state)) { 4031 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 4032 return -EBUSY; 4033 } 4034 4035 /* Multiple features can be changed in one call so keep features in 4036 * separate if/else statements to guarantee each feature is checked 4037 */ 4038 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 4039 ret = ice_vsi_manage_rss_lut(vsi, true); 4040 else if (!(features & NETIF_F_RXHASH) && 4041 netdev->features & NETIF_F_RXHASH) 4042 ret = ice_vsi_manage_rss_lut(vsi, false); 4043 4044 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 4045 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 4046 ret = ice_vsi_manage_vlan_stripping(vsi, true); 4047 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 4048 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 4049 ret = ice_vsi_manage_vlan_stripping(vsi, false); 4050 4051 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 4052 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 4053 ret = ice_vsi_manage_vlan_insertion(vsi); 4054 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 4055 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 4056 ret = ice_vsi_manage_vlan_insertion(vsi); 4057 4058 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 4059 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 4060 ret = ice_cfg_vlan_pruning(vsi, true, false); 4061 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 4062 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 4063 ret = ice_cfg_vlan_pruning(vsi, false, false); 4064 4065 if ((features & NETIF_F_NTUPLE) && 4066 !(netdev->features & NETIF_F_NTUPLE)) { 4067 ice_vsi_manage_fdir(vsi, true); 4068 ice_init_arfs(vsi); 4069 } else if (!(features & NETIF_F_NTUPLE) && 4070 (netdev->features & NETIF_F_NTUPLE)) { 4071 ice_vsi_manage_fdir(vsi, false); 4072 ice_clear_arfs(vsi); 4073 } 4074 4075 return ret; 4076 } 4077 4078 /** 4079 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 4080 * @vsi: VSI to setup VLAN properties for 4081 */ 4082 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 4083 { 4084 int ret = 0; 4085 4086 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 4087 ret = ice_vsi_manage_vlan_stripping(vsi, true); 4088 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 4089 ret = ice_vsi_manage_vlan_insertion(vsi); 4090 4091 return ret; 4092 } 4093 4094 /** 4095 * ice_vsi_cfg - Setup the VSI 4096 * @vsi: the VSI being configured 4097 * 4098 * Return 0 on success and negative value on error 4099 */ 4100 int ice_vsi_cfg(struct ice_vsi *vsi) 4101 { 4102 int err; 4103 4104 if (vsi->netdev) { 4105 ice_set_rx_mode(vsi->netdev); 4106 4107 err = ice_vsi_vlan_setup(vsi); 4108 4109 if (err) 4110 return err; 4111 } 4112 ice_vsi_cfg_dcb_rings(vsi); 4113 4114 err = ice_vsi_cfg_lan_txqs(vsi); 4115 if (!err && ice_is_xdp_ena_vsi(vsi)) 4116 err = ice_vsi_cfg_xdp_txqs(vsi); 4117 if (!err) 4118 err = ice_vsi_cfg_rxqs(vsi); 4119 4120 return err; 4121 } 4122 4123 /** 4124 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4125 * @vsi: the VSI being configured 4126 */ 4127 static void ice_napi_enable_all(struct ice_vsi *vsi) 4128 { 4129 int q_idx; 4130 4131 if (!vsi->netdev) 4132 return; 4133 4134 ice_for_each_q_vector(vsi, q_idx) { 4135 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4136 4137 if (q_vector->rx.ring || q_vector->tx.ring) 4138 napi_enable(&q_vector->napi); 4139 } 4140 } 4141 4142 /** 4143 * ice_up_complete - Finish the last steps of bringing up a connection 4144 * @vsi: The VSI being configured 4145 * 4146 * Return 0 on success and negative value on error 4147 */ 4148 static int ice_up_complete(struct ice_vsi *vsi) 4149 { 4150 struct ice_pf *pf = vsi->back; 4151 int err; 4152 4153 ice_vsi_cfg_msix(vsi); 4154 4155 /* Enable only Rx rings, Tx rings were enabled by the FW when the 4156 * Tx queue group list was configured and the context bits were 4157 * programmed using ice_vsi_cfg_txqs 4158 */ 4159 err = ice_vsi_start_all_rx_rings(vsi); 4160 if (err) 4161 return err; 4162 4163 clear_bit(__ICE_DOWN, vsi->state); 4164 ice_napi_enable_all(vsi); 4165 ice_vsi_ena_irq(vsi); 4166 4167 if (vsi->port_info && 4168 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 4169 vsi->netdev) { 4170 ice_print_link_msg(vsi, true); 4171 netif_tx_start_all_queues(vsi->netdev); 4172 netif_carrier_on(vsi->netdev); 4173 } 4174 4175 ice_service_task_schedule(pf); 4176 4177 return 0; 4178 } 4179 4180 /** 4181 * ice_up - Bring the connection back up after being down 4182 * @vsi: VSI being configured 4183 */ 4184 int ice_up(struct ice_vsi *vsi) 4185 { 4186 int err; 4187 4188 err = ice_vsi_cfg(vsi); 4189 if (!err) 4190 err = ice_up_complete(vsi); 4191 4192 return err; 4193 } 4194 4195 /** 4196 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 4197 * @ring: Tx or Rx ring to read stats from 4198 * @pkts: packets stats counter 4199 * @bytes: bytes stats counter 4200 * 4201 * This function fetches stats from the ring considering the atomic operations 4202 * that needs to be performed to read u64 values in 32 bit machine. 4203 */ 4204 static void 4205 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 4206 { 4207 unsigned int start; 4208 *pkts = 0; 4209 *bytes = 0; 4210 4211 if (!ring) 4212 return; 4213 do { 4214 start = u64_stats_fetch_begin_irq(&ring->syncp); 4215 *pkts = ring->stats.pkts; 4216 *bytes = ring->stats.bytes; 4217 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4218 } 4219 4220 /** 4221 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 4222 * @vsi: the VSI to be updated 4223 * @rings: rings to work on 4224 * @count: number of rings 4225 */ 4226 static void 4227 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 4228 u16 count) 4229 { 4230 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4231 u16 i; 4232 4233 for (i = 0; i < count; i++) { 4234 struct ice_ring *ring; 4235 u64 pkts, bytes; 4236 4237 ring = READ_ONCE(rings[i]); 4238 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4239 vsi_stats->tx_packets += pkts; 4240 vsi_stats->tx_bytes += bytes; 4241 vsi->tx_restart += ring->tx_stats.restart_q; 4242 vsi->tx_busy += ring->tx_stats.tx_busy; 4243 vsi->tx_linearize += ring->tx_stats.tx_linearize; 4244 } 4245 } 4246 4247 /** 4248 * ice_update_vsi_ring_stats - Update VSI stats counters 4249 * @vsi: the VSI to be updated 4250 */ 4251 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 4252 { 4253 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4254 struct ice_ring *ring; 4255 u64 pkts, bytes; 4256 int i; 4257 4258 /* reset netdev stats */ 4259 vsi_stats->tx_packets = 0; 4260 vsi_stats->tx_bytes = 0; 4261 vsi_stats->rx_packets = 0; 4262 vsi_stats->rx_bytes = 0; 4263 4264 /* reset non-netdev (extended) stats */ 4265 vsi->tx_restart = 0; 4266 vsi->tx_busy = 0; 4267 vsi->tx_linearize = 0; 4268 vsi->rx_buf_failed = 0; 4269 vsi->rx_page_failed = 0; 4270 4271 rcu_read_lock(); 4272 4273 /* update Tx rings counters */ 4274 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 4275 4276 /* update Rx rings counters */ 4277 ice_for_each_rxq(vsi, i) { 4278 ring = READ_ONCE(vsi->rx_rings[i]); 4279 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4280 vsi_stats->rx_packets += pkts; 4281 vsi_stats->rx_bytes += bytes; 4282 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 4283 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 4284 } 4285 4286 /* update XDP Tx rings counters */ 4287 if (ice_is_xdp_ena_vsi(vsi)) 4288 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 4289 vsi->num_xdp_txq); 4290 4291 rcu_read_unlock(); 4292 } 4293 4294 /** 4295 * ice_update_vsi_stats - Update VSI stats counters 4296 * @vsi: the VSI to be updated 4297 */ 4298 void ice_update_vsi_stats(struct ice_vsi *vsi) 4299 { 4300 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 4301 struct ice_eth_stats *cur_es = &vsi->eth_stats; 4302 struct ice_pf *pf = vsi->back; 4303 4304 if (test_bit(__ICE_DOWN, vsi->state) || 4305 test_bit(__ICE_CFG_BUSY, pf->state)) 4306 return; 4307 4308 /* get stats as recorded by Tx/Rx rings */ 4309 ice_update_vsi_ring_stats(vsi); 4310 4311 /* get VSI stats as recorded by the hardware */ 4312 ice_update_eth_stats(vsi); 4313 4314 cur_ns->tx_errors = cur_es->tx_errors; 4315 cur_ns->rx_dropped = cur_es->rx_discards; 4316 cur_ns->tx_dropped = cur_es->tx_discards; 4317 cur_ns->multicast = cur_es->rx_multicast; 4318 4319 /* update some more netdev stats if this is main VSI */ 4320 if (vsi->type == ICE_VSI_PF) { 4321 cur_ns->rx_crc_errors = pf->stats.crc_errors; 4322 cur_ns->rx_errors = pf->stats.crc_errors + 4323 pf->stats.illegal_bytes + 4324 pf->stats.rx_len_errors + 4325 pf->stats.rx_undersize + 4326 pf->hw_csum_rx_error + 4327 pf->stats.rx_jabber + 4328 pf->stats.rx_fragments + 4329 pf->stats.rx_oversize; 4330 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 4331 /* record drops from the port level */ 4332 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 4333 } 4334 } 4335 4336 /** 4337 * ice_update_pf_stats - Update PF port stats counters 4338 * @pf: PF whose stats needs to be updated 4339 */ 4340 void ice_update_pf_stats(struct ice_pf *pf) 4341 { 4342 struct ice_hw_port_stats *prev_ps, *cur_ps; 4343 struct ice_hw *hw = &pf->hw; 4344 u16 fd_ctr_base; 4345 u8 port; 4346 4347 port = hw->port_info->lport; 4348 prev_ps = &pf->stats_prev; 4349 cur_ps = &pf->stats; 4350 4351 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 4352 &prev_ps->eth.rx_bytes, 4353 &cur_ps->eth.rx_bytes); 4354 4355 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 4356 &prev_ps->eth.rx_unicast, 4357 &cur_ps->eth.rx_unicast); 4358 4359 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 4360 &prev_ps->eth.rx_multicast, 4361 &cur_ps->eth.rx_multicast); 4362 4363 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 4364 &prev_ps->eth.rx_broadcast, 4365 &cur_ps->eth.rx_broadcast); 4366 4367 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 4368 &prev_ps->eth.rx_discards, 4369 &cur_ps->eth.rx_discards); 4370 4371 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 4372 &prev_ps->eth.tx_bytes, 4373 &cur_ps->eth.tx_bytes); 4374 4375 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 4376 &prev_ps->eth.tx_unicast, 4377 &cur_ps->eth.tx_unicast); 4378 4379 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 4380 &prev_ps->eth.tx_multicast, 4381 &cur_ps->eth.tx_multicast); 4382 4383 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 4384 &prev_ps->eth.tx_broadcast, 4385 &cur_ps->eth.tx_broadcast); 4386 4387 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 4388 &prev_ps->tx_dropped_link_down, 4389 &cur_ps->tx_dropped_link_down); 4390 4391 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 4392 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 4393 4394 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 4395 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 4396 4397 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 4398 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 4399 4400 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 4401 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 4402 4403 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 4404 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 4405 4406 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 4407 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 4408 4409 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 4410 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 4411 4412 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 4413 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 4414 4415 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 4416 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 4417 4418 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 4419 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 4420 4421 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 4422 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 4423 4424 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 4425 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 4426 4427 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 4428 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 4429 4430 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 4431 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 4432 4433 fd_ctr_base = hw->fd_ctr_base; 4434 4435 ice_stat_update40(hw, 4436 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 4437 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 4438 &cur_ps->fd_sb_match); 4439 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 4440 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 4441 4442 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 4443 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 4444 4445 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 4446 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 4447 4448 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 4449 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 4450 4451 ice_update_dcb_stats(pf); 4452 4453 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 4454 &prev_ps->crc_errors, &cur_ps->crc_errors); 4455 4456 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 4457 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 4458 4459 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 4460 &prev_ps->mac_local_faults, 4461 &cur_ps->mac_local_faults); 4462 4463 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 4464 &prev_ps->mac_remote_faults, 4465 &cur_ps->mac_remote_faults); 4466 4467 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 4468 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 4469 4470 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 4471 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 4472 4473 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 4474 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 4475 4476 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 4477 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 4478 4479 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 4480 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 4481 4482 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 4483 4484 pf->stat_prev_loaded = true; 4485 } 4486 4487 /** 4488 * ice_get_stats64 - get statistics for network device structure 4489 * @netdev: network interface device structure 4490 * @stats: main device statistics structure 4491 */ 4492 static 4493 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 4494 { 4495 struct ice_netdev_priv *np = netdev_priv(netdev); 4496 struct rtnl_link_stats64 *vsi_stats; 4497 struct ice_vsi *vsi = np->vsi; 4498 4499 vsi_stats = &vsi->net_stats; 4500 4501 if (!vsi->num_txq || !vsi->num_rxq) 4502 return; 4503 4504 /* netdev packet/byte stats come from ring counter. These are obtained 4505 * by summing up ring counters (done by ice_update_vsi_ring_stats). 4506 * But, only call the update routine and read the registers if VSI is 4507 * not down. 4508 */ 4509 if (!test_bit(__ICE_DOWN, vsi->state)) 4510 ice_update_vsi_ring_stats(vsi); 4511 stats->tx_packets = vsi_stats->tx_packets; 4512 stats->tx_bytes = vsi_stats->tx_bytes; 4513 stats->rx_packets = vsi_stats->rx_packets; 4514 stats->rx_bytes = vsi_stats->rx_bytes; 4515 4516 /* The rest of the stats can be read from the hardware but instead we 4517 * just return values that the watchdog task has already obtained from 4518 * the hardware. 4519 */ 4520 stats->multicast = vsi_stats->multicast; 4521 stats->tx_errors = vsi_stats->tx_errors; 4522 stats->tx_dropped = vsi_stats->tx_dropped; 4523 stats->rx_errors = vsi_stats->rx_errors; 4524 stats->rx_dropped = vsi_stats->rx_dropped; 4525 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 4526 stats->rx_length_errors = vsi_stats->rx_length_errors; 4527 } 4528 4529 /** 4530 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4531 * @vsi: VSI having NAPI disabled 4532 */ 4533 static void ice_napi_disable_all(struct ice_vsi *vsi) 4534 { 4535 int q_idx; 4536 4537 if (!vsi->netdev) 4538 return; 4539 4540 ice_for_each_q_vector(vsi, q_idx) { 4541 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4542 4543 if (q_vector->rx.ring || q_vector->tx.ring) 4544 napi_disable(&q_vector->napi); 4545 } 4546 } 4547 4548 /** 4549 * ice_down - Shutdown the connection 4550 * @vsi: The VSI being stopped 4551 */ 4552 int ice_down(struct ice_vsi *vsi) 4553 { 4554 int i, tx_err, rx_err, link_err = 0; 4555 4556 /* Caller of this function is expected to set the 4557 * vsi->state __ICE_DOWN bit 4558 */ 4559 if (vsi->netdev) { 4560 netif_carrier_off(vsi->netdev); 4561 netif_tx_disable(vsi->netdev); 4562 } 4563 4564 ice_vsi_dis_irq(vsi); 4565 4566 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 4567 if (tx_err) 4568 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 4569 vsi->vsi_num, tx_err); 4570 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 4571 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 4572 if (tx_err) 4573 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 4574 vsi->vsi_num, tx_err); 4575 } 4576 4577 rx_err = ice_vsi_stop_all_rx_rings(vsi); 4578 if (rx_err) 4579 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 4580 vsi->vsi_num, rx_err); 4581 4582 ice_napi_disable_all(vsi); 4583 4584 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 4585 link_err = ice_force_phys_link_state(vsi, false); 4586 if (link_err) 4587 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 4588 vsi->vsi_num, link_err); 4589 } 4590 4591 ice_for_each_txq(vsi, i) 4592 ice_clean_tx_ring(vsi->tx_rings[i]); 4593 4594 ice_for_each_rxq(vsi, i) 4595 ice_clean_rx_ring(vsi->rx_rings[i]); 4596 4597 if (tx_err || rx_err || link_err) { 4598 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 4599 vsi->vsi_num, vsi->vsw->sw_id); 4600 return -EIO; 4601 } 4602 4603 return 0; 4604 } 4605 4606 /** 4607 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 4608 * @vsi: VSI having resources allocated 4609 * 4610 * Return 0 on success, negative on failure 4611 */ 4612 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 4613 { 4614 int i, err = 0; 4615 4616 if (!vsi->num_txq) { 4617 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 4618 vsi->vsi_num); 4619 return -EINVAL; 4620 } 4621 4622 ice_for_each_txq(vsi, i) { 4623 struct ice_ring *ring = vsi->tx_rings[i]; 4624 4625 if (!ring) 4626 return -EINVAL; 4627 4628 ring->netdev = vsi->netdev; 4629 err = ice_setup_tx_ring(ring); 4630 if (err) 4631 break; 4632 } 4633 4634 return err; 4635 } 4636 4637 /** 4638 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 4639 * @vsi: VSI having resources allocated 4640 * 4641 * Return 0 on success, negative on failure 4642 */ 4643 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 4644 { 4645 int i, err = 0; 4646 4647 if (!vsi->num_rxq) { 4648 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 4649 vsi->vsi_num); 4650 return -EINVAL; 4651 } 4652 4653 ice_for_each_rxq(vsi, i) { 4654 struct ice_ring *ring = vsi->rx_rings[i]; 4655 4656 if (!ring) 4657 return -EINVAL; 4658 4659 ring->netdev = vsi->netdev; 4660 err = ice_setup_rx_ring(ring); 4661 if (err) 4662 break; 4663 } 4664 4665 return err; 4666 } 4667 4668 /** 4669 * ice_vsi_open_ctrl - open control VSI for use 4670 * @vsi: the VSI to open 4671 * 4672 * Initialization of the Control VSI 4673 * 4674 * Returns 0 on success, negative value on error 4675 */ 4676 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 4677 { 4678 char int_name[ICE_INT_NAME_STR_LEN]; 4679 struct ice_pf *pf = vsi->back; 4680 struct device *dev; 4681 int err; 4682 4683 dev = ice_pf_to_dev(pf); 4684 /* allocate descriptors */ 4685 err = ice_vsi_setup_tx_rings(vsi); 4686 if (err) 4687 goto err_setup_tx; 4688 4689 err = ice_vsi_setup_rx_rings(vsi); 4690 if (err) 4691 goto err_setup_rx; 4692 4693 err = ice_vsi_cfg(vsi); 4694 if (err) 4695 goto err_setup_rx; 4696 4697 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 4698 dev_driver_string(dev), dev_name(dev)); 4699 err = ice_vsi_req_irq_msix(vsi, int_name); 4700 if (err) 4701 goto err_setup_rx; 4702 4703 ice_vsi_cfg_msix(vsi); 4704 4705 err = ice_vsi_start_all_rx_rings(vsi); 4706 if (err) 4707 goto err_up_complete; 4708 4709 clear_bit(__ICE_DOWN, vsi->state); 4710 ice_vsi_ena_irq(vsi); 4711 4712 return 0; 4713 4714 err_up_complete: 4715 ice_down(vsi); 4716 err_setup_rx: 4717 ice_vsi_free_rx_rings(vsi); 4718 err_setup_tx: 4719 ice_vsi_free_tx_rings(vsi); 4720 4721 return err; 4722 } 4723 4724 /** 4725 * ice_vsi_open - Called when a network interface is made active 4726 * @vsi: the VSI to open 4727 * 4728 * Initialization of the VSI 4729 * 4730 * Returns 0 on success, negative value on error 4731 */ 4732 static int ice_vsi_open(struct ice_vsi *vsi) 4733 { 4734 char int_name[ICE_INT_NAME_STR_LEN]; 4735 struct ice_pf *pf = vsi->back; 4736 int err; 4737 4738 /* allocate descriptors */ 4739 err = ice_vsi_setup_tx_rings(vsi); 4740 if (err) 4741 goto err_setup_tx; 4742 4743 err = ice_vsi_setup_rx_rings(vsi); 4744 if (err) 4745 goto err_setup_rx; 4746 4747 err = ice_vsi_cfg(vsi); 4748 if (err) 4749 goto err_setup_rx; 4750 4751 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4752 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 4753 err = ice_vsi_req_irq_msix(vsi, int_name); 4754 if (err) 4755 goto err_setup_rx; 4756 4757 /* Notify the stack of the actual queue counts. */ 4758 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4759 if (err) 4760 goto err_set_qs; 4761 4762 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4763 if (err) 4764 goto err_set_qs; 4765 4766 err = ice_up_complete(vsi); 4767 if (err) 4768 goto err_up_complete; 4769 4770 return 0; 4771 4772 err_up_complete: 4773 ice_down(vsi); 4774 err_set_qs: 4775 ice_vsi_free_irq(vsi); 4776 err_setup_rx: 4777 ice_vsi_free_rx_rings(vsi); 4778 err_setup_tx: 4779 ice_vsi_free_tx_rings(vsi); 4780 4781 return err; 4782 } 4783 4784 /** 4785 * ice_vsi_release_all - Delete all VSIs 4786 * @pf: PF from which all VSIs are being removed 4787 */ 4788 static void ice_vsi_release_all(struct ice_pf *pf) 4789 { 4790 int err, i; 4791 4792 if (!pf->vsi) 4793 return; 4794 4795 ice_for_each_vsi(pf, i) { 4796 if (!pf->vsi[i]) 4797 continue; 4798 4799 err = ice_vsi_release(pf->vsi[i]); 4800 if (err) 4801 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4802 i, err, pf->vsi[i]->vsi_num); 4803 } 4804 } 4805 4806 /** 4807 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4808 * @pf: pointer to the PF instance 4809 * @type: VSI type to rebuild 4810 * 4811 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4812 */ 4813 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4814 { 4815 struct device *dev = ice_pf_to_dev(pf); 4816 enum ice_status status; 4817 int i, err; 4818 4819 ice_for_each_vsi(pf, i) { 4820 struct ice_vsi *vsi = pf->vsi[i]; 4821 4822 if (!vsi || vsi->type != type) 4823 continue; 4824 4825 /* rebuild the VSI */ 4826 err = ice_vsi_rebuild(vsi, true); 4827 if (err) { 4828 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 4829 err, vsi->idx, ice_vsi_type_str(type)); 4830 return err; 4831 } 4832 4833 /* replay filters for the VSI */ 4834 status = ice_replay_vsi(&pf->hw, vsi->idx); 4835 if (status) { 4836 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 4837 ice_stat_str(status), vsi->idx, 4838 ice_vsi_type_str(type)); 4839 return -EIO; 4840 } 4841 4842 /* Re-map HW VSI number, using VSI handle that has been 4843 * previously validated in ice_replay_vsi() call above 4844 */ 4845 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4846 4847 /* enable the VSI */ 4848 err = ice_ena_vsi(vsi, false); 4849 if (err) { 4850 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 4851 err, vsi->idx, ice_vsi_type_str(type)); 4852 return err; 4853 } 4854 4855 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 4856 ice_vsi_type_str(type)); 4857 } 4858 4859 return 0; 4860 } 4861 4862 /** 4863 * ice_update_pf_netdev_link - Update PF netdev link status 4864 * @pf: pointer to the PF instance 4865 */ 4866 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4867 { 4868 bool link_up; 4869 int i; 4870 4871 ice_for_each_vsi(pf, i) { 4872 struct ice_vsi *vsi = pf->vsi[i]; 4873 4874 if (!vsi || vsi->type != ICE_VSI_PF) 4875 return; 4876 4877 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4878 if (link_up) { 4879 netif_carrier_on(pf->vsi[i]->netdev); 4880 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4881 } else { 4882 netif_carrier_off(pf->vsi[i]->netdev); 4883 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4884 } 4885 } 4886 } 4887 4888 /** 4889 * ice_rebuild - rebuild after reset 4890 * @pf: PF to rebuild 4891 * @reset_type: type of reset 4892 * 4893 * Do not rebuild VF VSI in this flow because that is already handled via 4894 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 4895 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 4896 * to reset/rebuild all the VF VSI twice. 4897 */ 4898 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4899 { 4900 struct device *dev = ice_pf_to_dev(pf); 4901 struct ice_hw *hw = &pf->hw; 4902 enum ice_status ret; 4903 int err; 4904 4905 if (test_bit(__ICE_DOWN, pf->state)) 4906 goto clear_recovery; 4907 4908 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4909 4910 ret = ice_init_all_ctrlq(hw); 4911 if (ret) { 4912 dev_err(dev, "control queues init failed %s\n", 4913 ice_stat_str(ret)); 4914 goto err_init_ctrlq; 4915 } 4916 4917 /* if DDP was previously loaded successfully */ 4918 if (!ice_is_safe_mode(pf)) { 4919 /* reload the SW DB of filter tables */ 4920 if (reset_type == ICE_RESET_PFR) 4921 ice_fill_blk_tbls(hw); 4922 else 4923 /* Reload DDP Package after CORER/GLOBR reset */ 4924 ice_load_pkg(NULL, pf); 4925 } 4926 4927 ret = ice_clear_pf_cfg(hw); 4928 if (ret) { 4929 dev_err(dev, "clear PF configuration failed %s\n", 4930 ice_stat_str(ret)); 4931 goto err_init_ctrlq; 4932 } 4933 4934 if (pf->first_sw->dflt_vsi_ena) 4935 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 4936 /* clear the default VSI configuration if it exists */ 4937 pf->first_sw->dflt_vsi = NULL; 4938 pf->first_sw->dflt_vsi_ena = false; 4939 4940 ice_clear_pxe_mode(hw); 4941 4942 ret = ice_get_caps(hw); 4943 if (ret) { 4944 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 4945 goto err_init_ctrlq; 4946 } 4947 4948 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 4949 if (ret) { 4950 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 4951 goto err_init_ctrlq; 4952 } 4953 4954 err = ice_sched_init_port(hw->port_info); 4955 if (err) 4956 goto err_sched_init_port; 4957 4958 err = ice_update_link_info(hw->port_info); 4959 if (err) 4960 dev_err(dev, "Get link status error %d\n", err); 4961 4962 /* start misc vector */ 4963 err = ice_req_irq_msix_misc(pf); 4964 if (err) { 4965 dev_err(dev, "misc vector setup failed: %d\n", err); 4966 goto err_sched_init_port; 4967 } 4968 4969 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 4970 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 4971 if (!rd32(hw, PFQF_FD_SIZE)) { 4972 u16 unused, guar, b_effort; 4973 4974 guar = hw->func_caps.fd_fltr_guar; 4975 b_effort = hw->func_caps.fd_fltr_best_effort; 4976 4977 /* force guaranteed filter pool for PF */ 4978 ice_alloc_fd_guar_item(hw, &unused, guar); 4979 /* force shared filter pool for PF */ 4980 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 4981 } 4982 } 4983 4984 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4985 ice_dcb_rebuild(pf); 4986 4987 /* rebuild PF VSI */ 4988 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4989 if (err) { 4990 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4991 goto err_vsi_rebuild; 4992 } 4993 4994 /* If Flow Director is active */ 4995 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 4996 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 4997 if (err) { 4998 dev_err(dev, "control VSI rebuild failed: %d\n", err); 4999 goto err_vsi_rebuild; 5000 } 5001 5002 /* replay HW Flow Director recipes */ 5003 if (hw->fdir_prof) 5004 ice_fdir_replay_flows(hw); 5005 5006 /* replay Flow Director filters */ 5007 ice_fdir_replay_fltrs(pf); 5008 5009 ice_rebuild_arfs(pf); 5010 } 5011 5012 ice_update_pf_netdev_link(pf); 5013 5014 /* tell the firmware we are up */ 5015 ret = ice_send_version(pf); 5016 if (ret) { 5017 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 5018 ice_stat_str(ret)); 5019 goto err_vsi_rebuild; 5020 } 5021 5022 ice_replay_post(hw); 5023 5024 /* if we get here, reset flow is successful */ 5025 clear_bit(__ICE_RESET_FAILED, pf->state); 5026 return; 5027 5028 err_vsi_rebuild: 5029 err_sched_init_port: 5030 ice_sched_cleanup_all(hw); 5031 err_init_ctrlq: 5032 ice_shutdown_all_ctrlq(hw); 5033 set_bit(__ICE_RESET_FAILED, pf->state); 5034 clear_recovery: 5035 /* set this bit in PF state to control service task scheduling */ 5036 set_bit(__ICE_NEEDS_RESTART, pf->state); 5037 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 5038 } 5039 5040 /** 5041 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 5042 * @vsi: Pointer to VSI structure 5043 */ 5044 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 5045 { 5046 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 5047 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 5048 else 5049 return ICE_RXBUF_3072; 5050 } 5051 5052 /** 5053 * ice_change_mtu - NDO callback to change the MTU 5054 * @netdev: network interface device structure 5055 * @new_mtu: new value for maximum frame size 5056 * 5057 * Returns 0 on success, negative on failure 5058 */ 5059 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 5060 { 5061 struct ice_netdev_priv *np = netdev_priv(netdev); 5062 struct ice_vsi *vsi = np->vsi; 5063 struct ice_pf *pf = vsi->back; 5064 u8 count = 0; 5065 5066 if (new_mtu == (int)netdev->mtu) { 5067 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 5068 return 0; 5069 } 5070 5071 if (ice_is_xdp_ena_vsi(vsi)) { 5072 int frame_size = ice_max_xdp_frame_size(vsi); 5073 5074 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 5075 netdev_err(netdev, "max MTU for XDP usage is %d\n", 5076 frame_size - ICE_ETH_PKT_HDR_PAD); 5077 return -EINVAL; 5078 } 5079 } 5080 5081 if (new_mtu < (int)netdev->min_mtu) { 5082 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 5083 netdev->min_mtu); 5084 return -EINVAL; 5085 } else if (new_mtu > (int)netdev->max_mtu) { 5086 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 5087 netdev->min_mtu); 5088 return -EINVAL; 5089 } 5090 /* if a reset is in progress, wait for some time for it to complete */ 5091 do { 5092 if (ice_is_reset_in_progress(pf->state)) { 5093 count++; 5094 usleep_range(1000, 2000); 5095 } else { 5096 break; 5097 } 5098 5099 } while (count < 100); 5100 5101 if (count == 100) { 5102 netdev_err(netdev, "can't change MTU. Device is busy\n"); 5103 return -EBUSY; 5104 } 5105 5106 netdev->mtu = (unsigned int)new_mtu; 5107 5108 /* if VSI is up, bring it down and then back up */ 5109 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 5110 int err; 5111 5112 err = ice_down(vsi); 5113 if (err) { 5114 netdev_err(netdev, "change MTU if_up err %d\n", err); 5115 return err; 5116 } 5117 5118 err = ice_up(vsi); 5119 if (err) { 5120 netdev_err(netdev, "change MTU if_up err %d\n", err); 5121 return err; 5122 } 5123 } 5124 5125 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 5126 return 0; 5127 } 5128 5129 /** 5130 * ice_aq_str - convert AQ err code to a string 5131 * @aq_err: the AQ error code to convert 5132 */ 5133 const char *ice_aq_str(enum ice_aq_err aq_err) 5134 { 5135 switch (aq_err) { 5136 case ICE_AQ_RC_OK: 5137 return "OK"; 5138 case ICE_AQ_RC_EPERM: 5139 return "ICE_AQ_RC_EPERM"; 5140 case ICE_AQ_RC_ENOENT: 5141 return "ICE_AQ_RC_ENOENT"; 5142 case ICE_AQ_RC_ENOMEM: 5143 return "ICE_AQ_RC_ENOMEM"; 5144 case ICE_AQ_RC_EBUSY: 5145 return "ICE_AQ_RC_EBUSY"; 5146 case ICE_AQ_RC_EEXIST: 5147 return "ICE_AQ_RC_EEXIST"; 5148 case ICE_AQ_RC_EINVAL: 5149 return "ICE_AQ_RC_EINVAL"; 5150 case ICE_AQ_RC_ENOSPC: 5151 return "ICE_AQ_RC_ENOSPC"; 5152 case ICE_AQ_RC_ENOSYS: 5153 return "ICE_AQ_RC_ENOSYS"; 5154 case ICE_AQ_RC_EMODE: 5155 return "ICE_AQ_RC_EMODE"; 5156 case ICE_AQ_RC_ENOSEC: 5157 return "ICE_AQ_RC_ENOSEC"; 5158 case ICE_AQ_RC_EBADSIG: 5159 return "ICE_AQ_RC_EBADSIG"; 5160 case ICE_AQ_RC_ESVN: 5161 return "ICE_AQ_RC_ESVN"; 5162 case ICE_AQ_RC_EBADMAN: 5163 return "ICE_AQ_RC_EBADMAN"; 5164 case ICE_AQ_RC_EBADBUF: 5165 return "ICE_AQ_RC_EBADBUF"; 5166 } 5167 5168 return "ICE_AQ_RC_UNKNOWN"; 5169 } 5170 5171 /** 5172 * ice_stat_str - convert status err code to a string 5173 * @stat_err: the status error code to convert 5174 */ 5175 const char *ice_stat_str(enum ice_status stat_err) 5176 { 5177 switch (stat_err) { 5178 case ICE_SUCCESS: 5179 return "OK"; 5180 case ICE_ERR_PARAM: 5181 return "ICE_ERR_PARAM"; 5182 case ICE_ERR_NOT_IMPL: 5183 return "ICE_ERR_NOT_IMPL"; 5184 case ICE_ERR_NOT_READY: 5185 return "ICE_ERR_NOT_READY"; 5186 case ICE_ERR_NOT_SUPPORTED: 5187 return "ICE_ERR_NOT_SUPPORTED"; 5188 case ICE_ERR_BAD_PTR: 5189 return "ICE_ERR_BAD_PTR"; 5190 case ICE_ERR_INVAL_SIZE: 5191 return "ICE_ERR_INVAL_SIZE"; 5192 case ICE_ERR_DEVICE_NOT_SUPPORTED: 5193 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 5194 case ICE_ERR_RESET_FAILED: 5195 return "ICE_ERR_RESET_FAILED"; 5196 case ICE_ERR_FW_API_VER: 5197 return "ICE_ERR_FW_API_VER"; 5198 case ICE_ERR_NO_MEMORY: 5199 return "ICE_ERR_NO_MEMORY"; 5200 case ICE_ERR_CFG: 5201 return "ICE_ERR_CFG"; 5202 case ICE_ERR_OUT_OF_RANGE: 5203 return "ICE_ERR_OUT_OF_RANGE"; 5204 case ICE_ERR_ALREADY_EXISTS: 5205 return "ICE_ERR_ALREADY_EXISTS"; 5206 case ICE_ERR_NVM_CHECKSUM: 5207 return "ICE_ERR_NVM_CHECKSUM"; 5208 case ICE_ERR_BUF_TOO_SHORT: 5209 return "ICE_ERR_BUF_TOO_SHORT"; 5210 case ICE_ERR_NVM_BLANK_MODE: 5211 return "ICE_ERR_NVM_BLANK_MODE"; 5212 case ICE_ERR_IN_USE: 5213 return "ICE_ERR_IN_USE"; 5214 case ICE_ERR_MAX_LIMIT: 5215 return "ICE_ERR_MAX_LIMIT"; 5216 case ICE_ERR_RESET_ONGOING: 5217 return "ICE_ERR_RESET_ONGOING"; 5218 case ICE_ERR_HW_TABLE: 5219 return "ICE_ERR_HW_TABLE"; 5220 case ICE_ERR_DOES_NOT_EXIST: 5221 return "ICE_ERR_DOES_NOT_EXIST"; 5222 case ICE_ERR_FW_DDP_MISMATCH: 5223 return "ICE_ERR_FW_DDP_MISMATCH"; 5224 case ICE_ERR_AQ_ERROR: 5225 return "ICE_ERR_AQ_ERROR"; 5226 case ICE_ERR_AQ_TIMEOUT: 5227 return "ICE_ERR_AQ_TIMEOUT"; 5228 case ICE_ERR_AQ_FULL: 5229 return "ICE_ERR_AQ_FULL"; 5230 case ICE_ERR_AQ_NO_WORK: 5231 return "ICE_ERR_AQ_NO_WORK"; 5232 case ICE_ERR_AQ_EMPTY: 5233 return "ICE_ERR_AQ_EMPTY"; 5234 case ICE_ERR_AQ_FW_CRITICAL: 5235 return "ICE_ERR_AQ_FW_CRITICAL"; 5236 } 5237 5238 return "ICE_ERR_UNKNOWN"; 5239 } 5240 5241 /** 5242 * ice_set_rss - Set RSS keys and lut 5243 * @vsi: Pointer to VSI structure 5244 * @seed: RSS hash seed 5245 * @lut: Lookup table 5246 * @lut_size: Lookup table size 5247 * 5248 * Returns 0 on success, negative on failure 5249 */ 5250 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 5251 { 5252 struct ice_pf *pf = vsi->back; 5253 struct ice_hw *hw = &pf->hw; 5254 enum ice_status status; 5255 struct device *dev; 5256 5257 dev = ice_pf_to_dev(pf); 5258 if (seed) { 5259 struct ice_aqc_get_set_rss_keys *buf = 5260 (struct ice_aqc_get_set_rss_keys *)seed; 5261 5262 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 5263 5264 if (status) { 5265 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 5266 ice_stat_str(status), 5267 ice_aq_str(hw->adminq.sq_last_status)); 5268 return -EIO; 5269 } 5270 } 5271 5272 if (lut) { 5273 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 5274 lut, lut_size); 5275 if (status) { 5276 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 5277 ice_stat_str(status), 5278 ice_aq_str(hw->adminq.sq_last_status)); 5279 return -EIO; 5280 } 5281 } 5282 5283 return 0; 5284 } 5285 5286 /** 5287 * ice_get_rss - Get RSS keys and lut 5288 * @vsi: Pointer to VSI structure 5289 * @seed: Buffer to store the keys 5290 * @lut: Buffer to store the lookup table entries 5291 * @lut_size: Size of buffer to store the lookup table entries 5292 * 5293 * Returns 0 on success, negative on failure 5294 */ 5295 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 5296 { 5297 struct ice_pf *pf = vsi->back; 5298 struct ice_hw *hw = &pf->hw; 5299 enum ice_status status; 5300 struct device *dev; 5301 5302 dev = ice_pf_to_dev(pf); 5303 if (seed) { 5304 struct ice_aqc_get_set_rss_keys *buf = 5305 (struct ice_aqc_get_set_rss_keys *)seed; 5306 5307 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 5308 if (status) { 5309 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 5310 ice_stat_str(status), 5311 ice_aq_str(hw->adminq.sq_last_status)); 5312 return -EIO; 5313 } 5314 } 5315 5316 if (lut) { 5317 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 5318 lut, lut_size); 5319 if (status) { 5320 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 5321 ice_stat_str(status), 5322 ice_aq_str(hw->adminq.sq_last_status)); 5323 return -EIO; 5324 } 5325 } 5326 5327 return 0; 5328 } 5329 5330 /** 5331 * ice_bridge_getlink - Get the hardware bridge mode 5332 * @skb: skb buff 5333 * @pid: process ID 5334 * @seq: RTNL message seq 5335 * @dev: the netdev being configured 5336 * @filter_mask: filter mask passed in 5337 * @nlflags: netlink flags passed in 5338 * 5339 * Return the bridge mode (VEB/VEPA) 5340 */ 5341 static int 5342 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 5343 struct net_device *dev, u32 filter_mask, int nlflags) 5344 { 5345 struct ice_netdev_priv *np = netdev_priv(dev); 5346 struct ice_vsi *vsi = np->vsi; 5347 struct ice_pf *pf = vsi->back; 5348 u16 bmode; 5349 5350 bmode = pf->first_sw->bridge_mode; 5351 5352 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 5353 filter_mask, NULL); 5354 } 5355 5356 /** 5357 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 5358 * @vsi: Pointer to VSI structure 5359 * @bmode: Hardware bridge mode (VEB/VEPA) 5360 * 5361 * Returns 0 on success, negative on failure 5362 */ 5363 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 5364 { 5365 struct ice_aqc_vsi_props *vsi_props; 5366 struct ice_hw *hw = &vsi->back->hw; 5367 struct ice_vsi_ctx *ctxt; 5368 enum ice_status status; 5369 int ret = 0; 5370 5371 vsi_props = &vsi->info; 5372 5373 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 5374 if (!ctxt) 5375 return -ENOMEM; 5376 5377 ctxt->info = vsi->info; 5378 5379 if (bmode == BRIDGE_MODE_VEB) 5380 /* change from VEPA to VEB mode */ 5381 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 5382 else 5383 /* change from VEB to VEPA mode */ 5384 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 5385 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 5386 5387 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 5388 if (status) { 5389 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 5390 bmode, ice_stat_str(status), 5391 ice_aq_str(hw->adminq.sq_last_status)); 5392 ret = -EIO; 5393 goto out; 5394 } 5395 /* Update sw flags for book keeping */ 5396 vsi_props->sw_flags = ctxt->info.sw_flags; 5397 5398 out: 5399 kfree(ctxt); 5400 return ret; 5401 } 5402 5403 /** 5404 * ice_bridge_setlink - Set the hardware bridge mode 5405 * @dev: the netdev being configured 5406 * @nlh: RTNL message 5407 * @flags: bridge setlink flags 5408 * @extack: netlink extended ack 5409 * 5410 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 5411 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 5412 * not already set for all VSIs connected to this switch. And also update the 5413 * unicast switch filter rules for the corresponding switch of the netdev. 5414 */ 5415 static int 5416 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 5417 u16 __always_unused flags, 5418 struct netlink_ext_ack __always_unused *extack) 5419 { 5420 struct ice_netdev_priv *np = netdev_priv(dev); 5421 struct ice_pf *pf = np->vsi->back; 5422 struct nlattr *attr, *br_spec; 5423 struct ice_hw *hw = &pf->hw; 5424 enum ice_status status; 5425 struct ice_sw *pf_sw; 5426 int rem, v, err = 0; 5427 5428 pf_sw = pf->first_sw; 5429 /* find the attribute in the netlink message */ 5430 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 5431 5432 nla_for_each_nested(attr, br_spec, rem) { 5433 __u16 mode; 5434 5435 if (nla_type(attr) != IFLA_BRIDGE_MODE) 5436 continue; 5437 mode = nla_get_u16(attr); 5438 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 5439 return -EINVAL; 5440 /* Continue if bridge mode is not being flipped */ 5441 if (mode == pf_sw->bridge_mode) 5442 continue; 5443 /* Iterates through the PF VSI list and update the loopback 5444 * mode of the VSI 5445 */ 5446 ice_for_each_vsi(pf, v) { 5447 if (!pf->vsi[v]) 5448 continue; 5449 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 5450 if (err) 5451 return err; 5452 } 5453 5454 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 5455 /* Update the unicast switch filter rules for the corresponding 5456 * switch of the netdev 5457 */ 5458 status = ice_update_sw_rule_bridge_mode(hw); 5459 if (status) { 5460 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 5461 mode, ice_stat_str(status), 5462 ice_aq_str(hw->adminq.sq_last_status)); 5463 /* revert hw->evb_veb */ 5464 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 5465 return -EIO; 5466 } 5467 5468 pf_sw->bridge_mode = mode; 5469 } 5470 5471 return 0; 5472 } 5473 5474 /** 5475 * ice_tx_timeout - Respond to a Tx Hang 5476 * @netdev: network interface device structure 5477 * @txqueue: Tx queue 5478 */ 5479 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 5480 { 5481 struct ice_netdev_priv *np = netdev_priv(netdev); 5482 struct ice_ring *tx_ring = NULL; 5483 struct ice_vsi *vsi = np->vsi; 5484 struct ice_pf *pf = vsi->back; 5485 u32 i; 5486 5487 pf->tx_timeout_count++; 5488 5489 /* Check if PFC is enabled for the TC to which the queue belongs 5490 * to. If yes then Tx timeout is not caused by a hung queue, no 5491 * need to reset and rebuild 5492 */ 5493 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 5494 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 5495 txqueue); 5496 return; 5497 } 5498 5499 /* now that we have an index, find the tx_ring struct */ 5500 for (i = 0; i < vsi->num_txq; i++) 5501 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 5502 if (txqueue == vsi->tx_rings[i]->q_index) { 5503 tx_ring = vsi->tx_rings[i]; 5504 break; 5505 } 5506 5507 /* Reset recovery level if enough time has elapsed after last timeout. 5508 * Also ensure no new reset action happens before next timeout period. 5509 */ 5510 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 5511 pf->tx_timeout_recovery_level = 1; 5512 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 5513 netdev->watchdog_timeo))) 5514 return; 5515 5516 if (tx_ring) { 5517 struct ice_hw *hw = &pf->hw; 5518 u32 head, val = 0; 5519 5520 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 5521 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 5522 /* Read interrupt register */ 5523 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 5524 5525 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 5526 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 5527 head, tx_ring->next_to_use, val); 5528 } 5529 5530 pf->tx_timeout_last_recovery = jiffies; 5531 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 5532 pf->tx_timeout_recovery_level, txqueue); 5533 5534 switch (pf->tx_timeout_recovery_level) { 5535 case 1: 5536 set_bit(__ICE_PFR_REQ, pf->state); 5537 break; 5538 case 2: 5539 set_bit(__ICE_CORER_REQ, pf->state); 5540 break; 5541 case 3: 5542 set_bit(__ICE_GLOBR_REQ, pf->state); 5543 break; 5544 default: 5545 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 5546 set_bit(__ICE_DOWN, pf->state); 5547 set_bit(__ICE_NEEDS_RESTART, vsi->state); 5548 set_bit(__ICE_SERVICE_DIS, pf->state); 5549 break; 5550 } 5551 5552 ice_service_task_schedule(pf); 5553 pf->tx_timeout_recovery_level++; 5554 } 5555 5556 /** 5557 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 5558 * @netdev: This physical port's netdev 5559 * @ti: Tunnel endpoint information 5560 */ 5561 static void 5562 ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti) 5563 { 5564 struct ice_netdev_priv *np = netdev_priv(netdev); 5565 struct ice_vsi *vsi = np->vsi; 5566 struct ice_pf *pf = vsi->back; 5567 enum ice_tunnel_type tnl_type; 5568 u16 port = ntohs(ti->port); 5569 enum ice_status status; 5570 5571 switch (ti->type) { 5572 case UDP_TUNNEL_TYPE_VXLAN: 5573 tnl_type = TNL_VXLAN; 5574 break; 5575 case UDP_TUNNEL_TYPE_GENEVE: 5576 tnl_type = TNL_GENEVE; 5577 break; 5578 default: 5579 netdev_err(netdev, "Unknown tunnel type\n"); 5580 return; 5581 } 5582 5583 status = ice_create_tunnel(&pf->hw, tnl_type, port); 5584 if (status == ICE_ERR_OUT_OF_RANGE) 5585 netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n", 5586 port); 5587 else if (status) 5588 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 5589 ice_stat_str(status)); 5590 } 5591 5592 /** 5593 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 5594 * @netdev: This physical port's netdev 5595 * @ti: Tunnel endpoint information 5596 */ 5597 static void 5598 ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti) 5599 { 5600 struct ice_netdev_priv *np = netdev_priv(netdev); 5601 struct ice_vsi *vsi = np->vsi; 5602 struct ice_pf *pf = vsi->back; 5603 u16 port = ntohs(ti->port); 5604 enum ice_status status; 5605 bool retval; 5606 5607 retval = ice_tunnel_port_in_use(&pf->hw, port, NULL); 5608 if (!retval) { 5609 netdev_info(netdev, "port %d not found in UDP tunnels list\n", 5610 port); 5611 return; 5612 } 5613 5614 status = ice_destroy_tunnel(&pf->hw, port, false); 5615 if (status) 5616 netdev_err(netdev, "error deleting port %d from UDP tunnels list\n", 5617 port); 5618 } 5619 5620 /** 5621 * ice_open - Called when a network interface becomes active 5622 * @netdev: network interface device structure 5623 * 5624 * The open entry point is called when a network interface is made 5625 * active by the system (IFF_UP). At this point all resources needed 5626 * for transmit and receive operations are allocated, the interrupt 5627 * handler is registered with the OS, the netdev watchdog is enabled, 5628 * and the stack is notified that the interface is ready. 5629 * 5630 * Returns 0 on success, negative value on failure 5631 */ 5632 int ice_open(struct net_device *netdev) 5633 { 5634 struct ice_netdev_priv *np = netdev_priv(netdev); 5635 struct ice_vsi *vsi = np->vsi; 5636 struct ice_pf *pf = vsi->back; 5637 struct ice_port_info *pi; 5638 int err; 5639 5640 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 5641 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 5642 return -EIO; 5643 } 5644 5645 if (test_bit(__ICE_DOWN, pf->state)) { 5646 netdev_err(netdev, "device is not ready yet\n"); 5647 return -EBUSY; 5648 } 5649 5650 netif_carrier_off(netdev); 5651 5652 pi = vsi->port_info; 5653 err = ice_update_link_info(pi); 5654 if (err) { 5655 netdev_err(netdev, "Failed to get link info, error %d\n", 5656 err); 5657 return err; 5658 } 5659 5660 /* Set PHY if there is media, otherwise, turn off PHY */ 5661 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 5662 err = ice_force_phys_link_state(vsi, true); 5663 if (err) { 5664 netdev_err(netdev, "Failed to set physical link up, error %d\n", 5665 err); 5666 return err; 5667 } 5668 } else { 5669 err = ice_aq_set_link_restart_an(pi, false, NULL); 5670 if (err) { 5671 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 5672 vsi->vsi_num, err); 5673 return err; 5674 } 5675 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 5676 } 5677 5678 err = ice_vsi_open(vsi); 5679 if (err) 5680 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 5681 vsi->vsi_num, vsi->vsw->sw_id); 5682 5683 /* Update existing tunnels information */ 5684 udp_tunnel_get_rx_info(netdev); 5685 5686 return err; 5687 } 5688 5689 /** 5690 * ice_stop - Disables a network interface 5691 * @netdev: network interface device structure 5692 * 5693 * The stop entry point is called when an interface is de-activated by the OS, 5694 * and the netdevice enters the DOWN state. The hardware is still under the 5695 * driver's control, but the netdev interface is disabled. 5696 * 5697 * Returns success only - not allowed to fail 5698 */ 5699 int ice_stop(struct net_device *netdev) 5700 { 5701 struct ice_netdev_priv *np = netdev_priv(netdev); 5702 struct ice_vsi *vsi = np->vsi; 5703 5704 ice_vsi_close(vsi); 5705 5706 return 0; 5707 } 5708 5709 /** 5710 * ice_features_check - Validate encapsulated packet conforms to limits 5711 * @skb: skb buffer 5712 * @netdev: This port's netdev 5713 * @features: Offload features that the stack believes apply 5714 */ 5715 static netdev_features_t 5716 ice_features_check(struct sk_buff *skb, 5717 struct net_device __always_unused *netdev, 5718 netdev_features_t features) 5719 { 5720 size_t len; 5721 5722 /* No point in doing any of this if neither checksum nor GSO are 5723 * being requested for this frame. We can rule out both by just 5724 * checking for CHECKSUM_PARTIAL 5725 */ 5726 if (skb->ip_summed != CHECKSUM_PARTIAL) 5727 return features; 5728 5729 /* We cannot support GSO if the MSS is going to be less than 5730 * 64 bytes. If it is then we need to drop support for GSO. 5731 */ 5732 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 5733 features &= ~NETIF_F_GSO_MASK; 5734 5735 len = skb_network_header(skb) - skb->data; 5736 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 5737 goto out_rm_features; 5738 5739 len = skb_transport_header(skb) - skb_network_header(skb); 5740 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 5741 goto out_rm_features; 5742 5743 if (skb->encapsulation) { 5744 len = skb_inner_network_header(skb) - skb_transport_header(skb); 5745 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 5746 goto out_rm_features; 5747 5748 len = skb_inner_transport_header(skb) - 5749 skb_inner_network_header(skb); 5750 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 5751 goto out_rm_features; 5752 } 5753 5754 return features; 5755 out_rm_features: 5756 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 5757 } 5758 5759 static const struct net_device_ops ice_netdev_safe_mode_ops = { 5760 .ndo_open = ice_open, 5761 .ndo_stop = ice_stop, 5762 .ndo_start_xmit = ice_start_xmit, 5763 .ndo_set_mac_address = ice_set_mac_address, 5764 .ndo_validate_addr = eth_validate_addr, 5765 .ndo_change_mtu = ice_change_mtu, 5766 .ndo_get_stats64 = ice_get_stats64, 5767 .ndo_tx_timeout = ice_tx_timeout, 5768 }; 5769 5770 static const struct net_device_ops ice_netdev_ops = { 5771 .ndo_open = ice_open, 5772 .ndo_stop = ice_stop, 5773 .ndo_start_xmit = ice_start_xmit, 5774 .ndo_features_check = ice_features_check, 5775 .ndo_set_rx_mode = ice_set_rx_mode, 5776 .ndo_set_mac_address = ice_set_mac_address, 5777 .ndo_validate_addr = eth_validate_addr, 5778 .ndo_change_mtu = ice_change_mtu, 5779 .ndo_get_stats64 = ice_get_stats64, 5780 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 5781 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 5782 .ndo_set_vf_mac = ice_set_vf_mac, 5783 .ndo_get_vf_config = ice_get_vf_cfg, 5784 .ndo_set_vf_trust = ice_set_vf_trust, 5785 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 5786 .ndo_set_vf_link_state = ice_set_vf_link_state, 5787 .ndo_get_vf_stats = ice_get_vf_stats, 5788 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 5789 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 5790 .ndo_set_features = ice_set_features, 5791 .ndo_bridge_getlink = ice_bridge_getlink, 5792 .ndo_bridge_setlink = ice_bridge_setlink, 5793 .ndo_fdb_add = ice_fdb_add, 5794 .ndo_fdb_del = ice_fdb_del, 5795 #ifdef CONFIG_RFS_ACCEL 5796 .ndo_rx_flow_steer = ice_rx_flow_steer, 5797 #endif 5798 .ndo_tx_timeout = ice_tx_timeout, 5799 .ndo_bpf = ice_xdp, 5800 .ndo_xdp_xmit = ice_xdp_xmit, 5801 .ndo_xsk_wakeup = ice_xsk_wakeup, 5802 .ndo_udp_tunnel_add = ice_udp_tunnel_add, 5803 .ndo_udp_tunnel_del = ice_udp_tunnel_del, 5804 }; 5805