1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_lib.h" 10 #include "ice_dcb_lib.h" 11 12 #define DRV_VERSION "0.7.5-k" 13 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 14 const char ice_drv_ver[] = DRV_VERSION; 15 static const char ice_driver_string[] = DRV_SUMMARY; 16 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 17 18 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 19 MODULE_DESCRIPTION(DRV_SUMMARY); 20 MODULE_LICENSE("GPL v2"); 21 MODULE_VERSION(DRV_VERSION); 22 23 static int debug = -1; 24 module_param(debug, int, 0644); 25 #ifndef CONFIG_DYNAMIC_DEBUG 26 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 27 #else 28 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 29 #endif /* !CONFIG_DYNAMIC_DEBUG */ 30 31 static struct workqueue_struct *ice_wq; 32 static const struct net_device_ops ice_netdev_ops; 33 34 static void ice_rebuild(struct ice_pf *pf); 35 36 static void ice_vsi_release_all(struct ice_pf *pf); 37 38 /** 39 * ice_get_tx_pending - returns number of Tx descriptors not processed 40 * @ring: the ring of descriptors 41 */ 42 static u16 ice_get_tx_pending(struct ice_ring *ring) 43 { 44 u16 head, tail; 45 46 head = ring->next_to_clean; 47 tail = ring->next_to_use; 48 49 if (head != tail) 50 return (head < tail) ? 51 tail - head : (tail + ring->count - head); 52 return 0; 53 } 54 55 /** 56 * ice_check_for_hang_subtask - check for and recover hung queues 57 * @pf: pointer to PF struct 58 */ 59 static void ice_check_for_hang_subtask(struct ice_pf *pf) 60 { 61 struct ice_vsi *vsi = NULL; 62 struct ice_hw *hw; 63 unsigned int i; 64 int packets; 65 u32 v; 66 67 ice_for_each_vsi(pf, v) 68 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 69 vsi = pf->vsi[v]; 70 break; 71 } 72 73 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 74 return; 75 76 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 77 return; 78 79 hw = &vsi->back->hw; 80 81 for (i = 0; i < vsi->num_txq; i++) { 82 struct ice_ring *tx_ring = vsi->tx_rings[i]; 83 84 if (tx_ring && tx_ring->desc) { 85 /* If packet counter has not changed the queue is 86 * likely stalled, so force an interrupt for this 87 * queue. 88 * 89 * prev_pkt would be negative if there was no 90 * pending work. 91 */ 92 packets = tx_ring->stats.pkts & INT_MAX; 93 if (tx_ring->tx_stats.prev_pkt == packets) { 94 /* Trigger sw interrupt to revive the queue */ 95 ice_trigger_sw_intr(hw, tx_ring->q_vector); 96 continue; 97 } 98 99 /* Memory barrier between read of packet count and call 100 * to ice_get_tx_pending() 101 */ 102 smp_rmb(); 103 tx_ring->tx_stats.prev_pkt = 104 ice_get_tx_pending(tx_ring) ? packets : -1; 105 } 106 } 107 } 108 109 /** 110 * ice_init_mac_fltr - Set initial MAC filters 111 * @pf: board private structure 112 * 113 * Set initial set of MAC filters for PF VSI; configure filters for permanent 114 * address and broadcast address. If an error is encountered, netdevice will be 115 * unregistered. 116 */ 117 static int ice_init_mac_fltr(struct ice_pf *pf) 118 { 119 enum ice_status status; 120 u8 broadcast[ETH_ALEN]; 121 struct ice_vsi *vsi; 122 123 vsi = ice_get_main_vsi(pf); 124 if (!vsi) 125 return -EINVAL; 126 127 /* To add a MAC filter, first add the MAC to a list and then 128 * pass the list to ice_add_mac. 129 */ 130 131 /* Add a unicast MAC filter so the VSI can get its packets */ 132 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true); 133 if (status) 134 goto unregister; 135 136 /* VSI needs to receive broadcast traffic, so add the broadcast 137 * MAC address to the list as well. 138 */ 139 eth_broadcast_addr(broadcast); 140 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true); 141 if (status) 142 goto unregister; 143 144 return 0; 145 unregister: 146 /* We aren't useful with no MAC filters, so unregister if we 147 * had an error 148 */ 149 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 150 dev_err(&pf->pdev->dev, 151 "Could not add MAC filters error %d. Unregistering device\n", 152 status); 153 unregister_netdev(vsi->netdev); 154 free_netdev(vsi->netdev); 155 vsi->netdev = NULL; 156 } 157 158 return -EIO; 159 } 160 161 /** 162 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 163 * @netdev: the net device on which the sync is happening 164 * @addr: MAC address to sync 165 * 166 * This is a callback function which is called by the in kernel device sync 167 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 168 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 169 * MAC filters from the hardware. 170 */ 171 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 172 { 173 struct ice_netdev_priv *np = netdev_priv(netdev); 174 struct ice_vsi *vsi = np->vsi; 175 176 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 177 return -EINVAL; 178 179 return 0; 180 } 181 182 /** 183 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 184 * @netdev: the net device on which the unsync is happening 185 * @addr: MAC address to unsync 186 * 187 * This is a callback function which is called by the in kernel device unsync 188 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 189 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 190 * delete the MAC filters from the hardware. 191 */ 192 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 193 { 194 struct ice_netdev_priv *np = netdev_priv(netdev); 195 struct ice_vsi *vsi = np->vsi; 196 197 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 198 return -EINVAL; 199 200 return 0; 201 } 202 203 /** 204 * ice_vsi_fltr_changed - check if filter state changed 205 * @vsi: VSI to be checked 206 * 207 * returns true if filter state has changed, false otherwise. 208 */ 209 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 210 { 211 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 212 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 213 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 214 } 215 216 /** 217 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 218 * @vsi: the VSI being configured 219 * @promisc_m: mask of promiscuous config bits 220 * @set_promisc: enable or disable promisc flag request 221 * 222 */ 223 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 224 { 225 struct ice_hw *hw = &vsi->back->hw; 226 enum ice_status status = 0; 227 228 if (vsi->type != ICE_VSI_PF) 229 return 0; 230 231 if (vsi->vlan_ena) { 232 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 233 set_promisc); 234 } else { 235 if (set_promisc) 236 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 237 0); 238 else 239 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 240 0); 241 } 242 243 if (status) 244 return -EIO; 245 246 return 0; 247 } 248 249 /** 250 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 251 * @vsi: ptr to the VSI 252 * 253 * Push any outstanding VSI filter changes through the AdminQ. 254 */ 255 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 256 { 257 struct device *dev = &vsi->back->pdev->dev; 258 struct net_device *netdev = vsi->netdev; 259 bool promisc_forced_on = false; 260 struct ice_pf *pf = vsi->back; 261 struct ice_hw *hw = &pf->hw; 262 enum ice_status status = 0; 263 u32 changed_flags = 0; 264 u8 promisc_m; 265 int err = 0; 266 267 if (!vsi->netdev) 268 return -EINVAL; 269 270 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 271 usleep_range(1000, 2000); 272 273 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 274 vsi->current_netdev_flags = vsi->netdev->flags; 275 276 INIT_LIST_HEAD(&vsi->tmp_sync_list); 277 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 278 279 if (ice_vsi_fltr_changed(vsi)) { 280 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 281 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 282 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 283 284 /* grab the netdev's addr_list_lock */ 285 netif_addr_lock_bh(netdev); 286 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 287 ice_add_mac_to_unsync_list); 288 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 289 ice_add_mac_to_unsync_list); 290 /* our temp lists are populated. release lock */ 291 netif_addr_unlock_bh(netdev); 292 } 293 294 /* Remove MAC addresses in the unsync list */ 295 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 296 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 297 if (status) { 298 netdev_err(netdev, "Failed to delete MAC filters\n"); 299 /* if we failed because of alloc failures, just bail */ 300 if (status == ICE_ERR_NO_MEMORY) { 301 err = -ENOMEM; 302 goto out; 303 } 304 } 305 306 /* Add MAC addresses in the sync list */ 307 status = ice_add_mac(hw, &vsi->tmp_sync_list); 308 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 309 /* If filter is added successfully or already exists, do not go into 310 * 'if' condition and report it as error. Instead continue processing 311 * rest of the function. 312 */ 313 if (status && status != ICE_ERR_ALREADY_EXISTS) { 314 netdev_err(netdev, "Failed to add MAC filters\n"); 315 /* If there is no more space for new umac filters, VSI 316 * should go into promiscuous mode. There should be some 317 * space reserved for promiscuous filters. 318 */ 319 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 320 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 321 vsi->state)) { 322 promisc_forced_on = true; 323 netdev_warn(netdev, 324 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 325 vsi->vsi_num); 326 } else { 327 err = -EIO; 328 goto out; 329 } 330 } 331 /* check for changes in promiscuous modes */ 332 if (changed_flags & IFF_ALLMULTI) { 333 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 334 if (vsi->vlan_ena) 335 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 336 else 337 promisc_m = ICE_MCAST_PROMISC_BITS; 338 339 err = ice_cfg_promisc(vsi, promisc_m, true); 340 if (err) { 341 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 342 vsi->vsi_num); 343 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 344 goto out_promisc; 345 } 346 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 347 if (vsi->vlan_ena) 348 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 349 else 350 promisc_m = ICE_MCAST_PROMISC_BITS; 351 352 err = ice_cfg_promisc(vsi, promisc_m, false); 353 if (err) { 354 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 355 vsi->vsi_num); 356 vsi->current_netdev_flags |= IFF_ALLMULTI; 357 goto out_promisc; 358 } 359 } 360 } 361 362 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 363 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 364 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 365 if (vsi->current_netdev_flags & IFF_PROMISC) { 366 /* Apply Rx filter rule to get traffic from wire */ 367 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 368 ICE_FLTR_RX); 369 if (status) { 370 netdev_err(netdev, "Error setting default VSI %i Rx rule\n", 371 vsi->vsi_num); 372 vsi->current_netdev_flags &= ~IFF_PROMISC; 373 err = -EIO; 374 goto out_promisc; 375 } 376 } else { 377 /* Clear Rx filter to remove traffic from wire */ 378 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 379 ICE_FLTR_RX); 380 if (status) { 381 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n", 382 vsi->vsi_num); 383 vsi->current_netdev_flags |= IFF_PROMISC; 384 err = -EIO; 385 goto out_promisc; 386 } 387 } 388 } 389 goto exit; 390 391 out_promisc: 392 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 393 goto exit; 394 out: 395 /* if something went wrong then set the changed flag so we try again */ 396 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 397 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 398 exit: 399 clear_bit(__ICE_CFG_BUSY, vsi->state); 400 return err; 401 } 402 403 /** 404 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 405 * @pf: board private structure 406 */ 407 static void ice_sync_fltr_subtask(struct ice_pf *pf) 408 { 409 int v; 410 411 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 412 return; 413 414 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 415 416 ice_for_each_vsi(pf, v) 417 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 418 ice_vsi_sync_fltr(pf->vsi[v])) { 419 /* come back and try again later */ 420 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 421 break; 422 } 423 } 424 425 /** 426 * ice_dis_vsi - pause a VSI 427 * @vsi: the VSI being paused 428 * @locked: is the rtnl_lock already held 429 */ 430 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 431 { 432 if (test_bit(__ICE_DOWN, vsi->state)) 433 return; 434 435 set_bit(__ICE_NEEDS_RESTART, vsi->state); 436 437 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 438 if (netif_running(vsi->netdev)) { 439 if (!locked) 440 rtnl_lock(); 441 442 ice_stop(vsi->netdev); 443 444 if (!locked) 445 rtnl_unlock(); 446 } else { 447 ice_vsi_close(vsi); 448 } 449 } 450 } 451 452 /** 453 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 454 * @pf: the PF 455 * @locked: is the rtnl_lock already held 456 */ 457 #ifdef CONFIG_DCB 458 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 459 #else 460 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 461 #endif /* CONFIG_DCB */ 462 { 463 int v; 464 465 ice_for_each_vsi(pf, v) 466 if (pf->vsi[v]) 467 ice_dis_vsi(pf->vsi[v], locked); 468 } 469 470 /** 471 * ice_prepare_for_reset - prep for the core to reset 472 * @pf: board private structure 473 * 474 * Inform or close all dependent features in prep for reset. 475 */ 476 static void 477 ice_prepare_for_reset(struct ice_pf *pf) 478 { 479 struct ice_hw *hw = &pf->hw; 480 int i; 481 482 /* already prepared for reset */ 483 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 484 return; 485 486 /* Notify VFs of impending reset */ 487 if (ice_check_sq_alive(hw, &hw->mailboxq)) 488 ice_vc_notify_reset(pf); 489 490 /* Disable VFs until reset is completed */ 491 for (i = 0; i < pf->num_alloc_vfs; i++) 492 ice_set_vf_state_qs_dis(&pf->vf[i]); 493 494 /* disable the VSIs and their queues that are not already DOWN */ 495 ice_pf_dis_all_vsi(pf, false); 496 497 if (hw->port_info) 498 ice_sched_clear_port(hw->port_info); 499 500 ice_shutdown_all_ctrlq(hw); 501 502 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 503 } 504 505 /** 506 * ice_do_reset - Initiate one of many types of resets 507 * @pf: board private structure 508 * @reset_type: reset type requested 509 * before this function was called. 510 */ 511 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 512 { 513 struct device *dev = &pf->pdev->dev; 514 struct ice_hw *hw = &pf->hw; 515 516 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 517 WARN_ON(in_interrupt()); 518 519 ice_prepare_for_reset(pf); 520 521 /* trigger the reset */ 522 if (ice_reset(hw, reset_type)) { 523 dev_err(dev, "reset %d failed\n", reset_type); 524 set_bit(__ICE_RESET_FAILED, pf->state); 525 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 526 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 527 clear_bit(__ICE_PFR_REQ, pf->state); 528 clear_bit(__ICE_CORER_REQ, pf->state); 529 clear_bit(__ICE_GLOBR_REQ, pf->state); 530 return; 531 } 532 533 /* PFR is a bit of a special case because it doesn't result in an OICR 534 * interrupt. So for PFR, rebuild after the reset and clear the reset- 535 * associated state bits. 536 */ 537 if (reset_type == ICE_RESET_PFR) { 538 pf->pfr_count++; 539 ice_rebuild(pf); 540 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 541 clear_bit(__ICE_PFR_REQ, pf->state); 542 ice_reset_all_vfs(pf, true); 543 } 544 } 545 546 /** 547 * ice_reset_subtask - Set up for resetting the device and driver 548 * @pf: board private structure 549 */ 550 static void ice_reset_subtask(struct ice_pf *pf) 551 { 552 enum ice_reset_req reset_type = ICE_RESET_INVAL; 553 554 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 555 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 556 * of reset is pending and sets bits in pf->state indicating the reset 557 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 558 * prepare for pending reset if not already (for PF software-initiated 559 * global resets the software should already be prepared for it as 560 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 561 * by firmware or software on other PFs, that bit is not set so prepare 562 * for the reset now), poll for reset done, rebuild and return. 563 */ 564 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 565 /* Perform the largest reset requested */ 566 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 567 reset_type = ICE_RESET_CORER; 568 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 569 reset_type = ICE_RESET_GLOBR; 570 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 571 reset_type = ICE_RESET_EMPR; 572 /* return if no valid reset type requested */ 573 if (reset_type == ICE_RESET_INVAL) 574 return; 575 ice_prepare_for_reset(pf); 576 577 /* make sure we are ready to rebuild */ 578 if (ice_check_reset(&pf->hw)) { 579 set_bit(__ICE_RESET_FAILED, pf->state); 580 } else { 581 /* done with reset. start rebuild */ 582 pf->hw.reset_ongoing = false; 583 ice_rebuild(pf); 584 /* clear bit to resume normal operations, but 585 * ICE_NEEDS_RESTART bit is set in case rebuild failed 586 */ 587 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 588 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 589 clear_bit(__ICE_PFR_REQ, pf->state); 590 clear_bit(__ICE_CORER_REQ, pf->state); 591 clear_bit(__ICE_GLOBR_REQ, pf->state); 592 ice_reset_all_vfs(pf, true); 593 } 594 595 return; 596 } 597 598 /* No pending resets to finish processing. Check for new resets */ 599 if (test_bit(__ICE_PFR_REQ, pf->state)) 600 reset_type = ICE_RESET_PFR; 601 if (test_bit(__ICE_CORER_REQ, pf->state)) 602 reset_type = ICE_RESET_CORER; 603 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 604 reset_type = ICE_RESET_GLOBR; 605 /* If no valid reset type requested just return */ 606 if (reset_type == ICE_RESET_INVAL) 607 return; 608 609 /* reset if not already down or busy */ 610 if (!test_bit(__ICE_DOWN, pf->state) && 611 !test_bit(__ICE_CFG_BUSY, pf->state)) { 612 ice_do_reset(pf, reset_type); 613 } 614 } 615 616 /** 617 * ice_print_topo_conflict - print topology conflict message 618 * @vsi: the VSI whose topology status is being checked 619 */ 620 static void ice_print_topo_conflict(struct ice_vsi *vsi) 621 { 622 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 623 case ICE_AQ_LINK_TOPO_CONFLICT: 624 case ICE_AQ_LINK_MEDIA_CONFLICT: 625 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 626 break; 627 default: 628 break; 629 } 630 } 631 632 /** 633 * ice_print_link_msg - print link up or down message 634 * @vsi: the VSI whose link status is being queried 635 * @isup: boolean for if the link is now up or down 636 */ 637 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 638 { 639 struct ice_aqc_get_phy_caps_data *caps; 640 enum ice_status status; 641 const char *fec_req; 642 const char *speed; 643 const char *fec; 644 const char *fc; 645 const char *an; 646 647 if (!vsi) 648 return; 649 650 if (vsi->current_isup == isup) 651 return; 652 653 vsi->current_isup = isup; 654 655 if (!isup) { 656 netdev_info(vsi->netdev, "NIC Link is Down\n"); 657 return; 658 } 659 660 switch (vsi->port_info->phy.link_info.link_speed) { 661 case ICE_AQ_LINK_SPEED_100GB: 662 speed = "100 G"; 663 break; 664 case ICE_AQ_LINK_SPEED_50GB: 665 speed = "50 G"; 666 break; 667 case ICE_AQ_LINK_SPEED_40GB: 668 speed = "40 G"; 669 break; 670 case ICE_AQ_LINK_SPEED_25GB: 671 speed = "25 G"; 672 break; 673 case ICE_AQ_LINK_SPEED_20GB: 674 speed = "20 G"; 675 break; 676 case ICE_AQ_LINK_SPEED_10GB: 677 speed = "10 G"; 678 break; 679 case ICE_AQ_LINK_SPEED_5GB: 680 speed = "5 G"; 681 break; 682 case ICE_AQ_LINK_SPEED_2500MB: 683 speed = "2.5 G"; 684 break; 685 case ICE_AQ_LINK_SPEED_1000MB: 686 speed = "1 G"; 687 break; 688 case ICE_AQ_LINK_SPEED_100MB: 689 speed = "100 M"; 690 break; 691 default: 692 speed = "Unknown"; 693 break; 694 } 695 696 switch (vsi->port_info->fc.current_mode) { 697 case ICE_FC_FULL: 698 fc = "Rx/Tx"; 699 break; 700 case ICE_FC_TX_PAUSE: 701 fc = "Tx"; 702 break; 703 case ICE_FC_RX_PAUSE: 704 fc = "Rx"; 705 break; 706 case ICE_FC_NONE: 707 fc = "None"; 708 break; 709 default: 710 fc = "Unknown"; 711 break; 712 } 713 714 /* Get FEC mode based on negotiated link info */ 715 switch (vsi->port_info->phy.link_info.fec_info) { 716 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 717 /* fall through */ 718 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 719 fec = "RS-FEC"; 720 break; 721 case ICE_AQ_LINK_25G_KR_FEC_EN: 722 fec = "FC-FEC/BASE-R"; 723 break; 724 default: 725 fec = "NONE"; 726 break; 727 } 728 729 /* check if autoneg completed, might be false due to not supported */ 730 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 731 an = "True"; 732 else 733 an = "False"; 734 735 /* Get FEC mode requested based on PHY caps last SW configuration */ 736 caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL); 737 if (!caps) { 738 fec_req = "Unknown"; 739 goto done; 740 } 741 742 status = ice_aq_get_phy_caps(vsi->port_info, false, 743 ICE_AQC_REPORT_SW_CFG, caps, NULL); 744 if (status) 745 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 746 747 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 748 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 749 fec_req = "RS-FEC"; 750 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 751 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 752 fec_req = "FC-FEC/BASE-R"; 753 else 754 fec_req = "NONE"; 755 756 devm_kfree(&vsi->back->pdev->dev, caps); 757 758 done: 759 netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n", 760 speed, fec_req, fec, an, fc); 761 ice_print_topo_conflict(vsi); 762 } 763 764 /** 765 * ice_vsi_link_event - update the VSI's netdev 766 * @vsi: the VSI on which the link event occurred 767 * @link_up: whether or not the VSI needs to be set up or down 768 */ 769 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 770 { 771 if (!vsi) 772 return; 773 774 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 775 return; 776 777 if (vsi->type == ICE_VSI_PF) { 778 if (link_up == netif_carrier_ok(vsi->netdev)) 779 return; 780 781 if (link_up) { 782 netif_carrier_on(vsi->netdev); 783 netif_tx_wake_all_queues(vsi->netdev); 784 } else { 785 netif_carrier_off(vsi->netdev); 786 netif_tx_stop_all_queues(vsi->netdev); 787 } 788 } 789 } 790 791 /** 792 * ice_link_event - process the link event 793 * @pf: PF that the link event is associated with 794 * @pi: port_info for the port that the link event is associated with 795 * @link_up: true if the physical link is up and false if it is down 796 * @link_speed: current link speed received from the link event 797 * 798 * Returns 0 on success and negative on failure 799 */ 800 static int 801 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 802 u16 link_speed) 803 { 804 struct ice_phy_info *phy_info; 805 struct ice_vsi *vsi; 806 u16 old_link_speed; 807 bool old_link; 808 int result; 809 810 phy_info = &pi->phy; 811 phy_info->link_info_old = phy_info->link_info; 812 813 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 814 old_link_speed = phy_info->link_info_old.link_speed; 815 816 /* update the link info structures and re-enable link events, 817 * don't bail on failure due to other book keeping needed 818 */ 819 result = ice_update_link_info(pi); 820 if (result) 821 dev_dbg(&pf->pdev->dev, 822 "Failed to update link status and re-enable link events for port %d\n", 823 pi->lport); 824 825 /* if the old link up/down and speed is the same as the new */ 826 if (link_up == old_link && link_speed == old_link_speed) 827 return result; 828 829 vsi = ice_get_main_vsi(pf); 830 if (!vsi || !vsi->port_info) 831 return -EINVAL; 832 833 /* turn off PHY if media was removed */ 834 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 835 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 836 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 837 838 result = ice_aq_set_link_restart_an(pi, false, NULL); 839 if (result) { 840 dev_dbg(&pf->pdev->dev, 841 "Failed to set link down, VSI %d error %d\n", 842 vsi->vsi_num, result); 843 return result; 844 } 845 } 846 847 ice_vsi_link_event(vsi, link_up); 848 ice_print_link_msg(vsi, link_up); 849 850 if (pf->num_alloc_vfs) 851 ice_vc_notify_link_state(pf); 852 853 return result; 854 } 855 856 /** 857 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 858 * @pf: board private structure 859 */ 860 static void ice_watchdog_subtask(struct ice_pf *pf) 861 { 862 int i; 863 864 /* if interface is down do nothing */ 865 if (test_bit(__ICE_DOWN, pf->state) || 866 test_bit(__ICE_CFG_BUSY, pf->state)) 867 return; 868 869 /* make sure we don't do these things too often */ 870 if (time_before(jiffies, 871 pf->serv_tmr_prev + pf->serv_tmr_period)) 872 return; 873 874 pf->serv_tmr_prev = jiffies; 875 876 /* Update the stats for active netdevs so the network stack 877 * can look at updated numbers whenever it cares to 878 */ 879 ice_update_pf_stats(pf); 880 ice_for_each_vsi(pf, i) 881 if (pf->vsi[i] && pf->vsi[i]->netdev) 882 ice_update_vsi_stats(pf->vsi[i]); 883 } 884 885 /** 886 * ice_init_link_events - enable/initialize link events 887 * @pi: pointer to the port_info instance 888 * 889 * Returns -EIO on failure, 0 on success 890 */ 891 static int ice_init_link_events(struct ice_port_info *pi) 892 { 893 u16 mask; 894 895 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 896 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 897 898 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 899 dev_dbg(ice_hw_to_dev(pi->hw), 900 "Failed to set link event mask for port %d\n", 901 pi->lport); 902 return -EIO; 903 } 904 905 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 906 dev_dbg(ice_hw_to_dev(pi->hw), 907 "Failed to enable link events for port %d\n", 908 pi->lport); 909 return -EIO; 910 } 911 912 return 0; 913 } 914 915 /** 916 * ice_handle_link_event - handle link event via ARQ 917 * @pf: PF that the link event is associated with 918 * @event: event structure containing link status info 919 */ 920 static int 921 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 922 { 923 struct ice_aqc_get_link_status_data *link_data; 924 struct ice_port_info *port_info; 925 int status; 926 927 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 928 port_info = pf->hw.port_info; 929 if (!port_info) 930 return -EINVAL; 931 932 status = ice_link_event(pf, port_info, 933 !!(link_data->link_info & ICE_AQ_LINK_UP), 934 le16_to_cpu(link_data->link_speed)); 935 if (status) 936 dev_dbg(&pf->pdev->dev, 937 "Could not process link event, error %d\n", status); 938 939 return status; 940 } 941 942 /** 943 * __ice_clean_ctrlq - helper function to clean controlq rings 944 * @pf: ptr to struct ice_pf 945 * @q_type: specific Control queue type 946 */ 947 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 948 { 949 struct ice_rq_event_info event; 950 struct ice_hw *hw = &pf->hw; 951 struct ice_ctl_q_info *cq; 952 u16 pending, i = 0; 953 const char *qtype; 954 u32 oldval, val; 955 956 /* Do not clean control queue if/when PF reset fails */ 957 if (test_bit(__ICE_RESET_FAILED, pf->state)) 958 return 0; 959 960 switch (q_type) { 961 case ICE_CTL_Q_ADMIN: 962 cq = &hw->adminq; 963 qtype = "Admin"; 964 break; 965 case ICE_CTL_Q_MAILBOX: 966 cq = &hw->mailboxq; 967 qtype = "Mailbox"; 968 break; 969 default: 970 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 971 q_type); 972 return 0; 973 } 974 975 /* check for error indications - PF_xx_AxQLEN register layout for 976 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 977 */ 978 val = rd32(hw, cq->rq.len); 979 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 980 PF_FW_ARQLEN_ARQCRIT_M)) { 981 oldval = val; 982 if (val & PF_FW_ARQLEN_ARQVFE_M) 983 dev_dbg(&pf->pdev->dev, 984 "%s Receive Queue VF Error detected\n", qtype); 985 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 986 dev_dbg(&pf->pdev->dev, 987 "%s Receive Queue Overflow Error detected\n", 988 qtype); 989 } 990 if (val & PF_FW_ARQLEN_ARQCRIT_M) 991 dev_dbg(&pf->pdev->dev, 992 "%s Receive Queue Critical Error detected\n", 993 qtype); 994 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 995 PF_FW_ARQLEN_ARQCRIT_M); 996 if (oldval != val) 997 wr32(hw, cq->rq.len, val); 998 } 999 1000 val = rd32(hw, cq->sq.len); 1001 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1002 PF_FW_ATQLEN_ATQCRIT_M)) { 1003 oldval = val; 1004 if (val & PF_FW_ATQLEN_ATQVFE_M) 1005 dev_dbg(&pf->pdev->dev, 1006 "%s Send Queue VF Error detected\n", qtype); 1007 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1008 dev_dbg(&pf->pdev->dev, 1009 "%s Send Queue Overflow Error detected\n", 1010 qtype); 1011 } 1012 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1013 dev_dbg(&pf->pdev->dev, 1014 "%s Send Queue Critical Error detected\n", 1015 qtype); 1016 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1017 PF_FW_ATQLEN_ATQCRIT_M); 1018 if (oldval != val) 1019 wr32(hw, cq->sq.len, val); 1020 } 1021 1022 event.buf_len = cq->rq_buf_size; 1023 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 1024 GFP_KERNEL); 1025 if (!event.msg_buf) 1026 return 0; 1027 1028 do { 1029 enum ice_status ret; 1030 u16 opcode; 1031 1032 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1033 if (ret == ICE_ERR_AQ_NO_WORK) 1034 break; 1035 if (ret) { 1036 dev_err(&pf->pdev->dev, 1037 "%s Receive Queue event error %d\n", qtype, 1038 ret); 1039 break; 1040 } 1041 1042 opcode = le16_to_cpu(event.desc.opcode); 1043 1044 switch (opcode) { 1045 case ice_aqc_opc_get_link_status: 1046 if (ice_handle_link_event(pf, &event)) 1047 dev_err(&pf->pdev->dev, 1048 "Could not handle link event\n"); 1049 break; 1050 case ice_mbx_opc_send_msg_to_pf: 1051 ice_vc_process_vf_msg(pf, &event); 1052 break; 1053 case ice_aqc_opc_fw_logging: 1054 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1055 break; 1056 case ice_aqc_opc_lldp_set_mib_change: 1057 ice_dcb_process_lldp_set_mib_change(pf, &event); 1058 break; 1059 default: 1060 dev_dbg(&pf->pdev->dev, 1061 "%s Receive Queue unknown event 0x%04x ignored\n", 1062 qtype, opcode); 1063 break; 1064 } 1065 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1066 1067 devm_kfree(&pf->pdev->dev, event.msg_buf); 1068 1069 return pending && (i == ICE_DFLT_IRQ_WORK); 1070 } 1071 1072 /** 1073 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1074 * @hw: pointer to hardware info 1075 * @cq: control queue information 1076 * 1077 * returns true if there are pending messages in a queue, false if there aren't 1078 */ 1079 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1080 { 1081 u16 ntu; 1082 1083 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1084 return cq->rq.next_to_clean != ntu; 1085 } 1086 1087 /** 1088 * ice_clean_adminq_subtask - clean the AdminQ rings 1089 * @pf: board private structure 1090 */ 1091 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1092 { 1093 struct ice_hw *hw = &pf->hw; 1094 1095 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1096 return; 1097 1098 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1099 return; 1100 1101 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1102 1103 /* There might be a situation where new messages arrive to a control 1104 * queue between processing the last message and clearing the 1105 * EVENT_PENDING bit. So before exiting, check queue head again (using 1106 * ice_ctrlq_pending) and process new messages if any. 1107 */ 1108 if (ice_ctrlq_pending(hw, &hw->adminq)) 1109 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1110 1111 ice_flush(hw); 1112 } 1113 1114 /** 1115 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1116 * @pf: board private structure 1117 */ 1118 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1119 { 1120 struct ice_hw *hw = &pf->hw; 1121 1122 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1123 return; 1124 1125 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1126 return; 1127 1128 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1129 1130 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1131 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1132 1133 ice_flush(hw); 1134 } 1135 1136 /** 1137 * ice_service_task_schedule - schedule the service task to wake up 1138 * @pf: board private structure 1139 * 1140 * If not already scheduled, this puts the task into the work queue. 1141 */ 1142 static void ice_service_task_schedule(struct ice_pf *pf) 1143 { 1144 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1145 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1146 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1147 queue_work(ice_wq, &pf->serv_task); 1148 } 1149 1150 /** 1151 * ice_service_task_complete - finish up the service task 1152 * @pf: board private structure 1153 */ 1154 static void ice_service_task_complete(struct ice_pf *pf) 1155 { 1156 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1157 1158 /* force memory (pf->state) to sync before next service task */ 1159 smp_mb__before_atomic(); 1160 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1161 } 1162 1163 /** 1164 * ice_service_task_stop - stop service task and cancel works 1165 * @pf: board private structure 1166 */ 1167 static void ice_service_task_stop(struct ice_pf *pf) 1168 { 1169 set_bit(__ICE_SERVICE_DIS, pf->state); 1170 1171 if (pf->serv_tmr.function) 1172 del_timer_sync(&pf->serv_tmr); 1173 if (pf->serv_task.func) 1174 cancel_work_sync(&pf->serv_task); 1175 1176 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1177 } 1178 1179 /** 1180 * ice_service_task_restart - restart service task and schedule works 1181 * @pf: board private structure 1182 * 1183 * This function is needed for suspend and resume works (e.g WoL scenario) 1184 */ 1185 static void ice_service_task_restart(struct ice_pf *pf) 1186 { 1187 clear_bit(__ICE_SERVICE_DIS, pf->state); 1188 ice_service_task_schedule(pf); 1189 } 1190 1191 /** 1192 * ice_service_timer - timer callback to schedule service task 1193 * @t: pointer to timer_list 1194 */ 1195 static void ice_service_timer(struct timer_list *t) 1196 { 1197 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1198 1199 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1200 ice_service_task_schedule(pf); 1201 } 1202 1203 /** 1204 * ice_handle_mdd_event - handle malicious driver detect event 1205 * @pf: pointer to the PF structure 1206 * 1207 * Called from service task. OICR interrupt handler indicates MDD event 1208 */ 1209 static void ice_handle_mdd_event(struct ice_pf *pf) 1210 { 1211 struct ice_hw *hw = &pf->hw; 1212 bool mdd_detected = false; 1213 u32 reg; 1214 int i; 1215 1216 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 1217 return; 1218 1219 /* find what triggered the MDD event */ 1220 reg = rd32(hw, GL_MDET_TX_PQM); 1221 if (reg & GL_MDET_TX_PQM_VALID_M) { 1222 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1223 GL_MDET_TX_PQM_PF_NUM_S; 1224 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1225 GL_MDET_TX_PQM_VF_NUM_S; 1226 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1227 GL_MDET_TX_PQM_MAL_TYPE_S; 1228 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1229 GL_MDET_TX_PQM_QNUM_S); 1230 1231 if (netif_msg_tx_err(pf)) 1232 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1233 event, queue, pf_num, vf_num); 1234 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1235 mdd_detected = true; 1236 } 1237 1238 reg = rd32(hw, GL_MDET_TX_TCLAN); 1239 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1240 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1241 GL_MDET_TX_TCLAN_PF_NUM_S; 1242 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1243 GL_MDET_TX_TCLAN_VF_NUM_S; 1244 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1245 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1246 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1247 GL_MDET_TX_TCLAN_QNUM_S); 1248 1249 if (netif_msg_rx_err(pf)) 1250 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1251 event, queue, pf_num, vf_num); 1252 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1253 mdd_detected = true; 1254 } 1255 1256 reg = rd32(hw, GL_MDET_RX); 1257 if (reg & GL_MDET_RX_VALID_M) { 1258 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1259 GL_MDET_RX_PF_NUM_S; 1260 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1261 GL_MDET_RX_VF_NUM_S; 1262 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1263 GL_MDET_RX_MAL_TYPE_S; 1264 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1265 GL_MDET_RX_QNUM_S); 1266 1267 if (netif_msg_rx_err(pf)) 1268 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1269 event, queue, pf_num, vf_num); 1270 wr32(hw, GL_MDET_RX, 0xffffffff); 1271 mdd_detected = true; 1272 } 1273 1274 if (mdd_detected) { 1275 bool pf_mdd_detected = false; 1276 1277 reg = rd32(hw, PF_MDET_TX_PQM); 1278 if (reg & PF_MDET_TX_PQM_VALID_M) { 1279 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1280 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1281 pf_mdd_detected = true; 1282 } 1283 1284 reg = rd32(hw, PF_MDET_TX_TCLAN); 1285 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1286 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1287 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1288 pf_mdd_detected = true; 1289 } 1290 1291 reg = rd32(hw, PF_MDET_RX); 1292 if (reg & PF_MDET_RX_VALID_M) { 1293 wr32(hw, PF_MDET_RX, 0xFFFF); 1294 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 1295 pf_mdd_detected = true; 1296 } 1297 /* Queue belongs to the PF initiate a reset */ 1298 if (pf_mdd_detected) { 1299 set_bit(__ICE_NEEDS_RESTART, pf->state); 1300 ice_service_task_schedule(pf); 1301 } 1302 } 1303 1304 /* check to see if one of the VFs caused the MDD */ 1305 for (i = 0; i < pf->num_alloc_vfs; i++) { 1306 struct ice_vf *vf = &pf->vf[i]; 1307 1308 bool vf_mdd_detected = false; 1309 1310 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1311 if (reg & VP_MDET_TX_PQM_VALID_M) { 1312 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1313 vf_mdd_detected = true; 1314 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1315 i); 1316 } 1317 1318 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1319 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1320 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1321 vf_mdd_detected = true; 1322 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1323 i); 1324 } 1325 1326 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1327 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1328 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1329 vf_mdd_detected = true; 1330 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1331 i); 1332 } 1333 1334 reg = rd32(hw, VP_MDET_RX(i)); 1335 if (reg & VP_MDET_RX_VALID_M) { 1336 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1337 vf_mdd_detected = true; 1338 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1339 i); 1340 } 1341 1342 if (vf_mdd_detected) { 1343 vf->num_mdd_events++; 1344 if (vf->num_mdd_events && 1345 vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD) 1346 dev_info(&pf->pdev->dev, 1347 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n", 1348 i, vf->num_mdd_events); 1349 } 1350 } 1351 } 1352 1353 /** 1354 * ice_force_phys_link_state - Force the physical link state 1355 * @vsi: VSI to force the physical link state to up/down 1356 * @link_up: true/false indicates to set the physical link to up/down 1357 * 1358 * Force the physical link state by getting the current PHY capabilities from 1359 * hardware and setting the PHY config based on the determined capabilities. If 1360 * link changes a link event will be triggered because both the Enable Automatic 1361 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1362 * 1363 * Returns 0 on success, negative on failure 1364 */ 1365 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1366 { 1367 struct ice_aqc_get_phy_caps_data *pcaps; 1368 struct ice_aqc_set_phy_cfg_data *cfg; 1369 struct ice_port_info *pi; 1370 struct device *dev; 1371 int retcode; 1372 1373 if (!vsi || !vsi->port_info || !vsi->back) 1374 return -EINVAL; 1375 if (vsi->type != ICE_VSI_PF) 1376 return 0; 1377 1378 dev = &vsi->back->pdev->dev; 1379 1380 pi = vsi->port_info; 1381 1382 pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL); 1383 if (!pcaps) 1384 return -ENOMEM; 1385 1386 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1387 NULL); 1388 if (retcode) { 1389 dev_err(dev, 1390 "Failed to get phy capabilities, VSI %d error %d\n", 1391 vsi->vsi_num, retcode); 1392 retcode = -EIO; 1393 goto out; 1394 } 1395 1396 /* No change in link */ 1397 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1398 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1399 goto out; 1400 1401 cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL); 1402 if (!cfg) { 1403 retcode = -ENOMEM; 1404 goto out; 1405 } 1406 1407 cfg->phy_type_low = pcaps->phy_type_low; 1408 cfg->phy_type_high = pcaps->phy_type_high; 1409 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1410 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1411 cfg->eee_cap = pcaps->eee_cap; 1412 cfg->eeer_value = pcaps->eeer_value; 1413 cfg->link_fec_opt = pcaps->link_fec_options; 1414 if (link_up) 1415 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1416 else 1417 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1418 1419 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1420 if (retcode) { 1421 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1422 vsi->vsi_num, retcode); 1423 retcode = -EIO; 1424 } 1425 1426 devm_kfree(dev, cfg); 1427 out: 1428 devm_kfree(dev, pcaps); 1429 return retcode; 1430 } 1431 1432 /** 1433 * ice_check_media_subtask - Check for media; bring link up if detected. 1434 * @pf: pointer to PF struct 1435 */ 1436 static void ice_check_media_subtask(struct ice_pf *pf) 1437 { 1438 struct ice_port_info *pi; 1439 struct ice_vsi *vsi; 1440 int err; 1441 1442 vsi = ice_get_main_vsi(pf); 1443 if (!vsi) 1444 return; 1445 1446 /* No need to check for media if it's already present or the interface 1447 * is down 1448 */ 1449 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1450 test_bit(__ICE_DOWN, vsi->state)) 1451 return; 1452 1453 /* Refresh link info and check if media is present */ 1454 pi = vsi->port_info; 1455 err = ice_update_link_info(pi); 1456 if (err) 1457 return; 1458 1459 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1460 err = ice_force_phys_link_state(vsi, true); 1461 if (err) 1462 return; 1463 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1464 1465 /* A Link Status Event will be generated; the event handler 1466 * will complete bringing the interface up 1467 */ 1468 } 1469 } 1470 1471 /** 1472 * ice_service_task - manage and run subtasks 1473 * @work: pointer to work_struct contained by the PF struct 1474 */ 1475 static void ice_service_task(struct work_struct *work) 1476 { 1477 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1478 unsigned long start_time = jiffies; 1479 1480 /* subtasks */ 1481 1482 /* process reset requests first */ 1483 ice_reset_subtask(pf); 1484 1485 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1486 if (ice_is_reset_in_progress(pf->state) || 1487 test_bit(__ICE_SUSPENDED, pf->state) || 1488 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1489 ice_service_task_complete(pf); 1490 return; 1491 } 1492 1493 ice_check_media_subtask(pf); 1494 ice_check_for_hang_subtask(pf); 1495 ice_sync_fltr_subtask(pf); 1496 ice_handle_mdd_event(pf); 1497 ice_process_vflr_event(pf); 1498 ice_watchdog_subtask(pf); 1499 ice_clean_adminq_subtask(pf); 1500 ice_clean_mailboxq_subtask(pf); 1501 1502 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1503 ice_service_task_complete(pf); 1504 1505 /* If the tasks have taken longer than one service timer period 1506 * or there is more work to be done, reset the service timer to 1507 * schedule the service task now. 1508 */ 1509 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1510 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1511 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1512 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1513 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1514 mod_timer(&pf->serv_tmr, jiffies); 1515 } 1516 1517 /** 1518 * ice_set_ctrlq_len - helper function to set controlq length 1519 * @hw: pointer to the HW instance 1520 */ 1521 static void ice_set_ctrlq_len(struct ice_hw *hw) 1522 { 1523 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1524 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1525 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1526 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1527 hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN; 1528 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1529 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1530 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1531 } 1532 1533 /** 1534 * ice_irq_affinity_notify - Callback for affinity changes 1535 * @notify: context as to what irq was changed 1536 * @mask: the new affinity mask 1537 * 1538 * This is a callback function used by the irq_set_affinity_notifier function 1539 * so that we may register to receive changes to the irq affinity masks. 1540 */ 1541 static void 1542 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1543 const cpumask_t *mask) 1544 { 1545 struct ice_q_vector *q_vector = 1546 container_of(notify, struct ice_q_vector, affinity_notify); 1547 1548 cpumask_copy(&q_vector->affinity_mask, mask); 1549 } 1550 1551 /** 1552 * ice_irq_affinity_release - Callback for affinity notifier release 1553 * @ref: internal core kernel usage 1554 * 1555 * This is a callback function used by the irq_set_affinity_notifier function 1556 * to inform the current notification subscriber that they will no longer 1557 * receive notifications. 1558 */ 1559 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1560 1561 /** 1562 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1563 * @vsi: the VSI being configured 1564 */ 1565 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1566 { 1567 struct ice_hw *hw = &vsi->back->hw; 1568 int i; 1569 1570 ice_for_each_q_vector(vsi, i) 1571 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1572 1573 ice_flush(hw); 1574 return 0; 1575 } 1576 1577 /** 1578 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1579 * @vsi: the VSI being configured 1580 * @basename: name for the vector 1581 */ 1582 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1583 { 1584 int q_vectors = vsi->num_q_vectors; 1585 struct ice_pf *pf = vsi->back; 1586 int base = vsi->base_vector; 1587 int rx_int_idx = 0; 1588 int tx_int_idx = 0; 1589 int vector, err; 1590 int irq_num; 1591 1592 for (vector = 0; vector < q_vectors; vector++) { 1593 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1594 1595 irq_num = pf->msix_entries[base + vector].vector; 1596 1597 if (q_vector->tx.ring && q_vector->rx.ring) { 1598 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1599 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1600 tx_int_idx++; 1601 } else if (q_vector->rx.ring) { 1602 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1603 "%s-%s-%d", basename, "rx", rx_int_idx++); 1604 } else if (q_vector->tx.ring) { 1605 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1606 "%s-%s-%d", basename, "tx", tx_int_idx++); 1607 } else { 1608 /* skip this unused q_vector */ 1609 continue; 1610 } 1611 err = devm_request_irq(&pf->pdev->dev, irq_num, 1612 vsi->irq_handler, 0, 1613 q_vector->name, q_vector); 1614 if (err) { 1615 netdev_err(vsi->netdev, 1616 "MSIX request_irq failed, error: %d\n", err); 1617 goto free_q_irqs; 1618 } 1619 1620 /* register for affinity change notifications */ 1621 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1622 q_vector->affinity_notify.release = ice_irq_affinity_release; 1623 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1624 1625 /* assign the mask for this irq */ 1626 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1627 } 1628 1629 vsi->irqs_ready = true; 1630 return 0; 1631 1632 free_q_irqs: 1633 while (vector) { 1634 vector--; 1635 irq_num = pf->msix_entries[base + vector].vector, 1636 irq_set_affinity_notifier(irq_num, NULL); 1637 irq_set_affinity_hint(irq_num, NULL); 1638 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1639 } 1640 return err; 1641 } 1642 1643 /** 1644 * ice_ena_misc_vector - enable the non-queue interrupts 1645 * @pf: board private structure 1646 */ 1647 static void ice_ena_misc_vector(struct ice_pf *pf) 1648 { 1649 struct ice_hw *hw = &pf->hw; 1650 u32 val; 1651 1652 /* clear things first */ 1653 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1654 rd32(hw, PFINT_OICR); /* read to clear */ 1655 1656 val = (PFINT_OICR_ECC_ERR_M | 1657 PFINT_OICR_MAL_DETECT_M | 1658 PFINT_OICR_GRST_M | 1659 PFINT_OICR_PCI_EXCEPTION_M | 1660 PFINT_OICR_VFLR_M | 1661 PFINT_OICR_HMC_ERR_M | 1662 PFINT_OICR_PE_CRITERR_M); 1663 1664 wr32(hw, PFINT_OICR_ENA, val); 1665 1666 /* SW_ITR_IDX = 0, but don't change INTENA */ 1667 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 1668 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1669 } 1670 1671 /** 1672 * ice_misc_intr - misc interrupt handler 1673 * @irq: interrupt number 1674 * @data: pointer to a q_vector 1675 */ 1676 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1677 { 1678 struct ice_pf *pf = (struct ice_pf *)data; 1679 struct ice_hw *hw = &pf->hw; 1680 irqreturn_t ret = IRQ_NONE; 1681 u32 oicr, ena_mask; 1682 1683 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1684 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1685 1686 oicr = rd32(hw, PFINT_OICR); 1687 ena_mask = rd32(hw, PFINT_OICR_ENA); 1688 1689 if (oicr & PFINT_OICR_SWINT_M) { 1690 ena_mask &= ~PFINT_OICR_SWINT_M; 1691 pf->sw_int_count++; 1692 } 1693 1694 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1695 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 1696 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 1697 } 1698 if (oicr & PFINT_OICR_VFLR_M) { 1699 ena_mask &= ~PFINT_OICR_VFLR_M; 1700 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 1701 } 1702 1703 if (oicr & PFINT_OICR_GRST_M) { 1704 u32 reset; 1705 1706 /* we have a reset warning */ 1707 ena_mask &= ~PFINT_OICR_GRST_M; 1708 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1709 GLGEN_RSTAT_RESET_TYPE_S; 1710 1711 if (reset == ICE_RESET_CORER) 1712 pf->corer_count++; 1713 else if (reset == ICE_RESET_GLOBR) 1714 pf->globr_count++; 1715 else if (reset == ICE_RESET_EMPR) 1716 pf->empr_count++; 1717 else 1718 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 1719 reset); 1720 1721 /* If a reset cycle isn't already in progress, we set a bit in 1722 * pf->state so that the service task can start a reset/rebuild. 1723 * We also make note of which reset happened so that peer 1724 * devices/drivers can be informed. 1725 */ 1726 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 1727 if (reset == ICE_RESET_CORER) 1728 set_bit(__ICE_CORER_RECV, pf->state); 1729 else if (reset == ICE_RESET_GLOBR) 1730 set_bit(__ICE_GLOBR_RECV, pf->state); 1731 else 1732 set_bit(__ICE_EMPR_RECV, pf->state); 1733 1734 /* There are couple of different bits at play here. 1735 * hw->reset_ongoing indicates whether the hardware is 1736 * in reset. This is set to true when a reset interrupt 1737 * is received and set back to false after the driver 1738 * has determined that the hardware is out of reset. 1739 * 1740 * __ICE_RESET_OICR_RECV in pf->state indicates 1741 * that a post reset rebuild is required before the 1742 * driver is operational again. This is set above. 1743 * 1744 * As this is the start of the reset/rebuild cycle, set 1745 * both to indicate that. 1746 */ 1747 hw->reset_ongoing = true; 1748 } 1749 } 1750 1751 if (oicr & PFINT_OICR_HMC_ERR_M) { 1752 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 1753 dev_dbg(&pf->pdev->dev, 1754 "HMC Error interrupt - info 0x%x, data 0x%x\n", 1755 rd32(hw, PFHMC_ERRORINFO), 1756 rd32(hw, PFHMC_ERRORDATA)); 1757 } 1758 1759 /* Report any remaining unexpected interrupts */ 1760 oicr &= ena_mask; 1761 if (oicr) { 1762 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 1763 oicr); 1764 /* If a critical error is pending there is no choice but to 1765 * reset the device. 1766 */ 1767 if (oicr & (PFINT_OICR_PE_CRITERR_M | 1768 PFINT_OICR_PCI_EXCEPTION_M | 1769 PFINT_OICR_ECC_ERR_M)) { 1770 set_bit(__ICE_PFR_REQ, pf->state); 1771 ice_service_task_schedule(pf); 1772 } 1773 } 1774 ret = IRQ_HANDLED; 1775 1776 if (!test_bit(__ICE_DOWN, pf->state)) { 1777 ice_service_task_schedule(pf); 1778 ice_irq_dynamic_ena(hw, NULL, NULL); 1779 } 1780 1781 return ret; 1782 } 1783 1784 /** 1785 * ice_dis_ctrlq_interrupts - disable control queue interrupts 1786 * @hw: pointer to HW structure 1787 */ 1788 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 1789 { 1790 /* disable Admin queue Interrupt causes */ 1791 wr32(hw, PFINT_FW_CTL, 1792 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 1793 1794 /* disable Mailbox queue Interrupt causes */ 1795 wr32(hw, PFINT_MBX_CTL, 1796 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 1797 1798 /* disable Control queue Interrupt causes */ 1799 wr32(hw, PFINT_OICR_CTL, 1800 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 1801 1802 ice_flush(hw); 1803 } 1804 1805 /** 1806 * ice_free_irq_msix_misc - Unroll misc vector setup 1807 * @pf: board private structure 1808 */ 1809 static void ice_free_irq_msix_misc(struct ice_pf *pf) 1810 { 1811 struct ice_hw *hw = &pf->hw; 1812 1813 ice_dis_ctrlq_interrupts(hw); 1814 1815 /* disable OICR interrupt */ 1816 wr32(hw, PFINT_OICR_ENA, 0); 1817 ice_flush(hw); 1818 1819 if (pf->msix_entries) { 1820 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 1821 devm_free_irq(&pf->pdev->dev, 1822 pf->msix_entries[pf->oicr_idx].vector, pf); 1823 } 1824 1825 pf->num_avail_sw_msix += 1; 1826 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 1827 } 1828 1829 /** 1830 * ice_ena_ctrlq_interrupts - enable control queue interrupts 1831 * @hw: pointer to HW structure 1832 * @reg_idx: HW vector index to associate the control queue interrupts with 1833 */ 1834 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 1835 { 1836 u32 val; 1837 1838 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 1839 PFINT_OICR_CTL_CAUSE_ENA_M); 1840 wr32(hw, PFINT_OICR_CTL, val); 1841 1842 /* enable Admin queue Interrupt causes */ 1843 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 1844 PFINT_FW_CTL_CAUSE_ENA_M); 1845 wr32(hw, PFINT_FW_CTL, val); 1846 1847 /* enable Mailbox queue Interrupt causes */ 1848 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 1849 PFINT_MBX_CTL_CAUSE_ENA_M); 1850 wr32(hw, PFINT_MBX_CTL, val); 1851 1852 ice_flush(hw); 1853 } 1854 1855 /** 1856 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 1857 * @pf: board private structure 1858 * 1859 * This sets up the handler for MSIX 0, which is used to manage the 1860 * non-queue interrupts, e.g. AdminQ and errors. This is not used 1861 * when in MSI or Legacy interrupt mode. 1862 */ 1863 static int ice_req_irq_msix_misc(struct ice_pf *pf) 1864 { 1865 struct ice_hw *hw = &pf->hw; 1866 int oicr_idx, err = 0; 1867 1868 if (!pf->int_name[0]) 1869 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 1870 dev_driver_string(&pf->pdev->dev), 1871 dev_name(&pf->pdev->dev)); 1872 1873 /* Do not request IRQ but do enable OICR interrupt since settings are 1874 * lost during reset. Note that this function is called only during 1875 * rebuild path and not while reset is in progress. 1876 */ 1877 if (ice_is_reset_in_progress(pf->state)) 1878 goto skip_req_irq; 1879 1880 /* reserve one vector in irq_tracker for misc interrupts */ 1881 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1882 if (oicr_idx < 0) 1883 return oicr_idx; 1884 1885 pf->num_avail_sw_msix -= 1; 1886 pf->oicr_idx = oicr_idx; 1887 1888 err = devm_request_irq(&pf->pdev->dev, 1889 pf->msix_entries[pf->oicr_idx].vector, 1890 ice_misc_intr, 0, pf->int_name, pf); 1891 if (err) { 1892 dev_err(&pf->pdev->dev, 1893 "devm_request_irq for %s failed: %d\n", 1894 pf->int_name, err); 1895 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 1896 pf->num_avail_sw_msix += 1; 1897 return err; 1898 } 1899 1900 skip_req_irq: 1901 ice_ena_misc_vector(pf); 1902 1903 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 1904 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 1905 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 1906 1907 ice_flush(hw); 1908 ice_irq_dynamic_ena(hw, NULL, NULL); 1909 1910 return 0; 1911 } 1912 1913 /** 1914 * ice_napi_add - register NAPI handler for the VSI 1915 * @vsi: VSI for which NAPI handler is to be registered 1916 * 1917 * This function is only called in the driver's load path. Registering the NAPI 1918 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 1919 * reset/rebuild, etc.) 1920 */ 1921 static void ice_napi_add(struct ice_vsi *vsi) 1922 { 1923 int v_idx; 1924 1925 if (!vsi->netdev) 1926 return; 1927 1928 ice_for_each_q_vector(vsi, v_idx) 1929 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 1930 ice_napi_poll, NAPI_POLL_WEIGHT); 1931 } 1932 1933 /** 1934 * ice_cfg_netdev - Allocate, configure and register a netdev 1935 * @vsi: the VSI associated with the new netdev 1936 * 1937 * Returns 0 on success, negative value on failure 1938 */ 1939 static int ice_cfg_netdev(struct ice_vsi *vsi) 1940 { 1941 netdev_features_t csumo_features; 1942 netdev_features_t vlano_features; 1943 netdev_features_t dflt_features; 1944 netdev_features_t tso_features; 1945 struct ice_netdev_priv *np; 1946 struct net_device *netdev; 1947 u8 mac_addr[ETH_ALEN]; 1948 int err; 1949 1950 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 1951 vsi->alloc_rxq); 1952 if (!netdev) 1953 return -ENOMEM; 1954 1955 vsi->netdev = netdev; 1956 np = netdev_priv(netdev); 1957 np->vsi = vsi; 1958 1959 dflt_features = NETIF_F_SG | 1960 NETIF_F_HIGHDMA | 1961 NETIF_F_RXHASH; 1962 1963 csumo_features = NETIF_F_RXCSUM | 1964 NETIF_F_IP_CSUM | 1965 NETIF_F_SCTP_CRC | 1966 NETIF_F_IPV6_CSUM; 1967 1968 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 1969 NETIF_F_HW_VLAN_CTAG_TX | 1970 NETIF_F_HW_VLAN_CTAG_RX; 1971 1972 tso_features = NETIF_F_TSO; 1973 1974 /* set features that user can change */ 1975 netdev->hw_features = dflt_features | csumo_features | 1976 vlano_features | tso_features; 1977 1978 /* enable features */ 1979 netdev->features |= netdev->hw_features; 1980 /* encap and VLAN devices inherit default, csumo and tso features */ 1981 netdev->hw_enc_features |= dflt_features | csumo_features | 1982 tso_features; 1983 netdev->vlan_features |= dflt_features | csumo_features | 1984 tso_features; 1985 1986 if (vsi->type == ICE_VSI_PF) { 1987 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev); 1988 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 1989 1990 ether_addr_copy(netdev->dev_addr, mac_addr); 1991 ether_addr_copy(netdev->perm_addr, mac_addr); 1992 } 1993 1994 netdev->priv_flags |= IFF_UNICAST_FLT; 1995 1996 /* assign netdev_ops */ 1997 netdev->netdev_ops = &ice_netdev_ops; 1998 1999 /* setup watchdog timeout value to be 5 second */ 2000 netdev->watchdog_timeo = 5 * HZ; 2001 2002 ice_set_ethtool_ops(netdev); 2003 2004 netdev->min_mtu = ETH_MIN_MTU; 2005 netdev->max_mtu = ICE_MAX_MTU; 2006 2007 err = register_netdev(vsi->netdev); 2008 if (err) 2009 return err; 2010 2011 netif_carrier_off(vsi->netdev); 2012 2013 /* make sure transmit queues start off as stopped */ 2014 netif_tx_stop_all_queues(vsi->netdev); 2015 2016 return 0; 2017 } 2018 2019 /** 2020 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2021 * @lut: Lookup table 2022 * @rss_table_size: Lookup table size 2023 * @rss_size: Range of queue number for hashing 2024 */ 2025 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2026 { 2027 u16 i; 2028 2029 for (i = 0; i < rss_table_size; i++) 2030 lut[i] = i % rss_size; 2031 } 2032 2033 /** 2034 * ice_pf_vsi_setup - Set up a PF VSI 2035 * @pf: board private structure 2036 * @pi: pointer to the port_info instance 2037 * 2038 * Returns pointer to the successfully allocated VSI software struct 2039 * on success, otherwise returns NULL on failure. 2040 */ 2041 static struct ice_vsi * 2042 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2043 { 2044 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2045 } 2046 2047 /** 2048 * ice_lb_vsi_setup - Set up a loopback VSI 2049 * @pf: board private structure 2050 * @pi: pointer to the port_info instance 2051 * 2052 * Returns pointer to the successfully allocated VSI software struct 2053 * on success, otherwise returns NULL on failure. 2054 */ 2055 struct ice_vsi * 2056 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2057 { 2058 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2059 } 2060 2061 /** 2062 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2063 * @netdev: network interface to be adjusted 2064 * @proto: unused protocol 2065 * @vid: VLAN ID to be added 2066 * 2067 * net_device_ops implementation for adding VLAN IDs 2068 */ 2069 static int 2070 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2071 u16 vid) 2072 { 2073 struct ice_netdev_priv *np = netdev_priv(netdev); 2074 struct ice_vsi *vsi = np->vsi; 2075 int ret; 2076 2077 if (vid >= VLAN_N_VID) { 2078 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2079 vid, VLAN_N_VID); 2080 return -EINVAL; 2081 } 2082 2083 if (vsi->info.pvid) 2084 return -EINVAL; 2085 2086 /* Enable VLAN pruning when VLAN 0 is added */ 2087 if (unlikely(!vid)) { 2088 ret = ice_cfg_vlan_pruning(vsi, true, false); 2089 if (ret) 2090 return ret; 2091 } 2092 2093 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is 2094 * needed to continue allowing all untagged packets since VLAN prune 2095 * list is applied to all packets by the switch 2096 */ 2097 ret = ice_vsi_add_vlan(vsi, vid); 2098 if (!ret) { 2099 vsi->vlan_ena = true; 2100 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2101 } 2102 2103 return ret; 2104 } 2105 2106 /** 2107 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2108 * @netdev: network interface to be adjusted 2109 * @proto: unused protocol 2110 * @vid: VLAN ID to be removed 2111 * 2112 * net_device_ops implementation for removing VLAN IDs 2113 */ 2114 static int 2115 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2116 u16 vid) 2117 { 2118 struct ice_netdev_priv *np = netdev_priv(netdev); 2119 struct ice_vsi *vsi = np->vsi; 2120 int ret; 2121 2122 if (vsi->info.pvid) 2123 return -EINVAL; 2124 2125 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2126 * information 2127 */ 2128 ret = ice_vsi_kill_vlan(vsi, vid); 2129 if (ret) 2130 return ret; 2131 2132 /* Disable VLAN pruning when VLAN 0 is removed */ 2133 if (unlikely(!vid)) 2134 ret = ice_cfg_vlan_pruning(vsi, false, false); 2135 2136 vsi->vlan_ena = false; 2137 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2138 return ret; 2139 } 2140 2141 /** 2142 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2143 * @pf: board private structure 2144 * 2145 * Returns 0 on success, negative value on failure 2146 */ 2147 static int ice_setup_pf_sw(struct ice_pf *pf) 2148 { 2149 struct ice_vsi *vsi; 2150 int status = 0; 2151 2152 if (ice_is_reset_in_progress(pf->state)) 2153 return -EBUSY; 2154 2155 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2156 if (!vsi) { 2157 status = -ENOMEM; 2158 goto unroll_vsi_setup; 2159 } 2160 2161 status = ice_cfg_netdev(vsi); 2162 if (status) { 2163 status = -ENODEV; 2164 goto unroll_vsi_setup; 2165 } 2166 2167 /* registering the NAPI handler requires both the queues and 2168 * netdev to be created, which are done in ice_pf_vsi_setup() 2169 * and ice_cfg_netdev() respectively 2170 */ 2171 ice_napi_add(vsi); 2172 2173 status = ice_init_mac_fltr(pf); 2174 if (status) 2175 goto unroll_napi_add; 2176 2177 return status; 2178 2179 unroll_napi_add: 2180 if (vsi) { 2181 ice_napi_del(vsi); 2182 if (vsi->netdev) { 2183 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2184 unregister_netdev(vsi->netdev); 2185 free_netdev(vsi->netdev); 2186 vsi->netdev = NULL; 2187 } 2188 } 2189 2190 unroll_vsi_setup: 2191 if (vsi) { 2192 ice_vsi_free_q_vectors(vsi); 2193 ice_vsi_delete(vsi); 2194 ice_vsi_put_qs(vsi); 2195 ice_vsi_clear(vsi); 2196 } 2197 return status; 2198 } 2199 2200 /** 2201 * ice_get_avail_q_count - Get count of queues in use 2202 * @pf_qmap: bitmap to get queue use count from 2203 * @lock: pointer to a mutex that protects access to pf_qmap 2204 * @size: size of the bitmap 2205 */ 2206 static u16 2207 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2208 { 2209 u16 count = 0, bit; 2210 2211 mutex_lock(lock); 2212 for_each_clear_bit(bit, pf_qmap, size) 2213 count++; 2214 mutex_unlock(lock); 2215 2216 return count; 2217 } 2218 2219 /** 2220 * ice_get_avail_txq_count - Get count of Tx queues in use 2221 * @pf: pointer to an ice_pf instance 2222 */ 2223 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2224 { 2225 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2226 pf->max_pf_txqs); 2227 } 2228 2229 /** 2230 * ice_get_avail_rxq_count - Get count of Rx queues in use 2231 * @pf: pointer to an ice_pf instance 2232 */ 2233 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2234 { 2235 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2236 pf->max_pf_rxqs); 2237 } 2238 2239 /** 2240 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2241 * @pf: board private structure to initialize 2242 */ 2243 static void ice_deinit_pf(struct ice_pf *pf) 2244 { 2245 ice_service_task_stop(pf); 2246 mutex_destroy(&pf->sw_mutex); 2247 mutex_destroy(&pf->avail_q_mutex); 2248 2249 if (pf->avail_txqs) { 2250 bitmap_free(pf->avail_txqs); 2251 pf->avail_txqs = NULL; 2252 } 2253 2254 if (pf->avail_rxqs) { 2255 bitmap_free(pf->avail_rxqs); 2256 pf->avail_rxqs = NULL; 2257 } 2258 } 2259 2260 /** 2261 * ice_init_pf - Initialize general software structures (struct ice_pf) 2262 * @pf: board private structure to initialize 2263 */ 2264 static int ice_init_pf(struct ice_pf *pf) 2265 { 2266 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS); 2267 if (pf->hw.func_caps.common_cap.dcb) 2268 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2269 #ifdef CONFIG_PCI_IOV 2270 if (pf->hw.func_caps.common_cap.sr_iov_1_1) { 2271 struct ice_hw *hw = &pf->hw; 2272 2273 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2274 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs, 2275 ICE_MAX_VF_COUNT); 2276 } 2277 #endif /* CONFIG_PCI_IOV */ 2278 2279 mutex_init(&pf->sw_mutex); 2280 mutex_init(&pf->avail_q_mutex); 2281 2282 if (pf->hw.func_caps.common_cap.rss_table_size) 2283 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2284 2285 /* setup service timer and periodic service task */ 2286 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2287 pf->serv_tmr_period = HZ; 2288 INIT_WORK(&pf->serv_task, ice_service_task); 2289 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2290 2291 pf->max_pf_txqs = pf->hw.func_caps.common_cap.num_txq; 2292 pf->max_pf_rxqs = pf->hw.func_caps.common_cap.num_rxq; 2293 2294 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2295 if (!pf->avail_txqs) 2296 return -ENOMEM; 2297 2298 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2299 if (!pf->avail_rxqs) { 2300 devm_kfree(&pf->pdev->dev, pf->avail_txqs); 2301 pf->avail_txqs = NULL; 2302 return -ENOMEM; 2303 } 2304 2305 return 0; 2306 } 2307 2308 /** 2309 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2310 * @pf: board private structure 2311 * 2312 * compute the number of MSIX vectors required (v_budget) and request from 2313 * the OS. Return the number of vectors reserved or negative on failure 2314 */ 2315 static int ice_ena_msix_range(struct ice_pf *pf) 2316 { 2317 int v_left, v_actual, v_budget = 0; 2318 int needed, err, i; 2319 2320 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2321 2322 /* reserve one vector for miscellaneous handler */ 2323 needed = 1; 2324 if (v_left < needed) 2325 goto no_hw_vecs_left_err; 2326 v_budget += needed; 2327 v_left -= needed; 2328 2329 /* reserve vectors for LAN traffic */ 2330 needed = min_t(int, num_online_cpus(), v_left); 2331 if (v_left < needed) 2332 goto no_hw_vecs_left_err; 2333 pf->num_lan_msix = needed; 2334 v_budget += needed; 2335 v_left -= needed; 2336 2337 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 2338 sizeof(*pf->msix_entries), GFP_KERNEL); 2339 2340 if (!pf->msix_entries) { 2341 err = -ENOMEM; 2342 goto exit_err; 2343 } 2344 2345 for (i = 0; i < v_budget; i++) 2346 pf->msix_entries[i].entry = i; 2347 2348 /* actually reserve the vectors */ 2349 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2350 ICE_MIN_MSIX, v_budget); 2351 2352 if (v_actual < 0) { 2353 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 2354 err = v_actual; 2355 goto msix_err; 2356 } 2357 2358 if (v_actual < v_budget) { 2359 dev_warn(&pf->pdev->dev, 2360 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2361 v_budget, v_actual); 2362 /* 2 vectors for LAN (traffic + OICR) */ 2363 #define ICE_MIN_LAN_VECS 2 2364 2365 if (v_actual < ICE_MIN_LAN_VECS) { 2366 /* error if we can't get minimum vectors */ 2367 pci_disable_msix(pf->pdev); 2368 err = -ERANGE; 2369 goto msix_err; 2370 } else { 2371 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2372 } 2373 } 2374 2375 return v_actual; 2376 2377 msix_err: 2378 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2379 goto exit_err; 2380 2381 no_hw_vecs_left_err: 2382 dev_err(&pf->pdev->dev, 2383 "not enough device MSI-X vectors. requested = %d, available = %d\n", 2384 needed, v_left); 2385 err = -ERANGE; 2386 exit_err: 2387 pf->num_lan_msix = 0; 2388 return err; 2389 } 2390 2391 /** 2392 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2393 * @pf: board private structure 2394 */ 2395 static void ice_dis_msix(struct ice_pf *pf) 2396 { 2397 pci_disable_msix(pf->pdev); 2398 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2399 pf->msix_entries = NULL; 2400 } 2401 2402 /** 2403 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2404 * @pf: board private structure 2405 */ 2406 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2407 { 2408 ice_dis_msix(pf); 2409 2410 if (pf->irq_tracker) { 2411 devm_kfree(&pf->pdev->dev, pf->irq_tracker); 2412 pf->irq_tracker = NULL; 2413 } 2414 } 2415 2416 /** 2417 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2418 * @pf: board private structure to initialize 2419 */ 2420 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2421 { 2422 int vectors; 2423 2424 vectors = ice_ena_msix_range(pf); 2425 2426 if (vectors < 0) 2427 return vectors; 2428 2429 /* set up vector assignment tracking */ 2430 pf->irq_tracker = 2431 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) + 2432 (sizeof(u16) * vectors), GFP_KERNEL); 2433 if (!pf->irq_tracker) { 2434 ice_dis_msix(pf); 2435 return -ENOMEM; 2436 } 2437 2438 /* populate SW interrupts pool with number of OS granted IRQs. */ 2439 pf->num_avail_sw_msix = vectors; 2440 pf->irq_tracker->num_entries = vectors; 2441 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2442 2443 return 0; 2444 } 2445 2446 /** 2447 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 2448 * @pf: pointer to the PF structure 2449 * 2450 * There is no error returned here because the driver should be able to handle 2451 * 128 Byte cache lines, so we only print a warning in case issues are seen, 2452 * specifically with Tx. 2453 */ 2454 static void ice_verify_cacheline_size(struct ice_pf *pf) 2455 { 2456 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 2457 dev_warn(&pf->pdev->dev, 2458 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 2459 ICE_CACHE_LINE_BYTES); 2460 } 2461 2462 /** 2463 * ice_probe - Device initialization routine 2464 * @pdev: PCI device information struct 2465 * @ent: entry in ice_pci_tbl 2466 * 2467 * Returns 0 on success, negative on failure 2468 */ 2469 static int 2470 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 2471 { 2472 struct device *dev = &pdev->dev; 2473 struct ice_pf *pf; 2474 struct ice_hw *hw; 2475 int err; 2476 2477 /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */ 2478 err = pcim_enable_device(pdev); 2479 if (err) 2480 return err; 2481 2482 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 2483 if (err) { 2484 dev_err(dev, "BAR0 I/O map error %d\n", err); 2485 return err; 2486 } 2487 2488 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 2489 if (!pf) 2490 return -ENOMEM; 2491 2492 /* set up for high or low DMA */ 2493 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 2494 if (err) 2495 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2496 if (err) { 2497 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 2498 return err; 2499 } 2500 2501 pci_enable_pcie_error_reporting(pdev); 2502 pci_set_master(pdev); 2503 2504 pf->pdev = pdev; 2505 pci_set_drvdata(pdev, pf); 2506 set_bit(__ICE_DOWN, pf->state); 2507 /* Disable service task until DOWN bit is cleared */ 2508 set_bit(__ICE_SERVICE_DIS, pf->state); 2509 2510 hw = &pf->hw; 2511 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 2512 hw->back = pf; 2513 hw->vendor_id = pdev->vendor; 2514 hw->device_id = pdev->device; 2515 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 2516 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2517 hw->subsystem_device_id = pdev->subsystem_device; 2518 hw->bus.device = PCI_SLOT(pdev->devfn); 2519 hw->bus.func = PCI_FUNC(pdev->devfn); 2520 ice_set_ctrlq_len(hw); 2521 2522 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 2523 2524 #ifndef CONFIG_DYNAMIC_DEBUG 2525 if (debug < -1) 2526 hw->debug_mask = debug; 2527 #endif 2528 2529 err = ice_init_hw(hw); 2530 if (err) { 2531 dev_err(dev, "ice_init_hw failed: %d\n", err); 2532 err = -EIO; 2533 goto err_exit_unroll; 2534 } 2535 2536 dev_info(dev, "firmware %d.%d.%05d api %d.%d\n", 2537 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build, 2538 hw->api_maj_ver, hw->api_min_ver); 2539 2540 err = ice_init_pf(pf); 2541 if (err) { 2542 dev_err(dev, "ice_init_pf failed: %d\n", err); 2543 goto err_init_pf_unroll; 2544 } 2545 2546 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) { 2547 /* Note: DCB init failure is non-fatal to load */ 2548 if (ice_init_pf_dcb(pf, false)) { 2549 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2550 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 2551 } else { 2552 ice_cfg_lldp_mib_change(&pf->hw, true); 2553 } 2554 } 2555 2556 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 2557 if (!pf->num_alloc_vsi) { 2558 err = -EIO; 2559 goto err_init_pf_unroll; 2560 } 2561 2562 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 2563 GFP_KERNEL); 2564 if (!pf->vsi) { 2565 err = -ENOMEM; 2566 goto err_init_pf_unroll; 2567 } 2568 2569 err = ice_init_interrupt_scheme(pf); 2570 if (err) { 2571 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 2572 err = -EIO; 2573 goto err_init_interrupt_unroll; 2574 } 2575 2576 /* Driver is mostly up */ 2577 clear_bit(__ICE_DOWN, pf->state); 2578 2579 /* In case of MSIX we are going to setup the misc vector right here 2580 * to handle admin queue events etc. In case of legacy and MSI 2581 * the misc functionality and queue processing is combined in 2582 * the same vector and that gets setup at open. 2583 */ 2584 err = ice_req_irq_msix_misc(pf); 2585 if (err) { 2586 dev_err(dev, "setup of misc vector failed: %d\n", err); 2587 goto err_init_interrupt_unroll; 2588 } 2589 2590 /* create switch struct for the switch element created by FW on boot */ 2591 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 2592 if (!pf->first_sw) { 2593 err = -ENOMEM; 2594 goto err_msix_misc_unroll; 2595 } 2596 2597 if (hw->evb_veb) 2598 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 2599 else 2600 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 2601 2602 pf->first_sw->pf = pf; 2603 2604 /* record the sw_id available for later use */ 2605 pf->first_sw->sw_id = hw->port_info->sw_id; 2606 2607 err = ice_setup_pf_sw(pf); 2608 if (err) { 2609 dev_err(dev, "probe failed due to setup PF switch:%d\n", err); 2610 goto err_alloc_sw_unroll; 2611 } 2612 2613 clear_bit(__ICE_SERVICE_DIS, pf->state); 2614 2615 /* since everything is good, start the service timer */ 2616 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2617 2618 err = ice_init_link_events(pf->hw.port_info); 2619 if (err) { 2620 dev_err(dev, "ice_init_link_events failed: %d\n", err); 2621 goto err_alloc_sw_unroll; 2622 } 2623 2624 ice_verify_cacheline_size(pf); 2625 2626 return 0; 2627 2628 err_alloc_sw_unroll: 2629 set_bit(__ICE_SERVICE_DIS, pf->state); 2630 set_bit(__ICE_DOWN, pf->state); 2631 devm_kfree(&pf->pdev->dev, pf->first_sw); 2632 err_msix_misc_unroll: 2633 ice_free_irq_msix_misc(pf); 2634 err_init_interrupt_unroll: 2635 ice_clear_interrupt_scheme(pf); 2636 devm_kfree(dev, pf->vsi); 2637 err_init_pf_unroll: 2638 ice_deinit_pf(pf); 2639 ice_deinit_hw(hw); 2640 err_exit_unroll: 2641 pci_disable_pcie_error_reporting(pdev); 2642 return err; 2643 } 2644 2645 /** 2646 * ice_remove - Device removal routine 2647 * @pdev: PCI device information struct 2648 */ 2649 static void ice_remove(struct pci_dev *pdev) 2650 { 2651 struct ice_pf *pf = pci_get_drvdata(pdev); 2652 int i; 2653 2654 if (!pf) 2655 return; 2656 2657 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 2658 if (!ice_is_reset_in_progress(pf->state)) 2659 break; 2660 msleep(100); 2661 } 2662 2663 set_bit(__ICE_DOWN, pf->state); 2664 ice_service_task_stop(pf); 2665 2666 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 2667 ice_free_vfs(pf); 2668 ice_vsi_release_all(pf); 2669 ice_free_irq_msix_misc(pf); 2670 ice_for_each_vsi(pf, i) { 2671 if (!pf->vsi[i]) 2672 continue; 2673 ice_vsi_free_q_vectors(pf->vsi[i]); 2674 } 2675 ice_deinit_pf(pf); 2676 ice_deinit_hw(&pf->hw); 2677 ice_clear_interrupt_scheme(pf); 2678 /* Issue a PFR as part of the prescribed driver unload flow. Do not 2679 * do it via ice_schedule_reset() since there is no need to rebuild 2680 * and the service task is already stopped. 2681 */ 2682 ice_reset(&pf->hw, ICE_RESET_PFR); 2683 pci_disable_pcie_error_reporting(pdev); 2684 } 2685 2686 /** 2687 * ice_pci_err_detected - warning that PCI error has been detected 2688 * @pdev: PCI device information struct 2689 * @err: the type of PCI error 2690 * 2691 * Called to warn that something happened on the PCI bus and the error handling 2692 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 2693 */ 2694 static pci_ers_result_t 2695 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 2696 { 2697 struct ice_pf *pf = pci_get_drvdata(pdev); 2698 2699 if (!pf) { 2700 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 2701 __func__, err); 2702 return PCI_ERS_RESULT_DISCONNECT; 2703 } 2704 2705 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 2706 ice_service_task_stop(pf); 2707 2708 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 2709 set_bit(__ICE_PFR_REQ, pf->state); 2710 ice_prepare_for_reset(pf); 2711 } 2712 } 2713 2714 return PCI_ERS_RESULT_NEED_RESET; 2715 } 2716 2717 /** 2718 * ice_pci_err_slot_reset - a PCI slot reset has just happened 2719 * @pdev: PCI device information struct 2720 * 2721 * Called to determine if the driver can recover from the PCI slot reset by 2722 * using a register read to determine if the device is recoverable. 2723 */ 2724 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 2725 { 2726 struct ice_pf *pf = pci_get_drvdata(pdev); 2727 pci_ers_result_t result; 2728 int err; 2729 u32 reg; 2730 2731 err = pci_enable_device_mem(pdev); 2732 if (err) { 2733 dev_err(&pdev->dev, 2734 "Cannot re-enable PCI device after reset, error %d\n", 2735 err); 2736 result = PCI_ERS_RESULT_DISCONNECT; 2737 } else { 2738 pci_set_master(pdev); 2739 pci_restore_state(pdev); 2740 pci_save_state(pdev); 2741 pci_wake_from_d3(pdev, false); 2742 2743 /* Check for life */ 2744 reg = rd32(&pf->hw, GLGEN_RTRIG); 2745 if (!reg) 2746 result = PCI_ERS_RESULT_RECOVERED; 2747 else 2748 result = PCI_ERS_RESULT_DISCONNECT; 2749 } 2750 2751 err = pci_cleanup_aer_uncorrect_error_status(pdev); 2752 if (err) 2753 dev_dbg(&pdev->dev, 2754 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 2755 err); 2756 /* non-fatal, continue */ 2757 2758 return result; 2759 } 2760 2761 /** 2762 * ice_pci_err_resume - restart operations after PCI error recovery 2763 * @pdev: PCI device information struct 2764 * 2765 * Called to allow the driver to bring things back up after PCI error and/or 2766 * reset recovery have finished 2767 */ 2768 static void ice_pci_err_resume(struct pci_dev *pdev) 2769 { 2770 struct ice_pf *pf = pci_get_drvdata(pdev); 2771 2772 if (!pf) { 2773 dev_err(&pdev->dev, 2774 "%s failed, device is unrecoverable\n", __func__); 2775 return; 2776 } 2777 2778 if (test_bit(__ICE_SUSPENDED, pf->state)) { 2779 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 2780 __func__); 2781 return; 2782 } 2783 2784 ice_do_reset(pf, ICE_RESET_PFR); 2785 ice_service_task_restart(pf); 2786 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 2787 } 2788 2789 /** 2790 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 2791 * @pdev: PCI device information struct 2792 */ 2793 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 2794 { 2795 struct ice_pf *pf = pci_get_drvdata(pdev); 2796 2797 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 2798 ice_service_task_stop(pf); 2799 2800 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 2801 set_bit(__ICE_PFR_REQ, pf->state); 2802 ice_prepare_for_reset(pf); 2803 } 2804 } 2805 } 2806 2807 /** 2808 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 2809 * @pdev: PCI device information struct 2810 */ 2811 static void ice_pci_err_reset_done(struct pci_dev *pdev) 2812 { 2813 ice_pci_err_resume(pdev); 2814 } 2815 2816 /* ice_pci_tbl - PCI Device ID Table 2817 * 2818 * Wildcard entries (PCI_ANY_ID) should come last 2819 * Last entry must be all 0s 2820 * 2821 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 2822 * Class, Class Mask, private data (not used) } 2823 */ 2824 static const struct pci_device_id ice_pci_tbl[] = { 2825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 2826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 2827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 2828 /* required last entry */ 2829 { 0, } 2830 }; 2831 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 2832 2833 static const struct pci_error_handlers ice_pci_err_handler = { 2834 .error_detected = ice_pci_err_detected, 2835 .slot_reset = ice_pci_err_slot_reset, 2836 .reset_prepare = ice_pci_err_reset_prepare, 2837 .reset_done = ice_pci_err_reset_done, 2838 .resume = ice_pci_err_resume 2839 }; 2840 2841 static struct pci_driver ice_driver = { 2842 .name = KBUILD_MODNAME, 2843 .id_table = ice_pci_tbl, 2844 .probe = ice_probe, 2845 .remove = ice_remove, 2846 .sriov_configure = ice_sriov_configure, 2847 .err_handler = &ice_pci_err_handler 2848 }; 2849 2850 /** 2851 * ice_module_init - Driver registration routine 2852 * 2853 * ice_module_init is the first routine called when the driver is 2854 * loaded. All it does is register with the PCI subsystem. 2855 */ 2856 static int __init ice_module_init(void) 2857 { 2858 int status; 2859 2860 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 2861 pr_info("%s\n", ice_copyright); 2862 2863 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 2864 if (!ice_wq) { 2865 pr_err("Failed to create workqueue\n"); 2866 return -ENOMEM; 2867 } 2868 2869 status = pci_register_driver(&ice_driver); 2870 if (status) { 2871 pr_err("failed to register PCI driver, err %d\n", status); 2872 destroy_workqueue(ice_wq); 2873 } 2874 2875 return status; 2876 } 2877 module_init(ice_module_init); 2878 2879 /** 2880 * ice_module_exit - Driver exit cleanup routine 2881 * 2882 * ice_module_exit is called just before the driver is removed 2883 * from memory. 2884 */ 2885 static void __exit ice_module_exit(void) 2886 { 2887 pci_unregister_driver(&ice_driver); 2888 destroy_workqueue(ice_wq); 2889 pr_info("module unloaded\n"); 2890 } 2891 module_exit(ice_module_exit); 2892 2893 /** 2894 * ice_set_mac_address - NDO callback to set MAC address 2895 * @netdev: network interface device structure 2896 * @pi: pointer to an address structure 2897 * 2898 * Returns 0 on success, negative on failure 2899 */ 2900 static int ice_set_mac_address(struct net_device *netdev, void *pi) 2901 { 2902 struct ice_netdev_priv *np = netdev_priv(netdev); 2903 struct ice_vsi *vsi = np->vsi; 2904 struct ice_pf *pf = vsi->back; 2905 struct ice_hw *hw = &pf->hw; 2906 struct sockaddr *addr = pi; 2907 enum ice_status status; 2908 u8 flags = 0; 2909 int err = 0; 2910 u8 *mac; 2911 2912 mac = (u8 *)addr->sa_data; 2913 2914 if (!is_valid_ether_addr(mac)) 2915 return -EADDRNOTAVAIL; 2916 2917 if (ether_addr_equal(netdev->dev_addr, mac)) { 2918 netdev_warn(netdev, "already using mac %pM\n", mac); 2919 return 0; 2920 } 2921 2922 if (test_bit(__ICE_DOWN, pf->state) || 2923 ice_is_reset_in_progress(pf->state)) { 2924 netdev_err(netdev, "can't set mac %pM. device not ready\n", 2925 mac); 2926 return -EBUSY; 2927 } 2928 2929 /* When we change the MAC address we also have to change the MAC address 2930 * based filter rules that were created previously for the old MAC 2931 * address. So first, we remove the old filter rule using ice_remove_mac 2932 * and then create a new filter rule using ice_add_mac via 2933 * ice_vsi_cfg_mac_fltr function call for both add and/or remove 2934 * filters. 2935 */ 2936 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false); 2937 if (status) { 2938 err = -EADDRNOTAVAIL; 2939 goto err_update_filters; 2940 } 2941 2942 status = ice_vsi_cfg_mac_fltr(vsi, mac, true); 2943 if (status) { 2944 err = -EADDRNOTAVAIL; 2945 goto err_update_filters; 2946 } 2947 2948 err_update_filters: 2949 if (err) { 2950 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 2951 mac); 2952 return err; 2953 } 2954 2955 /* change the netdev's MAC address */ 2956 memcpy(netdev->dev_addr, mac, netdev->addr_len); 2957 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 2958 netdev->dev_addr); 2959 2960 /* write new MAC address to the firmware */ 2961 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 2962 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 2963 if (status) { 2964 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 2965 mac, status); 2966 } 2967 return 0; 2968 } 2969 2970 /** 2971 * ice_set_rx_mode - NDO callback to set the netdev filters 2972 * @netdev: network interface device structure 2973 */ 2974 static void ice_set_rx_mode(struct net_device *netdev) 2975 { 2976 struct ice_netdev_priv *np = netdev_priv(netdev); 2977 struct ice_vsi *vsi = np->vsi; 2978 2979 if (!vsi) 2980 return; 2981 2982 /* Set the flags to synchronize filters 2983 * ndo_set_rx_mode may be triggered even without a change in netdev 2984 * flags 2985 */ 2986 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 2987 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 2988 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 2989 2990 /* schedule our worker thread which will take care of 2991 * applying the new filter changes 2992 */ 2993 ice_service_task_schedule(vsi->back); 2994 } 2995 2996 /** 2997 * ice_fdb_add - add an entry to the hardware database 2998 * @ndm: the input from the stack 2999 * @tb: pointer to array of nladdr (unused) 3000 * @dev: the net device pointer 3001 * @addr: the MAC address entry being added 3002 * @vid: VLAN ID 3003 * @flags: instructions from stack about fdb operation 3004 * @extack: netlink extended ack 3005 */ 3006 static int 3007 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3008 struct net_device *dev, const unsigned char *addr, u16 vid, 3009 u16 flags, struct netlink_ext_ack __always_unused *extack) 3010 { 3011 int err; 3012 3013 if (vid) { 3014 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3015 return -EINVAL; 3016 } 3017 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3018 netdev_err(dev, "FDB only supports static addresses\n"); 3019 return -EINVAL; 3020 } 3021 3022 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3023 err = dev_uc_add_excl(dev, addr); 3024 else if (is_multicast_ether_addr(addr)) 3025 err = dev_mc_add_excl(dev, addr); 3026 else 3027 err = -EINVAL; 3028 3029 /* Only return duplicate errors if NLM_F_EXCL is set */ 3030 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3031 err = 0; 3032 3033 return err; 3034 } 3035 3036 /** 3037 * ice_fdb_del - delete an entry from the hardware database 3038 * @ndm: the input from the stack 3039 * @tb: pointer to array of nladdr (unused) 3040 * @dev: the net device pointer 3041 * @addr: the MAC address entry being added 3042 * @vid: VLAN ID 3043 */ 3044 static int 3045 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3046 struct net_device *dev, const unsigned char *addr, 3047 __always_unused u16 vid) 3048 { 3049 int err; 3050 3051 if (ndm->ndm_state & NUD_PERMANENT) { 3052 netdev_err(dev, "FDB only supports static addresses\n"); 3053 return -EINVAL; 3054 } 3055 3056 if (is_unicast_ether_addr(addr)) 3057 err = dev_uc_del(dev, addr); 3058 else if (is_multicast_ether_addr(addr)) 3059 err = dev_mc_del(dev, addr); 3060 else 3061 err = -EINVAL; 3062 3063 return err; 3064 } 3065 3066 /** 3067 * ice_set_features - set the netdev feature flags 3068 * @netdev: ptr to the netdev being adjusted 3069 * @features: the feature set that the stack is suggesting 3070 */ 3071 static int 3072 ice_set_features(struct net_device *netdev, netdev_features_t features) 3073 { 3074 struct ice_netdev_priv *np = netdev_priv(netdev); 3075 struct ice_vsi *vsi = np->vsi; 3076 int ret = 0; 3077 3078 /* Multiple features can be changed in one call so keep features in 3079 * separate if/else statements to guarantee each feature is checked 3080 */ 3081 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 3082 ret = ice_vsi_manage_rss_lut(vsi, true); 3083 else if (!(features & NETIF_F_RXHASH) && 3084 netdev->features & NETIF_F_RXHASH) 3085 ret = ice_vsi_manage_rss_lut(vsi, false); 3086 3087 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 3088 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3089 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3090 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 3091 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3092 ret = ice_vsi_manage_vlan_stripping(vsi, false); 3093 3094 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 3095 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3096 ret = ice_vsi_manage_vlan_insertion(vsi); 3097 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 3098 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3099 ret = ice_vsi_manage_vlan_insertion(vsi); 3100 3101 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3102 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3103 ret = ice_cfg_vlan_pruning(vsi, true, false); 3104 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3105 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3106 ret = ice_cfg_vlan_pruning(vsi, false, false); 3107 3108 return ret; 3109 } 3110 3111 /** 3112 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 3113 * @vsi: VSI to setup VLAN properties for 3114 */ 3115 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 3116 { 3117 int ret = 0; 3118 3119 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3120 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3121 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 3122 ret = ice_vsi_manage_vlan_insertion(vsi); 3123 3124 return ret; 3125 } 3126 3127 /** 3128 * ice_vsi_cfg - Setup the VSI 3129 * @vsi: the VSI being configured 3130 * 3131 * Return 0 on success and negative value on error 3132 */ 3133 int ice_vsi_cfg(struct ice_vsi *vsi) 3134 { 3135 int err; 3136 3137 if (vsi->netdev) { 3138 ice_set_rx_mode(vsi->netdev); 3139 3140 err = ice_vsi_vlan_setup(vsi); 3141 3142 if (err) 3143 return err; 3144 } 3145 ice_vsi_cfg_dcb_rings(vsi); 3146 3147 err = ice_vsi_cfg_lan_txqs(vsi); 3148 if (!err) 3149 err = ice_vsi_cfg_rxqs(vsi); 3150 3151 return err; 3152 } 3153 3154 /** 3155 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 3156 * @vsi: the VSI being configured 3157 */ 3158 static void ice_napi_enable_all(struct ice_vsi *vsi) 3159 { 3160 int q_idx; 3161 3162 if (!vsi->netdev) 3163 return; 3164 3165 ice_for_each_q_vector(vsi, q_idx) { 3166 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3167 3168 if (q_vector->rx.ring || q_vector->tx.ring) 3169 napi_enable(&q_vector->napi); 3170 } 3171 } 3172 3173 /** 3174 * ice_up_complete - Finish the last steps of bringing up a connection 3175 * @vsi: The VSI being configured 3176 * 3177 * Return 0 on success and negative value on error 3178 */ 3179 static int ice_up_complete(struct ice_vsi *vsi) 3180 { 3181 struct ice_pf *pf = vsi->back; 3182 int err; 3183 3184 ice_vsi_cfg_msix(vsi); 3185 3186 /* Enable only Rx rings, Tx rings were enabled by the FW when the 3187 * Tx queue group list was configured and the context bits were 3188 * programmed using ice_vsi_cfg_txqs 3189 */ 3190 err = ice_vsi_start_rx_rings(vsi); 3191 if (err) 3192 return err; 3193 3194 clear_bit(__ICE_DOWN, vsi->state); 3195 ice_napi_enable_all(vsi); 3196 ice_vsi_ena_irq(vsi); 3197 3198 if (vsi->port_info && 3199 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 3200 vsi->netdev) { 3201 ice_print_link_msg(vsi, true); 3202 netif_tx_start_all_queues(vsi->netdev); 3203 netif_carrier_on(vsi->netdev); 3204 } 3205 3206 ice_service_task_schedule(pf); 3207 3208 return 0; 3209 } 3210 3211 /** 3212 * ice_up - Bring the connection back up after being down 3213 * @vsi: VSI being configured 3214 */ 3215 int ice_up(struct ice_vsi *vsi) 3216 { 3217 int err; 3218 3219 err = ice_vsi_cfg(vsi); 3220 if (!err) 3221 err = ice_up_complete(vsi); 3222 3223 return err; 3224 } 3225 3226 /** 3227 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 3228 * @ring: Tx or Rx ring to read stats from 3229 * @pkts: packets stats counter 3230 * @bytes: bytes stats counter 3231 * 3232 * This function fetches stats from the ring considering the atomic operations 3233 * that needs to be performed to read u64 values in 32 bit machine. 3234 */ 3235 static void 3236 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 3237 { 3238 unsigned int start; 3239 *pkts = 0; 3240 *bytes = 0; 3241 3242 if (!ring) 3243 return; 3244 do { 3245 start = u64_stats_fetch_begin_irq(&ring->syncp); 3246 *pkts = ring->stats.pkts; 3247 *bytes = ring->stats.bytes; 3248 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3249 } 3250 3251 /** 3252 * ice_update_vsi_ring_stats - Update VSI stats counters 3253 * @vsi: the VSI to be updated 3254 */ 3255 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 3256 { 3257 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 3258 struct ice_ring *ring; 3259 u64 pkts, bytes; 3260 int i; 3261 3262 /* reset netdev stats */ 3263 vsi_stats->tx_packets = 0; 3264 vsi_stats->tx_bytes = 0; 3265 vsi_stats->rx_packets = 0; 3266 vsi_stats->rx_bytes = 0; 3267 3268 /* reset non-netdev (extended) stats */ 3269 vsi->tx_restart = 0; 3270 vsi->tx_busy = 0; 3271 vsi->tx_linearize = 0; 3272 vsi->rx_buf_failed = 0; 3273 vsi->rx_page_failed = 0; 3274 3275 rcu_read_lock(); 3276 3277 /* update Tx rings counters */ 3278 ice_for_each_txq(vsi, i) { 3279 ring = READ_ONCE(vsi->tx_rings[i]); 3280 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3281 vsi_stats->tx_packets += pkts; 3282 vsi_stats->tx_bytes += bytes; 3283 vsi->tx_restart += ring->tx_stats.restart_q; 3284 vsi->tx_busy += ring->tx_stats.tx_busy; 3285 vsi->tx_linearize += ring->tx_stats.tx_linearize; 3286 } 3287 3288 /* update Rx rings counters */ 3289 ice_for_each_rxq(vsi, i) { 3290 ring = READ_ONCE(vsi->rx_rings[i]); 3291 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 3292 vsi_stats->rx_packets += pkts; 3293 vsi_stats->rx_bytes += bytes; 3294 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 3295 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 3296 } 3297 3298 rcu_read_unlock(); 3299 } 3300 3301 /** 3302 * ice_update_vsi_stats - Update VSI stats counters 3303 * @vsi: the VSI to be updated 3304 */ 3305 void ice_update_vsi_stats(struct ice_vsi *vsi) 3306 { 3307 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 3308 struct ice_eth_stats *cur_es = &vsi->eth_stats; 3309 struct ice_pf *pf = vsi->back; 3310 3311 if (test_bit(__ICE_DOWN, vsi->state) || 3312 test_bit(__ICE_CFG_BUSY, pf->state)) 3313 return; 3314 3315 /* get stats as recorded by Tx/Rx rings */ 3316 ice_update_vsi_ring_stats(vsi); 3317 3318 /* get VSI stats as recorded by the hardware */ 3319 ice_update_eth_stats(vsi); 3320 3321 cur_ns->tx_errors = cur_es->tx_errors; 3322 cur_ns->rx_dropped = cur_es->rx_discards; 3323 cur_ns->tx_dropped = cur_es->tx_discards; 3324 cur_ns->multicast = cur_es->rx_multicast; 3325 3326 /* update some more netdev stats if this is main VSI */ 3327 if (vsi->type == ICE_VSI_PF) { 3328 cur_ns->rx_crc_errors = pf->stats.crc_errors; 3329 cur_ns->rx_errors = pf->stats.crc_errors + 3330 pf->stats.illegal_bytes; 3331 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 3332 /* record drops from the port level */ 3333 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 3334 } 3335 } 3336 3337 /** 3338 * ice_update_pf_stats - Update PF port stats counters 3339 * @pf: PF whose stats needs to be updated 3340 */ 3341 void ice_update_pf_stats(struct ice_pf *pf) 3342 { 3343 struct ice_hw_port_stats *prev_ps, *cur_ps; 3344 struct ice_hw *hw = &pf->hw; 3345 u8 port; 3346 3347 port = hw->port_info->lport; 3348 prev_ps = &pf->stats_prev; 3349 cur_ps = &pf->stats; 3350 3351 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 3352 &prev_ps->eth.rx_bytes, 3353 &cur_ps->eth.rx_bytes); 3354 3355 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 3356 &prev_ps->eth.rx_unicast, 3357 &cur_ps->eth.rx_unicast); 3358 3359 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 3360 &prev_ps->eth.rx_multicast, 3361 &cur_ps->eth.rx_multicast); 3362 3363 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 3364 &prev_ps->eth.rx_broadcast, 3365 &cur_ps->eth.rx_broadcast); 3366 3367 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 3368 &prev_ps->eth.rx_discards, 3369 &cur_ps->eth.rx_discards); 3370 3371 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 3372 &prev_ps->eth.tx_bytes, 3373 &cur_ps->eth.tx_bytes); 3374 3375 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 3376 &prev_ps->eth.tx_unicast, 3377 &cur_ps->eth.tx_unicast); 3378 3379 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 3380 &prev_ps->eth.tx_multicast, 3381 &cur_ps->eth.tx_multicast); 3382 3383 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 3384 &prev_ps->eth.tx_broadcast, 3385 &cur_ps->eth.tx_broadcast); 3386 3387 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 3388 &prev_ps->tx_dropped_link_down, 3389 &cur_ps->tx_dropped_link_down); 3390 3391 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 3392 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 3393 3394 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 3395 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 3396 3397 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 3398 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 3399 3400 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 3401 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 3402 3403 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 3404 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 3405 3406 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 3407 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 3408 3409 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 3410 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 3411 3412 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 3413 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 3414 3415 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 3416 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 3417 3418 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 3419 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 3420 3421 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 3422 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 3423 3424 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 3425 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 3426 3427 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 3428 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 3429 3430 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 3431 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 3432 3433 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 3434 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 3435 3436 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 3437 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 3438 3439 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 3440 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 3441 3442 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 3443 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 3444 3445 ice_update_dcb_stats(pf); 3446 3447 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 3448 &prev_ps->crc_errors, &cur_ps->crc_errors); 3449 3450 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 3451 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 3452 3453 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 3454 &prev_ps->mac_local_faults, 3455 &cur_ps->mac_local_faults); 3456 3457 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 3458 &prev_ps->mac_remote_faults, 3459 &cur_ps->mac_remote_faults); 3460 3461 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 3462 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 3463 3464 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 3465 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 3466 3467 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 3468 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 3469 3470 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 3471 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 3472 3473 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 3474 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 3475 3476 pf->stat_prev_loaded = true; 3477 } 3478 3479 /** 3480 * ice_get_stats64 - get statistics for network device structure 3481 * @netdev: network interface device structure 3482 * @stats: main device statistics structure 3483 */ 3484 static 3485 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3486 { 3487 struct ice_netdev_priv *np = netdev_priv(netdev); 3488 struct rtnl_link_stats64 *vsi_stats; 3489 struct ice_vsi *vsi = np->vsi; 3490 3491 vsi_stats = &vsi->net_stats; 3492 3493 if (!vsi->num_txq || !vsi->num_rxq) 3494 return; 3495 3496 /* netdev packet/byte stats come from ring counter. These are obtained 3497 * by summing up ring counters (done by ice_update_vsi_ring_stats). 3498 * But, only call the update routine and read the registers if VSI is 3499 * not down. 3500 */ 3501 if (!test_bit(__ICE_DOWN, vsi->state)) 3502 ice_update_vsi_ring_stats(vsi); 3503 stats->tx_packets = vsi_stats->tx_packets; 3504 stats->tx_bytes = vsi_stats->tx_bytes; 3505 stats->rx_packets = vsi_stats->rx_packets; 3506 stats->rx_bytes = vsi_stats->rx_bytes; 3507 3508 /* The rest of the stats can be read from the hardware but instead we 3509 * just return values that the watchdog task has already obtained from 3510 * the hardware. 3511 */ 3512 stats->multicast = vsi_stats->multicast; 3513 stats->tx_errors = vsi_stats->tx_errors; 3514 stats->tx_dropped = vsi_stats->tx_dropped; 3515 stats->rx_errors = vsi_stats->rx_errors; 3516 stats->rx_dropped = vsi_stats->rx_dropped; 3517 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 3518 stats->rx_length_errors = vsi_stats->rx_length_errors; 3519 } 3520 3521 /** 3522 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 3523 * @vsi: VSI having NAPI disabled 3524 */ 3525 static void ice_napi_disable_all(struct ice_vsi *vsi) 3526 { 3527 int q_idx; 3528 3529 if (!vsi->netdev) 3530 return; 3531 3532 ice_for_each_q_vector(vsi, q_idx) { 3533 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3534 3535 if (q_vector->rx.ring || q_vector->tx.ring) 3536 napi_disable(&q_vector->napi); 3537 } 3538 } 3539 3540 /** 3541 * ice_down - Shutdown the connection 3542 * @vsi: The VSI being stopped 3543 */ 3544 int ice_down(struct ice_vsi *vsi) 3545 { 3546 int i, tx_err, rx_err, link_err = 0; 3547 3548 /* Caller of this function is expected to set the 3549 * vsi->state __ICE_DOWN bit 3550 */ 3551 if (vsi->netdev) { 3552 netif_carrier_off(vsi->netdev); 3553 netif_tx_disable(vsi->netdev); 3554 } 3555 3556 ice_vsi_dis_irq(vsi); 3557 3558 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 3559 if (tx_err) 3560 netdev_err(vsi->netdev, 3561 "Failed stop Tx rings, VSI %d error %d\n", 3562 vsi->vsi_num, tx_err); 3563 3564 rx_err = ice_vsi_stop_rx_rings(vsi); 3565 if (rx_err) 3566 netdev_err(vsi->netdev, 3567 "Failed stop Rx rings, VSI %d error %d\n", 3568 vsi->vsi_num, rx_err); 3569 3570 ice_napi_disable_all(vsi); 3571 3572 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 3573 link_err = ice_force_phys_link_state(vsi, false); 3574 if (link_err) 3575 netdev_err(vsi->netdev, 3576 "Failed to set physical link down, VSI %d error %d\n", 3577 vsi->vsi_num, link_err); 3578 } 3579 3580 ice_for_each_txq(vsi, i) 3581 ice_clean_tx_ring(vsi->tx_rings[i]); 3582 3583 ice_for_each_rxq(vsi, i) 3584 ice_clean_rx_ring(vsi->rx_rings[i]); 3585 3586 if (tx_err || rx_err || link_err) { 3587 netdev_err(vsi->netdev, 3588 "Failed to close VSI 0x%04X on switch 0x%04X\n", 3589 vsi->vsi_num, vsi->vsw->sw_id); 3590 return -EIO; 3591 } 3592 3593 return 0; 3594 } 3595 3596 /** 3597 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 3598 * @vsi: VSI having resources allocated 3599 * 3600 * Return 0 on success, negative on failure 3601 */ 3602 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 3603 { 3604 int i, err = 0; 3605 3606 if (!vsi->num_txq) { 3607 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 3608 vsi->vsi_num); 3609 return -EINVAL; 3610 } 3611 3612 ice_for_each_txq(vsi, i) { 3613 vsi->tx_rings[i]->netdev = vsi->netdev; 3614 err = ice_setup_tx_ring(vsi->tx_rings[i]); 3615 if (err) 3616 break; 3617 } 3618 3619 return err; 3620 } 3621 3622 /** 3623 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 3624 * @vsi: VSI having resources allocated 3625 * 3626 * Return 0 on success, negative on failure 3627 */ 3628 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 3629 { 3630 int i, err = 0; 3631 3632 if (!vsi->num_rxq) { 3633 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 3634 vsi->vsi_num); 3635 return -EINVAL; 3636 } 3637 3638 ice_for_each_rxq(vsi, i) { 3639 vsi->rx_rings[i]->netdev = vsi->netdev; 3640 err = ice_setup_rx_ring(vsi->rx_rings[i]); 3641 if (err) 3642 break; 3643 } 3644 3645 return err; 3646 } 3647 3648 /** 3649 * ice_vsi_open - Called when a network interface is made active 3650 * @vsi: the VSI to open 3651 * 3652 * Initialization of the VSI 3653 * 3654 * Returns 0 on success, negative value on error 3655 */ 3656 static int ice_vsi_open(struct ice_vsi *vsi) 3657 { 3658 char int_name[ICE_INT_NAME_STR_LEN]; 3659 struct ice_pf *pf = vsi->back; 3660 int err; 3661 3662 /* allocate descriptors */ 3663 err = ice_vsi_setup_tx_rings(vsi); 3664 if (err) 3665 goto err_setup_tx; 3666 3667 err = ice_vsi_setup_rx_rings(vsi); 3668 if (err) 3669 goto err_setup_rx; 3670 3671 err = ice_vsi_cfg(vsi); 3672 if (err) 3673 goto err_setup_rx; 3674 3675 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 3676 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 3677 err = ice_vsi_req_irq_msix(vsi, int_name); 3678 if (err) 3679 goto err_setup_rx; 3680 3681 /* Notify the stack of the actual queue counts. */ 3682 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 3683 if (err) 3684 goto err_set_qs; 3685 3686 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 3687 if (err) 3688 goto err_set_qs; 3689 3690 err = ice_up_complete(vsi); 3691 if (err) 3692 goto err_up_complete; 3693 3694 return 0; 3695 3696 err_up_complete: 3697 ice_down(vsi); 3698 err_set_qs: 3699 ice_vsi_free_irq(vsi); 3700 err_setup_rx: 3701 ice_vsi_free_rx_rings(vsi); 3702 err_setup_tx: 3703 ice_vsi_free_tx_rings(vsi); 3704 3705 return err; 3706 } 3707 3708 /** 3709 * ice_vsi_release_all - Delete all VSIs 3710 * @pf: PF from which all VSIs are being removed 3711 */ 3712 static void ice_vsi_release_all(struct ice_pf *pf) 3713 { 3714 int err, i; 3715 3716 if (!pf->vsi) 3717 return; 3718 3719 ice_for_each_vsi(pf, i) { 3720 if (!pf->vsi[i]) 3721 continue; 3722 3723 err = ice_vsi_release(pf->vsi[i]); 3724 if (err) 3725 dev_dbg(&pf->pdev->dev, 3726 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 3727 i, err, pf->vsi[i]->vsi_num); 3728 } 3729 } 3730 3731 /** 3732 * ice_ena_vsi - resume a VSI 3733 * @vsi: the VSI being resume 3734 * @locked: is the rtnl_lock already held 3735 */ 3736 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 3737 { 3738 int err = 0; 3739 3740 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 3741 return 0; 3742 3743 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 3744 3745 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 3746 if (netif_running(vsi->netdev)) { 3747 if (!locked) 3748 rtnl_lock(); 3749 3750 err = ice_open(vsi->netdev); 3751 3752 if (!locked) 3753 rtnl_unlock(); 3754 } 3755 } 3756 3757 return err; 3758 } 3759 3760 /** 3761 * ice_pf_ena_all_vsi - Resume all VSIs on a PF 3762 * @pf: the PF 3763 * @locked: is the rtnl_lock already held 3764 */ 3765 #ifdef CONFIG_DCB 3766 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 3767 #else 3768 static int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked) 3769 #endif /* CONFIG_DCB */ 3770 { 3771 int v; 3772 3773 ice_for_each_vsi(pf, v) 3774 if (pf->vsi[v]) 3775 if (ice_ena_vsi(pf->vsi[v], locked)) 3776 return -EIO; 3777 3778 return 0; 3779 } 3780 3781 /** 3782 * ice_vsi_rebuild_all - rebuild all VSIs in PF 3783 * @pf: the PF 3784 */ 3785 static int ice_vsi_rebuild_all(struct ice_pf *pf) 3786 { 3787 int i; 3788 3789 /* loop through pf->vsi array and reinit the VSI if found */ 3790 ice_for_each_vsi(pf, i) { 3791 struct ice_vsi *vsi = pf->vsi[i]; 3792 int err; 3793 3794 if (!vsi) 3795 continue; 3796 3797 err = ice_vsi_rebuild(vsi); 3798 if (err) { 3799 dev_err(&pf->pdev->dev, 3800 "VSI at index %d rebuild failed\n", 3801 vsi->idx); 3802 return err; 3803 } 3804 3805 dev_info(&pf->pdev->dev, 3806 "VSI at index %d rebuilt. vsi_num = 0x%x\n", 3807 vsi->idx, vsi->vsi_num); 3808 } 3809 3810 return 0; 3811 } 3812 3813 /** 3814 * ice_vsi_replay_all - replay all VSIs configuration in the PF 3815 * @pf: the PF 3816 */ 3817 static int ice_vsi_replay_all(struct ice_pf *pf) 3818 { 3819 struct ice_hw *hw = &pf->hw; 3820 enum ice_status ret; 3821 int i; 3822 3823 /* loop through pf->vsi array and replay the VSI if found */ 3824 ice_for_each_vsi(pf, i) { 3825 struct ice_vsi *vsi = pf->vsi[i]; 3826 3827 if (!vsi) 3828 continue; 3829 3830 ret = ice_replay_vsi(hw, vsi->idx); 3831 if (ret) { 3832 dev_err(&pf->pdev->dev, 3833 "VSI at index %d replay failed %d\n", 3834 vsi->idx, ret); 3835 return -EIO; 3836 } 3837 3838 /* Re-map HW VSI number, using VSI handle that has been 3839 * previously validated in ice_replay_vsi() call above 3840 */ 3841 vsi->vsi_num = ice_get_hw_vsi_num(hw, vsi->idx); 3842 3843 dev_info(&pf->pdev->dev, 3844 "VSI at index %d filter replayed successfully - vsi_num %i\n", 3845 vsi->idx, vsi->vsi_num); 3846 } 3847 3848 /* Clean up replay filter after successful re-configuration */ 3849 ice_replay_post(hw); 3850 return 0; 3851 } 3852 3853 /** 3854 * ice_rebuild - rebuild after reset 3855 * @pf: PF to rebuild 3856 */ 3857 static void ice_rebuild(struct ice_pf *pf) 3858 { 3859 struct device *dev = &pf->pdev->dev; 3860 struct ice_hw *hw = &pf->hw; 3861 enum ice_status ret; 3862 int err, i; 3863 3864 if (test_bit(__ICE_DOWN, pf->state)) 3865 goto clear_recovery; 3866 3867 dev_dbg(dev, "rebuilding PF\n"); 3868 3869 ret = ice_init_all_ctrlq(hw); 3870 if (ret) { 3871 dev_err(dev, "control queues init failed %d\n", ret); 3872 goto err_init_ctrlq; 3873 } 3874 3875 ret = ice_clear_pf_cfg(hw); 3876 if (ret) { 3877 dev_err(dev, "clear PF configuration failed %d\n", ret); 3878 goto err_init_ctrlq; 3879 } 3880 3881 ice_clear_pxe_mode(hw); 3882 3883 ret = ice_get_caps(hw); 3884 if (ret) { 3885 dev_err(dev, "ice_get_caps failed %d\n", ret); 3886 goto err_init_ctrlq; 3887 } 3888 3889 err = ice_sched_init_port(hw->port_info); 3890 if (err) 3891 goto err_sched_init_port; 3892 3893 ice_dcb_rebuild(pf); 3894 3895 err = ice_vsi_rebuild_all(pf); 3896 if (err) { 3897 dev_err(dev, "ice_vsi_rebuild_all failed\n"); 3898 goto err_vsi_rebuild; 3899 } 3900 3901 err = ice_update_link_info(hw->port_info); 3902 if (err) 3903 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 3904 3905 /* Replay all VSIs Configuration, including filters after reset */ 3906 if (ice_vsi_replay_all(pf)) { 3907 dev_err(&pf->pdev->dev, 3908 "error replaying VSI configurations with switch filter rules\n"); 3909 goto err_vsi_rebuild; 3910 } 3911 3912 /* start misc vector */ 3913 err = ice_req_irq_msix_misc(pf); 3914 if (err) { 3915 dev_err(dev, "misc vector setup failed: %d\n", err); 3916 goto err_vsi_rebuild; 3917 } 3918 3919 /* restart the VSIs that were rebuilt and running before the reset */ 3920 err = ice_pf_ena_all_vsi(pf, false); 3921 if (err) { 3922 dev_err(&pf->pdev->dev, "error enabling VSIs\n"); 3923 /* no need to disable VSIs in tear down path in ice_rebuild() 3924 * since its already taken care in ice_vsi_open() 3925 */ 3926 goto err_vsi_rebuild; 3927 } 3928 3929 ice_for_each_vsi(pf, i) { 3930 bool link_up; 3931 3932 if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF) 3933 continue; 3934 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 3935 if (link_up) { 3936 netif_carrier_on(pf->vsi[i]->netdev); 3937 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 3938 } else { 3939 netif_carrier_off(pf->vsi[i]->netdev); 3940 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 3941 } 3942 } 3943 3944 /* if we get here, reset flow is successful */ 3945 clear_bit(__ICE_RESET_FAILED, pf->state); 3946 return; 3947 3948 err_vsi_rebuild: 3949 ice_vsi_release_all(pf); 3950 err_sched_init_port: 3951 ice_sched_cleanup_all(hw); 3952 err_init_ctrlq: 3953 ice_shutdown_all_ctrlq(hw); 3954 set_bit(__ICE_RESET_FAILED, pf->state); 3955 clear_recovery: 3956 /* set this bit in PF state to control service task scheduling */ 3957 set_bit(__ICE_NEEDS_RESTART, pf->state); 3958 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 3959 } 3960 3961 /** 3962 * ice_change_mtu - NDO callback to change the MTU 3963 * @netdev: network interface device structure 3964 * @new_mtu: new value for maximum frame size 3965 * 3966 * Returns 0 on success, negative on failure 3967 */ 3968 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 3969 { 3970 struct ice_netdev_priv *np = netdev_priv(netdev); 3971 struct ice_vsi *vsi = np->vsi; 3972 struct ice_pf *pf = vsi->back; 3973 u8 count = 0; 3974 3975 if (new_mtu == netdev->mtu) { 3976 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 3977 return 0; 3978 } 3979 3980 if (new_mtu < netdev->min_mtu) { 3981 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 3982 netdev->min_mtu); 3983 return -EINVAL; 3984 } else if (new_mtu > netdev->max_mtu) { 3985 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 3986 netdev->min_mtu); 3987 return -EINVAL; 3988 } 3989 /* if a reset is in progress, wait for some time for it to complete */ 3990 do { 3991 if (ice_is_reset_in_progress(pf->state)) { 3992 count++; 3993 usleep_range(1000, 2000); 3994 } else { 3995 break; 3996 } 3997 3998 } while (count < 100); 3999 4000 if (count == 100) { 4001 netdev_err(netdev, "can't change MTU. Device is busy\n"); 4002 return -EBUSY; 4003 } 4004 4005 netdev->mtu = new_mtu; 4006 4007 /* if VSI is up, bring it down and then back up */ 4008 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 4009 int err; 4010 4011 err = ice_down(vsi); 4012 if (err) { 4013 netdev_err(netdev, "change MTU if_up err %d\n", err); 4014 return err; 4015 } 4016 4017 err = ice_up(vsi); 4018 if (err) { 4019 netdev_err(netdev, "change MTU if_up err %d\n", err); 4020 return err; 4021 } 4022 } 4023 4024 netdev_info(netdev, "changed MTU to %d\n", new_mtu); 4025 return 0; 4026 } 4027 4028 /** 4029 * ice_set_rss - Set RSS keys and lut 4030 * @vsi: Pointer to VSI structure 4031 * @seed: RSS hash seed 4032 * @lut: Lookup table 4033 * @lut_size: Lookup table size 4034 * 4035 * Returns 0 on success, negative on failure 4036 */ 4037 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4038 { 4039 struct ice_pf *pf = vsi->back; 4040 struct ice_hw *hw = &pf->hw; 4041 enum ice_status status; 4042 4043 if (seed) { 4044 struct ice_aqc_get_set_rss_keys *buf = 4045 (struct ice_aqc_get_set_rss_keys *)seed; 4046 4047 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 4048 4049 if (status) { 4050 dev_err(&pf->pdev->dev, 4051 "Cannot set RSS key, err %d aq_err %d\n", 4052 status, hw->adminq.rq_last_status); 4053 return -EIO; 4054 } 4055 } 4056 4057 if (lut) { 4058 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4059 lut, lut_size); 4060 if (status) { 4061 dev_err(&pf->pdev->dev, 4062 "Cannot set RSS lut, err %d aq_err %d\n", 4063 status, hw->adminq.rq_last_status); 4064 return -EIO; 4065 } 4066 } 4067 4068 return 0; 4069 } 4070 4071 /** 4072 * ice_get_rss - Get RSS keys and lut 4073 * @vsi: Pointer to VSI structure 4074 * @seed: Buffer to store the keys 4075 * @lut: Buffer to store the lookup table entries 4076 * @lut_size: Size of buffer to store the lookup table entries 4077 * 4078 * Returns 0 on success, negative on failure 4079 */ 4080 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4081 { 4082 struct ice_pf *pf = vsi->back; 4083 struct ice_hw *hw = &pf->hw; 4084 enum ice_status status; 4085 4086 if (seed) { 4087 struct ice_aqc_get_set_rss_keys *buf = 4088 (struct ice_aqc_get_set_rss_keys *)seed; 4089 4090 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4091 if (status) { 4092 dev_err(&pf->pdev->dev, 4093 "Cannot get RSS key, err %d aq_err %d\n", 4094 status, hw->adminq.rq_last_status); 4095 return -EIO; 4096 } 4097 } 4098 4099 if (lut) { 4100 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4101 lut, lut_size); 4102 if (status) { 4103 dev_err(&pf->pdev->dev, 4104 "Cannot get RSS lut, err %d aq_err %d\n", 4105 status, hw->adminq.rq_last_status); 4106 return -EIO; 4107 } 4108 } 4109 4110 return 0; 4111 } 4112 4113 /** 4114 * ice_bridge_getlink - Get the hardware bridge mode 4115 * @skb: skb buff 4116 * @pid: process ID 4117 * @seq: RTNL message seq 4118 * @dev: the netdev being configured 4119 * @filter_mask: filter mask passed in 4120 * @nlflags: netlink flags passed in 4121 * 4122 * Return the bridge mode (VEB/VEPA) 4123 */ 4124 static int 4125 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4126 struct net_device *dev, u32 filter_mask, int nlflags) 4127 { 4128 struct ice_netdev_priv *np = netdev_priv(dev); 4129 struct ice_vsi *vsi = np->vsi; 4130 struct ice_pf *pf = vsi->back; 4131 u16 bmode; 4132 4133 bmode = pf->first_sw->bridge_mode; 4134 4135 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4136 filter_mask, NULL); 4137 } 4138 4139 /** 4140 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4141 * @vsi: Pointer to VSI structure 4142 * @bmode: Hardware bridge mode (VEB/VEPA) 4143 * 4144 * Returns 0 on success, negative on failure 4145 */ 4146 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4147 { 4148 struct device *dev = &vsi->back->pdev->dev; 4149 struct ice_aqc_vsi_props *vsi_props; 4150 struct ice_hw *hw = &vsi->back->hw; 4151 struct ice_vsi_ctx *ctxt; 4152 enum ice_status status; 4153 int ret = 0; 4154 4155 vsi_props = &vsi->info; 4156 4157 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 4158 if (!ctxt) 4159 return -ENOMEM; 4160 4161 ctxt->info = vsi->info; 4162 4163 if (bmode == BRIDGE_MODE_VEB) 4164 /* change from VEPA to VEB mode */ 4165 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4166 else 4167 /* change from VEB to VEPA mode */ 4168 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4169 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4170 4171 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4172 if (status) { 4173 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4174 bmode, status, hw->adminq.sq_last_status); 4175 ret = -EIO; 4176 goto out; 4177 } 4178 /* Update sw flags for book keeping */ 4179 vsi_props->sw_flags = ctxt->info.sw_flags; 4180 4181 out: 4182 devm_kfree(dev, ctxt); 4183 return ret; 4184 } 4185 4186 /** 4187 * ice_bridge_setlink - Set the hardware bridge mode 4188 * @dev: the netdev being configured 4189 * @nlh: RTNL message 4190 * @flags: bridge setlink flags 4191 * @extack: netlink extended ack 4192 * 4193 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4194 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4195 * not already set for all VSIs connected to this switch. And also update the 4196 * unicast switch filter rules for the corresponding switch of the netdev. 4197 */ 4198 static int 4199 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 4200 u16 __always_unused flags, 4201 struct netlink_ext_ack __always_unused *extack) 4202 { 4203 struct ice_netdev_priv *np = netdev_priv(dev); 4204 struct ice_pf *pf = np->vsi->back; 4205 struct nlattr *attr, *br_spec; 4206 struct ice_hw *hw = &pf->hw; 4207 enum ice_status status; 4208 struct ice_sw *pf_sw; 4209 int rem, v, err = 0; 4210 4211 pf_sw = pf->first_sw; 4212 /* find the attribute in the netlink message */ 4213 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 4214 4215 nla_for_each_nested(attr, br_spec, rem) { 4216 __u16 mode; 4217 4218 if (nla_type(attr) != IFLA_BRIDGE_MODE) 4219 continue; 4220 mode = nla_get_u16(attr); 4221 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 4222 return -EINVAL; 4223 /* Continue if bridge mode is not being flipped */ 4224 if (mode == pf_sw->bridge_mode) 4225 continue; 4226 /* Iterates through the PF VSI list and update the loopback 4227 * mode of the VSI 4228 */ 4229 ice_for_each_vsi(pf, v) { 4230 if (!pf->vsi[v]) 4231 continue; 4232 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 4233 if (err) 4234 return err; 4235 } 4236 4237 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 4238 /* Update the unicast switch filter rules for the corresponding 4239 * switch of the netdev 4240 */ 4241 status = ice_update_sw_rule_bridge_mode(hw); 4242 if (status) { 4243 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 4244 mode, status, hw->adminq.sq_last_status); 4245 /* revert hw->evb_veb */ 4246 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 4247 return -EIO; 4248 } 4249 4250 pf_sw->bridge_mode = mode; 4251 } 4252 4253 return 0; 4254 } 4255 4256 /** 4257 * ice_tx_timeout - Respond to a Tx Hang 4258 * @netdev: network interface device structure 4259 */ 4260 static void ice_tx_timeout(struct net_device *netdev) 4261 { 4262 struct ice_netdev_priv *np = netdev_priv(netdev); 4263 struct ice_ring *tx_ring = NULL; 4264 struct ice_vsi *vsi = np->vsi; 4265 struct ice_pf *pf = vsi->back; 4266 int hung_queue = -1; 4267 u32 i; 4268 4269 pf->tx_timeout_count++; 4270 4271 /* find the stopped queue the same way dev_watchdog() does */ 4272 for (i = 0; i < netdev->num_tx_queues; i++) { 4273 unsigned long trans_start; 4274 struct netdev_queue *q; 4275 4276 q = netdev_get_tx_queue(netdev, i); 4277 trans_start = q->trans_start; 4278 if (netif_xmit_stopped(q) && 4279 time_after(jiffies, 4280 trans_start + netdev->watchdog_timeo)) { 4281 hung_queue = i; 4282 break; 4283 } 4284 } 4285 4286 if (i == netdev->num_tx_queues) 4287 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 4288 else 4289 /* now that we have an index, find the tx_ring struct */ 4290 for (i = 0; i < vsi->num_txq; i++) 4291 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 4292 if (hung_queue == vsi->tx_rings[i]->q_index) { 4293 tx_ring = vsi->tx_rings[i]; 4294 break; 4295 } 4296 4297 /* Reset recovery level if enough time has elapsed after last timeout. 4298 * Also ensure no new reset action happens before next timeout period. 4299 */ 4300 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 4301 pf->tx_timeout_recovery_level = 1; 4302 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 4303 netdev->watchdog_timeo))) 4304 return; 4305 4306 if (tx_ring) { 4307 struct ice_hw *hw = &pf->hw; 4308 u32 head, val = 0; 4309 4310 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) & 4311 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 4312 /* Read interrupt register */ 4313 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 4314 4315 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 4316 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 4317 head, tx_ring->next_to_use, val); 4318 } 4319 4320 pf->tx_timeout_last_recovery = jiffies; 4321 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 4322 pf->tx_timeout_recovery_level, hung_queue); 4323 4324 switch (pf->tx_timeout_recovery_level) { 4325 case 1: 4326 set_bit(__ICE_PFR_REQ, pf->state); 4327 break; 4328 case 2: 4329 set_bit(__ICE_CORER_REQ, pf->state); 4330 break; 4331 case 3: 4332 set_bit(__ICE_GLOBR_REQ, pf->state); 4333 break; 4334 default: 4335 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 4336 set_bit(__ICE_DOWN, pf->state); 4337 set_bit(__ICE_NEEDS_RESTART, vsi->state); 4338 set_bit(__ICE_SERVICE_DIS, pf->state); 4339 break; 4340 } 4341 4342 ice_service_task_schedule(pf); 4343 pf->tx_timeout_recovery_level++; 4344 } 4345 4346 /** 4347 * ice_open - Called when a network interface becomes active 4348 * @netdev: network interface device structure 4349 * 4350 * The open entry point is called when a network interface is made 4351 * active by the system (IFF_UP). At this point all resources needed 4352 * for transmit and receive operations are allocated, the interrupt 4353 * handler is registered with the OS, the netdev watchdog is enabled, 4354 * and the stack is notified that the interface is ready. 4355 * 4356 * Returns 0 on success, negative value on failure 4357 */ 4358 int ice_open(struct net_device *netdev) 4359 { 4360 struct ice_netdev_priv *np = netdev_priv(netdev); 4361 struct ice_vsi *vsi = np->vsi; 4362 struct ice_port_info *pi; 4363 int err; 4364 4365 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 4366 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 4367 return -EIO; 4368 } 4369 4370 netif_carrier_off(netdev); 4371 4372 pi = vsi->port_info; 4373 err = ice_update_link_info(pi); 4374 if (err) { 4375 netdev_err(netdev, "Failed to get link info, error %d\n", 4376 err); 4377 return err; 4378 } 4379 4380 /* Set PHY if there is media, otherwise, turn off PHY */ 4381 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 4382 err = ice_force_phys_link_state(vsi, true); 4383 if (err) { 4384 netdev_err(netdev, 4385 "Failed to set physical link up, error %d\n", 4386 err); 4387 return err; 4388 } 4389 } else { 4390 err = ice_aq_set_link_restart_an(pi, false, NULL); 4391 if (err) { 4392 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 4393 vsi->vsi_num, err); 4394 return err; 4395 } 4396 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 4397 } 4398 4399 err = ice_vsi_open(vsi); 4400 if (err) 4401 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 4402 vsi->vsi_num, vsi->vsw->sw_id); 4403 return err; 4404 } 4405 4406 /** 4407 * ice_stop - Disables a network interface 4408 * @netdev: network interface device structure 4409 * 4410 * The stop entry point is called when an interface is de-activated by the OS, 4411 * and the netdevice enters the DOWN state. The hardware is still under the 4412 * driver's control, but the netdev interface is disabled. 4413 * 4414 * Returns success only - not allowed to fail 4415 */ 4416 int ice_stop(struct net_device *netdev) 4417 { 4418 struct ice_netdev_priv *np = netdev_priv(netdev); 4419 struct ice_vsi *vsi = np->vsi; 4420 4421 ice_vsi_close(vsi); 4422 4423 return 0; 4424 } 4425 4426 /** 4427 * ice_features_check - Validate encapsulated packet conforms to limits 4428 * @skb: skb buffer 4429 * @netdev: This port's netdev 4430 * @features: Offload features that the stack believes apply 4431 */ 4432 static netdev_features_t 4433 ice_features_check(struct sk_buff *skb, 4434 struct net_device __always_unused *netdev, 4435 netdev_features_t features) 4436 { 4437 size_t len; 4438 4439 /* No point in doing any of this if neither checksum nor GSO are 4440 * being requested for this frame. We can rule out both by just 4441 * checking for CHECKSUM_PARTIAL 4442 */ 4443 if (skb->ip_summed != CHECKSUM_PARTIAL) 4444 return features; 4445 4446 /* We cannot support GSO if the MSS is going to be less than 4447 * 64 bytes. If it is then we need to drop support for GSO. 4448 */ 4449 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4450 features &= ~NETIF_F_GSO_MASK; 4451 4452 len = skb_network_header(skb) - skb->data; 4453 if (len & ~(ICE_TXD_MACLEN_MAX)) 4454 goto out_rm_features; 4455 4456 len = skb_transport_header(skb) - skb_network_header(skb); 4457 if (len & ~(ICE_TXD_IPLEN_MAX)) 4458 goto out_rm_features; 4459 4460 if (skb->encapsulation) { 4461 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4462 if (len & ~(ICE_TXD_L4LEN_MAX)) 4463 goto out_rm_features; 4464 4465 len = skb_inner_transport_header(skb) - 4466 skb_inner_network_header(skb); 4467 if (len & ~(ICE_TXD_IPLEN_MAX)) 4468 goto out_rm_features; 4469 } 4470 4471 return features; 4472 out_rm_features: 4473 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4474 } 4475 4476 static const struct net_device_ops ice_netdev_ops = { 4477 .ndo_open = ice_open, 4478 .ndo_stop = ice_stop, 4479 .ndo_start_xmit = ice_start_xmit, 4480 .ndo_features_check = ice_features_check, 4481 .ndo_set_rx_mode = ice_set_rx_mode, 4482 .ndo_set_mac_address = ice_set_mac_address, 4483 .ndo_validate_addr = eth_validate_addr, 4484 .ndo_change_mtu = ice_change_mtu, 4485 .ndo_get_stats64 = ice_get_stats64, 4486 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 4487 .ndo_set_vf_mac = ice_set_vf_mac, 4488 .ndo_get_vf_config = ice_get_vf_cfg, 4489 .ndo_set_vf_trust = ice_set_vf_trust, 4490 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 4491 .ndo_set_vf_link_state = ice_set_vf_link_state, 4492 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 4493 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 4494 .ndo_set_features = ice_set_features, 4495 .ndo_bridge_getlink = ice_bridge_getlink, 4496 .ndo_bridge_setlink = ice_bridge_setlink, 4497 .ndo_fdb_add = ice_fdb_add, 4498 .ndo_fdb_del = ice_fdb_del, 4499 .ndo_tx_timeout = ice_tx_timeout, 4500 }; 4501