1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 23 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 24 static const char ice_driver_string[] = DRV_SUMMARY; 25 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 26 27 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 28 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 29 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 30 31 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 32 MODULE_DESCRIPTION(DRV_SUMMARY); 33 MODULE_LICENSE("GPL v2"); 34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 35 36 static int debug = -1; 37 module_param(debug, int, 0644); 38 #ifndef CONFIG_DYNAMIC_DEBUG 39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 40 #else 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 42 #endif /* !CONFIG_DYNAMIC_DEBUG */ 43 44 static DEFINE_IDA(ice_aux_ida); 45 46 static struct workqueue_struct *ice_wq; 47 static const struct net_device_ops ice_netdev_safe_mode_ops; 48 static const struct net_device_ops ice_netdev_ops; 49 static int ice_vsi_open(struct ice_vsi *vsi); 50 51 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 52 53 static void ice_vsi_release_all(struct ice_pf *pf); 54 55 bool netif_is_ice(struct net_device *dev) 56 { 57 return dev && (dev->netdev_ops == &ice_netdev_ops); 58 } 59 60 /** 61 * ice_get_tx_pending - returns number of Tx descriptors not processed 62 * @ring: the ring of descriptors 63 */ 64 static u16 ice_get_tx_pending(struct ice_ring *ring) 65 { 66 u16 head, tail; 67 68 head = ring->next_to_clean; 69 tail = ring->next_to_use; 70 71 if (head != tail) 72 return (head < tail) ? 73 tail - head : (tail + ring->count - head); 74 return 0; 75 } 76 77 /** 78 * ice_check_for_hang_subtask - check for and recover hung queues 79 * @pf: pointer to PF struct 80 */ 81 static void ice_check_for_hang_subtask(struct ice_pf *pf) 82 { 83 struct ice_vsi *vsi = NULL; 84 struct ice_hw *hw; 85 unsigned int i; 86 int packets; 87 u32 v; 88 89 ice_for_each_vsi(pf, v) 90 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 91 vsi = pf->vsi[v]; 92 break; 93 } 94 95 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 96 return; 97 98 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 99 return; 100 101 hw = &vsi->back->hw; 102 103 for (i = 0; i < vsi->num_txq; i++) { 104 struct ice_ring *tx_ring = vsi->tx_rings[i]; 105 106 if (tx_ring && tx_ring->desc) { 107 /* If packet counter has not changed the queue is 108 * likely stalled, so force an interrupt for this 109 * queue. 110 * 111 * prev_pkt would be negative if there was no 112 * pending work. 113 */ 114 packets = tx_ring->stats.pkts & INT_MAX; 115 if (tx_ring->tx_stats.prev_pkt == packets) { 116 /* Trigger sw interrupt to revive the queue */ 117 ice_trigger_sw_intr(hw, tx_ring->q_vector); 118 continue; 119 } 120 121 /* Memory barrier between read of packet count and call 122 * to ice_get_tx_pending() 123 */ 124 smp_rmb(); 125 tx_ring->tx_stats.prev_pkt = 126 ice_get_tx_pending(tx_ring) ? packets : -1; 127 } 128 } 129 } 130 131 /** 132 * ice_init_mac_fltr - Set initial MAC filters 133 * @pf: board private structure 134 * 135 * Set initial set of MAC filters for PF VSI; configure filters for permanent 136 * address and broadcast address. If an error is encountered, netdevice will be 137 * unregistered. 138 */ 139 static int ice_init_mac_fltr(struct ice_pf *pf) 140 { 141 enum ice_status status; 142 struct ice_vsi *vsi; 143 u8 *perm_addr; 144 145 vsi = ice_get_main_vsi(pf); 146 if (!vsi) 147 return -EINVAL; 148 149 perm_addr = vsi->port_info->mac.perm_addr; 150 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 151 if (status) 152 return -EIO; 153 154 return 0; 155 } 156 157 /** 158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 159 * @netdev: the net device on which the sync is happening 160 * @addr: MAC address to sync 161 * 162 * This is a callback function which is called by the in kernel device sync 163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 165 * MAC filters from the hardware. 166 */ 167 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 168 { 169 struct ice_netdev_priv *np = netdev_priv(netdev); 170 struct ice_vsi *vsi = np->vsi; 171 172 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 173 ICE_FWD_TO_VSI)) 174 return -EINVAL; 175 176 return 0; 177 } 178 179 /** 180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 181 * @netdev: the net device on which the unsync is happening 182 * @addr: MAC address to unsync 183 * 184 * This is a callback function which is called by the in kernel device unsync 185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 187 * delete the MAC filters from the hardware. 188 */ 189 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 190 { 191 struct ice_netdev_priv *np = netdev_priv(netdev); 192 struct ice_vsi *vsi = np->vsi; 193 194 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 195 ICE_FWD_TO_VSI)) 196 return -EINVAL; 197 198 return 0; 199 } 200 201 /** 202 * ice_vsi_fltr_changed - check if filter state changed 203 * @vsi: VSI to be checked 204 * 205 * returns true if filter state has changed, false otherwise. 206 */ 207 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 208 { 209 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 210 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 211 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 212 } 213 214 /** 215 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 216 * @vsi: the VSI being configured 217 * @promisc_m: mask of promiscuous config bits 218 * @set_promisc: enable or disable promisc flag request 219 * 220 */ 221 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 222 { 223 struct ice_hw *hw = &vsi->back->hw; 224 enum ice_status status = 0; 225 226 if (vsi->type != ICE_VSI_PF) 227 return 0; 228 229 if (vsi->num_vlan > 1) { 230 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 231 set_promisc); 232 } else { 233 if (set_promisc) 234 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 235 0); 236 else 237 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 238 0); 239 } 240 241 if (status) 242 return -EIO; 243 244 return 0; 245 } 246 247 /** 248 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 249 * @vsi: ptr to the VSI 250 * 251 * Push any outstanding VSI filter changes through the AdminQ. 252 */ 253 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 254 { 255 struct device *dev = ice_pf_to_dev(vsi->back); 256 struct net_device *netdev = vsi->netdev; 257 bool promisc_forced_on = false; 258 struct ice_pf *pf = vsi->back; 259 struct ice_hw *hw = &pf->hw; 260 enum ice_status status = 0; 261 u32 changed_flags = 0; 262 u8 promisc_m; 263 int err = 0; 264 265 if (!vsi->netdev) 266 return -EINVAL; 267 268 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 269 usleep_range(1000, 2000); 270 271 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 272 vsi->current_netdev_flags = vsi->netdev->flags; 273 274 INIT_LIST_HEAD(&vsi->tmp_sync_list); 275 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 276 277 if (ice_vsi_fltr_changed(vsi)) { 278 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 279 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 280 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 281 282 /* grab the netdev's addr_list_lock */ 283 netif_addr_lock_bh(netdev); 284 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 285 ice_add_mac_to_unsync_list); 286 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 287 ice_add_mac_to_unsync_list); 288 /* our temp lists are populated. release lock */ 289 netif_addr_unlock_bh(netdev); 290 } 291 292 /* Remove MAC addresses in the unsync list */ 293 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 294 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 295 if (status) { 296 netdev_err(netdev, "Failed to delete MAC filters\n"); 297 /* if we failed because of alloc failures, just bail */ 298 if (status == ICE_ERR_NO_MEMORY) { 299 err = -ENOMEM; 300 goto out; 301 } 302 } 303 304 /* Add MAC addresses in the sync list */ 305 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 306 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 307 /* If filter is added successfully or already exists, do not go into 308 * 'if' condition and report it as error. Instead continue processing 309 * rest of the function. 310 */ 311 if (status && status != ICE_ERR_ALREADY_EXISTS) { 312 netdev_err(netdev, "Failed to add MAC filters\n"); 313 /* If there is no more space for new umac filters, VSI 314 * should go into promiscuous mode. There should be some 315 * space reserved for promiscuous filters. 316 */ 317 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 318 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 319 vsi->state)) { 320 promisc_forced_on = true; 321 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 322 vsi->vsi_num); 323 } else { 324 err = -EIO; 325 goto out; 326 } 327 } 328 /* check for changes in promiscuous modes */ 329 if (changed_flags & IFF_ALLMULTI) { 330 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 331 if (vsi->num_vlan > 1) 332 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 333 else 334 promisc_m = ICE_MCAST_PROMISC_BITS; 335 336 err = ice_cfg_promisc(vsi, promisc_m, true); 337 if (err) { 338 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 339 vsi->vsi_num); 340 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 341 goto out_promisc; 342 } 343 } else { 344 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 345 if (vsi->num_vlan > 1) 346 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 347 else 348 promisc_m = ICE_MCAST_PROMISC_BITS; 349 350 err = ice_cfg_promisc(vsi, promisc_m, false); 351 if (err) { 352 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 353 vsi->vsi_num); 354 vsi->current_netdev_flags |= IFF_ALLMULTI; 355 goto out_promisc; 356 } 357 } 358 } 359 360 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 361 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 362 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 363 if (vsi->current_netdev_flags & IFF_PROMISC) { 364 /* Apply Rx filter rule to get traffic from wire */ 365 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 366 err = ice_set_dflt_vsi(pf->first_sw, vsi); 367 if (err && err != -EEXIST) { 368 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 369 err, vsi->vsi_num); 370 vsi->current_netdev_flags &= 371 ~IFF_PROMISC; 372 goto out_promisc; 373 } 374 ice_cfg_vlan_pruning(vsi, false, false); 375 } 376 } else { 377 /* Clear Rx filter to remove traffic from wire */ 378 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 379 err = ice_clear_dflt_vsi(pf->first_sw); 380 if (err) { 381 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 382 err, vsi->vsi_num); 383 vsi->current_netdev_flags |= 384 IFF_PROMISC; 385 goto out_promisc; 386 } 387 if (vsi->num_vlan > 1) 388 ice_cfg_vlan_pruning(vsi, true, false); 389 } 390 } 391 } 392 goto exit; 393 394 out_promisc: 395 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 396 goto exit; 397 out: 398 /* if something went wrong then set the changed flag so we try again */ 399 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 400 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 401 exit: 402 clear_bit(ICE_CFG_BUSY, vsi->state); 403 return err; 404 } 405 406 /** 407 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 408 * @pf: board private structure 409 */ 410 static void ice_sync_fltr_subtask(struct ice_pf *pf) 411 { 412 int v; 413 414 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 415 return; 416 417 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 418 419 ice_for_each_vsi(pf, v) 420 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 421 ice_vsi_sync_fltr(pf->vsi[v])) { 422 /* come back and try again later */ 423 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 424 break; 425 } 426 } 427 428 /** 429 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 430 * @pf: the PF 431 * @locked: is the rtnl_lock already held 432 */ 433 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 434 { 435 int node; 436 int v; 437 438 ice_for_each_vsi(pf, v) 439 if (pf->vsi[v]) 440 ice_dis_vsi(pf->vsi[v], locked); 441 442 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 443 pf->pf_agg_node[node].num_vsis = 0; 444 445 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 446 pf->vf_agg_node[node].num_vsis = 0; 447 } 448 449 /** 450 * ice_prepare_for_reset - prep for the core to reset 451 * @pf: board private structure 452 * 453 * Inform or close all dependent features in prep for reset. 454 */ 455 static void 456 ice_prepare_for_reset(struct ice_pf *pf) 457 { 458 struct ice_hw *hw = &pf->hw; 459 unsigned int i; 460 461 /* already prepared for reset */ 462 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 463 return; 464 465 ice_unplug_aux_dev(pf); 466 467 /* Notify VFs of impending reset */ 468 if (ice_check_sq_alive(hw, &hw->mailboxq)) 469 ice_vc_notify_reset(pf); 470 471 /* Disable VFs until reset is completed */ 472 ice_for_each_vf(pf, i) 473 ice_set_vf_state_qs_dis(&pf->vf[i]); 474 475 /* clear SW filtering DB */ 476 ice_clear_hw_tbls(hw); 477 /* disable the VSIs and their queues that are not already DOWN */ 478 ice_pf_dis_all_vsi(pf, false); 479 480 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 481 ice_ptp_release(pf); 482 483 if (hw->port_info) 484 ice_sched_clear_port(hw->port_info); 485 486 ice_shutdown_all_ctrlq(hw); 487 488 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 489 } 490 491 /** 492 * ice_do_reset - Initiate one of many types of resets 493 * @pf: board private structure 494 * @reset_type: reset type requested 495 * before this function was called. 496 */ 497 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 498 { 499 struct device *dev = ice_pf_to_dev(pf); 500 struct ice_hw *hw = &pf->hw; 501 502 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 503 504 ice_prepare_for_reset(pf); 505 506 /* trigger the reset */ 507 if (ice_reset(hw, reset_type)) { 508 dev_err(dev, "reset %d failed\n", reset_type); 509 set_bit(ICE_RESET_FAILED, pf->state); 510 clear_bit(ICE_RESET_OICR_RECV, pf->state); 511 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 512 clear_bit(ICE_PFR_REQ, pf->state); 513 clear_bit(ICE_CORER_REQ, pf->state); 514 clear_bit(ICE_GLOBR_REQ, pf->state); 515 wake_up(&pf->reset_wait_queue); 516 return; 517 } 518 519 /* PFR is a bit of a special case because it doesn't result in an OICR 520 * interrupt. So for PFR, rebuild after the reset and clear the reset- 521 * associated state bits. 522 */ 523 if (reset_type == ICE_RESET_PFR) { 524 pf->pfr_count++; 525 ice_rebuild(pf, reset_type); 526 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 527 clear_bit(ICE_PFR_REQ, pf->state); 528 wake_up(&pf->reset_wait_queue); 529 ice_reset_all_vfs(pf, true); 530 } 531 } 532 533 /** 534 * ice_reset_subtask - Set up for resetting the device and driver 535 * @pf: board private structure 536 */ 537 static void ice_reset_subtask(struct ice_pf *pf) 538 { 539 enum ice_reset_req reset_type = ICE_RESET_INVAL; 540 541 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 542 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 543 * of reset is pending and sets bits in pf->state indicating the reset 544 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 545 * prepare for pending reset if not already (for PF software-initiated 546 * global resets the software should already be prepared for it as 547 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 548 * by firmware or software on other PFs, that bit is not set so prepare 549 * for the reset now), poll for reset done, rebuild and return. 550 */ 551 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 552 /* Perform the largest reset requested */ 553 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 554 reset_type = ICE_RESET_CORER; 555 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 556 reset_type = ICE_RESET_GLOBR; 557 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 558 reset_type = ICE_RESET_EMPR; 559 /* return if no valid reset type requested */ 560 if (reset_type == ICE_RESET_INVAL) 561 return; 562 ice_prepare_for_reset(pf); 563 564 /* make sure we are ready to rebuild */ 565 if (ice_check_reset(&pf->hw)) { 566 set_bit(ICE_RESET_FAILED, pf->state); 567 } else { 568 /* done with reset. start rebuild */ 569 pf->hw.reset_ongoing = false; 570 ice_rebuild(pf, reset_type); 571 /* clear bit to resume normal operations, but 572 * ICE_NEEDS_RESTART bit is set in case rebuild failed 573 */ 574 clear_bit(ICE_RESET_OICR_RECV, pf->state); 575 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 576 clear_bit(ICE_PFR_REQ, pf->state); 577 clear_bit(ICE_CORER_REQ, pf->state); 578 clear_bit(ICE_GLOBR_REQ, pf->state); 579 wake_up(&pf->reset_wait_queue); 580 ice_reset_all_vfs(pf, true); 581 } 582 583 return; 584 } 585 586 /* No pending resets to finish processing. Check for new resets */ 587 if (test_bit(ICE_PFR_REQ, pf->state)) 588 reset_type = ICE_RESET_PFR; 589 if (test_bit(ICE_CORER_REQ, pf->state)) 590 reset_type = ICE_RESET_CORER; 591 if (test_bit(ICE_GLOBR_REQ, pf->state)) 592 reset_type = ICE_RESET_GLOBR; 593 /* If no valid reset type requested just return */ 594 if (reset_type == ICE_RESET_INVAL) 595 return; 596 597 /* reset if not already down or busy */ 598 if (!test_bit(ICE_DOWN, pf->state) && 599 !test_bit(ICE_CFG_BUSY, pf->state)) { 600 ice_do_reset(pf, reset_type); 601 } 602 } 603 604 /** 605 * ice_print_topo_conflict - print topology conflict message 606 * @vsi: the VSI whose topology status is being checked 607 */ 608 static void ice_print_topo_conflict(struct ice_vsi *vsi) 609 { 610 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 611 case ICE_AQ_LINK_TOPO_CONFLICT: 612 case ICE_AQ_LINK_MEDIA_CONFLICT: 613 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 614 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 615 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 616 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 617 break; 618 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 619 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 620 break; 621 default: 622 break; 623 } 624 } 625 626 /** 627 * ice_print_link_msg - print link up or down message 628 * @vsi: the VSI whose link status is being queried 629 * @isup: boolean for if the link is now up or down 630 */ 631 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 632 { 633 struct ice_aqc_get_phy_caps_data *caps; 634 const char *an_advertised; 635 enum ice_status status; 636 const char *fec_req; 637 const char *speed; 638 const char *fec; 639 const char *fc; 640 const char *an; 641 642 if (!vsi) 643 return; 644 645 if (vsi->current_isup == isup) 646 return; 647 648 vsi->current_isup = isup; 649 650 if (!isup) { 651 netdev_info(vsi->netdev, "NIC Link is Down\n"); 652 return; 653 } 654 655 switch (vsi->port_info->phy.link_info.link_speed) { 656 case ICE_AQ_LINK_SPEED_100GB: 657 speed = "100 G"; 658 break; 659 case ICE_AQ_LINK_SPEED_50GB: 660 speed = "50 G"; 661 break; 662 case ICE_AQ_LINK_SPEED_40GB: 663 speed = "40 G"; 664 break; 665 case ICE_AQ_LINK_SPEED_25GB: 666 speed = "25 G"; 667 break; 668 case ICE_AQ_LINK_SPEED_20GB: 669 speed = "20 G"; 670 break; 671 case ICE_AQ_LINK_SPEED_10GB: 672 speed = "10 G"; 673 break; 674 case ICE_AQ_LINK_SPEED_5GB: 675 speed = "5 G"; 676 break; 677 case ICE_AQ_LINK_SPEED_2500MB: 678 speed = "2.5 G"; 679 break; 680 case ICE_AQ_LINK_SPEED_1000MB: 681 speed = "1 G"; 682 break; 683 case ICE_AQ_LINK_SPEED_100MB: 684 speed = "100 M"; 685 break; 686 default: 687 speed = "Unknown "; 688 break; 689 } 690 691 switch (vsi->port_info->fc.current_mode) { 692 case ICE_FC_FULL: 693 fc = "Rx/Tx"; 694 break; 695 case ICE_FC_TX_PAUSE: 696 fc = "Tx"; 697 break; 698 case ICE_FC_RX_PAUSE: 699 fc = "Rx"; 700 break; 701 case ICE_FC_NONE: 702 fc = "None"; 703 break; 704 default: 705 fc = "Unknown"; 706 break; 707 } 708 709 /* Get FEC mode based on negotiated link info */ 710 switch (vsi->port_info->phy.link_info.fec_info) { 711 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 712 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 713 fec = "RS-FEC"; 714 break; 715 case ICE_AQ_LINK_25G_KR_FEC_EN: 716 fec = "FC-FEC/BASE-R"; 717 break; 718 default: 719 fec = "NONE"; 720 break; 721 } 722 723 /* check if autoneg completed, might be false due to not supported */ 724 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 725 an = "True"; 726 else 727 an = "False"; 728 729 /* Get FEC mode requested based on PHY caps last SW configuration */ 730 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 731 if (!caps) { 732 fec_req = "Unknown"; 733 an_advertised = "Unknown"; 734 goto done; 735 } 736 737 status = ice_aq_get_phy_caps(vsi->port_info, false, 738 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 739 if (status) 740 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 741 742 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 743 744 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 745 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 746 fec_req = "RS-FEC"; 747 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 748 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 749 fec_req = "FC-FEC/BASE-R"; 750 else 751 fec_req = "NONE"; 752 753 kfree(caps); 754 755 done: 756 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 757 speed, fec_req, fec, an_advertised, an, fc); 758 ice_print_topo_conflict(vsi); 759 } 760 761 /** 762 * ice_vsi_link_event - update the VSI's netdev 763 * @vsi: the VSI on which the link event occurred 764 * @link_up: whether or not the VSI needs to be set up or down 765 */ 766 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 767 { 768 if (!vsi) 769 return; 770 771 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 772 return; 773 774 if (vsi->type == ICE_VSI_PF) { 775 if (link_up == netif_carrier_ok(vsi->netdev)) 776 return; 777 778 if (link_up) { 779 netif_carrier_on(vsi->netdev); 780 netif_tx_wake_all_queues(vsi->netdev); 781 } else { 782 netif_carrier_off(vsi->netdev); 783 netif_tx_stop_all_queues(vsi->netdev); 784 } 785 } 786 } 787 788 /** 789 * ice_set_dflt_mib - send a default config MIB to the FW 790 * @pf: private PF struct 791 * 792 * This function sends a default configuration MIB to the FW. 793 * 794 * If this function errors out at any point, the driver is still able to 795 * function. The main impact is that LFC may not operate as expected. 796 * Therefore an error state in this function should be treated with a DBG 797 * message and continue on with driver rebuild/reenable. 798 */ 799 static void ice_set_dflt_mib(struct ice_pf *pf) 800 { 801 struct device *dev = ice_pf_to_dev(pf); 802 u8 mib_type, *buf, *lldpmib = NULL; 803 u16 len, typelen, offset = 0; 804 struct ice_lldp_org_tlv *tlv; 805 struct ice_hw *hw = &pf->hw; 806 u32 ouisubtype; 807 808 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 809 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 810 if (!lldpmib) { 811 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 812 __func__); 813 return; 814 } 815 816 /* Add ETS CFG TLV */ 817 tlv = (struct ice_lldp_org_tlv *)lldpmib; 818 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 819 ICE_IEEE_ETS_TLV_LEN); 820 tlv->typelen = htons(typelen); 821 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 822 ICE_IEEE_SUBTYPE_ETS_CFG); 823 tlv->ouisubtype = htonl(ouisubtype); 824 825 buf = tlv->tlvinfo; 826 buf[0] = 0; 827 828 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 829 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 830 * Octets 13 - 20 are TSA values - leave as zeros 831 */ 832 buf[5] = 0x64; 833 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 834 offset += len + 2; 835 tlv = (struct ice_lldp_org_tlv *) 836 ((char *)tlv + sizeof(tlv->typelen) + len); 837 838 /* Add ETS REC TLV */ 839 buf = tlv->tlvinfo; 840 tlv->typelen = htons(typelen); 841 842 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 843 ICE_IEEE_SUBTYPE_ETS_REC); 844 tlv->ouisubtype = htonl(ouisubtype); 845 846 /* First octet of buf is reserved 847 * Octets 1 - 4 map UP to TC - all UPs map to zero 848 * Octets 5 - 12 are BW values - set TC 0 to 100%. 849 * Octets 13 - 20 are TSA value - leave as zeros 850 */ 851 buf[5] = 0x64; 852 offset += len + 2; 853 tlv = (struct ice_lldp_org_tlv *) 854 ((char *)tlv + sizeof(tlv->typelen) + len); 855 856 /* Add PFC CFG TLV */ 857 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 858 ICE_IEEE_PFC_TLV_LEN); 859 tlv->typelen = htons(typelen); 860 861 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 862 ICE_IEEE_SUBTYPE_PFC_CFG); 863 tlv->ouisubtype = htonl(ouisubtype); 864 865 /* Octet 1 left as all zeros - PFC disabled */ 866 buf[0] = 0x08; 867 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 868 offset += len + 2; 869 870 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 871 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 872 873 kfree(lldpmib); 874 } 875 876 /** 877 * ice_check_module_power 878 * @pf: pointer to PF struct 879 * @link_cfg_err: bitmap from the link info structure 880 * 881 * check module power level returned by a previous call to aq_get_link_info 882 * and print error messages if module power level is not supported 883 */ 884 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 885 { 886 /* if module power level is supported, clear the flag */ 887 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 888 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 889 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 890 return; 891 } 892 893 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 894 * above block didn't clear this bit, there's nothing to do 895 */ 896 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 897 return; 898 899 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 900 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 901 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 902 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 903 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 904 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 905 } 906 } 907 908 /** 909 * ice_link_event - process the link event 910 * @pf: PF that the link event is associated with 911 * @pi: port_info for the port that the link event is associated with 912 * @link_up: true if the physical link is up and false if it is down 913 * @link_speed: current link speed received from the link event 914 * 915 * Returns 0 on success and negative on failure 916 */ 917 static int 918 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 919 u16 link_speed) 920 { 921 struct device *dev = ice_pf_to_dev(pf); 922 struct ice_phy_info *phy_info; 923 enum ice_status status; 924 struct ice_vsi *vsi; 925 u16 old_link_speed; 926 bool old_link; 927 928 phy_info = &pi->phy; 929 phy_info->link_info_old = phy_info->link_info; 930 931 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 932 old_link_speed = phy_info->link_info_old.link_speed; 933 934 /* update the link info structures and re-enable link events, 935 * don't bail on failure due to other book keeping needed 936 */ 937 status = ice_update_link_info(pi); 938 if (status) 939 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 940 pi->lport, ice_stat_str(status), 941 ice_aq_str(pi->hw->adminq.sq_last_status)); 942 943 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 944 945 /* Check if the link state is up after updating link info, and treat 946 * this event as an UP event since the link is actually UP now. 947 */ 948 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 949 link_up = true; 950 951 vsi = ice_get_main_vsi(pf); 952 if (!vsi || !vsi->port_info) 953 return -EINVAL; 954 955 /* turn off PHY if media was removed */ 956 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 957 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 958 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 959 ice_set_link(vsi, false); 960 } 961 962 /* if the old link up/down and speed is the same as the new */ 963 if (link_up == old_link && link_speed == old_link_speed) 964 return 0; 965 966 if (ice_is_dcb_active(pf)) { 967 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 968 ice_dcb_rebuild(pf); 969 } else { 970 if (link_up) 971 ice_set_dflt_mib(pf); 972 } 973 ice_vsi_link_event(vsi, link_up); 974 ice_print_link_msg(vsi, link_up); 975 976 ice_vc_notify_link_state(pf); 977 978 return 0; 979 } 980 981 /** 982 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 983 * @pf: board private structure 984 */ 985 static void ice_watchdog_subtask(struct ice_pf *pf) 986 { 987 int i; 988 989 /* if interface is down do nothing */ 990 if (test_bit(ICE_DOWN, pf->state) || 991 test_bit(ICE_CFG_BUSY, pf->state)) 992 return; 993 994 /* make sure we don't do these things too often */ 995 if (time_before(jiffies, 996 pf->serv_tmr_prev + pf->serv_tmr_period)) 997 return; 998 999 pf->serv_tmr_prev = jiffies; 1000 1001 /* Update the stats for active netdevs so the network stack 1002 * can look at updated numbers whenever it cares to 1003 */ 1004 ice_update_pf_stats(pf); 1005 ice_for_each_vsi(pf, i) 1006 if (pf->vsi[i] && pf->vsi[i]->netdev) 1007 ice_update_vsi_stats(pf->vsi[i]); 1008 } 1009 1010 /** 1011 * ice_init_link_events - enable/initialize link events 1012 * @pi: pointer to the port_info instance 1013 * 1014 * Returns -EIO on failure, 0 on success 1015 */ 1016 static int ice_init_link_events(struct ice_port_info *pi) 1017 { 1018 u16 mask; 1019 1020 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1021 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 1022 1023 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1024 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1025 pi->lport); 1026 return -EIO; 1027 } 1028 1029 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1030 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1031 pi->lport); 1032 return -EIO; 1033 } 1034 1035 return 0; 1036 } 1037 1038 /** 1039 * ice_handle_link_event - handle link event via ARQ 1040 * @pf: PF that the link event is associated with 1041 * @event: event structure containing link status info 1042 */ 1043 static int 1044 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1045 { 1046 struct ice_aqc_get_link_status_data *link_data; 1047 struct ice_port_info *port_info; 1048 int status; 1049 1050 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1051 port_info = pf->hw.port_info; 1052 if (!port_info) 1053 return -EINVAL; 1054 1055 status = ice_link_event(pf, port_info, 1056 !!(link_data->link_info & ICE_AQ_LINK_UP), 1057 le16_to_cpu(link_data->link_speed)); 1058 if (status) 1059 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1060 status); 1061 1062 return status; 1063 } 1064 1065 enum ice_aq_task_state { 1066 ICE_AQ_TASK_WAITING = 0, 1067 ICE_AQ_TASK_COMPLETE, 1068 ICE_AQ_TASK_CANCELED, 1069 }; 1070 1071 struct ice_aq_task { 1072 struct hlist_node entry; 1073 1074 u16 opcode; 1075 struct ice_rq_event_info *event; 1076 enum ice_aq_task_state state; 1077 }; 1078 1079 /** 1080 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1081 * @pf: pointer to the PF private structure 1082 * @opcode: the opcode to wait for 1083 * @timeout: how long to wait, in jiffies 1084 * @event: storage for the event info 1085 * 1086 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1087 * current thread will be put to sleep until the specified event occurs or 1088 * until the given timeout is reached. 1089 * 1090 * To obtain only the descriptor contents, pass an event without an allocated 1091 * msg_buf. If the complete data buffer is desired, allocate the 1092 * event->msg_buf with enough space ahead of time. 1093 * 1094 * Returns: zero on success, or a negative error code on failure. 1095 */ 1096 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1097 struct ice_rq_event_info *event) 1098 { 1099 struct device *dev = ice_pf_to_dev(pf); 1100 struct ice_aq_task *task; 1101 unsigned long start; 1102 long ret; 1103 int err; 1104 1105 task = kzalloc(sizeof(*task), GFP_KERNEL); 1106 if (!task) 1107 return -ENOMEM; 1108 1109 INIT_HLIST_NODE(&task->entry); 1110 task->opcode = opcode; 1111 task->event = event; 1112 task->state = ICE_AQ_TASK_WAITING; 1113 1114 spin_lock_bh(&pf->aq_wait_lock); 1115 hlist_add_head(&task->entry, &pf->aq_wait_list); 1116 spin_unlock_bh(&pf->aq_wait_lock); 1117 1118 start = jiffies; 1119 1120 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1121 timeout); 1122 switch (task->state) { 1123 case ICE_AQ_TASK_WAITING: 1124 err = ret < 0 ? ret : -ETIMEDOUT; 1125 break; 1126 case ICE_AQ_TASK_CANCELED: 1127 err = ret < 0 ? ret : -ECANCELED; 1128 break; 1129 case ICE_AQ_TASK_COMPLETE: 1130 err = ret < 0 ? ret : 0; 1131 break; 1132 default: 1133 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1134 err = -EINVAL; 1135 break; 1136 } 1137 1138 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1139 jiffies_to_msecs(jiffies - start), 1140 jiffies_to_msecs(timeout), 1141 opcode); 1142 1143 spin_lock_bh(&pf->aq_wait_lock); 1144 hlist_del(&task->entry); 1145 spin_unlock_bh(&pf->aq_wait_lock); 1146 kfree(task); 1147 1148 return err; 1149 } 1150 1151 /** 1152 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1153 * @pf: pointer to the PF private structure 1154 * @opcode: the opcode of the event 1155 * @event: the event to check 1156 * 1157 * Loops over the current list of pending threads waiting for an AdminQ event. 1158 * For each matching task, copy the contents of the event into the task 1159 * structure and wake up the thread. 1160 * 1161 * If multiple threads wait for the same opcode, they will all be woken up. 1162 * 1163 * Note that event->msg_buf will only be duplicated if the event has a buffer 1164 * with enough space already allocated. Otherwise, only the descriptor and 1165 * message length will be copied. 1166 * 1167 * Returns: true if an event was found, false otherwise 1168 */ 1169 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1170 struct ice_rq_event_info *event) 1171 { 1172 struct ice_aq_task *task; 1173 bool found = false; 1174 1175 spin_lock_bh(&pf->aq_wait_lock); 1176 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1177 if (task->state || task->opcode != opcode) 1178 continue; 1179 1180 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1181 task->event->msg_len = event->msg_len; 1182 1183 /* Only copy the data buffer if a destination was set */ 1184 if (task->event->msg_buf && 1185 task->event->buf_len > event->buf_len) { 1186 memcpy(task->event->msg_buf, event->msg_buf, 1187 event->buf_len); 1188 task->event->buf_len = event->buf_len; 1189 } 1190 1191 task->state = ICE_AQ_TASK_COMPLETE; 1192 found = true; 1193 } 1194 spin_unlock_bh(&pf->aq_wait_lock); 1195 1196 if (found) 1197 wake_up(&pf->aq_wait_queue); 1198 } 1199 1200 /** 1201 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1202 * @pf: the PF private structure 1203 * 1204 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1205 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1206 */ 1207 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1208 { 1209 struct ice_aq_task *task; 1210 1211 spin_lock_bh(&pf->aq_wait_lock); 1212 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1213 task->state = ICE_AQ_TASK_CANCELED; 1214 spin_unlock_bh(&pf->aq_wait_lock); 1215 1216 wake_up(&pf->aq_wait_queue); 1217 } 1218 1219 /** 1220 * __ice_clean_ctrlq - helper function to clean controlq rings 1221 * @pf: ptr to struct ice_pf 1222 * @q_type: specific Control queue type 1223 */ 1224 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1225 { 1226 struct device *dev = ice_pf_to_dev(pf); 1227 struct ice_rq_event_info event; 1228 struct ice_hw *hw = &pf->hw; 1229 struct ice_ctl_q_info *cq; 1230 u16 pending, i = 0; 1231 const char *qtype; 1232 u32 oldval, val; 1233 1234 /* Do not clean control queue if/when PF reset fails */ 1235 if (test_bit(ICE_RESET_FAILED, pf->state)) 1236 return 0; 1237 1238 switch (q_type) { 1239 case ICE_CTL_Q_ADMIN: 1240 cq = &hw->adminq; 1241 qtype = "Admin"; 1242 break; 1243 case ICE_CTL_Q_SB: 1244 cq = &hw->sbq; 1245 qtype = "Sideband"; 1246 break; 1247 case ICE_CTL_Q_MAILBOX: 1248 cq = &hw->mailboxq; 1249 qtype = "Mailbox"; 1250 /* we are going to try to detect a malicious VF, so set the 1251 * state to begin detection 1252 */ 1253 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1254 break; 1255 default: 1256 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1257 return 0; 1258 } 1259 1260 /* check for error indications - PF_xx_AxQLEN register layout for 1261 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1262 */ 1263 val = rd32(hw, cq->rq.len); 1264 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1265 PF_FW_ARQLEN_ARQCRIT_M)) { 1266 oldval = val; 1267 if (val & PF_FW_ARQLEN_ARQVFE_M) 1268 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1269 qtype); 1270 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1271 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1272 qtype); 1273 } 1274 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1275 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1276 qtype); 1277 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1278 PF_FW_ARQLEN_ARQCRIT_M); 1279 if (oldval != val) 1280 wr32(hw, cq->rq.len, val); 1281 } 1282 1283 val = rd32(hw, cq->sq.len); 1284 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1285 PF_FW_ATQLEN_ATQCRIT_M)) { 1286 oldval = val; 1287 if (val & PF_FW_ATQLEN_ATQVFE_M) 1288 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1289 qtype); 1290 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1291 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1292 qtype); 1293 } 1294 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1295 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1296 qtype); 1297 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1298 PF_FW_ATQLEN_ATQCRIT_M); 1299 if (oldval != val) 1300 wr32(hw, cq->sq.len, val); 1301 } 1302 1303 event.buf_len = cq->rq_buf_size; 1304 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1305 if (!event.msg_buf) 1306 return 0; 1307 1308 do { 1309 enum ice_status ret; 1310 u16 opcode; 1311 1312 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1313 if (ret == ICE_ERR_AQ_NO_WORK) 1314 break; 1315 if (ret) { 1316 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1317 ice_stat_str(ret)); 1318 break; 1319 } 1320 1321 opcode = le16_to_cpu(event.desc.opcode); 1322 1323 /* Notify any thread that might be waiting for this event */ 1324 ice_aq_check_events(pf, opcode, &event); 1325 1326 switch (opcode) { 1327 case ice_aqc_opc_get_link_status: 1328 if (ice_handle_link_event(pf, &event)) 1329 dev_err(dev, "Could not handle link event\n"); 1330 break; 1331 case ice_aqc_opc_event_lan_overflow: 1332 ice_vf_lan_overflow_event(pf, &event); 1333 break; 1334 case ice_mbx_opc_send_msg_to_pf: 1335 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1336 ice_vc_process_vf_msg(pf, &event); 1337 break; 1338 case ice_aqc_opc_fw_logging: 1339 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1340 break; 1341 case ice_aqc_opc_lldp_set_mib_change: 1342 ice_dcb_process_lldp_set_mib_change(pf, &event); 1343 break; 1344 default: 1345 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1346 qtype, opcode); 1347 break; 1348 } 1349 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1350 1351 kfree(event.msg_buf); 1352 1353 return pending && (i == ICE_DFLT_IRQ_WORK); 1354 } 1355 1356 /** 1357 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1358 * @hw: pointer to hardware info 1359 * @cq: control queue information 1360 * 1361 * returns true if there are pending messages in a queue, false if there aren't 1362 */ 1363 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1364 { 1365 u16 ntu; 1366 1367 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1368 return cq->rq.next_to_clean != ntu; 1369 } 1370 1371 /** 1372 * ice_clean_adminq_subtask - clean the AdminQ rings 1373 * @pf: board private structure 1374 */ 1375 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1376 { 1377 struct ice_hw *hw = &pf->hw; 1378 1379 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1380 return; 1381 1382 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1383 return; 1384 1385 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1386 1387 /* There might be a situation where new messages arrive to a control 1388 * queue between processing the last message and clearing the 1389 * EVENT_PENDING bit. So before exiting, check queue head again (using 1390 * ice_ctrlq_pending) and process new messages if any. 1391 */ 1392 if (ice_ctrlq_pending(hw, &hw->adminq)) 1393 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1394 1395 ice_flush(hw); 1396 } 1397 1398 /** 1399 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1400 * @pf: board private structure 1401 */ 1402 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1403 { 1404 struct ice_hw *hw = &pf->hw; 1405 1406 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1407 return; 1408 1409 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1410 return; 1411 1412 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1413 1414 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1415 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1416 1417 ice_flush(hw); 1418 } 1419 1420 /** 1421 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1422 * @pf: board private structure 1423 */ 1424 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1425 { 1426 struct ice_hw *hw = &pf->hw; 1427 1428 /* Nothing to do here if sideband queue is not supported */ 1429 if (!ice_is_sbq_supported(hw)) { 1430 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1431 return; 1432 } 1433 1434 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1435 return; 1436 1437 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1438 return; 1439 1440 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1441 1442 if (ice_ctrlq_pending(hw, &hw->sbq)) 1443 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1444 1445 ice_flush(hw); 1446 } 1447 1448 /** 1449 * ice_service_task_schedule - schedule the service task to wake up 1450 * @pf: board private structure 1451 * 1452 * If not already scheduled, this puts the task into the work queue. 1453 */ 1454 void ice_service_task_schedule(struct ice_pf *pf) 1455 { 1456 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1457 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1458 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1459 queue_work(ice_wq, &pf->serv_task); 1460 } 1461 1462 /** 1463 * ice_service_task_complete - finish up the service task 1464 * @pf: board private structure 1465 */ 1466 static void ice_service_task_complete(struct ice_pf *pf) 1467 { 1468 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1469 1470 /* force memory (pf->state) to sync before next service task */ 1471 smp_mb__before_atomic(); 1472 clear_bit(ICE_SERVICE_SCHED, pf->state); 1473 } 1474 1475 /** 1476 * ice_service_task_stop - stop service task and cancel works 1477 * @pf: board private structure 1478 * 1479 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1480 * 1 otherwise. 1481 */ 1482 static int ice_service_task_stop(struct ice_pf *pf) 1483 { 1484 int ret; 1485 1486 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1487 1488 if (pf->serv_tmr.function) 1489 del_timer_sync(&pf->serv_tmr); 1490 if (pf->serv_task.func) 1491 cancel_work_sync(&pf->serv_task); 1492 1493 clear_bit(ICE_SERVICE_SCHED, pf->state); 1494 return ret; 1495 } 1496 1497 /** 1498 * ice_service_task_restart - restart service task and schedule works 1499 * @pf: board private structure 1500 * 1501 * This function is needed for suspend and resume works (e.g WoL scenario) 1502 */ 1503 static void ice_service_task_restart(struct ice_pf *pf) 1504 { 1505 clear_bit(ICE_SERVICE_DIS, pf->state); 1506 ice_service_task_schedule(pf); 1507 } 1508 1509 /** 1510 * ice_service_timer - timer callback to schedule service task 1511 * @t: pointer to timer_list 1512 */ 1513 static void ice_service_timer(struct timer_list *t) 1514 { 1515 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1516 1517 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1518 ice_service_task_schedule(pf); 1519 } 1520 1521 /** 1522 * ice_handle_mdd_event - handle malicious driver detect event 1523 * @pf: pointer to the PF structure 1524 * 1525 * Called from service task. OICR interrupt handler indicates MDD event. 1526 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1527 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1528 * disable the queue, the PF can be configured to reset the VF using ethtool 1529 * private flag mdd-auto-reset-vf. 1530 */ 1531 static void ice_handle_mdd_event(struct ice_pf *pf) 1532 { 1533 struct device *dev = ice_pf_to_dev(pf); 1534 struct ice_hw *hw = &pf->hw; 1535 unsigned int i; 1536 u32 reg; 1537 1538 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1539 /* Since the VF MDD event logging is rate limited, check if 1540 * there are pending MDD events. 1541 */ 1542 ice_print_vfs_mdd_events(pf); 1543 return; 1544 } 1545 1546 /* find what triggered an MDD event */ 1547 reg = rd32(hw, GL_MDET_TX_PQM); 1548 if (reg & GL_MDET_TX_PQM_VALID_M) { 1549 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1550 GL_MDET_TX_PQM_PF_NUM_S; 1551 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1552 GL_MDET_TX_PQM_VF_NUM_S; 1553 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1554 GL_MDET_TX_PQM_MAL_TYPE_S; 1555 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1556 GL_MDET_TX_PQM_QNUM_S); 1557 1558 if (netif_msg_tx_err(pf)) 1559 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1560 event, queue, pf_num, vf_num); 1561 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1562 } 1563 1564 reg = rd32(hw, GL_MDET_TX_TCLAN); 1565 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1566 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1567 GL_MDET_TX_TCLAN_PF_NUM_S; 1568 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1569 GL_MDET_TX_TCLAN_VF_NUM_S; 1570 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1571 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1572 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1573 GL_MDET_TX_TCLAN_QNUM_S); 1574 1575 if (netif_msg_tx_err(pf)) 1576 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1577 event, queue, pf_num, vf_num); 1578 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1579 } 1580 1581 reg = rd32(hw, GL_MDET_RX); 1582 if (reg & GL_MDET_RX_VALID_M) { 1583 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1584 GL_MDET_RX_PF_NUM_S; 1585 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1586 GL_MDET_RX_VF_NUM_S; 1587 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1588 GL_MDET_RX_MAL_TYPE_S; 1589 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1590 GL_MDET_RX_QNUM_S); 1591 1592 if (netif_msg_rx_err(pf)) 1593 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1594 event, queue, pf_num, vf_num); 1595 wr32(hw, GL_MDET_RX, 0xffffffff); 1596 } 1597 1598 /* check to see if this PF caused an MDD event */ 1599 reg = rd32(hw, PF_MDET_TX_PQM); 1600 if (reg & PF_MDET_TX_PQM_VALID_M) { 1601 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1602 if (netif_msg_tx_err(pf)) 1603 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1604 } 1605 1606 reg = rd32(hw, PF_MDET_TX_TCLAN); 1607 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1608 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1609 if (netif_msg_tx_err(pf)) 1610 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1611 } 1612 1613 reg = rd32(hw, PF_MDET_RX); 1614 if (reg & PF_MDET_RX_VALID_M) { 1615 wr32(hw, PF_MDET_RX, 0xFFFF); 1616 if (netif_msg_rx_err(pf)) 1617 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1618 } 1619 1620 /* Check to see if one of the VFs caused an MDD event, and then 1621 * increment counters and set print pending 1622 */ 1623 ice_for_each_vf(pf, i) { 1624 struct ice_vf *vf = &pf->vf[i]; 1625 1626 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1627 if (reg & VP_MDET_TX_PQM_VALID_M) { 1628 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1629 vf->mdd_tx_events.count++; 1630 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1631 if (netif_msg_tx_err(pf)) 1632 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1633 i); 1634 } 1635 1636 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1637 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1638 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1639 vf->mdd_tx_events.count++; 1640 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1641 if (netif_msg_tx_err(pf)) 1642 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1643 i); 1644 } 1645 1646 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1647 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1648 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1649 vf->mdd_tx_events.count++; 1650 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1651 if (netif_msg_tx_err(pf)) 1652 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1653 i); 1654 } 1655 1656 reg = rd32(hw, VP_MDET_RX(i)); 1657 if (reg & VP_MDET_RX_VALID_M) { 1658 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1659 vf->mdd_rx_events.count++; 1660 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1661 if (netif_msg_rx_err(pf)) 1662 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1663 i); 1664 1665 /* Since the queue is disabled on VF Rx MDD events, the 1666 * PF can be configured to reset the VF through ethtool 1667 * private flag mdd-auto-reset-vf. 1668 */ 1669 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1670 /* VF MDD event counters will be cleared by 1671 * reset, so print the event prior to reset. 1672 */ 1673 ice_print_vf_rx_mdd_event(vf); 1674 ice_reset_vf(&pf->vf[i], false); 1675 } 1676 } 1677 } 1678 1679 ice_print_vfs_mdd_events(pf); 1680 } 1681 1682 /** 1683 * ice_force_phys_link_state - Force the physical link state 1684 * @vsi: VSI to force the physical link state to up/down 1685 * @link_up: true/false indicates to set the physical link to up/down 1686 * 1687 * Force the physical link state by getting the current PHY capabilities from 1688 * hardware and setting the PHY config based on the determined capabilities. If 1689 * link changes a link event will be triggered because both the Enable Automatic 1690 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1691 * 1692 * Returns 0 on success, negative on failure 1693 */ 1694 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1695 { 1696 struct ice_aqc_get_phy_caps_data *pcaps; 1697 struct ice_aqc_set_phy_cfg_data *cfg; 1698 struct ice_port_info *pi; 1699 struct device *dev; 1700 int retcode; 1701 1702 if (!vsi || !vsi->port_info || !vsi->back) 1703 return -EINVAL; 1704 if (vsi->type != ICE_VSI_PF) 1705 return 0; 1706 1707 dev = ice_pf_to_dev(vsi->back); 1708 1709 pi = vsi->port_info; 1710 1711 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1712 if (!pcaps) 1713 return -ENOMEM; 1714 1715 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1716 NULL); 1717 if (retcode) { 1718 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1719 vsi->vsi_num, retcode); 1720 retcode = -EIO; 1721 goto out; 1722 } 1723 1724 /* No change in link */ 1725 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1726 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1727 goto out; 1728 1729 /* Use the current user PHY configuration. The current user PHY 1730 * configuration is initialized during probe from PHY capabilities 1731 * software mode, and updated on set PHY configuration. 1732 */ 1733 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1734 if (!cfg) { 1735 retcode = -ENOMEM; 1736 goto out; 1737 } 1738 1739 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1740 if (link_up) 1741 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1742 else 1743 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1744 1745 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1746 if (retcode) { 1747 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1748 vsi->vsi_num, retcode); 1749 retcode = -EIO; 1750 } 1751 1752 kfree(cfg); 1753 out: 1754 kfree(pcaps); 1755 return retcode; 1756 } 1757 1758 /** 1759 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1760 * @pi: port info structure 1761 * 1762 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1763 */ 1764 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1765 { 1766 struct ice_aqc_get_phy_caps_data *pcaps; 1767 struct ice_pf *pf = pi->hw->back; 1768 enum ice_status status; 1769 int err = 0; 1770 1771 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1772 if (!pcaps) 1773 return -ENOMEM; 1774 1775 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1776 NULL); 1777 1778 if (status) { 1779 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1780 err = -EIO; 1781 goto out; 1782 } 1783 1784 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1785 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1786 1787 out: 1788 kfree(pcaps); 1789 return err; 1790 } 1791 1792 /** 1793 * ice_init_link_dflt_override - Initialize link default override 1794 * @pi: port info structure 1795 * 1796 * Initialize link default override and PHY total port shutdown during probe 1797 */ 1798 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1799 { 1800 struct ice_link_default_override_tlv *ldo; 1801 struct ice_pf *pf = pi->hw->back; 1802 1803 ldo = &pf->link_dflt_override; 1804 if (ice_get_link_default_override(ldo, pi)) 1805 return; 1806 1807 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1808 return; 1809 1810 /* Enable Total Port Shutdown (override/replace link-down-on-close 1811 * ethtool private flag) for ports with Port Disable bit set. 1812 */ 1813 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1814 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1815 } 1816 1817 /** 1818 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1819 * @pi: port info structure 1820 * 1821 * If default override is enabled, initialize the user PHY cfg speed and FEC 1822 * settings using the default override mask from the NVM. 1823 * 1824 * The PHY should only be configured with the default override settings the 1825 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1826 * is used to indicate that the user PHY cfg default override is initialized 1827 * and the PHY has not been configured with the default override settings. The 1828 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1829 * configured. 1830 * 1831 * This function should be called only if the FW doesn't support default 1832 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1833 */ 1834 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1835 { 1836 struct ice_link_default_override_tlv *ldo; 1837 struct ice_aqc_set_phy_cfg_data *cfg; 1838 struct ice_phy_info *phy = &pi->phy; 1839 struct ice_pf *pf = pi->hw->back; 1840 1841 ldo = &pf->link_dflt_override; 1842 1843 /* If link default override is enabled, use to mask NVM PHY capabilities 1844 * for speed and FEC default configuration. 1845 */ 1846 cfg = &phy->curr_user_phy_cfg; 1847 1848 if (ldo->phy_type_low || ldo->phy_type_high) { 1849 cfg->phy_type_low = pf->nvm_phy_type_lo & 1850 cpu_to_le64(ldo->phy_type_low); 1851 cfg->phy_type_high = pf->nvm_phy_type_hi & 1852 cpu_to_le64(ldo->phy_type_high); 1853 } 1854 cfg->link_fec_opt = ldo->fec_options; 1855 phy->curr_user_fec_req = ICE_FEC_AUTO; 1856 1857 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1858 } 1859 1860 /** 1861 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1862 * @pi: port info structure 1863 * 1864 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1865 * mode to default. The PHY defaults are from get PHY capabilities topology 1866 * with media so call when media is first available. An error is returned if 1867 * called when media is not available. The PHY initialization completed state is 1868 * set here. 1869 * 1870 * These configurations are used when setting PHY 1871 * configuration. The user PHY configuration is updated on set PHY 1872 * configuration. Returns 0 on success, negative on failure 1873 */ 1874 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1875 { 1876 struct ice_aqc_get_phy_caps_data *pcaps; 1877 struct ice_phy_info *phy = &pi->phy; 1878 struct ice_pf *pf = pi->hw->back; 1879 enum ice_status status; 1880 int err = 0; 1881 1882 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1883 return -EIO; 1884 1885 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1886 if (!pcaps) 1887 return -ENOMEM; 1888 1889 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1890 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1891 pcaps, NULL); 1892 else 1893 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1894 pcaps, NULL); 1895 if (status) { 1896 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1897 err = -EIO; 1898 goto err_out; 1899 } 1900 1901 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1902 1903 /* check if lenient mode is supported and enabled */ 1904 if (ice_fw_supports_link_override(pi->hw) && 1905 !(pcaps->module_compliance_enforcement & 1906 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1907 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1908 1909 /* if the FW supports default PHY configuration mode, then the driver 1910 * does not have to apply link override settings. If not, 1911 * initialize user PHY configuration with link override values 1912 */ 1913 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1914 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1915 ice_init_phy_cfg_dflt_override(pi); 1916 goto out; 1917 } 1918 } 1919 1920 /* if link default override is not enabled, set user flow control and 1921 * FEC settings based on what get_phy_caps returned 1922 */ 1923 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1924 pcaps->link_fec_options); 1925 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1926 1927 out: 1928 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1929 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1930 err_out: 1931 kfree(pcaps); 1932 return err; 1933 } 1934 1935 /** 1936 * ice_configure_phy - configure PHY 1937 * @vsi: VSI of PHY 1938 * 1939 * Set the PHY configuration. If the current PHY configuration is the same as 1940 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1941 * configure the based get PHY capabilities for topology with media. 1942 */ 1943 static int ice_configure_phy(struct ice_vsi *vsi) 1944 { 1945 struct device *dev = ice_pf_to_dev(vsi->back); 1946 struct ice_port_info *pi = vsi->port_info; 1947 struct ice_aqc_get_phy_caps_data *pcaps; 1948 struct ice_aqc_set_phy_cfg_data *cfg; 1949 struct ice_phy_info *phy = &pi->phy; 1950 struct ice_pf *pf = vsi->back; 1951 enum ice_status status; 1952 int err = 0; 1953 1954 /* Ensure we have media as we cannot configure a medialess port */ 1955 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1956 return -EPERM; 1957 1958 ice_print_topo_conflict(vsi); 1959 1960 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1961 return -EPERM; 1962 1963 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 1964 return ice_force_phys_link_state(vsi, true); 1965 1966 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1967 if (!pcaps) 1968 return -ENOMEM; 1969 1970 /* Get current PHY config */ 1971 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1972 NULL); 1973 if (status) { 1974 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1975 vsi->vsi_num, ice_stat_str(status)); 1976 err = -EIO; 1977 goto done; 1978 } 1979 1980 /* If PHY enable link is configured and configuration has not changed, 1981 * there's nothing to do 1982 */ 1983 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1984 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 1985 goto done; 1986 1987 /* Use PHY topology as baseline for configuration */ 1988 memset(pcaps, 0, sizeof(*pcaps)); 1989 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1990 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1991 pcaps, NULL); 1992 else 1993 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1994 pcaps, NULL); 1995 if (status) { 1996 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 1997 vsi->vsi_num, ice_stat_str(status)); 1998 err = -EIO; 1999 goto done; 2000 } 2001 2002 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2003 if (!cfg) { 2004 err = -ENOMEM; 2005 goto done; 2006 } 2007 2008 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2009 2010 /* Speed - If default override pending, use curr_user_phy_cfg set in 2011 * ice_init_phy_user_cfg_ldo. 2012 */ 2013 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2014 vsi->back->state)) { 2015 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2016 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2017 } else { 2018 u64 phy_low = 0, phy_high = 0; 2019 2020 ice_update_phy_type(&phy_low, &phy_high, 2021 pi->phy.curr_user_speed_req); 2022 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2023 cfg->phy_type_high = pcaps->phy_type_high & 2024 cpu_to_le64(phy_high); 2025 } 2026 2027 /* Can't provide what was requested; use PHY capabilities */ 2028 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2029 cfg->phy_type_low = pcaps->phy_type_low; 2030 cfg->phy_type_high = pcaps->phy_type_high; 2031 } 2032 2033 /* FEC */ 2034 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2035 2036 /* Can't provide what was requested; use PHY capabilities */ 2037 if (cfg->link_fec_opt != 2038 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2039 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2040 cfg->link_fec_opt = pcaps->link_fec_options; 2041 } 2042 2043 /* Flow Control - always supported; no need to check against 2044 * capabilities 2045 */ 2046 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2047 2048 /* Enable link and link update */ 2049 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2050 2051 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2052 if (status) { 2053 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 2054 vsi->vsi_num, ice_stat_str(status)); 2055 err = -EIO; 2056 } 2057 2058 kfree(cfg); 2059 done: 2060 kfree(pcaps); 2061 return err; 2062 } 2063 2064 /** 2065 * ice_check_media_subtask - Check for media 2066 * @pf: pointer to PF struct 2067 * 2068 * If media is available, then initialize PHY user configuration if it is not 2069 * been, and configure the PHY if the interface is up. 2070 */ 2071 static void ice_check_media_subtask(struct ice_pf *pf) 2072 { 2073 struct ice_port_info *pi; 2074 struct ice_vsi *vsi; 2075 int err; 2076 2077 /* No need to check for media if it's already present */ 2078 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2079 return; 2080 2081 vsi = ice_get_main_vsi(pf); 2082 if (!vsi) 2083 return; 2084 2085 /* Refresh link info and check if media is present */ 2086 pi = vsi->port_info; 2087 err = ice_update_link_info(pi); 2088 if (err) 2089 return; 2090 2091 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 2092 2093 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2094 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2095 ice_init_phy_user_cfg(pi); 2096 2097 /* PHY settings are reset on media insertion, reconfigure 2098 * PHY to preserve settings. 2099 */ 2100 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2101 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2102 return; 2103 2104 err = ice_configure_phy(vsi); 2105 if (!err) 2106 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2107 2108 /* A Link Status Event will be generated; the event handler 2109 * will complete bringing the interface up 2110 */ 2111 } 2112 } 2113 2114 /** 2115 * ice_service_task - manage and run subtasks 2116 * @work: pointer to work_struct contained by the PF struct 2117 */ 2118 static void ice_service_task(struct work_struct *work) 2119 { 2120 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2121 unsigned long start_time = jiffies; 2122 2123 /* subtasks */ 2124 2125 /* process reset requests first */ 2126 ice_reset_subtask(pf); 2127 2128 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2129 if (ice_is_reset_in_progress(pf->state) || 2130 test_bit(ICE_SUSPENDED, pf->state) || 2131 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2132 ice_service_task_complete(pf); 2133 return; 2134 } 2135 2136 ice_clean_adminq_subtask(pf); 2137 ice_check_media_subtask(pf); 2138 ice_check_for_hang_subtask(pf); 2139 ice_sync_fltr_subtask(pf); 2140 ice_handle_mdd_event(pf); 2141 ice_watchdog_subtask(pf); 2142 2143 if (ice_is_safe_mode(pf)) { 2144 ice_service_task_complete(pf); 2145 return; 2146 } 2147 2148 ice_process_vflr_event(pf); 2149 ice_clean_mailboxq_subtask(pf); 2150 ice_clean_sbq_subtask(pf); 2151 ice_sync_arfs_fltrs(pf); 2152 ice_flush_fdir_ctx(pf); 2153 2154 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2155 ice_service_task_complete(pf); 2156 2157 /* If the tasks have taken longer than one service timer period 2158 * or there is more work to be done, reset the service timer to 2159 * schedule the service task now. 2160 */ 2161 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2162 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2163 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2164 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2165 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2166 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2167 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2168 mod_timer(&pf->serv_tmr, jiffies); 2169 } 2170 2171 /** 2172 * ice_set_ctrlq_len - helper function to set controlq length 2173 * @hw: pointer to the HW instance 2174 */ 2175 static void ice_set_ctrlq_len(struct ice_hw *hw) 2176 { 2177 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2178 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2179 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2180 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2181 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2182 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2183 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2184 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2185 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2186 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2187 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2188 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2189 } 2190 2191 /** 2192 * ice_schedule_reset - schedule a reset 2193 * @pf: board private structure 2194 * @reset: reset being requested 2195 */ 2196 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2197 { 2198 struct device *dev = ice_pf_to_dev(pf); 2199 2200 /* bail out if earlier reset has failed */ 2201 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2202 dev_dbg(dev, "earlier reset has failed\n"); 2203 return -EIO; 2204 } 2205 /* bail if reset/recovery already in progress */ 2206 if (ice_is_reset_in_progress(pf->state)) { 2207 dev_dbg(dev, "Reset already in progress\n"); 2208 return -EBUSY; 2209 } 2210 2211 ice_unplug_aux_dev(pf); 2212 2213 switch (reset) { 2214 case ICE_RESET_PFR: 2215 set_bit(ICE_PFR_REQ, pf->state); 2216 break; 2217 case ICE_RESET_CORER: 2218 set_bit(ICE_CORER_REQ, pf->state); 2219 break; 2220 case ICE_RESET_GLOBR: 2221 set_bit(ICE_GLOBR_REQ, pf->state); 2222 break; 2223 default: 2224 return -EINVAL; 2225 } 2226 2227 ice_service_task_schedule(pf); 2228 return 0; 2229 } 2230 2231 /** 2232 * ice_irq_affinity_notify - Callback for affinity changes 2233 * @notify: context as to what irq was changed 2234 * @mask: the new affinity mask 2235 * 2236 * This is a callback function used by the irq_set_affinity_notifier function 2237 * so that we may register to receive changes to the irq affinity masks. 2238 */ 2239 static void 2240 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2241 const cpumask_t *mask) 2242 { 2243 struct ice_q_vector *q_vector = 2244 container_of(notify, struct ice_q_vector, affinity_notify); 2245 2246 cpumask_copy(&q_vector->affinity_mask, mask); 2247 } 2248 2249 /** 2250 * ice_irq_affinity_release - Callback for affinity notifier release 2251 * @ref: internal core kernel usage 2252 * 2253 * This is a callback function used by the irq_set_affinity_notifier function 2254 * to inform the current notification subscriber that they will no longer 2255 * receive notifications. 2256 */ 2257 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2258 2259 /** 2260 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2261 * @vsi: the VSI being configured 2262 */ 2263 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2264 { 2265 struct ice_hw *hw = &vsi->back->hw; 2266 int i; 2267 2268 ice_for_each_q_vector(vsi, i) 2269 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2270 2271 ice_flush(hw); 2272 return 0; 2273 } 2274 2275 /** 2276 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2277 * @vsi: the VSI being configured 2278 * @basename: name for the vector 2279 */ 2280 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2281 { 2282 int q_vectors = vsi->num_q_vectors; 2283 struct ice_pf *pf = vsi->back; 2284 int base = vsi->base_vector; 2285 struct device *dev; 2286 int rx_int_idx = 0; 2287 int tx_int_idx = 0; 2288 int vector, err; 2289 int irq_num; 2290 2291 dev = ice_pf_to_dev(pf); 2292 for (vector = 0; vector < q_vectors; vector++) { 2293 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2294 2295 irq_num = pf->msix_entries[base + vector].vector; 2296 2297 if (q_vector->tx.ring && q_vector->rx.ring) { 2298 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2299 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2300 tx_int_idx++; 2301 } else if (q_vector->rx.ring) { 2302 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2303 "%s-%s-%d", basename, "rx", rx_int_idx++); 2304 } else if (q_vector->tx.ring) { 2305 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2306 "%s-%s-%d", basename, "tx", tx_int_idx++); 2307 } else { 2308 /* skip this unused q_vector */ 2309 continue; 2310 } 2311 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2312 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2313 IRQF_SHARED, q_vector->name, 2314 q_vector); 2315 else 2316 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2317 0, q_vector->name, q_vector); 2318 if (err) { 2319 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2320 err); 2321 goto free_q_irqs; 2322 } 2323 2324 /* register for affinity change notifications */ 2325 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2326 struct irq_affinity_notify *affinity_notify; 2327 2328 affinity_notify = &q_vector->affinity_notify; 2329 affinity_notify->notify = ice_irq_affinity_notify; 2330 affinity_notify->release = ice_irq_affinity_release; 2331 irq_set_affinity_notifier(irq_num, affinity_notify); 2332 } 2333 2334 /* assign the mask for this irq */ 2335 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2336 } 2337 2338 vsi->irqs_ready = true; 2339 return 0; 2340 2341 free_q_irqs: 2342 while (vector) { 2343 vector--; 2344 irq_num = pf->msix_entries[base + vector].vector; 2345 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2346 irq_set_affinity_notifier(irq_num, NULL); 2347 irq_set_affinity_hint(irq_num, NULL); 2348 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2349 } 2350 return err; 2351 } 2352 2353 /** 2354 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2355 * @vsi: VSI to setup Tx rings used by XDP 2356 * 2357 * Return 0 on success and negative value on error 2358 */ 2359 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2360 { 2361 struct device *dev = ice_pf_to_dev(vsi->back); 2362 int i; 2363 2364 for (i = 0; i < vsi->num_xdp_txq; i++) { 2365 u16 xdp_q_idx = vsi->alloc_txq + i; 2366 struct ice_ring *xdp_ring; 2367 2368 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2369 2370 if (!xdp_ring) 2371 goto free_xdp_rings; 2372 2373 xdp_ring->q_index = xdp_q_idx; 2374 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2375 xdp_ring->ring_active = false; 2376 xdp_ring->vsi = vsi; 2377 xdp_ring->netdev = NULL; 2378 xdp_ring->dev = dev; 2379 xdp_ring->count = vsi->num_tx_desc; 2380 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2381 if (ice_setup_tx_ring(xdp_ring)) 2382 goto free_xdp_rings; 2383 ice_set_ring_xdp(xdp_ring); 2384 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2385 } 2386 2387 return 0; 2388 2389 free_xdp_rings: 2390 for (; i >= 0; i--) 2391 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2392 ice_free_tx_ring(vsi->xdp_rings[i]); 2393 return -ENOMEM; 2394 } 2395 2396 /** 2397 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2398 * @vsi: VSI to set the bpf prog on 2399 * @prog: the bpf prog pointer 2400 */ 2401 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2402 { 2403 struct bpf_prog *old_prog; 2404 int i; 2405 2406 old_prog = xchg(&vsi->xdp_prog, prog); 2407 if (old_prog) 2408 bpf_prog_put(old_prog); 2409 2410 ice_for_each_rxq(vsi, i) 2411 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2412 } 2413 2414 /** 2415 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2416 * @vsi: VSI to bring up Tx rings used by XDP 2417 * @prog: bpf program that will be assigned to VSI 2418 * 2419 * Return 0 on success and negative value on error 2420 */ 2421 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2422 { 2423 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2424 int xdp_rings_rem = vsi->num_xdp_txq; 2425 struct ice_pf *pf = vsi->back; 2426 struct ice_qs_cfg xdp_qs_cfg = { 2427 .qs_mutex = &pf->avail_q_mutex, 2428 .pf_map = pf->avail_txqs, 2429 .pf_map_size = pf->max_pf_txqs, 2430 .q_count = vsi->num_xdp_txq, 2431 .scatter_count = ICE_MAX_SCATTER_TXQS, 2432 .vsi_map = vsi->txq_map, 2433 .vsi_map_offset = vsi->alloc_txq, 2434 .mapping_mode = ICE_VSI_MAP_CONTIG 2435 }; 2436 enum ice_status status; 2437 struct device *dev; 2438 int i, v_idx; 2439 2440 dev = ice_pf_to_dev(pf); 2441 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2442 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2443 if (!vsi->xdp_rings) 2444 return -ENOMEM; 2445 2446 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2447 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2448 goto err_map_xdp; 2449 2450 if (ice_xdp_alloc_setup_rings(vsi)) 2451 goto clear_xdp_rings; 2452 2453 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2454 ice_for_each_q_vector(vsi, v_idx) { 2455 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2456 int xdp_rings_per_v, q_id, q_base; 2457 2458 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2459 vsi->num_q_vectors - v_idx); 2460 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2461 2462 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2463 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2464 2465 xdp_ring->q_vector = q_vector; 2466 xdp_ring->next = q_vector->tx.ring; 2467 q_vector->tx.ring = xdp_ring; 2468 } 2469 xdp_rings_rem -= xdp_rings_per_v; 2470 } 2471 2472 /* omit the scheduler update if in reset path; XDP queues will be 2473 * taken into account at the end of ice_vsi_rebuild, where 2474 * ice_cfg_vsi_lan is being called 2475 */ 2476 if (ice_is_reset_in_progress(pf->state)) 2477 return 0; 2478 2479 /* tell the Tx scheduler that right now we have 2480 * additional queues 2481 */ 2482 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2483 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2484 2485 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2486 max_txqs); 2487 if (status) { 2488 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2489 ice_stat_str(status)); 2490 goto clear_xdp_rings; 2491 } 2492 ice_vsi_assign_bpf_prog(vsi, prog); 2493 2494 return 0; 2495 clear_xdp_rings: 2496 for (i = 0; i < vsi->num_xdp_txq; i++) 2497 if (vsi->xdp_rings[i]) { 2498 kfree_rcu(vsi->xdp_rings[i], rcu); 2499 vsi->xdp_rings[i] = NULL; 2500 } 2501 2502 err_map_xdp: 2503 mutex_lock(&pf->avail_q_mutex); 2504 for (i = 0; i < vsi->num_xdp_txq; i++) { 2505 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2506 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2507 } 2508 mutex_unlock(&pf->avail_q_mutex); 2509 2510 devm_kfree(dev, vsi->xdp_rings); 2511 return -ENOMEM; 2512 } 2513 2514 /** 2515 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2516 * @vsi: VSI to remove XDP rings 2517 * 2518 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2519 * resources 2520 */ 2521 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2522 { 2523 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2524 struct ice_pf *pf = vsi->back; 2525 int i, v_idx; 2526 2527 /* q_vectors are freed in reset path so there's no point in detaching 2528 * rings; in case of rebuild being triggered not from reset bits 2529 * in pf->state won't be set, so additionally check first q_vector 2530 * against NULL 2531 */ 2532 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2533 goto free_qmap; 2534 2535 ice_for_each_q_vector(vsi, v_idx) { 2536 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2537 struct ice_ring *ring; 2538 2539 ice_for_each_ring(ring, q_vector->tx) 2540 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2541 break; 2542 2543 /* restore the value of last node prior to XDP setup */ 2544 q_vector->tx.ring = ring; 2545 } 2546 2547 free_qmap: 2548 mutex_lock(&pf->avail_q_mutex); 2549 for (i = 0; i < vsi->num_xdp_txq; i++) { 2550 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2551 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2552 } 2553 mutex_unlock(&pf->avail_q_mutex); 2554 2555 for (i = 0; i < vsi->num_xdp_txq; i++) 2556 if (vsi->xdp_rings[i]) { 2557 if (vsi->xdp_rings[i]->desc) 2558 ice_free_tx_ring(vsi->xdp_rings[i]); 2559 kfree_rcu(vsi->xdp_rings[i], rcu); 2560 vsi->xdp_rings[i] = NULL; 2561 } 2562 2563 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2564 vsi->xdp_rings = NULL; 2565 2566 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2567 return 0; 2568 2569 ice_vsi_assign_bpf_prog(vsi, NULL); 2570 2571 /* notify Tx scheduler that we destroyed XDP queues and bring 2572 * back the old number of child nodes 2573 */ 2574 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2575 max_txqs[i] = vsi->num_txq; 2576 2577 /* change number of XDP Tx queues to 0 */ 2578 vsi->num_xdp_txq = 0; 2579 2580 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2581 max_txqs); 2582 } 2583 2584 /** 2585 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2586 * @vsi: VSI to schedule napi on 2587 */ 2588 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2589 { 2590 int i; 2591 2592 ice_for_each_rxq(vsi, i) { 2593 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2594 2595 if (rx_ring->xsk_pool) 2596 napi_schedule(&rx_ring->q_vector->napi); 2597 } 2598 } 2599 2600 /** 2601 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2602 * @vsi: VSI to setup XDP for 2603 * @prog: XDP program 2604 * @extack: netlink extended ack 2605 */ 2606 static int 2607 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2608 struct netlink_ext_ack *extack) 2609 { 2610 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2611 bool if_running = netif_running(vsi->netdev); 2612 int ret = 0, xdp_ring_err = 0; 2613 2614 if (frame_size > vsi->rx_buf_len) { 2615 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2616 return -EOPNOTSUPP; 2617 } 2618 2619 /* need to stop netdev while setting up the program for Rx rings */ 2620 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2621 ret = ice_down(vsi); 2622 if (ret) { 2623 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2624 return ret; 2625 } 2626 } 2627 2628 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2629 vsi->num_xdp_txq = vsi->alloc_rxq; 2630 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2631 if (xdp_ring_err) 2632 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2633 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2634 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2635 if (xdp_ring_err) 2636 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2637 } else { 2638 ice_vsi_assign_bpf_prog(vsi, prog); 2639 } 2640 2641 if (if_running) 2642 ret = ice_up(vsi); 2643 2644 if (!ret && prog) 2645 ice_vsi_rx_napi_schedule(vsi); 2646 2647 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2648 } 2649 2650 /** 2651 * ice_xdp_safe_mode - XDP handler for safe mode 2652 * @dev: netdevice 2653 * @xdp: XDP command 2654 */ 2655 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2656 struct netdev_bpf *xdp) 2657 { 2658 NL_SET_ERR_MSG_MOD(xdp->extack, 2659 "Please provide working DDP firmware package in order to use XDP\n" 2660 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2661 return -EOPNOTSUPP; 2662 } 2663 2664 /** 2665 * ice_xdp - implements XDP handler 2666 * @dev: netdevice 2667 * @xdp: XDP command 2668 */ 2669 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2670 { 2671 struct ice_netdev_priv *np = netdev_priv(dev); 2672 struct ice_vsi *vsi = np->vsi; 2673 2674 if (vsi->type != ICE_VSI_PF) { 2675 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2676 return -EINVAL; 2677 } 2678 2679 switch (xdp->command) { 2680 case XDP_SETUP_PROG: 2681 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2682 case XDP_SETUP_XSK_POOL: 2683 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2684 xdp->xsk.queue_id); 2685 default: 2686 return -EINVAL; 2687 } 2688 } 2689 2690 /** 2691 * ice_ena_misc_vector - enable the non-queue interrupts 2692 * @pf: board private structure 2693 */ 2694 static void ice_ena_misc_vector(struct ice_pf *pf) 2695 { 2696 struct ice_hw *hw = &pf->hw; 2697 u32 val; 2698 2699 /* Disable anti-spoof detection interrupt to prevent spurious event 2700 * interrupts during a function reset. Anti-spoof functionally is 2701 * still supported. 2702 */ 2703 val = rd32(hw, GL_MDCK_TX_TDPU); 2704 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2705 wr32(hw, GL_MDCK_TX_TDPU, val); 2706 2707 /* clear things first */ 2708 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2709 rd32(hw, PFINT_OICR); /* read to clear */ 2710 2711 val = (PFINT_OICR_ECC_ERR_M | 2712 PFINT_OICR_MAL_DETECT_M | 2713 PFINT_OICR_GRST_M | 2714 PFINT_OICR_PCI_EXCEPTION_M | 2715 PFINT_OICR_VFLR_M | 2716 PFINT_OICR_HMC_ERR_M | 2717 PFINT_OICR_PE_PUSH_M | 2718 PFINT_OICR_PE_CRITERR_M); 2719 2720 wr32(hw, PFINT_OICR_ENA, val); 2721 2722 /* SW_ITR_IDX = 0, but don't change INTENA */ 2723 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2724 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2725 } 2726 2727 /** 2728 * ice_misc_intr - misc interrupt handler 2729 * @irq: interrupt number 2730 * @data: pointer to a q_vector 2731 */ 2732 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2733 { 2734 struct ice_pf *pf = (struct ice_pf *)data; 2735 struct ice_hw *hw = &pf->hw; 2736 irqreturn_t ret = IRQ_NONE; 2737 struct device *dev; 2738 u32 oicr, ena_mask; 2739 2740 dev = ice_pf_to_dev(pf); 2741 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2742 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2743 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2744 2745 oicr = rd32(hw, PFINT_OICR); 2746 ena_mask = rd32(hw, PFINT_OICR_ENA); 2747 2748 if (oicr & PFINT_OICR_SWINT_M) { 2749 ena_mask &= ~PFINT_OICR_SWINT_M; 2750 pf->sw_int_count++; 2751 } 2752 2753 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2754 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2755 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2756 } 2757 if (oicr & PFINT_OICR_VFLR_M) { 2758 /* disable any further VFLR event notifications */ 2759 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2760 u32 reg = rd32(hw, PFINT_OICR_ENA); 2761 2762 reg &= ~PFINT_OICR_VFLR_M; 2763 wr32(hw, PFINT_OICR_ENA, reg); 2764 } else { 2765 ena_mask &= ~PFINT_OICR_VFLR_M; 2766 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2767 } 2768 } 2769 2770 if (oicr & PFINT_OICR_GRST_M) { 2771 u32 reset; 2772 2773 /* we have a reset warning */ 2774 ena_mask &= ~PFINT_OICR_GRST_M; 2775 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2776 GLGEN_RSTAT_RESET_TYPE_S; 2777 2778 if (reset == ICE_RESET_CORER) 2779 pf->corer_count++; 2780 else if (reset == ICE_RESET_GLOBR) 2781 pf->globr_count++; 2782 else if (reset == ICE_RESET_EMPR) 2783 pf->empr_count++; 2784 else 2785 dev_dbg(dev, "Invalid reset type %d\n", reset); 2786 2787 /* If a reset cycle isn't already in progress, we set a bit in 2788 * pf->state so that the service task can start a reset/rebuild. 2789 */ 2790 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2791 if (reset == ICE_RESET_CORER) 2792 set_bit(ICE_CORER_RECV, pf->state); 2793 else if (reset == ICE_RESET_GLOBR) 2794 set_bit(ICE_GLOBR_RECV, pf->state); 2795 else 2796 set_bit(ICE_EMPR_RECV, pf->state); 2797 2798 /* There are couple of different bits at play here. 2799 * hw->reset_ongoing indicates whether the hardware is 2800 * in reset. This is set to true when a reset interrupt 2801 * is received and set back to false after the driver 2802 * has determined that the hardware is out of reset. 2803 * 2804 * ICE_RESET_OICR_RECV in pf->state indicates 2805 * that a post reset rebuild is required before the 2806 * driver is operational again. This is set above. 2807 * 2808 * As this is the start of the reset/rebuild cycle, set 2809 * both to indicate that. 2810 */ 2811 hw->reset_ongoing = true; 2812 } 2813 } 2814 2815 if (oicr & PFINT_OICR_TSYN_TX_M) { 2816 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 2817 ice_ptp_process_ts(pf); 2818 } 2819 2820 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 2821 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2822 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 2823 2824 /* Save EVENTs from GTSYN register */ 2825 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 2826 GLTSYN_STAT_EVENT1_M | 2827 GLTSYN_STAT_EVENT2_M); 2828 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 2829 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 2830 } 2831 2832 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2833 if (oicr & ICE_AUX_CRIT_ERR) { 2834 struct iidc_event *event; 2835 2836 ena_mask &= ~ICE_AUX_CRIT_ERR; 2837 event = kzalloc(sizeof(*event), GFP_KERNEL); 2838 if (event) { 2839 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2840 /* report the entire OICR value to AUX driver */ 2841 event->reg = oicr; 2842 ice_send_event_to_aux(pf, event); 2843 kfree(event); 2844 } 2845 } 2846 2847 /* Report any remaining unexpected interrupts */ 2848 oicr &= ena_mask; 2849 if (oicr) { 2850 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2851 /* If a critical error is pending there is no choice but to 2852 * reset the device. 2853 */ 2854 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 2855 PFINT_OICR_ECC_ERR_M)) { 2856 set_bit(ICE_PFR_REQ, pf->state); 2857 ice_service_task_schedule(pf); 2858 } 2859 } 2860 ret = IRQ_HANDLED; 2861 2862 ice_service_task_schedule(pf); 2863 ice_irq_dynamic_ena(hw, NULL, NULL); 2864 2865 return ret; 2866 } 2867 2868 /** 2869 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2870 * @hw: pointer to HW structure 2871 */ 2872 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2873 { 2874 /* disable Admin queue Interrupt causes */ 2875 wr32(hw, PFINT_FW_CTL, 2876 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2877 2878 /* disable Mailbox queue Interrupt causes */ 2879 wr32(hw, PFINT_MBX_CTL, 2880 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2881 2882 wr32(hw, PFINT_SB_CTL, 2883 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 2884 2885 /* disable Control queue Interrupt causes */ 2886 wr32(hw, PFINT_OICR_CTL, 2887 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2888 2889 ice_flush(hw); 2890 } 2891 2892 /** 2893 * ice_free_irq_msix_misc - Unroll misc vector setup 2894 * @pf: board private structure 2895 */ 2896 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2897 { 2898 struct ice_hw *hw = &pf->hw; 2899 2900 ice_dis_ctrlq_interrupts(hw); 2901 2902 /* disable OICR interrupt */ 2903 wr32(hw, PFINT_OICR_ENA, 0); 2904 ice_flush(hw); 2905 2906 if (pf->msix_entries) { 2907 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2908 devm_free_irq(ice_pf_to_dev(pf), 2909 pf->msix_entries[pf->oicr_idx].vector, pf); 2910 } 2911 2912 pf->num_avail_sw_msix += 1; 2913 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2914 } 2915 2916 /** 2917 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2918 * @hw: pointer to HW structure 2919 * @reg_idx: HW vector index to associate the control queue interrupts with 2920 */ 2921 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2922 { 2923 u32 val; 2924 2925 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2926 PFINT_OICR_CTL_CAUSE_ENA_M); 2927 wr32(hw, PFINT_OICR_CTL, val); 2928 2929 /* enable Admin queue Interrupt causes */ 2930 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2931 PFINT_FW_CTL_CAUSE_ENA_M); 2932 wr32(hw, PFINT_FW_CTL, val); 2933 2934 /* enable Mailbox queue Interrupt causes */ 2935 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2936 PFINT_MBX_CTL_CAUSE_ENA_M); 2937 wr32(hw, PFINT_MBX_CTL, val); 2938 2939 /* This enables Sideband queue Interrupt causes */ 2940 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 2941 PFINT_SB_CTL_CAUSE_ENA_M); 2942 wr32(hw, PFINT_SB_CTL, val); 2943 2944 ice_flush(hw); 2945 } 2946 2947 /** 2948 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2949 * @pf: board private structure 2950 * 2951 * This sets up the handler for MSIX 0, which is used to manage the 2952 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2953 * when in MSI or Legacy interrupt mode. 2954 */ 2955 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2956 { 2957 struct device *dev = ice_pf_to_dev(pf); 2958 struct ice_hw *hw = &pf->hw; 2959 int oicr_idx, err = 0; 2960 2961 if (!pf->int_name[0]) 2962 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2963 dev_driver_string(dev), dev_name(dev)); 2964 2965 /* Do not request IRQ but do enable OICR interrupt since settings are 2966 * lost during reset. Note that this function is called only during 2967 * rebuild path and not while reset is in progress. 2968 */ 2969 if (ice_is_reset_in_progress(pf->state)) 2970 goto skip_req_irq; 2971 2972 /* reserve one vector in irq_tracker for misc interrupts */ 2973 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2974 if (oicr_idx < 0) 2975 return oicr_idx; 2976 2977 pf->num_avail_sw_msix -= 1; 2978 pf->oicr_idx = (u16)oicr_idx; 2979 2980 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2981 ice_misc_intr, 0, pf->int_name, pf); 2982 if (err) { 2983 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2984 pf->int_name, err); 2985 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2986 pf->num_avail_sw_msix += 1; 2987 return err; 2988 } 2989 2990 skip_req_irq: 2991 ice_ena_misc_vector(pf); 2992 2993 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2994 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2995 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2996 2997 ice_flush(hw); 2998 ice_irq_dynamic_ena(hw, NULL, NULL); 2999 3000 return 0; 3001 } 3002 3003 /** 3004 * ice_napi_add - register NAPI handler for the VSI 3005 * @vsi: VSI for which NAPI handler is to be registered 3006 * 3007 * This function is only called in the driver's load path. Registering the NAPI 3008 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3009 * reset/rebuild, etc.) 3010 */ 3011 static void ice_napi_add(struct ice_vsi *vsi) 3012 { 3013 int v_idx; 3014 3015 if (!vsi->netdev) 3016 return; 3017 3018 ice_for_each_q_vector(vsi, v_idx) 3019 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3020 ice_napi_poll, NAPI_POLL_WEIGHT); 3021 } 3022 3023 /** 3024 * ice_set_ops - set netdev and ethtools ops for the given netdev 3025 * @netdev: netdev instance 3026 */ 3027 static void ice_set_ops(struct net_device *netdev) 3028 { 3029 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3030 3031 if (ice_is_safe_mode(pf)) { 3032 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3033 ice_set_ethtool_safe_mode_ops(netdev); 3034 return; 3035 } 3036 3037 netdev->netdev_ops = &ice_netdev_ops; 3038 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3039 ice_set_ethtool_ops(netdev); 3040 } 3041 3042 /** 3043 * ice_set_netdev_features - set features for the given netdev 3044 * @netdev: netdev instance 3045 */ 3046 static void ice_set_netdev_features(struct net_device *netdev) 3047 { 3048 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3049 netdev_features_t csumo_features; 3050 netdev_features_t vlano_features; 3051 netdev_features_t dflt_features; 3052 netdev_features_t tso_features; 3053 3054 if (ice_is_safe_mode(pf)) { 3055 /* safe mode */ 3056 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3057 netdev->hw_features = netdev->features; 3058 return; 3059 } 3060 3061 dflt_features = NETIF_F_SG | 3062 NETIF_F_HIGHDMA | 3063 NETIF_F_NTUPLE | 3064 NETIF_F_RXHASH; 3065 3066 csumo_features = NETIF_F_RXCSUM | 3067 NETIF_F_IP_CSUM | 3068 NETIF_F_SCTP_CRC | 3069 NETIF_F_IPV6_CSUM; 3070 3071 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3072 NETIF_F_HW_VLAN_CTAG_TX | 3073 NETIF_F_HW_VLAN_CTAG_RX; 3074 3075 tso_features = NETIF_F_TSO | 3076 NETIF_F_TSO_ECN | 3077 NETIF_F_TSO6 | 3078 NETIF_F_GSO_GRE | 3079 NETIF_F_GSO_UDP_TUNNEL | 3080 NETIF_F_GSO_GRE_CSUM | 3081 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3082 NETIF_F_GSO_PARTIAL | 3083 NETIF_F_GSO_IPXIP4 | 3084 NETIF_F_GSO_IPXIP6 | 3085 NETIF_F_GSO_UDP_L4; 3086 3087 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3088 NETIF_F_GSO_GRE_CSUM; 3089 /* set features that user can change */ 3090 netdev->hw_features = dflt_features | csumo_features | 3091 vlano_features | tso_features; 3092 3093 /* add support for HW_CSUM on packets with MPLS header */ 3094 netdev->mpls_features = NETIF_F_HW_CSUM; 3095 3096 /* enable features */ 3097 netdev->features |= netdev->hw_features; 3098 /* encap and VLAN devices inherit default, csumo and tso features */ 3099 netdev->hw_enc_features |= dflt_features | csumo_features | 3100 tso_features; 3101 netdev->vlan_features |= dflt_features | csumo_features | 3102 tso_features; 3103 } 3104 3105 /** 3106 * ice_cfg_netdev - Allocate, configure and register a netdev 3107 * @vsi: the VSI associated with the new netdev 3108 * 3109 * Returns 0 on success, negative value on failure 3110 */ 3111 static int ice_cfg_netdev(struct ice_vsi *vsi) 3112 { 3113 struct ice_netdev_priv *np; 3114 struct net_device *netdev; 3115 u8 mac_addr[ETH_ALEN]; 3116 3117 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3118 vsi->alloc_rxq); 3119 if (!netdev) 3120 return -ENOMEM; 3121 3122 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3123 vsi->netdev = netdev; 3124 np = netdev_priv(netdev); 3125 np->vsi = vsi; 3126 3127 ice_set_netdev_features(netdev); 3128 3129 ice_set_ops(netdev); 3130 3131 if (vsi->type == ICE_VSI_PF) { 3132 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3133 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3134 ether_addr_copy(netdev->dev_addr, mac_addr); 3135 ether_addr_copy(netdev->perm_addr, mac_addr); 3136 } 3137 3138 netdev->priv_flags |= IFF_UNICAST_FLT; 3139 3140 /* Setup netdev TC information */ 3141 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3142 3143 /* setup watchdog timeout value to be 5 second */ 3144 netdev->watchdog_timeo = 5 * HZ; 3145 3146 netdev->min_mtu = ETH_MIN_MTU; 3147 netdev->max_mtu = ICE_MAX_MTU; 3148 3149 return 0; 3150 } 3151 3152 /** 3153 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3154 * @lut: Lookup table 3155 * @rss_table_size: Lookup table size 3156 * @rss_size: Range of queue number for hashing 3157 */ 3158 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3159 { 3160 u16 i; 3161 3162 for (i = 0; i < rss_table_size; i++) 3163 lut[i] = i % rss_size; 3164 } 3165 3166 /** 3167 * ice_pf_vsi_setup - Set up a PF VSI 3168 * @pf: board private structure 3169 * @pi: pointer to the port_info instance 3170 * 3171 * Returns pointer to the successfully allocated VSI software struct 3172 * on success, otherwise returns NULL on failure. 3173 */ 3174 static struct ice_vsi * 3175 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3176 { 3177 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3178 } 3179 3180 /** 3181 * ice_ctrl_vsi_setup - Set up a control VSI 3182 * @pf: board private structure 3183 * @pi: pointer to the port_info instance 3184 * 3185 * Returns pointer to the successfully allocated VSI software struct 3186 * on success, otherwise returns NULL on failure. 3187 */ 3188 static struct ice_vsi * 3189 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3190 { 3191 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3192 } 3193 3194 /** 3195 * ice_lb_vsi_setup - Set up a loopback VSI 3196 * @pf: board private structure 3197 * @pi: pointer to the port_info instance 3198 * 3199 * Returns pointer to the successfully allocated VSI software struct 3200 * on success, otherwise returns NULL on failure. 3201 */ 3202 struct ice_vsi * 3203 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3204 { 3205 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3206 } 3207 3208 /** 3209 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3210 * @netdev: network interface to be adjusted 3211 * @proto: unused protocol 3212 * @vid: VLAN ID to be added 3213 * 3214 * net_device_ops implementation for adding VLAN IDs 3215 */ 3216 static int 3217 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3218 u16 vid) 3219 { 3220 struct ice_netdev_priv *np = netdev_priv(netdev); 3221 struct ice_vsi *vsi = np->vsi; 3222 int ret; 3223 3224 /* VLAN 0 is added by default during load/reset */ 3225 if (!vid) 3226 return 0; 3227 3228 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3229 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3230 ret = ice_cfg_vlan_pruning(vsi, true, false); 3231 if (ret) 3232 return ret; 3233 } 3234 3235 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3236 * packets aren't pruned by the device's internal switch on Rx 3237 */ 3238 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3239 if (!ret) 3240 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3241 3242 return ret; 3243 } 3244 3245 /** 3246 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3247 * @netdev: network interface to be adjusted 3248 * @proto: unused protocol 3249 * @vid: VLAN ID to be removed 3250 * 3251 * net_device_ops implementation for removing VLAN IDs 3252 */ 3253 static int 3254 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3255 u16 vid) 3256 { 3257 struct ice_netdev_priv *np = netdev_priv(netdev); 3258 struct ice_vsi *vsi = np->vsi; 3259 int ret; 3260 3261 /* don't allow removal of VLAN 0 */ 3262 if (!vid) 3263 return 0; 3264 3265 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3266 * information 3267 */ 3268 ret = ice_vsi_kill_vlan(vsi, vid); 3269 if (ret) 3270 return ret; 3271 3272 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3273 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3274 ret = ice_cfg_vlan_pruning(vsi, false, false); 3275 3276 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3277 return ret; 3278 } 3279 3280 /** 3281 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3282 * @pf: board private structure 3283 * 3284 * Returns 0 on success, negative value on failure 3285 */ 3286 static int ice_setup_pf_sw(struct ice_pf *pf) 3287 { 3288 struct ice_vsi *vsi; 3289 int status = 0; 3290 3291 if (ice_is_reset_in_progress(pf->state)) 3292 return -EBUSY; 3293 3294 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3295 if (!vsi) 3296 return -ENOMEM; 3297 3298 status = ice_cfg_netdev(vsi); 3299 if (status) { 3300 status = -ENODEV; 3301 goto unroll_vsi_setup; 3302 } 3303 /* netdev has to be configured before setting frame size */ 3304 ice_vsi_cfg_frame_size(vsi); 3305 3306 /* Setup DCB netlink interface */ 3307 ice_dcbnl_setup(vsi); 3308 3309 /* registering the NAPI handler requires both the queues and 3310 * netdev to be created, which are done in ice_pf_vsi_setup() 3311 * and ice_cfg_netdev() respectively 3312 */ 3313 ice_napi_add(vsi); 3314 3315 status = ice_set_cpu_rx_rmap(vsi); 3316 if (status) { 3317 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3318 vsi->vsi_num, status); 3319 status = -EINVAL; 3320 goto unroll_napi_add; 3321 } 3322 status = ice_init_mac_fltr(pf); 3323 if (status) 3324 goto free_cpu_rx_map; 3325 3326 return status; 3327 3328 free_cpu_rx_map: 3329 ice_free_cpu_rx_rmap(vsi); 3330 3331 unroll_napi_add: 3332 if (vsi) { 3333 ice_napi_del(vsi); 3334 if (vsi->netdev) { 3335 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3336 free_netdev(vsi->netdev); 3337 vsi->netdev = NULL; 3338 } 3339 } 3340 3341 unroll_vsi_setup: 3342 ice_vsi_release(vsi); 3343 return status; 3344 } 3345 3346 /** 3347 * ice_get_avail_q_count - Get count of queues in use 3348 * @pf_qmap: bitmap to get queue use count from 3349 * @lock: pointer to a mutex that protects access to pf_qmap 3350 * @size: size of the bitmap 3351 */ 3352 static u16 3353 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3354 { 3355 unsigned long bit; 3356 u16 count = 0; 3357 3358 mutex_lock(lock); 3359 for_each_clear_bit(bit, pf_qmap, size) 3360 count++; 3361 mutex_unlock(lock); 3362 3363 return count; 3364 } 3365 3366 /** 3367 * ice_get_avail_txq_count - Get count of Tx queues in use 3368 * @pf: pointer to an ice_pf instance 3369 */ 3370 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3371 { 3372 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3373 pf->max_pf_txqs); 3374 } 3375 3376 /** 3377 * ice_get_avail_rxq_count - Get count of Rx queues in use 3378 * @pf: pointer to an ice_pf instance 3379 */ 3380 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3381 { 3382 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3383 pf->max_pf_rxqs); 3384 } 3385 3386 /** 3387 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3388 * @pf: board private structure to initialize 3389 */ 3390 static void ice_deinit_pf(struct ice_pf *pf) 3391 { 3392 ice_service_task_stop(pf); 3393 mutex_destroy(&pf->sw_mutex); 3394 mutex_destroy(&pf->tc_mutex); 3395 mutex_destroy(&pf->avail_q_mutex); 3396 3397 if (pf->avail_txqs) { 3398 bitmap_free(pf->avail_txqs); 3399 pf->avail_txqs = NULL; 3400 } 3401 3402 if (pf->avail_rxqs) { 3403 bitmap_free(pf->avail_rxqs); 3404 pf->avail_rxqs = NULL; 3405 } 3406 3407 if (pf->ptp.clock) 3408 ptp_clock_unregister(pf->ptp.clock); 3409 } 3410 3411 /** 3412 * ice_set_pf_caps - set PFs capability flags 3413 * @pf: pointer to the PF instance 3414 */ 3415 static void ice_set_pf_caps(struct ice_pf *pf) 3416 { 3417 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3418 3419 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3420 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3421 if (func_caps->common_cap.rdma) { 3422 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3423 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3424 } 3425 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3426 if (func_caps->common_cap.dcb) 3427 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3428 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3429 if (func_caps->common_cap.sr_iov_1_1) { 3430 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3431 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3432 ICE_MAX_VF_COUNT); 3433 } 3434 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3435 if (func_caps->common_cap.rss_table_size) 3436 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3437 3438 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3439 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3440 u16 unused; 3441 3442 /* ctrl_vsi_idx will be set to a valid value when flow director 3443 * is setup by ice_init_fdir 3444 */ 3445 pf->ctrl_vsi_idx = ICE_NO_VSI; 3446 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3447 /* force guaranteed filter pool for PF */ 3448 ice_alloc_fd_guar_item(&pf->hw, &unused, 3449 func_caps->fd_fltr_guar); 3450 /* force shared filter pool for PF */ 3451 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3452 func_caps->fd_fltr_best_effort); 3453 } 3454 3455 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3456 if (func_caps->common_cap.ieee_1588) 3457 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3458 3459 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3460 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3461 } 3462 3463 /** 3464 * ice_init_pf - Initialize general software structures (struct ice_pf) 3465 * @pf: board private structure to initialize 3466 */ 3467 static int ice_init_pf(struct ice_pf *pf) 3468 { 3469 ice_set_pf_caps(pf); 3470 3471 mutex_init(&pf->sw_mutex); 3472 mutex_init(&pf->tc_mutex); 3473 3474 INIT_HLIST_HEAD(&pf->aq_wait_list); 3475 spin_lock_init(&pf->aq_wait_lock); 3476 init_waitqueue_head(&pf->aq_wait_queue); 3477 3478 init_waitqueue_head(&pf->reset_wait_queue); 3479 3480 /* setup service timer and periodic service task */ 3481 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3482 pf->serv_tmr_period = HZ; 3483 INIT_WORK(&pf->serv_task, ice_service_task); 3484 clear_bit(ICE_SERVICE_SCHED, pf->state); 3485 3486 mutex_init(&pf->avail_q_mutex); 3487 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3488 if (!pf->avail_txqs) 3489 return -ENOMEM; 3490 3491 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3492 if (!pf->avail_rxqs) { 3493 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3494 pf->avail_txqs = NULL; 3495 return -ENOMEM; 3496 } 3497 3498 return 0; 3499 } 3500 3501 /** 3502 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3503 * @pf: board private structure 3504 * 3505 * compute the number of MSIX vectors required (v_budget) and request from 3506 * the OS. Return the number of vectors reserved or negative on failure 3507 */ 3508 static int ice_ena_msix_range(struct ice_pf *pf) 3509 { 3510 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3511 struct device *dev = ice_pf_to_dev(pf); 3512 int needed, err, i; 3513 3514 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3515 num_cpus = num_online_cpus(); 3516 3517 /* reserve for LAN miscellaneous handler */ 3518 needed = ICE_MIN_LAN_OICR_MSIX; 3519 if (v_left < needed) 3520 goto no_hw_vecs_left_err; 3521 v_budget += needed; 3522 v_left -= needed; 3523 3524 /* reserve for flow director */ 3525 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3526 needed = ICE_FDIR_MSIX; 3527 if (v_left < needed) 3528 goto no_hw_vecs_left_err; 3529 v_budget += needed; 3530 v_left -= needed; 3531 } 3532 3533 /* total used for non-traffic vectors */ 3534 v_other = v_budget; 3535 3536 /* reserve vectors for LAN traffic */ 3537 needed = num_cpus; 3538 if (v_left < needed) 3539 goto no_hw_vecs_left_err; 3540 pf->num_lan_msix = needed; 3541 v_budget += needed; 3542 v_left -= needed; 3543 3544 /* reserve vectors for RDMA auxiliary driver */ 3545 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3546 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3547 if (v_left < needed) 3548 goto no_hw_vecs_left_err; 3549 pf->num_rdma_msix = needed; 3550 v_budget += needed; 3551 v_left -= needed; 3552 } 3553 3554 pf->msix_entries = devm_kcalloc(dev, v_budget, 3555 sizeof(*pf->msix_entries), GFP_KERNEL); 3556 if (!pf->msix_entries) { 3557 err = -ENOMEM; 3558 goto exit_err; 3559 } 3560 3561 for (i = 0; i < v_budget; i++) 3562 pf->msix_entries[i].entry = i; 3563 3564 /* actually reserve the vectors */ 3565 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3566 ICE_MIN_MSIX, v_budget); 3567 if (v_actual < 0) { 3568 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3569 err = v_actual; 3570 goto msix_err; 3571 } 3572 3573 if (v_actual < v_budget) { 3574 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3575 v_budget, v_actual); 3576 3577 if (v_actual < ICE_MIN_MSIX) { 3578 /* error if we can't get minimum vectors */ 3579 pci_disable_msix(pf->pdev); 3580 err = -ERANGE; 3581 goto msix_err; 3582 } else { 3583 int v_remain = v_actual - v_other; 3584 int v_rdma = 0, v_min_rdma = 0; 3585 3586 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3587 /* Need at least 1 interrupt in addition to 3588 * AEQ MSIX 3589 */ 3590 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3591 v_min_rdma = ICE_MIN_RDMA_MSIX; 3592 } 3593 3594 if (v_actual == ICE_MIN_MSIX || 3595 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3596 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3597 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3598 3599 pf->num_rdma_msix = 0; 3600 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3601 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3602 (v_remain - v_rdma < v_rdma)) { 3603 /* Support minimum RDMA and give remaining 3604 * vectors to LAN MSIX 3605 */ 3606 pf->num_rdma_msix = v_min_rdma; 3607 pf->num_lan_msix = v_remain - v_min_rdma; 3608 } else { 3609 /* Split remaining MSIX with RDMA after 3610 * accounting for AEQ MSIX 3611 */ 3612 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3613 ICE_RDMA_NUM_AEQ_MSIX; 3614 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3615 } 3616 3617 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3618 pf->num_lan_msix); 3619 3620 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3621 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3622 pf->num_rdma_msix); 3623 } 3624 } 3625 3626 return v_actual; 3627 3628 msix_err: 3629 devm_kfree(dev, pf->msix_entries); 3630 goto exit_err; 3631 3632 no_hw_vecs_left_err: 3633 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3634 needed, v_left); 3635 err = -ERANGE; 3636 exit_err: 3637 pf->num_rdma_msix = 0; 3638 pf->num_lan_msix = 0; 3639 return err; 3640 } 3641 3642 /** 3643 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3644 * @pf: board private structure 3645 */ 3646 static void ice_dis_msix(struct ice_pf *pf) 3647 { 3648 pci_disable_msix(pf->pdev); 3649 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3650 pf->msix_entries = NULL; 3651 } 3652 3653 /** 3654 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3655 * @pf: board private structure 3656 */ 3657 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3658 { 3659 ice_dis_msix(pf); 3660 3661 if (pf->irq_tracker) { 3662 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3663 pf->irq_tracker = NULL; 3664 } 3665 } 3666 3667 /** 3668 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3669 * @pf: board private structure to initialize 3670 */ 3671 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3672 { 3673 int vectors; 3674 3675 vectors = ice_ena_msix_range(pf); 3676 3677 if (vectors < 0) 3678 return vectors; 3679 3680 /* set up vector assignment tracking */ 3681 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3682 struct_size(pf->irq_tracker, list, vectors), 3683 GFP_KERNEL); 3684 if (!pf->irq_tracker) { 3685 ice_dis_msix(pf); 3686 return -ENOMEM; 3687 } 3688 3689 /* populate SW interrupts pool with number of OS granted IRQs. */ 3690 pf->num_avail_sw_msix = (u16)vectors; 3691 pf->irq_tracker->num_entries = (u16)vectors; 3692 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3693 3694 return 0; 3695 } 3696 3697 /** 3698 * ice_is_wol_supported - check if WoL is supported 3699 * @hw: pointer to hardware info 3700 * 3701 * Check if WoL is supported based on the HW configuration. 3702 * Returns true if NVM supports and enables WoL for this port, false otherwise 3703 */ 3704 bool ice_is_wol_supported(struct ice_hw *hw) 3705 { 3706 u16 wol_ctrl; 3707 3708 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3709 * word) indicates WoL is not supported on the corresponding PF ID. 3710 */ 3711 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3712 return false; 3713 3714 return !(BIT(hw->port_info->lport) & wol_ctrl); 3715 } 3716 3717 /** 3718 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3719 * @vsi: VSI being changed 3720 * @new_rx: new number of Rx queues 3721 * @new_tx: new number of Tx queues 3722 * 3723 * Only change the number of queues if new_tx, or new_rx is non-0. 3724 * 3725 * Returns 0 on success. 3726 */ 3727 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3728 { 3729 struct ice_pf *pf = vsi->back; 3730 int err = 0, timeout = 50; 3731 3732 if (!new_rx && !new_tx) 3733 return -EINVAL; 3734 3735 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3736 timeout--; 3737 if (!timeout) 3738 return -EBUSY; 3739 usleep_range(1000, 2000); 3740 } 3741 3742 if (new_tx) 3743 vsi->req_txq = (u16)new_tx; 3744 if (new_rx) 3745 vsi->req_rxq = (u16)new_rx; 3746 3747 /* set for the next time the netdev is started */ 3748 if (!netif_running(vsi->netdev)) { 3749 ice_vsi_rebuild(vsi, false); 3750 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3751 goto done; 3752 } 3753 3754 ice_vsi_close(vsi); 3755 ice_vsi_rebuild(vsi, false); 3756 ice_pf_dcb_recfg(pf); 3757 ice_vsi_open(vsi); 3758 done: 3759 clear_bit(ICE_CFG_BUSY, pf->state); 3760 return err; 3761 } 3762 3763 /** 3764 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3765 * @pf: PF to configure 3766 * 3767 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3768 * VSI can still Tx/Rx VLAN tagged packets. 3769 */ 3770 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3771 { 3772 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3773 struct ice_vsi_ctx *ctxt; 3774 enum ice_status status; 3775 struct ice_hw *hw; 3776 3777 if (!vsi) 3778 return; 3779 3780 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3781 if (!ctxt) 3782 return; 3783 3784 hw = &pf->hw; 3785 ctxt->info = vsi->info; 3786 3787 ctxt->info.valid_sections = 3788 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3789 ICE_AQ_VSI_PROP_SECURITY_VALID | 3790 ICE_AQ_VSI_PROP_SW_VALID); 3791 3792 /* disable VLAN anti-spoof */ 3793 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3794 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3795 3796 /* disable VLAN pruning and keep all other settings */ 3797 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3798 3799 /* allow all VLANs on Tx and don't strip on Rx */ 3800 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3801 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3802 3803 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3804 if (status) { 3805 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3806 ice_stat_str(status), 3807 ice_aq_str(hw->adminq.sq_last_status)); 3808 } else { 3809 vsi->info.sec_flags = ctxt->info.sec_flags; 3810 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3811 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3812 } 3813 3814 kfree(ctxt); 3815 } 3816 3817 /** 3818 * ice_log_pkg_init - log result of DDP package load 3819 * @hw: pointer to hardware info 3820 * @status: status of package load 3821 */ 3822 static void 3823 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3824 { 3825 struct ice_pf *pf = (struct ice_pf *)hw->back; 3826 struct device *dev = ice_pf_to_dev(pf); 3827 3828 switch (*status) { 3829 case ICE_SUCCESS: 3830 /* The package download AdminQ command returned success because 3831 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3832 * already a package loaded on the device. 3833 */ 3834 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3835 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3836 hw->pkg_ver.update == hw->active_pkg_ver.update && 3837 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3838 !memcmp(hw->pkg_name, hw->active_pkg_name, 3839 sizeof(hw->pkg_name))) { 3840 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3841 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3842 hw->active_pkg_name, 3843 hw->active_pkg_ver.major, 3844 hw->active_pkg_ver.minor, 3845 hw->active_pkg_ver.update, 3846 hw->active_pkg_ver.draft); 3847 else 3848 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3849 hw->active_pkg_name, 3850 hw->active_pkg_ver.major, 3851 hw->active_pkg_ver.minor, 3852 hw->active_pkg_ver.update, 3853 hw->active_pkg_ver.draft); 3854 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3855 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3856 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3857 hw->active_pkg_name, 3858 hw->active_pkg_ver.major, 3859 hw->active_pkg_ver.minor, 3860 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3861 *status = ICE_ERR_NOT_SUPPORTED; 3862 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3863 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3864 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3865 hw->active_pkg_name, 3866 hw->active_pkg_ver.major, 3867 hw->active_pkg_ver.minor, 3868 hw->active_pkg_ver.update, 3869 hw->active_pkg_ver.draft, 3870 hw->pkg_name, 3871 hw->pkg_ver.major, 3872 hw->pkg_ver.minor, 3873 hw->pkg_ver.update, 3874 hw->pkg_ver.draft); 3875 } else { 3876 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3877 *status = ICE_ERR_NOT_SUPPORTED; 3878 } 3879 break; 3880 case ICE_ERR_FW_DDP_MISMATCH: 3881 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3882 break; 3883 case ICE_ERR_BUF_TOO_SHORT: 3884 case ICE_ERR_CFG: 3885 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3886 break; 3887 case ICE_ERR_NOT_SUPPORTED: 3888 /* Package File version not supported */ 3889 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3890 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3891 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3892 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3893 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3894 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3895 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3896 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3897 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3898 break; 3899 case ICE_ERR_AQ_ERROR: 3900 switch (hw->pkg_dwnld_status) { 3901 case ICE_AQ_RC_ENOSEC: 3902 case ICE_AQ_RC_EBADSIG: 3903 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3904 return; 3905 case ICE_AQ_RC_ESVN: 3906 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3907 return; 3908 case ICE_AQ_RC_EBADMAN: 3909 case ICE_AQ_RC_EBADBUF: 3910 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3911 /* poll for reset to complete */ 3912 if (ice_check_reset(hw)) 3913 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3914 return; 3915 default: 3916 break; 3917 } 3918 fallthrough; 3919 default: 3920 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3921 *status); 3922 break; 3923 } 3924 } 3925 3926 /** 3927 * ice_load_pkg - load/reload the DDP Package file 3928 * @firmware: firmware structure when firmware requested or NULL for reload 3929 * @pf: pointer to the PF instance 3930 * 3931 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3932 * initialize HW tables. 3933 */ 3934 static void 3935 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3936 { 3937 enum ice_status status = ICE_ERR_PARAM; 3938 struct device *dev = ice_pf_to_dev(pf); 3939 struct ice_hw *hw = &pf->hw; 3940 3941 /* Load DDP Package */ 3942 if (firmware && !hw->pkg_copy) { 3943 status = ice_copy_and_init_pkg(hw, firmware->data, 3944 firmware->size); 3945 ice_log_pkg_init(hw, &status); 3946 } else if (!firmware && hw->pkg_copy) { 3947 /* Reload package during rebuild after CORER/GLOBR reset */ 3948 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3949 ice_log_pkg_init(hw, &status); 3950 } else { 3951 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3952 } 3953 3954 if (status) { 3955 /* Safe Mode */ 3956 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3957 return; 3958 } 3959 3960 /* Successful download package is the precondition for advanced 3961 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3962 */ 3963 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3964 } 3965 3966 /** 3967 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3968 * @pf: pointer to the PF structure 3969 * 3970 * There is no error returned here because the driver should be able to handle 3971 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3972 * specifically with Tx. 3973 */ 3974 static void ice_verify_cacheline_size(struct ice_pf *pf) 3975 { 3976 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3977 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3978 ICE_CACHE_LINE_BYTES); 3979 } 3980 3981 /** 3982 * ice_send_version - update firmware with driver version 3983 * @pf: PF struct 3984 * 3985 * Returns ICE_SUCCESS on success, else error code 3986 */ 3987 static enum ice_status ice_send_version(struct ice_pf *pf) 3988 { 3989 struct ice_driver_ver dv; 3990 3991 dv.major_ver = 0xff; 3992 dv.minor_ver = 0xff; 3993 dv.build_ver = 0xff; 3994 dv.subbuild_ver = 0; 3995 strscpy((char *)dv.driver_string, UTS_RELEASE, 3996 sizeof(dv.driver_string)); 3997 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3998 } 3999 4000 /** 4001 * ice_init_fdir - Initialize flow director VSI and configuration 4002 * @pf: pointer to the PF instance 4003 * 4004 * returns 0 on success, negative on error 4005 */ 4006 static int ice_init_fdir(struct ice_pf *pf) 4007 { 4008 struct device *dev = ice_pf_to_dev(pf); 4009 struct ice_vsi *ctrl_vsi; 4010 int err; 4011 4012 /* Side Band Flow Director needs to have a control VSI. 4013 * Allocate it and store it in the PF. 4014 */ 4015 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4016 if (!ctrl_vsi) { 4017 dev_dbg(dev, "could not create control VSI\n"); 4018 return -ENOMEM; 4019 } 4020 4021 err = ice_vsi_open_ctrl(ctrl_vsi); 4022 if (err) { 4023 dev_dbg(dev, "could not open control VSI\n"); 4024 goto err_vsi_open; 4025 } 4026 4027 mutex_init(&pf->hw.fdir_fltr_lock); 4028 4029 err = ice_fdir_create_dflt_rules(pf); 4030 if (err) 4031 goto err_fdir_rule; 4032 4033 return 0; 4034 4035 err_fdir_rule: 4036 ice_fdir_release_flows(&pf->hw); 4037 ice_vsi_close(ctrl_vsi); 4038 err_vsi_open: 4039 ice_vsi_release(ctrl_vsi); 4040 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4041 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4042 pf->ctrl_vsi_idx = ICE_NO_VSI; 4043 } 4044 return err; 4045 } 4046 4047 /** 4048 * ice_get_opt_fw_name - return optional firmware file name or NULL 4049 * @pf: pointer to the PF instance 4050 */ 4051 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4052 { 4053 /* Optional firmware name same as default with additional dash 4054 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4055 */ 4056 struct pci_dev *pdev = pf->pdev; 4057 char *opt_fw_filename; 4058 u64 dsn; 4059 4060 /* Determine the name of the optional file using the DSN (two 4061 * dwords following the start of the DSN Capability). 4062 */ 4063 dsn = pci_get_dsn(pdev); 4064 if (!dsn) 4065 return NULL; 4066 4067 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4068 if (!opt_fw_filename) 4069 return NULL; 4070 4071 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4072 ICE_DDP_PKG_PATH, dsn); 4073 4074 return opt_fw_filename; 4075 } 4076 4077 /** 4078 * ice_request_fw - Device initialization routine 4079 * @pf: pointer to the PF instance 4080 */ 4081 static void ice_request_fw(struct ice_pf *pf) 4082 { 4083 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4084 const struct firmware *firmware = NULL; 4085 struct device *dev = ice_pf_to_dev(pf); 4086 int err = 0; 4087 4088 /* optional device-specific DDP (if present) overrides the default DDP 4089 * package file. kernel logs a debug message if the file doesn't exist, 4090 * and warning messages for other errors. 4091 */ 4092 if (opt_fw_filename) { 4093 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4094 if (err) { 4095 kfree(opt_fw_filename); 4096 goto dflt_pkg_load; 4097 } 4098 4099 /* request for firmware was successful. Download to device */ 4100 ice_load_pkg(firmware, pf); 4101 kfree(opt_fw_filename); 4102 release_firmware(firmware); 4103 return; 4104 } 4105 4106 dflt_pkg_load: 4107 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4108 if (err) { 4109 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4110 return; 4111 } 4112 4113 /* request for firmware was successful. Download to device */ 4114 ice_load_pkg(firmware, pf); 4115 release_firmware(firmware); 4116 } 4117 4118 /** 4119 * ice_print_wake_reason - show the wake up cause in the log 4120 * @pf: pointer to the PF struct 4121 */ 4122 static void ice_print_wake_reason(struct ice_pf *pf) 4123 { 4124 u32 wus = pf->wakeup_reason; 4125 const char *wake_str; 4126 4127 /* if no wake event, nothing to print */ 4128 if (!wus) 4129 return; 4130 4131 if (wus & PFPM_WUS_LNKC_M) 4132 wake_str = "Link\n"; 4133 else if (wus & PFPM_WUS_MAG_M) 4134 wake_str = "Magic Packet\n"; 4135 else if (wus & PFPM_WUS_MNG_M) 4136 wake_str = "Management\n"; 4137 else if (wus & PFPM_WUS_FW_RST_WK_M) 4138 wake_str = "Firmware Reset\n"; 4139 else 4140 wake_str = "Unknown\n"; 4141 4142 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4143 } 4144 4145 /** 4146 * ice_register_netdev - register netdev and devlink port 4147 * @pf: pointer to the PF struct 4148 */ 4149 static int ice_register_netdev(struct ice_pf *pf) 4150 { 4151 struct ice_vsi *vsi; 4152 int err = 0; 4153 4154 vsi = ice_get_main_vsi(pf); 4155 if (!vsi || !vsi->netdev) 4156 return -EIO; 4157 4158 err = register_netdev(vsi->netdev); 4159 if (err) 4160 goto err_register_netdev; 4161 4162 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4163 netif_carrier_off(vsi->netdev); 4164 netif_tx_stop_all_queues(vsi->netdev); 4165 err = ice_devlink_create_port(vsi); 4166 if (err) 4167 goto err_devlink_create; 4168 4169 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 4170 4171 return 0; 4172 err_devlink_create: 4173 unregister_netdev(vsi->netdev); 4174 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4175 err_register_netdev: 4176 free_netdev(vsi->netdev); 4177 vsi->netdev = NULL; 4178 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4179 return err; 4180 } 4181 4182 /** 4183 * ice_probe - Device initialization routine 4184 * @pdev: PCI device information struct 4185 * @ent: entry in ice_pci_tbl 4186 * 4187 * Returns 0 on success, negative on failure 4188 */ 4189 static int 4190 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4191 { 4192 struct device *dev = &pdev->dev; 4193 struct ice_pf *pf; 4194 struct ice_hw *hw; 4195 int i, err; 4196 4197 /* this driver uses devres, see 4198 * Documentation/driver-api/driver-model/devres.rst 4199 */ 4200 err = pcim_enable_device(pdev); 4201 if (err) 4202 return err; 4203 4204 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4205 if (err) { 4206 dev_err(dev, "BAR0 I/O map error %d\n", err); 4207 return err; 4208 } 4209 4210 pf = ice_allocate_pf(dev); 4211 if (!pf) 4212 return -ENOMEM; 4213 4214 /* set up for high or low DMA */ 4215 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4216 if (err) 4217 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4218 if (err) { 4219 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4220 return err; 4221 } 4222 4223 pci_enable_pcie_error_reporting(pdev); 4224 pci_set_master(pdev); 4225 4226 pf->pdev = pdev; 4227 pci_set_drvdata(pdev, pf); 4228 set_bit(ICE_DOWN, pf->state); 4229 /* Disable service task until DOWN bit is cleared */ 4230 set_bit(ICE_SERVICE_DIS, pf->state); 4231 4232 hw = &pf->hw; 4233 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4234 pci_save_state(pdev); 4235 4236 hw->back = pf; 4237 hw->vendor_id = pdev->vendor; 4238 hw->device_id = pdev->device; 4239 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4240 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4241 hw->subsystem_device_id = pdev->subsystem_device; 4242 hw->bus.device = PCI_SLOT(pdev->devfn); 4243 hw->bus.func = PCI_FUNC(pdev->devfn); 4244 ice_set_ctrlq_len(hw); 4245 4246 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4247 4248 err = ice_devlink_register(pf); 4249 if (err) { 4250 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4251 goto err_exit_unroll; 4252 } 4253 4254 #ifndef CONFIG_DYNAMIC_DEBUG 4255 if (debug < -1) 4256 hw->debug_mask = debug; 4257 #endif 4258 4259 err = ice_init_hw(hw); 4260 if (err) { 4261 dev_err(dev, "ice_init_hw failed: %d\n", err); 4262 err = -EIO; 4263 goto err_exit_unroll; 4264 } 4265 4266 ice_request_fw(pf); 4267 4268 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4269 * set in pf->state, which will cause ice_is_safe_mode to return 4270 * true 4271 */ 4272 if (ice_is_safe_mode(pf)) { 4273 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4274 /* we already got function/device capabilities but these don't 4275 * reflect what the driver needs to do in safe mode. Instead of 4276 * adding conditional logic everywhere to ignore these 4277 * device/function capabilities, override them. 4278 */ 4279 ice_set_safe_mode_caps(hw); 4280 } 4281 4282 err = ice_init_pf(pf); 4283 if (err) { 4284 dev_err(dev, "ice_init_pf failed: %d\n", err); 4285 goto err_init_pf_unroll; 4286 } 4287 4288 ice_devlink_init_regions(pf); 4289 4290 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4291 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4292 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4293 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4294 i = 0; 4295 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4296 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4297 pf->hw.tnl.valid_count[TNL_VXLAN]; 4298 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4299 UDP_TUNNEL_TYPE_VXLAN; 4300 i++; 4301 } 4302 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4303 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4304 pf->hw.tnl.valid_count[TNL_GENEVE]; 4305 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4306 UDP_TUNNEL_TYPE_GENEVE; 4307 i++; 4308 } 4309 4310 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4311 if (!pf->num_alloc_vsi) { 4312 err = -EIO; 4313 goto err_init_pf_unroll; 4314 } 4315 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4316 dev_warn(&pf->pdev->dev, 4317 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4318 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4319 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4320 } 4321 4322 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4323 GFP_KERNEL); 4324 if (!pf->vsi) { 4325 err = -ENOMEM; 4326 goto err_init_pf_unroll; 4327 } 4328 4329 err = ice_init_interrupt_scheme(pf); 4330 if (err) { 4331 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4332 err = -EIO; 4333 goto err_init_vsi_unroll; 4334 } 4335 4336 /* In case of MSIX we are going to setup the misc vector right here 4337 * to handle admin queue events etc. In case of legacy and MSI 4338 * the misc functionality and queue processing is combined in 4339 * the same vector and that gets setup at open. 4340 */ 4341 err = ice_req_irq_msix_misc(pf); 4342 if (err) { 4343 dev_err(dev, "setup of misc vector failed: %d\n", err); 4344 goto err_init_interrupt_unroll; 4345 } 4346 4347 /* create switch struct for the switch element created by FW on boot */ 4348 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4349 if (!pf->first_sw) { 4350 err = -ENOMEM; 4351 goto err_msix_misc_unroll; 4352 } 4353 4354 if (hw->evb_veb) 4355 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4356 else 4357 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4358 4359 pf->first_sw->pf = pf; 4360 4361 /* record the sw_id available for later use */ 4362 pf->first_sw->sw_id = hw->port_info->sw_id; 4363 4364 err = ice_setup_pf_sw(pf); 4365 if (err) { 4366 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4367 goto err_alloc_sw_unroll; 4368 } 4369 4370 clear_bit(ICE_SERVICE_DIS, pf->state); 4371 4372 /* tell the firmware we are up */ 4373 err = ice_send_version(pf); 4374 if (err) { 4375 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4376 UTS_RELEASE, err); 4377 goto err_send_version_unroll; 4378 } 4379 4380 /* since everything is good, start the service timer */ 4381 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4382 4383 err = ice_init_link_events(pf->hw.port_info); 4384 if (err) { 4385 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4386 goto err_send_version_unroll; 4387 } 4388 4389 /* not a fatal error if this fails */ 4390 err = ice_init_nvm_phy_type(pf->hw.port_info); 4391 if (err) 4392 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4393 4394 /* not a fatal error if this fails */ 4395 err = ice_update_link_info(pf->hw.port_info); 4396 if (err) 4397 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4398 4399 ice_init_link_dflt_override(pf->hw.port_info); 4400 4401 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err); 4402 4403 /* if media available, initialize PHY settings */ 4404 if (pf->hw.port_info->phy.link_info.link_info & 4405 ICE_AQ_MEDIA_AVAILABLE) { 4406 /* not a fatal error if this fails */ 4407 err = ice_init_phy_user_cfg(pf->hw.port_info); 4408 if (err) 4409 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4410 4411 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4412 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4413 4414 if (vsi) 4415 ice_configure_phy(vsi); 4416 } 4417 } else { 4418 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4419 } 4420 4421 ice_verify_cacheline_size(pf); 4422 4423 /* Save wakeup reason register for later use */ 4424 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4425 4426 /* check for a power management event */ 4427 ice_print_wake_reason(pf); 4428 4429 /* clear wake status, all bits */ 4430 wr32(hw, PFPM_WUS, U32_MAX); 4431 4432 /* Disable WoL at init, wait for user to enable */ 4433 device_set_wakeup_enable(dev, false); 4434 4435 if (ice_is_safe_mode(pf)) { 4436 ice_set_safe_mode_vlan_cfg(pf); 4437 goto probe_done; 4438 } 4439 4440 /* initialize DDP driven features */ 4441 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4442 ice_ptp_init(pf); 4443 4444 /* Note: Flow director init failure is non-fatal to load */ 4445 if (ice_init_fdir(pf)) 4446 dev_err(dev, "could not initialize flow director\n"); 4447 4448 /* Note: DCB init failure is non-fatal to load */ 4449 if (ice_init_pf_dcb(pf, false)) { 4450 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4451 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4452 } else { 4453 ice_cfg_lldp_mib_change(&pf->hw, true); 4454 } 4455 4456 if (ice_init_lag(pf)) 4457 dev_warn(dev, "Failed to init link aggregation support\n"); 4458 4459 /* print PCI link speed and width */ 4460 pcie_print_link_status(pf->pdev); 4461 4462 probe_done: 4463 err = ice_register_netdev(pf); 4464 if (err) 4465 goto err_netdev_reg; 4466 4467 /* ready to go, so clear down state bit */ 4468 clear_bit(ICE_DOWN, pf->state); 4469 if (ice_is_aux_ena(pf)) { 4470 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4471 if (pf->aux_idx < 0) { 4472 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4473 err = -ENOMEM; 4474 goto err_netdev_reg; 4475 } 4476 4477 err = ice_init_rdma(pf); 4478 if (err) { 4479 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4480 err = -EIO; 4481 goto err_init_aux_unroll; 4482 } 4483 } else { 4484 dev_warn(dev, "RDMA is not supported on this device\n"); 4485 } 4486 4487 return 0; 4488 4489 err_init_aux_unroll: 4490 pf->adev = NULL; 4491 ida_free(&ice_aux_ida, pf->aux_idx); 4492 err_netdev_reg: 4493 err_send_version_unroll: 4494 ice_vsi_release_all(pf); 4495 err_alloc_sw_unroll: 4496 set_bit(ICE_SERVICE_DIS, pf->state); 4497 set_bit(ICE_DOWN, pf->state); 4498 devm_kfree(dev, pf->first_sw); 4499 err_msix_misc_unroll: 4500 ice_free_irq_msix_misc(pf); 4501 err_init_interrupt_unroll: 4502 ice_clear_interrupt_scheme(pf); 4503 err_init_vsi_unroll: 4504 devm_kfree(dev, pf->vsi); 4505 err_init_pf_unroll: 4506 ice_deinit_pf(pf); 4507 ice_devlink_destroy_regions(pf); 4508 ice_deinit_hw(hw); 4509 err_exit_unroll: 4510 ice_devlink_unregister(pf); 4511 pci_disable_pcie_error_reporting(pdev); 4512 pci_disable_device(pdev); 4513 return err; 4514 } 4515 4516 /** 4517 * ice_set_wake - enable or disable Wake on LAN 4518 * @pf: pointer to the PF struct 4519 * 4520 * Simple helper for WoL control 4521 */ 4522 static void ice_set_wake(struct ice_pf *pf) 4523 { 4524 struct ice_hw *hw = &pf->hw; 4525 bool wol = pf->wol_ena; 4526 4527 /* clear wake state, otherwise new wake events won't fire */ 4528 wr32(hw, PFPM_WUS, U32_MAX); 4529 4530 /* enable / disable APM wake up, no RMW needed */ 4531 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4532 4533 /* set magic packet filter enabled */ 4534 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4535 } 4536 4537 /** 4538 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4539 * @pf: pointer to the PF struct 4540 * 4541 * Issue firmware command to enable multicast magic wake, making 4542 * sure that any locally administered address (LAA) is used for 4543 * wake, and that PF reset doesn't undo the LAA. 4544 */ 4545 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4546 { 4547 struct device *dev = ice_pf_to_dev(pf); 4548 struct ice_hw *hw = &pf->hw; 4549 enum ice_status status; 4550 u8 mac_addr[ETH_ALEN]; 4551 struct ice_vsi *vsi; 4552 u8 flags; 4553 4554 if (!pf->wol_ena) 4555 return; 4556 4557 vsi = ice_get_main_vsi(pf); 4558 if (!vsi) 4559 return; 4560 4561 /* Get current MAC address in case it's an LAA */ 4562 if (vsi->netdev) 4563 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4564 else 4565 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4566 4567 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4568 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4569 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4570 4571 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4572 if (status) 4573 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4574 ice_stat_str(status), 4575 ice_aq_str(hw->adminq.sq_last_status)); 4576 } 4577 4578 /** 4579 * ice_remove - Device removal routine 4580 * @pdev: PCI device information struct 4581 */ 4582 static void ice_remove(struct pci_dev *pdev) 4583 { 4584 struct ice_pf *pf = pci_get_drvdata(pdev); 4585 int i; 4586 4587 if (!pf) 4588 return; 4589 4590 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4591 if (!ice_is_reset_in_progress(pf->state)) 4592 break; 4593 msleep(100); 4594 } 4595 4596 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4597 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4598 ice_free_vfs(pf); 4599 } 4600 4601 ice_service_task_stop(pf); 4602 4603 ice_aq_cancel_waiting_tasks(pf); 4604 ice_unplug_aux_dev(pf); 4605 ida_free(&ice_aux_ida, pf->aux_idx); 4606 set_bit(ICE_DOWN, pf->state); 4607 4608 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4609 ice_deinit_lag(pf); 4610 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4611 ice_ptp_release(pf); 4612 if (!ice_is_safe_mode(pf)) 4613 ice_remove_arfs(pf); 4614 ice_setup_mc_magic_wake(pf); 4615 ice_vsi_release_all(pf); 4616 ice_set_wake(pf); 4617 ice_free_irq_msix_misc(pf); 4618 ice_for_each_vsi(pf, i) { 4619 if (!pf->vsi[i]) 4620 continue; 4621 ice_vsi_free_q_vectors(pf->vsi[i]); 4622 } 4623 ice_deinit_pf(pf); 4624 ice_devlink_destroy_regions(pf); 4625 ice_deinit_hw(&pf->hw); 4626 ice_devlink_unregister(pf); 4627 4628 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4629 * do it via ice_schedule_reset() since there is no need to rebuild 4630 * and the service task is already stopped. 4631 */ 4632 ice_reset(&pf->hw, ICE_RESET_PFR); 4633 pci_wait_for_pending_transaction(pdev); 4634 ice_clear_interrupt_scheme(pf); 4635 pci_disable_pcie_error_reporting(pdev); 4636 pci_disable_device(pdev); 4637 } 4638 4639 /** 4640 * ice_shutdown - PCI callback for shutting down device 4641 * @pdev: PCI device information struct 4642 */ 4643 static void ice_shutdown(struct pci_dev *pdev) 4644 { 4645 struct ice_pf *pf = pci_get_drvdata(pdev); 4646 4647 ice_remove(pdev); 4648 4649 if (system_state == SYSTEM_POWER_OFF) { 4650 pci_wake_from_d3(pdev, pf->wol_ena); 4651 pci_set_power_state(pdev, PCI_D3hot); 4652 } 4653 } 4654 4655 #ifdef CONFIG_PM 4656 /** 4657 * ice_prepare_for_shutdown - prep for PCI shutdown 4658 * @pf: board private structure 4659 * 4660 * Inform or close all dependent features in prep for PCI device shutdown 4661 */ 4662 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4663 { 4664 struct ice_hw *hw = &pf->hw; 4665 u32 v; 4666 4667 /* Notify VFs of impending reset */ 4668 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4669 ice_vc_notify_reset(pf); 4670 4671 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4672 4673 /* disable the VSIs and their queues that are not already DOWN */ 4674 ice_pf_dis_all_vsi(pf, false); 4675 4676 ice_for_each_vsi(pf, v) 4677 if (pf->vsi[v]) 4678 pf->vsi[v]->vsi_num = 0; 4679 4680 ice_shutdown_all_ctrlq(hw); 4681 } 4682 4683 /** 4684 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4685 * @pf: board private structure to reinitialize 4686 * 4687 * This routine reinitialize interrupt scheme that was cleared during 4688 * power management suspend callback. 4689 * 4690 * This should be called during resume routine to re-allocate the q_vectors 4691 * and reacquire interrupts. 4692 */ 4693 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4694 { 4695 struct device *dev = ice_pf_to_dev(pf); 4696 int ret, v; 4697 4698 /* Since we clear MSIX flag during suspend, we need to 4699 * set it back during resume... 4700 */ 4701 4702 ret = ice_init_interrupt_scheme(pf); 4703 if (ret) { 4704 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4705 return ret; 4706 } 4707 4708 /* Remap vectors and rings, after successful re-init interrupts */ 4709 ice_for_each_vsi(pf, v) { 4710 if (!pf->vsi[v]) 4711 continue; 4712 4713 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4714 if (ret) 4715 goto err_reinit; 4716 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4717 } 4718 4719 ret = ice_req_irq_msix_misc(pf); 4720 if (ret) { 4721 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4722 ret); 4723 goto err_reinit; 4724 } 4725 4726 return 0; 4727 4728 err_reinit: 4729 while (v--) 4730 if (pf->vsi[v]) 4731 ice_vsi_free_q_vectors(pf->vsi[v]); 4732 4733 return ret; 4734 } 4735 4736 /** 4737 * ice_suspend 4738 * @dev: generic device information structure 4739 * 4740 * Power Management callback to quiesce the device and prepare 4741 * for D3 transition. 4742 */ 4743 static int __maybe_unused ice_suspend(struct device *dev) 4744 { 4745 struct pci_dev *pdev = to_pci_dev(dev); 4746 struct ice_pf *pf; 4747 int disabled, v; 4748 4749 pf = pci_get_drvdata(pdev); 4750 4751 if (!ice_pf_state_is_nominal(pf)) { 4752 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4753 return -EBUSY; 4754 } 4755 4756 /* Stop watchdog tasks until resume completion. 4757 * Even though it is most likely that the service task is 4758 * disabled if the device is suspended or down, the service task's 4759 * state is controlled by a different state bit, and we should 4760 * store and honor whatever state that bit is in at this point. 4761 */ 4762 disabled = ice_service_task_stop(pf); 4763 4764 ice_unplug_aux_dev(pf); 4765 4766 /* Already suspended?, then there is nothing to do */ 4767 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4768 if (!disabled) 4769 ice_service_task_restart(pf); 4770 return 0; 4771 } 4772 4773 if (test_bit(ICE_DOWN, pf->state) || 4774 ice_is_reset_in_progress(pf->state)) { 4775 dev_err(dev, "can't suspend device in reset or already down\n"); 4776 if (!disabled) 4777 ice_service_task_restart(pf); 4778 return 0; 4779 } 4780 4781 ice_setup_mc_magic_wake(pf); 4782 4783 ice_prepare_for_shutdown(pf); 4784 4785 ice_set_wake(pf); 4786 4787 /* Free vectors, clear the interrupt scheme and release IRQs 4788 * for proper hibernation, especially with large number of CPUs. 4789 * Otherwise hibernation might fail when mapping all the vectors back 4790 * to CPU0. 4791 */ 4792 ice_free_irq_msix_misc(pf); 4793 ice_for_each_vsi(pf, v) { 4794 if (!pf->vsi[v]) 4795 continue; 4796 ice_vsi_free_q_vectors(pf->vsi[v]); 4797 } 4798 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4799 ice_clear_interrupt_scheme(pf); 4800 4801 pci_save_state(pdev); 4802 pci_wake_from_d3(pdev, pf->wol_ena); 4803 pci_set_power_state(pdev, PCI_D3hot); 4804 return 0; 4805 } 4806 4807 /** 4808 * ice_resume - PM callback for waking up from D3 4809 * @dev: generic device information structure 4810 */ 4811 static int __maybe_unused ice_resume(struct device *dev) 4812 { 4813 struct pci_dev *pdev = to_pci_dev(dev); 4814 enum ice_reset_req reset_type; 4815 struct ice_pf *pf; 4816 struct ice_hw *hw; 4817 int ret; 4818 4819 pci_set_power_state(pdev, PCI_D0); 4820 pci_restore_state(pdev); 4821 pci_save_state(pdev); 4822 4823 if (!pci_device_is_present(pdev)) 4824 return -ENODEV; 4825 4826 ret = pci_enable_device_mem(pdev); 4827 if (ret) { 4828 dev_err(dev, "Cannot enable device after suspend\n"); 4829 return ret; 4830 } 4831 4832 pf = pci_get_drvdata(pdev); 4833 hw = &pf->hw; 4834 4835 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4836 ice_print_wake_reason(pf); 4837 4838 /* We cleared the interrupt scheme when we suspended, so we need to 4839 * restore it now to resume device functionality. 4840 */ 4841 ret = ice_reinit_interrupt_scheme(pf); 4842 if (ret) 4843 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4844 4845 clear_bit(ICE_DOWN, pf->state); 4846 /* Now perform PF reset and rebuild */ 4847 reset_type = ICE_RESET_PFR; 4848 /* re-enable service task for reset, but allow reset to schedule it */ 4849 clear_bit(ICE_SERVICE_DIS, pf->state); 4850 4851 if (ice_schedule_reset(pf, reset_type)) 4852 dev_err(dev, "Reset during resume failed.\n"); 4853 4854 clear_bit(ICE_SUSPENDED, pf->state); 4855 ice_service_task_restart(pf); 4856 4857 /* Restart the service task */ 4858 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4859 4860 return 0; 4861 } 4862 #endif /* CONFIG_PM */ 4863 4864 /** 4865 * ice_pci_err_detected - warning that PCI error has been detected 4866 * @pdev: PCI device information struct 4867 * @err: the type of PCI error 4868 * 4869 * Called to warn that something happened on the PCI bus and the error handling 4870 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4871 */ 4872 static pci_ers_result_t 4873 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4874 { 4875 struct ice_pf *pf = pci_get_drvdata(pdev); 4876 4877 if (!pf) { 4878 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4879 __func__, err); 4880 return PCI_ERS_RESULT_DISCONNECT; 4881 } 4882 4883 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4884 ice_service_task_stop(pf); 4885 4886 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4887 set_bit(ICE_PFR_REQ, pf->state); 4888 ice_prepare_for_reset(pf); 4889 } 4890 } 4891 4892 return PCI_ERS_RESULT_NEED_RESET; 4893 } 4894 4895 /** 4896 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4897 * @pdev: PCI device information struct 4898 * 4899 * Called to determine if the driver can recover from the PCI slot reset by 4900 * using a register read to determine if the device is recoverable. 4901 */ 4902 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4903 { 4904 struct ice_pf *pf = pci_get_drvdata(pdev); 4905 pci_ers_result_t result; 4906 int err; 4907 u32 reg; 4908 4909 err = pci_enable_device_mem(pdev); 4910 if (err) { 4911 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4912 err); 4913 result = PCI_ERS_RESULT_DISCONNECT; 4914 } else { 4915 pci_set_master(pdev); 4916 pci_restore_state(pdev); 4917 pci_save_state(pdev); 4918 pci_wake_from_d3(pdev, false); 4919 4920 /* Check for life */ 4921 reg = rd32(&pf->hw, GLGEN_RTRIG); 4922 if (!reg) 4923 result = PCI_ERS_RESULT_RECOVERED; 4924 else 4925 result = PCI_ERS_RESULT_DISCONNECT; 4926 } 4927 4928 err = pci_aer_clear_nonfatal_status(pdev); 4929 if (err) 4930 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4931 err); 4932 /* non-fatal, continue */ 4933 4934 return result; 4935 } 4936 4937 /** 4938 * ice_pci_err_resume - restart operations after PCI error recovery 4939 * @pdev: PCI device information struct 4940 * 4941 * Called to allow the driver to bring things back up after PCI error and/or 4942 * reset recovery have finished 4943 */ 4944 static void ice_pci_err_resume(struct pci_dev *pdev) 4945 { 4946 struct ice_pf *pf = pci_get_drvdata(pdev); 4947 4948 if (!pf) { 4949 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4950 __func__); 4951 return; 4952 } 4953 4954 if (test_bit(ICE_SUSPENDED, pf->state)) { 4955 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4956 __func__); 4957 return; 4958 } 4959 4960 ice_restore_all_vfs_msi_state(pdev); 4961 4962 ice_do_reset(pf, ICE_RESET_PFR); 4963 ice_service_task_restart(pf); 4964 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4965 } 4966 4967 /** 4968 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4969 * @pdev: PCI device information struct 4970 */ 4971 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4972 { 4973 struct ice_pf *pf = pci_get_drvdata(pdev); 4974 4975 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4976 ice_service_task_stop(pf); 4977 4978 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4979 set_bit(ICE_PFR_REQ, pf->state); 4980 ice_prepare_for_reset(pf); 4981 } 4982 } 4983 } 4984 4985 /** 4986 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4987 * @pdev: PCI device information struct 4988 */ 4989 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4990 { 4991 ice_pci_err_resume(pdev); 4992 } 4993 4994 /* ice_pci_tbl - PCI Device ID Table 4995 * 4996 * Wildcard entries (PCI_ANY_ID) should come last 4997 * Last entry must be all 0s 4998 * 4999 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5000 * Class, Class Mask, private data (not used) } 5001 */ 5002 static const struct pci_device_id ice_pci_tbl[] = { 5003 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5004 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5005 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5006 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5007 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5008 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5009 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5010 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5011 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5012 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5013 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5014 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5015 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5016 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5017 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5018 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5019 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5020 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5021 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5022 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5023 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5024 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5025 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5026 /* required last entry */ 5027 { 0, } 5028 }; 5029 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5030 5031 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5032 5033 static const struct pci_error_handlers ice_pci_err_handler = { 5034 .error_detected = ice_pci_err_detected, 5035 .slot_reset = ice_pci_err_slot_reset, 5036 .reset_prepare = ice_pci_err_reset_prepare, 5037 .reset_done = ice_pci_err_reset_done, 5038 .resume = ice_pci_err_resume 5039 }; 5040 5041 static struct pci_driver ice_driver = { 5042 .name = KBUILD_MODNAME, 5043 .id_table = ice_pci_tbl, 5044 .probe = ice_probe, 5045 .remove = ice_remove, 5046 #ifdef CONFIG_PM 5047 .driver.pm = &ice_pm_ops, 5048 #endif /* CONFIG_PM */ 5049 .shutdown = ice_shutdown, 5050 .sriov_configure = ice_sriov_configure, 5051 .err_handler = &ice_pci_err_handler 5052 }; 5053 5054 /** 5055 * ice_module_init - Driver registration routine 5056 * 5057 * ice_module_init is the first routine called when the driver is 5058 * loaded. All it does is register with the PCI subsystem. 5059 */ 5060 static int __init ice_module_init(void) 5061 { 5062 int status; 5063 5064 pr_info("%s\n", ice_driver_string); 5065 pr_info("%s\n", ice_copyright); 5066 5067 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5068 if (!ice_wq) { 5069 pr_err("Failed to create workqueue\n"); 5070 return -ENOMEM; 5071 } 5072 5073 status = pci_register_driver(&ice_driver); 5074 if (status) { 5075 pr_err("failed to register PCI driver, err %d\n", status); 5076 destroy_workqueue(ice_wq); 5077 } 5078 5079 return status; 5080 } 5081 module_init(ice_module_init); 5082 5083 /** 5084 * ice_module_exit - Driver exit cleanup routine 5085 * 5086 * ice_module_exit is called just before the driver is removed 5087 * from memory. 5088 */ 5089 static void __exit ice_module_exit(void) 5090 { 5091 pci_unregister_driver(&ice_driver); 5092 destroy_workqueue(ice_wq); 5093 pr_info("module unloaded\n"); 5094 } 5095 module_exit(ice_module_exit); 5096 5097 /** 5098 * ice_set_mac_address - NDO callback to set MAC address 5099 * @netdev: network interface device structure 5100 * @pi: pointer to an address structure 5101 * 5102 * Returns 0 on success, negative on failure 5103 */ 5104 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5105 { 5106 struct ice_netdev_priv *np = netdev_priv(netdev); 5107 struct ice_vsi *vsi = np->vsi; 5108 struct ice_pf *pf = vsi->back; 5109 struct ice_hw *hw = &pf->hw; 5110 struct sockaddr *addr = pi; 5111 enum ice_status status; 5112 u8 flags = 0; 5113 int err = 0; 5114 u8 *mac; 5115 5116 mac = (u8 *)addr->sa_data; 5117 5118 if (!is_valid_ether_addr(mac)) 5119 return -EADDRNOTAVAIL; 5120 5121 if (ether_addr_equal(netdev->dev_addr, mac)) { 5122 netdev_warn(netdev, "already using mac %pM\n", mac); 5123 return 0; 5124 } 5125 5126 if (test_bit(ICE_DOWN, pf->state) || 5127 ice_is_reset_in_progress(pf->state)) { 5128 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5129 mac); 5130 return -EBUSY; 5131 } 5132 5133 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5134 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 5135 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 5136 err = -EADDRNOTAVAIL; 5137 goto err_update_filters; 5138 } 5139 5140 /* Add filter for new MAC. If filter exists, return success */ 5141 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5142 if (status == ICE_ERR_ALREADY_EXISTS) { 5143 /* Although this MAC filter is already present in hardware it's 5144 * possible in some cases (e.g. bonding) that dev_addr was 5145 * modified outside of the driver and needs to be restored back 5146 * to this value. 5147 */ 5148 memcpy(netdev->dev_addr, mac, netdev->addr_len); 5149 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5150 return 0; 5151 } 5152 5153 /* error if the new filter addition failed */ 5154 if (status) 5155 err = -EADDRNOTAVAIL; 5156 5157 err_update_filters: 5158 if (err) { 5159 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5160 mac); 5161 return err; 5162 } 5163 5164 /* change the netdev's MAC address */ 5165 memcpy(netdev->dev_addr, mac, netdev->addr_len); 5166 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5167 netdev->dev_addr); 5168 5169 /* write new MAC address to the firmware */ 5170 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5171 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5172 if (status) { 5173 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 5174 mac, ice_stat_str(status)); 5175 } 5176 return 0; 5177 } 5178 5179 /** 5180 * ice_set_rx_mode - NDO callback to set the netdev filters 5181 * @netdev: network interface device structure 5182 */ 5183 static void ice_set_rx_mode(struct net_device *netdev) 5184 { 5185 struct ice_netdev_priv *np = netdev_priv(netdev); 5186 struct ice_vsi *vsi = np->vsi; 5187 5188 if (!vsi) 5189 return; 5190 5191 /* Set the flags to synchronize filters 5192 * ndo_set_rx_mode may be triggered even without a change in netdev 5193 * flags 5194 */ 5195 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5196 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5197 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5198 5199 /* schedule our worker thread which will take care of 5200 * applying the new filter changes 5201 */ 5202 ice_service_task_schedule(vsi->back); 5203 } 5204 5205 /** 5206 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5207 * @netdev: network interface device structure 5208 * @queue_index: Queue ID 5209 * @maxrate: maximum bandwidth in Mbps 5210 */ 5211 static int 5212 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5213 { 5214 struct ice_netdev_priv *np = netdev_priv(netdev); 5215 struct ice_vsi *vsi = np->vsi; 5216 enum ice_status status; 5217 u16 q_handle; 5218 u8 tc; 5219 5220 /* Validate maxrate requested is within permitted range */ 5221 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5222 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5223 maxrate, queue_index); 5224 return -EINVAL; 5225 } 5226 5227 q_handle = vsi->tx_rings[queue_index]->q_handle; 5228 tc = ice_dcb_get_tc(vsi, queue_index); 5229 5230 /* Set BW back to default, when user set maxrate to 0 */ 5231 if (!maxrate) 5232 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5233 q_handle, ICE_MAX_BW); 5234 else 5235 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5236 q_handle, ICE_MAX_BW, maxrate * 1000); 5237 if (status) { 5238 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5239 ice_stat_str(status)); 5240 return -EIO; 5241 } 5242 5243 return 0; 5244 } 5245 5246 /** 5247 * ice_fdb_add - add an entry to the hardware database 5248 * @ndm: the input from the stack 5249 * @tb: pointer to array of nladdr (unused) 5250 * @dev: the net device pointer 5251 * @addr: the MAC address entry being added 5252 * @vid: VLAN ID 5253 * @flags: instructions from stack about fdb operation 5254 * @extack: netlink extended ack 5255 */ 5256 static int 5257 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5258 struct net_device *dev, const unsigned char *addr, u16 vid, 5259 u16 flags, struct netlink_ext_ack __always_unused *extack) 5260 { 5261 int err; 5262 5263 if (vid) { 5264 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5265 return -EINVAL; 5266 } 5267 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5268 netdev_err(dev, "FDB only supports static addresses\n"); 5269 return -EINVAL; 5270 } 5271 5272 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5273 err = dev_uc_add_excl(dev, addr); 5274 else if (is_multicast_ether_addr(addr)) 5275 err = dev_mc_add_excl(dev, addr); 5276 else 5277 err = -EINVAL; 5278 5279 /* Only return duplicate errors if NLM_F_EXCL is set */ 5280 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5281 err = 0; 5282 5283 return err; 5284 } 5285 5286 /** 5287 * ice_fdb_del - delete an entry from the hardware database 5288 * @ndm: the input from the stack 5289 * @tb: pointer to array of nladdr (unused) 5290 * @dev: the net device pointer 5291 * @addr: the MAC address entry being added 5292 * @vid: VLAN ID 5293 */ 5294 static int 5295 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5296 struct net_device *dev, const unsigned char *addr, 5297 __always_unused u16 vid) 5298 { 5299 int err; 5300 5301 if (ndm->ndm_state & NUD_PERMANENT) { 5302 netdev_err(dev, "FDB only supports static addresses\n"); 5303 return -EINVAL; 5304 } 5305 5306 if (is_unicast_ether_addr(addr)) 5307 err = dev_uc_del(dev, addr); 5308 else if (is_multicast_ether_addr(addr)) 5309 err = dev_mc_del(dev, addr); 5310 else 5311 err = -EINVAL; 5312 5313 return err; 5314 } 5315 5316 /** 5317 * ice_set_features - set the netdev feature flags 5318 * @netdev: ptr to the netdev being adjusted 5319 * @features: the feature set that the stack is suggesting 5320 */ 5321 static int 5322 ice_set_features(struct net_device *netdev, netdev_features_t features) 5323 { 5324 struct ice_netdev_priv *np = netdev_priv(netdev); 5325 struct ice_vsi *vsi = np->vsi; 5326 struct ice_pf *pf = vsi->back; 5327 int ret = 0; 5328 5329 /* Don't set any netdev advanced features with device in Safe Mode */ 5330 if (ice_is_safe_mode(vsi->back)) { 5331 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5332 return ret; 5333 } 5334 5335 /* Do not change setting during reset */ 5336 if (ice_is_reset_in_progress(pf->state)) { 5337 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5338 return -EBUSY; 5339 } 5340 5341 /* Multiple features can be changed in one call so keep features in 5342 * separate if/else statements to guarantee each feature is checked 5343 */ 5344 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5345 ice_vsi_manage_rss_lut(vsi, true); 5346 else if (!(features & NETIF_F_RXHASH) && 5347 netdev->features & NETIF_F_RXHASH) 5348 ice_vsi_manage_rss_lut(vsi, false); 5349 5350 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5351 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5352 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5353 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5354 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5355 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5356 5357 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5358 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5359 ret = ice_vsi_manage_vlan_insertion(vsi); 5360 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5361 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5362 ret = ice_vsi_manage_vlan_insertion(vsi); 5363 5364 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5365 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5366 ret = ice_cfg_vlan_pruning(vsi, true, false); 5367 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5368 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5369 ret = ice_cfg_vlan_pruning(vsi, false, false); 5370 5371 if ((features & NETIF_F_NTUPLE) && 5372 !(netdev->features & NETIF_F_NTUPLE)) { 5373 ice_vsi_manage_fdir(vsi, true); 5374 ice_init_arfs(vsi); 5375 } else if (!(features & NETIF_F_NTUPLE) && 5376 (netdev->features & NETIF_F_NTUPLE)) { 5377 ice_vsi_manage_fdir(vsi, false); 5378 ice_clear_arfs(vsi); 5379 } 5380 5381 return ret; 5382 } 5383 5384 /** 5385 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5386 * @vsi: VSI to setup VLAN properties for 5387 */ 5388 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5389 { 5390 int ret = 0; 5391 5392 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5393 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5394 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5395 ret = ice_vsi_manage_vlan_insertion(vsi); 5396 5397 return ret; 5398 } 5399 5400 /** 5401 * ice_vsi_cfg - Setup the VSI 5402 * @vsi: the VSI being configured 5403 * 5404 * Return 0 on success and negative value on error 5405 */ 5406 int ice_vsi_cfg(struct ice_vsi *vsi) 5407 { 5408 int err; 5409 5410 if (vsi->netdev) { 5411 ice_set_rx_mode(vsi->netdev); 5412 5413 err = ice_vsi_vlan_setup(vsi); 5414 5415 if (err) 5416 return err; 5417 } 5418 ice_vsi_cfg_dcb_rings(vsi); 5419 5420 err = ice_vsi_cfg_lan_txqs(vsi); 5421 if (!err && ice_is_xdp_ena_vsi(vsi)) 5422 err = ice_vsi_cfg_xdp_txqs(vsi); 5423 if (!err) 5424 err = ice_vsi_cfg_rxqs(vsi); 5425 5426 return err; 5427 } 5428 5429 /* THEORY OF MODERATION: 5430 * The below code creates custom DIM profiles for use by this driver, because 5431 * the ice driver hardware works differently than the hardware that DIMLIB was 5432 * originally made for. ice hardware doesn't have packet count limits that 5433 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5434 * and this code adds that capability to be used by the driver when it's using 5435 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver 5436 * for how to "respond" to traffic and interrupts, so this driver uses a 5437 * slightly different set of moderation parameters to get best performance. 5438 */ 5439 struct ice_dim { 5440 /* the throttle rate for interrupts, basically worst case delay before 5441 * an initial interrupt fires, value is stored in microseconds. 5442 */ 5443 u16 itr; 5444 /* the rate limit for interrupts, which can cap a delay from a small 5445 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR 5446 * could yield as much as 500,000 interrupts per second, but with a 5447 * 10us rate limit, it limits to 100,000 interrupts per second. Value 5448 * is stored in microseconds. 5449 */ 5450 u16 intrl; 5451 }; 5452 5453 /* Make a different profile for Rx that doesn't allow quite so aggressive 5454 * moderation at the high end (it maxes out at 128us or about 8k interrupts a 5455 * second. The INTRL/rate parameters here are only useful to cap small ITR 5456 * values, which is why for larger ITR's - like 128, which can only generate 5457 * 8k interrupts per second, there is no point to rate limit and the values 5458 * are set to zero. The rate limit values do affect latency, and so must 5459 * be reasonably small so to not impact latency sensitive tests. 5460 */ 5461 static const struct ice_dim rx_profile[] = { 5462 {2, 10}, 5463 {8, 16}, 5464 {32, 0}, 5465 {96, 0}, 5466 {128, 0} 5467 }; 5468 5469 /* The transmit profile, which has the same sorts of values 5470 * as the previous struct 5471 */ 5472 static const struct ice_dim tx_profile[] = { 5473 {2, 10}, 5474 {8, 16}, 5475 {64, 0}, 5476 {128, 0}, 5477 {256, 0} 5478 }; 5479 5480 static void ice_tx_dim_work(struct work_struct *work) 5481 { 5482 struct ice_ring_container *rc; 5483 struct ice_q_vector *q_vector; 5484 struct dim *dim; 5485 u16 itr, intrl; 5486 5487 dim = container_of(work, struct dim, work); 5488 rc = container_of(dim, struct ice_ring_container, dim); 5489 q_vector = container_of(rc, struct ice_q_vector, tx); 5490 5491 if (dim->profile_ix >= ARRAY_SIZE(tx_profile)) 5492 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1; 5493 5494 /* look up the values in our local table */ 5495 itr = tx_profile[dim->profile_ix].itr; 5496 intrl = tx_profile[dim->profile_ix].intrl; 5497 5498 ice_trace(tx_dim_work, q_vector, dim); 5499 ice_write_itr(rc, itr); 5500 ice_write_intrl(q_vector, intrl); 5501 5502 dim->state = DIM_START_MEASURE; 5503 } 5504 5505 static void ice_rx_dim_work(struct work_struct *work) 5506 { 5507 struct ice_ring_container *rc; 5508 struct ice_q_vector *q_vector; 5509 struct dim *dim; 5510 u16 itr, intrl; 5511 5512 dim = container_of(work, struct dim, work); 5513 rc = container_of(dim, struct ice_ring_container, dim); 5514 q_vector = container_of(rc, struct ice_q_vector, rx); 5515 5516 if (dim->profile_ix >= ARRAY_SIZE(rx_profile)) 5517 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1; 5518 5519 /* look up the values in our local table */ 5520 itr = rx_profile[dim->profile_ix].itr; 5521 intrl = rx_profile[dim->profile_ix].intrl; 5522 5523 ice_trace(rx_dim_work, q_vector, dim); 5524 ice_write_itr(rc, itr); 5525 ice_write_intrl(q_vector, intrl); 5526 5527 dim->state = DIM_START_MEASURE; 5528 } 5529 5530 /** 5531 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5532 * @vsi: the VSI being configured 5533 */ 5534 static void ice_napi_enable_all(struct ice_vsi *vsi) 5535 { 5536 int q_idx; 5537 5538 if (!vsi->netdev) 5539 return; 5540 5541 ice_for_each_q_vector(vsi, q_idx) { 5542 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5543 5544 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work); 5545 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5546 5547 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work); 5548 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5549 5550 if (q_vector->rx.ring || q_vector->tx.ring) 5551 napi_enable(&q_vector->napi); 5552 } 5553 } 5554 5555 /** 5556 * ice_up_complete - Finish the last steps of bringing up a connection 5557 * @vsi: The VSI being configured 5558 * 5559 * Return 0 on success and negative value on error 5560 */ 5561 static int ice_up_complete(struct ice_vsi *vsi) 5562 { 5563 struct ice_pf *pf = vsi->back; 5564 int err; 5565 5566 ice_vsi_cfg_msix(vsi); 5567 5568 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5569 * Tx queue group list was configured and the context bits were 5570 * programmed using ice_vsi_cfg_txqs 5571 */ 5572 err = ice_vsi_start_all_rx_rings(vsi); 5573 if (err) 5574 return err; 5575 5576 clear_bit(ICE_VSI_DOWN, vsi->state); 5577 ice_napi_enable_all(vsi); 5578 ice_vsi_ena_irq(vsi); 5579 5580 if (vsi->port_info && 5581 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5582 vsi->netdev) { 5583 ice_print_link_msg(vsi, true); 5584 netif_tx_start_all_queues(vsi->netdev); 5585 netif_carrier_on(vsi->netdev); 5586 } 5587 5588 ice_service_task_schedule(pf); 5589 5590 return 0; 5591 } 5592 5593 /** 5594 * ice_up - Bring the connection back up after being down 5595 * @vsi: VSI being configured 5596 */ 5597 int ice_up(struct ice_vsi *vsi) 5598 { 5599 int err; 5600 5601 err = ice_vsi_cfg(vsi); 5602 if (!err) 5603 err = ice_up_complete(vsi); 5604 5605 return err; 5606 } 5607 5608 /** 5609 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5610 * @ring: Tx or Rx ring to read stats from 5611 * @pkts: packets stats counter 5612 * @bytes: bytes stats counter 5613 * 5614 * This function fetches stats from the ring considering the atomic operations 5615 * that needs to be performed to read u64 values in 32 bit machine. 5616 */ 5617 static void 5618 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5619 { 5620 unsigned int start; 5621 *pkts = 0; 5622 *bytes = 0; 5623 5624 if (!ring) 5625 return; 5626 do { 5627 start = u64_stats_fetch_begin_irq(&ring->syncp); 5628 *pkts = ring->stats.pkts; 5629 *bytes = ring->stats.bytes; 5630 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5631 } 5632 5633 /** 5634 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5635 * @vsi: the VSI to be updated 5636 * @rings: rings to work on 5637 * @count: number of rings 5638 */ 5639 static void 5640 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5641 u16 count) 5642 { 5643 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5644 u16 i; 5645 5646 for (i = 0; i < count; i++) { 5647 struct ice_ring *ring; 5648 u64 pkts, bytes; 5649 5650 ring = READ_ONCE(rings[i]); 5651 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5652 vsi_stats->tx_packets += pkts; 5653 vsi_stats->tx_bytes += bytes; 5654 vsi->tx_restart += ring->tx_stats.restart_q; 5655 vsi->tx_busy += ring->tx_stats.tx_busy; 5656 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5657 } 5658 } 5659 5660 /** 5661 * ice_update_vsi_ring_stats - Update VSI stats counters 5662 * @vsi: the VSI to be updated 5663 */ 5664 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5665 { 5666 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5667 u64 pkts, bytes; 5668 int i; 5669 5670 /* reset netdev stats */ 5671 vsi_stats->tx_packets = 0; 5672 vsi_stats->tx_bytes = 0; 5673 vsi_stats->rx_packets = 0; 5674 vsi_stats->rx_bytes = 0; 5675 5676 /* reset non-netdev (extended) stats */ 5677 vsi->tx_restart = 0; 5678 vsi->tx_busy = 0; 5679 vsi->tx_linearize = 0; 5680 vsi->rx_buf_failed = 0; 5681 vsi->rx_page_failed = 0; 5682 5683 rcu_read_lock(); 5684 5685 /* update Tx rings counters */ 5686 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5687 5688 /* update Rx rings counters */ 5689 ice_for_each_rxq(vsi, i) { 5690 struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5691 5692 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5693 vsi_stats->rx_packets += pkts; 5694 vsi_stats->rx_bytes += bytes; 5695 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5696 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5697 } 5698 5699 /* update XDP Tx rings counters */ 5700 if (ice_is_xdp_ena_vsi(vsi)) 5701 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5702 vsi->num_xdp_txq); 5703 5704 rcu_read_unlock(); 5705 } 5706 5707 /** 5708 * ice_update_vsi_stats - Update VSI stats counters 5709 * @vsi: the VSI to be updated 5710 */ 5711 void ice_update_vsi_stats(struct ice_vsi *vsi) 5712 { 5713 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5714 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5715 struct ice_pf *pf = vsi->back; 5716 5717 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5718 test_bit(ICE_CFG_BUSY, pf->state)) 5719 return; 5720 5721 /* get stats as recorded by Tx/Rx rings */ 5722 ice_update_vsi_ring_stats(vsi); 5723 5724 /* get VSI stats as recorded by the hardware */ 5725 ice_update_eth_stats(vsi); 5726 5727 cur_ns->tx_errors = cur_es->tx_errors; 5728 cur_ns->rx_dropped = cur_es->rx_discards; 5729 cur_ns->tx_dropped = cur_es->tx_discards; 5730 cur_ns->multicast = cur_es->rx_multicast; 5731 5732 /* update some more netdev stats if this is main VSI */ 5733 if (vsi->type == ICE_VSI_PF) { 5734 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5735 cur_ns->rx_errors = pf->stats.crc_errors + 5736 pf->stats.illegal_bytes + 5737 pf->stats.rx_len_errors + 5738 pf->stats.rx_undersize + 5739 pf->hw_csum_rx_error + 5740 pf->stats.rx_jabber + 5741 pf->stats.rx_fragments + 5742 pf->stats.rx_oversize; 5743 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5744 /* record drops from the port level */ 5745 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5746 } 5747 } 5748 5749 /** 5750 * ice_update_pf_stats - Update PF port stats counters 5751 * @pf: PF whose stats needs to be updated 5752 */ 5753 void ice_update_pf_stats(struct ice_pf *pf) 5754 { 5755 struct ice_hw_port_stats *prev_ps, *cur_ps; 5756 struct ice_hw *hw = &pf->hw; 5757 u16 fd_ctr_base; 5758 u8 port; 5759 5760 port = hw->port_info->lport; 5761 prev_ps = &pf->stats_prev; 5762 cur_ps = &pf->stats; 5763 5764 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5765 &prev_ps->eth.rx_bytes, 5766 &cur_ps->eth.rx_bytes); 5767 5768 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5769 &prev_ps->eth.rx_unicast, 5770 &cur_ps->eth.rx_unicast); 5771 5772 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5773 &prev_ps->eth.rx_multicast, 5774 &cur_ps->eth.rx_multicast); 5775 5776 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5777 &prev_ps->eth.rx_broadcast, 5778 &cur_ps->eth.rx_broadcast); 5779 5780 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5781 &prev_ps->eth.rx_discards, 5782 &cur_ps->eth.rx_discards); 5783 5784 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5785 &prev_ps->eth.tx_bytes, 5786 &cur_ps->eth.tx_bytes); 5787 5788 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5789 &prev_ps->eth.tx_unicast, 5790 &cur_ps->eth.tx_unicast); 5791 5792 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5793 &prev_ps->eth.tx_multicast, 5794 &cur_ps->eth.tx_multicast); 5795 5796 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5797 &prev_ps->eth.tx_broadcast, 5798 &cur_ps->eth.tx_broadcast); 5799 5800 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5801 &prev_ps->tx_dropped_link_down, 5802 &cur_ps->tx_dropped_link_down); 5803 5804 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5805 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5806 5807 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5808 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5809 5810 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5811 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5812 5813 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5814 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5815 5816 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5817 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5818 5819 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5820 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5821 5822 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5823 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5824 5825 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5826 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5827 5828 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5829 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5830 5831 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5832 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5833 5834 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5835 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5836 5837 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5838 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5839 5840 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5841 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5842 5843 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5844 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5845 5846 fd_ctr_base = hw->fd_ctr_base; 5847 5848 ice_stat_update40(hw, 5849 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5850 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5851 &cur_ps->fd_sb_match); 5852 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5853 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5854 5855 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5856 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5857 5858 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5859 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5860 5861 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5862 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5863 5864 ice_update_dcb_stats(pf); 5865 5866 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5867 &prev_ps->crc_errors, &cur_ps->crc_errors); 5868 5869 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5870 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5871 5872 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5873 &prev_ps->mac_local_faults, 5874 &cur_ps->mac_local_faults); 5875 5876 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5877 &prev_ps->mac_remote_faults, 5878 &cur_ps->mac_remote_faults); 5879 5880 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5881 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5882 5883 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5884 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5885 5886 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5887 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5888 5889 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5890 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5891 5892 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5893 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5894 5895 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5896 5897 pf->stat_prev_loaded = true; 5898 } 5899 5900 /** 5901 * ice_get_stats64 - get statistics for network device structure 5902 * @netdev: network interface device structure 5903 * @stats: main device statistics structure 5904 */ 5905 static 5906 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5907 { 5908 struct ice_netdev_priv *np = netdev_priv(netdev); 5909 struct rtnl_link_stats64 *vsi_stats; 5910 struct ice_vsi *vsi = np->vsi; 5911 5912 vsi_stats = &vsi->net_stats; 5913 5914 if (!vsi->num_txq || !vsi->num_rxq) 5915 return; 5916 5917 /* netdev packet/byte stats come from ring counter. These are obtained 5918 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5919 * But, only call the update routine and read the registers if VSI is 5920 * not down. 5921 */ 5922 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 5923 ice_update_vsi_ring_stats(vsi); 5924 stats->tx_packets = vsi_stats->tx_packets; 5925 stats->tx_bytes = vsi_stats->tx_bytes; 5926 stats->rx_packets = vsi_stats->rx_packets; 5927 stats->rx_bytes = vsi_stats->rx_bytes; 5928 5929 /* The rest of the stats can be read from the hardware but instead we 5930 * just return values that the watchdog task has already obtained from 5931 * the hardware. 5932 */ 5933 stats->multicast = vsi_stats->multicast; 5934 stats->tx_errors = vsi_stats->tx_errors; 5935 stats->tx_dropped = vsi_stats->tx_dropped; 5936 stats->rx_errors = vsi_stats->rx_errors; 5937 stats->rx_dropped = vsi_stats->rx_dropped; 5938 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5939 stats->rx_length_errors = vsi_stats->rx_length_errors; 5940 } 5941 5942 /** 5943 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5944 * @vsi: VSI having NAPI disabled 5945 */ 5946 static void ice_napi_disable_all(struct ice_vsi *vsi) 5947 { 5948 int q_idx; 5949 5950 if (!vsi->netdev) 5951 return; 5952 5953 ice_for_each_q_vector(vsi, q_idx) { 5954 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5955 5956 if (q_vector->rx.ring || q_vector->tx.ring) 5957 napi_disable(&q_vector->napi); 5958 5959 cancel_work_sync(&q_vector->tx.dim.work); 5960 cancel_work_sync(&q_vector->rx.dim.work); 5961 } 5962 } 5963 5964 /** 5965 * ice_down - Shutdown the connection 5966 * @vsi: The VSI being stopped 5967 */ 5968 int ice_down(struct ice_vsi *vsi) 5969 { 5970 int i, tx_err, rx_err, link_err = 0; 5971 5972 /* Caller of this function is expected to set the 5973 * vsi->state ICE_DOWN bit 5974 */ 5975 if (vsi->netdev) { 5976 netif_carrier_off(vsi->netdev); 5977 netif_tx_disable(vsi->netdev); 5978 } 5979 5980 ice_vsi_dis_irq(vsi); 5981 5982 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5983 if (tx_err) 5984 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5985 vsi->vsi_num, tx_err); 5986 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5987 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5988 if (tx_err) 5989 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5990 vsi->vsi_num, tx_err); 5991 } 5992 5993 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5994 if (rx_err) 5995 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5996 vsi->vsi_num, rx_err); 5997 5998 ice_napi_disable_all(vsi); 5999 6000 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6001 link_err = ice_force_phys_link_state(vsi, false); 6002 if (link_err) 6003 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6004 vsi->vsi_num, link_err); 6005 } 6006 6007 ice_for_each_txq(vsi, i) 6008 ice_clean_tx_ring(vsi->tx_rings[i]); 6009 6010 ice_for_each_rxq(vsi, i) 6011 ice_clean_rx_ring(vsi->rx_rings[i]); 6012 6013 if (tx_err || rx_err || link_err) { 6014 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6015 vsi->vsi_num, vsi->vsw->sw_id); 6016 return -EIO; 6017 } 6018 6019 return 0; 6020 } 6021 6022 /** 6023 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6024 * @vsi: VSI having resources allocated 6025 * 6026 * Return 0 on success, negative on failure 6027 */ 6028 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6029 { 6030 int i, err = 0; 6031 6032 if (!vsi->num_txq) { 6033 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6034 vsi->vsi_num); 6035 return -EINVAL; 6036 } 6037 6038 ice_for_each_txq(vsi, i) { 6039 struct ice_ring *ring = vsi->tx_rings[i]; 6040 6041 if (!ring) 6042 return -EINVAL; 6043 6044 ring->netdev = vsi->netdev; 6045 err = ice_setup_tx_ring(ring); 6046 if (err) 6047 break; 6048 } 6049 6050 return err; 6051 } 6052 6053 /** 6054 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6055 * @vsi: VSI having resources allocated 6056 * 6057 * Return 0 on success, negative on failure 6058 */ 6059 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6060 { 6061 int i, err = 0; 6062 6063 if (!vsi->num_rxq) { 6064 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6065 vsi->vsi_num); 6066 return -EINVAL; 6067 } 6068 6069 ice_for_each_rxq(vsi, i) { 6070 struct ice_ring *ring = vsi->rx_rings[i]; 6071 6072 if (!ring) 6073 return -EINVAL; 6074 6075 ring->netdev = vsi->netdev; 6076 err = ice_setup_rx_ring(ring); 6077 if (err) 6078 break; 6079 } 6080 6081 return err; 6082 } 6083 6084 /** 6085 * ice_vsi_open_ctrl - open control VSI for use 6086 * @vsi: the VSI to open 6087 * 6088 * Initialization of the Control VSI 6089 * 6090 * Returns 0 on success, negative value on error 6091 */ 6092 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6093 { 6094 char int_name[ICE_INT_NAME_STR_LEN]; 6095 struct ice_pf *pf = vsi->back; 6096 struct device *dev; 6097 int err; 6098 6099 dev = ice_pf_to_dev(pf); 6100 /* allocate descriptors */ 6101 err = ice_vsi_setup_tx_rings(vsi); 6102 if (err) 6103 goto err_setup_tx; 6104 6105 err = ice_vsi_setup_rx_rings(vsi); 6106 if (err) 6107 goto err_setup_rx; 6108 6109 err = ice_vsi_cfg(vsi); 6110 if (err) 6111 goto err_setup_rx; 6112 6113 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6114 dev_driver_string(dev), dev_name(dev)); 6115 err = ice_vsi_req_irq_msix(vsi, int_name); 6116 if (err) 6117 goto err_setup_rx; 6118 6119 ice_vsi_cfg_msix(vsi); 6120 6121 err = ice_vsi_start_all_rx_rings(vsi); 6122 if (err) 6123 goto err_up_complete; 6124 6125 clear_bit(ICE_VSI_DOWN, vsi->state); 6126 ice_vsi_ena_irq(vsi); 6127 6128 return 0; 6129 6130 err_up_complete: 6131 ice_down(vsi); 6132 err_setup_rx: 6133 ice_vsi_free_rx_rings(vsi); 6134 err_setup_tx: 6135 ice_vsi_free_tx_rings(vsi); 6136 6137 return err; 6138 } 6139 6140 /** 6141 * ice_vsi_open - Called when a network interface is made active 6142 * @vsi: the VSI to open 6143 * 6144 * Initialization of the VSI 6145 * 6146 * Returns 0 on success, negative value on error 6147 */ 6148 static int ice_vsi_open(struct ice_vsi *vsi) 6149 { 6150 char int_name[ICE_INT_NAME_STR_LEN]; 6151 struct ice_pf *pf = vsi->back; 6152 int err; 6153 6154 /* allocate descriptors */ 6155 err = ice_vsi_setup_tx_rings(vsi); 6156 if (err) 6157 goto err_setup_tx; 6158 6159 err = ice_vsi_setup_rx_rings(vsi); 6160 if (err) 6161 goto err_setup_rx; 6162 6163 err = ice_vsi_cfg(vsi); 6164 if (err) 6165 goto err_setup_rx; 6166 6167 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6168 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6169 err = ice_vsi_req_irq_msix(vsi, int_name); 6170 if (err) 6171 goto err_setup_rx; 6172 6173 /* Notify the stack of the actual queue counts. */ 6174 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6175 if (err) 6176 goto err_set_qs; 6177 6178 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6179 if (err) 6180 goto err_set_qs; 6181 6182 err = ice_up_complete(vsi); 6183 if (err) 6184 goto err_up_complete; 6185 6186 return 0; 6187 6188 err_up_complete: 6189 ice_down(vsi); 6190 err_set_qs: 6191 ice_vsi_free_irq(vsi); 6192 err_setup_rx: 6193 ice_vsi_free_rx_rings(vsi); 6194 err_setup_tx: 6195 ice_vsi_free_tx_rings(vsi); 6196 6197 return err; 6198 } 6199 6200 /** 6201 * ice_vsi_release_all - Delete all VSIs 6202 * @pf: PF from which all VSIs are being removed 6203 */ 6204 static void ice_vsi_release_all(struct ice_pf *pf) 6205 { 6206 int err, i; 6207 6208 if (!pf->vsi) 6209 return; 6210 6211 ice_for_each_vsi(pf, i) { 6212 if (!pf->vsi[i]) 6213 continue; 6214 6215 err = ice_vsi_release(pf->vsi[i]); 6216 if (err) 6217 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6218 i, err, pf->vsi[i]->vsi_num); 6219 } 6220 } 6221 6222 /** 6223 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6224 * @pf: pointer to the PF instance 6225 * @type: VSI type to rebuild 6226 * 6227 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6228 */ 6229 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6230 { 6231 struct device *dev = ice_pf_to_dev(pf); 6232 enum ice_status status; 6233 int i, err; 6234 6235 ice_for_each_vsi(pf, i) { 6236 struct ice_vsi *vsi = pf->vsi[i]; 6237 6238 if (!vsi || vsi->type != type) 6239 continue; 6240 6241 /* rebuild the VSI */ 6242 err = ice_vsi_rebuild(vsi, true); 6243 if (err) { 6244 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6245 err, vsi->idx, ice_vsi_type_str(type)); 6246 return err; 6247 } 6248 6249 /* replay filters for the VSI */ 6250 status = ice_replay_vsi(&pf->hw, vsi->idx); 6251 if (status) { 6252 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6253 ice_stat_str(status), vsi->idx, 6254 ice_vsi_type_str(type)); 6255 return -EIO; 6256 } 6257 6258 /* Re-map HW VSI number, using VSI handle that has been 6259 * previously validated in ice_replay_vsi() call above 6260 */ 6261 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6262 6263 /* enable the VSI */ 6264 err = ice_ena_vsi(vsi, false); 6265 if (err) { 6266 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6267 err, vsi->idx, ice_vsi_type_str(type)); 6268 return err; 6269 } 6270 6271 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6272 ice_vsi_type_str(type)); 6273 } 6274 6275 return 0; 6276 } 6277 6278 /** 6279 * ice_update_pf_netdev_link - Update PF netdev link status 6280 * @pf: pointer to the PF instance 6281 */ 6282 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6283 { 6284 bool link_up; 6285 int i; 6286 6287 ice_for_each_vsi(pf, i) { 6288 struct ice_vsi *vsi = pf->vsi[i]; 6289 6290 if (!vsi || vsi->type != ICE_VSI_PF) 6291 return; 6292 6293 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6294 if (link_up) { 6295 netif_carrier_on(pf->vsi[i]->netdev); 6296 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6297 } else { 6298 netif_carrier_off(pf->vsi[i]->netdev); 6299 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6300 } 6301 } 6302 } 6303 6304 /** 6305 * ice_rebuild - rebuild after reset 6306 * @pf: PF to rebuild 6307 * @reset_type: type of reset 6308 * 6309 * Do not rebuild VF VSI in this flow because that is already handled via 6310 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6311 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6312 * to reset/rebuild all the VF VSI twice. 6313 */ 6314 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6315 { 6316 struct device *dev = ice_pf_to_dev(pf); 6317 struct ice_hw *hw = &pf->hw; 6318 enum ice_status ret; 6319 int err; 6320 6321 if (test_bit(ICE_DOWN, pf->state)) 6322 goto clear_recovery; 6323 6324 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6325 6326 ret = ice_init_all_ctrlq(hw); 6327 if (ret) { 6328 dev_err(dev, "control queues init failed %s\n", 6329 ice_stat_str(ret)); 6330 goto err_init_ctrlq; 6331 } 6332 6333 /* if DDP was previously loaded successfully */ 6334 if (!ice_is_safe_mode(pf)) { 6335 /* reload the SW DB of filter tables */ 6336 if (reset_type == ICE_RESET_PFR) 6337 ice_fill_blk_tbls(hw); 6338 else 6339 /* Reload DDP Package after CORER/GLOBR reset */ 6340 ice_load_pkg(NULL, pf); 6341 } 6342 6343 ret = ice_clear_pf_cfg(hw); 6344 if (ret) { 6345 dev_err(dev, "clear PF configuration failed %s\n", 6346 ice_stat_str(ret)); 6347 goto err_init_ctrlq; 6348 } 6349 6350 if (pf->first_sw->dflt_vsi_ena) 6351 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6352 /* clear the default VSI configuration if it exists */ 6353 pf->first_sw->dflt_vsi = NULL; 6354 pf->first_sw->dflt_vsi_ena = false; 6355 6356 ice_clear_pxe_mode(hw); 6357 6358 ret = ice_init_nvm(hw); 6359 if (ret) { 6360 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret)); 6361 goto err_init_ctrlq; 6362 } 6363 6364 ret = ice_get_caps(hw); 6365 if (ret) { 6366 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6367 goto err_init_ctrlq; 6368 } 6369 6370 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6371 if (ret) { 6372 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6373 goto err_init_ctrlq; 6374 } 6375 6376 err = ice_sched_init_port(hw->port_info); 6377 if (err) 6378 goto err_sched_init_port; 6379 6380 /* start misc vector */ 6381 err = ice_req_irq_msix_misc(pf); 6382 if (err) { 6383 dev_err(dev, "misc vector setup failed: %d\n", err); 6384 goto err_sched_init_port; 6385 } 6386 6387 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6388 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6389 if (!rd32(hw, PFQF_FD_SIZE)) { 6390 u16 unused, guar, b_effort; 6391 6392 guar = hw->func_caps.fd_fltr_guar; 6393 b_effort = hw->func_caps.fd_fltr_best_effort; 6394 6395 /* force guaranteed filter pool for PF */ 6396 ice_alloc_fd_guar_item(hw, &unused, guar); 6397 /* force shared filter pool for PF */ 6398 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6399 } 6400 } 6401 6402 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6403 ice_dcb_rebuild(pf); 6404 6405 /* If the PF previously had enabled PTP, PTP init needs to happen before 6406 * the VSI rebuild. If not, this causes the PTP link status events to 6407 * fail. 6408 */ 6409 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6410 ice_ptp_init(pf); 6411 6412 /* rebuild PF VSI */ 6413 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6414 if (err) { 6415 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6416 goto err_vsi_rebuild; 6417 } 6418 6419 /* If Flow Director is active */ 6420 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6421 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6422 if (err) { 6423 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6424 goto err_vsi_rebuild; 6425 } 6426 6427 /* replay HW Flow Director recipes */ 6428 if (hw->fdir_prof) 6429 ice_fdir_replay_flows(hw); 6430 6431 /* replay Flow Director filters */ 6432 ice_fdir_replay_fltrs(pf); 6433 6434 ice_rebuild_arfs(pf); 6435 } 6436 6437 ice_update_pf_netdev_link(pf); 6438 6439 /* tell the firmware we are up */ 6440 ret = ice_send_version(pf); 6441 if (ret) { 6442 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6443 ice_stat_str(ret)); 6444 goto err_vsi_rebuild; 6445 } 6446 6447 ice_replay_post(hw); 6448 6449 /* if we get here, reset flow is successful */ 6450 clear_bit(ICE_RESET_FAILED, pf->state); 6451 6452 ice_plug_aux_dev(pf); 6453 return; 6454 6455 err_vsi_rebuild: 6456 err_sched_init_port: 6457 ice_sched_cleanup_all(hw); 6458 err_init_ctrlq: 6459 ice_shutdown_all_ctrlq(hw); 6460 set_bit(ICE_RESET_FAILED, pf->state); 6461 clear_recovery: 6462 /* set this bit in PF state to control service task scheduling */ 6463 set_bit(ICE_NEEDS_RESTART, pf->state); 6464 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6465 } 6466 6467 /** 6468 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6469 * @vsi: Pointer to VSI structure 6470 */ 6471 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6472 { 6473 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6474 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6475 else 6476 return ICE_RXBUF_3072; 6477 } 6478 6479 /** 6480 * ice_change_mtu - NDO callback to change the MTU 6481 * @netdev: network interface device structure 6482 * @new_mtu: new value for maximum frame size 6483 * 6484 * Returns 0 on success, negative on failure 6485 */ 6486 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6487 { 6488 struct ice_netdev_priv *np = netdev_priv(netdev); 6489 struct ice_vsi *vsi = np->vsi; 6490 struct ice_pf *pf = vsi->back; 6491 struct iidc_event *event; 6492 u8 count = 0; 6493 int err = 0; 6494 6495 if (new_mtu == (int)netdev->mtu) { 6496 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6497 return 0; 6498 } 6499 6500 if (ice_is_xdp_ena_vsi(vsi)) { 6501 int frame_size = ice_max_xdp_frame_size(vsi); 6502 6503 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6504 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6505 frame_size - ICE_ETH_PKT_HDR_PAD); 6506 return -EINVAL; 6507 } 6508 } 6509 6510 /* if a reset is in progress, wait for some time for it to complete */ 6511 do { 6512 if (ice_is_reset_in_progress(pf->state)) { 6513 count++; 6514 usleep_range(1000, 2000); 6515 } else { 6516 break; 6517 } 6518 6519 } while (count < 100); 6520 6521 if (count == 100) { 6522 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6523 return -EBUSY; 6524 } 6525 6526 event = kzalloc(sizeof(*event), GFP_KERNEL); 6527 if (!event) 6528 return -ENOMEM; 6529 6530 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6531 ice_send_event_to_aux(pf, event); 6532 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6533 6534 netdev->mtu = (unsigned int)new_mtu; 6535 6536 /* if VSI is up, bring it down and then back up */ 6537 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6538 err = ice_down(vsi); 6539 if (err) { 6540 netdev_err(netdev, "change MTU if_down err %d\n", err); 6541 goto event_after; 6542 } 6543 6544 err = ice_up(vsi); 6545 if (err) { 6546 netdev_err(netdev, "change MTU if_up err %d\n", err); 6547 goto event_after; 6548 } 6549 } 6550 6551 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6552 event_after: 6553 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6554 ice_send_event_to_aux(pf, event); 6555 kfree(event); 6556 6557 return err; 6558 } 6559 6560 /** 6561 * ice_do_ioctl - Access the hwtstamp interface 6562 * @netdev: network interface device structure 6563 * @ifr: interface request data 6564 * @cmd: ioctl command 6565 */ 6566 static int ice_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6567 { 6568 struct ice_netdev_priv *np = netdev_priv(netdev); 6569 struct ice_pf *pf = np->vsi->back; 6570 6571 switch (cmd) { 6572 case SIOCGHWTSTAMP: 6573 return ice_ptp_get_ts_config(pf, ifr); 6574 case SIOCSHWTSTAMP: 6575 return ice_ptp_set_ts_config(pf, ifr); 6576 default: 6577 return -EOPNOTSUPP; 6578 } 6579 } 6580 6581 /** 6582 * ice_aq_str - convert AQ err code to a string 6583 * @aq_err: the AQ error code to convert 6584 */ 6585 const char *ice_aq_str(enum ice_aq_err aq_err) 6586 { 6587 switch (aq_err) { 6588 case ICE_AQ_RC_OK: 6589 return "OK"; 6590 case ICE_AQ_RC_EPERM: 6591 return "ICE_AQ_RC_EPERM"; 6592 case ICE_AQ_RC_ENOENT: 6593 return "ICE_AQ_RC_ENOENT"; 6594 case ICE_AQ_RC_ENOMEM: 6595 return "ICE_AQ_RC_ENOMEM"; 6596 case ICE_AQ_RC_EBUSY: 6597 return "ICE_AQ_RC_EBUSY"; 6598 case ICE_AQ_RC_EEXIST: 6599 return "ICE_AQ_RC_EEXIST"; 6600 case ICE_AQ_RC_EINVAL: 6601 return "ICE_AQ_RC_EINVAL"; 6602 case ICE_AQ_RC_ENOSPC: 6603 return "ICE_AQ_RC_ENOSPC"; 6604 case ICE_AQ_RC_ENOSYS: 6605 return "ICE_AQ_RC_ENOSYS"; 6606 case ICE_AQ_RC_EMODE: 6607 return "ICE_AQ_RC_EMODE"; 6608 case ICE_AQ_RC_ENOSEC: 6609 return "ICE_AQ_RC_ENOSEC"; 6610 case ICE_AQ_RC_EBADSIG: 6611 return "ICE_AQ_RC_EBADSIG"; 6612 case ICE_AQ_RC_ESVN: 6613 return "ICE_AQ_RC_ESVN"; 6614 case ICE_AQ_RC_EBADMAN: 6615 return "ICE_AQ_RC_EBADMAN"; 6616 case ICE_AQ_RC_EBADBUF: 6617 return "ICE_AQ_RC_EBADBUF"; 6618 } 6619 6620 return "ICE_AQ_RC_UNKNOWN"; 6621 } 6622 6623 /** 6624 * ice_stat_str - convert status err code to a string 6625 * @stat_err: the status error code to convert 6626 */ 6627 const char *ice_stat_str(enum ice_status stat_err) 6628 { 6629 switch (stat_err) { 6630 case ICE_SUCCESS: 6631 return "OK"; 6632 case ICE_ERR_PARAM: 6633 return "ICE_ERR_PARAM"; 6634 case ICE_ERR_NOT_IMPL: 6635 return "ICE_ERR_NOT_IMPL"; 6636 case ICE_ERR_NOT_READY: 6637 return "ICE_ERR_NOT_READY"; 6638 case ICE_ERR_NOT_SUPPORTED: 6639 return "ICE_ERR_NOT_SUPPORTED"; 6640 case ICE_ERR_BAD_PTR: 6641 return "ICE_ERR_BAD_PTR"; 6642 case ICE_ERR_INVAL_SIZE: 6643 return "ICE_ERR_INVAL_SIZE"; 6644 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6645 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6646 case ICE_ERR_RESET_FAILED: 6647 return "ICE_ERR_RESET_FAILED"; 6648 case ICE_ERR_FW_API_VER: 6649 return "ICE_ERR_FW_API_VER"; 6650 case ICE_ERR_NO_MEMORY: 6651 return "ICE_ERR_NO_MEMORY"; 6652 case ICE_ERR_CFG: 6653 return "ICE_ERR_CFG"; 6654 case ICE_ERR_OUT_OF_RANGE: 6655 return "ICE_ERR_OUT_OF_RANGE"; 6656 case ICE_ERR_ALREADY_EXISTS: 6657 return "ICE_ERR_ALREADY_EXISTS"; 6658 case ICE_ERR_NVM: 6659 return "ICE_ERR_NVM"; 6660 case ICE_ERR_NVM_CHECKSUM: 6661 return "ICE_ERR_NVM_CHECKSUM"; 6662 case ICE_ERR_BUF_TOO_SHORT: 6663 return "ICE_ERR_BUF_TOO_SHORT"; 6664 case ICE_ERR_NVM_BLANK_MODE: 6665 return "ICE_ERR_NVM_BLANK_MODE"; 6666 case ICE_ERR_IN_USE: 6667 return "ICE_ERR_IN_USE"; 6668 case ICE_ERR_MAX_LIMIT: 6669 return "ICE_ERR_MAX_LIMIT"; 6670 case ICE_ERR_RESET_ONGOING: 6671 return "ICE_ERR_RESET_ONGOING"; 6672 case ICE_ERR_HW_TABLE: 6673 return "ICE_ERR_HW_TABLE"; 6674 case ICE_ERR_DOES_NOT_EXIST: 6675 return "ICE_ERR_DOES_NOT_EXIST"; 6676 case ICE_ERR_FW_DDP_MISMATCH: 6677 return "ICE_ERR_FW_DDP_MISMATCH"; 6678 case ICE_ERR_AQ_ERROR: 6679 return "ICE_ERR_AQ_ERROR"; 6680 case ICE_ERR_AQ_TIMEOUT: 6681 return "ICE_ERR_AQ_TIMEOUT"; 6682 case ICE_ERR_AQ_FULL: 6683 return "ICE_ERR_AQ_FULL"; 6684 case ICE_ERR_AQ_NO_WORK: 6685 return "ICE_ERR_AQ_NO_WORK"; 6686 case ICE_ERR_AQ_EMPTY: 6687 return "ICE_ERR_AQ_EMPTY"; 6688 case ICE_ERR_AQ_FW_CRITICAL: 6689 return "ICE_ERR_AQ_FW_CRITICAL"; 6690 } 6691 6692 return "ICE_ERR_UNKNOWN"; 6693 } 6694 6695 /** 6696 * ice_set_rss_lut - Set RSS LUT 6697 * @vsi: Pointer to VSI structure 6698 * @lut: Lookup table 6699 * @lut_size: Lookup table size 6700 * 6701 * Returns 0 on success, negative on failure 6702 */ 6703 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6704 { 6705 struct ice_aq_get_set_rss_lut_params params = {}; 6706 struct ice_hw *hw = &vsi->back->hw; 6707 enum ice_status status; 6708 6709 if (!lut) 6710 return -EINVAL; 6711 6712 params.vsi_handle = vsi->idx; 6713 params.lut_size = lut_size; 6714 params.lut_type = vsi->rss_lut_type; 6715 params.lut = lut; 6716 6717 status = ice_aq_set_rss_lut(hw, ¶ms); 6718 if (status) { 6719 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6720 ice_stat_str(status), 6721 ice_aq_str(hw->adminq.sq_last_status)); 6722 return -EIO; 6723 } 6724 6725 return 0; 6726 } 6727 6728 /** 6729 * ice_set_rss_key - Set RSS key 6730 * @vsi: Pointer to the VSI structure 6731 * @seed: RSS hash seed 6732 * 6733 * Returns 0 on success, negative on failure 6734 */ 6735 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6736 { 6737 struct ice_hw *hw = &vsi->back->hw; 6738 enum ice_status status; 6739 6740 if (!seed) 6741 return -EINVAL; 6742 6743 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6744 if (status) { 6745 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6746 ice_stat_str(status), 6747 ice_aq_str(hw->adminq.sq_last_status)); 6748 return -EIO; 6749 } 6750 6751 return 0; 6752 } 6753 6754 /** 6755 * ice_get_rss_lut - Get RSS LUT 6756 * @vsi: Pointer to VSI structure 6757 * @lut: Buffer to store the lookup table entries 6758 * @lut_size: Size of buffer to store the lookup table entries 6759 * 6760 * Returns 0 on success, negative on failure 6761 */ 6762 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6763 { 6764 struct ice_aq_get_set_rss_lut_params params = {}; 6765 struct ice_hw *hw = &vsi->back->hw; 6766 enum ice_status status; 6767 6768 if (!lut) 6769 return -EINVAL; 6770 6771 params.vsi_handle = vsi->idx; 6772 params.lut_size = lut_size; 6773 params.lut_type = vsi->rss_lut_type; 6774 params.lut = lut; 6775 6776 status = ice_aq_get_rss_lut(hw, ¶ms); 6777 if (status) { 6778 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6779 ice_stat_str(status), 6780 ice_aq_str(hw->adminq.sq_last_status)); 6781 return -EIO; 6782 } 6783 6784 return 0; 6785 } 6786 6787 /** 6788 * ice_get_rss_key - Get RSS key 6789 * @vsi: Pointer to VSI structure 6790 * @seed: Buffer to store the key in 6791 * 6792 * Returns 0 on success, negative on failure 6793 */ 6794 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6795 { 6796 struct ice_hw *hw = &vsi->back->hw; 6797 enum ice_status status; 6798 6799 if (!seed) 6800 return -EINVAL; 6801 6802 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6803 if (status) { 6804 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6805 ice_stat_str(status), 6806 ice_aq_str(hw->adminq.sq_last_status)); 6807 return -EIO; 6808 } 6809 6810 return 0; 6811 } 6812 6813 /** 6814 * ice_bridge_getlink - Get the hardware bridge mode 6815 * @skb: skb buff 6816 * @pid: process ID 6817 * @seq: RTNL message seq 6818 * @dev: the netdev being configured 6819 * @filter_mask: filter mask passed in 6820 * @nlflags: netlink flags passed in 6821 * 6822 * Return the bridge mode (VEB/VEPA) 6823 */ 6824 static int 6825 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6826 struct net_device *dev, u32 filter_mask, int nlflags) 6827 { 6828 struct ice_netdev_priv *np = netdev_priv(dev); 6829 struct ice_vsi *vsi = np->vsi; 6830 struct ice_pf *pf = vsi->back; 6831 u16 bmode; 6832 6833 bmode = pf->first_sw->bridge_mode; 6834 6835 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6836 filter_mask, NULL); 6837 } 6838 6839 /** 6840 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6841 * @vsi: Pointer to VSI structure 6842 * @bmode: Hardware bridge mode (VEB/VEPA) 6843 * 6844 * Returns 0 on success, negative on failure 6845 */ 6846 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6847 { 6848 struct ice_aqc_vsi_props *vsi_props; 6849 struct ice_hw *hw = &vsi->back->hw; 6850 struct ice_vsi_ctx *ctxt; 6851 enum ice_status status; 6852 int ret = 0; 6853 6854 vsi_props = &vsi->info; 6855 6856 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6857 if (!ctxt) 6858 return -ENOMEM; 6859 6860 ctxt->info = vsi->info; 6861 6862 if (bmode == BRIDGE_MODE_VEB) 6863 /* change from VEPA to VEB mode */ 6864 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6865 else 6866 /* change from VEB to VEPA mode */ 6867 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6868 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6869 6870 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6871 if (status) { 6872 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6873 bmode, ice_stat_str(status), 6874 ice_aq_str(hw->adminq.sq_last_status)); 6875 ret = -EIO; 6876 goto out; 6877 } 6878 /* Update sw flags for book keeping */ 6879 vsi_props->sw_flags = ctxt->info.sw_flags; 6880 6881 out: 6882 kfree(ctxt); 6883 return ret; 6884 } 6885 6886 /** 6887 * ice_bridge_setlink - Set the hardware bridge mode 6888 * @dev: the netdev being configured 6889 * @nlh: RTNL message 6890 * @flags: bridge setlink flags 6891 * @extack: netlink extended ack 6892 * 6893 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6894 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6895 * not already set for all VSIs connected to this switch. And also update the 6896 * unicast switch filter rules for the corresponding switch of the netdev. 6897 */ 6898 static int 6899 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6900 u16 __always_unused flags, 6901 struct netlink_ext_ack __always_unused *extack) 6902 { 6903 struct ice_netdev_priv *np = netdev_priv(dev); 6904 struct ice_pf *pf = np->vsi->back; 6905 struct nlattr *attr, *br_spec; 6906 struct ice_hw *hw = &pf->hw; 6907 enum ice_status status; 6908 struct ice_sw *pf_sw; 6909 int rem, v, err = 0; 6910 6911 pf_sw = pf->first_sw; 6912 /* find the attribute in the netlink message */ 6913 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6914 6915 nla_for_each_nested(attr, br_spec, rem) { 6916 __u16 mode; 6917 6918 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6919 continue; 6920 mode = nla_get_u16(attr); 6921 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6922 return -EINVAL; 6923 /* Continue if bridge mode is not being flipped */ 6924 if (mode == pf_sw->bridge_mode) 6925 continue; 6926 /* Iterates through the PF VSI list and update the loopback 6927 * mode of the VSI 6928 */ 6929 ice_for_each_vsi(pf, v) { 6930 if (!pf->vsi[v]) 6931 continue; 6932 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6933 if (err) 6934 return err; 6935 } 6936 6937 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6938 /* Update the unicast switch filter rules for the corresponding 6939 * switch of the netdev 6940 */ 6941 status = ice_update_sw_rule_bridge_mode(hw); 6942 if (status) { 6943 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6944 mode, ice_stat_str(status), 6945 ice_aq_str(hw->adminq.sq_last_status)); 6946 /* revert hw->evb_veb */ 6947 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6948 return -EIO; 6949 } 6950 6951 pf_sw->bridge_mode = mode; 6952 } 6953 6954 return 0; 6955 } 6956 6957 /** 6958 * ice_tx_timeout - Respond to a Tx Hang 6959 * @netdev: network interface device structure 6960 * @txqueue: Tx queue 6961 */ 6962 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6963 { 6964 struct ice_netdev_priv *np = netdev_priv(netdev); 6965 struct ice_ring *tx_ring = NULL; 6966 struct ice_vsi *vsi = np->vsi; 6967 struct ice_pf *pf = vsi->back; 6968 u32 i; 6969 6970 pf->tx_timeout_count++; 6971 6972 /* Check if PFC is enabled for the TC to which the queue belongs 6973 * to. If yes then Tx timeout is not caused by a hung queue, no 6974 * need to reset and rebuild 6975 */ 6976 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6977 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6978 txqueue); 6979 return; 6980 } 6981 6982 /* now that we have an index, find the tx_ring struct */ 6983 for (i = 0; i < vsi->num_txq; i++) 6984 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6985 if (txqueue == vsi->tx_rings[i]->q_index) { 6986 tx_ring = vsi->tx_rings[i]; 6987 break; 6988 } 6989 6990 /* Reset recovery level if enough time has elapsed after last timeout. 6991 * Also ensure no new reset action happens before next timeout period. 6992 */ 6993 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6994 pf->tx_timeout_recovery_level = 1; 6995 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6996 netdev->watchdog_timeo))) 6997 return; 6998 6999 if (tx_ring) { 7000 struct ice_hw *hw = &pf->hw; 7001 u32 head, val = 0; 7002 7003 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7004 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7005 /* Read interrupt register */ 7006 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7007 7008 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7009 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7010 head, tx_ring->next_to_use, val); 7011 } 7012 7013 pf->tx_timeout_last_recovery = jiffies; 7014 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7015 pf->tx_timeout_recovery_level, txqueue); 7016 7017 switch (pf->tx_timeout_recovery_level) { 7018 case 1: 7019 set_bit(ICE_PFR_REQ, pf->state); 7020 break; 7021 case 2: 7022 set_bit(ICE_CORER_REQ, pf->state); 7023 break; 7024 case 3: 7025 set_bit(ICE_GLOBR_REQ, pf->state); 7026 break; 7027 default: 7028 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7029 set_bit(ICE_DOWN, pf->state); 7030 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7031 set_bit(ICE_SERVICE_DIS, pf->state); 7032 break; 7033 } 7034 7035 ice_service_task_schedule(pf); 7036 pf->tx_timeout_recovery_level++; 7037 } 7038 7039 /** 7040 * ice_open - Called when a network interface becomes active 7041 * @netdev: network interface device structure 7042 * 7043 * The open entry point is called when a network interface is made 7044 * active by the system (IFF_UP). At this point all resources needed 7045 * for transmit and receive operations are allocated, the interrupt 7046 * handler is registered with the OS, the netdev watchdog is enabled, 7047 * and the stack is notified that the interface is ready. 7048 * 7049 * Returns 0 on success, negative value on failure 7050 */ 7051 int ice_open(struct net_device *netdev) 7052 { 7053 struct ice_netdev_priv *np = netdev_priv(netdev); 7054 struct ice_pf *pf = np->vsi->back; 7055 7056 if (ice_is_reset_in_progress(pf->state)) { 7057 netdev_err(netdev, "can't open net device while reset is in progress"); 7058 return -EBUSY; 7059 } 7060 7061 return ice_open_internal(netdev); 7062 } 7063 7064 /** 7065 * ice_open_internal - Called when a network interface becomes active 7066 * @netdev: network interface device structure 7067 * 7068 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 7069 * handling routine 7070 * 7071 * Returns 0 on success, negative value on failure 7072 */ 7073 int ice_open_internal(struct net_device *netdev) 7074 { 7075 struct ice_netdev_priv *np = netdev_priv(netdev); 7076 struct ice_vsi *vsi = np->vsi; 7077 struct ice_pf *pf = vsi->back; 7078 struct ice_port_info *pi; 7079 enum ice_status status; 7080 int err; 7081 7082 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 7083 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 7084 return -EIO; 7085 } 7086 7087 netif_carrier_off(netdev); 7088 7089 pi = vsi->port_info; 7090 status = ice_update_link_info(pi); 7091 if (status) { 7092 netdev_err(netdev, "Failed to get link info, error %s\n", 7093 ice_stat_str(status)); 7094 return -EIO; 7095 } 7096 7097 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 7098 7099 /* Set PHY if there is media, otherwise, turn off PHY */ 7100 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 7101 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 7102 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 7103 err = ice_init_phy_user_cfg(pi); 7104 if (err) { 7105 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 7106 err); 7107 return err; 7108 } 7109 } 7110 7111 err = ice_configure_phy(vsi); 7112 if (err) { 7113 netdev_err(netdev, "Failed to set physical link up, error %d\n", 7114 err); 7115 return err; 7116 } 7117 } else { 7118 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 7119 ice_set_link(vsi, false); 7120 } 7121 7122 err = ice_vsi_open(vsi); 7123 if (err) 7124 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 7125 vsi->vsi_num, vsi->vsw->sw_id); 7126 7127 /* Update existing tunnels information */ 7128 udp_tunnel_get_rx_info(netdev); 7129 7130 return err; 7131 } 7132 7133 /** 7134 * ice_stop - Disables a network interface 7135 * @netdev: network interface device structure 7136 * 7137 * The stop entry point is called when an interface is de-activated by the OS, 7138 * and the netdevice enters the DOWN state. The hardware is still under the 7139 * driver's control, but the netdev interface is disabled. 7140 * 7141 * Returns success only - not allowed to fail 7142 */ 7143 int ice_stop(struct net_device *netdev) 7144 { 7145 struct ice_netdev_priv *np = netdev_priv(netdev); 7146 struct ice_vsi *vsi = np->vsi; 7147 struct ice_pf *pf = vsi->back; 7148 7149 if (ice_is_reset_in_progress(pf->state)) { 7150 netdev_err(netdev, "can't stop net device while reset is in progress"); 7151 return -EBUSY; 7152 } 7153 7154 ice_vsi_close(vsi); 7155 7156 return 0; 7157 } 7158 7159 /** 7160 * ice_features_check - Validate encapsulated packet conforms to limits 7161 * @skb: skb buffer 7162 * @netdev: This port's netdev 7163 * @features: Offload features that the stack believes apply 7164 */ 7165 static netdev_features_t 7166 ice_features_check(struct sk_buff *skb, 7167 struct net_device __always_unused *netdev, 7168 netdev_features_t features) 7169 { 7170 size_t len; 7171 7172 /* No point in doing any of this if neither checksum nor GSO are 7173 * being requested for this frame. We can rule out both by just 7174 * checking for CHECKSUM_PARTIAL 7175 */ 7176 if (skb->ip_summed != CHECKSUM_PARTIAL) 7177 return features; 7178 7179 /* We cannot support GSO if the MSS is going to be less than 7180 * 64 bytes. If it is then we need to drop support for GSO. 7181 */ 7182 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 7183 features &= ~NETIF_F_GSO_MASK; 7184 7185 len = skb_network_header(skb) - skb->data; 7186 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 7187 goto out_rm_features; 7188 7189 len = skb_transport_header(skb) - skb_network_header(skb); 7190 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7191 goto out_rm_features; 7192 7193 if (skb->encapsulation) { 7194 len = skb_inner_network_header(skb) - skb_transport_header(skb); 7195 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 7196 goto out_rm_features; 7197 7198 len = skb_inner_transport_header(skb) - 7199 skb_inner_network_header(skb); 7200 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7201 goto out_rm_features; 7202 } 7203 7204 return features; 7205 out_rm_features: 7206 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 7207 } 7208 7209 static const struct net_device_ops ice_netdev_safe_mode_ops = { 7210 .ndo_open = ice_open, 7211 .ndo_stop = ice_stop, 7212 .ndo_start_xmit = ice_start_xmit, 7213 .ndo_set_mac_address = ice_set_mac_address, 7214 .ndo_validate_addr = eth_validate_addr, 7215 .ndo_change_mtu = ice_change_mtu, 7216 .ndo_get_stats64 = ice_get_stats64, 7217 .ndo_tx_timeout = ice_tx_timeout, 7218 .ndo_bpf = ice_xdp_safe_mode, 7219 }; 7220 7221 static const struct net_device_ops ice_netdev_ops = { 7222 .ndo_open = ice_open, 7223 .ndo_stop = ice_stop, 7224 .ndo_start_xmit = ice_start_xmit, 7225 .ndo_features_check = ice_features_check, 7226 .ndo_set_rx_mode = ice_set_rx_mode, 7227 .ndo_set_mac_address = ice_set_mac_address, 7228 .ndo_validate_addr = eth_validate_addr, 7229 .ndo_change_mtu = ice_change_mtu, 7230 .ndo_get_stats64 = ice_get_stats64, 7231 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 7232 .ndo_do_ioctl = ice_do_ioctl, 7233 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 7234 .ndo_set_vf_mac = ice_set_vf_mac, 7235 .ndo_get_vf_config = ice_get_vf_cfg, 7236 .ndo_set_vf_trust = ice_set_vf_trust, 7237 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 7238 .ndo_set_vf_link_state = ice_set_vf_link_state, 7239 .ndo_get_vf_stats = ice_get_vf_stats, 7240 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 7241 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 7242 .ndo_set_features = ice_set_features, 7243 .ndo_bridge_getlink = ice_bridge_getlink, 7244 .ndo_bridge_setlink = ice_bridge_setlink, 7245 .ndo_fdb_add = ice_fdb_add, 7246 .ndo_fdb_del = ice_fdb_del, 7247 #ifdef CONFIG_RFS_ACCEL 7248 .ndo_rx_flow_steer = ice_rx_flow_steer, 7249 #endif 7250 .ndo_tx_timeout = ice_tx_timeout, 7251 .ndo_bpf = ice_xdp, 7252 .ndo_xdp_xmit = ice_xdp_xmit, 7253 .ndo_xsk_wakeup = ice_xsk_wakeup, 7254 }; 7255