1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_lib.h" 10 11 #define DRV_VERSION "0.7.2-k" 12 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 13 const char ice_drv_ver[] = DRV_VERSION; 14 static const char ice_driver_string[] = DRV_SUMMARY; 15 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 16 17 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 18 MODULE_DESCRIPTION(DRV_SUMMARY); 19 MODULE_LICENSE("GPL v2"); 20 MODULE_VERSION(DRV_VERSION); 21 22 static int debug = -1; 23 module_param(debug, int, 0644); 24 #ifndef CONFIG_DYNAMIC_DEBUG 25 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 26 #else 27 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 28 #endif /* !CONFIG_DYNAMIC_DEBUG */ 29 30 static struct workqueue_struct *ice_wq; 31 static const struct net_device_ops ice_netdev_ops; 32 33 static void ice_pf_dis_all_vsi(struct ice_pf *pf); 34 static void ice_rebuild(struct ice_pf *pf); 35 36 static void ice_vsi_release_all(struct ice_pf *pf); 37 static void ice_update_vsi_stats(struct ice_vsi *vsi); 38 static void ice_update_pf_stats(struct ice_pf *pf); 39 40 /** 41 * ice_get_tx_pending - returns number of Tx descriptors not processed 42 * @ring: the ring of descriptors 43 */ 44 static u32 ice_get_tx_pending(struct ice_ring *ring) 45 { 46 u32 head, tail; 47 48 head = ring->next_to_clean; 49 tail = readl(ring->tail); 50 51 if (head != tail) 52 return (head < tail) ? 53 tail - head : (tail + ring->count - head); 54 return 0; 55 } 56 57 /** 58 * ice_check_for_hang_subtask - check for and recover hung queues 59 * @pf: pointer to PF struct 60 */ 61 static void ice_check_for_hang_subtask(struct ice_pf *pf) 62 { 63 struct ice_vsi *vsi = NULL; 64 unsigned int i; 65 u32 v, v_idx; 66 int packets; 67 68 ice_for_each_vsi(pf, v) 69 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 70 vsi = pf->vsi[v]; 71 break; 72 } 73 74 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 75 return; 76 77 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 78 return; 79 80 for (i = 0; i < vsi->num_txq; i++) { 81 struct ice_ring *tx_ring = vsi->tx_rings[i]; 82 83 if (tx_ring && tx_ring->desc) { 84 int itr = ICE_ITR_NONE; 85 86 /* If packet counter has not changed the queue is 87 * likely stalled, so force an interrupt for this 88 * queue. 89 * 90 * prev_pkt would be negative if there was no 91 * pending work. 92 */ 93 packets = tx_ring->stats.pkts & INT_MAX; 94 if (tx_ring->tx_stats.prev_pkt == packets) { 95 /* Trigger sw interrupt to revive the queue */ 96 v_idx = tx_ring->q_vector->v_idx; 97 wr32(&vsi->back->hw, 98 GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), 99 (itr << GLINT_DYN_CTL_ITR_INDX_S) | 100 GLINT_DYN_CTL_SWINT_TRIG_M | 101 GLINT_DYN_CTL_INTENA_MSK_M); 102 continue; 103 } 104 105 /* Memory barrier between read of packet count and call 106 * to ice_get_tx_pending() 107 */ 108 smp_rmb(); 109 tx_ring->tx_stats.prev_pkt = 110 ice_get_tx_pending(tx_ring) ? packets : -1; 111 } 112 } 113 } 114 115 /** 116 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced 117 * @netdev: the net device on which the sync is happening 118 * @addr: mac address to sync 119 * 120 * This is a callback function which is called by the in kernel device sync 121 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 122 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 123 * mac filters from the hardware. 124 */ 125 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 126 { 127 struct ice_netdev_priv *np = netdev_priv(netdev); 128 struct ice_vsi *vsi = np->vsi; 129 130 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 131 return -EINVAL; 132 133 return 0; 134 } 135 136 /** 137 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced 138 * @netdev: the net device on which the unsync is happening 139 * @addr: mac address to unsync 140 * 141 * This is a callback function which is called by the in kernel device unsync 142 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 143 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 144 * delete the mac filters from the hardware. 145 */ 146 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 147 { 148 struct ice_netdev_priv *np = netdev_priv(netdev); 149 struct ice_vsi *vsi = np->vsi; 150 151 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 152 return -EINVAL; 153 154 return 0; 155 } 156 157 /** 158 * ice_vsi_fltr_changed - check if filter state changed 159 * @vsi: VSI to be checked 160 * 161 * returns true if filter state has changed, false otherwise. 162 */ 163 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 164 { 165 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 166 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 167 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 168 } 169 170 /** 171 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 172 * @vsi: ptr to the VSI 173 * 174 * Push any outstanding VSI filter changes through the AdminQ. 175 */ 176 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 177 { 178 struct device *dev = &vsi->back->pdev->dev; 179 struct net_device *netdev = vsi->netdev; 180 bool promisc_forced_on = false; 181 struct ice_pf *pf = vsi->back; 182 struct ice_hw *hw = &pf->hw; 183 enum ice_status status = 0; 184 u32 changed_flags = 0; 185 int err = 0; 186 187 if (!vsi->netdev) 188 return -EINVAL; 189 190 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 191 usleep_range(1000, 2000); 192 193 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 194 vsi->current_netdev_flags = vsi->netdev->flags; 195 196 INIT_LIST_HEAD(&vsi->tmp_sync_list); 197 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 198 199 if (ice_vsi_fltr_changed(vsi)) { 200 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 201 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 202 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 203 204 /* grab the netdev's addr_list_lock */ 205 netif_addr_lock_bh(netdev); 206 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 207 ice_add_mac_to_unsync_list); 208 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 209 ice_add_mac_to_unsync_list); 210 /* our temp lists are populated. release lock */ 211 netif_addr_unlock_bh(netdev); 212 } 213 214 /* Remove mac addresses in the unsync list */ 215 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 216 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 217 if (status) { 218 netdev_err(netdev, "Failed to delete MAC filters\n"); 219 /* if we failed because of alloc failures, just bail */ 220 if (status == ICE_ERR_NO_MEMORY) { 221 err = -ENOMEM; 222 goto out; 223 } 224 } 225 226 /* Add mac addresses in the sync list */ 227 status = ice_add_mac(hw, &vsi->tmp_sync_list); 228 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 229 if (status) { 230 netdev_err(netdev, "Failed to add MAC filters\n"); 231 /* If there is no more space for new umac filters, vsi 232 * should go into promiscuous mode. There should be some 233 * space reserved for promiscuous filters. 234 */ 235 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 236 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 237 vsi->state)) { 238 promisc_forced_on = true; 239 netdev_warn(netdev, 240 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 241 vsi->vsi_num); 242 } else { 243 err = -EIO; 244 goto out; 245 } 246 } 247 /* check for changes in promiscuous modes */ 248 if (changed_flags & IFF_ALLMULTI) 249 netdev_warn(netdev, "Unsupported configuration\n"); 250 251 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 252 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 253 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 254 if (vsi->current_netdev_flags & IFF_PROMISC) { 255 /* Apply TX filter rule to get traffic from VMs */ 256 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 257 ICE_FLTR_TX); 258 if (status) { 259 netdev_err(netdev, "Error setting default VSI %i tx rule\n", 260 vsi->vsi_num); 261 vsi->current_netdev_flags &= ~IFF_PROMISC; 262 err = -EIO; 263 goto out_promisc; 264 } 265 /* Apply RX filter rule to get traffic from wire */ 266 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 267 ICE_FLTR_RX); 268 if (status) { 269 netdev_err(netdev, "Error setting default VSI %i rx rule\n", 270 vsi->vsi_num); 271 vsi->current_netdev_flags &= ~IFF_PROMISC; 272 err = -EIO; 273 goto out_promisc; 274 } 275 } else { 276 /* Clear TX filter rule to stop traffic from VMs */ 277 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 278 ICE_FLTR_TX); 279 if (status) { 280 netdev_err(netdev, "Error clearing default VSI %i tx rule\n", 281 vsi->vsi_num); 282 vsi->current_netdev_flags |= IFF_PROMISC; 283 err = -EIO; 284 goto out_promisc; 285 } 286 /* Clear RX filter to remove traffic from wire */ 287 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 288 ICE_FLTR_RX); 289 if (status) { 290 netdev_err(netdev, "Error clearing default VSI %i rx rule\n", 291 vsi->vsi_num); 292 vsi->current_netdev_flags |= IFF_PROMISC; 293 err = -EIO; 294 goto out_promisc; 295 } 296 } 297 } 298 goto exit; 299 300 out_promisc: 301 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 302 goto exit; 303 out: 304 /* if something went wrong then set the changed flag so we try again */ 305 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 306 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 307 exit: 308 clear_bit(__ICE_CFG_BUSY, vsi->state); 309 return err; 310 } 311 312 /** 313 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 314 * @pf: board private structure 315 */ 316 static void ice_sync_fltr_subtask(struct ice_pf *pf) 317 { 318 int v; 319 320 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 321 return; 322 323 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 324 325 for (v = 0; v < pf->num_alloc_vsi; v++) 326 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 327 ice_vsi_sync_fltr(pf->vsi[v])) { 328 /* come back and try again later */ 329 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 330 break; 331 } 332 } 333 334 /** 335 * ice_prepare_for_reset - prep for the core to reset 336 * @pf: board private structure 337 * 338 * Inform or close all dependent features in prep for reset. 339 */ 340 static void 341 ice_prepare_for_reset(struct ice_pf *pf) 342 { 343 struct ice_hw *hw = &pf->hw; 344 345 /* Notify VFs of impending reset */ 346 if (ice_check_sq_alive(hw, &hw->mailboxq)) 347 ice_vc_notify_reset(pf); 348 349 /* disable the VSIs and their queues that are not already DOWN */ 350 ice_pf_dis_all_vsi(pf); 351 352 ice_shutdown_all_ctrlq(hw); 353 354 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 355 } 356 357 /** 358 * ice_do_reset - Initiate one of many types of resets 359 * @pf: board private structure 360 * @reset_type: reset type requested 361 * before this function was called. 362 */ 363 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 364 { 365 struct device *dev = &pf->pdev->dev; 366 struct ice_hw *hw = &pf->hw; 367 368 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 369 WARN_ON(in_interrupt()); 370 371 ice_prepare_for_reset(pf); 372 373 /* trigger the reset */ 374 if (ice_reset(hw, reset_type)) { 375 dev_err(dev, "reset %d failed\n", reset_type); 376 set_bit(__ICE_RESET_FAILED, pf->state); 377 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 378 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 379 clear_bit(__ICE_PFR_REQ, pf->state); 380 clear_bit(__ICE_CORER_REQ, pf->state); 381 clear_bit(__ICE_GLOBR_REQ, pf->state); 382 return; 383 } 384 385 /* PFR is a bit of a special case because it doesn't result in an OICR 386 * interrupt. So for PFR, rebuild after the reset and clear the reset- 387 * associated state bits. 388 */ 389 if (reset_type == ICE_RESET_PFR) { 390 pf->pfr_count++; 391 ice_rebuild(pf); 392 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 393 clear_bit(__ICE_PFR_REQ, pf->state); 394 } 395 } 396 397 /** 398 * ice_reset_subtask - Set up for resetting the device and driver 399 * @pf: board private structure 400 */ 401 static void ice_reset_subtask(struct ice_pf *pf) 402 { 403 enum ice_reset_req reset_type = ICE_RESET_INVAL; 404 405 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 406 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 407 * of reset is pending and sets bits in pf->state indicating the reset 408 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 409 * prepare for pending reset if not already (for PF software-initiated 410 * global resets the software should already be prepared for it as 411 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 412 * by firmware or software on other PFs, that bit is not set so prepare 413 * for the reset now), poll for reset done, rebuild and return. 414 */ 415 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 416 clear_bit(__ICE_GLOBR_RECV, pf->state); 417 clear_bit(__ICE_CORER_RECV, pf->state); 418 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 419 ice_prepare_for_reset(pf); 420 421 /* make sure we are ready to rebuild */ 422 if (ice_check_reset(&pf->hw)) { 423 set_bit(__ICE_RESET_FAILED, pf->state); 424 } else { 425 /* done with reset. start rebuild */ 426 pf->hw.reset_ongoing = false; 427 ice_rebuild(pf); 428 /* clear bit to resume normal operations, but 429 * ICE_NEEDS_RESTART bit is set incase rebuild failed 430 */ 431 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 432 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 433 clear_bit(__ICE_PFR_REQ, pf->state); 434 clear_bit(__ICE_CORER_REQ, pf->state); 435 clear_bit(__ICE_GLOBR_REQ, pf->state); 436 } 437 438 return; 439 } 440 441 /* No pending resets to finish processing. Check for new resets */ 442 if (test_bit(__ICE_PFR_REQ, pf->state)) 443 reset_type = ICE_RESET_PFR; 444 if (test_bit(__ICE_CORER_REQ, pf->state)) 445 reset_type = ICE_RESET_CORER; 446 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 447 reset_type = ICE_RESET_GLOBR; 448 /* If no valid reset type requested just return */ 449 if (reset_type == ICE_RESET_INVAL) 450 return; 451 452 /* reset if not already down or busy */ 453 if (!test_bit(__ICE_DOWN, pf->state) && 454 !test_bit(__ICE_CFG_BUSY, pf->state)) { 455 ice_do_reset(pf, reset_type); 456 } 457 } 458 459 /** 460 * ice_print_link_msg - print link up or down message 461 * @vsi: the VSI whose link status is being queried 462 * @isup: boolean for if the link is now up or down 463 */ 464 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 465 { 466 const char *speed; 467 const char *fc; 468 469 if (vsi->current_isup == isup) 470 return; 471 472 vsi->current_isup = isup; 473 474 if (!isup) { 475 netdev_info(vsi->netdev, "NIC Link is Down\n"); 476 return; 477 } 478 479 switch (vsi->port_info->phy.link_info.link_speed) { 480 case ICE_AQ_LINK_SPEED_40GB: 481 speed = "40 G"; 482 break; 483 case ICE_AQ_LINK_SPEED_25GB: 484 speed = "25 G"; 485 break; 486 case ICE_AQ_LINK_SPEED_20GB: 487 speed = "20 G"; 488 break; 489 case ICE_AQ_LINK_SPEED_10GB: 490 speed = "10 G"; 491 break; 492 case ICE_AQ_LINK_SPEED_5GB: 493 speed = "5 G"; 494 break; 495 case ICE_AQ_LINK_SPEED_2500MB: 496 speed = "2.5 G"; 497 break; 498 case ICE_AQ_LINK_SPEED_1000MB: 499 speed = "1 G"; 500 break; 501 case ICE_AQ_LINK_SPEED_100MB: 502 speed = "100 M"; 503 break; 504 default: 505 speed = "Unknown"; 506 break; 507 } 508 509 switch (vsi->port_info->fc.current_mode) { 510 case ICE_FC_FULL: 511 fc = "RX/TX"; 512 break; 513 case ICE_FC_TX_PAUSE: 514 fc = "TX"; 515 break; 516 case ICE_FC_RX_PAUSE: 517 fc = "RX"; 518 break; 519 default: 520 fc = "Unknown"; 521 break; 522 } 523 524 netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n", 525 speed, fc); 526 } 527 528 /** 529 * ice_vsi_link_event - update the vsi's netdev 530 * @vsi: the vsi on which the link event occurred 531 * @link_up: whether or not the vsi needs to be set up or down 532 */ 533 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 534 { 535 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 536 return; 537 538 if (vsi->type == ICE_VSI_PF) { 539 if (!vsi->netdev) { 540 dev_dbg(&vsi->back->pdev->dev, 541 "vsi->netdev is not initialized!\n"); 542 return; 543 } 544 if (link_up) { 545 netif_carrier_on(vsi->netdev); 546 netif_tx_wake_all_queues(vsi->netdev); 547 } else { 548 netif_carrier_off(vsi->netdev); 549 netif_tx_stop_all_queues(vsi->netdev); 550 } 551 } 552 } 553 554 /** 555 * ice_link_event - process the link event 556 * @pf: pf that the link event is associated with 557 * @pi: port_info for the port that the link event is associated with 558 * 559 * Returns -EIO if ice_get_link_status() fails 560 * Returns 0 on success 561 */ 562 static int 563 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi) 564 { 565 u8 new_link_speed, old_link_speed; 566 struct ice_phy_info *phy_info; 567 bool new_link_same_as_old; 568 bool new_link, old_link; 569 u8 lport; 570 u16 v; 571 572 phy_info = &pi->phy; 573 phy_info->link_info_old = phy_info->link_info; 574 /* Force ice_get_link_status() to update link info */ 575 phy_info->get_link_info = true; 576 577 old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 578 old_link_speed = phy_info->link_info_old.link_speed; 579 580 lport = pi->lport; 581 if (ice_get_link_status(pi, &new_link)) { 582 dev_dbg(&pf->pdev->dev, 583 "Could not get link status for port %d\n", lport); 584 return -EIO; 585 } 586 587 new_link_speed = phy_info->link_info.link_speed; 588 589 new_link_same_as_old = (new_link == old_link && 590 new_link_speed == old_link_speed); 591 592 ice_for_each_vsi(pf, v) { 593 struct ice_vsi *vsi = pf->vsi[v]; 594 595 if (!vsi || !vsi->port_info) 596 continue; 597 598 if (new_link_same_as_old && 599 (test_bit(__ICE_DOWN, vsi->state) || 600 new_link == netif_carrier_ok(vsi->netdev))) 601 continue; 602 603 if (vsi->port_info->lport == lport) { 604 ice_print_link_msg(vsi, new_link); 605 ice_vsi_link_event(vsi, new_link); 606 } 607 } 608 609 ice_vc_notify_link_state(pf); 610 611 return 0; 612 } 613 614 /** 615 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 616 * @pf: board private structure 617 */ 618 static void ice_watchdog_subtask(struct ice_pf *pf) 619 { 620 int i; 621 622 /* if interface is down do nothing */ 623 if (test_bit(__ICE_DOWN, pf->state) || 624 test_bit(__ICE_CFG_BUSY, pf->state)) 625 return; 626 627 /* make sure we don't do these things too often */ 628 if (time_before(jiffies, 629 pf->serv_tmr_prev + pf->serv_tmr_period)) 630 return; 631 632 pf->serv_tmr_prev = jiffies; 633 634 if (ice_link_event(pf, pf->hw.port_info)) 635 dev_dbg(&pf->pdev->dev, "ice_link_event failed\n"); 636 637 /* Update the stats for active netdevs so the network stack 638 * can look at updated numbers whenever it cares to 639 */ 640 ice_update_pf_stats(pf); 641 for (i = 0; i < pf->num_alloc_vsi; i++) 642 if (pf->vsi[i] && pf->vsi[i]->netdev) 643 ice_update_vsi_stats(pf->vsi[i]); 644 } 645 646 /** 647 * __ice_clean_ctrlq - helper function to clean controlq rings 648 * @pf: ptr to struct ice_pf 649 * @q_type: specific Control queue type 650 */ 651 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 652 { 653 struct ice_rq_event_info event; 654 struct ice_hw *hw = &pf->hw; 655 struct ice_ctl_q_info *cq; 656 u16 pending, i = 0; 657 const char *qtype; 658 u32 oldval, val; 659 660 /* Do not clean control queue if/when PF reset fails */ 661 if (test_bit(__ICE_RESET_FAILED, pf->state)) 662 return 0; 663 664 switch (q_type) { 665 case ICE_CTL_Q_ADMIN: 666 cq = &hw->adminq; 667 qtype = "Admin"; 668 break; 669 case ICE_CTL_Q_MAILBOX: 670 cq = &hw->mailboxq; 671 qtype = "Mailbox"; 672 break; 673 default: 674 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 675 q_type); 676 return 0; 677 } 678 679 /* check for error indications - PF_xx_AxQLEN register layout for 680 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 681 */ 682 val = rd32(hw, cq->rq.len); 683 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 684 PF_FW_ARQLEN_ARQCRIT_M)) { 685 oldval = val; 686 if (val & PF_FW_ARQLEN_ARQVFE_M) 687 dev_dbg(&pf->pdev->dev, 688 "%s Receive Queue VF Error detected\n", qtype); 689 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 690 dev_dbg(&pf->pdev->dev, 691 "%s Receive Queue Overflow Error detected\n", 692 qtype); 693 } 694 if (val & PF_FW_ARQLEN_ARQCRIT_M) 695 dev_dbg(&pf->pdev->dev, 696 "%s Receive Queue Critical Error detected\n", 697 qtype); 698 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 699 PF_FW_ARQLEN_ARQCRIT_M); 700 if (oldval != val) 701 wr32(hw, cq->rq.len, val); 702 } 703 704 val = rd32(hw, cq->sq.len); 705 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 706 PF_FW_ATQLEN_ATQCRIT_M)) { 707 oldval = val; 708 if (val & PF_FW_ATQLEN_ATQVFE_M) 709 dev_dbg(&pf->pdev->dev, 710 "%s Send Queue VF Error detected\n", qtype); 711 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 712 dev_dbg(&pf->pdev->dev, 713 "%s Send Queue Overflow Error detected\n", 714 qtype); 715 } 716 if (val & PF_FW_ATQLEN_ATQCRIT_M) 717 dev_dbg(&pf->pdev->dev, 718 "%s Send Queue Critical Error detected\n", 719 qtype); 720 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 721 PF_FW_ATQLEN_ATQCRIT_M); 722 if (oldval != val) 723 wr32(hw, cq->sq.len, val); 724 } 725 726 event.buf_len = cq->rq_buf_size; 727 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 728 GFP_KERNEL); 729 if (!event.msg_buf) 730 return 0; 731 732 do { 733 enum ice_status ret; 734 u16 opcode; 735 736 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 737 if (ret == ICE_ERR_AQ_NO_WORK) 738 break; 739 if (ret) { 740 dev_err(&pf->pdev->dev, 741 "%s Receive Queue event error %d\n", qtype, 742 ret); 743 break; 744 } 745 746 opcode = le16_to_cpu(event.desc.opcode); 747 748 switch (opcode) { 749 case ice_mbx_opc_send_msg_to_pf: 750 ice_vc_process_vf_msg(pf, &event); 751 break; 752 case ice_aqc_opc_fw_logging: 753 ice_output_fw_log(hw, &event.desc, event.msg_buf); 754 break; 755 default: 756 dev_dbg(&pf->pdev->dev, 757 "%s Receive Queue unknown event 0x%04x ignored\n", 758 qtype, opcode); 759 break; 760 } 761 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 762 763 devm_kfree(&pf->pdev->dev, event.msg_buf); 764 765 return pending && (i == ICE_DFLT_IRQ_WORK); 766 } 767 768 /** 769 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 770 * @hw: pointer to hardware info 771 * @cq: control queue information 772 * 773 * returns true if there are pending messages in a queue, false if there aren't 774 */ 775 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 776 { 777 u16 ntu; 778 779 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 780 return cq->rq.next_to_clean != ntu; 781 } 782 783 /** 784 * ice_clean_adminq_subtask - clean the AdminQ rings 785 * @pf: board private structure 786 */ 787 static void ice_clean_adminq_subtask(struct ice_pf *pf) 788 { 789 struct ice_hw *hw = &pf->hw; 790 791 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 792 return; 793 794 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 795 return; 796 797 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 798 799 /* There might be a situation where new messages arrive to a control 800 * queue between processing the last message and clearing the 801 * EVENT_PENDING bit. So before exiting, check queue head again (using 802 * ice_ctrlq_pending) and process new messages if any. 803 */ 804 if (ice_ctrlq_pending(hw, &hw->adminq)) 805 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 806 807 ice_flush(hw); 808 } 809 810 /** 811 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 812 * @pf: board private structure 813 */ 814 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 815 { 816 struct ice_hw *hw = &pf->hw; 817 818 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 819 return; 820 821 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 822 return; 823 824 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 825 826 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 827 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 828 829 ice_flush(hw); 830 } 831 832 /** 833 * ice_service_task_schedule - schedule the service task to wake up 834 * @pf: board private structure 835 * 836 * If not already scheduled, this puts the task into the work queue. 837 */ 838 static void ice_service_task_schedule(struct ice_pf *pf) 839 { 840 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 841 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 842 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 843 queue_work(ice_wq, &pf->serv_task); 844 } 845 846 /** 847 * ice_service_task_complete - finish up the service task 848 * @pf: board private structure 849 */ 850 static void ice_service_task_complete(struct ice_pf *pf) 851 { 852 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 853 854 /* force memory (pf->state) to sync before next service task */ 855 smp_mb__before_atomic(); 856 clear_bit(__ICE_SERVICE_SCHED, pf->state); 857 } 858 859 /** 860 * ice_service_task_stop - stop service task and cancel works 861 * @pf: board private structure 862 */ 863 static void ice_service_task_stop(struct ice_pf *pf) 864 { 865 set_bit(__ICE_SERVICE_DIS, pf->state); 866 867 if (pf->serv_tmr.function) 868 del_timer_sync(&pf->serv_tmr); 869 if (pf->serv_task.func) 870 cancel_work_sync(&pf->serv_task); 871 872 clear_bit(__ICE_SERVICE_SCHED, pf->state); 873 } 874 875 /** 876 * ice_service_timer - timer callback to schedule service task 877 * @t: pointer to timer_list 878 */ 879 static void ice_service_timer(struct timer_list *t) 880 { 881 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 882 883 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 884 ice_service_task_schedule(pf); 885 } 886 887 /** 888 * ice_handle_mdd_event - handle malicious driver detect event 889 * @pf: pointer to the PF structure 890 * 891 * Called from service task. OICR interrupt handler indicates MDD event 892 */ 893 static void ice_handle_mdd_event(struct ice_pf *pf) 894 { 895 struct ice_hw *hw = &pf->hw; 896 bool mdd_detected = false; 897 u32 reg; 898 int i; 899 900 if (!test_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 901 return; 902 903 /* find what triggered the MDD event */ 904 reg = rd32(hw, GL_MDET_TX_PQM); 905 if (reg & GL_MDET_TX_PQM_VALID_M) { 906 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 907 GL_MDET_TX_PQM_PF_NUM_S; 908 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 909 GL_MDET_TX_PQM_VF_NUM_S; 910 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 911 GL_MDET_TX_PQM_MAL_TYPE_S; 912 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 913 GL_MDET_TX_PQM_QNUM_S); 914 915 if (netif_msg_tx_err(pf)) 916 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 917 event, queue, pf_num, vf_num); 918 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 919 mdd_detected = true; 920 } 921 922 reg = rd32(hw, GL_MDET_TX_TCLAN); 923 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 924 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 925 GL_MDET_TX_TCLAN_PF_NUM_S; 926 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 927 GL_MDET_TX_TCLAN_VF_NUM_S; 928 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 929 GL_MDET_TX_TCLAN_MAL_TYPE_S; 930 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 931 GL_MDET_TX_TCLAN_QNUM_S); 932 933 if (netif_msg_rx_err(pf)) 934 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 935 event, queue, pf_num, vf_num); 936 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 937 mdd_detected = true; 938 } 939 940 reg = rd32(hw, GL_MDET_RX); 941 if (reg & GL_MDET_RX_VALID_M) { 942 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 943 GL_MDET_RX_PF_NUM_S; 944 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 945 GL_MDET_RX_VF_NUM_S; 946 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 947 GL_MDET_RX_MAL_TYPE_S; 948 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 949 GL_MDET_RX_QNUM_S); 950 951 if (netif_msg_rx_err(pf)) 952 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 953 event, queue, pf_num, vf_num); 954 wr32(hw, GL_MDET_RX, 0xffffffff); 955 mdd_detected = true; 956 } 957 958 if (mdd_detected) { 959 bool pf_mdd_detected = false; 960 961 reg = rd32(hw, PF_MDET_TX_PQM); 962 if (reg & PF_MDET_TX_PQM_VALID_M) { 963 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 964 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 965 pf_mdd_detected = true; 966 } 967 968 reg = rd32(hw, PF_MDET_TX_TCLAN); 969 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 970 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 971 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 972 pf_mdd_detected = true; 973 } 974 975 reg = rd32(hw, PF_MDET_RX); 976 if (reg & PF_MDET_RX_VALID_M) { 977 wr32(hw, PF_MDET_RX, 0xFFFF); 978 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 979 pf_mdd_detected = true; 980 } 981 /* Queue belongs to the PF initiate a reset */ 982 if (pf_mdd_detected) { 983 set_bit(__ICE_NEEDS_RESTART, pf->state); 984 ice_service_task_schedule(pf); 985 } 986 } 987 988 /* see if one of the VFs needs to be reset */ 989 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 990 struct ice_vf *vf = &pf->vf[i]; 991 992 reg = rd32(hw, VP_MDET_TX_PQM(i)); 993 if (reg & VP_MDET_TX_PQM_VALID_M) { 994 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 995 vf->num_mdd_events++; 996 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 997 i); 998 } 999 1000 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1001 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1002 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1003 vf->num_mdd_events++; 1004 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1005 i); 1006 } 1007 1008 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1009 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1010 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1011 vf->num_mdd_events++; 1012 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1013 i); 1014 } 1015 1016 reg = rd32(hw, VP_MDET_RX(i)); 1017 if (reg & VP_MDET_RX_VALID_M) { 1018 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1019 vf->num_mdd_events++; 1020 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1021 i); 1022 } 1023 1024 if (vf->num_mdd_events > ICE_DFLT_NUM_MDD_EVENTS_ALLOWED) { 1025 dev_info(&pf->pdev->dev, 1026 "Too many MDD events on VF %d, disabled\n", i); 1027 dev_info(&pf->pdev->dev, 1028 "Use PF Control I/F to re-enable the VF\n"); 1029 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 1030 } 1031 } 1032 1033 /* re-enable MDD interrupt cause */ 1034 clear_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1035 reg = rd32(hw, PFINT_OICR_ENA); 1036 reg |= PFINT_OICR_MAL_DETECT_M; 1037 wr32(hw, PFINT_OICR_ENA, reg); 1038 ice_flush(hw); 1039 } 1040 1041 /** 1042 * ice_service_task - manage and run subtasks 1043 * @work: pointer to work_struct contained by the PF struct 1044 */ 1045 static void ice_service_task(struct work_struct *work) 1046 { 1047 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1048 unsigned long start_time = jiffies; 1049 1050 /* subtasks */ 1051 1052 /* process reset requests first */ 1053 ice_reset_subtask(pf); 1054 1055 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1056 if (ice_is_reset_in_progress(pf->state) || 1057 test_bit(__ICE_SUSPENDED, pf->state) || 1058 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1059 ice_service_task_complete(pf); 1060 return; 1061 } 1062 1063 ice_check_for_hang_subtask(pf); 1064 ice_sync_fltr_subtask(pf); 1065 ice_handle_mdd_event(pf); 1066 ice_process_vflr_event(pf); 1067 ice_watchdog_subtask(pf); 1068 ice_clean_adminq_subtask(pf); 1069 ice_clean_mailboxq_subtask(pf); 1070 1071 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1072 ice_service_task_complete(pf); 1073 1074 /* If the tasks have taken longer than one service timer period 1075 * or there is more work to be done, reset the service timer to 1076 * schedule the service task now. 1077 */ 1078 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1079 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1080 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1081 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1082 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1083 mod_timer(&pf->serv_tmr, jiffies); 1084 } 1085 1086 /** 1087 * ice_set_ctrlq_len - helper function to set controlq length 1088 * @hw: pointer to the hw instance 1089 */ 1090 static void ice_set_ctrlq_len(struct ice_hw *hw) 1091 { 1092 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1093 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1094 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1095 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1096 hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN; 1097 hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN; 1098 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1099 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1100 } 1101 1102 /** 1103 * ice_irq_affinity_notify - Callback for affinity changes 1104 * @notify: context as to what irq was changed 1105 * @mask: the new affinity mask 1106 * 1107 * This is a callback function used by the irq_set_affinity_notifier function 1108 * so that we may register to receive changes to the irq affinity masks. 1109 */ 1110 static void ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1111 const cpumask_t *mask) 1112 { 1113 struct ice_q_vector *q_vector = 1114 container_of(notify, struct ice_q_vector, affinity_notify); 1115 1116 cpumask_copy(&q_vector->affinity_mask, mask); 1117 } 1118 1119 /** 1120 * ice_irq_affinity_release - Callback for affinity notifier release 1121 * @ref: internal core kernel usage 1122 * 1123 * This is a callback function used by the irq_set_affinity_notifier function 1124 * to inform the current notification subscriber that they will no longer 1125 * receive notifications. 1126 */ 1127 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1128 1129 /** 1130 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1131 * @vsi: the VSI being configured 1132 */ 1133 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1134 { 1135 struct ice_pf *pf = vsi->back; 1136 struct ice_hw *hw = &pf->hw; 1137 1138 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 1139 int i; 1140 1141 for (i = 0; i < vsi->num_q_vectors; i++) 1142 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1143 } 1144 1145 ice_flush(hw); 1146 return 0; 1147 } 1148 1149 /** 1150 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1151 * @vsi: the VSI being configured 1152 * @basename: name for the vector 1153 */ 1154 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1155 { 1156 int q_vectors = vsi->num_q_vectors; 1157 struct ice_pf *pf = vsi->back; 1158 int base = vsi->sw_base_vector; 1159 int rx_int_idx = 0; 1160 int tx_int_idx = 0; 1161 int vector, err; 1162 int irq_num; 1163 1164 for (vector = 0; vector < q_vectors; vector++) { 1165 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1166 1167 irq_num = pf->msix_entries[base + vector].vector; 1168 1169 if (q_vector->tx.ring && q_vector->rx.ring) { 1170 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1171 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1172 tx_int_idx++; 1173 } else if (q_vector->rx.ring) { 1174 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1175 "%s-%s-%d", basename, "rx", rx_int_idx++); 1176 } else if (q_vector->tx.ring) { 1177 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1178 "%s-%s-%d", basename, "tx", tx_int_idx++); 1179 } else { 1180 /* skip this unused q_vector */ 1181 continue; 1182 } 1183 err = devm_request_irq(&pf->pdev->dev, 1184 pf->msix_entries[base + vector].vector, 1185 vsi->irq_handler, 0, q_vector->name, 1186 q_vector); 1187 if (err) { 1188 netdev_err(vsi->netdev, 1189 "MSIX request_irq failed, error: %d\n", err); 1190 goto free_q_irqs; 1191 } 1192 1193 /* register for affinity change notifications */ 1194 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1195 q_vector->affinity_notify.release = ice_irq_affinity_release; 1196 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1197 1198 /* assign the mask for this irq */ 1199 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1200 } 1201 1202 vsi->irqs_ready = true; 1203 return 0; 1204 1205 free_q_irqs: 1206 while (vector) { 1207 vector--; 1208 irq_num = pf->msix_entries[base + vector].vector, 1209 irq_set_affinity_notifier(irq_num, NULL); 1210 irq_set_affinity_hint(irq_num, NULL); 1211 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1212 } 1213 return err; 1214 } 1215 1216 /** 1217 * ice_ena_misc_vector - enable the non-queue interrupts 1218 * @pf: board private structure 1219 */ 1220 static void ice_ena_misc_vector(struct ice_pf *pf) 1221 { 1222 struct ice_hw *hw = &pf->hw; 1223 u32 val; 1224 1225 /* clear things first */ 1226 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1227 rd32(hw, PFINT_OICR); /* read to clear */ 1228 1229 val = (PFINT_OICR_ECC_ERR_M | 1230 PFINT_OICR_MAL_DETECT_M | 1231 PFINT_OICR_GRST_M | 1232 PFINT_OICR_PCI_EXCEPTION_M | 1233 PFINT_OICR_VFLR_M | 1234 PFINT_OICR_HMC_ERR_M | 1235 PFINT_OICR_PE_CRITERR_M); 1236 1237 wr32(hw, PFINT_OICR_ENA, val); 1238 1239 /* SW_ITR_IDX = 0, but don't change INTENA */ 1240 wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx), 1241 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1242 } 1243 1244 /** 1245 * ice_misc_intr - misc interrupt handler 1246 * @irq: interrupt number 1247 * @data: pointer to a q_vector 1248 */ 1249 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1250 { 1251 struct ice_pf *pf = (struct ice_pf *)data; 1252 struct ice_hw *hw = &pf->hw; 1253 irqreturn_t ret = IRQ_NONE; 1254 u32 oicr, ena_mask; 1255 1256 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1257 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1258 1259 oicr = rd32(hw, PFINT_OICR); 1260 ena_mask = rd32(hw, PFINT_OICR_ENA); 1261 1262 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1263 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 1264 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1265 } 1266 if (oicr & PFINT_OICR_VFLR_M) { 1267 ena_mask &= ~PFINT_OICR_VFLR_M; 1268 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 1269 } 1270 1271 if (oicr & PFINT_OICR_GRST_M) { 1272 u32 reset; 1273 1274 /* we have a reset warning */ 1275 ena_mask &= ~PFINT_OICR_GRST_M; 1276 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1277 GLGEN_RSTAT_RESET_TYPE_S; 1278 1279 if (reset == ICE_RESET_CORER) 1280 pf->corer_count++; 1281 else if (reset == ICE_RESET_GLOBR) 1282 pf->globr_count++; 1283 else if (reset == ICE_RESET_EMPR) 1284 pf->empr_count++; 1285 else 1286 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 1287 reset); 1288 1289 /* If a reset cycle isn't already in progress, we set a bit in 1290 * pf->state so that the service task can start a reset/rebuild. 1291 * We also make note of which reset happened so that peer 1292 * devices/drivers can be informed. 1293 */ 1294 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 1295 if (reset == ICE_RESET_CORER) 1296 set_bit(__ICE_CORER_RECV, pf->state); 1297 else if (reset == ICE_RESET_GLOBR) 1298 set_bit(__ICE_GLOBR_RECV, pf->state); 1299 else 1300 set_bit(__ICE_EMPR_RECV, pf->state); 1301 1302 /* There are couple of different bits at play here. 1303 * hw->reset_ongoing indicates whether the hardware is 1304 * in reset. This is set to true when a reset interrupt 1305 * is received and set back to false after the driver 1306 * has determined that the hardware is out of reset. 1307 * 1308 * __ICE_RESET_OICR_RECV in pf->state indicates 1309 * that a post reset rebuild is required before the 1310 * driver is operational again. This is set above. 1311 * 1312 * As this is the start of the reset/rebuild cycle, set 1313 * both to indicate that. 1314 */ 1315 hw->reset_ongoing = true; 1316 } 1317 } 1318 1319 if (oicr & PFINT_OICR_HMC_ERR_M) { 1320 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 1321 dev_dbg(&pf->pdev->dev, 1322 "HMC Error interrupt - info 0x%x, data 0x%x\n", 1323 rd32(hw, PFHMC_ERRORINFO), 1324 rd32(hw, PFHMC_ERRORDATA)); 1325 } 1326 1327 /* Report and mask off any remaining unexpected interrupts */ 1328 oicr &= ena_mask; 1329 if (oicr) { 1330 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 1331 oicr); 1332 /* If a critical error is pending there is no choice but to 1333 * reset the device. 1334 */ 1335 if (oicr & (PFINT_OICR_PE_CRITERR_M | 1336 PFINT_OICR_PCI_EXCEPTION_M | 1337 PFINT_OICR_ECC_ERR_M)) { 1338 set_bit(__ICE_PFR_REQ, pf->state); 1339 ice_service_task_schedule(pf); 1340 } 1341 ena_mask &= ~oicr; 1342 } 1343 ret = IRQ_HANDLED; 1344 1345 /* re-enable interrupt causes that are not handled during this pass */ 1346 wr32(hw, PFINT_OICR_ENA, ena_mask); 1347 if (!test_bit(__ICE_DOWN, pf->state)) { 1348 ice_service_task_schedule(pf); 1349 ice_irq_dynamic_ena(hw, NULL, NULL); 1350 } 1351 1352 return ret; 1353 } 1354 1355 /** 1356 * ice_free_irq_msix_misc - Unroll misc vector setup 1357 * @pf: board private structure 1358 */ 1359 static void ice_free_irq_msix_misc(struct ice_pf *pf) 1360 { 1361 /* disable OICR interrupt */ 1362 wr32(&pf->hw, PFINT_OICR_ENA, 0); 1363 ice_flush(&pf->hw); 1364 1365 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 1366 synchronize_irq(pf->msix_entries[pf->sw_oicr_idx].vector); 1367 devm_free_irq(&pf->pdev->dev, 1368 pf->msix_entries[pf->sw_oicr_idx].vector, pf); 1369 } 1370 1371 pf->num_avail_sw_msix += 1; 1372 ice_free_res(pf->sw_irq_tracker, pf->sw_oicr_idx, ICE_RES_MISC_VEC_ID); 1373 pf->num_avail_hw_msix += 1; 1374 ice_free_res(pf->hw_irq_tracker, pf->hw_oicr_idx, ICE_RES_MISC_VEC_ID); 1375 } 1376 1377 /** 1378 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 1379 * @pf: board private structure 1380 * 1381 * This sets up the handler for MSIX 0, which is used to manage the 1382 * non-queue interrupts, e.g. AdminQ and errors. This is not used 1383 * when in MSI or Legacy interrupt mode. 1384 */ 1385 static int ice_req_irq_msix_misc(struct ice_pf *pf) 1386 { 1387 struct ice_hw *hw = &pf->hw; 1388 int oicr_idx, err = 0; 1389 u8 itr_gran; 1390 u32 val; 1391 1392 if (!pf->int_name[0]) 1393 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 1394 dev_driver_string(&pf->pdev->dev), 1395 dev_name(&pf->pdev->dev)); 1396 1397 /* Do not request IRQ but do enable OICR interrupt since settings are 1398 * lost during reset. Note that this function is called only during 1399 * rebuild path and not while reset is in progress. 1400 */ 1401 if (ice_is_reset_in_progress(pf->state)) 1402 goto skip_req_irq; 1403 1404 /* reserve one vector in sw_irq_tracker for misc interrupts */ 1405 oicr_idx = ice_get_res(pf, pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1406 if (oicr_idx < 0) 1407 return oicr_idx; 1408 1409 pf->num_avail_sw_msix -= 1; 1410 pf->sw_oicr_idx = oicr_idx; 1411 1412 /* reserve one vector in hw_irq_tracker for misc interrupts */ 1413 oicr_idx = ice_get_res(pf, pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1414 if (oicr_idx < 0) { 1415 ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1416 pf->num_avail_sw_msix += 1; 1417 return oicr_idx; 1418 } 1419 pf->num_avail_hw_msix -= 1; 1420 pf->hw_oicr_idx = oicr_idx; 1421 1422 err = devm_request_irq(&pf->pdev->dev, 1423 pf->msix_entries[pf->sw_oicr_idx].vector, 1424 ice_misc_intr, 0, pf->int_name, pf); 1425 if (err) { 1426 dev_err(&pf->pdev->dev, 1427 "devm_request_irq for %s failed: %d\n", 1428 pf->int_name, err); 1429 ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1430 pf->num_avail_sw_msix += 1; 1431 ice_free_res(pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1432 pf->num_avail_hw_msix += 1; 1433 return err; 1434 } 1435 1436 skip_req_irq: 1437 ice_ena_misc_vector(pf); 1438 1439 val = ((pf->hw_oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 1440 PFINT_OICR_CTL_CAUSE_ENA_M); 1441 wr32(hw, PFINT_OICR_CTL, val); 1442 1443 /* This enables Admin queue Interrupt causes */ 1444 val = ((pf->hw_oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) | 1445 PFINT_FW_CTL_CAUSE_ENA_M); 1446 wr32(hw, PFINT_FW_CTL, val); 1447 1448 /* This enables Mailbox queue Interrupt causes */ 1449 val = ((pf->hw_oicr_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 1450 PFINT_MBX_CTL_CAUSE_ENA_M); 1451 wr32(hw, PFINT_MBX_CTL, val); 1452 1453 itr_gran = hw->itr_gran; 1454 1455 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->hw_oicr_idx), 1456 ITR_TO_REG(ICE_ITR_8K, itr_gran)); 1457 1458 ice_flush(hw); 1459 ice_irq_dynamic_ena(hw, NULL, NULL); 1460 1461 return 0; 1462 } 1463 1464 /** 1465 * ice_napi_del - Remove NAPI handler for the VSI 1466 * @vsi: VSI for which NAPI handler is to be removed 1467 */ 1468 void ice_napi_del(struct ice_vsi *vsi) 1469 { 1470 int v_idx; 1471 1472 if (!vsi->netdev) 1473 return; 1474 1475 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1476 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 1477 } 1478 1479 /** 1480 * ice_napi_add - register NAPI handler for the VSI 1481 * @vsi: VSI for which NAPI handler is to be registered 1482 * 1483 * This function is only called in the driver's load path. Registering the NAPI 1484 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 1485 * reset/rebuild, etc.) 1486 */ 1487 static void ice_napi_add(struct ice_vsi *vsi) 1488 { 1489 int v_idx; 1490 1491 if (!vsi->netdev) 1492 return; 1493 1494 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 1495 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 1496 ice_napi_poll, NAPI_POLL_WEIGHT); 1497 } 1498 1499 /** 1500 * ice_cfg_netdev - Allocate, configure and register a netdev 1501 * @vsi: the VSI associated with the new netdev 1502 * 1503 * Returns 0 on success, negative value on failure 1504 */ 1505 static int ice_cfg_netdev(struct ice_vsi *vsi) 1506 { 1507 netdev_features_t csumo_features; 1508 netdev_features_t vlano_features; 1509 netdev_features_t dflt_features; 1510 netdev_features_t tso_features; 1511 struct ice_netdev_priv *np; 1512 struct net_device *netdev; 1513 u8 mac_addr[ETH_ALEN]; 1514 int err; 1515 1516 netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv), 1517 vsi->alloc_txq, vsi->alloc_rxq); 1518 if (!netdev) 1519 return -ENOMEM; 1520 1521 vsi->netdev = netdev; 1522 np = netdev_priv(netdev); 1523 np->vsi = vsi; 1524 1525 dflt_features = NETIF_F_SG | 1526 NETIF_F_HIGHDMA | 1527 NETIF_F_RXHASH; 1528 1529 csumo_features = NETIF_F_RXCSUM | 1530 NETIF_F_IP_CSUM | 1531 NETIF_F_IPV6_CSUM; 1532 1533 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 1534 NETIF_F_HW_VLAN_CTAG_TX | 1535 NETIF_F_HW_VLAN_CTAG_RX; 1536 1537 tso_features = NETIF_F_TSO; 1538 1539 /* set features that user can change */ 1540 netdev->hw_features = dflt_features | csumo_features | 1541 vlano_features | tso_features; 1542 1543 /* enable features */ 1544 netdev->features |= netdev->hw_features; 1545 /* encap and VLAN devices inherit default, csumo and tso features */ 1546 netdev->hw_enc_features |= dflt_features | csumo_features | 1547 tso_features; 1548 netdev->vlan_features |= dflt_features | csumo_features | 1549 tso_features; 1550 1551 if (vsi->type == ICE_VSI_PF) { 1552 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev); 1553 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 1554 1555 ether_addr_copy(netdev->dev_addr, mac_addr); 1556 ether_addr_copy(netdev->perm_addr, mac_addr); 1557 } 1558 1559 netdev->priv_flags |= IFF_UNICAST_FLT; 1560 1561 /* assign netdev_ops */ 1562 netdev->netdev_ops = &ice_netdev_ops; 1563 1564 /* setup watchdog timeout value to be 5 second */ 1565 netdev->watchdog_timeo = 5 * HZ; 1566 1567 ice_set_ethtool_ops(netdev); 1568 1569 netdev->min_mtu = ETH_MIN_MTU; 1570 netdev->max_mtu = ICE_MAX_MTU; 1571 1572 err = register_netdev(vsi->netdev); 1573 if (err) 1574 return err; 1575 1576 netif_carrier_off(vsi->netdev); 1577 1578 /* make sure transmit queues start off as stopped */ 1579 netif_tx_stop_all_queues(vsi->netdev); 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * ice_fill_rss_lut - Fill the RSS lookup table with default values 1586 * @lut: Lookup table 1587 * @rss_table_size: Lookup table size 1588 * @rss_size: Range of queue number for hashing 1589 */ 1590 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 1591 { 1592 u16 i; 1593 1594 for (i = 0; i < rss_table_size; i++) 1595 lut[i] = i % rss_size; 1596 } 1597 1598 /** 1599 * ice_pf_vsi_setup - Set up a PF VSI 1600 * @pf: board private structure 1601 * @pi: pointer to the port_info instance 1602 * 1603 * Returns pointer to the successfully allocated VSI sw struct on success, 1604 * otherwise returns NULL on failure. 1605 */ 1606 static struct ice_vsi * 1607 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 1608 { 1609 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 1610 } 1611 1612 /** 1613 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload 1614 * @netdev: network interface to be adjusted 1615 * @proto: unused protocol 1616 * @vid: vlan id to be added 1617 * 1618 * net_device_ops implementation for adding vlan ids 1619 */ 1620 static int ice_vlan_rx_add_vid(struct net_device *netdev, 1621 __always_unused __be16 proto, u16 vid) 1622 { 1623 struct ice_netdev_priv *np = netdev_priv(netdev); 1624 struct ice_vsi *vsi = np->vsi; 1625 1626 if (vid >= VLAN_N_VID) { 1627 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 1628 vid, VLAN_N_VID); 1629 return -EINVAL; 1630 } 1631 1632 if (vsi->info.pvid) 1633 return -EINVAL; 1634 1635 /* Enable VLAN pruning when VLAN 0 is added */ 1636 if (unlikely(!vid)) { 1637 int ret = ice_cfg_vlan_pruning(vsi, true); 1638 1639 if (ret) 1640 return ret; 1641 } 1642 1643 /* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is 1644 * needed to continue allowing all untagged packets since VLAN prune 1645 * list is applied to all packets by the switch 1646 */ 1647 return ice_vsi_add_vlan(vsi, vid); 1648 } 1649 1650 /** 1651 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 1652 * @netdev: network interface to be adjusted 1653 * @proto: unused protocol 1654 * @vid: vlan id to be removed 1655 * 1656 * net_device_ops implementation for removing vlan ids 1657 */ 1658 static int ice_vlan_rx_kill_vid(struct net_device *netdev, 1659 __always_unused __be16 proto, u16 vid) 1660 { 1661 struct ice_netdev_priv *np = netdev_priv(netdev); 1662 struct ice_vsi *vsi = np->vsi; 1663 int status; 1664 1665 if (vsi->info.pvid) 1666 return -EINVAL; 1667 1668 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 1669 * information 1670 */ 1671 status = ice_vsi_kill_vlan(vsi, vid); 1672 if (status) 1673 return status; 1674 1675 /* Disable VLAN pruning when VLAN 0 is removed */ 1676 if (unlikely(!vid)) 1677 status = ice_cfg_vlan_pruning(vsi, false); 1678 1679 return status; 1680 } 1681 1682 /** 1683 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 1684 * @pf: board private structure 1685 * 1686 * Returns 0 on success, negative value on failure 1687 */ 1688 static int ice_setup_pf_sw(struct ice_pf *pf) 1689 { 1690 LIST_HEAD(tmp_add_list); 1691 u8 broadcast[ETH_ALEN]; 1692 struct ice_vsi *vsi; 1693 int status = 0; 1694 1695 if (ice_is_reset_in_progress(pf->state)) 1696 return -EBUSY; 1697 1698 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 1699 if (!vsi) { 1700 status = -ENOMEM; 1701 goto unroll_vsi_setup; 1702 } 1703 1704 status = ice_cfg_netdev(vsi); 1705 if (status) { 1706 status = -ENODEV; 1707 goto unroll_vsi_setup; 1708 } 1709 1710 /* registering the NAPI handler requires both the queues and 1711 * netdev to be created, which are done in ice_pf_vsi_setup() 1712 * and ice_cfg_netdev() respectively 1713 */ 1714 ice_napi_add(vsi); 1715 1716 /* To add a MAC filter, first add the MAC to a list and then 1717 * pass the list to ice_add_mac. 1718 */ 1719 1720 /* Add a unicast MAC filter so the VSI can get its packets */ 1721 status = ice_add_mac_to_list(vsi, &tmp_add_list, 1722 vsi->port_info->mac.perm_addr); 1723 if (status) 1724 goto unroll_napi_add; 1725 1726 /* VSI needs to receive broadcast traffic, so add the broadcast 1727 * MAC address to the list as well. 1728 */ 1729 eth_broadcast_addr(broadcast); 1730 status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); 1731 if (status) 1732 goto free_mac_list; 1733 1734 /* program MAC filters for entries in tmp_add_list */ 1735 status = ice_add_mac(&pf->hw, &tmp_add_list); 1736 if (status) { 1737 dev_err(&pf->pdev->dev, "Could not add MAC filters\n"); 1738 status = -ENOMEM; 1739 goto free_mac_list; 1740 } 1741 1742 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1743 return status; 1744 1745 free_mac_list: 1746 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1747 1748 unroll_napi_add: 1749 if (vsi) { 1750 ice_napi_del(vsi); 1751 if (vsi->netdev) { 1752 if (vsi->netdev->reg_state == NETREG_REGISTERED) 1753 unregister_netdev(vsi->netdev); 1754 free_netdev(vsi->netdev); 1755 vsi->netdev = NULL; 1756 } 1757 } 1758 1759 unroll_vsi_setup: 1760 if (vsi) { 1761 ice_vsi_free_q_vectors(vsi); 1762 ice_vsi_delete(vsi); 1763 ice_vsi_put_qs(vsi); 1764 pf->q_left_tx += vsi->alloc_txq; 1765 pf->q_left_rx += vsi->alloc_rxq; 1766 ice_vsi_clear(vsi); 1767 } 1768 return status; 1769 } 1770 1771 /** 1772 * ice_determine_q_usage - Calculate queue distribution 1773 * @pf: board private structure 1774 * 1775 * Return -ENOMEM if we don't get enough queues for all ports 1776 */ 1777 static void ice_determine_q_usage(struct ice_pf *pf) 1778 { 1779 u16 q_left_tx, q_left_rx; 1780 1781 q_left_tx = pf->hw.func_caps.common_cap.num_txq; 1782 q_left_rx = pf->hw.func_caps.common_cap.num_rxq; 1783 1784 pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus()); 1785 1786 /* only 1 rx queue unless RSS is enabled */ 1787 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1788 pf->num_lan_rx = 1; 1789 else 1790 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus()); 1791 1792 pf->q_left_tx = q_left_tx - pf->num_lan_tx; 1793 pf->q_left_rx = q_left_rx - pf->num_lan_rx; 1794 } 1795 1796 /** 1797 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 1798 * @pf: board private structure to initialize 1799 */ 1800 static void ice_deinit_pf(struct ice_pf *pf) 1801 { 1802 ice_service_task_stop(pf); 1803 mutex_destroy(&pf->sw_mutex); 1804 mutex_destroy(&pf->avail_q_mutex); 1805 } 1806 1807 /** 1808 * ice_init_pf - Initialize general software structures (struct ice_pf) 1809 * @pf: board private structure to initialize 1810 */ 1811 static void ice_init_pf(struct ice_pf *pf) 1812 { 1813 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS); 1814 set_bit(ICE_FLAG_MSIX_ENA, pf->flags); 1815 #ifdef CONFIG_PCI_IOV 1816 if (pf->hw.func_caps.common_cap.sr_iov_1_1) { 1817 struct ice_hw *hw = &pf->hw; 1818 1819 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 1820 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs, 1821 ICE_MAX_VF_COUNT); 1822 } 1823 #endif /* CONFIG_PCI_IOV */ 1824 1825 mutex_init(&pf->sw_mutex); 1826 mutex_init(&pf->avail_q_mutex); 1827 1828 /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */ 1829 mutex_lock(&pf->avail_q_mutex); 1830 bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS); 1831 bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS); 1832 mutex_unlock(&pf->avail_q_mutex); 1833 1834 if (pf->hw.func_caps.common_cap.rss_table_size) 1835 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 1836 1837 /* setup service timer and periodic service task */ 1838 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 1839 pf->serv_tmr_period = HZ; 1840 INIT_WORK(&pf->serv_task, ice_service_task); 1841 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1842 } 1843 1844 /** 1845 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 1846 * @pf: board private structure 1847 * 1848 * compute the number of MSIX vectors required (v_budget) and request from 1849 * the OS. Return the number of vectors reserved or negative on failure 1850 */ 1851 static int ice_ena_msix_range(struct ice_pf *pf) 1852 { 1853 int v_left, v_actual, v_budget = 0; 1854 int needed, err, i; 1855 1856 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 1857 1858 /* reserve one vector for miscellaneous handler */ 1859 needed = 1; 1860 v_budget += needed; 1861 v_left -= needed; 1862 1863 /* reserve vectors for LAN traffic */ 1864 pf->num_lan_msix = min_t(int, num_online_cpus(), v_left); 1865 v_budget += pf->num_lan_msix; 1866 v_left -= pf->num_lan_msix; 1867 1868 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 1869 sizeof(struct msix_entry), GFP_KERNEL); 1870 1871 if (!pf->msix_entries) { 1872 err = -ENOMEM; 1873 goto exit_err; 1874 } 1875 1876 for (i = 0; i < v_budget; i++) 1877 pf->msix_entries[i].entry = i; 1878 1879 /* actually reserve the vectors */ 1880 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 1881 ICE_MIN_MSIX, v_budget); 1882 1883 if (v_actual < 0) { 1884 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 1885 err = v_actual; 1886 goto msix_err; 1887 } 1888 1889 if (v_actual < v_budget) { 1890 dev_warn(&pf->pdev->dev, 1891 "not enough vectors. requested = %d, obtained = %d\n", 1892 v_budget, v_actual); 1893 if (v_actual >= (pf->num_lan_msix + 1)) { 1894 pf->num_avail_sw_msix = v_actual - 1895 (pf->num_lan_msix + 1); 1896 } else if (v_actual >= 2) { 1897 pf->num_lan_msix = 1; 1898 pf->num_avail_sw_msix = v_actual - 2; 1899 } else { 1900 pci_disable_msix(pf->pdev); 1901 err = -ERANGE; 1902 goto msix_err; 1903 } 1904 } 1905 1906 return v_actual; 1907 1908 msix_err: 1909 devm_kfree(&pf->pdev->dev, pf->msix_entries); 1910 goto exit_err; 1911 1912 exit_err: 1913 pf->num_lan_msix = 0; 1914 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 1915 return err; 1916 } 1917 1918 /** 1919 * ice_dis_msix - Disable MSI-X interrupt setup in OS 1920 * @pf: board private structure 1921 */ 1922 static void ice_dis_msix(struct ice_pf *pf) 1923 { 1924 pci_disable_msix(pf->pdev); 1925 devm_kfree(&pf->pdev->dev, pf->msix_entries); 1926 pf->msix_entries = NULL; 1927 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags); 1928 } 1929 1930 /** 1931 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 1932 * @pf: board private structure 1933 */ 1934 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 1935 { 1936 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1937 ice_dis_msix(pf); 1938 1939 if (pf->sw_irq_tracker) { 1940 devm_kfree(&pf->pdev->dev, pf->sw_irq_tracker); 1941 pf->sw_irq_tracker = NULL; 1942 } 1943 1944 if (pf->hw_irq_tracker) { 1945 devm_kfree(&pf->pdev->dev, pf->hw_irq_tracker); 1946 pf->hw_irq_tracker = NULL; 1947 } 1948 } 1949 1950 /** 1951 * ice_init_interrupt_scheme - Determine proper interrupt scheme 1952 * @pf: board private structure to initialize 1953 */ 1954 static int ice_init_interrupt_scheme(struct ice_pf *pf) 1955 { 1956 int vectors = 0, hw_vectors = 0; 1957 ssize_t size; 1958 1959 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 1960 vectors = ice_ena_msix_range(pf); 1961 else 1962 return -ENODEV; 1963 1964 if (vectors < 0) 1965 return vectors; 1966 1967 /* set up vector assignment tracking */ 1968 size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors); 1969 1970 pf->sw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL); 1971 if (!pf->sw_irq_tracker) { 1972 ice_dis_msix(pf); 1973 return -ENOMEM; 1974 } 1975 1976 /* populate SW interrupts pool with number of OS granted IRQs. */ 1977 pf->num_avail_sw_msix = vectors; 1978 pf->sw_irq_tracker->num_entries = vectors; 1979 1980 /* set up HW vector assignment tracking */ 1981 hw_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 1982 size = sizeof(struct ice_res_tracker) + (sizeof(u16) * hw_vectors); 1983 1984 pf->hw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL); 1985 if (!pf->hw_irq_tracker) { 1986 ice_clear_interrupt_scheme(pf); 1987 return -ENOMEM; 1988 } 1989 1990 /* populate HW interrupts pool with number of HW supported irqs. */ 1991 pf->num_avail_hw_msix = hw_vectors; 1992 pf->hw_irq_tracker->num_entries = hw_vectors; 1993 1994 return 0; 1995 } 1996 1997 /** 1998 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 1999 * @pf: pointer to the PF structure 2000 * 2001 * There is no error returned here because the driver should be able to handle 2002 * 128 Byte cache lines, so we only print a warning in case issues are seen, 2003 * specifically with Tx. 2004 */ 2005 static void ice_verify_cacheline_size(struct ice_pf *pf) 2006 { 2007 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 2008 dev_warn(&pf->pdev->dev, 2009 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 2010 ICE_CACHE_LINE_BYTES); 2011 } 2012 2013 /** 2014 * ice_probe - Device initialization routine 2015 * @pdev: PCI device information struct 2016 * @ent: entry in ice_pci_tbl 2017 * 2018 * Returns 0 on success, negative on failure 2019 */ 2020 static int ice_probe(struct pci_dev *pdev, 2021 const struct pci_device_id __always_unused *ent) 2022 { 2023 struct ice_pf *pf; 2024 struct ice_hw *hw; 2025 int err; 2026 2027 /* this driver uses devres, see Documentation/driver-model/devres.txt */ 2028 err = pcim_enable_device(pdev); 2029 if (err) 2030 return err; 2031 2032 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 2033 if (err) { 2034 dev_err(&pdev->dev, "BAR0 I/O map error %d\n", err); 2035 return err; 2036 } 2037 2038 pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL); 2039 if (!pf) 2040 return -ENOMEM; 2041 2042 /* set up for high or low dma */ 2043 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2044 if (err) 2045 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2046 if (err) { 2047 dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); 2048 return err; 2049 } 2050 2051 pci_enable_pcie_error_reporting(pdev); 2052 pci_set_master(pdev); 2053 2054 pf->pdev = pdev; 2055 pci_set_drvdata(pdev, pf); 2056 set_bit(__ICE_DOWN, pf->state); 2057 /* Disable service task until DOWN bit is cleared */ 2058 set_bit(__ICE_SERVICE_DIS, pf->state); 2059 2060 hw = &pf->hw; 2061 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 2062 hw->back = pf; 2063 hw->vendor_id = pdev->vendor; 2064 hw->device_id = pdev->device; 2065 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 2066 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2067 hw->subsystem_device_id = pdev->subsystem_device; 2068 hw->bus.device = PCI_SLOT(pdev->devfn); 2069 hw->bus.func = PCI_FUNC(pdev->devfn); 2070 ice_set_ctrlq_len(hw); 2071 2072 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 2073 2074 #ifndef CONFIG_DYNAMIC_DEBUG 2075 if (debug < -1) 2076 hw->debug_mask = debug; 2077 #endif 2078 2079 err = ice_init_hw(hw); 2080 if (err) { 2081 dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err); 2082 err = -EIO; 2083 goto err_exit_unroll; 2084 } 2085 2086 dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n", 2087 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, 2088 hw->api_maj_ver, hw->api_min_ver); 2089 2090 ice_init_pf(pf); 2091 2092 ice_determine_q_usage(pf); 2093 2094 pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC, 2095 hw->func_caps.guaranteed_num_vsi); 2096 if (!pf->num_alloc_vsi) { 2097 err = -EIO; 2098 goto err_init_pf_unroll; 2099 } 2100 2101 pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi, 2102 sizeof(struct ice_vsi *), GFP_KERNEL); 2103 if (!pf->vsi) { 2104 err = -ENOMEM; 2105 goto err_init_pf_unroll; 2106 } 2107 2108 err = ice_init_interrupt_scheme(pf); 2109 if (err) { 2110 dev_err(&pdev->dev, 2111 "ice_init_interrupt_scheme failed: %d\n", err); 2112 err = -EIO; 2113 goto err_init_interrupt_unroll; 2114 } 2115 2116 /* Driver is mostly up */ 2117 clear_bit(__ICE_DOWN, pf->state); 2118 2119 /* In case of MSIX we are going to setup the misc vector right here 2120 * to handle admin queue events etc. In case of legacy and MSI 2121 * the misc functionality and queue processing is combined in 2122 * the same vector and that gets setup at open. 2123 */ 2124 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 2125 err = ice_req_irq_msix_misc(pf); 2126 if (err) { 2127 dev_err(&pdev->dev, 2128 "setup of misc vector failed: %d\n", err); 2129 goto err_init_interrupt_unroll; 2130 } 2131 } 2132 2133 /* create switch struct for the switch element created by FW on boot */ 2134 pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw), 2135 GFP_KERNEL); 2136 if (!pf->first_sw) { 2137 err = -ENOMEM; 2138 goto err_msix_misc_unroll; 2139 } 2140 2141 if (hw->evb_veb) 2142 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 2143 else 2144 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 2145 2146 pf->first_sw->pf = pf; 2147 2148 /* record the sw_id available for later use */ 2149 pf->first_sw->sw_id = hw->port_info->sw_id; 2150 2151 err = ice_setup_pf_sw(pf); 2152 if (err) { 2153 dev_err(&pdev->dev, 2154 "probe failed due to setup pf switch:%d\n", err); 2155 goto err_alloc_sw_unroll; 2156 } 2157 2158 clear_bit(__ICE_SERVICE_DIS, pf->state); 2159 2160 /* since everything is good, start the service timer */ 2161 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2162 2163 ice_verify_cacheline_size(pf); 2164 2165 return 0; 2166 2167 err_alloc_sw_unroll: 2168 set_bit(__ICE_SERVICE_DIS, pf->state); 2169 set_bit(__ICE_DOWN, pf->state); 2170 devm_kfree(&pf->pdev->dev, pf->first_sw); 2171 err_msix_misc_unroll: 2172 ice_free_irq_msix_misc(pf); 2173 err_init_interrupt_unroll: 2174 ice_clear_interrupt_scheme(pf); 2175 devm_kfree(&pdev->dev, pf->vsi); 2176 err_init_pf_unroll: 2177 ice_deinit_pf(pf); 2178 ice_deinit_hw(hw); 2179 err_exit_unroll: 2180 pci_disable_pcie_error_reporting(pdev); 2181 return err; 2182 } 2183 2184 /** 2185 * ice_remove - Device removal routine 2186 * @pdev: PCI device information struct 2187 */ 2188 static void ice_remove(struct pci_dev *pdev) 2189 { 2190 struct ice_pf *pf = pci_get_drvdata(pdev); 2191 int i; 2192 2193 if (!pf) 2194 return; 2195 2196 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 2197 if (!ice_is_reset_in_progress(pf->state)) 2198 break; 2199 msleep(100); 2200 } 2201 2202 set_bit(__ICE_DOWN, pf->state); 2203 ice_service_task_stop(pf); 2204 2205 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 2206 ice_free_vfs(pf); 2207 ice_vsi_release_all(pf); 2208 ice_free_irq_msix_misc(pf); 2209 ice_for_each_vsi(pf, i) { 2210 if (!pf->vsi[i]) 2211 continue; 2212 ice_vsi_free_q_vectors(pf->vsi[i]); 2213 } 2214 ice_clear_interrupt_scheme(pf); 2215 ice_deinit_pf(pf); 2216 ice_deinit_hw(&pf->hw); 2217 pci_disable_pcie_error_reporting(pdev); 2218 } 2219 2220 /* ice_pci_tbl - PCI Device ID Table 2221 * 2222 * Wildcard entries (PCI_ANY_ID) should come last 2223 * Last entry must be all 0s 2224 * 2225 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 2226 * Class, Class Mask, private data (not used) } 2227 */ 2228 static const struct pci_device_id ice_pci_tbl[] = { 2229 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 2230 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 2231 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 2232 /* required last entry */ 2233 { 0, } 2234 }; 2235 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 2236 2237 static struct pci_driver ice_driver = { 2238 .name = KBUILD_MODNAME, 2239 .id_table = ice_pci_tbl, 2240 .probe = ice_probe, 2241 .remove = ice_remove, 2242 .sriov_configure = ice_sriov_configure, 2243 }; 2244 2245 /** 2246 * ice_module_init - Driver registration routine 2247 * 2248 * ice_module_init is the first routine called when the driver is 2249 * loaded. All it does is register with the PCI subsystem. 2250 */ 2251 static int __init ice_module_init(void) 2252 { 2253 int status; 2254 2255 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 2256 pr_info("%s\n", ice_copyright); 2257 2258 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 2259 if (!ice_wq) { 2260 pr_err("Failed to create workqueue\n"); 2261 return -ENOMEM; 2262 } 2263 2264 status = pci_register_driver(&ice_driver); 2265 if (status) { 2266 pr_err("failed to register pci driver, err %d\n", status); 2267 destroy_workqueue(ice_wq); 2268 } 2269 2270 return status; 2271 } 2272 module_init(ice_module_init); 2273 2274 /** 2275 * ice_module_exit - Driver exit cleanup routine 2276 * 2277 * ice_module_exit is called just before the driver is removed 2278 * from memory. 2279 */ 2280 static void __exit ice_module_exit(void) 2281 { 2282 pci_unregister_driver(&ice_driver); 2283 destroy_workqueue(ice_wq); 2284 pr_info("module unloaded\n"); 2285 } 2286 module_exit(ice_module_exit); 2287 2288 /** 2289 * ice_set_mac_address - NDO callback to set mac address 2290 * @netdev: network interface device structure 2291 * @pi: pointer to an address structure 2292 * 2293 * Returns 0 on success, negative on failure 2294 */ 2295 static int ice_set_mac_address(struct net_device *netdev, void *pi) 2296 { 2297 struct ice_netdev_priv *np = netdev_priv(netdev); 2298 struct ice_vsi *vsi = np->vsi; 2299 struct ice_pf *pf = vsi->back; 2300 struct ice_hw *hw = &pf->hw; 2301 struct sockaddr *addr = pi; 2302 enum ice_status status; 2303 LIST_HEAD(a_mac_list); 2304 LIST_HEAD(r_mac_list); 2305 u8 flags = 0; 2306 int err; 2307 u8 *mac; 2308 2309 mac = (u8 *)addr->sa_data; 2310 2311 if (!is_valid_ether_addr(mac)) 2312 return -EADDRNOTAVAIL; 2313 2314 if (ether_addr_equal(netdev->dev_addr, mac)) { 2315 netdev_warn(netdev, "already using mac %pM\n", mac); 2316 return 0; 2317 } 2318 2319 if (test_bit(__ICE_DOWN, pf->state) || 2320 ice_is_reset_in_progress(pf->state)) { 2321 netdev_err(netdev, "can't set mac %pM. device not ready\n", 2322 mac); 2323 return -EBUSY; 2324 } 2325 2326 /* When we change the mac address we also have to change the mac address 2327 * based filter rules that were created previously for the old mac 2328 * address. So first, we remove the old filter rule using ice_remove_mac 2329 * and then create a new filter rule using ice_add_mac. Note that for 2330 * both these operations, we first need to form a "list" of mac 2331 * addresses (even though in this case, we have only 1 mac address to be 2332 * added/removed) and this done using ice_add_mac_to_list. Depending on 2333 * the ensuing operation this "list" of mac addresses is either to be 2334 * added or removed from the filter. 2335 */ 2336 err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr); 2337 if (err) { 2338 err = -EADDRNOTAVAIL; 2339 goto free_lists; 2340 } 2341 2342 status = ice_remove_mac(hw, &r_mac_list); 2343 if (status) { 2344 err = -EADDRNOTAVAIL; 2345 goto free_lists; 2346 } 2347 2348 err = ice_add_mac_to_list(vsi, &a_mac_list, mac); 2349 if (err) { 2350 err = -EADDRNOTAVAIL; 2351 goto free_lists; 2352 } 2353 2354 status = ice_add_mac(hw, &a_mac_list); 2355 if (status) { 2356 err = -EADDRNOTAVAIL; 2357 goto free_lists; 2358 } 2359 2360 free_lists: 2361 /* free list entries */ 2362 ice_free_fltr_list(&pf->pdev->dev, &r_mac_list); 2363 ice_free_fltr_list(&pf->pdev->dev, &a_mac_list); 2364 2365 if (err) { 2366 netdev_err(netdev, "can't set mac %pM. filter update failed\n", 2367 mac); 2368 return err; 2369 } 2370 2371 /* change the netdev's mac address */ 2372 memcpy(netdev->dev_addr, mac, netdev->addr_len); 2373 netdev_dbg(vsi->netdev, "updated mac address to %pM\n", 2374 netdev->dev_addr); 2375 2376 /* write new mac address to the firmware */ 2377 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 2378 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 2379 if (status) { 2380 netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n", 2381 mac); 2382 } 2383 return 0; 2384 } 2385 2386 /** 2387 * ice_set_rx_mode - NDO callback to set the netdev filters 2388 * @netdev: network interface device structure 2389 */ 2390 static void ice_set_rx_mode(struct net_device *netdev) 2391 { 2392 struct ice_netdev_priv *np = netdev_priv(netdev); 2393 struct ice_vsi *vsi = np->vsi; 2394 2395 if (!vsi) 2396 return; 2397 2398 /* Set the flags to synchronize filters 2399 * ndo_set_rx_mode may be triggered even without a change in netdev 2400 * flags 2401 */ 2402 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 2403 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 2404 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 2405 2406 /* schedule our worker thread which will take care of 2407 * applying the new filter changes 2408 */ 2409 ice_service_task_schedule(vsi->back); 2410 } 2411 2412 /** 2413 * ice_fdb_add - add an entry to the hardware database 2414 * @ndm: the input from the stack 2415 * @tb: pointer to array of nladdr (unused) 2416 * @dev: the net device pointer 2417 * @addr: the MAC address entry being added 2418 * @vid: VLAN id 2419 * @flags: instructions from stack about fdb operation 2420 */ 2421 static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 2422 struct net_device *dev, const unsigned char *addr, 2423 u16 vid, u16 flags) 2424 { 2425 int err; 2426 2427 if (vid) { 2428 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 2429 return -EINVAL; 2430 } 2431 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 2432 netdev_err(dev, "FDB only supports static addresses\n"); 2433 return -EINVAL; 2434 } 2435 2436 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 2437 err = dev_uc_add_excl(dev, addr); 2438 else if (is_multicast_ether_addr(addr)) 2439 err = dev_mc_add_excl(dev, addr); 2440 else 2441 err = -EINVAL; 2442 2443 /* Only return duplicate errors if NLM_F_EXCL is set */ 2444 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 2445 err = 0; 2446 2447 return err; 2448 } 2449 2450 /** 2451 * ice_fdb_del - delete an entry from the hardware database 2452 * @ndm: the input from the stack 2453 * @tb: pointer to array of nladdr (unused) 2454 * @dev: the net device pointer 2455 * @addr: the MAC address entry being added 2456 * @vid: VLAN id 2457 */ 2458 static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 2459 struct net_device *dev, const unsigned char *addr, 2460 __always_unused u16 vid) 2461 { 2462 int err; 2463 2464 if (ndm->ndm_state & NUD_PERMANENT) { 2465 netdev_err(dev, "FDB only supports static addresses\n"); 2466 return -EINVAL; 2467 } 2468 2469 if (is_unicast_ether_addr(addr)) 2470 err = dev_uc_del(dev, addr); 2471 else if (is_multicast_ether_addr(addr)) 2472 err = dev_mc_del(dev, addr); 2473 else 2474 err = -EINVAL; 2475 2476 return err; 2477 } 2478 2479 /** 2480 * ice_set_features - set the netdev feature flags 2481 * @netdev: ptr to the netdev being adjusted 2482 * @features: the feature set that the stack is suggesting 2483 */ 2484 static int ice_set_features(struct net_device *netdev, 2485 netdev_features_t features) 2486 { 2487 struct ice_netdev_priv *np = netdev_priv(netdev); 2488 struct ice_vsi *vsi = np->vsi; 2489 int ret = 0; 2490 2491 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 2492 ret = ice_vsi_manage_rss_lut(vsi, true); 2493 else if (!(features & NETIF_F_RXHASH) && 2494 netdev->features & NETIF_F_RXHASH) 2495 ret = ice_vsi_manage_rss_lut(vsi, false); 2496 2497 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 2498 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2499 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2500 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 2501 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 2502 ret = ice_vsi_manage_vlan_stripping(vsi, false); 2503 else if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 2504 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2505 ret = ice_vsi_manage_vlan_insertion(vsi); 2506 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 2507 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 2508 ret = ice_vsi_manage_vlan_insertion(vsi); 2509 2510 return ret; 2511 } 2512 2513 /** 2514 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI 2515 * @vsi: VSI to setup vlan properties for 2516 */ 2517 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 2518 { 2519 int ret = 0; 2520 2521 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2522 ret = ice_vsi_manage_vlan_stripping(vsi, true); 2523 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 2524 ret = ice_vsi_manage_vlan_insertion(vsi); 2525 2526 return ret; 2527 } 2528 2529 /** 2530 * ice_vsi_cfg - Setup the VSI 2531 * @vsi: the VSI being configured 2532 * 2533 * Return 0 on success and negative value on error 2534 */ 2535 static int ice_vsi_cfg(struct ice_vsi *vsi) 2536 { 2537 int err; 2538 2539 if (vsi->netdev) { 2540 ice_set_rx_mode(vsi->netdev); 2541 2542 err = ice_vsi_vlan_setup(vsi); 2543 2544 if (err) 2545 return err; 2546 } 2547 2548 err = ice_vsi_cfg_txqs(vsi); 2549 if (!err) 2550 err = ice_vsi_cfg_rxqs(vsi); 2551 2552 return err; 2553 } 2554 2555 /** 2556 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 2557 * @vsi: the VSI being configured 2558 */ 2559 static void ice_napi_enable_all(struct ice_vsi *vsi) 2560 { 2561 int q_idx; 2562 2563 if (!vsi->netdev) 2564 return; 2565 2566 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) 2567 napi_enable(&vsi->q_vectors[q_idx]->napi); 2568 } 2569 2570 /** 2571 * ice_up_complete - Finish the last steps of bringing up a connection 2572 * @vsi: The VSI being configured 2573 * 2574 * Return 0 on success and negative value on error 2575 */ 2576 static int ice_up_complete(struct ice_vsi *vsi) 2577 { 2578 struct ice_pf *pf = vsi->back; 2579 int err; 2580 2581 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 2582 ice_vsi_cfg_msix(vsi); 2583 else 2584 return -ENOTSUPP; 2585 2586 /* Enable only Rx rings, Tx rings were enabled by the FW when the 2587 * Tx queue group list was configured and the context bits were 2588 * programmed using ice_vsi_cfg_txqs 2589 */ 2590 err = ice_vsi_start_rx_rings(vsi); 2591 if (err) 2592 return err; 2593 2594 clear_bit(__ICE_DOWN, vsi->state); 2595 ice_napi_enable_all(vsi); 2596 ice_vsi_ena_irq(vsi); 2597 2598 if (vsi->port_info && 2599 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 2600 vsi->netdev) { 2601 ice_print_link_msg(vsi, true); 2602 netif_tx_start_all_queues(vsi->netdev); 2603 netif_carrier_on(vsi->netdev); 2604 } 2605 2606 ice_service_task_schedule(pf); 2607 2608 return err; 2609 } 2610 2611 /** 2612 * ice_up - Bring the connection back up after being down 2613 * @vsi: VSI being configured 2614 */ 2615 int ice_up(struct ice_vsi *vsi) 2616 { 2617 int err; 2618 2619 err = ice_vsi_cfg(vsi); 2620 if (!err) 2621 err = ice_up_complete(vsi); 2622 2623 return err; 2624 } 2625 2626 /** 2627 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 2628 * @ring: Tx or Rx ring to read stats from 2629 * @pkts: packets stats counter 2630 * @bytes: bytes stats counter 2631 * 2632 * This function fetches stats from the ring considering the atomic operations 2633 * that needs to be performed to read u64 values in 32 bit machine. 2634 */ 2635 static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, 2636 u64 *bytes) 2637 { 2638 unsigned int start; 2639 *pkts = 0; 2640 *bytes = 0; 2641 2642 if (!ring) 2643 return; 2644 do { 2645 start = u64_stats_fetch_begin_irq(&ring->syncp); 2646 *pkts = ring->stats.pkts; 2647 *bytes = ring->stats.bytes; 2648 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 2649 } 2650 2651 /** 2652 * ice_update_vsi_ring_stats - Update VSI stats counters 2653 * @vsi: the VSI to be updated 2654 */ 2655 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 2656 { 2657 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 2658 struct ice_ring *ring; 2659 u64 pkts, bytes; 2660 int i; 2661 2662 /* reset netdev stats */ 2663 vsi_stats->tx_packets = 0; 2664 vsi_stats->tx_bytes = 0; 2665 vsi_stats->rx_packets = 0; 2666 vsi_stats->rx_bytes = 0; 2667 2668 /* reset non-netdev (extended) stats */ 2669 vsi->tx_restart = 0; 2670 vsi->tx_busy = 0; 2671 vsi->tx_linearize = 0; 2672 vsi->rx_buf_failed = 0; 2673 vsi->rx_page_failed = 0; 2674 2675 rcu_read_lock(); 2676 2677 /* update Tx rings counters */ 2678 ice_for_each_txq(vsi, i) { 2679 ring = READ_ONCE(vsi->tx_rings[i]); 2680 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 2681 vsi_stats->tx_packets += pkts; 2682 vsi_stats->tx_bytes += bytes; 2683 vsi->tx_restart += ring->tx_stats.restart_q; 2684 vsi->tx_busy += ring->tx_stats.tx_busy; 2685 vsi->tx_linearize += ring->tx_stats.tx_linearize; 2686 } 2687 2688 /* update Rx rings counters */ 2689 ice_for_each_rxq(vsi, i) { 2690 ring = READ_ONCE(vsi->rx_rings[i]); 2691 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 2692 vsi_stats->rx_packets += pkts; 2693 vsi_stats->rx_bytes += bytes; 2694 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 2695 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 2696 } 2697 2698 rcu_read_unlock(); 2699 } 2700 2701 /** 2702 * ice_update_vsi_stats - Update VSI stats counters 2703 * @vsi: the VSI to be updated 2704 */ 2705 static void ice_update_vsi_stats(struct ice_vsi *vsi) 2706 { 2707 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 2708 struct ice_eth_stats *cur_es = &vsi->eth_stats; 2709 struct ice_pf *pf = vsi->back; 2710 2711 if (test_bit(__ICE_DOWN, vsi->state) || 2712 test_bit(__ICE_CFG_BUSY, pf->state)) 2713 return; 2714 2715 /* get stats as recorded by Tx/Rx rings */ 2716 ice_update_vsi_ring_stats(vsi); 2717 2718 /* get VSI stats as recorded by the hardware */ 2719 ice_update_eth_stats(vsi); 2720 2721 cur_ns->tx_errors = cur_es->tx_errors; 2722 cur_ns->rx_dropped = cur_es->rx_discards; 2723 cur_ns->tx_dropped = cur_es->tx_discards; 2724 cur_ns->multicast = cur_es->rx_multicast; 2725 2726 /* update some more netdev stats if this is main VSI */ 2727 if (vsi->type == ICE_VSI_PF) { 2728 cur_ns->rx_crc_errors = pf->stats.crc_errors; 2729 cur_ns->rx_errors = pf->stats.crc_errors + 2730 pf->stats.illegal_bytes; 2731 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 2732 } 2733 } 2734 2735 /** 2736 * ice_update_pf_stats - Update PF port stats counters 2737 * @pf: PF whose stats needs to be updated 2738 */ 2739 static void ice_update_pf_stats(struct ice_pf *pf) 2740 { 2741 struct ice_hw_port_stats *prev_ps, *cur_ps; 2742 struct ice_hw *hw = &pf->hw; 2743 u8 pf_id; 2744 2745 prev_ps = &pf->stats_prev; 2746 cur_ps = &pf->stats; 2747 pf_id = hw->pf_id; 2748 2749 ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id), 2750 pf->stat_prev_loaded, &prev_ps->eth.rx_bytes, 2751 &cur_ps->eth.rx_bytes); 2752 2753 ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id), 2754 pf->stat_prev_loaded, &prev_ps->eth.rx_unicast, 2755 &cur_ps->eth.rx_unicast); 2756 2757 ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id), 2758 pf->stat_prev_loaded, &prev_ps->eth.rx_multicast, 2759 &cur_ps->eth.rx_multicast); 2760 2761 ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id), 2762 pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast, 2763 &cur_ps->eth.rx_broadcast); 2764 2765 ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id), 2766 pf->stat_prev_loaded, &prev_ps->eth.tx_bytes, 2767 &cur_ps->eth.tx_bytes); 2768 2769 ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id), 2770 pf->stat_prev_loaded, &prev_ps->eth.tx_unicast, 2771 &cur_ps->eth.tx_unicast); 2772 2773 ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id), 2774 pf->stat_prev_loaded, &prev_ps->eth.tx_multicast, 2775 &cur_ps->eth.tx_multicast); 2776 2777 ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id), 2778 pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast, 2779 &cur_ps->eth.tx_broadcast); 2780 2781 ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded, 2782 &prev_ps->tx_dropped_link_down, 2783 &cur_ps->tx_dropped_link_down); 2784 2785 ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id), 2786 pf->stat_prev_loaded, &prev_ps->rx_size_64, 2787 &cur_ps->rx_size_64); 2788 2789 ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id), 2790 pf->stat_prev_loaded, &prev_ps->rx_size_127, 2791 &cur_ps->rx_size_127); 2792 2793 ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id), 2794 pf->stat_prev_loaded, &prev_ps->rx_size_255, 2795 &cur_ps->rx_size_255); 2796 2797 ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id), 2798 pf->stat_prev_loaded, &prev_ps->rx_size_511, 2799 &cur_ps->rx_size_511); 2800 2801 ice_stat_update40(hw, GLPRT_PRC1023H(pf_id), 2802 GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded, 2803 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 2804 2805 ice_stat_update40(hw, GLPRT_PRC1522H(pf_id), 2806 GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded, 2807 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 2808 2809 ice_stat_update40(hw, GLPRT_PRC9522H(pf_id), 2810 GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded, 2811 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 2812 2813 ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id), 2814 pf->stat_prev_loaded, &prev_ps->tx_size_64, 2815 &cur_ps->tx_size_64); 2816 2817 ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id), 2818 pf->stat_prev_loaded, &prev_ps->tx_size_127, 2819 &cur_ps->tx_size_127); 2820 2821 ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id), 2822 pf->stat_prev_loaded, &prev_ps->tx_size_255, 2823 &cur_ps->tx_size_255); 2824 2825 ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id), 2826 pf->stat_prev_loaded, &prev_ps->tx_size_511, 2827 &cur_ps->tx_size_511); 2828 2829 ice_stat_update40(hw, GLPRT_PTC1023H(pf_id), 2830 GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded, 2831 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 2832 2833 ice_stat_update40(hw, GLPRT_PTC1522H(pf_id), 2834 GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded, 2835 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 2836 2837 ice_stat_update40(hw, GLPRT_PTC9522H(pf_id), 2838 GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded, 2839 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 2840 2841 ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded, 2842 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 2843 2844 ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded, 2845 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 2846 2847 ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded, 2848 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 2849 2850 ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded, 2851 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 2852 2853 ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded, 2854 &prev_ps->crc_errors, &cur_ps->crc_errors); 2855 2856 ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded, 2857 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 2858 2859 ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded, 2860 &prev_ps->mac_local_faults, 2861 &cur_ps->mac_local_faults); 2862 2863 ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded, 2864 &prev_ps->mac_remote_faults, 2865 &cur_ps->mac_remote_faults); 2866 2867 ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded, 2868 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 2869 2870 ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded, 2871 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 2872 2873 ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded, 2874 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 2875 2876 ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded, 2877 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 2878 2879 ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded, 2880 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 2881 2882 pf->stat_prev_loaded = true; 2883 } 2884 2885 /** 2886 * ice_get_stats64 - get statistics for network device structure 2887 * @netdev: network interface device structure 2888 * @stats: main device statistics structure 2889 */ 2890 static 2891 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 2892 { 2893 struct ice_netdev_priv *np = netdev_priv(netdev); 2894 struct rtnl_link_stats64 *vsi_stats; 2895 struct ice_vsi *vsi = np->vsi; 2896 2897 vsi_stats = &vsi->net_stats; 2898 2899 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq) 2900 return; 2901 /* netdev packet/byte stats come from ring counter. These are obtained 2902 * by summing up ring counters (done by ice_update_vsi_ring_stats). 2903 */ 2904 ice_update_vsi_ring_stats(vsi); 2905 stats->tx_packets = vsi_stats->tx_packets; 2906 stats->tx_bytes = vsi_stats->tx_bytes; 2907 stats->rx_packets = vsi_stats->rx_packets; 2908 stats->rx_bytes = vsi_stats->rx_bytes; 2909 2910 /* The rest of the stats can be read from the hardware but instead we 2911 * just return values that the watchdog task has already obtained from 2912 * the hardware. 2913 */ 2914 stats->multicast = vsi_stats->multicast; 2915 stats->tx_errors = vsi_stats->tx_errors; 2916 stats->tx_dropped = vsi_stats->tx_dropped; 2917 stats->rx_errors = vsi_stats->rx_errors; 2918 stats->rx_dropped = vsi_stats->rx_dropped; 2919 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 2920 stats->rx_length_errors = vsi_stats->rx_length_errors; 2921 } 2922 2923 /** 2924 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 2925 * @vsi: VSI having NAPI disabled 2926 */ 2927 static void ice_napi_disable_all(struct ice_vsi *vsi) 2928 { 2929 int q_idx; 2930 2931 if (!vsi->netdev) 2932 return; 2933 2934 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) 2935 napi_disable(&vsi->q_vectors[q_idx]->napi); 2936 } 2937 2938 /** 2939 * ice_down - Shutdown the connection 2940 * @vsi: The VSI being stopped 2941 */ 2942 int ice_down(struct ice_vsi *vsi) 2943 { 2944 int i, tx_err, rx_err; 2945 2946 /* Caller of this function is expected to set the 2947 * vsi->state __ICE_DOWN bit 2948 */ 2949 if (vsi->netdev) { 2950 netif_carrier_off(vsi->netdev); 2951 netif_tx_disable(vsi->netdev); 2952 } 2953 2954 ice_vsi_dis_irq(vsi); 2955 tx_err = ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0); 2956 if (tx_err) 2957 netdev_err(vsi->netdev, 2958 "Failed stop Tx rings, VSI %d error %d\n", 2959 vsi->vsi_num, tx_err); 2960 2961 rx_err = ice_vsi_stop_rx_rings(vsi); 2962 if (rx_err) 2963 netdev_err(vsi->netdev, 2964 "Failed stop Rx rings, VSI %d error %d\n", 2965 vsi->vsi_num, rx_err); 2966 2967 ice_napi_disable_all(vsi); 2968 2969 ice_for_each_txq(vsi, i) 2970 ice_clean_tx_ring(vsi->tx_rings[i]); 2971 2972 ice_for_each_rxq(vsi, i) 2973 ice_clean_rx_ring(vsi->rx_rings[i]); 2974 2975 if (tx_err || rx_err) { 2976 netdev_err(vsi->netdev, 2977 "Failed to close VSI 0x%04X on switch 0x%04X\n", 2978 vsi->vsi_num, vsi->vsw->sw_id); 2979 return -EIO; 2980 } 2981 2982 return 0; 2983 } 2984 2985 /** 2986 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 2987 * @vsi: VSI having resources allocated 2988 * 2989 * Return 0 on success, negative on failure 2990 */ 2991 static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 2992 { 2993 int i, err = 0; 2994 2995 if (!vsi->num_txq) { 2996 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 2997 vsi->vsi_num); 2998 return -EINVAL; 2999 } 3000 3001 ice_for_each_txq(vsi, i) { 3002 vsi->tx_rings[i]->netdev = vsi->netdev; 3003 err = ice_setup_tx_ring(vsi->tx_rings[i]); 3004 if (err) 3005 break; 3006 } 3007 3008 return err; 3009 } 3010 3011 /** 3012 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 3013 * @vsi: VSI having resources allocated 3014 * 3015 * Return 0 on success, negative on failure 3016 */ 3017 static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 3018 { 3019 int i, err = 0; 3020 3021 if (!vsi->num_rxq) { 3022 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 3023 vsi->vsi_num); 3024 return -EINVAL; 3025 } 3026 3027 ice_for_each_rxq(vsi, i) { 3028 vsi->rx_rings[i]->netdev = vsi->netdev; 3029 err = ice_setup_rx_ring(vsi->rx_rings[i]); 3030 if (err) 3031 break; 3032 } 3033 3034 return err; 3035 } 3036 3037 /** 3038 * ice_vsi_req_irq - Request IRQ from the OS 3039 * @vsi: The VSI IRQ is being requested for 3040 * @basename: name for the vector 3041 * 3042 * Return 0 on success and a negative value on error 3043 */ 3044 static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename) 3045 { 3046 struct ice_pf *pf = vsi->back; 3047 int err = -EINVAL; 3048 3049 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3050 err = ice_vsi_req_irq_msix(vsi, basename); 3051 3052 return err; 3053 } 3054 3055 /** 3056 * ice_vsi_open - Called when a network interface is made active 3057 * @vsi: the VSI to open 3058 * 3059 * Initialization of the VSI 3060 * 3061 * Returns 0 on success, negative value on error 3062 */ 3063 static int ice_vsi_open(struct ice_vsi *vsi) 3064 { 3065 char int_name[ICE_INT_NAME_STR_LEN]; 3066 struct ice_pf *pf = vsi->back; 3067 int err; 3068 3069 /* allocate descriptors */ 3070 err = ice_vsi_setup_tx_rings(vsi); 3071 if (err) 3072 goto err_setup_tx; 3073 3074 err = ice_vsi_setup_rx_rings(vsi); 3075 if (err) 3076 goto err_setup_rx; 3077 3078 err = ice_vsi_cfg(vsi); 3079 if (err) 3080 goto err_setup_rx; 3081 3082 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 3083 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 3084 err = ice_vsi_req_irq(vsi, int_name); 3085 if (err) 3086 goto err_setup_rx; 3087 3088 /* Notify the stack of the actual queue counts. */ 3089 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 3090 if (err) 3091 goto err_set_qs; 3092 3093 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 3094 if (err) 3095 goto err_set_qs; 3096 3097 err = ice_up_complete(vsi); 3098 if (err) 3099 goto err_up_complete; 3100 3101 return 0; 3102 3103 err_up_complete: 3104 ice_down(vsi); 3105 err_set_qs: 3106 ice_vsi_free_irq(vsi); 3107 err_setup_rx: 3108 ice_vsi_free_rx_rings(vsi); 3109 err_setup_tx: 3110 ice_vsi_free_tx_rings(vsi); 3111 3112 return err; 3113 } 3114 3115 /** 3116 * ice_vsi_release_all - Delete all VSIs 3117 * @pf: PF from which all VSIs are being removed 3118 */ 3119 static void ice_vsi_release_all(struct ice_pf *pf) 3120 { 3121 int err, i; 3122 3123 if (!pf->vsi) 3124 return; 3125 3126 for (i = 0; i < pf->num_alloc_vsi; i++) { 3127 if (!pf->vsi[i]) 3128 continue; 3129 3130 err = ice_vsi_release(pf->vsi[i]); 3131 if (err) 3132 dev_dbg(&pf->pdev->dev, 3133 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 3134 i, err, pf->vsi[i]->vsi_num); 3135 } 3136 } 3137 3138 /** 3139 * ice_dis_vsi - pause a VSI 3140 * @vsi: the VSI being paused 3141 */ 3142 static void ice_dis_vsi(struct ice_vsi *vsi) 3143 { 3144 if (test_bit(__ICE_DOWN, vsi->state)) 3145 return; 3146 3147 set_bit(__ICE_NEEDS_RESTART, vsi->state); 3148 3149 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 3150 if (netif_running(vsi->netdev)) { 3151 rtnl_lock(); 3152 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 3153 rtnl_unlock(); 3154 } else { 3155 ice_vsi_close(vsi); 3156 } 3157 } 3158 } 3159 3160 /** 3161 * ice_ena_vsi - resume a VSI 3162 * @vsi: the VSI being resume 3163 */ 3164 static int ice_ena_vsi(struct ice_vsi *vsi) 3165 { 3166 int err = 0; 3167 3168 if (test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state) && 3169 vsi->netdev) { 3170 if (netif_running(vsi->netdev)) { 3171 rtnl_lock(); 3172 err = vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 3173 rtnl_unlock(); 3174 } else { 3175 err = ice_vsi_open(vsi); 3176 } 3177 } 3178 3179 return err; 3180 } 3181 3182 /** 3183 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 3184 * @pf: the PF 3185 */ 3186 static void ice_pf_dis_all_vsi(struct ice_pf *pf) 3187 { 3188 int v; 3189 3190 ice_for_each_vsi(pf, v) 3191 if (pf->vsi[v]) 3192 ice_dis_vsi(pf->vsi[v]); 3193 } 3194 3195 /** 3196 * ice_pf_ena_all_vsi - Resume all VSIs on a PF 3197 * @pf: the PF 3198 */ 3199 static int ice_pf_ena_all_vsi(struct ice_pf *pf) 3200 { 3201 int v; 3202 3203 ice_for_each_vsi(pf, v) 3204 if (pf->vsi[v]) 3205 if (ice_ena_vsi(pf->vsi[v])) 3206 return -EIO; 3207 3208 return 0; 3209 } 3210 3211 /** 3212 * ice_vsi_rebuild_all - rebuild all VSIs in pf 3213 * @pf: the PF 3214 */ 3215 static int ice_vsi_rebuild_all(struct ice_pf *pf) 3216 { 3217 int i; 3218 3219 /* loop through pf->vsi array and reinit the VSI if found */ 3220 for (i = 0; i < pf->num_alloc_vsi; i++) { 3221 int err; 3222 3223 if (!pf->vsi[i]) 3224 continue; 3225 3226 /* VF VSI rebuild isn't supported yet */ 3227 if (pf->vsi[i]->type == ICE_VSI_VF) 3228 continue; 3229 3230 err = ice_vsi_rebuild(pf->vsi[i]); 3231 if (err) { 3232 dev_err(&pf->pdev->dev, 3233 "VSI at index %d rebuild failed\n", 3234 pf->vsi[i]->idx); 3235 return err; 3236 } 3237 3238 dev_info(&pf->pdev->dev, 3239 "VSI at index %d rebuilt. vsi_num = 0x%x\n", 3240 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3241 } 3242 3243 return 0; 3244 } 3245 3246 /** 3247 * ice_vsi_replay_all - replay all VSIs configuration in the PF 3248 * @pf: the PF 3249 */ 3250 static int ice_vsi_replay_all(struct ice_pf *pf) 3251 { 3252 struct ice_hw *hw = &pf->hw; 3253 enum ice_status ret; 3254 int i; 3255 3256 /* loop through pf->vsi array and replay the VSI if found */ 3257 for (i = 0; i < pf->num_alloc_vsi; i++) { 3258 if (!pf->vsi[i]) 3259 continue; 3260 3261 ret = ice_replay_vsi(hw, pf->vsi[i]->idx); 3262 if (ret) { 3263 dev_err(&pf->pdev->dev, 3264 "VSI at index %d replay failed %d\n", 3265 pf->vsi[i]->idx, ret); 3266 return -EIO; 3267 } 3268 3269 /* Re-map HW VSI number, using VSI handle that has been 3270 * previously validated in ice_replay_vsi() call above 3271 */ 3272 pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx); 3273 3274 dev_info(&pf->pdev->dev, 3275 "VSI at index %d filter replayed successfully - vsi_num %i\n", 3276 pf->vsi[i]->idx, pf->vsi[i]->vsi_num); 3277 } 3278 3279 /* Clean up replay filter after successful re-configuration */ 3280 ice_replay_post(hw); 3281 return 0; 3282 } 3283 3284 /** 3285 * ice_rebuild - rebuild after reset 3286 * @pf: pf to rebuild 3287 */ 3288 static void ice_rebuild(struct ice_pf *pf) 3289 { 3290 struct device *dev = &pf->pdev->dev; 3291 struct ice_hw *hw = &pf->hw; 3292 enum ice_status ret; 3293 int err, i; 3294 3295 if (test_bit(__ICE_DOWN, pf->state)) 3296 goto clear_recovery; 3297 3298 dev_dbg(dev, "rebuilding pf\n"); 3299 3300 ret = ice_init_all_ctrlq(hw); 3301 if (ret) { 3302 dev_err(dev, "control queues init failed %d\n", ret); 3303 goto err_init_ctrlq; 3304 } 3305 3306 ret = ice_clear_pf_cfg(hw); 3307 if (ret) { 3308 dev_err(dev, "clear PF configuration failed %d\n", ret); 3309 goto err_init_ctrlq; 3310 } 3311 3312 ice_clear_pxe_mode(hw); 3313 3314 ret = ice_get_caps(hw); 3315 if (ret) { 3316 dev_err(dev, "ice_get_caps failed %d\n", ret); 3317 goto err_init_ctrlq; 3318 } 3319 3320 err = ice_sched_init_port(hw->port_info); 3321 if (err) 3322 goto err_sched_init_port; 3323 3324 /* reset search_hint of irq_trackers to 0 since interrupts are 3325 * reclaimed and could be allocated from beginning during VSI rebuild 3326 */ 3327 pf->sw_irq_tracker->search_hint = 0; 3328 pf->hw_irq_tracker->search_hint = 0; 3329 3330 err = ice_vsi_rebuild_all(pf); 3331 if (err) { 3332 dev_err(dev, "ice_vsi_rebuild_all failed\n"); 3333 goto err_vsi_rebuild; 3334 } 3335 3336 err = ice_update_link_info(hw->port_info); 3337 if (err) 3338 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 3339 3340 /* Replay all VSIs Configuration, including filters after reset */ 3341 if (ice_vsi_replay_all(pf)) { 3342 dev_err(&pf->pdev->dev, 3343 "error replaying VSI configurations with switch filter rules\n"); 3344 goto err_vsi_rebuild; 3345 } 3346 3347 /* start misc vector */ 3348 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { 3349 err = ice_req_irq_msix_misc(pf); 3350 if (err) { 3351 dev_err(dev, "misc vector setup failed: %d\n", err); 3352 goto err_vsi_rebuild; 3353 } 3354 } 3355 3356 /* restart the VSIs that were rebuilt and running before the reset */ 3357 err = ice_pf_ena_all_vsi(pf); 3358 if (err) { 3359 dev_err(&pf->pdev->dev, "error enabling VSIs\n"); 3360 /* no need to disable VSIs in tear down path in ice_rebuild() 3361 * since its already taken care in ice_vsi_open() 3362 */ 3363 goto err_vsi_rebuild; 3364 } 3365 3366 ice_reset_all_vfs(pf, true); 3367 3368 for (i = 0; i < pf->num_alloc_vsi; i++) { 3369 bool link_up; 3370 3371 if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF) 3372 continue; 3373 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 3374 if (link_up) { 3375 netif_carrier_on(pf->vsi[i]->netdev); 3376 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 3377 } else { 3378 netif_carrier_off(pf->vsi[i]->netdev); 3379 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 3380 } 3381 } 3382 3383 /* if we get here, reset flow is successful */ 3384 clear_bit(__ICE_RESET_FAILED, pf->state); 3385 return; 3386 3387 err_vsi_rebuild: 3388 ice_vsi_release_all(pf); 3389 err_sched_init_port: 3390 ice_sched_cleanup_all(hw); 3391 err_init_ctrlq: 3392 ice_shutdown_all_ctrlq(hw); 3393 set_bit(__ICE_RESET_FAILED, pf->state); 3394 clear_recovery: 3395 /* set this bit in PF state to control service task scheduling */ 3396 set_bit(__ICE_NEEDS_RESTART, pf->state); 3397 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 3398 } 3399 3400 /** 3401 * ice_change_mtu - NDO callback to change the MTU 3402 * @netdev: network interface device structure 3403 * @new_mtu: new value for maximum frame size 3404 * 3405 * Returns 0 on success, negative on failure 3406 */ 3407 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 3408 { 3409 struct ice_netdev_priv *np = netdev_priv(netdev); 3410 struct ice_vsi *vsi = np->vsi; 3411 struct ice_pf *pf = vsi->back; 3412 u8 count = 0; 3413 3414 if (new_mtu == netdev->mtu) { 3415 netdev_warn(netdev, "mtu is already %u\n", netdev->mtu); 3416 return 0; 3417 } 3418 3419 if (new_mtu < netdev->min_mtu) { 3420 netdev_err(netdev, "new mtu invalid. min_mtu is %d\n", 3421 netdev->min_mtu); 3422 return -EINVAL; 3423 } else if (new_mtu > netdev->max_mtu) { 3424 netdev_err(netdev, "new mtu invalid. max_mtu is %d\n", 3425 netdev->min_mtu); 3426 return -EINVAL; 3427 } 3428 /* if a reset is in progress, wait for some time for it to complete */ 3429 do { 3430 if (ice_is_reset_in_progress(pf->state)) { 3431 count++; 3432 usleep_range(1000, 2000); 3433 } else { 3434 break; 3435 } 3436 3437 } while (count < 100); 3438 3439 if (count == 100) { 3440 netdev_err(netdev, "can't change mtu. Device is busy\n"); 3441 return -EBUSY; 3442 } 3443 3444 netdev->mtu = new_mtu; 3445 3446 /* if VSI is up, bring it down and then back up */ 3447 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 3448 int err; 3449 3450 err = ice_down(vsi); 3451 if (err) { 3452 netdev_err(netdev, "change mtu if_up err %d\n", err); 3453 return err; 3454 } 3455 3456 err = ice_up(vsi); 3457 if (err) { 3458 netdev_err(netdev, "change mtu if_up err %d\n", err); 3459 return err; 3460 } 3461 } 3462 3463 netdev_dbg(netdev, "changed mtu to %d\n", new_mtu); 3464 return 0; 3465 } 3466 3467 /** 3468 * ice_set_rss - Set RSS keys and lut 3469 * @vsi: Pointer to VSI structure 3470 * @seed: RSS hash seed 3471 * @lut: Lookup table 3472 * @lut_size: Lookup table size 3473 * 3474 * Returns 0 on success, negative on failure 3475 */ 3476 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3477 { 3478 struct ice_pf *pf = vsi->back; 3479 struct ice_hw *hw = &pf->hw; 3480 enum ice_status status; 3481 3482 if (seed) { 3483 struct ice_aqc_get_set_rss_keys *buf = 3484 (struct ice_aqc_get_set_rss_keys *)seed; 3485 3486 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 3487 3488 if (status) { 3489 dev_err(&pf->pdev->dev, 3490 "Cannot set RSS key, err %d aq_err %d\n", 3491 status, hw->adminq.rq_last_status); 3492 return -EIO; 3493 } 3494 } 3495 3496 if (lut) { 3497 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 3498 lut, lut_size); 3499 if (status) { 3500 dev_err(&pf->pdev->dev, 3501 "Cannot set RSS lut, err %d aq_err %d\n", 3502 status, hw->adminq.rq_last_status); 3503 return -EIO; 3504 } 3505 } 3506 3507 return 0; 3508 } 3509 3510 /** 3511 * ice_get_rss - Get RSS keys and lut 3512 * @vsi: Pointer to VSI structure 3513 * @seed: Buffer to store the keys 3514 * @lut: Buffer to store the lookup table entries 3515 * @lut_size: Size of buffer to store the lookup table entries 3516 * 3517 * Returns 0 on success, negative on failure 3518 */ 3519 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 3520 { 3521 struct ice_pf *pf = vsi->back; 3522 struct ice_hw *hw = &pf->hw; 3523 enum ice_status status; 3524 3525 if (seed) { 3526 struct ice_aqc_get_set_rss_keys *buf = 3527 (struct ice_aqc_get_set_rss_keys *)seed; 3528 3529 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 3530 if (status) { 3531 dev_err(&pf->pdev->dev, 3532 "Cannot get RSS key, err %d aq_err %d\n", 3533 status, hw->adminq.rq_last_status); 3534 return -EIO; 3535 } 3536 } 3537 3538 if (lut) { 3539 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 3540 lut, lut_size); 3541 if (status) { 3542 dev_err(&pf->pdev->dev, 3543 "Cannot get RSS lut, err %d aq_err %d\n", 3544 status, hw->adminq.rq_last_status); 3545 return -EIO; 3546 } 3547 } 3548 3549 return 0; 3550 } 3551 3552 /** 3553 * ice_bridge_getlink - Get the hardware bridge mode 3554 * @skb: skb buff 3555 * @pid: process id 3556 * @seq: RTNL message seq 3557 * @dev: the netdev being configured 3558 * @filter_mask: filter mask passed in 3559 * @nlflags: netlink flags passed in 3560 * 3561 * Return the bridge mode (VEB/VEPA) 3562 */ 3563 static int 3564 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 3565 struct net_device *dev, u32 filter_mask, int nlflags) 3566 { 3567 struct ice_netdev_priv *np = netdev_priv(dev); 3568 struct ice_vsi *vsi = np->vsi; 3569 struct ice_pf *pf = vsi->back; 3570 u16 bmode; 3571 3572 bmode = pf->first_sw->bridge_mode; 3573 3574 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 3575 filter_mask, NULL); 3576 } 3577 3578 /** 3579 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 3580 * @vsi: Pointer to VSI structure 3581 * @bmode: Hardware bridge mode (VEB/VEPA) 3582 * 3583 * Returns 0 on success, negative on failure 3584 */ 3585 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 3586 { 3587 struct device *dev = &vsi->back->pdev->dev; 3588 struct ice_aqc_vsi_props *vsi_props; 3589 struct ice_hw *hw = &vsi->back->hw; 3590 struct ice_vsi_ctx ctxt = { 0 }; 3591 enum ice_status status; 3592 3593 vsi_props = &vsi->info; 3594 ctxt.info = vsi->info; 3595 3596 if (bmode == BRIDGE_MODE_VEB) 3597 /* change from VEPA to VEB mode */ 3598 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 3599 else 3600 /* change from VEB to VEPA mode */ 3601 ctxt.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 3602 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 3603 3604 status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); 3605 if (status) { 3606 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 3607 bmode, status, hw->adminq.sq_last_status); 3608 return -EIO; 3609 } 3610 /* Update sw flags for book keeping */ 3611 vsi_props->sw_flags = ctxt.info.sw_flags; 3612 3613 return 0; 3614 } 3615 3616 /** 3617 * ice_bridge_setlink - Set the hardware bridge mode 3618 * @dev: the netdev being configured 3619 * @nlh: RTNL message 3620 * @flags: bridge setlink flags 3621 * 3622 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 3623 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 3624 * not already set for all VSIs connected to this switch. And also update the 3625 * unicast switch filter rules for the corresponding switch of the netdev. 3626 */ 3627 static int 3628 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 3629 u16 __always_unused flags) 3630 { 3631 struct ice_netdev_priv *np = netdev_priv(dev); 3632 struct ice_pf *pf = np->vsi->back; 3633 struct nlattr *attr, *br_spec; 3634 struct ice_hw *hw = &pf->hw; 3635 enum ice_status status; 3636 struct ice_sw *pf_sw; 3637 int rem, v, err = 0; 3638 3639 pf_sw = pf->first_sw; 3640 /* find the attribute in the netlink message */ 3641 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 3642 3643 nla_for_each_nested(attr, br_spec, rem) { 3644 __u16 mode; 3645 3646 if (nla_type(attr) != IFLA_BRIDGE_MODE) 3647 continue; 3648 mode = nla_get_u16(attr); 3649 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 3650 return -EINVAL; 3651 /* Continue if bridge mode is not being flipped */ 3652 if (mode == pf_sw->bridge_mode) 3653 continue; 3654 /* Iterates through the PF VSI list and update the loopback 3655 * mode of the VSI 3656 */ 3657 ice_for_each_vsi(pf, v) { 3658 if (!pf->vsi[v]) 3659 continue; 3660 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 3661 if (err) 3662 return err; 3663 } 3664 3665 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 3666 /* Update the unicast switch filter rules for the corresponding 3667 * switch of the netdev 3668 */ 3669 status = ice_update_sw_rule_bridge_mode(hw); 3670 if (status) { 3671 netdev_err(dev, "update SW_RULE for bridge mode failed, = %d err %d aq_err %d\n", 3672 mode, status, hw->adminq.sq_last_status); 3673 /* revert hw->evb_veb */ 3674 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 3675 return -EIO; 3676 } 3677 3678 pf_sw->bridge_mode = mode; 3679 } 3680 3681 return 0; 3682 } 3683 3684 /** 3685 * ice_tx_timeout - Respond to a Tx Hang 3686 * @netdev: network interface device structure 3687 */ 3688 static void ice_tx_timeout(struct net_device *netdev) 3689 { 3690 struct ice_netdev_priv *np = netdev_priv(netdev); 3691 struct ice_ring *tx_ring = NULL; 3692 struct ice_vsi *vsi = np->vsi; 3693 struct ice_pf *pf = vsi->back; 3694 u32 head, val = 0, i; 3695 int hung_queue = -1; 3696 3697 pf->tx_timeout_count++; 3698 3699 /* find the stopped queue the same way the stack does */ 3700 for (i = 0; i < netdev->num_tx_queues; i++) { 3701 struct netdev_queue *q; 3702 unsigned long trans_start; 3703 3704 q = netdev_get_tx_queue(netdev, i); 3705 trans_start = q->trans_start; 3706 if (netif_xmit_stopped(q) && 3707 time_after(jiffies, 3708 (trans_start + netdev->watchdog_timeo))) { 3709 hung_queue = i; 3710 break; 3711 } 3712 } 3713 3714 if (i == netdev->num_tx_queues) { 3715 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 3716 } else { 3717 /* now that we have an index, find the tx_ring struct */ 3718 for (i = 0; i < vsi->num_txq; i++) { 3719 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 3720 if (hung_queue == 3721 vsi->tx_rings[i]->q_index) { 3722 tx_ring = vsi->tx_rings[i]; 3723 break; 3724 } 3725 } 3726 } 3727 } 3728 3729 /* Reset recovery level if enough time has elapsed after last timeout. 3730 * Also ensure no new reset action happens before next timeout period. 3731 */ 3732 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 3733 pf->tx_timeout_recovery_level = 1; 3734 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 3735 netdev->watchdog_timeo))) 3736 return; 3737 3738 if (tx_ring) { 3739 head = tx_ring->next_to_clean; 3740 /* Read interrupt register */ 3741 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) 3742 val = rd32(&pf->hw, 3743 GLINT_DYN_CTL(tx_ring->q_vector->v_idx + 3744 tx_ring->vsi->hw_base_vector)); 3745 3746 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 3747 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 3748 head, tx_ring->next_to_use, 3749 readl(tx_ring->tail), val); 3750 } 3751 3752 pf->tx_timeout_last_recovery = jiffies; 3753 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 3754 pf->tx_timeout_recovery_level, hung_queue); 3755 3756 switch (pf->tx_timeout_recovery_level) { 3757 case 1: 3758 set_bit(__ICE_PFR_REQ, pf->state); 3759 break; 3760 case 2: 3761 set_bit(__ICE_CORER_REQ, pf->state); 3762 break; 3763 case 3: 3764 set_bit(__ICE_GLOBR_REQ, pf->state); 3765 break; 3766 default: 3767 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 3768 set_bit(__ICE_DOWN, pf->state); 3769 set_bit(__ICE_NEEDS_RESTART, vsi->state); 3770 set_bit(__ICE_SERVICE_DIS, pf->state); 3771 break; 3772 } 3773 3774 ice_service_task_schedule(pf); 3775 pf->tx_timeout_recovery_level++; 3776 } 3777 3778 /** 3779 * ice_open - Called when a network interface becomes active 3780 * @netdev: network interface device structure 3781 * 3782 * The open entry point is called when a network interface is made 3783 * active by the system (IFF_UP). At this point all resources needed 3784 * for transmit and receive operations are allocated, the interrupt 3785 * handler is registered with the OS, the netdev watchdog is enabled, 3786 * and the stack is notified that the interface is ready. 3787 * 3788 * Returns 0 on success, negative value on failure 3789 */ 3790 static int ice_open(struct net_device *netdev) 3791 { 3792 struct ice_netdev_priv *np = netdev_priv(netdev); 3793 struct ice_vsi *vsi = np->vsi; 3794 int err; 3795 3796 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 3797 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 3798 return -EIO; 3799 } 3800 3801 netif_carrier_off(netdev); 3802 3803 err = ice_vsi_open(vsi); 3804 3805 if (err) 3806 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 3807 vsi->vsi_num, vsi->vsw->sw_id); 3808 return err; 3809 } 3810 3811 /** 3812 * ice_stop - Disables a network interface 3813 * @netdev: network interface device structure 3814 * 3815 * The stop entry point is called when an interface is de-activated by the OS, 3816 * and the netdevice enters the DOWN state. The hardware is still under the 3817 * driver's control, but the netdev interface is disabled. 3818 * 3819 * Returns success only - not allowed to fail 3820 */ 3821 static int ice_stop(struct net_device *netdev) 3822 { 3823 struct ice_netdev_priv *np = netdev_priv(netdev); 3824 struct ice_vsi *vsi = np->vsi; 3825 3826 ice_vsi_close(vsi); 3827 3828 return 0; 3829 } 3830 3831 /** 3832 * ice_features_check - Validate encapsulated packet conforms to limits 3833 * @skb: skb buffer 3834 * @netdev: This port's netdev 3835 * @features: Offload features that the stack believes apply 3836 */ 3837 static netdev_features_t 3838 ice_features_check(struct sk_buff *skb, 3839 struct net_device __always_unused *netdev, 3840 netdev_features_t features) 3841 { 3842 size_t len; 3843 3844 /* No point in doing any of this if neither checksum nor GSO are 3845 * being requested for this frame. We can rule out both by just 3846 * checking for CHECKSUM_PARTIAL 3847 */ 3848 if (skb->ip_summed != CHECKSUM_PARTIAL) 3849 return features; 3850 3851 /* We cannot support GSO if the MSS is going to be less than 3852 * 64 bytes. If it is then we need to drop support for GSO. 3853 */ 3854 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 3855 features &= ~NETIF_F_GSO_MASK; 3856 3857 len = skb_network_header(skb) - skb->data; 3858 if (len & ~(ICE_TXD_MACLEN_MAX)) 3859 goto out_rm_features; 3860 3861 len = skb_transport_header(skb) - skb_network_header(skb); 3862 if (len & ~(ICE_TXD_IPLEN_MAX)) 3863 goto out_rm_features; 3864 3865 if (skb->encapsulation) { 3866 len = skb_inner_network_header(skb) - skb_transport_header(skb); 3867 if (len & ~(ICE_TXD_L4LEN_MAX)) 3868 goto out_rm_features; 3869 3870 len = skb_inner_transport_header(skb) - 3871 skb_inner_network_header(skb); 3872 if (len & ~(ICE_TXD_IPLEN_MAX)) 3873 goto out_rm_features; 3874 } 3875 3876 return features; 3877 out_rm_features: 3878 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3879 } 3880 3881 static const struct net_device_ops ice_netdev_ops = { 3882 .ndo_open = ice_open, 3883 .ndo_stop = ice_stop, 3884 .ndo_start_xmit = ice_start_xmit, 3885 .ndo_features_check = ice_features_check, 3886 .ndo_set_rx_mode = ice_set_rx_mode, 3887 .ndo_set_mac_address = ice_set_mac_address, 3888 .ndo_validate_addr = eth_validate_addr, 3889 .ndo_change_mtu = ice_change_mtu, 3890 .ndo_get_stats64 = ice_get_stats64, 3891 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 3892 .ndo_set_vf_mac = ice_set_vf_mac, 3893 .ndo_get_vf_config = ice_get_vf_cfg, 3894 .ndo_set_vf_trust = ice_set_vf_trust, 3895 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 3896 .ndo_set_vf_link_state = ice_set_vf_link_state, 3897 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 3898 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 3899 .ndo_set_features = ice_set_features, 3900 .ndo_bridge_getlink = ice_bridge_getlink, 3901 .ndo_bridge_setlink = ice_bridge_setlink, 3902 .ndo_fdb_add = ice_fdb_add, 3903 .ndo_fdb_del = ice_fdb_del, 3904 .ndo_tx_timeout = ice_tx_timeout, 3905 }; 3906