1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 return 0; 279 } 280 281 /** 282 * ice_clear_promisc - Disable promiscuous mode for a given PF 283 * @vsi: the VSI being configured 284 * @promisc_m: mask of promiscuous config bits 285 * 286 */ 287 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 288 { 289 int status; 290 291 if (vsi->type != ICE_VSI_PF) 292 return 0; 293 294 if (ice_vsi_has_non_zero_vlans(vsi)) { 295 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 296 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 297 promisc_m); 298 } else { 299 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 300 promisc_m, 0); 301 } 302 303 return status; 304 } 305 306 /** 307 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 308 * @vsi: ptr to the VSI 309 * 310 * Push any outstanding VSI filter changes through the AdminQ. 311 */ 312 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 313 { 314 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 315 struct device *dev = ice_pf_to_dev(vsi->back); 316 struct net_device *netdev = vsi->netdev; 317 bool promisc_forced_on = false; 318 struct ice_pf *pf = vsi->back; 319 struct ice_hw *hw = &pf->hw; 320 u32 changed_flags = 0; 321 int err; 322 323 if (!vsi->netdev) 324 return -EINVAL; 325 326 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 327 usleep_range(1000, 2000); 328 329 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 330 vsi->current_netdev_flags = vsi->netdev->flags; 331 332 INIT_LIST_HEAD(&vsi->tmp_sync_list); 333 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 334 335 if (ice_vsi_fltr_changed(vsi)) { 336 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 337 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 338 339 /* grab the netdev's addr_list_lock */ 340 netif_addr_lock_bh(netdev); 341 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 342 ice_add_mac_to_unsync_list); 343 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 344 ice_add_mac_to_unsync_list); 345 /* our temp lists are populated. release lock */ 346 netif_addr_unlock_bh(netdev); 347 } 348 349 /* Remove MAC addresses in the unsync list */ 350 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 351 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 352 if (err) { 353 netdev_err(netdev, "Failed to delete MAC filters\n"); 354 /* if we failed because of alloc failures, just bail */ 355 if (err == -ENOMEM) 356 goto out; 357 } 358 359 /* Add MAC addresses in the sync list */ 360 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 362 /* If filter is added successfully or already exists, do not go into 363 * 'if' condition and report it as error. Instead continue processing 364 * rest of the function. 365 */ 366 if (err && err != -EEXIST) { 367 netdev_err(netdev, "Failed to add MAC filters\n"); 368 /* If there is no more space for new umac filters, VSI 369 * should go into promiscuous mode. There should be some 370 * space reserved for promiscuous filters. 371 */ 372 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 373 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 374 vsi->state)) { 375 promisc_forced_on = true; 376 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 377 vsi->vsi_num); 378 } else { 379 goto out; 380 } 381 } 382 err = 0; 383 /* check for changes in promiscuous modes */ 384 if (changed_flags & IFF_ALLMULTI) { 385 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 386 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 387 if (err) { 388 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 389 goto out_promisc; 390 } 391 } else { 392 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 393 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags |= IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } 399 } 400 401 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 402 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 403 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 404 if (vsi->current_netdev_flags & IFF_PROMISC) { 405 /* Apply Rx filter rule to get traffic from wire */ 406 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 407 err = ice_set_dflt_vsi(vsi); 408 if (err && err != -EEXIST) { 409 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 410 err, vsi->vsi_num); 411 vsi->current_netdev_flags &= 412 ~IFF_PROMISC; 413 goto out_promisc; 414 } 415 err = 0; 416 vlan_ops->dis_rx_filtering(vsi); 417 } 418 } else { 419 /* Clear Rx filter to remove traffic from wire */ 420 if (ice_is_vsi_dflt_vsi(vsi)) { 421 err = ice_clear_dflt_vsi(vsi); 422 if (err) { 423 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 424 err, vsi->vsi_num); 425 vsi->current_netdev_flags |= 426 IFF_PROMISC; 427 goto out_promisc; 428 } 429 if (vsi->netdev->features & 430 NETIF_F_HW_VLAN_CTAG_FILTER) 431 vlan_ops->ena_rx_filtering(vsi); 432 } 433 } 434 } 435 goto exit; 436 437 out_promisc: 438 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 439 goto exit; 440 out: 441 /* if something went wrong then set the changed flag so we try again */ 442 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 443 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 444 exit: 445 clear_bit(ICE_CFG_BUSY, vsi->state); 446 return err; 447 } 448 449 /** 450 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 451 * @pf: board private structure 452 */ 453 static void ice_sync_fltr_subtask(struct ice_pf *pf) 454 { 455 int v; 456 457 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 458 return; 459 460 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 461 462 ice_for_each_vsi(pf, v) 463 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 464 ice_vsi_sync_fltr(pf->vsi[v])) { 465 /* come back and try again later */ 466 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 467 break; 468 } 469 } 470 471 /** 472 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 473 * @pf: the PF 474 * @locked: is the rtnl_lock already held 475 */ 476 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 477 { 478 int node; 479 int v; 480 481 ice_for_each_vsi(pf, v) 482 if (pf->vsi[v]) 483 ice_dis_vsi(pf->vsi[v], locked); 484 485 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 486 pf->pf_agg_node[node].num_vsis = 0; 487 488 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 489 pf->vf_agg_node[node].num_vsis = 0; 490 } 491 492 /** 493 * ice_clear_sw_switch_recipes - clear switch recipes 494 * @pf: board private structure 495 * 496 * Mark switch recipes as not created in sw structures. There are cases where 497 * rules (especially advanced rules) need to be restored, either re-read from 498 * hardware or added again. For example after the reset. 'recp_created' flag 499 * prevents from doing that and need to be cleared upfront. 500 */ 501 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 502 { 503 struct ice_sw_recipe *recp; 504 u8 i; 505 506 recp = pf->hw.switch_info->recp_list; 507 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 508 recp[i].recp_created = false; 509 } 510 511 /** 512 * ice_prepare_for_reset - prep for reset 513 * @pf: board private structure 514 * @reset_type: reset type requested 515 * 516 * Inform or close all dependent features in prep for reset. 517 */ 518 static void 519 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 520 { 521 struct ice_hw *hw = &pf->hw; 522 struct ice_vsi *vsi; 523 struct ice_vf *vf; 524 unsigned int bkt; 525 526 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 527 528 /* already prepared for reset */ 529 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 530 return; 531 532 ice_unplug_aux_dev(pf); 533 534 /* Notify VFs of impending reset */ 535 if (ice_check_sq_alive(hw, &hw->mailboxq)) 536 ice_vc_notify_reset(pf); 537 538 /* Disable VFs until reset is completed */ 539 mutex_lock(&pf->vfs.table_lock); 540 ice_for_each_vf(pf, bkt, vf) 541 ice_set_vf_state_qs_dis(vf); 542 mutex_unlock(&pf->vfs.table_lock); 543 544 if (ice_is_eswitch_mode_switchdev(pf)) { 545 if (reset_type != ICE_RESET_PFR) 546 ice_clear_sw_switch_recipes(pf); 547 } 548 549 /* release ADQ specific HW and SW resources */ 550 vsi = ice_get_main_vsi(pf); 551 if (!vsi) 552 goto skip; 553 554 /* to be on safe side, reset orig_rss_size so that normal flow 555 * of deciding rss_size can take precedence 556 */ 557 vsi->orig_rss_size = 0; 558 559 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 560 if (reset_type == ICE_RESET_PFR) { 561 vsi->old_ena_tc = vsi->all_enatc; 562 vsi->old_numtc = vsi->all_numtc; 563 } else { 564 ice_remove_q_channels(vsi, true); 565 566 /* for other reset type, do not support channel rebuild 567 * hence reset needed info 568 */ 569 vsi->old_ena_tc = 0; 570 vsi->all_enatc = 0; 571 vsi->old_numtc = 0; 572 vsi->all_numtc = 0; 573 vsi->req_txq = 0; 574 vsi->req_rxq = 0; 575 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 576 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 577 } 578 } 579 skip: 580 581 /* clear SW filtering DB */ 582 ice_clear_hw_tbls(hw); 583 /* disable the VSIs and their queues that are not already DOWN */ 584 ice_pf_dis_all_vsi(pf, false); 585 586 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 587 ice_ptp_prepare_for_reset(pf); 588 589 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 590 ice_gnss_exit(pf); 591 592 if (hw->port_info) 593 ice_sched_clear_port(hw->port_info); 594 595 ice_shutdown_all_ctrlq(hw); 596 597 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 598 } 599 600 /** 601 * ice_do_reset - Initiate one of many types of resets 602 * @pf: board private structure 603 * @reset_type: reset type requested before this function was called. 604 */ 605 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 606 { 607 struct device *dev = ice_pf_to_dev(pf); 608 struct ice_hw *hw = &pf->hw; 609 610 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 611 612 ice_prepare_for_reset(pf, reset_type); 613 614 /* trigger the reset */ 615 if (ice_reset(hw, reset_type)) { 616 dev_err(dev, "reset %d failed\n", reset_type); 617 set_bit(ICE_RESET_FAILED, pf->state); 618 clear_bit(ICE_RESET_OICR_RECV, pf->state); 619 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 620 clear_bit(ICE_PFR_REQ, pf->state); 621 clear_bit(ICE_CORER_REQ, pf->state); 622 clear_bit(ICE_GLOBR_REQ, pf->state); 623 wake_up(&pf->reset_wait_queue); 624 return; 625 } 626 627 /* PFR is a bit of a special case because it doesn't result in an OICR 628 * interrupt. So for PFR, rebuild after the reset and clear the reset- 629 * associated state bits. 630 */ 631 if (reset_type == ICE_RESET_PFR) { 632 pf->pfr_count++; 633 ice_rebuild(pf, reset_type); 634 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 635 clear_bit(ICE_PFR_REQ, pf->state); 636 wake_up(&pf->reset_wait_queue); 637 ice_reset_all_vfs(pf); 638 } 639 } 640 641 /** 642 * ice_reset_subtask - Set up for resetting the device and driver 643 * @pf: board private structure 644 */ 645 static void ice_reset_subtask(struct ice_pf *pf) 646 { 647 enum ice_reset_req reset_type = ICE_RESET_INVAL; 648 649 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 650 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 651 * of reset is pending and sets bits in pf->state indicating the reset 652 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 653 * prepare for pending reset if not already (for PF software-initiated 654 * global resets the software should already be prepared for it as 655 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 656 * by firmware or software on other PFs, that bit is not set so prepare 657 * for the reset now), poll for reset done, rebuild and return. 658 */ 659 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 660 /* Perform the largest reset requested */ 661 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 662 reset_type = ICE_RESET_CORER; 663 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 664 reset_type = ICE_RESET_GLOBR; 665 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 666 reset_type = ICE_RESET_EMPR; 667 /* return if no valid reset type requested */ 668 if (reset_type == ICE_RESET_INVAL) 669 return; 670 ice_prepare_for_reset(pf, reset_type); 671 672 /* make sure we are ready to rebuild */ 673 if (ice_check_reset(&pf->hw)) { 674 set_bit(ICE_RESET_FAILED, pf->state); 675 } else { 676 /* done with reset. start rebuild */ 677 pf->hw.reset_ongoing = false; 678 ice_rebuild(pf, reset_type); 679 /* clear bit to resume normal operations, but 680 * ICE_NEEDS_RESTART bit is set in case rebuild failed 681 */ 682 clear_bit(ICE_RESET_OICR_RECV, pf->state); 683 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 684 clear_bit(ICE_PFR_REQ, pf->state); 685 clear_bit(ICE_CORER_REQ, pf->state); 686 clear_bit(ICE_GLOBR_REQ, pf->state); 687 wake_up(&pf->reset_wait_queue); 688 ice_reset_all_vfs(pf); 689 } 690 691 return; 692 } 693 694 /* No pending resets to finish processing. Check for new resets */ 695 if (test_bit(ICE_PFR_REQ, pf->state)) 696 reset_type = ICE_RESET_PFR; 697 if (test_bit(ICE_CORER_REQ, pf->state)) 698 reset_type = ICE_RESET_CORER; 699 if (test_bit(ICE_GLOBR_REQ, pf->state)) 700 reset_type = ICE_RESET_GLOBR; 701 /* If no valid reset type requested just return */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 705 /* reset if not already down or busy */ 706 if (!test_bit(ICE_DOWN, pf->state) && 707 !test_bit(ICE_CFG_BUSY, pf->state)) { 708 ice_do_reset(pf, reset_type); 709 } 710 } 711 712 /** 713 * ice_print_topo_conflict - print topology conflict message 714 * @vsi: the VSI whose topology status is being checked 715 */ 716 static void ice_print_topo_conflict(struct ice_vsi *vsi) 717 { 718 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 719 case ICE_AQ_LINK_TOPO_CONFLICT: 720 case ICE_AQ_LINK_MEDIA_CONFLICT: 721 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 722 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 723 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 724 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 725 break; 726 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 727 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 728 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 729 else 730 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 731 break; 732 default: 733 break; 734 } 735 } 736 737 /** 738 * ice_print_link_msg - print link up or down message 739 * @vsi: the VSI whose link status is being queried 740 * @isup: boolean for if the link is now up or down 741 */ 742 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 743 { 744 struct ice_aqc_get_phy_caps_data *caps; 745 const char *an_advertised; 746 const char *fec_req; 747 const char *speed; 748 const char *fec; 749 const char *fc; 750 const char *an; 751 int status; 752 753 if (!vsi) 754 return; 755 756 if (vsi->current_isup == isup) 757 return; 758 759 vsi->current_isup = isup; 760 761 if (!isup) { 762 netdev_info(vsi->netdev, "NIC Link is Down\n"); 763 return; 764 } 765 766 switch (vsi->port_info->phy.link_info.link_speed) { 767 case ICE_AQ_LINK_SPEED_100GB: 768 speed = "100 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_50GB: 771 speed = "50 G"; 772 break; 773 case ICE_AQ_LINK_SPEED_40GB: 774 speed = "40 G"; 775 break; 776 case ICE_AQ_LINK_SPEED_25GB: 777 speed = "25 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_20GB: 780 speed = "20 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_10GB: 783 speed = "10 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_5GB: 786 speed = "5 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_2500MB: 789 speed = "2.5 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_1000MB: 792 speed = "1 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_100MB: 795 speed = "100 M"; 796 break; 797 default: 798 speed = "Unknown "; 799 break; 800 } 801 802 switch (vsi->port_info->fc.current_mode) { 803 case ICE_FC_FULL: 804 fc = "Rx/Tx"; 805 break; 806 case ICE_FC_TX_PAUSE: 807 fc = "Tx"; 808 break; 809 case ICE_FC_RX_PAUSE: 810 fc = "Rx"; 811 break; 812 case ICE_FC_NONE: 813 fc = "None"; 814 break; 815 default: 816 fc = "Unknown"; 817 break; 818 } 819 820 /* Get FEC mode based on negotiated link info */ 821 switch (vsi->port_info->phy.link_info.fec_info) { 822 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 823 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 824 fec = "RS-FEC"; 825 break; 826 case ICE_AQ_LINK_25G_KR_FEC_EN: 827 fec = "FC-FEC/BASE-R"; 828 break; 829 default: 830 fec = "NONE"; 831 break; 832 } 833 834 /* check if autoneg completed, might be false due to not supported */ 835 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 836 an = "True"; 837 else 838 an = "False"; 839 840 /* Get FEC mode requested based on PHY caps last SW configuration */ 841 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 842 if (!caps) { 843 fec_req = "Unknown"; 844 an_advertised = "Unknown"; 845 goto done; 846 } 847 848 status = ice_aq_get_phy_caps(vsi->port_info, false, 849 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 850 if (status) 851 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 852 853 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 854 855 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 856 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 857 fec_req = "RS-FEC"; 858 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 859 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 860 fec_req = "FC-FEC/BASE-R"; 861 else 862 fec_req = "NONE"; 863 864 kfree(caps); 865 866 done: 867 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 868 speed, fec_req, fec, an_advertised, an, fc); 869 ice_print_topo_conflict(vsi); 870 } 871 872 /** 873 * ice_vsi_link_event - update the VSI's netdev 874 * @vsi: the VSI on which the link event occurred 875 * @link_up: whether or not the VSI needs to be set up or down 876 */ 877 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 878 { 879 if (!vsi) 880 return; 881 882 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 883 return; 884 885 if (vsi->type == ICE_VSI_PF) { 886 if (link_up == netif_carrier_ok(vsi->netdev)) 887 return; 888 889 if (link_up) { 890 netif_carrier_on(vsi->netdev); 891 netif_tx_wake_all_queues(vsi->netdev); 892 } else { 893 netif_carrier_off(vsi->netdev); 894 netif_tx_stop_all_queues(vsi->netdev); 895 } 896 } 897 } 898 899 /** 900 * ice_set_dflt_mib - send a default config MIB to the FW 901 * @pf: private PF struct 902 * 903 * This function sends a default configuration MIB to the FW. 904 * 905 * If this function errors out at any point, the driver is still able to 906 * function. The main impact is that LFC may not operate as expected. 907 * Therefore an error state in this function should be treated with a DBG 908 * message and continue on with driver rebuild/reenable. 909 */ 910 static void ice_set_dflt_mib(struct ice_pf *pf) 911 { 912 struct device *dev = ice_pf_to_dev(pf); 913 u8 mib_type, *buf, *lldpmib = NULL; 914 u16 len, typelen, offset = 0; 915 struct ice_lldp_org_tlv *tlv; 916 struct ice_hw *hw = &pf->hw; 917 u32 ouisubtype; 918 919 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 920 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 921 if (!lldpmib) { 922 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 923 __func__); 924 return; 925 } 926 927 /* Add ETS CFG TLV */ 928 tlv = (struct ice_lldp_org_tlv *)lldpmib; 929 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 930 ICE_IEEE_ETS_TLV_LEN); 931 tlv->typelen = htons(typelen); 932 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 933 ICE_IEEE_SUBTYPE_ETS_CFG); 934 tlv->ouisubtype = htonl(ouisubtype); 935 936 buf = tlv->tlvinfo; 937 buf[0] = 0; 938 939 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 940 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 941 * Octets 13 - 20 are TSA values - leave as zeros 942 */ 943 buf[5] = 0x64; 944 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 945 offset += len + 2; 946 tlv = (struct ice_lldp_org_tlv *) 947 ((char *)tlv + sizeof(tlv->typelen) + len); 948 949 /* Add ETS REC TLV */ 950 buf = tlv->tlvinfo; 951 tlv->typelen = htons(typelen); 952 953 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 954 ICE_IEEE_SUBTYPE_ETS_REC); 955 tlv->ouisubtype = htonl(ouisubtype); 956 957 /* First octet of buf is reserved 958 * Octets 1 - 4 map UP to TC - all UPs map to zero 959 * Octets 5 - 12 are BW values - set TC 0 to 100%. 960 * Octets 13 - 20 are TSA value - leave as zeros 961 */ 962 buf[5] = 0x64; 963 offset += len + 2; 964 tlv = (struct ice_lldp_org_tlv *) 965 ((char *)tlv + sizeof(tlv->typelen) + len); 966 967 /* Add PFC CFG TLV */ 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_PFC_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 973 ICE_IEEE_SUBTYPE_PFC_CFG); 974 tlv->ouisubtype = htonl(ouisubtype); 975 976 /* Octet 1 left as all zeros - PFC disabled */ 977 buf[0] = 0x08; 978 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 979 offset += len + 2; 980 981 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 982 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 983 984 kfree(lldpmib); 985 } 986 987 /** 988 * ice_check_phy_fw_load - check if PHY FW load failed 989 * @pf: pointer to PF struct 990 * @link_cfg_err: bitmap from the link info structure 991 * 992 * check if external PHY FW load failed and print an error message if it did 993 */ 994 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 995 { 996 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 997 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 998 return; 999 } 1000 1001 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1002 return; 1003 1004 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1005 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1006 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 } 1008 } 1009 1010 /** 1011 * ice_check_module_power 1012 * @pf: pointer to PF struct 1013 * @link_cfg_err: bitmap from the link info structure 1014 * 1015 * check module power level returned by a previous call to aq_get_link_info 1016 * and print error messages if module power level is not supported 1017 */ 1018 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1019 { 1020 /* if module power level is supported, clear the flag */ 1021 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1022 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1023 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1024 return; 1025 } 1026 1027 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1028 * above block didn't clear this bit, there's nothing to do 1029 */ 1030 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1031 return; 1032 1033 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1034 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1035 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1036 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1037 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1038 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1039 } 1040 } 1041 1042 /** 1043 * ice_check_link_cfg_err - check if link configuration failed 1044 * @pf: pointer to the PF struct 1045 * @link_cfg_err: bitmap from the link info structure 1046 * 1047 * print if any link configuration failure happens due to the value in the 1048 * link_cfg_err parameter in the link info structure 1049 */ 1050 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1051 { 1052 ice_check_module_power(pf, link_cfg_err); 1053 ice_check_phy_fw_load(pf, link_cfg_err); 1054 } 1055 1056 /** 1057 * ice_link_event - process the link event 1058 * @pf: PF that the link event is associated with 1059 * @pi: port_info for the port that the link event is associated with 1060 * @link_up: true if the physical link is up and false if it is down 1061 * @link_speed: current link speed received from the link event 1062 * 1063 * Returns 0 on success and negative on failure 1064 */ 1065 static int 1066 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1067 u16 link_speed) 1068 { 1069 struct device *dev = ice_pf_to_dev(pf); 1070 struct ice_phy_info *phy_info; 1071 struct ice_vsi *vsi; 1072 u16 old_link_speed; 1073 bool old_link; 1074 int status; 1075 1076 phy_info = &pi->phy; 1077 phy_info->link_info_old = phy_info->link_info; 1078 1079 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1080 old_link_speed = phy_info->link_info_old.link_speed; 1081 1082 /* update the link info structures and re-enable link events, 1083 * don't bail on failure due to other book keeping needed 1084 */ 1085 status = ice_update_link_info(pi); 1086 if (status) 1087 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1088 pi->lport, status, 1089 ice_aq_str(pi->hw->adminq.sq_last_status)); 1090 1091 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1092 1093 /* Check if the link state is up after updating link info, and treat 1094 * this event as an UP event since the link is actually UP now. 1095 */ 1096 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1097 link_up = true; 1098 1099 vsi = ice_get_main_vsi(pf); 1100 if (!vsi || !vsi->port_info) 1101 return -EINVAL; 1102 1103 /* turn off PHY if media was removed */ 1104 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1105 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1106 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1107 ice_set_link(vsi, false); 1108 } 1109 1110 /* if the old link up/down and speed is the same as the new */ 1111 if (link_up == old_link && link_speed == old_link_speed) 1112 return 0; 1113 1114 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1115 1116 if (ice_is_dcb_active(pf)) { 1117 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1118 ice_dcb_rebuild(pf); 1119 } else { 1120 if (link_up) 1121 ice_set_dflt_mib(pf); 1122 } 1123 ice_vsi_link_event(vsi, link_up); 1124 ice_print_link_msg(vsi, link_up); 1125 1126 ice_vc_notify_link_state(pf); 1127 1128 return 0; 1129 } 1130 1131 /** 1132 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1133 * @pf: board private structure 1134 */ 1135 static void ice_watchdog_subtask(struct ice_pf *pf) 1136 { 1137 int i; 1138 1139 /* if interface is down do nothing */ 1140 if (test_bit(ICE_DOWN, pf->state) || 1141 test_bit(ICE_CFG_BUSY, pf->state)) 1142 return; 1143 1144 /* make sure we don't do these things too often */ 1145 if (time_before(jiffies, 1146 pf->serv_tmr_prev + pf->serv_tmr_period)) 1147 return; 1148 1149 pf->serv_tmr_prev = jiffies; 1150 1151 /* Update the stats for active netdevs so the network stack 1152 * can look at updated numbers whenever it cares to 1153 */ 1154 ice_update_pf_stats(pf); 1155 ice_for_each_vsi(pf, i) 1156 if (pf->vsi[i] && pf->vsi[i]->netdev) 1157 ice_update_vsi_stats(pf->vsi[i]); 1158 } 1159 1160 /** 1161 * ice_init_link_events - enable/initialize link events 1162 * @pi: pointer to the port_info instance 1163 * 1164 * Returns -EIO on failure, 0 on success 1165 */ 1166 static int ice_init_link_events(struct ice_port_info *pi) 1167 { 1168 u16 mask; 1169 1170 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1171 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1172 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1173 1174 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1175 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1176 pi->lport); 1177 return -EIO; 1178 } 1179 1180 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1181 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1182 pi->lport); 1183 return -EIO; 1184 } 1185 1186 return 0; 1187 } 1188 1189 /** 1190 * ice_handle_link_event - handle link event via ARQ 1191 * @pf: PF that the link event is associated with 1192 * @event: event structure containing link status info 1193 */ 1194 static int 1195 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1196 { 1197 struct ice_aqc_get_link_status_data *link_data; 1198 struct ice_port_info *port_info; 1199 int status; 1200 1201 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1202 port_info = pf->hw.port_info; 1203 if (!port_info) 1204 return -EINVAL; 1205 1206 status = ice_link_event(pf, port_info, 1207 !!(link_data->link_info & ICE_AQ_LINK_UP), 1208 le16_to_cpu(link_data->link_speed)); 1209 if (status) 1210 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1211 status); 1212 1213 return status; 1214 } 1215 1216 enum ice_aq_task_state { 1217 ICE_AQ_TASK_WAITING = 0, 1218 ICE_AQ_TASK_COMPLETE, 1219 ICE_AQ_TASK_CANCELED, 1220 }; 1221 1222 struct ice_aq_task { 1223 struct hlist_node entry; 1224 1225 u16 opcode; 1226 struct ice_rq_event_info *event; 1227 enum ice_aq_task_state state; 1228 }; 1229 1230 /** 1231 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1232 * @pf: pointer to the PF private structure 1233 * @opcode: the opcode to wait for 1234 * @timeout: how long to wait, in jiffies 1235 * @event: storage for the event info 1236 * 1237 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1238 * current thread will be put to sleep until the specified event occurs or 1239 * until the given timeout is reached. 1240 * 1241 * To obtain only the descriptor contents, pass an event without an allocated 1242 * msg_buf. If the complete data buffer is desired, allocate the 1243 * event->msg_buf with enough space ahead of time. 1244 * 1245 * Returns: zero on success, or a negative error code on failure. 1246 */ 1247 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1248 struct ice_rq_event_info *event) 1249 { 1250 struct device *dev = ice_pf_to_dev(pf); 1251 struct ice_aq_task *task; 1252 unsigned long start; 1253 long ret; 1254 int err; 1255 1256 task = kzalloc(sizeof(*task), GFP_KERNEL); 1257 if (!task) 1258 return -ENOMEM; 1259 1260 INIT_HLIST_NODE(&task->entry); 1261 task->opcode = opcode; 1262 task->event = event; 1263 task->state = ICE_AQ_TASK_WAITING; 1264 1265 spin_lock_bh(&pf->aq_wait_lock); 1266 hlist_add_head(&task->entry, &pf->aq_wait_list); 1267 spin_unlock_bh(&pf->aq_wait_lock); 1268 1269 start = jiffies; 1270 1271 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1272 timeout); 1273 switch (task->state) { 1274 case ICE_AQ_TASK_WAITING: 1275 err = ret < 0 ? ret : -ETIMEDOUT; 1276 break; 1277 case ICE_AQ_TASK_CANCELED: 1278 err = ret < 0 ? ret : -ECANCELED; 1279 break; 1280 case ICE_AQ_TASK_COMPLETE: 1281 err = ret < 0 ? ret : 0; 1282 break; 1283 default: 1284 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1285 err = -EINVAL; 1286 break; 1287 } 1288 1289 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1290 jiffies_to_msecs(jiffies - start), 1291 jiffies_to_msecs(timeout), 1292 opcode); 1293 1294 spin_lock_bh(&pf->aq_wait_lock); 1295 hlist_del(&task->entry); 1296 spin_unlock_bh(&pf->aq_wait_lock); 1297 kfree(task); 1298 1299 return err; 1300 } 1301 1302 /** 1303 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1304 * @pf: pointer to the PF private structure 1305 * @opcode: the opcode of the event 1306 * @event: the event to check 1307 * 1308 * Loops over the current list of pending threads waiting for an AdminQ event. 1309 * For each matching task, copy the contents of the event into the task 1310 * structure and wake up the thread. 1311 * 1312 * If multiple threads wait for the same opcode, they will all be woken up. 1313 * 1314 * Note that event->msg_buf will only be duplicated if the event has a buffer 1315 * with enough space already allocated. Otherwise, only the descriptor and 1316 * message length will be copied. 1317 * 1318 * Returns: true if an event was found, false otherwise 1319 */ 1320 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1321 struct ice_rq_event_info *event) 1322 { 1323 struct ice_aq_task *task; 1324 bool found = false; 1325 1326 spin_lock_bh(&pf->aq_wait_lock); 1327 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1328 if (task->state || task->opcode != opcode) 1329 continue; 1330 1331 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1332 task->event->msg_len = event->msg_len; 1333 1334 /* Only copy the data buffer if a destination was set */ 1335 if (task->event->msg_buf && 1336 task->event->buf_len > event->buf_len) { 1337 memcpy(task->event->msg_buf, event->msg_buf, 1338 event->buf_len); 1339 task->event->buf_len = event->buf_len; 1340 } 1341 1342 task->state = ICE_AQ_TASK_COMPLETE; 1343 found = true; 1344 } 1345 spin_unlock_bh(&pf->aq_wait_lock); 1346 1347 if (found) 1348 wake_up(&pf->aq_wait_queue); 1349 } 1350 1351 /** 1352 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1353 * @pf: the PF private structure 1354 * 1355 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1356 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1357 */ 1358 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1359 { 1360 struct ice_aq_task *task; 1361 1362 spin_lock_bh(&pf->aq_wait_lock); 1363 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1364 task->state = ICE_AQ_TASK_CANCELED; 1365 spin_unlock_bh(&pf->aq_wait_lock); 1366 1367 wake_up(&pf->aq_wait_queue); 1368 } 1369 1370 /** 1371 * __ice_clean_ctrlq - helper function to clean controlq rings 1372 * @pf: ptr to struct ice_pf 1373 * @q_type: specific Control queue type 1374 */ 1375 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1376 { 1377 struct device *dev = ice_pf_to_dev(pf); 1378 struct ice_rq_event_info event; 1379 struct ice_hw *hw = &pf->hw; 1380 struct ice_ctl_q_info *cq; 1381 u16 pending, i = 0; 1382 const char *qtype; 1383 u32 oldval, val; 1384 1385 /* Do not clean control queue if/when PF reset fails */ 1386 if (test_bit(ICE_RESET_FAILED, pf->state)) 1387 return 0; 1388 1389 switch (q_type) { 1390 case ICE_CTL_Q_ADMIN: 1391 cq = &hw->adminq; 1392 qtype = "Admin"; 1393 break; 1394 case ICE_CTL_Q_SB: 1395 cq = &hw->sbq; 1396 qtype = "Sideband"; 1397 break; 1398 case ICE_CTL_Q_MAILBOX: 1399 cq = &hw->mailboxq; 1400 qtype = "Mailbox"; 1401 /* we are going to try to detect a malicious VF, so set the 1402 * state to begin detection 1403 */ 1404 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1405 break; 1406 default: 1407 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1408 return 0; 1409 } 1410 1411 /* check for error indications - PF_xx_AxQLEN register layout for 1412 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1413 */ 1414 val = rd32(hw, cq->rq.len); 1415 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1416 PF_FW_ARQLEN_ARQCRIT_M)) { 1417 oldval = val; 1418 if (val & PF_FW_ARQLEN_ARQVFE_M) 1419 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1420 qtype); 1421 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1422 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1423 qtype); 1424 } 1425 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1426 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1427 qtype); 1428 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1429 PF_FW_ARQLEN_ARQCRIT_M); 1430 if (oldval != val) 1431 wr32(hw, cq->rq.len, val); 1432 } 1433 1434 val = rd32(hw, cq->sq.len); 1435 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1436 PF_FW_ATQLEN_ATQCRIT_M)) { 1437 oldval = val; 1438 if (val & PF_FW_ATQLEN_ATQVFE_M) 1439 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1440 qtype); 1441 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1442 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1443 qtype); 1444 } 1445 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1446 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1447 qtype); 1448 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1449 PF_FW_ATQLEN_ATQCRIT_M); 1450 if (oldval != val) 1451 wr32(hw, cq->sq.len, val); 1452 } 1453 1454 event.buf_len = cq->rq_buf_size; 1455 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1456 if (!event.msg_buf) 1457 return 0; 1458 1459 do { 1460 u16 opcode; 1461 int ret; 1462 1463 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1464 if (ret == -EALREADY) 1465 break; 1466 if (ret) { 1467 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1468 ret); 1469 break; 1470 } 1471 1472 opcode = le16_to_cpu(event.desc.opcode); 1473 1474 /* Notify any thread that might be waiting for this event */ 1475 ice_aq_check_events(pf, opcode, &event); 1476 1477 switch (opcode) { 1478 case ice_aqc_opc_get_link_status: 1479 if (ice_handle_link_event(pf, &event)) 1480 dev_err(dev, "Could not handle link event\n"); 1481 break; 1482 case ice_aqc_opc_event_lan_overflow: 1483 ice_vf_lan_overflow_event(pf, &event); 1484 break; 1485 case ice_mbx_opc_send_msg_to_pf: 1486 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1487 ice_vc_process_vf_msg(pf, &event); 1488 break; 1489 case ice_aqc_opc_fw_logging: 1490 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1491 break; 1492 case ice_aqc_opc_lldp_set_mib_change: 1493 ice_dcb_process_lldp_set_mib_change(pf, &event); 1494 break; 1495 default: 1496 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1497 qtype, opcode); 1498 break; 1499 } 1500 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1501 1502 kfree(event.msg_buf); 1503 1504 return pending && (i == ICE_DFLT_IRQ_WORK); 1505 } 1506 1507 /** 1508 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1509 * @hw: pointer to hardware info 1510 * @cq: control queue information 1511 * 1512 * returns true if there are pending messages in a queue, false if there aren't 1513 */ 1514 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1515 { 1516 u16 ntu; 1517 1518 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1519 return cq->rq.next_to_clean != ntu; 1520 } 1521 1522 /** 1523 * ice_clean_adminq_subtask - clean the AdminQ rings 1524 * @pf: board private structure 1525 */ 1526 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1527 { 1528 struct ice_hw *hw = &pf->hw; 1529 1530 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1531 return; 1532 1533 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1534 return; 1535 1536 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1537 1538 /* There might be a situation where new messages arrive to a control 1539 * queue between processing the last message and clearing the 1540 * EVENT_PENDING bit. So before exiting, check queue head again (using 1541 * ice_ctrlq_pending) and process new messages if any. 1542 */ 1543 if (ice_ctrlq_pending(hw, &hw->adminq)) 1544 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1545 1546 ice_flush(hw); 1547 } 1548 1549 /** 1550 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1551 * @pf: board private structure 1552 */ 1553 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1554 { 1555 struct ice_hw *hw = &pf->hw; 1556 1557 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1558 return; 1559 1560 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1561 return; 1562 1563 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1564 1565 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1566 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1567 1568 ice_flush(hw); 1569 } 1570 1571 /** 1572 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1573 * @pf: board private structure 1574 */ 1575 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1576 { 1577 struct ice_hw *hw = &pf->hw; 1578 1579 /* Nothing to do here if sideband queue is not supported */ 1580 if (!ice_is_sbq_supported(hw)) { 1581 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1582 return; 1583 } 1584 1585 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1586 return; 1587 1588 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1589 return; 1590 1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1592 1593 if (ice_ctrlq_pending(hw, &hw->sbq)) 1594 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1595 1596 ice_flush(hw); 1597 } 1598 1599 /** 1600 * ice_service_task_schedule - schedule the service task to wake up 1601 * @pf: board private structure 1602 * 1603 * If not already scheduled, this puts the task into the work queue. 1604 */ 1605 void ice_service_task_schedule(struct ice_pf *pf) 1606 { 1607 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1608 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1609 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1610 queue_work(ice_wq, &pf->serv_task); 1611 } 1612 1613 /** 1614 * ice_service_task_complete - finish up the service task 1615 * @pf: board private structure 1616 */ 1617 static void ice_service_task_complete(struct ice_pf *pf) 1618 { 1619 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1620 1621 /* force memory (pf->state) to sync before next service task */ 1622 smp_mb__before_atomic(); 1623 clear_bit(ICE_SERVICE_SCHED, pf->state); 1624 } 1625 1626 /** 1627 * ice_service_task_stop - stop service task and cancel works 1628 * @pf: board private structure 1629 * 1630 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1631 * 1 otherwise. 1632 */ 1633 static int ice_service_task_stop(struct ice_pf *pf) 1634 { 1635 int ret; 1636 1637 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1638 1639 if (pf->serv_tmr.function) 1640 del_timer_sync(&pf->serv_tmr); 1641 if (pf->serv_task.func) 1642 cancel_work_sync(&pf->serv_task); 1643 1644 clear_bit(ICE_SERVICE_SCHED, pf->state); 1645 return ret; 1646 } 1647 1648 /** 1649 * ice_service_task_restart - restart service task and schedule works 1650 * @pf: board private structure 1651 * 1652 * This function is needed for suspend and resume works (e.g WoL scenario) 1653 */ 1654 static void ice_service_task_restart(struct ice_pf *pf) 1655 { 1656 clear_bit(ICE_SERVICE_DIS, pf->state); 1657 ice_service_task_schedule(pf); 1658 } 1659 1660 /** 1661 * ice_service_timer - timer callback to schedule service task 1662 * @t: pointer to timer_list 1663 */ 1664 static void ice_service_timer(struct timer_list *t) 1665 { 1666 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1667 1668 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1669 ice_service_task_schedule(pf); 1670 } 1671 1672 /** 1673 * ice_handle_mdd_event - handle malicious driver detect event 1674 * @pf: pointer to the PF structure 1675 * 1676 * Called from service task. OICR interrupt handler indicates MDD event. 1677 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1678 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1679 * disable the queue, the PF can be configured to reset the VF using ethtool 1680 * private flag mdd-auto-reset-vf. 1681 */ 1682 static void ice_handle_mdd_event(struct ice_pf *pf) 1683 { 1684 struct device *dev = ice_pf_to_dev(pf); 1685 struct ice_hw *hw = &pf->hw; 1686 struct ice_vf *vf; 1687 unsigned int bkt; 1688 u32 reg; 1689 1690 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1691 /* Since the VF MDD event logging is rate limited, check if 1692 * there are pending MDD events. 1693 */ 1694 ice_print_vfs_mdd_events(pf); 1695 return; 1696 } 1697 1698 /* find what triggered an MDD event */ 1699 reg = rd32(hw, GL_MDET_TX_PQM); 1700 if (reg & GL_MDET_TX_PQM_VALID_M) { 1701 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1702 GL_MDET_TX_PQM_PF_NUM_S; 1703 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1704 GL_MDET_TX_PQM_VF_NUM_S; 1705 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1706 GL_MDET_TX_PQM_MAL_TYPE_S; 1707 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1708 GL_MDET_TX_PQM_QNUM_S); 1709 1710 if (netif_msg_tx_err(pf)) 1711 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1712 event, queue, pf_num, vf_num); 1713 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1714 } 1715 1716 reg = rd32(hw, GL_MDET_TX_TCLAN); 1717 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1718 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1719 GL_MDET_TX_TCLAN_PF_NUM_S; 1720 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1721 GL_MDET_TX_TCLAN_VF_NUM_S; 1722 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1723 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1724 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1725 GL_MDET_TX_TCLAN_QNUM_S); 1726 1727 if (netif_msg_tx_err(pf)) 1728 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1729 event, queue, pf_num, vf_num); 1730 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1731 } 1732 1733 reg = rd32(hw, GL_MDET_RX); 1734 if (reg & GL_MDET_RX_VALID_M) { 1735 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1736 GL_MDET_RX_PF_NUM_S; 1737 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1738 GL_MDET_RX_VF_NUM_S; 1739 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1740 GL_MDET_RX_MAL_TYPE_S; 1741 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1742 GL_MDET_RX_QNUM_S); 1743 1744 if (netif_msg_rx_err(pf)) 1745 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1746 event, queue, pf_num, vf_num); 1747 wr32(hw, GL_MDET_RX, 0xffffffff); 1748 } 1749 1750 /* check to see if this PF caused an MDD event */ 1751 reg = rd32(hw, PF_MDET_TX_PQM); 1752 if (reg & PF_MDET_TX_PQM_VALID_M) { 1753 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1754 if (netif_msg_tx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1756 } 1757 1758 reg = rd32(hw, PF_MDET_TX_TCLAN); 1759 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1760 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1761 if (netif_msg_tx_err(pf)) 1762 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1763 } 1764 1765 reg = rd32(hw, PF_MDET_RX); 1766 if (reg & PF_MDET_RX_VALID_M) { 1767 wr32(hw, PF_MDET_RX, 0xFFFF); 1768 if (netif_msg_rx_err(pf)) 1769 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1770 } 1771 1772 /* Check to see if one of the VFs caused an MDD event, and then 1773 * increment counters and set print pending 1774 */ 1775 mutex_lock(&pf->vfs.table_lock); 1776 ice_for_each_vf(pf, bkt, vf) { 1777 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1778 if (reg & VP_MDET_TX_PQM_VALID_M) { 1779 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1780 vf->mdd_tx_events.count++; 1781 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1782 if (netif_msg_tx_err(pf)) 1783 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1784 vf->vf_id); 1785 } 1786 1787 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1788 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1789 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1790 vf->mdd_tx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1794 vf->vf_id); 1795 } 1796 1797 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1798 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1799 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1800 vf->mdd_tx_events.count++; 1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1804 vf->vf_id); 1805 } 1806 1807 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1808 if (reg & VP_MDET_RX_VALID_M) { 1809 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1810 vf->mdd_rx_events.count++; 1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1812 if (netif_msg_rx_err(pf)) 1813 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1814 vf->vf_id); 1815 1816 /* Since the queue is disabled on VF Rx MDD events, the 1817 * PF can be configured to reset the VF through ethtool 1818 * private flag mdd-auto-reset-vf. 1819 */ 1820 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1821 /* VF MDD event counters will be cleared by 1822 * reset, so print the event prior to reset. 1823 */ 1824 ice_print_vf_rx_mdd_event(vf); 1825 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1826 } 1827 } 1828 } 1829 mutex_unlock(&pf->vfs.table_lock); 1830 1831 ice_print_vfs_mdd_events(pf); 1832 } 1833 1834 /** 1835 * ice_force_phys_link_state - Force the physical link state 1836 * @vsi: VSI to force the physical link state to up/down 1837 * @link_up: true/false indicates to set the physical link to up/down 1838 * 1839 * Force the physical link state by getting the current PHY capabilities from 1840 * hardware and setting the PHY config based on the determined capabilities. If 1841 * link changes a link event will be triggered because both the Enable Automatic 1842 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1843 * 1844 * Returns 0 on success, negative on failure 1845 */ 1846 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1847 { 1848 struct ice_aqc_get_phy_caps_data *pcaps; 1849 struct ice_aqc_set_phy_cfg_data *cfg; 1850 struct ice_port_info *pi; 1851 struct device *dev; 1852 int retcode; 1853 1854 if (!vsi || !vsi->port_info || !vsi->back) 1855 return -EINVAL; 1856 if (vsi->type != ICE_VSI_PF) 1857 return 0; 1858 1859 dev = ice_pf_to_dev(vsi->back); 1860 1861 pi = vsi->port_info; 1862 1863 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1864 if (!pcaps) 1865 return -ENOMEM; 1866 1867 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1868 NULL); 1869 if (retcode) { 1870 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1871 vsi->vsi_num, retcode); 1872 retcode = -EIO; 1873 goto out; 1874 } 1875 1876 /* No change in link */ 1877 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1878 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1879 goto out; 1880 1881 /* Use the current user PHY configuration. The current user PHY 1882 * configuration is initialized during probe from PHY capabilities 1883 * software mode, and updated on set PHY configuration. 1884 */ 1885 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1886 if (!cfg) { 1887 retcode = -ENOMEM; 1888 goto out; 1889 } 1890 1891 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1892 if (link_up) 1893 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1894 else 1895 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1896 1897 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1898 if (retcode) { 1899 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1900 vsi->vsi_num, retcode); 1901 retcode = -EIO; 1902 } 1903 1904 kfree(cfg); 1905 out: 1906 kfree(pcaps); 1907 return retcode; 1908 } 1909 1910 /** 1911 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1912 * @pi: port info structure 1913 * 1914 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1915 */ 1916 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1917 { 1918 struct ice_aqc_get_phy_caps_data *pcaps; 1919 struct ice_pf *pf = pi->hw->back; 1920 int err; 1921 1922 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1923 if (!pcaps) 1924 return -ENOMEM; 1925 1926 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1927 pcaps, NULL); 1928 1929 if (err) { 1930 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1931 goto out; 1932 } 1933 1934 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1935 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1936 1937 out: 1938 kfree(pcaps); 1939 return err; 1940 } 1941 1942 /** 1943 * ice_init_link_dflt_override - Initialize link default override 1944 * @pi: port info structure 1945 * 1946 * Initialize link default override and PHY total port shutdown during probe 1947 */ 1948 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1949 { 1950 struct ice_link_default_override_tlv *ldo; 1951 struct ice_pf *pf = pi->hw->back; 1952 1953 ldo = &pf->link_dflt_override; 1954 if (ice_get_link_default_override(ldo, pi)) 1955 return; 1956 1957 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1958 return; 1959 1960 /* Enable Total Port Shutdown (override/replace link-down-on-close 1961 * ethtool private flag) for ports with Port Disable bit set. 1962 */ 1963 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1964 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1965 } 1966 1967 /** 1968 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1969 * @pi: port info structure 1970 * 1971 * If default override is enabled, initialize the user PHY cfg speed and FEC 1972 * settings using the default override mask from the NVM. 1973 * 1974 * The PHY should only be configured with the default override settings the 1975 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1976 * is used to indicate that the user PHY cfg default override is initialized 1977 * and the PHY has not been configured with the default override settings. The 1978 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1979 * configured. 1980 * 1981 * This function should be called only if the FW doesn't support default 1982 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1983 */ 1984 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1985 { 1986 struct ice_link_default_override_tlv *ldo; 1987 struct ice_aqc_set_phy_cfg_data *cfg; 1988 struct ice_phy_info *phy = &pi->phy; 1989 struct ice_pf *pf = pi->hw->back; 1990 1991 ldo = &pf->link_dflt_override; 1992 1993 /* If link default override is enabled, use to mask NVM PHY capabilities 1994 * for speed and FEC default configuration. 1995 */ 1996 cfg = &phy->curr_user_phy_cfg; 1997 1998 if (ldo->phy_type_low || ldo->phy_type_high) { 1999 cfg->phy_type_low = pf->nvm_phy_type_lo & 2000 cpu_to_le64(ldo->phy_type_low); 2001 cfg->phy_type_high = pf->nvm_phy_type_hi & 2002 cpu_to_le64(ldo->phy_type_high); 2003 } 2004 cfg->link_fec_opt = ldo->fec_options; 2005 phy->curr_user_fec_req = ICE_FEC_AUTO; 2006 2007 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2008 } 2009 2010 /** 2011 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2012 * @pi: port info structure 2013 * 2014 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2015 * mode to default. The PHY defaults are from get PHY capabilities topology 2016 * with media so call when media is first available. An error is returned if 2017 * called when media is not available. The PHY initialization completed state is 2018 * set here. 2019 * 2020 * These configurations are used when setting PHY 2021 * configuration. The user PHY configuration is updated on set PHY 2022 * configuration. Returns 0 on success, negative on failure 2023 */ 2024 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2025 { 2026 struct ice_aqc_get_phy_caps_data *pcaps; 2027 struct ice_phy_info *phy = &pi->phy; 2028 struct ice_pf *pf = pi->hw->back; 2029 int err; 2030 2031 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2032 return -EIO; 2033 2034 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2035 if (!pcaps) 2036 return -ENOMEM; 2037 2038 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2039 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2040 pcaps, NULL); 2041 else 2042 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2043 pcaps, NULL); 2044 if (err) { 2045 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2046 goto err_out; 2047 } 2048 2049 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2050 2051 /* check if lenient mode is supported and enabled */ 2052 if (ice_fw_supports_link_override(pi->hw) && 2053 !(pcaps->module_compliance_enforcement & 2054 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2055 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2056 2057 /* if the FW supports default PHY configuration mode, then the driver 2058 * does not have to apply link override settings. If not, 2059 * initialize user PHY configuration with link override values 2060 */ 2061 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2062 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2063 ice_init_phy_cfg_dflt_override(pi); 2064 goto out; 2065 } 2066 } 2067 2068 /* if link default override is not enabled, set user flow control and 2069 * FEC settings based on what get_phy_caps returned 2070 */ 2071 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2072 pcaps->link_fec_options); 2073 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2074 2075 out: 2076 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2077 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2078 err_out: 2079 kfree(pcaps); 2080 return err; 2081 } 2082 2083 /** 2084 * ice_configure_phy - configure PHY 2085 * @vsi: VSI of PHY 2086 * 2087 * Set the PHY configuration. If the current PHY configuration is the same as 2088 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2089 * configure the based get PHY capabilities for topology with media. 2090 */ 2091 static int ice_configure_phy(struct ice_vsi *vsi) 2092 { 2093 struct device *dev = ice_pf_to_dev(vsi->back); 2094 struct ice_port_info *pi = vsi->port_info; 2095 struct ice_aqc_get_phy_caps_data *pcaps; 2096 struct ice_aqc_set_phy_cfg_data *cfg; 2097 struct ice_phy_info *phy = &pi->phy; 2098 struct ice_pf *pf = vsi->back; 2099 int err; 2100 2101 /* Ensure we have media as we cannot configure a medialess port */ 2102 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2103 return -EPERM; 2104 2105 ice_print_topo_conflict(vsi); 2106 2107 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2108 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2109 return -EPERM; 2110 2111 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2112 return ice_force_phys_link_state(vsi, true); 2113 2114 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2115 if (!pcaps) 2116 return -ENOMEM; 2117 2118 /* Get current PHY config */ 2119 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2120 NULL); 2121 if (err) { 2122 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2123 vsi->vsi_num, err); 2124 goto done; 2125 } 2126 2127 /* If PHY enable link is configured and configuration has not changed, 2128 * there's nothing to do 2129 */ 2130 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2131 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2132 goto done; 2133 2134 /* Use PHY topology as baseline for configuration */ 2135 memset(pcaps, 0, sizeof(*pcaps)); 2136 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2137 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2138 pcaps, NULL); 2139 else 2140 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2141 pcaps, NULL); 2142 if (err) { 2143 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2144 vsi->vsi_num, err); 2145 goto done; 2146 } 2147 2148 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2149 if (!cfg) { 2150 err = -ENOMEM; 2151 goto done; 2152 } 2153 2154 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2155 2156 /* Speed - If default override pending, use curr_user_phy_cfg set in 2157 * ice_init_phy_user_cfg_ldo. 2158 */ 2159 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2160 vsi->back->state)) { 2161 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2162 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2163 } else { 2164 u64 phy_low = 0, phy_high = 0; 2165 2166 ice_update_phy_type(&phy_low, &phy_high, 2167 pi->phy.curr_user_speed_req); 2168 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2169 cfg->phy_type_high = pcaps->phy_type_high & 2170 cpu_to_le64(phy_high); 2171 } 2172 2173 /* Can't provide what was requested; use PHY capabilities */ 2174 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2175 cfg->phy_type_low = pcaps->phy_type_low; 2176 cfg->phy_type_high = pcaps->phy_type_high; 2177 } 2178 2179 /* FEC */ 2180 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2181 2182 /* Can't provide what was requested; use PHY capabilities */ 2183 if (cfg->link_fec_opt != 2184 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2185 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2186 cfg->link_fec_opt = pcaps->link_fec_options; 2187 } 2188 2189 /* Flow Control - always supported; no need to check against 2190 * capabilities 2191 */ 2192 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2193 2194 /* Enable link and link update */ 2195 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2196 2197 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2198 if (err) 2199 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2200 vsi->vsi_num, err); 2201 2202 kfree(cfg); 2203 done: 2204 kfree(pcaps); 2205 return err; 2206 } 2207 2208 /** 2209 * ice_check_media_subtask - Check for media 2210 * @pf: pointer to PF struct 2211 * 2212 * If media is available, then initialize PHY user configuration if it is not 2213 * been, and configure the PHY if the interface is up. 2214 */ 2215 static void ice_check_media_subtask(struct ice_pf *pf) 2216 { 2217 struct ice_port_info *pi; 2218 struct ice_vsi *vsi; 2219 int err; 2220 2221 /* No need to check for media if it's already present */ 2222 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2223 return; 2224 2225 vsi = ice_get_main_vsi(pf); 2226 if (!vsi) 2227 return; 2228 2229 /* Refresh link info and check if media is present */ 2230 pi = vsi->port_info; 2231 err = ice_update_link_info(pi); 2232 if (err) 2233 return; 2234 2235 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2236 2237 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2238 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2239 ice_init_phy_user_cfg(pi); 2240 2241 /* PHY settings are reset on media insertion, reconfigure 2242 * PHY to preserve settings. 2243 */ 2244 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2245 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2246 return; 2247 2248 err = ice_configure_phy(vsi); 2249 if (!err) 2250 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2251 2252 /* A Link Status Event will be generated; the event handler 2253 * will complete bringing the interface up 2254 */ 2255 } 2256 } 2257 2258 /** 2259 * ice_service_task - manage and run subtasks 2260 * @work: pointer to work_struct contained by the PF struct 2261 */ 2262 static void ice_service_task(struct work_struct *work) 2263 { 2264 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2265 unsigned long start_time = jiffies; 2266 2267 /* subtasks */ 2268 2269 /* process reset requests first */ 2270 ice_reset_subtask(pf); 2271 2272 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2273 if (ice_is_reset_in_progress(pf->state) || 2274 test_bit(ICE_SUSPENDED, pf->state) || 2275 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2276 ice_service_task_complete(pf); 2277 return; 2278 } 2279 2280 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2281 struct iidc_event *event; 2282 2283 event = kzalloc(sizeof(*event), GFP_KERNEL); 2284 if (event) { 2285 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2286 /* report the entire OICR value to AUX driver */ 2287 swap(event->reg, pf->oicr_err_reg); 2288 ice_send_event_to_aux(pf, event); 2289 kfree(event); 2290 } 2291 } 2292 2293 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2294 /* Plug aux device per request */ 2295 ice_plug_aux_dev(pf); 2296 2297 /* Mark plugging as done but check whether unplug was 2298 * requested during ice_plug_aux_dev() call 2299 * (e.g. from ice_clear_rdma_cap()) and if so then 2300 * plug aux device. 2301 */ 2302 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2303 ice_unplug_aux_dev(pf); 2304 } 2305 2306 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2307 struct iidc_event *event; 2308 2309 event = kzalloc(sizeof(*event), GFP_KERNEL); 2310 if (event) { 2311 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2312 ice_send_event_to_aux(pf, event); 2313 kfree(event); 2314 } 2315 } 2316 2317 ice_clean_adminq_subtask(pf); 2318 ice_check_media_subtask(pf); 2319 ice_check_for_hang_subtask(pf); 2320 ice_sync_fltr_subtask(pf); 2321 ice_handle_mdd_event(pf); 2322 ice_watchdog_subtask(pf); 2323 2324 if (ice_is_safe_mode(pf)) { 2325 ice_service_task_complete(pf); 2326 return; 2327 } 2328 2329 ice_process_vflr_event(pf); 2330 ice_clean_mailboxq_subtask(pf); 2331 ice_clean_sbq_subtask(pf); 2332 ice_sync_arfs_fltrs(pf); 2333 ice_flush_fdir_ctx(pf); 2334 2335 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2336 ice_service_task_complete(pf); 2337 2338 /* If the tasks have taken longer than one service timer period 2339 * or there is more work to be done, reset the service timer to 2340 * schedule the service task now. 2341 */ 2342 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2343 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2344 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2345 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2346 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2347 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2348 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2349 mod_timer(&pf->serv_tmr, jiffies); 2350 } 2351 2352 /** 2353 * ice_set_ctrlq_len - helper function to set controlq length 2354 * @hw: pointer to the HW instance 2355 */ 2356 static void ice_set_ctrlq_len(struct ice_hw *hw) 2357 { 2358 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2359 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2360 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2361 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2362 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2363 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2364 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2365 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2366 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2367 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2368 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2369 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2370 } 2371 2372 /** 2373 * ice_schedule_reset - schedule a reset 2374 * @pf: board private structure 2375 * @reset: reset being requested 2376 */ 2377 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2378 { 2379 struct device *dev = ice_pf_to_dev(pf); 2380 2381 /* bail out if earlier reset has failed */ 2382 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2383 dev_dbg(dev, "earlier reset has failed\n"); 2384 return -EIO; 2385 } 2386 /* bail if reset/recovery already in progress */ 2387 if (ice_is_reset_in_progress(pf->state)) { 2388 dev_dbg(dev, "Reset already in progress\n"); 2389 return -EBUSY; 2390 } 2391 2392 switch (reset) { 2393 case ICE_RESET_PFR: 2394 set_bit(ICE_PFR_REQ, pf->state); 2395 break; 2396 case ICE_RESET_CORER: 2397 set_bit(ICE_CORER_REQ, pf->state); 2398 break; 2399 case ICE_RESET_GLOBR: 2400 set_bit(ICE_GLOBR_REQ, pf->state); 2401 break; 2402 default: 2403 return -EINVAL; 2404 } 2405 2406 ice_service_task_schedule(pf); 2407 return 0; 2408 } 2409 2410 /** 2411 * ice_irq_affinity_notify - Callback for affinity changes 2412 * @notify: context as to what irq was changed 2413 * @mask: the new affinity mask 2414 * 2415 * This is a callback function used by the irq_set_affinity_notifier function 2416 * so that we may register to receive changes to the irq affinity masks. 2417 */ 2418 static void 2419 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2420 const cpumask_t *mask) 2421 { 2422 struct ice_q_vector *q_vector = 2423 container_of(notify, struct ice_q_vector, affinity_notify); 2424 2425 cpumask_copy(&q_vector->affinity_mask, mask); 2426 } 2427 2428 /** 2429 * ice_irq_affinity_release - Callback for affinity notifier release 2430 * @ref: internal core kernel usage 2431 * 2432 * This is a callback function used by the irq_set_affinity_notifier function 2433 * to inform the current notification subscriber that they will no longer 2434 * receive notifications. 2435 */ 2436 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2437 2438 /** 2439 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2440 * @vsi: the VSI being configured 2441 */ 2442 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2443 { 2444 struct ice_hw *hw = &vsi->back->hw; 2445 int i; 2446 2447 ice_for_each_q_vector(vsi, i) 2448 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2449 2450 ice_flush(hw); 2451 return 0; 2452 } 2453 2454 /** 2455 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2456 * @vsi: the VSI being configured 2457 * @basename: name for the vector 2458 */ 2459 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2460 { 2461 int q_vectors = vsi->num_q_vectors; 2462 struct ice_pf *pf = vsi->back; 2463 int base = vsi->base_vector; 2464 struct device *dev; 2465 int rx_int_idx = 0; 2466 int tx_int_idx = 0; 2467 int vector, err; 2468 int irq_num; 2469 2470 dev = ice_pf_to_dev(pf); 2471 for (vector = 0; vector < q_vectors; vector++) { 2472 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2473 2474 irq_num = pf->msix_entries[base + vector].vector; 2475 2476 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2477 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2478 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2479 tx_int_idx++; 2480 } else if (q_vector->rx.rx_ring) { 2481 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2482 "%s-%s-%d", basename, "rx", rx_int_idx++); 2483 } else if (q_vector->tx.tx_ring) { 2484 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2485 "%s-%s-%d", basename, "tx", tx_int_idx++); 2486 } else { 2487 /* skip this unused q_vector */ 2488 continue; 2489 } 2490 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2491 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2492 IRQF_SHARED, q_vector->name, 2493 q_vector); 2494 else 2495 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2496 0, q_vector->name, q_vector); 2497 if (err) { 2498 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2499 err); 2500 goto free_q_irqs; 2501 } 2502 2503 /* register for affinity change notifications */ 2504 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2505 struct irq_affinity_notify *affinity_notify; 2506 2507 affinity_notify = &q_vector->affinity_notify; 2508 affinity_notify->notify = ice_irq_affinity_notify; 2509 affinity_notify->release = ice_irq_affinity_release; 2510 irq_set_affinity_notifier(irq_num, affinity_notify); 2511 } 2512 2513 /* assign the mask for this irq */ 2514 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2515 } 2516 2517 err = ice_set_cpu_rx_rmap(vsi); 2518 if (err) { 2519 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2520 vsi->vsi_num, ERR_PTR(err)); 2521 goto free_q_irqs; 2522 } 2523 2524 vsi->irqs_ready = true; 2525 return 0; 2526 2527 free_q_irqs: 2528 while (vector) { 2529 vector--; 2530 irq_num = pf->msix_entries[base + vector].vector; 2531 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2532 irq_set_affinity_notifier(irq_num, NULL); 2533 irq_set_affinity_hint(irq_num, NULL); 2534 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2535 } 2536 return err; 2537 } 2538 2539 /** 2540 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2541 * @vsi: VSI to setup Tx rings used by XDP 2542 * 2543 * Return 0 on success and negative value on error 2544 */ 2545 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2546 { 2547 struct device *dev = ice_pf_to_dev(vsi->back); 2548 struct ice_tx_desc *tx_desc; 2549 int i, j; 2550 2551 ice_for_each_xdp_txq(vsi, i) { 2552 u16 xdp_q_idx = vsi->alloc_txq + i; 2553 struct ice_ring_stats *ring_stats; 2554 struct ice_tx_ring *xdp_ring; 2555 2556 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2557 if (!xdp_ring) 2558 goto free_xdp_rings; 2559 2560 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2561 if (!ring_stats) { 2562 ice_free_tx_ring(xdp_ring); 2563 goto free_xdp_rings; 2564 } 2565 2566 xdp_ring->ring_stats = ring_stats; 2567 xdp_ring->q_index = xdp_q_idx; 2568 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2569 xdp_ring->vsi = vsi; 2570 xdp_ring->netdev = NULL; 2571 xdp_ring->dev = dev; 2572 xdp_ring->count = vsi->num_tx_desc; 2573 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2574 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2575 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2576 if (ice_setup_tx_ring(xdp_ring)) 2577 goto free_xdp_rings; 2578 ice_set_ring_xdp(xdp_ring); 2579 spin_lock_init(&xdp_ring->tx_lock); 2580 for (j = 0; j < xdp_ring->count; j++) { 2581 tx_desc = ICE_TX_DESC(xdp_ring, j); 2582 tx_desc->cmd_type_offset_bsz = 0; 2583 } 2584 } 2585 2586 return 0; 2587 2588 free_xdp_rings: 2589 for (; i >= 0; i--) { 2590 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2591 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2592 vsi->xdp_rings[i]->ring_stats = NULL; 2593 ice_free_tx_ring(vsi->xdp_rings[i]); 2594 } 2595 } 2596 return -ENOMEM; 2597 } 2598 2599 /** 2600 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2601 * @vsi: VSI to set the bpf prog on 2602 * @prog: the bpf prog pointer 2603 */ 2604 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2605 { 2606 struct bpf_prog *old_prog; 2607 int i; 2608 2609 old_prog = xchg(&vsi->xdp_prog, prog); 2610 if (old_prog) 2611 bpf_prog_put(old_prog); 2612 2613 ice_for_each_rxq(vsi, i) 2614 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2615 } 2616 2617 /** 2618 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2619 * @vsi: VSI to bring up Tx rings used by XDP 2620 * @prog: bpf program that will be assigned to VSI 2621 * 2622 * Return 0 on success and negative value on error 2623 */ 2624 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2625 { 2626 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2627 int xdp_rings_rem = vsi->num_xdp_txq; 2628 struct ice_pf *pf = vsi->back; 2629 struct ice_qs_cfg xdp_qs_cfg = { 2630 .qs_mutex = &pf->avail_q_mutex, 2631 .pf_map = pf->avail_txqs, 2632 .pf_map_size = pf->max_pf_txqs, 2633 .q_count = vsi->num_xdp_txq, 2634 .scatter_count = ICE_MAX_SCATTER_TXQS, 2635 .vsi_map = vsi->txq_map, 2636 .vsi_map_offset = vsi->alloc_txq, 2637 .mapping_mode = ICE_VSI_MAP_CONTIG 2638 }; 2639 struct device *dev; 2640 int i, v_idx; 2641 int status; 2642 2643 dev = ice_pf_to_dev(pf); 2644 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2645 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2646 if (!vsi->xdp_rings) 2647 return -ENOMEM; 2648 2649 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2650 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2651 goto err_map_xdp; 2652 2653 if (static_key_enabled(&ice_xdp_locking_key)) 2654 netdev_warn(vsi->netdev, 2655 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2656 2657 if (ice_xdp_alloc_setup_rings(vsi)) 2658 goto clear_xdp_rings; 2659 2660 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2661 ice_for_each_q_vector(vsi, v_idx) { 2662 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2663 int xdp_rings_per_v, q_id, q_base; 2664 2665 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2666 vsi->num_q_vectors - v_idx); 2667 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2668 2669 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2670 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2671 2672 xdp_ring->q_vector = q_vector; 2673 xdp_ring->next = q_vector->tx.tx_ring; 2674 q_vector->tx.tx_ring = xdp_ring; 2675 } 2676 xdp_rings_rem -= xdp_rings_per_v; 2677 } 2678 2679 ice_for_each_rxq(vsi, i) { 2680 if (static_key_enabled(&ice_xdp_locking_key)) { 2681 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2682 } else { 2683 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2684 struct ice_tx_ring *ring; 2685 2686 ice_for_each_tx_ring(ring, q_vector->tx) { 2687 if (ice_ring_is_xdp(ring)) { 2688 vsi->rx_rings[i]->xdp_ring = ring; 2689 break; 2690 } 2691 } 2692 } 2693 ice_tx_xsk_pool(vsi, i); 2694 } 2695 2696 /* omit the scheduler update if in reset path; XDP queues will be 2697 * taken into account at the end of ice_vsi_rebuild, where 2698 * ice_cfg_vsi_lan is being called 2699 */ 2700 if (ice_is_reset_in_progress(pf->state)) 2701 return 0; 2702 2703 /* tell the Tx scheduler that right now we have 2704 * additional queues 2705 */ 2706 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2707 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2708 2709 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2710 max_txqs); 2711 if (status) { 2712 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2713 status); 2714 goto clear_xdp_rings; 2715 } 2716 2717 /* assign the prog only when it's not already present on VSI; 2718 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2719 * VSI rebuild that happens under ethtool -L can expose us to 2720 * the bpf_prog refcount issues as we would be swapping same 2721 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2722 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2723 * this is not harmful as dev_xdp_install bumps the refcount 2724 * before calling the op exposed by the driver; 2725 */ 2726 if (!ice_is_xdp_ena_vsi(vsi)) 2727 ice_vsi_assign_bpf_prog(vsi, prog); 2728 2729 return 0; 2730 clear_xdp_rings: 2731 ice_for_each_xdp_txq(vsi, i) 2732 if (vsi->xdp_rings[i]) { 2733 kfree_rcu(vsi->xdp_rings[i], rcu); 2734 vsi->xdp_rings[i] = NULL; 2735 } 2736 2737 err_map_xdp: 2738 mutex_lock(&pf->avail_q_mutex); 2739 ice_for_each_xdp_txq(vsi, i) { 2740 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2741 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2742 } 2743 mutex_unlock(&pf->avail_q_mutex); 2744 2745 devm_kfree(dev, vsi->xdp_rings); 2746 return -ENOMEM; 2747 } 2748 2749 /** 2750 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2751 * @vsi: VSI to remove XDP rings 2752 * 2753 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2754 * resources 2755 */ 2756 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2757 { 2758 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2759 struct ice_pf *pf = vsi->back; 2760 int i, v_idx; 2761 2762 /* q_vectors are freed in reset path so there's no point in detaching 2763 * rings; in case of rebuild being triggered not from reset bits 2764 * in pf->state won't be set, so additionally check first q_vector 2765 * against NULL 2766 */ 2767 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2768 goto free_qmap; 2769 2770 ice_for_each_q_vector(vsi, v_idx) { 2771 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2772 struct ice_tx_ring *ring; 2773 2774 ice_for_each_tx_ring(ring, q_vector->tx) 2775 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2776 break; 2777 2778 /* restore the value of last node prior to XDP setup */ 2779 q_vector->tx.tx_ring = ring; 2780 } 2781 2782 free_qmap: 2783 mutex_lock(&pf->avail_q_mutex); 2784 ice_for_each_xdp_txq(vsi, i) { 2785 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2786 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2787 } 2788 mutex_unlock(&pf->avail_q_mutex); 2789 2790 ice_for_each_xdp_txq(vsi, i) 2791 if (vsi->xdp_rings[i]) { 2792 if (vsi->xdp_rings[i]->desc) { 2793 synchronize_rcu(); 2794 ice_free_tx_ring(vsi->xdp_rings[i]); 2795 } 2796 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2797 vsi->xdp_rings[i]->ring_stats = NULL; 2798 kfree_rcu(vsi->xdp_rings[i], rcu); 2799 vsi->xdp_rings[i] = NULL; 2800 } 2801 2802 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2803 vsi->xdp_rings = NULL; 2804 2805 if (static_key_enabled(&ice_xdp_locking_key)) 2806 static_branch_dec(&ice_xdp_locking_key); 2807 2808 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2809 return 0; 2810 2811 ice_vsi_assign_bpf_prog(vsi, NULL); 2812 2813 /* notify Tx scheduler that we destroyed XDP queues and bring 2814 * back the old number of child nodes 2815 */ 2816 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2817 max_txqs[i] = vsi->num_txq; 2818 2819 /* change number of XDP Tx queues to 0 */ 2820 vsi->num_xdp_txq = 0; 2821 2822 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2823 max_txqs); 2824 } 2825 2826 /** 2827 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2828 * @vsi: VSI to schedule napi on 2829 */ 2830 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2831 { 2832 int i; 2833 2834 ice_for_each_rxq(vsi, i) { 2835 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2836 2837 if (rx_ring->xsk_pool) 2838 napi_schedule(&rx_ring->q_vector->napi); 2839 } 2840 } 2841 2842 /** 2843 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2844 * @vsi: VSI to determine the count of XDP Tx qs 2845 * 2846 * returns 0 if Tx qs count is higher than at least half of CPU count, 2847 * -ENOMEM otherwise 2848 */ 2849 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2850 { 2851 u16 avail = ice_get_avail_txq_count(vsi->back); 2852 u16 cpus = num_possible_cpus(); 2853 2854 if (avail < cpus / 2) 2855 return -ENOMEM; 2856 2857 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2858 2859 if (vsi->num_xdp_txq < cpus) 2860 static_branch_inc(&ice_xdp_locking_key); 2861 2862 return 0; 2863 } 2864 2865 /** 2866 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2867 * @vsi: VSI to setup XDP for 2868 * @prog: XDP program 2869 * @extack: netlink extended ack 2870 */ 2871 static int 2872 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2873 struct netlink_ext_ack *extack) 2874 { 2875 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2876 bool if_running = netif_running(vsi->netdev); 2877 int ret = 0, xdp_ring_err = 0; 2878 2879 if (frame_size > vsi->rx_buf_len) { 2880 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2881 return -EOPNOTSUPP; 2882 } 2883 2884 /* need to stop netdev while setting up the program for Rx rings */ 2885 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2886 ret = ice_down(vsi); 2887 if (ret) { 2888 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2889 return ret; 2890 } 2891 } 2892 2893 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2894 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2895 if (xdp_ring_err) { 2896 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2897 } else { 2898 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2899 if (xdp_ring_err) 2900 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2901 } 2902 /* reallocate Rx queues that are used for zero-copy */ 2903 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2904 if (xdp_ring_err) 2905 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2906 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2907 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2908 if (xdp_ring_err) 2909 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2910 /* reallocate Rx queues that were used for zero-copy */ 2911 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2912 if (xdp_ring_err) 2913 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2914 } else { 2915 /* safe to call even when prog == vsi->xdp_prog as 2916 * dev_xdp_install in net/core/dev.c incremented prog's 2917 * refcount so corresponding bpf_prog_put won't cause 2918 * underflow 2919 */ 2920 ice_vsi_assign_bpf_prog(vsi, prog); 2921 } 2922 2923 if (if_running) 2924 ret = ice_up(vsi); 2925 2926 if (!ret && prog) 2927 ice_vsi_rx_napi_schedule(vsi); 2928 2929 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2930 } 2931 2932 /** 2933 * ice_xdp_safe_mode - XDP handler for safe mode 2934 * @dev: netdevice 2935 * @xdp: XDP command 2936 */ 2937 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2938 struct netdev_bpf *xdp) 2939 { 2940 NL_SET_ERR_MSG_MOD(xdp->extack, 2941 "Please provide working DDP firmware package in order to use XDP\n" 2942 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2943 return -EOPNOTSUPP; 2944 } 2945 2946 /** 2947 * ice_xdp - implements XDP handler 2948 * @dev: netdevice 2949 * @xdp: XDP command 2950 */ 2951 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2952 { 2953 struct ice_netdev_priv *np = netdev_priv(dev); 2954 struct ice_vsi *vsi = np->vsi; 2955 2956 if (vsi->type != ICE_VSI_PF) { 2957 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2958 return -EINVAL; 2959 } 2960 2961 switch (xdp->command) { 2962 case XDP_SETUP_PROG: 2963 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2964 case XDP_SETUP_XSK_POOL: 2965 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2966 xdp->xsk.queue_id); 2967 default: 2968 return -EINVAL; 2969 } 2970 } 2971 2972 /** 2973 * ice_ena_misc_vector - enable the non-queue interrupts 2974 * @pf: board private structure 2975 */ 2976 static void ice_ena_misc_vector(struct ice_pf *pf) 2977 { 2978 struct ice_hw *hw = &pf->hw; 2979 u32 val; 2980 2981 /* Disable anti-spoof detection interrupt to prevent spurious event 2982 * interrupts during a function reset. Anti-spoof functionally is 2983 * still supported. 2984 */ 2985 val = rd32(hw, GL_MDCK_TX_TDPU); 2986 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2987 wr32(hw, GL_MDCK_TX_TDPU, val); 2988 2989 /* clear things first */ 2990 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2991 rd32(hw, PFINT_OICR); /* read to clear */ 2992 2993 val = (PFINT_OICR_ECC_ERR_M | 2994 PFINT_OICR_MAL_DETECT_M | 2995 PFINT_OICR_GRST_M | 2996 PFINT_OICR_PCI_EXCEPTION_M | 2997 PFINT_OICR_VFLR_M | 2998 PFINT_OICR_HMC_ERR_M | 2999 PFINT_OICR_PE_PUSH_M | 3000 PFINT_OICR_PE_CRITERR_M); 3001 3002 wr32(hw, PFINT_OICR_ENA, val); 3003 3004 /* SW_ITR_IDX = 0, but don't change INTENA */ 3005 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3006 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3007 } 3008 3009 /** 3010 * ice_misc_intr - misc interrupt handler 3011 * @irq: interrupt number 3012 * @data: pointer to a q_vector 3013 */ 3014 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3015 { 3016 struct ice_pf *pf = (struct ice_pf *)data; 3017 struct ice_hw *hw = &pf->hw; 3018 irqreturn_t ret = IRQ_NONE; 3019 struct device *dev; 3020 u32 oicr, ena_mask; 3021 3022 dev = ice_pf_to_dev(pf); 3023 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3024 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3025 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3026 3027 oicr = rd32(hw, PFINT_OICR); 3028 ena_mask = rd32(hw, PFINT_OICR_ENA); 3029 3030 if (oicr & PFINT_OICR_SWINT_M) { 3031 ena_mask &= ~PFINT_OICR_SWINT_M; 3032 pf->sw_int_count++; 3033 } 3034 3035 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3036 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3037 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3038 } 3039 if (oicr & PFINT_OICR_VFLR_M) { 3040 /* disable any further VFLR event notifications */ 3041 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3042 u32 reg = rd32(hw, PFINT_OICR_ENA); 3043 3044 reg &= ~PFINT_OICR_VFLR_M; 3045 wr32(hw, PFINT_OICR_ENA, reg); 3046 } else { 3047 ena_mask &= ~PFINT_OICR_VFLR_M; 3048 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3049 } 3050 } 3051 3052 if (oicr & PFINT_OICR_GRST_M) { 3053 u32 reset; 3054 3055 /* we have a reset warning */ 3056 ena_mask &= ~PFINT_OICR_GRST_M; 3057 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3058 GLGEN_RSTAT_RESET_TYPE_S; 3059 3060 if (reset == ICE_RESET_CORER) 3061 pf->corer_count++; 3062 else if (reset == ICE_RESET_GLOBR) 3063 pf->globr_count++; 3064 else if (reset == ICE_RESET_EMPR) 3065 pf->empr_count++; 3066 else 3067 dev_dbg(dev, "Invalid reset type %d\n", reset); 3068 3069 /* If a reset cycle isn't already in progress, we set a bit in 3070 * pf->state so that the service task can start a reset/rebuild. 3071 */ 3072 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3073 if (reset == ICE_RESET_CORER) 3074 set_bit(ICE_CORER_RECV, pf->state); 3075 else if (reset == ICE_RESET_GLOBR) 3076 set_bit(ICE_GLOBR_RECV, pf->state); 3077 else 3078 set_bit(ICE_EMPR_RECV, pf->state); 3079 3080 /* There are couple of different bits at play here. 3081 * hw->reset_ongoing indicates whether the hardware is 3082 * in reset. This is set to true when a reset interrupt 3083 * is received and set back to false after the driver 3084 * has determined that the hardware is out of reset. 3085 * 3086 * ICE_RESET_OICR_RECV in pf->state indicates 3087 * that a post reset rebuild is required before the 3088 * driver is operational again. This is set above. 3089 * 3090 * As this is the start of the reset/rebuild cycle, set 3091 * both to indicate that. 3092 */ 3093 hw->reset_ongoing = true; 3094 } 3095 } 3096 3097 if (oicr & PFINT_OICR_TSYN_TX_M) { 3098 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3099 if (!hw->reset_ongoing) 3100 ret = IRQ_WAKE_THREAD; 3101 } 3102 3103 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3104 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3105 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3106 3107 /* Save EVENTs from GTSYN register */ 3108 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3109 GLTSYN_STAT_EVENT1_M | 3110 GLTSYN_STAT_EVENT2_M); 3111 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3112 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3113 } 3114 3115 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3116 if (oicr & ICE_AUX_CRIT_ERR) { 3117 pf->oicr_err_reg |= oicr; 3118 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3119 ena_mask &= ~ICE_AUX_CRIT_ERR; 3120 } 3121 3122 /* Report any remaining unexpected interrupts */ 3123 oicr &= ena_mask; 3124 if (oicr) { 3125 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3126 /* If a critical error is pending there is no choice but to 3127 * reset the device. 3128 */ 3129 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3130 PFINT_OICR_ECC_ERR_M)) { 3131 set_bit(ICE_PFR_REQ, pf->state); 3132 ice_service_task_schedule(pf); 3133 } 3134 } 3135 if (!ret) 3136 ret = IRQ_HANDLED; 3137 3138 ice_service_task_schedule(pf); 3139 ice_irq_dynamic_ena(hw, NULL, NULL); 3140 3141 return ret; 3142 } 3143 3144 /** 3145 * ice_misc_intr_thread_fn - misc interrupt thread function 3146 * @irq: interrupt number 3147 * @data: pointer to a q_vector 3148 */ 3149 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3150 { 3151 struct ice_pf *pf = data; 3152 3153 if (ice_is_reset_in_progress(pf->state)) 3154 return IRQ_HANDLED; 3155 3156 while (!ice_ptp_process_ts(pf)) 3157 usleep_range(50, 100); 3158 3159 return IRQ_HANDLED; 3160 } 3161 3162 /** 3163 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3164 * @hw: pointer to HW structure 3165 */ 3166 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3167 { 3168 /* disable Admin queue Interrupt causes */ 3169 wr32(hw, PFINT_FW_CTL, 3170 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3171 3172 /* disable Mailbox queue Interrupt causes */ 3173 wr32(hw, PFINT_MBX_CTL, 3174 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3175 3176 wr32(hw, PFINT_SB_CTL, 3177 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3178 3179 /* disable Control queue Interrupt causes */ 3180 wr32(hw, PFINT_OICR_CTL, 3181 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3182 3183 ice_flush(hw); 3184 } 3185 3186 /** 3187 * ice_free_irq_msix_misc - Unroll misc vector setup 3188 * @pf: board private structure 3189 */ 3190 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3191 { 3192 struct ice_hw *hw = &pf->hw; 3193 3194 ice_dis_ctrlq_interrupts(hw); 3195 3196 /* disable OICR interrupt */ 3197 wr32(hw, PFINT_OICR_ENA, 0); 3198 ice_flush(hw); 3199 3200 if (pf->msix_entries) { 3201 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3202 devm_free_irq(ice_pf_to_dev(pf), 3203 pf->msix_entries[pf->oicr_idx].vector, pf); 3204 } 3205 3206 pf->num_avail_sw_msix += 1; 3207 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3208 } 3209 3210 /** 3211 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3212 * @hw: pointer to HW structure 3213 * @reg_idx: HW vector index to associate the control queue interrupts with 3214 */ 3215 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3216 { 3217 u32 val; 3218 3219 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3220 PFINT_OICR_CTL_CAUSE_ENA_M); 3221 wr32(hw, PFINT_OICR_CTL, val); 3222 3223 /* enable Admin queue Interrupt causes */ 3224 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3225 PFINT_FW_CTL_CAUSE_ENA_M); 3226 wr32(hw, PFINT_FW_CTL, val); 3227 3228 /* enable Mailbox queue Interrupt causes */ 3229 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3230 PFINT_MBX_CTL_CAUSE_ENA_M); 3231 wr32(hw, PFINT_MBX_CTL, val); 3232 3233 /* This enables Sideband queue Interrupt causes */ 3234 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3235 PFINT_SB_CTL_CAUSE_ENA_M); 3236 wr32(hw, PFINT_SB_CTL, val); 3237 3238 ice_flush(hw); 3239 } 3240 3241 /** 3242 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3243 * @pf: board private structure 3244 * 3245 * This sets up the handler for MSIX 0, which is used to manage the 3246 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3247 * when in MSI or Legacy interrupt mode. 3248 */ 3249 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3250 { 3251 struct device *dev = ice_pf_to_dev(pf); 3252 struct ice_hw *hw = &pf->hw; 3253 int oicr_idx, err = 0; 3254 3255 if (!pf->int_name[0]) 3256 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3257 dev_driver_string(dev), dev_name(dev)); 3258 3259 /* Do not request IRQ but do enable OICR interrupt since settings are 3260 * lost during reset. Note that this function is called only during 3261 * rebuild path and not while reset is in progress. 3262 */ 3263 if (ice_is_reset_in_progress(pf->state)) 3264 goto skip_req_irq; 3265 3266 /* reserve one vector in irq_tracker for misc interrupts */ 3267 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3268 if (oicr_idx < 0) 3269 return oicr_idx; 3270 3271 pf->num_avail_sw_msix -= 1; 3272 pf->oicr_idx = (u16)oicr_idx; 3273 3274 err = devm_request_threaded_irq(dev, 3275 pf->msix_entries[pf->oicr_idx].vector, 3276 ice_misc_intr, ice_misc_intr_thread_fn, 3277 0, pf->int_name, pf); 3278 if (err) { 3279 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3280 pf->int_name, err); 3281 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3282 pf->num_avail_sw_msix += 1; 3283 return err; 3284 } 3285 3286 skip_req_irq: 3287 ice_ena_misc_vector(pf); 3288 3289 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3290 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3291 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3292 3293 ice_flush(hw); 3294 ice_irq_dynamic_ena(hw, NULL, NULL); 3295 3296 return 0; 3297 } 3298 3299 /** 3300 * ice_napi_add - register NAPI handler for the VSI 3301 * @vsi: VSI for which NAPI handler is to be registered 3302 * 3303 * This function is only called in the driver's load path. Registering the NAPI 3304 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3305 * reset/rebuild, etc.) 3306 */ 3307 static void ice_napi_add(struct ice_vsi *vsi) 3308 { 3309 int v_idx; 3310 3311 if (!vsi->netdev) 3312 return; 3313 3314 ice_for_each_q_vector(vsi, v_idx) 3315 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3316 ice_napi_poll); 3317 } 3318 3319 /** 3320 * ice_set_ops - set netdev and ethtools ops for the given netdev 3321 * @netdev: netdev instance 3322 */ 3323 static void ice_set_ops(struct net_device *netdev) 3324 { 3325 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3326 3327 if (ice_is_safe_mode(pf)) { 3328 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3329 ice_set_ethtool_safe_mode_ops(netdev); 3330 return; 3331 } 3332 3333 netdev->netdev_ops = &ice_netdev_ops; 3334 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3335 ice_set_ethtool_ops(netdev); 3336 } 3337 3338 /** 3339 * ice_set_netdev_features - set features for the given netdev 3340 * @netdev: netdev instance 3341 */ 3342 static void ice_set_netdev_features(struct net_device *netdev) 3343 { 3344 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3345 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3346 netdev_features_t csumo_features; 3347 netdev_features_t vlano_features; 3348 netdev_features_t dflt_features; 3349 netdev_features_t tso_features; 3350 3351 if (ice_is_safe_mode(pf)) { 3352 /* safe mode */ 3353 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3354 netdev->hw_features = netdev->features; 3355 return; 3356 } 3357 3358 dflt_features = NETIF_F_SG | 3359 NETIF_F_HIGHDMA | 3360 NETIF_F_NTUPLE | 3361 NETIF_F_RXHASH; 3362 3363 csumo_features = NETIF_F_RXCSUM | 3364 NETIF_F_IP_CSUM | 3365 NETIF_F_SCTP_CRC | 3366 NETIF_F_IPV6_CSUM; 3367 3368 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3369 NETIF_F_HW_VLAN_CTAG_TX | 3370 NETIF_F_HW_VLAN_CTAG_RX; 3371 3372 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3373 if (is_dvm_ena) 3374 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3375 3376 tso_features = NETIF_F_TSO | 3377 NETIF_F_TSO_ECN | 3378 NETIF_F_TSO6 | 3379 NETIF_F_GSO_GRE | 3380 NETIF_F_GSO_UDP_TUNNEL | 3381 NETIF_F_GSO_GRE_CSUM | 3382 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3383 NETIF_F_GSO_PARTIAL | 3384 NETIF_F_GSO_IPXIP4 | 3385 NETIF_F_GSO_IPXIP6 | 3386 NETIF_F_GSO_UDP_L4; 3387 3388 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3389 NETIF_F_GSO_GRE_CSUM; 3390 /* set features that user can change */ 3391 netdev->hw_features = dflt_features | csumo_features | 3392 vlano_features | tso_features; 3393 3394 /* add support for HW_CSUM on packets with MPLS header */ 3395 netdev->mpls_features = NETIF_F_HW_CSUM | 3396 NETIF_F_TSO | 3397 NETIF_F_TSO6; 3398 3399 /* enable features */ 3400 netdev->features |= netdev->hw_features; 3401 3402 netdev->hw_features |= NETIF_F_HW_TC; 3403 netdev->hw_features |= NETIF_F_LOOPBACK; 3404 3405 /* encap and VLAN devices inherit default, csumo and tso features */ 3406 netdev->hw_enc_features |= dflt_features | csumo_features | 3407 tso_features; 3408 netdev->vlan_features |= dflt_features | csumo_features | 3409 tso_features; 3410 3411 /* advertise support but don't enable by default since only one type of 3412 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3413 * type turns on the other has to be turned off. This is enforced by the 3414 * ice_fix_features() ndo callback. 3415 */ 3416 if (is_dvm_ena) 3417 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3418 NETIF_F_HW_VLAN_STAG_TX; 3419 3420 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3421 * be changed at runtime 3422 */ 3423 netdev->hw_features |= NETIF_F_RXFCS; 3424 } 3425 3426 /** 3427 * ice_cfg_netdev - Allocate, configure and register a netdev 3428 * @vsi: the VSI associated with the new netdev 3429 * 3430 * Returns 0 on success, negative value on failure 3431 */ 3432 static int ice_cfg_netdev(struct ice_vsi *vsi) 3433 { 3434 struct ice_netdev_priv *np; 3435 struct net_device *netdev; 3436 u8 mac_addr[ETH_ALEN]; 3437 3438 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3439 vsi->alloc_rxq); 3440 if (!netdev) 3441 return -ENOMEM; 3442 3443 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3444 vsi->netdev = netdev; 3445 np = netdev_priv(netdev); 3446 np->vsi = vsi; 3447 3448 ice_set_netdev_features(netdev); 3449 3450 ice_set_ops(netdev); 3451 3452 if (vsi->type == ICE_VSI_PF) { 3453 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3454 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3455 eth_hw_addr_set(netdev, mac_addr); 3456 ether_addr_copy(netdev->perm_addr, mac_addr); 3457 } 3458 3459 netdev->priv_flags |= IFF_UNICAST_FLT; 3460 3461 /* Setup netdev TC information */ 3462 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3463 3464 /* setup watchdog timeout value to be 5 second */ 3465 netdev->watchdog_timeo = 5 * HZ; 3466 3467 netdev->min_mtu = ETH_MIN_MTU; 3468 netdev->max_mtu = ICE_MAX_MTU; 3469 3470 return 0; 3471 } 3472 3473 /** 3474 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3475 * @lut: Lookup table 3476 * @rss_table_size: Lookup table size 3477 * @rss_size: Range of queue number for hashing 3478 */ 3479 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3480 { 3481 u16 i; 3482 3483 for (i = 0; i < rss_table_size; i++) 3484 lut[i] = i % rss_size; 3485 } 3486 3487 /** 3488 * ice_pf_vsi_setup - Set up a PF VSI 3489 * @pf: board private structure 3490 * @pi: pointer to the port_info instance 3491 * 3492 * Returns pointer to the successfully allocated VSI software struct 3493 * on success, otherwise returns NULL on failure. 3494 */ 3495 static struct ice_vsi * 3496 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3497 { 3498 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3499 } 3500 3501 static struct ice_vsi * 3502 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3503 struct ice_channel *ch) 3504 { 3505 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3506 } 3507 3508 /** 3509 * ice_ctrl_vsi_setup - Set up a control VSI 3510 * @pf: board private structure 3511 * @pi: pointer to the port_info instance 3512 * 3513 * Returns pointer to the successfully allocated VSI software struct 3514 * on success, otherwise returns NULL on failure. 3515 */ 3516 static struct ice_vsi * 3517 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3518 { 3519 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3520 } 3521 3522 /** 3523 * ice_lb_vsi_setup - Set up a loopback VSI 3524 * @pf: board private structure 3525 * @pi: pointer to the port_info instance 3526 * 3527 * Returns pointer to the successfully allocated VSI software struct 3528 * on success, otherwise returns NULL on failure. 3529 */ 3530 struct ice_vsi * 3531 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3532 { 3533 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3534 } 3535 3536 /** 3537 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3538 * @netdev: network interface to be adjusted 3539 * @proto: VLAN TPID 3540 * @vid: VLAN ID to be added 3541 * 3542 * net_device_ops implementation for adding VLAN IDs 3543 */ 3544 static int 3545 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3546 { 3547 struct ice_netdev_priv *np = netdev_priv(netdev); 3548 struct ice_vsi_vlan_ops *vlan_ops; 3549 struct ice_vsi *vsi = np->vsi; 3550 struct ice_vlan vlan; 3551 int ret; 3552 3553 /* VLAN 0 is added by default during load/reset */ 3554 if (!vid) 3555 return 0; 3556 3557 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3558 usleep_range(1000, 2000); 3559 3560 /* Add multicast promisc rule for the VLAN ID to be added if 3561 * all-multicast is currently enabled. 3562 */ 3563 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3564 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3565 ICE_MCAST_VLAN_PROMISC_BITS, 3566 vid); 3567 if (ret) 3568 goto finish; 3569 } 3570 3571 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3572 3573 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3574 * packets aren't pruned by the device's internal switch on Rx 3575 */ 3576 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3577 ret = vlan_ops->add_vlan(vsi, &vlan); 3578 if (ret) 3579 goto finish; 3580 3581 /* If all-multicast is currently enabled and this VLAN ID is only one 3582 * besides VLAN-0 we have to update look-up type of multicast promisc 3583 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3584 */ 3585 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3586 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3587 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3588 ICE_MCAST_PROMISC_BITS, 0); 3589 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3590 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3591 } 3592 3593 finish: 3594 clear_bit(ICE_CFG_BUSY, vsi->state); 3595 3596 return ret; 3597 } 3598 3599 /** 3600 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3601 * @netdev: network interface to be adjusted 3602 * @proto: VLAN TPID 3603 * @vid: VLAN ID to be removed 3604 * 3605 * net_device_ops implementation for removing VLAN IDs 3606 */ 3607 static int 3608 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3609 { 3610 struct ice_netdev_priv *np = netdev_priv(netdev); 3611 struct ice_vsi_vlan_ops *vlan_ops; 3612 struct ice_vsi *vsi = np->vsi; 3613 struct ice_vlan vlan; 3614 int ret; 3615 3616 /* don't allow removal of VLAN 0 */ 3617 if (!vid) 3618 return 0; 3619 3620 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3621 usleep_range(1000, 2000); 3622 3623 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3624 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3625 if (ret) { 3626 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3627 vsi->vsi_num); 3628 vsi->current_netdev_flags |= IFF_ALLMULTI; 3629 } 3630 3631 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3632 3633 /* Make sure VLAN delete is successful before updating VLAN 3634 * information 3635 */ 3636 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3637 ret = vlan_ops->del_vlan(vsi, &vlan); 3638 if (ret) 3639 goto finish; 3640 3641 /* Remove multicast promisc rule for the removed VLAN ID if 3642 * all-multicast is enabled. 3643 */ 3644 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3645 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3646 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3647 3648 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3649 /* Update look-up type of multicast promisc rule for VLAN 0 3650 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3651 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3652 */ 3653 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3654 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3655 ICE_MCAST_VLAN_PROMISC_BITS, 3656 0); 3657 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3658 ICE_MCAST_PROMISC_BITS, 0); 3659 } 3660 } 3661 3662 finish: 3663 clear_bit(ICE_CFG_BUSY, vsi->state); 3664 3665 return ret; 3666 } 3667 3668 /** 3669 * ice_rep_indr_tc_block_unbind 3670 * @cb_priv: indirection block private data 3671 */ 3672 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3673 { 3674 struct ice_indr_block_priv *indr_priv = cb_priv; 3675 3676 list_del(&indr_priv->list); 3677 kfree(indr_priv); 3678 } 3679 3680 /** 3681 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3682 * @vsi: VSI struct which has the netdev 3683 */ 3684 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3685 { 3686 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3687 3688 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3689 ice_rep_indr_tc_block_unbind); 3690 } 3691 3692 /** 3693 * ice_tc_indir_block_remove - clean indirect TC block notifications 3694 * @pf: PF structure 3695 */ 3696 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3697 { 3698 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3699 3700 if (!pf_vsi) 3701 return; 3702 3703 ice_tc_indir_block_unregister(pf_vsi); 3704 } 3705 3706 /** 3707 * ice_tc_indir_block_register - Register TC indirect block notifications 3708 * @vsi: VSI struct which has the netdev 3709 * 3710 * Returns 0 on success, negative value on failure 3711 */ 3712 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3713 { 3714 struct ice_netdev_priv *np; 3715 3716 if (!vsi || !vsi->netdev) 3717 return -EINVAL; 3718 3719 np = netdev_priv(vsi->netdev); 3720 3721 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3722 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3723 } 3724 3725 /** 3726 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3727 * @pf: board private structure 3728 * 3729 * Returns 0 on success, negative value on failure 3730 */ 3731 static int ice_setup_pf_sw(struct ice_pf *pf) 3732 { 3733 struct device *dev = ice_pf_to_dev(pf); 3734 bool dvm = ice_is_dvm_ena(&pf->hw); 3735 struct ice_vsi *vsi; 3736 int status; 3737 3738 if (ice_is_reset_in_progress(pf->state)) 3739 return -EBUSY; 3740 3741 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3742 if (status) 3743 return -EIO; 3744 3745 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3746 if (!vsi) 3747 return -ENOMEM; 3748 3749 /* init channel list */ 3750 INIT_LIST_HEAD(&vsi->ch_list); 3751 3752 status = ice_cfg_netdev(vsi); 3753 if (status) 3754 goto unroll_vsi_setup; 3755 /* netdev has to be configured before setting frame size */ 3756 ice_vsi_cfg_frame_size(vsi); 3757 3758 /* init indirect block notifications */ 3759 status = ice_tc_indir_block_register(vsi); 3760 if (status) { 3761 dev_err(dev, "Failed to register netdev notifier\n"); 3762 goto unroll_cfg_netdev; 3763 } 3764 3765 /* Setup DCB netlink interface */ 3766 ice_dcbnl_setup(vsi); 3767 3768 /* registering the NAPI handler requires both the queues and 3769 * netdev to be created, which are done in ice_pf_vsi_setup() 3770 * and ice_cfg_netdev() respectively 3771 */ 3772 ice_napi_add(vsi); 3773 3774 status = ice_init_mac_fltr(pf); 3775 if (status) 3776 goto unroll_napi_add; 3777 3778 return 0; 3779 3780 unroll_napi_add: 3781 ice_tc_indir_block_unregister(vsi); 3782 unroll_cfg_netdev: 3783 if (vsi) { 3784 ice_napi_del(vsi); 3785 if (vsi->netdev) { 3786 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3787 free_netdev(vsi->netdev); 3788 vsi->netdev = NULL; 3789 } 3790 } 3791 3792 unroll_vsi_setup: 3793 ice_vsi_release(vsi); 3794 return status; 3795 } 3796 3797 /** 3798 * ice_get_avail_q_count - Get count of queues in use 3799 * @pf_qmap: bitmap to get queue use count from 3800 * @lock: pointer to a mutex that protects access to pf_qmap 3801 * @size: size of the bitmap 3802 */ 3803 static u16 3804 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3805 { 3806 unsigned long bit; 3807 u16 count = 0; 3808 3809 mutex_lock(lock); 3810 for_each_clear_bit(bit, pf_qmap, size) 3811 count++; 3812 mutex_unlock(lock); 3813 3814 return count; 3815 } 3816 3817 /** 3818 * ice_get_avail_txq_count - Get count of Tx queues in use 3819 * @pf: pointer to an ice_pf instance 3820 */ 3821 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3822 { 3823 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3824 pf->max_pf_txqs); 3825 } 3826 3827 /** 3828 * ice_get_avail_rxq_count - Get count of Rx queues in use 3829 * @pf: pointer to an ice_pf instance 3830 */ 3831 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3832 { 3833 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3834 pf->max_pf_rxqs); 3835 } 3836 3837 /** 3838 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3839 * @pf: board private structure to initialize 3840 */ 3841 static void ice_deinit_pf(struct ice_pf *pf) 3842 { 3843 ice_service_task_stop(pf); 3844 mutex_destroy(&pf->adev_mutex); 3845 mutex_destroy(&pf->sw_mutex); 3846 mutex_destroy(&pf->tc_mutex); 3847 mutex_destroy(&pf->avail_q_mutex); 3848 mutex_destroy(&pf->vfs.table_lock); 3849 3850 if (pf->avail_txqs) { 3851 bitmap_free(pf->avail_txqs); 3852 pf->avail_txqs = NULL; 3853 } 3854 3855 if (pf->avail_rxqs) { 3856 bitmap_free(pf->avail_rxqs); 3857 pf->avail_rxqs = NULL; 3858 } 3859 3860 if (pf->ptp.clock) 3861 ptp_clock_unregister(pf->ptp.clock); 3862 } 3863 3864 /** 3865 * ice_set_pf_caps - set PFs capability flags 3866 * @pf: pointer to the PF instance 3867 */ 3868 static void ice_set_pf_caps(struct ice_pf *pf) 3869 { 3870 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3871 3872 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3873 if (func_caps->common_cap.rdma) 3874 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3875 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3876 if (func_caps->common_cap.dcb) 3877 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3878 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3879 if (func_caps->common_cap.sr_iov_1_1) { 3880 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3881 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3882 ICE_MAX_SRIOV_VFS); 3883 } 3884 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3885 if (func_caps->common_cap.rss_table_size) 3886 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3887 3888 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3889 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3890 u16 unused; 3891 3892 /* ctrl_vsi_idx will be set to a valid value when flow director 3893 * is setup by ice_init_fdir 3894 */ 3895 pf->ctrl_vsi_idx = ICE_NO_VSI; 3896 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3897 /* force guaranteed filter pool for PF */ 3898 ice_alloc_fd_guar_item(&pf->hw, &unused, 3899 func_caps->fd_fltr_guar); 3900 /* force shared filter pool for PF */ 3901 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3902 func_caps->fd_fltr_best_effort); 3903 } 3904 3905 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3906 if (func_caps->common_cap.ieee_1588) 3907 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3908 3909 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3910 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3911 } 3912 3913 /** 3914 * ice_init_pf - Initialize general software structures (struct ice_pf) 3915 * @pf: board private structure to initialize 3916 */ 3917 static int ice_init_pf(struct ice_pf *pf) 3918 { 3919 ice_set_pf_caps(pf); 3920 3921 mutex_init(&pf->sw_mutex); 3922 mutex_init(&pf->tc_mutex); 3923 mutex_init(&pf->adev_mutex); 3924 3925 INIT_HLIST_HEAD(&pf->aq_wait_list); 3926 spin_lock_init(&pf->aq_wait_lock); 3927 init_waitqueue_head(&pf->aq_wait_queue); 3928 3929 init_waitqueue_head(&pf->reset_wait_queue); 3930 3931 /* setup service timer and periodic service task */ 3932 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3933 pf->serv_tmr_period = HZ; 3934 INIT_WORK(&pf->serv_task, ice_service_task); 3935 clear_bit(ICE_SERVICE_SCHED, pf->state); 3936 3937 mutex_init(&pf->avail_q_mutex); 3938 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3939 if (!pf->avail_txqs) 3940 return -ENOMEM; 3941 3942 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3943 if (!pf->avail_rxqs) { 3944 bitmap_free(pf->avail_txqs); 3945 pf->avail_txqs = NULL; 3946 return -ENOMEM; 3947 } 3948 3949 mutex_init(&pf->vfs.table_lock); 3950 hash_init(pf->vfs.table); 3951 3952 return 0; 3953 } 3954 3955 /** 3956 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3957 * @pf: board private structure 3958 * @v_remain: number of remaining MSI-X vectors to be distributed 3959 * 3960 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3961 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3962 * remaining vectors. 3963 */ 3964 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3965 { 3966 int v_rdma; 3967 3968 if (!ice_is_rdma_ena(pf)) { 3969 pf->num_lan_msix = v_remain; 3970 return; 3971 } 3972 3973 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3974 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3975 3976 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3977 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3978 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3979 3980 pf->num_rdma_msix = 0; 3981 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3982 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3983 (v_remain - v_rdma < v_rdma)) { 3984 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3985 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3986 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3987 } else { 3988 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3989 */ 3990 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3991 ICE_RDMA_NUM_AEQ_MSIX; 3992 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3993 } 3994 } 3995 3996 /** 3997 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3998 * @pf: board private structure 3999 * 4000 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 4001 * device usage if there are not enough vectors. Return the number of vectors 4002 * reserved or negative on failure. 4003 */ 4004 static int ice_ena_msix_range(struct ice_pf *pf) 4005 { 4006 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 4007 struct device *dev = ice_pf_to_dev(pf); 4008 int err, i; 4009 4010 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 4011 num_cpus = num_online_cpus(); 4012 4013 /* LAN miscellaneous handler */ 4014 v_other = ICE_MIN_LAN_OICR_MSIX; 4015 4016 /* Flow Director */ 4017 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 4018 v_other += ICE_FDIR_MSIX; 4019 4020 /* switchdev */ 4021 v_other += ICE_ESWITCH_MSIX; 4022 4023 v_wanted = v_other; 4024 4025 /* LAN traffic */ 4026 pf->num_lan_msix = num_cpus; 4027 v_wanted += pf->num_lan_msix; 4028 4029 /* RDMA auxiliary driver */ 4030 if (ice_is_rdma_ena(pf)) { 4031 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 4032 v_wanted += pf->num_rdma_msix; 4033 } 4034 4035 if (v_wanted > hw_num_msix) { 4036 int v_remain; 4037 4038 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 4039 v_wanted, hw_num_msix); 4040 4041 if (hw_num_msix < ICE_MIN_MSIX) { 4042 err = -ERANGE; 4043 goto exit_err; 4044 } 4045 4046 v_remain = hw_num_msix - v_other; 4047 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 4048 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 4049 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4050 } 4051 4052 ice_reduce_msix_usage(pf, v_remain); 4053 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4054 4055 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4056 pf->num_lan_msix); 4057 if (ice_is_rdma_ena(pf)) 4058 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4059 pf->num_rdma_msix); 4060 } 4061 4062 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4063 sizeof(*pf->msix_entries), GFP_KERNEL); 4064 if (!pf->msix_entries) { 4065 err = -ENOMEM; 4066 goto exit_err; 4067 } 4068 4069 for (i = 0; i < v_wanted; i++) 4070 pf->msix_entries[i].entry = i; 4071 4072 /* actually reserve the vectors */ 4073 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4074 ICE_MIN_MSIX, v_wanted); 4075 if (v_actual < 0) { 4076 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4077 err = v_actual; 4078 goto msix_err; 4079 } 4080 4081 if (v_actual < v_wanted) { 4082 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4083 v_wanted, v_actual); 4084 4085 if (v_actual < ICE_MIN_MSIX) { 4086 /* error if we can't get minimum vectors */ 4087 pci_disable_msix(pf->pdev); 4088 err = -ERANGE; 4089 goto msix_err; 4090 } else { 4091 int v_remain = v_actual - v_other; 4092 4093 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4094 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4095 4096 ice_reduce_msix_usage(pf, v_remain); 4097 4098 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4099 pf->num_lan_msix); 4100 4101 if (ice_is_rdma_ena(pf)) 4102 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4103 pf->num_rdma_msix); 4104 } 4105 } 4106 4107 return v_actual; 4108 4109 msix_err: 4110 devm_kfree(dev, pf->msix_entries); 4111 4112 exit_err: 4113 pf->num_rdma_msix = 0; 4114 pf->num_lan_msix = 0; 4115 return err; 4116 } 4117 4118 /** 4119 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4120 * @pf: board private structure 4121 */ 4122 static void ice_dis_msix(struct ice_pf *pf) 4123 { 4124 pci_disable_msix(pf->pdev); 4125 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4126 pf->msix_entries = NULL; 4127 } 4128 4129 /** 4130 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4131 * @pf: board private structure 4132 */ 4133 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4134 { 4135 ice_dis_msix(pf); 4136 4137 if (pf->irq_tracker) { 4138 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4139 pf->irq_tracker = NULL; 4140 } 4141 } 4142 4143 /** 4144 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4145 * @pf: board private structure to initialize 4146 */ 4147 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4148 { 4149 int vectors; 4150 4151 vectors = ice_ena_msix_range(pf); 4152 4153 if (vectors < 0) 4154 return vectors; 4155 4156 /* set up vector assignment tracking */ 4157 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4158 struct_size(pf->irq_tracker, list, vectors), 4159 GFP_KERNEL); 4160 if (!pf->irq_tracker) { 4161 ice_dis_msix(pf); 4162 return -ENOMEM; 4163 } 4164 4165 /* populate SW interrupts pool with number of OS granted IRQs. */ 4166 pf->num_avail_sw_msix = (u16)vectors; 4167 pf->irq_tracker->num_entries = (u16)vectors; 4168 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4169 4170 return 0; 4171 } 4172 4173 /** 4174 * ice_is_wol_supported - check if WoL is supported 4175 * @hw: pointer to hardware info 4176 * 4177 * Check if WoL is supported based on the HW configuration. 4178 * Returns true if NVM supports and enables WoL for this port, false otherwise 4179 */ 4180 bool ice_is_wol_supported(struct ice_hw *hw) 4181 { 4182 u16 wol_ctrl; 4183 4184 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4185 * word) indicates WoL is not supported on the corresponding PF ID. 4186 */ 4187 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4188 return false; 4189 4190 return !(BIT(hw->port_info->lport) & wol_ctrl); 4191 } 4192 4193 /** 4194 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4195 * @vsi: VSI being changed 4196 * @new_rx: new number of Rx queues 4197 * @new_tx: new number of Tx queues 4198 * 4199 * Only change the number of queues if new_tx, or new_rx is non-0. 4200 * 4201 * Returns 0 on success. 4202 */ 4203 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4204 { 4205 struct ice_pf *pf = vsi->back; 4206 int err = 0, timeout = 50; 4207 4208 if (!new_rx && !new_tx) 4209 return -EINVAL; 4210 4211 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4212 timeout--; 4213 if (!timeout) 4214 return -EBUSY; 4215 usleep_range(1000, 2000); 4216 } 4217 4218 if (new_tx) 4219 vsi->req_txq = (u16)new_tx; 4220 if (new_rx) 4221 vsi->req_rxq = (u16)new_rx; 4222 4223 /* set for the next time the netdev is started */ 4224 if (!netif_running(vsi->netdev)) { 4225 ice_vsi_rebuild(vsi, false); 4226 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4227 goto done; 4228 } 4229 4230 ice_vsi_close(vsi); 4231 ice_vsi_rebuild(vsi, false); 4232 ice_pf_dcb_recfg(pf); 4233 ice_vsi_open(vsi); 4234 done: 4235 clear_bit(ICE_CFG_BUSY, pf->state); 4236 return err; 4237 } 4238 4239 /** 4240 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4241 * @pf: PF to configure 4242 * 4243 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4244 * VSI can still Tx/Rx VLAN tagged packets. 4245 */ 4246 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4247 { 4248 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4249 struct ice_vsi_ctx *ctxt; 4250 struct ice_hw *hw; 4251 int status; 4252 4253 if (!vsi) 4254 return; 4255 4256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4257 if (!ctxt) 4258 return; 4259 4260 hw = &pf->hw; 4261 ctxt->info = vsi->info; 4262 4263 ctxt->info.valid_sections = 4264 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4265 ICE_AQ_VSI_PROP_SECURITY_VALID | 4266 ICE_AQ_VSI_PROP_SW_VALID); 4267 4268 /* disable VLAN anti-spoof */ 4269 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4270 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4271 4272 /* disable VLAN pruning and keep all other settings */ 4273 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4274 4275 /* allow all VLANs on Tx and don't strip on Rx */ 4276 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4277 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4278 4279 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4280 if (status) { 4281 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4282 status, ice_aq_str(hw->adminq.sq_last_status)); 4283 } else { 4284 vsi->info.sec_flags = ctxt->info.sec_flags; 4285 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4286 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4287 } 4288 4289 kfree(ctxt); 4290 } 4291 4292 /** 4293 * ice_log_pkg_init - log result of DDP package load 4294 * @hw: pointer to hardware info 4295 * @state: state of package load 4296 */ 4297 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4298 { 4299 struct ice_pf *pf = hw->back; 4300 struct device *dev; 4301 4302 dev = ice_pf_to_dev(pf); 4303 4304 switch (state) { 4305 case ICE_DDP_PKG_SUCCESS: 4306 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4307 hw->active_pkg_name, 4308 hw->active_pkg_ver.major, 4309 hw->active_pkg_ver.minor, 4310 hw->active_pkg_ver.update, 4311 hw->active_pkg_ver.draft); 4312 break; 4313 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4314 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4315 hw->active_pkg_name, 4316 hw->active_pkg_ver.major, 4317 hw->active_pkg_ver.minor, 4318 hw->active_pkg_ver.update, 4319 hw->active_pkg_ver.draft); 4320 break; 4321 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4322 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4323 hw->active_pkg_name, 4324 hw->active_pkg_ver.major, 4325 hw->active_pkg_ver.minor, 4326 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4327 break; 4328 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4329 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4330 hw->active_pkg_name, 4331 hw->active_pkg_ver.major, 4332 hw->active_pkg_ver.minor, 4333 hw->active_pkg_ver.update, 4334 hw->active_pkg_ver.draft, 4335 hw->pkg_name, 4336 hw->pkg_ver.major, 4337 hw->pkg_ver.minor, 4338 hw->pkg_ver.update, 4339 hw->pkg_ver.draft); 4340 break; 4341 case ICE_DDP_PKG_FW_MISMATCH: 4342 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4343 break; 4344 case ICE_DDP_PKG_INVALID_FILE: 4345 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4346 break; 4347 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4348 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4349 break; 4350 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4351 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4352 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4353 break; 4354 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4355 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4356 break; 4357 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4358 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4359 break; 4360 case ICE_DDP_PKG_LOAD_ERROR: 4361 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4362 /* poll for reset to complete */ 4363 if (ice_check_reset(hw)) 4364 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4365 break; 4366 case ICE_DDP_PKG_ERR: 4367 default: 4368 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4369 break; 4370 } 4371 } 4372 4373 /** 4374 * ice_load_pkg - load/reload the DDP Package file 4375 * @firmware: firmware structure when firmware requested or NULL for reload 4376 * @pf: pointer to the PF instance 4377 * 4378 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4379 * initialize HW tables. 4380 */ 4381 static void 4382 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4383 { 4384 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4385 struct device *dev = ice_pf_to_dev(pf); 4386 struct ice_hw *hw = &pf->hw; 4387 4388 /* Load DDP Package */ 4389 if (firmware && !hw->pkg_copy) { 4390 state = ice_copy_and_init_pkg(hw, firmware->data, 4391 firmware->size); 4392 ice_log_pkg_init(hw, state); 4393 } else if (!firmware && hw->pkg_copy) { 4394 /* Reload package during rebuild after CORER/GLOBR reset */ 4395 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4396 ice_log_pkg_init(hw, state); 4397 } else { 4398 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4399 } 4400 4401 if (!ice_is_init_pkg_successful(state)) { 4402 /* Safe Mode */ 4403 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4404 return; 4405 } 4406 4407 /* Successful download package is the precondition for advanced 4408 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4409 */ 4410 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4411 } 4412 4413 /** 4414 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4415 * @pf: pointer to the PF structure 4416 * 4417 * There is no error returned here because the driver should be able to handle 4418 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4419 * specifically with Tx. 4420 */ 4421 static void ice_verify_cacheline_size(struct ice_pf *pf) 4422 { 4423 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4424 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4425 ICE_CACHE_LINE_BYTES); 4426 } 4427 4428 /** 4429 * ice_send_version - update firmware with driver version 4430 * @pf: PF struct 4431 * 4432 * Returns 0 on success, else error code 4433 */ 4434 static int ice_send_version(struct ice_pf *pf) 4435 { 4436 struct ice_driver_ver dv; 4437 4438 dv.major_ver = 0xff; 4439 dv.minor_ver = 0xff; 4440 dv.build_ver = 0xff; 4441 dv.subbuild_ver = 0; 4442 strscpy((char *)dv.driver_string, UTS_RELEASE, 4443 sizeof(dv.driver_string)); 4444 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4445 } 4446 4447 /** 4448 * ice_init_fdir - Initialize flow director VSI and configuration 4449 * @pf: pointer to the PF instance 4450 * 4451 * returns 0 on success, negative on error 4452 */ 4453 static int ice_init_fdir(struct ice_pf *pf) 4454 { 4455 struct device *dev = ice_pf_to_dev(pf); 4456 struct ice_vsi *ctrl_vsi; 4457 int err; 4458 4459 /* Side Band Flow Director needs to have a control VSI. 4460 * Allocate it and store it in the PF. 4461 */ 4462 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4463 if (!ctrl_vsi) { 4464 dev_dbg(dev, "could not create control VSI\n"); 4465 return -ENOMEM; 4466 } 4467 4468 err = ice_vsi_open_ctrl(ctrl_vsi); 4469 if (err) { 4470 dev_dbg(dev, "could not open control VSI\n"); 4471 goto err_vsi_open; 4472 } 4473 4474 mutex_init(&pf->hw.fdir_fltr_lock); 4475 4476 err = ice_fdir_create_dflt_rules(pf); 4477 if (err) 4478 goto err_fdir_rule; 4479 4480 return 0; 4481 4482 err_fdir_rule: 4483 ice_fdir_release_flows(&pf->hw); 4484 ice_vsi_close(ctrl_vsi); 4485 err_vsi_open: 4486 ice_vsi_release(ctrl_vsi); 4487 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4488 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4489 pf->ctrl_vsi_idx = ICE_NO_VSI; 4490 } 4491 return err; 4492 } 4493 4494 /** 4495 * ice_get_opt_fw_name - return optional firmware file name or NULL 4496 * @pf: pointer to the PF instance 4497 */ 4498 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4499 { 4500 /* Optional firmware name same as default with additional dash 4501 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4502 */ 4503 struct pci_dev *pdev = pf->pdev; 4504 char *opt_fw_filename; 4505 u64 dsn; 4506 4507 /* Determine the name of the optional file using the DSN (two 4508 * dwords following the start of the DSN Capability). 4509 */ 4510 dsn = pci_get_dsn(pdev); 4511 if (!dsn) 4512 return NULL; 4513 4514 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4515 if (!opt_fw_filename) 4516 return NULL; 4517 4518 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4519 ICE_DDP_PKG_PATH, dsn); 4520 4521 return opt_fw_filename; 4522 } 4523 4524 /** 4525 * ice_request_fw - Device initialization routine 4526 * @pf: pointer to the PF instance 4527 */ 4528 static void ice_request_fw(struct ice_pf *pf) 4529 { 4530 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4531 const struct firmware *firmware = NULL; 4532 struct device *dev = ice_pf_to_dev(pf); 4533 int err = 0; 4534 4535 /* optional device-specific DDP (if present) overrides the default DDP 4536 * package file. kernel logs a debug message if the file doesn't exist, 4537 * and warning messages for other errors. 4538 */ 4539 if (opt_fw_filename) { 4540 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4541 if (err) { 4542 kfree(opt_fw_filename); 4543 goto dflt_pkg_load; 4544 } 4545 4546 /* request for firmware was successful. Download to device */ 4547 ice_load_pkg(firmware, pf); 4548 kfree(opt_fw_filename); 4549 release_firmware(firmware); 4550 return; 4551 } 4552 4553 dflt_pkg_load: 4554 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4555 if (err) { 4556 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4557 return; 4558 } 4559 4560 /* request for firmware was successful. Download to device */ 4561 ice_load_pkg(firmware, pf); 4562 release_firmware(firmware); 4563 } 4564 4565 /** 4566 * ice_print_wake_reason - show the wake up cause in the log 4567 * @pf: pointer to the PF struct 4568 */ 4569 static void ice_print_wake_reason(struct ice_pf *pf) 4570 { 4571 u32 wus = pf->wakeup_reason; 4572 const char *wake_str; 4573 4574 /* if no wake event, nothing to print */ 4575 if (!wus) 4576 return; 4577 4578 if (wus & PFPM_WUS_LNKC_M) 4579 wake_str = "Link\n"; 4580 else if (wus & PFPM_WUS_MAG_M) 4581 wake_str = "Magic Packet\n"; 4582 else if (wus & PFPM_WUS_MNG_M) 4583 wake_str = "Management\n"; 4584 else if (wus & PFPM_WUS_FW_RST_WK_M) 4585 wake_str = "Firmware Reset\n"; 4586 else 4587 wake_str = "Unknown\n"; 4588 4589 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4590 } 4591 4592 /** 4593 * ice_register_netdev - register netdev and devlink port 4594 * @pf: pointer to the PF struct 4595 */ 4596 static int ice_register_netdev(struct ice_pf *pf) 4597 { 4598 struct ice_vsi *vsi; 4599 int err = 0; 4600 4601 vsi = ice_get_main_vsi(pf); 4602 if (!vsi || !vsi->netdev) 4603 return -EIO; 4604 4605 err = ice_devlink_create_pf_port(pf); 4606 if (err) 4607 goto err_devlink_create; 4608 4609 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4610 err = register_netdev(vsi->netdev); 4611 if (err) 4612 goto err_register_netdev; 4613 4614 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4615 netif_carrier_off(vsi->netdev); 4616 netif_tx_stop_all_queues(vsi->netdev); 4617 4618 return 0; 4619 err_register_netdev: 4620 ice_devlink_destroy_pf_port(pf); 4621 err_devlink_create: 4622 free_netdev(vsi->netdev); 4623 vsi->netdev = NULL; 4624 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4625 return err; 4626 } 4627 4628 /** 4629 * ice_probe - Device initialization routine 4630 * @pdev: PCI device information struct 4631 * @ent: entry in ice_pci_tbl 4632 * 4633 * Returns 0 on success, negative on failure 4634 */ 4635 static int 4636 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4637 { 4638 struct device *dev = &pdev->dev; 4639 struct ice_pf *pf; 4640 struct ice_hw *hw; 4641 int i, err; 4642 4643 if (pdev->is_virtfn) { 4644 dev_err(dev, "can't probe a virtual function\n"); 4645 return -EINVAL; 4646 } 4647 4648 /* this driver uses devres, see 4649 * Documentation/driver-api/driver-model/devres.rst 4650 */ 4651 err = pcim_enable_device(pdev); 4652 if (err) 4653 return err; 4654 4655 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4656 if (err) { 4657 dev_err(dev, "BAR0 I/O map error %d\n", err); 4658 return err; 4659 } 4660 4661 pf = ice_allocate_pf(dev); 4662 if (!pf) 4663 return -ENOMEM; 4664 4665 /* initialize Auxiliary index to invalid value */ 4666 pf->aux_idx = -1; 4667 4668 /* set up for high or low DMA */ 4669 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4670 if (err) { 4671 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4672 return err; 4673 } 4674 4675 pci_enable_pcie_error_reporting(pdev); 4676 pci_set_master(pdev); 4677 4678 pf->pdev = pdev; 4679 pci_set_drvdata(pdev, pf); 4680 set_bit(ICE_DOWN, pf->state); 4681 /* Disable service task until DOWN bit is cleared */ 4682 set_bit(ICE_SERVICE_DIS, pf->state); 4683 4684 hw = &pf->hw; 4685 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4686 pci_save_state(pdev); 4687 4688 hw->back = pf; 4689 hw->vendor_id = pdev->vendor; 4690 hw->device_id = pdev->device; 4691 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4692 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4693 hw->subsystem_device_id = pdev->subsystem_device; 4694 hw->bus.device = PCI_SLOT(pdev->devfn); 4695 hw->bus.func = PCI_FUNC(pdev->devfn); 4696 ice_set_ctrlq_len(hw); 4697 4698 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4699 4700 #ifndef CONFIG_DYNAMIC_DEBUG 4701 if (debug < -1) 4702 hw->debug_mask = debug; 4703 #endif 4704 4705 err = ice_init_hw(hw); 4706 if (err) { 4707 dev_err(dev, "ice_init_hw failed: %d\n", err); 4708 err = -EIO; 4709 goto err_exit_unroll; 4710 } 4711 4712 ice_init_feature_support(pf); 4713 4714 ice_request_fw(pf); 4715 4716 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4717 * set in pf->state, which will cause ice_is_safe_mode to return 4718 * true 4719 */ 4720 if (ice_is_safe_mode(pf)) { 4721 /* we already got function/device capabilities but these don't 4722 * reflect what the driver needs to do in safe mode. Instead of 4723 * adding conditional logic everywhere to ignore these 4724 * device/function capabilities, override them. 4725 */ 4726 ice_set_safe_mode_caps(hw); 4727 } 4728 4729 err = ice_init_pf(pf); 4730 if (err) { 4731 dev_err(dev, "ice_init_pf failed: %d\n", err); 4732 goto err_init_pf_unroll; 4733 } 4734 4735 ice_devlink_init_regions(pf); 4736 4737 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4738 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4739 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4740 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4741 i = 0; 4742 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4743 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4744 pf->hw.tnl.valid_count[TNL_VXLAN]; 4745 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4746 UDP_TUNNEL_TYPE_VXLAN; 4747 i++; 4748 } 4749 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4750 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4751 pf->hw.tnl.valid_count[TNL_GENEVE]; 4752 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4753 UDP_TUNNEL_TYPE_GENEVE; 4754 i++; 4755 } 4756 4757 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4758 if (!pf->num_alloc_vsi) { 4759 err = -EIO; 4760 goto err_init_pf_unroll; 4761 } 4762 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4763 dev_warn(&pf->pdev->dev, 4764 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4765 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4766 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4767 } 4768 4769 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4770 GFP_KERNEL); 4771 if (!pf->vsi) { 4772 err = -ENOMEM; 4773 goto err_init_pf_unroll; 4774 } 4775 4776 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4777 sizeof(*pf->vsi_stats), GFP_KERNEL); 4778 if (!pf->vsi_stats) { 4779 err = -ENOMEM; 4780 goto err_init_vsi_unroll; 4781 } 4782 4783 err = ice_init_interrupt_scheme(pf); 4784 if (err) { 4785 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4786 err = -EIO; 4787 goto err_init_vsi_stats_unroll; 4788 } 4789 4790 /* In case of MSIX we are going to setup the misc vector right here 4791 * to handle admin queue events etc. In case of legacy and MSI 4792 * the misc functionality and queue processing is combined in 4793 * the same vector and that gets setup at open. 4794 */ 4795 err = ice_req_irq_msix_misc(pf); 4796 if (err) { 4797 dev_err(dev, "setup of misc vector failed: %d\n", err); 4798 goto err_init_interrupt_unroll; 4799 } 4800 4801 /* create switch struct for the switch element created by FW on boot */ 4802 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4803 if (!pf->first_sw) { 4804 err = -ENOMEM; 4805 goto err_msix_misc_unroll; 4806 } 4807 4808 if (hw->evb_veb) 4809 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4810 else 4811 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4812 4813 pf->first_sw->pf = pf; 4814 4815 /* record the sw_id available for later use */ 4816 pf->first_sw->sw_id = hw->port_info->sw_id; 4817 4818 err = ice_setup_pf_sw(pf); 4819 if (err) { 4820 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4821 goto err_alloc_sw_unroll; 4822 } 4823 4824 clear_bit(ICE_SERVICE_DIS, pf->state); 4825 4826 /* tell the firmware we are up */ 4827 err = ice_send_version(pf); 4828 if (err) { 4829 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4830 UTS_RELEASE, err); 4831 goto err_send_version_unroll; 4832 } 4833 4834 /* since everything is good, start the service timer */ 4835 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4836 4837 err = ice_init_link_events(pf->hw.port_info); 4838 if (err) { 4839 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4840 goto err_send_version_unroll; 4841 } 4842 4843 /* not a fatal error if this fails */ 4844 err = ice_init_nvm_phy_type(pf->hw.port_info); 4845 if (err) 4846 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4847 4848 /* not a fatal error if this fails */ 4849 err = ice_update_link_info(pf->hw.port_info); 4850 if (err) 4851 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4852 4853 ice_init_link_dflt_override(pf->hw.port_info); 4854 4855 ice_check_link_cfg_err(pf, 4856 pf->hw.port_info->phy.link_info.link_cfg_err); 4857 4858 /* if media available, initialize PHY settings */ 4859 if (pf->hw.port_info->phy.link_info.link_info & 4860 ICE_AQ_MEDIA_AVAILABLE) { 4861 /* not a fatal error if this fails */ 4862 err = ice_init_phy_user_cfg(pf->hw.port_info); 4863 if (err) 4864 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4865 4866 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4867 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4868 4869 if (vsi) 4870 ice_configure_phy(vsi); 4871 } 4872 } else { 4873 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4874 } 4875 4876 ice_verify_cacheline_size(pf); 4877 4878 /* Save wakeup reason register for later use */ 4879 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4880 4881 /* check for a power management event */ 4882 ice_print_wake_reason(pf); 4883 4884 /* clear wake status, all bits */ 4885 wr32(hw, PFPM_WUS, U32_MAX); 4886 4887 /* Disable WoL at init, wait for user to enable */ 4888 device_set_wakeup_enable(dev, false); 4889 4890 if (ice_is_safe_mode(pf)) { 4891 ice_set_safe_mode_vlan_cfg(pf); 4892 goto probe_done; 4893 } 4894 4895 /* initialize DDP driven features */ 4896 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4897 ice_ptp_init(pf); 4898 4899 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4900 ice_gnss_init(pf); 4901 4902 /* Note: Flow director init failure is non-fatal to load */ 4903 if (ice_init_fdir(pf)) 4904 dev_err(dev, "could not initialize flow director\n"); 4905 4906 /* Note: DCB init failure is non-fatal to load */ 4907 if (ice_init_pf_dcb(pf, false)) { 4908 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4909 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4910 } else { 4911 ice_cfg_lldp_mib_change(&pf->hw, true); 4912 } 4913 4914 if (ice_init_lag(pf)) 4915 dev_warn(dev, "Failed to init link aggregation support\n"); 4916 4917 /* print PCI link speed and width */ 4918 pcie_print_link_status(pf->pdev); 4919 4920 probe_done: 4921 err = ice_register_netdev(pf); 4922 if (err) 4923 goto err_netdev_reg; 4924 4925 err = ice_devlink_register_params(pf); 4926 if (err) 4927 goto err_netdev_reg; 4928 4929 /* ready to go, so clear down state bit */ 4930 clear_bit(ICE_DOWN, pf->state); 4931 if (ice_is_rdma_ena(pf)) { 4932 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4933 if (pf->aux_idx < 0) { 4934 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4935 err = -ENOMEM; 4936 goto err_devlink_reg_param; 4937 } 4938 4939 err = ice_init_rdma(pf); 4940 if (err) { 4941 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4942 err = -EIO; 4943 goto err_init_aux_unroll; 4944 } 4945 } else { 4946 dev_warn(dev, "RDMA is not supported on this device\n"); 4947 } 4948 4949 ice_devlink_register(pf); 4950 return 0; 4951 4952 err_init_aux_unroll: 4953 pf->adev = NULL; 4954 ida_free(&ice_aux_ida, pf->aux_idx); 4955 err_devlink_reg_param: 4956 ice_devlink_unregister_params(pf); 4957 err_netdev_reg: 4958 err_send_version_unroll: 4959 ice_vsi_release_all(pf); 4960 err_alloc_sw_unroll: 4961 set_bit(ICE_SERVICE_DIS, pf->state); 4962 set_bit(ICE_DOWN, pf->state); 4963 devm_kfree(dev, pf->first_sw); 4964 err_msix_misc_unroll: 4965 ice_free_irq_msix_misc(pf); 4966 err_init_interrupt_unroll: 4967 ice_clear_interrupt_scheme(pf); 4968 err_init_vsi_stats_unroll: 4969 devm_kfree(dev, pf->vsi_stats); 4970 pf->vsi_stats = NULL; 4971 err_init_vsi_unroll: 4972 devm_kfree(dev, pf->vsi); 4973 err_init_pf_unroll: 4974 ice_deinit_pf(pf); 4975 ice_devlink_destroy_regions(pf); 4976 ice_deinit_hw(hw); 4977 err_exit_unroll: 4978 pci_disable_pcie_error_reporting(pdev); 4979 pci_disable_device(pdev); 4980 return err; 4981 } 4982 4983 /** 4984 * ice_set_wake - enable or disable Wake on LAN 4985 * @pf: pointer to the PF struct 4986 * 4987 * Simple helper for WoL control 4988 */ 4989 static void ice_set_wake(struct ice_pf *pf) 4990 { 4991 struct ice_hw *hw = &pf->hw; 4992 bool wol = pf->wol_ena; 4993 4994 /* clear wake state, otherwise new wake events won't fire */ 4995 wr32(hw, PFPM_WUS, U32_MAX); 4996 4997 /* enable / disable APM wake up, no RMW needed */ 4998 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4999 5000 /* set magic packet filter enabled */ 5001 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5002 } 5003 5004 /** 5005 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5006 * @pf: pointer to the PF struct 5007 * 5008 * Issue firmware command to enable multicast magic wake, making 5009 * sure that any locally administered address (LAA) is used for 5010 * wake, and that PF reset doesn't undo the LAA. 5011 */ 5012 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5013 { 5014 struct device *dev = ice_pf_to_dev(pf); 5015 struct ice_hw *hw = &pf->hw; 5016 u8 mac_addr[ETH_ALEN]; 5017 struct ice_vsi *vsi; 5018 int status; 5019 u8 flags; 5020 5021 if (!pf->wol_ena) 5022 return; 5023 5024 vsi = ice_get_main_vsi(pf); 5025 if (!vsi) 5026 return; 5027 5028 /* Get current MAC address in case it's an LAA */ 5029 if (vsi->netdev) 5030 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5031 else 5032 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5033 5034 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5035 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5036 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5037 5038 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5039 if (status) 5040 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5041 status, ice_aq_str(hw->adminq.sq_last_status)); 5042 } 5043 5044 /** 5045 * ice_remove - Device removal routine 5046 * @pdev: PCI device information struct 5047 */ 5048 static void ice_remove(struct pci_dev *pdev) 5049 { 5050 struct ice_pf *pf = pci_get_drvdata(pdev); 5051 int i; 5052 5053 ice_devlink_unregister(pf); 5054 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5055 if (!ice_is_reset_in_progress(pf->state)) 5056 break; 5057 msleep(100); 5058 } 5059 5060 ice_tc_indir_block_remove(pf); 5061 5062 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5063 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5064 ice_free_vfs(pf); 5065 } 5066 5067 ice_service_task_stop(pf); 5068 5069 ice_aq_cancel_waiting_tasks(pf); 5070 ice_unplug_aux_dev(pf); 5071 if (pf->aux_idx >= 0) 5072 ida_free(&ice_aux_ida, pf->aux_idx); 5073 ice_devlink_unregister_params(pf); 5074 set_bit(ICE_DOWN, pf->state); 5075 5076 ice_deinit_lag(pf); 5077 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5078 ice_ptp_release(pf); 5079 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5080 ice_gnss_exit(pf); 5081 if (!ice_is_safe_mode(pf)) 5082 ice_remove_arfs(pf); 5083 ice_setup_mc_magic_wake(pf); 5084 ice_vsi_release_all(pf); 5085 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5086 ice_set_wake(pf); 5087 ice_free_irq_msix_misc(pf); 5088 ice_for_each_vsi(pf, i) { 5089 if (!pf->vsi[i]) 5090 continue; 5091 ice_vsi_free_q_vectors(pf->vsi[i]); 5092 } 5093 devm_kfree(&pdev->dev, pf->vsi_stats); 5094 pf->vsi_stats = NULL; 5095 ice_deinit_pf(pf); 5096 ice_devlink_destroy_regions(pf); 5097 ice_deinit_hw(&pf->hw); 5098 5099 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5100 * do it via ice_schedule_reset() since there is no need to rebuild 5101 * and the service task is already stopped. 5102 */ 5103 ice_reset(&pf->hw, ICE_RESET_PFR); 5104 pci_wait_for_pending_transaction(pdev); 5105 ice_clear_interrupt_scheme(pf); 5106 pci_disable_pcie_error_reporting(pdev); 5107 pci_disable_device(pdev); 5108 } 5109 5110 /** 5111 * ice_shutdown - PCI callback for shutting down device 5112 * @pdev: PCI device information struct 5113 */ 5114 static void ice_shutdown(struct pci_dev *pdev) 5115 { 5116 struct ice_pf *pf = pci_get_drvdata(pdev); 5117 5118 ice_remove(pdev); 5119 5120 if (system_state == SYSTEM_POWER_OFF) { 5121 pci_wake_from_d3(pdev, pf->wol_ena); 5122 pci_set_power_state(pdev, PCI_D3hot); 5123 } 5124 } 5125 5126 #ifdef CONFIG_PM 5127 /** 5128 * ice_prepare_for_shutdown - prep for PCI shutdown 5129 * @pf: board private structure 5130 * 5131 * Inform or close all dependent features in prep for PCI device shutdown 5132 */ 5133 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5134 { 5135 struct ice_hw *hw = &pf->hw; 5136 u32 v; 5137 5138 /* Notify VFs of impending reset */ 5139 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5140 ice_vc_notify_reset(pf); 5141 5142 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5143 5144 /* disable the VSIs and their queues that are not already DOWN */ 5145 ice_pf_dis_all_vsi(pf, false); 5146 5147 ice_for_each_vsi(pf, v) 5148 if (pf->vsi[v]) 5149 pf->vsi[v]->vsi_num = 0; 5150 5151 ice_shutdown_all_ctrlq(hw); 5152 } 5153 5154 /** 5155 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5156 * @pf: board private structure to reinitialize 5157 * 5158 * This routine reinitialize interrupt scheme that was cleared during 5159 * power management suspend callback. 5160 * 5161 * This should be called during resume routine to re-allocate the q_vectors 5162 * and reacquire interrupts. 5163 */ 5164 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5165 { 5166 struct device *dev = ice_pf_to_dev(pf); 5167 int ret, v; 5168 5169 /* Since we clear MSIX flag during suspend, we need to 5170 * set it back during resume... 5171 */ 5172 5173 ret = ice_init_interrupt_scheme(pf); 5174 if (ret) { 5175 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5176 return ret; 5177 } 5178 5179 /* Remap vectors and rings, after successful re-init interrupts */ 5180 ice_for_each_vsi(pf, v) { 5181 if (!pf->vsi[v]) 5182 continue; 5183 5184 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5185 if (ret) 5186 goto err_reinit; 5187 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5188 } 5189 5190 ret = ice_req_irq_msix_misc(pf); 5191 if (ret) { 5192 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5193 ret); 5194 goto err_reinit; 5195 } 5196 5197 return 0; 5198 5199 err_reinit: 5200 while (v--) 5201 if (pf->vsi[v]) 5202 ice_vsi_free_q_vectors(pf->vsi[v]); 5203 5204 return ret; 5205 } 5206 5207 /** 5208 * ice_suspend 5209 * @dev: generic device information structure 5210 * 5211 * Power Management callback to quiesce the device and prepare 5212 * for D3 transition. 5213 */ 5214 static int __maybe_unused ice_suspend(struct device *dev) 5215 { 5216 struct pci_dev *pdev = to_pci_dev(dev); 5217 struct ice_pf *pf; 5218 int disabled, v; 5219 5220 pf = pci_get_drvdata(pdev); 5221 5222 if (!ice_pf_state_is_nominal(pf)) { 5223 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5224 return -EBUSY; 5225 } 5226 5227 /* Stop watchdog tasks until resume completion. 5228 * Even though it is most likely that the service task is 5229 * disabled if the device is suspended or down, the service task's 5230 * state is controlled by a different state bit, and we should 5231 * store and honor whatever state that bit is in at this point. 5232 */ 5233 disabled = ice_service_task_stop(pf); 5234 5235 ice_unplug_aux_dev(pf); 5236 5237 /* Already suspended?, then there is nothing to do */ 5238 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5239 if (!disabled) 5240 ice_service_task_restart(pf); 5241 return 0; 5242 } 5243 5244 if (test_bit(ICE_DOWN, pf->state) || 5245 ice_is_reset_in_progress(pf->state)) { 5246 dev_err(dev, "can't suspend device in reset or already down\n"); 5247 if (!disabled) 5248 ice_service_task_restart(pf); 5249 return 0; 5250 } 5251 5252 ice_setup_mc_magic_wake(pf); 5253 5254 ice_prepare_for_shutdown(pf); 5255 5256 ice_set_wake(pf); 5257 5258 /* Free vectors, clear the interrupt scheme and release IRQs 5259 * for proper hibernation, especially with large number of CPUs. 5260 * Otherwise hibernation might fail when mapping all the vectors back 5261 * to CPU0. 5262 */ 5263 ice_free_irq_msix_misc(pf); 5264 ice_for_each_vsi(pf, v) { 5265 if (!pf->vsi[v]) 5266 continue; 5267 ice_vsi_free_q_vectors(pf->vsi[v]); 5268 } 5269 ice_clear_interrupt_scheme(pf); 5270 5271 pci_save_state(pdev); 5272 pci_wake_from_d3(pdev, pf->wol_ena); 5273 pci_set_power_state(pdev, PCI_D3hot); 5274 return 0; 5275 } 5276 5277 /** 5278 * ice_resume - PM callback for waking up from D3 5279 * @dev: generic device information structure 5280 */ 5281 static int __maybe_unused ice_resume(struct device *dev) 5282 { 5283 struct pci_dev *pdev = to_pci_dev(dev); 5284 enum ice_reset_req reset_type; 5285 struct ice_pf *pf; 5286 struct ice_hw *hw; 5287 int ret; 5288 5289 pci_set_power_state(pdev, PCI_D0); 5290 pci_restore_state(pdev); 5291 pci_save_state(pdev); 5292 5293 if (!pci_device_is_present(pdev)) 5294 return -ENODEV; 5295 5296 ret = pci_enable_device_mem(pdev); 5297 if (ret) { 5298 dev_err(dev, "Cannot enable device after suspend\n"); 5299 return ret; 5300 } 5301 5302 pf = pci_get_drvdata(pdev); 5303 hw = &pf->hw; 5304 5305 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5306 ice_print_wake_reason(pf); 5307 5308 /* We cleared the interrupt scheme when we suspended, so we need to 5309 * restore it now to resume device functionality. 5310 */ 5311 ret = ice_reinit_interrupt_scheme(pf); 5312 if (ret) 5313 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5314 5315 clear_bit(ICE_DOWN, pf->state); 5316 /* Now perform PF reset and rebuild */ 5317 reset_type = ICE_RESET_PFR; 5318 /* re-enable service task for reset, but allow reset to schedule it */ 5319 clear_bit(ICE_SERVICE_DIS, pf->state); 5320 5321 if (ice_schedule_reset(pf, reset_type)) 5322 dev_err(dev, "Reset during resume failed.\n"); 5323 5324 clear_bit(ICE_SUSPENDED, pf->state); 5325 ice_service_task_restart(pf); 5326 5327 /* Restart the service task */ 5328 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5329 5330 return 0; 5331 } 5332 #endif /* CONFIG_PM */ 5333 5334 /** 5335 * ice_pci_err_detected - warning that PCI error has been detected 5336 * @pdev: PCI device information struct 5337 * @err: the type of PCI error 5338 * 5339 * Called to warn that something happened on the PCI bus and the error handling 5340 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5341 */ 5342 static pci_ers_result_t 5343 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5344 { 5345 struct ice_pf *pf = pci_get_drvdata(pdev); 5346 5347 if (!pf) { 5348 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5349 __func__, err); 5350 return PCI_ERS_RESULT_DISCONNECT; 5351 } 5352 5353 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5354 ice_service_task_stop(pf); 5355 5356 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5357 set_bit(ICE_PFR_REQ, pf->state); 5358 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5359 } 5360 } 5361 5362 return PCI_ERS_RESULT_NEED_RESET; 5363 } 5364 5365 /** 5366 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5367 * @pdev: PCI device information struct 5368 * 5369 * Called to determine if the driver can recover from the PCI slot reset by 5370 * using a register read to determine if the device is recoverable. 5371 */ 5372 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5373 { 5374 struct ice_pf *pf = pci_get_drvdata(pdev); 5375 pci_ers_result_t result; 5376 int err; 5377 u32 reg; 5378 5379 err = pci_enable_device_mem(pdev); 5380 if (err) { 5381 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5382 err); 5383 result = PCI_ERS_RESULT_DISCONNECT; 5384 } else { 5385 pci_set_master(pdev); 5386 pci_restore_state(pdev); 5387 pci_save_state(pdev); 5388 pci_wake_from_d3(pdev, false); 5389 5390 /* Check for life */ 5391 reg = rd32(&pf->hw, GLGEN_RTRIG); 5392 if (!reg) 5393 result = PCI_ERS_RESULT_RECOVERED; 5394 else 5395 result = PCI_ERS_RESULT_DISCONNECT; 5396 } 5397 5398 return result; 5399 } 5400 5401 /** 5402 * ice_pci_err_resume - restart operations after PCI error recovery 5403 * @pdev: PCI device information struct 5404 * 5405 * Called to allow the driver to bring things back up after PCI error and/or 5406 * reset recovery have finished 5407 */ 5408 static void ice_pci_err_resume(struct pci_dev *pdev) 5409 { 5410 struct ice_pf *pf = pci_get_drvdata(pdev); 5411 5412 if (!pf) { 5413 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5414 __func__); 5415 return; 5416 } 5417 5418 if (test_bit(ICE_SUSPENDED, pf->state)) { 5419 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5420 __func__); 5421 return; 5422 } 5423 5424 ice_restore_all_vfs_msi_state(pdev); 5425 5426 ice_do_reset(pf, ICE_RESET_PFR); 5427 ice_service_task_restart(pf); 5428 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5429 } 5430 5431 /** 5432 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5433 * @pdev: PCI device information struct 5434 */ 5435 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5436 { 5437 struct ice_pf *pf = pci_get_drvdata(pdev); 5438 5439 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5440 ice_service_task_stop(pf); 5441 5442 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5443 set_bit(ICE_PFR_REQ, pf->state); 5444 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5445 } 5446 } 5447 } 5448 5449 /** 5450 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5451 * @pdev: PCI device information struct 5452 */ 5453 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5454 { 5455 ice_pci_err_resume(pdev); 5456 } 5457 5458 /* ice_pci_tbl - PCI Device ID Table 5459 * 5460 * Wildcard entries (PCI_ANY_ID) should come last 5461 * Last entry must be all 0s 5462 * 5463 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5464 * Class, Class Mask, private data (not used) } 5465 */ 5466 static const struct pci_device_id ice_pci_tbl[] = { 5467 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5468 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5469 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5470 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5471 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5472 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5473 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5474 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5475 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5476 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5477 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5478 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5479 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5480 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5481 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5482 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5483 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5484 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5485 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5486 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5487 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5488 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5489 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5490 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5491 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5492 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5493 /* required last entry */ 5494 { 0, } 5495 }; 5496 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5497 5498 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5499 5500 static const struct pci_error_handlers ice_pci_err_handler = { 5501 .error_detected = ice_pci_err_detected, 5502 .slot_reset = ice_pci_err_slot_reset, 5503 .reset_prepare = ice_pci_err_reset_prepare, 5504 .reset_done = ice_pci_err_reset_done, 5505 .resume = ice_pci_err_resume 5506 }; 5507 5508 static struct pci_driver ice_driver = { 5509 .name = KBUILD_MODNAME, 5510 .id_table = ice_pci_tbl, 5511 .probe = ice_probe, 5512 .remove = ice_remove, 5513 #ifdef CONFIG_PM 5514 .driver.pm = &ice_pm_ops, 5515 #endif /* CONFIG_PM */ 5516 .shutdown = ice_shutdown, 5517 .sriov_configure = ice_sriov_configure, 5518 .err_handler = &ice_pci_err_handler 5519 }; 5520 5521 /** 5522 * ice_module_init - Driver registration routine 5523 * 5524 * ice_module_init is the first routine called when the driver is 5525 * loaded. All it does is register with the PCI subsystem. 5526 */ 5527 static int __init ice_module_init(void) 5528 { 5529 int status; 5530 5531 pr_info("%s\n", ice_driver_string); 5532 pr_info("%s\n", ice_copyright); 5533 5534 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5535 if (!ice_wq) { 5536 pr_err("Failed to create workqueue\n"); 5537 return -ENOMEM; 5538 } 5539 5540 status = pci_register_driver(&ice_driver); 5541 if (status) { 5542 pr_err("failed to register PCI driver, err %d\n", status); 5543 destroy_workqueue(ice_wq); 5544 } 5545 5546 return status; 5547 } 5548 module_init(ice_module_init); 5549 5550 /** 5551 * ice_module_exit - Driver exit cleanup routine 5552 * 5553 * ice_module_exit is called just before the driver is removed 5554 * from memory. 5555 */ 5556 static void __exit ice_module_exit(void) 5557 { 5558 pci_unregister_driver(&ice_driver); 5559 destroy_workqueue(ice_wq); 5560 pr_info("module unloaded\n"); 5561 } 5562 module_exit(ice_module_exit); 5563 5564 /** 5565 * ice_set_mac_address - NDO callback to set MAC address 5566 * @netdev: network interface device structure 5567 * @pi: pointer to an address structure 5568 * 5569 * Returns 0 on success, negative on failure 5570 */ 5571 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5572 { 5573 struct ice_netdev_priv *np = netdev_priv(netdev); 5574 struct ice_vsi *vsi = np->vsi; 5575 struct ice_pf *pf = vsi->back; 5576 struct ice_hw *hw = &pf->hw; 5577 struct sockaddr *addr = pi; 5578 u8 old_mac[ETH_ALEN]; 5579 u8 flags = 0; 5580 u8 *mac; 5581 int err; 5582 5583 mac = (u8 *)addr->sa_data; 5584 5585 if (!is_valid_ether_addr(mac)) 5586 return -EADDRNOTAVAIL; 5587 5588 if (ether_addr_equal(netdev->dev_addr, mac)) { 5589 netdev_dbg(netdev, "already using mac %pM\n", mac); 5590 return 0; 5591 } 5592 5593 if (test_bit(ICE_DOWN, pf->state) || 5594 ice_is_reset_in_progress(pf->state)) { 5595 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5596 mac); 5597 return -EBUSY; 5598 } 5599 5600 if (ice_chnl_dmac_fltr_cnt(pf)) { 5601 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5602 mac); 5603 return -EAGAIN; 5604 } 5605 5606 netif_addr_lock_bh(netdev); 5607 ether_addr_copy(old_mac, netdev->dev_addr); 5608 /* change the netdev's MAC address */ 5609 eth_hw_addr_set(netdev, mac); 5610 netif_addr_unlock_bh(netdev); 5611 5612 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5613 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5614 if (err && err != -ENOENT) { 5615 err = -EADDRNOTAVAIL; 5616 goto err_update_filters; 5617 } 5618 5619 /* Add filter for new MAC. If filter exists, return success */ 5620 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5621 if (err == -EEXIST) { 5622 /* Although this MAC filter is already present in hardware it's 5623 * possible in some cases (e.g. bonding) that dev_addr was 5624 * modified outside of the driver and needs to be restored back 5625 * to this value. 5626 */ 5627 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5628 5629 return 0; 5630 } else if (err) { 5631 /* error if the new filter addition failed */ 5632 err = -EADDRNOTAVAIL; 5633 } 5634 5635 err_update_filters: 5636 if (err) { 5637 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5638 mac); 5639 netif_addr_lock_bh(netdev); 5640 eth_hw_addr_set(netdev, old_mac); 5641 netif_addr_unlock_bh(netdev); 5642 return err; 5643 } 5644 5645 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5646 netdev->dev_addr); 5647 5648 /* write new MAC address to the firmware */ 5649 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5650 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5651 if (err) { 5652 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5653 mac, err); 5654 } 5655 return 0; 5656 } 5657 5658 /** 5659 * ice_set_rx_mode - NDO callback to set the netdev filters 5660 * @netdev: network interface device structure 5661 */ 5662 static void ice_set_rx_mode(struct net_device *netdev) 5663 { 5664 struct ice_netdev_priv *np = netdev_priv(netdev); 5665 struct ice_vsi *vsi = np->vsi; 5666 5667 if (!vsi) 5668 return; 5669 5670 /* Set the flags to synchronize filters 5671 * ndo_set_rx_mode may be triggered even without a change in netdev 5672 * flags 5673 */ 5674 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5675 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5676 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5677 5678 /* schedule our worker thread which will take care of 5679 * applying the new filter changes 5680 */ 5681 ice_service_task_schedule(vsi->back); 5682 } 5683 5684 /** 5685 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5686 * @netdev: network interface device structure 5687 * @queue_index: Queue ID 5688 * @maxrate: maximum bandwidth in Mbps 5689 */ 5690 static int 5691 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5692 { 5693 struct ice_netdev_priv *np = netdev_priv(netdev); 5694 struct ice_vsi *vsi = np->vsi; 5695 u16 q_handle; 5696 int status; 5697 u8 tc; 5698 5699 /* Validate maxrate requested is within permitted range */ 5700 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5701 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5702 maxrate, queue_index); 5703 return -EINVAL; 5704 } 5705 5706 q_handle = vsi->tx_rings[queue_index]->q_handle; 5707 tc = ice_dcb_get_tc(vsi, queue_index); 5708 5709 /* Set BW back to default, when user set maxrate to 0 */ 5710 if (!maxrate) 5711 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5712 q_handle, ICE_MAX_BW); 5713 else 5714 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5715 q_handle, ICE_MAX_BW, maxrate * 1000); 5716 if (status) 5717 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5718 status); 5719 5720 return status; 5721 } 5722 5723 /** 5724 * ice_fdb_add - add an entry to the hardware database 5725 * @ndm: the input from the stack 5726 * @tb: pointer to array of nladdr (unused) 5727 * @dev: the net device pointer 5728 * @addr: the MAC address entry being added 5729 * @vid: VLAN ID 5730 * @flags: instructions from stack about fdb operation 5731 * @extack: netlink extended ack 5732 */ 5733 static int 5734 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5735 struct net_device *dev, const unsigned char *addr, u16 vid, 5736 u16 flags, struct netlink_ext_ack __always_unused *extack) 5737 { 5738 int err; 5739 5740 if (vid) { 5741 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5742 return -EINVAL; 5743 } 5744 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5745 netdev_err(dev, "FDB only supports static addresses\n"); 5746 return -EINVAL; 5747 } 5748 5749 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5750 err = dev_uc_add_excl(dev, addr); 5751 else if (is_multicast_ether_addr(addr)) 5752 err = dev_mc_add_excl(dev, addr); 5753 else 5754 err = -EINVAL; 5755 5756 /* Only return duplicate errors if NLM_F_EXCL is set */ 5757 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5758 err = 0; 5759 5760 return err; 5761 } 5762 5763 /** 5764 * ice_fdb_del - delete an entry from the hardware database 5765 * @ndm: the input from the stack 5766 * @tb: pointer to array of nladdr (unused) 5767 * @dev: the net device pointer 5768 * @addr: the MAC address entry being added 5769 * @vid: VLAN ID 5770 * @extack: netlink extended ack 5771 */ 5772 static int 5773 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5774 struct net_device *dev, const unsigned char *addr, 5775 __always_unused u16 vid, struct netlink_ext_ack *extack) 5776 { 5777 int err; 5778 5779 if (ndm->ndm_state & NUD_PERMANENT) { 5780 netdev_err(dev, "FDB only supports static addresses\n"); 5781 return -EINVAL; 5782 } 5783 5784 if (is_unicast_ether_addr(addr)) 5785 err = dev_uc_del(dev, addr); 5786 else if (is_multicast_ether_addr(addr)) 5787 err = dev_mc_del(dev, addr); 5788 else 5789 err = -EINVAL; 5790 5791 return err; 5792 } 5793 5794 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5795 NETIF_F_HW_VLAN_CTAG_TX | \ 5796 NETIF_F_HW_VLAN_STAG_RX | \ 5797 NETIF_F_HW_VLAN_STAG_TX) 5798 5799 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5800 NETIF_F_HW_VLAN_STAG_RX) 5801 5802 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5803 NETIF_F_HW_VLAN_STAG_FILTER) 5804 5805 /** 5806 * ice_fix_features - fix the netdev features flags based on device limitations 5807 * @netdev: ptr to the netdev that flags are being fixed on 5808 * @features: features that need to be checked and possibly fixed 5809 * 5810 * Make sure any fixups are made to features in this callback. This enables the 5811 * driver to not have to check unsupported configurations throughout the driver 5812 * because that's the responsiblity of this callback. 5813 * 5814 * Single VLAN Mode (SVM) Supported Features: 5815 * NETIF_F_HW_VLAN_CTAG_FILTER 5816 * NETIF_F_HW_VLAN_CTAG_RX 5817 * NETIF_F_HW_VLAN_CTAG_TX 5818 * 5819 * Double VLAN Mode (DVM) Supported Features: 5820 * NETIF_F_HW_VLAN_CTAG_FILTER 5821 * NETIF_F_HW_VLAN_CTAG_RX 5822 * NETIF_F_HW_VLAN_CTAG_TX 5823 * 5824 * NETIF_F_HW_VLAN_STAG_FILTER 5825 * NETIF_HW_VLAN_STAG_RX 5826 * NETIF_HW_VLAN_STAG_TX 5827 * 5828 * Features that need fixing: 5829 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5830 * These are mutually exlusive as the VSI context cannot support multiple 5831 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5832 * is not done, then default to clearing the requested STAG offload 5833 * settings. 5834 * 5835 * All supported filtering has to be enabled or disabled together. For 5836 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5837 * together. If this is not done, then default to VLAN filtering disabled. 5838 * These are mutually exclusive as there is currently no way to 5839 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5840 * prune rules. 5841 */ 5842 static netdev_features_t 5843 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5844 { 5845 struct ice_netdev_priv *np = netdev_priv(netdev); 5846 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5847 bool cur_ctag, cur_stag, req_ctag, req_stag; 5848 5849 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5850 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5851 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5852 5853 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5854 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5855 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5856 5857 if (req_vlan_fltr != cur_vlan_fltr) { 5858 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5859 if (req_ctag && req_stag) { 5860 features |= NETIF_VLAN_FILTERING_FEATURES; 5861 } else if (!req_ctag && !req_stag) { 5862 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5863 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5864 (!cur_stag && req_stag && !cur_ctag)) { 5865 features |= NETIF_VLAN_FILTERING_FEATURES; 5866 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5867 } else if ((cur_ctag && !req_ctag && cur_stag) || 5868 (cur_stag && !req_stag && cur_ctag)) { 5869 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5870 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5871 } 5872 } else { 5873 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5874 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5875 5876 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5877 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5878 } 5879 } 5880 5881 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5882 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5883 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5884 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5885 NETIF_F_HW_VLAN_STAG_TX); 5886 } 5887 5888 if (!(netdev->features & NETIF_F_RXFCS) && 5889 (features & NETIF_F_RXFCS) && 5890 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5891 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5892 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5893 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5894 } 5895 5896 return features; 5897 } 5898 5899 /** 5900 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5901 * @vsi: PF's VSI 5902 * @features: features used to determine VLAN offload settings 5903 * 5904 * First, determine the vlan_ethertype based on the VLAN offload bits in 5905 * features. Then determine if stripping and insertion should be enabled or 5906 * disabled. Finally enable or disable VLAN stripping and insertion. 5907 */ 5908 static int 5909 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5910 { 5911 bool enable_stripping = true, enable_insertion = true; 5912 struct ice_vsi_vlan_ops *vlan_ops; 5913 int strip_err = 0, insert_err = 0; 5914 u16 vlan_ethertype = 0; 5915 5916 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5917 5918 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5919 vlan_ethertype = ETH_P_8021AD; 5920 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5921 vlan_ethertype = ETH_P_8021Q; 5922 5923 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5924 enable_stripping = false; 5925 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5926 enable_insertion = false; 5927 5928 if (enable_stripping) 5929 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5930 else 5931 strip_err = vlan_ops->dis_stripping(vsi); 5932 5933 if (enable_insertion) 5934 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5935 else 5936 insert_err = vlan_ops->dis_insertion(vsi); 5937 5938 if (strip_err || insert_err) 5939 return -EIO; 5940 5941 return 0; 5942 } 5943 5944 /** 5945 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5946 * @vsi: PF's VSI 5947 * @features: features used to determine VLAN filtering settings 5948 * 5949 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5950 * features. 5951 */ 5952 static int 5953 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5954 { 5955 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5956 int err = 0; 5957 5958 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5959 * if either bit is set 5960 */ 5961 if (features & 5962 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5963 err = vlan_ops->ena_rx_filtering(vsi); 5964 else 5965 err = vlan_ops->dis_rx_filtering(vsi); 5966 5967 return err; 5968 } 5969 5970 /** 5971 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5972 * @netdev: ptr to the netdev being adjusted 5973 * @features: the feature set that the stack is suggesting 5974 * 5975 * Only update VLAN settings if the requested_vlan_features are different than 5976 * the current_vlan_features. 5977 */ 5978 static int 5979 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5980 { 5981 netdev_features_t current_vlan_features, requested_vlan_features; 5982 struct ice_netdev_priv *np = netdev_priv(netdev); 5983 struct ice_vsi *vsi = np->vsi; 5984 int err; 5985 5986 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5987 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5988 if (current_vlan_features ^ requested_vlan_features) { 5989 if ((features & NETIF_F_RXFCS) && 5990 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 5991 dev_err(ice_pf_to_dev(vsi->back), 5992 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 5993 return -EIO; 5994 } 5995 5996 err = ice_set_vlan_offload_features(vsi, features); 5997 if (err) 5998 return err; 5999 } 6000 6001 current_vlan_features = netdev->features & 6002 NETIF_VLAN_FILTERING_FEATURES; 6003 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6004 if (current_vlan_features ^ requested_vlan_features) { 6005 err = ice_set_vlan_filtering_features(vsi, features); 6006 if (err) 6007 return err; 6008 } 6009 6010 return 0; 6011 } 6012 6013 /** 6014 * ice_set_loopback - turn on/off loopback mode on underlying PF 6015 * @vsi: ptr to VSI 6016 * @ena: flag to indicate the on/off setting 6017 */ 6018 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6019 { 6020 bool if_running = netif_running(vsi->netdev); 6021 int ret; 6022 6023 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6024 ret = ice_down(vsi); 6025 if (ret) { 6026 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6027 return ret; 6028 } 6029 } 6030 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6031 if (ret) 6032 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6033 if (if_running) 6034 ret = ice_up(vsi); 6035 6036 return ret; 6037 } 6038 6039 /** 6040 * ice_set_features - set the netdev feature flags 6041 * @netdev: ptr to the netdev being adjusted 6042 * @features: the feature set that the stack is suggesting 6043 */ 6044 static int 6045 ice_set_features(struct net_device *netdev, netdev_features_t features) 6046 { 6047 netdev_features_t changed = netdev->features ^ features; 6048 struct ice_netdev_priv *np = netdev_priv(netdev); 6049 struct ice_vsi *vsi = np->vsi; 6050 struct ice_pf *pf = vsi->back; 6051 int ret = 0; 6052 6053 /* Don't set any netdev advanced features with device in Safe Mode */ 6054 if (ice_is_safe_mode(pf)) { 6055 dev_err(ice_pf_to_dev(pf), 6056 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6057 return ret; 6058 } 6059 6060 /* Do not change setting during reset */ 6061 if (ice_is_reset_in_progress(pf->state)) { 6062 dev_err(ice_pf_to_dev(pf), 6063 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6064 return -EBUSY; 6065 } 6066 6067 /* Multiple features can be changed in one call so keep features in 6068 * separate if/else statements to guarantee each feature is checked 6069 */ 6070 if (changed & NETIF_F_RXHASH) 6071 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6072 6073 ret = ice_set_vlan_features(netdev, features); 6074 if (ret) 6075 return ret; 6076 6077 /* Turn on receive of FCS aka CRC, and after setting this 6078 * flag the packet data will have the 4 byte CRC appended 6079 */ 6080 if (changed & NETIF_F_RXFCS) { 6081 if ((features & NETIF_F_RXFCS) && 6082 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6083 dev_err(ice_pf_to_dev(vsi->back), 6084 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6085 return -EIO; 6086 } 6087 6088 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6089 ret = ice_down_up(vsi); 6090 if (ret) 6091 return ret; 6092 } 6093 6094 if (changed & NETIF_F_NTUPLE) { 6095 bool ena = !!(features & NETIF_F_NTUPLE); 6096 6097 ice_vsi_manage_fdir(vsi, ena); 6098 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6099 } 6100 6101 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6102 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6103 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6104 return -EACCES; 6105 } 6106 6107 if (changed & NETIF_F_HW_TC) { 6108 bool ena = !!(features & NETIF_F_HW_TC); 6109 6110 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6111 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6112 } 6113 6114 if (changed & NETIF_F_LOOPBACK) 6115 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6116 6117 return ret; 6118 } 6119 6120 /** 6121 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6122 * @vsi: VSI to setup VLAN properties for 6123 */ 6124 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6125 { 6126 int err; 6127 6128 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6129 if (err) 6130 return err; 6131 6132 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6133 if (err) 6134 return err; 6135 6136 return ice_vsi_add_vlan_zero(vsi); 6137 } 6138 6139 /** 6140 * ice_vsi_cfg - Setup the VSI 6141 * @vsi: the VSI being configured 6142 * 6143 * Return 0 on success and negative value on error 6144 */ 6145 int ice_vsi_cfg(struct ice_vsi *vsi) 6146 { 6147 int err; 6148 6149 if (vsi->netdev) { 6150 ice_set_rx_mode(vsi->netdev); 6151 6152 if (vsi->type != ICE_VSI_LB) { 6153 err = ice_vsi_vlan_setup(vsi); 6154 6155 if (err) 6156 return err; 6157 } 6158 } 6159 ice_vsi_cfg_dcb_rings(vsi); 6160 6161 err = ice_vsi_cfg_lan_txqs(vsi); 6162 if (!err && ice_is_xdp_ena_vsi(vsi)) 6163 err = ice_vsi_cfg_xdp_txqs(vsi); 6164 if (!err) 6165 err = ice_vsi_cfg_rxqs(vsi); 6166 6167 return err; 6168 } 6169 6170 /* THEORY OF MODERATION: 6171 * The ice driver hardware works differently than the hardware that DIMLIB was 6172 * originally made for. ice hardware doesn't have packet count limits that 6173 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6174 * which is hard-coded to a limit of 250,000 ints/second. 6175 * If not using dynamic moderation, the INTRL value can be modified 6176 * by ethtool rx-usecs-high. 6177 */ 6178 struct ice_dim { 6179 /* the throttle rate for interrupts, basically worst case delay before 6180 * an initial interrupt fires, value is stored in microseconds. 6181 */ 6182 u16 itr; 6183 }; 6184 6185 /* Make a different profile for Rx that doesn't allow quite so aggressive 6186 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6187 * second. 6188 */ 6189 static const struct ice_dim rx_profile[] = { 6190 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6191 {8}, /* 125,000 ints/s */ 6192 {16}, /* 62,500 ints/s */ 6193 {62}, /* 16,129 ints/s */ 6194 {126} /* 7,936 ints/s */ 6195 }; 6196 6197 /* The transmit profile, which has the same sorts of values 6198 * as the previous struct 6199 */ 6200 static const struct ice_dim tx_profile[] = { 6201 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6202 {8}, /* 125,000 ints/s */ 6203 {40}, /* 16,125 ints/s */ 6204 {128}, /* 7,812 ints/s */ 6205 {256} /* 3,906 ints/s */ 6206 }; 6207 6208 static void ice_tx_dim_work(struct work_struct *work) 6209 { 6210 struct ice_ring_container *rc; 6211 struct dim *dim; 6212 u16 itr; 6213 6214 dim = container_of(work, struct dim, work); 6215 rc = (struct ice_ring_container *)dim->priv; 6216 6217 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6218 6219 /* look up the values in our local table */ 6220 itr = tx_profile[dim->profile_ix].itr; 6221 6222 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6223 ice_write_itr(rc, itr); 6224 6225 dim->state = DIM_START_MEASURE; 6226 } 6227 6228 static void ice_rx_dim_work(struct work_struct *work) 6229 { 6230 struct ice_ring_container *rc; 6231 struct dim *dim; 6232 u16 itr; 6233 6234 dim = container_of(work, struct dim, work); 6235 rc = (struct ice_ring_container *)dim->priv; 6236 6237 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6238 6239 /* look up the values in our local table */ 6240 itr = rx_profile[dim->profile_ix].itr; 6241 6242 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6243 ice_write_itr(rc, itr); 6244 6245 dim->state = DIM_START_MEASURE; 6246 } 6247 6248 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6249 6250 /** 6251 * ice_init_moderation - set up interrupt moderation 6252 * @q_vector: the vector containing rings to be configured 6253 * 6254 * Set up interrupt moderation registers, with the intent to do the right thing 6255 * when called from reset or from probe, and whether or not dynamic moderation 6256 * is enabled or not. Take special care to write all the registers in both 6257 * dynamic moderation mode or not in order to make sure hardware is in a known 6258 * state. 6259 */ 6260 static void ice_init_moderation(struct ice_q_vector *q_vector) 6261 { 6262 struct ice_ring_container *rc; 6263 bool tx_dynamic, rx_dynamic; 6264 6265 rc = &q_vector->tx; 6266 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6267 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6268 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6269 rc->dim.priv = rc; 6270 tx_dynamic = ITR_IS_DYNAMIC(rc); 6271 6272 /* set the initial TX ITR to match the above */ 6273 ice_write_itr(rc, tx_dynamic ? 6274 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6275 6276 rc = &q_vector->rx; 6277 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6278 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6279 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6280 rc->dim.priv = rc; 6281 rx_dynamic = ITR_IS_DYNAMIC(rc); 6282 6283 /* set the initial RX ITR to match the above */ 6284 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6285 rc->itr_setting); 6286 6287 ice_set_q_vector_intrl(q_vector); 6288 } 6289 6290 /** 6291 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6292 * @vsi: the VSI being configured 6293 */ 6294 static void ice_napi_enable_all(struct ice_vsi *vsi) 6295 { 6296 int q_idx; 6297 6298 if (!vsi->netdev) 6299 return; 6300 6301 ice_for_each_q_vector(vsi, q_idx) { 6302 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6303 6304 ice_init_moderation(q_vector); 6305 6306 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6307 napi_enable(&q_vector->napi); 6308 } 6309 } 6310 6311 /** 6312 * ice_up_complete - Finish the last steps of bringing up a connection 6313 * @vsi: The VSI being configured 6314 * 6315 * Return 0 on success and negative value on error 6316 */ 6317 static int ice_up_complete(struct ice_vsi *vsi) 6318 { 6319 struct ice_pf *pf = vsi->back; 6320 int err; 6321 6322 ice_vsi_cfg_msix(vsi); 6323 6324 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6325 * Tx queue group list was configured and the context bits were 6326 * programmed using ice_vsi_cfg_txqs 6327 */ 6328 err = ice_vsi_start_all_rx_rings(vsi); 6329 if (err) 6330 return err; 6331 6332 clear_bit(ICE_VSI_DOWN, vsi->state); 6333 ice_napi_enable_all(vsi); 6334 ice_vsi_ena_irq(vsi); 6335 6336 if (vsi->port_info && 6337 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6338 vsi->netdev) { 6339 ice_print_link_msg(vsi, true); 6340 netif_tx_start_all_queues(vsi->netdev); 6341 netif_carrier_on(vsi->netdev); 6342 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6343 } 6344 6345 /* Perform an initial read of the statistics registers now to 6346 * set the baseline so counters are ready when interface is up 6347 */ 6348 ice_update_eth_stats(vsi); 6349 ice_service_task_schedule(pf); 6350 6351 return 0; 6352 } 6353 6354 /** 6355 * ice_up - Bring the connection back up after being down 6356 * @vsi: VSI being configured 6357 */ 6358 int ice_up(struct ice_vsi *vsi) 6359 { 6360 int err; 6361 6362 err = ice_vsi_cfg(vsi); 6363 if (!err) 6364 err = ice_up_complete(vsi); 6365 6366 return err; 6367 } 6368 6369 /** 6370 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6371 * @syncp: pointer to u64_stats_sync 6372 * @stats: stats that pkts and bytes count will be taken from 6373 * @pkts: packets stats counter 6374 * @bytes: bytes stats counter 6375 * 6376 * This function fetches stats from the ring considering the atomic operations 6377 * that needs to be performed to read u64 values in 32 bit machine. 6378 */ 6379 void 6380 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6381 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6382 { 6383 unsigned int start; 6384 6385 do { 6386 start = u64_stats_fetch_begin(syncp); 6387 *pkts = stats.pkts; 6388 *bytes = stats.bytes; 6389 } while (u64_stats_fetch_retry(syncp, start)); 6390 } 6391 6392 /** 6393 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6394 * @vsi: the VSI to be updated 6395 * @vsi_stats: the stats struct to be updated 6396 * @rings: rings to work on 6397 * @count: number of rings 6398 */ 6399 static void 6400 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6401 struct rtnl_link_stats64 *vsi_stats, 6402 struct ice_tx_ring **rings, u16 count) 6403 { 6404 u16 i; 6405 6406 for (i = 0; i < count; i++) { 6407 struct ice_tx_ring *ring; 6408 u64 pkts = 0, bytes = 0; 6409 6410 ring = READ_ONCE(rings[i]); 6411 if (!ring || !ring->ring_stats) 6412 continue; 6413 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6414 ring->ring_stats->stats, &pkts, 6415 &bytes); 6416 vsi_stats->tx_packets += pkts; 6417 vsi_stats->tx_bytes += bytes; 6418 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6419 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6420 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6421 } 6422 } 6423 6424 /** 6425 * ice_update_vsi_ring_stats - Update VSI stats counters 6426 * @vsi: the VSI to be updated 6427 */ 6428 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6429 { 6430 struct rtnl_link_stats64 *net_stats, *stats_prev; 6431 struct rtnl_link_stats64 *vsi_stats; 6432 u64 pkts, bytes; 6433 int i; 6434 6435 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6436 if (!vsi_stats) 6437 return; 6438 6439 /* reset non-netdev (extended) stats */ 6440 vsi->tx_restart = 0; 6441 vsi->tx_busy = 0; 6442 vsi->tx_linearize = 0; 6443 vsi->rx_buf_failed = 0; 6444 vsi->rx_page_failed = 0; 6445 6446 rcu_read_lock(); 6447 6448 /* update Tx rings counters */ 6449 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6450 vsi->num_txq); 6451 6452 /* update Rx rings counters */ 6453 ice_for_each_rxq(vsi, i) { 6454 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6455 struct ice_ring_stats *ring_stats; 6456 6457 ring_stats = ring->ring_stats; 6458 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6459 ring_stats->stats, &pkts, 6460 &bytes); 6461 vsi_stats->rx_packets += pkts; 6462 vsi_stats->rx_bytes += bytes; 6463 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6464 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6465 } 6466 6467 /* update XDP Tx rings counters */ 6468 if (ice_is_xdp_ena_vsi(vsi)) 6469 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6470 vsi->num_xdp_txq); 6471 6472 rcu_read_unlock(); 6473 6474 net_stats = &vsi->net_stats; 6475 stats_prev = &vsi->net_stats_prev; 6476 6477 /* clear prev counters after reset */ 6478 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6479 vsi_stats->rx_packets < stats_prev->rx_packets) { 6480 stats_prev->tx_packets = 0; 6481 stats_prev->tx_bytes = 0; 6482 stats_prev->rx_packets = 0; 6483 stats_prev->rx_bytes = 0; 6484 } 6485 6486 /* update netdev counters */ 6487 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6488 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6489 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6490 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6491 6492 stats_prev->tx_packets = vsi_stats->tx_packets; 6493 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6494 stats_prev->rx_packets = vsi_stats->rx_packets; 6495 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6496 6497 kfree(vsi_stats); 6498 } 6499 6500 /** 6501 * ice_update_vsi_stats - Update VSI stats counters 6502 * @vsi: the VSI to be updated 6503 */ 6504 void ice_update_vsi_stats(struct ice_vsi *vsi) 6505 { 6506 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6507 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6508 struct ice_pf *pf = vsi->back; 6509 6510 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6511 test_bit(ICE_CFG_BUSY, pf->state)) 6512 return; 6513 6514 /* get stats as recorded by Tx/Rx rings */ 6515 ice_update_vsi_ring_stats(vsi); 6516 6517 /* get VSI stats as recorded by the hardware */ 6518 ice_update_eth_stats(vsi); 6519 6520 cur_ns->tx_errors = cur_es->tx_errors; 6521 cur_ns->rx_dropped = cur_es->rx_discards; 6522 cur_ns->tx_dropped = cur_es->tx_discards; 6523 cur_ns->multicast = cur_es->rx_multicast; 6524 6525 /* update some more netdev stats if this is main VSI */ 6526 if (vsi->type == ICE_VSI_PF) { 6527 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6528 cur_ns->rx_errors = pf->stats.crc_errors + 6529 pf->stats.illegal_bytes + 6530 pf->stats.rx_len_errors + 6531 pf->stats.rx_undersize + 6532 pf->hw_csum_rx_error + 6533 pf->stats.rx_jabber + 6534 pf->stats.rx_fragments + 6535 pf->stats.rx_oversize; 6536 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6537 /* record drops from the port level */ 6538 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6539 } 6540 } 6541 6542 /** 6543 * ice_update_pf_stats - Update PF port stats counters 6544 * @pf: PF whose stats needs to be updated 6545 */ 6546 void ice_update_pf_stats(struct ice_pf *pf) 6547 { 6548 struct ice_hw_port_stats *prev_ps, *cur_ps; 6549 struct ice_hw *hw = &pf->hw; 6550 u16 fd_ctr_base; 6551 u8 port; 6552 6553 port = hw->port_info->lport; 6554 prev_ps = &pf->stats_prev; 6555 cur_ps = &pf->stats; 6556 6557 if (ice_is_reset_in_progress(pf->state)) 6558 pf->stat_prev_loaded = false; 6559 6560 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6561 &prev_ps->eth.rx_bytes, 6562 &cur_ps->eth.rx_bytes); 6563 6564 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6565 &prev_ps->eth.rx_unicast, 6566 &cur_ps->eth.rx_unicast); 6567 6568 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6569 &prev_ps->eth.rx_multicast, 6570 &cur_ps->eth.rx_multicast); 6571 6572 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6573 &prev_ps->eth.rx_broadcast, 6574 &cur_ps->eth.rx_broadcast); 6575 6576 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6577 &prev_ps->eth.rx_discards, 6578 &cur_ps->eth.rx_discards); 6579 6580 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6581 &prev_ps->eth.tx_bytes, 6582 &cur_ps->eth.tx_bytes); 6583 6584 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6585 &prev_ps->eth.tx_unicast, 6586 &cur_ps->eth.tx_unicast); 6587 6588 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6589 &prev_ps->eth.tx_multicast, 6590 &cur_ps->eth.tx_multicast); 6591 6592 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6593 &prev_ps->eth.tx_broadcast, 6594 &cur_ps->eth.tx_broadcast); 6595 6596 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6597 &prev_ps->tx_dropped_link_down, 6598 &cur_ps->tx_dropped_link_down); 6599 6600 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6601 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6602 6603 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6604 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6605 6606 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6607 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6608 6609 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6610 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6611 6612 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6613 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6614 6615 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6616 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6617 6618 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6619 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6620 6621 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6622 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6623 6624 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6625 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6626 6627 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6628 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6629 6630 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6631 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6632 6633 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6634 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6635 6636 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6637 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6638 6639 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6640 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6641 6642 fd_ctr_base = hw->fd_ctr_base; 6643 6644 ice_stat_update40(hw, 6645 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6646 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6647 &cur_ps->fd_sb_match); 6648 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6649 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6650 6651 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6652 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6653 6654 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6655 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6656 6657 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6658 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6659 6660 ice_update_dcb_stats(pf); 6661 6662 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6663 &prev_ps->crc_errors, &cur_ps->crc_errors); 6664 6665 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6666 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6667 6668 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6669 &prev_ps->mac_local_faults, 6670 &cur_ps->mac_local_faults); 6671 6672 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6673 &prev_ps->mac_remote_faults, 6674 &cur_ps->mac_remote_faults); 6675 6676 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6677 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6678 6679 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6680 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6681 6682 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6683 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6684 6685 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6686 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6687 6688 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6689 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6690 6691 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6692 6693 pf->stat_prev_loaded = true; 6694 } 6695 6696 /** 6697 * ice_get_stats64 - get statistics for network device structure 6698 * @netdev: network interface device structure 6699 * @stats: main device statistics structure 6700 */ 6701 static 6702 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6703 { 6704 struct ice_netdev_priv *np = netdev_priv(netdev); 6705 struct rtnl_link_stats64 *vsi_stats; 6706 struct ice_vsi *vsi = np->vsi; 6707 6708 vsi_stats = &vsi->net_stats; 6709 6710 if (!vsi->num_txq || !vsi->num_rxq) 6711 return; 6712 6713 /* netdev packet/byte stats come from ring counter. These are obtained 6714 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6715 * But, only call the update routine and read the registers if VSI is 6716 * not down. 6717 */ 6718 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6719 ice_update_vsi_ring_stats(vsi); 6720 stats->tx_packets = vsi_stats->tx_packets; 6721 stats->tx_bytes = vsi_stats->tx_bytes; 6722 stats->rx_packets = vsi_stats->rx_packets; 6723 stats->rx_bytes = vsi_stats->rx_bytes; 6724 6725 /* The rest of the stats can be read from the hardware but instead we 6726 * just return values that the watchdog task has already obtained from 6727 * the hardware. 6728 */ 6729 stats->multicast = vsi_stats->multicast; 6730 stats->tx_errors = vsi_stats->tx_errors; 6731 stats->tx_dropped = vsi_stats->tx_dropped; 6732 stats->rx_errors = vsi_stats->rx_errors; 6733 stats->rx_dropped = vsi_stats->rx_dropped; 6734 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6735 stats->rx_length_errors = vsi_stats->rx_length_errors; 6736 } 6737 6738 /** 6739 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6740 * @vsi: VSI having NAPI disabled 6741 */ 6742 static void ice_napi_disable_all(struct ice_vsi *vsi) 6743 { 6744 int q_idx; 6745 6746 if (!vsi->netdev) 6747 return; 6748 6749 ice_for_each_q_vector(vsi, q_idx) { 6750 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6751 6752 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6753 napi_disable(&q_vector->napi); 6754 6755 cancel_work_sync(&q_vector->tx.dim.work); 6756 cancel_work_sync(&q_vector->rx.dim.work); 6757 } 6758 } 6759 6760 /** 6761 * ice_down - Shutdown the connection 6762 * @vsi: The VSI being stopped 6763 * 6764 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6765 */ 6766 int ice_down(struct ice_vsi *vsi) 6767 { 6768 int i, tx_err, rx_err, vlan_err = 0; 6769 6770 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6771 6772 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6773 vlan_err = ice_vsi_del_vlan_zero(vsi); 6774 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6775 netif_carrier_off(vsi->netdev); 6776 netif_tx_disable(vsi->netdev); 6777 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6778 ice_eswitch_stop_all_tx_queues(vsi->back); 6779 } 6780 6781 ice_vsi_dis_irq(vsi); 6782 6783 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6784 if (tx_err) 6785 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6786 vsi->vsi_num, tx_err); 6787 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6788 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6789 if (tx_err) 6790 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6791 vsi->vsi_num, tx_err); 6792 } 6793 6794 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6795 if (rx_err) 6796 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6797 vsi->vsi_num, rx_err); 6798 6799 ice_napi_disable_all(vsi); 6800 6801 ice_for_each_txq(vsi, i) 6802 ice_clean_tx_ring(vsi->tx_rings[i]); 6803 6804 ice_for_each_rxq(vsi, i) 6805 ice_clean_rx_ring(vsi->rx_rings[i]); 6806 6807 if (tx_err || rx_err || vlan_err) { 6808 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6809 vsi->vsi_num, vsi->vsw->sw_id); 6810 return -EIO; 6811 } 6812 6813 return 0; 6814 } 6815 6816 /** 6817 * ice_down_up - shutdown the VSI connection and bring it up 6818 * @vsi: the VSI to be reconnected 6819 */ 6820 int ice_down_up(struct ice_vsi *vsi) 6821 { 6822 int ret; 6823 6824 /* if DOWN already set, nothing to do */ 6825 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6826 return 0; 6827 6828 ret = ice_down(vsi); 6829 if (ret) 6830 return ret; 6831 6832 ret = ice_up(vsi); 6833 if (ret) { 6834 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6835 return ret; 6836 } 6837 6838 return 0; 6839 } 6840 6841 /** 6842 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6843 * @vsi: VSI having resources allocated 6844 * 6845 * Return 0 on success, negative on failure 6846 */ 6847 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6848 { 6849 int i, err = 0; 6850 6851 if (!vsi->num_txq) { 6852 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6853 vsi->vsi_num); 6854 return -EINVAL; 6855 } 6856 6857 ice_for_each_txq(vsi, i) { 6858 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6859 6860 if (!ring) 6861 return -EINVAL; 6862 6863 if (vsi->netdev) 6864 ring->netdev = vsi->netdev; 6865 err = ice_setup_tx_ring(ring); 6866 if (err) 6867 break; 6868 } 6869 6870 return err; 6871 } 6872 6873 /** 6874 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6875 * @vsi: VSI having resources allocated 6876 * 6877 * Return 0 on success, negative on failure 6878 */ 6879 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6880 { 6881 int i, err = 0; 6882 6883 if (!vsi->num_rxq) { 6884 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6885 vsi->vsi_num); 6886 return -EINVAL; 6887 } 6888 6889 ice_for_each_rxq(vsi, i) { 6890 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6891 6892 if (!ring) 6893 return -EINVAL; 6894 6895 if (vsi->netdev) 6896 ring->netdev = vsi->netdev; 6897 err = ice_setup_rx_ring(ring); 6898 if (err) 6899 break; 6900 } 6901 6902 return err; 6903 } 6904 6905 /** 6906 * ice_vsi_open_ctrl - open control VSI for use 6907 * @vsi: the VSI to open 6908 * 6909 * Initialization of the Control VSI 6910 * 6911 * Returns 0 on success, negative value on error 6912 */ 6913 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6914 { 6915 char int_name[ICE_INT_NAME_STR_LEN]; 6916 struct ice_pf *pf = vsi->back; 6917 struct device *dev; 6918 int err; 6919 6920 dev = ice_pf_to_dev(pf); 6921 /* allocate descriptors */ 6922 err = ice_vsi_setup_tx_rings(vsi); 6923 if (err) 6924 goto err_setup_tx; 6925 6926 err = ice_vsi_setup_rx_rings(vsi); 6927 if (err) 6928 goto err_setup_rx; 6929 6930 err = ice_vsi_cfg(vsi); 6931 if (err) 6932 goto err_setup_rx; 6933 6934 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6935 dev_driver_string(dev), dev_name(dev)); 6936 err = ice_vsi_req_irq_msix(vsi, int_name); 6937 if (err) 6938 goto err_setup_rx; 6939 6940 ice_vsi_cfg_msix(vsi); 6941 6942 err = ice_vsi_start_all_rx_rings(vsi); 6943 if (err) 6944 goto err_up_complete; 6945 6946 clear_bit(ICE_VSI_DOWN, vsi->state); 6947 ice_vsi_ena_irq(vsi); 6948 6949 return 0; 6950 6951 err_up_complete: 6952 ice_down(vsi); 6953 err_setup_rx: 6954 ice_vsi_free_rx_rings(vsi); 6955 err_setup_tx: 6956 ice_vsi_free_tx_rings(vsi); 6957 6958 return err; 6959 } 6960 6961 /** 6962 * ice_vsi_open - Called when a network interface is made active 6963 * @vsi: the VSI to open 6964 * 6965 * Initialization of the VSI 6966 * 6967 * Returns 0 on success, negative value on error 6968 */ 6969 int ice_vsi_open(struct ice_vsi *vsi) 6970 { 6971 char int_name[ICE_INT_NAME_STR_LEN]; 6972 struct ice_pf *pf = vsi->back; 6973 int err; 6974 6975 /* allocate descriptors */ 6976 err = ice_vsi_setup_tx_rings(vsi); 6977 if (err) 6978 goto err_setup_tx; 6979 6980 err = ice_vsi_setup_rx_rings(vsi); 6981 if (err) 6982 goto err_setup_rx; 6983 6984 err = ice_vsi_cfg(vsi); 6985 if (err) 6986 goto err_setup_rx; 6987 6988 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6989 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6990 err = ice_vsi_req_irq_msix(vsi, int_name); 6991 if (err) 6992 goto err_setup_rx; 6993 6994 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 6995 6996 if (vsi->type == ICE_VSI_PF) { 6997 /* Notify the stack of the actual queue counts. */ 6998 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6999 if (err) 7000 goto err_set_qs; 7001 7002 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7003 if (err) 7004 goto err_set_qs; 7005 } 7006 7007 err = ice_up_complete(vsi); 7008 if (err) 7009 goto err_up_complete; 7010 7011 return 0; 7012 7013 err_up_complete: 7014 ice_down(vsi); 7015 err_set_qs: 7016 ice_vsi_free_irq(vsi); 7017 err_setup_rx: 7018 ice_vsi_free_rx_rings(vsi); 7019 err_setup_tx: 7020 ice_vsi_free_tx_rings(vsi); 7021 7022 return err; 7023 } 7024 7025 /** 7026 * ice_vsi_release_all - Delete all VSIs 7027 * @pf: PF from which all VSIs are being removed 7028 */ 7029 static void ice_vsi_release_all(struct ice_pf *pf) 7030 { 7031 int err, i; 7032 7033 if (!pf->vsi) 7034 return; 7035 7036 ice_for_each_vsi(pf, i) { 7037 if (!pf->vsi[i]) 7038 continue; 7039 7040 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7041 continue; 7042 7043 err = ice_vsi_release(pf->vsi[i]); 7044 if (err) 7045 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7046 i, err, pf->vsi[i]->vsi_num); 7047 } 7048 } 7049 7050 /** 7051 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7052 * @pf: pointer to the PF instance 7053 * @type: VSI type to rebuild 7054 * 7055 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7056 */ 7057 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7058 { 7059 struct device *dev = ice_pf_to_dev(pf); 7060 int i, err; 7061 7062 ice_for_each_vsi(pf, i) { 7063 struct ice_vsi *vsi = pf->vsi[i]; 7064 7065 if (!vsi || vsi->type != type) 7066 continue; 7067 7068 /* rebuild the VSI */ 7069 err = ice_vsi_rebuild(vsi, true); 7070 if (err) { 7071 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7072 err, vsi->idx, ice_vsi_type_str(type)); 7073 return err; 7074 } 7075 7076 /* replay filters for the VSI */ 7077 err = ice_replay_vsi(&pf->hw, vsi->idx); 7078 if (err) { 7079 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7080 err, vsi->idx, ice_vsi_type_str(type)); 7081 return err; 7082 } 7083 7084 /* Re-map HW VSI number, using VSI handle that has been 7085 * previously validated in ice_replay_vsi() call above 7086 */ 7087 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7088 7089 /* enable the VSI */ 7090 err = ice_ena_vsi(vsi, false); 7091 if (err) { 7092 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7093 err, vsi->idx, ice_vsi_type_str(type)); 7094 return err; 7095 } 7096 7097 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7098 ice_vsi_type_str(type)); 7099 } 7100 7101 return 0; 7102 } 7103 7104 /** 7105 * ice_update_pf_netdev_link - Update PF netdev link status 7106 * @pf: pointer to the PF instance 7107 */ 7108 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7109 { 7110 bool link_up; 7111 int i; 7112 7113 ice_for_each_vsi(pf, i) { 7114 struct ice_vsi *vsi = pf->vsi[i]; 7115 7116 if (!vsi || vsi->type != ICE_VSI_PF) 7117 return; 7118 7119 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7120 if (link_up) { 7121 netif_carrier_on(pf->vsi[i]->netdev); 7122 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7123 } else { 7124 netif_carrier_off(pf->vsi[i]->netdev); 7125 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7126 } 7127 } 7128 } 7129 7130 /** 7131 * ice_rebuild - rebuild after reset 7132 * @pf: PF to rebuild 7133 * @reset_type: type of reset 7134 * 7135 * Do not rebuild VF VSI in this flow because that is already handled via 7136 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7137 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7138 * to reset/rebuild all the VF VSI twice. 7139 */ 7140 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7141 { 7142 struct device *dev = ice_pf_to_dev(pf); 7143 struct ice_hw *hw = &pf->hw; 7144 bool dvm; 7145 int err; 7146 7147 if (test_bit(ICE_DOWN, pf->state)) 7148 goto clear_recovery; 7149 7150 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7151 7152 #define ICE_EMP_RESET_SLEEP_MS 5000 7153 if (reset_type == ICE_RESET_EMPR) { 7154 /* If an EMP reset has occurred, any previously pending flash 7155 * update will have completed. We no longer know whether or 7156 * not the NVM update EMP reset is restricted. 7157 */ 7158 pf->fw_emp_reset_disabled = false; 7159 7160 msleep(ICE_EMP_RESET_SLEEP_MS); 7161 } 7162 7163 err = ice_init_all_ctrlq(hw); 7164 if (err) { 7165 dev_err(dev, "control queues init failed %d\n", err); 7166 goto err_init_ctrlq; 7167 } 7168 7169 /* if DDP was previously loaded successfully */ 7170 if (!ice_is_safe_mode(pf)) { 7171 /* reload the SW DB of filter tables */ 7172 if (reset_type == ICE_RESET_PFR) 7173 ice_fill_blk_tbls(hw); 7174 else 7175 /* Reload DDP Package after CORER/GLOBR reset */ 7176 ice_load_pkg(NULL, pf); 7177 } 7178 7179 err = ice_clear_pf_cfg(hw); 7180 if (err) { 7181 dev_err(dev, "clear PF configuration failed %d\n", err); 7182 goto err_init_ctrlq; 7183 } 7184 7185 ice_clear_pxe_mode(hw); 7186 7187 err = ice_init_nvm(hw); 7188 if (err) { 7189 dev_err(dev, "ice_init_nvm failed %d\n", err); 7190 goto err_init_ctrlq; 7191 } 7192 7193 err = ice_get_caps(hw); 7194 if (err) { 7195 dev_err(dev, "ice_get_caps failed %d\n", err); 7196 goto err_init_ctrlq; 7197 } 7198 7199 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7200 if (err) { 7201 dev_err(dev, "set_mac_cfg failed %d\n", err); 7202 goto err_init_ctrlq; 7203 } 7204 7205 dvm = ice_is_dvm_ena(hw); 7206 7207 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7208 if (err) 7209 goto err_init_ctrlq; 7210 7211 err = ice_sched_init_port(hw->port_info); 7212 if (err) 7213 goto err_sched_init_port; 7214 7215 /* start misc vector */ 7216 err = ice_req_irq_msix_misc(pf); 7217 if (err) { 7218 dev_err(dev, "misc vector setup failed: %d\n", err); 7219 goto err_sched_init_port; 7220 } 7221 7222 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7223 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7224 if (!rd32(hw, PFQF_FD_SIZE)) { 7225 u16 unused, guar, b_effort; 7226 7227 guar = hw->func_caps.fd_fltr_guar; 7228 b_effort = hw->func_caps.fd_fltr_best_effort; 7229 7230 /* force guaranteed filter pool for PF */ 7231 ice_alloc_fd_guar_item(hw, &unused, guar); 7232 /* force shared filter pool for PF */ 7233 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7234 } 7235 } 7236 7237 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7238 ice_dcb_rebuild(pf); 7239 7240 /* If the PF previously had enabled PTP, PTP init needs to happen before 7241 * the VSI rebuild. If not, this causes the PTP link status events to 7242 * fail. 7243 */ 7244 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7245 ice_ptp_reset(pf); 7246 7247 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7248 ice_gnss_init(pf); 7249 7250 /* rebuild PF VSI */ 7251 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7252 if (err) { 7253 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7254 goto err_vsi_rebuild; 7255 } 7256 7257 /* configure PTP timestamping after VSI rebuild */ 7258 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7259 ice_ptp_cfg_timestamp(pf, false); 7260 7261 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7262 if (err) { 7263 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7264 goto err_vsi_rebuild; 7265 } 7266 7267 if (reset_type == ICE_RESET_PFR) { 7268 err = ice_rebuild_channels(pf); 7269 if (err) { 7270 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7271 err); 7272 goto err_vsi_rebuild; 7273 } 7274 } 7275 7276 /* If Flow Director is active */ 7277 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7278 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7279 if (err) { 7280 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7281 goto err_vsi_rebuild; 7282 } 7283 7284 /* replay HW Flow Director recipes */ 7285 if (hw->fdir_prof) 7286 ice_fdir_replay_flows(hw); 7287 7288 /* replay Flow Director filters */ 7289 ice_fdir_replay_fltrs(pf); 7290 7291 ice_rebuild_arfs(pf); 7292 } 7293 7294 ice_update_pf_netdev_link(pf); 7295 7296 /* tell the firmware we are up */ 7297 err = ice_send_version(pf); 7298 if (err) { 7299 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7300 err); 7301 goto err_vsi_rebuild; 7302 } 7303 7304 ice_replay_post(hw); 7305 7306 /* if we get here, reset flow is successful */ 7307 clear_bit(ICE_RESET_FAILED, pf->state); 7308 7309 ice_plug_aux_dev(pf); 7310 return; 7311 7312 err_vsi_rebuild: 7313 err_sched_init_port: 7314 ice_sched_cleanup_all(hw); 7315 err_init_ctrlq: 7316 ice_shutdown_all_ctrlq(hw); 7317 set_bit(ICE_RESET_FAILED, pf->state); 7318 clear_recovery: 7319 /* set this bit in PF state to control service task scheduling */ 7320 set_bit(ICE_NEEDS_RESTART, pf->state); 7321 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7322 } 7323 7324 /** 7325 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7326 * @vsi: Pointer to VSI structure 7327 */ 7328 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7329 { 7330 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7331 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7332 else 7333 return ICE_RXBUF_3072; 7334 } 7335 7336 /** 7337 * ice_change_mtu - NDO callback to change the MTU 7338 * @netdev: network interface device structure 7339 * @new_mtu: new value for maximum frame size 7340 * 7341 * Returns 0 on success, negative on failure 7342 */ 7343 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7344 { 7345 struct ice_netdev_priv *np = netdev_priv(netdev); 7346 struct ice_vsi *vsi = np->vsi; 7347 struct ice_pf *pf = vsi->back; 7348 u8 count = 0; 7349 int err = 0; 7350 7351 if (new_mtu == (int)netdev->mtu) { 7352 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7353 return 0; 7354 } 7355 7356 if (ice_is_xdp_ena_vsi(vsi)) { 7357 int frame_size = ice_max_xdp_frame_size(vsi); 7358 7359 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7360 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7361 frame_size - ICE_ETH_PKT_HDR_PAD); 7362 return -EINVAL; 7363 } 7364 } 7365 7366 /* if a reset is in progress, wait for some time for it to complete */ 7367 do { 7368 if (ice_is_reset_in_progress(pf->state)) { 7369 count++; 7370 usleep_range(1000, 2000); 7371 } else { 7372 break; 7373 } 7374 7375 } while (count < 100); 7376 7377 if (count == 100) { 7378 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7379 return -EBUSY; 7380 } 7381 7382 netdev->mtu = (unsigned int)new_mtu; 7383 7384 /* if VSI is up, bring it down and then back up */ 7385 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7386 err = ice_down(vsi); 7387 if (err) { 7388 netdev_err(netdev, "change MTU if_down err %d\n", err); 7389 return err; 7390 } 7391 7392 err = ice_up(vsi); 7393 if (err) { 7394 netdev_err(netdev, "change MTU if_up err %d\n", err); 7395 return err; 7396 } 7397 } 7398 7399 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7400 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7401 7402 return err; 7403 } 7404 7405 /** 7406 * ice_eth_ioctl - Access the hwtstamp interface 7407 * @netdev: network interface device structure 7408 * @ifr: interface request data 7409 * @cmd: ioctl command 7410 */ 7411 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7412 { 7413 struct ice_netdev_priv *np = netdev_priv(netdev); 7414 struct ice_pf *pf = np->vsi->back; 7415 7416 switch (cmd) { 7417 case SIOCGHWTSTAMP: 7418 return ice_ptp_get_ts_config(pf, ifr); 7419 case SIOCSHWTSTAMP: 7420 return ice_ptp_set_ts_config(pf, ifr); 7421 default: 7422 return -EOPNOTSUPP; 7423 } 7424 } 7425 7426 /** 7427 * ice_aq_str - convert AQ err code to a string 7428 * @aq_err: the AQ error code to convert 7429 */ 7430 const char *ice_aq_str(enum ice_aq_err aq_err) 7431 { 7432 switch (aq_err) { 7433 case ICE_AQ_RC_OK: 7434 return "OK"; 7435 case ICE_AQ_RC_EPERM: 7436 return "ICE_AQ_RC_EPERM"; 7437 case ICE_AQ_RC_ENOENT: 7438 return "ICE_AQ_RC_ENOENT"; 7439 case ICE_AQ_RC_ENOMEM: 7440 return "ICE_AQ_RC_ENOMEM"; 7441 case ICE_AQ_RC_EBUSY: 7442 return "ICE_AQ_RC_EBUSY"; 7443 case ICE_AQ_RC_EEXIST: 7444 return "ICE_AQ_RC_EEXIST"; 7445 case ICE_AQ_RC_EINVAL: 7446 return "ICE_AQ_RC_EINVAL"; 7447 case ICE_AQ_RC_ENOSPC: 7448 return "ICE_AQ_RC_ENOSPC"; 7449 case ICE_AQ_RC_ENOSYS: 7450 return "ICE_AQ_RC_ENOSYS"; 7451 case ICE_AQ_RC_EMODE: 7452 return "ICE_AQ_RC_EMODE"; 7453 case ICE_AQ_RC_ENOSEC: 7454 return "ICE_AQ_RC_ENOSEC"; 7455 case ICE_AQ_RC_EBADSIG: 7456 return "ICE_AQ_RC_EBADSIG"; 7457 case ICE_AQ_RC_ESVN: 7458 return "ICE_AQ_RC_ESVN"; 7459 case ICE_AQ_RC_EBADMAN: 7460 return "ICE_AQ_RC_EBADMAN"; 7461 case ICE_AQ_RC_EBADBUF: 7462 return "ICE_AQ_RC_EBADBUF"; 7463 } 7464 7465 return "ICE_AQ_RC_UNKNOWN"; 7466 } 7467 7468 /** 7469 * ice_set_rss_lut - Set RSS LUT 7470 * @vsi: Pointer to VSI structure 7471 * @lut: Lookup table 7472 * @lut_size: Lookup table size 7473 * 7474 * Returns 0 on success, negative on failure 7475 */ 7476 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7477 { 7478 struct ice_aq_get_set_rss_lut_params params = {}; 7479 struct ice_hw *hw = &vsi->back->hw; 7480 int status; 7481 7482 if (!lut) 7483 return -EINVAL; 7484 7485 params.vsi_handle = vsi->idx; 7486 params.lut_size = lut_size; 7487 params.lut_type = vsi->rss_lut_type; 7488 params.lut = lut; 7489 7490 status = ice_aq_set_rss_lut(hw, ¶ms); 7491 if (status) 7492 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7493 status, ice_aq_str(hw->adminq.sq_last_status)); 7494 7495 return status; 7496 } 7497 7498 /** 7499 * ice_set_rss_key - Set RSS key 7500 * @vsi: Pointer to the VSI structure 7501 * @seed: RSS hash seed 7502 * 7503 * Returns 0 on success, negative on failure 7504 */ 7505 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7506 { 7507 struct ice_hw *hw = &vsi->back->hw; 7508 int status; 7509 7510 if (!seed) 7511 return -EINVAL; 7512 7513 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7514 if (status) 7515 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7516 status, ice_aq_str(hw->adminq.sq_last_status)); 7517 7518 return status; 7519 } 7520 7521 /** 7522 * ice_get_rss_lut - Get RSS LUT 7523 * @vsi: Pointer to VSI structure 7524 * @lut: Buffer to store the lookup table entries 7525 * @lut_size: Size of buffer to store the lookup table entries 7526 * 7527 * Returns 0 on success, negative on failure 7528 */ 7529 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7530 { 7531 struct ice_aq_get_set_rss_lut_params params = {}; 7532 struct ice_hw *hw = &vsi->back->hw; 7533 int status; 7534 7535 if (!lut) 7536 return -EINVAL; 7537 7538 params.vsi_handle = vsi->idx; 7539 params.lut_size = lut_size; 7540 params.lut_type = vsi->rss_lut_type; 7541 params.lut = lut; 7542 7543 status = ice_aq_get_rss_lut(hw, ¶ms); 7544 if (status) 7545 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7546 status, ice_aq_str(hw->adminq.sq_last_status)); 7547 7548 return status; 7549 } 7550 7551 /** 7552 * ice_get_rss_key - Get RSS key 7553 * @vsi: Pointer to VSI structure 7554 * @seed: Buffer to store the key in 7555 * 7556 * Returns 0 on success, negative on failure 7557 */ 7558 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7559 { 7560 struct ice_hw *hw = &vsi->back->hw; 7561 int status; 7562 7563 if (!seed) 7564 return -EINVAL; 7565 7566 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7567 if (status) 7568 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7569 status, ice_aq_str(hw->adminq.sq_last_status)); 7570 7571 return status; 7572 } 7573 7574 /** 7575 * ice_bridge_getlink - Get the hardware bridge mode 7576 * @skb: skb buff 7577 * @pid: process ID 7578 * @seq: RTNL message seq 7579 * @dev: the netdev being configured 7580 * @filter_mask: filter mask passed in 7581 * @nlflags: netlink flags passed in 7582 * 7583 * Return the bridge mode (VEB/VEPA) 7584 */ 7585 static int 7586 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7587 struct net_device *dev, u32 filter_mask, int nlflags) 7588 { 7589 struct ice_netdev_priv *np = netdev_priv(dev); 7590 struct ice_vsi *vsi = np->vsi; 7591 struct ice_pf *pf = vsi->back; 7592 u16 bmode; 7593 7594 bmode = pf->first_sw->bridge_mode; 7595 7596 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7597 filter_mask, NULL); 7598 } 7599 7600 /** 7601 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7602 * @vsi: Pointer to VSI structure 7603 * @bmode: Hardware bridge mode (VEB/VEPA) 7604 * 7605 * Returns 0 on success, negative on failure 7606 */ 7607 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7608 { 7609 struct ice_aqc_vsi_props *vsi_props; 7610 struct ice_hw *hw = &vsi->back->hw; 7611 struct ice_vsi_ctx *ctxt; 7612 int ret; 7613 7614 vsi_props = &vsi->info; 7615 7616 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7617 if (!ctxt) 7618 return -ENOMEM; 7619 7620 ctxt->info = vsi->info; 7621 7622 if (bmode == BRIDGE_MODE_VEB) 7623 /* change from VEPA to VEB mode */ 7624 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7625 else 7626 /* change from VEB to VEPA mode */ 7627 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7628 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7629 7630 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7631 if (ret) { 7632 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7633 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7634 goto out; 7635 } 7636 /* Update sw flags for book keeping */ 7637 vsi_props->sw_flags = ctxt->info.sw_flags; 7638 7639 out: 7640 kfree(ctxt); 7641 return ret; 7642 } 7643 7644 /** 7645 * ice_bridge_setlink - Set the hardware bridge mode 7646 * @dev: the netdev being configured 7647 * @nlh: RTNL message 7648 * @flags: bridge setlink flags 7649 * @extack: netlink extended ack 7650 * 7651 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7652 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7653 * not already set for all VSIs connected to this switch. And also update the 7654 * unicast switch filter rules for the corresponding switch of the netdev. 7655 */ 7656 static int 7657 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7658 u16 __always_unused flags, 7659 struct netlink_ext_ack __always_unused *extack) 7660 { 7661 struct ice_netdev_priv *np = netdev_priv(dev); 7662 struct ice_pf *pf = np->vsi->back; 7663 struct nlattr *attr, *br_spec; 7664 struct ice_hw *hw = &pf->hw; 7665 struct ice_sw *pf_sw; 7666 int rem, v, err = 0; 7667 7668 pf_sw = pf->first_sw; 7669 /* find the attribute in the netlink message */ 7670 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7671 7672 nla_for_each_nested(attr, br_spec, rem) { 7673 __u16 mode; 7674 7675 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7676 continue; 7677 mode = nla_get_u16(attr); 7678 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7679 return -EINVAL; 7680 /* Continue if bridge mode is not being flipped */ 7681 if (mode == pf_sw->bridge_mode) 7682 continue; 7683 /* Iterates through the PF VSI list and update the loopback 7684 * mode of the VSI 7685 */ 7686 ice_for_each_vsi(pf, v) { 7687 if (!pf->vsi[v]) 7688 continue; 7689 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7690 if (err) 7691 return err; 7692 } 7693 7694 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7695 /* Update the unicast switch filter rules for the corresponding 7696 * switch of the netdev 7697 */ 7698 err = ice_update_sw_rule_bridge_mode(hw); 7699 if (err) { 7700 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7701 mode, err, 7702 ice_aq_str(hw->adminq.sq_last_status)); 7703 /* revert hw->evb_veb */ 7704 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7705 return err; 7706 } 7707 7708 pf_sw->bridge_mode = mode; 7709 } 7710 7711 return 0; 7712 } 7713 7714 /** 7715 * ice_tx_timeout - Respond to a Tx Hang 7716 * @netdev: network interface device structure 7717 * @txqueue: Tx queue 7718 */ 7719 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7720 { 7721 struct ice_netdev_priv *np = netdev_priv(netdev); 7722 struct ice_tx_ring *tx_ring = NULL; 7723 struct ice_vsi *vsi = np->vsi; 7724 struct ice_pf *pf = vsi->back; 7725 u32 i; 7726 7727 pf->tx_timeout_count++; 7728 7729 /* Check if PFC is enabled for the TC to which the queue belongs 7730 * to. If yes then Tx timeout is not caused by a hung queue, no 7731 * need to reset and rebuild 7732 */ 7733 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7734 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7735 txqueue); 7736 return; 7737 } 7738 7739 /* now that we have an index, find the tx_ring struct */ 7740 ice_for_each_txq(vsi, i) 7741 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7742 if (txqueue == vsi->tx_rings[i]->q_index) { 7743 tx_ring = vsi->tx_rings[i]; 7744 break; 7745 } 7746 7747 /* Reset recovery level if enough time has elapsed after last timeout. 7748 * Also ensure no new reset action happens before next timeout period. 7749 */ 7750 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7751 pf->tx_timeout_recovery_level = 1; 7752 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7753 netdev->watchdog_timeo))) 7754 return; 7755 7756 if (tx_ring) { 7757 struct ice_hw *hw = &pf->hw; 7758 u32 head, val = 0; 7759 7760 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7761 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7762 /* Read interrupt register */ 7763 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7764 7765 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7766 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7767 head, tx_ring->next_to_use, val); 7768 } 7769 7770 pf->tx_timeout_last_recovery = jiffies; 7771 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7772 pf->tx_timeout_recovery_level, txqueue); 7773 7774 switch (pf->tx_timeout_recovery_level) { 7775 case 1: 7776 set_bit(ICE_PFR_REQ, pf->state); 7777 break; 7778 case 2: 7779 set_bit(ICE_CORER_REQ, pf->state); 7780 break; 7781 case 3: 7782 set_bit(ICE_GLOBR_REQ, pf->state); 7783 break; 7784 default: 7785 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7786 set_bit(ICE_DOWN, pf->state); 7787 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7788 set_bit(ICE_SERVICE_DIS, pf->state); 7789 break; 7790 } 7791 7792 ice_service_task_schedule(pf); 7793 pf->tx_timeout_recovery_level++; 7794 } 7795 7796 /** 7797 * ice_setup_tc_cls_flower - flower classifier offloads 7798 * @np: net device to configure 7799 * @filter_dev: device on which filter is added 7800 * @cls_flower: offload data 7801 */ 7802 static int 7803 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7804 struct net_device *filter_dev, 7805 struct flow_cls_offload *cls_flower) 7806 { 7807 struct ice_vsi *vsi = np->vsi; 7808 7809 if (cls_flower->common.chain_index) 7810 return -EOPNOTSUPP; 7811 7812 switch (cls_flower->command) { 7813 case FLOW_CLS_REPLACE: 7814 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7815 case FLOW_CLS_DESTROY: 7816 return ice_del_cls_flower(vsi, cls_flower); 7817 default: 7818 return -EINVAL; 7819 } 7820 } 7821 7822 /** 7823 * ice_setup_tc_block_cb - callback handler registered for TC block 7824 * @type: TC SETUP type 7825 * @type_data: TC flower offload data that contains user input 7826 * @cb_priv: netdev private data 7827 */ 7828 static int 7829 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7830 { 7831 struct ice_netdev_priv *np = cb_priv; 7832 7833 switch (type) { 7834 case TC_SETUP_CLSFLOWER: 7835 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7836 type_data); 7837 default: 7838 return -EOPNOTSUPP; 7839 } 7840 } 7841 7842 /** 7843 * ice_validate_mqprio_qopt - Validate TCF input parameters 7844 * @vsi: Pointer to VSI 7845 * @mqprio_qopt: input parameters for mqprio queue configuration 7846 * 7847 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7848 * needed), and make sure user doesn't specify qcount and BW rate limit 7849 * for TCs, which are more than "num_tc" 7850 */ 7851 static int 7852 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7853 struct tc_mqprio_qopt_offload *mqprio_qopt) 7854 { 7855 u64 sum_max_rate = 0, sum_min_rate = 0; 7856 int non_power_of_2_qcount = 0; 7857 struct ice_pf *pf = vsi->back; 7858 int max_rss_q_cnt = 0; 7859 struct device *dev; 7860 int i, speed; 7861 u8 num_tc; 7862 7863 if (vsi->type != ICE_VSI_PF) 7864 return -EINVAL; 7865 7866 if (mqprio_qopt->qopt.offset[0] != 0 || 7867 mqprio_qopt->qopt.num_tc < 1 || 7868 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7869 return -EINVAL; 7870 7871 dev = ice_pf_to_dev(pf); 7872 vsi->ch_rss_size = 0; 7873 num_tc = mqprio_qopt->qopt.num_tc; 7874 7875 for (i = 0; num_tc; i++) { 7876 int qcount = mqprio_qopt->qopt.count[i]; 7877 u64 max_rate, min_rate, rem; 7878 7879 if (!qcount) 7880 return -EINVAL; 7881 7882 if (is_power_of_2(qcount)) { 7883 if (non_power_of_2_qcount && 7884 qcount > non_power_of_2_qcount) { 7885 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7886 qcount, non_power_of_2_qcount); 7887 return -EINVAL; 7888 } 7889 if (qcount > max_rss_q_cnt) 7890 max_rss_q_cnt = qcount; 7891 } else { 7892 if (non_power_of_2_qcount && 7893 qcount != non_power_of_2_qcount) { 7894 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7895 qcount, non_power_of_2_qcount); 7896 return -EINVAL; 7897 } 7898 if (qcount < max_rss_q_cnt) { 7899 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7900 qcount, max_rss_q_cnt); 7901 return -EINVAL; 7902 } 7903 max_rss_q_cnt = qcount; 7904 non_power_of_2_qcount = qcount; 7905 } 7906 7907 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7908 * converts the bandwidth rate limit into Bytes/s when 7909 * passing it down to the driver. So convert input bandwidth 7910 * from Bytes/s to Kbps 7911 */ 7912 max_rate = mqprio_qopt->max_rate[i]; 7913 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7914 sum_max_rate += max_rate; 7915 7916 /* min_rate is minimum guaranteed rate and it can't be zero */ 7917 min_rate = mqprio_qopt->min_rate[i]; 7918 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7919 sum_min_rate += min_rate; 7920 7921 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7922 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7923 min_rate, ICE_MIN_BW_LIMIT); 7924 return -EINVAL; 7925 } 7926 7927 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7928 if (rem) { 7929 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7930 i, ICE_MIN_BW_LIMIT); 7931 return -EINVAL; 7932 } 7933 7934 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7935 if (rem) { 7936 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7937 i, ICE_MIN_BW_LIMIT); 7938 return -EINVAL; 7939 } 7940 7941 /* min_rate can't be more than max_rate, except when max_rate 7942 * is zero (implies max_rate sought is max line rate). In such 7943 * a case min_rate can be more than max. 7944 */ 7945 if (max_rate && min_rate > max_rate) { 7946 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7947 min_rate, max_rate); 7948 return -EINVAL; 7949 } 7950 7951 if (i >= mqprio_qopt->qopt.num_tc - 1) 7952 break; 7953 if (mqprio_qopt->qopt.offset[i + 1] != 7954 (mqprio_qopt->qopt.offset[i] + qcount)) 7955 return -EINVAL; 7956 } 7957 if (vsi->num_rxq < 7958 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7959 return -EINVAL; 7960 if (vsi->num_txq < 7961 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7962 return -EINVAL; 7963 7964 speed = ice_get_link_speed_kbps(vsi); 7965 if (sum_max_rate && sum_max_rate > (u64)speed) { 7966 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7967 sum_max_rate, speed); 7968 return -EINVAL; 7969 } 7970 if (sum_min_rate && sum_min_rate > (u64)speed) { 7971 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7972 sum_min_rate, speed); 7973 return -EINVAL; 7974 } 7975 7976 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7977 vsi->ch_rss_size = max_rss_q_cnt; 7978 7979 return 0; 7980 } 7981 7982 /** 7983 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7984 * @pf: ptr to PF device 7985 * @vsi: ptr to VSI 7986 */ 7987 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7988 { 7989 struct device *dev = ice_pf_to_dev(pf); 7990 bool added = false; 7991 struct ice_hw *hw; 7992 int flow; 7993 7994 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7995 return -EINVAL; 7996 7997 hw = &pf->hw; 7998 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7999 struct ice_fd_hw_prof *prof; 8000 int tun, status; 8001 u64 entry_h; 8002 8003 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8004 hw->fdir_prof[flow]->cnt)) 8005 continue; 8006 8007 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8008 enum ice_flow_priority prio; 8009 u64 prof_id; 8010 8011 /* add this VSI to FDir profile for this flow */ 8012 prio = ICE_FLOW_PRIO_NORMAL; 8013 prof = hw->fdir_prof[flow]; 8014 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8015 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8016 prof->vsi_h[0], vsi->idx, 8017 prio, prof->fdir_seg[tun], 8018 &entry_h); 8019 if (status) { 8020 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8021 vsi->idx, flow); 8022 continue; 8023 } 8024 8025 prof->entry_h[prof->cnt][tun] = entry_h; 8026 } 8027 8028 /* store VSI for filter replay and delete */ 8029 prof->vsi_h[prof->cnt] = vsi->idx; 8030 prof->cnt++; 8031 8032 added = true; 8033 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8034 flow); 8035 } 8036 8037 if (!added) 8038 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8039 8040 return 0; 8041 } 8042 8043 /** 8044 * ice_add_channel - add a channel by adding VSI 8045 * @pf: ptr to PF device 8046 * @sw_id: underlying HW switching element ID 8047 * @ch: ptr to channel structure 8048 * 8049 * Add a channel (VSI) using add_vsi and queue_map 8050 */ 8051 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8052 { 8053 struct device *dev = ice_pf_to_dev(pf); 8054 struct ice_vsi *vsi; 8055 8056 if (ch->type != ICE_VSI_CHNL) { 8057 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8058 return -EINVAL; 8059 } 8060 8061 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8062 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8063 dev_err(dev, "create chnl VSI failure\n"); 8064 return -EINVAL; 8065 } 8066 8067 ice_add_vsi_to_fdir(pf, vsi); 8068 8069 ch->sw_id = sw_id; 8070 ch->vsi_num = vsi->vsi_num; 8071 ch->info.mapping_flags = vsi->info.mapping_flags; 8072 ch->ch_vsi = vsi; 8073 /* set the back pointer of channel for newly created VSI */ 8074 vsi->ch = ch; 8075 8076 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8077 sizeof(vsi->info.q_mapping)); 8078 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8079 sizeof(vsi->info.tc_mapping)); 8080 8081 return 0; 8082 } 8083 8084 /** 8085 * ice_chnl_cfg_res 8086 * @vsi: the VSI being setup 8087 * @ch: ptr to channel structure 8088 * 8089 * Configure channel specific resources such as rings, vector. 8090 */ 8091 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8092 { 8093 int i; 8094 8095 for (i = 0; i < ch->num_txq; i++) { 8096 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8097 struct ice_ring_container *rc; 8098 struct ice_tx_ring *tx_ring; 8099 struct ice_rx_ring *rx_ring; 8100 8101 tx_ring = vsi->tx_rings[ch->base_q + i]; 8102 rx_ring = vsi->rx_rings[ch->base_q + i]; 8103 if (!tx_ring || !rx_ring) 8104 continue; 8105 8106 /* setup ring being channel enabled */ 8107 tx_ring->ch = ch; 8108 rx_ring->ch = ch; 8109 8110 /* following code block sets up vector specific attributes */ 8111 tx_q_vector = tx_ring->q_vector; 8112 rx_q_vector = rx_ring->q_vector; 8113 if (!tx_q_vector && !rx_q_vector) 8114 continue; 8115 8116 if (tx_q_vector) { 8117 tx_q_vector->ch = ch; 8118 /* setup Tx and Rx ITR setting if DIM is off */ 8119 rc = &tx_q_vector->tx; 8120 if (!ITR_IS_DYNAMIC(rc)) 8121 ice_write_itr(rc, rc->itr_setting); 8122 } 8123 if (rx_q_vector) { 8124 rx_q_vector->ch = ch; 8125 /* setup Tx and Rx ITR setting if DIM is off */ 8126 rc = &rx_q_vector->rx; 8127 if (!ITR_IS_DYNAMIC(rc)) 8128 ice_write_itr(rc, rc->itr_setting); 8129 } 8130 } 8131 8132 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8133 * GLINT_ITR register would have written to perform in-context 8134 * update, hence perform flush 8135 */ 8136 if (ch->num_txq || ch->num_rxq) 8137 ice_flush(&vsi->back->hw); 8138 } 8139 8140 /** 8141 * ice_cfg_chnl_all_res - configure channel resources 8142 * @vsi: pte to main_vsi 8143 * @ch: ptr to channel structure 8144 * 8145 * This function configures channel specific resources such as flow-director 8146 * counter index, and other resources such as queues, vectors, ITR settings 8147 */ 8148 static void 8149 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8150 { 8151 /* configure channel (aka ADQ) resources such as queues, vectors, 8152 * ITR settings for channel specific vectors and anything else 8153 */ 8154 ice_chnl_cfg_res(vsi, ch); 8155 } 8156 8157 /** 8158 * ice_setup_hw_channel - setup new channel 8159 * @pf: ptr to PF device 8160 * @vsi: the VSI being setup 8161 * @ch: ptr to channel structure 8162 * @sw_id: underlying HW switching element ID 8163 * @type: type of channel to be created (VMDq2/VF) 8164 * 8165 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8166 * and configures Tx rings accordingly 8167 */ 8168 static int 8169 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8170 struct ice_channel *ch, u16 sw_id, u8 type) 8171 { 8172 struct device *dev = ice_pf_to_dev(pf); 8173 int ret; 8174 8175 ch->base_q = vsi->next_base_q; 8176 ch->type = type; 8177 8178 ret = ice_add_channel(pf, sw_id, ch); 8179 if (ret) { 8180 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8181 return ret; 8182 } 8183 8184 /* configure/setup ADQ specific resources */ 8185 ice_cfg_chnl_all_res(vsi, ch); 8186 8187 /* make sure to update the next_base_q so that subsequent channel's 8188 * (aka ADQ) VSI queue map is correct 8189 */ 8190 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8191 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8192 ch->num_rxq); 8193 8194 return 0; 8195 } 8196 8197 /** 8198 * ice_setup_channel - setup new channel using uplink element 8199 * @pf: ptr to PF device 8200 * @vsi: the VSI being setup 8201 * @ch: ptr to channel structure 8202 * 8203 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8204 * and uplink switching element 8205 */ 8206 static bool 8207 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8208 struct ice_channel *ch) 8209 { 8210 struct device *dev = ice_pf_to_dev(pf); 8211 u16 sw_id; 8212 int ret; 8213 8214 if (vsi->type != ICE_VSI_PF) { 8215 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8216 return false; 8217 } 8218 8219 sw_id = pf->first_sw->sw_id; 8220 8221 /* create channel (VSI) */ 8222 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8223 if (ret) { 8224 dev_err(dev, "failed to setup hw_channel\n"); 8225 return false; 8226 } 8227 dev_dbg(dev, "successfully created channel()\n"); 8228 8229 return ch->ch_vsi ? true : false; 8230 } 8231 8232 /** 8233 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8234 * @vsi: VSI to be configured 8235 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8236 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8237 */ 8238 static int 8239 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8240 { 8241 int err; 8242 8243 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8244 if (err) 8245 return err; 8246 8247 return ice_set_max_bw_limit(vsi, max_tx_rate); 8248 } 8249 8250 /** 8251 * ice_create_q_channel - function to create channel 8252 * @vsi: VSI to be configured 8253 * @ch: ptr to channel (it contains channel specific params) 8254 * 8255 * This function creates channel (VSI) using num_queues specified by user, 8256 * reconfigs RSS if needed. 8257 */ 8258 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8259 { 8260 struct ice_pf *pf = vsi->back; 8261 struct device *dev; 8262 8263 if (!ch) 8264 return -EINVAL; 8265 8266 dev = ice_pf_to_dev(pf); 8267 if (!ch->num_txq || !ch->num_rxq) { 8268 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8269 return -EINVAL; 8270 } 8271 8272 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8273 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8274 vsi->cnt_q_avail, ch->num_txq); 8275 return -EINVAL; 8276 } 8277 8278 if (!ice_setup_channel(pf, vsi, ch)) { 8279 dev_info(dev, "Failed to setup channel\n"); 8280 return -EINVAL; 8281 } 8282 /* configure BW rate limit */ 8283 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8284 int ret; 8285 8286 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8287 ch->min_tx_rate); 8288 if (ret) 8289 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8290 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8291 else 8292 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8293 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8294 } 8295 8296 vsi->cnt_q_avail -= ch->num_txq; 8297 8298 return 0; 8299 } 8300 8301 /** 8302 * ice_rem_all_chnl_fltrs - removes all channel filters 8303 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8304 * 8305 * Remove all advanced switch filters only if they are channel specific 8306 * tc-flower based filter 8307 */ 8308 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8309 { 8310 struct ice_tc_flower_fltr *fltr; 8311 struct hlist_node *node; 8312 8313 /* to remove all channel filters, iterate an ordered list of filters */ 8314 hlist_for_each_entry_safe(fltr, node, 8315 &pf->tc_flower_fltr_list, 8316 tc_flower_node) { 8317 struct ice_rule_query_data rule; 8318 int status; 8319 8320 /* for now process only channel specific filters */ 8321 if (!ice_is_chnl_fltr(fltr)) 8322 continue; 8323 8324 rule.rid = fltr->rid; 8325 rule.rule_id = fltr->rule_id; 8326 rule.vsi_handle = fltr->dest_vsi_handle; 8327 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8328 if (status) { 8329 if (status == -ENOENT) 8330 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8331 rule.rule_id); 8332 else 8333 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8334 status); 8335 } else if (fltr->dest_vsi) { 8336 /* update advanced switch filter count */ 8337 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8338 u32 flags = fltr->flags; 8339 8340 fltr->dest_vsi->num_chnl_fltr--; 8341 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8342 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8343 pf->num_dmac_chnl_fltrs--; 8344 } 8345 } 8346 8347 hlist_del(&fltr->tc_flower_node); 8348 kfree(fltr); 8349 } 8350 } 8351 8352 /** 8353 * ice_remove_q_channels - Remove queue channels for the TCs 8354 * @vsi: VSI to be configured 8355 * @rem_fltr: delete advanced switch filter or not 8356 * 8357 * Remove queue channels for the TCs 8358 */ 8359 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8360 { 8361 struct ice_channel *ch, *ch_tmp; 8362 struct ice_pf *pf = vsi->back; 8363 int i; 8364 8365 /* remove all tc-flower based filter if they are channel filters only */ 8366 if (rem_fltr) 8367 ice_rem_all_chnl_fltrs(pf); 8368 8369 /* remove ntuple filters since queue configuration is being changed */ 8370 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8371 struct ice_hw *hw = &pf->hw; 8372 8373 mutex_lock(&hw->fdir_fltr_lock); 8374 ice_fdir_del_all_fltrs(vsi); 8375 mutex_unlock(&hw->fdir_fltr_lock); 8376 } 8377 8378 /* perform cleanup for channels if they exist */ 8379 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8380 struct ice_vsi *ch_vsi; 8381 8382 list_del(&ch->list); 8383 ch_vsi = ch->ch_vsi; 8384 if (!ch_vsi) { 8385 kfree(ch); 8386 continue; 8387 } 8388 8389 /* Reset queue contexts */ 8390 for (i = 0; i < ch->num_rxq; i++) { 8391 struct ice_tx_ring *tx_ring; 8392 struct ice_rx_ring *rx_ring; 8393 8394 tx_ring = vsi->tx_rings[ch->base_q + i]; 8395 rx_ring = vsi->rx_rings[ch->base_q + i]; 8396 if (tx_ring) { 8397 tx_ring->ch = NULL; 8398 if (tx_ring->q_vector) 8399 tx_ring->q_vector->ch = NULL; 8400 } 8401 if (rx_ring) { 8402 rx_ring->ch = NULL; 8403 if (rx_ring->q_vector) 8404 rx_ring->q_vector->ch = NULL; 8405 } 8406 } 8407 8408 /* Release FD resources for the channel VSI */ 8409 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8410 8411 /* clear the VSI from scheduler tree */ 8412 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8413 8414 /* Delete VSI from FW */ 8415 ice_vsi_delete(ch->ch_vsi); 8416 8417 /* Delete VSI from PF and HW VSI arrays */ 8418 ice_vsi_clear(ch->ch_vsi); 8419 8420 /* free the channel */ 8421 kfree(ch); 8422 } 8423 8424 /* clear the channel VSI map which is stored in main VSI */ 8425 ice_for_each_chnl_tc(i) 8426 vsi->tc_map_vsi[i] = NULL; 8427 8428 /* reset main VSI's all TC information */ 8429 vsi->all_enatc = 0; 8430 vsi->all_numtc = 0; 8431 } 8432 8433 /** 8434 * ice_rebuild_channels - rebuild channel 8435 * @pf: ptr to PF 8436 * 8437 * Recreate channel VSIs and replay filters 8438 */ 8439 static int ice_rebuild_channels(struct ice_pf *pf) 8440 { 8441 struct device *dev = ice_pf_to_dev(pf); 8442 struct ice_vsi *main_vsi; 8443 bool rem_adv_fltr = true; 8444 struct ice_channel *ch; 8445 struct ice_vsi *vsi; 8446 int tc_idx = 1; 8447 int i, err; 8448 8449 main_vsi = ice_get_main_vsi(pf); 8450 if (!main_vsi) 8451 return 0; 8452 8453 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8454 main_vsi->old_numtc == 1) 8455 return 0; /* nothing to be done */ 8456 8457 /* reconfigure main VSI based on old value of TC and cached values 8458 * for MQPRIO opts 8459 */ 8460 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8461 if (err) { 8462 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8463 main_vsi->old_ena_tc, main_vsi->vsi_num); 8464 return err; 8465 } 8466 8467 /* rebuild ADQ VSIs */ 8468 ice_for_each_vsi(pf, i) { 8469 enum ice_vsi_type type; 8470 8471 vsi = pf->vsi[i]; 8472 if (!vsi || vsi->type != ICE_VSI_CHNL) 8473 continue; 8474 8475 type = vsi->type; 8476 8477 /* rebuild ADQ VSI */ 8478 err = ice_vsi_rebuild(vsi, true); 8479 if (err) { 8480 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8481 ice_vsi_type_str(type), vsi->idx, err); 8482 goto cleanup; 8483 } 8484 8485 /* Re-map HW VSI number, using VSI handle that has been 8486 * previously validated in ice_replay_vsi() call above 8487 */ 8488 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8489 8490 /* replay filters for the VSI */ 8491 err = ice_replay_vsi(&pf->hw, vsi->idx); 8492 if (err) { 8493 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8494 ice_vsi_type_str(type), err, vsi->idx); 8495 rem_adv_fltr = false; 8496 goto cleanup; 8497 } 8498 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8499 ice_vsi_type_str(type), vsi->idx); 8500 8501 /* store ADQ VSI at correct TC index in main VSI's 8502 * map of TC to VSI 8503 */ 8504 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8505 } 8506 8507 /* ADQ VSI(s) has been rebuilt successfully, so setup 8508 * channel for main VSI's Tx and Rx rings 8509 */ 8510 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8511 struct ice_vsi *ch_vsi; 8512 8513 ch_vsi = ch->ch_vsi; 8514 if (!ch_vsi) 8515 continue; 8516 8517 /* reconfig channel resources */ 8518 ice_cfg_chnl_all_res(main_vsi, ch); 8519 8520 /* replay BW rate limit if it is non-zero */ 8521 if (!ch->max_tx_rate && !ch->min_tx_rate) 8522 continue; 8523 8524 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8525 ch->min_tx_rate); 8526 if (err) 8527 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8528 err, ch->max_tx_rate, ch->min_tx_rate, 8529 ch_vsi->vsi_num); 8530 else 8531 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8532 ch->max_tx_rate, ch->min_tx_rate, 8533 ch_vsi->vsi_num); 8534 } 8535 8536 /* reconfig RSS for main VSI */ 8537 if (main_vsi->ch_rss_size) 8538 ice_vsi_cfg_rss_lut_key(main_vsi); 8539 8540 return 0; 8541 8542 cleanup: 8543 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8544 return err; 8545 } 8546 8547 /** 8548 * ice_create_q_channels - Add queue channel for the given TCs 8549 * @vsi: VSI to be configured 8550 * 8551 * Configures queue channel mapping to the given TCs 8552 */ 8553 static int ice_create_q_channels(struct ice_vsi *vsi) 8554 { 8555 struct ice_pf *pf = vsi->back; 8556 struct ice_channel *ch; 8557 int ret = 0, i; 8558 8559 ice_for_each_chnl_tc(i) { 8560 if (!(vsi->all_enatc & BIT(i))) 8561 continue; 8562 8563 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8564 if (!ch) { 8565 ret = -ENOMEM; 8566 goto err_free; 8567 } 8568 INIT_LIST_HEAD(&ch->list); 8569 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8570 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8571 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8572 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8573 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8574 8575 /* convert to Kbits/s */ 8576 if (ch->max_tx_rate) 8577 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8578 ICE_BW_KBPS_DIVISOR); 8579 if (ch->min_tx_rate) 8580 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8581 ICE_BW_KBPS_DIVISOR); 8582 8583 ret = ice_create_q_channel(vsi, ch); 8584 if (ret) { 8585 dev_err(ice_pf_to_dev(pf), 8586 "failed creating channel TC:%d\n", i); 8587 kfree(ch); 8588 goto err_free; 8589 } 8590 list_add_tail(&ch->list, &vsi->ch_list); 8591 vsi->tc_map_vsi[i] = ch->ch_vsi; 8592 dev_dbg(ice_pf_to_dev(pf), 8593 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8594 } 8595 return 0; 8596 8597 err_free: 8598 ice_remove_q_channels(vsi, false); 8599 8600 return ret; 8601 } 8602 8603 /** 8604 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8605 * @netdev: net device to configure 8606 * @type_data: TC offload data 8607 */ 8608 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8609 { 8610 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8611 struct ice_netdev_priv *np = netdev_priv(netdev); 8612 struct ice_vsi *vsi = np->vsi; 8613 struct ice_pf *pf = vsi->back; 8614 u16 mode, ena_tc_qdisc = 0; 8615 int cur_txq, cur_rxq; 8616 u8 hw = 0, num_tcf; 8617 struct device *dev; 8618 int ret, i; 8619 8620 dev = ice_pf_to_dev(pf); 8621 num_tcf = mqprio_qopt->qopt.num_tc; 8622 hw = mqprio_qopt->qopt.hw; 8623 mode = mqprio_qopt->mode; 8624 if (!hw) { 8625 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8626 vsi->ch_rss_size = 0; 8627 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8628 goto config_tcf; 8629 } 8630 8631 /* Generate queue region map for number of TCF requested */ 8632 for (i = 0; i < num_tcf; i++) 8633 ena_tc_qdisc |= BIT(i); 8634 8635 switch (mode) { 8636 case TC_MQPRIO_MODE_CHANNEL: 8637 8638 if (pf->hw.port_info->is_custom_tx_enabled) { 8639 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8640 return -EBUSY; 8641 } 8642 ice_tear_down_devlink_rate_tree(pf); 8643 8644 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8645 if (ret) { 8646 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8647 ret); 8648 return ret; 8649 } 8650 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8651 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8652 /* don't assume state of hw_tc_offload during driver load 8653 * and set the flag for TC flower filter if hw_tc_offload 8654 * already ON 8655 */ 8656 if (vsi->netdev->features & NETIF_F_HW_TC) 8657 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8658 break; 8659 default: 8660 return -EINVAL; 8661 } 8662 8663 config_tcf: 8664 8665 /* Requesting same TCF configuration as already enabled */ 8666 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8667 mode != TC_MQPRIO_MODE_CHANNEL) 8668 return 0; 8669 8670 /* Pause VSI queues */ 8671 ice_dis_vsi(vsi, true); 8672 8673 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8674 ice_remove_q_channels(vsi, true); 8675 8676 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8677 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8678 num_online_cpus()); 8679 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8680 num_online_cpus()); 8681 } else { 8682 /* logic to rebuild VSI, same like ethtool -L */ 8683 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8684 8685 for (i = 0; i < num_tcf; i++) { 8686 if (!(ena_tc_qdisc & BIT(i))) 8687 continue; 8688 8689 offset = vsi->mqprio_qopt.qopt.offset[i]; 8690 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8691 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8692 } 8693 vsi->req_txq = offset + qcount_tx; 8694 vsi->req_rxq = offset + qcount_rx; 8695 8696 /* store away original rss_size info, so that it gets reused 8697 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8698 * determine, what should be the rss_sizefor main VSI 8699 */ 8700 vsi->orig_rss_size = vsi->rss_size; 8701 } 8702 8703 /* save current values of Tx and Rx queues before calling VSI rebuild 8704 * for fallback option 8705 */ 8706 cur_txq = vsi->num_txq; 8707 cur_rxq = vsi->num_rxq; 8708 8709 /* proceed with rebuild main VSI using correct number of queues */ 8710 ret = ice_vsi_rebuild(vsi, false); 8711 if (ret) { 8712 /* fallback to current number of queues */ 8713 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8714 vsi->req_txq = cur_txq; 8715 vsi->req_rxq = cur_rxq; 8716 clear_bit(ICE_RESET_FAILED, pf->state); 8717 if (ice_vsi_rebuild(vsi, false)) { 8718 dev_err(dev, "Rebuild of main VSI failed again\n"); 8719 return ret; 8720 } 8721 } 8722 8723 vsi->all_numtc = num_tcf; 8724 vsi->all_enatc = ena_tc_qdisc; 8725 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8726 if (ret) { 8727 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8728 vsi->vsi_num); 8729 goto exit; 8730 } 8731 8732 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8733 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8734 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8735 8736 /* set TC0 rate limit if specified */ 8737 if (max_tx_rate || min_tx_rate) { 8738 /* convert to Kbits/s */ 8739 if (max_tx_rate) 8740 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8741 if (min_tx_rate) 8742 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8743 8744 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8745 if (!ret) { 8746 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8747 max_tx_rate, min_tx_rate, vsi->vsi_num); 8748 } else { 8749 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8750 max_tx_rate, min_tx_rate, vsi->vsi_num); 8751 goto exit; 8752 } 8753 } 8754 ret = ice_create_q_channels(vsi); 8755 if (ret) { 8756 netdev_err(netdev, "failed configuring queue channels\n"); 8757 goto exit; 8758 } else { 8759 netdev_dbg(netdev, "successfully configured channels\n"); 8760 } 8761 } 8762 8763 if (vsi->ch_rss_size) 8764 ice_vsi_cfg_rss_lut_key(vsi); 8765 8766 exit: 8767 /* if error, reset the all_numtc and all_enatc */ 8768 if (ret) { 8769 vsi->all_numtc = 0; 8770 vsi->all_enatc = 0; 8771 } 8772 /* resume VSI */ 8773 ice_ena_vsi(vsi, true); 8774 8775 return ret; 8776 } 8777 8778 static LIST_HEAD(ice_block_cb_list); 8779 8780 static int 8781 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8782 void *type_data) 8783 { 8784 struct ice_netdev_priv *np = netdev_priv(netdev); 8785 struct ice_pf *pf = np->vsi->back; 8786 int err; 8787 8788 switch (type) { 8789 case TC_SETUP_BLOCK: 8790 return flow_block_cb_setup_simple(type_data, 8791 &ice_block_cb_list, 8792 ice_setup_tc_block_cb, 8793 np, np, true); 8794 case TC_SETUP_QDISC_MQPRIO: 8795 /* setup traffic classifier for receive side */ 8796 mutex_lock(&pf->tc_mutex); 8797 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8798 mutex_unlock(&pf->tc_mutex); 8799 return err; 8800 default: 8801 return -EOPNOTSUPP; 8802 } 8803 return -EOPNOTSUPP; 8804 } 8805 8806 static struct ice_indr_block_priv * 8807 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8808 struct net_device *netdev) 8809 { 8810 struct ice_indr_block_priv *cb_priv; 8811 8812 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8813 if (!cb_priv->netdev) 8814 return NULL; 8815 if (cb_priv->netdev == netdev) 8816 return cb_priv; 8817 } 8818 return NULL; 8819 } 8820 8821 static int 8822 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8823 void *indr_priv) 8824 { 8825 struct ice_indr_block_priv *priv = indr_priv; 8826 struct ice_netdev_priv *np = priv->np; 8827 8828 switch (type) { 8829 case TC_SETUP_CLSFLOWER: 8830 return ice_setup_tc_cls_flower(np, priv->netdev, 8831 (struct flow_cls_offload *) 8832 type_data); 8833 default: 8834 return -EOPNOTSUPP; 8835 } 8836 } 8837 8838 static int 8839 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8840 struct ice_netdev_priv *np, 8841 struct flow_block_offload *f, void *data, 8842 void (*cleanup)(struct flow_block_cb *block_cb)) 8843 { 8844 struct ice_indr_block_priv *indr_priv; 8845 struct flow_block_cb *block_cb; 8846 8847 if (!ice_is_tunnel_supported(netdev) && 8848 !(is_vlan_dev(netdev) && 8849 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8850 return -EOPNOTSUPP; 8851 8852 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8853 return -EOPNOTSUPP; 8854 8855 switch (f->command) { 8856 case FLOW_BLOCK_BIND: 8857 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8858 if (indr_priv) 8859 return -EEXIST; 8860 8861 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8862 if (!indr_priv) 8863 return -ENOMEM; 8864 8865 indr_priv->netdev = netdev; 8866 indr_priv->np = np; 8867 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8868 8869 block_cb = 8870 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8871 indr_priv, indr_priv, 8872 ice_rep_indr_tc_block_unbind, 8873 f, netdev, sch, data, np, 8874 cleanup); 8875 8876 if (IS_ERR(block_cb)) { 8877 list_del(&indr_priv->list); 8878 kfree(indr_priv); 8879 return PTR_ERR(block_cb); 8880 } 8881 flow_block_cb_add(block_cb, f); 8882 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8883 break; 8884 case FLOW_BLOCK_UNBIND: 8885 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8886 if (!indr_priv) 8887 return -ENOENT; 8888 8889 block_cb = flow_block_cb_lookup(f->block, 8890 ice_indr_setup_block_cb, 8891 indr_priv); 8892 if (!block_cb) 8893 return -ENOENT; 8894 8895 flow_indr_block_cb_remove(block_cb, f); 8896 8897 list_del(&block_cb->driver_list); 8898 break; 8899 default: 8900 return -EOPNOTSUPP; 8901 } 8902 return 0; 8903 } 8904 8905 static int 8906 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8907 void *cb_priv, enum tc_setup_type type, void *type_data, 8908 void *data, 8909 void (*cleanup)(struct flow_block_cb *block_cb)) 8910 { 8911 switch (type) { 8912 case TC_SETUP_BLOCK: 8913 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8914 data, cleanup); 8915 8916 default: 8917 return -EOPNOTSUPP; 8918 } 8919 } 8920 8921 /** 8922 * ice_open - Called when a network interface becomes active 8923 * @netdev: network interface device structure 8924 * 8925 * The open entry point is called when a network interface is made 8926 * active by the system (IFF_UP). At this point all resources needed 8927 * for transmit and receive operations are allocated, the interrupt 8928 * handler is registered with the OS, the netdev watchdog is enabled, 8929 * and the stack is notified that the interface is ready. 8930 * 8931 * Returns 0 on success, negative value on failure 8932 */ 8933 int ice_open(struct net_device *netdev) 8934 { 8935 struct ice_netdev_priv *np = netdev_priv(netdev); 8936 struct ice_pf *pf = np->vsi->back; 8937 8938 if (ice_is_reset_in_progress(pf->state)) { 8939 netdev_err(netdev, "can't open net device while reset is in progress"); 8940 return -EBUSY; 8941 } 8942 8943 return ice_open_internal(netdev); 8944 } 8945 8946 /** 8947 * ice_open_internal - Called when a network interface becomes active 8948 * @netdev: network interface device structure 8949 * 8950 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8951 * handling routine 8952 * 8953 * Returns 0 on success, negative value on failure 8954 */ 8955 int ice_open_internal(struct net_device *netdev) 8956 { 8957 struct ice_netdev_priv *np = netdev_priv(netdev); 8958 struct ice_vsi *vsi = np->vsi; 8959 struct ice_pf *pf = vsi->back; 8960 struct ice_port_info *pi; 8961 int err; 8962 8963 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8964 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8965 return -EIO; 8966 } 8967 8968 netif_carrier_off(netdev); 8969 8970 pi = vsi->port_info; 8971 err = ice_update_link_info(pi); 8972 if (err) { 8973 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8974 return err; 8975 } 8976 8977 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8978 8979 /* Set PHY if there is media, otherwise, turn off PHY */ 8980 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8981 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8982 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8983 err = ice_init_phy_user_cfg(pi); 8984 if (err) { 8985 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8986 err); 8987 return err; 8988 } 8989 } 8990 8991 err = ice_configure_phy(vsi); 8992 if (err) { 8993 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8994 err); 8995 return err; 8996 } 8997 } else { 8998 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8999 ice_set_link(vsi, false); 9000 } 9001 9002 err = ice_vsi_open(vsi); 9003 if (err) 9004 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9005 vsi->vsi_num, vsi->vsw->sw_id); 9006 9007 /* Update existing tunnels information */ 9008 udp_tunnel_get_rx_info(netdev); 9009 9010 return err; 9011 } 9012 9013 /** 9014 * ice_stop - Disables a network interface 9015 * @netdev: network interface device structure 9016 * 9017 * The stop entry point is called when an interface is de-activated by the OS, 9018 * and the netdevice enters the DOWN state. The hardware is still under the 9019 * driver's control, but the netdev interface is disabled. 9020 * 9021 * Returns success only - not allowed to fail 9022 */ 9023 int ice_stop(struct net_device *netdev) 9024 { 9025 struct ice_netdev_priv *np = netdev_priv(netdev); 9026 struct ice_vsi *vsi = np->vsi; 9027 struct ice_pf *pf = vsi->back; 9028 9029 if (ice_is_reset_in_progress(pf->state)) { 9030 netdev_err(netdev, "can't stop net device while reset is in progress"); 9031 return -EBUSY; 9032 } 9033 9034 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9035 int link_err = ice_force_phys_link_state(vsi, false); 9036 9037 if (link_err) { 9038 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9039 vsi->vsi_num, link_err); 9040 return -EIO; 9041 } 9042 } 9043 9044 ice_vsi_close(vsi); 9045 9046 return 0; 9047 } 9048 9049 /** 9050 * ice_features_check - Validate encapsulated packet conforms to limits 9051 * @skb: skb buffer 9052 * @netdev: This port's netdev 9053 * @features: Offload features that the stack believes apply 9054 */ 9055 static netdev_features_t 9056 ice_features_check(struct sk_buff *skb, 9057 struct net_device __always_unused *netdev, 9058 netdev_features_t features) 9059 { 9060 bool gso = skb_is_gso(skb); 9061 size_t len; 9062 9063 /* No point in doing any of this if neither checksum nor GSO are 9064 * being requested for this frame. We can rule out both by just 9065 * checking for CHECKSUM_PARTIAL 9066 */ 9067 if (skb->ip_summed != CHECKSUM_PARTIAL) 9068 return features; 9069 9070 /* We cannot support GSO if the MSS is going to be less than 9071 * 64 bytes. If it is then we need to drop support for GSO. 9072 */ 9073 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9074 features &= ~NETIF_F_GSO_MASK; 9075 9076 len = skb_network_offset(skb); 9077 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9078 goto out_rm_features; 9079 9080 len = skb_network_header_len(skb); 9081 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9082 goto out_rm_features; 9083 9084 if (skb->encapsulation) { 9085 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9086 * the case of IPIP frames, the transport header pointer is 9087 * after the inner header! So check to make sure that this 9088 * is a GRE or UDP_TUNNEL frame before doing that math. 9089 */ 9090 if (gso && (skb_shinfo(skb)->gso_type & 9091 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9092 len = skb_inner_network_header(skb) - 9093 skb_transport_header(skb); 9094 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9095 goto out_rm_features; 9096 } 9097 9098 len = skb_inner_network_header_len(skb); 9099 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9100 goto out_rm_features; 9101 } 9102 9103 return features; 9104 out_rm_features: 9105 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9106 } 9107 9108 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9109 .ndo_open = ice_open, 9110 .ndo_stop = ice_stop, 9111 .ndo_start_xmit = ice_start_xmit, 9112 .ndo_set_mac_address = ice_set_mac_address, 9113 .ndo_validate_addr = eth_validate_addr, 9114 .ndo_change_mtu = ice_change_mtu, 9115 .ndo_get_stats64 = ice_get_stats64, 9116 .ndo_tx_timeout = ice_tx_timeout, 9117 .ndo_bpf = ice_xdp_safe_mode, 9118 }; 9119 9120 static const struct net_device_ops ice_netdev_ops = { 9121 .ndo_open = ice_open, 9122 .ndo_stop = ice_stop, 9123 .ndo_start_xmit = ice_start_xmit, 9124 .ndo_select_queue = ice_select_queue, 9125 .ndo_features_check = ice_features_check, 9126 .ndo_fix_features = ice_fix_features, 9127 .ndo_set_rx_mode = ice_set_rx_mode, 9128 .ndo_set_mac_address = ice_set_mac_address, 9129 .ndo_validate_addr = eth_validate_addr, 9130 .ndo_change_mtu = ice_change_mtu, 9131 .ndo_get_stats64 = ice_get_stats64, 9132 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9133 .ndo_eth_ioctl = ice_eth_ioctl, 9134 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9135 .ndo_set_vf_mac = ice_set_vf_mac, 9136 .ndo_get_vf_config = ice_get_vf_cfg, 9137 .ndo_set_vf_trust = ice_set_vf_trust, 9138 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9139 .ndo_set_vf_link_state = ice_set_vf_link_state, 9140 .ndo_get_vf_stats = ice_get_vf_stats, 9141 .ndo_set_vf_rate = ice_set_vf_bw, 9142 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9143 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9144 .ndo_setup_tc = ice_setup_tc, 9145 .ndo_set_features = ice_set_features, 9146 .ndo_bridge_getlink = ice_bridge_getlink, 9147 .ndo_bridge_setlink = ice_bridge_setlink, 9148 .ndo_fdb_add = ice_fdb_add, 9149 .ndo_fdb_del = ice_fdb_del, 9150 #ifdef CONFIG_RFS_ACCEL 9151 .ndo_rx_flow_steer = ice_rx_flow_steer, 9152 #endif 9153 .ndo_tx_timeout = ice_tx_timeout, 9154 .ndo_bpf = ice_xdp, 9155 .ndo_xdp_xmit = ice_xdp_xmit, 9156 .ndo_xsk_wakeup = ice_xsk_wakeup, 9157 }; 9158