1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 25 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 26 static const char ice_driver_string[] = DRV_SUMMARY; 27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 28 29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 30 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 31 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 32 33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 34 MODULE_DESCRIPTION(DRV_SUMMARY); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static DEFINE_IDA(ice_aux_ida); 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 static struct workqueue_struct *ice_wq; 51 static const struct net_device_ops ice_netdev_safe_mode_ops; 52 static const struct net_device_ops ice_netdev_ops; 53 54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 55 56 static void ice_vsi_release_all(struct ice_pf *pf); 57 58 static int ice_rebuild_channels(struct ice_pf *pf); 59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 60 61 static int 62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 63 void *cb_priv, enum tc_setup_type type, void *type_data, 64 void *data, 65 void (*cleanup)(struct flow_block_cb *block_cb)); 66 67 bool netif_is_ice(struct net_device *dev) 68 { 69 return dev && (dev->netdev_ops == &ice_netdev_ops); 70 } 71 72 /** 73 * ice_get_tx_pending - returns number of Tx descriptors not processed 74 * @ring: the ring of descriptors 75 */ 76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 77 { 78 u16 head, tail; 79 80 head = ring->next_to_clean; 81 tail = ring->next_to_use; 82 83 if (head != tail) 84 return (head < tail) ? 85 tail - head : (tail + ring->count - head); 86 return 0; 87 } 88 89 /** 90 * ice_check_for_hang_subtask - check for and recover hung queues 91 * @pf: pointer to PF struct 92 */ 93 static void ice_check_for_hang_subtask(struct ice_pf *pf) 94 { 95 struct ice_vsi *vsi = NULL; 96 struct ice_hw *hw; 97 unsigned int i; 98 int packets; 99 u32 v; 100 101 ice_for_each_vsi(pf, v) 102 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 103 vsi = pf->vsi[v]; 104 break; 105 } 106 107 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 108 return; 109 110 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 111 return; 112 113 hw = &vsi->back->hw; 114 115 ice_for_each_txq(vsi, i) { 116 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 117 118 if (!tx_ring) 119 continue; 120 if (ice_ring_ch_enabled(tx_ring)) 121 continue; 122 123 if (tx_ring->desc) { 124 /* If packet counter has not changed the queue is 125 * likely stalled, so force an interrupt for this 126 * queue. 127 * 128 * prev_pkt would be negative if there was no 129 * pending work. 130 */ 131 packets = tx_ring->stats.pkts & INT_MAX; 132 if (tx_ring->tx_stats.prev_pkt == packets) { 133 /* Trigger sw interrupt to revive the queue */ 134 ice_trigger_sw_intr(hw, tx_ring->q_vector); 135 continue; 136 } 137 138 /* Memory barrier between read of packet count and call 139 * to ice_get_tx_pending() 140 */ 141 smp_rmb(); 142 tx_ring->tx_stats.prev_pkt = 143 ice_get_tx_pending(tx_ring) ? packets : -1; 144 } 145 } 146 } 147 148 /** 149 * ice_init_mac_fltr - Set initial MAC filters 150 * @pf: board private structure 151 * 152 * Set initial set of MAC filters for PF VSI; configure filters for permanent 153 * address and broadcast address. If an error is encountered, netdevice will be 154 * unregistered. 155 */ 156 static int ice_init_mac_fltr(struct ice_pf *pf) 157 { 158 struct ice_vsi *vsi; 159 u8 *perm_addr; 160 161 vsi = ice_get_main_vsi(pf); 162 if (!vsi) 163 return -EINVAL; 164 165 perm_addr = vsi->port_info->mac.perm_addr; 166 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 167 } 168 169 /** 170 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 171 * @netdev: the net device on which the sync is happening 172 * @addr: MAC address to sync 173 * 174 * This is a callback function which is called by the in kernel device sync 175 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 176 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 177 * MAC filters from the hardware. 178 */ 179 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 180 { 181 struct ice_netdev_priv *np = netdev_priv(netdev); 182 struct ice_vsi *vsi = np->vsi; 183 184 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 185 ICE_FWD_TO_VSI)) 186 return -EINVAL; 187 188 return 0; 189 } 190 191 /** 192 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 193 * @netdev: the net device on which the unsync is happening 194 * @addr: MAC address to unsync 195 * 196 * This is a callback function which is called by the in kernel device unsync 197 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 198 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 199 * delete the MAC filters from the hardware. 200 */ 201 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 202 { 203 struct ice_netdev_priv *np = netdev_priv(netdev); 204 struct ice_vsi *vsi = np->vsi; 205 206 /* Under some circumstances, we might receive a request to delete our 207 * own device address from our uc list. Because we store the device 208 * address in the VSI's MAC filter list, we need to ignore such 209 * requests and not delete our device address from this list. 210 */ 211 if (ether_addr_equal(addr, netdev->dev_addr)) 212 return 0; 213 214 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 215 ICE_FWD_TO_VSI)) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 /** 222 * ice_vsi_fltr_changed - check if filter state changed 223 * @vsi: VSI to be checked 224 * 225 * returns true if filter state has changed, false otherwise. 226 */ 227 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 228 { 229 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 230 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 232 } 233 234 /** 235 * ice_set_promisc - Enable promiscuous mode for a given PF 236 * @vsi: the VSI being configured 237 * @promisc_m: mask of promiscuous config bits 238 * 239 */ 240 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 241 { 242 int status; 243 244 if (vsi->type != ICE_VSI_PF) 245 return 0; 246 247 if (vsi->num_vlan > 1) 248 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 249 else 250 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 251 return status; 252 } 253 254 /** 255 * ice_clear_promisc - Disable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (vsi->num_vlan > 1) 268 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 269 else 270 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 271 return status; 272 } 273 274 /** 275 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 276 * @vsi: ptr to the VSI 277 * 278 * Push any outstanding VSI filter changes through the AdminQ. 279 */ 280 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 281 { 282 struct device *dev = ice_pf_to_dev(vsi->back); 283 struct net_device *netdev = vsi->netdev; 284 bool promisc_forced_on = false; 285 struct ice_pf *pf = vsi->back; 286 struct ice_hw *hw = &pf->hw; 287 u32 changed_flags = 0; 288 u8 promisc_m; 289 int err; 290 291 if (!vsi->netdev) 292 return -EINVAL; 293 294 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 295 usleep_range(1000, 2000); 296 297 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 298 vsi->current_netdev_flags = vsi->netdev->flags; 299 300 INIT_LIST_HEAD(&vsi->tmp_sync_list); 301 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 302 303 if (ice_vsi_fltr_changed(vsi)) { 304 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 305 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 306 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 307 308 /* grab the netdev's addr_list_lock */ 309 netif_addr_lock_bh(netdev); 310 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 311 ice_add_mac_to_unsync_list); 312 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 /* our temp lists are populated. release lock */ 315 netif_addr_unlock_bh(netdev); 316 } 317 318 /* Remove MAC addresses in the unsync list */ 319 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 320 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 321 if (err) { 322 netdev_err(netdev, "Failed to delete MAC filters\n"); 323 /* if we failed because of alloc failures, just bail */ 324 if (err == -ENOMEM) 325 goto out; 326 } 327 328 /* Add MAC addresses in the sync list */ 329 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 330 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 331 /* If filter is added successfully or already exists, do not go into 332 * 'if' condition and report it as error. Instead continue processing 333 * rest of the function. 334 */ 335 if (err && err != -EEXIST) { 336 netdev_err(netdev, "Failed to add MAC filters\n"); 337 /* If there is no more space for new umac filters, VSI 338 * should go into promiscuous mode. There should be some 339 * space reserved for promiscuous filters. 340 */ 341 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 342 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 343 vsi->state)) { 344 promisc_forced_on = true; 345 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 346 vsi->vsi_num); 347 } else { 348 goto out; 349 } 350 } 351 err = 0; 352 /* check for changes in promiscuous modes */ 353 if (changed_flags & IFF_ALLMULTI) { 354 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 355 if (vsi->num_vlan > 1) 356 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 357 else 358 promisc_m = ICE_MCAST_PROMISC_BITS; 359 360 err = ice_set_promisc(vsi, promisc_m); 361 if (err) { 362 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 363 vsi->vsi_num); 364 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 365 goto out_promisc; 366 } 367 } else { 368 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 369 if (vsi->num_vlan > 1) 370 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 371 else 372 promisc_m = ICE_MCAST_PROMISC_BITS; 373 374 err = ice_clear_promisc(vsi, promisc_m); 375 if (err) { 376 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 377 vsi->vsi_num); 378 vsi->current_netdev_flags |= IFF_ALLMULTI; 379 goto out_promisc; 380 } 381 } 382 } 383 384 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 385 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 386 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 387 if (vsi->current_netdev_flags & IFF_PROMISC) { 388 /* Apply Rx filter rule to get traffic from wire */ 389 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 390 err = ice_set_dflt_vsi(pf->first_sw, vsi); 391 if (err && err != -EEXIST) { 392 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 393 err, vsi->vsi_num); 394 vsi->current_netdev_flags &= 395 ~IFF_PROMISC; 396 goto out_promisc; 397 } 398 err = 0; 399 ice_cfg_vlan_pruning(vsi, false); 400 } 401 } else { 402 /* Clear Rx filter to remove traffic from wire */ 403 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 404 err = ice_clear_dflt_vsi(pf->first_sw); 405 if (err) { 406 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 407 err, vsi->vsi_num); 408 vsi->current_netdev_flags |= 409 IFF_PROMISC; 410 goto out_promisc; 411 } 412 if (vsi->num_vlan > 1) 413 ice_cfg_vlan_pruning(vsi, true); 414 } 415 } 416 } 417 goto exit; 418 419 out_promisc: 420 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 421 goto exit; 422 out: 423 /* if something went wrong then set the changed flag so we try again */ 424 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 425 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 426 exit: 427 clear_bit(ICE_CFG_BUSY, vsi->state); 428 return err; 429 } 430 431 /** 432 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 433 * @pf: board private structure 434 */ 435 static void ice_sync_fltr_subtask(struct ice_pf *pf) 436 { 437 int v; 438 439 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 440 return; 441 442 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 443 444 ice_for_each_vsi(pf, v) 445 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 446 ice_vsi_sync_fltr(pf->vsi[v])) { 447 /* come back and try again later */ 448 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 449 break; 450 } 451 } 452 453 /** 454 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 455 * @pf: the PF 456 * @locked: is the rtnl_lock already held 457 */ 458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 459 { 460 int node; 461 int v; 462 463 ice_for_each_vsi(pf, v) 464 if (pf->vsi[v]) 465 ice_dis_vsi(pf->vsi[v], locked); 466 467 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 468 pf->pf_agg_node[node].num_vsis = 0; 469 470 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 471 pf->vf_agg_node[node].num_vsis = 0; 472 } 473 474 /** 475 * ice_clear_sw_switch_recipes - clear switch recipes 476 * @pf: board private structure 477 * 478 * Mark switch recipes as not created in sw structures. There are cases where 479 * rules (especially advanced rules) need to be restored, either re-read from 480 * hardware or added again. For example after the reset. 'recp_created' flag 481 * prevents from doing that and need to be cleared upfront. 482 */ 483 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 484 { 485 struct ice_sw_recipe *recp; 486 u8 i; 487 488 recp = pf->hw.switch_info->recp_list; 489 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 490 recp[i].recp_created = false; 491 } 492 493 /** 494 * ice_prepare_for_reset - prep for reset 495 * @pf: board private structure 496 * @reset_type: reset type requested 497 * 498 * Inform or close all dependent features in prep for reset. 499 */ 500 static void 501 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 502 { 503 struct ice_hw *hw = &pf->hw; 504 struct ice_vsi *vsi; 505 unsigned int i; 506 507 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 508 509 /* already prepared for reset */ 510 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 511 return; 512 513 ice_unplug_aux_dev(pf); 514 515 /* Notify VFs of impending reset */ 516 if (ice_check_sq_alive(hw, &hw->mailboxq)) 517 ice_vc_notify_reset(pf); 518 519 /* Disable VFs until reset is completed */ 520 ice_for_each_vf(pf, i) 521 ice_set_vf_state_qs_dis(&pf->vf[i]); 522 523 if (ice_is_eswitch_mode_switchdev(pf)) { 524 if (reset_type != ICE_RESET_PFR) 525 ice_clear_sw_switch_recipes(pf); 526 } 527 528 /* release ADQ specific HW and SW resources */ 529 vsi = ice_get_main_vsi(pf); 530 if (!vsi) 531 goto skip; 532 533 /* to be on safe side, reset orig_rss_size so that normal flow 534 * of deciding rss_size can take precedence 535 */ 536 vsi->orig_rss_size = 0; 537 538 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 539 if (reset_type == ICE_RESET_PFR) { 540 vsi->old_ena_tc = vsi->all_enatc; 541 vsi->old_numtc = vsi->all_numtc; 542 } else { 543 ice_remove_q_channels(vsi, true); 544 545 /* for other reset type, do not support channel rebuild 546 * hence reset needed info 547 */ 548 vsi->old_ena_tc = 0; 549 vsi->all_enatc = 0; 550 vsi->old_numtc = 0; 551 vsi->all_numtc = 0; 552 vsi->req_txq = 0; 553 vsi->req_rxq = 0; 554 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 555 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 556 } 557 } 558 skip: 559 560 /* clear SW filtering DB */ 561 ice_clear_hw_tbls(hw); 562 /* disable the VSIs and their queues that are not already DOWN */ 563 ice_pf_dis_all_vsi(pf, false); 564 565 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 566 ice_ptp_prepare_for_reset(pf); 567 568 if (hw->port_info) 569 ice_sched_clear_port(hw->port_info); 570 571 ice_shutdown_all_ctrlq(hw); 572 573 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 574 } 575 576 /** 577 * ice_do_reset - Initiate one of many types of resets 578 * @pf: board private structure 579 * @reset_type: reset type requested before this function was called. 580 */ 581 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 582 { 583 struct device *dev = ice_pf_to_dev(pf); 584 struct ice_hw *hw = &pf->hw; 585 586 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 587 588 ice_prepare_for_reset(pf, reset_type); 589 590 /* trigger the reset */ 591 if (ice_reset(hw, reset_type)) { 592 dev_err(dev, "reset %d failed\n", reset_type); 593 set_bit(ICE_RESET_FAILED, pf->state); 594 clear_bit(ICE_RESET_OICR_RECV, pf->state); 595 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 596 clear_bit(ICE_PFR_REQ, pf->state); 597 clear_bit(ICE_CORER_REQ, pf->state); 598 clear_bit(ICE_GLOBR_REQ, pf->state); 599 wake_up(&pf->reset_wait_queue); 600 return; 601 } 602 603 /* PFR is a bit of a special case because it doesn't result in an OICR 604 * interrupt. So for PFR, rebuild after the reset and clear the reset- 605 * associated state bits. 606 */ 607 if (reset_type == ICE_RESET_PFR) { 608 pf->pfr_count++; 609 ice_rebuild(pf, reset_type); 610 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 611 clear_bit(ICE_PFR_REQ, pf->state); 612 wake_up(&pf->reset_wait_queue); 613 ice_reset_all_vfs(pf, true); 614 } 615 } 616 617 /** 618 * ice_reset_subtask - Set up for resetting the device and driver 619 * @pf: board private structure 620 */ 621 static void ice_reset_subtask(struct ice_pf *pf) 622 { 623 enum ice_reset_req reset_type = ICE_RESET_INVAL; 624 625 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 626 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 627 * of reset is pending and sets bits in pf->state indicating the reset 628 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 629 * prepare for pending reset if not already (for PF software-initiated 630 * global resets the software should already be prepared for it as 631 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 632 * by firmware or software on other PFs, that bit is not set so prepare 633 * for the reset now), poll for reset done, rebuild and return. 634 */ 635 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 636 /* Perform the largest reset requested */ 637 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 638 reset_type = ICE_RESET_CORER; 639 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 640 reset_type = ICE_RESET_GLOBR; 641 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 642 reset_type = ICE_RESET_EMPR; 643 /* return if no valid reset type requested */ 644 if (reset_type == ICE_RESET_INVAL) 645 return; 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* make sure we are ready to rebuild */ 649 if (ice_check_reset(&pf->hw)) { 650 set_bit(ICE_RESET_FAILED, pf->state); 651 } else { 652 /* done with reset. start rebuild */ 653 pf->hw.reset_ongoing = false; 654 ice_rebuild(pf, reset_type); 655 /* clear bit to resume normal operations, but 656 * ICE_NEEDS_RESTART bit is set in case rebuild failed 657 */ 658 clear_bit(ICE_RESET_OICR_RECV, pf->state); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 clear_bit(ICE_CORER_REQ, pf->state); 662 clear_bit(ICE_GLOBR_REQ, pf->state); 663 wake_up(&pf->reset_wait_queue); 664 ice_reset_all_vfs(pf, true); 665 } 666 667 return; 668 } 669 670 /* No pending resets to finish processing. Check for new resets */ 671 if (test_bit(ICE_PFR_REQ, pf->state)) 672 reset_type = ICE_RESET_PFR; 673 if (test_bit(ICE_CORER_REQ, pf->state)) 674 reset_type = ICE_RESET_CORER; 675 if (test_bit(ICE_GLOBR_REQ, pf->state)) 676 reset_type = ICE_RESET_GLOBR; 677 /* If no valid reset type requested just return */ 678 if (reset_type == ICE_RESET_INVAL) 679 return; 680 681 /* reset if not already down or busy */ 682 if (!test_bit(ICE_DOWN, pf->state) && 683 !test_bit(ICE_CFG_BUSY, pf->state)) { 684 ice_do_reset(pf, reset_type); 685 } 686 } 687 688 /** 689 * ice_print_topo_conflict - print topology conflict message 690 * @vsi: the VSI whose topology status is being checked 691 */ 692 static void ice_print_topo_conflict(struct ice_vsi *vsi) 693 { 694 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 695 case ICE_AQ_LINK_TOPO_CONFLICT: 696 case ICE_AQ_LINK_MEDIA_CONFLICT: 697 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 698 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 699 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 700 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 701 break; 702 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 703 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 704 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 705 else 706 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 707 break; 708 default: 709 break; 710 } 711 } 712 713 /** 714 * ice_print_link_msg - print link up or down message 715 * @vsi: the VSI whose link status is being queried 716 * @isup: boolean for if the link is now up or down 717 */ 718 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 719 { 720 struct ice_aqc_get_phy_caps_data *caps; 721 const char *an_advertised; 722 const char *fec_req; 723 const char *speed; 724 const char *fec; 725 const char *fc; 726 const char *an; 727 int status; 728 729 if (!vsi) 730 return; 731 732 if (vsi->current_isup == isup) 733 return; 734 735 vsi->current_isup = isup; 736 737 if (!isup) { 738 netdev_info(vsi->netdev, "NIC Link is Down\n"); 739 return; 740 } 741 742 switch (vsi->port_info->phy.link_info.link_speed) { 743 case ICE_AQ_LINK_SPEED_100GB: 744 speed = "100 G"; 745 break; 746 case ICE_AQ_LINK_SPEED_50GB: 747 speed = "50 G"; 748 break; 749 case ICE_AQ_LINK_SPEED_40GB: 750 speed = "40 G"; 751 break; 752 case ICE_AQ_LINK_SPEED_25GB: 753 speed = "25 G"; 754 break; 755 case ICE_AQ_LINK_SPEED_20GB: 756 speed = "20 G"; 757 break; 758 case ICE_AQ_LINK_SPEED_10GB: 759 speed = "10 G"; 760 break; 761 case ICE_AQ_LINK_SPEED_5GB: 762 speed = "5 G"; 763 break; 764 case ICE_AQ_LINK_SPEED_2500MB: 765 speed = "2.5 G"; 766 break; 767 case ICE_AQ_LINK_SPEED_1000MB: 768 speed = "1 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_100MB: 771 speed = "100 M"; 772 break; 773 default: 774 speed = "Unknown "; 775 break; 776 } 777 778 switch (vsi->port_info->fc.current_mode) { 779 case ICE_FC_FULL: 780 fc = "Rx/Tx"; 781 break; 782 case ICE_FC_TX_PAUSE: 783 fc = "Tx"; 784 break; 785 case ICE_FC_RX_PAUSE: 786 fc = "Rx"; 787 break; 788 case ICE_FC_NONE: 789 fc = "None"; 790 break; 791 default: 792 fc = "Unknown"; 793 break; 794 } 795 796 /* Get FEC mode based on negotiated link info */ 797 switch (vsi->port_info->phy.link_info.fec_info) { 798 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 799 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 800 fec = "RS-FEC"; 801 break; 802 case ICE_AQ_LINK_25G_KR_FEC_EN: 803 fec = "FC-FEC/BASE-R"; 804 break; 805 default: 806 fec = "NONE"; 807 break; 808 } 809 810 /* check if autoneg completed, might be false due to not supported */ 811 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 812 an = "True"; 813 else 814 an = "False"; 815 816 /* Get FEC mode requested based on PHY caps last SW configuration */ 817 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 818 if (!caps) { 819 fec_req = "Unknown"; 820 an_advertised = "Unknown"; 821 goto done; 822 } 823 824 status = ice_aq_get_phy_caps(vsi->port_info, false, 825 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 826 if (status) 827 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 828 829 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 830 831 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 832 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 833 fec_req = "RS-FEC"; 834 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 835 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 836 fec_req = "FC-FEC/BASE-R"; 837 else 838 fec_req = "NONE"; 839 840 kfree(caps); 841 842 done: 843 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 844 speed, fec_req, fec, an_advertised, an, fc); 845 ice_print_topo_conflict(vsi); 846 } 847 848 /** 849 * ice_vsi_link_event - update the VSI's netdev 850 * @vsi: the VSI on which the link event occurred 851 * @link_up: whether or not the VSI needs to be set up or down 852 */ 853 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 854 { 855 if (!vsi) 856 return; 857 858 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 859 return; 860 861 if (vsi->type == ICE_VSI_PF) { 862 if (link_up == netif_carrier_ok(vsi->netdev)) 863 return; 864 865 if (link_up) { 866 netif_carrier_on(vsi->netdev); 867 netif_tx_wake_all_queues(vsi->netdev); 868 } else { 869 netif_carrier_off(vsi->netdev); 870 netif_tx_stop_all_queues(vsi->netdev); 871 } 872 } 873 } 874 875 /** 876 * ice_set_dflt_mib - send a default config MIB to the FW 877 * @pf: private PF struct 878 * 879 * This function sends a default configuration MIB to the FW. 880 * 881 * If this function errors out at any point, the driver is still able to 882 * function. The main impact is that LFC may not operate as expected. 883 * Therefore an error state in this function should be treated with a DBG 884 * message and continue on with driver rebuild/reenable. 885 */ 886 static void ice_set_dflt_mib(struct ice_pf *pf) 887 { 888 struct device *dev = ice_pf_to_dev(pf); 889 u8 mib_type, *buf, *lldpmib = NULL; 890 u16 len, typelen, offset = 0; 891 struct ice_lldp_org_tlv *tlv; 892 struct ice_hw *hw = &pf->hw; 893 u32 ouisubtype; 894 895 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 896 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 897 if (!lldpmib) { 898 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 899 __func__); 900 return; 901 } 902 903 /* Add ETS CFG TLV */ 904 tlv = (struct ice_lldp_org_tlv *)lldpmib; 905 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 906 ICE_IEEE_ETS_TLV_LEN); 907 tlv->typelen = htons(typelen); 908 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 909 ICE_IEEE_SUBTYPE_ETS_CFG); 910 tlv->ouisubtype = htonl(ouisubtype); 911 912 buf = tlv->tlvinfo; 913 buf[0] = 0; 914 915 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 916 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 917 * Octets 13 - 20 are TSA values - leave as zeros 918 */ 919 buf[5] = 0x64; 920 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 921 offset += len + 2; 922 tlv = (struct ice_lldp_org_tlv *) 923 ((char *)tlv + sizeof(tlv->typelen) + len); 924 925 /* Add ETS REC TLV */ 926 buf = tlv->tlvinfo; 927 tlv->typelen = htons(typelen); 928 929 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 930 ICE_IEEE_SUBTYPE_ETS_REC); 931 tlv->ouisubtype = htonl(ouisubtype); 932 933 /* First octet of buf is reserved 934 * Octets 1 - 4 map UP to TC - all UPs map to zero 935 * Octets 5 - 12 are BW values - set TC 0 to 100%. 936 * Octets 13 - 20 are TSA value - leave as zeros 937 */ 938 buf[5] = 0x64; 939 offset += len + 2; 940 tlv = (struct ice_lldp_org_tlv *) 941 ((char *)tlv + sizeof(tlv->typelen) + len); 942 943 /* Add PFC CFG TLV */ 944 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 945 ICE_IEEE_PFC_TLV_LEN); 946 tlv->typelen = htons(typelen); 947 948 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 949 ICE_IEEE_SUBTYPE_PFC_CFG); 950 tlv->ouisubtype = htonl(ouisubtype); 951 952 /* Octet 1 left as all zeros - PFC disabled */ 953 buf[0] = 0x08; 954 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 955 offset += len + 2; 956 957 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 958 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 959 960 kfree(lldpmib); 961 } 962 963 /** 964 * ice_check_phy_fw_load - check if PHY FW load failed 965 * @pf: pointer to PF struct 966 * @link_cfg_err: bitmap from the link info structure 967 * 968 * check if external PHY FW load failed and print an error message if it did 969 */ 970 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 971 { 972 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 973 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 974 return; 975 } 976 977 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 978 return; 979 980 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 981 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 982 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 983 } 984 } 985 986 /** 987 * ice_check_module_power 988 * @pf: pointer to PF struct 989 * @link_cfg_err: bitmap from the link info structure 990 * 991 * check module power level returned by a previous call to aq_get_link_info 992 * and print error messages if module power level is not supported 993 */ 994 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 995 { 996 /* if module power level is supported, clear the flag */ 997 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 998 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 999 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1000 return; 1001 } 1002 1003 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1004 * above block didn't clear this bit, there's nothing to do 1005 */ 1006 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1007 return; 1008 1009 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1010 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1011 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1012 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1013 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1014 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1015 } 1016 } 1017 1018 /** 1019 * ice_check_link_cfg_err - check if link configuration failed 1020 * @pf: pointer to the PF struct 1021 * @link_cfg_err: bitmap from the link info structure 1022 * 1023 * print if any link configuration failure happens due to the value in the 1024 * link_cfg_err parameter in the link info structure 1025 */ 1026 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1027 { 1028 ice_check_module_power(pf, link_cfg_err); 1029 ice_check_phy_fw_load(pf, link_cfg_err); 1030 } 1031 1032 /** 1033 * ice_link_event - process the link event 1034 * @pf: PF that the link event is associated with 1035 * @pi: port_info for the port that the link event is associated with 1036 * @link_up: true if the physical link is up and false if it is down 1037 * @link_speed: current link speed received from the link event 1038 * 1039 * Returns 0 on success and negative on failure 1040 */ 1041 static int 1042 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1043 u16 link_speed) 1044 { 1045 struct device *dev = ice_pf_to_dev(pf); 1046 struct ice_phy_info *phy_info; 1047 struct ice_vsi *vsi; 1048 u16 old_link_speed; 1049 bool old_link; 1050 int status; 1051 1052 phy_info = &pi->phy; 1053 phy_info->link_info_old = phy_info->link_info; 1054 1055 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1056 old_link_speed = phy_info->link_info_old.link_speed; 1057 1058 /* update the link info structures and re-enable link events, 1059 * don't bail on failure due to other book keeping needed 1060 */ 1061 status = ice_update_link_info(pi); 1062 if (status) 1063 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1064 pi->lport, status, 1065 ice_aq_str(pi->hw->adminq.sq_last_status)); 1066 1067 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1068 1069 /* Check if the link state is up after updating link info, and treat 1070 * this event as an UP event since the link is actually UP now. 1071 */ 1072 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1073 link_up = true; 1074 1075 vsi = ice_get_main_vsi(pf); 1076 if (!vsi || !vsi->port_info) 1077 return -EINVAL; 1078 1079 /* turn off PHY if media was removed */ 1080 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1081 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1082 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1083 ice_set_link(vsi, false); 1084 } 1085 1086 /* if the old link up/down and speed is the same as the new */ 1087 if (link_up == old_link && link_speed == old_link_speed) 1088 return 0; 1089 1090 if (!ice_is_e810(&pf->hw)) 1091 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1092 1093 if (ice_is_dcb_active(pf)) { 1094 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1095 ice_dcb_rebuild(pf); 1096 } else { 1097 if (link_up) 1098 ice_set_dflt_mib(pf); 1099 } 1100 ice_vsi_link_event(vsi, link_up); 1101 ice_print_link_msg(vsi, link_up); 1102 1103 ice_vc_notify_link_state(pf); 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1110 * @pf: board private structure 1111 */ 1112 static void ice_watchdog_subtask(struct ice_pf *pf) 1113 { 1114 int i; 1115 1116 /* if interface is down do nothing */ 1117 if (test_bit(ICE_DOWN, pf->state) || 1118 test_bit(ICE_CFG_BUSY, pf->state)) 1119 return; 1120 1121 /* make sure we don't do these things too often */ 1122 if (time_before(jiffies, 1123 pf->serv_tmr_prev + pf->serv_tmr_period)) 1124 return; 1125 1126 pf->serv_tmr_prev = jiffies; 1127 1128 /* Update the stats for active netdevs so the network stack 1129 * can look at updated numbers whenever it cares to 1130 */ 1131 ice_update_pf_stats(pf); 1132 ice_for_each_vsi(pf, i) 1133 if (pf->vsi[i] && pf->vsi[i]->netdev) 1134 ice_update_vsi_stats(pf->vsi[i]); 1135 } 1136 1137 /** 1138 * ice_init_link_events - enable/initialize link events 1139 * @pi: pointer to the port_info instance 1140 * 1141 * Returns -EIO on failure, 0 on success 1142 */ 1143 static int ice_init_link_events(struct ice_port_info *pi) 1144 { 1145 u16 mask; 1146 1147 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1148 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1149 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1150 1151 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1152 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1153 pi->lport); 1154 return -EIO; 1155 } 1156 1157 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1158 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1159 pi->lport); 1160 return -EIO; 1161 } 1162 1163 return 0; 1164 } 1165 1166 /** 1167 * ice_handle_link_event - handle link event via ARQ 1168 * @pf: PF that the link event is associated with 1169 * @event: event structure containing link status info 1170 */ 1171 static int 1172 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1173 { 1174 struct ice_aqc_get_link_status_data *link_data; 1175 struct ice_port_info *port_info; 1176 int status; 1177 1178 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1179 port_info = pf->hw.port_info; 1180 if (!port_info) 1181 return -EINVAL; 1182 1183 status = ice_link_event(pf, port_info, 1184 !!(link_data->link_info & ICE_AQ_LINK_UP), 1185 le16_to_cpu(link_data->link_speed)); 1186 if (status) 1187 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1188 status); 1189 1190 return status; 1191 } 1192 1193 enum ice_aq_task_state { 1194 ICE_AQ_TASK_WAITING = 0, 1195 ICE_AQ_TASK_COMPLETE, 1196 ICE_AQ_TASK_CANCELED, 1197 }; 1198 1199 struct ice_aq_task { 1200 struct hlist_node entry; 1201 1202 u16 opcode; 1203 struct ice_rq_event_info *event; 1204 enum ice_aq_task_state state; 1205 }; 1206 1207 /** 1208 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1209 * @pf: pointer to the PF private structure 1210 * @opcode: the opcode to wait for 1211 * @timeout: how long to wait, in jiffies 1212 * @event: storage for the event info 1213 * 1214 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1215 * current thread will be put to sleep until the specified event occurs or 1216 * until the given timeout is reached. 1217 * 1218 * To obtain only the descriptor contents, pass an event without an allocated 1219 * msg_buf. If the complete data buffer is desired, allocate the 1220 * event->msg_buf with enough space ahead of time. 1221 * 1222 * Returns: zero on success, or a negative error code on failure. 1223 */ 1224 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1225 struct ice_rq_event_info *event) 1226 { 1227 struct device *dev = ice_pf_to_dev(pf); 1228 struct ice_aq_task *task; 1229 unsigned long start; 1230 long ret; 1231 int err; 1232 1233 task = kzalloc(sizeof(*task), GFP_KERNEL); 1234 if (!task) 1235 return -ENOMEM; 1236 1237 INIT_HLIST_NODE(&task->entry); 1238 task->opcode = opcode; 1239 task->event = event; 1240 task->state = ICE_AQ_TASK_WAITING; 1241 1242 spin_lock_bh(&pf->aq_wait_lock); 1243 hlist_add_head(&task->entry, &pf->aq_wait_list); 1244 spin_unlock_bh(&pf->aq_wait_lock); 1245 1246 start = jiffies; 1247 1248 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1249 timeout); 1250 switch (task->state) { 1251 case ICE_AQ_TASK_WAITING: 1252 err = ret < 0 ? ret : -ETIMEDOUT; 1253 break; 1254 case ICE_AQ_TASK_CANCELED: 1255 err = ret < 0 ? ret : -ECANCELED; 1256 break; 1257 case ICE_AQ_TASK_COMPLETE: 1258 err = ret < 0 ? ret : 0; 1259 break; 1260 default: 1261 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1262 err = -EINVAL; 1263 break; 1264 } 1265 1266 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1267 jiffies_to_msecs(jiffies - start), 1268 jiffies_to_msecs(timeout), 1269 opcode); 1270 1271 spin_lock_bh(&pf->aq_wait_lock); 1272 hlist_del(&task->entry); 1273 spin_unlock_bh(&pf->aq_wait_lock); 1274 kfree(task); 1275 1276 return err; 1277 } 1278 1279 /** 1280 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1281 * @pf: pointer to the PF private structure 1282 * @opcode: the opcode of the event 1283 * @event: the event to check 1284 * 1285 * Loops over the current list of pending threads waiting for an AdminQ event. 1286 * For each matching task, copy the contents of the event into the task 1287 * structure and wake up the thread. 1288 * 1289 * If multiple threads wait for the same opcode, they will all be woken up. 1290 * 1291 * Note that event->msg_buf will only be duplicated if the event has a buffer 1292 * with enough space already allocated. Otherwise, only the descriptor and 1293 * message length will be copied. 1294 * 1295 * Returns: true if an event was found, false otherwise 1296 */ 1297 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1298 struct ice_rq_event_info *event) 1299 { 1300 struct ice_aq_task *task; 1301 bool found = false; 1302 1303 spin_lock_bh(&pf->aq_wait_lock); 1304 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1305 if (task->state || task->opcode != opcode) 1306 continue; 1307 1308 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1309 task->event->msg_len = event->msg_len; 1310 1311 /* Only copy the data buffer if a destination was set */ 1312 if (task->event->msg_buf && 1313 task->event->buf_len > event->buf_len) { 1314 memcpy(task->event->msg_buf, event->msg_buf, 1315 event->buf_len); 1316 task->event->buf_len = event->buf_len; 1317 } 1318 1319 task->state = ICE_AQ_TASK_COMPLETE; 1320 found = true; 1321 } 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 1324 if (found) 1325 wake_up(&pf->aq_wait_queue); 1326 } 1327 1328 /** 1329 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1330 * @pf: the PF private structure 1331 * 1332 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1333 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1334 */ 1335 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1336 { 1337 struct ice_aq_task *task; 1338 1339 spin_lock_bh(&pf->aq_wait_lock); 1340 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1341 task->state = ICE_AQ_TASK_CANCELED; 1342 spin_unlock_bh(&pf->aq_wait_lock); 1343 1344 wake_up(&pf->aq_wait_queue); 1345 } 1346 1347 /** 1348 * __ice_clean_ctrlq - helper function to clean controlq rings 1349 * @pf: ptr to struct ice_pf 1350 * @q_type: specific Control queue type 1351 */ 1352 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1353 { 1354 struct device *dev = ice_pf_to_dev(pf); 1355 struct ice_rq_event_info event; 1356 struct ice_hw *hw = &pf->hw; 1357 struct ice_ctl_q_info *cq; 1358 u16 pending, i = 0; 1359 const char *qtype; 1360 u32 oldval, val; 1361 1362 /* Do not clean control queue if/when PF reset fails */ 1363 if (test_bit(ICE_RESET_FAILED, pf->state)) 1364 return 0; 1365 1366 switch (q_type) { 1367 case ICE_CTL_Q_ADMIN: 1368 cq = &hw->adminq; 1369 qtype = "Admin"; 1370 break; 1371 case ICE_CTL_Q_SB: 1372 cq = &hw->sbq; 1373 qtype = "Sideband"; 1374 break; 1375 case ICE_CTL_Q_MAILBOX: 1376 cq = &hw->mailboxq; 1377 qtype = "Mailbox"; 1378 /* we are going to try to detect a malicious VF, so set the 1379 * state to begin detection 1380 */ 1381 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1382 break; 1383 default: 1384 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1385 return 0; 1386 } 1387 1388 /* check for error indications - PF_xx_AxQLEN register layout for 1389 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1390 */ 1391 val = rd32(hw, cq->rq.len); 1392 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1393 PF_FW_ARQLEN_ARQCRIT_M)) { 1394 oldval = val; 1395 if (val & PF_FW_ARQLEN_ARQVFE_M) 1396 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1397 qtype); 1398 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1399 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1400 qtype); 1401 } 1402 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1403 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1404 qtype); 1405 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1406 PF_FW_ARQLEN_ARQCRIT_M); 1407 if (oldval != val) 1408 wr32(hw, cq->rq.len, val); 1409 } 1410 1411 val = rd32(hw, cq->sq.len); 1412 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1413 PF_FW_ATQLEN_ATQCRIT_M)) { 1414 oldval = val; 1415 if (val & PF_FW_ATQLEN_ATQVFE_M) 1416 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1417 qtype); 1418 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1419 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1420 qtype); 1421 } 1422 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1423 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1424 qtype); 1425 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1426 PF_FW_ATQLEN_ATQCRIT_M); 1427 if (oldval != val) 1428 wr32(hw, cq->sq.len, val); 1429 } 1430 1431 event.buf_len = cq->rq_buf_size; 1432 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1433 if (!event.msg_buf) 1434 return 0; 1435 1436 do { 1437 u16 opcode; 1438 int ret; 1439 1440 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1441 if (ret == -EALREADY) 1442 break; 1443 if (ret) { 1444 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1445 ret); 1446 break; 1447 } 1448 1449 opcode = le16_to_cpu(event.desc.opcode); 1450 1451 /* Notify any thread that might be waiting for this event */ 1452 ice_aq_check_events(pf, opcode, &event); 1453 1454 switch (opcode) { 1455 case ice_aqc_opc_get_link_status: 1456 if (ice_handle_link_event(pf, &event)) 1457 dev_err(dev, "Could not handle link event\n"); 1458 break; 1459 case ice_aqc_opc_event_lan_overflow: 1460 ice_vf_lan_overflow_event(pf, &event); 1461 break; 1462 case ice_mbx_opc_send_msg_to_pf: 1463 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1464 ice_vc_process_vf_msg(pf, &event); 1465 break; 1466 case ice_aqc_opc_fw_logging: 1467 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1468 break; 1469 case ice_aqc_opc_lldp_set_mib_change: 1470 ice_dcb_process_lldp_set_mib_change(pf, &event); 1471 break; 1472 default: 1473 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1474 qtype, opcode); 1475 break; 1476 } 1477 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1478 1479 kfree(event.msg_buf); 1480 1481 return pending && (i == ICE_DFLT_IRQ_WORK); 1482 } 1483 1484 /** 1485 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1486 * @hw: pointer to hardware info 1487 * @cq: control queue information 1488 * 1489 * returns true if there are pending messages in a queue, false if there aren't 1490 */ 1491 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1492 { 1493 u16 ntu; 1494 1495 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1496 return cq->rq.next_to_clean != ntu; 1497 } 1498 1499 /** 1500 * ice_clean_adminq_subtask - clean the AdminQ rings 1501 * @pf: board private structure 1502 */ 1503 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1504 { 1505 struct ice_hw *hw = &pf->hw; 1506 1507 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1508 return; 1509 1510 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1511 return; 1512 1513 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1514 1515 /* There might be a situation where new messages arrive to a control 1516 * queue between processing the last message and clearing the 1517 * EVENT_PENDING bit. So before exiting, check queue head again (using 1518 * ice_ctrlq_pending) and process new messages if any. 1519 */ 1520 if (ice_ctrlq_pending(hw, &hw->adminq)) 1521 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1522 1523 ice_flush(hw); 1524 } 1525 1526 /** 1527 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1528 * @pf: board private structure 1529 */ 1530 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1531 { 1532 struct ice_hw *hw = &pf->hw; 1533 1534 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1535 return; 1536 1537 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1538 return; 1539 1540 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1541 1542 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1543 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1544 1545 ice_flush(hw); 1546 } 1547 1548 /** 1549 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 /* Nothing to do here if sideband queue is not supported */ 1557 if (!ice_is_sbq_supported(hw)) { 1558 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1559 return; 1560 } 1561 1562 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1563 return; 1564 1565 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1566 return; 1567 1568 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1569 1570 if (ice_ctrlq_pending(hw, &hw->sbq)) 1571 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1572 1573 ice_flush(hw); 1574 } 1575 1576 /** 1577 * ice_service_task_schedule - schedule the service task to wake up 1578 * @pf: board private structure 1579 * 1580 * If not already scheduled, this puts the task into the work queue. 1581 */ 1582 void ice_service_task_schedule(struct ice_pf *pf) 1583 { 1584 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1585 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1586 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1587 queue_work(ice_wq, &pf->serv_task); 1588 } 1589 1590 /** 1591 * ice_service_task_complete - finish up the service task 1592 * @pf: board private structure 1593 */ 1594 static void ice_service_task_complete(struct ice_pf *pf) 1595 { 1596 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1597 1598 /* force memory (pf->state) to sync before next service task */ 1599 smp_mb__before_atomic(); 1600 clear_bit(ICE_SERVICE_SCHED, pf->state); 1601 } 1602 1603 /** 1604 * ice_service_task_stop - stop service task and cancel works 1605 * @pf: board private structure 1606 * 1607 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1608 * 1 otherwise. 1609 */ 1610 static int ice_service_task_stop(struct ice_pf *pf) 1611 { 1612 int ret; 1613 1614 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1615 1616 if (pf->serv_tmr.function) 1617 del_timer_sync(&pf->serv_tmr); 1618 if (pf->serv_task.func) 1619 cancel_work_sync(&pf->serv_task); 1620 1621 clear_bit(ICE_SERVICE_SCHED, pf->state); 1622 return ret; 1623 } 1624 1625 /** 1626 * ice_service_task_restart - restart service task and schedule works 1627 * @pf: board private structure 1628 * 1629 * This function is needed for suspend and resume works (e.g WoL scenario) 1630 */ 1631 static void ice_service_task_restart(struct ice_pf *pf) 1632 { 1633 clear_bit(ICE_SERVICE_DIS, pf->state); 1634 ice_service_task_schedule(pf); 1635 } 1636 1637 /** 1638 * ice_service_timer - timer callback to schedule service task 1639 * @t: pointer to timer_list 1640 */ 1641 static void ice_service_timer(struct timer_list *t) 1642 { 1643 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1644 1645 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1646 ice_service_task_schedule(pf); 1647 } 1648 1649 /** 1650 * ice_handle_mdd_event - handle malicious driver detect event 1651 * @pf: pointer to the PF structure 1652 * 1653 * Called from service task. OICR interrupt handler indicates MDD event. 1654 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1655 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1656 * disable the queue, the PF can be configured to reset the VF using ethtool 1657 * private flag mdd-auto-reset-vf. 1658 */ 1659 static void ice_handle_mdd_event(struct ice_pf *pf) 1660 { 1661 struct device *dev = ice_pf_to_dev(pf); 1662 struct ice_hw *hw = &pf->hw; 1663 unsigned int i; 1664 u32 reg; 1665 1666 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1667 /* Since the VF MDD event logging is rate limited, check if 1668 * there are pending MDD events. 1669 */ 1670 ice_print_vfs_mdd_events(pf); 1671 return; 1672 } 1673 1674 /* find what triggered an MDD event */ 1675 reg = rd32(hw, GL_MDET_TX_PQM); 1676 if (reg & GL_MDET_TX_PQM_VALID_M) { 1677 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1678 GL_MDET_TX_PQM_PF_NUM_S; 1679 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1680 GL_MDET_TX_PQM_VF_NUM_S; 1681 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1682 GL_MDET_TX_PQM_MAL_TYPE_S; 1683 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1684 GL_MDET_TX_PQM_QNUM_S); 1685 1686 if (netif_msg_tx_err(pf)) 1687 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1688 event, queue, pf_num, vf_num); 1689 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1690 } 1691 1692 reg = rd32(hw, GL_MDET_TX_TCLAN); 1693 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1694 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1695 GL_MDET_TX_TCLAN_PF_NUM_S; 1696 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1697 GL_MDET_TX_TCLAN_VF_NUM_S; 1698 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1699 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1700 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1701 GL_MDET_TX_TCLAN_QNUM_S); 1702 1703 if (netif_msg_tx_err(pf)) 1704 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1705 event, queue, pf_num, vf_num); 1706 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1707 } 1708 1709 reg = rd32(hw, GL_MDET_RX); 1710 if (reg & GL_MDET_RX_VALID_M) { 1711 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1712 GL_MDET_RX_PF_NUM_S; 1713 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1714 GL_MDET_RX_VF_NUM_S; 1715 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1716 GL_MDET_RX_MAL_TYPE_S; 1717 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1718 GL_MDET_RX_QNUM_S); 1719 1720 if (netif_msg_rx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1722 event, queue, pf_num, vf_num); 1723 wr32(hw, GL_MDET_RX, 0xffffffff); 1724 } 1725 1726 /* check to see if this PF caused an MDD event */ 1727 reg = rd32(hw, PF_MDET_TX_PQM); 1728 if (reg & PF_MDET_TX_PQM_VALID_M) { 1729 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1730 if (netif_msg_tx_err(pf)) 1731 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1732 } 1733 1734 reg = rd32(hw, PF_MDET_TX_TCLAN); 1735 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1736 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1737 if (netif_msg_tx_err(pf)) 1738 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1739 } 1740 1741 reg = rd32(hw, PF_MDET_RX); 1742 if (reg & PF_MDET_RX_VALID_M) { 1743 wr32(hw, PF_MDET_RX, 0xFFFF); 1744 if (netif_msg_rx_err(pf)) 1745 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1746 } 1747 1748 /* Check to see if one of the VFs caused an MDD event, and then 1749 * increment counters and set print pending 1750 */ 1751 ice_for_each_vf(pf, i) { 1752 struct ice_vf *vf = &pf->vf[i]; 1753 1754 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1755 if (reg & VP_MDET_TX_PQM_VALID_M) { 1756 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1757 vf->mdd_tx_events.count++; 1758 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1759 if (netif_msg_tx_err(pf)) 1760 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1761 i); 1762 } 1763 1764 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1765 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1766 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1767 vf->mdd_tx_events.count++; 1768 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1769 if (netif_msg_tx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1771 i); 1772 } 1773 1774 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1775 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1776 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1777 vf->mdd_tx_events.count++; 1778 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1779 if (netif_msg_tx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1781 i); 1782 } 1783 1784 reg = rd32(hw, VP_MDET_RX(i)); 1785 if (reg & VP_MDET_RX_VALID_M) { 1786 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1787 vf->mdd_rx_events.count++; 1788 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1789 if (netif_msg_rx_err(pf)) 1790 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1791 i); 1792 1793 /* Since the queue is disabled on VF Rx MDD events, the 1794 * PF can be configured to reset the VF through ethtool 1795 * private flag mdd-auto-reset-vf. 1796 */ 1797 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1798 /* VF MDD event counters will be cleared by 1799 * reset, so print the event prior to reset. 1800 */ 1801 ice_print_vf_rx_mdd_event(vf); 1802 mutex_lock(&pf->vf[i].cfg_lock); 1803 ice_reset_vf(&pf->vf[i], false); 1804 mutex_unlock(&pf->vf[i].cfg_lock); 1805 } 1806 } 1807 } 1808 1809 ice_print_vfs_mdd_events(pf); 1810 } 1811 1812 /** 1813 * ice_force_phys_link_state - Force the physical link state 1814 * @vsi: VSI to force the physical link state to up/down 1815 * @link_up: true/false indicates to set the physical link to up/down 1816 * 1817 * Force the physical link state by getting the current PHY capabilities from 1818 * hardware and setting the PHY config based on the determined capabilities. If 1819 * link changes a link event will be triggered because both the Enable Automatic 1820 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1821 * 1822 * Returns 0 on success, negative on failure 1823 */ 1824 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1825 { 1826 struct ice_aqc_get_phy_caps_data *pcaps; 1827 struct ice_aqc_set_phy_cfg_data *cfg; 1828 struct ice_port_info *pi; 1829 struct device *dev; 1830 int retcode; 1831 1832 if (!vsi || !vsi->port_info || !vsi->back) 1833 return -EINVAL; 1834 if (vsi->type != ICE_VSI_PF) 1835 return 0; 1836 1837 dev = ice_pf_to_dev(vsi->back); 1838 1839 pi = vsi->port_info; 1840 1841 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1842 if (!pcaps) 1843 return -ENOMEM; 1844 1845 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1846 NULL); 1847 if (retcode) { 1848 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1849 vsi->vsi_num, retcode); 1850 retcode = -EIO; 1851 goto out; 1852 } 1853 1854 /* No change in link */ 1855 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1856 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1857 goto out; 1858 1859 /* Use the current user PHY configuration. The current user PHY 1860 * configuration is initialized during probe from PHY capabilities 1861 * software mode, and updated on set PHY configuration. 1862 */ 1863 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1864 if (!cfg) { 1865 retcode = -ENOMEM; 1866 goto out; 1867 } 1868 1869 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1870 if (link_up) 1871 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1872 else 1873 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1874 1875 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1876 if (retcode) { 1877 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1878 vsi->vsi_num, retcode); 1879 retcode = -EIO; 1880 } 1881 1882 kfree(cfg); 1883 out: 1884 kfree(pcaps); 1885 return retcode; 1886 } 1887 1888 /** 1889 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1890 * @pi: port info structure 1891 * 1892 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1893 */ 1894 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1895 { 1896 struct ice_aqc_get_phy_caps_data *pcaps; 1897 struct ice_pf *pf = pi->hw->back; 1898 int err; 1899 1900 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1901 if (!pcaps) 1902 return -ENOMEM; 1903 1904 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1905 pcaps, NULL); 1906 1907 if (err) { 1908 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1909 goto out; 1910 } 1911 1912 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1913 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1914 1915 out: 1916 kfree(pcaps); 1917 return err; 1918 } 1919 1920 /** 1921 * ice_init_link_dflt_override - Initialize link default override 1922 * @pi: port info structure 1923 * 1924 * Initialize link default override and PHY total port shutdown during probe 1925 */ 1926 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1927 { 1928 struct ice_link_default_override_tlv *ldo; 1929 struct ice_pf *pf = pi->hw->back; 1930 1931 ldo = &pf->link_dflt_override; 1932 if (ice_get_link_default_override(ldo, pi)) 1933 return; 1934 1935 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1936 return; 1937 1938 /* Enable Total Port Shutdown (override/replace link-down-on-close 1939 * ethtool private flag) for ports with Port Disable bit set. 1940 */ 1941 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1942 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1943 } 1944 1945 /** 1946 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1947 * @pi: port info structure 1948 * 1949 * If default override is enabled, initialize the user PHY cfg speed and FEC 1950 * settings using the default override mask from the NVM. 1951 * 1952 * The PHY should only be configured with the default override settings the 1953 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1954 * is used to indicate that the user PHY cfg default override is initialized 1955 * and the PHY has not been configured with the default override settings. The 1956 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1957 * configured. 1958 * 1959 * This function should be called only if the FW doesn't support default 1960 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1961 */ 1962 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1963 { 1964 struct ice_link_default_override_tlv *ldo; 1965 struct ice_aqc_set_phy_cfg_data *cfg; 1966 struct ice_phy_info *phy = &pi->phy; 1967 struct ice_pf *pf = pi->hw->back; 1968 1969 ldo = &pf->link_dflt_override; 1970 1971 /* If link default override is enabled, use to mask NVM PHY capabilities 1972 * for speed and FEC default configuration. 1973 */ 1974 cfg = &phy->curr_user_phy_cfg; 1975 1976 if (ldo->phy_type_low || ldo->phy_type_high) { 1977 cfg->phy_type_low = pf->nvm_phy_type_lo & 1978 cpu_to_le64(ldo->phy_type_low); 1979 cfg->phy_type_high = pf->nvm_phy_type_hi & 1980 cpu_to_le64(ldo->phy_type_high); 1981 } 1982 cfg->link_fec_opt = ldo->fec_options; 1983 phy->curr_user_fec_req = ICE_FEC_AUTO; 1984 1985 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1986 } 1987 1988 /** 1989 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1990 * @pi: port info structure 1991 * 1992 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1993 * mode to default. The PHY defaults are from get PHY capabilities topology 1994 * with media so call when media is first available. An error is returned if 1995 * called when media is not available. The PHY initialization completed state is 1996 * set here. 1997 * 1998 * These configurations are used when setting PHY 1999 * configuration. The user PHY configuration is updated on set PHY 2000 * configuration. Returns 0 on success, negative on failure 2001 */ 2002 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2003 { 2004 struct ice_aqc_get_phy_caps_data *pcaps; 2005 struct ice_phy_info *phy = &pi->phy; 2006 struct ice_pf *pf = pi->hw->back; 2007 int err; 2008 2009 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2010 return -EIO; 2011 2012 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2013 if (!pcaps) 2014 return -ENOMEM; 2015 2016 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2017 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2018 pcaps, NULL); 2019 else 2020 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2021 pcaps, NULL); 2022 if (err) { 2023 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2024 goto err_out; 2025 } 2026 2027 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2028 2029 /* check if lenient mode is supported and enabled */ 2030 if (ice_fw_supports_link_override(pi->hw) && 2031 !(pcaps->module_compliance_enforcement & 2032 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2033 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2034 2035 /* if the FW supports default PHY configuration mode, then the driver 2036 * does not have to apply link override settings. If not, 2037 * initialize user PHY configuration with link override values 2038 */ 2039 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2040 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2041 ice_init_phy_cfg_dflt_override(pi); 2042 goto out; 2043 } 2044 } 2045 2046 /* if link default override is not enabled, set user flow control and 2047 * FEC settings based on what get_phy_caps returned 2048 */ 2049 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2050 pcaps->link_fec_options); 2051 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2052 2053 out: 2054 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2055 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2056 err_out: 2057 kfree(pcaps); 2058 return err; 2059 } 2060 2061 /** 2062 * ice_configure_phy - configure PHY 2063 * @vsi: VSI of PHY 2064 * 2065 * Set the PHY configuration. If the current PHY configuration is the same as 2066 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2067 * configure the based get PHY capabilities for topology with media. 2068 */ 2069 static int ice_configure_phy(struct ice_vsi *vsi) 2070 { 2071 struct device *dev = ice_pf_to_dev(vsi->back); 2072 struct ice_port_info *pi = vsi->port_info; 2073 struct ice_aqc_get_phy_caps_data *pcaps; 2074 struct ice_aqc_set_phy_cfg_data *cfg; 2075 struct ice_phy_info *phy = &pi->phy; 2076 struct ice_pf *pf = vsi->back; 2077 int err; 2078 2079 /* Ensure we have media as we cannot configure a medialess port */ 2080 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2081 return -EPERM; 2082 2083 ice_print_topo_conflict(vsi); 2084 2085 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2086 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2087 return -EPERM; 2088 2089 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2090 return ice_force_phys_link_state(vsi, true); 2091 2092 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2093 if (!pcaps) 2094 return -ENOMEM; 2095 2096 /* Get current PHY config */ 2097 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2098 NULL); 2099 if (err) { 2100 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2101 vsi->vsi_num, err); 2102 goto done; 2103 } 2104 2105 /* If PHY enable link is configured and configuration has not changed, 2106 * there's nothing to do 2107 */ 2108 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2109 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2110 goto done; 2111 2112 /* Use PHY topology as baseline for configuration */ 2113 memset(pcaps, 0, sizeof(*pcaps)); 2114 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2115 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2116 pcaps, NULL); 2117 else 2118 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2119 pcaps, NULL); 2120 if (err) { 2121 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2122 vsi->vsi_num, err); 2123 goto done; 2124 } 2125 2126 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2127 if (!cfg) { 2128 err = -ENOMEM; 2129 goto done; 2130 } 2131 2132 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2133 2134 /* Speed - If default override pending, use curr_user_phy_cfg set in 2135 * ice_init_phy_user_cfg_ldo. 2136 */ 2137 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2138 vsi->back->state)) { 2139 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2140 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2141 } else { 2142 u64 phy_low = 0, phy_high = 0; 2143 2144 ice_update_phy_type(&phy_low, &phy_high, 2145 pi->phy.curr_user_speed_req); 2146 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2147 cfg->phy_type_high = pcaps->phy_type_high & 2148 cpu_to_le64(phy_high); 2149 } 2150 2151 /* Can't provide what was requested; use PHY capabilities */ 2152 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2153 cfg->phy_type_low = pcaps->phy_type_low; 2154 cfg->phy_type_high = pcaps->phy_type_high; 2155 } 2156 2157 /* FEC */ 2158 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2159 2160 /* Can't provide what was requested; use PHY capabilities */ 2161 if (cfg->link_fec_opt != 2162 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2163 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2164 cfg->link_fec_opt = pcaps->link_fec_options; 2165 } 2166 2167 /* Flow Control - always supported; no need to check against 2168 * capabilities 2169 */ 2170 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2171 2172 /* Enable link and link update */ 2173 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2174 2175 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2176 if (err) 2177 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2178 vsi->vsi_num, err); 2179 2180 kfree(cfg); 2181 done: 2182 kfree(pcaps); 2183 return err; 2184 } 2185 2186 /** 2187 * ice_check_media_subtask - Check for media 2188 * @pf: pointer to PF struct 2189 * 2190 * If media is available, then initialize PHY user configuration if it is not 2191 * been, and configure the PHY if the interface is up. 2192 */ 2193 static void ice_check_media_subtask(struct ice_pf *pf) 2194 { 2195 struct ice_port_info *pi; 2196 struct ice_vsi *vsi; 2197 int err; 2198 2199 /* No need to check for media if it's already present */ 2200 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2201 return; 2202 2203 vsi = ice_get_main_vsi(pf); 2204 if (!vsi) 2205 return; 2206 2207 /* Refresh link info and check if media is present */ 2208 pi = vsi->port_info; 2209 err = ice_update_link_info(pi); 2210 if (err) 2211 return; 2212 2213 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2214 2215 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2216 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2217 ice_init_phy_user_cfg(pi); 2218 2219 /* PHY settings are reset on media insertion, reconfigure 2220 * PHY to preserve settings. 2221 */ 2222 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2223 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2224 return; 2225 2226 err = ice_configure_phy(vsi); 2227 if (!err) 2228 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2229 2230 /* A Link Status Event will be generated; the event handler 2231 * will complete bringing the interface up 2232 */ 2233 } 2234 } 2235 2236 /** 2237 * ice_service_task - manage and run subtasks 2238 * @work: pointer to work_struct contained by the PF struct 2239 */ 2240 static void ice_service_task(struct work_struct *work) 2241 { 2242 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2243 unsigned long start_time = jiffies; 2244 2245 /* subtasks */ 2246 2247 /* process reset requests first */ 2248 ice_reset_subtask(pf); 2249 2250 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2251 if (ice_is_reset_in_progress(pf->state) || 2252 test_bit(ICE_SUSPENDED, pf->state) || 2253 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2254 ice_service_task_complete(pf); 2255 return; 2256 } 2257 2258 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2259 ice_plug_aux_dev(pf); 2260 2261 ice_clean_adminq_subtask(pf); 2262 ice_check_media_subtask(pf); 2263 ice_check_for_hang_subtask(pf); 2264 ice_sync_fltr_subtask(pf); 2265 ice_handle_mdd_event(pf); 2266 ice_watchdog_subtask(pf); 2267 2268 if (ice_is_safe_mode(pf)) { 2269 ice_service_task_complete(pf); 2270 return; 2271 } 2272 2273 ice_process_vflr_event(pf); 2274 ice_clean_mailboxq_subtask(pf); 2275 ice_clean_sbq_subtask(pf); 2276 ice_sync_arfs_fltrs(pf); 2277 ice_flush_fdir_ctx(pf); 2278 2279 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2280 ice_service_task_complete(pf); 2281 2282 /* If the tasks have taken longer than one service timer period 2283 * or there is more work to be done, reset the service timer to 2284 * schedule the service task now. 2285 */ 2286 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2287 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2288 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2289 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2290 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2291 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2292 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2293 mod_timer(&pf->serv_tmr, jiffies); 2294 } 2295 2296 /** 2297 * ice_set_ctrlq_len - helper function to set controlq length 2298 * @hw: pointer to the HW instance 2299 */ 2300 static void ice_set_ctrlq_len(struct ice_hw *hw) 2301 { 2302 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2303 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2304 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2305 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2306 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2307 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2308 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2309 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2310 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2311 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2312 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2313 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2314 } 2315 2316 /** 2317 * ice_schedule_reset - schedule a reset 2318 * @pf: board private structure 2319 * @reset: reset being requested 2320 */ 2321 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2322 { 2323 struct device *dev = ice_pf_to_dev(pf); 2324 2325 /* bail out if earlier reset has failed */ 2326 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2327 dev_dbg(dev, "earlier reset has failed\n"); 2328 return -EIO; 2329 } 2330 /* bail if reset/recovery already in progress */ 2331 if (ice_is_reset_in_progress(pf->state)) { 2332 dev_dbg(dev, "Reset already in progress\n"); 2333 return -EBUSY; 2334 } 2335 2336 ice_unplug_aux_dev(pf); 2337 2338 switch (reset) { 2339 case ICE_RESET_PFR: 2340 set_bit(ICE_PFR_REQ, pf->state); 2341 break; 2342 case ICE_RESET_CORER: 2343 set_bit(ICE_CORER_REQ, pf->state); 2344 break; 2345 case ICE_RESET_GLOBR: 2346 set_bit(ICE_GLOBR_REQ, pf->state); 2347 break; 2348 default: 2349 return -EINVAL; 2350 } 2351 2352 ice_service_task_schedule(pf); 2353 return 0; 2354 } 2355 2356 /** 2357 * ice_irq_affinity_notify - Callback for affinity changes 2358 * @notify: context as to what irq was changed 2359 * @mask: the new affinity mask 2360 * 2361 * This is a callback function used by the irq_set_affinity_notifier function 2362 * so that we may register to receive changes to the irq affinity masks. 2363 */ 2364 static void 2365 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2366 const cpumask_t *mask) 2367 { 2368 struct ice_q_vector *q_vector = 2369 container_of(notify, struct ice_q_vector, affinity_notify); 2370 2371 cpumask_copy(&q_vector->affinity_mask, mask); 2372 } 2373 2374 /** 2375 * ice_irq_affinity_release - Callback for affinity notifier release 2376 * @ref: internal core kernel usage 2377 * 2378 * This is a callback function used by the irq_set_affinity_notifier function 2379 * to inform the current notification subscriber that they will no longer 2380 * receive notifications. 2381 */ 2382 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2383 2384 /** 2385 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2386 * @vsi: the VSI being configured 2387 */ 2388 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2389 { 2390 struct ice_hw *hw = &vsi->back->hw; 2391 int i; 2392 2393 ice_for_each_q_vector(vsi, i) 2394 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2395 2396 ice_flush(hw); 2397 return 0; 2398 } 2399 2400 /** 2401 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2402 * @vsi: the VSI being configured 2403 * @basename: name for the vector 2404 */ 2405 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2406 { 2407 int q_vectors = vsi->num_q_vectors; 2408 struct ice_pf *pf = vsi->back; 2409 int base = vsi->base_vector; 2410 struct device *dev; 2411 int rx_int_idx = 0; 2412 int tx_int_idx = 0; 2413 int vector, err; 2414 int irq_num; 2415 2416 dev = ice_pf_to_dev(pf); 2417 for (vector = 0; vector < q_vectors; vector++) { 2418 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2419 2420 irq_num = pf->msix_entries[base + vector].vector; 2421 2422 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2423 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2424 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2425 tx_int_idx++; 2426 } else if (q_vector->rx.rx_ring) { 2427 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2428 "%s-%s-%d", basename, "rx", rx_int_idx++); 2429 } else if (q_vector->tx.tx_ring) { 2430 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2431 "%s-%s-%d", basename, "tx", tx_int_idx++); 2432 } else { 2433 /* skip this unused q_vector */ 2434 continue; 2435 } 2436 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2437 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2438 IRQF_SHARED, q_vector->name, 2439 q_vector); 2440 else 2441 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2442 0, q_vector->name, q_vector); 2443 if (err) { 2444 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2445 err); 2446 goto free_q_irqs; 2447 } 2448 2449 /* register for affinity change notifications */ 2450 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2451 struct irq_affinity_notify *affinity_notify; 2452 2453 affinity_notify = &q_vector->affinity_notify; 2454 affinity_notify->notify = ice_irq_affinity_notify; 2455 affinity_notify->release = ice_irq_affinity_release; 2456 irq_set_affinity_notifier(irq_num, affinity_notify); 2457 } 2458 2459 /* assign the mask for this irq */ 2460 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2461 } 2462 2463 vsi->irqs_ready = true; 2464 return 0; 2465 2466 free_q_irqs: 2467 while (vector) { 2468 vector--; 2469 irq_num = pf->msix_entries[base + vector].vector; 2470 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2471 irq_set_affinity_notifier(irq_num, NULL); 2472 irq_set_affinity_hint(irq_num, NULL); 2473 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2474 } 2475 return err; 2476 } 2477 2478 /** 2479 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2480 * @vsi: VSI to setup Tx rings used by XDP 2481 * 2482 * Return 0 on success and negative value on error 2483 */ 2484 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2485 { 2486 struct device *dev = ice_pf_to_dev(vsi->back); 2487 struct ice_tx_desc *tx_desc; 2488 int i, j; 2489 2490 ice_for_each_xdp_txq(vsi, i) { 2491 u16 xdp_q_idx = vsi->alloc_txq + i; 2492 struct ice_tx_ring *xdp_ring; 2493 2494 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2495 2496 if (!xdp_ring) 2497 goto free_xdp_rings; 2498 2499 xdp_ring->q_index = xdp_q_idx; 2500 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2501 xdp_ring->vsi = vsi; 2502 xdp_ring->netdev = NULL; 2503 xdp_ring->next_dd = ICE_TX_THRESH - 1; 2504 xdp_ring->next_rs = ICE_TX_THRESH - 1; 2505 xdp_ring->dev = dev; 2506 xdp_ring->count = vsi->num_tx_desc; 2507 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2508 if (ice_setup_tx_ring(xdp_ring)) 2509 goto free_xdp_rings; 2510 ice_set_ring_xdp(xdp_ring); 2511 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2512 spin_lock_init(&xdp_ring->tx_lock); 2513 for (j = 0; j < xdp_ring->count; j++) { 2514 tx_desc = ICE_TX_DESC(xdp_ring, j); 2515 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2516 } 2517 } 2518 2519 ice_for_each_rxq(vsi, i) { 2520 if (static_key_enabled(&ice_xdp_locking_key)) 2521 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2522 else 2523 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2524 } 2525 2526 return 0; 2527 2528 free_xdp_rings: 2529 for (; i >= 0; i--) 2530 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2531 ice_free_tx_ring(vsi->xdp_rings[i]); 2532 return -ENOMEM; 2533 } 2534 2535 /** 2536 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2537 * @vsi: VSI to set the bpf prog on 2538 * @prog: the bpf prog pointer 2539 */ 2540 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2541 { 2542 struct bpf_prog *old_prog; 2543 int i; 2544 2545 old_prog = xchg(&vsi->xdp_prog, prog); 2546 if (old_prog) 2547 bpf_prog_put(old_prog); 2548 2549 ice_for_each_rxq(vsi, i) 2550 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2551 } 2552 2553 /** 2554 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2555 * @vsi: VSI to bring up Tx rings used by XDP 2556 * @prog: bpf program that will be assigned to VSI 2557 * 2558 * Return 0 on success and negative value on error 2559 */ 2560 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2561 { 2562 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2563 int xdp_rings_rem = vsi->num_xdp_txq; 2564 struct ice_pf *pf = vsi->back; 2565 struct ice_qs_cfg xdp_qs_cfg = { 2566 .qs_mutex = &pf->avail_q_mutex, 2567 .pf_map = pf->avail_txqs, 2568 .pf_map_size = pf->max_pf_txqs, 2569 .q_count = vsi->num_xdp_txq, 2570 .scatter_count = ICE_MAX_SCATTER_TXQS, 2571 .vsi_map = vsi->txq_map, 2572 .vsi_map_offset = vsi->alloc_txq, 2573 .mapping_mode = ICE_VSI_MAP_CONTIG 2574 }; 2575 struct device *dev; 2576 int i, v_idx; 2577 int status; 2578 2579 dev = ice_pf_to_dev(pf); 2580 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2581 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2582 if (!vsi->xdp_rings) 2583 return -ENOMEM; 2584 2585 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2586 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2587 goto err_map_xdp; 2588 2589 if (static_key_enabled(&ice_xdp_locking_key)) 2590 netdev_warn(vsi->netdev, 2591 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2592 2593 if (ice_xdp_alloc_setup_rings(vsi)) 2594 goto clear_xdp_rings; 2595 2596 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2597 ice_for_each_q_vector(vsi, v_idx) { 2598 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2599 int xdp_rings_per_v, q_id, q_base; 2600 2601 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2602 vsi->num_q_vectors - v_idx); 2603 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2604 2605 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2606 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2607 2608 xdp_ring->q_vector = q_vector; 2609 xdp_ring->next = q_vector->tx.tx_ring; 2610 q_vector->tx.tx_ring = xdp_ring; 2611 } 2612 xdp_rings_rem -= xdp_rings_per_v; 2613 } 2614 2615 /* omit the scheduler update if in reset path; XDP queues will be 2616 * taken into account at the end of ice_vsi_rebuild, where 2617 * ice_cfg_vsi_lan is being called 2618 */ 2619 if (ice_is_reset_in_progress(pf->state)) 2620 return 0; 2621 2622 /* tell the Tx scheduler that right now we have 2623 * additional queues 2624 */ 2625 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2626 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2627 2628 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2629 max_txqs); 2630 if (status) { 2631 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2632 status); 2633 goto clear_xdp_rings; 2634 } 2635 2636 /* assign the prog only when it's not already present on VSI; 2637 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2638 * VSI rebuild that happens under ethtool -L can expose us to 2639 * the bpf_prog refcount issues as we would be swapping same 2640 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2641 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2642 * this is not harmful as dev_xdp_install bumps the refcount 2643 * before calling the op exposed by the driver; 2644 */ 2645 if (!ice_is_xdp_ena_vsi(vsi)) 2646 ice_vsi_assign_bpf_prog(vsi, prog); 2647 2648 return 0; 2649 clear_xdp_rings: 2650 ice_for_each_xdp_txq(vsi, i) 2651 if (vsi->xdp_rings[i]) { 2652 kfree_rcu(vsi->xdp_rings[i], rcu); 2653 vsi->xdp_rings[i] = NULL; 2654 } 2655 2656 err_map_xdp: 2657 mutex_lock(&pf->avail_q_mutex); 2658 ice_for_each_xdp_txq(vsi, i) { 2659 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2660 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2661 } 2662 mutex_unlock(&pf->avail_q_mutex); 2663 2664 devm_kfree(dev, vsi->xdp_rings); 2665 return -ENOMEM; 2666 } 2667 2668 /** 2669 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2670 * @vsi: VSI to remove XDP rings 2671 * 2672 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2673 * resources 2674 */ 2675 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2676 { 2677 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2678 struct ice_pf *pf = vsi->back; 2679 int i, v_idx; 2680 2681 /* q_vectors are freed in reset path so there's no point in detaching 2682 * rings; in case of rebuild being triggered not from reset bits 2683 * in pf->state won't be set, so additionally check first q_vector 2684 * against NULL 2685 */ 2686 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2687 goto free_qmap; 2688 2689 ice_for_each_q_vector(vsi, v_idx) { 2690 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2691 struct ice_tx_ring *ring; 2692 2693 ice_for_each_tx_ring(ring, q_vector->tx) 2694 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2695 break; 2696 2697 /* restore the value of last node prior to XDP setup */ 2698 q_vector->tx.tx_ring = ring; 2699 } 2700 2701 free_qmap: 2702 mutex_lock(&pf->avail_q_mutex); 2703 ice_for_each_xdp_txq(vsi, i) { 2704 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2705 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2706 } 2707 mutex_unlock(&pf->avail_q_mutex); 2708 2709 ice_for_each_xdp_txq(vsi, i) 2710 if (vsi->xdp_rings[i]) { 2711 if (vsi->xdp_rings[i]->desc) 2712 ice_free_tx_ring(vsi->xdp_rings[i]); 2713 kfree_rcu(vsi->xdp_rings[i], rcu); 2714 vsi->xdp_rings[i] = NULL; 2715 } 2716 2717 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2718 vsi->xdp_rings = NULL; 2719 2720 if (static_key_enabled(&ice_xdp_locking_key)) 2721 static_branch_dec(&ice_xdp_locking_key); 2722 2723 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2724 return 0; 2725 2726 ice_vsi_assign_bpf_prog(vsi, NULL); 2727 2728 /* notify Tx scheduler that we destroyed XDP queues and bring 2729 * back the old number of child nodes 2730 */ 2731 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2732 max_txqs[i] = vsi->num_txq; 2733 2734 /* change number of XDP Tx queues to 0 */ 2735 vsi->num_xdp_txq = 0; 2736 2737 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2738 max_txqs); 2739 } 2740 2741 /** 2742 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2743 * @vsi: VSI to schedule napi on 2744 */ 2745 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2746 { 2747 int i; 2748 2749 ice_for_each_rxq(vsi, i) { 2750 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2751 2752 if (rx_ring->xsk_pool) 2753 napi_schedule(&rx_ring->q_vector->napi); 2754 } 2755 } 2756 2757 /** 2758 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2759 * @vsi: VSI to determine the count of XDP Tx qs 2760 * 2761 * returns 0 if Tx qs count is higher than at least half of CPU count, 2762 * -ENOMEM otherwise 2763 */ 2764 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2765 { 2766 u16 avail = ice_get_avail_txq_count(vsi->back); 2767 u16 cpus = num_possible_cpus(); 2768 2769 if (avail < cpus / 2) 2770 return -ENOMEM; 2771 2772 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2773 2774 if (vsi->num_xdp_txq < cpus) 2775 static_branch_inc(&ice_xdp_locking_key); 2776 2777 return 0; 2778 } 2779 2780 /** 2781 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2782 * @vsi: VSI to setup XDP for 2783 * @prog: XDP program 2784 * @extack: netlink extended ack 2785 */ 2786 static int 2787 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2788 struct netlink_ext_ack *extack) 2789 { 2790 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2791 bool if_running = netif_running(vsi->netdev); 2792 int ret = 0, xdp_ring_err = 0; 2793 2794 if (frame_size > vsi->rx_buf_len) { 2795 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2796 return -EOPNOTSUPP; 2797 } 2798 2799 /* need to stop netdev while setting up the program for Rx rings */ 2800 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2801 ret = ice_down(vsi); 2802 if (ret) { 2803 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2804 return ret; 2805 } 2806 } 2807 2808 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2809 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2810 if (xdp_ring_err) { 2811 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2812 } else { 2813 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2814 if (xdp_ring_err) 2815 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2816 } 2817 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2818 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2819 if (xdp_ring_err) 2820 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2821 } else { 2822 /* safe to call even when prog == vsi->xdp_prog as 2823 * dev_xdp_install in net/core/dev.c incremented prog's 2824 * refcount so corresponding bpf_prog_put won't cause 2825 * underflow 2826 */ 2827 ice_vsi_assign_bpf_prog(vsi, prog); 2828 } 2829 2830 if (if_running) 2831 ret = ice_up(vsi); 2832 2833 if (!ret && prog) 2834 ice_vsi_rx_napi_schedule(vsi); 2835 2836 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2837 } 2838 2839 /** 2840 * ice_xdp_safe_mode - XDP handler for safe mode 2841 * @dev: netdevice 2842 * @xdp: XDP command 2843 */ 2844 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2845 struct netdev_bpf *xdp) 2846 { 2847 NL_SET_ERR_MSG_MOD(xdp->extack, 2848 "Please provide working DDP firmware package in order to use XDP\n" 2849 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2850 return -EOPNOTSUPP; 2851 } 2852 2853 /** 2854 * ice_xdp - implements XDP handler 2855 * @dev: netdevice 2856 * @xdp: XDP command 2857 */ 2858 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2859 { 2860 struct ice_netdev_priv *np = netdev_priv(dev); 2861 struct ice_vsi *vsi = np->vsi; 2862 2863 if (vsi->type != ICE_VSI_PF) { 2864 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2865 return -EINVAL; 2866 } 2867 2868 switch (xdp->command) { 2869 case XDP_SETUP_PROG: 2870 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2871 case XDP_SETUP_XSK_POOL: 2872 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2873 xdp->xsk.queue_id); 2874 default: 2875 return -EINVAL; 2876 } 2877 } 2878 2879 /** 2880 * ice_ena_misc_vector - enable the non-queue interrupts 2881 * @pf: board private structure 2882 */ 2883 static void ice_ena_misc_vector(struct ice_pf *pf) 2884 { 2885 struct ice_hw *hw = &pf->hw; 2886 u32 val; 2887 2888 /* Disable anti-spoof detection interrupt to prevent spurious event 2889 * interrupts during a function reset. Anti-spoof functionally is 2890 * still supported. 2891 */ 2892 val = rd32(hw, GL_MDCK_TX_TDPU); 2893 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2894 wr32(hw, GL_MDCK_TX_TDPU, val); 2895 2896 /* clear things first */ 2897 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2898 rd32(hw, PFINT_OICR); /* read to clear */ 2899 2900 val = (PFINT_OICR_ECC_ERR_M | 2901 PFINT_OICR_MAL_DETECT_M | 2902 PFINT_OICR_GRST_M | 2903 PFINT_OICR_PCI_EXCEPTION_M | 2904 PFINT_OICR_VFLR_M | 2905 PFINT_OICR_HMC_ERR_M | 2906 PFINT_OICR_PE_PUSH_M | 2907 PFINT_OICR_PE_CRITERR_M); 2908 2909 wr32(hw, PFINT_OICR_ENA, val); 2910 2911 /* SW_ITR_IDX = 0, but don't change INTENA */ 2912 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2913 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2914 } 2915 2916 /** 2917 * ice_misc_intr - misc interrupt handler 2918 * @irq: interrupt number 2919 * @data: pointer to a q_vector 2920 */ 2921 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2922 { 2923 struct ice_pf *pf = (struct ice_pf *)data; 2924 struct ice_hw *hw = &pf->hw; 2925 irqreturn_t ret = IRQ_NONE; 2926 struct device *dev; 2927 u32 oicr, ena_mask; 2928 2929 dev = ice_pf_to_dev(pf); 2930 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2931 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2932 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2933 2934 oicr = rd32(hw, PFINT_OICR); 2935 ena_mask = rd32(hw, PFINT_OICR_ENA); 2936 2937 if (oicr & PFINT_OICR_SWINT_M) { 2938 ena_mask &= ~PFINT_OICR_SWINT_M; 2939 pf->sw_int_count++; 2940 } 2941 2942 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2943 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2944 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2945 } 2946 if (oicr & PFINT_OICR_VFLR_M) { 2947 /* disable any further VFLR event notifications */ 2948 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2949 u32 reg = rd32(hw, PFINT_OICR_ENA); 2950 2951 reg &= ~PFINT_OICR_VFLR_M; 2952 wr32(hw, PFINT_OICR_ENA, reg); 2953 } else { 2954 ena_mask &= ~PFINT_OICR_VFLR_M; 2955 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2956 } 2957 } 2958 2959 if (oicr & PFINT_OICR_GRST_M) { 2960 u32 reset; 2961 2962 /* we have a reset warning */ 2963 ena_mask &= ~PFINT_OICR_GRST_M; 2964 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2965 GLGEN_RSTAT_RESET_TYPE_S; 2966 2967 if (reset == ICE_RESET_CORER) 2968 pf->corer_count++; 2969 else if (reset == ICE_RESET_GLOBR) 2970 pf->globr_count++; 2971 else if (reset == ICE_RESET_EMPR) 2972 pf->empr_count++; 2973 else 2974 dev_dbg(dev, "Invalid reset type %d\n", reset); 2975 2976 /* If a reset cycle isn't already in progress, we set a bit in 2977 * pf->state so that the service task can start a reset/rebuild. 2978 */ 2979 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2980 if (reset == ICE_RESET_CORER) 2981 set_bit(ICE_CORER_RECV, pf->state); 2982 else if (reset == ICE_RESET_GLOBR) 2983 set_bit(ICE_GLOBR_RECV, pf->state); 2984 else 2985 set_bit(ICE_EMPR_RECV, pf->state); 2986 2987 /* There are couple of different bits at play here. 2988 * hw->reset_ongoing indicates whether the hardware is 2989 * in reset. This is set to true when a reset interrupt 2990 * is received and set back to false after the driver 2991 * has determined that the hardware is out of reset. 2992 * 2993 * ICE_RESET_OICR_RECV in pf->state indicates 2994 * that a post reset rebuild is required before the 2995 * driver is operational again. This is set above. 2996 * 2997 * As this is the start of the reset/rebuild cycle, set 2998 * both to indicate that. 2999 */ 3000 hw->reset_ongoing = true; 3001 } 3002 } 3003 3004 if (oicr & PFINT_OICR_TSYN_TX_M) { 3005 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3006 ice_ptp_process_ts(pf); 3007 } 3008 3009 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3010 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3011 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3012 3013 /* Save EVENTs from GTSYN register */ 3014 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3015 GLTSYN_STAT_EVENT1_M | 3016 GLTSYN_STAT_EVENT2_M); 3017 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3018 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3019 } 3020 3021 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3022 if (oicr & ICE_AUX_CRIT_ERR) { 3023 struct iidc_event *event; 3024 3025 ena_mask &= ~ICE_AUX_CRIT_ERR; 3026 event = kzalloc(sizeof(*event), GFP_KERNEL); 3027 if (event) { 3028 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3029 /* report the entire OICR value to AUX driver */ 3030 event->reg = oicr; 3031 ice_send_event_to_aux(pf, event); 3032 kfree(event); 3033 } 3034 } 3035 3036 /* Report any remaining unexpected interrupts */ 3037 oicr &= ena_mask; 3038 if (oicr) { 3039 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3040 /* If a critical error is pending there is no choice but to 3041 * reset the device. 3042 */ 3043 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3044 PFINT_OICR_ECC_ERR_M)) { 3045 set_bit(ICE_PFR_REQ, pf->state); 3046 ice_service_task_schedule(pf); 3047 } 3048 } 3049 ret = IRQ_HANDLED; 3050 3051 ice_service_task_schedule(pf); 3052 ice_irq_dynamic_ena(hw, NULL, NULL); 3053 3054 return ret; 3055 } 3056 3057 /** 3058 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3059 * @hw: pointer to HW structure 3060 */ 3061 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3062 { 3063 /* disable Admin queue Interrupt causes */ 3064 wr32(hw, PFINT_FW_CTL, 3065 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3066 3067 /* disable Mailbox queue Interrupt causes */ 3068 wr32(hw, PFINT_MBX_CTL, 3069 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3070 3071 wr32(hw, PFINT_SB_CTL, 3072 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3073 3074 /* disable Control queue Interrupt causes */ 3075 wr32(hw, PFINT_OICR_CTL, 3076 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3077 3078 ice_flush(hw); 3079 } 3080 3081 /** 3082 * ice_free_irq_msix_misc - Unroll misc vector setup 3083 * @pf: board private structure 3084 */ 3085 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3086 { 3087 struct ice_hw *hw = &pf->hw; 3088 3089 ice_dis_ctrlq_interrupts(hw); 3090 3091 /* disable OICR interrupt */ 3092 wr32(hw, PFINT_OICR_ENA, 0); 3093 ice_flush(hw); 3094 3095 if (pf->msix_entries) { 3096 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3097 devm_free_irq(ice_pf_to_dev(pf), 3098 pf->msix_entries[pf->oicr_idx].vector, pf); 3099 } 3100 3101 pf->num_avail_sw_msix += 1; 3102 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3103 } 3104 3105 /** 3106 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3107 * @hw: pointer to HW structure 3108 * @reg_idx: HW vector index to associate the control queue interrupts with 3109 */ 3110 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3111 { 3112 u32 val; 3113 3114 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3115 PFINT_OICR_CTL_CAUSE_ENA_M); 3116 wr32(hw, PFINT_OICR_CTL, val); 3117 3118 /* enable Admin queue Interrupt causes */ 3119 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3120 PFINT_FW_CTL_CAUSE_ENA_M); 3121 wr32(hw, PFINT_FW_CTL, val); 3122 3123 /* enable Mailbox queue Interrupt causes */ 3124 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3125 PFINT_MBX_CTL_CAUSE_ENA_M); 3126 wr32(hw, PFINT_MBX_CTL, val); 3127 3128 /* This enables Sideband queue Interrupt causes */ 3129 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3130 PFINT_SB_CTL_CAUSE_ENA_M); 3131 wr32(hw, PFINT_SB_CTL, val); 3132 3133 ice_flush(hw); 3134 } 3135 3136 /** 3137 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3138 * @pf: board private structure 3139 * 3140 * This sets up the handler for MSIX 0, which is used to manage the 3141 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3142 * when in MSI or Legacy interrupt mode. 3143 */ 3144 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3145 { 3146 struct device *dev = ice_pf_to_dev(pf); 3147 struct ice_hw *hw = &pf->hw; 3148 int oicr_idx, err = 0; 3149 3150 if (!pf->int_name[0]) 3151 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3152 dev_driver_string(dev), dev_name(dev)); 3153 3154 /* Do not request IRQ but do enable OICR interrupt since settings are 3155 * lost during reset. Note that this function is called only during 3156 * rebuild path and not while reset is in progress. 3157 */ 3158 if (ice_is_reset_in_progress(pf->state)) 3159 goto skip_req_irq; 3160 3161 /* reserve one vector in irq_tracker for misc interrupts */ 3162 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3163 if (oicr_idx < 0) 3164 return oicr_idx; 3165 3166 pf->num_avail_sw_msix -= 1; 3167 pf->oicr_idx = (u16)oicr_idx; 3168 3169 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3170 ice_misc_intr, 0, pf->int_name, pf); 3171 if (err) { 3172 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3173 pf->int_name, err); 3174 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3175 pf->num_avail_sw_msix += 1; 3176 return err; 3177 } 3178 3179 skip_req_irq: 3180 ice_ena_misc_vector(pf); 3181 3182 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3183 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3184 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3185 3186 ice_flush(hw); 3187 ice_irq_dynamic_ena(hw, NULL, NULL); 3188 3189 return 0; 3190 } 3191 3192 /** 3193 * ice_napi_add - register NAPI handler for the VSI 3194 * @vsi: VSI for which NAPI handler is to be registered 3195 * 3196 * This function is only called in the driver's load path. Registering the NAPI 3197 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3198 * reset/rebuild, etc.) 3199 */ 3200 static void ice_napi_add(struct ice_vsi *vsi) 3201 { 3202 int v_idx; 3203 3204 if (!vsi->netdev) 3205 return; 3206 3207 ice_for_each_q_vector(vsi, v_idx) 3208 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3209 ice_napi_poll, NAPI_POLL_WEIGHT); 3210 } 3211 3212 /** 3213 * ice_set_ops - set netdev and ethtools ops for the given netdev 3214 * @netdev: netdev instance 3215 */ 3216 static void ice_set_ops(struct net_device *netdev) 3217 { 3218 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3219 3220 if (ice_is_safe_mode(pf)) { 3221 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3222 ice_set_ethtool_safe_mode_ops(netdev); 3223 return; 3224 } 3225 3226 netdev->netdev_ops = &ice_netdev_ops; 3227 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3228 ice_set_ethtool_ops(netdev); 3229 } 3230 3231 /** 3232 * ice_set_netdev_features - set features for the given netdev 3233 * @netdev: netdev instance 3234 */ 3235 static void ice_set_netdev_features(struct net_device *netdev) 3236 { 3237 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3238 netdev_features_t csumo_features; 3239 netdev_features_t vlano_features; 3240 netdev_features_t dflt_features; 3241 netdev_features_t tso_features; 3242 3243 if (ice_is_safe_mode(pf)) { 3244 /* safe mode */ 3245 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3246 netdev->hw_features = netdev->features; 3247 return; 3248 } 3249 3250 dflt_features = NETIF_F_SG | 3251 NETIF_F_HIGHDMA | 3252 NETIF_F_NTUPLE | 3253 NETIF_F_RXHASH; 3254 3255 csumo_features = NETIF_F_RXCSUM | 3256 NETIF_F_IP_CSUM | 3257 NETIF_F_SCTP_CRC | 3258 NETIF_F_IPV6_CSUM; 3259 3260 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3261 NETIF_F_HW_VLAN_CTAG_TX | 3262 NETIF_F_HW_VLAN_CTAG_RX; 3263 3264 tso_features = NETIF_F_TSO | 3265 NETIF_F_TSO_ECN | 3266 NETIF_F_TSO6 | 3267 NETIF_F_GSO_GRE | 3268 NETIF_F_GSO_UDP_TUNNEL | 3269 NETIF_F_GSO_GRE_CSUM | 3270 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3271 NETIF_F_GSO_PARTIAL | 3272 NETIF_F_GSO_IPXIP4 | 3273 NETIF_F_GSO_IPXIP6 | 3274 NETIF_F_GSO_UDP_L4; 3275 3276 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3277 NETIF_F_GSO_GRE_CSUM; 3278 /* set features that user can change */ 3279 netdev->hw_features = dflt_features | csumo_features | 3280 vlano_features | tso_features; 3281 3282 /* add support for HW_CSUM on packets with MPLS header */ 3283 netdev->mpls_features = NETIF_F_HW_CSUM; 3284 3285 /* enable features */ 3286 netdev->features |= netdev->hw_features; 3287 3288 netdev->hw_features |= NETIF_F_HW_TC; 3289 3290 /* encap and VLAN devices inherit default, csumo and tso features */ 3291 netdev->hw_enc_features |= dflt_features | csumo_features | 3292 tso_features; 3293 netdev->vlan_features |= dflt_features | csumo_features | 3294 tso_features; 3295 } 3296 3297 /** 3298 * ice_cfg_netdev - Allocate, configure and register a netdev 3299 * @vsi: the VSI associated with the new netdev 3300 * 3301 * Returns 0 on success, negative value on failure 3302 */ 3303 static int ice_cfg_netdev(struct ice_vsi *vsi) 3304 { 3305 struct ice_netdev_priv *np; 3306 struct net_device *netdev; 3307 u8 mac_addr[ETH_ALEN]; 3308 3309 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3310 vsi->alloc_rxq); 3311 if (!netdev) 3312 return -ENOMEM; 3313 3314 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3315 vsi->netdev = netdev; 3316 np = netdev_priv(netdev); 3317 np->vsi = vsi; 3318 3319 ice_set_netdev_features(netdev); 3320 3321 ice_set_ops(netdev); 3322 3323 if (vsi->type == ICE_VSI_PF) { 3324 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3325 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3326 eth_hw_addr_set(netdev, mac_addr); 3327 ether_addr_copy(netdev->perm_addr, mac_addr); 3328 } 3329 3330 netdev->priv_flags |= IFF_UNICAST_FLT; 3331 3332 /* Setup netdev TC information */ 3333 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3334 3335 /* setup watchdog timeout value to be 5 second */ 3336 netdev->watchdog_timeo = 5 * HZ; 3337 3338 netdev->min_mtu = ETH_MIN_MTU; 3339 netdev->max_mtu = ICE_MAX_MTU; 3340 3341 return 0; 3342 } 3343 3344 /** 3345 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3346 * @lut: Lookup table 3347 * @rss_table_size: Lookup table size 3348 * @rss_size: Range of queue number for hashing 3349 */ 3350 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3351 { 3352 u16 i; 3353 3354 for (i = 0; i < rss_table_size; i++) 3355 lut[i] = i % rss_size; 3356 } 3357 3358 /** 3359 * ice_pf_vsi_setup - Set up a PF VSI 3360 * @pf: board private structure 3361 * @pi: pointer to the port_info instance 3362 * 3363 * Returns pointer to the successfully allocated VSI software struct 3364 * on success, otherwise returns NULL on failure. 3365 */ 3366 static struct ice_vsi * 3367 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3368 { 3369 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3370 } 3371 3372 static struct ice_vsi * 3373 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3374 struct ice_channel *ch) 3375 { 3376 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3377 } 3378 3379 /** 3380 * ice_ctrl_vsi_setup - Set up a control VSI 3381 * @pf: board private structure 3382 * @pi: pointer to the port_info instance 3383 * 3384 * Returns pointer to the successfully allocated VSI software struct 3385 * on success, otherwise returns NULL on failure. 3386 */ 3387 static struct ice_vsi * 3388 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3389 { 3390 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3391 } 3392 3393 /** 3394 * ice_lb_vsi_setup - Set up a loopback VSI 3395 * @pf: board private structure 3396 * @pi: pointer to the port_info instance 3397 * 3398 * Returns pointer to the successfully allocated VSI software struct 3399 * on success, otherwise returns NULL on failure. 3400 */ 3401 struct ice_vsi * 3402 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3403 { 3404 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3405 } 3406 3407 /** 3408 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3409 * @netdev: network interface to be adjusted 3410 * @proto: unused protocol 3411 * @vid: VLAN ID to be added 3412 * 3413 * net_device_ops implementation for adding VLAN IDs 3414 */ 3415 static int 3416 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3417 u16 vid) 3418 { 3419 struct ice_netdev_priv *np = netdev_priv(netdev); 3420 struct ice_vsi *vsi = np->vsi; 3421 int ret; 3422 3423 /* VLAN 0 is added by default during load/reset */ 3424 if (!vid) 3425 return 0; 3426 3427 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3428 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3429 ret = ice_cfg_vlan_pruning(vsi, true); 3430 if (ret) 3431 return ret; 3432 } 3433 3434 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3435 * packets aren't pruned by the device's internal switch on Rx 3436 */ 3437 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3438 if (!ret) 3439 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3440 3441 return ret; 3442 } 3443 3444 /** 3445 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3446 * @netdev: network interface to be adjusted 3447 * @proto: unused protocol 3448 * @vid: VLAN ID to be removed 3449 * 3450 * net_device_ops implementation for removing VLAN IDs 3451 */ 3452 static int 3453 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3454 u16 vid) 3455 { 3456 struct ice_netdev_priv *np = netdev_priv(netdev); 3457 struct ice_vsi *vsi = np->vsi; 3458 int ret; 3459 3460 /* don't allow removal of VLAN 0 */ 3461 if (!vid) 3462 return 0; 3463 3464 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3465 * information 3466 */ 3467 ret = ice_vsi_kill_vlan(vsi, vid); 3468 if (ret) 3469 return ret; 3470 3471 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3472 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3473 ret = ice_cfg_vlan_pruning(vsi, false); 3474 3475 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3476 return ret; 3477 } 3478 3479 /** 3480 * ice_rep_indr_tc_block_unbind 3481 * @cb_priv: indirection block private data 3482 */ 3483 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3484 { 3485 struct ice_indr_block_priv *indr_priv = cb_priv; 3486 3487 list_del(&indr_priv->list); 3488 kfree(indr_priv); 3489 } 3490 3491 /** 3492 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3493 * @vsi: VSI struct which has the netdev 3494 */ 3495 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3496 { 3497 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3498 3499 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3500 ice_rep_indr_tc_block_unbind); 3501 } 3502 3503 /** 3504 * ice_tc_indir_block_remove - clean indirect TC block notifications 3505 * @pf: PF structure 3506 */ 3507 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3508 { 3509 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3510 3511 if (!pf_vsi) 3512 return; 3513 3514 ice_tc_indir_block_unregister(pf_vsi); 3515 } 3516 3517 /** 3518 * ice_tc_indir_block_register - Register TC indirect block notifications 3519 * @vsi: VSI struct which has the netdev 3520 * 3521 * Returns 0 on success, negative value on failure 3522 */ 3523 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3524 { 3525 struct ice_netdev_priv *np; 3526 3527 if (!vsi || !vsi->netdev) 3528 return -EINVAL; 3529 3530 np = netdev_priv(vsi->netdev); 3531 3532 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3533 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3534 } 3535 3536 /** 3537 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3538 * @pf: board private structure 3539 * 3540 * Returns 0 on success, negative value on failure 3541 */ 3542 static int ice_setup_pf_sw(struct ice_pf *pf) 3543 { 3544 struct device *dev = ice_pf_to_dev(pf); 3545 struct ice_vsi *vsi; 3546 int status; 3547 3548 if (ice_is_reset_in_progress(pf->state)) 3549 return -EBUSY; 3550 3551 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3552 if (!vsi) 3553 return -ENOMEM; 3554 3555 /* init channel list */ 3556 INIT_LIST_HEAD(&vsi->ch_list); 3557 3558 status = ice_cfg_netdev(vsi); 3559 if (status) 3560 goto unroll_vsi_setup; 3561 /* netdev has to be configured before setting frame size */ 3562 ice_vsi_cfg_frame_size(vsi); 3563 3564 /* init indirect block notifications */ 3565 status = ice_tc_indir_block_register(vsi); 3566 if (status) { 3567 dev_err(dev, "Failed to register netdev notifier\n"); 3568 goto unroll_cfg_netdev; 3569 } 3570 3571 /* Setup DCB netlink interface */ 3572 ice_dcbnl_setup(vsi); 3573 3574 /* registering the NAPI handler requires both the queues and 3575 * netdev to be created, which are done in ice_pf_vsi_setup() 3576 * and ice_cfg_netdev() respectively 3577 */ 3578 ice_napi_add(vsi); 3579 3580 status = ice_set_cpu_rx_rmap(vsi); 3581 if (status) { 3582 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3583 vsi->vsi_num, status); 3584 goto unroll_napi_add; 3585 } 3586 status = ice_init_mac_fltr(pf); 3587 if (status) 3588 goto free_cpu_rx_map; 3589 3590 return 0; 3591 3592 free_cpu_rx_map: 3593 ice_free_cpu_rx_rmap(vsi); 3594 unroll_napi_add: 3595 ice_tc_indir_block_unregister(vsi); 3596 unroll_cfg_netdev: 3597 if (vsi) { 3598 ice_napi_del(vsi); 3599 if (vsi->netdev) { 3600 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3601 free_netdev(vsi->netdev); 3602 vsi->netdev = NULL; 3603 } 3604 } 3605 3606 unroll_vsi_setup: 3607 ice_vsi_release(vsi); 3608 return status; 3609 } 3610 3611 /** 3612 * ice_get_avail_q_count - Get count of queues in use 3613 * @pf_qmap: bitmap to get queue use count from 3614 * @lock: pointer to a mutex that protects access to pf_qmap 3615 * @size: size of the bitmap 3616 */ 3617 static u16 3618 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3619 { 3620 unsigned long bit; 3621 u16 count = 0; 3622 3623 mutex_lock(lock); 3624 for_each_clear_bit(bit, pf_qmap, size) 3625 count++; 3626 mutex_unlock(lock); 3627 3628 return count; 3629 } 3630 3631 /** 3632 * ice_get_avail_txq_count - Get count of Tx queues in use 3633 * @pf: pointer to an ice_pf instance 3634 */ 3635 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3636 { 3637 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3638 pf->max_pf_txqs); 3639 } 3640 3641 /** 3642 * ice_get_avail_rxq_count - Get count of Rx queues in use 3643 * @pf: pointer to an ice_pf instance 3644 */ 3645 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3646 { 3647 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3648 pf->max_pf_rxqs); 3649 } 3650 3651 /** 3652 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3653 * @pf: board private structure to initialize 3654 */ 3655 static void ice_deinit_pf(struct ice_pf *pf) 3656 { 3657 ice_service_task_stop(pf); 3658 mutex_destroy(&pf->sw_mutex); 3659 mutex_destroy(&pf->tc_mutex); 3660 mutex_destroy(&pf->avail_q_mutex); 3661 3662 if (pf->avail_txqs) { 3663 bitmap_free(pf->avail_txqs); 3664 pf->avail_txqs = NULL; 3665 } 3666 3667 if (pf->avail_rxqs) { 3668 bitmap_free(pf->avail_rxqs); 3669 pf->avail_rxqs = NULL; 3670 } 3671 3672 if (pf->ptp.clock) 3673 ptp_clock_unregister(pf->ptp.clock); 3674 } 3675 3676 /** 3677 * ice_set_pf_caps - set PFs capability flags 3678 * @pf: pointer to the PF instance 3679 */ 3680 static void ice_set_pf_caps(struct ice_pf *pf) 3681 { 3682 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3683 3684 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3685 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3686 if (func_caps->common_cap.rdma) { 3687 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3688 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3689 } 3690 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3691 if (func_caps->common_cap.dcb) 3692 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3693 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3694 if (func_caps->common_cap.sr_iov_1_1) { 3695 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3696 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3697 ICE_MAX_VF_COUNT); 3698 } 3699 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3700 if (func_caps->common_cap.rss_table_size) 3701 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3702 3703 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3704 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3705 u16 unused; 3706 3707 /* ctrl_vsi_idx will be set to a valid value when flow director 3708 * is setup by ice_init_fdir 3709 */ 3710 pf->ctrl_vsi_idx = ICE_NO_VSI; 3711 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3712 /* force guaranteed filter pool for PF */ 3713 ice_alloc_fd_guar_item(&pf->hw, &unused, 3714 func_caps->fd_fltr_guar); 3715 /* force shared filter pool for PF */ 3716 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3717 func_caps->fd_fltr_best_effort); 3718 } 3719 3720 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3721 if (func_caps->common_cap.ieee_1588) 3722 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3723 3724 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3725 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3726 } 3727 3728 /** 3729 * ice_init_pf - Initialize general software structures (struct ice_pf) 3730 * @pf: board private structure to initialize 3731 */ 3732 static int ice_init_pf(struct ice_pf *pf) 3733 { 3734 ice_set_pf_caps(pf); 3735 3736 mutex_init(&pf->sw_mutex); 3737 mutex_init(&pf->tc_mutex); 3738 3739 INIT_HLIST_HEAD(&pf->aq_wait_list); 3740 spin_lock_init(&pf->aq_wait_lock); 3741 init_waitqueue_head(&pf->aq_wait_queue); 3742 3743 init_waitqueue_head(&pf->reset_wait_queue); 3744 3745 /* setup service timer and periodic service task */ 3746 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3747 pf->serv_tmr_period = HZ; 3748 INIT_WORK(&pf->serv_task, ice_service_task); 3749 clear_bit(ICE_SERVICE_SCHED, pf->state); 3750 3751 mutex_init(&pf->avail_q_mutex); 3752 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3753 if (!pf->avail_txqs) 3754 return -ENOMEM; 3755 3756 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3757 if (!pf->avail_rxqs) { 3758 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3759 pf->avail_txqs = NULL; 3760 return -ENOMEM; 3761 } 3762 3763 return 0; 3764 } 3765 3766 /** 3767 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3768 * @pf: board private structure 3769 * 3770 * compute the number of MSIX vectors required (v_budget) and request from 3771 * the OS. Return the number of vectors reserved or negative on failure 3772 */ 3773 static int ice_ena_msix_range(struct ice_pf *pf) 3774 { 3775 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3776 struct device *dev = ice_pf_to_dev(pf); 3777 int needed, err, i; 3778 3779 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3780 num_cpus = num_online_cpus(); 3781 3782 /* reserve for LAN miscellaneous handler */ 3783 needed = ICE_MIN_LAN_OICR_MSIX; 3784 if (v_left < needed) 3785 goto no_hw_vecs_left_err; 3786 v_budget += needed; 3787 v_left -= needed; 3788 3789 /* reserve for flow director */ 3790 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3791 needed = ICE_FDIR_MSIX; 3792 if (v_left < needed) 3793 goto no_hw_vecs_left_err; 3794 v_budget += needed; 3795 v_left -= needed; 3796 } 3797 3798 /* reserve for switchdev */ 3799 needed = ICE_ESWITCH_MSIX; 3800 if (v_left < needed) 3801 goto no_hw_vecs_left_err; 3802 v_budget += needed; 3803 v_left -= needed; 3804 3805 /* total used for non-traffic vectors */ 3806 v_other = v_budget; 3807 3808 /* reserve vectors for LAN traffic */ 3809 needed = num_cpus; 3810 if (v_left < needed) 3811 goto no_hw_vecs_left_err; 3812 pf->num_lan_msix = needed; 3813 v_budget += needed; 3814 v_left -= needed; 3815 3816 /* reserve vectors for RDMA auxiliary driver */ 3817 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3818 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3819 if (v_left < needed) 3820 goto no_hw_vecs_left_err; 3821 pf->num_rdma_msix = needed; 3822 v_budget += needed; 3823 v_left -= needed; 3824 } 3825 3826 pf->msix_entries = devm_kcalloc(dev, v_budget, 3827 sizeof(*pf->msix_entries), GFP_KERNEL); 3828 if (!pf->msix_entries) { 3829 err = -ENOMEM; 3830 goto exit_err; 3831 } 3832 3833 for (i = 0; i < v_budget; i++) 3834 pf->msix_entries[i].entry = i; 3835 3836 /* actually reserve the vectors */ 3837 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3838 ICE_MIN_MSIX, v_budget); 3839 if (v_actual < 0) { 3840 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3841 err = v_actual; 3842 goto msix_err; 3843 } 3844 3845 if (v_actual < v_budget) { 3846 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3847 v_budget, v_actual); 3848 3849 if (v_actual < ICE_MIN_MSIX) { 3850 /* error if we can't get minimum vectors */ 3851 pci_disable_msix(pf->pdev); 3852 err = -ERANGE; 3853 goto msix_err; 3854 } else { 3855 int v_remain = v_actual - v_other; 3856 int v_rdma = 0, v_min_rdma = 0; 3857 3858 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3859 /* Need at least 1 interrupt in addition to 3860 * AEQ MSIX 3861 */ 3862 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3863 v_min_rdma = ICE_MIN_RDMA_MSIX; 3864 } 3865 3866 if (v_actual == ICE_MIN_MSIX || 3867 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3868 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3869 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3870 3871 pf->num_rdma_msix = 0; 3872 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3873 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3874 (v_remain - v_rdma < v_rdma)) { 3875 /* Support minimum RDMA and give remaining 3876 * vectors to LAN MSIX 3877 */ 3878 pf->num_rdma_msix = v_min_rdma; 3879 pf->num_lan_msix = v_remain - v_min_rdma; 3880 } else { 3881 /* Split remaining MSIX with RDMA after 3882 * accounting for AEQ MSIX 3883 */ 3884 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3885 ICE_RDMA_NUM_AEQ_MSIX; 3886 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3887 } 3888 3889 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3890 pf->num_lan_msix); 3891 3892 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3893 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3894 pf->num_rdma_msix); 3895 } 3896 } 3897 3898 return v_actual; 3899 3900 msix_err: 3901 devm_kfree(dev, pf->msix_entries); 3902 goto exit_err; 3903 3904 no_hw_vecs_left_err: 3905 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3906 needed, v_left); 3907 err = -ERANGE; 3908 exit_err: 3909 pf->num_rdma_msix = 0; 3910 pf->num_lan_msix = 0; 3911 return err; 3912 } 3913 3914 /** 3915 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3916 * @pf: board private structure 3917 */ 3918 static void ice_dis_msix(struct ice_pf *pf) 3919 { 3920 pci_disable_msix(pf->pdev); 3921 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3922 pf->msix_entries = NULL; 3923 } 3924 3925 /** 3926 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3927 * @pf: board private structure 3928 */ 3929 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3930 { 3931 ice_dis_msix(pf); 3932 3933 if (pf->irq_tracker) { 3934 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3935 pf->irq_tracker = NULL; 3936 } 3937 } 3938 3939 /** 3940 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3941 * @pf: board private structure to initialize 3942 */ 3943 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3944 { 3945 int vectors; 3946 3947 vectors = ice_ena_msix_range(pf); 3948 3949 if (vectors < 0) 3950 return vectors; 3951 3952 /* set up vector assignment tracking */ 3953 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3954 struct_size(pf->irq_tracker, list, vectors), 3955 GFP_KERNEL); 3956 if (!pf->irq_tracker) { 3957 ice_dis_msix(pf); 3958 return -ENOMEM; 3959 } 3960 3961 /* populate SW interrupts pool with number of OS granted IRQs. */ 3962 pf->num_avail_sw_msix = (u16)vectors; 3963 pf->irq_tracker->num_entries = (u16)vectors; 3964 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3965 3966 return 0; 3967 } 3968 3969 /** 3970 * ice_is_wol_supported - check if WoL is supported 3971 * @hw: pointer to hardware info 3972 * 3973 * Check if WoL is supported based on the HW configuration. 3974 * Returns true if NVM supports and enables WoL for this port, false otherwise 3975 */ 3976 bool ice_is_wol_supported(struct ice_hw *hw) 3977 { 3978 u16 wol_ctrl; 3979 3980 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3981 * word) indicates WoL is not supported on the corresponding PF ID. 3982 */ 3983 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3984 return false; 3985 3986 return !(BIT(hw->port_info->lport) & wol_ctrl); 3987 } 3988 3989 /** 3990 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3991 * @vsi: VSI being changed 3992 * @new_rx: new number of Rx queues 3993 * @new_tx: new number of Tx queues 3994 * 3995 * Only change the number of queues if new_tx, or new_rx is non-0. 3996 * 3997 * Returns 0 on success. 3998 */ 3999 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4000 { 4001 struct ice_pf *pf = vsi->back; 4002 int err = 0, timeout = 50; 4003 4004 if (!new_rx && !new_tx) 4005 return -EINVAL; 4006 4007 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4008 timeout--; 4009 if (!timeout) 4010 return -EBUSY; 4011 usleep_range(1000, 2000); 4012 } 4013 4014 if (new_tx) 4015 vsi->req_txq = (u16)new_tx; 4016 if (new_rx) 4017 vsi->req_rxq = (u16)new_rx; 4018 4019 /* set for the next time the netdev is started */ 4020 if (!netif_running(vsi->netdev)) { 4021 ice_vsi_rebuild(vsi, false); 4022 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4023 goto done; 4024 } 4025 4026 ice_vsi_close(vsi); 4027 ice_vsi_rebuild(vsi, false); 4028 ice_pf_dcb_recfg(pf); 4029 ice_vsi_open(vsi); 4030 done: 4031 clear_bit(ICE_CFG_BUSY, pf->state); 4032 return err; 4033 } 4034 4035 /** 4036 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4037 * @pf: PF to configure 4038 * 4039 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4040 * VSI can still Tx/Rx VLAN tagged packets. 4041 */ 4042 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4043 { 4044 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4045 struct ice_vsi_ctx *ctxt; 4046 struct ice_hw *hw; 4047 int status; 4048 4049 if (!vsi) 4050 return; 4051 4052 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4053 if (!ctxt) 4054 return; 4055 4056 hw = &pf->hw; 4057 ctxt->info = vsi->info; 4058 4059 ctxt->info.valid_sections = 4060 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4061 ICE_AQ_VSI_PROP_SECURITY_VALID | 4062 ICE_AQ_VSI_PROP_SW_VALID); 4063 4064 /* disable VLAN anti-spoof */ 4065 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4066 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4067 4068 /* disable VLAN pruning and keep all other settings */ 4069 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4070 4071 /* allow all VLANs on Tx and don't strip on Rx */ 4072 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 4073 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 4074 4075 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4076 if (status) { 4077 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4078 status, ice_aq_str(hw->adminq.sq_last_status)); 4079 } else { 4080 vsi->info.sec_flags = ctxt->info.sec_flags; 4081 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4082 vsi->info.vlan_flags = ctxt->info.vlan_flags; 4083 } 4084 4085 kfree(ctxt); 4086 } 4087 4088 /** 4089 * ice_log_pkg_init - log result of DDP package load 4090 * @hw: pointer to hardware info 4091 * @state: state of package load 4092 */ 4093 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4094 { 4095 struct ice_pf *pf = hw->back; 4096 struct device *dev; 4097 4098 dev = ice_pf_to_dev(pf); 4099 4100 switch (state) { 4101 case ICE_DDP_PKG_SUCCESS: 4102 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4103 hw->active_pkg_name, 4104 hw->active_pkg_ver.major, 4105 hw->active_pkg_ver.minor, 4106 hw->active_pkg_ver.update, 4107 hw->active_pkg_ver.draft); 4108 break; 4109 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4110 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4111 hw->active_pkg_name, 4112 hw->active_pkg_ver.major, 4113 hw->active_pkg_ver.minor, 4114 hw->active_pkg_ver.update, 4115 hw->active_pkg_ver.draft); 4116 break; 4117 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4118 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4119 hw->active_pkg_name, 4120 hw->active_pkg_ver.major, 4121 hw->active_pkg_ver.minor, 4122 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4123 break; 4124 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4125 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4126 hw->active_pkg_name, 4127 hw->active_pkg_ver.major, 4128 hw->active_pkg_ver.minor, 4129 hw->active_pkg_ver.update, 4130 hw->active_pkg_ver.draft, 4131 hw->pkg_name, 4132 hw->pkg_ver.major, 4133 hw->pkg_ver.minor, 4134 hw->pkg_ver.update, 4135 hw->pkg_ver.draft); 4136 break; 4137 case ICE_DDP_PKG_FW_MISMATCH: 4138 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4139 break; 4140 case ICE_DDP_PKG_INVALID_FILE: 4141 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4142 break; 4143 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4144 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4145 break; 4146 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4147 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4148 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4149 break; 4150 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4151 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4152 break; 4153 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4154 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4155 break; 4156 case ICE_DDP_PKG_LOAD_ERROR: 4157 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4158 /* poll for reset to complete */ 4159 if (ice_check_reset(hw)) 4160 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4161 break; 4162 case ICE_DDP_PKG_ERR: 4163 default: 4164 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4165 break; 4166 } 4167 } 4168 4169 /** 4170 * ice_load_pkg - load/reload the DDP Package file 4171 * @firmware: firmware structure when firmware requested or NULL for reload 4172 * @pf: pointer to the PF instance 4173 * 4174 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4175 * initialize HW tables. 4176 */ 4177 static void 4178 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4179 { 4180 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4181 struct device *dev = ice_pf_to_dev(pf); 4182 struct ice_hw *hw = &pf->hw; 4183 4184 /* Load DDP Package */ 4185 if (firmware && !hw->pkg_copy) { 4186 state = ice_copy_and_init_pkg(hw, firmware->data, 4187 firmware->size); 4188 ice_log_pkg_init(hw, state); 4189 } else if (!firmware && hw->pkg_copy) { 4190 /* Reload package during rebuild after CORER/GLOBR reset */ 4191 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4192 ice_log_pkg_init(hw, state); 4193 } else { 4194 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4195 } 4196 4197 if (!ice_is_init_pkg_successful(state)) { 4198 /* Safe Mode */ 4199 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4200 return; 4201 } 4202 4203 /* Successful download package is the precondition for advanced 4204 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4205 */ 4206 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4207 } 4208 4209 /** 4210 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4211 * @pf: pointer to the PF structure 4212 * 4213 * There is no error returned here because the driver should be able to handle 4214 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4215 * specifically with Tx. 4216 */ 4217 static void ice_verify_cacheline_size(struct ice_pf *pf) 4218 { 4219 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4220 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4221 ICE_CACHE_LINE_BYTES); 4222 } 4223 4224 /** 4225 * ice_send_version - update firmware with driver version 4226 * @pf: PF struct 4227 * 4228 * Returns 0 on success, else error code 4229 */ 4230 static int ice_send_version(struct ice_pf *pf) 4231 { 4232 struct ice_driver_ver dv; 4233 4234 dv.major_ver = 0xff; 4235 dv.minor_ver = 0xff; 4236 dv.build_ver = 0xff; 4237 dv.subbuild_ver = 0; 4238 strscpy((char *)dv.driver_string, UTS_RELEASE, 4239 sizeof(dv.driver_string)); 4240 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4241 } 4242 4243 /** 4244 * ice_init_fdir - Initialize flow director VSI and configuration 4245 * @pf: pointer to the PF instance 4246 * 4247 * returns 0 on success, negative on error 4248 */ 4249 static int ice_init_fdir(struct ice_pf *pf) 4250 { 4251 struct device *dev = ice_pf_to_dev(pf); 4252 struct ice_vsi *ctrl_vsi; 4253 int err; 4254 4255 /* Side Band Flow Director needs to have a control VSI. 4256 * Allocate it and store it in the PF. 4257 */ 4258 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4259 if (!ctrl_vsi) { 4260 dev_dbg(dev, "could not create control VSI\n"); 4261 return -ENOMEM; 4262 } 4263 4264 err = ice_vsi_open_ctrl(ctrl_vsi); 4265 if (err) { 4266 dev_dbg(dev, "could not open control VSI\n"); 4267 goto err_vsi_open; 4268 } 4269 4270 mutex_init(&pf->hw.fdir_fltr_lock); 4271 4272 err = ice_fdir_create_dflt_rules(pf); 4273 if (err) 4274 goto err_fdir_rule; 4275 4276 return 0; 4277 4278 err_fdir_rule: 4279 ice_fdir_release_flows(&pf->hw); 4280 ice_vsi_close(ctrl_vsi); 4281 err_vsi_open: 4282 ice_vsi_release(ctrl_vsi); 4283 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4284 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4285 pf->ctrl_vsi_idx = ICE_NO_VSI; 4286 } 4287 return err; 4288 } 4289 4290 /** 4291 * ice_get_opt_fw_name - return optional firmware file name or NULL 4292 * @pf: pointer to the PF instance 4293 */ 4294 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4295 { 4296 /* Optional firmware name same as default with additional dash 4297 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4298 */ 4299 struct pci_dev *pdev = pf->pdev; 4300 char *opt_fw_filename; 4301 u64 dsn; 4302 4303 /* Determine the name of the optional file using the DSN (two 4304 * dwords following the start of the DSN Capability). 4305 */ 4306 dsn = pci_get_dsn(pdev); 4307 if (!dsn) 4308 return NULL; 4309 4310 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4311 if (!opt_fw_filename) 4312 return NULL; 4313 4314 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4315 ICE_DDP_PKG_PATH, dsn); 4316 4317 return opt_fw_filename; 4318 } 4319 4320 /** 4321 * ice_request_fw - Device initialization routine 4322 * @pf: pointer to the PF instance 4323 */ 4324 static void ice_request_fw(struct ice_pf *pf) 4325 { 4326 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4327 const struct firmware *firmware = NULL; 4328 struct device *dev = ice_pf_to_dev(pf); 4329 int err = 0; 4330 4331 /* optional device-specific DDP (if present) overrides the default DDP 4332 * package file. kernel logs a debug message if the file doesn't exist, 4333 * and warning messages for other errors. 4334 */ 4335 if (opt_fw_filename) { 4336 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4337 if (err) { 4338 kfree(opt_fw_filename); 4339 goto dflt_pkg_load; 4340 } 4341 4342 /* request for firmware was successful. Download to device */ 4343 ice_load_pkg(firmware, pf); 4344 kfree(opt_fw_filename); 4345 release_firmware(firmware); 4346 return; 4347 } 4348 4349 dflt_pkg_load: 4350 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4351 if (err) { 4352 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4353 return; 4354 } 4355 4356 /* request for firmware was successful. Download to device */ 4357 ice_load_pkg(firmware, pf); 4358 release_firmware(firmware); 4359 } 4360 4361 /** 4362 * ice_print_wake_reason - show the wake up cause in the log 4363 * @pf: pointer to the PF struct 4364 */ 4365 static void ice_print_wake_reason(struct ice_pf *pf) 4366 { 4367 u32 wus = pf->wakeup_reason; 4368 const char *wake_str; 4369 4370 /* if no wake event, nothing to print */ 4371 if (!wus) 4372 return; 4373 4374 if (wus & PFPM_WUS_LNKC_M) 4375 wake_str = "Link\n"; 4376 else if (wus & PFPM_WUS_MAG_M) 4377 wake_str = "Magic Packet\n"; 4378 else if (wus & PFPM_WUS_MNG_M) 4379 wake_str = "Management\n"; 4380 else if (wus & PFPM_WUS_FW_RST_WK_M) 4381 wake_str = "Firmware Reset\n"; 4382 else 4383 wake_str = "Unknown\n"; 4384 4385 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4386 } 4387 4388 /** 4389 * ice_register_netdev - register netdev and devlink port 4390 * @pf: pointer to the PF struct 4391 */ 4392 static int ice_register_netdev(struct ice_pf *pf) 4393 { 4394 struct ice_vsi *vsi; 4395 int err = 0; 4396 4397 vsi = ice_get_main_vsi(pf); 4398 if (!vsi || !vsi->netdev) 4399 return -EIO; 4400 4401 err = register_netdev(vsi->netdev); 4402 if (err) 4403 goto err_register_netdev; 4404 4405 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4406 netif_carrier_off(vsi->netdev); 4407 netif_tx_stop_all_queues(vsi->netdev); 4408 err = ice_devlink_create_pf_port(pf); 4409 if (err) 4410 goto err_devlink_create; 4411 4412 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4413 4414 return 0; 4415 err_devlink_create: 4416 unregister_netdev(vsi->netdev); 4417 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4418 err_register_netdev: 4419 free_netdev(vsi->netdev); 4420 vsi->netdev = NULL; 4421 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4422 return err; 4423 } 4424 4425 /** 4426 * ice_probe - Device initialization routine 4427 * @pdev: PCI device information struct 4428 * @ent: entry in ice_pci_tbl 4429 * 4430 * Returns 0 on success, negative on failure 4431 */ 4432 static int 4433 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4434 { 4435 struct device *dev = &pdev->dev; 4436 struct ice_pf *pf; 4437 struct ice_hw *hw; 4438 int i, err; 4439 4440 if (pdev->is_virtfn) { 4441 dev_err(dev, "can't probe a virtual function\n"); 4442 return -EINVAL; 4443 } 4444 4445 /* this driver uses devres, see 4446 * Documentation/driver-api/driver-model/devres.rst 4447 */ 4448 err = pcim_enable_device(pdev); 4449 if (err) 4450 return err; 4451 4452 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4453 if (err) { 4454 dev_err(dev, "BAR0 I/O map error %d\n", err); 4455 return err; 4456 } 4457 4458 pf = ice_allocate_pf(dev); 4459 if (!pf) 4460 return -ENOMEM; 4461 4462 /* initialize Auxiliary index to invalid value */ 4463 pf->aux_idx = -1; 4464 4465 /* set up for high or low DMA */ 4466 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4467 if (err) 4468 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4469 if (err) { 4470 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4471 return err; 4472 } 4473 4474 pci_enable_pcie_error_reporting(pdev); 4475 pci_set_master(pdev); 4476 4477 pf->pdev = pdev; 4478 pci_set_drvdata(pdev, pf); 4479 set_bit(ICE_DOWN, pf->state); 4480 /* Disable service task until DOWN bit is cleared */ 4481 set_bit(ICE_SERVICE_DIS, pf->state); 4482 4483 hw = &pf->hw; 4484 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4485 pci_save_state(pdev); 4486 4487 hw->back = pf; 4488 hw->vendor_id = pdev->vendor; 4489 hw->device_id = pdev->device; 4490 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4491 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4492 hw->subsystem_device_id = pdev->subsystem_device; 4493 hw->bus.device = PCI_SLOT(pdev->devfn); 4494 hw->bus.func = PCI_FUNC(pdev->devfn); 4495 ice_set_ctrlq_len(hw); 4496 4497 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4498 4499 #ifndef CONFIG_DYNAMIC_DEBUG 4500 if (debug < -1) 4501 hw->debug_mask = debug; 4502 #endif 4503 4504 err = ice_init_hw(hw); 4505 if (err) { 4506 dev_err(dev, "ice_init_hw failed: %d\n", err); 4507 err = -EIO; 4508 goto err_exit_unroll; 4509 } 4510 4511 ice_init_feature_support(pf); 4512 4513 ice_request_fw(pf); 4514 4515 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4516 * set in pf->state, which will cause ice_is_safe_mode to return 4517 * true 4518 */ 4519 if (ice_is_safe_mode(pf)) { 4520 /* we already got function/device capabilities but these don't 4521 * reflect what the driver needs to do in safe mode. Instead of 4522 * adding conditional logic everywhere to ignore these 4523 * device/function capabilities, override them. 4524 */ 4525 ice_set_safe_mode_caps(hw); 4526 } 4527 4528 err = ice_init_pf(pf); 4529 if (err) { 4530 dev_err(dev, "ice_init_pf failed: %d\n", err); 4531 goto err_init_pf_unroll; 4532 } 4533 4534 ice_devlink_init_regions(pf); 4535 4536 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4537 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4538 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4539 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4540 i = 0; 4541 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4542 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4543 pf->hw.tnl.valid_count[TNL_VXLAN]; 4544 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4545 UDP_TUNNEL_TYPE_VXLAN; 4546 i++; 4547 } 4548 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4549 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4550 pf->hw.tnl.valid_count[TNL_GENEVE]; 4551 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4552 UDP_TUNNEL_TYPE_GENEVE; 4553 i++; 4554 } 4555 4556 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4557 if (!pf->num_alloc_vsi) { 4558 err = -EIO; 4559 goto err_init_pf_unroll; 4560 } 4561 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4562 dev_warn(&pf->pdev->dev, 4563 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4564 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4565 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4566 } 4567 4568 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4569 GFP_KERNEL); 4570 if (!pf->vsi) { 4571 err = -ENOMEM; 4572 goto err_init_pf_unroll; 4573 } 4574 4575 err = ice_init_interrupt_scheme(pf); 4576 if (err) { 4577 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4578 err = -EIO; 4579 goto err_init_vsi_unroll; 4580 } 4581 4582 /* In case of MSIX we are going to setup the misc vector right here 4583 * to handle admin queue events etc. In case of legacy and MSI 4584 * the misc functionality and queue processing is combined in 4585 * the same vector and that gets setup at open. 4586 */ 4587 err = ice_req_irq_msix_misc(pf); 4588 if (err) { 4589 dev_err(dev, "setup of misc vector failed: %d\n", err); 4590 goto err_init_interrupt_unroll; 4591 } 4592 4593 /* create switch struct for the switch element created by FW on boot */ 4594 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4595 if (!pf->first_sw) { 4596 err = -ENOMEM; 4597 goto err_msix_misc_unroll; 4598 } 4599 4600 if (hw->evb_veb) 4601 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4602 else 4603 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4604 4605 pf->first_sw->pf = pf; 4606 4607 /* record the sw_id available for later use */ 4608 pf->first_sw->sw_id = hw->port_info->sw_id; 4609 4610 err = ice_setup_pf_sw(pf); 4611 if (err) { 4612 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4613 goto err_alloc_sw_unroll; 4614 } 4615 4616 clear_bit(ICE_SERVICE_DIS, pf->state); 4617 4618 /* tell the firmware we are up */ 4619 err = ice_send_version(pf); 4620 if (err) { 4621 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4622 UTS_RELEASE, err); 4623 goto err_send_version_unroll; 4624 } 4625 4626 /* since everything is good, start the service timer */ 4627 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4628 4629 err = ice_init_link_events(pf->hw.port_info); 4630 if (err) { 4631 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4632 goto err_send_version_unroll; 4633 } 4634 4635 /* not a fatal error if this fails */ 4636 err = ice_init_nvm_phy_type(pf->hw.port_info); 4637 if (err) 4638 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4639 4640 /* not a fatal error if this fails */ 4641 err = ice_update_link_info(pf->hw.port_info); 4642 if (err) 4643 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4644 4645 ice_init_link_dflt_override(pf->hw.port_info); 4646 4647 ice_check_link_cfg_err(pf, 4648 pf->hw.port_info->phy.link_info.link_cfg_err); 4649 4650 /* if media available, initialize PHY settings */ 4651 if (pf->hw.port_info->phy.link_info.link_info & 4652 ICE_AQ_MEDIA_AVAILABLE) { 4653 /* not a fatal error if this fails */ 4654 err = ice_init_phy_user_cfg(pf->hw.port_info); 4655 if (err) 4656 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4657 4658 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4659 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4660 4661 if (vsi) 4662 ice_configure_phy(vsi); 4663 } 4664 } else { 4665 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4666 } 4667 4668 ice_verify_cacheline_size(pf); 4669 4670 /* Save wakeup reason register for later use */ 4671 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4672 4673 /* check for a power management event */ 4674 ice_print_wake_reason(pf); 4675 4676 /* clear wake status, all bits */ 4677 wr32(hw, PFPM_WUS, U32_MAX); 4678 4679 /* Disable WoL at init, wait for user to enable */ 4680 device_set_wakeup_enable(dev, false); 4681 4682 if (ice_is_safe_mode(pf)) { 4683 ice_set_safe_mode_vlan_cfg(pf); 4684 goto probe_done; 4685 } 4686 4687 /* initialize DDP driven features */ 4688 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4689 ice_ptp_init(pf); 4690 4691 /* Note: Flow director init failure is non-fatal to load */ 4692 if (ice_init_fdir(pf)) 4693 dev_err(dev, "could not initialize flow director\n"); 4694 4695 /* Note: DCB init failure is non-fatal to load */ 4696 if (ice_init_pf_dcb(pf, false)) { 4697 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4698 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4699 } else { 4700 ice_cfg_lldp_mib_change(&pf->hw, true); 4701 } 4702 4703 if (ice_init_lag(pf)) 4704 dev_warn(dev, "Failed to init link aggregation support\n"); 4705 4706 /* print PCI link speed and width */ 4707 pcie_print_link_status(pf->pdev); 4708 4709 probe_done: 4710 err = ice_register_netdev(pf); 4711 if (err) 4712 goto err_netdev_reg; 4713 4714 err = ice_devlink_register_params(pf); 4715 if (err) 4716 goto err_netdev_reg; 4717 4718 /* ready to go, so clear down state bit */ 4719 clear_bit(ICE_DOWN, pf->state); 4720 if (ice_is_aux_ena(pf)) { 4721 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4722 if (pf->aux_idx < 0) { 4723 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4724 err = -ENOMEM; 4725 goto err_devlink_reg_param; 4726 } 4727 4728 err = ice_init_rdma(pf); 4729 if (err) { 4730 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4731 err = -EIO; 4732 goto err_init_aux_unroll; 4733 } 4734 } else { 4735 dev_warn(dev, "RDMA is not supported on this device\n"); 4736 } 4737 4738 ice_devlink_register(pf); 4739 return 0; 4740 4741 err_init_aux_unroll: 4742 pf->adev = NULL; 4743 ida_free(&ice_aux_ida, pf->aux_idx); 4744 err_devlink_reg_param: 4745 ice_devlink_unregister_params(pf); 4746 err_netdev_reg: 4747 err_send_version_unroll: 4748 ice_vsi_release_all(pf); 4749 err_alloc_sw_unroll: 4750 set_bit(ICE_SERVICE_DIS, pf->state); 4751 set_bit(ICE_DOWN, pf->state); 4752 devm_kfree(dev, pf->first_sw); 4753 err_msix_misc_unroll: 4754 ice_free_irq_msix_misc(pf); 4755 err_init_interrupt_unroll: 4756 ice_clear_interrupt_scheme(pf); 4757 err_init_vsi_unroll: 4758 devm_kfree(dev, pf->vsi); 4759 err_init_pf_unroll: 4760 ice_deinit_pf(pf); 4761 ice_devlink_destroy_regions(pf); 4762 ice_deinit_hw(hw); 4763 err_exit_unroll: 4764 pci_disable_pcie_error_reporting(pdev); 4765 pci_disable_device(pdev); 4766 return err; 4767 } 4768 4769 /** 4770 * ice_set_wake - enable or disable Wake on LAN 4771 * @pf: pointer to the PF struct 4772 * 4773 * Simple helper for WoL control 4774 */ 4775 static void ice_set_wake(struct ice_pf *pf) 4776 { 4777 struct ice_hw *hw = &pf->hw; 4778 bool wol = pf->wol_ena; 4779 4780 /* clear wake state, otherwise new wake events won't fire */ 4781 wr32(hw, PFPM_WUS, U32_MAX); 4782 4783 /* enable / disable APM wake up, no RMW needed */ 4784 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4785 4786 /* set magic packet filter enabled */ 4787 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4788 } 4789 4790 /** 4791 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4792 * @pf: pointer to the PF struct 4793 * 4794 * Issue firmware command to enable multicast magic wake, making 4795 * sure that any locally administered address (LAA) is used for 4796 * wake, and that PF reset doesn't undo the LAA. 4797 */ 4798 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4799 { 4800 struct device *dev = ice_pf_to_dev(pf); 4801 struct ice_hw *hw = &pf->hw; 4802 u8 mac_addr[ETH_ALEN]; 4803 struct ice_vsi *vsi; 4804 int status; 4805 u8 flags; 4806 4807 if (!pf->wol_ena) 4808 return; 4809 4810 vsi = ice_get_main_vsi(pf); 4811 if (!vsi) 4812 return; 4813 4814 /* Get current MAC address in case it's an LAA */ 4815 if (vsi->netdev) 4816 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4817 else 4818 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4819 4820 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4821 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4822 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4823 4824 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4825 if (status) 4826 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4827 status, ice_aq_str(hw->adminq.sq_last_status)); 4828 } 4829 4830 /** 4831 * ice_remove - Device removal routine 4832 * @pdev: PCI device information struct 4833 */ 4834 static void ice_remove(struct pci_dev *pdev) 4835 { 4836 struct ice_pf *pf = pci_get_drvdata(pdev); 4837 int i; 4838 4839 ice_devlink_unregister(pf); 4840 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4841 if (!ice_is_reset_in_progress(pf->state)) 4842 break; 4843 msleep(100); 4844 } 4845 4846 ice_tc_indir_block_remove(pf); 4847 4848 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4849 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4850 ice_free_vfs(pf); 4851 } 4852 4853 ice_service_task_stop(pf); 4854 4855 ice_aq_cancel_waiting_tasks(pf); 4856 ice_unplug_aux_dev(pf); 4857 if (pf->aux_idx >= 0) 4858 ida_free(&ice_aux_ida, pf->aux_idx); 4859 ice_devlink_unregister_params(pf); 4860 set_bit(ICE_DOWN, pf->state); 4861 4862 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4863 ice_deinit_lag(pf); 4864 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4865 ice_ptp_release(pf); 4866 if (!ice_is_safe_mode(pf)) 4867 ice_remove_arfs(pf); 4868 ice_setup_mc_magic_wake(pf); 4869 ice_vsi_release_all(pf); 4870 ice_set_wake(pf); 4871 ice_free_irq_msix_misc(pf); 4872 ice_for_each_vsi(pf, i) { 4873 if (!pf->vsi[i]) 4874 continue; 4875 ice_vsi_free_q_vectors(pf->vsi[i]); 4876 } 4877 ice_deinit_pf(pf); 4878 ice_devlink_destroy_regions(pf); 4879 ice_deinit_hw(&pf->hw); 4880 4881 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4882 * do it via ice_schedule_reset() since there is no need to rebuild 4883 * and the service task is already stopped. 4884 */ 4885 ice_reset(&pf->hw, ICE_RESET_PFR); 4886 pci_wait_for_pending_transaction(pdev); 4887 ice_clear_interrupt_scheme(pf); 4888 pci_disable_pcie_error_reporting(pdev); 4889 pci_disable_device(pdev); 4890 } 4891 4892 /** 4893 * ice_shutdown - PCI callback for shutting down device 4894 * @pdev: PCI device information struct 4895 */ 4896 static void ice_shutdown(struct pci_dev *pdev) 4897 { 4898 struct ice_pf *pf = pci_get_drvdata(pdev); 4899 4900 ice_remove(pdev); 4901 4902 if (system_state == SYSTEM_POWER_OFF) { 4903 pci_wake_from_d3(pdev, pf->wol_ena); 4904 pci_set_power_state(pdev, PCI_D3hot); 4905 } 4906 } 4907 4908 #ifdef CONFIG_PM 4909 /** 4910 * ice_prepare_for_shutdown - prep for PCI shutdown 4911 * @pf: board private structure 4912 * 4913 * Inform or close all dependent features in prep for PCI device shutdown 4914 */ 4915 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4916 { 4917 struct ice_hw *hw = &pf->hw; 4918 u32 v; 4919 4920 /* Notify VFs of impending reset */ 4921 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4922 ice_vc_notify_reset(pf); 4923 4924 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4925 4926 /* disable the VSIs and their queues that are not already DOWN */ 4927 ice_pf_dis_all_vsi(pf, false); 4928 4929 ice_for_each_vsi(pf, v) 4930 if (pf->vsi[v]) 4931 pf->vsi[v]->vsi_num = 0; 4932 4933 ice_shutdown_all_ctrlq(hw); 4934 } 4935 4936 /** 4937 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4938 * @pf: board private structure to reinitialize 4939 * 4940 * This routine reinitialize interrupt scheme that was cleared during 4941 * power management suspend callback. 4942 * 4943 * This should be called during resume routine to re-allocate the q_vectors 4944 * and reacquire interrupts. 4945 */ 4946 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4947 { 4948 struct device *dev = ice_pf_to_dev(pf); 4949 int ret, v; 4950 4951 /* Since we clear MSIX flag during suspend, we need to 4952 * set it back during resume... 4953 */ 4954 4955 ret = ice_init_interrupt_scheme(pf); 4956 if (ret) { 4957 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4958 return ret; 4959 } 4960 4961 /* Remap vectors and rings, after successful re-init interrupts */ 4962 ice_for_each_vsi(pf, v) { 4963 if (!pf->vsi[v]) 4964 continue; 4965 4966 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4967 if (ret) 4968 goto err_reinit; 4969 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4970 } 4971 4972 ret = ice_req_irq_msix_misc(pf); 4973 if (ret) { 4974 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4975 ret); 4976 goto err_reinit; 4977 } 4978 4979 return 0; 4980 4981 err_reinit: 4982 while (v--) 4983 if (pf->vsi[v]) 4984 ice_vsi_free_q_vectors(pf->vsi[v]); 4985 4986 return ret; 4987 } 4988 4989 /** 4990 * ice_suspend 4991 * @dev: generic device information structure 4992 * 4993 * Power Management callback to quiesce the device and prepare 4994 * for D3 transition. 4995 */ 4996 static int __maybe_unused ice_suspend(struct device *dev) 4997 { 4998 struct pci_dev *pdev = to_pci_dev(dev); 4999 struct ice_pf *pf; 5000 int disabled, v; 5001 5002 pf = pci_get_drvdata(pdev); 5003 5004 if (!ice_pf_state_is_nominal(pf)) { 5005 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5006 return -EBUSY; 5007 } 5008 5009 /* Stop watchdog tasks until resume completion. 5010 * Even though it is most likely that the service task is 5011 * disabled if the device is suspended or down, the service task's 5012 * state is controlled by a different state bit, and we should 5013 * store and honor whatever state that bit is in at this point. 5014 */ 5015 disabled = ice_service_task_stop(pf); 5016 5017 ice_unplug_aux_dev(pf); 5018 5019 /* Already suspended?, then there is nothing to do */ 5020 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5021 if (!disabled) 5022 ice_service_task_restart(pf); 5023 return 0; 5024 } 5025 5026 if (test_bit(ICE_DOWN, pf->state) || 5027 ice_is_reset_in_progress(pf->state)) { 5028 dev_err(dev, "can't suspend device in reset or already down\n"); 5029 if (!disabled) 5030 ice_service_task_restart(pf); 5031 return 0; 5032 } 5033 5034 ice_setup_mc_magic_wake(pf); 5035 5036 ice_prepare_for_shutdown(pf); 5037 5038 ice_set_wake(pf); 5039 5040 /* Free vectors, clear the interrupt scheme and release IRQs 5041 * for proper hibernation, especially with large number of CPUs. 5042 * Otherwise hibernation might fail when mapping all the vectors back 5043 * to CPU0. 5044 */ 5045 ice_free_irq_msix_misc(pf); 5046 ice_for_each_vsi(pf, v) { 5047 if (!pf->vsi[v]) 5048 continue; 5049 ice_vsi_free_q_vectors(pf->vsi[v]); 5050 } 5051 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5052 ice_clear_interrupt_scheme(pf); 5053 5054 pci_save_state(pdev); 5055 pci_wake_from_d3(pdev, pf->wol_ena); 5056 pci_set_power_state(pdev, PCI_D3hot); 5057 return 0; 5058 } 5059 5060 /** 5061 * ice_resume - PM callback for waking up from D3 5062 * @dev: generic device information structure 5063 */ 5064 static int __maybe_unused ice_resume(struct device *dev) 5065 { 5066 struct pci_dev *pdev = to_pci_dev(dev); 5067 enum ice_reset_req reset_type; 5068 struct ice_pf *pf; 5069 struct ice_hw *hw; 5070 int ret; 5071 5072 pci_set_power_state(pdev, PCI_D0); 5073 pci_restore_state(pdev); 5074 pci_save_state(pdev); 5075 5076 if (!pci_device_is_present(pdev)) 5077 return -ENODEV; 5078 5079 ret = pci_enable_device_mem(pdev); 5080 if (ret) { 5081 dev_err(dev, "Cannot enable device after suspend\n"); 5082 return ret; 5083 } 5084 5085 pf = pci_get_drvdata(pdev); 5086 hw = &pf->hw; 5087 5088 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5089 ice_print_wake_reason(pf); 5090 5091 /* We cleared the interrupt scheme when we suspended, so we need to 5092 * restore it now to resume device functionality. 5093 */ 5094 ret = ice_reinit_interrupt_scheme(pf); 5095 if (ret) 5096 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5097 5098 clear_bit(ICE_DOWN, pf->state); 5099 /* Now perform PF reset and rebuild */ 5100 reset_type = ICE_RESET_PFR; 5101 /* re-enable service task for reset, but allow reset to schedule it */ 5102 clear_bit(ICE_SERVICE_DIS, pf->state); 5103 5104 if (ice_schedule_reset(pf, reset_type)) 5105 dev_err(dev, "Reset during resume failed.\n"); 5106 5107 clear_bit(ICE_SUSPENDED, pf->state); 5108 ice_service_task_restart(pf); 5109 5110 /* Restart the service task */ 5111 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5112 5113 return 0; 5114 } 5115 #endif /* CONFIG_PM */ 5116 5117 /** 5118 * ice_pci_err_detected - warning that PCI error has been detected 5119 * @pdev: PCI device information struct 5120 * @err: the type of PCI error 5121 * 5122 * Called to warn that something happened on the PCI bus and the error handling 5123 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5124 */ 5125 static pci_ers_result_t 5126 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5127 { 5128 struct ice_pf *pf = pci_get_drvdata(pdev); 5129 5130 if (!pf) { 5131 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5132 __func__, err); 5133 return PCI_ERS_RESULT_DISCONNECT; 5134 } 5135 5136 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5137 ice_service_task_stop(pf); 5138 5139 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5140 set_bit(ICE_PFR_REQ, pf->state); 5141 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5142 } 5143 } 5144 5145 return PCI_ERS_RESULT_NEED_RESET; 5146 } 5147 5148 /** 5149 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5150 * @pdev: PCI device information struct 5151 * 5152 * Called to determine if the driver can recover from the PCI slot reset by 5153 * using a register read to determine if the device is recoverable. 5154 */ 5155 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5156 { 5157 struct ice_pf *pf = pci_get_drvdata(pdev); 5158 pci_ers_result_t result; 5159 int err; 5160 u32 reg; 5161 5162 err = pci_enable_device_mem(pdev); 5163 if (err) { 5164 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5165 err); 5166 result = PCI_ERS_RESULT_DISCONNECT; 5167 } else { 5168 pci_set_master(pdev); 5169 pci_restore_state(pdev); 5170 pci_save_state(pdev); 5171 pci_wake_from_d3(pdev, false); 5172 5173 /* Check for life */ 5174 reg = rd32(&pf->hw, GLGEN_RTRIG); 5175 if (!reg) 5176 result = PCI_ERS_RESULT_RECOVERED; 5177 else 5178 result = PCI_ERS_RESULT_DISCONNECT; 5179 } 5180 5181 err = pci_aer_clear_nonfatal_status(pdev); 5182 if (err) 5183 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5184 err); 5185 /* non-fatal, continue */ 5186 5187 return result; 5188 } 5189 5190 /** 5191 * ice_pci_err_resume - restart operations after PCI error recovery 5192 * @pdev: PCI device information struct 5193 * 5194 * Called to allow the driver to bring things back up after PCI error and/or 5195 * reset recovery have finished 5196 */ 5197 static void ice_pci_err_resume(struct pci_dev *pdev) 5198 { 5199 struct ice_pf *pf = pci_get_drvdata(pdev); 5200 5201 if (!pf) { 5202 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5203 __func__); 5204 return; 5205 } 5206 5207 if (test_bit(ICE_SUSPENDED, pf->state)) { 5208 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5209 __func__); 5210 return; 5211 } 5212 5213 ice_restore_all_vfs_msi_state(pdev); 5214 5215 ice_do_reset(pf, ICE_RESET_PFR); 5216 ice_service_task_restart(pf); 5217 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5218 } 5219 5220 /** 5221 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5222 * @pdev: PCI device information struct 5223 */ 5224 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5225 { 5226 struct ice_pf *pf = pci_get_drvdata(pdev); 5227 5228 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5229 ice_service_task_stop(pf); 5230 5231 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5232 set_bit(ICE_PFR_REQ, pf->state); 5233 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5234 } 5235 } 5236 } 5237 5238 /** 5239 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5240 * @pdev: PCI device information struct 5241 */ 5242 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5243 { 5244 ice_pci_err_resume(pdev); 5245 } 5246 5247 /* ice_pci_tbl - PCI Device ID Table 5248 * 5249 * Wildcard entries (PCI_ANY_ID) should come last 5250 * Last entry must be all 0s 5251 * 5252 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5253 * Class, Class Mask, private data (not used) } 5254 */ 5255 static const struct pci_device_id ice_pci_tbl[] = { 5256 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5257 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5258 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5259 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5260 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5261 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5262 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5263 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5264 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5265 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5266 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5267 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5268 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5269 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5270 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5271 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5272 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5273 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5274 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5275 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5276 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5277 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5278 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5279 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5280 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5281 /* required last entry */ 5282 { 0, } 5283 }; 5284 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5285 5286 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5287 5288 static const struct pci_error_handlers ice_pci_err_handler = { 5289 .error_detected = ice_pci_err_detected, 5290 .slot_reset = ice_pci_err_slot_reset, 5291 .reset_prepare = ice_pci_err_reset_prepare, 5292 .reset_done = ice_pci_err_reset_done, 5293 .resume = ice_pci_err_resume 5294 }; 5295 5296 static struct pci_driver ice_driver = { 5297 .name = KBUILD_MODNAME, 5298 .id_table = ice_pci_tbl, 5299 .probe = ice_probe, 5300 .remove = ice_remove, 5301 #ifdef CONFIG_PM 5302 .driver.pm = &ice_pm_ops, 5303 #endif /* CONFIG_PM */ 5304 .shutdown = ice_shutdown, 5305 .sriov_configure = ice_sriov_configure, 5306 .err_handler = &ice_pci_err_handler 5307 }; 5308 5309 /** 5310 * ice_module_init - Driver registration routine 5311 * 5312 * ice_module_init is the first routine called when the driver is 5313 * loaded. All it does is register with the PCI subsystem. 5314 */ 5315 static int __init ice_module_init(void) 5316 { 5317 int status; 5318 5319 pr_info("%s\n", ice_driver_string); 5320 pr_info("%s\n", ice_copyright); 5321 5322 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5323 if (!ice_wq) { 5324 pr_err("Failed to create workqueue\n"); 5325 return -ENOMEM; 5326 } 5327 5328 status = pci_register_driver(&ice_driver); 5329 if (status) { 5330 pr_err("failed to register PCI driver, err %d\n", status); 5331 destroy_workqueue(ice_wq); 5332 } 5333 5334 return status; 5335 } 5336 module_init(ice_module_init); 5337 5338 /** 5339 * ice_module_exit - Driver exit cleanup routine 5340 * 5341 * ice_module_exit is called just before the driver is removed 5342 * from memory. 5343 */ 5344 static void __exit ice_module_exit(void) 5345 { 5346 pci_unregister_driver(&ice_driver); 5347 destroy_workqueue(ice_wq); 5348 pr_info("module unloaded\n"); 5349 } 5350 module_exit(ice_module_exit); 5351 5352 /** 5353 * ice_set_mac_address - NDO callback to set MAC address 5354 * @netdev: network interface device structure 5355 * @pi: pointer to an address structure 5356 * 5357 * Returns 0 on success, negative on failure 5358 */ 5359 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5360 { 5361 struct ice_netdev_priv *np = netdev_priv(netdev); 5362 struct ice_vsi *vsi = np->vsi; 5363 struct ice_pf *pf = vsi->back; 5364 struct ice_hw *hw = &pf->hw; 5365 struct sockaddr *addr = pi; 5366 u8 old_mac[ETH_ALEN]; 5367 u8 flags = 0; 5368 u8 *mac; 5369 int err; 5370 5371 mac = (u8 *)addr->sa_data; 5372 5373 if (!is_valid_ether_addr(mac)) 5374 return -EADDRNOTAVAIL; 5375 5376 if (ether_addr_equal(netdev->dev_addr, mac)) { 5377 netdev_dbg(netdev, "already using mac %pM\n", mac); 5378 return 0; 5379 } 5380 5381 if (test_bit(ICE_DOWN, pf->state) || 5382 ice_is_reset_in_progress(pf->state)) { 5383 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5384 mac); 5385 return -EBUSY; 5386 } 5387 5388 if (ice_chnl_dmac_fltr_cnt(pf)) { 5389 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5390 mac); 5391 return -EAGAIN; 5392 } 5393 5394 netif_addr_lock_bh(netdev); 5395 ether_addr_copy(old_mac, netdev->dev_addr); 5396 /* change the netdev's MAC address */ 5397 eth_hw_addr_set(netdev, mac); 5398 netif_addr_unlock_bh(netdev); 5399 5400 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5401 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5402 if (err && err != -ENOENT) { 5403 err = -EADDRNOTAVAIL; 5404 goto err_update_filters; 5405 } 5406 5407 /* Add filter for new MAC. If filter exists, return success */ 5408 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5409 if (err == -EEXIST) 5410 /* Although this MAC filter is already present in hardware it's 5411 * possible in some cases (e.g. bonding) that dev_addr was 5412 * modified outside of the driver and needs to be restored back 5413 * to this value. 5414 */ 5415 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5416 else if (err) 5417 /* error if the new filter addition failed */ 5418 err = -EADDRNOTAVAIL; 5419 5420 err_update_filters: 5421 if (err) { 5422 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5423 mac); 5424 netif_addr_lock_bh(netdev); 5425 eth_hw_addr_set(netdev, old_mac); 5426 netif_addr_unlock_bh(netdev); 5427 return err; 5428 } 5429 5430 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5431 netdev->dev_addr); 5432 5433 /* write new MAC address to the firmware */ 5434 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5435 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5436 if (err) { 5437 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5438 mac, err); 5439 } 5440 return 0; 5441 } 5442 5443 /** 5444 * ice_set_rx_mode - NDO callback to set the netdev filters 5445 * @netdev: network interface device structure 5446 */ 5447 static void ice_set_rx_mode(struct net_device *netdev) 5448 { 5449 struct ice_netdev_priv *np = netdev_priv(netdev); 5450 struct ice_vsi *vsi = np->vsi; 5451 5452 if (!vsi) 5453 return; 5454 5455 /* Set the flags to synchronize filters 5456 * ndo_set_rx_mode may be triggered even without a change in netdev 5457 * flags 5458 */ 5459 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5460 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5461 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5462 5463 /* schedule our worker thread which will take care of 5464 * applying the new filter changes 5465 */ 5466 ice_service_task_schedule(vsi->back); 5467 } 5468 5469 /** 5470 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5471 * @netdev: network interface device structure 5472 * @queue_index: Queue ID 5473 * @maxrate: maximum bandwidth in Mbps 5474 */ 5475 static int 5476 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5477 { 5478 struct ice_netdev_priv *np = netdev_priv(netdev); 5479 struct ice_vsi *vsi = np->vsi; 5480 u16 q_handle; 5481 int status; 5482 u8 tc; 5483 5484 /* Validate maxrate requested is within permitted range */ 5485 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5486 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5487 maxrate, queue_index); 5488 return -EINVAL; 5489 } 5490 5491 q_handle = vsi->tx_rings[queue_index]->q_handle; 5492 tc = ice_dcb_get_tc(vsi, queue_index); 5493 5494 /* Set BW back to default, when user set maxrate to 0 */ 5495 if (!maxrate) 5496 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5497 q_handle, ICE_MAX_BW); 5498 else 5499 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5500 q_handle, ICE_MAX_BW, maxrate * 1000); 5501 if (status) 5502 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5503 status); 5504 5505 return status; 5506 } 5507 5508 /** 5509 * ice_fdb_add - add an entry to the hardware database 5510 * @ndm: the input from the stack 5511 * @tb: pointer to array of nladdr (unused) 5512 * @dev: the net device pointer 5513 * @addr: the MAC address entry being added 5514 * @vid: VLAN ID 5515 * @flags: instructions from stack about fdb operation 5516 * @extack: netlink extended ack 5517 */ 5518 static int 5519 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5520 struct net_device *dev, const unsigned char *addr, u16 vid, 5521 u16 flags, struct netlink_ext_ack __always_unused *extack) 5522 { 5523 int err; 5524 5525 if (vid) { 5526 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5527 return -EINVAL; 5528 } 5529 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5530 netdev_err(dev, "FDB only supports static addresses\n"); 5531 return -EINVAL; 5532 } 5533 5534 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5535 err = dev_uc_add_excl(dev, addr); 5536 else if (is_multicast_ether_addr(addr)) 5537 err = dev_mc_add_excl(dev, addr); 5538 else 5539 err = -EINVAL; 5540 5541 /* Only return duplicate errors if NLM_F_EXCL is set */ 5542 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5543 err = 0; 5544 5545 return err; 5546 } 5547 5548 /** 5549 * ice_fdb_del - delete an entry from the hardware database 5550 * @ndm: the input from the stack 5551 * @tb: pointer to array of nladdr (unused) 5552 * @dev: the net device pointer 5553 * @addr: the MAC address entry being added 5554 * @vid: VLAN ID 5555 */ 5556 static int 5557 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5558 struct net_device *dev, const unsigned char *addr, 5559 __always_unused u16 vid) 5560 { 5561 int err; 5562 5563 if (ndm->ndm_state & NUD_PERMANENT) { 5564 netdev_err(dev, "FDB only supports static addresses\n"); 5565 return -EINVAL; 5566 } 5567 5568 if (is_unicast_ether_addr(addr)) 5569 err = dev_uc_del(dev, addr); 5570 else if (is_multicast_ether_addr(addr)) 5571 err = dev_mc_del(dev, addr); 5572 else 5573 err = -EINVAL; 5574 5575 return err; 5576 } 5577 5578 /** 5579 * ice_set_features - set the netdev feature flags 5580 * @netdev: ptr to the netdev being adjusted 5581 * @features: the feature set that the stack is suggesting 5582 */ 5583 static int 5584 ice_set_features(struct net_device *netdev, netdev_features_t features) 5585 { 5586 struct ice_netdev_priv *np = netdev_priv(netdev); 5587 struct ice_vsi *vsi = np->vsi; 5588 struct ice_pf *pf = vsi->back; 5589 int ret = 0; 5590 5591 /* Don't set any netdev advanced features with device in Safe Mode */ 5592 if (ice_is_safe_mode(vsi->back)) { 5593 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5594 return ret; 5595 } 5596 5597 /* Do not change setting during reset */ 5598 if (ice_is_reset_in_progress(pf->state)) { 5599 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5600 return -EBUSY; 5601 } 5602 5603 /* Multiple features can be changed in one call so keep features in 5604 * separate if/else statements to guarantee each feature is checked 5605 */ 5606 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5607 ice_vsi_manage_rss_lut(vsi, true); 5608 else if (!(features & NETIF_F_RXHASH) && 5609 netdev->features & NETIF_F_RXHASH) 5610 ice_vsi_manage_rss_lut(vsi, false); 5611 5612 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5613 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5614 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5615 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5616 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5617 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5618 5619 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5620 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5621 ret = ice_vsi_manage_vlan_insertion(vsi); 5622 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5623 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5624 ret = ice_vsi_manage_vlan_insertion(vsi); 5625 5626 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5627 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5628 ret = ice_cfg_vlan_pruning(vsi, true); 5629 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5630 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5631 ret = ice_cfg_vlan_pruning(vsi, false); 5632 5633 if ((features & NETIF_F_NTUPLE) && 5634 !(netdev->features & NETIF_F_NTUPLE)) { 5635 ice_vsi_manage_fdir(vsi, true); 5636 ice_init_arfs(vsi); 5637 } else if (!(features & NETIF_F_NTUPLE) && 5638 (netdev->features & NETIF_F_NTUPLE)) { 5639 ice_vsi_manage_fdir(vsi, false); 5640 ice_clear_arfs(vsi); 5641 } 5642 5643 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5644 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5645 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5646 return -EACCES; 5647 } 5648 5649 if ((features & NETIF_F_HW_TC) && 5650 !(netdev->features & NETIF_F_HW_TC)) 5651 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5652 else 5653 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5654 5655 return ret; 5656 } 5657 5658 /** 5659 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5660 * @vsi: VSI to setup VLAN properties for 5661 */ 5662 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5663 { 5664 int ret = 0; 5665 5666 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5667 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5668 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5669 ret = ice_vsi_manage_vlan_insertion(vsi); 5670 5671 return ret; 5672 } 5673 5674 /** 5675 * ice_vsi_cfg - Setup the VSI 5676 * @vsi: the VSI being configured 5677 * 5678 * Return 0 on success and negative value on error 5679 */ 5680 int ice_vsi_cfg(struct ice_vsi *vsi) 5681 { 5682 int err; 5683 5684 if (vsi->netdev) { 5685 ice_set_rx_mode(vsi->netdev); 5686 5687 err = ice_vsi_vlan_setup(vsi); 5688 5689 if (err) 5690 return err; 5691 } 5692 ice_vsi_cfg_dcb_rings(vsi); 5693 5694 err = ice_vsi_cfg_lan_txqs(vsi); 5695 if (!err && ice_is_xdp_ena_vsi(vsi)) 5696 err = ice_vsi_cfg_xdp_txqs(vsi); 5697 if (!err) 5698 err = ice_vsi_cfg_rxqs(vsi); 5699 5700 return err; 5701 } 5702 5703 /* THEORY OF MODERATION: 5704 * The ice driver hardware works differently than the hardware that DIMLIB was 5705 * originally made for. ice hardware doesn't have packet count limits that 5706 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5707 * which is hard-coded to a limit of 250,000 ints/second. 5708 * If not using dynamic moderation, the INTRL value can be modified 5709 * by ethtool rx-usecs-high. 5710 */ 5711 struct ice_dim { 5712 /* the throttle rate for interrupts, basically worst case delay before 5713 * an initial interrupt fires, value is stored in microseconds. 5714 */ 5715 u16 itr; 5716 }; 5717 5718 /* Make a different profile for Rx that doesn't allow quite so aggressive 5719 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5720 * second. 5721 */ 5722 static const struct ice_dim rx_profile[] = { 5723 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5724 {8}, /* 125,000 ints/s */ 5725 {16}, /* 62,500 ints/s */ 5726 {62}, /* 16,129 ints/s */ 5727 {126} /* 7,936 ints/s */ 5728 }; 5729 5730 /* The transmit profile, which has the same sorts of values 5731 * as the previous struct 5732 */ 5733 static const struct ice_dim tx_profile[] = { 5734 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5735 {8}, /* 125,000 ints/s */ 5736 {40}, /* 16,125 ints/s */ 5737 {128}, /* 7,812 ints/s */ 5738 {256} /* 3,906 ints/s */ 5739 }; 5740 5741 static void ice_tx_dim_work(struct work_struct *work) 5742 { 5743 struct ice_ring_container *rc; 5744 struct dim *dim; 5745 u16 itr; 5746 5747 dim = container_of(work, struct dim, work); 5748 rc = (struct ice_ring_container *)dim->priv; 5749 5750 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5751 5752 /* look up the values in our local table */ 5753 itr = tx_profile[dim->profile_ix].itr; 5754 5755 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5756 ice_write_itr(rc, itr); 5757 5758 dim->state = DIM_START_MEASURE; 5759 } 5760 5761 static void ice_rx_dim_work(struct work_struct *work) 5762 { 5763 struct ice_ring_container *rc; 5764 struct dim *dim; 5765 u16 itr; 5766 5767 dim = container_of(work, struct dim, work); 5768 rc = (struct ice_ring_container *)dim->priv; 5769 5770 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5771 5772 /* look up the values in our local table */ 5773 itr = rx_profile[dim->profile_ix].itr; 5774 5775 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5776 ice_write_itr(rc, itr); 5777 5778 dim->state = DIM_START_MEASURE; 5779 } 5780 5781 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5782 5783 /** 5784 * ice_init_moderation - set up interrupt moderation 5785 * @q_vector: the vector containing rings to be configured 5786 * 5787 * Set up interrupt moderation registers, with the intent to do the right thing 5788 * when called from reset or from probe, and whether or not dynamic moderation 5789 * is enabled or not. Take special care to write all the registers in both 5790 * dynamic moderation mode or not in order to make sure hardware is in a known 5791 * state. 5792 */ 5793 static void ice_init_moderation(struct ice_q_vector *q_vector) 5794 { 5795 struct ice_ring_container *rc; 5796 bool tx_dynamic, rx_dynamic; 5797 5798 rc = &q_vector->tx; 5799 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5800 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5801 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5802 rc->dim.priv = rc; 5803 tx_dynamic = ITR_IS_DYNAMIC(rc); 5804 5805 /* set the initial TX ITR to match the above */ 5806 ice_write_itr(rc, tx_dynamic ? 5807 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5808 5809 rc = &q_vector->rx; 5810 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5811 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5812 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5813 rc->dim.priv = rc; 5814 rx_dynamic = ITR_IS_DYNAMIC(rc); 5815 5816 /* set the initial RX ITR to match the above */ 5817 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 5818 rc->itr_setting); 5819 5820 ice_set_q_vector_intrl(q_vector); 5821 } 5822 5823 /** 5824 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5825 * @vsi: the VSI being configured 5826 */ 5827 static void ice_napi_enable_all(struct ice_vsi *vsi) 5828 { 5829 int q_idx; 5830 5831 if (!vsi->netdev) 5832 return; 5833 5834 ice_for_each_q_vector(vsi, q_idx) { 5835 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5836 5837 ice_init_moderation(q_vector); 5838 5839 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 5840 napi_enable(&q_vector->napi); 5841 } 5842 } 5843 5844 /** 5845 * ice_up_complete - Finish the last steps of bringing up a connection 5846 * @vsi: The VSI being configured 5847 * 5848 * Return 0 on success and negative value on error 5849 */ 5850 static int ice_up_complete(struct ice_vsi *vsi) 5851 { 5852 struct ice_pf *pf = vsi->back; 5853 int err; 5854 5855 ice_vsi_cfg_msix(vsi); 5856 5857 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5858 * Tx queue group list was configured and the context bits were 5859 * programmed using ice_vsi_cfg_txqs 5860 */ 5861 err = ice_vsi_start_all_rx_rings(vsi); 5862 if (err) 5863 return err; 5864 5865 clear_bit(ICE_VSI_DOWN, vsi->state); 5866 ice_napi_enable_all(vsi); 5867 ice_vsi_ena_irq(vsi); 5868 5869 if (vsi->port_info && 5870 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5871 vsi->netdev) { 5872 ice_print_link_msg(vsi, true); 5873 netif_tx_start_all_queues(vsi->netdev); 5874 netif_carrier_on(vsi->netdev); 5875 if (!ice_is_e810(&pf->hw)) 5876 ice_ptp_link_change(pf, pf->hw.pf_id, true); 5877 } 5878 5879 /* clear this now, and the first stats read will be used as baseline */ 5880 vsi->stat_offsets_loaded = false; 5881 5882 ice_service_task_schedule(pf); 5883 5884 return 0; 5885 } 5886 5887 /** 5888 * ice_up - Bring the connection back up after being down 5889 * @vsi: VSI being configured 5890 */ 5891 int ice_up(struct ice_vsi *vsi) 5892 { 5893 int err; 5894 5895 err = ice_vsi_cfg(vsi); 5896 if (!err) 5897 err = ice_up_complete(vsi); 5898 5899 return err; 5900 } 5901 5902 /** 5903 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5904 * @syncp: pointer to u64_stats_sync 5905 * @stats: stats that pkts and bytes count will be taken from 5906 * @pkts: packets stats counter 5907 * @bytes: bytes stats counter 5908 * 5909 * This function fetches stats from the ring considering the atomic operations 5910 * that needs to be performed to read u64 values in 32 bit machine. 5911 */ 5912 static void 5913 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 5914 u64 *pkts, u64 *bytes) 5915 { 5916 unsigned int start; 5917 5918 do { 5919 start = u64_stats_fetch_begin_irq(syncp); 5920 *pkts = stats.pkts; 5921 *bytes = stats.bytes; 5922 } while (u64_stats_fetch_retry_irq(syncp, start)); 5923 } 5924 5925 /** 5926 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5927 * @vsi: the VSI to be updated 5928 * @vsi_stats: the stats struct to be updated 5929 * @rings: rings to work on 5930 * @count: number of rings 5931 */ 5932 static void 5933 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 5934 struct rtnl_link_stats64 *vsi_stats, 5935 struct ice_tx_ring **rings, u16 count) 5936 { 5937 u16 i; 5938 5939 for (i = 0; i < count; i++) { 5940 struct ice_tx_ring *ring; 5941 u64 pkts = 0, bytes = 0; 5942 5943 ring = READ_ONCE(rings[i]); 5944 if (ring) 5945 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5946 vsi_stats->tx_packets += pkts; 5947 vsi_stats->tx_bytes += bytes; 5948 vsi->tx_restart += ring->tx_stats.restart_q; 5949 vsi->tx_busy += ring->tx_stats.tx_busy; 5950 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5951 } 5952 } 5953 5954 /** 5955 * ice_update_vsi_ring_stats - Update VSI stats counters 5956 * @vsi: the VSI to be updated 5957 */ 5958 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5959 { 5960 struct rtnl_link_stats64 *vsi_stats; 5961 u64 pkts, bytes; 5962 int i; 5963 5964 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 5965 if (!vsi_stats) 5966 return; 5967 5968 /* reset non-netdev (extended) stats */ 5969 vsi->tx_restart = 0; 5970 vsi->tx_busy = 0; 5971 vsi->tx_linearize = 0; 5972 vsi->rx_buf_failed = 0; 5973 vsi->rx_page_failed = 0; 5974 5975 rcu_read_lock(); 5976 5977 /* update Tx rings counters */ 5978 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 5979 vsi->num_txq); 5980 5981 /* update Rx rings counters */ 5982 ice_for_each_rxq(vsi, i) { 5983 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5984 5985 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5986 vsi_stats->rx_packets += pkts; 5987 vsi_stats->rx_bytes += bytes; 5988 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5989 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5990 } 5991 5992 /* update XDP Tx rings counters */ 5993 if (ice_is_xdp_ena_vsi(vsi)) 5994 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 5995 vsi->num_xdp_txq); 5996 5997 rcu_read_unlock(); 5998 5999 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6000 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6001 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6002 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6003 6004 kfree(vsi_stats); 6005 } 6006 6007 /** 6008 * ice_update_vsi_stats - Update VSI stats counters 6009 * @vsi: the VSI to be updated 6010 */ 6011 void ice_update_vsi_stats(struct ice_vsi *vsi) 6012 { 6013 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6014 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6015 struct ice_pf *pf = vsi->back; 6016 6017 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6018 test_bit(ICE_CFG_BUSY, pf->state)) 6019 return; 6020 6021 /* get stats as recorded by Tx/Rx rings */ 6022 ice_update_vsi_ring_stats(vsi); 6023 6024 /* get VSI stats as recorded by the hardware */ 6025 ice_update_eth_stats(vsi); 6026 6027 cur_ns->tx_errors = cur_es->tx_errors; 6028 cur_ns->rx_dropped = cur_es->rx_discards; 6029 cur_ns->tx_dropped = cur_es->tx_discards; 6030 cur_ns->multicast = cur_es->rx_multicast; 6031 6032 /* update some more netdev stats if this is main VSI */ 6033 if (vsi->type == ICE_VSI_PF) { 6034 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6035 cur_ns->rx_errors = pf->stats.crc_errors + 6036 pf->stats.illegal_bytes + 6037 pf->stats.rx_len_errors + 6038 pf->stats.rx_undersize + 6039 pf->hw_csum_rx_error + 6040 pf->stats.rx_jabber + 6041 pf->stats.rx_fragments + 6042 pf->stats.rx_oversize; 6043 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6044 /* record drops from the port level */ 6045 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6046 } 6047 } 6048 6049 /** 6050 * ice_update_pf_stats - Update PF port stats counters 6051 * @pf: PF whose stats needs to be updated 6052 */ 6053 void ice_update_pf_stats(struct ice_pf *pf) 6054 { 6055 struct ice_hw_port_stats *prev_ps, *cur_ps; 6056 struct ice_hw *hw = &pf->hw; 6057 u16 fd_ctr_base; 6058 u8 port; 6059 6060 port = hw->port_info->lport; 6061 prev_ps = &pf->stats_prev; 6062 cur_ps = &pf->stats; 6063 6064 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6065 &prev_ps->eth.rx_bytes, 6066 &cur_ps->eth.rx_bytes); 6067 6068 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6069 &prev_ps->eth.rx_unicast, 6070 &cur_ps->eth.rx_unicast); 6071 6072 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6073 &prev_ps->eth.rx_multicast, 6074 &cur_ps->eth.rx_multicast); 6075 6076 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6077 &prev_ps->eth.rx_broadcast, 6078 &cur_ps->eth.rx_broadcast); 6079 6080 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6081 &prev_ps->eth.rx_discards, 6082 &cur_ps->eth.rx_discards); 6083 6084 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6085 &prev_ps->eth.tx_bytes, 6086 &cur_ps->eth.tx_bytes); 6087 6088 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6089 &prev_ps->eth.tx_unicast, 6090 &cur_ps->eth.tx_unicast); 6091 6092 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6093 &prev_ps->eth.tx_multicast, 6094 &cur_ps->eth.tx_multicast); 6095 6096 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6097 &prev_ps->eth.tx_broadcast, 6098 &cur_ps->eth.tx_broadcast); 6099 6100 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6101 &prev_ps->tx_dropped_link_down, 6102 &cur_ps->tx_dropped_link_down); 6103 6104 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6105 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6106 6107 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6108 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6109 6110 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6111 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6112 6113 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6114 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6115 6116 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6117 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6118 6119 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6120 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6121 6122 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6123 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6124 6125 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6126 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6127 6128 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6129 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6130 6131 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6132 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6133 6134 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6135 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6136 6137 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6138 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6139 6140 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6141 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6142 6143 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6144 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6145 6146 fd_ctr_base = hw->fd_ctr_base; 6147 6148 ice_stat_update40(hw, 6149 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6150 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6151 &cur_ps->fd_sb_match); 6152 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6153 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6154 6155 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6156 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6157 6158 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6159 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6160 6161 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6162 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6163 6164 ice_update_dcb_stats(pf); 6165 6166 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6167 &prev_ps->crc_errors, &cur_ps->crc_errors); 6168 6169 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6170 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6171 6172 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6173 &prev_ps->mac_local_faults, 6174 &cur_ps->mac_local_faults); 6175 6176 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6177 &prev_ps->mac_remote_faults, 6178 &cur_ps->mac_remote_faults); 6179 6180 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6181 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6182 6183 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6184 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6185 6186 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6187 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6188 6189 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6190 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6191 6192 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6193 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6194 6195 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6196 6197 pf->stat_prev_loaded = true; 6198 } 6199 6200 /** 6201 * ice_get_stats64 - get statistics for network device structure 6202 * @netdev: network interface device structure 6203 * @stats: main device statistics structure 6204 */ 6205 static 6206 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6207 { 6208 struct ice_netdev_priv *np = netdev_priv(netdev); 6209 struct rtnl_link_stats64 *vsi_stats; 6210 struct ice_vsi *vsi = np->vsi; 6211 6212 vsi_stats = &vsi->net_stats; 6213 6214 if (!vsi->num_txq || !vsi->num_rxq) 6215 return; 6216 6217 /* netdev packet/byte stats come from ring counter. These are obtained 6218 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6219 * But, only call the update routine and read the registers if VSI is 6220 * not down. 6221 */ 6222 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6223 ice_update_vsi_ring_stats(vsi); 6224 stats->tx_packets = vsi_stats->tx_packets; 6225 stats->tx_bytes = vsi_stats->tx_bytes; 6226 stats->rx_packets = vsi_stats->rx_packets; 6227 stats->rx_bytes = vsi_stats->rx_bytes; 6228 6229 /* The rest of the stats can be read from the hardware but instead we 6230 * just return values that the watchdog task has already obtained from 6231 * the hardware. 6232 */ 6233 stats->multicast = vsi_stats->multicast; 6234 stats->tx_errors = vsi_stats->tx_errors; 6235 stats->tx_dropped = vsi_stats->tx_dropped; 6236 stats->rx_errors = vsi_stats->rx_errors; 6237 stats->rx_dropped = vsi_stats->rx_dropped; 6238 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6239 stats->rx_length_errors = vsi_stats->rx_length_errors; 6240 } 6241 6242 /** 6243 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6244 * @vsi: VSI having NAPI disabled 6245 */ 6246 static void ice_napi_disable_all(struct ice_vsi *vsi) 6247 { 6248 int q_idx; 6249 6250 if (!vsi->netdev) 6251 return; 6252 6253 ice_for_each_q_vector(vsi, q_idx) { 6254 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6255 6256 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6257 napi_disable(&q_vector->napi); 6258 6259 cancel_work_sync(&q_vector->tx.dim.work); 6260 cancel_work_sync(&q_vector->rx.dim.work); 6261 } 6262 } 6263 6264 /** 6265 * ice_down - Shutdown the connection 6266 * @vsi: The VSI being stopped 6267 * 6268 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6269 */ 6270 int ice_down(struct ice_vsi *vsi) 6271 { 6272 int i, tx_err, rx_err, link_err = 0; 6273 6274 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6275 6276 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6277 if (!ice_is_e810(&vsi->back->hw)) 6278 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6279 netif_carrier_off(vsi->netdev); 6280 netif_tx_disable(vsi->netdev); 6281 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6282 ice_eswitch_stop_all_tx_queues(vsi->back); 6283 } 6284 6285 ice_vsi_dis_irq(vsi); 6286 6287 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6288 if (tx_err) 6289 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6290 vsi->vsi_num, tx_err); 6291 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6292 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6293 if (tx_err) 6294 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6295 vsi->vsi_num, tx_err); 6296 } 6297 6298 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6299 if (rx_err) 6300 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6301 vsi->vsi_num, rx_err); 6302 6303 ice_napi_disable_all(vsi); 6304 6305 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6306 link_err = ice_force_phys_link_state(vsi, false); 6307 if (link_err) 6308 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6309 vsi->vsi_num, link_err); 6310 } 6311 6312 ice_for_each_txq(vsi, i) 6313 ice_clean_tx_ring(vsi->tx_rings[i]); 6314 6315 ice_for_each_rxq(vsi, i) 6316 ice_clean_rx_ring(vsi->rx_rings[i]); 6317 6318 if (tx_err || rx_err || link_err) { 6319 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6320 vsi->vsi_num, vsi->vsw->sw_id); 6321 return -EIO; 6322 } 6323 6324 return 0; 6325 } 6326 6327 /** 6328 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6329 * @vsi: VSI having resources allocated 6330 * 6331 * Return 0 on success, negative on failure 6332 */ 6333 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6334 { 6335 int i, err = 0; 6336 6337 if (!vsi->num_txq) { 6338 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6339 vsi->vsi_num); 6340 return -EINVAL; 6341 } 6342 6343 ice_for_each_txq(vsi, i) { 6344 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6345 6346 if (!ring) 6347 return -EINVAL; 6348 6349 if (vsi->netdev) 6350 ring->netdev = vsi->netdev; 6351 err = ice_setup_tx_ring(ring); 6352 if (err) 6353 break; 6354 } 6355 6356 return err; 6357 } 6358 6359 /** 6360 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6361 * @vsi: VSI having resources allocated 6362 * 6363 * Return 0 on success, negative on failure 6364 */ 6365 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6366 { 6367 int i, err = 0; 6368 6369 if (!vsi->num_rxq) { 6370 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6371 vsi->vsi_num); 6372 return -EINVAL; 6373 } 6374 6375 ice_for_each_rxq(vsi, i) { 6376 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6377 6378 if (!ring) 6379 return -EINVAL; 6380 6381 if (vsi->netdev) 6382 ring->netdev = vsi->netdev; 6383 err = ice_setup_rx_ring(ring); 6384 if (err) 6385 break; 6386 } 6387 6388 return err; 6389 } 6390 6391 /** 6392 * ice_vsi_open_ctrl - open control VSI for use 6393 * @vsi: the VSI to open 6394 * 6395 * Initialization of the Control VSI 6396 * 6397 * Returns 0 on success, negative value on error 6398 */ 6399 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6400 { 6401 char int_name[ICE_INT_NAME_STR_LEN]; 6402 struct ice_pf *pf = vsi->back; 6403 struct device *dev; 6404 int err; 6405 6406 dev = ice_pf_to_dev(pf); 6407 /* allocate descriptors */ 6408 err = ice_vsi_setup_tx_rings(vsi); 6409 if (err) 6410 goto err_setup_tx; 6411 6412 err = ice_vsi_setup_rx_rings(vsi); 6413 if (err) 6414 goto err_setup_rx; 6415 6416 err = ice_vsi_cfg(vsi); 6417 if (err) 6418 goto err_setup_rx; 6419 6420 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6421 dev_driver_string(dev), dev_name(dev)); 6422 err = ice_vsi_req_irq_msix(vsi, int_name); 6423 if (err) 6424 goto err_setup_rx; 6425 6426 ice_vsi_cfg_msix(vsi); 6427 6428 err = ice_vsi_start_all_rx_rings(vsi); 6429 if (err) 6430 goto err_up_complete; 6431 6432 clear_bit(ICE_VSI_DOWN, vsi->state); 6433 ice_vsi_ena_irq(vsi); 6434 6435 return 0; 6436 6437 err_up_complete: 6438 ice_down(vsi); 6439 err_setup_rx: 6440 ice_vsi_free_rx_rings(vsi); 6441 err_setup_tx: 6442 ice_vsi_free_tx_rings(vsi); 6443 6444 return err; 6445 } 6446 6447 /** 6448 * ice_vsi_open - Called when a network interface is made active 6449 * @vsi: the VSI to open 6450 * 6451 * Initialization of the VSI 6452 * 6453 * Returns 0 on success, negative value on error 6454 */ 6455 int ice_vsi_open(struct ice_vsi *vsi) 6456 { 6457 char int_name[ICE_INT_NAME_STR_LEN]; 6458 struct ice_pf *pf = vsi->back; 6459 int err; 6460 6461 /* allocate descriptors */ 6462 err = ice_vsi_setup_tx_rings(vsi); 6463 if (err) 6464 goto err_setup_tx; 6465 6466 err = ice_vsi_setup_rx_rings(vsi); 6467 if (err) 6468 goto err_setup_rx; 6469 6470 err = ice_vsi_cfg(vsi); 6471 if (err) 6472 goto err_setup_rx; 6473 6474 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6475 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6476 err = ice_vsi_req_irq_msix(vsi, int_name); 6477 if (err) 6478 goto err_setup_rx; 6479 6480 if (vsi->type == ICE_VSI_PF) { 6481 /* Notify the stack of the actual queue counts. */ 6482 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6483 if (err) 6484 goto err_set_qs; 6485 6486 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6487 if (err) 6488 goto err_set_qs; 6489 } 6490 6491 err = ice_up_complete(vsi); 6492 if (err) 6493 goto err_up_complete; 6494 6495 return 0; 6496 6497 err_up_complete: 6498 ice_down(vsi); 6499 err_set_qs: 6500 ice_vsi_free_irq(vsi); 6501 err_setup_rx: 6502 ice_vsi_free_rx_rings(vsi); 6503 err_setup_tx: 6504 ice_vsi_free_tx_rings(vsi); 6505 6506 return err; 6507 } 6508 6509 /** 6510 * ice_vsi_release_all - Delete all VSIs 6511 * @pf: PF from which all VSIs are being removed 6512 */ 6513 static void ice_vsi_release_all(struct ice_pf *pf) 6514 { 6515 int err, i; 6516 6517 if (!pf->vsi) 6518 return; 6519 6520 ice_for_each_vsi(pf, i) { 6521 if (!pf->vsi[i]) 6522 continue; 6523 6524 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6525 continue; 6526 6527 err = ice_vsi_release(pf->vsi[i]); 6528 if (err) 6529 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6530 i, err, pf->vsi[i]->vsi_num); 6531 } 6532 } 6533 6534 /** 6535 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6536 * @pf: pointer to the PF instance 6537 * @type: VSI type to rebuild 6538 * 6539 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6540 */ 6541 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6542 { 6543 struct device *dev = ice_pf_to_dev(pf); 6544 int i, err; 6545 6546 ice_for_each_vsi(pf, i) { 6547 struct ice_vsi *vsi = pf->vsi[i]; 6548 6549 if (!vsi || vsi->type != type) 6550 continue; 6551 6552 /* rebuild the VSI */ 6553 err = ice_vsi_rebuild(vsi, true); 6554 if (err) { 6555 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6556 err, vsi->idx, ice_vsi_type_str(type)); 6557 return err; 6558 } 6559 6560 /* replay filters for the VSI */ 6561 err = ice_replay_vsi(&pf->hw, vsi->idx); 6562 if (err) { 6563 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6564 err, vsi->idx, ice_vsi_type_str(type)); 6565 return err; 6566 } 6567 6568 /* Re-map HW VSI number, using VSI handle that has been 6569 * previously validated in ice_replay_vsi() call above 6570 */ 6571 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6572 6573 /* enable the VSI */ 6574 err = ice_ena_vsi(vsi, false); 6575 if (err) { 6576 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6577 err, vsi->idx, ice_vsi_type_str(type)); 6578 return err; 6579 } 6580 6581 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6582 ice_vsi_type_str(type)); 6583 } 6584 6585 return 0; 6586 } 6587 6588 /** 6589 * ice_update_pf_netdev_link - Update PF netdev link status 6590 * @pf: pointer to the PF instance 6591 */ 6592 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6593 { 6594 bool link_up; 6595 int i; 6596 6597 ice_for_each_vsi(pf, i) { 6598 struct ice_vsi *vsi = pf->vsi[i]; 6599 6600 if (!vsi || vsi->type != ICE_VSI_PF) 6601 return; 6602 6603 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6604 if (link_up) { 6605 netif_carrier_on(pf->vsi[i]->netdev); 6606 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6607 } else { 6608 netif_carrier_off(pf->vsi[i]->netdev); 6609 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6610 } 6611 } 6612 } 6613 6614 /** 6615 * ice_rebuild - rebuild after reset 6616 * @pf: PF to rebuild 6617 * @reset_type: type of reset 6618 * 6619 * Do not rebuild VF VSI in this flow because that is already handled via 6620 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6621 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6622 * to reset/rebuild all the VF VSI twice. 6623 */ 6624 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6625 { 6626 struct device *dev = ice_pf_to_dev(pf); 6627 struct ice_hw *hw = &pf->hw; 6628 int err; 6629 6630 if (test_bit(ICE_DOWN, pf->state)) 6631 goto clear_recovery; 6632 6633 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6634 6635 if (reset_type == ICE_RESET_EMPR) { 6636 /* If an EMP reset has occurred, any previously pending flash 6637 * update will have completed. We no longer know whether or 6638 * not the NVM update EMP reset is restricted. 6639 */ 6640 pf->fw_emp_reset_disabled = false; 6641 } 6642 6643 err = ice_init_all_ctrlq(hw); 6644 if (err) { 6645 dev_err(dev, "control queues init failed %d\n", err); 6646 goto err_init_ctrlq; 6647 } 6648 6649 /* if DDP was previously loaded successfully */ 6650 if (!ice_is_safe_mode(pf)) { 6651 /* reload the SW DB of filter tables */ 6652 if (reset_type == ICE_RESET_PFR) 6653 ice_fill_blk_tbls(hw); 6654 else 6655 /* Reload DDP Package after CORER/GLOBR reset */ 6656 ice_load_pkg(NULL, pf); 6657 } 6658 6659 err = ice_clear_pf_cfg(hw); 6660 if (err) { 6661 dev_err(dev, "clear PF configuration failed %d\n", err); 6662 goto err_init_ctrlq; 6663 } 6664 6665 if (pf->first_sw->dflt_vsi_ena) 6666 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6667 /* clear the default VSI configuration if it exists */ 6668 pf->first_sw->dflt_vsi = NULL; 6669 pf->first_sw->dflt_vsi_ena = false; 6670 6671 ice_clear_pxe_mode(hw); 6672 6673 err = ice_init_nvm(hw); 6674 if (err) { 6675 dev_err(dev, "ice_init_nvm failed %d\n", err); 6676 goto err_init_ctrlq; 6677 } 6678 6679 err = ice_get_caps(hw); 6680 if (err) { 6681 dev_err(dev, "ice_get_caps failed %d\n", err); 6682 goto err_init_ctrlq; 6683 } 6684 6685 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6686 if (err) { 6687 dev_err(dev, "set_mac_cfg failed %d\n", err); 6688 goto err_init_ctrlq; 6689 } 6690 6691 err = ice_sched_init_port(hw->port_info); 6692 if (err) 6693 goto err_sched_init_port; 6694 6695 /* start misc vector */ 6696 err = ice_req_irq_msix_misc(pf); 6697 if (err) { 6698 dev_err(dev, "misc vector setup failed: %d\n", err); 6699 goto err_sched_init_port; 6700 } 6701 6702 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6703 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6704 if (!rd32(hw, PFQF_FD_SIZE)) { 6705 u16 unused, guar, b_effort; 6706 6707 guar = hw->func_caps.fd_fltr_guar; 6708 b_effort = hw->func_caps.fd_fltr_best_effort; 6709 6710 /* force guaranteed filter pool for PF */ 6711 ice_alloc_fd_guar_item(hw, &unused, guar); 6712 /* force shared filter pool for PF */ 6713 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6714 } 6715 } 6716 6717 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6718 ice_dcb_rebuild(pf); 6719 6720 /* If the PF previously had enabled PTP, PTP init needs to happen before 6721 * the VSI rebuild. If not, this causes the PTP link status events to 6722 * fail. 6723 */ 6724 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6725 ice_ptp_reset(pf); 6726 6727 /* rebuild PF VSI */ 6728 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6729 if (err) { 6730 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6731 goto err_vsi_rebuild; 6732 } 6733 6734 /* configure PTP timestamping after VSI rebuild */ 6735 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6736 ice_ptp_cfg_timestamp(pf, false); 6737 6738 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6739 if (err) { 6740 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6741 goto err_vsi_rebuild; 6742 } 6743 6744 if (reset_type == ICE_RESET_PFR) { 6745 err = ice_rebuild_channels(pf); 6746 if (err) { 6747 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6748 err); 6749 goto err_vsi_rebuild; 6750 } 6751 } 6752 6753 /* If Flow Director is active */ 6754 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6755 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6756 if (err) { 6757 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6758 goto err_vsi_rebuild; 6759 } 6760 6761 /* replay HW Flow Director recipes */ 6762 if (hw->fdir_prof) 6763 ice_fdir_replay_flows(hw); 6764 6765 /* replay Flow Director filters */ 6766 ice_fdir_replay_fltrs(pf); 6767 6768 ice_rebuild_arfs(pf); 6769 } 6770 6771 ice_update_pf_netdev_link(pf); 6772 6773 /* tell the firmware we are up */ 6774 err = ice_send_version(pf); 6775 if (err) { 6776 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6777 err); 6778 goto err_vsi_rebuild; 6779 } 6780 6781 ice_replay_post(hw); 6782 6783 /* if we get here, reset flow is successful */ 6784 clear_bit(ICE_RESET_FAILED, pf->state); 6785 6786 ice_plug_aux_dev(pf); 6787 return; 6788 6789 err_vsi_rebuild: 6790 err_sched_init_port: 6791 ice_sched_cleanup_all(hw); 6792 err_init_ctrlq: 6793 ice_shutdown_all_ctrlq(hw); 6794 set_bit(ICE_RESET_FAILED, pf->state); 6795 clear_recovery: 6796 /* set this bit in PF state to control service task scheduling */ 6797 set_bit(ICE_NEEDS_RESTART, pf->state); 6798 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6799 } 6800 6801 /** 6802 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6803 * @vsi: Pointer to VSI structure 6804 */ 6805 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6806 { 6807 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6808 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6809 else 6810 return ICE_RXBUF_3072; 6811 } 6812 6813 /** 6814 * ice_change_mtu - NDO callback to change the MTU 6815 * @netdev: network interface device structure 6816 * @new_mtu: new value for maximum frame size 6817 * 6818 * Returns 0 on success, negative on failure 6819 */ 6820 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6821 { 6822 struct ice_netdev_priv *np = netdev_priv(netdev); 6823 struct ice_vsi *vsi = np->vsi; 6824 struct ice_pf *pf = vsi->back; 6825 struct iidc_event *event; 6826 u8 count = 0; 6827 int err = 0; 6828 6829 if (new_mtu == (int)netdev->mtu) { 6830 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6831 return 0; 6832 } 6833 6834 if (ice_is_xdp_ena_vsi(vsi)) { 6835 int frame_size = ice_max_xdp_frame_size(vsi); 6836 6837 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6838 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6839 frame_size - ICE_ETH_PKT_HDR_PAD); 6840 return -EINVAL; 6841 } 6842 } 6843 6844 /* if a reset is in progress, wait for some time for it to complete */ 6845 do { 6846 if (ice_is_reset_in_progress(pf->state)) { 6847 count++; 6848 usleep_range(1000, 2000); 6849 } else { 6850 break; 6851 } 6852 6853 } while (count < 100); 6854 6855 if (count == 100) { 6856 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6857 return -EBUSY; 6858 } 6859 6860 event = kzalloc(sizeof(*event), GFP_KERNEL); 6861 if (!event) 6862 return -ENOMEM; 6863 6864 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6865 ice_send_event_to_aux(pf, event); 6866 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6867 6868 netdev->mtu = (unsigned int)new_mtu; 6869 6870 /* if VSI is up, bring it down and then back up */ 6871 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6872 err = ice_down(vsi); 6873 if (err) { 6874 netdev_err(netdev, "change MTU if_down err %d\n", err); 6875 goto event_after; 6876 } 6877 6878 err = ice_up(vsi); 6879 if (err) { 6880 netdev_err(netdev, "change MTU if_up err %d\n", err); 6881 goto event_after; 6882 } 6883 } 6884 6885 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6886 event_after: 6887 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6888 ice_send_event_to_aux(pf, event); 6889 kfree(event); 6890 6891 return err; 6892 } 6893 6894 /** 6895 * ice_eth_ioctl - Access the hwtstamp interface 6896 * @netdev: network interface device structure 6897 * @ifr: interface request data 6898 * @cmd: ioctl command 6899 */ 6900 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6901 { 6902 struct ice_netdev_priv *np = netdev_priv(netdev); 6903 struct ice_pf *pf = np->vsi->back; 6904 6905 switch (cmd) { 6906 case SIOCGHWTSTAMP: 6907 return ice_ptp_get_ts_config(pf, ifr); 6908 case SIOCSHWTSTAMP: 6909 return ice_ptp_set_ts_config(pf, ifr); 6910 default: 6911 return -EOPNOTSUPP; 6912 } 6913 } 6914 6915 /** 6916 * ice_aq_str - convert AQ err code to a string 6917 * @aq_err: the AQ error code to convert 6918 */ 6919 const char *ice_aq_str(enum ice_aq_err aq_err) 6920 { 6921 switch (aq_err) { 6922 case ICE_AQ_RC_OK: 6923 return "OK"; 6924 case ICE_AQ_RC_EPERM: 6925 return "ICE_AQ_RC_EPERM"; 6926 case ICE_AQ_RC_ENOENT: 6927 return "ICE_AQ_RC_ENOENT"; 6928 case ICE_AQ_RC_ENOMEM: 6929 return "ICE_AQ_RC_ENOMEM"; 6930 case ICE_AQ_RC_EBUSY: 6931 return "ICE_AQ_RC_EBUSY"; 6932 case ICE_AQ_RC_EEXIST: 6933 return "ICE_AQ_RC_EEXIST"; 6934 case ICE_AQ_RC_EINVAL: 6935 return "ICE_AQ_RC_EINVAL"; 6936 case ICE_AQ_RC_ENOSPC: 6937 return "ICE_AQ_RC_ENOSPC"; 6938 case ICE_AQ_RC_ENOSYS: 6939 return "ICE_AQ_RC_ENOSYS"; 6940 case ICE_AQ_RC_EMODE: 6941 return "ICE_AQ_RC_EMODE"; 6942 case ICE_AQ_RC_ENOSEC: 6943 return "ICE_AQ_RC_ENOSEC"; 6944 case ICE_AQ_RC_EBADSIG: 6945 return "ICE_AQ_RC_EBADSIG"; 6946 case ICE_AQ_RC_ESVN: 6947 return "ICE_AQ_RC_ESVN"; 6948 case ICE_AQ_RC_EBADMAN: 6949 return "ICE_AQ_RC_EBADMAN"; 6950 case ICE_AQ_RC_EBADBUF: 6951 return "ICE_AQ_RC_EBADBUF"; 6952 } 6953 6954 return "ICE_AQ_RC_UNKNOWN"; 6955 } 6956 6957 /** 6958 * ice_set_rss_lut - Set RSS LUT 6959 * @vsi: Pointer to VSI structure 6960 * @lut: Lookup table 6961 * @lut_size: Lookup table size 6962 * 6963 * Returns 0 on success, negative on failure 6964 */ 6965 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6966 { 6967 struct ice_aq_get_set_rss_lut_params params = {}; 6968 struct ice_hw *hw = &vsi->back->hw; 6969 int status; 6970 6971 if (!lut) 6972 return -EINVAL; 6973 6974 params.vsi_handle = vsi->idx; 6975 params.lut_size = lut_size; 6976 params.lut_type = vsi->rss_lut_type; 6977 params.lut = lut; 6978 6979 status = ice_aq_set_rss_lut(hw, ¶ms); 6980 if (status) 6981 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 6982 status, ice_aq_str(hw->adminq.sq_last_status)); 6983 6984 return status; 6985 } 6986 6987 /** 6988 * ice_set_rss_key - Set RSS key 6989 * @vsi: Pointer to the VSI structure 6990 * @seed: RSS hash seed 6991 * 6992 * Returns 0 on success, negative on failure 6993 */ 6994 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6995 { 6996 struct ice_hw *hw = &vsi->back->hw; 6997 int status; 6998 6999 if (!seed) 7000 return -EINVAL; 7001 7002 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7003 if (status) 7004 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7005 status, ice_aq_str(hw->adminq.sq_last_status)); 7006 7007 return status; 7008 } 7009 7010 /** 7011 * ice_get_rss_lut - Get RSS LUT 7012 * @vsi: Pointer to VSI structure 7013 * @lut: Buffer to store the lookup table entries 7014 * @lut_size: Size of buffer to store the lookup table entries 7015 * 7016 * Returns 0 on success, negative on failure 7017 */ 7018 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7019 { 7020 struct ice_aq_get_set_rss_lut_params params = {}; 7021 struct ice_hw *hw = &vsi->back->hw; 7022 int status; 7023 7024 if (!lut) 7025 return -EINVAL; 7026 7027 params.vsi_handle = vsi->idx; 7028 params.lut_size = lut_size; 7029 params.lut_type = vsi->rss_lut_type; 7030 params.lut = lut; 7031 7032 status = ice_aq_get_rss_lut(hw, ¶ms); 7033 if (status) 7034 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7035 status, ice_aq_str(hw->adminq.sq_last_status)); 7036 7037 return status; 7038 } 7039 7040 /** 7041 * ice_get_rss_key - Get RSS key 7042 * @vsi: Pointer to VSI structure 7043 * @seed: Buffer to store the key in 7044 * 7045 * Returns 0 on success, negative on failure 7046 */ 7047 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7048 { 7049 struct ice_hw *hw = &vsi->back->hw; 7050 int status; 7051 7052 if (!seed) 7053 return -EINVAL; 7054 7055 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7056 if (status) 7057 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7058 status, ice_aq_str(hw->adminq.sq_last_status)); 7059 7060 return status; 7061 } 7062 7063 /** 7064 * ice_bridge_getlink - Get the hardware bridge mode 7065 * @skb: skb buff 7066 * @pid: process ID 7067 * @seq: RTNL message seq 7068 * @dev: the netdev being configured 7069 * @filter_mask: filter mask passed in 7070 * @nlflags: netlink flags passed in 7071 * 7072 * Return the bridge mode (VEB/VEPA) 7073 */ 7074 static int 7075 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7076 struct net_device *dev, u32 filter_mask, int nlflags) 7077 { 7078 struct ice_netdev_priv *np = netdev_priv(dev); 7079 struct ice_vsi *vsi = np->vsi; 7080 struct ice_pf *pf = vsi->back; 7081 u16 bmode; 7082 7083 bmode = pf->first_sw->bridge_mode; 7084 7085 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7086 filter_mask, NULL); 7087 } 7088 7089 /** 7090 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7091 * @vsi: Pointer to VSI structure 7092 * @bmode: Hardware bridge mode (VEB/VEPA) 7093 * 7094 * Returns 0 on success, negative on failure 7095 */ 7096 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7097 { 7098 struct ice_aqc_vsi_props *vsi_props; 7099 struct ice_hw *hw = &vsi->back->hw; 7100 struct ice_vsi_ctx *ctxt; 7101 int ret; 7102 7103 vsi_props = &vsi->info; 7104 7105 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7106 if (!ctxt) 7107 return -ENOMEM; 7108 7109 ctxt->info = vsi->info; 7110 7111 if (bmode == BRIDGE_MODE_VEB) 7112 /* change from VEPA to VEB mode */ 7113 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7114 else 7115 /* change from VEB to VEPA mode */ 7116 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7117 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7118 7119 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7120 if (ret) { 7121 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7122 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7123 goto out; 7124 } 7125 /* Update sw flags for book keeping */ 7126 vsi_props->sw_flags = ctxt->info.sw_flags; 7127 7128 out: 7129 kfree(ctxt); 7130 return ret; 7131 } 7132 7133 /** 7134 * ice_bridge_setlink - Set the hardware bridge mode 7135 * @dev: the netdev being configured 7136 * @nlh: RTNL message 7137 * @flags: bridge setlink flags 7138 * @extack: netlink extended ack 7139 * 7140 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7141 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7142 * not already set for all VSIs connected to this switch. And also update the 7143 * unicast switch filter rules for the corresponding switch of the netdev. 7144 */ 7145 static int 7146 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7147 u16 __always_unused flags, 7148 struct netlink_ext_ack __always_unused *extack) 7149 { 7150 struct ice_netdev_priv *np = netdev_priv(dev); 7151 struct ice_pf *pf = np->vsi->back; 7152 struct nlattr *attr, *br_spec; 7153 struct ice_hw *hw = &pf->hw; 7154 struct ice_sw *pf_sw; 7155 int rem, v, err = 0; 7156 7157 pf_sw = pf->first_sw; 7158 /* find the attribute in the netlink message */ 7159 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7160 7161 nla_for_each_nested(attr, br_spec, rem) { 7162 __u16 mode; 7163 7164 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7165 continue; 7166 mode = nla_get_u16(attr); 7167 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7168 return -EINVAL; 7169 /* Continue if bridge mode is not being flipped */ 7170 if (mode == pf_sw->bridge_mode) 7171 continue; 7172 /* Iterates through the PF VSI list and update the loopback 7173 * mode of the VSI 7174 */ 7175 ice_for_each_vsi(pf, v) { 7176 if (!pf->vsi[v]) 7177 continue; 7178 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7179 if (err) 7180 return err; 7181 } 7182 7183 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7184 /* Update the unicast switch filter rules for the corresponding 7185 * switch of the netdev 7186 */ 7187 err = ice_update_sw_rule_bridge_mode(hw); 7188 if (err) { 7189 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7190 mode, err, 7191 ice_aq_str(hw->adminq.sq_last_status)); 7192 /* revert hw->evb_veb */ 7193 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7194 return err; 7195 } 7196 7197 pf_sw->bridge_mode = mode; 7198 } 7199 7200 return 0; 7201 } 7202 7203 /** 7204 * ice_tx_timeout - Respond to a Tx Hang 7205 * @netdev: network interface device structure 7206 * @txqueue: Tx queue 7207 */ 7208 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7209 { 7210 struct ice_netdev_priv *np = netdev_priv(netdev); 7211 struct ice_tx_ring *tx_ring = NULL; 7212 struct ice_vsi *vsi = np->vsi; 7213 struct ice_pf *pf = vsi->back; 7214 u32 i; 7215 7216 pf->tx_timeout_count++; 7217 7218 /* Check if PFC is enabled for the TC to which the queue belongs 7219 * to. If yes then Tx timeout is not caused by a hung queue, no 7220 * need to reset and rebuild 7221 */ 7222 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7223 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7224 txqueue); 7225 return; 7226 } 7227 7228 /* now that we have an index, find the tx_ring struct */ 7229 ice_for_each_txq(vsi, i) 7230 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7231 if (txqueue == vsi->tx_rings[i]->q_index) { 7232 tx_ring = vsi->tx_rings[i]; 7233 break; 7234 } 7235 7236 /* Reset recovery level if enough time has elapsed after last timeout. 7237 * Also ensure no new reset action happens before next timeout period. 7238 */ 7239 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7240 pf->tx_timeout_recovery_level = 1; 7241 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7242 netdev->watchdog_timeo))) 7243 return; 7244 7245 if (tx_ring) { 7246 struct ice_hw *hw = &pf->hw; 7247 u32 head, val = 0; 7248 7249 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7250 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7251 /* Read interrupt register */ 7252 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7253 7254 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7255 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7256 head, tx_ring->next_to_use, val); 7257 } 7258 7259 pf->tx_timeout_last_recovery = jiffies; 7260 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7261 pf->tx_timeout_recovery_level, txqueue); 7262 7263 switch (pf->tx_timeout_recovery_level) { 7264 case 1: 7265 set_bit(ICE_PFR_REQ, pf->state); 7266 break; 7267 case 2: 7268 set_bit(ICE_CORER_REQ, pf->state); 7269 break; 7270 case 3: 7271 set_bit(ICE_GLOBR_REQ, pf->state); 7272 break; 7273 default: 7274 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7275 set_bit(ICE_DOWN, pf->state); 7276 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7277 set_bit(ICE_SERVICE_DIS, pf->state); 7278 break; 7279 } 7280 7281 ice_service_task_schedule(pf); 7282 pf->tx_timeout_recovery_level++; 7283 } 7284 7285 /** 7286 * ice_setup_tc_cls_flower - flower classifier offloads 7287 * @np: net device to configure 7288 * @filter_dev: device on which filter is added 7289 * @cls_flower: offload data 7290 */ 7291 static int 7292 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7293 struct net_device *filter_dev, 7294 struct flow_cls_offload *cls_flower) 7295 { 7296 struct ice_vsi *vsi = np->vsi; 7297 7298 if (cls_flower->common.chain_index) 7299 return -EOPNOTSUPP; 7300 7301 switch (cls_flower->command) { 7302 case FLOW_CLS_REPLACE: 7303 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7304 case FLOW_CLS_DESTROY: 7305 return ice_del_cls_flower(vsi, cls_flower); 7306 default: 7307 return -EINVAL; 7308 } 7309 } 7310 7311 /** 7312 * ice_setup_tc_block_cb - callback handler registered for TC block 7313 * @type: TC SETUP type 7314 * @type_data: TC flower offload data that contains user input 7315 * @cb_priv: netdev private data 7316 */ 7317 static int 7318 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7319 { 7320 struct ice_netdev_priv *np = cb_priv; 7321 7322 switch (type) { 7323 case TC_SETUP_CLSFLOWER: 7324 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7325 type_data); 7326 default: 7327 return -EOPNOTSUPP; 7328 } 7329 } 7330 7331 /** 7332 * ice_validate_mqprio_qopt - Validate TCF input parameters 7333 * @vsi: Pointer to VSI 7334 * @mqprio_qopt: input parameters for mqprio queue configuration 7335 * 7336 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7337 * needed), and make sure user doesn't specify qcount and BW rate limit 7338 * for TCs, which are more than "num_tc" 7339 */ 7340 static int 7341 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7342 struct tc_mqprio_qopt_offload *mqprio_qopt) 7343 { 7344 u64 sum_max_rate = 0, sum_min_rate = 0; 7345 int non_power_of_2_qcount = 0; 7346 struct ice_pf *pf = vsi->back; 7347 int max_rss_q_cnt = 0; 7348 struct device *dev; 7349 int i, speed; 7350 u8 num_tc; 7351 7352 if (vsi->type != ICE_VSI_PF) 7353 return -EINVAL; 7354 7355 if (mqprio_qopt->qopt.offset[0] != 0 || 7356 mqprio_qopt->qopt.num_tc < 1 || 7357 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7358 return -EINVAL; 7359 7360 dev = ice_pf_to_dev(pf); 7361 vsi->ch_rss_size = 0; 7362 num_tc = mqprio_qopt->qopt.num_tc; 7363 7364 for (i = 0; num_tc; i++) { 7365 int qcount = mqprio_qopt->qopt.count[i]; 7366 u64 max_rate, min_rate, rem; 7367 7368 if (!qcount) 7369 return -EINVAL; 7370 7371 if (is_power_of_2(qcount)) { 7372 if (non_power_of_2_qcount && 7373 qcount > non_power_of_2_qcount) { 7374 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7375 qcount, non_power_of_2_qcount); 7376 return -EINVAL; 7377 } 7378 if (qcount > max_rss_q_cnt) 7379 max_rss_q_cnt = qcount; 7380 } else { 7381 if (non_power_of_2_qcount && 7382 qcount != non_power_of_2_qcount) { 7383 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7384 qcount, non_power_of_2_qcount); 7385 return -EINVAL; 7386 } 7387 if (qcount < max_rss_q_cnt) { 7388 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7389 qcount, max_rss_q_cnt); 7390 return -EINVAL; 7391 } 7392 max_rss_q_cnt = qcount; 7393 non_power_of_2_qcount = qcount; 7394 } 7395 7396 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7397 * converts the bandwidth rate limit into Bytes/s when 7398 * passing it down to the driver. So convert input bandwidth 7399 * from Bytes/s to Kbps 7400 */ 7401 max_rate = mqprio_qopt->max_rate[i]; 7402 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7403 sum_max_rate += max_rate; 7404 7405 /* min_rate is minimum guaranteed rate and it can't be zero */ 7406 min_rate = mqprio_qopt->min_rate[i]; 7407 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7408 sum_min_rate += min_rate; 7409 7410 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7411 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7412 min_rate, ICE_MIN_BW_LIMIT); 7413 return -EINVAL; 7414 } 7415 7416 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7417 if (rem) { 7418 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7419 i, ICE_MIN_BW_LIMIT); 7420 return -EINVAL; 7421 } 7422 7423 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7424 if (rem) { 7425 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7426 i, ICE_MIN_BW_LIMIT); 7427 return -EINVAL; 7428 } 7429 7430 /* min_rate can't be more than max_rate, except when max_rate 7431 * is zero (implies max_rate sought is max line rate). In such 7432 * a case min_rate can be more than max. 7433 */ 7434 if (max_rate && min_rate > max_rate) { 7435 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7436 min_rate, max_rate); 7437 return -EINVAL; 7438 } 7439 7440 if (i >= mqprio_qopt->qopt.num_tc - 1) 7441 break; 7442 if (mqprio_qopt->qopt.offset[i + 1] != 7443 (mqprio_qopt->qopt.offset[i] + qcount)) 7444 return -EINVAL; 7445 } 7446 if (vsi->num_rxq < 7447 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7448 return -EINVAL; 7449 if (vsi->num_txq < 7450 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7451 return -EINVAL; 7452 7453 speed = ice_get_link_speed_kbps(vsi); 7454 if (sum_max_rate && sum_max_rate > (u64)speed) { 7455 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7456 sum_max_rate, speed); 7457 return -EINVAL; 7458 } 7459 if (sum_min_rate && sum_min_rate > (u64)speed) { 7460 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7461 sum_min_rate, speed); 7462 return -EINVAL; 7463 } 7464 7465 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7466 vsi->ch_rss_size = max_rss_q_cnt; 7467 7468 return 0; 7469 } 7470 7471 /** 7472 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7473 * @pf: ptr to PF device 7474 * @vsi: ptr to VSI 7475 */ 7476 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7477 { 7478 struct device *dev = ice_pf_to_dev(pf); 7479 bool added = false; 7480 struct ice_hw *hw; 7481 int flow; 7482 7483 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7484 return -EINVAL; 7485 7486 hw = &pf->hw; 7487 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7488 struct ice_fd_hw_prof *prof; 7489 int tun, status; 7490 u64 entry_h; 7491 7492 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7493 hw->fdir_prof[flow]->cnt)) 7494 continue; 7495 7496 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7497 enum ice_flow_priority prio; 7498 u64 prof_id; 7499 7500 /* add this VSI to FDir profile for this flow */ 7501 prio = ICE_FLOW_PRIO_NORMAL; 7502 prof = hw->fdir_prof[flow]; 7503 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7504 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7505 prof->vsi_h[0], vsi->idx, 7506 prio, prof->fdir_seg[tun], 7507 &entry_h); 7508 if (status) { 7509 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7510 vsi->idx, flow); 7511 continue; 7512 } 7513 7514 prof->entry_h[prof->cnt][tun] = entry_h; 7515 } 7516 7517 /* store VSI for filter replay and delete */ 7518 prof->vsi_h[prof->cnt] = vsi->idx; 7519 prof->cnt++; 7520 7521 added = true; 7522 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7523 flow); 7524 } 7525 7526 if (!added) 7527 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7528 7529 return 0; 7530 } 7531 7532 /** 7533 * ice_add_channel - add a channel by adding VSI 7534 * @pf: ptr to PF device 7535 * @sw_id: underlying HW switching element ID 7536 * @ch: ptr to channel structure 7537 * 7538 * Add a channel (VSI) using add_vsi and queue_map 7539 */ 7540 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7541 { 7542 struct device *dev = ice_pf_to_dev(pf); 7543 struct ice_vsi *vsi; 7544 7545 if (ch->type != ICE_VSI_CHNL) { 7546 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7547 return -EINVAL; 7548 } 7549 7550 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7551 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7552 dev_err(dev, "create chnl VSI failure\n"); 7553 return -EINVAL; 7554 } 7555 7556 ice_add_vsi_to_fdir(pf, vsi); 7557 7558 ch->sw_id = sw_id; 7559 ch->vsi_num = vsi->vsi_num; 7560 ch->info.mapping_flags = vsi->info.mapping_flags; 7561 ch->ch_vsi = vsi; 7562 /* set the back pointer of channel for newly created VSI */ 7563 vsi->ch = ch; 7564 7565 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7566 sizeof(vsi->info.q_mapping)); 7567 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7568 sizeof(vsi->info.tc_mapping)); 7569 7570 return 0; 7571 } 7572 7573 /** 7574 * ice_chnl_cfg_res 7575 * @vsi: the VSI being setup 7576 * @ch: ptr to channel structure 7577 * 7578 * Configure channel specific resources such as rings, vector. 7579 */ 7580 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7581 { 7582 int i; 7583 7584 for (i = 0; i < ch->num_txq; i++) { 7585 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7586 struct ice_ring_container *rc; 7587 struct ice_tx_ring *tx_ring; 7588 struct ice_rx_ring *rx_ring; 7589 7590 tx_ring = vsi->tx_rings[ch->base_q + i]; 7591 rx_ring = vsi->rx_rings[ch->base_q + i]; 7592 if (!tx_ring || !rx_ring) 7593 continue; 7594 7595 /* setup ring being channel enabled */ 7596 tx_ring->ch = ch; 7597 rx_ring->ch = ch; 7598 7599 /* following code block sets up vector specific attributes */ 7600 tx_q_vector = tx_ring->q_vector; 7601 rx_q_vector = rx_ring->q_vector; 7602 if (!tx_q_vector && !rx_q_vector) 7603 continue; 7604 7605 if (tx_q_vector) { 7606 tx_q_vector->ch = ch; 7607 /* setup Tx and Rx ITR setting if DIM is off */ 7608 rc = &tx_q_vector->tx; 7609 if (!ITR_IS_DYNAMIC(rc)) 7610 ice_write_itr(rc, rc->itr_setting); 7611 } 7612 if (rx_q_vector) { 7613 rx_q_vector->ch = ch; 7614 /* setup Tx and Rx ITR setting if DIM is off */ 7615 rc = &rx_q_vector->rx; 7616 if (!ITR_IS_DYNAMIC(rc)) 7617 ice_write_itr(rc, rc->itr_setting); 7618 } 7619 } 7620 7621 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7622 * GLINT_ITR register would have written to perform in-context 7623 * update, hence perform flush 7624 */ 7625 if (ch->num_txq || ch->num_rxq) 7626 ice_flush(&vsi->back->hw); 7627 } 7628 7629 /** 7630 * ice_cfg_chnl_all_res - configure channel resources 7631 * @vsi: pte to main_vsi 7632 * @ch: ptr to channel structure 7633 * 7634 * This function configures channel specific resources such as flow-director 7635 * counter index, and other resources such as queues, vectors, ITR settings 7636 */ 7637 static void 7638 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7639 { 7640 /* configure channel (aka ADQ) resources such as queues, vectors, 7641 * ITR settings for channel specific vectors and anything else 7642 */ 7643 ice_chnl_cfg_res(vsi, ch); 7644 } 7645 7646 /** 7647 * ice_setup_hw_channel - setup new channel 7648 * @pf: ptr to PF device 7649 * @vsi: the VSI being setup 7650 * @ch: ptr to channel structure 7651 * @sw_id: underlying HW switching element ID 7652 * @type: type of channel to be created (VMDq2/VF) 7653 * 7654 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7655 * and configures Tx rings accordingly 7656 */ 7657 static int 7658 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7659 struct ice_channel *ch, u16 sw_id, u8 type) 7660 { 7661 struct device *dev = ice_pf_to_dev(pf); 7662 int ret; 7663 7664 ch->base_q = vsi->next_base_q; 7665 ch->type = type; 7666 7667 ret = ice_add_channel(pf, sw_id, ch); 7668 if (ret) { 7669 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7670 return ret; 7671 } 7672 7673 /* configure/setup ADQ specific resources */ 7674 ice_cfg_chnl_all_res(vsi, ch); 7675 7676 /* make sure to update the next_base_q so that subsequent channel's 7677 * (aka ADQ) VSI queue map is correct 7678 */ 7679 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7680 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7681 ch->num_rxq); 7682 7683 return 0; 7684 } 7685 7686 /** 7687 * ice_setup_channel - setup new channel using uplink element 7688 * @pf: ptr to PF device 7689 * @vsi: the VSI being setup 7690 * @ch: ptr to channel structure 7691 * 7692 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7693 * and uplink switching element 7694 */ 7695 static bool 7696 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7697 struct ice_channel *ch) 7698 { 7699 struct device *dev = ice_pf_to_dev(pf); 7700 u16 sw_id; 7701 int ret; 7702 7703 if (vsi->type != ICE_VSI_PF) { 7704 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7705 return false; 7706 } 7707 7708 sw_id = pf->first_sw->sw_id; 7709 7710 /* create channel (VSI) */ 7711 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7712 if (ret) { 7713 dev_err(dev, "failed to setup hw_channel\n"); 7714 return false; 7715 } 7716 dev_dbg(dev, "successfully created channel()\n"); 7717 7718 return ch->ch_vsi ? true : false; 7719 } 7720 7721 /** 7722 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7723 * @vsi: VSI to be configured 7724 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7725 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7726 */ 7727 static int 7728 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7729 { 7730 int err; 7731 7732 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7733 if (err) 7734 return err; 7735 7736 return ice_set_max_bw_limit(vsi, max_tx_rate); 7737 } 7738 7739 /** 7740 * ice_create_q_channel - function to create channel 7741 * @vsi: VSI to be configured 7742 * @ch: ptr to channel (it contains channel specific params) 7743 * 7744 * This function creates channel (VSI) using num_queues specified by user, 7745 * reconfigs RSS if needed. 7746 */ 7747 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7748 { 7749 struct ice_pf *pf = vsi->back; 7750 struct device *dev; 7751 7752 if (!ch) 7753 return -EINVAL; 7754 7755 dev = ice_pf_to_dev(pf); 7756 if (!ch->num_txq || !ch->num_rxq) { 7757 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7758 return -EINVAL; 7759 } 7760 7761 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7762 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7763 vsi->cnt_q_avail, ch->num_txq); 7764 return -EINVAL; 7765 } 7766 7767 if (!ice_setup_channel(pf, vsi, ch)) { 7768 dev_info(dev, "Failed to setup channel\n"); 7769 return -EINVAL; 7770 } 7771 /* configure BW rate limit */ 7772 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7773 int ret; 7774 7775 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7776 ch->min_tx_rate); 7777 if (ret) 7778 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7779 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7780 else 7781 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7782 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7783 } 7784 7785 vsi->cnt_q_avail -= ch->num_txq; 7786 7787 return 0; 7788 } 7789 7790 /** 7791 * ice_rem_all_chnl_fltrs - removes all channel filters 7792 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7793 * 7794 * Remove all advanced switch filters only if they are channel specific 7795 * tc-flower based filter 7796 */ 7797 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7798 { 7799 struct ice_tc_flower_fltr *fltr; 7800 struct hlist_node *node; 7801 7802 /* to remove all channel filters, iterate an ordered list of filters */ 7803 hlist_for_each_entry_safe(fltr, node, 7804 &pf->tc_flower_fltr_list, 7805 tc_flower_node) { 7806 struct ice_rule_query_data rule; 7807 int status; 7808 7809 /* for now process only channel specific filters */ 7810 if (!ice_is_chnl_fltr(fltr)) 7811 continue; 7812 7813 rule.rid = fltr->rid; 7814 rule.rule_id = fltr->rule_id; 7815 rule.vsi_handle = fltr->dest_id; 7816 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 7817 if (status) { 7818 if (status == -ENOENT) 7819 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 7820 rule.rule_id); 7821 else 7822 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 7823 status); 7824 } else if (fltr->dest_vsi) { 7825 /* update advanced switch filter count */ 7826 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 7827 u32 flags = fltr->flags; 7828 7829 fltr->dest_vsi->num_chnl_fltr--; 7830 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 7831 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 7832 pf->num_dmac_chnl_fltrs--; 7833 } 7834 } 7835 7836 hlist_del(&fltr->tc_flower_node); 7837 kfree(fltr); 7838 } 7839 } 7840 7841 /** 7842 * ice_remove_q_channels - Remove queue channels for the TCs 7843 * @vsi: VSI to be configured 7844 * @rem_fltr: delete advanced switch filter or not 7845 * 7846 * Remove queue channels for the TCs 7847 */ 7848 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 7849 { 7850 struct ice_channel *ch, *ch_tmp; 7851 struct ice_pf *pf = vsi->back; 7852 int i; 7853 7854 /* remove all tc-flower based filter if they are channel filters only */ 7855 if (rem_fltr) 7856 ice_rem_all_chnl_fltrs(pf); 7857 7858 /* remove ntuple filters since queue configuration is being changed */ 7859 if (vsi->netdev->features & NETIF_F_NTUPLE) { 7860 struct ice_hw *hw = &pf->hw; 7861 7862 mutex_lock(&hw->fdir_fltr_lock); 7863 ice_fdir_del_all_fltrs(vsi); 7864 mutex_unlock(&hw->fdir_fltr_lock); 7865 } 7866 7867 /* perform cleanup for channels if they exist */ 7868 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 7869 struct ice_vsi *ch_vsi; 7870 7871 list_del(&ch->list); 7872 ch_vsi = ch->ch_vsi; 7873 if (!ch_vsi) { 7874 kfree(ch); 7875 continue; 7876 } 7877 7878 /* Reset queue contexts */ 7879 for (i = 0; i < ch->num_rxq; i++) { 7880 struct ice_tx_ring *tx_ring; 7881 struct ice_rx_ring *rx_ring; 7882 7883 tx_ring = vsi->tx_rings[ch->base_q + i]; 7884 rx_ring = vsi->rx_rings[ch->base_q + i]; 7885 if (tx_ring) { 7886 tx_ring->ch = NULL; 7887 if (tx_ring->q_vector) 7888 tx_ring->q_vector->ch = NULL; 7889 } 7890 if (rx_ring) { 7891 rx_ring->ch = NULL; 7892 if (rx_ring->q_vector) 7893 rx_ring->q_vector->ch = NULL; 7894 } 7895 } 7896 7897 /* Release FD resources for the channel VSI */ 7898 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 7899 7900 /* clear the VSI from scheduler tree */ 7901 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 7902 7903 /* Delete VSI from FW */ 7904 ice_vsi_delete(ch->ch_vsi); 7905 7906 /* Delete VSI from PF and HW VSI arrays */ 7907 ice_vsi_clear(ch->ch_vsi); 7908 7909 /* free the channel */ 7910 kfree(ch); 7911 } 7912 7913 /* clear the channel VSI map which is stored in main VSI */ 7914 ice_for_each_chnl_tc(i) 7915 vsi->tc_map_vsi[i] = NULL; 7916 7917 /* reset main VSI's all TC information */ 7918 vsi->all_enatc = 0; 7919 vsi->all_numtc = 0; 7920 } 7921 7922 /** 7923 * ice_rebuild_channels - rebuild channel 7924 * @pf: ptr to PF 7925 * 7926 * Recreate channel VSIs and replay filters 7927 */ 7928 static int ice_rebuild_channels(struct ice_pf *pf) 7929 { 7930 struct device *dev = ice_pf_to_dev(pf); 7931 struct ice_vsi *main_vsi; 7932 bool rem_adv_fltr = true; 7933 struct ice_channel *ch; 7934 struct ice_vsi *vsi; 7935 int tc_idx = 1; 7936 int i, err; 7937 7938 main_vsi = ice_get_main_vsi(pf); 7939 if (!main_vsi) 7940 return 0; 7941 7942 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 7943 main_vsi->old_numtc == 1) 7944 return 0; /* nothing to be done */ 7945 7946 /* reconfigure main VSI based on old value of TC and cached values 7947 * for MQPRIO opts 7948 */ 7949 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 7950 if (err) { 7951 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 7952 main_vsi->old_ena_tc, main_vsi->vsi_num); 7953 return err; 7954 } 7955 7956 /* rebuild ADQ VSIs */ 7957 ice_for_each_vsi(pf, i) { 7958 enum ice_vsi_type type; 7959 7960 vsi = pf->vsi[i]; 7961 if (!vsi || vsi->type != ICE_VSI_CHNL) 7962 continue; 7963 7964 type = vsi->type; 7965 7966 /* rebuild ADQ VSI */ 7967 err = ice_vsi_rebuild(vsi, true); 7968 if (err) { 7969 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 7970 ice_vsi_type_str(type), vsi->idx, err); 7971 goto cleanup; 7972 } 7973 7974 /* Re-map HW VSI number, using VSI handle that has been 7975 * previously validated in ice_replay_vsi() call above 7976 */ 7977 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7978 7979 /* replay filters for the VSI */ 7980 err = ice_replay_vsi(&pf->hw, vsi->idx); 7981 if (err) { 7982 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 7983 ice_vsi_type_str(type), err, vsi->idx); 7984 rem_adv_fltr = false; 7985 goto cleanup; 7986 } 7987 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 7988 ice_vsi_type_str(type), vsi->idx); 7989 7990 /* store ADQ VSI at correct TC index in main VSI's 7991 * map of TC to VSI 7992 */ 7993 main_vsi->tc_map_vsi[tc_idx++] = vsi; 7994 } 7995 7996 /* ADQ VSI(s) has been rebuilt successfully, so setup 7997 * channel for main VSI's Tx and Rx rings 7998 */ 7999 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8000 struct ice_vsi *ch_vsi; 8001 8002 ch_vsi = ch->ch_vsi; 8003 if (!ch_vsi) 8004 continue; 8005 8006 /* reconfig channel resources */ 8007 ice_cfg_chnl_all_res(main_vsi, ch); 8008 8009 /* replay BW rate limit if it is non-zero */ 8010 if (!ch->max_tx_rate && !ch->min_tx_rate) 8011 continue; 8012 8013 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8014 ch->min_tx_rate); 8015 if (err) 8016 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8017 err, ch->max_tx_rate, ch->min_tx_rate, 8018 ch_vsi->vsi_num); 8019 else 8020 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8021 ch->max_tx_rate, ch->min_tx_rate, 8022 ch_vsi->vsi_num); 8023 } 8024 8025 /* reconfig RSS for main VSI */ 8026 if (main_vsi->ch_rss_size) 8027 ice_vsi_cfg_rss_lut_key(main_vsi); 8028 8029 return 0; 8030 8031 cleanup: 8032 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8033 return err; 8034 } 8035 8036 /** 8037 * ice_create_q_channels - Add queue channel for the given TCs 8038 * @vsi: VSI to be configured 8039 * 8040 * Configures queue channel mapping to the given TCs 8041 */ 8042 static int ice_create_q_channels(struct ice_vsi *vsi) 8043 { 8044 struct ice_pf *pf = vsi->back; 8045 struct ice_channel *ch; 8046 int ret = 0, i; 8047 8048 ice_for_each_chnl_tc(i) { 8049 if (!(vsi->all_enatc & BIT(i))) 8050 continue; 8051 8052 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8053 if (!ch) { 8054 ret = -ENOMEM; 8055 goto err_free; 8056 } 8057 INIT_LIST_HEAD(&ch->list); 8058 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8059 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8060 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8061 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8062 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8063 8064 /* convert to Kbits/s */ 8065 if (ch->max_tx_rate) 8066 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8067 ICE_BW_KBPS_DIVISOR); 8068 if (ch->min_tx_rate) 8069 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8070 ICE_BW_KBPS_DIVISOR); 8071 8072 ret = ice_create_q_channel(vsi, ch); 8073 if (ret) { 8074 dev_err(ice_pf_to_dev(pf), 8075 "failed creating channel TC:%d\n", i); 8076 kfree(ch); 8077 goto err_free; 8078 } 8079 list_add_tail(&ch->list, &vsi->ch_list); 8080 vsi->tc_map_vsi[i] = ch->ch_vsi; 8081 dev_dbg(ice_pf_to_dev(pf), 8082 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8083 } 8084 return 0; 8085 8086 err_free: 8087 ice_remove_q_channels(vsi, false); 8088 8089 return ret; 8090 } 8091 8092 /** 8093 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8094 * @netdev: net device to configure 8095 * @type_data: TC offload data 8096 */ 8097 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8098 { 8099 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8100 struct ice_netdev_priv *np = netdev_priv(netdev); 8101 struct ice_vsi *vsi = np->vsi; 8102 struct ice_pf *pf = vsi->back; 8103 u16 mode, ena_tc_qdisc = 0; 8104 int cur_txq, cur_rxq; 8105 u8 hw = 0, num_tcf; 8106 struct device *dev; 8107 int ret, i; 8108 8109 dev = ice_pf_to_dev(pf); 8110 num_tcf = mqprio_qopt->qopt.num_tc; 8111 hw = mqprio_qopt->qopt.hw; 8112 mode = mqprio_qopt->mode; 8113 if (!hw) { 8114 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8115 vsi->ch_rss_size = 0; 8116 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8117 goto config_tcf; 8118 } 8119 8120 /* Generate queue region map for number of TCF requested */ 8121 for (i = 0; i < num_tcf; i++) 8122 ena_tc_qdisc |= BIT(i); 8123 8124 switch (mode) { 8125 case TC_MQPRIO_MODE_CHANNEL: 8126 8127 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8128 if (ret) { 8129 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8130 ret); 8131 return ret; 8132 } 8133 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8134 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8135 /* don't assume state of hw_tc_offload during driver load 8136 * and set the flag for TC flower filter if hw_tc_offload 8137 * already ON 8138 */ 8139 if (vsi->netdev->features & NETIF_F_HW_TC) 8140 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8141 break; 8142 default: 8143 return -EINVAL; 8144 } 8145 8146 config_tcf: 8147 8148 /* Requesting same TCF configuration as already enabled */ 8149 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8150 mode != TC_MQPRIO_MODE_CHANNEL) 8151 return 0; 8152 8153 /* Pause VSI queues */ 8154 ice_dis_vsi(vsi, true); 8155 8156 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8157 ice_remove_q_channels(vsi, true); 8158 8159 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8160 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8161 num_online_cpus()); 8162 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8163 num_online_cpus()); 8164 } else { 8165 /* logic to rebuild VSI, same like ethtool -L */ 8166 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8167 8168 for (i = 0; i < num_tcf; i++) { 8169 if (!(ena_tc_qdisc & BIT(i))) 8170 continue; 8171 8172 offset = vsi->mqprio_qopt.qopt.offset[i]; 8173 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8174 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8175 } 8176 vsi->req_txq = offset + qcount_tx; 8177 vsi->req_rxq = offset + qcount_rx; 8178 8179 /* store away original rss_size info, so that it gets reused 8180 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8181 * determine, what should be the rss_sizefor main VSI 8182 */ 8183 vsi->orig_rss_size = vsi->rss_size; 8184 } 8185 8186 /* save current values of Tx and Rx queues before calling VSI rebuild 8187 * for fallback option 8188 */ 8189 cur_txq = vsi->num_txq; 8190 cur_rxq = vsi->num_rxq; 8191 8192 /* proceed with rebuild main VSI using correct number of queues */ 8193 ret = ice_vsi_rebuild(vsi, false); 8194 if (ret) { 8195 /* fallback to current number of queues */ 8196 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8197 vsi->req_txq = cur_txq; 8198 vsi->req_rxq = cur_rxq; 8199 clear_bit(ICE_RESET_FAILED, pf->state); 8200 if (ice_vsi_rebuild(vsi, false)) { 8201 dev_err(dev, "Rebuild of main VSI failed again\n"); 8202 return ret; 8203 } 8204 } 8205 8206 vsi->all_numtc = num_tcf; 8207 vsi->all_enatc = ena_tc_qdisc; 8208 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8209 if (ret) { 8210 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8211 vsi->vsi_num); 8212 goto exit; 8213 } 8214 8215 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8216 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8217 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8218 8219 /* set TC0 rate limit if specified */ 8220 if (max_tx_rate || min_tx_rate) { 8221 /* convert to Kbits/s */ 8222 if (max_tx_rate) 8223 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8224 if (min_tx_rate) 8225 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8226 8227 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8228 if (!ret) { 8229 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8230 max_tx_rate, min_tx_rate, vsi->vsi_num); 8231 } else { 8232 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8233 max_tx_rate, min_tx_rate, vsi->vsi_num); 8234 goto exit; 8235 } 8236 } 8237 ret = ice_create_q_channels(vsi); 8238 if (ret) { 8239 netdev_err(netdev, "failed configuring queue channels\n"); 8240 goto exit; 8241 } else { 8242 netdev_dbg(netdev, "successfully configured channels\n"); 8243 } 8244 } 8245 8246 if (vsi->ch_rss_size) 8247 ice_vsi_cfg_rss_lut_key(vsi); 8248 8249 exit: 8250 /* if error, reset the all_numtc and all_enatc */ 8251 if (ret) { 8252 vsi->all_numtc = 0; 8253 vsi->all_enatc = 0; 8254 } 8255 /* resume VSI */ 8256 ice_ena_vsi(vsi, true); 8257 8258 return ret; 8259 } 8260 8261 static LIST_HEAD(ice_block_cb_list); 8262 8263 static int 8264 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8265 void *type_data) 8266 { 8267 struct ice_netdev_priv *np = netdev_priv(netdev); 8268 struct ice_pf *pf = np->vsi->back; 8269 int err; 8270 8271 switch (type) { 8272 case TC_SETUP_BLOCK: 8273 return flow_block_cb_setup_simple(type_data, 8274 &ice_block_cb_list, 8275 ice_setup_tc_block_cb, 8276 np, np, true); 8277 case TC_SETUP_QDISC_MQPRIO: 8278 /* setup traffic classifier for receive side */ 8279 mutex_lock(&pf->tc_mutex); 8280 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8281 mutex_unlock(&pf->tc_mutex); 8282 return err; 8283 default: 8284 return -EOPNOTSUPP; 8285 } 8286 return -EOPNOTSUPP; 8287 } 8288 8289 static struct ice_indr_block_priv * 8290 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8291 struct net_device *netdev) 8292 { 8293 struct ice_indr_block_priv *cb_priv; 8294 8295 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8296 if (!cb_priv->netdev) 8297 return NULL; 8298 if (cb_priv->netdev == netdev) 8299 return cb_priv; 8300 } 8301 return NULL; 8302 } 8303 8304 static int 8305 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8306 void *indr_priv) 8307 { 8308 struct ice_indr_block_priv *priv = indr_priv; 8309 struct ice_netdev_priv *np = priv->np; 8310 8311 switch (type) { 8312 case TC_SETUP_CLSFLOWER: 8313 return ice_setup_tc_cls_flower(np, priv->netdev, 8314 (struct flow_cls_offload *) 8315 type_data); 8316 default: 8317 return -EOPNOTSUPP; 8318 } 8319 } 8320 8321 static int 8322 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8323 struct ice_netdev_priv *np, 8324 struct flow_block_offload *f, void *data, 8325 void (*cleanup)(struct flow_block_cb *block_cb)) 8326 { 8327 struct ice_indr_block_priv *indr_priv; 8328 struct flow_block_cb *block_cb; 8329 8330 if (!ice_is_tunnel_supported(netdev) && 8331 !(is_vlan_dev(netdev) && 8332 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8333 return -EOPNOTSUPP; 8334 8335 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8336 return -EOPNOTSUPP; 8337 8338 switch (f->command) { 8339 case FLOW_BLOCK_BIND: 8340 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8341 if (indr_priv) 8342 return -EEXIST; 8343 8344 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8345 if (!indr_priv) 8346 return -ENOMEM; 8347 8348 indr_priv->netdev = netdev; 8349 indr_priv->np = np; 8350 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8351 8352 block_cb = 8353 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8354 indr_priv, indr_priv, 8355 ice_rep_indr_tc_block_unbind, 8356 f, netdev, sch, data, np, 8357 cleanup); 8358 8359 if (IS_ERR(block_cb)) { 8360 list_del(&indr_priv->list); 8361 kfree(indr_priv); 8362 return PTR_ERR(block_cb); 8363 } 8364 flow_block_cb_add(block_cb, f); 8365 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8366 break; 8367 case FLOW_BLOCK_UNBIND: 8368 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8369 if (!indr_priv) 8370 return -ENOENT; 8371 8372 block_cb = flow_block_cb_lookup(f->block, 8373 ice_indr_setup_block_cb, 8374 indr_priv); 8375 if (!block_cb) 8376 return -ENOENT; 8377 8378 flow_indr_block_cb_remove(block_cb, f); 8379 8380 list_del(&block_cb->driver_list); 8381 break; 8382 default: 8383 return -EOPNOTSUPP; 8384 } 8385 return 0; 8386 } 8387 8388 static int 8389 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8390 void *cb_priv, enum tc_setup_type type, void *type_data, 8391 void *data, 8392 void (*cleanup)(struct flow_block_cb *block_cb)) 8393 { 8394 switch (type) { 8395 case TC_SETUP_BLOCK: 8396 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8397 data, cleanup); 8398 8399 default: 8400 return -EOPNOTSUPP; 8401 } 8402 } 8403 8404 /** 8405 * ice_open - Called when a network interface becomes active 8406 * @netdev: network interface device structure 8407 * 8408 * The open entry point is called when a network interface is made 8409 * active by the system (IFF_UP). At this point all resources needed 8410 * for transmit and receive operations are allocated, the interrupt 8411 * handler is registered with the OS, the netdev watchdog is enabled, 8412 * and the stack is notified that the interface is ready. 8413 * 8414 * Returns 0 on success, negative value on failure 8415 */ 8416 int ice_open(struct net_device *netdev) 8417 { 8418 struct ice_netdev_priv *np = netdev_priv(netdev); 8419 struct ice_pf *pf = np->vsi->back; 8420 8421 if (ice_is_reset_in_progress(pf->state)) { 8422 netdev_err(netdev, "can't open net device while reset is in progress"); 8423 return -EBUSY; 8424 } 8425 8426 return ice_open_internal(netdev); 8427 } 8428 8429 /** 8430 * ice_open_internal - Called when a network interface becomes active 8431 * @netdev: network interface device structure 8432 * 8433 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8434 * handling routine 8435 * 8436 * Returns 0 on success, negative value on failure 8437 */ 8438 int ice_open_internal(struct net_device *netdev) 8439 { 8440 struct ice_netdev_priv *np = netdev_priv(netdev); 8441 struct ice_vsi *vsi = np->vsi; 8442 struct ice_pf *pf = vsi->back; 8443 struct ice_port_info *pi; 8444 int err; 8445 8446 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8447 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8448 return -EIO; 8449 } 8450 8451 netif_carrier_off(netdev); 8452 8453 pi = vsi->port_info; 8454 err = ice_update_link_info(pi); 8455 if (err) { 8456 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8457 return err; 8458 } 8459 8460 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8461 8462 /* Set PHY if there is media, otherwise, turn off PHY */ 8463 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8464 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8465 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8466 err = ice_init_phy_user_cfg(pi); 8467 if (err) { 8468 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8469 err); 8470 return err; 8471 } 8472 } 8473 8474 err = ice_configure_phy(vsi); 8475 if (err) { 8476 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8477 err); 8478 return err; 8479 } 8480 } else { 8481 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8482 ice_set_link(vsi, false); 8483 } 8484 8485 err = ice_vsi_open(vsi); 8486 if (err) 8487 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8488 vsi->vsi_num, vsi->vsw->sw_id); 8489 8490 /* Update existing tunnels information */ 8491 udp_tunnel_get_rx_info(netdev); 8492 8493 return err; 8494 } 8495 8496 /** 8497 * ice_stop - Disables a network interface 8498 * @netdev: network interface device structure 8499 * 8500 * The stop entry point is called when an interface is de-activated by the OS, 8501 * and the netdevice enters the DOWN state. The hardware is still under the 8502 * driver's control, but the netdev interface is disabled. 8503 * 8504 * Returns success only - not allowed to fail 8505 */ 8506 int ice_stop(struct net_device *netdev) 8507 { 8508 struct ice_netdev_priv *np = netdev_priv(netdev); 8509 struct ice_vsi *vsi = np->vsi; 8510 struct ice_pf *pf = vsi->back; 8511 8512 if (ice_is_reset_in_progress(pf->state)) { 8513 netdev_err(netdev, "can't stop net device while reset is in progress"); 8514 return -EBUSY; 8515 } 8516 8517 ice_vsi_close(vsi); 8518 8519 return 0; 8520 } 8521 8522 /** 8523 * ice_features_check - Validate encapsulated packet conforms to limits 8524 * @skb: skb buffer 8525 * @netdev: This port's netdev 8526 * @features: Offload features that the stack believes apply 8527 */ 8528 static netdev_features_t 8529 ice_features_check(struct sk_buff *skb, 8530 struct net_device __always_unused *netdev, 8531 netdev_features_t features) 8532 { 8533 bool gso = skb_is_gso(skb); 8534 size_t len; 8535 8536 /* No point in doing any of this if neither checksum nor GSO are 8537 * being requested for this frame. We can rule out both by just 8538 * checking for CHECKSUM_PARTIAL 8539 */ 8540 if (skb->ip_summed != CHECKSUM_PARTIAL) 8541 return features; 8542 8543 /* We cannot support GSO if the MSS is going to be less than 8544 * 64 bytes. If it is then we need to drop support for GSO. 8545 */ 8546 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8547 features &= ~NETIF_F_GSO_MASK; 8548 8549 len = skb_network_offset(skb); 8550 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8551 goto out_rm_features; 8552 8553 len = skb_network_header_len(skb); 8554 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8555 goto out_rm_features; 8556 8557 if (skb->encapsulation) { 8558 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8559 * the case of IPIP frames, the transport header pointer is 8560 * after the inner header! So check to make sure that this 8561 * is a GRE or UDP_TUNNEL frame before doing that math. 8562 */ 8563 if (gso && (skb_shinfo(skb)->gso_type & 8564 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8565 len = skb_inner_network_header(skb) - 8566 skb_transport_header(skb); 8567 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8568 goto out_rm_features; 8569 } 8570 8571 len = skb_inner_network_header_len(skb); 8572 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8573 goto out_rm_features; 8574 } 8575 8576 return features; 8577 out_rm_features: 8578 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8579 } 8580 8581 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8582 .ndo_open = ice_open, 8583 .ndo_stop = ice_stop, 8584 .ndo_start_xmit = ice_start_xmit, 8585 .ndo_set_mac_address = ice_set_mac_address, 8586 .ndo_validate_addr = eth_validate_addr, 8587 .ndo_change_mtu = ice_change_mtu, 8588 .ndo_get_stats64 = ice_get_stats64, 8589 .ndo_tx_timeout = ice_tx_timeout, 8590 .ndo_bpf = ice_xdp_safe_mode, 8591 }; 8592 8593 static const struct net_device_ops ice_netdev_ops = { 8594 .ndo_open = ice_open, 8595 .ndo_stop = ice_stop, 8596 .ndo_start_xmit = ice_start_xmit, 8597 .ndo_select_queue = ice_select_queue, 8598 .ndo_features_check = ice_features_check, 8599 .ndo_set_rx_mode = ice_set_rx_mode, 8600 .ndo_set_mac_address = ice_set_mac_address, 8601 .ndo_validate_addr = eth_validate_addr, 8602 .ndo_change_mtu = ice_change_mtu, 8603 .ndo_get_stats64 = ice_get_stats64, 8604 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8605 .ndo_eth_ioctl = ice_eth_ioctl, 8606 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8607 .ndo_set_vf_mac = ice_set_vf_mac, 8608 .ndo_get_vf_config = ice_get_vf_cfg, 8609 .ndo_set_vf_trust = ice_set_vf_trust, 8610 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8611 .ndo_set_vf_link_state = ice_set_vf_link_state, 8612 .ndo_get_vf_stats = ice_get_vf_stats, 8613 .ndo_set_vf_rate = ice_set_vf_bw, 8614 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8615 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8616 .ndo_setup_tc = ice_setup_tc, 8617 .ndo_set_features = ice_set_features, 8618 .ndo_bridge_getlink = ice_bridge_getlink, 8619 .ndo_bridge_setlink = ice_bridge_setlink, 8620 .ndo_fdb_add = ice_fdb_add, 8621 .ndo_fdb_del = ice_fdb_del, 8622 #ifdef CONFIG_RFS_ACCEL 8623 .ndo_rx_flow_steer = ice_rx_flow_steer, 8624 #endif 8625 .ndo_tx_timeout = ice_tx_timeout, 8626 .ndo_bpf = ice_xdp, 8627 .ndo_xdp_xmit = ice_xdp_xmit, 8628 .ndo_xsk_wakeup = ice_xsk_wakeup, 8629 }; 8630