1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 271 return status; 272 } 273 274 /** 275 * ice_clear_promisc - Disable promiscuous mode for a given PF 276 * @vsi: the VSI being configured 277 * @promisc_m: mask of promiscuous config bits 278 * 279 */ 280 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 281 { 282 int status; 283 284 if (vsi->type != ICE_VSI_PF) 285 return 0; 286 287 if (ice_vsi_has_non_zero_vlans(vsi)) { 288 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 289 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 290 promisc_m); 291 } else { 292 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 293 promisc_m, 0); 294 } 295 296 return status; 297 } 298 299 /** 300 * ice_get_devlink_port - Get devlink port from netdev 301 * @netdev: the netdevice structure 302 */ 303 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev) 304 { 305 struct ice_pf *pf = ice_netdev_to_pf(netdev); 306 307 if (!ice_is_switchdev_running(pf)) 308 return NULL; 309 310 return &pf->devlink_port; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 } 425 } else { 426 /* Clear Rx filter to remove traffic from wire */ 427 if (ice_is_vsi_dflt_vsi(vsi)) { 428 err = ice_clear_dflt_vsi(vsi); 429 if (err) { 430 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 431 err, vsi->vsi_num); 432 vsi->current_netdev_flags |= 433 IFF_PROMISC; 434 goto out_promisc; 435 } 436 if (vsi->netdev->features & 437 NETIF_F_HW_VLAN_CTAG_FILTER) 438 vlan_ops->ena_rx_filtering(vsi); 439 } 440 } 441 } 442 goto exit; 443 444 out_promisc: 445 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 446 goto exit; 447 out: 448 /* if something went wrong then set the changed flag so we try again */ 449 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 450 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 451 exit: 452 clear_bit(ICE_CFG_BUSY, vsi->state); 453 return err; 454 } 455 456 /** 457 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 458 * @pf: board private structure 459 */ 460 static void ice_sync_fltr_subtask(struct ice_pf *pf) 461 { 462 int v; 463 464 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 465 return; 466 467 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 468 469 ice_for_each_vsi(pf, v) 470 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 471 ice_vsi_sync_fltr(pf->vsi[v])) { 472 /* come back and try again later */ 473 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 474 break; 475 } 476 } 477 478 /** 479 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 480 * @pf: the PF 481 * @locked: is the rtnl_lock already held 482 */ 483 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 484 { 485 int node; 486 int v; 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v]) 490 ice_dis_vsi(pf->vsi[v], locked); 491 492 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 493 pf->pf_agg_node[node].num_vsis = 0; 494 495 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 496 pf->vf_agg_node[node].num_vsis = 0; 497 } 498 499 /** 500 * ice_clear_sw_switch_recipes - clear switch recipes 501 * @pf: board private structure 502 * 503 * Mark switch recipes as not created in sw structures. There are cases where 504 * rules (especially advanced rules) need to be restored, either re-read from 505 * hardware or added again. For example after the reset. 'recp_created' flag 506 * prevents from doing that and need to be cleared upfront. 507 */ 508 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 509 { 510 struct ice_sw_recipe *recp; 511 u8 i; 512 513 recp = pf->hw.switch_info->recp_list; 514 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 515 recp[i].recp_created = false; 516 } 517 518 /** 519 * ice_prepare_for_reset - prep for reset 520 * @pf: board private structure 521 * @reset_type: reset type requested 522 * 523 * Inform or close all dependent features in prep for reset. 524 */ 525 static void 526 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 527 { 528 struct ice_hw *hw = &pf->hw; 529 struct ice_vsi *vsi; 530 struct ice_vf *vf; 531 unsigned int bkt; 532 533 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 534 535 /* already prepared for reset */ 536 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 537 return; 538 539 ice_unplug_aux_dev(pf); 540 541 /* Notify VFs of impending reset */ 542 if (ice_check_sq_alive(hw, &hw->mailboxq)) 543 ice_vc_notify_reset(pf); 544 545 /* Disable VFs until reset is completed */ 546 mutex_lock(&pf->vfs.table_lock); 547 ice_for_each_vf(pf, bkt, vf) 548 ice_set_vf_state_qs_dis(vf); 549 mutex_unlock(&pf->vfs.table_lock); 550 551 if (ice_is_eswitch_mode_switchdev(pf)) { 552 if (reset_type != ICE_RESET_PFR) 553 ice_clear_sw_switch_recipes(pf); 554 } 555 556 /* release ADQ specific HW and SW resources */ 557 vsi = ice_get_main_vsi(pf); 558 if (!vsi) 559 goto skip; 560 561 /* to be on safe side, reset orig_rss_size so that normal flow 562 * of deciding rss_size can take precedence 563 */ 564 vsi->orig_rss_size = 0; 565 566 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 567 if (reset_type == ICE_RESET_PFR) { 568 vsi->old_ena_tc = vsi->all_enatc; 569 vsi->old_numtc = vsi->all_numtc; 570 } else { 571 ice_remove_q_channels(vsi, true); 572 573 /* for other reset type, do not support channel rebuild 574 * hence reset needed info 575 */ 576 vsi->old_ena_tc = 0; 577 vsi->all_enatc = 0; 578 vsi->old_numtc = 0; 579 vsi->all_numtc = 0; 580 vsi->req_txq = 0; 581 vsi->req_rxq = 0; 582 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 583 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 584 } 585 } 586 skip: 587 588 /* clear SW filtering DB */ 589 ice_clear_hw_tbls(hw); 590 /* disable the VSIs and their queues that are not already DOWN */ 591 ice_pf_dis_all_vsi(pf, false); 592 593 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 594 ice_ptp_prepare_for_reset(pf); 595 596 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 597 ice_gnss_exit(pf); 598 599 if (hw->port_info) 600 ice_sched_clear_port(hw->port_info); 601 602 ice_shutdown_all_ctrlq(hw); 603 604 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 605 } 606 607 /** 608 * ice_do_reset - Initiate one of many types of resets 609 * @pf: board private structure 610 * @reset_type: reset type requested before this function was called. 611 */ 612 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 613 { 614 struct device *dev = ice_pf_to_dev(pf); 615 struct ice_hw *hw = &pf->hw; 616 617 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 618 619 ice_prepare_for_reset(pf, reset_type); 620 621 /* trigger the reset */ 622 if (ice_reset(hw, reset_type)) { 623 dev_err(dev, "reset %d failed\n", reset_type); 624 set_bit(ICE_RESET_FAILED, pf->state); 625 clear_bit(ICE_RESET_OICR_RECV, pf->state); 626 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 clear_bit(ICE_PFR_REQ, pf->state); 628 clear_bit(ICE_CORER_REQ, pf->state); 629 clear_bit(ICE_GLOBR_REQ, pf->state); 630 wake_up(&pf->reset_wait_queue); 631 return; 632 } 633 634 /* PFR is a bit of a special case because it doesn't result in an OICR 635 * interrupt. So for PFR, rebuild after the reset and clear the reset- 636 * associated state bits. 637 */ 638 if (reset_type == ICE_RESET_PFR) { 639 pf->pfr_count++; 640 ice_rebuild(pf, reset_type); 641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 642 clear_bit(ICE_PFR_REQ, pf->state); 643 wake_up(&pf->reset_wait_queue); 644 ice_reset_all_vfs(pf); 645 } 646 } 647 648 /** 649 * ice_reset_subtask - Set up for resetting the device and driver 650 * @pf: board private structure 651 */ 652 static void ice_reset_subtask(struct ice_pf *pf) 653 { 654 enum ice_reset_req reset_type = ICE_RESET_INVAL; 655 656 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 657 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 658 * of reset is pending and sets bits in pf->state indicating the reset 659 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 660 * prepare for pending reset if not already (for PF software-initiated 661 * global resets the software should already be prepared for it as 662 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 663 * by firmware or software on other PFs, that bit is not set so prepare 664 * for the reset now), poll for reset done, rebuild and return. 665 */ 666 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 667 /* Perform the largest reset requested */ 668 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 669 reset_type = ICE_RESET_CORER; 670 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 671 reset_type = ICE_RESET_GLOBR; 672 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 673 reset_type = ICE_RESET_EMPR; 674 /* return if no valid reset type requested */ 675 if (reset_type == ICE_RESET_INVAL) 676 return; 677 ice_prepare_for_reset(pf, reset_type); 678 679 /* make sure we are ready to rebuild */ 680 if (ice_check_reset(&pf->hw)) { 681 set_bit(ICE_RESET_FAILED, pf->state); 682 } else { 683 /* done with reset. start rebuild */ 684 pf->hw.reset_ongoing = false; 685 ice_rebuild(pf, reset_type); 686 /* clear bit to resume normal operations, but 687 * ICE_NEEDS_RESTART bit is set in case rebuild failed 688 */ 689 clear_bit(ICE_RESET_OICR_RECV, pf->state); 690 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 691 clear_bit(ICE_PFR_REQ, pf->state); 692 clear_bit(ICE_CORER_REQ, pf->state); 693 clear_bit(ICE_GLOBR_REQ, pf->state); 694 wake_up(&pf->reset_wait_queue); 695 ice_reset_all_vfs(pf); 696 } 697 698 return; 699 } 700 701 /* No pending resets to finish processing. Check for new resets */ 702 if (test_bit(ICE_PFR_REQ, pf->state)) 703 reset_type = ICE_RESET_PFR; 704 if (test_bit(ICE_CORER_REQ, pf->state)) 705 reset_type = ICE_RESET_CORER; 706 if (test_bit(ICE_GLOBR_REQ, pf->state)) 707 reset_type = ICE_RESET_GLOBR; 708 /* If no valid reset type requested just return */ 709 if (reset_type == ICE_RESET_INVAL) 710 return; 711 712 /* reset if not already down or busy */ 713 if (!test_bit(ICE_DOWN, pf->state) && 714 !test_bit(ICE_CFG_BUSY, pf->state)) { 715 ice_do_reset(pf, reset_type); 716 } 717 } 718 719 /** 720 * ice_print_topo_conflict - print topology conflict message 721 * @vsi: the VSI whose topology status is being checked 722 */ 723 static void ice_print_topo_conflict(struct ice_vsi *vsi) 724 { 725 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 726 case ICE_AQ_LINK_TOPO_CONFLICT: 727 case ICE_AQ_LINK_MEDIA_CONFLICT: 728 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 729 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 730 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 731 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 732 break; 733 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 734 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 735 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 736 else 737 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 738 break; 739 default: 740 break; 741 } 742 } 743 744 /** 745 * ice_print_link_msg - print link up or down message 746 * @vsi: the VSI whose link status is being queried 747 * @isup: boolean for if the link is now up or down 748 */ 749 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 750 { 751 struct ice_aqc_get_phy_caps_data *caps; 752 const char *an_advertised; 753 const char *fec_req; 754 const char *speed; 755 const char *fec; 756 const char *fc; 757 const char *an; 758 int status; 759 760 if (!vsi) 761 return; 762 763 if (vsi->current_isup == isup) 764 return; 765 766 vsi->current_isup = isup; 767 768 if (!isup) { 769 netdev_info(vsi->netdev, "NIC Link is Down\n"); 770 return; 771 } 772 773 switch (vsi->port_info->phy.link_info.link_speed) { 774 case ICE_AQ_LINK_SPEED_100GB: 775 speed = "100 G"; 776 break; 777 case ICE_AQ_LINK_SPEED_50GB: 778 speed = "50 G"; 779 break; 780 case ICE_AQ_LINK_SPEED_40GB: 781 speed = "40 G"; 782 break; 783 case ICE_AQ_LINK_SPEED_25GB: 784 speed = "25 G"; 785 break; 786 case ICE_AQ_LINK_SPEED_20GB: 787 speed = "20 G"; 788 break; 789 case ICE_AQ_LINK_SPEED_10GB: 790 speed = "10 G"; 791 break; 792 case ICE_AQ_LINK_SPEED_5GB: 793 speed = "5 G"; 794 break; 795 case ICE_AQ_LINK_SPEED_2500MB: 796 speed = "2.5 G"; 797 break; 798 case ICE_AQ_LINK_SPEED_1000MB: 799 speed = "1 G"; 800 break; 801 case ICE_AQ_LINK_SPEED_100MB: 802 speed = "100 M"; 803 break; 804 default: 805 speed = "Unknown "; 806 break; 807 } 808 809 switch (vsi->port_info->fc.current_mode) { 810 case ICE_FC_FULL: 811 fc = "Rx/Tx"; 812 break; 813 case ICE_FC_TX_PAUSE: 814 fc = "Tx"; 815 break; 816 case ICE_FC_RX_PAUSE: 817 fc = "Rx"; 818 break; 819 case ICE_FC_NONE: 820 fc = "None"; 821 break; 822 default: 823 fc = "Unknown"; 824 break; 825 } 826 827 /* Get FEC mode based on negotiated link info */ 828 switch (vsi->port_info->phy.link_info.fec_info) { 829 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 830 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 831 fec = "RS-FEC"; 832 break; 833 case ICE_AQ_LINK_25G_KR_FEC_EN: 834 fec = "FC-FEC/BASE-R"; 835 break; 836 default: 837 fec = "NONE"; 838 break; 839 } 840 841 /* check if autoneg completed, might be false due to not supported */ 842 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 843 an = "True"; 844 else 845 an = "False"; 846 847 /* Get FEC mode requested based on PHY caps last SW configuration */ 848 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 849 if (!caps) { 850 fec_req = "Unknown"; 851 an_advertised = "Unknown"; 852 goto done; 853 } 854 855 status = ice_aq_get_phy_caps(vsi->port_info, false, 856 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 857 if (status) 858 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 859 860 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 861 862 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 863 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 864 fec_req = "RS-FEC"; 865 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 866 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 867 fec_req = "FC-FEC/BASE-R"; 868 else 869 fec_req = "NONE"; 870 871 kfree(caps); 872 873 done: 874 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 875 speed, fec_req, fec, an_advertised, an, fc); 876 ice_print_topo_conflict(vsi); 877 } 878 879 /** 880 * ice_vsi_link_event - update the VSI's netdev 881 * @vsi: the VSI on which the link event occurred 882 * @link_up: whether or not the VSI needs to be set up or down 883 */ 884 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 885 { 886 if (!vsi) 887 return; 888 889 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 890 return; 891 892 if (vsi->type == ICE_VSI_PF) { 893 if (link_up == netif_carrier_ok(vsi->netdev)) 894 return; 895 896 if (link_up) { 897 netif_carrier_on(vsi->netdev); 898 netif_tx_wake_all_queues(vsi->netdev); 899 } else { 900 netif_carrier_off(vsi->netdev); 901 netif_tx_stop_all_queues(vsi->netdev); 902 } 903 } 904 } 905 906 /** 907 * ice_set_dflt_mib - send a default config MIB to the FW 908 * @pf: private PF struct 909 * 910 * This function sends a default configuration MIB to the FW. 911 * 912 * If this function errors out at any point, the driver is still able to 913 * function. The main impact is that LFC may not operate as expected. 914 * Therefore an error state in this function should be treated with a DBG 915 * message and continue on with driver rebuild/reenable. 916 */ 917 static void ice_set_dflt_mib(struct ice_pf *pf) 918 { 919 struct device *dev = ice_pf_to_dev(pf); 920 u8 mib_type, *buf, *lldpmib = NULL; 921 u16 len, typelen, offset = 0; 922 struct ice_lldp_org_tlv *tlv; 923 struct ice_hw *hw = &pf->hw; 924 u32 ouisubtype; 925 926 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 927 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 928 if (!lldpmib) { 929 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 930 __func__); 931 return; 932 } 933 934 /* Add ETS CFG TLV */ 935 tlv = (struct ice_lldp_org_tlv *)lldpmib; 936 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 937 ICE_IEEE_ETS_TLV_LEN); 938 tlv->typelen = htons(typelen); 939 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 940 ICE_IEEE_SUBTYPE_ETS_CFG); 941 tlv->ouisubtype = htonl(ouisubtype); 942 943 buf = tlv->tlvinfo; 944 buf[0] = 0; 945 946 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 947 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 948 * Octets 13 - 20 are TSA values - leave as zeros 949 */ 950 buf[5] = 0x64; 951 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 952 offset += len + 2; 953 tlv = (struct ice_lldp_org_tlv *) 954 ((char *)tlv + sizeof(tlv->typelen) + len); 955 956 /* Add ETS REC TLV */ 957 buf = tlv->tlvinfo; 958 tlv->typelen = htons(typelen); 959 960 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 961 ICE_IEEE_SUBTYPE_ETS_REC); 962 tlv->ouisubtype = htonl(ouisubtype); 963 964 /* First octet of buf is reserved 965 * Octets 1 - 4 map UP to TC - all UPs map to zero 966 * Octets 5 - 12 are BW values - set TC 0 to 100%. 967 * Octets 13 - 20 are TSA value - leave as zeros 968 */ 969 buf[5] = 0x64; 970 offset += len + 2; 971 tlv = (struct ice_lldp_org_tlv *) 972 ((char *)tlv + sizeof(tlv->typelen) + len); 973 974 /* Add PFC CFG TLV */ 975 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 976 ICE_IEEE_PFC_TLV_LEN); 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_PFC_CFG); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* Octet 1 left as all zeros - PFC disabled */ 984 buf[0] = 0x08; 985 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 986 offset += len + 2; 987 988 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 989 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 990 991 kfree(lldpmib); 992 } 993 994 /** 995 * ice_check_phy_fw_load - check if PHY FW load failed 996 * @pf: pointer to PF struct 997 * @link_cfg_err: bitmap from the link info structure 998 * 999 * check if external PHY FW load failed and print an error message if it did 1000 */ 1001 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1002 { 1003 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1004 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1005 return; 1006 } 1007 1008 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1009 return; 1010 1011 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1012 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1013 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1014 } 1015 } 1016 1017 /** 1018 * ice_check_module_power 1019 * @pf: pointer to PF struct 1020 * @link_cfg_err: bitmap from the link info structure 1021 * 1022 * check module power level returned by a previous call to aq_get_link_info 1023 * and print error messages if module power level is not supported 1024 */ 1025 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1026 { 1027 /* if module power level is supported, clear the flag */ 1028 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1029 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1030 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1031 return; 1032 } 1033 1034 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1035 * above block didn't clear this bit, there's nothing to do 1036 */ 1037 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1038 return; 1039 1040 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1041 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1042 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1043 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1044 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1045 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_link_cfg_err - check if link configuration failed 1051 * @pf: pointer to the PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * print if any link configuration failure happens due to the value in the 1055 * link_cfg_err parameter in the link info structure 1056 */ 1057 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 ice_check_module_power(pf, link_cfg_err); 1060 ice_check_phy_fw_load(pf, link_cfg_err); 1061 } 1062 1063 /** 1064 * ice_link_event - process the link event 1065 * @pf: PF that the link event is associated with 1066 * @pi: port_info for the port that the link event is associated with 1067 * @link_up: true if the physical link is up and false if it is down 1068 * @link_speed: current link speed received from the link event 1069 * 1070 * Returns 0 on success and negative on failure 1071 */ 1072 static int 1073 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1074 u16 link_speed) 1075 { 1076 struct device *dev = ice_pf_to_dev(pf); 1077 struct ice_phy_info *phy_info; 1078 struct ice_vsi *vsi; 1079 u16 old_link_speed; 1080 bool old_link; 1081 int status; 1082 1083 phy_info = &pi->phy; 1084 phy_info->link_info_old = phy_info->link_info; 1085 1086 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1087 old_link_speed = phy_info->link_info_old.link_speed; 1088 1089 /* update the link info structures and re-enable link events, 1090 * don't bail on failure due to other book keeping needed 1091 */ 1092 status = ice_update_link_info(pi); 1093 if (status) 1094 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1095 pi->lport, status, 1096 ice_aq_str(pi->hw->adminq.sq_last_status)); 1097 1098 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1099 1100 /* Check if the link state is up after updating link info, and treat 1101 * this event as an UP event since the link is actually UP now. 1102 */ 1103 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1104 link_up = true; 1105 1106 vsi = ice_get_main_vsi(pf); 1107 if (!vsi || !vsi->port_info) 1108 return -EINVAL; 1109 1110 /* turn off PHY if media was removed */ 1111 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1112 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1113 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1114 ice_set_link(vsi, false); 1115 } 1116 1117 /* if the old link up/down and speed is the same as the new */ 1118 if (link_up == old_link && link_speed == old_link_speed) 1119 return 0; 1120 1121 if (!ice_is_e810(&pf->hw)) 1122 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1123 1124 if (ice_is_dcb_active(pf)) { 1125 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1126 ice_dcb_rebuild(pf); 1127 } else { 1128 if (link_up) 1129 ice_set_dflt_mib(pf); 1130 } 1131 ice_vsi_link_event(vsi, link_up); 1132 ice_print_link_msg(vsi, link_up); 1133 1134 ice_vc_notify_link_state(pf); 1135 1136 return 0; 1137 } 1138 1139 /** 1140 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1141 * @pf: board private structure 1142 */ 1143 static void ice_watchdog_subtask(struct ice_pf *pf) 1144 { 1145 int i; 1146 1147 /* if interface is down do nothing */ 1148 if (test_bit(ICE_DOWN, pf->state) || 1149 test_bit(ICE_CFG_BUSY, pf->state)) 1150 return; 1151 1152 /* make sure we don't do these things too often */ 1153 if (time_before(jiffies, 1154 pf->serv_tmr_prev + pf->serv_tmr_period)) 1155 return; 1156 1157 pf->serv_tmr_prev = jiffies; 1158 1159 /* Update the stats for active netdevs so the network stack 1160 * can look at updated numbers whenever it cares to 1161 */ 1162 ice_update_pf_stats(pf); 1163 ice_for_each_vsi(pf, i) 1164 if (pf->vsi[i] && pf->vsi[i]->netdev) 1165 ice_update_vsi_stats(pf->vsi[i]); 1166 } 1167 1168 /** 1169 * ice_init_link_events - enable/initialize link events 1170 * @pi: pointer to the port_info instance 1171 * 1172 * Returns -EIO on failure, 0 on success 1173 */ 1174 static int ice_init_link_events(struct ice_port_info *pi) 1175 { 1176 u16 mask; 1177 1178 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1179 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1180 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1181 1182 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1183 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1184 pi->lport); 1185 return -EIO; 1186 } 1187 1188 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1189 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1190 pi->lport); 1191 return -EIO; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /** 1198 * ice_handle_link_event - handle link event via ARQ 1199 * @pf: PF that the link event is associated with 1200 * @event: event structure containing link status info 1201 */ 1202 static int 1203 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1204 { 1205 struct ice_aqc_get_link_status_data *link_data; 1206 struct ice_port_info *port_info; 1207 int status; 1208 1209 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1210 port_info = pf->hw.port_info; 1211 if (!port_info) 1212 return -EINVAL; 1213 1214 status = ice_link_event(pf, port_info, 1215 !!(link_data->link_info & ICE_AQ_LINK_UP), 1216 le16_to_cpu(link_data->link_speed)); 1217 if (status) 1218 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1219 status); 1220 1221 return status; 1222 } 1223 1224 enum ice_aq_task_state { 1225 ICE_AQ_TASK_WAITING = 0, 1226 ICE_AQ_TASK_COMPLETE, 1227 ICE_AQ_TASK_CANCELED, 1228 }; 1229 1230 struct ice_aq_task { 1231 struct hlist_node entry; 1232 1233 u16 opcode; 1234 struct ice_rq_event_info *event; 1235 enum ice_aq_task_state state; 1236 }; 1237 1238 /** 1239 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1240 * @pf: pointer to the PF private structure 1241 * @opcode: the opcode to wait for 1242 * @timeout: how long to wait, in jiffies 1243 * @event: storage for the event info 1244 * 1245 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1246 * current thread will be put to sleep until the specified event occurs or 1247 * until the given timeout is reached. 1248 * 1249 * To obtain only the descriptor contents, pass an event without an allocated 1250 * msg_buf. If the complete data buffer is desired, allocate the 1251 * event->msg_buf with enough space ahead of time. 1252 * 1253 * Returns: zero on success, or a negative error code on failure. 1254 */ 1255 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1256 struct ice_rq_event_info *event) 1257 { 1258 struct device *dev = ice_pf_to_dev(pf); 1259 struct ice_aq_task *task; 1260 unsigned long start; 1261 long ret; 1262 int err; 1263 1264 task = kzalloc(sizeof(*task), GFP_KERNEL); 1265 if (!task) 1266 return -ENOMEM; 1267 1268 INIT_HLIST_NODE(&task->entry); 1269 task->opcode = opcode; 1270 task->event = event; 1271 task->state = ICE_AQ_TASK_WAITING; 1272 1273 spin_lock_bh(&pf->aq_wait_lock); 1274 hlist_add_head(&task->entry, &pf->aq_wait_list); 1275 spin_unlock_bh(&pf->aq_wait_lock); 1276 1277 start = jiffies; 1278 1279 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1280 timeout); 1281 switch (task->state) { 1282 case ICE_AQ_TASK_WAITING: 1283 err = ret < 0 ? ret : -ETIMEDOUT; 1284 break; 1285 case ICE_AQ_TASK_CANCELED: 1286 err = ret < 0 ? ret : -ECANCELED; 1287 break; 1288 case ICE_AQ_TASK_COMPLETE: 1289 err = ret < 0 ? ret : 0; 1290 break; 1291 default: 1292 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1293 err = -EINVAL; 1294 break; 1295 } 1296 1297 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1298 jiffies_to_msecs(jiffies - start), 1299 jiffies_to_msecs(timeout), 1300 opcode); 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_del(&task->entry); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 kfree(task); 1306 1307 return err; 1308 } 1309 1310 /** 1311 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1312 * @pf: pointer to the PF private structure 1313 * @opcode: the opcode of the event 1314 * @event: the event to check 1315 * 1316 * Loops over the current list of pending threads waiting for an AdminQ event. 1317 * For each matching task, copy the contents of the event into the task 1318 * structure and wake up the thread. 1319 * 1320 * If multiple threads wait for the same opcode, they will all be woken up. 1321 * 1322 * Note that event->msg_buf will only be duplicated if the event has a buffer 1323 * with enough space already allocated. Otherwise, only the descriptor and 1324 * message length will be copied. 1325 * 1326 * Returns: true if an event was found, false otherwise 1327 */ 1328 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1329 struct ice_rq_event_info *event) 1330 { 1331 struct ice_aq_task *task; 1332 bool found = false; 1333 1334 spin_lock_bh(&pf->aq_wait_lock); 1335 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1336 if (task->state || task->opcode != opcode) 1337 continue; 1338 1339 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1340 task->event->msg_len = event->msg_len; 1341 1342 /* Only copy the data buffer if a destination was set */ 1343 if (task->event->msg_buf && 1344 task->event->buf_len > event->buf_len) { 1345 memcpy(task->event->msg_buf, event->msg_buf, 1346 event->buf_len); 1347 task->event->buf_len = event->buf_len; 1348 } 1349 1350 task->state = ICE_AQ_TASK_COMPLETE; 1351 found = true; 1352 } 1353 spin_unlock_bh(&pf->aq_wait_lock); 1354 1355 if (found) 1356 wake_up(&pf->aq_wait_queue); 1357 } 1358 1359 /** 1360 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1361 * @pf: the PF private structure 1362 * 1363 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1364 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1365 */ 1366 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1367 { 1368 struct ice_aq_task *task; 1369 1370 spin_lock_bh(&pf->aq_wait_lock); 1371 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1372 task->state = ICE_AQ_TASK_CANCELED; 1373 spin_unlock_bh(&pf->aq_wait_lock); 1374 1375 wake_up(&pf->aq_wait_queue); 1376 } 1377 1378 /** 1379 * __ice_clean_ctrlq - helper function to clean controlq rings 1380 * @pf: ptr to struct ice_pf 1381 * @q_type: specific Control queue type 1382 */ 1383 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1384 { 1385 struct device *dev = ice_pf_to_dev(pf); 1386 struct ice_rq_event_info event; 1387 struct ice_hw *hw = &pf->hw; 1388 struct ice_ctl_q_info *cq; 1389 u16 pending, i = 0; 1390 const char *qtype; 1391 u32 oldval, val; 1392 1393 /* Do not clean control queue if/when PF reset fails */ 1394 if (test_bit(ICE_RESET_FAILED, pf->state)) 1395 return 0; 1396 1397 switch (q_type) { 1398 case ICE_CTL_Q_ADMIN: 1399 cq = &hw->adminq; 1400 qtype = "Admin"; 1401 break; 1402 case ICE_CTL_Q_SB: 1403 cq = &hw->sbq; 1404 qtype = "Sideband"; 1405 break; 1406 case ICE_CTL_Q_MAILBOX: 1407 cq = &hw->mailboxq; 1408 qtype = "Mailbox"; 1409 /* we are going to try to detect a malicious VF, so set the 1410 * state to begin detection 1411 */ 1412 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1413 break; 1414 default: 1415 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1416 return 0; 1417 } 1418 1419 /* check for error indications - PF_xx_AxQLEN register layout for 1420 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1421 */ 1422 val = rd32(hw, cq->rq.len); 1423 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1424 PF_FW_ARQLEN_ARQCRIT_M)) { 1425 oldval = val; 1426 if (val & PF_FW_ARQLEN_ARQVFE_M) 1427 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1428 qtype); 1429 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1430 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1431 qtype); 1432 } 1433 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1434 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1435 qtype); 1436 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1437 PF_FW_ARQLEN_ARQCRIT_M); 1438 if (oldval != val) 1439 wr32(hw, cq->rq.len, val); 1440 } 1441 1442 val = rd32(hw, cq->sq.len); 1443 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1444 PF_FW_ATQLEN_ATQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ATQLEN_ATQVFE_M) 1447 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1450 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1454 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1457 PF_FW_ATQLEN_ATQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->sq.len, val); 1460 } 1461 1462 event.buf_len = cq->rq_buf_size; 1463 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1464 if (!event.msg_buf) 1465 return 0; 1466 1467 do { 1468 u16 opcode; 1469 int ret; 1470 1471 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1472 if (ret == -EALREADY) 1473 break; 1474 if (ret) { 1475 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1476 ret); 1477 break; 1478 } 1479 1480 opcode = le16_to_cpu(event.desc.opcode); 1481 1482 /* Notify any thread that might be waiting for this event */ 1483 ice_aq_check_events(pf, opcode, &event); 1484 1485 switch (opcode) { 1486 case ice_aqc_opc_get_link_status: 1487 if (ice_handle_link_event(pf, &event)) 1488 dev_err(dev, "Could not handle link event\n"); 1489 break; 1490 case ice_aqc_opc_event_lan_overflow: 1491 ice_vf_lan_overflow_event(pf, &event); 1492 break; 1493 case ice_mbx_opc_send_msg_to_pf: 1494 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1495 ice_vc_process_vf_msg(pf, &event); 1496 break; 1497 case ice_aqc_opc_fw_logging: 1498 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1499 break; 1500 case ice_aqc_opc_lldp_set_mib_change: 1501 ice_dcb_process_lldp_set_mib_change(pf, &event); 1502 break; 1503 default: 1504 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1505 qtype, opcode); 1506 break; 1507 } 1508 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1509 1510 kfree(event.msg_buf); 1511 1512 return pending && (i == ICE_DFLT_IRQ_WORK); 1513 } 1514 1515 /** 1516 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1517 * @hw: pointer to hardware info 1518 * @cq: control queue information 1519 * 1520 * returns true if there are pending messages in a queue, false if there aren't 1521 */ 1522 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1523 { 1524 u16 ntu; 1525 1526 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1527 return cq->rq.next_to_clean != ntu; 1528 } 1529 1530 /** 1531 * ice_clean_adminq_subtask - clean the AdminQ rings 1532 * @pf: board private structure 1533 */ 1534 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1535 { 1536 struct ice_hw *hw = &pf->hw; 1537 1538 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1539 return; 1540 1541 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1542 return; 1543 1544 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1545 1546 /* There might be a situation where new messages arrive to a control 1547 * queue between processing the last message and clearing the 1548 * EVENT_PENDING bit. So before exiting, check queue head again (using 1549 * ice_ctrlq_pending) and process new messages if any. 1550 */ 1551 if (ice_ctrlq_pending(hw, &hw->adminq)) 1552 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1553 1554 ice_flush(hw); 1555 } 1556 1557 /** 1558 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1559 * @pf: board private structure 1560 */ 1561 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1562 { 1563 struct ice_hw *hw = &pf->hw; 1564 1565 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1566 return; 1567 1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1569 return; 1570 1571 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1572 1573 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1574 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1575 1576 ice_flush(hw); 1577 } 1578 1579 /** 1580 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1581 * @pf: board private structure 1582 */ 1583 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1584 { 1585 struct ice_hw *hw = &pf->hw; 1586 1587 /* Nothing to do here if sideband queue is not supported */ 1588 if (!ice_is_sbq_supported(hw)) { 1589 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1590 return; 1591 } 1592 1593 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1594 return; 1595 1596 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1597 return; 1598 1599 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1600 1601 if (ice_ctrlq_pending(hw, &hw->sbq)) 1602 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1603 1604 ice_flush(hw); 1605 } 1606 1607 /** 1608 * ice_service_task_schedule - schedule the service task to wake up 1609 * @pf: board private structure 1610 * 1611 * If not already scheduled, this puts the task into the work queue. 1612 */ 1613 void ice_service_task_schedule(struct ice_pf *pf) 1614 { 1615 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1616 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1617 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1618 queue_work(ice_wq, &pf->serv_task); 1619 } 1620 1621 /** 1622 * ice_service_task_complete - finish up the service task 1623 * @pf: board private structure 1624 */ 1625 static void ice_service_task_complete(struct ice_pf *pf) 1626 { 1627 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1628 1629 /* force memory (pf->state) to sync before next service task */ 1630 smp_mb__before_atomic(); 1631 clear_bit(ICE_SERVICE_SCHED, pf->state); 1632 } 1633 1634 /** 1635 * ice_service_task_stop - stop service task and cancel works 1636 * @pf: board private structure 1637 * 1638 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1639 * 1 otherwise. 1640 */ 1641 static int ice_service_task_stop(struct ice_pf *pf) 1642 { 1643 int ret; 1644 1645 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1646 1647 if (pf->serv_tmr.function) 1648 del_timer_sync(&pf->serv_tmr); 1649 if (pf->serv_task.func) 1650 cancel_work_sync(&pf->serv_task); 1651 1652 clear_bit(ICE_SERVICE_SCHED, pf->state); 1653 return ret; 1654 } 1655 1656 /** 1657 * ice_service_task_restart - restart service task and schedule works 1658 * @pf: board private structure 1659 * 1660 * This function is needed for suspend and resume works (e.g WoL scenario) 1661 */ 1662 static void ice_service_task_restart(struct ice_pf *pf) 1663 { 1664 clear_bit(ICE_SERVICE_DIS, pf->state); 1665 ice_service_task_schedule(pf); 1666 } 1667 1668 /** 1669 * ice_service_timer - timer callback to schedule service task 1670 * @t: pointer to timer_list 1671 */ 1672 static void ice_service_timer(struct timer_list *t) 1673 { 1674 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1675 1676 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1677 ice_service_task_schedule(pf); 1678 } 1679 1680 /** 1681 * ice_handle_mdd_event - handle malicious driver detect event 1682 * @pf: pointer to the PF structure 1683 * 1684 * Called from service task. OICR interrupt handler indicates MDD event. 1685 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1686 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1687 * disable the queue, the PF can be configured to reset the VF using ethtool 1688 * private flag mdd-auto-reset-vf. 1689 */ 1690 static void ice_handle_mdd_event(struct ice_pf *pf) 1691 { 1692 struct device *dev = ice_pf_to_dev(pf); 1693 struct ice_hw *hw = &pf->hw; 1694 struct ice_vf *vf; 1695 unsigned int bkt; 1696 u32 reg; 1697 1698 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1699 /* Since the VF MDD event logging is rate limited, check if 1700 * there are pending MDD events. 1701 */ 1702 ice_print_vfs_mdd_events(pf); 1703 return; 1704 } 1705 1706 /* find what triggered an MDD event */ 1707 reg = rd32(hw, GL_MDET_TX_PQM); 1708 if (reg & GL_MDET_TX_PQM_VALID_M) { 1709 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1710 GL_MDET_TX_PQM_PF_NUM_S; 1711 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1712 GL_MDET_TX_PQM_VF_NUM_S; 1713 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1714 GL_MDET_TX_PQM_MAL_TYPE_S; 1715 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1716 GL_MDET_TX_PQM_QNUM_S); 1717 1718 if (netif_msg_tx_err(pf)) 1719 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1720 event, queue, pf_num, vf_num); 1721 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1722 } 1723 1724 reg = rd32(hw, GL_MDET_TX_TCLAN); 1725 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1726 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1727 GL_MDET_TX_TCLAN_PF_NUM_S; 1728 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1729 GL_MDET_TX_TCLAN_VF_NUM_S; 1730 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1731 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1732 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1733 GL_MDET_TX_TCLAN_QNUM_S); 1734 1735 if (netif_msg_tx_err(pf)) 1736 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1737 event, queue, pf_num, vf_num); 1738 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1739 } 1740 1741 reg = rd32(hw, GL_MDET_RX); 1742 if (reg & GL_MDET_RX_VALID_M) { 1743 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1744 GL_MDET_RX_PF_NUM_S; 1745 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1746 GL_MDET_RX_VF_NUM_S; 1747 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1748 GL_MDET_RX_MAL_TYPE_S; 1749 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1750 GL_MDET_RX_QNUM_S); 1751 1752 if (netif_msg_rx_err(pf)) 1753 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1754 event, queue, pf_num, vf_num); 1755 wr32(hw, GL_MDET_RX, 0xffffffff); 1756 } 1757 1758 /* check to see if this PF caused an MDD event */ 1759 reg = rd32(hw, PF_MDET_TX_PQM); 1760 if (reg & PF_MDET_TX_PQM_VALID_M) { 1761 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1764 } 1765 1766 reg = rd32(hw, PF_MDET_TX_TCLAN); 1767 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1768 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1769 if (netif_msg_tx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1771 } 1772 1773 reg = rd32(hw, PF_MDET_RX); 1774 if (reg & PF_MDET_RX_VALID_M) { 1775 wr32(hw, PF_MDET_RX, 0xFFFF); 1776 if (netif_msg_rx_err(pf)) 1777 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1778 } 1779 1780 /* Check to see if one of the VFs caused an MDD event, and then 1781 * increment counters and set print pending 1782 */ 1783 mutex_lock(&pf->vfs.table_lock); 1784 ice_for_each_vf(pf, bkt, vf) { 1785 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1786 if (reg & VP_MDET_TX_PQM_VALID_M) { 1787 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1788 vf->mdd_tx_events.count++; 1789 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1790 if (netif_msg_tx_err(pf)) 1791 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1792 vf->vf_id); 1793 } 1794 1795 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1796 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1797 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1798 vf->mdd_tx_events.count++; 1799 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1800 if (netif_msg_tx_err(pf)) 1801 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1802 vf->vf_id); 1803 } 1804 1805 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1806 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1807 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1808 vf->mdd_tx_events.count++; 1809 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1810 if (netif_msg_tx_err(pf)) 1811 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1812 vf->vf_id); 1813 } 1814 1815 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1816 if (reg & VP_MDET_RX_VALID_M) { 1817 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1818 vf->mdd_rx_events.count++; 1819 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1820 if (netif_msg_rx_err(pf)) 1821 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1822 vf->vf_id); 1823 1824 /* Since the queue is disabled on VF Rx MDD events, the 1825 * PF can be configured to reset the VF through ethtool 1826 * private flag mdd-auto-reset-vf. 1827 */ 1828 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1829 /* VF MDD event counters will be cleared by 1830 * reset, so print the event prior to reset. 1831 */ 1832 ice_print_vf_rx_mdd_event(vf); 1833 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1834 } 1835 } 1836 } 1837 mutex_unlock(&pf->vfs.table_lock); 1838 1839 ice_print_vfs_mdd_events(pf); 1840 } 1841 1842 /** 1843 * ice_force_phys_link_state - Force the physical link state 1844 * @vsi: VSI to force the physical link state to up/down 1845 * @link_up: true/false indicates to set the physical link to up/down 1846 * 1847 * Force the physical link state by getting the current PHY capabilities from 1848 * hardware and setting the PHY config based on the determined capabilities. If 1849 * link changes a link event will be triggered because both the Enable Automatic 1850 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1851 * 1852 * Returns 0 on success, negative on failure 1853 */ 1854 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1855 { 1856 struct ice_aqc_get_phy_caps_data *pcaps; 1857 struct ice_aqc_set_phy_cfg_data *cfg; 1858 struct ice_port_info *pi; 1859 struct device *dev; 1860 int retcode; 1861 1862 if (!vsi || !vsi->port_info || !vsi->back) 1863 return -EINVAL; 1864 if (vsi->type != ICE_VSI_PF) 1865 return 0; 1866 1867 dev = ice_pf_to_dev(vsi->back); 1868 1869 pi = vsi->port_info; 1870 1871 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1872 if (!pcaps) 1873 return -ENOMEM; 1874 1875 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1876 NULL); 1877 if (retcode) { 1878 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1879 vsi->vsi_num, retcode); 1880 retcode = -EIO; 1881 goto out; 1882 } 1883 1884 /* No change in link */ 1885 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1886 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1887 goto out; 1888 1889 /* Use the current user PHY configuration. The current user PHY 1890 * configuration is initialized during probe from PHY capabilities 1891 * software mode, and updated on set PHY configuration. 1892 */ 1893 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1894 if (!cfg) { 1895 retcode = -ENOMEM; 1896 goto out; 1897 } 1898 1899 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1900 if (link_up) 1901 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1902 else 1903 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1904 1905 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1906 if (retcode) { 1907 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1908 vsi->vsi_num, retcode); 1909 retcode = -EIO; 1910 } 1911 1912 kfree(cfg); 1913 out: 1914 kfree(pcaps); 1915 return retcode; 1916 } 1917 1918 /** 1919 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1920 * @pi: port info structure 1921 * 1922 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1923 */ 1924 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1925 { 1926 struct ice_aqc_get_phy_caps_data *pcaps; 1927 struct ice_pf *pf = pi->hw->back; 1928 int err; 1929 1930 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1931 if (!pcaps) 1932 return -ENOMEM; 1933 1934 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1935 pcaps, NULL); 1936 1937 if (err) { 1938 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1939 goto out; 1940 } 1941 1942 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1943 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1944 1945 out: 1946 kfree(pcaps); 1947 return err; 1948 } 1949 1950 /** 1951 * ice_init_link_dflt_override - Initialize link default override 1952 * @pi: port info structure 1953 * 1954 * Initialize link default override and PHY total port shutdown during probe 1955 */ 1956 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1957 { 1958 struct ice_link_default_override_tlv *ldo; 1959 struct ice_pf *pf = pi->hw->back; 1960 1961 ldo = &pf->link_dflt_override; 1962 if (ice_get_link_default_override(ldo, pi)) 1963 return; 1964 1965 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1966 return; 1967 1968 /* Enable Total Port Shutdown (override/replace link-down-on-close 1969 * ethtool private flag) for ports with Port Disable bit set. 1970 */ 1971 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1972 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1973 } 1974 1975 /** 1976 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1977 * @pi: port info structure 1978 * 1979 * If default override is enabled, initialize the user PHY cfg speed and FEC 1980 * settings using the default override mask from the NVM. 1981 * 1982 * The PHY should only be configured with the default override settings the 1983 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1984 * is used to indicate that the user PHY cfg default override is initialized 1985 * and the PHY has not been configured with the default override settings. The 1986 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1987 * configured. 1988 * 1989 * This function should be called only if the FW doesn't support default 1990 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1991 */ 1992 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1993 { 1994 struct ice_link_default_override_tlv *ldo; 1995 struct ice_aqc_set_phy_cfg_data *cfg; 1996 struct ice_phy_info *phy = &pi->phy; 1997 struct ice_pf *pf = pi->hw->back; 1998 1999 ldo = &pf->link_dflt_override; 2000 2001 /* If link default override is enabled, use to mask NVM PHY capabilities 2002 * for speed and FEC default configuration. 2003 */ 2004 cfg = &phy->curr_user_phy_cfg; 2005 2006 if (ldo->phy_type_low || ldo->phy_type_high) { 2007 cfg->phy_type_low = pf->nvm_phy_type_lo & 2008 cpu_to_le64(ldo->phy_type_low); 2009 cfg->phy_type_high = pf->nvm_phy_type_hi & 2010 cpu_to_le64(ldo->phy_type_high); 2011 } 2012 cfg->link_fec_opt = ldo->fec_options; 2013 phy->curr_user_fec_req = ICE_FEC_AUTO; 2014 2015 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2016 } 2017 2018 /** 2019 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2020 * @pi: port info structure 2021 * 2022 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2023 * mode to default. The PHY defaults are from get PHY capabilities topology 2024 * with media so call when media is first available. An error is returned if 2025 * called when media is not available. The PHY initialization completed state is 2026 * set here. 2027 * 2028 * These configurations are used when setting PHY 2029 * configuration. The user PHY configuration is updated on set PHY 2030 * configuration. Returns 0 on success, negative on failure 2031 */ 2032 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2033 { 2034 struct ice_aqc_get_phy_caps_data *pcaps; 2035 struct ice_phy_info *phy = &pi->phy; 2036 struct ice_pf *pf = pi->hw->back; 2037 int err; 2038 2039 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2040 return -EIO; 2041 2042 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2043 if (!pcaps) 2044 return -ENOMEM; 2045 2046 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2047 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2048 pcaps, NULL); 2049 else 2050 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2051 pcaps, NULL); 2052 if (err) { 2053 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2054 goto err_out; 2055 } 2056 2057 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2058 2059 /* check if lenient mode is supported and enabled */ 2060 if (ice_fw_supports_link_override(pi->hw) && 2061 !(pcaps->module_compliance_enforcement & 2062 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2063 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2064 2065 /* if the FW supports default PHY configuration mode, then the driver 2066 * does not have to apply link override settings. If not, 2067 * initialize user PHY configuration with link override values 2068 */ 2069 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2070 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2071 ice_init_phy_cfg_dflt_override(pi); 2072 goto out; 2073 } 2074 } 2075 2076 /* if link default override is not enabled, set user flow control and 2077 * FEC settings based on what get_phy_caps returned 2078 */ 2079 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2080 pcaps->link_fec_options); 2081 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2082 2083 out: 2084 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2085 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2086 err_out: 2087 kfree(pcaps); 2088 return err; 2089 } 2090 2091 /** 2092 * ice_configure_phy - configure PHY 2093 * @vsi: VSI of PHY 2094 * 2095 * Set the PHY configuration. If the current PHY configuration is the same as 2096 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2097 * configure the based get PHY capabilities for topology with media. 2098 */ 2099 static int ice_configure_phy(struct ice_vsi *vsi) 2100 { 2101 struct device *dev = ice_pf_to_dev(vsi->back); 2102 struct ice_port_info *pi = vsi->port_info; 2103 struct ice_aqc_get_phy_caps_data *pcaps; 2104 struct ice_aqc_set_phy_cfg_data *cfg; 2105 struct ice_phy_info *phy = &pi->phy; 2106 struct ice_pf *pf = vsi->back; 2107 int err; 2108 2109 /* Ensure we have media as we cannot configure a medialess port */ 2110 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2111 return -EPERM; 2112 2113 ice_print_topo_conflict(vsi); 2114 2115 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2116 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2117 return -EPERM; 2118 2119 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2120 return ice_force_phys_link_state(vsi, true); 2121 2122 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2123 if (!pcaps) 2124 return -ENOMEM; 2125 2126 /* Get current PHY config */ 2127 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2128 NULL); 2129 if (err) { 2130 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2131 vsi->vsi_num, err); 2132 goto done; 2133 } 2134 2135 /* If PHY enable link is configured and configuration has not changed, 2136 * there's nothing to do 2137 */ 2138 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2139 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2140 goto done; 2141 2142 /* Use PHY topology as baseline for configuration */ 2143 memset(pcaps, 0, sizeof(*pcaps)); 2144 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2146 pcaps, NULL); 2147 else 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2149 pcaps, NULL); 2150 if (err) { 2151 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2152 vsi->vsi_num, err); 2153 goto done; 2154 } 2155 2156 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2157 if (!cfg) { 2158 err = -ENOMEM; 2159 goto done; 2160 } 2161 2162 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2163 2164 /* Speed - If default override pending, use curr_user_phy_cfg set in 2165 * ice_init_phy_user_cfg_ldo. 2166 */ 2167 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2168 vsi->back->state)) { 2169 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2170 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2171 } else { 2172 u64 phy_low = 0, phy_high = 0; 2173 2174 ice_update_phy_type(&phy_low, &phy_high, 2175 pi->phy.curr_user_speed_req); 2176 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2177 cfg->phy_type_high = pcaps->phy_type_high & 2178 cpu_to_le64(phy_high); 2179 } 2180 2181 /* Can't provide what was requested; use PHY capabilities */ 2182 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2183 cfg->phy_type_low = pcaps->phy_type_low; 2184 cfg->phy_type_high = pcaps->phy_type_high; 2185 } 2186 2187 /* FEC */ 2188 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2189 2190 /* Can't provide what was requested; use PHY capabilities */ 2191 if (cfg->link_fec_opt != 2192 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2193 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2194 cfg->link_fec_opt = pcaps->link_fec_options; 2195 } 2196 2197 /* Flow Control - always supported; no need to check against 2198 * capabilities 2199 */ 2200 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2201 2202 /* Enable link and link update */ 2203 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2204 2205 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2206 if (err) 2207 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2208 vsi->vsi_num, err); 2209 2210 kfree(cfg); 2211 done: 2212 kfree(pcaps); 2213 return err; 2214 } 2215 2216 /** 2217 * ice_check_media_subtask - Check for media 2218 * @pf: pointer to PF struct 2219 * 2220 * If media is available, then initialize PHY user configuration if it is not 2221 * been, and configure the PHY if the interface is up. 2222 */ 2223 static void ice_check_media_subtask(struct ice_pf *pf) 2224 { 2225 struct ice_port_info *pi; 2226 struct ice_vsi *vsi; 2227 int err; 2228 2229 /* No need to check for media if it's already present */ 2230 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2231 return; 2232 2233 vsi = ice_get_main_vsi(pf); 2234 if (!vsi) 2235 return; 2236 2237 /* Refresh link info and check if media is present */ 2238 pi = vsi->port_info; 2239 err = ice_update_link_info(pi); 2240 if (err) 2241 return; 2242 2243 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2244 2245 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2246 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2247 ice_init_phy_user_cfg(pi); 2248 2249 /* PHY settings are reset on media insertion, reconfigure 2250 * PHY to preserve settings. 2251 */ 2252 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2253 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2254 return; 2255 2256 err = ice_configure_phy(vsi); 2257 if (!err) 2258 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2259 2260 /* A Link Status Event will be generated; the event handler 2261 * will complete bringing the interface up 2262 */ 2263 } 2264 } 2265 2266 /** 2267 * ice_service_task - manage and run subtasks 2268 * @work: pointer to work_struct contained by the PF struct 2269 */ 2270 static void ice_service_task(struct work_struct *work) 2271 { 2272 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2273 unsigned long start_time = jiffies; 2274 2275 /* subtasks */ 2276 2277 /* process reset requests first */ 2278 ice_reset_subtask(pf); 2279 2280 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2281 if (ice_is_reset_in_progress(pf->state) || 2282 test_bit(ICE_SUSPENDED, pf->state) || 2283 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2284 ice_service_task_complete(pf); 2285 return; 2286 } 2287 2288 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2289 struct iidc_event *event; 2290 2291 event = kzalloc(sizeof(*event), GFP_KERNEL); 2292 if (event) { 2293 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2294 /* report the entire OICR value to AUX driver */ 2295 swap(event->reg, pf->oicr_err_reg); 2296 ice_send_event_to_aux(pf, event); 2297 kfree(event); 2298 } 2299 } 2300 2301 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2302 /* Plug aux device per request */ 2303 ice_plug_aux_dev(pf); 2304 2305 /* Mark plugging as done but check whether unplug was 2306 * requested during ice_plug_aux_dev() call 2307 * (e.g. from ice_clear_rdma_cap()) and if so then 2308 * plug aux device. 2309 */ 2310 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2311 ice_unplug_aux_dev(pf); 2312 } 2313 2314 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2315 struct iidc_event *event; 2316 2317 event = kzalloc(sizeof(*event), GFP_KERNEL); 2318 if (event) { 2319 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2320 ice_send_event_to_aux(pf, event); 2321 kfree(event); 2322 } 2323 } 2324 2325 ice_clean_adminq_subtask(pf); 2326 ice_check_media_subtask(pf); 2327 ice_check_for_hang_subtask(pf); 2328 ice_sync_fltr_subtask(pf); 2329 ice_handle_mdd_event(pf); 2330 ice_watchdog_subtask(pf); 2331 2332 if (ice_is_safe_mode(pf)) { 2333 ice_service_task_complete(pf); 2334 return; 2335 } 2336 2337 ice_process_vflr_event(pf); 2338 ice_clean_mailboxq_subtask(pf); 2339 ice_clean_sbq_subtask(pf); 2340 ice_sync_arfs_fltrs(pf); 2341 ice_flush_fdir_ctx(pf); 2342 2343 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2344 ice_service_task_complete(pf); 2345 2346 /* If the tasks have taken longer than one service timer period 2347 * or there is more work to be done, reset the service timer to 2348 * schedule the service task now. 2349 */ 2350 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2351 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2352 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2353 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2354 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2355 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2356 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2357 mod_timer(&pf->serv_tmr, jiffies); 2358 } 2359 2360 /** 2361 * ice_set_ctrlq_len - helper function to set controlq length 2362 * @hw: pointer to the HW instance 2363 */ 2364 static void ice_set_ctrlq_len(struct ice_hw *hw) 2365 { 2366 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2367 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2368 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2369 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2370 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2371 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2372 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2373 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2374 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2375 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2376 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2377 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2378 } 2379 2380 /** 2381 * ice_schedule_reset - schedule a reset 2382 * @pf: board private structure 2383 * @reset: reset being requested 2384 */ 2385 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2386 { 2387 struct device *dev = ice_pf_to_dev(pf); 2388 2389 /* bail out if earlier reset has failed */ 2390 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2391 dev_dbg(dev, "earlier reset has failed\n"); 2392 return -EIO; 2393 } 2394 /* bail if reset/recovery already in progress */ 2395 if (ice_is_reset_in_progress(pf->state)) { 2396 dev_dbg(dev, "Reset already in progress\n"); 2397 return -EBUSY; 2398 } 2399 2400 ice_unplug_aux_dev(pf); 2401 2402 switch (reset) { 2403 case ICE_RESET_PFR: 2404 set_bit(ICE_PFR_REQ, pf->state); 2405 break; 2406 case ICE_RESET_CORER: 2407 set_bit(ICE_CORER_REQ, pf->state); 2408 break; 2409 case ICE_RESET_GLOBR: 2410 set_bit(ICE_GLOBR_REQ, pf->state); 2411 break; 2412 default: 2413 return -EINVAL; 2414 } 2415 2416 ice_service_task_schedule(pf); 2417 return 0; 2418 } 2419 2420 /** 2421 * ice_irq_affinity_notify - Callback for affinity changes 2422 * @notify: context as to what irq was changed 2423 * @mask: the new affinity mask 2424 * 2425 * This is a callback function used by the irq_set_affinity_notifier function 2426 * so that we may register to receive changes to the irq affinity masks. 2427 */ 2428 static void 2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2430 const cpumask_t *mask) 2431 { 2432 struct ice_q_vector *q_vector = 2433 container_of(notify, struct ice_q_vector, affinity_notify); 2434 2435 cpumask_copy(&q_vector->affinity_mask, mask); 2436 } 2437 2438 /** 2439 * ice_irq_affinity_release - Callback for affinity notifier release 2440 * @ref: internal core kernel usage 2441 * 2442 * This is a callback function used by the irq_set_affinity_notifier function 2443 * to inform the current notification subscriber that they will no longer 2444 * receive notifications. 2445 */ 2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2447 2448 /** 2449 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2450 * @vsi: the VSI being configured 2451 */ 2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2453 { 2454 struct ice_hw *hw = &vsi->back->hw; 2455 int i; 2456 2457 ice_for_each_q_vector(vsi, i) 2458 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2459 2460 ice_flush(hw); 2461 return 0; 2462 } 2463 2464 /** 2465 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2466 * @vsi: the VSI being configured 2467 * @basename: name for the vector 2468 */ 2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2470 { 2471 int q_vectors = vsi->num_q_vectors; 2472 struct ice_pf *pf = vsi->back; 2473 int base = vsi->base_vector; 2474 struct device *dev; 2475 int rx_int_idx = 0; 2476 int tx_int_idx = 0; 2477 int vector, err; 2478 int irq_num; 2479 2480 dev = ice_pf_to_dev(pf); 2481 for (vector = 0; vector < q_vectors; vector++) { 2482 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2483 2484 irq_num = pf->msix_entries[base + vector].vector; 2485 2486 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2487 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2488 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2489 tx_int_idx++; 2490 } else if (q_vector->rx.rx_ring) { 2491 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2492 "%s-%s-%d", basename, "rx", rx_int_idx++); 2493 } else if (q_vector->tx.tx_ring) { 2494 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2495 "%s-%s-%d", basename, "tx", tx_int_idx++); 2496 } else { 2497 /* skip this unused q_vector */ 2498 continue; 2499 } 2500 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2501 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2502 IRQF_SHARED, q_vector->name, 2503 q_vector); 2504 else 2505 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2506 0, q_vector->name, q_vector); 2507 if (err) { 2508 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2509 err); 2510 goto free_q_irqs; 2511 } 2512 2513 /* register for affinity change notifications */ 2514 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2515 struct irq_affinity_notify *affinity_notify; 2516 2517 affinity_notify = &q_vector->affinity_notify; 2518 affinity_notify->notify = ice_irq_affinity_notify; 2519 affinity_notify->release = ice_irq_affinity_release; 2520 irq_set_affinity_notifier(irq_num, affinity_notify); 2521 } 2522 2523 /* assign the mask for this irq */ 2524 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2525 } 2526 2527 err = ice_set_cpu_rx_rmap(vsi); 2528 if (err) { 2529 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2530 vsi->vsi_num, ERR_PTR(err)); 2531 goto free_q_irqs; 2532 } 2533 2534 vsi->irqs_ready = true; 2535 return 0; 2536 2537 free_q_irqs: 2538 while (vector) { 2539 vector--; 2540 irq_num = pf->msix_entries[base + vector].vector; 2541 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2542 irq_set_affinity_notifier(irq_num, NULL); 2543 irq_set_affinity_hint(irq_num, NULL); 2544 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2545 } 2546 return err; 2547 } 2548 2549 /** 2550 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2551 * @vsi: VSI to setup Tx rings used by XDP 2552 * 2553 * Return 0 on success and negative value on error 2554 */ 2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2556 { 2557 struct device *dev = ice_pf_to_dev(vsi->back); 2558 struct ice_tx_desc *tx_desc; 2559 int i, j; 2560 2561 ice_for_each_xdp_txq(vsi, i) { 2562 u16 xdp_q_idx = vsi->alloc_txq + i; 2563 struct ice_tx_ring *xdp_ring; 2564 2565 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2566 2567 if (!xdp_ring) 2568 goto free_xdp_rings; 2569 2570 xdp_ring->q_index = xdp_q_idx; 2571 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2572 xdp_ring->vsi = vsi; 2573 xdp_ring->netdev = NULL; 2574 xdp_ring->dev = dev; 2575 xdp_ring->count = vsi->num_tx_desc; 2576 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2577 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2578 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2579 if (ice_setup_tx_ring(xdp_ring)) 2580 goto free_xdp_rings; 2581 ice_set_ring_xdp(xdp_ring); 2582 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2583 spin_lock_init(&xdp_ring->tx_lock); 2584 for (j = 0; j < xdp_ring->count; j++) { 2585 tx_desc = ICE_TX_DESC(xdp_ring, j); 2586 tx_desc->cmd_type_offset_bsz = 0; 2587 } 2588 } 2589 2590 ice_for_each_rxq(vsi, i) { 2591 if (static_key_enabled(&ice_xdp_locking_key)) 2592 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2593 else 2594 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2595 } 2596 2597 return 0; 2598 2599 free_xdp_rings: 2600 for (; i >= 0; i--) 2601 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2602 ice_free_tx_ring(vsi->xdp_rings[i]); 2603 return -ENOMEM; 2604 } 2605 2606 /** 2607 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2608 * @vsi: VSI to set the bpf prog on 2609 * @prog: the bpf prog pointer 2610 */ 2611 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2612 { 2613 struct bpf_prog *old_prog; 2614 int i; 2615 2616 old_prog = xchg(&vsi->xdp_prog, prog); 2617 if (old_prog) 2618 bpf_prog_put(old_prog); 2619 2620 ice_for_each_rxq(vsi, i) 2621 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2622 } 2623 2624 /** 2625 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2626 * @vsi: VSI to bring up Tx rings used by XDP 2627 * @prog: bpf program that will be assigned to VSI 2628 * 2629 * Return 0 on success and negative value on error 2630 */ 2631 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2632 { 2633 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2634 int xdp_rings_rem = vsi->num_xdp_txq; 2635 struct ice_pf *pf = vsi->back; 2636 struct ice_qs_cfg xdp_qs_cfg = { 2637 .qs_mutex = &pf->avail_q_mutex, 2638 .pf_map = pf->avail_txqs, 2639 .pf_map_size = pf->max_pf_txqs, 2640 .q_count = vsi->num_xdp_txq, 2641 .scatter_count = ICE_MAX_SCATTER_TXQS, 2642 .vsi_map = vsi->txq_map, 2643 .vsi_map_offset = vsi->alloc_txq, 2644 .mapping_mode = ICE_VSI_MAP_CONTIG 2645 }; 2646 struct device *dev; 2647 int i, v_idx; 2648 int status; 2649 2650 dev = ice_pf_to_dev(pf); 2651 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2652 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2653 if (!vsi->xdp_rings) 2654 return -ENOMEM; 2655 2656 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2657 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2658 goto err_map_xdp; 2659 2660 if (static_key_enabled(&ice_xdp_locking_key)) 2661 netdev_warn(vsi->netdev, 2662 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2663 2664 if (ice_xdp_alloc_setup_rings(vsi)) 2665 goto clear_xdp_rings; 2666 2667 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2668 ice_for_each_q_vector(vsi, v_idx) { 2669 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2670 int xdp_rings_per_v, q_id, q_base; 2671 2672 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2673 vsi->num_q_vectors - v_idx); 2674 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2675 2676 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2677 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2678 2679 xdp_ring->q_vector = q_vector; 2680 xdp_ring->next = q_vector->tx.tx_ring; 2681 q_vector->tx.tx_ring = xdp_ring; 2682 } 2683 xdp_rings_rem -= xdp_rings_per_v; 2684 } 2685 2686 /* omit the scheduler update if in reset path; XDP queues will be 2687 * taken into account at the end of ice_vsi_rebuild, where 2688 * ice_cfg_vsi_lan is being called 2689 */ 2690 if (ice_is_reset_in_progress(pf->state)) 2691 return 0; 2692 2693 /* tell the Tx scheduler that right now we have 2694 * additional queues 2695 */ 2696 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2697 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2698 2699 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2700 max_txqs); 2701 if (status) { 2702 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2703 status); 2704 goto clear_xdp_rings; 2705 } 2706 2707 /* assign the prog only when it's not already present on VSI; 2708 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2709 * VSI rebuild that happens under ethtool -L can expose us to 2710 * the bpf_prog refcount issues as we would be swapping same 2711 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2712 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2713 * this is not harmful as dev_xdp_install bumps the refcount 2714 * before calling the op exposed by the driver; 2715 */ 2716 if (!ice_is_xdp_ena_vsi(vsi)) 2717 ice_vsi_assign_bpf_prog(vsi, prog); 2718 2719 return 0; 2720 clear_xdp_rings: 2721 ice_for_each_xdp_txq(vsi, i) 2722 if (vsi->xdp_rings[i]) { 2723 kfree_rcu(vsi->xdp_rings[i], rcu); 2724 vsi->xdp_rings[i] = NULL; 2725 } 2726 2727 err_map_xdp: 2728 mutex_lock(&pf->avail_q_mutex); 2729 ice_for_each_xdp_txq(vsi, i) { 2730 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2731 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2732 } 2733 mutex_unlock(&pf->avail_q_mutex); 2734 2735 devm_kfree(dev, vsi->xdp_rings); 2736 return -ENOMEM; 2737 } 2738 2739 /** 2740 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2741 * @vsi: VSI to remove XDP rings 2742 * 2743 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2744 * resources 2745 */ 2746 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2747 { 2748 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2749 struct ice_pf *pf = vsi->back; 2750 int i, v_idx; 2751 2752 /* q_vectors are freed in reset path so there's no point in detaching 2753 * rings; in case of rebuild being triggered not from reset bits 2754 * in pf->state won't be set, so additionally check first q_vector 2755 * against NULL 2756 */ 2757 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2758 goto free_qmap; 2759 2760 ice_for_each_q_vector(vsi, v_idx) { 2761 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2762 struct ice_tx_ring *ring; 2763 2764 ice_for_each_tx_ring(ring, q_vector->tx) 2765 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2766 break; 2767 2768 /* restore the value of last node prior to XDP setup */ 2769 q_vector->tx.tx_ring = ring; 2770 } 2771 2772 free_qmap: 2773 mutex_lock(&pf->avail_q_mutex); 2774 ice_for_each_xdp_txq(vsi, i) { 2775 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2776 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2777 } 2778 mutex_unlock(&pf->avail_q_mutex); 2779 2780 ice_for_each_xdp_txq(vsi, i) 2781 if (vsi->xdp_rings[i]) { 2782 if (vsi->xdp_rings[i]->desc) { 2783 synchronize_rcu(); 2784 ice_free_tx_ring(vsi->xdp_rings[i]); 2785 } 2786 kfree_rcu(vsi->xdp_rings[i], rcu); 2787 vsi->xdp_rings[i] = NULL; 2788 } 2789 2790 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2791 vsi->xdp_rings = NULL; 2792 2793 if (static_key_enabled(&ice_xdp_locking_key)) 2794 static_branch_dec(&ice_xdp_locking_key); 2795 2796 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2797 return 0; 2798 2799 ice_vsi_assign_bpf_prog(vsi, NULL); 2800 2801 /* notify Tx scheduler that we destroyed XDP queues and bring 2802 * back the old number of child nodes 2803 */ 2804 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2805 max_txqs[i] = vsi->num_txq; 2806 2807 /* change number of XDP Tx queues to 0 */ 2808 vsi->num_xdp_txq = 0; 2809 2810 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2811 max_txqs); 2812 } 2813 2814 /** 2815 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2816 * @vsi: VSI to schedule napi on 2817 */ 2818 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2819 { 2820 int i; 2821 2822 ice_for_each_rxq(vsi, i) { 2823 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2824 2825 if (rx_ring->xsk_pool) 2826 napi_schedule(&rx_ring->q_vector->napi); 2827 } 2828 } 2829 2830 /** 2831 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2832 * @vsi: VSI to determine the count of XDP Tx qs 2833 * 2834 * returns 0 if Tx qs count is higher than at least half of CPU count, 2835 * -ENOMEM otherwise 2836 */ 2837 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2838 { 2839 u16 avail = ice_get_avail_txq_count(vsi->back); 2840 u16 cpus = num_possible_cpus(); 2841 2842 if (avail < cpus / 2) 2843 return -ENOMEM; 2844 2845 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2846 2847 if (vsi->num_xdp_txq < cpus) 2848 static_branch_inc(&ice_xdp_locking_key); 2849 2850 return 0; 2851 } 2852 2853 /** 2854 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2855 * @vsi: VSI to setup XDP for 2856 * @prog: XDP program 2857 * @extack: netlink extended ack 2858 */ 2859 static int 2860 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2861 struct netlink_ext_ack *extack) 2862 { 2863 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2864 bool if_running = netif_running(vsi->netdev); 2865 int ret = 0, xdp_ring_err = 0; 2866 2867 if (frame_size > vsi->rx_buf_len) { 2868 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2869 return -EOPNOTSUPP; 2870 } 2871 2872 /* need to stop netdev while setting up the program for Rx rings */ 2873 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2874 ret = ice_down(vsi); 2875 if (ret) { 2876 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2877 return ret; 2878 } 2879 } 2880 2881 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2882 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2883 if (xdp_ring_err) { 2884 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2885 } else { 2886 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2887 if (xdp_ring_err) 2888 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2889 } 2890 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2891 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2892 if (xdp_ring_err) 2893 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2894 } else { 2895 /* safe to call even when prog == vsi->xdp_prog as 2896 * dev_xdp_install in net/core/dev.c incremented prog's 2897 * refcount so corresponding bpf_prog_put won't cause 2898 * underflow 2899 */ 2900 ice_vsi_assign_bpf_prog(vsi, prog); 2901 } 2902 2903 if (if_running) 2904 ret = ice_up(vsi); 2905 2906 if (!ret && prog) 2907 ice_vsi_rx_napi_schedule(vsi); 2908 2909 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2910 } 2911 2912 /** 2913 * ice_xdp_safe_mode - XDP handler for safe mode 2914 * @dev: netdevice 2915 * @xdp: XDP command 2916 */ 2917 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2918 struct netdev_bpf *xdp) 2919 { 2920 NL_SET_ERR_MSG_MOD(xdp->extack, 2921 "Please provide working DDP firmware package in order to use XDP\n" 2922 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2923 return -EOPNOTSUPP; 2924 } 2925 2926 /** 2927 * ice_xdp - implements XDP handler 2928 * @dev: netdevice 2929 * @xdp: XDP command 2930 */ 2931 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2932 { 2933 struct ice_netdev_priv *np = netdev_priv(dev); 2934 struct ice_vsi *vsi = np->vsi; 2935 2936 if (vsi->type != ICE_VSI_PF) { 2937 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2938 return -EINVAL; 2939 } 2940 2941 switch (xdp->command) { 2942 case XDP_SETUP_PROG: 2943 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2944 case XDP_SETUP_XSK_POOL: 2945 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2946 xdp->xsk.queue_id); 2947 default: 2948 return -EINVAL; 2949 } 2950 } 2951 2952 /** 2953 * ice_ena_misc_vector - enable the non-queue interrupts 2954 * @pf: board private structure 2955 */ 2956 static void ice_ena_misc_vector(struct ice_pf *pf) 2957 { 2958 struct ice_hw *hw = &pf->hw; 2959 u32 val; 2960 2961 /* Disable anti-spoof detection interrupt to prevent spurious event 2962 * interrupts during a function reset. Anti-spoof functionally is 2963 * still supported. 2964 */ 2965 val = rd32(hw, GL_MDCK_TX_TDPU); 2966 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2967 wr32(hw, GL_MDCK_TX_TDPU, val); 2968 2969 /* clear things first */ 2970 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2971 rd32(hw, PFINT_OICR); /* read to clear */ 2972 2973 val = (PFINT_OICR_ECC_ERR_M | 2974 PFINT_OICR_MAL_DETECT_M | 2975 PFINT_OICR_GRST_M | 2976 PFINT_OICR_PCI_EXCEPTION_M | 2977 PFINT_OICR_VFLR_M | 2978 PFINT_OICR_HMC_ERR_M | 2979 PFINT_OICR_PE_PUSH_M | 2980 PFINT_OICR_PE_CRITERR_M); 2981 2982 wr32(hw, PFINT_OICR_ENA, val); 2983 2984 /* SW_ITR_IDX = 0, but don't change INTENA */ 2985 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2986 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2987 } 2988 2989 /** 2990 * ice_misc_intr - misc interrupt handler 2991 * @irq: interrupt number 2992 * @data: pointer to a q_vector 2993 */ 2994 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2995 { 2996 struct ice_pf *pf = (struct ice_pf *)data; 2997 struct ice_hw *hw = &pf->hw; 2998 irqreturn_t ret = IRQ_NONE; 2999 struct device *dev; 3000 u32 oicr, ena_mask; 3001 3002 dev = ice_pf_to_dev(pf); 3003 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3004 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3005 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3006 3007 oicr = rd32(hw, PFINT_OICR); 3008 ena_mask = rd32(hw, PFINT_OICR_ENA); 3009 3010 if (oicr & PFINT_OICR_SWINT_M) { 3011 ena_mask &= ~PFINT_OICR_SWINT_M; 3012 pf->sw_int_count++; 3013 } 3014 3015 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3016 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3017 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3018 } 3019 if (oicr & PFINT_OICR_VFLR_M) { 3020 /* disable any further VFLR event notifications */ 3021 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3022 u32 reg = rd32(hw, PFINT_OICR_ENA); 3023 3024 reg &= ~PFINT_OICR_VFLR_M; 3025 wr32(hw, PFINT_OICR_ENA, reg); 3026 } else { 3027 ena_mask &= ~PFINT_OICR_VFLR_M; 3028 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3029 } 3030 } 3031 3032 if (oicr & PFINT_OICR_GRST_M) { 3033 u32 reset; 3034 3035 /* we have a reset warning */ 3036 ena_mask &= ~PFINT_OICR_GRST_M; 3037 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3038 GLGEN_RSTAT_RESET_TYPE_S; 3039 3040 if (reset == ICE_RESET_CORER) 3041 pf->corer_count++; 3042 else if (reset == ICE_RESET_GLOBR) 3043 pf->globr_count++; 3044 else if (reset == ICE_RESET_EMPR) 3045 pf->empr_count++; 3046 else 3047 dev_dbg(dev, "Invalid reset type %d\n", reset); 3048 3049 /* If a reset cycle isn't already in progress, we set a bit in 3050 * pf->state so that the service task can start a reset/rebuild. 3051 */ 3052 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3053 if (reset == ICE_RESET_CORER) 3054 set_bit(ICE_CORER_RECV, pf->state); 3055 else if (reset == ICE_RESET_GLOBR) 3056 set_bit(ICE_GLOBR_RECV, pf->state); 3057 else 3058 set_bit(ICE_EMPR_RECV, pf->state); 3059 3060 /* There are couple of different bits at play here. 3061 * hw->reset_ongoing indicates whether the hardware is 3062 * in reset. This is set to true when a reset interrupt 3063 * is received and set back to false after the driver 3064 * has determined that the hardware is out of reset. 3065 * 3066 * ICE_RESET_OICR_RECV in pf->state indicates 3067 * that a post reset rebuild is required before the 3068 * driver is operational again. This is set above. 3069 * 3070 * As this is the start of the reset/rebuild cycle, set 3071 * both to indicate that. 3072 */ 3073 hw->reset_ongoing = true; 3074 } 3075 } 3076 3077 if (oicr & PFINT_OICR_TSYN_TX_M) { 3078 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3079 ice_ptp_process_ts(pf); 3080 } 3081 3082 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3083 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3084 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3085 3086 /* Save EVENTs from GTSYN register */ 3087 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3088 GLTSYN_STAT_EVENT1_M | 3089 GLTSYN_STAT_EVENT2_M); 3090 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3091 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3092 } 3093 3094 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3095 if (oicr & ICE_AUX_CRIT_ERR) { 3096 pf->oicr_err_reg |= oicr; 3097 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3098 ena_mask &= ~ICE_AUX_CRIT_ERR; 3099 } 3100 3101 /* Report any remaining unexpected interrupts */ 3102 oicr &= ena_mask; 3103 if (oicr) { 3104 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3105 /* If a critical error is pending there is no choice but to 3106 * reset the device. 3107 */ 3108 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3109 PFINT_OICR_ECC_ERR_M)) { 3110 set_bit(ICE_PFR_REQ, pf->state); 3111 ice_service_task_schedule(pf); 3112 } 3113 } 3114 ret = IRQ_HANDLED; 3115 3116 ice_service_task_schedule(pf); 3117 ice_irq_dynamic_ena(hw, NULL, NULL); 3118 3119 return ret; 3120 } 3121 3122 /** 3123 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3124 * @hw: pointer to HW structure 3125 */ 3126 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3127 { 3128 /* disable Admin queue Interrupt causes */ 3129 wr32(hw, PFINT_FW_CTL, 3130 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3131 3132 /* disable Mailbox queue Interrupt causes */ 3133 wr32(hw, PFINT_MBX_CTL, 3134 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3135 3136 wr32(hw, PFINT_SB_CTL, 3137 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3138 3139 /* disable Control queue Interrupt causes */ 3140 wr32(hw, PFINT_OICR_CTL, 3141 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3142 3143 ice_flush(hw); 3144 } 3145 3146 /** 3147 * ice_free_irq_msix_misc - Unroll misc vector setup 3148 * @pf: board private structure 3149 */ 3150 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3151 { 3152 struct ice_hw *hw = &pf->hw; 3153 3154 ice_dis_ctrlq_interrupts(hw); 3155 3156 /* disable OICR interrupt */ 3157 wr32(hw, PFINT_OICR_ENA, 0); 3158 ice_flush(hw); 3159 3160 if (pf->msix_entries) { 3161 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3162 devm_free_irq(ice_pf_to_dev(pf), 3163 pf->msix_entries[pf->oicr_idx].vector, pf); 3164 } 3165 3166 pf->num_avail_sw_msix += 1; 3167 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3168 } 3169 3170 /** 3171 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3172 * @hw: pointer to HW structure 3173 * @reg_idx: HW vector index to associate the control queue interrupts with 3174 */ 3175 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3176 { 3177 u32 val; 3178 3179 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3180 PFINT_OICR_CTL_CAUSE_ENA_M); 3181 wr32(hw, PFINT_OICR_CTL, val); 3182 3183 /* enable Admin queue Interrupt causes */ 3184 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3185 PFINT_FW_CTL_CAUSE_ENA_M); 3186 wr32(hw, PFINT_FW_CTL, val); 3187 3188 /* enable Mailbox queue Interrupt causes */ 3189 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3190 PFINT_MBX_CTL_CAUSE_ENA_M); 3191 wr32(hw, PFINT_MBX_CTL, val); 3192 3193 /* This enables Sideband queue Interrupt causes */ 3194 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3195 PFINT_SB_CTL_CAUSE_ENA_M); 3196 wr32(hw, PFINT_SB_CTL, val); 3197 3198 ice_flush(hw); 3199 } 3200 3201 /** 3202 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3203 * @pf: board private structure 3204 * 3205 * This sets up the handler for MSIX 0, which is used to manage the 3206 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3207 * when in MSI or Legacy interrupt mode. 3208 */ 3209 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3210 { 3211 struct device *dev = ice_pf_to_dev(pf); 3212 struct ice_hw *hw = &pf->hw; 3213 int oicr_idx, err = 0; 3214 3215 if (!pf->int_name[0]) 3216 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3217 dev_driver_string(dev), dev_name(dev)); 3218 3219 /* Do not request IRQ but do enable OICR interrupt since settings are 3220 * lost during reset. Note that this function is called only during 3221 * rebuild path and not while reset is in progress. 3222 */ 3223 if (ice_is_reset_in_progress(pf->state)) 3224 goto skip_req_irq; 3225 3226 /* reserve one vector in irq_tracker for misc interrupts */ 3227 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3228 if (oicr_idx < 0) 3229 return oicr_idx; 3230 3231 pf->num_avail_sw_msix -= 1; 3232 pf->oicr_idx = (u16)oicr_idx; 3233 3234 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3235 ice_misc_intr, 0, pf->int_name, pf); 3236 if (err) { 3237 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3238 pf->int_name, err); 3239 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3240 pf->num_avail_sw_msix += 1; 3241 return err; 3242 } 3243 3244 skip_req_irq: 3245 ice_ena_misc_vector(pf); 3246 3247 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3248 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3249 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3250 3251 ice_flush(hw); 3252 ice_irq_dynamic_ena(hw, NULL, NULL); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * ice_napi_add - register NAPI handler for the VSI 3259 * @vsi: VSI for which NAPI handler is to be registered 3260 * 3261 * This function is only called in the driver's load path. Registering the NAPI 3262 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3263 * reset/rebuild, etc.) 3264 */ 3265 static void ice_napi_add(struct ice_vsi *vsi) 3266 { 3267 int v_idx; 3268 3269 if (!vsi->netdev) 3270 return; 3271 3272 ice_for_each_q_vector(vsi, v_idx) 3273 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3274 ice_napi_poll, NAPI_POLL_WEIGHT); 3275 } 3276 3277 /** 3278 * ice_set_ops - set netdev and ethtools ops for the given netdev 3279 * @netdev: netdev instance 3280 */ 3281 static void ice_set_ops(struct net_device *netdev) 3282 { 3283 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3284 3285 if (ice_is_safe_mode(pf)) { 3286 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3287 ice_set_ethtool_safe_mode_ops(netdev); 3288 return; 3289 } 3290 3291 netdev->netdev_ops = &ice_netdev_ops; 3292 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3293 ice_set_ethtool_ops(netdev); 3294 } 3295 3296 /** 3297 * ice_set_netdev_features - set features for the given netdev 3298 * @netdev: netdev instance 3299 */ 3300 static void ice_set_netdev_features(struct net_device *netdev) 3301 { 3302 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3303 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3304 netdev_features_t csumo_features; 3305 netdev_features_t vlano_features; 3306 netdev_features_t dflt_features; 3307 netdev_features_t tso_features; 3308 3309 if (ice_is_safe_mode(pf)) { 3310 /* safe mode */ 3311 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3312 netdev->hw_features = netdev->features; 3313 return; 3314 } 3315 3316 dflt_features = NETIF_F_SG | 3317 NETIF_F_HIGHDMA | 3318 NETIF_F_NTUPLE | 3319 NETIF_F_RXHASH; 3320 3321 csumo_features = NETIF_F_RXCSUM | 3322 NETIF_F_IP_CSUM | 3323 NETIF_F_SCTP_CRC | 3324 NETIF_F_IPV6_CSUM; 3325 3326 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3327 NETIF_F_HW_VLAN_CTAG_TX | 3328 NETIF_F_HW_VLAN_CTAG_RX; 3329 3330 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3331 if (is_dvm_ena) 3332 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3333 3334 tso_features = NETIF_F_TSO | 3335 NETIF_F_TSO_ECN | 3336 NETIF_F_TSO6 | 3337 NETIF_F_GSO_GRE | 3338 NETIF_F_GSO_UDP_TUNNEL | 3339 NETIF_F_GSO_GRE_CSUM | 3340 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3341 NETIF_F_GSO_PARTIAL | 3342 NETIF_F_GSO_IPXIP4 | 3343 NETIF_F_GSO_IPXIP6 | 3344 NETIF_F_GSO_UDP_L4; 3345 3346 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3347 NETIF_F_GSO_GRE_CSUM; 3348 /* set features that user can change */ 3349 netdev->hw_features = dflt_features | csumo_features | 3350 vlano_features | tso_features; 3351 3352 /* add support for HW_CSUM on packets with MPLS header */ 3353 netdev->mpls_features = NETIF_F_HW_CSUM | 3354 NETIF_F_TSO | 3355 NETIF_F_TSO6; 3356 3357 /* enable features */ 3358 netdev->features |= netdev->hw_features; 3359 3360 netdev->hw_features |= NETIF_F_HW_TC; 3361 netdev->hw_features |= NETIF_F_LOOPBACK; 3362 3363 /* encap and VLAN devices inherit default, csumo and tso features */ 3364 netdev->hw_enc_features |= dflt_features | csumo_features | 3365 tso_features; 3366 netdev->vlan_features |= dflt_features | csumo_features | 3367 tso_features; 3368 3369 /* advertise support but don't enable by default since only one type of 3370 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3371 * type turns on the other has to be turned off. This is enforced by the 3372 * ice_fix_features() ndo callback. 3373 */ 3374 if (is_dvm_ena) 3375 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3376 NETIF_F_HW_VLAN_STAG_TX; 3377 } 3378 3379 /** 3380 * ice_cfg_netdev - Allocate, configure and register a netdev 3381 * @vsi: the VSI associated with the new netdev 3382 * 3383 * Returns 0 on success, negative value on failure 3384 */ 3385 static int ice_cfg_netdev(struct ice_vsi *vsi) 3386 { 3387 struct ice_netdev_priv *np; 3388 struct net_device *netdev; 3389 u8 mac_addr[ETH_ALEN]; 3390 3391 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3392 vsi->alloc_rxq); 3393 if (!netdev) 3394 return -ENOMEM; 3395 3396 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3397 vsi->netdev = netdev; 3398 np = netdev_priv(netdev); 3399 np->vsi = vsi; 3400 3401 ice_set_netdev_features(netdev); 3402 3403 ice_set_ops(netdev); 3404 3405 if (vsi->type == ICE_VSI_PF) { 3406 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3407 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3408 eth_hw_addr_set(netdev, mac_addr); 3409 ether_addr_copy(netdev->perm_addr, mac_addr); 3410 } 3411 3412 netdev->priv_flags |= IFF_UNICAST_FLT; 3413 3414 /* Setup netdev TC information */ 3415 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3416 3417 /* setup watchdog timeout value to be 5 second */ 3418 netdev->watchdog_timeo = 5 * HZ; 3419 3420 netdev->min_mtu = ETH_MIN_MTU; 3421 netdev->max_mtu = ICE_MAX_MTU; 3422 3423 return 0; 3424 } 3425 3426 /** 3427 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3428 * @lut: Lookup table 3429 * @rss_table_size: Lookup table size 3430 * @rss_size: Range of queue number for hashing 3431 */ 3432 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3433 { 3434 u16 i; 3435 3436 for (i = 0; i < rss_table_size; i++) 3437 lut[i] = i % rss_size; 3438 } 3439 3440 /** 3441 * ice_pf_vsi_setup - Set up a PF VSI 3442 * @pf: board private structure 3443 * @pi: pointer to the port_info instance 3444 * 3445 * Returns pointer to the successfully allocated VSI software struct 3446 * on success, otherwise returns NULL on failure. 3447 */ 3448 static struct ice_vsi * 3449 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3450 { 3451 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3452 } 3453 3454 static struct ice_vsi * 3455 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3456 struct ice_channel *ch) 3457 { 3458 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3459 } 3460 3461 /** 3462 * ice_ctrl_vsi_setup - Set up a control VSI 3463 * @pf: board private structure 3464 * @pi: pointer to the port_info instance 3465 * 3466 * Returns pointer to the successfully allocated VSI software struct 3467 * on success, otherwise returns NULL on failure. 3468 */ 3469 static struct ice_vsi * 3470 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3471 { 3472 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3473 } 3474 3475 /** 3476 * ice_lb_vsi_setup - Set up a loopback VSI 3477 * @pf: board private structure 3478 * @pi: pointer to the port_info instance 3479 * 3480 * Returns pointer to the successfully allocated VSI software struct 3481 * on success, otherwise returns NULL on failure. 3482 */ 3483 struct ice_vsi * 3484 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3485 { 3486 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3487 } 3488 3489 /** 3490 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3491 * @netdev: network interface to be adjusted 3492 * @proto: VLAN TPID 3493 * @vid: VLAN ID to be added 3494 * 3495 * net_device_ops implementation for adding VLAN IDs 3496 */ 3497 static int 3498 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3499 { 3500 struct ice_netdev_priv *np = netdev_priv(netdev); 3501 struct ice_vsi_vlan_ops *vlan_ops; 3502 struct ice_vsi *vsi = np->vsi; 3503 struct ice_vlan vlan; 3504 int ret; 3505 3506 /* VLAN 0 is added by default during load/reset */ 3507 if (!vid) 3508 return 0; 3509 3510 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3511 usleep_range(1000, 2000); 3512 3513 /* Add multicast promisc rule for the VLAN ID to be added if 3514 * all-multicast is currently enabled. 3515 */ 3516 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3517 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3518 ICE_MCAST_VLAN_PROMISC_BITS, 3519 vid); 3520 if (ret) 3521 goto finish; 3522 } 3523 3524 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3525 3526 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3527 * packets aren't pruned by the device's internal switch on Rx 3528 */ 3529 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3530 ret = vlan_ops->add_vlan(vsi, &vlan); 3531 if (ret) 3532 goto finish; 3533 3534 /* If all-multicast is currently enabled and this VLAN ID is only one 3535 * besides VLAN-0 we have to update look-up type of multicast promisc 3536 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3537 */ 3538 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3539 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3540 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3541 ICE_MCAST_PROMISC_BITS, 0); 3542 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3543 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3544 } 3545 3546 finish: 3547 clear_bit(ICE_CFG_BUSY, vsi->state); 3548 3549 return ret; 3550 } 3551 3552 /** 3553 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3554 * @netdev: network interface to be adjusted 3555 * @proto: VLAN TPID 3556 * @vid: VLAN ID to be removed 3557 * 3558 * net_device_ops implementation for removing VLAN IDs 3559 */ 3560 static int 3561 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3562 { 3563 struct ice_netdev_priv *np = netdev_priv(netdev); 3564 struct ice_vsi_vlan_ops *vlan_ops; 3565 struct ice_vsi *vsi = np->vsi; 3566 struct ice_vlan vlan; 3567 int ret; 3568 3569 /* don't allow removal of VLAN 0 */ 3570 if (!vid) 3571 return 0; 3572 3573 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3574 usleep_range(1000, 2000); 3575 3576 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3577 3578 /* Make sure VLAN delete is successful before updating VLAN 3579 * information 3580 */ 3581 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3582 ret = vlan_ops->del_vlan(vsi, &vlan); 3583 if (ret) 3584 goto finish; 3585 3586 /* Remove multicast promisc rule for the removed VLAN ID if 3587 * all-multicast is enabled. 3588 */ 3589 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3590 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3591 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3592 3593 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3594 /* Update look-up type of multicast promisc rule for VLAN 0 3595 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3596 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3597 */ 3598 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3599 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3600 ICE_MCAST_VLAN_PROMISC_BITS, 3601 0); 3602 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3603 ICE_MCAST_PROMISC_BITS, 0); 3604 } 3605 } 3606 3607 finish: 3608 clear_bit(ICE_CFG_BUSY, vsi->state); 3609 3610 return ret; 3611 } 3612 3613 /** 3614 * ice_rep_indr_tc_block_unbind 3615 * @cb_priv: indirection block private data 3616 */ 3617 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3618 { 3619 struct ice_indr_block_priv *indr_priv = cb_priv; 3620 3621 list_del(&indr_priv->list); 3622 kfree(indr_priv); 3623 } 3624 3625 /** 3626 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3627 * @vsi: VSI struct which has the netdev 3628 */ 3629 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3630 { 3631 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3632 3633 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3634 ice_rep_indr_tc_block_unbind); 3635 } 3636 3637 /** 3638 * ice_tc_indir_block_remove - clean indirect TC block notifications 3639 * @pf: PF structure 3640 */ 3641 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3642 { 3643 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3644 3645 if (!pf_vsi) 3646 return; 3647 3648 ice_tc_indir_block_unregister(pf_vsi); 3649 } 3650 3651 /** 3652 * ice_tc_indir_block_register - Register TC indirect block notifications 3653 * @vsi: VSI struct which has the netdev 3654 * 3655 * Returns 0 on success, negative value on failure 3656 */ 3657 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3658 { 3659 struct ice_netdev_priv *np; 3660 3661 if (!vsi || !vsi->netdev) 3662 return -EINVAL; 3663 3664 np = netdev_priv(vsi->netdev); 3665 3666 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3667 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3668 } 3669 3670 /** 3671 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3672 * @pf: board private structure 3673 * 3674 * Returns 0 on success, negative value on failure 3675 */ 3676 static int ice_setup_pf_sw(struct ice_pf *pf) 3677 { 3678 struct device *dev = ice_pf_to_dev(pf); 3679 bool dvm = ice_is_dvm_ena(&pf->hw); 3680 struct ice_vsi *vsi; 3681 int status; 3682 3683 if (ice_is_reset_in_progress(pf->state)) 3684 return -EBUSY; 3685 3686 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3687 if (status) 3688 return -EIO; 3689 3690 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3691 if (!vsi) 3692 return -ENOMEM; 3693 3694 /* init channel list */ 3695 INIT_LIST_HEAD(&vsi->ch_list); 3696 3697 status = ice_cfg_netdev(vsi); 3698 if (status) 3699 goto unroll_vsi_setup; 3700 /* netdev has to be configured before setting frame size */ 3701 ice_vsi_cfg_frame_size(vsi); 3702 3703 /* init indirect block notifications */ 3704 status = ice_tc_indir_block_register(vsi); 3705 if (status) { 3706 dev_err(dev, "Failed to register netdev notifier\n"); 3707 goto unroll_cfg_netdev; 3708 } 3709 3710 /* Setup DCB netlink interface */ 3711 ice_dcbnl_setup(vsi); 3712 3713 /* registering the NAPI handler requires both the queues and 3714 * netdev to be created, which are done in ice_pf_vsi_setup() 3715 * and ice_cfg_netdev() respectively 3716 */ 3717 ice_napi_add(vsi); 3718 3719 status = ice_init_mac_fltr(pf); 3720 if (status) 3721 goto unroll_napi_add; 3722 3723 return 0; 3724 3725 unroll_napi_add: 3726 ice_tc_indir_block_unregister(vsi); 3727 unroll_cfg_netdev: 3728 if (vsi) { 3729 ice_napi_del(vsi); 3730 if (vsi->netdev) { 3731 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3732 free_netdev(vsi->netdev); 3733 vsi->netdev = NULL; 3734 } 3735 } 3736 3737 unroll_vsi_setup: 3738 ice_vsi_release(vsi); 3739 return status; 3740 } 3741 3742 /** 3743 * ice_get_avail_q_count - Get count of queues in use 3744 * @pf_qmap: bitmap to get queue use count from 3745 * @lock: pointer to a mutex that protects access to pf_qmap 3746 * @size: size of the bitmap 3747 */ 3748 static u16 3749 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3750 { 3751 unsigned long bit; 3752 u16 count = 0; 3753 3754 mutex_lock(lock); 3755 for_each_clear_bit(bit, pf_qmap, size) 3756 count++; 3757 mutex_unlock(lock); 3758 3759 return count; 3760 } 3761 3762 /** 3763 * ice_get_avail_txq_count - Get count of Tx queues in use 3764 * @pf: pointer to an ice_pf instance 3765 */ 3766 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3767 { 3768 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3769 pf->max_pf_txqs); 3770 } 3771 3772 /** 3773 * ice_get_avail_rxq_count - Get count of Rx queues in use 3774 * @pf: pointer to an ice_pf instance 3775 */ 3776 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3777 { 3778 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3779 pf->max_pf_rxqs); 3780 } 3781 3782 /** 3783 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3784 * @pf: board private structure to initialize 3785 */ 3786 static void ice_deinit_pf(struct ice_pf *pf) 3787 { 3788 ice_service_task_stop(pf); 3789 mutex_destroy(&pf->adev_mutex); 3790 mutex_destroy(&pf->sw_mutex); 3791 mutex_destroy(&pf->tc_mutex); 3792 mutex_destroy(&pf->avail_q_mutex); 3793 mutex_destroy(&pf->vfs.table_lock); 3794 3795 if (pf->avail_txqs) { 3796 bitmap_free(pf->avail_txqs); 3797 pf->avail_txqs = NULL; 3798 } 3799 3800 if (pf->avail_rxqs) { 3801 bitmap_free(pf->avail_rxqs); 3802 pf->avail_rxqs = NULL; 3803 } 3804 3805 if (pf->ptp.clock) 3806 ptp_clock_unregister(pf->ptp.clock); 3807 } 3808 3809 /** 3810 * ice_set_pf_caps - set PFs capability flags 3811 * @pf: pointer to the PF instance 3812 */ 3813 static void ice_set_pf_caps(struct ice_pf *pf) 3814 { 3815 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3816 3817 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3818 if (func_caps->common_cap.rdma) 3819 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3820 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3821 if (func_caps->common_cap.dcb) 3822 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3823 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3824 if (func_caps->common_cap.sr_iov_1_1) { 3825 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3826 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3827 ICE_MAX_SRIOV_VFS); 3828 } 3829 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3830 if (func_caps->common_cap.rss_table_size) 3831 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3832 3833 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3834 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3835 u16 unused; 3836 3837 /* ctrl_vsi_idx will be set to a valid value when flow director 3838 * is setup by ice_init_fdir 3839 */ 3840 pf->ctrl_vsi_idx = ICE_NO_VSI; 3841 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3842 /* force guaranteed filter pool for PF */ 3843 ice_alloc_fd_guar_item(&pf->hw, &unused, 3844 func_caps->fd_fltr_guar); 3845 /* force shared filter pool for PF */ 3846 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3847 func_caps->fd_fltr_best_effort); 3848 } 3849 3850 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3851 if (func_caps->common_cap.ieee_1588) 3852 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3853 3854 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3855 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3856 } 3857 3858 /** 3859 * ice_init_pf - Initialize general software structures (struct ice_pf) 3860 * @pf: board private structure to initialize 3861 */ 3862 static int ice_init_pf(struct ice_pf *pf) 3863 { 3864 ice_set_pf_caps(pf); 3865 3866 mutex_init(&pf->sw_mutex); 3867 mutex_init(&pf->tc_mutex); 3868 mutex_init(&pf->adev_mutex); 3869 3870 INIT_HLIST_HEAD(&pf->aq_wait_list); 3871 spin_lock_init(&pf->aq_wait_lock); 3872 init_waitqueue_head(&pf->aq_wait_queue); 3873 3874 init_waitqueue_head(&pf->reset_wait_queue); 3875 3876 /* setup service timer and periodic service task */ 3877 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3878 pf->serv_tmr_period = HZ; 3879 INIT_WORK(&pf->serv_task, ice_service_task); 3880 clear_bit(ICE_SERVICE_SCHED, pf->state); 3881 3882 mutex_init(&pf->avail_q_mutex); 3883 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3884 if (!pf->avail_txqs) 3885 return -ENOMEM; 3886 3887 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3888 if (!pf->avail_rxqs) { 3889 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3890 pf->avail_txqs = NULL; 3891 return -ENOMEM; 3892 } 3893 3894 mutex_init(&pf->vfs.table_lock); 3895 hash_init(pf->vfs.table); 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3902 * @pf: board private structure 3903 * 3904 * compute the number of MSIX vectors required (v_budget) and request from 3905 * the OS. Return the number of vectors reserved or negative on failure 3906 */ 3907 static int ice_ena_msix_range(struct ice_pf *pf) 3908 { 3909 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3910 struct device *dev = ice_pf_to_dev(pf); 3911 int needed, err, i; 3912 3913 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3914 num_cpus = num_online_cpus(); 3915 3916 /* reserve for LAN miscellaneous handler */ 3917 needed = ICE_MIN_LAN_OICR_MSIX; 3918 if (v_left < needed) 3919 goto no_hw_vecs_left_err; 3920 v_budget += needed; 3921 v_left -= needed; 3922 3923 /* reserve for flow director */ 3924 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3925 needed = ICE_FDIR_MSIX; 3926 if (v_left < needed) 3927 goto no_hw_vecs_left_err; 3928 v_budget += needed; 3929 v_left -= needed; 3930 } 3931 3932 /* reserve for switchdev */ 3933 needed = ICE_ESWITCH_MSIX; 3934 if (v_left < needed) 3935 goto no_hw_vecs_left_err; 3936 v_budget += needed; 3937 v_left -= needed; 3938 3939 /* total used for non-traffic vectors */ 3940 v_other = v_budget; 3941 3942 /* reserve vectors for LAN traffic */ 3943 needed = num_cpus; 3944 if (v_left < needed) 3945 goto no_hw_vecs_left_err; 3946 pf->num_lan_msix = needed; 3947 v_budget += needed; 3948 v_left -= needed; 3949 3950 /* reserve vectors for RDMA auxiliary driver */ 3951 if (ice_is_rdma_ena(pf)) { 3952 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3953 if (v_left < needed) 3954 goto no_hw_vecs_left_err; 3955 pf->num_rdma_msix = needed; 3956 v_budget += needed; 3957 v_left -= needed; 3958 } 3959 3960 pf->msix_entries = devm_kcalloc(dev, v_budget, 3961 sizeof(*pf->msix_entries), GFP_KERNEL); 3962 if (!pf->msix_entries) { 3963 err = -ENOMEM; 3964 goto exit_err; 3965 } 3966 3967 for (i = 0; i < v_budget; i++) 3968 pf->msix_entries[i].entry = i; 3969 3970 /* actually reserve the vectors */ 3971 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3972 ICE_MIN_MSIX, v_budget); 3973 if (v_actual < 0) { 3974 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3975 err = v_actual; 3976 goto msix_err; 3977 } 3978 3979 if (v_actual < v_budget) { 3980 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3981 v_budget, v_actual); 3982 3983 if (v_actual < ICE_MIN_MSIX) { 3984 /* error if we can't get minimum vectors */ 3985 pci_disable_msix(pf->pdev); 3986 err = -ERANGE; 3987 goto msix_err; 3988 } else { 3989 int v_remain = v_actual - v_other; 3990 int v_rdma = 0, v_min_rdma = 0; 3991 3992 if (ice_is_rdma_ena(pf)) { 3993 /* Need at least 1 interrupt in addition to 3994 * AEQ MSIX 3995 */ 3996 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3997 v_min_rdma = ICE_MIN_RDMA_MSIX; 3998 } 3999 4000 if (v_actual == ICE_MIN_MSIX || 4001 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 4002 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 4003 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4004 4005 pf->num_rdma_msix = 0; 4006 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4007 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4008 (v_remain - v_rdma < v_rdma)) { 4009 /* Support minimum RDMA and give remaining 4010 * vectors to LAN MSIX 4011 */ 4012 pf->num_rdma_msix = v_min_rdma; 4013 pf->num_lan_msix = v_remain - v_min_rdma; 4014 } else { 4015 /* Split remaining MSIX with RDMA after 4016 * accounting for AEQ MSIX 4017 */ 4018 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4019 ICE_RDMA_NUM_AEQ_MSIX; 4020 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4021 } 4022 4023 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4024 pf->num_lan_msix); 4025 4026 if (ice_is_rdma_ena(pf)) 4027 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4028 pf->num_rdma_msix); 4029 } 4030 } 4031 4032 return v_actual; 4033 4034 msix_err: 4035 devm_kfree(dev, pf->msix_entries); 4036 goto exit_err; 4037 4038 no_hw_vecs_left_err: 4039 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 4040 needed, v_left); 4041 err = -ERANGE; 4042 exit_err: 4043 pf->num_rdma_msix = 0; 4044 pf->num_lan_msix = 0; 4045 return err; 4046 } 4047 4048 /** 4049 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4050 * @pf: board private structure 4051 */ 4052 static void ice_dis_msix(struct ice_pf *pf) 4053 { 4054 pci_disable_msix(pf->pdev); 4055 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4056 pf->msix_entries = NULL; 4057 } 4058 4059 /** 4060 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4061 * @pf: board private structure 4062 */ 4063 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4064 { 4065 ice_dis_msix(pf); 4066 4067 if (pf->irq_tracker) { 4068 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4069 pf->irq_tracker = NULL; 4070 } 4071 } 4072 4073 /** 4074 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4075 * @pf: board private structure to initialize 4076 */ 4077 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4078 { 4079 int vectors; 4080 4081 vectors = ice_ena_msix_range(pf); 4082 4083 if (vectors < 0) 4084 return vectors; 4085 4086 /* set up vector assignment tracking */ 4087 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4088 struct_size(pf->irq_tracker, list, vectors), 4089 GFP_KERNEL); 4090 if (!pf->irq_tracker) { 4091 ice_dis_msix(pf); 4092 return -ENOMEM; 4093 } 4094 4095 /* populate SW interrupts pool with number of OS granted IRQs. */ 4096 pf->num_avail_sw_msix = (u16)vectors; 4097 pf->irq_tracker->num_entries = (u16)vectors; 4098 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4099 4100 return 0; 4101 } 4102 4103 /** 4104 * ice_is_wol_supported - check if WoL is supported 4105 * @hw: pointer to hardware info 4106 * 4107 * Check if WoL is supported based on the HW configuration. 4108 * Returns true if NVM supports and enables WoL for this port, false otherwise 4109 */ 4110 bool ice_is_wol_supported(struct ice_hw *hw) 4111 { 4112 u16 wol_ctrl; 4113 4114 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4115 * word) indicates WoL is not supported on the corresponding PF ID. 4116 */ 4117 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4118 return false; 4119 4120 return !(BIT(hw->port_info->lport) & wol_ctrl); 4121 } 4122 4123 /** 4124 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4125 * @vsi: VSI being changed 4126 * @new_rx: new number of Rx queues 4127 * @new_tx: new number of Tx queues 4128 * 4129 * Only change the number of queues if new_tx, or new_rx is non-0. 4130 * 4131 * Returns 0 on success. 4132 */ 4133 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4134 { 4135 struct ice_pf *pf = vsi->back; 4136 int err = 0, timeout = 50; 4137 4138 if (!new_rx && !new_tx) 4139 return -EINVAL; 4140 4141 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4142 timeout--; 4143 if (!timeout) 4144 return -EBUSY; 4145 usleep_range(1000, 2000); 4146 } 4147 4148 if (new_tx) 4149 vsi->req_txq = (u16)new_tx; 4150 if (new_rx) 4151 vsi->req_rxq = (u16)new_rx; 4152 4153 /* set for the next time the netdev is started */ 4154 if (!netif_running(vsi->netdev)) { 4155 ice_vsi_rebuild(vsi, false); 4156 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4157 goto done; 4158 } 4159 4160 ice_vsi_close(vsi); 4161 ice_vsi_rebuild(vsi, false); 4162 ice_pf_dcb_recfg(pf); 4163 ice_vsi_open(vsi); 4164 done: 4165 clear_bit(ICE_CFG_BUSY, pf->state); 4166 return err; 4167 } 4168 4169 /** 4170 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4171 * @pf: PF to configure 4172 * 4173 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4174 * VSI can still Tx/Rx VLAN tagged packets. 4175 */ 4176 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4177 { 4178 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4179 struct ice_vsi_ctx *ctxt; 4180 struct ice_hw *hw; 4181 int status; 4182 4183 if (!vsi) 4184 return; 4185 4186 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4187 if (!ctxt) 4188 return; 4189 4190 hw = &pf->hw; 4191 ctxt->info = vsi->info; 4192 4193 ctxt->info.valid_sections = 4194 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4195 ICE_AQ_VSI_PROP_SECURITY_VALID | 4196 ICE_AQ_VSI_PROP_SW_VALID); 4197 4198 /* disable VLAN anti-spoof */ 4199 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4200 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4201 4202 /* disable VLAN pruning and keep all other settings */ 4203 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4204 4205 /* allow all VLANs on Tx and don't strip on Rx */ 4206 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4207 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4208 4209 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4210 if (status) { 4211 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4212 status, ice_aq_str(hw->adminq.sq_last_status)); 4213 } else { 4214 vsi->info.sec_flags = ctxt->info.sec_flags; 4215 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4216 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4217 } 4218 4219 kfree(ctxt); 4220 } 4221 4222 /** 4223 * ice_log_pkg_init - log result of DDP package load 4224 * @hw: pointer to hardware info 4225 * @state: state of package load 4226 */ 4227 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4228 { 4229 struct ice_pf *pf = hw->back; 4230 struct device *dev; 4231 4232 dev = ice_pf_to_dev(pf); 4233 4234 switch (state) { 4235 case ICE_DDP_PKG_SUCCESS: 4236 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4237 hw->active_pkg_name, 4238 hw->active_pkg_ver.major, 4239 hw->active_pkg_ver.minor, 4240 hw->active_pkg_ver.update, 4241 hw->active_pkg_ver.draft); 4242 break; 4243 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4244 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4245 hw->active_pkg_name, 4246 hw->active_pkg_ver.major, 4247 hw->active_pkg_ver.minor, 4248 hw->active_pkg_ver.update, 4249 hw->active_pkg_ver.draft); 4250 break; 4251 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4252 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4253 hw->active_pkg_name, 4254 hw->active_pkg_ver.major, 4255 hw->active_pkg_ver.minor, 4256 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4257 break; 4258 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4259 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4260 hw->active_pkg_name, 4261 hw->active_pkg_ver.major, 4262 hw->active_pkg_ver.minor, 4263 hw->active_pkg_ver.update, 4264 hw->active_pkg_ver.draft, 4265 hw->pkg_name, 4266 hw->pkg_ver.major, 4267 hw->pkg_ver.minor, 4268 hw->pkg_ver.update, 4269 hw->pkg_ver.draft); 4270 break; 4271 case ICE_DDP_PKG_FW_MISMATCH: 4272 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4273 break; 4274 case ICE_DDP_PKG_INVALID_FILE: 4275 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4276 break; 4277 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4278 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4279 break; 4280 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4281 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4282 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4283 break; 4284 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4285 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4286 break; 4287 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4288 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4289 break; 4290 case ICE_DDP_PKG_LOAD_ERROR: 4291 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4292 /* poll for reset to complete */ 4293 if (ice_check_reset(hw)) 4294 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4295 break; 4296 case ICE_DDP_PKG_ERR: 4297 default: 4298 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4299 break; 4300 } 4301 } 4302 4303 /** 4304 * ice_load_pkg - load/reload the DDP Package file 4305 * @firmware: firmware structure when firmware requested or NULL for reload 4306 * @pf: pointer to the PF instance 4307 * 4308 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4309 * initialize HW tables. 4310 */ 4311 static void 4312 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4313 { 4314 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4315 struct device *dev = ice_pf_to_dev(pf); 4316 struct ice_hw *hw = &pf->hw; 4317 4318 /* Load DDP Package */ 4319 if (firmware && !hw->pkg_copy) { 4320 state = ice_copy_and_init_pkg(hw, firmware->data, 4321 firmware->size); 4322 ice_log_pkg_init(hw, state); 4323 } else if (!firmware && hw->pkg_copy) { 4324 /* Reload package during rebuild after CORER/GLOBR reset */ 4325 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4326 ice_log_pkg_init(hw, state); 4327 } else { 4328 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4329 } 4330 4331 if (!ice_is_init_pkg_successful(state)) { 4332 /* Safe Mode */ 4333 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4334 return; 4335 } 4336 4337 /* Successful download package is the precondition for advanced 4338 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4339 */ 4340 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4341 } 4342 4343 /** 4344 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4345 * @pf: pointer to the PF structure 4346 * 4347 * There is no error returned here because the driver should be able to handle 4348 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4349 * specifically with Tx. 4350 */ 4351 static void ice_verify_cacheline_size(struct ice_pf *pf) 4352 { 4353 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4354 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4355 ICE_CACHE_LINE_BYTES); 4356 } 4357 4358 /** 4359 * ice_send_version - update firmware with driver version 4360 * @pf: PF struct 4361 * 4362 * Returns 0 on success, else error code 4363 */ 4364 static int ice_send_version(struct ice_pf *pf) 4365 { 4366 struct ice_driver_ver dv; 4367 4368 dv.major_ver = 0xff; 4369 dv.minor_ver = 0xff; 4370 dv.build_ver = 0xff; 4371 dv.subbuild_ver = 0; 4372 strscpy((char *)dv.driver_string, UTS_RELEASE, 4373 sizeof(dv.driver_string)); 4374 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4375 } 4376 4377 /** 4378 * ice_init_fdir - Initialize flow director VSI and configuration 4379 * @pf: pointer to the PF instance 4380 * 4381 * returns 0 on success, negative on error 4382 */ 4383 static int ice_init_fdir(struct ice_pf *pf) 4384 { 4385 struct device *dev = ice_pf_to_dev(pf); 4386 struct ice_vsi *ctrl_vsi; 4387 int err; 4388 4389 /* Side Band Flow Director needs to have a control VSI. 4390 * Allocate it and store it in the PF. 4391 */ 4392 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4393 if (!ctrl_vsi) { 4394 dev_dbg(dev, "could not create control VSI\n"); 4395 return -ENOMEM; 4396 } 4397 4398 err = ice_vsi_open_ctrl(ctrl_vsi); 4399 if (err) { 4400 dev_dbg(dev, "could not open control VSI\n"); 4401 goto err_vsi_open; 4402 } 4403 4404 mutex_init(&pf->hw.fdir_fltr_lock); 4405 4406 err = ice_fdir_create_dflt_rules(pf); 4407 if (err) 4408 goto err_fdir_rule; 4409 4410 return 0; 4411 4412 err_fdir_rule: 4413 ice_fdir_release_flows(&pf->hw); 4414 ice_vsi_close(ctrl_vsi); 4415 err_vsi_open: 4416 ice_vsi_release(ctrl_vsi); 4417 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4418 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4419 pf->ctrl_vsi_idx = ICE_NO_VSI; 4420 } 4421 return err; 4422 } 4423 4424 /** 4425 * ice_get_opt_fw_name - return optional firmware file name or NULL 4426 * @pf: pointer to the PF instance 4427 */ 4428 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4429 { 4430 /* Optional firmware name same as default with additional dash 4431 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4432 */ 4433 struct pci_dev *pdev = pf->pdev; 4434 char *opt_fw_filename; 4435 u64 dsn; 4436 4437 /* Determine the name of the optional file using the DSN (two 4438 * dwords following the start of the DSN Capability). 4439 */ 4440 dsn = pci_get_dsn(pdev); 4441 if (!dsn) 4442 return NULL; 4443 4444 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4445 if (!opt_fw_filename) 4446 return NULL; 4447 4448 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4449 ICE_DDP_PKG_PATH, dsn); 4450 4451 return opt_fw_filename; 4452 } 4453 4454 /** 4455 * ice_request_fw - Device initialization routine 4456 * @pf: pointer to the PF instance 4457 */ 4458 static void ice_request_fw(struct ice_pf *pf) 4459 { 4460 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4461 const struct firmware *firmware = NULL; 4462 struct device *dev = ice_pf_to_dev(pf); 4463 int err = 0; 4464 4465 /* optional device-specific DDP (if present) overrides the default DDP 4466 * package file. kernel logs a debug message if the file doesn't exist, 4467 * and warning messages for other errors. 4468 */ 4469 if (opt_fw_filename) { 4470 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4471 if (err) { 4472 kfree(opt_fw_filename); 4473 goto dflt_pkg_load; 4474 } 4475 4476 /* request for firmware was successful. Download to device */ 4477 ice_load_pkg(firmware, pf); 4478 kfree(opt_fw_filename); 4479 release_firmware(firmware); 4480 return; 4481 } 4482 4483 dflt_pkg_load: 4484 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4485 if (err) { 4486 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4487 return; 4488 } 4489 4490 /* request for firmware was successful. Download to device */ 4491 ice_load_pkg(firmware, pf); 4492 release_firmware(firmware); 4493 } 4494 4495 /** 4496 * ice_print_wake_reason - show the wake up cause in the log 4497 * @pf: pointer to the PF struct 4498 */ 4499 static void ice_print_wake_reason(struct ice_pf *pf) 4500 { 4501 u32 wus = pf->wakeup_reason; 4502 const char *wake_str; 4503 4504 /* if no wake event, nothing to print */ 4505 if (!wus) 4506 return; 4507 4508 if (wus & PFPM_WUS_LNKC_M) 4509 wake_str = "Link\n"; 4510 else if (wus & PFPM_WUS_MAG_M) 4511 wake_str = "Magic Packet\n"; 4512 else if (wus & PFPM_WUS_MNG_M) 4513 wake_str = "Management\n"; 4514 else if (wus & PFPM_WUS_FW_RST_WK_M) 4515 wake_str = "Firmware Reset\n"; 4516 else 4517 wake_str = "Unknown\n"; 4518 4519 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4520 } 4521 4522 /** 4523 * ice_register_netdev - register netdev and devlink port 4524 * @pf: pointer to the PF struct 4525 */ 4526 static int ice_register_netdev(struct ice_pf *pf) 4527 { 4528 struct ice_vsi *vsi; 4529 int err = 0; 4530 4531 vsi = ice_get_main_vsi(pf); 4532 if (!vsi || !vsi->netdev) 4533 return -EIO; 4534 4535 err = register_netdev(vsi->netdev); 4536 if (err) 4537 goto err_register_netdev; 4538 4539 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4540 netif_carrier_off(vsi->netdev); 4541 netif_tx_stop_all_queues(vsi->netdev); 4542 err = ice_devlink_create_pf_port(pf); 4543 if (err) 4544 goto err_devlink_create; 4545 4546 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4547 4548 return 0; 4549 err_devlink_create: 4550 unregister_netdev(vsi->netdev); 4551 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4552 err_register_netdev: 4553 free_netdev(vsi->netdev); 4554 vsi->netdev = NULL; 4555 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4556 return err; 4557 } 4558 4559 /** 4560 * ice_probe - Device initialization routine 4561 * @pdev: PCI device information struct 4562 * @ent: entry in ice_pci_tbl 4563 * 4564 * Returns 0 on success, negative on failure 4565 */ 4566 static int 4567 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4568 { 4569 struct device *dev = &pdev->dev; 4570 struct ice_pf *pf; 4571 struct ice_hw *hw; 4572 int i, err; 4573 4574 if (pdev->is_virtfn) { 4575 dev_err(dev, "can't probe a virtual function\n"); 4576 return -EINVAL; 4577 } 4578 4579 /* this driver uses devres, see 4580 * Documentation/driver-api/driver-model/devres.rst 4581 */ 4582 err = pcim_enable_device(pdev); 4583 if (err) 4584 return err; 4585 4586 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4587 if (err) { 4588 dev_err(dev, "BAR0 I/O map error %d\n", err); 4589 return err; 4590 } 4591 4592 pf = ice_allocate_pf(dev); 4593 if (!pf) 4594 return -ENOMEM; 4595 4596 /* initialize Auxiliary index to invalid value */ 4597 pf->aux_idx = -1; 4598 4599 /* set up for high or low DMA */ 4600 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4601 if (err) { 4602 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4603 return err; 4604 } 4605 4606 pci_enable_pcie_error_reporting(pdev); 4607 pci_set_master(pdev); 4608 4609 pf->pdev = pdev; 4610 pci_set_drvdata(pdev, pf); 4611 set_bit(ICE_DOWN, pf->state); 4612 /* Disable service task until DOWN bit is cleared */ 4613 set_bit(ICE_SERVICE_DIS, pf->state); 4614 4615 hw = &pf->hw; 4616 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4617 pci_save_state(pdev); 4618 4619 hw->back = pf; 4620 hw->vendor_id = pdev->vendor; 4621 hw->device_id = pdev->device; 4622 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4623 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4624 hw->subsystem_device_id = pdev->subsystem_device; 4625 hw->bus.device = PCI_SLOT(pdev->devfn); 4626 hw->bus.func = PCI_FUNC(pdev->devfn); 4627 ice_set_ctrlq_len(hw); 4628 4629 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4630 4631 #ifndef CONFIG_DYNAMIC_DEBUG 4632 if (debug < -1) 4633 hw->debug_mask = debug; 4634 #endif 4635 4636 err = ice_init_hw(hw); 4637 if (err) { 4638 dev_err(dev, "ice_init_hw failed: %d\n", err); 4639 err = -EIO; 4640 goto err_exit_unroll; 4641 } 4642 4643 ice_init_feature_support(pf); 4644 4645 ice_request_fw(pf); 4646 4647 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4648 * set in pf->state, which will cause ice_is_safe_mode to return 4649 * true 4650 */ 4651 if (ice_is_safe_mode(pf)) { 4652 /* we already got function/device capabilities but these don't 4653 * reflect what the driver needs to do in safe mode. Instead of 4654 * adding conditional logic everywhere to ignore these 4655 * device/function capabilities, override them. 4656 */ 4657 ice_set_safe_mode_caps(hw); 4658 } 4659 4660 hw->ucast_shared = true; 4661 4662 err = ice_init_pf(pf); 4663 if (err) { 4664 dev_err(dev, "ice_init_pf failed: %d\n", err); 4665 goto err_init_pf_unroll; 4666 } 4667 4668 ice_devlink_init_regions(pf); 4669 4670 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4671 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4672 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4673 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4674 i = 0; 4675 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4676 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4677 pf->hw.tnl.valid_count[TNL_VXLAN]; 4678 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4679 UDP_TUNNEL_TYPE_VXLAN; 4680 i++; 4681 } 4682 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4683 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4684 pf->hw.tnl.valid_count[TNL_GENEVE]; 4685 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4686 UDP_TUNNEL_TYPE_GENEVE; 4687 i++; 4688 } 4689 4690 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4691 if (!pf->num_alloc_vsi) { 4692 err = -EIO; 4693 goto err_init_pf_unroll; 4694 } 4695 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4696 dev_warn(&pf->pdev->dev, 4697 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4698 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4699 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4700 } 4701 4702 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4703 GFP_KERNEL); 4704 if (!pf->vsi) { 4705 err = -ENOMEM; 4706 goto err_init_pf_unroll; 4707 } 4708 4709 err = ice_init_interrupt_scheme(pf); 4710 if (err) { 4711 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4712 err = -EIO; 4713 goto err_init_vsi_unroll; 4714 } 4715 4716 /* In case of MSIX we are going to setup the misc vector right here 4717 * to handle admin queue events etc. In case of legacy and MSI 4718 * the misc functionality and queue processing is combined in 4719 * the same vector and that gets setup at open. 4720 */ 4721 err = ice_req_irq_msix_misc(pf); 4722 if (err) { 4723 dev_err(dev, "setup of misc vector failed: %d\n", err); 4724 goto err_init_interrupt_unroll; 4725 } 4726 4727 /* create switch struct for the switch element created by FW on boot */ 4728 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4729 if (!pf->first_sw) { 4730 err = -ENOMEM; 4731 goto err_msix_misc_unroll; 4732 } 4733 4734 if (hw->evb_veb) 4735 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4736 else 4737 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4738 4739 pf->first_sw->pf = pf; 4740 4741 /* record the sw_id available for later use */ 4742 pf->first_sw->sw_id = hw->port_info->sw_id; 4743 4744 err = ice_setup_pf_sw(pf); 4745 if (err) { 4746 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4747 goto err_alloc_sw_unroll; 4748 } 4749 4750 clear_bit(ICE_SERVICE_DIS, pf->state); 4751 4752 /* tell the firmware we are up */ 4753 err = ice_send_version(pf); 4754 if (err) { 4755 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4756 UTS_RELEASE, err); 4757 goto err_send_version_unroll; 4758 } 4759 4760 /* since everything is good, start the service timer */ 4761 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4762 4763 err = ice_init_link_events(pf->hw.port_info); 4764 if (err) { 4765 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4766 goto err_send_version_unroll; 4767 } 4768 4769 /* not a fatal error if this fails */ 4770 err = ice_init_nvm_phy_type(pf->hw.port_info); 4771 if (err) 4772 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4773 4774 /* not a fatal error if this fails */ 4775 err = ice_update_link_info(pf->hw.port_info); 4776 if (err) 4777 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4778 4779 ice_init_link_dflt_override(pf->hw.port_info); 4780 4781 ice_check_link_cfg_err(pf, 4782 pf->hw.port_info->phy.link_info.link_cfg_err); 4783 4784 /* if media available, initialize PHY settings */ 4785 if (pf->hw.port_info->phy.link_info.link_info & 4786 ICE_AQ_MEDIA_AVAILABLE) { 4787 /* not a fatal error if this fails */ 4788 err = ice_init_phy_user_cfg(pf->hw.port_info); 4789 if (err) 4790 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4791 4792 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4793 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4794 4795 if (vsi) 4796 ice_configure_phy(vsi); 4797 } 4798 } else { 4799 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4800 } 4801 4802 ice_verify_cacheline_size(pf); 4803 4804 /* Save wakeup reason register for later use */ 4805 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4806 4807 /* check for a power management event */ 4808 ice_print_wake_reason(pf); 4809 4810 /* clear wake status, all bits */ 4811 wr32(hw, PFPM_WUS, U32_MAX); 4812 4813 /* Disable WoL at init, wait for user to enable */ 4814 device_set_wakeup_enable(dev, false); 4815 4816 if (ice_is_safe_mode(pf)) { 4817 ice_set_safe_mode_vlan_cfg(pf); 4818 goto probe_done; 4819 } 4820 4821 /* initialize DDP driven features */ 4822 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4823 ice_ptp_init(pf); 4824 4825 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4826 ice_gnss_init(pf); 4827 4828 /* Note: Flow director init failure is non-fatal to load */ 4829 if (ice_init_fdir(pf)) 4830 dev_err(dev, "could not initialize flow director\n"); 4831 4832 /* Note: DCB init failure is non-fatal to load */ 4833 if (ice_init_pf_dcb(pf, false)) { 4834 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4835 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4836 } else { 4837 ice_cfg_lldp_mib_change(&pf->hw, true); 4838 } 4839 4840 if (ice_init_lag(pf)) 4841 dev_warn(dev, "Failed to init link aggregation support\n"); 4842 4843 /* print PCI link speed and width */ 4844 pcie_print_link_status(pf->pdev); 4845 4846 probe_done: 4847 err = ice_register_netdev(pf); 4848 if (err) 4849 goto err_netdev_reg; 4850 4851 err = ice_devlink_register_params(pf); 4852 if (err) 4853 goto err_netdev_reg; 4854 4855 /* ready to go, so clear down state bit */ 4856 clear_bit(ICE_DOWN, pf->state); 4857 if (ice_is_rdma_ena(pf)) { 4858 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4859 if (pf->aux_idx < 0) { 4860 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4861 err = -ENOMEM; 4862 goto err_devlink_reg_param; 4863 } 4864 4865 err = ice_init_rdma(pf); 4866 if (err) { 4867 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4868 err = -EIO; 4869 goto err_init_aux_unroll; 4870 } 4871 } else { 4872 dev_warn(dev, "RDMA is not supported on this device\n"); 4873 } 4874 4875 ice_devlink_register(pf); 4876 return 0; 4877 4878 err_init_aux_unroll: 4879 pf->adev = NULL; 4880 ida_free(&ice_aux_ida, pf->aux_idx); 4881 err_devlink_reg_param: 4882 ice_devlink_unregister_params(pf); 4883 err_netdev_reg: 4884 err_send_version_unroll: 4885 ice_vsi_release_all(pf); 4886 err_alloc_sw_unroll: 4887 set_bit(ICE_SERVICE_DIS, pf->state); 4888 set_bit(ICE_DOWN, pf->state); 4889 devm_kfree(dev, pf->first_sw); 4890 err_msix_misc_unroll: 4891 ice_free_irq_msix_misc(pf); 4892 err_init_interrupt_unroll: 4893 ice_clear_interrupt_scheme(pf); 4894 err_init_vsi_unroll: 4895 devm_kfree(dev, pf->vsi); 4896 err_init_pf_unroll: 4897 ice_deinit_pf(pf); 4898 ice_devlink_destroy_regions(pf); 4899 ice_deinit_hw(hw); 4900 err_exit_unroll: 4901 pci_disable_pcie_error_reporting(pdev); 4902 pci_disable_device(pdev); 4903 return err; 4904 } 4905 4906 /** 4907 * ice_set_wake - enable or disable Wake on LAN 4908 * @pf: pointer to the PF struct 4909 * 4910 * Simple helper for WoL control 4911 */ 4912 static void ice_set_wake(struct ice_pf *pf) 4913 { 4914 struct ice_hw *hw = &pf->hw; 4915 bool wol = pf->wol_ena; 4916 4917 /* clear wake state, otherwise new wake events won't fire */ 4918 wr32(hw, PFPM_WUS, U32_MAX); 4919 4920 /* enable / disable APM wake up, no RMW needed */ 4921 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4922 4923 /* set magic packet filter enabled */ 4924 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4925 } 4926 4927 /** 4928 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4929 * @pf: pointer to the PF struct 4930 * 4931 * Issue firmware command to enable multicast magic wake, making 4932 * sure that any locally administered address (LAA) is used for 4933 * wake, and that PF reset doesn't undo the LAA. 4934 */ 4935 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4936 { 4937 struct device *dev = ice_pf_to_dev(pf); 4938 struct ice_hw *hw = &pf->hw; 4939 u8 mac_addr[ETH_ALEN]; 4940 struct ice_vsi *vsi; 4941 int status; 4942 u8 flags; 4943 4944 if (!pf->wol_ena) 4945 return; 4946 4947 vsi = ice_get_main_vsi(pf); 4948 if (!vsi) 4949 return; 4950 4951 /* Get current MAC address in case it's an LAA */ 4952 if (vsi->netdev) 4953 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4954 else 4955 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4956 4957 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4958 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4959 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4960 4961 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4962 if (status) 4963 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4964 status, ice_aq_str(hw->adminq.sq_last_status)); 4965 } 4966 4967 /** 4968 * ice_remove - Device removal routine 4969 * @pdev: PCI device information struct 4970 */ 4971 static void ice_remove(struct pci_dev *pdev) 4972 { 4973 struct ice_pf *pf = pci_get_drvdata(pdev); 4974 int i; 4975 4976 ice_devlink_unregister(pf); 4977 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4978 if (!ice_is_reset_in_progress(pf->state)) 4979 break; 4980 msleep(100); 4981 } 4982 4983 ice_tc_indir_block_remove(pf); 4984 4985 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4986 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4987 ice_free_vfs(pf); 4988 } 4989 4990 ice_service_task_stop(pf); 4991 4992 ice_aq_cancel_waiting_tasks(pf); 4993 ice_unplug_aux_dev(pf); 4994 if (pf->aux_idx >= 0) 4995 ida_free(&ice_aux_ida, pf->aux_idx); 4996 ice_devlink_unregister_params(pf); 4997 set_bit(ICE_DOWN, pf->state); 4998 4999 ice_deinit_lag(pf); 5000 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5001 ice_ptp_release(pf); 5002 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5003 ice_gnss_exit(pf); 5004 if (!ice_is_safe_mode(pf)) 5005 ice_remove_arfs(pf); 5006 ice_setup_mc_magic_wake(pf); 5007 ice_vsi_release_all(pf); 5008 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5009 ice_set_wake(pf); 5010 ice_free_irq_msix_misc(pf); 5011 ice_for_each_vsi(pf, i) { 5012 if (!pf->vsi[i]) 5013 continue; 5014 ice_vsi_free_q_vectors(pf->vsi[i]); 5015 } 5016 ice_deinit_pf(pf); 5017 ice_devlink_destroy_regions(pf); 5018 ice_deinit_hw(&pf->hw); 5019 5020 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5021 * do it via ice_schedule_reset() since there is no need to rebuild 5022 * and the service task is already stopped. 5023 */ 5024 ice_reset(&pf->hw, ICE_RESET_PFR); 5025 pci_wait_for_pending_transaction(pdev); 5026 ice_clear_interrupt_scheme(pf); 5027 pci_disable_pcie_error_reporting(pdev); 5028 pci_disable_device(pdev); 5029 } 5030 5031 /** 5032 * ice_shutdown - PCI callback for shutting down device 5033 * @pdev: PCI device information struct 5034 */ 5035 static void ice_shutdown(struct pci_dev *pdev) 5036 { 5037 struct ice_pf *pf = pci_get_drvdata(pdev); 5038 5039 ice_remove(pdev); 5040 5041 if (system_state == SYSTEM_POWER_OFF) { 5042 pci_wake_from_d3(pdev, pf->wol_ena); 5043 pci_set_power_state(pdev, PCI_D3hot); 5044 } 5045 } 5046 5047 #ifdef CONFIG_PM 5048 /** 5049 * ice_prepare_for_shutdown - prep for PCI shutdown 5050 * @pf: board private structure 5051 * 5052 * Inform or close all dependent features in prep for PCI device shutdown 5053 */ 5054 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5055 { 5056 struct ice_hw *hw = &pf->hw; 5057 u32 v; 5058 5059 /* Notify VFs of impending reset */ 5060 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5061 ice_vc_notify_reset(pf); 5062 5063 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5064 5065 /* disable the VSIs and their queues that are not already DOWN */ 5066 ice_pf_dis_all_vsi(pf, false); 5067 5068 ice_for_each_vsi(pf, v) 5069 if (pf->vsi[v]) 5070 pf->vsi[v]->vsi_num = 0; 5071 5072 ice_shutdown_all_ctrlq(hw); 5073 } 5074 5075 /** 5076 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5077 * @pf: board private structure to reinitialize 5078 * 5079 * This routine reinitialize interrupt scheme that was cleared during 5080 * power management suspend callback. 5081 * 5082 * This should be called during resume routine to re-allocate the q_vectors 5083 * and reacquire interrupts. 5084 */ 5085 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5086 { 5087 struct device *dev = ice_pf_to_dev(pf); 5088 int ret, v; 5089 5090 /* Since we clear MSIX flag during suspend, we need to 5091 * set it back during resume... 5092 */ 5093 5094 ret = ice_init_interrupt_scheme(pf); 5095 if (ret) { 5096 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5097 return ret; 5098 } 5099 5100 /* Remap vectors and rings, after successful re-init interrupts */ 5101 ice_for_each_vsi(pf, v) { 5102 if (!pf->vsi[v]) 5103 continue; 5104 5105 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5106 if (ret) 5107 goto err_reinit; 5108 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5109 } 5110 5111 ret = ice_req_irq_msix_misc(pf); 5112 if (ret) { 5113 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5114 ret); 5115 goto err_reinit; 5116 } 5117 5118 return 0; 5119 5120 err_reinit: 5121 while (v--) 5122 if (pf->vsi[v]) 5123 ice_vsi_free_q_vectors(pf->vsi[v]); 5124 5125 return ret; 5126 } 5127 5128 /** 5129 * ice_suspend 5130 * @dev: generic device information structure 5131 * 5132 * Power Management callback to quiesce the device and prepare 5133 * for D3 transition. 5134 */ 5135 static int __maybe_unused ice_suspend(struct device *dev) 5136 { 5137 struct pci_dev *pdev = to_pci_dev(dev); 5138 struct ice_pf *pf; 5139 int disabled, v; 5140 5141 pf = pci_get_drvdata(pdev); 5142 5143 if (!ice_pf_state_is_nominal(pf)) { 5144 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5145 return -EBUSY; 5146 } 5147 5148 /* Stop watchdog tasks until resume completion. 5149 * Even though it is most likely that the service task is 5150 * disabled if the device is suspended or down, the service task's 5151 * state is controlled by a different state bit, and we should 5152 * store and honor whatever state that bit is in at this point. 5153 */ 5154 disabled = ice_service_task_stop(pf); 5155 5156 ice_unplug_aux_dev(pf); 5157 5158 /* Already suspended?, then there is nothing to do */ 5159 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5160 if (!disabled) 5161 ice_service_task_restart(pf); 5162 return 0; 5163 } 5164 5165 if (test_bit(ICE_DOWN, pf->state) || 5166 ice_is_reset_in_progress(pf->state)) { 5167 dev_err(dev, "can't suspend device in reset or already down\n"); 5168 if (!disabled) 5169 ice_service_task_restart(pf); 5170 return 0; 5171 } 5172 5173 ice_setup_mc_magic_wake(pf); 5174 5175 ice_prepare_for_shutdown(pf); 5176 5177 ice_set_wake(pf); 5178 5179 /* Free vectors, clear the interrupt scheme and release IRQs 5180 * for proper hibernation, especially with large number of CPUs. 5181 * Otherwise hibernation might fail when mapping all the vectors back 5182 * to CPU0. 5183 */ 5184 ice_free_irq_msix_misc(pf); 5185 ice_for_each_vsi(pf, v) { 5186 if (!pf->vsi[v]) 5187 continue; 5188 ice_vsi_free_q_vectors(pf->vsi[v]); 5189 } 5190 ice_clear_interrupt_scheme(pf); 5191 5192 pci_save_state(pdev); 5193 pci_wake_from_d3(pdev, pf->wol_ena); 5194 pci_set_power_state(pdev, PCI_D3hot); 5195 return 0; 5196 } 5197 5198 /** 5199 * ice_resume - PM callback for waking up from D3 5200 * @dev: generic device information structure 5201 */ 5202 static int __maybe_unused ice_resume(struct device *dev) 5203 { 5204 struct pci_dev *pdev = to_pci_dev(dev); 5205 enum ice_reset_req reset_type; 5206 struct ice_pf *pf; 5207 struct ice_hw *hw; 5208 int ret; 5209 5210 pci_set_power_state(pdev, PCI_D0); 5211 pci_restore_state(pdev); 5212 pci_save_state(pdev); 5213 5214 if (!pci_device_is_present(pdev)) 5215 return -ENODEV; 5216 5217 ret = pci_enable_device_mem(pdev); 5218 if (ret) { 5219 dev_err(dev, "Cannot enable device after suspend\n"); 5220 return ret; 5221 } 5222 5223 pf = pci_get_drvdata(pdev); 5224 hw = &pf->hw; 5225 5226 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5227 ice_print_wake_reason(pf); 5228 5229 /* We cleared the interrupt scheme when we suspended, so we need to 5230 * restore it now to resume device functionality. 5231 */ 5232 ret = ice_reinit_interrupt_scheme(pf); 5233 if (ret) 5234 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5235 5236 clear_bit(ICE_DOWN, pf->state); 5237 /* Now perform PF reset and rebuild */ 5238 reset_type = ICE_RESET_PFR; 5239 /* re-enable service task for reset, but allow reset to schedule it */ 5240 clear_bit(ICE_SERVICE_DIS, pf->state); 5241 5242 if (ice_schedule_reset(pf, reset_type)) 5243 dev_err(dev, "Reset during resume failed.\n"); 5244 5245 clear_bit(ICE_SUSPENDED, pf->state); 5246 ice_service_task_restart(pf); 5247 5248 /* Restart the service task */ 5249 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5250 5251 return 0; 5252 } 5253 #endif /* CONFIG_PM */ 5254 5255 /** 5256 * ice_pci_err_detected - warning that PCI error has been detected 5257 * @pdev: PCI device information struct 5258 * @err: the type of PCI error 5259 * 5260 * Called to warn that something happened on the PCI bus and the error handling 5261 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5262 */ 5263 static pci_ers_result_t 5264 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5265 { 5266 struct ice_pf *pf = pci_get_drvdata(pdev); 5267 5268 if (!pf) { 5269 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5270 __func__, err); 5271 return PCI_ERS_RESULT_DISCONNECT; 5272 } 5273 5274 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5275 ice_service_task_stop(pf); 5276 5277 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5278 set_bit(ICE_PFR_REQ, pf->state); 5279 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5280 } 5281 } 5282 5283 return PCI_ERS_RESULT_NEED_RESET; 5284 } 5285 5286 /** 5287 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5288 * @pdev: PCI device information struct 5289 * 5290 * Called to determine if the driver can recover from the PCI slot reset by 5291 * using a register read to determine if the device is recoverable. 5292 */ 5293 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5294 { 5295 struct ice_pf *pf = pci_get_drvdata(pdev); 5296 pci_ers_result_t result; 5297 int err; 5298 u32 reg; 5299 5300 err = pci_enable_device_mem(pdev); 5301 if (err) { 5302 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5303 err); 5304 result = PCI_ERS_RESULT_DISCONNECT; 5305 } else { 5306 pci_set_master(pdev); 5307 pci_restore_state(pdev); 5308 pci_save_state(pdev); 5309 pci_wake_from_d3(pdev, false); 5310 5311 /* Check for life */ 5312 reg = rd32(&pf->hw, GLGEN_RTRIG); 5313 if (!reg) 5314 result = PCI_ERS_RESULT_RECOVERED; 5315 else 5316 result = PCI_ERS_RESULT_DISCONNECT; 5317 } 5318 5319 return result; 5320 } 5321 5322 /** 5323 * ice_pci_err_resume - restart operations after PCI error recovery 5324 * @pdev: PCI device information struct 5325 * 5326 * Called to allow the driver to bring things back up after PCI error and/or 5327 * reset recovery have finished 5328 */ 5329 static void ice_pci_err_resume(struct pci_dev *pdev) 5330 { 5331 struct ice_pf *pf = pci_get_drvdata(pdev); 5332 5333 if (!pf) { 5334 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5335 __func__); 5336 return; 5337 } 5338 5339 if (test_bit(ICE_SUSPENDED, pf->state)) { 5340 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5341 __func__); 5342 return; 5343 } 5344 5345 ice_restore_all_vfs_msi_state(pdev); 5346 5347 ice_do_reset(pf, ICE_RESET_PFR); 5348 ice_service_task_restart(pf); 5349 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5350 } 5351 5352 /** 5353 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5354 * @pdev: PCI device information struct 5355 */ 5356 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5357 { 5358 struct ice_pf *pf = pci_get_drvdata(pdev); 5359 5360 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5361 ice_service_task_stop(pf); 5362 5363 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5364 set_bit(ICE_PFR_REQ, pf->state); 5365 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5366 } 5367 } 5368 } 5369 5370 /** 5371 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5372 * @pdev: PCI device information struct 5373 */ 5374 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5375 { 5376 ice_pci_err_resume(pdev); 5377 } 5378 5379 /* ice_pci_tbl - PCI Device ID Table 5380 * 5381 * Wildcard entries (PCI_ANY_ID) should come last 5382 * Last entry must be all 0s 5383 * 5384 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5385 * Class, Class Mask, private data (not used) } 5386 */ 5387 static const struct pci_device_id ice_pci_tbl[] = { 5388 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5389 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5390 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5391 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5392 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5393 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5394 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5395 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5396 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5397 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5398 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5399 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5400 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5401 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5402 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5403 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5404 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5405 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5406 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5407 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5408 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5409 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5410 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5411 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5412 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5413 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5414 /* required last entry */ 5415 { 0, } 5416 }; 5417 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5418 5419 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5420 5421 static const struct pci_error_handlers ice_pci_err_handler = { 5422 .error_detected = ice_pci_err_detected, 5423 .slot_reset = ice_pci_err_slot_reset, 5424 .reset_prepare = ice_pci_err_reset_prepare, 5425 .reset_done = ice_pci_err_reset_done, 5426 .resume = ice_pci_err_resume 5427 }; 5428 5429 static struct pci_driver ice_driver = { 5430 .name = KBUILD_MODNAME, 5431 .id_table = ice_pci_tbl, 5432 .probe = ice_probe, 5433 .remove = ice_remove, 5434 #ifdef CONFIG_PM 5435 .driver.pm = &ice_pm_ops, 5436 #endif /* CONFIG_PM */ 5437 .shutdown = ice_shutdown, 5438 .sriov_configure = ice_sriov_configure, 5439 .err_handler = &ice_pci_err_handler 5440 }; 5441 5442 /** 5443 * ice_module_init - Driver registration routine 5444 * 5445 * ice_module_init is the first routine called when the driver is 5446 * loaded. All it does is register with the PCI subsystem. 5447 */ 5448 static int __init ice_module_init(void) 5449 { 5450 int status; 5451 5452 pr_info("%s\n", ice_driver_string); 5453 pr_info("%s\n", ice_copyright); 5454 5455 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5456 if (!ice_wq) { 5457 pr_err("Failed to create workqueue\n"); 5458 return -ENOMEM; 5459 } 5460 5461 status = pci_register_driver(&ice_driver); 5462 if (status) { 5463 pr_err("failed to register PCI driver, err %d\n", status); 5464 destroy_workqueue(ice_wq); 5465 } 5466 5467 return status; 5468 } 5469 module_init(ice_module_init); 5470 5471 /** 5472 * ice_module_exit - Driver exit cleanup routine 5473 * 5474 * ice_module_exit is called just before the driver is removed 5475 * from memory. 5476 */ 5477 static void __exit ice_module_exit(void) 5478 { 5479 pci_unregister_driver(&ice_driver); 5480 destroy_workqueue(ice_wq); 5481 pr_info("module unloaded\n"); 5482 } 5483 module_exit(ice_module_exit); 5484 5485 /** 5486 * ice_set_mac_address - NDO callback to set MAC address 5487 * @netdev: network interface device structure 5488 * @pi: pointer to an address structure 5489 * 5490 * Returns 0 on success, negative on failure 5491 */ 5492 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5493 { 5494 struct ice_netdev_priv *np = netdev_priv(netdev); 5495 struct ice_vsi *vsi = np->vsi; 5496 struct ice_pf *pf = vsi->back; 5497 struct ice_hw *hw = &pf->hw; 5498 struct sockaddr *addr = pi; 5499 u8 old_mac[ETH_ALEN]; 5500 u8 flags = 0; 5501 u8 *mac; 5502 int err; 5503 5504 mac = (u8 *)addr->sa_data; 5505 5506 if (!is_valid_ether_addr(mac)) 5507 return -EADDRNOTAVAIL; 5508 5509 if (ether_addr_equal(netdev->dev_addr, mac)) { 5510 netdev_dbg(netdev, "already using mac %pM\n", mac); 5511 return 0; 5512 } 5513 5514 if (test_bit(ICE_DOWN, pf->state) || 5515 ice_is_reset_in_progress(pf->state)) { 5516 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5517 mac); 5518 return -EBUSY; 5519 } 5520 5521 if (ice_chnl_dmac_fltr_cnt(pf)) { 5522 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5523 mac); 5524 return -EAGAIN; 5525 } 5526 5527 netif_addr_lock_bh(netdev); 5528 ether_addr_copy(old_mac, netdev->dev_addr); 5529 /* change the netdev's MAC address */ 5530 eth_hw_addr_set(netdev, mac); 5531 netif_addr_unlock_bh(netdev); 5532 5533 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5534 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5535 if (err && err != -ENOENT) { 5536 err = -EADDRNOTAVAIL; 5537 goto err_update_filters; 5538 } 5539 5540 /* Add filter for new MAC. If filter exists, return success */ 5541 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5542 if (err == -EEXIST) { 5543 /* Although this MAC filter is already present in hardware it's 5544 * possible in some cases (e.g. bonding) that dev_addr was 5545 * modified outside of the driver and needs to be restored back 5546 * to this value. 5547 */ 5548 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5549 5550 return 0; 5551 } else if (err) { 5552 /* error if the new filter addition failed */ 5553 err = -EADDRNOTAVAIL; 5554 } 5555 5556 err_update_filters: 5557 if (err) { 5558 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5559 mac); 5560 netif_addr_lock_bh(netdev); 5561 eth_hw_addr_set(netdev, old_mac); 5562 netif_addr_unlock_bh(netdev); 5563 return err; 5564 } 5565 5566 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5567 netdev->dev_addr); 5568 5569 /* write new MAC address to the firmware */ 5570 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5571 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5572 if (err) { 5573 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5574 mac, err); 5575 } 5576 return 0; 5577 } 5578 5579 /** 5580 * ice_set_rx_mode - NDO callback to set the netdev filters 5581 * @netdev: network interface device structure 5582 */ 5583 static void ice_set_rx_mode(struct net_device *netdev) 5584 { 5585 struct ice_netdev_priv *np = netdev_priv(netdev); 5586 struct ice_vsi *vsi = np->vsi; 5587 5588 if (!vsi) 5589 return; 5590 5591 /* Set the flags to synchronize filters 5592 * ndo_set_rx_mode may be triggered even without a change in netdev 5593 * flags 5594 */ 5595 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5596 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5597 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5598 5599 /* schedule our worker thread which will take care of 5600 * applying the new filter changes 5601 */ 5602 ice_service_task_schedule(vsi->back); 5603 } 5604 5605 /** 5606 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5607 * @netdev: network interface device structure 5608 * @queue_index: Queue ID 5609 * @maxrate: maximum bandwidth in Mbps 5610 */ 5611 static int 5612 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5613 { 5614 struct ice_netdev_priv *np = netdev_priv(netdev); 5615 struct ice_vsi *vsi = np->vsi; 5616 u16 q_handle; 5617 int status; 5618 u8 tc; 5619 5620 /* Validate maxrate requested is within permitted range */ 5621 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5622 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5623 maxrate, queue_index); 5624 return -EINVAL; 5625 } 5626 5627 q_handle = vsi->tx_rings[queue_index]->q_handle; 5628 tc = ice_dcb_get_tc(vsi, queue_index); 5629 5630 /* Set BW back to default, when user set maxrate to 0 */ 5631 if (!maxrate) 5632 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5633 q_handle, ICE_MAX_BW); 5634 else 5635 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5636 q_handle, ICE_MAX_BW, maxrate * 1000); 5637 if (status) 5638 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5639 status); 5640 5641 return status; 5642 } 5643 5644 /** 5645 * ice_fdb_add - add an entry to the hardware database 5646 * @ndm: the input from the stack 5647 * @tb: pointer to array of nladdr (unused) 5648 * @dev: the net device pointer 5649 * @addr: the MAC address entry being added 5650 * @vid: VLAN ID 5651 * @flags: instructions from stack about fdb operation 5652 * @extack: netlink extended ack 5653 */ 5654 static int 5655 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5656 struct net_device *dev, const unsigned char *addr, u16 vid, 5657 u16 flags, struct netlink_ext_ack __always_unused *extack) 5658 { 5659 int err; 5660 5661 if (vid) { 5662 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5663 return -EINVAL; 5664 } 5665 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5666 netdev_err(dev, "FDB only supports static addresses\n"); 5667 return -EINVAL; 5668 } 5669 5670 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5671 err = dev_uc_add_excl(dev, addr); 5672 else if (is_multicast_ether_addr(addr)) 5673 err = dev_mc_add_excl(dev, addr); 5674 else 5675 err = -EINVAL; 5676 5677 /* Only return duplicate errors if NLM_F_EXCL is set */ 5678 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5679 err = 0; 5680 5681 return err; 5682 } 5683 5684 /** 5685 * ice_fdb_del - delete an entry from the hardware database 5686 * @ndm: the input from the stack 5687 * @tb: pointer to array of nladdr (unused) 5688 * @dev: the net device pointer 5689 * @addr: the MAC address entry being added 5690 * @vid: VLAN ID 5691 * @extack: netlink extended ack 5692 */ 5693 static int 5694 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5695 struct net_device *dev, const unsigned char *addr, 5696 __always_unused u16 vid, struct netlink_ext_ack *extack) 5697 { 5698 int err; 5699 5700 if (ndm->ndm_state & NUD_PERMANENT) { 5701 netdev_err(dev, "FDB only supports static addresses\n"); 5702 return -EINVAL; 5703 } 5704 5705 if (is_unicast_ether_addr(addr)) 5706 err = dev_uc_del(dev, addr); 5707 else if (is_multicast_ether_addr(addr)) 5708 err = dev_mc_del(dev, addr); 5709 else 5710 err = -EINVAL; 5711 5712 return err; 5713 } 5714 5715 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5716 NETIF_F_HW_VLAN_CTAG_TX | \ 5717 NETIF_F_HW_VLAN_STAG_RX | \ 5718 NETIF_F_HW_VLAN_STAG_TX) 5719 5720 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5721 NETIF_F_HW_VLAN_STAG_FILTER) 5722 5723 /** 5724 * ice_fix_features - fix the netdev features flags based on device limitations 5725 * @netdev: ptr to the netdev that flags are being fixed on 5726 * @features: features that need to be checked and possibly fixed 5727 * 5728 * Make sure any fixups are made to features in this callback. This enables the 5729 * driver to not have to check unsupported configurations throughout the driver 5730 * because that's the responsiblity of this callback. 5731 * 5732 * Single VLAN Mode (SVM) Supported Features: 5733 * NETIF_F_HW_VLAN_CTAG_FILTER 5734 * NETIF_F_HW_VLAN_CTAG_RX 5735 * NETIF_F_HW_VLAN_CTAG_TX 5736 * 5737 * Double VLAN Mode (DVM) Supported Features: 5738 * NETIF_F_HW_VLAN_CTAG_FILTER 5739 * NETIF_F_HW_VLAN_CTAG_RX 5740 * NETIF_F_HW_VLAN_CTAG_TX 5741 * 5742 * NETIF_F_HW_VLAN_STAG_FILTER 5743 * NETIF_HW_VLAN_STAG_RX 5744 * NETIF_HW_VLAN_STAG_TX 5745 * 5746 * Features that need fixing: 5747 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5748 * These are mutually exlusive as the VSI context cannot support multiple 5749 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5750 * is not done, then default to clearing the requested STAG offload 5751 * settings. 5752 * 5753 * All supported filtering has to be enabled or disabled together. For 5754 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5755 * together. If this is not done, then default to VLAN filtering disabled. 5756 * These are mutually exclusive as there is currently no way to 5757 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5758 * prune rules. 5759 */ 5760 static netdev_features_t 5761 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5762 { 5763 struct ice_netdev_priv *np = netdev_priv(netdev); 5764 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5765 bool cur_ctag, cur_stag, req_ctag, req_stag; 5766 5767 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5768 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5769 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5770 5771 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5772 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5773 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5774 5775 if (req_vlan_fltr != cur_vlan_fltr) { 5776 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5777 if (req_ctag && req_stag) { 5778 features |= NETIF_VLAN_FILTERING_FEATURES; 5779 } else if (!req_ctag && !req_stag) { 5780 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5781 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5782 (!cur_stag && req_stag && !cur_ctag)) { 5783 features |= NETIF_VLAN_FILTERING_FEATURES; 5784 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5785 } else if ((cur_ctag && !req_ctag && cur_stag) || 5786 (cur_stag && !req_stag && cur_ctag)) { 5787 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5788 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5789 } 5790 } else { 5791 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5792 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5793 5794 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5795 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5796 } 5797 } 5798 5799 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5800 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5801 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5802 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5803 NETIF_F_HW_VLAN_STAG_TX); 5804 } 5805 5806 return features; 5807 } 5808 5809 /** 5810 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5811 * @vsi: PF's VSI 5812 * @features: features used to determine VLAN offload settings 5813 * 5814 * First, determine the vlan_ethertype based on the VLAN offload bits in 5815 * features. Then determine if stripping and insertion should be enabled or 5816 * disabled. Finally enable or disable VLAN stripping and insertion. 5817 */ 5818 static int 5819 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5820 { 5821 bool enable_stripping = true, enable_insertion = true; 5822 struct ice_vsi_vlan_ops *vlan_ops; 5823 int strip_err = 0, insert_err = 0; 5824 u16 vlan_ethertype = 0; 5825 5826 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5827 5828 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5829 vlan_ethertype = ETH_P_8021AD; 5830 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5831 vlan_ethertype = ETH_P_8021Q; 5832 5833 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5834 enable_stripping = false; 5835 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5836 enable_insertion = false; 5837 5838 if (enable_stripping) 5839 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5840 else 5841 strip_err = vlan_ops->dis_stripping(vsi); 5842 5843 if (enable_insertion) 5844 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5845 else 5846 insert_err = vlan_ops->dis_insertion(vsi); 5847 5848 if (strip_err || insert_err) 5849 return -EIO; 5850 5851 return 0; 5852 } 5853 5854 /** 5855 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5856 * @vsi: PF's VSI 5857 * @features: features used to determine VLAN filtering settings 5858 * 5859 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5860 * features. 5861 */ 5862 static int 5863 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5864 { 5865 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5866 int err = 0; 5867 5868 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5869 * if either bit is set 5870 */ 5871 if (features & 5872 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5873 err = vlan_ops->ena_rx_filtering(vsi); 5874 else 5875 err = vlan_ops->dis_rx_filtering(vsi); 5876 5877 return err; 5878 } 5879 5880 /** 5881 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5882 * @netdev: ptr to the netdev being adjusted 5883 * @features: the feature set that the stack is suggesting 5884 * 5885 * Only update VLAN settings if the requested_vlan_features are different than 5886 * the current_vlan_features. 5887 */ 5888 static int 5889 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5890 { 5891 netdev_features_t current_vlan_features, requested_vlan_features; 5892 struct ice_netdev_priv *np = netdev_priv(netdev); 5893 struct ice_vsi *vsi = np->vsi; 5894 int err; 5895 5896 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5897 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5898 if (current_vlan_features ^ requested_vlan_features) { 5899 err = ice_set_vlan_offload_features(vsi, features); 5900 if (err) 5901 return err; 5902 } 5903 5904 current_vlan_features = netdev->features & 5905 NETIF_VLAN_FILTERING_FEATURES; 5906 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5907 if (current_vlan_features ^ requested_vlan_features) { 5908 err = ice_set_vlan_filtering_features(vsi, features); 5909 if (err) 5910 return err; 5911 } 5912 5913 return 0; 5914 } 5915 5916 /** 5917 * ice_set_loopback - turn on/off loopback mode on underlying PF 5918 * @vsi: ptr to VSI 5919 * @ena: flag to indicate the on/off setting 5920 */ 5921 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5922 { 5923 bool if_running = netif_running(vsi->netdev); 5924 int ret; 5925 5926 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5927 ret = ice_down(vsi); 5928 if (ret) { 5929 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5930 return ret; 5931 } 5932 } 5933 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 5934 if (ret) 5935 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 5936 if (if_running) 5937 ret = ice_up(vsi); 5938 5939 return ret; 5940 } 5941 5942 /** 5943 * ice_set_features - set the netdev feature flags 5944 * @netdev: ptr to the netdev being adjusted 5945 * @features: the feature set that the stack is suggesting 5946 */ 5947 static int 5948 ice_set_features(struct net_device *netdev, netdev_features_t features) 5949 { 5950 netdev_features_t changed = netdev->features ^ features; 5951 struct ice_netdev_priv *np = netdev_priv(netdev); 5952 struct ice_vsi *vsi = np->vsi; 5953 struct ice_pf *pf = vsi->back; 5954 int ret = 0; 5955 5956 /* Don't set any netdev advanced features with device in Safe Mode */ 5957 if (ice_is_safe_mode(pf)) { 5958 dev_err(ice_pf_to_dev(pf), 5959 "Device is in Safe Mode - not enabling advanced netdev features\n"); 5960 return ret; 5961 } 5962 5963 /* Do not change setting during reset */ 5964 if (ice_is_reset_in_progress(pf->state)) { 5965 dev_err(ice_pf_to_dev(pf), 5966 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5967 return -EBUSY; 5968 } 5969 5970 /* Multiple features can be changed in one call so keep features in 5971 * separate if/else statements to guarantee each feature is checked 5972 */ 5973 if (changed & NETIF_F_RXHASH) 5974 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 5975 5976 ret = ice_set_vlan_features(netdev, features); 5977 if (ret) 5978 return ret; 5979 5980 if (changed & NETIF_F_NTUPLE) { 5981 bool ena = !!(features & NETIF_F_NTUPLE); 5982 5983 ice_vsi_manage_fdir(vsi, ena); 5984 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 5985 } 5986 5987 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5988 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5989 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5990 return -EACCES; 5991 } 5992 5993 if (changed & NETIF_F_HW_TC) { 5994 bool ena = !!(features & NETIF_F_HW_TC); 5995 5996 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 5997 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5998 } 5999 6000 if (changed & NETIF_F_LOOPBACK) 6001 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6002 6003 return ret; 6004 } 6005 6006 /** 6007 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6008 * @vsi: VSI to setup VLAN properties for 6009 */ 6010 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6011 { 6012 int err; 6013 6014 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6015 if (err) 6016 return err; 6017 6018 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6019 if (err) 6020 return err; 6021 6022 return ice_vsi_add_vlan_zero(vsi); 6023 } 6024 6025 /** 6026 * ice_vsi_cfg - Setup the VSI 6027 * @vsi: the VSI being configured 6028 * 6029 * Return 0 on success and negative value on error 6030 */ 6031 int ice_vsi_cfg(struct ice_vsi *vsi) 6032 { 6033 int err; 6034 6035 if (vsi->netdev) { 6036 ice_set_rx_mode(vsi->netdev); 6037 6038 if (vsi->type != ICE_VSI_LB) { 6039 err = ice_vsi_vlan_setup(vsi); 6040 6041 if (err) 6042 return err; 6043 } 6044 } 6045 ice_vsi_cfg_dcb_rings(vsi); 6046 6047 err = ice_vsi_cfg_lan_txqs(vsi); 6048 if (!err && ice_is_xdp_ena_vsi(vsi)) 6049 err = ice_vsi_cfg_xdp_txqs(vsi); 6050 if (!err) 6051 err = ice_vsi_cfg_rxqs(vsi); 6052 6053 return err; 6054 } 6055 6056 /* THEORY OF MODERATION: 6057 * The ice driver hardware works differently than the hardware that DIMLIB was 6058 * originally made for. ice hardware doesn't have packet count limits that 6059 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6060 * which is hard-coded to a limit of 250,000 ints/second. 6061 * If not using dynamic moderation, the INTRL value can be modified 6062 * by ethtool rx-usecs-high. 6063 */ 6064 struct ice_dim { 6065 /* the throttle rate for interrupts, basically worst case delay before 6066 * an initial interrupt fires, value is stored in microseconds. 6067 */ 6068 u16 itr; 6069 }; 6070 6071 /* Make a different profile for Rx that doesn't allow quite so aggressive 6072 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6073 * second. 6074 */ 6075 static const struct ice_dim rx_profile[] = { 6076 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6077 {8}, /* 125,000 ints/s */ 6078 {16}, /* 62,500 ints/s */ 6079 {62}, /* 16,129 ints/s */ 6080 {126} /* 7,936 ints/s */ 6081 }; 6082 6083 /* The transmit profile, which has the same sorts of values 6084 * as the previous struct 6085 */ 6086 static const struct ice_dim tx_profile[] = { 6087 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6088 {8}, /* 125,000 ints/s */ 6089 {40}, /* 16,125 ints/s */ 6090 {128}, /* 7,812 ints/s */ 6091 {256} /* 3,906 ints/s */ 6092 }; 6093 6094 static void ice_tx_dim_work(struct work_struct *work) 6095 { 6096 struct ice_ring_container *rc; 6097 struct dim *dim; 6098 u16 itr; 6099 6100 dim = container_of(work, struct dim, work); 6101 rc = (struct ice_ring_container *)dim->priv; 6102 6103 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6104 6105 /* look up the values in our local table */ 6106 itr = tx_profile[dim->profile_ix].itr; 6107 6108 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6109 ice_write_itr(rc, itr); 6110 6111 dim->state = DIM_START_MEASURE; 6112 } 6113 6114 static void ice_rx_dim_work(struct work_struct *work) 6115 { 6116 struct ice_ring_container *rc; 6117 struct dim *dim; 6118 u16 itr; 6119 6120 dim = container_of(work, struct dim, work); 6121 rc = (struct ice_ring_container *)dim->priv; 6122 6123 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6124 6125 /* look up the values in our local table */ 6126 itr = rx_profile[dim->profile_ix].itr; 6127 6128 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6129 ice_write_itr(rc, itr); 6130 6131 dim->state = DIM_START_MEASURE; 6132 } 6133 6134 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6135 6136 /** 6137 * ice_init_moderation - set up interrupt moderation 6138 * @q_vector: the vector containing rings to be configured 6139 * 6140 * Set up interrupt moderation registers, with the intent to do the right thing 6141 * when called from reset or from probe, and whether or not dynamic moderation 6142 * is enabled or not. Take special care to write all the registers in both 6143 * dynamic moderation mode or not in order to make sure hardware is in a known 6144 * state. 6145 */ 6146 static void ice_init_moderation(struct ice_q_vector *q_vector) 6147 { 6148 struct ice_ring_container *rc; 6149 bool tx_dynamic, rx_dynamic; 6150 6151 rc = &q_vector->tx; 6152 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6153 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6154 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6155 rc->dim.priv = rc; 6156 tx_dynamic = ITR_IS_DYNAMIC(rc); 6157 6158 /* set the initial TX ITR to match the above */ 6159 ice_write_itr(rc, tx_dynamic ? 6160 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6161 6162 rc = &q_vector->rx; 6163 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6164 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6165 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6166 rc->dim.priv = rc; 6167 rx_dynamic = ITR_IS_DYNAMIC(rc); 6168 6169 /* set the initial RX ITR to match the above */ 6170 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6171 rc->itr_setting); 6172 6173 ice_set_q_vector_intrl(q_vector); 6174 } 6175 6176 /** 6177 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6178 * @vsi: the VSI being configured 6179 */ 6180 static void ice_napi_enable_all(struct ice_vsi *vsi) 6181 { 6182 int q_idx; 6183 6184 if (!vsi->netdev) 6185 return; 6186 6187 ice_for_each_q_vector(vsi, q_idx) { 6188 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6189 6190 ice_init_moderation(q_vector); 6191 6192 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6193 napi_enable(&q_vector->napi); 6194 } 6195 } 6196 6197 /** 6198 * ice_up_complete - Finish the last steps of bringing up a connection 6199 * @vsi: The VSI being configured 6200 * 6201 * Return 0 on success and negative value on error 6202 */ 6203 static int ice_up_complete(struct ice_vsi *vsi) 6204 { 6205 struct ice_pf *pf = vsi->back; 6206 int err; 6207 6208 ice_vsi_cfg_msix(vsi); 6209 6210 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6211 * Tx queue group list was configured and the context bits were 6212 * programmed using ice_vsi_cfg_txqs 6213 */ 6214 err = ice_vsi_start_all_rx_rings(vsi); 6215 if (err) 6216 return err; 6217 6218 clear_bit(ICE_VSI_DOWN, vsi->state); 6219 ice_napi_enable_all(vsi); 6220 ice_vsi_ena_irq(vsi); 6221 6222 if (vsi->port_info && 6223 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6224 vsi->netdev) { 6225 ice_print_link_msg(vsi, true); 6226 netif_tx_start_all_queues(vsi->netdev); 6227 netif_carrier_on(vsi->netdev); 6228 if (!ice_is_e810(&pf->hw)) 6229 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6230 } 6231 6232 /* Perform an initial read of the statistics registers now to 6233 * set the baseline so counters are ready when interface is up 6234 */ 6235 ice_update_eth_stats(vsi); 6236 ice_service_task_schedule(pf); 6237 6238 return 0; 6239 } 6240 6241 /** 6242 * ice_up - Bring the connection back up after being down 6243 * @vsi: VSI being configured 6244 */ 6245 int ice_up(struct ice_vsi *vsi) 6246 { 6247 int err; 6248 6249 err = ice_vsi_cfg(vsi); 6250 if (!err) 6251 err = ice_up_complete(vsi); 6252 6253 return err; 6254 } 6255 6256 /** 6257 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6258 * @syncp: pointer to u64_stats_sync 6259 * @stats: stats that pkts and bytes count will be taken from 6260 * @pkts: packets stats counter 6261 * @bytes: bytes stats counter 6262 * 6263 * This function fetches stats from the ring considering the atomic operations 6264 * that needs to be performed to read u64 values in 32 bit machine. 6265 */ 6266 void 6267 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6268 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6269 { 6270 unsigned int start; 6271 6272 do { 6273 start = u64_stats_fetch_begin_irq(syncp); 6274 *pkts = stats.pkts; 6275 *bytes = stats.bytes; 6276 } while (u64_stats_fetch_retry_irq(syncp, start)); 6277 } 6278 6279 /** 6280 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6281 * @vsi: the VSI to be updated 6282 * @vsi_stats: the stats struct to be updated 6283 * @rings: rings to work on 6284 * @count: number of rings 6285 */ 6286 static void 6287 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6288 struct rtnl_link_stats64 *vsi_stats, 6289 struct ice_tx_ring **rings, u16 count) 6290 { 6291 u16 i; 6292 6293 for (i = 0; i < count; i++) { 6294 struct ice_tx_ring *ring; 6295 u64 pkts = 0, bytes = 0; 6296 6297 ring = READ_ONCE(rings[i]); 6298 if (!ring) 6299 continue; 6300 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6301 vsi_stats->tx_packets += pkts; 6302 vsi_stats->tx_bytes += bytes; 6303 vsi->tx_restart += ring->tx_stats.restart_q; 6304 vsi->tx_busy += ring->tx_stats.tx_busy; 6305 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6306 } 6307 } 6308 6309 /** 6310 * ice_update_vsi_ring_stats - Update VSI stats counters 6311 * @vsi: the VSI to be updated 6312 */ 6313 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6314 { 6315 struct rtnl_link_stats64 *vsi_stats; 6316 u64 pkts, bytes; 6317 int i; 6318 6319 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6320 if (!vsi_stats) 6321 return; 6322 6323 /* reset non-netdev (extended) stats */ 6324 vsi->tx_restart = 0; 6325 vsi->tx_busy = 0; 6326 vsi->tx_linearize = 0; 6327 vsi->rx_buf_failed = 0; 6328 vsi->rx_page_failed = 0; 6329 6330 rcu_read_lock(); 6331 6332 /* update Tx rings counters */ 6333 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6334 vsi->num_txq); 6335 6336 /* update Rx rings counters */ 6337 ice_for_each_rxq(vsi, i) { 6338 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6339 6340 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6341 vsi_stats->rx_packets += pkts; 6342 vsi_stats->rx_bytes += bytes; 6343 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6344 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6345 } 6346 6347 /* update XDP Tx rings counters */ 6348 if (ice_is_xdp_ena_vsi(vsi)) 6349 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6350 vsi->num_xdp_txq); 6351 6352 rcu_read_unlock(); 6353 6354 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6355 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6356 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6357 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6358 6359 kfree(vsi_stats); 6360 } 6361 6362 /** 6363 * ice_update_vsi_stats - Update VSI stats counters 6364 * @vsi: the VSI to be updated 6365 */ 6366 void ice_update_vsi_stats(struct ice_vsi *vsi) 6367 { 6368 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6369 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6370 struct ice_pf *pf = vsi->back; 6371 6372 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6373 test_bit(ICE_CFG_BUSY, pf->state)) 6374 return; 6375 6376 /* get stats as recorded by Tx/Rx rings */ 6377 ice_update_vsi_ring_stats(vsi); 6378 6379 /* get VSI stats as recorded by the hardware */ 6380 ice_update_eth_stats(vsi); 6381 6382 cur_ns->tx_errors = cur_es->tx_errors; 6383 cur_ns->rx_dropped = cur_es->rx_discards; 6384 cur_ns->tx_dropped = cur_es->tx_discards; 6385 cur_ns->multicast = cur_es->rx_multicast; 6386 6387 /* update some more netdev stats if this is main VSI */ 6388 if (vsi->type == ICE_VSI_PF) { 6389 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6390 cur_ns->rx_errors = pf->stats.crc_errors + 6391 pf->stats.illegal_bytes + 6392 pf->stats.rx_len_errors + 6393 pf->stats.rx_undersize + 6394 pf->hw_csum_rx_error + 6395 pf->stats.rx_jabber + 6396 pf->stats.rx_fragments + 6397 pf->stats.rx_oversize; 6398 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6399 /* record drops from the port level */ 6400 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6401 } 6402 } 6403 6404 /** 6405 * ice_update_pf_stats - Update PF port stats counters 6406 * @pf: PF whose stats needs to be updated 6407 */ 6408 void ice_update_pf_stats(struct ice_pf *pf) 6409 { 6410 struct ice_hw_port_stats *prev_ps, *cur_ps; 6411 struct ice_hw *hw = &pf->hw; 6412 u16 fd_ctr_base; 6413 u8 port; 6414 6415 port = hw->port_info->lport; 6416 prev_ps = &pf->stats_prev; 6417 cur_ps = &pf->stats; 6418 6419 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6420 &prev_ps->eth.rx_bytes, 6421 &cur_ps->eth.rx_bytes); 6422 6423 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6424 &prev_ps->eth.rx_unicast, 6425 &cur_ps->eth.rx_unicast); 6426 6427 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6428 &prev_ps->eth.rx_multicast, 6429 &cur_ps->eth.rx_multicast); 6430 6431 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6432 &prev_ps->eth.rx_broadcast, 6433 &cur_ps->eth.rx_broadcast); 6434 6435 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6436 &prev_ps->eth.rx_discards, 6437 &cur_ps->eth.rx_discards); 6438 6439 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6440 &prev_ps->eth.tx_bytes, 6441 &cur_ps->eth.tx_bytes); 6442 6443 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6444 &prev_ps->eth.tx_unicast, 6445 &cur_ps->eth.tx_unicast); 6446 6447 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6448 &prev_ps->eth.tx_multicast, 6449 &cur_ps->eth.tx_multicast); 6450 6451 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6452 &prev_ps->eth.tx_broadcast, 6453 &cur_ps->eth.tx_broadcast); 6454 6455 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6456 &prev_ps->tx_dropped_link_down, 6457 &cur_ps->tx_dropped_link_down); 6458 6459 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6460 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6461 6462 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6463 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6464 6465 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6466 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6467 6468 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6469 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6470 6471 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6472 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6473 6474 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6475 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6476 6477 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6478 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6479 6480 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6481 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6482 6483 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6484 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6485 6486 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6487 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6488 6489 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6490 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6491 6492 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6493 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6494 6495 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6496 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6497 6498 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6499 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6500 6501 fd_ctr_base = hw->fd_ctr_base; 6502 6503 ice_stat_update40(hw, 6504 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6505 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6506 &cur_ps->fd_sb_match); 6507 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6508 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6509 6510 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6511 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6512 6513 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6514 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6515 6516 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6517 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6518 6519 ice_update_dcb_stats(pf); 6520 6521 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6522 &prev_ps->crc_errors, &cur_ps->crc_errors); 6523 6524 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6525 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6526 6527 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6528 &prev_ps->mac_local_faults, 6529 &cur_ps->mac_local_faults); 6530 6531 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6532 &prev_ps->mac_remote_faults, 6533 &cur_ps->mac_remote_faults); 6534 6535 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6536 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6537 6538 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6539 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6540 6541 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6542 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6543 6544 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6545 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6546 6547 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6548 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6549 6550 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6551 6552 pf->stat_prev_loaded = true; 6553 } 6554 6555 /** 6556 * ice_get_stats64 - get statistics for network device structure 6557 * @netdev: network interface device structure 6558 * @stats: main device statistics structure 6559 */ 6560 static 6561 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6562 { 6563 struct ice_netdev_priv *np = netdev_priv(netdev); 6564 struct rtnl_link_stats64 *vsi_stats; 6565 struct ice_vsi *vsi = np->vsi; 6566 6567 vsi_stats = &vsi->net_stats; 6568 6569 if (!vsi->num_txq || !vsi->num_rxq) 6570 return; 6571 6572 /* netdev packet/byte stats come from ring counter. These are obtained 6573 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6574 * But, only call the update routine and read the registers if VSI is 6575 * not down. 6576 */ 6577 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6578 ice_update_vsi_ring_stats(vsi); 6579 stats->tx_packets = vsi_stats->tx_packets; 6580 stats->tx_bytes = vsi_stats->tx_bytes; 6581 stats->rx_packets = vsi_stats->rx_packets; 6582 stats->rx_bytes = vsi_stats->rx_bytes; 6583 6584 /* The rest of the stats can be read from the hardware but instead we 6585 * just return values that the watchdog task has already obtained from 6586 * the hardware. 6587 */ 6588 stats->multicast = vsi_stats->multicast; 6589 stats->tx_errors = vsi_stats->tx_errors; 6590 stats->tx_dropped = vsi_stats->tx_dropped; 6591 stats->rx_errors = vsi_stats->rx_errors; 6592 stats->rx_dropped = vsi_stats->rx_dropped; 6593 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6594 stats->rx_length_errors = vsi_stats->rx_length_errors; 6595 } 6596 6597 /** 6598 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6599 * @vsi: VSI having NAPI disabled 6600 */ 6601 static void ice_napi_disable_all(struct ice_vsi *vsi) 6602 { 6603 int q_idx; 6604 6605 if (!vsi->netdev) 6606 return; 6607 6608 ice_for_each_q_vector(vsi, q_idx) { 6609 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6610 6611 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6612 napi_disable(&q_vector->napi); 6613 6614 cancel_work_sync(&q_vector->tx.dim.work); 6615 cancel_work_sync(&q_vector->rx.dim.work); 6616 } 6617 } 6618 6619 /** 6620 * ice_down - Shutdown the connection 6621 * @vsi: The VSI being stopped 6622 * 6623 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6624 */ 6625 int ice_down(struct ice_vsi *vsi) 6626 { 6627 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6628 6629 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6630 6631 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6632 vlan_err = ice_vsi_del_vlan_zero(vsi); 6633 if (!ice_is_e810(&vsi->back->hw)) 6634 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6635 netif_carrier_off(vsi->netdev); 6636 netif_tx_disable(vsi->netdev); 6637 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6638 ice_eswitch_stop_all_tx_queues(vsi->back); 6639 } 6640 6641 ice_vsi_dis_irq(vsi); 6642 6643 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6644 if (tx_err) 6645 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6646 vsi->vsi_num, tx_err); 6647 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6648 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6649 if (tx_err) 6650 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6651 vsi->vsi_num, tx_err); 6652 } 6653 6654 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6655 if (rx_err) 6656 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6657 vsi->vsi_num, rx_err); 6658 6659 ice_napi_disable_all(vsi); 6660 6661 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6662 link_err = ice_force_phys_link_state(vsi, false); 6663 if (link_err) 6664 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6665 vsi->vsi_num, link_err); 6666 } 6667 6668 ice_for_each_txq(vsi, i) 6669 ice_clean_tx_ring(vsi->tx_rings[i]); 6670 6671 ice_for_each_rxq(vsi, i) 6672 ice_clean_rx_ring(vsi->rx_rings[i]); 6673 6674 if (tx_err || rx_err || link_err || vlan_err) { 6675 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6676 vsi->vsi_num, vsi->vsw->sw_id); 6677 return -EIO; 6678 } 6679 6680 return 0; 6681 } 6682 6683 /** 6684 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6685 * @vsi: VSI having resources allocated 6686 * 6687 * Return 0 on success, negative on failure 6688 */ 6689 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6690 { 6691 int i, err = 0; 6692 6693 if (!vsi->num_txq) { 6694 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6695 vsi->vsi_num); 6696 return -EINVAL; 6697 } 6698 6699 ice_for_each_txq(vsi, i) { 6700 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6701 6702 if (!ring) 6703 return -EINVAL; 6704 6705 if (vsi->netdev) 6706 ring->netdev = vsi->netdev; 6707 err = ice_setup_tx_ring(ring); 6708 if (err) 6709 break; 6710 } 6711 6712 return err; 6713 } 6714 6715 /** 6716 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6717 * @vsi: VSI having resources allocated 6718 * 6719 * Return 0 on success, negative on failure 6720 */ 6721 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6722 { 6723 int i, err = 0; 6724 6725 if (!vsi->num_rxq) { 6726 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6727 vsi->vsi_num); 6728 return -EINVAL; 6729 } 6730 6731 ice_for_each_rxq(vsi, i) { 6732 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6733 6734 if (!ring) 6735 return -EINVAL; 6736 6737 if (vsi->netdev) 6738 ring->netdev = vsi->netdev; 6739 err = ice_setup_rx_ring(ring); 6740 if (err) 6741 break; 6742 } 6743 6744 return err; 6745 } 6746 6747 /** 6748 * ice_vsi_open_ctrl - open control VSI for use 6749 * @vsi: the VSI to open 6750 * 6751 * Initialization of the Control VSI 6752 * 6753 * Returns 0 on success, negative value on error 6754 */ 6755 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6756 { 6757 char int_name[ICE_INT_NAME_STR_LEN]; 6758 struct ice_pf *pf = vsi->back; 6759 struct device *dev; 6760 int err; 6761 6762 dev = ice_pf_to_dev(pf); 6763 /* allocate descriptors */ 6764 err = ice_vsi_setup_tx_rings(vsi); 6765 if (err) 6766 goto err_setup_tx; 6767 6768 err = ice_vsi_setup_rx_rings(vsi); 6769 if (err) 6770 goto err_setup_rx; 6771 6772 err = ice_vsi_cfg(vsi); 6773 if (err) 6774 goto err_setup_rx; 6775 6776 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6777 dev_driver_string(dev), dev_name(dev)); 6778 err = ice_vsi_req_irq_msix(vsi, int_name); 6779 if (err) 6780 goto err_setup_rx; 6781 6782 ice_vsi_cfg_msix(vsi); 6783 6784 err = ice_vsi_start_all_rx_rings(vsi); 6785 if (err) 6786 goto err_up_complete; 6787 6788 clear_bit(ICE_VSI_DOWN, vsi->state); 6789 ice_vsi_ena_irq(vsi); 6790 6791 return 0; 6792 6793 err_up_complete: 6794 ice_down(vsi); 6795 err_setup_rx: 6796 ice_vsi_free_rx_rings(vsi); 6797 err_setup_tx: 6798 ice_vsi_free_tx_rings(vsi); 6799 6800 return err; 6801 } 6802 6803 /** 6804 * ice_vsi_open - Called when a network interface is made active 6805 * @vsi: the VSI to open 6806 * 6807 * Initialization of the VSI 6808 * 6809 * Returns 0 on success, negative value on error 6810 */ 6811 int ice_vsi_open(struct ice_vsi *vsi) 6812 { 6813 char int_name[ICE_INT_NAME_STR_LEN]; 6814 struct ice_pf *pf = vsi->back; 6815 int err; 6816 6817 /* allocate descriptors */ 6818 err = ice_vsi_setup_tx_rings(vsi); 6819 if (err) 6820 goto err_setup_tx; 6821 6822 err = ice_vsi_setup_rx_rings(vsi); 6823 if (err) 6824 goto err_setup_rx; 6825 6826 err = ice_vsi_cfg(vsi); 6827 if (err) 6828 goto err_setup_rx; 6829 6830 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6831 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6832 err = ice_vsi_req_irq_msix(vsi, int_name); 6833 if (err) 6834 goto err_setup_rx; 6835 6836 if (vsi->type == ICE_VSI_PF) { 6837 /* Notify the stack of the actual queue counts. */ 6838 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6839 if (err) 6840 goto err_set_qs; 6841 6842 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6843 if (err) 6844 goto err_set_qs; 6845 } 6846 6847 err = ice_up_complete(vsi); 6848 if (err) 6849 goto err_up_complete; 6850 6851 return 0; 6852 6853 err_up_complete: 6854 ice_down(vsi); 6855 err_set_qs: 6856 ice_vsi_free_irq(vsi); 6857 err_setup_rx: 6858 ice_vsi_free_rx_rings(vsi); 6859 err_setup_tx: 6860 ice_vsi_free_tx_rings(vsi); 6861 6862 return err; 6863 } 6864 6865 /** 6866 * ice_vsi_release_all - Delete all VSIs 6867 * @pf: PF from which all VSIs are being removed 6868 */ 6869 static void ice_vsi_release_all(struct ice_pf *pf) 6870 { 6871 int err, i; 6872 6873 if (!pf->vsi) 6874 return; 6875 6876 ice_for_each_vsi(pf, i) { 6877 if (!pf->vsi[i]) 6878 continue; 6879 6880 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6881 continue; 6882 6883 err = ice_vsi_release(pf->vsi[i]); 6884 if (err) 6885 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6886 i, err, pf->vsi[i]->vsi_num); 6887 } 6888 } 6889 6890 /** 6891 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6892 * @pf: pointer to the PF instance 6893 * @type: VSI type to rebuild 6894 * 6895 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6896 */ 6897 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6898 { 6899 struct device *dev = ice_pf_to_dev(pf); 6900 int i, err; 6901 6902 ice_for_each_vsi(pf, i) { 6903 struct ice_vsi *vsi = pf->vsi[i]; 6904 6905 if (!vsi || vsi->type != type) 6906 continue; 6907 6908 /* rebuild the VSI */ 6909 err = ice_vsi_rebuild(vsi, true); 6910 if (err) { 6911 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6912 err, vsi->idx, ice_vsi_type_str(type)); 6913 return err; 6914 } 6915 6916 /* replay filters for the VSI */ 6917 err = ice_replay_vsi(&pf->hw, vsi->idx); 6918 if (err) { 6919 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6920 err, vsi->idx, ice_vsi_type_str(type)); 6921 return err; 6922 } 6923 6924 /* Re-map HW VSI number, using VSI handle that has been 6925 * previously validated in ice_replay_vsi() call above 6926 */ 6927 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6928 6929 /* enable the VSI */ 6930 err = ice_ena_vsi(vsi, false); 6931 if (err) { 6932 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6933 err, vsi->idx, ice_vsi_type_str(type)); 6934 return err; 6935 } 6936 6937 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6938 ice_vsi_type_str(type)); 6939 } 6940 6941 return 0; 6942 } 6943 6944 /** 6945 * ice_update_pf_netdev_link - Update PF netdev link status 6946 * @pf: pointer to the PF instance 6947 */ 6948 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6949 { 6950 bool link_up; 6951 int i; 6952 6953 ice_for_each_vsi(pf, i) { 6954 struct ice_vsi *vsi = pf->vsi[i]; 6955 6956 if (!vsi || vsi->type != ICE_VSI_PF) 6957 return; 6958 6959 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6960 if (link_up) { 6961 netif_carrier_on(pf->vsi[i]->netdev); 6962 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6963 } else { 6964 netif_carrier_off(pf->vsi[i]->netdev); 6965 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6966 } 6967 } 6968 } 6969 6970 /** 6971 * ice_rebuild - rebuild after reset 6972 * @pf: PF to rebuild 6973 * @reset_type: type of reset 6974 * 6975 * Do not rebuild VF VSI in this flow because that is already handled via 6976 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6977 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6978 * to reset/rebuild all the VF VSI twice. 6979 */ 6980 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6981 { 6982 struct device *dev = ice_pf_to_dev(pf); 6983 struct ice_hw *hw = &pf->hw; 6984 bool dvm; 6985 int err; 6986 6987 if (test_bit(ICE_DOWN, pf->state)) 6988 goto clear_recovery; 6989 6990 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6991 6992 #define ICE_EMP_RESET_SLEEP_MS 5000 6993 if (reset_type == ICE_RESET_EMPR) { 6994 /* If an EMP reset has occurred, any previously pending flash 6995 * update will have completed. We no longer know whether or 6996 * not the NVM update EMP reset is restricted. 6997 */ 6998 pf->fw_emp_reset_disabled = false; 6999 7000 msleep(ICE_EMP_RESET_SLEEP_MS); 7001 } 7002 7003 err = ice_init_all_ctrlq(hw); 7004 if (err) { 7005 dev_err(dev, "control queues init failed %d\n", err); 7006 goto err_init_ctrlq; 7007 } 7008 7009 /* if DDP was previously loaded successfully */ 7010 if (!ice_is_safe_mode(pf)) { 7011 /* reload the SW DB of filter tables */ 7012 if (reset_type == ICE_RESET_PFR) 7013 ice_fill_blk_tbls(hw); 7014 else 7015 /* Reload DDP Package after CORER/GLOBR reset */ 7016 ice_load_pkg(NULL, pf); 7017 } 7018 7019 err = ice_clear_pf_cfg(hw); 7020 if (err) { 7021 dev_err(dev, "clear PF configuration failed %d\n", err); 7022 goto err_init_ctrlq; 7023 } 7024 7025 ice_clear_pxe_mode(hw); 7026 7027 err = ice_init_nvm(hw); 7028 if (err) { 7029 dev_err(dev, "ice_init_nvm failed %d\n", err); 7030 goto err_init_ctrlq; 7031 } 7032 7033 err = ice_get_caps(hw); 7034 if (err) { 7035 dev_err(dev, "ice_get_caps failed %d\n", err); 7036 goto err_init_ctrlq; 7037 } 7038 7039 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7040 if (err) { 7041 dev_err(dev, "set_mac_cfg failed %d\n", err); 7042 goto err_init_ctrlq; 7043 } 7044 7045 dvm = ice_is_dvm_ena(hw); 7046 7047 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7048 if (err) 7049 goto err_init_ctrlq; 7050 7051 err = ice_sched_init_port(hw->port_info); 7052 if (err) 7053 goto err_sched_init_port; 7054 7055 /* start misc vector */ 7056 err = ice_req_irq_msix_misc(pf); 7057 if (err) { 7058 dev_err(dev, "misc vector setup failed: %d\n", err); 7059 goto err_sched_init_port; 7060 } 7061 7062 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7063 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7064 if (!rd32(hw, PFQF_FD_SIZE)) { 7065 u16 unused, guar, b_effort; 7066 7067 guar = hw->func_caps.fd_fltr_guar; 7068 b_effort = hw->func_caps.fd_fltr_best_effort; 7069 7070 /* force guaranteed filter pool for PF */ 7071 ice_alloc_fd_guar_item(hw, &unused, guar); 7072 /* force shared filter pool for PF */ 7073 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7074 } 7075 } 7076 7077 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7078 ice_dcb_rebuild(pf); 7079 7080 /* If the PF previously had enabled PTP, PTP init needs to happen before 7081 * the VSI rebuild. If not, this causes the PTP link status events to 7082 * fail. 7083 */ 7084 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7085 ice_ptp_reset(pf); 7086 7087 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7088 ice_gnss_init(pf); 7089 7090 /* rebuild PF VSI */ 7091 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7092 if (err) { 7093 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7094 goto err_vsi_rebuild; 7095 } 7096 7097 /* configure PTP timestamping after VSI rebuild */ 7098 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7099 ice_ptp_cfg_timestamp(pf, false); 7100 7101 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7102 if (err) { 7103 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7104 goto err_vsi_rebuild; 7105 } 7106 7107 if (reset_type == ICE_RESET_PFR) { 7108 err = ice_rebuild_channels(pf); 7109 if (err) { 7110 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7111 err); 7112 goto err_vsi_rebuild; 7113 } 7114 } 7115 7116 /* If Flow Director is active */ 7117 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7118 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7119 if (err) { 7120 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7121 goto err_vsi_rebuild; 7122 } 7123 7124 /* replay HW Flow Director recipes */ 7125 if (hw->fdir_prof) 7126 ice_fdir_replay_flows(hw); 7127 7128 /* replay Flow Director filters */ 7129 ice_fdir_replay_fltrs(pf); 7130 7131 ice_rebuild_arfs(pf); 7132 } 7133 7134 ice_update_pf_netdev_link(pf); 7135 7136 /* tell the firmware we are up */ 7137 err = ice_send_version(pf); 7138 if (err) { 7139 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7140 err); 7141 goto err_vsi_rebuild; 7142 } 7143 7144 ice_replay_post(hw); 7145 7146 /* if we get here, reset flow is successful */ 7147 clear_bit(ICE_RESET_FAILED, pf->state); 7148 7149 ice_plug_aux_dev(pf); 7150 return; 7151 7152 err_vsi_rebuild: 7153 err_sched_init_port: 7154 ice_sched_cleanup_all(hw); 7155 err_init_ctrlq: 7156 ice_shutdown_all_ctrlq(hw); 7157 set_bit(ICE_RESET_FAILED, pf->state); 7158 clear_recovery: 7159 /* set this bit in PF state to control service task scheduling */ 7160 set_bit(ICE_NEEDS_RESTART, pf->state); 7161 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7162 } 7163 7164 /** 7165 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7166 * @vsi: Pointer to VSI structure 7167 */ 7168 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7169 { 7170 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7171 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7172 else 7173 return ICE_RXBUF_3072; 7174 } 7175 7176 /** 7177 * ice_change_mtu - NDO callback to change the MTU 7178 * @netdev: network interface device structure 7179 * @new_mtu: new value for maximum frame size 7180 * 7181 * Returns 0 on success, negative on failure 7182 */ 7183 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7184 { 7185 struct ice_netdev_priv *np = netdev_priv(netdev); 7186 struct ice_vsi *vsi = np->vsi; 7187 struct ice_pf *pf = vsi->back; 7188 u8 count = 0; 7189 int err = 0; 7190 7191 if (new_mtu == (int)netdev->mtu) { 7192 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7193 return 0; 7194 } 7195 7196 if (ice_is_xdp_ena_vsi(vsi)) { 7197 int frame_size = ice_max_xdp_frame_size(vsi); 7198 7199 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7200 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7201 frame_size - ICE_ETH_PKT_HDR_PAD); 7202 return -EINVAL; 7203 } 7204 } 7205 7206 /* if a reset is in progress, wait for some time for it to complete */ 7207 do { 7208 if (ice_is_reset_in_progress(pf->state)) { 7209 count++; 7210 usleep_range(1000, 2000); 7211 } else { 7212 break; 7213 } 7214 7215 } while (count < 100); 7216 7217 if (count == 100) { 7218 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7219 return -EBUSY; 7220 } 7221 7222 netdev->mtu = (unsigned int)new_mtu; 7223 7224 /* if VSI is up, bring it down and then back up */ 7225 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7226 err = ice_down(vsi); 7227 if (err) { 7228 netdev_err(netdev, "change MTU if_down err %d\n", err); 7229 return err; 7230 } 7231 7232 err = ice_up(vsi); 7233 if (err) { 7234 netdev_err(netdev, "change MTU if_up err %d\n", err); 7235 return err; 7236 } 7237 } 7238 7239 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7240 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7241 7242 return err; 7243 } 7244 7245 /** 7246 * ice_eth_ioctl - Access the hwtstamp interface 7247 * @netdev: network interface device structure 7248 * @ifr: interface request data 7249 * @cmd: ioctl command 7250 */ 7251 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7252 { 7253 struct ice_netdev_priv *np = netdev_priv(netdev); 7254 struct ice_pf *pf = np->vsi->back; 7255 7256 switch (cmd) { 7257 case SIOCGHWTSTAMP: 7258 return ice_ptp_get_ts_config(pf, ifr); 7259 case SIOCSHWTSTAMP: 7260 return ice_ptp_set_ts_config(pf, ifr); 7261 default: 7262 return -EOPNOTSUPP; 7263 } 7264 } 7265 7266 /** 7267 * ice_aq_str - convert AQ err code to a string 7268 * @aq_err: the AQ error code to convert 7269 */ 7270 const char *ice_aq_str(enum ice_aq_err aq_err) 7271 { 7272 switch (aq_err) { 7273 case ICE_AQ_RC_OK: 7274 return "OK"; 7275 case ICE_AQ_RC_EPERM: 7276 return "ICE_AQ_RC_EPERM"; 7277 case ICE_AQ_RC_ENOENT: 7278 return "ICE_AQ_RC_ENOENT"; 7279 case ICE_AQ_RC_ENOMEM: 7280 return "ICE_AQ_RC_ENOMEM"; 7281 case ICE_AQ_RC_EBUSY: 7282 return "ICE_AQ_RC_EBUSY"; 7283 case ICE_AQ_RC_EEXIST: 7284 return "ICE_AQ_RC_EEXIST"; 7285 case ICE_AQ_RC_EINVAL: 7286 return "ICE_AQ_RC_EINVAL"; 7287 case ICE_AQ_RC_ENOSPC: 7288 return "ICE_AQ_RC_ENOSPC"; 7289 case ICE_AQ_RC_ENOSYS: 7290 return "ICE_AQ_RC_ENOSYS"; 7291 case ICE_AQ_RC_EMODE: 7292 return "ICE_AQ_RC_EMODE"; 7293 case ICE_AQ_RC_ENOSEC: 7294 return "ICE_AQ_RC_ENOSEC"; 7295 case ICE_AQ_RC_EBADSIG: 7296 return "ICE_AQ_RC_EBADSIG"; 7297 case ICE_AQ_RC_ESVN: 7298 return "ICE_AQ_RC_ESVN"; 7299 case ICE_AQ_RC_EBADMAN: 7300 return "ICE_AQ_RC_EBADMAN"; 7301 case ICE_AQ_RC_EBADBUF: 7302 return "ICE_AQ_RC_EBADBUF"; 7303 } 7304 7305 return "ICE_AQ_RC_UNKNOWN"; 7306 } 7307 7308 /** 7309 * ice_set_rss_lut - Set RSS LUT 7310 * @vsi: Pointer to VSI structure 7311 * @lut: Lookup table 7312 * @lut_size: Lookup table size 7313 * 7314 * Returns 0 on success, negative on failure 7315 */ 7316 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7317 { 7318 struct ice_aq_get_set_rss_lut_params params = {}; 7319 struct ice_hw *hw = &vsi->back->hw; 7320 int status; 7321 7322 if (!lut) 7323 return -EINVAL; 7324 7325 params.vsi_handle = vsi->idx; 7326 params.lut_size = lut_size; 7327 params.lut_type = vsi->rss_lut_type; 7328 params.lut = lut; 7329 7330 status = ice_aq_set_rss_lut(hw, ¶ms); 7331 if (status) 7332 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7333 status, ice_aq_str(hw->adminq.sq_last_status)); 7334 7335 return status; 7336 } 7337 7338 /** 7339 * ice_set_rss_key - Set RSS key 7340 * @vsi: Pointer to the VSI structure 7341 * @seed: RSS hash seed 7342 * 7343 * Returns 0 on success, negative on failure 7344 */ 7345 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7346 { 7347 struct ice_hw *hw = &vsi->back->hw; 7348 int status; 7349 7350 if (!seed) 7351 return -EINVAL; 7352 7353 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7354 if (status) 7355 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7356 status, ice_aq_str(hw->adminq.sq_last_status)); 7357 7358 return status; 7359 } 7360 7361 /** 7362 * ice_get_rss_lut - Get RSS LUT 7363 * @vsi: Pointer to VSI structure 7364 * @lut: Buffer to store the lookup table entries 7365 * @lut_size: Size of buffer to store the lookup table entries 7366 * 7367 * Returns 0 on success, negative on failure 7368 */ 7369 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7370 { 7371 struct ice_aq_get_set_rss_lut_params params = {}; 7372 struct ice_hw *hw = &vsi->back->hw; 7373 int status; 7374 7375 if (!lut) 7376 return -EINVAL; 7377 7378 params.vsi_handle = vsi->idx; 7379 params.lut_size = lut_size; 7380 params.lut_type = vsi->rss_lut_type; 7381 params.lut = lut; 7382 7383 status = ice_aq_get_rss_lut(hw, ¶ms); 7384 if (status) 7385 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7386 status, ice_aq_str(hw->adminq.sq_last_status)); 7387 7388 return status; 7389 } 7390 7391 /** 7392 * ice_get_rss_key - Get RSS key 7393 * @vsi: Pointer to VSI structure 7394 * @seed: Buffer to store the key in 7395 * 7396 * Returns 0 on success, negative on failure 7397 */ 7398 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7399 { 7400 struct ice_hw *hw = &vsi->back->hw; 7401 int status; 7402 7403 if (!seed) 7404 return -EINVAL; 7405 7406 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7407 if (status) 7408 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7409 status, ice_aq_str(hw->adminq.sq_last_status)); 7410 7411 return status; 7412 } 7413 7414 /** 7415 * ice_bridge_getlink - Get the hardware bridge mode 7416 * @skb: skb buff 7417 * @pid: process ID 7418 * @seq: RTNL message seq 7419 * @dev: the netdev being configured 7420 * @filter_mask: filter mask passed in 7421 * @nlflags: netlink flags passed in 7422 * 7423 * Return the bridge mode (VEB/VEPA) 7424 */ 7425 static int 7426 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7427 struct net_device *dev, u32 filter_mask, int nlflags) 7428 { 7429 struct ice_netdev_priv *np = netdev_priv(dev); 7430 struct ice_vsi *vsi = np->vsi; 7431 struct ice_pf *pf = vsi->back; 7432 u16 bmode; 7433 7434 bmode = pf->first_sw->bridge_mode; 7435 7436 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7437 filter_mask, NULL); 7438 } 7439 7440 /** 7441 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7442 * @vsi: Pointer to VSI structure 7443 * @bmode: Hardware bridge mode (VEB/VEPA) 7444 * 7445 * Returns 0 on success, negative on failure 7446 */ 7447 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7448 { 7449 struct ice_aqc_vsi_props *vsi_props; 7450 struct ice_hw *hw = &vsi->back->hw; 7451 struct ice_vsi_ctx *ctxt; 7452 int ret; 7453 7454 vsi_props = &vsi->info; 7455 7456 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7457 if (!ctxt) 7458 return -ENOMEM; 7459 7460 ctxt->info = vsi->info; 7461 7462 if (bmode == BRIDGE_MODE_VEB) 7463 /* change from VEPA to VEB mode */ 7464 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7465 else 7466 /* change from VEB to VEPA mode */ 7467 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7468 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7469 7470 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7471 if (ret) { 7472 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7473 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7474 goto out; 7475 } 7476 /* Update sw flags for book keeping */ 7477 vsi_props->sw_flags = ctxt->info.sw_flags; 7478 7479 out: 7480 kfree(ctxt); 7481 return ret; 7482 } 7483 7484 /** 7485 * ice_bridge_setlink - Set the hardware bridge mode 7486 * @dev: the netdev being configured 7487 * @nlh: RTNL message 7488 * @flags: bridge setlink flags 7489 * @extack: netlink extended ack 7490 * 7491 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7492 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7493 * not already set for all VSIs connected to this switch. And also update the 7494 * unicast switch filter rules for the corresponding switch of the netdev. 7495 */ 7496 static int 7497 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7498 u16 __always_unused flags, 7499 struct netlink_ext_ack __always_unused *extack) 7500 { 7501 struct ice_netdev_priv *np = netdev_priv(dev); 7502 struct ice_pf *pf = np->vsi->back; 7503 struct nlattr *attr, *br_spec; 7504 struct ice_hw *hw = &pf->hw; 7505 struct ice_sw *pf_sw; 7506 int rem, v, err = 0; 7507 7508 pf_sw = pf->first_sw; 7509 /* find the attribute in the netlink message */ 7510 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7511 7512 nla_for_each_nested(attr, br_spec, rem) { 7513 __u16 mode; 7514 7515 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7516 continue; 7517 mode = nla_get_u16(attr); 7518 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7519 return -EINVAL; 7520 /* Continue if bridge mode is not being flipped */ 7521 if (mode == pf_sw->bridge_mode) 7522 continue; 7523 /* Iterates through the PF VSI list and update the loopback 7524 * mode of the VSI 7525 */ 7526 ice_for_each_vsi(pf, v) { 7527 if (!pf->vsi[v]) 7528 continue; 7529 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7530 if (err) 7531 return err; 7532 } 7533 7534 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7535 /* Update the unicast switch filter rules for the corresponding 7536 * switch of the netdev 7537 */ 7538 err = ice_update_sw_rule_bridge_mode(hw); 7539 if (err) { 7540 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7541 mode, err, 7542 ice_aq_str(hw->adminq.sq_last_status)); 7543 /* revert hw->evb_veb */ 7544 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7545 return err; 7546 } 7547 7548 pf_sw->bridge_mode = mode; 7549 } 7550 7551 return 0; 7552 } 7553 7554 /** 7555 * ice_tx_timeout - Respond to a Tx Hang 7556 * @netdev: network interface device structure 7557 * @txqueue: Tx queue 7558 */ 7559 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7560 { 7561 struct ice_netdev_priv *np = netdev_priv(netdev); 7562 struct ice_tx_ring *tx_ring = NULL; 7563 struct ice_vsi *vsi = np->vsi; 7564 struct ice_pf *pf = vsi->back; 7565 u32 i; 7566 7567 pf->tx_timeout_count++; 7568 7569 /* Check if PFC is enabled for the TC to which the queue belongs 7570 * to. If yes then Tx timeout is not caused by a hung queue, no 7571 * need to reset and rebuild 7572 */ 7573 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7574 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7575 txqueue); 7576 return; 7577 } 7578 7579 /* now that we have an index, find the tx_ring struct */ 7580 ice_for_each_txq(vsi, i) 7581 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7582 if (txqueue == vsi->tx_rings[i]->q_index) { 7583 tx_ring = vsi->tx_rings[i]; 7584 break; 7585 } 7586 7587 /* Reset recovery level if enough time has elapsed after last timeout. 7588 * Also ensure no new reset action happens before next timeout period. 7589 */ 7590 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7591 pf->tx_timeout_recovery_level = 1; 7592 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7593 netdev->watchdog_timeo))) 7594 return; 7595 7596 if (tx_ring) { 7597 struct ice_hw *hw = &pf->hw; 7598 u32 head, val = 0; 7599 7600 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7601 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7602 /* Read interrupt register */ 7603 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7604 7605 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7606 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7607 head, tx_ring->next_to_use, val); 7608 } 7609 7610 pf->tx_timeout_last_recovery = jiffies; 7611 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7612 pf->tx_timeout_recovery_level, txqueue); 7613 7614 switch (pf->tx_timeout_recovery_level) { 7615 case 1: 7616 set_bit(ICE_PFR_REQ, pf->state); 7617 break; 7618 case 2: 7619 set_bit(ICE_CORER_REQ, pf->state); 7620 break; 7621 case 3: 7622 set_bit(ICE_GLOBR_REQ, pf->state); 7623 break; 7624 default: 7625 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7626 set_bit(ICE_DOWN, pf->state); 7627 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7628 set_bit(ICE_SERVICE_DIS, pf->state); 7629 break; 7630 } 7631 7632 ice_service_task_schedule(pf); 7633 pf->tx_timeout_recovery_level++; 7634 } 7635 7636 /** 7637 * ice_setup_tc_cls_flower - flower classifier offloads 7638 * @np: net device to configure 7639 * @filter_dev: device on which filter is added 7640 * @cls_flower: offload data 7641 */ 7642 static int 7643 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7644 struct net_device *filter_dev, 7645 struct flow_cls_offload *cls_flower) 7646 { 7647 struct ice_vsi *vsi = np->vsi; 7648 7649 if (cls_flower->common.chain_index) 7650 return -EOPNOTSUPP; 7651 7652 switch (cls_flower->command) { 7653 case FLOW_CLS_REPLACE: 7654 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7655 case FLOW_CLS_DESTROY: 7656 return ice_del_cls_flower(vsi, cls_flower); 7657 default: 7658 return -EINVAL; 7659 } 7660 } 7661 7662 /** 7663 * ice_setup_tc_block_cb - callback handler registered for TC block 7664 * @type: TC SETUP type 7665 * @type_data: TC flower offload data that contains user input 7666 * @cb_priv: netdev private data 7667 */ 7668 static int 7669 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7670 { 7671 struct ice_netdev_priv *np = cb_priv; 7672 7673 switch (type) { 7674 case TC_SETUP_CLSFLOWER: 7675 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7676 type_data); 7677 default: 7678 return -EOPNOTSUPP; 7679 } 7680 } 7681 7682 /** 7683 * ice_validate_mqprio_qopt - Validate TCF input parameters 7684 * @vsi: Pointer to VSI 7685 * @mqprio_qopt: input parameters for mqprio queue configuration 7686 * 7687 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7688 * needed), and make sure user doesn't specify qcount and BW rate limit 7689 * for TCs, which are more than "num_tc" 7690 */ 7691 static int 7692 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7693 struct tc_mqprio_qopt_offload *mqprio_qopt) 7694 { 7695 u64 sum_max_rate = 0, sum_min_rate = 0; 7696 int non_power_of_2_qcount = 0; 7697 struct ice_pf *pf = vsi->back; 7698 int max_rss_q_cnt = 0; 7699 struct device *dev; 7700 int i, speed; 7701 u8 num_tc; 7702 7703 if (vsi->type != ICE_VSI_PF) 7704 return -EINVAL; 7705 7706 if (mqprio_qopt->qopt.offset[0] != 0 || 7707 mqprio_qopt->qopt.num_tc < 1 || 7708 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7709 return -EINVAL; 7710 7711 dev = ice_pf_to_dev(pf); 7712 vsi->ch_rss_size = 0; 7713 num_tc = mqprio_qopt->qopt.num_tc; 7714 7715 for (i = 0; num_tc; i++) { 7716 int qcount = mqprio_qopt->qopt.count[i]; 7717 u64 max_rate, min_rate, rem; 7718 7719 if (!qcount) 7720 return -EINVAL; 7721 7722 if (is_power_of_2(qcount)) { 7723 if (non_power_of_2_qcount && 7724 qcount > non_power_of_2_qcount) { 7725 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7726 qcount, non_power_of_2_qcount); 7727 return -EINVAL; 7728 } 7729 if (qcount > max_rss_q_cnt) 7730 max_rss_q_cnt = qcount; 7731 } else { 7732 if (non_power_of_2_qcount && 7733 qcount != non_power_of_2_qcount) { 7734 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7735 qcount, non_power_of_2_qcount); 7736 return -EINVAL; 7737 } 7738 if (qcount < max_rss_q_cnt) { 7739 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7740 qcount, max_rss_q_cnt); 7741 return -EINVAL; 7742 } 7743 max_rss_q_cnt = qcount; 7744 non_power_of_2_qcount = qcount; 7745 } 7746 7747 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7748 * converts the bandwidth rate limit into Bytes/s when 7749 * passing it down to the driver. So convert input bandwidth 7750 * from Bytes/s to Kbps 7751 */ 7752 max_rate = mqprio_qopt->max_rate[i]; 7753 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7754 sum_max_rate += max_rate; 7755 7756 /* min_rate is minimum guaranteed rate and it can't be zero */ 7757 min_rate = mqprio_qopt->min_rate[i]; 7758 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7759 sum_min_rate += min_rate; 7760 7761 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7762 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7763 min_rate, ICE_MIN_BW_LIMIT); 7764 return -EINVAL; 7765 } 7766 7767 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7768 if (rem) { 7769 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7770 i, ICE_MIN_BW_LIMIT); 7771 return -EINVAL; 7772 } 7773 7774 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7775 if (rem) { 7776 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7777 i, ICE_MIN_BW_LIMIT); 7778 return -EINVAL; 7779 } 7780 7781 /* min_rate can't be more than max_rate, except when max_rate 7782 * is zero (implies max_rate sought is max line rate). In such 7783 * a case min_rate can be more than max. 7784 */ 7785 if (max_rate && min_rate > max_rate) { 7786 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7787 min_rate, max_rate); 7788 return -EINVAL; 7789 } 7790 7791 if (i >= mqprio_qopt->qopt.num_tc - 1) 7792 break; 7793 if (mqprio_qopt->qopt.offset[i + 1] != 7794 (mqprio_qopt->qopt.offset[i] + qcount)) 7795 return -EINVAL; 7796 } 7797 if (vsi->num_rxq < 7798 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7799 return -EINVAL; 7800 if (vsi->num_txq < 7801 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7802 return -EINVAL; 7803 7804 speed = ice_get_link_speed_kbps(vsi); 7805 if (sum_max_rate && sum_max_rate > (u64)speed) { 7806 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7807 sum_max_rate, speed); 7808 return -EINVAL; 7809 } 7810 if (sum_min_rate && sum_min_rate > (u64)speed) { 7811 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7812 sum_min_rate, speed); 7813 return -EINVAL; 7814 } 7815 7816 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7817 vsi->ch_rss_size = max_rss_q_cnt; 7818 7819 return 0; 7820 } 7821 7822 /** 7823 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7824 * @pf: ptr to PF device 7825 * @vsi: ptr to VSI 7826 */ 7827 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7828 { 7829 struct device *dev = ice_pf_to_dev(pf); 7830 bool added = false; 7831 struct ice_hw *hw; 7832 int flow; 7833 7834 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7835 return -EINVAL; 7836 7837 hw = &pf->hw; 7838 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7839 struct ice_fd_hw_prof *prof; 7840 int tun, status; 7841 u64 entry_h; 7842 7843 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7844 hw->fdir_prof[flow]->cnt)) 7845 continue; 7846 7847 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7848 enum ice_flow_priority prio; 7849 u64 prof_id; 7850 7851 /* add this VSI to FDir profile for this flow */ 7852 prio = ICE_FLOW_PRIO_NORMAL; 7853 prof = hw->fdir_prof[flow]; 7854 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7855 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7856 prof->vsi_h[0], vsi->idx, 7857 prio, prof->fdir_seg[tun], 7858 &entry_h); 7859 if (status) { 7860 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7861 vsi->idx, flow); 7862 continue; 7863 } 7864 7865 prof->entry_h[prof->cnt][tun] = entry_h; 7866 } 7867 7868 /* store VSI for filter replay and delete */ 7869 prof->vsi_h[prof->cnt] = vsi->idx; 7870 prof->cnt++; 7871 7872 added = true; 7873 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7874 flow); 7875 } 7876 7877 if (!added) 7878 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7879 7880 return 0; 7881 } 7882 7883 /** 7884 * ice_add_channel - add a channel by adding VSI 7885 * @pf: ptr to PF device 7886 * @sw_id: underlying HW switching element ID 7887 * @ch: ptr to channel structure 7888 * 7889 * Add a channel (VSI) using add_vsi and queue_map 7890 */ 7891 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7892 { 7893 struct device *dev = ice_pf_to_dev(pf); 7894 struct ice_vsi *vsi; 7895 7896 if (ch->type != ICE_VSI_CHNL) { 7897 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7898 return -EINVAL; 7899 } 7900 7901 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7902 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7903 dev_err(dev, "create chnl VSI failure\n"); 7904 return -EINVAL; 7905 } 7906 7907 ice_add_vsi_to_fdir(pf, vsi); 7908 7909 ch->sw_id = sw_id; 7910 ch->vsi_num = vsi->vsi_num; 7911 ch->info.mapping_flags = vsi->info.mapping_flags; 7912 ch->ch_vsi = vsi; 7913 /* set the back pointer of channel for newly created VSI */ 7914 vsi->ch = ch; 7915 7916 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7917 sizeof(vsi->info.q_mapping)); 7918 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7919 sizeof(vsi->info.tc_mapping)); 7920 7921 return 0; 7922 } 7923 7924 /** 7925 * ice_chnl_cfg_res 7926 * @vsi: the VSI being setup 7927 * @ch: ptr to channel structure 7928 * 7929 * Configure channel specific resources such as rings, vector. 7930 */ 7931 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7932 { 7933 int i; 7934 7935 for (i = 0; i < ch->num_txq; i++) { 7936 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7937 struct ice_ring_container *rc; 7938 struct ice_tx_ring *tx_ring; 7939 struct ice_rx_ring *rx_ring; 7940 7941 tx_ring = vsi->tx_rings[ch->base_q + i]; 7942 rx_ring = vsi->rx_rings[ch->base_q + i]; 7943 if (!tx_ring || !rx_ring) 7944 continue; 7945 7946 /* setup ring being channel enabled */ 7947 tx_ring->ch = ch; 7948 rx_ring->ch = ch; 7949 7950 /* following code block sets up vector specific attributes */ 7951 tx_q_vector = tx_ring->q_vector; 7952 rx_q_vector = rx_ring->q_vector; 7953 if (!tx_q_vector && !rx_q_vector) 7954 continue; 7955 7956 if (tx_q_vector) { 7957 tx_q_vector->ch = ch; 7958 /* setup Tx and Rx ITR setting if DIM is off */ 7959 rc = &tx_q_vector->tx; 7960 if (!ITR_IS_DYNAMIC(rc)) 7961 ice_write_itr(rc, rc->itr_setting); 7962 } 7963 if (rx_q_vector) { 7964 rx_q_vector->ch = ch; 7965 /* setup Tx and Rx ITR setting if DIM is off */ 7966 rc = &rx_q_vector->rx; 7967 if (!ITR_IS_DYNAMIC(rc)) 7968 ice_write_itr(rc, rc->itr_setting); 7969 } 7970 } 7971 7972 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7973 * GLINT_ITR register would have written to perform in-context 7974 * update, hence perform flush 7975 */ 7976 if (ch->num_txq || ch->num_rxq) 7977 ice_flush(&vsi->back->hw); 7978 } 7979 7980 /** 7981 * ice_cfg_chnl_all_res - configure channel resources 7982 * @vsi: pte to main_vsi 7983 * @ch: ptr to channel structure 7984 * 7985 * This function configures channel specific resources such as flow-director 7986 * counter index, and other resources such as queues, vectors, ITR settings 7987 */ 7988 static void 7989 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7990 { 7991 /* configure channel (aka ADQ) resources such as queues, vectors, 7992 * ITR settings for channel specific vectors and anything else 7993 */ 7994 ice_chnl_cfg_res(vsi, ch); 7995 } 7996 7997 /** 7998 * ice_setup_hw_channel - setup new channel 7999 * @pf: ptr to PF device 8000 * @vsi: the VSI being setup 8001 * @ch: ptr to channel structure 8002 * @sw_id: underlying HW switching element ID 8003 * @type: type of channel to be created (VMDq2/VF) 8004 * 8005 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8006 * and configures Tx rings accordingly 8007 */ 8008 static int 8009 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8010 struct ice_channel *ch, u16 sw_id, u8 type) 8011 { 8012 struct device *dev = ice_pf_to_dev(pf); 8013 int ret; 8014 8015 ch->base_q = vsi->next_base_q; 8016 ch->type = type; 8017 8018 ret = ice_add_channel(pf, sw_id, ch); 8019 if (ret) { 8020 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8021 return ret; 8022 } 8023 8024 /* configure/setup ADQ specific resources */ 8025 ice_cfg_chnl_all_res(vsi, ch); 8026 8027 /* make sure to update the next_base_q so that subsequent channel's 8028 * (aka ADQ) VSI queue map is correct 8029 */ 8030 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8031 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8032 ch->num_rxq); 8033 8034 return 0; 8035 } 8036 8037 /** 8038 * ice_setup_channel - setup new channel using uplink element 8039 * @pf: ptr to PF device 8040 * @vsi: the VSI being setup 8041 * @ch: ptr to channel structure 8042 * 8043 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8044 * and uplink switching element 8045 */ 8046 static bool 8047 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8048 struct ice_channel *ch) 8049 { 8050 struct device *dev = ice_pf_to_dev(pf); 8051 u16 sw_id; 8052 int ret; 8053 8054 if (vsi->type != ICE_VSI_PF) { 8055 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8056 return false; 8057 } 8058 8059 sw_id = pf->first_sw->sw_id; 8060 8061 /* create channel (VSI) */ 8062 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8063 if (ret) { 8064 dev_err(dev, "failed to setup hw_channel\n"); 8065 return false; 8066 } 8067 dev_dbg(dev, "successfully created channel()\n"); 8068 8069 return ch->ch_vsi ? true : false; 8070 } 8071 8072 /** 8073 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8074 * @vsi: VSI to be configured 8075 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8076 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8077 */ 8078 static int 8079 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8080 { 8081 int err; 8082 8083 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8084 if (err) 8085 return err; 8086 8087 return ice_set_max_bw_limit(vsi, max_tx_rate); 8088 } 8089 8090 /** 8091 * ice_create_q_channel - function to create channel 8092 * @vsi: VSI to be configured 8093 * @ch: ptr to channel (it contains channel specific params) 8094 * 8095 * This function creates channel (VSI) using num_queues specified by user, 8096 * reconfigs RSS if needed. 8097 */ 8098 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8099 { 8100 struct ice_pf *pf = vsi->back; 8101 struct device *dev; 8102 8103 if (!ch) 8104 return -EINVAL; 8105 8106 dev = ice_pf_to_dev(pf); 8107 if (!ch->num_txq || !ch->num_rxq) { 8108 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8109 return -EINVAL; 8110 } 8111 8112 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8113 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8114 vsi->cnt_q_avail, ch->num_txq); 8115 return -EINVAL; 8116 } 8117 8118 if (!ice_setup_channel(pf, vsi, ch)) { 8119 dev_info(dev, "Failed to setup channel\n"); 8120 return -EINVAL; 8121 } 8122 /* configure BW rate limit */ 8123 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8124 int ret; 8125 8126 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8127 ch->min_tx_rate); 8128 if (ret) 8129 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8130 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8131 else 8132 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8133 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8134 } 8135 8136 vsi->cnt_q_avail -= ch->num_txq; 8137 8138 return 0; 8139 } 8140 8141 /** 8142 * ice_rem_all_chnl_fltrs - removes all channel filters 8143 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8144 * 8145 * Remove all advanced switch filters only if they are channel specific 8146 * tc-flower based filter 8147 */ 8148 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8149 { 8150 struct ice_tc_flower_fltr *fltr; 8151 struct hlist_node *node; 8152 8153 /* to remove all channel filters, iterate an ordered list of filters */ 8154 hlist_for_each_entry_safe(fltr, node, 8155 &pf->tc_flower_fltr_list, 8156 tc_flower_node) { 8157 struct ice_rule_query_data rule; 8158 int status; 8159 8160 /* for now process only channel specific filters */ 8161 if (!ice_is_chnl_fltr(fltr)) 8162 continue; 8163 8164 rule.rid = fltr->rid; 8165 rule.rule_id = fltr->rule_id; 8166 rule.vsi_handle = fltr->dest_id; 8167 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8168 if (status) { 8169 if (status == -ENOENT) 8170 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8171 rule.rule_id); 8172 else 8173 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8174 status); 8175 } else if (fltr->dest_vsi) { 8176 /* update advanced switch filter count */ 8177 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8178 u32 flags = fltr->flags; 8179 8180 fltr->dest_vsi->num_chnl_fltr--; 8181 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8182 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8183 pf->num_dmac_chnl_fltrs--; 8184 } 8185 } 8186 8187 hlist_del(&fltr->tc_flower_node); 8188 kfree(fltr); 8189 } 8190 } 8191 8192 /** 8193 * ice_remove_q_channels - Remove queue channels for the TCs 8194 * @vsi: VSI to be configured 8195 * @rem_fltr: delete advanced switch filter or not 8196 * 8197 * Remove queue channels for the TCs 8198 */ 8199 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8200 { 8201 struct ice_channel *ch, *ch_tmp; 8202 struct ice_pf *pf = vsi->back; 8203 int i; 8204 8205 /* remove all tc-flower based filter if they are channel filters only */ 8206 if (rem_fltr) 8207 ice_rem_all_chnl_fltrs(pf); 8208 8209 /* remove ntuple filters since queue configuration is being changed */ 8210 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8211 struct ice_hw *hw = &pf->hw; 8212 8213 mutex_lock(&hw->fdir_fltr_lock); 8214 ice_fdir_del_all_fltrs(vsi); 8215 mutex_unlock(&hw->fdir_fltr_lock); 8216 } 8217 8218 /* perform cleanup for channels if they exist */ 8219 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8220 struct ice_vsi *ch_vsi; 8221 8222 list_del(&ch->list); 8223 ch_vsi = ch->ch_vsi; 8224 if (!ch_vsi) { 8225 kfree(ch); 8226 continue; 8227 } 8228 8229 /* Reset queue contexts */ 8230 for (i = 0; i < ch->num_rxq; i++) { 8231 struct ice_tx_ring *tx_ring; 8232 struct ice_rx_ring *rx_ring; 8233 8234 tx_ring = vsi->tx_rings[ch->base_q + i]; 8235 rx_ring = vsi->rx_rings[ch->base_q + i]; 8236 if (tx_ring) { 8237 tx_ring->ch = NULL; 8238 if (tx_ring->q_vector) 8239 tx_ring->q_vector->ch = NULL; 8240 } 8241 if (rx_ring) { 8242 rx_ring->ch = NULL; 8243 if (rx_ring->q_vector) 8244 rx_ring->q_vector->ch = NULL; 8245 } 8246 } 8247 8248 /* Release FD resources for the channel VSI */ 8249 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8250 8251 /* clear the VSI from scheduler tree */ 8252 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8253 8254 /* Delete VSI from FW */ 8255 ice_vsi_delete(ch->ch_vsi); 8256 8257 /* Delete VSI from PF and HW VSI arrays */ 8258 ice_vsi_clear(ch->ch_vsi); 8259 8260 /* free the channel */ 8261 kfree(ch); 8262 } 8263 8264 /* clear the channel VSI map which is stored in main VSI */ 8265 ice_for_each_chnl_tc(i) 8266 vsi->tc_map_vsi[i] = NULL; 8267 8268 /* reset main VSI's all TC information */ 8269 vsi->all_enatc = 0; 8270 vsi->all_numtc = 0; 8271 } 8272 8273 /** 8274 * ice_rebuild_channels - rebuild channel 8275 * @pf: ptr to PF 8276 * 8277 * Recreate channel VSIs and replay filters 8278 */ 8279 static int ice_rebuild_channels(struct ice_pf *pf) 8280 { 8281 struct device *dev = ice_pf_to_dev(pf); 8282 struct ice_vsi *main_vsi; 8283 bool rem_adv_fltr = true; 8284 struct ice_channel *ch; 8285 struct ice_vsi *vsi; 8286 int tc_idx = 1; 8287 int i, err; 8288 8289 main_vsi = ice_get_main_vsi(pf); 8290 if (!main_vsi) 8291 return 0; 8292 8293 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8294 main_vsi->old_numtc == 1) 8295 return 0; /* nothing to be done */ 8296 8297 /* reconfigure main VSI based on old value of TC and cached values 8298 * for MQPRIO opts 8299 */ 8300 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8301 if (err) { 8302 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8303 main_vsi->old_ena_tc, main_vsi->vsi_num); 8304 return err; 8305 } 8306 8307 /* rebuild ADQ VSIs */ 8308 ice_for_each_vsi(pf, i) { 8309 enum ice_vsi_type type; 8310 8311 vsi = pf->vsi[i]; 8312 if (!vsi || vsi->type != ICE_VSI_CHNL) 8313 continue; 8314 8315 type = vsi->type; 8316 8317 /* rebuild ADQ VSI */ 8318 err = ice_vsi_rebuild(vsi, true); 8319 if (err) { 8320 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8321 ice_vsi_type_str(type), vsi->idx, err); 8322 goto cleanup; 8323 } 8324 8325 /* Re-map HW VSI number, using VSI handle that has been 8326 * previously validated in ice_replay_vsi() call above 8327 */ 8328 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8329 8330 /* replay filters for the VSI */ 8331 err = ice_replay_vsi(&pf->hw, vsi->idx); 8332 if (err) { 8333 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8334 ice_vsi_type_str(type), err, vsi->idx); 8335 rem_adv_fltr = false; 8336 goto cleanup; 8337 } 8338 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8339 ice_vsi_type_str(type), vsi->idx); 8340 8341 /* store ADQ VSI at correct TC index in main VSI's 8342 * map of TC to VSI 8343 */ 8344 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8345 } 8346 8347 /* ADQ VSI(s) has been rebuilt successfully, so setup 8348 * channel for main VSI's Tx and Rx rings 8349 */ 8350 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8351 struct ice_vsi *ch_vsi; 8352 8353 ch_vsi = ch->ch_vsi; 8354 if (!ch_vsi) 8355 continue; 8356 8357 /* reconfig channel resources */ 8358 ice_cfg_chnl_all_res(main_vsi, ch); 8359 8360 /* replay BW rate limit if it is non-zero */ 8361 if (!ch->max_tx_rate && !ch->min_tx_rate) 8362 continue; 8363 8364 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8365 ch->min_tx_rate); 8366 if (err) 8367 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8368 err, ch->max_tx_rate, ch->min_tx_rate, 8369 ch_vsi->vsi_num); 8370 else 8371 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8372 ch->max_tx_rate, ch->min_tx_rate, 8373 ch_vsi->vsi_num); 8374 } 8375 8376 /* reconfig RSS for main VSI */ 8377 if (main_vsi->ch_rss_size) 8378 ice_vsi_cfg_rss_lut_key(main_vsi); 8379 8380 return 0; 8381 8382 cleanup: 8383 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8384 return err; 8385 } 8386 8387 /** 8388 * ice_create_q_channels - Add queue channel for the given TCs 8389 * @vsi: VSI to be configured 8390 * 8391 * Configures queue channel mapping to the given TCs 8392 */ 8393 static int ice_create_q_channels(struct ice_vsi *vsi) 8394 { 8395 struct ice_pf *pf = vsi->back; 8396 struct ice_channel *ch; 8397 int ret = 0, i; 8398 8399 ice_for_each_chnl_tc(i) { 8400 if (!(vsi->all_enatc & BIT(i))) 8401 continue; 8402 8403 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8404 if (!ch) { 8405 ret = -ENOMEM; 8406 goto err_free; 8407 } 8408 INIT_LIST_HEAD(&ch->list); 8409 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8410 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8411 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8412 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8413 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8414 8415 /* convert to Kbits/s */ 8416 if (ch->max_tx_rate) 8417 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8418 ICE_BW_KBPS_DIVISOR); 8419 if (ch->min_tx_rate) 8420 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8421 ICE_BW_KBPS_DIVISOR); 8422 8423 ret = ice_create_q_channel(vsi, ch); 8424 if (ret) { 8425 dev_err(ice_pf_to_dev(pf), 8426 "failed creating channel TC:%d\n", i); 8427 kfree(ch); 8428 goto err_free; 8429 } 8430 list_add_tail(&ch->list, &vsi->ch_list); 8431 vsi->tc_map_vsi[i] = ch->ch_vsi; 8432 dev_dbg(ice_pf_to_dev(pf), 8433 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8434 } 8435 return 0; 8436 8437 err_free: 8438 ice_remove_q_channels(vsi, false); 8439 8440 return ret; 8441 } 8442 8443 /** 8444 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8445 * @netdev: net device to configure 8446 * @type_data: TC offload data 8447 */ 8448 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8449 { 8450 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8451 struct ice_netdev_priv *np = netdev_priv(netdev); 8452 struct ice_vsi *vsi = np->vsi; 8453 struct ice_pf *pf = vsi->back; 8454 u16 mode, ena_tc_qdisc = 0; 8455 int cur_txq, cur_rxq; 8456 u8 hw = 0, num_tcf; 8457 struct device *dev; 8458 int ret, i; 8459 8460 dev = ice_pf_to_dev(pf); 8461 num_tcf = mqprio_qopt->qopt.num_tc; 8462 hw = mqprio_qopt->qopt.hw; 8463 mode = mqprio_qopt->mode; 8464 if (!hw) { 8465 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8466 vsi->ch_rss_size = 0; 8467 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8468 goto config_tcf; 8469 } 8470 8471 /* Generate queue region map for number of TCF requested */ 8472 for (i = 0; i < num_tcf; i++) 8473 ena_tc_qdisc |= BIT(i); 8474 8475 switch (mode) { 8476 case TC_MQPRIO_MODE_CHANNEL: 8477 8478 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8479 if (ret) { 8480 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8481 ret); 8482 return ret; 8483 } 8484 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8485 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8486 /* don't assume state of hw_tc_offload during driver load 8487 * and set the flag for TC flower filter if hw_tc_offload 8488 * already ON 8489 */ 8490 if (vsi->netdev->features & NETIF_F_HW_TC) 8491 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8492 break; 8493 default: 8494 return -EINVAL; 8495 } 8496 8497 config_tcf: 8498 8499 /* Requesting same TCF configuration as already enabled */ 8500 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8501 mode != TC_MQPRIO_MODE_CHANNEL) 8502 return 0; 8503 8504 /* Pause VSI queues */ 8505 ice_dis_vsi(vsi, true); 8506 8507 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8508 ice_remove_q_channels(vsi, true); 8509 8510 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8511 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8512 num_online_cpus()); 8513 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8514 num_online_cpus()); 8515 } else { 8516 /* logic to rebuild VSI, same like ethtool -L */ 8517 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8518 8519 for (i = 0; i < num_tcf; i++) { 8520 if (!(ena_tc_qdisc & BIT(i))) 8521 continue; 8522 8523 offset = vsi->mqprio_qopt.qopt.offset[i]; 8524 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8525 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8526 } 8527 vsi->req_txq = offset + qcount_tx; 8528 vsi->req_rxq = offset + qcount_rx; 8529 8530 /* store away original rss_size info, so that it gets reused 8531 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8532 * determine, what should be the rss_sizefor main VSI 8533 */ 8534 vsi->orig_rss_size = vsi->rss_size; 8535 } 8536 8537 /* save current values of Tx and Rx queues before calling VSI rebuild 8538 * for fallback option 8539 */ 8540 cur_txq = vsi->num_txq; 8541 cur_rxq = vsi->num_rxq; 8542 8543 /* proceed with rebuild main VSI using correct number of queues */ 8544 ret = ice_vsi_rebuild(vsi, false); 8545 if (ret) { 8546 /* fallback to current number of queues */ 8547 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8548 vsi->req_txq = cur_txq; 8549 vsi->req_rxq = cur_rxq; 8550 clear_bit(ICE_RESET_FAILED, pf->state); 8551 if (ice_vsi_rebuild(vsi, false)) { 8552 dev_err(dev, "Rebuild of main VSI failed again\n"); 8553 return ret; 8554 } 8555 } 8556 8557 vsi->all_numtc = num_tcf; 8558 vsi->all_enatc = ena_tc_qdisc; 8559 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8560 if (ret) { 8561 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8562 vsi->vsi_num); 8563 goto exit; 8564 } 8565 8566 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8567 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8568 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8569 8570 /* set TC0 rate limit if specified */ 8571 if (max_tx_rate || min_tx_rate) { 8572 /* convert to Kbits/s */ 8573 if (max_tx_rate) 8574 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8575 if (min_tx_rate) 8576 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8577 8578 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8579 if (!ret) { 8580 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8581 max_tx_rate, min_tx_rate, vsi->vsi_num); 8582 } else { 8583 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8584 max_tx_rate, min_tx_rate, vsi->vsi_num); 8585 goto exit; 8586 } 8587 } 8588 ret = ice_create_q_channels(vsi); 8589 if (ret) { 8590 netdev_err(netdev, "failed configuring queue channels\n"); 8591 goto exit; 8592 } else { 8593 netdev_dbg(netdev, "successfully configured channels\n"); 8594 } 8595 } 8596 8597 if (vsi->ch_rss_size) 8598 ice_vsi_cfg_rss_lut_key(vsi); 8599 8600 exit: 8601 /* if error, reset the all_numtc and all_enatc */ 8602 if (ret) { 8603 vsi->all_numtc = 0; 8604 vsi->all_enatc = 0; 8605 } 8606 /* resume VSI */ 8607 ice_ena_vsi(vsi, true); 8608 8609 return ret; 8610 } 8611 8612 static LIST_HEAD(ice_block_cb_list); 8613 8614 static int 8615 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8616 void *type_data) 8617 { 8618 struct ice_netdev_priv *np = netdev_priv(netdev); 8619 struct ice_pf *pf = np->vsi->back; 8620 int err; 8621 8622 switch (type) { 8623 case TC_SETUP_BLOCK: 8624 return flow_block_cb_setup_simple(type_data, 8625 &ice_block_cb_list, 8626 ice_setup_tc_block_cb, 8627 np, np, true); 8628 case TC_SETUP_QDISC_MQPRIO: 8629 /* setup traffic classifier for receive side */ 8630 mutex_lock(&pf->tc_mutex); 8631 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8632 mutex_unlock(&pf->tc_mutex); 8633 return err; 8634 default: 8635 return -EOPNOTSUPP; 8636 } 8637 return -EOPNOTSUPP; 8638 } 8639 8640 static struct ice_indr_block_priv * 8641 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8642 struct net_device *netdev) 8643 { 8644 struct ice_indr_block_priv *cb_priv; 8645 8646 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8647 if (!cb_priv->netdev) 8648 return NULL; 8649 if (cb_priv->netdev == netdev) 8650 return cb_priv; 8651 } 8652 return NULL; 8653 } 8654 8655 static int 8656 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8657 void *indr_priv) 8658 { 8659 struct ice_indr_block_priv *priv = indr_priv; 8660 struct ice_netdev_priv *np = priv->np; 8661 8662 switch (type) { 8663 case TC_SETUP_CLSFLOWER: 8664 return ice_setup_tc_cls_flower(np, priv->netdev, 8665 (struct flow_cls_offload *) 8666 type_data); 8667 default: 8668 return -EOPNOTSUPP; 8669 } 8670 } 8671 8672 static int 8673 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8674 struct ice_netdev_priv *np, 8675 struct flow_block_offload *f, void *data, 8676 void (*cleanup)(struct flow_block_cb *block_cb)) 8677 { 8678 struct ice_indr_block_priv *indr_priv; 8679 struct flow_block_cb *block_cb; 8680 8681 if (!ice_is_tunnel_supported(netdev) && 8682 !(is_vlan_dev(netdev) && 8683 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8684 return -EOPNOTSUPP; 8685 8686 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8687 return -EOPNOTSUPP; 8688 8689 switch (f->command) { 8690 case FLOW_BLOCK_BIND: 8691 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8692 if (indr_priv) 8693 return -EEXIST; 8694 8695 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8696 if (!indr_priv) 8697 return -ENOMEM; 8698 8699 indr_priv->netdev = netdev; 8700 indr_priv->np = np; 8701 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8702 8703 block_cb = 8704 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8705 indr_priv, indr_priv, 8706 ice_rep_indr_tc_block_unbind, 8707 f, netdev, sch, data, np, 8708 cleanup); 8709 8710 if (IS_ERR(block_cb)) { 8711 list_del(&indr_priv->list); 8712 kfree(indr_priv); 8713 return PTR_ERR(block_cb); 8714 } 8715 flow_block_cb_add(block_cb, f); 8716 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8717 break; 8718 case FLOW_BLOCK_UNBIND: 8719 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8720 if (!indr_priv) 8721 return -ENOENT; 8722 8723 block_cb = flow_block_cb_lookup(f->block, 8724 ice_indr_setup_block_cb, 8725 indr_priv); 8726 if (!block_cb) 8727 return -ENOENT; 8728 8729 flow_indr_block_cb_remove(block_cb, f); 8730 8731 list_del(&block_cb->driver_list); 8732 break; 8733 default: 8734 return -EOPNOTSUPP; 8735 } 8736 return 0; 8737 } 8738 8739 static int 8740 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8741 void *cb_priv, enum tc_setup_type type, void *type_data, 8742 void *data, 8743 void (*cleanup)(struct flow_block_cb *block_cb)) 8744 { 8745 switch (type) { 8746 case TC_SETUP_BLOCK: 8747 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8748 data, cleanup); 8749 8750 default: 8751 return -EOPNOTSUPP; 8752 } 8753 } 8754 8755 /** 8756 * ice_open - Called when a network interface becomes active 8757 * @netdev: network interface device structure 8758 * 8759 * The open entry point is called when a network interface is made 8760 * active by the system (IFF_UP). At this point all resources needed 8761 * for transmit and receive operations are allocated, the interrupt 8762 * handler is registered with the OS, the netdev watchdog is enabled, 8763 * and the stack is notified that the interface is ready. 8764 * 8765 * Returns 0 on success, negative value on failure 8766 */ 8767 int ice_open(struct net_device *netdev) 8768 { 8769 struct ice_netdev_priv *np = netdev_priv(netdev); 8770 struct ice_pf *pf = np->vsi->back; 8771 8772 if (ice_is_reset_in_progress(pf->state)) { 8773 netdev_err(netdev, "can't open net device while reset is in progress"); 8774 return -EBUSY; 8775 } 8776 8777 return ice_open_internal(netdev); 8778 } 8779 8780 /** 8781 * ice_open_internal - Called when a network interface becomes active 8782 * @netdev: network interface device structure 8783 * 8784 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8785 * handling routine 8786 * 8787 * Returns 0 on success, negative value on failure 8788 */ 8789 int ice_open_internal(struct net_device *netdev) 8790 { 8791 struct ice_netdev_priv *np = netdev_priv(netdev); 8792 struct ice_vsi *vsi = np->vsi; 8793 struct ice_pf *pf = vsi->back; 8794 struct ice_port_info *pi; 8795 int err; 8796 8797 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8798 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8799 return -EIO; 8800 } 8801 8802 netif_carrier_off(netdev); 8803 8804 pi = vsi->port_info; 8805 err = ice_update_link_info(pi); 8806 if (err) { 8807 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8808 return err; 8809 } 8810 8811 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8812 8813 /* Set PHY if there is media, otherwise, turn off PHY */ 8814 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8815 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8816 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8817 err = ice_init_phy_user_cfg(pi); 8818 if (err) { 8819 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8820 err); 8821 return err; 8822 } 8823 } 8824 8825 err = ice_configure_phy(vsi); 8826 if (err) { 8827 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8828 err); 8829 return err; 8830 } 8831 } else { 8832 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8833 ice_set_link(vsi, false); 8834 } 8835 8836 err = ice_vsi_open(vsi); 8837 if (err) 8838 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8839 vsi->vsi_num, vsi->vsw->sw_id); 8840 8841 /* Update existing tunnels information */ 8842 udp_tunnel_get_rx_info(netdev); 8843 8844 return err; 8845 } 8846 8847 /** 8848 * ice_stop - Disables a network interface 8849 * @netdev: network interface device structure 8850 * 8851 * The stop entry point is called when an interface is de-activated by the OS, 8852 * and the netdevice enters the DOWN state. The hardware is still under the 8853 * driver's control, but the netdev interface is disabled. 8854 * 8855 * Returns success only - not allowed to fail 8856 */ 8857 int ice_stop(struct net_device *netdev) 8858 { 8859 struct ice_netdev_priv *np = netdev_priv(netdev); 8860 struct ice_vsi *vsi = np->vsi; 8861 struct ice_pf *pf = vsi->back; 8862 8863 if (ice_is_reset_in_progress(pf->state)) { 8864 netdev_err(netdev, "can't stop net device while reset is in progress"); 8865 return -EBUSY; 8866 } 8867 8868 ice_vsi_close(vsi); 8869 8870 return 0; 8871 } 8872 8873 /** 8874 * ice_features_check - Validate encapsulated packet conforms to limits 8875 * @skb: skb buffer 8876 * @netdev: This port's netdev 8877 * @features: Offload features that the stack believes apply 8878 */ 8879 static netdev_features_t 8880 ice_features_check(struct sk_buff *skb, 8881 struct net_device __always_unused *netdev, 8882 netdev_features_t features) 8883 { 8884 bool gso = skb_is_gso(skb); 8885 size_t len; 8886 8887 /* No point in doing any of this if neither checksum nor GSO are 8888 * being requested for this frame. We can rule out both by just 8889 * checking for CHECKSUM_PARTIAL 8890 */ 8891 if (skb->ip_summed != CHECKSUM_PARTIAL) 8892 return features; 8893 8894 /* We cannot support GSO if the MSS is going to be less than 8895 * 64 bytes. If it is then we need to drop support for GSO. 8896 */ 8897 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8898 features &= ~NETIF_F_GSO_MASK; 8899 8900 len = skb_network_offset(skb); 8901 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8902 goto out_rm_features; 8903 8904 len = skb_network_header_len(skb); 8905 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8906 goto out_rm_features; 8907 8908 if (skb->encapsulation) { 8909 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8910 * the case of IPIP frames, the transport header pointer is 8911 * after the inner header! So check to make sure that this 8912 * is a GRE or UDP_TUNNEL frame before doing that math. 8913 */ 8914 if (gso && (skb_shinfo(skb)->gso_type & 8915 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8916 len = skb_inner_network_header(skb) - 8917 skb_transport_header(skb); 8918 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8919 goto out_rm_features; 8920 } 8921 8922 len = skb_inner_network_header_len(skb); 8923 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8924 goto out_rm_features; 8925 } 8926 8927 return features; 8928 out_rm_features: 8929 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8930 } 8931 8932 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8933 .ndo_open = ice_open, 8934 .ndo_stop = ice_stop, 8935 .ndo_start_xmit = ice_start_xmit, 8936 .ndo_set_mac_address = ice_set_mac_address, 8937 .ndo_validate_addr = eth_validate_addr, 8938 .ndo_change_mtu = ice_change_mtu, 8939 .ndo_get_stats64 = ice_get_stats64, 8940 .ndo_tx_timeout = ice_tx_timeout, 8941 .ndo_bpf = ice_xdp_safe_mode, 8942 }; 8943 8944 static const struct net_device_ops ice_netdev_ops = { 8945 .ndo_open = ice_open, 8946 .ndo_stop = ice_stop, 8947 .ndo_start_xmit = ice_start_xmit, 8948 .ndo_select_queue = ice_select_queue, 8949 .ndo_features_check = ice_features_check, 8950 .ndo_fix_features = ice_fix_features, 8951 .ndo_set_rx_mode = ice_set_rx_mode, 8952 .ndo_set_mac_address = ice_set_mac_address, 8953 .ndo_validate_addr = eth_validate_addr, 8954 .ndo_change_mtu = ice_change_mtu, 8955 .ndo_get_stats64 = ice_get_stats64, 8956 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8957 .ndo_eth_ioctl = ice_eth_ioctl, 8958 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8959 .ndo_set_vf_mac = ice_set_vf_mac, 8960 .ndo_get_vf_config = ice_get_vf_cfg, 8961 .ndo_set_vf_trust = ice_set_vf_trust, 8962 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8963 .ndo_set_vf_link_state = ice_set_vf_link_state, 8964 .ndo_get_vf_stats = ice_get_vf_stats, 8965 .ndo_set_vf_rate = ice_set_vf_bw, 8966 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8967 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8968 .ndo_setup_tc = ice_setup_tc, 8969 .ndo_set_features = ice_set_features, 8970 .ndo_bridge_getlink = ice_bridge_getlink, 8971 .ndo_bridge_setlink = ice_bridge_setlink, 8972 .ndo_fdb_add = ice_fdb_add, 8973 .ndo_fdb_del = ice_fdb_del, 8974 #ifdef CONFIG_RFS_ACCEL 8975 .ndo_rx_flow_steer = ice_rx_flow_steer, 8976 #endif 8977 .ndo_tx_timeout = ice_tx_timeout, 8978 .ndo_bpf = ice_xdp, 8979 .ndo_xdp_xmit = ice_xdp_xmit, 8980 .ndo_xsk_wakeup = ice_xsk_wakeup, 8981 .ndo_get_devlink_port = ice_get_devlink_port, 8982 }; 8983