1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 25 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 26 static const char ice_driver_string[] = DRV_SUMMARY; 27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 28 29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 30 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 31 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 32 33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 34 MODULE_DESCRIPTION(DRV_SUMMARY); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static DEFINE_IDA(ice_aux_ida); 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 static struct workqueue_struct *ice_wq; 51 static const struct net_device_ops ice_netdev_safe_mode_ops; 52 static const struct net_device_ops ice_netdev_ops; 53 54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 55 56 static void ice_vsi_release_all(struct ice_pf *pf); 57 58 static int ice_rebuild_channels(struct ice_pf *pf); 59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 60 61 static int 62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 63 void *cb_priv, enum tc_setup_type type, void *type_data, 64 void *data, 65 void (*cleanup)(struct flow_block_cb *block_cb)); 66 67 bool netif_is_ice(struct net_device *dev) 68 { 69 return dev && (dev->netdev_ops == &ice_netdev_ops); 70 } 71 72 /** 73 * ice_get_tx_pending - returns number of Tx descriptors not processed 74 * @ring: the ring of descriptors 75 */ 76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 77 { 78 u16 head, tail; 79 80 head = ring->next_to_clean; 81 tail = ring->next_to_use; 82 83 if (head != tail) 84 return (head < tail) ? 85 tail - head : (tail + ring->count - head); 86 return 0; 87 } 88 89 /** 90 * ice_check_for_hang_subtask - check for and recover hung queues 91 * @pf: pointer to PF struct 92 */ 93 static void ice_check_for_hang_subtask(struct ice_pf *pf) 94 { 95 struct ice_vsi *vsi = NULL; 96 struct ice_hw *hw; 97 unsigned int i; 98 int packets; 99 u32 v; 100 101 ice_for_each_vsi(pf, v) 102 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 103 vsi = pf->vsi[v]; 104 break; 105 } 106 107 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 108 return; 109 110 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 111 return; 112 113 hw = &vsi->back->hw; 114 115 ice_for_each_txq(vsi, i) { 116 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 117 118 if (!tx_ring) 119 continue; 120 if (ice_ring_ch_enabled(tx_ring)) 121 continue; 122 123 if (tx_ring->desc) { 124 /* If packet counter has not changed the queue is 125 * likely stalled, so force an interrupt for this 126 * queue. 127 * 128 * prev_pkt would be negative if there was no 129 * pending work. 130 */ 131 packets = tx_ring->stats.pkts & INT_MAX; 132 if (tx_ring->tx_stats.prev_pkt == packets) { 133 /* Trigger sw interrupt to revive the queue */ 134 ice_trigger_sw_intr(hw, tx_ring->q_vector); 135 continue; 136 } 137 138 /* Memory barrier between read of packet count and call 139 * to ice_get_tx_pending() 140 */ 141 smp_rmb(); 142 tx_ring->tx_stats.prev_pkt = 143 ice_get_tx_pending(tx_ring) ? packets : -1; 144 } 145 } 146 } 147 148 /** 149 * ice_init_mac_fltr - Set initial MAC filters 150 * @pf: board private structure 151 * 152 * Set initial set of MAC filters for PF VSI; configure filters for permanent 153 * address and broadcast address. If an error is encountered, netdevice will be 154 * unregistered. 155 */ 156 static int ice_init_mac_fltr(struct ice_pf *pf) 157 { 158 struct ice_vsi *vsi; 159 u8 *perm_addr; 160 161 vsi = ice_get_main_vsi(pf); 162 if (!vsi) 163 return -EINVAL; 164 165 perm_addr = vsi->port_info->mac.perm_addr; 166 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 167 } 168 169 /** 170 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 171 * @netdev: the net device on which the sync is happening 172 * @addr: MAC address to sync 173 * 174 * This is a callback function which is called by the in kernel device sync 175 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 176 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 177 * MAC filters from the hardware. 178 */ 179 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 180 { 181 struct ice_netdev_priv *np = netdev_priv(netdev); 182 struct ice_vsi *vsi = np->vsi; 183 184 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 185 ICE_FWD_TO_VSI)) 186 return -EINVAL; 187 188 return 0; 189 } 190 191 /** 192 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 193 * @netdev: the net device on which the unsync is happening 194 * @addr: MAC address to unsync 195 * 196 * This is a callback function which is called by the in kernel device unsync 197 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 198 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 199 * delete the MAC filters from the hardware. 200 */ 201 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 202 { 203 struct ice_netdev_priv *np = netdev_priv(netdev); 204 struct ice_vsi *vsi = np->vsi; 205 206 /* Under some circumstances, we might receive a request to delete our 207 * own device address from our uc list. Because we store the device 208 * address in the VSI's MAC filter list, we need to ignore such 209 * requests and not delete our device address from this list. 210 */ 211 if (ether_addr_equal(addr, netdev->dev_addr)) 212 return 0; 213 214 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 215 ICE_FWD_TO_VSI)) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 /** 222 * ice_vsi_fltr_changed - check if filter state changed 223 * @vsi: VSI to be checked 224 * 225 * returns true if filter state has changed, false otherwise. 226 */ 227 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 228 { 229 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 230 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 232 } 233 234 /** 235 * ice_set_promisc - Enable promiscuous mode for a given PF 236 * @vsi: the VSI being configured 237 * @promisc_m: mask of promiscuous config bits 238 * 239 */ 240 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 241 { 242 int status; 243 244 if (vsi->type != ICE_VSI_PF) 245 return 0; 246 247 if (vsi->num_vlan > 1) 248 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 249 else 250 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 251 return status; 252 } 253 254 /** 255 * ice_clear_promisc - Disable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (vsi->num_vlan > 1) 268 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 269 else 270 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 271 return status; 272 } 273 274 /** 275 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 276 * @vsi: ptr to the VSI 277 * 278 * Push any outstanding VSI filter changes through the AdminQ. 279 */ 280 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 281 { 282 struct device *dev = ice_pf_to_dev(vsi->back); 283 struct net_device *netdev = vsi->netdev; 284 bool promisc_forced_on = false; 285 struct ice_pf *pf = vsi->back; 286 struct ice_hw *hw = &pf->hw; 287 u32 changed_flags = 0; 288 u8 promisc_m; 289 int err; 290 291 if (!vsi->netdev) 292 return -EINVAL; 293 294 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 295 usleep_range(1000, 2000); 296 297 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 298 vsi->current_netdev_flags = vsi->netdev->flags; 299 300 INIT_LIST_HEAD(&vsi->tmp_sync_list); 301 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 302 303 if (ice_vsi_fltr_changed(vsi)) { 304 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 305 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 306 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 307 308 /* grab the netdev's addr_list_lock */ 309 netif_addr_lock_bh(netdev); 310 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 311 ice_add_mac_to_unsync_list); 312 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 /* our temp lists are populated. release lock */ 315 netif_addr_unlock_bh(netdev); 316 } 317 318 /* Remove MAC addresses in the unsync list */ 319 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 320 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 321 if (err) { 322 netdev_err(netdev, "Failed to delete MAC filters\n"); 323 /* if we failed because of alloc failures, just bail */ 324 if (err == -ENOMEM) 325 goto out; 326 } 327 328 /* Add MAC addresses in the sync list */ 329 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 330 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 331 /* If filter is added successfully or already exists, do not go into 332 * 'if' condition and report it as error. Instead continue processing 333 * rest of the function. 334 */ 335 if (err && err != -EEXIST) { 336 netdev_err(netdev, "Failed to add MAC filters\n"); 337 /* If there is no more space for new umac filters, VSI 338 * should go into promiscuous mode. There should be some 339 * space reserved for promiscuous filters. 340 */ 341 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 342 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 343 vsi->state)) { 344 promisc_forced_on = true; 345 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 346 vsi->vsi_num); 347 } else { 348 goto out; 349 } 350 } 351 err = 0; 352 /* check for changes in promiscuous modes */ 353 if (changed_flags & IFF_ALLMULTI) { 354 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 355 if (vsi->num_vlan > 1) 356 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 357 else 358 promisc_m = ICE_MCAST_PROMISC_BITS; 359 360 err = ice_set_promisc(vsi, promisc_m); 361 if (err) { 362 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 363 vsi->vsi_num); 364 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 365 goto out_promisc; 366 } 367 } else { 368 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 369 if (vsi->num_vlan > 1) 370 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 371 else 372 promisc_m = ICE_MCAST_PROMISC_BITS; 373 374 err = ice_clear_promisc(vsi, promisc_m); 375 if (err) { 376 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 377 vsi->vsi_num); 378 vsi->current_netdev_flags |= IFF_ALLMULTI; 379 goto out_promisc; 380 } 381 } 382 } 383 384 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 385 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 386 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 387 if (vsi->current_netdev_flags & IFF_PROMISC) { 388 /* Apply Rx filter rule to get traffic from wire */ 389 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 390 err = ice_set_dflt_vsi(pf->first_sw, vsi); 391 if (err && err != -EEXIST) { 392 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 393 err, vsi->vsi_num); 394 vsi->current_netdev_flags &= 395 ~IFF_PROMISC; 396 goto out_promisc; 397 } 398 err = 0; 399 ice_cfg_vlan_pruning(vsi, false); 400 } 401 } else { 402 /* Clear Rx filter to remove traffic from wire */ 403 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 404 err = ice_clear_dflt_vsi(pf->first_sw); 405 if (err) { 406 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 407 err, vsi->vsi_num); 408 vsi->current_netdev_flags |= 409 IFF_PROMISC; 410 goto out_promisc; 411 } 412 if (vsi->num_vlan > 1) 413 ice_cfg_vlan_pruning(vsi, true); 414 } 415 } 416 } 417 goto exit; 418 419 out_promisc: 420 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 421 goto exit; 422 out: 423 /* if something went wrong then set the changed flag so we try again */ 424 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 425 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 426 exit: 427 clear_bit(ICE_CFG_BUSY, vsi->state); 428 return err; 429 } 430 431 /** 432 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 433 * @pf: board private structure 434 */ 435 static void ice_sync_fltr_subtask(struct ice_pf *pf) 436 { 437 int v; 438 439 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 440 return; 441 442 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 443 444 ice_for_each_vsi(pf, v) 445 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 446 ice_vsi_sync_fltr(pf->vsi[v])) { 447 /* come back and try again later */ 448 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 449 break; 450 } 451 } 452 453 /** 454 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 455 * @pf: the PF 456 * @locked: is the rtnl_lock already held 457 */ 458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 459 { 460 int node; 461 int v; 462 463 ice_for_each_vsi(pf, v) 464 if (pf->vsi[v]) 465 ice_dis_vsi(pf->vsi[v], locked); 466 467 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 468 pf->pf_agg_node[node].num_vsis = 0; 469 470 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 471 pf->vf_agg_node[node].num_vsis = 0; 472 } 473 474 /** 475 * ice_prepare_for_reset - prep for reset 476 * @pf: board private structure 477 * @reset_type: reset type requested 478 * 479 * Inform or close all dependent features in prep for reset. 480 */ 481 static void 482 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 483 { 484 struct ice_hw *hw = &pf->hw; 485 struct ice_vsi *vsi; 486 unsigned int i; 487 488 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 489 490 /* already prepared for reset */ 491 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 492 return; 493 494 ice_unplug_aux_dev(pf); 495 496 /* Notify VFs of impending reset */ 497 if (ice_check_sq_alive(hw, &hw->mailboxq)) 498 ice_vc_notify_reset(pf); 499 500 /* Disable VFs until reset is completed */ 501 ice_for_each_vf(pf, i) 502 ice_set_vf_state_qs_dis(&pf->vf[i]); 503 504 /* release ADQ specific HW and SW resources */ 505 vsi = ice_get_main_vsi(pf); 506 if (!vsi) 507 goto skip; 508 509 /* to be on safe side, reset orig_rss_size so that normal flow 510 * of deciding rss_size can take precedence 511 */ 512 vsi->orig_rss_size = 0; 513 514 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 515 if (reset_type == ICE_RESET_PFR) { 516 vsi->old_ena_tc = vsi->all_enatc; 517 vsi->old_numtc = vsi->all_numtc; 518 } else { 519 ice_remove_q_channels(vsi, true); 520 521 /* for other reset type, do not support channel rebuild 522 * hence reset needed info 523 */ 524 vsi->old_ena_tc = 0; 525 vsi->all_enatc = 0; 526 vsi->old_numtc = 0; 527 vsi->all_numtc = 0; 528 vsi->req_txq = 0; 529 vsi->req_rxq = 0; 530 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 531 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 532 } 533 } 534 skip: 535 536 /* clear SW filtering DB */ 537 ice_clear_hw_tbls(hw); 538 /* disable the VSIs and their queues that are not already DOWN */ 539 ice_pf_dis_all_vsi(pf, false); 540 541 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 542 ice_ptp_prepare_for_reset(pf); 543 544 if (hw->port_info) 545 ice_sched_clear_port(hw->port_info); 546 547 ice_shutdown_all_ctrlq(hw); 548 549 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 550 } 551 552 /** 553 * ice_do_reset - Initiate one of many types of resets 554 * @pf: board private structure 555 * @reset_type: reset type requested before this function was called. 556 */ 557 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 558 { 559 struct device *dev = ice_pf_to_dev(pf); 560 struct ice_hw *hw = &pf->hw; 561 562 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 563 564 ice_prepare_for_reset(pf, reset_type); 565 566 /* trigger the reset */ 567 if (ice_reset(hw, reset_type)) { 568 dev_err(dev, "reset %d failed\n", reset_type); 569 set_bit(ICE_RESET_FAILED, pf->state); 570 clear_bit(ICE_RESET_OICR_RECV, pf->state); 571 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 572 clear_bit(ICE_PFR_REQ, pf->state); 573 clear_bit(ICE_CORER_REQ, pf->state); 574 clear_bit(ICE_GLOBR_REQ, pf->state); 575 wake_up(&pf->reset_wait_queue); 576 return; 577 } 578 579 /* PFR is a bit of a special case because it doesn't result in an OICR 580 * interrupt. So for PFR, rebuild after the reset and clear the reset- 581 * associated state bits. 582 */ 583 if (reset_type == ICE_RESET_PFR) { 584 pf->pfr_count++; 585 ice_rebuild(pf, reset_type); 586 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 587 clear_bit(ICE_PFR_REQ, pf->state); 588 wake_up(&pf->reset_wait_queue); 589 ice_reset_all_vfs(pf, true); 590 } 591 } 592 593 /** 594 * ice_reset_subtask - Set up for resetting the device and driver 595 * @pf: board private structure 596 */ 597 static void ice_reset_subtask(struct ice_pf *pf) 598 { 599 enum ice_reset_req reset_type = ICE_RESET_INVAL; 600 601 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 602 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 603 * of reset is pending and sets bits in pf->state indicating the reset 604 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 605 * prepare for pending reset if not already (for PF software-initiated 606 * global resets the software should already be prepared for it as 607 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 608 * by firmware or software on other PFs, that bit is not set so prepare 609 * for the reset now), poll for reset done, rebuild and return. 610 */ 611 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 612 /* Perform the largest reset requested */ 613 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 614 reset_type = ICE_RESET_CORER; 615 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 616 reset_type = ICE_RESET_GLOBR; 617 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 618 reset_type = ICE_RESET_EMPR; 619 /* return if no valid reset type requested */ 620 if (reset_type == ICE_RESET_INVAL) 621 return; 622 ice_prepare_for_reset(pf, reset_type); 623 624 /* make sure we are ready to rebuild */ 625 if (ice_check_reset(&pf->hw)) { 626 set_bit(ICE_RESET_FAILED, pf->state); 627 } else { 628 /* done with reset. start rebuild */ 629 pf->hw.reset_ongoing = false; 630 ice_rebuild(pf, reset_type); 631 /* clear bit to resume normal operations, but 632 * ICE_NEEDS_RESTART bit is set in case rebuild failed 633 */ 634 clear_bit(ICE_RESET_OICR_RECV, pf->state); 635 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 636 clear_bit(ICE_PFR_REQ, pf->state); 637 clear_bit(ICE_CORER_REQ, pf->state); 638 clear_bit(ICE_GLOBR_REQ, pf->state); 639 wake_up(&pf->reset_wait_queue); 640 ice_reset_all_vfs(pf, true); 641 } 642 643 return; 644 } 645 646 /* No pending resets to finish processing. Check for new resets */ 647 if (test_bit(ICE_PFR_REQ, pf->state)) 648 reset_type = ICE_RESET_PFR; 649 if (test_bit(ICE_CORER_REQ, pf->state)) 650 reset_type = ICE_RESET_CORER; 651 if (test_bit(ICE_GLOBR_REQ, pf->state)) 652 reset_type = ICE_RESET_GLOBR; 653 /* If no valid reset type requested just return */ 654 if (reset_type == ICE_RESET_INVAL) 655 return; 656 657 /* reset if not already down or busy */ 658 if (!test_bit(ICE_DOWN, pf->state) && 659 !test_bit(ICE_CFG_BUSY, pf->state)) { 660 ice_do_reset(pf, reset_type); 661 } 662 } 663 664 /** 665 * ice_print_topo_conflict - print topology conflict message 666 * @vsi: the VSI whose topology status is being checked 667 */ 668 static void ice_print_topo_conflict(struct ice_vsi *vsi) 669 { 670 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 671 case ICE_AQ_LINK_TOPO_CONFLICT: 672 case ICE_AQ_LINK_MEDIA_CONFLICT: 673 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 674 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 675 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 676 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 677 break; 678 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 679 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 680 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 681 else 682 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 683 break; 684 default: 685 break; 686 } 687 } 688 689 /** 690 * ice_print_link_msg - print link up or down message 691 * @vsi: the VSI whose link status is being queried 692 * @isup: boolean for if the link is now up or down 693 */ 694 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 695 { 696 struct ice_aqc_get_phy_caps_data *caps; 697 const char *an_advertised; 698 const char *fec_req; 699 const char *speed; 700 const char *fec; 701 const char *fc; 702 const char *an; 703 int status; 704 705 if (!vsi) 706 return; 707 708 if (vsi->current_isup == isup) 709 return; 710 711 vsi->current_isup = isup; 712 713 if (!isup) { 714 netdev_info(vsi->netdev, "NIC Link is Down\n"); 715 return; 716 } 717 718 switch (vsi->port_info->phy.link_info.link_speed) { 719 case ICE_AQ_LINK_SPEED_100GB: 720 speed = "100 G"; 721 break; 722 case ICE_AQ_LINK_SPEED_50GB: 723 speed = "50 G"; 724 break; 725 case ICE_AQ_LINK_SPEED_40GB: 726 speed = "40 G"; 727 break; 728 case ICE_AQ_LINK_SPEED_25GB: 729 speed = "25 G"; 730 break; 731 case ICE_AQ_LINK_SPEED_20GB: 732 speed = "20 G"; 733 break; 734 case ICE_AQ_LINK_SPEED_10GB: 735 speed = "10 G"; 736 break; 737 case ICE_AQ_LINK_SPEED_5GB: 738 speed = "5 G"; 739 break; 740 case ICE_AQ_LINK_SPEED_2500MB: 741 speed = "2.5 G"; 742 break; 743 case ICE_AQ_LINK_SPEED_1000MB: 744 speed = "1 G"; 745 break; 746 case ICE_AQ_LINK_SPEED_100MB: 747 speed = "100 M"; 748 break; 749 default: 750 speed = "Unknown "; 751 break; 752 } 753 754 switch (vsi->port_info->fc.current_mode) { 755 case ICE_FC_FULL: 756 fc = "Rx/Tx"; 757 break; 758 case ICE_FC_TX_PAUSE: 759 fc = "Tx"; 760 break; 761 case ICE_FC_RX_PAUSE: 762 fc = "Rx"; 763 break; 764 case ICE_FC_NONE: 765 fc = "None"; 766 break; 767 default: 768 fc = "Unknown"; 769 break; 770 } 771 772 /* Get FEC mode based on negotiated link info */ 773 switch (vsi->port_info->phy.link_info.fec_info) { 774 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 775 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 776 fec = "RS-FEC"; 777 break; 778 case ICE_AQ_LINK_25G_KR_FEC_EN: 779 fec = "FC-FEC/BASE-R"; 780 break; 781 default: 782 fec = "NONE"; 783 break; 784 } 785 786 /* check if autoneg completed, might be false due to not supported */ 787 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 788 an = "True"; 789 else 790 an = "False"; 791 792 /* Get FEC mode requested based on PHY caps last SW configuration */ 793 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 794 if (!caps) { 795 fec_req = "Unknown"; 796 an_advertised = "Unknown"; 797 goto done; 798 } 799 800 status = ice_aq_get_phy_caps(vsi->port_info, false, 801 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 802 if (status) 803 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 804 805 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 806 807 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 808 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 809 fec_req = "RS-FEC"; 810 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 811 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 812 fec_req = "FC-FEC/BASE-R"; 813 else 814 fec_req = "NONE"; 815 816 kfree(caps); 817 818 done: 819 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 820 speed, fec_req, fec, an_advertised, an, fc); 821 ice_print_topo_conflict(vsi); 822 } 823 824 /** 825 * ice_vsi_link_event - update the VSI's netdev 826 * @vsi: the VSI on which the link event occurred 827 * @link_up: whether or not the VSI needs to be set up or down 828 */ 829 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 830 { 831 if (!vsi) 832 return; 833 834 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 835 return; 836 837 if (vsi->type == ICE_VSI_PF) { 838 if (link_up == netif_carrier_ok(vsi->netdev)) 839 return; 840 841 if (link_up) { 842 netif_carrier_on(vsi->netdev); 843 netif_tx_wake_all_queues(vsi->netdev); 844 } else { 845 netif_carrier_off(vsi->netdev); 846 netif_tx_stop_all_queues(vsi->netdev); 847 } 848 } 849 } 850 851 /** 852 * ice_set_dflt_mib - send a default config MIB to the FW 853 * @pf: private PF struct 854 * 855 * This function sends a default configuration MIB to the FW. 856 * 857 * If this function errors out at any point, the driver is still able to 858 * function. The main impact is that LFC may not operate as expected. 859 * Therefore an error state in this function should be treated with a DBG 860 * message and continue on with driver rebuild/reenable. 861 */ 862 static void ice_set_dflt_mib(struct ice_pf *pf) 863 { 864 struct device *dev = ice_pf_to_dev(pf); 865 u8 mib_type, *buf, *lldpmib = NULL; 866 u16 len, typelen, offset = 0; 867 struct ice_lldp_org_tlv *tlv; 868 struct ice_hw *hw = &pf->hw; 869 u32 ouisubtype; 870 871 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 872 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 873 if (!lldpmib) { 874 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 875 __func__); 876 return; 877 } 878 879 /* Add ETS CFG TLV */ 880 tlv = (struct ice_lldp_org_tlv *)lldpmib; 881 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 882 ICE_IEEE_ETS_TLV_LEN); 883 tlv->typelen = htons(typelen); 884 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 885 ICE_IEEE_SUBTYPE_ETS_CFG); 886 tlv->ouisubtype = htonl(ouisubtype); 887 888 buf = tlv->tlvinfo; 889 buf[0] = 0; 890 891 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 892 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 893 * Octets 13 - 20 are TSA values - leave as zeros 894 */ 895 buf[5] = 0x64; 896 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 897 offset += len + 2; 898 tlv = (struct ice_lldp_org_tlv *) 899 ((char *)tlv + sizeof(tlv->typelen) + len); 900 901 /* Add ETS REC TLV */ 902 buf = tlv->tlvinfo; 903 tlv->typelen = htons(typelen); 904 905 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 906 ICE_IEEE_SUBTYPE_ETS_REC); 907 tlv->ouisubtype = htonl(ouisubtype); 908 909 /* First octet of buf is reserved 910 * Octets 1 - 4 map UP to TC - all UPs map to zero 911 * Octets 5 - 12 are BW values - set TC 0 to 100%. 912 * Octets 13 - 20 are TSA value - leave as zeros 913 */ 914 buf[5] = 0x64; 915 offset += len + 2; 916 tlv = (struct ice_lldp_org_tlv *) 917 ((char *)tlv + sizeof(tlv->typelen) + len); 918 919 /* Add PFC CFG TLV */ 920 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 921 ICE_IEEE_PFC_TLV_LEN); 922 tlv->typelen = htons(typelen); 923 924 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 925 ICE_IEEE_SUBTYPE_PFC_CFG); 926 tlv->ouisubtype = htonl(ouisubtype); 927 928 /* Octet 1 left as all zeros - PFC disabled */ 929 buf[0] = 0x08; 930 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 931 offset += len + 2; 932 933 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 934 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 935 936 kfree(lldpmib); 937 } 938 939 /** 940 * ice_check_phy_fw_load - check if PHY FW load failed 941 * @pf: pointer to PF struct 942 * @link_cfg_err: bitmap from the link info structure 943 * 944 * check if external PHY FW load failed and print an error message if it did 945 */ 946 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 947 { 948 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 949 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 950 return; 951 } 952 953 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 954 return; 955 956 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 957 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 958 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 959 } 960 } 961 962 /** 963 * ice_check_module_power 964 * @pf: pointer to PF struct 965 * @link_cfg_err: bitmap from the link info structure 966 * 967 * check module power level returned by a previous call to aq_get_link_info 968 * and print error messages if module power level is not supported 969 */ 970 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 971 { 972 /* if module power level is supported, clear the flag */ 973 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 974 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 975 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 976 return; 977 } 978 979 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 980 * above block didn't clear this bit, there's nothing to do 981 */ 982 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 983 return; 984 985 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 986 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 987 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 988 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 989 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 990 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 991 } 992 } 993 994 /** 995 * ice_check_link_cfg_err - check if link configuration failed 996 * @pf: pointer to the PF struct 997 * @link_cfg_err: bitmap from the link info structure 998 * 999 * print if any link configuration failure happens due to the value in the 1000 * link_cfg_err parameter in the link info structure 1001 */ 1002 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1003 { 1004 ice_check_module_power(pf, link_cfg_err); 1005 ice_check_phy_fw_load(pf, link_cfg_err); 1006 } 1007 1008 /** 1009 * ice_link_event - process the link event 1010 * @pf: PF that the link event is associated with 1011 * @pi: port_info for the port that the link event is associated with 1012 * @link_up: true if the physical link is up and false if it is down 1013 * @link_speed: current link speed received from the link event 1014 * 1015 * Returns 0 on success and negative on failure 1016 */ 1017 static int 1018 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1019 u16 link_speed) 1020 { 1021 struct device *dev = ice_pf_to_dev(pf); 1022 struct ice_phy_info *phy_info; 1023 struct ice_vsi *vsi; 1024 u16 old_link_speed; 1025 bool old_link; 1026 int status; 1027 1028 phy_info = &pi->phy; 1029 phy_info->link_info_old = phy_info->link_info; 1030 1031 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1032 old_link_speed = phy_info->link_info_old.link_speed; 1033 1034 /* update the link info structures and re-enable link events, 1035 * don't bail on failure due to other book keeping needed 1036 */ 1037 status = ice_update_link_info(pi); 1038 if (status) 1039 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1040 pi->lport, status, 1041 ice_aq_str(pi->hw->adminq.sq_last_status)); 1042 1043 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1044 1045 /* Check if the link state is up after updating link info, and treat 1046 * this event as an UP event since the link is actually UP now. 1047 */ 1048 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1049 link_up = true; 1050 1051 vsi = ice_get_main_vsi(pf); 1052 if (!vsi || !vsi->port_info) 1053 return -EINVAL; 1054 1055 /* turn off PHY if media was removed */ 1056 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1057 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1058 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1059 ice_set_link(vsi, false); 1060 } 1061 1062 /* if the old link up/down and speed is the same as the new */ 1063 if (link_up == old_link && link_speed == old_link_speed) 1064 return 0; 1065 1066 if (!ice_is_e810(&pf->hw)) 1067 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1068 1069 if (ice_is_dcb_active(pf)) { 1070 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1071 ice_dcb_rebuild(pf); 1072 } else { 1073 if (link_up) 1074 ice_set_dflt_mib(pf); 1075 } 1076 ice_vsi_link_event(vsi, link_up); 1077 ice_print_link_msg(vsi, link_up); 1078 1079 ice_vc_notify_link_state(pf); 1080 1081 return 0; 1082 } 1083 1084 /** 1085 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1086 * @pf: board private structure 1087 */ 1088 static void ice_watchdog_subtask(struct ice_pf *pf) 1089 { 1090 int i; 1091 1092 /* if interface is down do nothing */ 1093 if (test_bit(ICE_DOWN, pf->state) || 1094 test_bit(ICE_CFG_BUSY, pf->state)) 1095 return; 1096 1097 /* make sure we don't do these things too often */ 1098 if (time_before(jiffies, 1099 pf->serv_tmr_prev + pf->serv_tmr_period)) 1100 return; 1101 1102 pf->serv_tmr_prev = jiffies; 1103 1104 /* Update the stats for active netdevs so the network stack 1105 * can look at updated numbers whenever it cares to 1106 */ 1107 ice_update_pf_stats(pf); 1108 ice_for_each_vsi(pf, i) 1109 if (pf->vsi[i] && pf->vsi[i]->netdev) 1110 ice_update_vsi_stats(pf->vsi[i]); 1111 } 1112 1113 /** 1114 * ice_init_link_events - enable/initialize link events 1115 * @pi: pointer to the port_info instance 1116 * 1117 * Returns -EIO on failure, 0 on success 1118 */ 1119 static int ice_init_link_events(struct ice_port_info *pi) 1120 { 1121 u16 mask; 1122 1123 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1124 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1125 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1126 1127 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1128 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1129 pi->lport); 1130 return -EIO; 1131 } 1132 1133 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1134 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1135 pi->lport); 1136 return -EIO; 1137 } 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * ice_handle_link_event - handle link event via ARQ 1144 * @pf: PF that the link event is associated with 1145 * @event: event structure containing link status info 1146 */ 1147 static int 1148 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1149 { 1150 struct ice_aqc_get_link_status_data *link_data; 1151 struct ice_port_info *port_info; 1152 int status; 1153 1154 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1155 port_info = pf->hw.port_info; 1156 if (!port_info) 1157 return -EINVAL; 1158 1159 status = ice_link_event(pf, port_info, 1160 !!(link_data->link_info & ICE_AQ_LINK_UP), 1161 le16_to_cpu(link_data->link_speed)); 1162 if (status) 1163 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1164 status); 1165 1166 return status; 1167 } 1168 1169 enum ice_aq_task_state { 1170 ICE_AQ_TASK_WAITING = 0, 1171 ICE_AQ_TASK_COMPLETE, 1172 ICE_AQ_TASK_CANCELED, 1173 }; 1174 1175 struct ice_aq_task { 1176 struct hlist_node entry; 1177 1178 u16 opcode; 1179 struct ice_rq_event_info *event; 1180 enum ice_aq_task_state state; 1181 }; 1182 1183 /** 1184 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1185 * @pf: pointer to the PF private structure 1186 * @opcode: the opcode to wait for 1187 * @timeout: how long to wait, in jiffies 1188 * @event: storage for the event info 1189 * 1190 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1191 * current thread will be put to sleep until the specified event occurs or 1192 * until the given timeout is reached. 1193 * 1194 * To obtain only the descriptor contents, pass an event without an allocated 1195 * msg_buf. If the complete data buffer is desired, allocate the 1196 * event->msg_buf with enough space ahead of time. 1197 * 1198 * Returns: zero on success, or a negative error code on failure. 1199 */ 1200 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1201 struct ice_rq_event_info *event) 1202 { 1203 struct device *dev = ice_pf_to_dev(pf); 1204 struct ice_aq_task *task; 1205 unsigned long start; 1206 long ret; 1207 int err; 1208 1209 task = kzalloc(sizeof(*task), GFP_KERNEL); 1210 if (!task) 1211 return -ENOMEM; 1212 1213 INIT_HLIST_NODE(&task->entry); 1214 task->opcode = opcode; 1215 task->event = event; 1216 task->state = ICE_AQ_TASK_WAITING; 1217 1218 spin_lock_bh(&pf->aq_wait_lock); 1219 hlist_add_head(&task->entry, &pf->aq_wait_list); 1220 spin_unlock_bh(&pf->aq_wait_lock); 1221 1222 start = jiffies; 1223 1224 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1225 timeout); 1226 switch (task->state) { 1227 case ICE_AQ_TASK_WAITING: 1228 err = ret < 0 ? ret : -ETIMEDOUT; 1229 break; 1230 case ICE_AQ_TASK_CANCELED: 1231 err = ret < 0 ? ret : -ECANCELED; 1232 break; 1233 case ICE_AQ_TASK_COMPLETE: 1234 err = ret < 0 ? ret : 0; 1235 break; 1236 default: 1237 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1238 err = -EINVAL; 1239 break; 1240 } 1241 1242 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1243 jiffies_to_msecs(jiffies - start), 1244 jiffies_to_msecs(timeout), 1245 opcode); 1246 1247 spin_lock_bh(&pf->aq_wait_lock); 1248 hlist_del(&task->entry); 1249 spin_unlock_bh(&pf->aq_wait_lock); 1250 kfree(task); 1251 1252 return err; 1253 } 1254 1255 /** 1256 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1257 * @pf: pointer to the PF private structure 1258 * @opcode: the opcode of the event 1259 * @event: the event to check 1260 * 1261 * Loops over the current list of pending threads waiting for an AdminQ event. 1262 * For each matching task, copy the contents of the event into the task 1263 * structure and wake up the thread. 1264 * 1265 * If multiple threads wait for the same opcode, they will all be woken up. 1266 * 1267 * Note that event->msg_buf will only be duplicated if the event has a buffer 1268 * with enough space already allocated. Otherwise, only the descriptor and 1269 * message length will be copied. 1270 * 1271 * Returns: true if an event was found, false otherwise 1272 */ 1273 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct ice_aq_task *task; 1277 bool found = false; 1278 1279 spin_lock_bh(&pf->aq_wait_lock); 1280 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1281 if (task->state || task->opcode != opcode) 1282 continue; 1283 1284 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1285 task->event->msg_len = event->msg_len; 1286 1287 /* Only copy the data buffer if a destination was set */ 1288 if (task->event->msg_buf && 1289 task->event->buf_len > event->buf_len) { 1290 memcpy(task->event->msg_buf, event->msg_buf, 1291 event->buf_len); 1292 task->event->buf_len = event->buf_len; 1293 } 1294 1295 task->state = ICE_AQ_TASK_COMPLETE; 1296 found = true; 1297 } 1298 spin_unlock_bh(&pf->aq_wait_lock); 1299 1300 if (found) 1301 wake_up(&pf->aq_wait_queue); 1302 } 1303 1304 /** 1305 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1306 * @pf: the PF private structure 1307 * 1308 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1309 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1310 */ 1311 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1312 { 1313 struct ice_aq_task *task; 1314 1315 spin_lock_bh(&pf->aq_wait_lock); 1316 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1317 task->state = ICE_AQ_TASK_CANCELED; 1318 spin_unlock_bh(&pf->aq_wait_lock); 1319 1320 wake_up(&pf->aq_wait_queue); 1321 } 1322 1323 /** 1324 * __ice_clean_ctrlq - helper function to clean controlq rings 1325 * @pf: ptr to struct ice_pf 1326 * @q_type: specific Control queue type 1327 */ 1328 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1329 { 1330 struct device *dev = ice_pf_to_dev(pf); 1331 struct ice_rq_event_info event; 1332 struct ice_hw *hw = &pf->hw; 1333 struct ice_ctl_q_info *cq; 1334 u16 pending, i = 0; 1335 const char *qtype; 1336 u32 oldval, val; 1337 1338 /* Do not clean control queue if/when PF reset fails */ 1339 if (test_bit(ICE_RESET_FAILED, pf->state)) 1340 return 0; 1341 1342 switch (q_type) { 1343 case ICE_CTL_Q_ADMIN: 1344 cq = &hw->adminq; 1345 qtype = "Admin"; 1346 break; 1347 case ICE_CTL_Q_SB: 1348 cq = &hw->sbq; 1349 qtype = "Sideband"; 1350 break; 1351 case ICE_CTL_Q_MAILBOX: 1352 cq = &hw->mailboxq; 1353 qtype = "Mailbox"; 1354 /* we are going to try to detect a malicious VF, so set the 1355 * state to begin detection 1356 */ 1357 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1358 break; 1359 default: 1360 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1361 return 0; 1362 } 1363 1364 /* check for error indications - PF_xx_AxQLEN register layout for 1365 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1366 */ 1367 val = rd32(hw, cq->rq.len); 1368 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1369 PF_FW_ARQLEN_ARQCRIT_M)) { 1370 oldval = val; 1371 if (val & PF_FW_ARQLEN_ARQVFE_M) 1372 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1373 qtype); 1374 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1375 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1376 qtype); 1377 } 1378 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1379 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1380 qtype); 1381 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1382 PF_FW_ARQLEN_ARQCRIT_M); 1383 if (oldval != val) 1384 wr32(hw, cq->rq.len, val); 1385 } 1386 1387 val = rd32(hw, cq->sq.len); 1388 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1389 PF_FW_ATQLEN_ATQCRIT_M)) { 1390 oldval = val; 1391 if (val & PF_FW_ATQLEN_ATQVFE_M) 1392 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1393 qtype); 1394 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1395 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1396 qtype); 1397 } 1398 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1399 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1400 qtype); 1401 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1402 PF_FW_ATQLEN_ATQCRIT_M); 1403 if (oldval != val) 1404 wr32(hw, cq->sq.len, val); 1405 } 1406 1407 event.buf_len = cq->rq_buf_size; 1408 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1409 if (!event.msg_buf) 1410 return 0; 1411 1412 do { 1413 u16 opcode; 1414 int ret; 1415 1416 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1417 if (ret == -EALREADY) 1418 break; 1419 if (ret) { 1420 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1421 ret); 1422 break; 1423 } 1424 1425 opcode = le16_to_cpu(event.desc.opcode); 1426 1427 /* Notify any thread that might be waiting for this event */ 1428 ice_aq_check_events(pf, opcode, &event); 1429 1430 switch (opcode) { 1431 case ice_aqc_opc_get_link_status: 1432 if (ice_handle_link_event(pf, &event)) 1433 dev_err(dev, "Could not handle link event\n"); 1434 break; 1435 case ice_aqc_opc_event_lan_overflow: 1436 ice_vf_lan_overflow_event(pf, &event); 1437 break; 1438 case ice_mbx_opc_send_msg_to_pf: 1439 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1440 ice_vc_process_vf_msg(pf, &event); 1441 break; 1442 case ice_aqc_opc_fw_logging: 1443 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1444 break; 1445 case ice_aqc_opc_lldp_set_mib_change: 1446 ice_dcb_process_lldp_set_mib_change(pf, &event); 1447 break; 1448 default: 1449 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1450 qtype, opcode); 1451 break; 1452 } 1453 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1454 1455 kfree(event.msg_buf); 1456 1457 return pending && (i == ICE_DFLT_IRQ_WORK); 1458 } 1459 1460 /** 1461 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1462 * @hw: pointer to hardware info 1463 * @cq: control queue information 1464 * 1465 * returns true if there are pending messages in a queue, false if there aren't 1466 */ 1467 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1468 { 1469 u16 ntu; 1470 1471 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1472 return cq->rq.next_to_clean != ntu; 1473 } 1474 1475 /** 1476 * ice_clean_adminq_subtask - clean the AdminQ rings 1477 * @pf: board private structure 1478 */ 1479 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1480 { 1481 struct ice_hw *hw = &pf->hw; 1482 1483 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1484 return; 1485 1486 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1487 return; 1488 1489 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1490 1491 /* There might be a situation where new messages arrive to a control 1492 * queue between processing the last message and clearing the 1493 * EVENT_PENDING bit. So before exiting, check queue head again (using 1494 * ice_ctrlq_pending) and process new messages if any. 1495 */ 1496 if (ice_ctrlq_pending(hw, &hw->adminq)) 1497 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1498 1499 ice_flush(hw); 1500 } 1501 1502 /** 1503 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1504 * @pf: board private structure 1505 */ 1506 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1507 { 1508 struct ice_hw *hw = &pf->hw; 1509 1510 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1511 return; 1512 1513 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1514 return; 1515 1516 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1517 1518 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1519 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1520 1521 ice_flush(hw); 1522 } 1523 1524 /** 1525 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1526 * @pf: board private structure 1527 */ 1528 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1529 { 1530 struct ice_hw *hw = &pf->hw; 1531 1532 /* Nothing to do here if sideband queue is not supported */ 1533 if (!ice_is_sbq_supported(hw)) { 1534 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1535 return; 1536 } 1537 1538 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1539 return; 1540 1541 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1542 return; 1543 1544 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1545 1546 if (ice_ctrlq_pending(hw, &hw->sbq)) 1547 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1548 1549 ice_flush(hw); 1550 } 1551 1552 /** 1553 * ice_service_task_schedule - schedule the service task to wake up 1554 * @pf: board private structure 1555 * 1556 * If not already scheduled, this puts the task into the work queue. 1557 */ 1558 void ice_service_task_schedule(struct ice_pf *pf) 1559 { 1560 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1561 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1562 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1563 queue_work(ice_wq, &pf->serv_task); 1564 } 1565 1566 /** 1567 * ice_service_task_complete - finish up the service task 1568 * @pf: board private structure 1569 */ 1570 static void ice_service_task_complete(struct ice_pf *pf) 1571 { 1572 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1573 1574 /* force memory (pf->state) to sync before next service task */ 1575 smp_mb__before_atomic(); 1576 clear_bit(ICE_SERVICE_SCHED, pf->state); 1577 } 1578 1579 /** 1580 * ice_service_task_stop - stop service task and cancel works 1581 * @pf: board private structure 1582 * 1583 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1584 * 1 otherwise. 1585 */ 1586 static int ice_service_task_stop(struct ice_pf *pf) 1587 { 1588 int ret; 1589 1590 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1591 1592 if (pf->serv_tmr.function) 1593 del_timer_sync(&pf->serv_tmr); 1594 if (pf->serv_task.func) 1595 cancel_work_sync(&pf->serv_task); 1596 1597 clear_bit(ICE_SERVICE_SCHED, pf->state); 1598 return ret; 1599 } 1600 1601 /** 1602 * ice_service_task_restart - restart service task and schedule works 1603 * @pf: board private structure 1604 * 1605 * This function is needed for suspend and resume works (e.g WoL scenario) 1606 */ 1607 static void ice_service_task_restart(struct ice_pf *pf) 1608 { 1609 clear_bit(ICE_SERVICE_DIS, pf->state); 1610 ice_service_task_schedule(pf); 1611 } 1612 1613 /** 1614 * ice_service_timer - timer callback to schedule service task 1615 * @t: pointer to timer_list 1616 */ 1617 static void ice_service_timer(struct timer_list *t) 1618 { 1619 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1620 1621 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1622 ice_service_task_schedule(pf); 1623 } 1624 1625 /** 1626 * ice_handle_mdd_event - handle malicious driver detect event 1627 * @pf: pointer to the PF structure 1628 * 1629 * Called from service task. OICR interrupt handler indicates MDD event. 1630 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1631 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1632 * disable the queue, the PF can be configured to reset the VF using ethtool 1633 * private flag mdd-auto-reset-vf. 1634 */ 1635 static void ice_handle_mdd_event(struct ice_pf *pf) 1636 { 1637 struct device *dev = ice_pf_to_dev(pf); 1638 struct ice_hw *hw = &pf->hw; 1639 unsigned int i; 1640 u32 reg; 1641 1642 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1643 /* Since the VF MDD event logging is rate limited, check if 1644 * there are pending MDD events. 1645 */ 1646 ice_print_vfs_mdd_events(pf); 1647 return; 1648 } 1649 1650 /* find what triggered an MDD event */ 1651 reg = rd32(hw, GL_MDET_TX_PQM); 1652 if (reg & GL_MDET_TX_PQM_VALID_M) { 1653 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1654 GL_MDET_TX_PQM_PF_NUM_S; 1655 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1656 GL_MDET_TX_PQM_VF_NUM_S; 1657 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1658 GL_MDET_TX_PQM_MAL_TYPE_S; 1659 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1660 GL_MDET_TX_PQM_QNUM_S); 1661 1662 if (netif_msg_tx_err(pf)) 1663 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1664 event, queue, pf_num, vf_num); 1665 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1666 } 1667 1668 reg = rd32(hw, GL_MDET_TX_TCLAN); 1669 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1670 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1671 GL_MDET_TX_TCLAN_PF_NUM_S; 1672 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1673 GL_MDET_TX_TCLAN_VF_NUM_S; 1674 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1675 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1676 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1677 GL_MDET_TX_TCLAN_QNUM_S); 1678 1679 if (netif_msg_tx_err(pf)) 1680 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1681 event, queue, pf_num, vf_num); 1682 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1683 } 1684 1685 reg = rd32(hw, GL_MDET_RX); 1686 if (reg & GL_MDET_RX_VALID_M) { 1687 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1688 GL_MDET_RX_PF_NUM_S; 1689 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1690 GL_MDET_RX_VF_NUM_S; 1691 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1692 GL_MDET_RX_MAL_TYPE_S; 1693 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1694 GL_MDET_RX_QNUM_S); 1695 1696 if (netif_msg_rx_err(pf)) 1697 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1698 event, queue, pf_num, vf_num); 1699 wr32(hw, GL_MDET_RX, 0xffffffff); 1700 } 1701 1702 /* check to see if this PF caused an MDD event */ 1703 reg = rd32(hw, PF_MDET_TX_PQM); 1704 if (reg & PF_MDET_TX_PQM_VALID_M) { 1705 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1706 if (netif_msg_tx_err(pf)) 1707 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1708 } 1709 1710 reg = rd32(hw, PF_MDET_TX_TCLAN); 1711 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1712 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1713 if (netif_msg_tx_err(pf)) 1714 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1715 } 1716 1717 reg = rd32(hw, PF_MDET_RX); 1718 if (reg & PF_MDET_RX_VALID_M) { 1719 wr32(hw, PF_MDET_RX, 0xFFFF); 1720 if (netif_msg_rx_err(pf)) 1721 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1722 } 1723 1724 /* Check to see if one of the VFs caused an MDD event, and then 1725 * increment counters and set print pending 1726 */ 1727 ice_for_each_vf(pf, i) { 1728 struct ice_vf *vf = &pf->vf[i]; 1729 1730 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1731 if (reg & VP_MDET_TX_PQM_VALID_M) { 1732 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1733 vf->mdd_tx_events.count++; 1734 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1735 if (netif_msg_tx_err(pf)) 1736 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1737 i); 1738 } 1739 1740 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1741 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1742 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1743 vf->mdd_tx_events.count++; 1744 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1745 if (netif_msg_tx_err(pf)) 1746 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1747 i); 1748 } 1749 1750 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1751 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1752 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1753 vf->mdd_tx_events.count++; 1754 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1755 if (netif_msg_tx_err(pf)) 1756 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1757 i); 1758 } 1759 1760 reg = rd32(hw, VP_MDET_RX(i)); 1761 if (reg & VP_MDET_RX_VALID_M) { 1762 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1763 vf->mdd_rx_events.count++; 1764 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1765 if (netif_msg_rx_err(pf)) 1766 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1767 i); 1768 1769 /* Since the queue is disabled on VF Rx MDD events, the 1770 * PF can be configured to reset the VF through ethtool 1771 * private flag mdd-auto-reset-vf. 1772 */ 1773 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1774 /* VF MDD event counters will be cleared by 1775 * reset, so print the event prior to reset. 1776 */ 1777 ice_print_vf_rx_mdd_event(vf); 1778 ice_reset_vf(&pf->vf[i], false); 1779 } 1780 } 1781 } 1782 1783 ice_print_vfs_mdd_events(pf); 1784 } 1785 1786 /** 1787 * ice_force_phys_link_state - Force the physical link state 1788 * @vsi: VSI to force the physical link state to up/down 1789 * @link_up: true/false indicates to set the physical link to up/down 1790 * 1791 * Force the physical link state by getting the current PHY capabilities from 1792 * hardware and setting the PHY config based on the determined capabilities. If 1793 * link changes a link event will be triggered because both the Enable Automatic 1794 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1795 * 1796 * Returns 0 on success, negative on failure 1797 */ 1798 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1799 { 1800 struct ice_aqc_get_phy_caps_data *pcaps; 1801 struct ice_aqc_set_phy_cfg_data *cfg; 1802 struct ice_port_info *pi; 1803 struct device *dev; 1804 int retcode; 1805 1806 if (!vsi || !vsi->port_info || !vsi->back) 1807 return -EINVAL; 1808 if (vsi->type != ICE_VSI_PF) 1809 return 0; 1810 1811 dev = ice_pf_to_dev(vsi->back); 1812 1813 pi = vsi->port_info; 1814 1815 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1816 if (!pcaps) 1817 return -ENOMEM; 1818 1819 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1820 NULL); 1821 if (retcode) { 1822 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1823 vsi->vsi_num, retcode); 1824 retcode = -EIO; 1825 goto out; 1826 } 1827 1828 /* No change in link */ 1829 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1830 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1831 goto out; 1832 1833 /* Use the current user PHY configuration. The current user PHY 1834 * configuration is initialized during probe from PHY capabilities 1835 * software mode, and updated on set PHY configuration. 1836 */ 1837 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1838 if (!cfg) { 1839 retcode = -ENOMEM; 1840 goto out; 1841 } 1842 1843 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1844 if (link_up) 1845 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1846 else 1847 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1848 1849 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1850 if (retcode) { 1851 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1852 vsi->vsi_num, retcode); 1853 retcode = -EIO; 1854 } 1855 1856 kfree(cfg); 1857 out: 1858 kfree(pcaps); 1859 return retcode; 1860 } 1861 1862 /** 1863 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1864 * @pi: port info structure 1865 * 1866 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1867 */ 1868 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1869 { 1870 struct ice_aqc_get_phy_caps_data *pcaps; 1871 struct ice_pf *pf = pi->hw->back; 1872 int err; 1873 1874 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1875 if (!pcaps) 1876 return -ENOMEM; 1877 1878 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1879 pcaps, NULL); 1880 1881 if (err) { 1882 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1883 goto out; 1884 } 1885 1886 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1887 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1888 1889 out: 1890 kfree(pcaps); 1891 return err; 1892 } 1893 1894 /** 1895 * ice_init_link_dflt_override - Initialize link default override 1896 * @pi: port info structure 1897 * 1898 * Initialize link default override and PHY total port shutdown during probe 1899 */ 1900 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1901 { 1902 struct ice_link_default_override_tlv *ldo; 1903 struct ice_pf *pf = pi->hw->back; 1904 1905 ldo = &pf->link_dflt_override; 1906 if (ice_get_link_default_override(ldo, pi)) 1907 return; 1908 1909 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1910 return; 1911 1912 /* Enable Total Port Shutdown (override/replace link-down-on-close 1913 * ethtool private flag) for ports with Port Disable bit set. 1914 */ 1915 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1916 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1917 } 1918 1919 /** 1920 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1921 * @pi: port info structure 1922 * 1923 * If default override is enabled, initialize the user PHY cfg speed and FEC 1924 * settings using the default override mask from the NVM. 1925 * 1926 * The PHY should only be configured with the default override settings the 1927 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1928 * is used to indicate that the user PHY cfg default override is initialized 1929 * and the PHY has not been configured with the default override settings. The 1930 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1931 * configured. 1932 * 1933 * This function should be called only if the FW doesn't support default 1934 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1935 */ 1936 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1937 { 1938 struct ice_link_default_override_tlv *ldo; 1939 struct ice_aqc_set_phy_cfg_data *cfg; 1940 struct ice_phy_info *phy = &pi->phy; 1941 struct ice_pf *pf = pi->hw->back; 1942 1943 ldo = &pf->link_dflt_override; 1944 1945 /* If link default override is enabled, use to mask NVM PHY capabilities 1946 * for speed and FEC default configuration. 1947 */ 1948 cfg = &phy->curr_user_phy_cfg; 1949 1950 if (ldo->phy_type_low || ldo->phy_type_high) { 1951 cfg->phy_type_low = pf->nvm_phy_type_lo & 1952 cpu_to_le64(ldo->phy_type_low); 1953 cfg->phy_type_high = pf->nvm_phy_type_hi & 1954 cpu_to_le64(ldo->phy_type_high); 1955 } 1956 cfg->link_fec_opt = ldo->fec_options; 1957 phy->curr_user_fec_req = ICE_FEC_AUTO; 1958 1959 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1960 } 1961 1962 /** 1963 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1964 * @pi: port info structure 1965 * 1966 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1967 * mode to default. The PHY defaults are from get PHY capabilities topology 1968 * with media so call when media is first available. An error is returned if 1969 * called when media is not available. The PHY initialization completed state is 1970 * set here. 1971 * 1972 * These configurations are used when setting PHY 1973 * configuration. The user PHY configuration is updated on set PHY 1974 * configuration. Returns 0 on success, negative on failure 1975 */ 1976 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1977 { 1978 struct ice_aqc_get_phy_caps_data *pcaps; 1979 struct ice_phy_info *phy = &pi->phy; 1980 struct ice_pf *pf = pi->hw->back; 1981 int err; 1982 1983 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1984 return -EIO; 1985 1986 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1987 if (!pcaps) 1988 return -ENOMEM; 1989 1990 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1991 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1992 pcaps, NULL); 1993 else 1994 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1995 pcaps, NULL); 1996 if (err) { 1997 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1998 goto err_out; 1999 } 2000 2001 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2002 2003 /* check if lenient mode is supported and enabled */ 2004 if (ice_fw_supports_link_override(pi->hw) && 2005 !(pcaps->module_compliance_enforcement & 2006 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2007 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2008 2009 /* if the FW supports default PHY configuration mode, then the driver 2010 * does not have to apply link override settings. If not, 2011 * initialize user PHY configuration with link override values 2012 */ 2013 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2014 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2015 ice_init_phy_cfg_dflt_override(pi); 2016 goto out; 2017 } 2018 } 2019 2020 /* if link default override is not enabled, set user flow control and 2021 * FEC settings based on what get_phy_caps returned 2022 */ 2023 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2024 pcaps->link_fec_options); 2025 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2026 2027 out: 2028 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2029 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2030 err_out: 2031 kfree(pcaps); 2032 return err; 2033 } 2034 2035 /** 2036 * ice_configure_phy - configure PHY 2037 * @vsi: VSI of PHY 2038 * 2039 * Set the PHY configuration. If the current PHY configuration is the same as 2040 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2041 * configure the based get PHY capabilities for topology with media. 2042 */ 2043 static int ice_configure_phy(struct ice_vsi *vsi) 2044 { 2045 struct device *dev = ice_pf_to_dev(vsi->back); 2046 struct ice_port_info *pi = vsi->port_info; 2047 struct ice_aqc_get_phy_caps_data *pcaps; 2048 struct ice_aqc_set_phy_cfg_data *cfg; 2049 struct ice_phy_info *phy = &pi->phy; 2050 struct ice_pf *pf = vsi->back; 2051 int err; 2052 2053 /* Ensure we have media as we cannot configure a medialess port */ 2054 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2055 return -EPERM; 2056 2057 ice_print_topo_conflict(vsi); 2058 2059 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2060 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2061 return -EPERM; 2062 2063 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2064 return ice_force_phys_link_state(vsi, true); 2065 2066 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2067 if (!pcaps) 2068 return -ENOMEM; 2069 2070 /* Get current PHY config */ 2071 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2072 NULL); 2073 if (err) { 2074 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2075 vsi->vsi_num, err); 2076 goto done; 2077 } 2078 2079 /* If PHY enable link is configured and configuration has not changed, 2080 * there's nothing to do 2081 */ 2082 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2083 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2084 goto done; 2085 2086 /* Use PHY topology as baseline for configuration */ 2087 memset(pcaps, 0, sizeof(*pcaps)); 2088 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2089 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2090 pcaps, NULL); 2091 else 2092 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2093 pcaps, NULL); 2094 if (err) { 2095 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2096 vsi->vsi_num, err); 2097 goto done; 2098 } 2099 2100 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2101 if (!cfg) { 2102 err = -ENOMEM; 2103 goto done; 2104 } 2105 2106 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2107 2108 /* Speed - If default override pending, use curr_user_phy_cfg set in 2109 * ice_init_phy_user_cfg_ldo. 2110 */ 2111 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2112 vsi->back->state)) { 2113 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2114 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2115 } else { 2116 u64 phy_low = 0, phy_high = 0; 2117 2118 ice_update_phy_type(&phy_low, &phy_high, 2119 pi->phy.curr_user_speed_req); 2120 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2121 cfg->phy_type_high = pcaps->phy_type_high & 2122 cpu_to_le64(phy_high); 2123 } 2124 2125 /* Can't provide what was requested; use PHY capabilities */ 2126 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2127 cfg->phy_type_low = pcaps->phy_type_low; 2128 cfg->phy_type_high = pcaps->phy_type_high; 2129 } 2130 2131 /* FEC */ 2132 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2133 2134 /* Can't provide what was requested; use PHY capabilities */ 2135 if (cfg->link_fec_opt != 2136 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2137 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2138 cfg->link_fec_opt = pcaps->link_fec_options; 2139 } 2140 2141 /* Flow Control - always supported; no need to check against 2142 * capabilities 2143 */ 2144 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2145 2146 /* Enable link and link update */ 2147 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2148 2149 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2150 if (err) 2151 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2152 vsi->vsi_num, err); 2153 2154 kfree(cfg); 2155 done: 2156 kfree(pcaps); 2157 return err; 2158 } 2159 2160 /** 2161 * ice_check_media_subtask - Check for media 2162 * @pf: pointer to PF struct 2163 * 2164 * If media is available, then initialize PHY user configuration if it is not 2165 * been, and configure the PHY if the interface is up. 2166 */ 2167 static void ice_check_media_subtask(struct ice_pf *pf) 2168 { 2169 struct ice_port_info *pi; 2170 struct ice_vsi *vsi; 2171 int err; 2172 2173 /* No need to check for media if it's already present */ 2174 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2175 return; 2176 2177 vsi = ice_get_main_vsi(pf); 2178 if (!vsi) 2179 return; 2180 2181 /* Refresh link info and check if media is present */ 2182 pi = vsi->port_info; 2183 err = ice_update_link_info(pi); 2184 if (err) 2185 return; 2186 2187 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2188 2189 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2190 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2191 ice_init_phy_user_cfg(pi); 2192 2193 /* PHY settings are reset on media insertion, reconfigure 2194 * PHY to preserve settings. 2195 */ 2196 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2197 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2198 return; 2199 2200 err = ice_configure_phy(vsi); 2201 if (!err) 2202 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2203 2204 /* A Link Status Event will be generated; the event handler 2205 * will complete bringing the interface up 2206 */ 2207 } 2208 } 2209 2210 /** 2211 * ice_service_task - manage and run subtasks 2212 * @work: pointer to work_struct contained by the PF struct 2213 */ 2214 static void ice_service_task(struct work_struct *work) 2215 { 2216 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2217 unsigned long start_time = jiffies; 2218 2219 /* subtasks */ 2220 2221 /* process reset requests first */ 2222 ice_reset_subtask(pf); 2223 2224 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2225 if (ice_is_reset_in_progress(pf->state) || 2226 test_bit(ICE_SUSPENDED, pf->state) || 2227 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2228 ice_service_task_complete(pf); 2229 return; 2230 } 2231 2232 ice_clean_adminq_subtask(pf); 2233 ice_check_media_subtask(pf); 2234 ice_check_for_hang_subtask(pf); 2235 ice_sync_fltr_subtask(pf); 2236 ice_handle_mdd_event(pf); 2237 ice_watchdog_subtask(pf); 2238 2239 if (ice_is_safe_mode(pf)) { 2240 ice_service_task_complete(pf); 2241 return; 2242 } 2243 2244 ice_process_vflr_event(pf); 2245 ice_clean_mailboxq_subtask(pf); 2246 ice_clean_sbq_subtask(pf); 2247 ice_sync_arfs_fltrs(pf); 2248 ice_flush_fdir_ctx(pf); 2249 2250 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2251 ice_service_task_complete(pf); 2252 2253 /* If the tasks have taken longer than one service timer period 2254 * or there is more work to be done, reset the service timer to 2255 * schedule the service task now. 2256 */ 2257 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2258 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2259 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2260 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2261 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2262 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2263 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2264 mod_timer(&pf->serv_tmr, jiffies); 2265 } 2266 2267 /** 2268 * ice_set_ctrlq_len - helper function to set controlq length 2269 * @hw: pointer to the HW instance 2270 */ 2271 static void ice_set_ctrlq_len(struct ice_hw *hw) 2272 { 2273 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2274 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2275 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2276 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2277 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2278 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2279 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2280 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2281 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2282 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2283 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2284 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2285 } 2286 2287 /** 2288 * ice_schedule_reset - schedule a reset 2289 * @pf: board private structure 2290 * @reset: reset being requested 2291 */ 2292 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2293 { 2294 struct device *dev = ice_pf_to_dev(pf); 2295 2296 /* bail out if earlier reset has failed */ 2297 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2298 dev_dbg(dev, "earlier reset has failed\n"); 2299 return -EIO; 2300 } 2301 /* bail if reset/recovery already in progress */ 2302 if (ice_is_reset_in_progress(pf->state)) { 2303 dev_dbg(dev, "Reset already in progress\n"); 2304 return -EBUSY; 2305 } 2306 2307 ice_unplug_aux_dev(pf); 2308 2309 switch (reset) { 2310 case ICE_RESET_PFR: 2311 set_bit(ICE_PFR_REQ, pf->state); 2312 break; 2313 case ICE_RESET_CORER: 2314 set_bit(ICE_CORER_REQ, pf->state); 2315 break; 2316 case ICE_RESET_GLOBR: 2317 set_bit(ICE_GLOBR_REQ, pf->state); 2318 break; 2319 default: 2320 return -EINVAL; 2321 } 2322 2323 ice_service_task_schedule(pf); 2324 return 0; 2325 } 2326 2327 /** 2328 * ice_irq_affinity_notify - Callback for affinity changes 2329 * @notify: context as to what irq was changed 2330 * @mask: the new affinity mask 2331 * 2332 * This is a callback function used by the irq_set_affinity_notifier function 2333 * so that we may register to receive changes to the irq affinity masks. 2334 */ 2335 static void 2336 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2337 const cpumask_t *mask) 2338 { 2339 struct ice_q_vector *q_vector = 2340 container_of(notify, struct ice_q_vector, affinity_notify); 2341 2342 cpumask_copy(&q_vector->affinity_mask, mask); 2343 } 2344 2345 /** 2346 * ice_irq_affinity_release - Callback for affinity notifier release 2347 * @ref: internal core kernel usage 2348 * 2349 * This is a callback function used by the irq_set_affinity_notifier function 2350 * to inform the current notification subscriber that they will no longer 2351 * receive notifications. 2352 */ 2353 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2354 2355 /** 2356 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2357 * @vsi: the VSI being configured 2358 */ 2359 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2360 { 2361 struct ice_hw *hw = &vsi->back->hw; 2362 int i; 2363 2364 ice_for_each_q_vector(vsi, i) 2365 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2366 2367 ice_flush(hw); 2368 return 0; 2369 } 2370 2371 /** 2372 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2373 * @vsi: the VSI being configured 2374 * @basename: name for the vector 2375 */ 2376 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2377 { 2378 int q_vectors = vsi->num_q_vectors; 2379 struct ice_pf *pf = vsi->back; 2380 int base = vsi->base_vector; 2381 struct device *dev; 2382 int rx_int_idx = 0; 2383 int tx_int_idx = 0; 2384 int vector, err; 2385 int irq_num; 2386 2387 dev = ice_pf_to_dev(pf); 2388 for (vector = 0; vector < q_vectors; vector++) { 2389 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2390 2391 irq_num = pf->msix_entries[base + vector].vector; 2392 2393 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2394 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2395 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2396 tx_int_idx++; 2397 } else if (q_vector->rx.rx_ring) { 2398 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2399 "%s-%s-%d", basename, "rx", rx_int_idx++); 2400 } else if (q_vector->tx.tx_ring) { 2401 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2402 "%s-%s-%d", basename, "tx", tx_int_idx++); 2403 } else { 2404 /* skip this unused q_vector */ 2405 continue; 2406 } 2407 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2408 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2409 IRQF_SHARED, q_vector->name, 2410 q_vector); 2411 else 2412 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2413 0, q_vector->name, q_vector); 2414 if (err) { 2415 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2416 err); 2417 goto free_q_irqs; 2418 } 2419 2420 /* register for affinity change notifications */ 2421 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2422 struct irq_affinity_notify *affinity_notify; 2423 2424 affinity_notify = &q_vector->affinity_notify; 2425 affinity_notify->notify = ice_irq_affinity_notify; 2426 affinity_notify->release = ice_irq_affinity_release; 2427 irq_set_affinity_notifier(irq_num, affinity_notify); 2428 } 2429 2430 /* assign the mask for this irq */ 2431 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2432 } 2433 2434 vsi->irqs_ready = true; 2435 return 0; 2436 2437 free_q_irqs: 2438 while (vector) { 2439 vector--; 2440 irq_num = pf->msix_entries[base + vector].vector; 2441 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2442 irq_set_affinity_notifier(irq_num, NULL); 2443 irq_set_affinity_hint(irq_num, NULL); 2444 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2445 } 2446 return err; 2447 } 2448 2449 /** 2450 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2451 * @vsi: VSI to setup Tx rings used by XDP 2452 * 2453 * Return 0 on success and negative value on error 2454 */ 2455 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2456 { 2457 struct device *dev = ice_pf_to_dev(vsi->back); 2458 struct ice_tx_desc *tx_desc; 2459 int i, j; 2460 2461 ice_for_each_xdp_txq(vsi, i) { 2462 u16 xdp_q_idx = vsi->alloc_txq + i; 2463 struct ice_tx_ring *xdp_ring; 2464 2465 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2466 2467 if (!xdp_ring) 2468 goto free_xdp_rings; 2469 2470 xdp_ring->q_index = xdp_q_idx; 2471 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2472 xdp_ring->vsi = vsi; 2473 xdp_ring->netdev = NULL; 2474 xdp_ring->next_dd = ICE_TX_THRESH - 1; 2475 xdp_ring->next_rs = ICE_TX_THRESH - 1; 2476 xdp_ring->dev = dev; 2477 xdp_ring->count = vsi->num_tx_desc; 2478 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2479 if (ice_setup_tx_ring(xdp_ring)) 2480 goto free_xdp_rings; 2481 ice_set_ring_xdp(xdp_ring); 2482 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2483 spin_lock_init(&xdp_ring->tx_lock); 2484 for (j = 0; j < xdp_ring->count; j++) { 2485 tx_desc = ICE_TX_DESC(xdp_ring, j); 2486 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2487 } 2488 } 2489 2490 ice_for_each_rxq(vsi, i) { 2491 if (static_key_enabled(&ice_xdp_locking_key)) 2492 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2493 else 2494 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2495 } 2496 2497 return 0; 2498 2499 free_xdp_rings: 2500 for (; i >= 0; i--) 2501 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2502 ice_free_tx_ring(vsi->xdp_rings[i]); 2503 return -ENOMEM; 2504 } 2505 2506 /** 2507 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2508 * @vsi: VSI to set the bpf prog on 2509 * @prog: the bpf prog pointer 2510 */ 2511 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2512 { 2513 struct bpf_prog *old_prog; 2514 int i; 2515 2516 old_prog = xchg(&vsi->xdp_prog, prog); 2517 if (old_prog) 2518 bpf_prog_put(old_prog); 2519 2520 ice_for_each_rxq(vsi, i) 2521 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2522 } 2523 2524 /** 2525 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2526 * @vsi: VSI to bring up Tx rings used by XDP 2527 * @prog: bpf program that will be assigned to VSI 2528 * 2529 * Return 0 on success and negative value on error 2530 */ 2531 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2532 { 2533 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2534 int xdp_rings_rem = vsi->num_xdp_txq; 2535 struct ice_pf *pf = vsi->back; 2536 struct ice_qs_cfg xdp_qs_cfg = { 2537 .qs_mutex = &pf->avail_q_mutex, 2538 .pf_map = pf->avail_txqs, 2539 .pf_map_size = pf->max_pf_txqs, 2540 .q_count = vsi->num_xdp_txq, 2541 .scatter_count = ICE_MAX_SCATTER_TXQS, 2542 .vsi_map = vsi->txq_map, 2543 .vsi_map_offset = vsi->alloc_txq, 2544 .mapping_mode = ICE_VSI_MAP_CONTIG 2545 }; 2546 struct device *dev; 2547 int i, v_idx; 2548 int status; 2549 2550 dev = ice_pf_to_dev(pf); 2551 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2552 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2553 if (!vsi->xdp_rings) 2554 return -ENOMEM; 2555 2556 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2557 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2558 goto err_map_xdp; 2559 2560 if (static_key_enabled(&ice_xdp_locking_key)) 2561 netdev_warn(vsi->netdev, 2562 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2563 2564 if (ice_xdp_alloc_setup_rings(vsi)) 2565 goto clear_xdp_rings; 2566 2567 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2568 ice_for_each_q_vector(vsi, v_idx) { 2569 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2570 int xdp_rings_per_v, q_id, q_base; 2571 2572 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2573 vsi->num_q_vectors - v_idx); 2574 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2575 2576 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2577 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2578 2579 xdp_ring->q_vector = q_vector; 2580 xdp_ring->next = q_vector->tx.tx_ring; 2581 q_vector->tx.tx_ring = xdp_ring; 2582 } 2583 xdp_rings_rem -= xdp_rings_per_v; 2584 } 2585 2586 /* omit the scheduler update if in reset path; XDP queues will be 2587 * taken into account at the end of ice_vsi_rebuild, where 2588 * ice_cfg_vsi_lan is being called 2589 */ 2590 if (ice_is_reset_in_progress(pf->state)) 2591 return 0; 2592 2593 /* tell the Tx scheduler that right now we have 2594 * additional queues 2595 */ 2596 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2597 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2598 2599 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2600 max_txqs); 2601 if (status) { 2602 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2603 status); 2604 goto clear_xdp_rings; 2605 } 2606 2607 /* assign the prog only when it's not already present on VSI; 2608 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2609 * VSI rebuild that happens under ethtool -L can expose us to 2610 * the bpf_prog refcount issues as we would be swapping same 2611 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2612 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2613 * this is not harmful as dev_xdp_install bumps the refcount 2614 * before calling the op exposed by the driver; 2615 */ 2616 if (!ice_is_xdp_ena_vsi(vsi)) 2617 ice_vsi_assign_bpf_prog(vsi, prog); 2618 2619 return 0; 2620 clear_xdp_rings: 2621 ice_for_each_xdp_txq(vsi, i) 2622 if (vsi->xdp_rings[i]) { 2623 kfree_rcu(vsi->xdp_rings[i], rcu); 2624 vsi->xdp_rings[i] = NULL; 2625 } 2626 2627 err_map_xdp: 2628 mutex_lock(&pf->avail_q_mutex); 2629 ice_for_each_xdp_txq(vsi, i) { 2630 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2631 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2632 } 2633 mutex_unlock(&pf->avail_q_mutex); 2634 2635 devm_kfree(dev, vsi->xdp_rings); 2636 return -ENOMEM; 2637 } 2638 2639 /** 2640 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2641 * @vsi: VSI to remove XDP rings 2642 * 2643 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2644 * resources 2645 */ 2646 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2647 { 2648 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2649 struct ice_pf *pf = vsi->back; 2650 int i, v_idx; 2651 2652 /* q_vectors are freed in reset path so there's no point in detaching 2653 * rings; in case of rebuild being triggered not from reset bits 2654 * in pf->state won't be set, so additionally check first q_vector 2655 * against NULL 2656 */ 2657 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2658 goto free_qmap; 2659 2660 ice_for_each_q_vector(vsi, v_idx) { 2661 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2662 struct ice_tx_ring *ring; 2663 2664 ice_for_each_tx_ring(ring, q_vector->tx) 2665 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2666 break; 2667 2668 /* restore the value of last node prior to XDP setup */ 2669 q_vector->tx.tx_ring = ring; 2670 } 2671 2672 free_qmap: 2673 mutex_lock(&pf->avail_q_mutex); 2674 ice_for_each_xdp_txq(vsi, i) { 2675 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2676 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2677 } 2678 mutex_unlock(&pf->avail_q_mutex); 2679 2680 ice_for_each_xdp_txq(vsi, i) 2681 if (vsi->xdp_rings[i]) { 2682 if (vsi->xdp_rings[i]->desc) 2683 ice_free_tx_ring(vsi->xdp_rings[i]); 2684 kfree_rcu(vsi->xdp_rings[i], rcu); 2685 vsi->xdp_rings[i] = NULL; 2686 } 2687 2688 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2689 vsi->xdp_rings = NULL; 2690 2691 if (static_key_enabled(&ice_xdp_locking_key)) 2692 static_branch_dec(&ice_xdp_locking_key); 2693 2694 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2695 return 0; 2696 2697 ice_vsi_assign_bpf_prog(vsi, NULL); 2698 2699 /* notify Tx scheduler that we destroyed XDP queues and bring 2700 * back the old number of child nodes 2701 */ 2702 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2703 max_txqs[i] = vsi->num_txq; 2704 2705 /* change number of XDP Tx queues to 0 */ 2706 vsi->num_xdp_txq = 0; 2707 2708 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2709 max_txqs); 2710 } 2711 2712 /** 2713 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2714 * @vsi: VSI to schedule napi on 2715 */ 2716 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2717 { 2718 int i; 2719 2720 ice_for_each_rxq(vsi, i) { 2721 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2722 2723 if (rx_ring->xsk_pool) 2724 napi_schedule(&rx_ring->q_vector->napi); 2725 } 2726 } 2727 2728 /** 2729 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2730 * @vsi: VSI to determine the count of XDP Tx qs 2731 * 2732 * returns 0 if Tx qs count is higher than at least half of CPU count, 2733 * -ENOMEM otherwise 2734 */ 2735 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2736 { 2737 u16 avail = ice_get_avail_txq_count(vsi->back); 2738 u16 cpus = num_possible_cpus(); 2739 2740 if (avail < cpus / 2) 2741 return -ENOMEM; 2742 2743 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2744 2745 if (vsi->num_xdp_txq < cpus) 2746 static_branch_inc(&ice_xdp_locking_key); 2747 2748 return 0; 2749 } 2750 2751 /** 2752 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2753 * @vsi: VSI to setup XDP for 2754 * @prog: XDP program 2755 * @extack: netlink extended ack 2756 */ 2757 static int 2758 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2759 struct netlink_ext_ack *extack) 2760 { 2761 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2762 bool if_running = netif_running(vsi->netdev); 2763 int ret = 0, xdp_ring_err = 0; 2764 2765 if (frame_size > vsi->rx_buf_len) { 2766 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2767 return -EOPNOTSUPP; 2768 } 2769 2770 /* need to stop netdev while setting up the program for Rx rings */ 2771 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2772 ret = ice_down(vsi); 2773 if (ret) { 2774 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2775 return ret; 2776 } 2777 } 2778 2779 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2780 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2781 if (xdp_ring_err) { 2782 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2783 } else { 2784 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2785 if (xdp_ring_err) 2786 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2787 } 2788 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2789 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2790 if (xdp_ring_err) 2791 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2792 } else { 2793 /* safe to call even when prog == vsi->xdp_prog as 2794 * dev_xdp_install in net/core/dev.c incremented prog's 2795 * refcount so corresponding bpf_prog_put won't cause 2796 * underflow 2797 */ 2798 ice_vsi_assign_bpf_prog(vsi, prog); 2799 } 2800 2801 if (if_running) 2802 ret = ice_up(vsi); 2803 2804 if (!ret && prog) 2805 ice_vsi_rx_napi_schedule(vsi); 2806 2807 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2808 } 2809 2810 /** 2811 * ice_xdp_safe_mode - XDP handler for safe mode 2812 * @dev: netdevice 2813 * @xdp: XDP command 2814 */ 2815 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2816 struct netdev_bpf *xdp) 2817 { 2818 NL_SET_ERR_MSG_MOD(xdp->extack, 2819 "Please provide working DDP firmware package in order to use XDP\n" 2820 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2821 return -EOPNOTSUPP; 2822 } 2823 2824 /** 2825 * ice_xdp - implements XDP handler 2826 * @dev: netdevice 2827 * @xdp: XDP command 2828 */ 2829 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2830 { 2831 struct ice_netdev_priv *np = netdev_priv(dev); 2832 struct ice_vsi *vsi = np->vsi; 2833 2834 if (vsi->type != ICE_VSI_PF) { 2835 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2836 return -EINVAL; 2837 } 2838 2839 switch (xdp->command) { 2840 case XDP_SETUP_PROG: 2841 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2842 case XDP_SETUP_XSK_POOL: 2843 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2844 xdp->xsk.queue_id); 2845 default: 2846 return -EINVAL; 2847 } 2848 } 2849 2850 /** 2851 * ice_ena_misc_vector - enable the non-queue interrupts 2852 * @pf: board private structure 2853 */ 2854 static void ice_ena_misc_vector(struct ice_pf *pf) 2855 { 2856 struct ice_hw *hw = &pf->hw; 2857 u32 val; 2858 2859 /* Disable anti-spoof detection interrupt to prevent spurious event 2860 * interrupts during a function reset. Anti-spoof functionally is 2861 * still supported. 2862 */ 2863 val = rd32(hw, GL_MDCK_TX_TDPU); 2864 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2865 wr32(hw, GL_MDCK_TX_TDPU, val); 2866 2867 /* clear things first */ 2868 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2869 rd32(hw, PFINT_OICR); /* read to clear */ 2870 2871 val = (PFINT_OICR_ECC_ERR_M | 2872 PFINT_OICR_MAL_DETECT_M | 2873 PFINT_OICR_GRST_M | 2874 PFINT_OICR_PCI_EXCEPTION_M | 2875 PFINT_OICR_VFLR_M | 2876 PFINT_OICR_HMC_ERR_M | 2877 PFINT_OICR_PE_PUSH_M | 2878 PFINT_OICR_PE_CRITERR_M); 2879 2880 wr32(hw, PFINT_OICR_ENA, val); 2881 2882 /* SW_ITR_IDX = 0, but don't change INTENA */ 2883 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2884 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2885 } 2886 2887 /** 2888 * ice_misc_intr - misc interrupt handler 2889 * @irq: interrupt number 2890 * @data: pointer to a q_vector 2891 */ 2892 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2893 { 2894 struct ice_pf *pf = (struct ice_pf *)data; 2895 struct ice_hw *hw = &pf->hw; 2896 irqreturn_t ret = IRQ_NONE; 2897 struct device *dev; 2898 u32 oicr, ena_mask; 2899 2900 dev = ice_pf_to_dev(pf); 2901 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2902 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2903 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2904 2905 oicr = rd32(hw, PFINT_OICR); 2906 ena_mask = rd32(hw, PFINT_OICR_ENA); 2907 2908 if (oicr & PFINT_OICR_SWINT_M) { 2909 ena_mask &= ~PFINT_OICR_SWINT_M; 2910 pf->sw_int_count++; 2911 } 2912 2913 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2914 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2915 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2916 } 2917 if (oicr & PFINT_OICR_VFLR_M) { 2918 /* disable any further VFLR event notifications */ 2919 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2920 u32 reg = rd32(hw, PFINT_OICR_ENA); 2921 2922 reg &= ~PFINT_OICR_VFLR_M; 2923 wr32(hw, PFINT_OICR_ENA, reg); 2924 } else { 2925 ena_mask &= ~PFINT_OICR_VFLR_M; 2926 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2927 } 2928 } 2929 2930 if (oicr & PFINT_OICR_GRST_M) { 2931 u32 reset; 2932 2933 /* we have a reset warning */ 2934 ena_mask &= ~PFINT_OICR_GRST_M; 2935 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2936 GLGEN_RSTAT_RESET_TYPE_S; 2937 2938 if (reset == ICE_RESET_CORER) 2939 pf->corer_count++; 2940 else if (reset == ICE_RESET_GLOBR) 2941 pf->globr_count++; 2942 else if (reset == ICE_RESET_EMPR) 2943 pf->empr_count++; 2944 else 2945 dev_dbg(dev, "Invalid reset type %d\n", reset); 2946 2947 /* If a reset cycle isn't already in progress, we set a bit in 2948 * pf->state so that the service task can start a reset/rebuild. 2949 */ 2950 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2951 if (reset == ICE_RESET_CORER) 2952 set_bit(ICE_CORER_RECV, pf->state); 2953 else if (reset == ICE_RESET_GLOBR) 2954 set_bit(ICE_GLOBR_RECV, pf->state); 2955 else 2956 set_bit(ICE_EMPR_RECV, pf->state); 2957 2958 /* There are couple of different bits at play here. 2959 * hw->reset_ongoing indicates whether the hardware is 2960 * in reset. This is set to true when a reset interrupt 2961 * is received and set back to false after the driver 2962 * has determined that the hardware is out of reset. 2963 * 2964 * ICE_RESET_OICR_RECV in pf->state indicates 2965 * that a post reset rebuild is required before the 2966 * driver is operational again. This is set above. 2967 * 2968 * As this is the start of the reset/rebuild cycle, set 2969 * both to indicate that. 2970 */ 2971 hw->reset_ongoing = true; 2972 } 2973 } 2974 2975 if (oicr & PFINT_OICR_TSYN_TX_M) { 2976 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 2977 ice_ptp_process_ts(pf); 2978 } 2979 2980 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 2981 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2982 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 2983 2984 /* Save EVENTs from GTSYN register */ 2985 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 2986 GLTSYN_STAT_EVENT1_M | 2987 GLTSYN_STAT_EVENT2_M); 2988 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 2989 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 2990 } 2991 2992 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2993 if (oicr & ICE_AUX_CRIT_ERR) { 2994 struct iidc_event *event; 2995 2996 ena_mask &= ~ICE_AUX_CRIT_ERR; 2997 event = kzalloc(sizeof(*event), GFP_KERNEL); 2998 if (event) { 2999 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3000 /* report the entire OICR value to AUX driver */ 3001 event->reg = oicr; 3002 ice_send_event_to_aux(pf, event); 3003 kfree(event); 3004 } 3005 } 3006 3007 /* Report any remaining unexpected interrupts */ 3008 oicr &= ena_mask; 3009 if (oicr) { 3010 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3011 /* If a critical error is pending there is no choice but to 3012 * reset the device. 3013 */ 3014 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3015 PFINT_OICR_ECC_ERR_M)) { 3016 set_bit(ICE_PFR_REQ, pf->state); 3017 ice_service_task_schedule(pf); 3018 } 3019 } 3020 ret = IRQ_HANDLED; 3021 3022 ice_service_task_schedule(pf); 3023 ice_irq_dynamic_ena(hw, NULL, NULL); 3024 3025 return ret; 3026 } 3027 3028 /** 3029 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3030 * @hw: pointer to HW structure 3031 */ 3032 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3033 { 3034 /* disable Admin queue Interrupt causes */ 3035 wr32(hw, PFINT_FW_CTL, 3036 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3037 3038 /* disable Mailbox queue Interrupt causes */ 3039 wr32(hw, PFINT_MBX_CTL, 3040 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3041 3042 wr32(hw, PFINT_SB_CTL, 3043 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3044 3045 /* disable Control queue Interrupt causes */ 3046 wr32(hw, PFINT_OICR_CTL, 3047 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3048 3049 ice_flush(hw); 3050 } 3051 3052 /** 3053 * ice_free_irq_msix_misc - Unroll misc vector setup 3054 * @pf: board private structure 3055 */ 3056 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3057 { 3058 struct ice_hw *hw = &pf->hw; 3059 3060 ice_dis_ctrlq_interrupts(hw); 3061 3062 /* disable OICR interrupt */ 3063 wr32(hw, PFINT_OICR_ENA, 0); 3064 ice_flush(hw); 3065 3066 if (pf->msix_entries) { 3067 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3068 devm_free_irq(ice_pf_to_dev(pf), 3069 pf->msix_entries[pf->oicr_idx].vector, pf); 3070 } 3071 3072 pf->num_avail_sw_msix += 1; 3073 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3074 } 3075 3076 /** 3077 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3078 * @hw: pointer to HW structure 3079 * @reg_idx: HW vector index to associate the control queue interrupts with 3080 */ 3081 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3082 { 3083 u32 val; 3084 3085 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3086 PFINT_OICR_CTL_CAUSE_ENA_M); 3087 wr32(hw, PFINT_OICR_CTL, val); 3088 3089 /* enable Admin queue Interrupt causes */ 3090 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3091 PFINT_FW_CTL_CAUSE_ENA_M); 3092 wr32(hw, PFINT_FW_CTL, val); 3093 3094 /* enable Mailbox queue Interrupt causes */ 3095 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3096 PFINT_MBX_CTL_CAUSE_ENA_M); 3097 wr32(hw, PFINT_MBX_CTL, val); 3098 3099 /* This enables Sideband queue Interrupt causes */ 3100 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3101 PFINT_SB_CTL_CAUSE_ENA_M); 3102 wr32(hw, PFINT_SB_CTL, val); 3103 3104 ice_flush(hw); 3105 } 3106 3107 /** 3108 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3109 * @pf: board private structure 3110 * 3111 * This sets up the handler for MSIX 0, which is used to manage the 3112 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3113 * when in MSI or Legacy interrupt mode. 3114 */ 3115 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3116 { 3117 struct device *dev = ice_pf_to_dev(pf); 3118 struct ice_hw *hw = &pf->hw; 3119 int oicr_idx, err = 0; 3120 3121 if (!pf->int_name[0]) 3122 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3123 dev_driver_string(dev), dev_name(dev)); 3124 3125 /* Do not request IRQ but do enable OICR interrupt since settings are 3126 * lost during reset. Note that this function is called only during 3127 * rebuild path and not while reset is in progress. 3128 */ 3129 if (ice_is_reset_in_progress(pf->state)) 3130 goto skip_req_irq; 3131 3132 /* reserve one vector in irq_tracker for misc interrupts */ 3133 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3134 if (oicr_idx < 0) 3135 return oicr_idx; 3136 3137 pf->num_avail_sw_msix -= 1; 3138 pf->oicr_idx = (u16)oicr_idx; 3139 3140 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3141 ice_misc_intr, 0, pf->int_name, pf); 3142 if (err) { 3143 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3144 pf->int_name, err); 3145 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3146 pf->num_avail_sw_msix += 1; 3147 return err; 3148 } 3149 3150 skip_req_irq: 3151 ice_ena_misc_vector(pf); 3152 3153 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3154 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3155 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3156 3157 ice_flush(hw); 3158 ice_irq_dynamic_ena(hw, NULL, NULL); 3159 3160 return 0; 3161 } 3162 3163 /** 3164 * ice_napi_add - register NAPI handler for the VSI 3165 * @vsi: VSI for which NAPI handler is to be registered 3166 * 3167 * This function is only called in the driver's load path. Registering the NAPI 3168 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3169 * reset/rebuild, etc.) 3170 */ 3171 static void ice_napi_add(struct ice_vsi *vsi) 3172 { 3173 int v_idx; 3174 3175 if (!vsi->netdev) 3176 return; 3177 3178 ice_for_each_q_vector(vsi, v_idx) 3179 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3180 ice_napi_poll, NAPI_POLL_WEIGHT); 3181 } 3182 3183 /** 3184 * ice_set_ops - set netdev and ethtools ops for the given netdev 3185 * @netdev: netdev instance 3186 */ 3187 static void ice_set_ops(struct net_device *netdev) 3188 { 3189 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3190 3191 if (ice_is_safe_mode(pf)) { 3192 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3193 ice_set_ethtool_safe_mode_ops(netdev); 3194 return; 3195 } 3196 3197 netdev->netdev_ops = &ice_netdev_ops; 3198 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3199 ice_set_ethtool_ops(netdev); 3200 } 3201 3202 /** 3203 * ice_set_netdev_features - set features for the given netdev 3204 * @netdev: netdev instance 3205 */ 3206 static void ice_set_netdev_features(struct net_device *netdev) 3207 { 3208 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3209 netdev_features_t csumo_features; 3210 netdev_features_t vlano_features; 3211 netdev_features_t dflt_features; 3212 netdev_features_t tso_features; 3213 3214 if (ice_is_safe_mode(pf)) { 3215 /* safe mode */ 3216 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3217 netdev->hw_features = netdev->features; 3218 return; 3219 } 3220 3221 dflt_features = NETIF_F_SG | 3222 NETIF_F_HIGHDMA | 3223 NETIF_F_NTUPLE | 3224 NETIF_F_RXHASH; 3225 3226 csumo_features = NETIF_F_RXCSUM | 3227 NETIF_F_IP_CSUM | 3228 NETIF_F_SCTP_CRC | 3229 NETIF_F_IPV6_CSUM; 3230 3231 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3232 NETIF_F_HW_VLAN_CTAG_TX | 3233 NETIF_F_HW_VLAN_CTAG_RX; 3234 3235 tso_features = NETIF_F_TSO | 3236 NETIF_F_TSO_ECN | 3237 NETIF_F_TSO6 | 3238 NETIF_F_GSO_GRE | 3239 NETIF_F_GSO_UDP_TUNNEL | 3240 NETIF_F_GSO_GRE_CSUM | 3241 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3242 NETIF_F_GSO_PARTIAL | 3243 NETIF_F_GSO_IPXIP4 | 3244 NETIF_F_GSO_IPXIP6 | 3245 NETIF_F_GSO_UDP_L4; 3246 3247 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3248 NETIF_F_GSO_GRE_CSUM; 3249 /* set features that user can change */ 3250 netdev->hw_features = dflt_features | csumo_features | 3251 vlano_features | tso_features; 3252 3253 /* add support for HW_CSUM on packets with MPLS header */ 3254 netdev->mpls_features = NETIF_F_HW_CSUM; 3255 3256 /* enable features */ 3257 netdev->features |= netdev->hw_features; 3258 3259 netdev->hw_features |= NETIF_F_HW_TC; 3260 3261 /* encap and VLAN devices inherit default, csumo and tso features */ 3262 netdev->hw_enc_features |= dflt_features | csumo_features | 3263 tso_features; 3264 netdev->vlan_features |= dflt_features | csumo_features | 3265 tso_features; 3266 } 3267 3268 /** 3269 * ice_cfg_netdev - Allocate, configure and register a netdev 3270 * @vsi: the VSI associated with the new netdev 3271 * 3272 * Returns 0 on success, negative value on failure 3273 */ 3274 static int ice_cfg_netdev(struct ice_vsi *vsi) 3275 { 3276 struct ice_netdev_priv *np; 3277 struct net_device *netdev; 3278 u8 mac_addr[ETH_ALEN]; 3279 3280 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3281 vsi->alloc_rxq); 3282 if (!netdev) 3283 return -ENOMEM; 3284 3285 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3286 vsi->netdev = netdev; 3287 np = netdev_priv(netdev); 3288 np->vsi = vsi; 3289 3290 ice_set_netdev_features(netdev); 3291 3292 ice_set_ops(netdev); 3293 3294 if (vsi->type == ICE_VSI_PF) { 3295 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3296 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3297 eth_hw_addr_set(netdev, mac_addr); 3298 ether_addr_copy(netdev->perm_addr, mac_addr); 3299 } 3300 3301 netdev->priv_flags |= IFF_UNICAST_FLT; 3302 3303 /* Setup netdev TC information */ 3304 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3305 3306 /* setup watchdog timeout value to be 5 second */ 3307 netdev->watchdog_timeo = 5 * HZ; 3308 3309 netdev->min_mtu = ETH_MIN_MTU; 3310 netdev->max_mtu = ICE_MAX_MTU; 3311 3312 return 0; 3313 } 3314 3315 /** 3316 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3317 * @lut: Lookup table 3318 * @rss_table_size: Lookup table size 3319 * @rss_size: Range of queue number for hashing 3320 */ 3321 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3322 { 3323 u16 i; 3324 3325 for (i = 0; i < rss_table_size; i++) 3326 lut[i] = i % rss_size; 3327 } 3328 3329 /** 3330 * ice_pf_vsi_setup - Set up a PF VSI 3331 * @pf: board private structure 3332 * @pi: pointer to the port_info instance 3333 * 3334 * Returns pointer to the successfully allocated VSI software struct 3335 * on success, otherwise returns NULL on failure. 3336 */ 3337 static struct ice_vsi * 3338 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3339 { 3340 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3341 } 3342 3343 static struct ice_vsi * 3344 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3345 struct ice_channel *ch) 3346 { 3347 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3348 } 3349 3350 /** 3351 * ice_ctrl_vsi_setup - Set up a control VSI 3352 * @pf: board private structure 3353 * @pi: pointer to the port_info instance 3354 * 3355 * Returns pointer to the successfully allocated VSI software struct 3356 * on success, otherwise returns NULL on failure. 3357 */ 3358 static struct ice_vsi * 3359 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3360 { 3361 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3362 } 3363 3364 /** 3365 * ice_lb_vsi_setup - Set up a loopback VSI 3366 * @pf: board private structure 3367 * @pi: pointer to the port_info instance 3368 * 3369 * Returns pointer to the successfully allocated VSI software struct 3370 * on success, otherwise returns NULL on failure. 3371 */ 3372 struct ice_vsi * 3373 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3374 { 3375 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3376 } 3377 3378 /** 3379 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3380 * @netdev: network interface to be adjusted 3381 * @proto: unused protocol 3382 * @vid: VLAN ID to be added 3383 * 3384 * net_device_ops implementation for adding VLAN IDs 3385 */ 3386 static int 3387 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3388 u16 vid) 3389 { 3390 struct ice_netdev_priv *np = netdev_priv(netdev); 3391 struct ice_vsi *vsi = np->vsi; 3392 int ret; 3393 3394 /* VLAN 0 is added by default during load/reset */ 3395 if (!vid) 3396 return 0; 3397 3398 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3399 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3400 ret = ice_cfg_vlan_pruning(vsi, true); 3401 if (ret) 3402 return ret; 3403 } 3404 3405 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3406 * packets aren't pruned by the device's internal switch on Rx 3407 */ 3408 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3409 if (!ret) 3410 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3411 3412 return ret; 3413 } 3414 3415 /** 3416 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3417 * @netdev: network interface to be adjusted 3418 * @proto: unused protocol 3419 * @vid: VLAN ID to be removed 3420 * 3421 * net_device_ops implementation for removing VLAN IDs 3422 */ 3423 static int 3424 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3425 u16 vid) 3426 { 3427 struct ice_netdev_priv *np = netdev_priv(netdev); 3428 struct ice_vsi *vsi = np->vsi; 3429 int ret; 3430 3431 /* don't allow removal of VLAN 0 */ 3432 if (!vid) 3433 return 0; 3434 3435 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3436 * information 3437 */ 3438 ret = ice_vsi_kill_vlan(vsi, vid); 3439 if (ret) 3440 return ret; 3441 3442 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3443 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3444 ret = ice_cfg_vlan_pruning(vsi, false); 3445 3446 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3447 return ret; 3448 } 3449 3450 /** 3451 * ice_rep_indr_tc_block_unbind 3452 * @cb_priv: indirection block private data 3453 */ 3454 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3455 { 3456 struct ice_indr_block_priv *indr_priv = cb_priv; 3457 3458 list_del(&indr_priv->list); 3459 kfree(indr_priv); 3460 } 3461 3462 /** 3463 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3464 * @vsi: VSI struct which has the netdev 3465 */ 3466 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3467 { 3468 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3469 3470 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3471 ice_rep_indr_tc_block_unbind); 3472 } 3473 3474 /** 3475 * ice_tc_indir_block_remove - clean indirect TC block notifications 3476 * @pf: PF structure 3477 */ 3478 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3479 { 3480 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3481 3482 if (!pf_vsi) 3483 return; 3484 3485 ice_tc_indir_block_unregister(pf_vsi); 3486 } 3487 3488 /** 3489 * ice_tc_indir_block_register - Register TC indirect block notifications 3490 * @vsi: VSI struct which has the netdev 3491 * 3492 * Returns 0 on success, negative value on failure 3493 */ 3494 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3495 { 3496 struct ice_netdev_priv *np; 3497 3498 if (!vsi || !vsi->netdev) 3499 return -EINVAL; 3500 3501 np = netdev_priv(vsi->netdev); 3502 3503 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3504 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3505 } 3506 3507 /** 3508 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3509 * @pf: board private structure 3510 * 3511 * Returns 0 on success, negative value on failure 3512 */ 3513 static int ice_setup_pf_sw(struct ice_pf *pf) 3514 { 3515 struct device *dev = ice_pf_to_dev(pf); 3516 struct ice_vsi *vsi; 3517 int status; 3518 3519 if (ice_is_reset_in_progress(pf->state)) 3520 return -EBUSY; 3521 3522 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3523 if (!vsi) 3524 return -ENOMEM; 3525 3526 /* init channel list */ 3527 INIT_LIST_HEAD(&vsi->ch_list); 3528 3529 status = ice_cfg_netdev(vsi); 3530 if (status) 3531 goto unroll_vsi_setup; 3532 /* netdev has to be configured before setting frame size */ 3533 ice_vsi_cfg_frame_size(vsi); 3534 3535 /* init indirect block notifications */ 3536 status = ice_tc_indir_block_register(vsi); 3537 if (status) { 3538 dev_err(dev, "Failed to register netdev notifier\n"); 3539 goto unroll_cfg_netdev; 3540 } 3541 3542 /* Setup DCB netlink interface */ 3543 ice_dcbnl_setup(vsi); 3544 3545 /* registering the NAPI handler requires both the queues and 3546 * netdev to be created, which are done in ice_pf_vsi_setup() 3547 * and ice_cfg_netdev() respectively 3548 */ 3549 ice_napi_add(vsi); 3550 3551 status = ice_set_cpu_rx_rmap(vsi); 3552 if (status) { 3553 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3554 vsi->vsi_num, status); 3555 goto unroll_napi_add; 3556 } 3557 status = ice_init_mac_fltr(pf); 3558 if (status) 3559 goto free_cpu_rx_map; 3560 3561 return 0; 3562 3563 free_cpu_rx_map: 3564 ice_free_cpu_rx_rmap(vsi); 3565 unroll_napi_add: 3566 ice_tc_indir_block_unregister(vsi); 3567 unroll_cfg_netdev: 3568 if (vsi) { 3569 ice_napi_del(vsi); 3570 if (vsi->netdev) { 3571 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3572 free_netdev(vsi->netdev); 3573 vsi->netdev = NULL; 3574 } 3575 } 3576 3577 unroll_vsi_setup: 3578 ice_vsi_release(vsi); 3579 return status; 3580 } 3581 3582 /** 3583 * ice_get_avail_q_count - Get count of queues in use 3584 * @pf_qmap: bitmap to get queue use count from 3585 * @lock: pointer to a mutex that protects access to pf_qmap 3586 * @size: size of the bitmap 3587 */ 3588 static u16 3589 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3590 { 3591 unsigned long bit; 3592 u16 count = 0; 3593 3594 mutex_lock(lock); 3595 for_each_clear_bit(bit, pf_qmap, size) 3596 count++; 3597 mutex_unlock(lock); 3598 3599 return count; 3600 } 3601 3602 /** 3603 * ice_get_avail_txq_count - Get count of Tx queues in use 3604 * @pf: pointer to an ice_pf instance 3605 */ 3606 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3607 { 3608 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3609 pf->max_pf_txqs); 3610 } 3611 3612 /** 3613 * ice_get_avail_rxq_count - Get count of Rx queues in use 3614 * @pf: pointer to an ice_pf instance 3615 */ 3616 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3617 { 3618 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3619 pf->max_pf_rxqs); 3620 } 3621 3622 /** 3623 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3624 * @pf: board private structure to initialize 3625 */ 3626 static void ice_deinit_pf(struct ice_pf *pf) 3627 { 3628 ice_service_task_stop(pf); 3629 mutex_destroy(&pf->sw_mutex); 3630 mutex_destroy(&pf->tc_mutex); 3631 mutex_destroy(&pf->avail_q_mutex); 3632 3633 if (pf->avail_txqs) { 3634 bitmap_free(pf->avail_txqs); 3635 pf->avail_txqs = NULL; 3636 } 3637 3638 if (pf->avail_rxqs) { 3639 bitmap_free(pf->avail_rxqs); 3640 pf->avail_rxqs = NULL; 3641 } 3642 3643 if (pf->ptp.clock) 3644 ptp_clock_unregister(pf->ptp.clock); 3645 } 3646 3647 /** 3648 * ice_set_pf_caps - set PFs capability flags 3649 * @pf: pointer to the PF instance 3650 */ 3651 static void ice_set_pf_caps(struct ice_pf *pf) 3652 { 3653 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3654 3655 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3656 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3657 if (func_caps->common_cap.rdma) { 3658 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3659 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3660 } 3661 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3662 if (func_caps->common_cap.dcb) 3663 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3664 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3665 if (func_caps->common_cap.sr_iov_1_1) { 3666 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3667 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3668 ICE_MAX_VF_COUNT); 3669 } 3670 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3671 if (func_caps->common_cap.rss_table_size) 3672 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3673 3674 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3675 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3676 u16 unused; 3677 3678 /* ctrl_vsi_idx will be set to a valid value when flow director 3679 * is setup by ice_init_fdir 3680 */ 3681 pf->ctrl_vsi_idx = ICE_NO_VSI; 3682 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3683 /* force guaranteed filter pool for PF */ 3684 ice_alloc_fd_guar_item(&pf->hw, &unused, 3685 func_caps->fd_fltr_guar); 3686 /* force shared filter pool for PF */ 3687 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3688 func_caps->fd_fltr_best_effort); 3689 } 3690 3691 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3692 if (func_caps->common_cap.ieee_1588) 3693 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3694 3695 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3696 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3697 } 3698 3699 /** 3700 * ice_init_pf - Initialize general software structures (struct ice_pf) 3701 * @pf: board private structure to initialize 3702 */ 3703 static int ice_init_pf(struct ice_pf *pf) 3704 { 3705 ice_set_pf_caps(pf); 3706 3707 mutex_init(&pf->sw_mutex); 3708 mutex_init(&pf->tc_mutex); 3709 3710 INIT_HLIST_HEAD(&pf->aq_wait_list); 3711 spin_lock_init(&pf->aq_wait_lock); 3712 init_waitqueue_head(&pf->aq_wait_queue); 3713 3714 init_waitqueue_head(&pf->reset_wait_queue); 3715 3716 /* setup service timer and periodic service task */ 3717 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3718 pf->serv_tmr_period = HZ; 3719 INIT_WORK(&pf->serv_task, ice_service_task); 3720 clear_bit(ICE_SERVICE_SCHED, pf->state); 3721 3722 mutex_init(&pf->avail_q_mutex); 3723 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3724 if (!pf->avail_txqs) 3725 return -ENOMEM; 3726 3727 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3728 if (!pf->avail_rxqs) { 3729 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3730 pf->avail_txqs = NULL; 3731 return -ENOMEM; 3732 } 3733 3734 return 0; 3735 } 3736 3737 /** 3738 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3739 * @pf: board private structure 3740 * 3741 * compute the number of MSIX vectors required (v_budget) and request from 3742 * the OS. Return the number of vectors reserved or negative on failure 3743 */ 3744 static int ice_ena_msix_range(struct ice_pf *pf) 3745 { 3746 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3747 struct device *dev = ice_pf_to_dev(pf); 3748 int needed, err, i; 3749 3750 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3751 num_cpus = num_online_cpus(); 3752 3753 /* reserve for LAN miscellaneous handler */ 3754 needed = ICE_MIN_LAN_OICR_MSIX; 3755 if (v_left < needed) 3756 goto no_hw_vecs_left_err; 3757 v_budget += needed; 3758 v_left -= needed; 3759 3760 /* reserve for flow director */ 3761 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3762 needed = ICE_FDIR_MSIX; 3763 if (v_left < needed) 3764 goto no_hw_vecs_left_err; 3765 v_budget += needed; 3766 v_left -= needed; 3767 } 3768 3769 /* reserve for switchdev */ 3770 needed = ICE_ESWITCH_MSIX; 3771 if (v_left < needed) 3772 goto no_hw_vecs_left_err; 3773 v_budget += needed; 3774 v_left -= needed; 3775 3776 /* total used for non-traffic vectors */ 3777 v_other = v_budget; 3778 3779 /* reserve vectors for LAN traffic */ 3780 needed = num_cpus; 3781 if (v_left < needed) 3782 goto no_hw_vecs_left_err; 3783 pf->num_lan_msix = needed; 3784 v_budget += needed; 3785 v_left -= needed; 3786 3787 /* reserve vectors for RDMA auxiliary driver */ 3788 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3789 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3790 if (v_left < needed) 3791 goto no_hw_vecs_left_err; 3792 pf->num_rdma_msix = needed; 3793 v_budget += needed; 3794 v_left -= needed; 3795 } 3796 3797 pf->msix_entries = devm_kcalloc(dev, v_budget, 3798 sizeof(*pf->msix_entries), GFP_KERNEL); 3799 if (!pf->msix_entries) { 3800 err = -ENOMEM; 3801 goto exit_err; 3802 } 3803 3804 for (i = 0; i < v_budget; i++) 3805 pf->msix_entries[i].entry = i; 3806 3807 /* actually reserve the vectors */ 3808 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3809 ICE_MIN_MSIX, v_budget); 3810 if (v_actual < 0) { 3811 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3812 err = v_actual; 3813 goto msix_err; 3814 } 3815 3816 if (v_actual < v_budget) { 3817 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3818 v_budget, v_actual); 3819 3820 if (v_actual < ICE_MIN_MSIX) { 3821 /* error if we can't get minimum vectors */ 3822 pci_disable_msix(pf->pdev); 3823 err = -ERANGE; 3824 goto msix_err; 3825 } else { 3826 int v_remain = v_actual - v_other; 3827 int v_rdma = 0, v_min_rdma = 0; 3828 3829 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3830 /* Need at least 1 interrupt in addition to 3831 * AEQ MSIX 3832 */ 3833 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3834 v_min_rdma = ICE_MIN_RDMA_MSIX; 3835 } 3836 3837 if (v_actual == ICE_MIN_MSIX || 3838 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3839 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3840 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3841 3842 pf->num_rdma_msix = 0; 3843 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3844 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3845 (v_remain - v_rdma < v_rdma)) { 3846 /* Support minimum RDMA and give remaining 3847 * vectors to LAN MSIX 3848 */ 3849 pf->num_rdma_msix = v_min_rdma; 3850 pf->num_lan_msix = v_remain - v_min_rdma; 3851 } else { 3852 /* Split remaining MSIX with RDMA after 3853 * accounting for AEQ MSIX 3854 */ 3855 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3856 ICE_RDMA_NUM_AEQ_MSIX; 3857 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3858 } 3859 3860 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3861 pf->num_lan_msix); 3862 3863 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3864 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3865 pf->num_rdma_msix); 3866 } 3867 } 3868 3869 return v_actual; 3870 3871 msix_err: 3872 devm_kfree(dev, pf->msix_entries); 3873 goto exit_err; 3874 3875 no_hw_vecs_left_err: 3876 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3877 needed, v_left); 3878 err = -ERANGE; 3879 exit_err: 3880 pf->num_rdma_msix = 0; 3881 pf->num_lan_msix = 0; 3882 return err; 3883 } 3884 3885 /** 3886 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3887 * @pf: board private structure 3888 */ 3889 static void ice_dis_msix(struct ice_pf *pf) 3890 { 3891 pci_disable_msix(pf->pdev); 3892 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3893 pf->msix_entries = NULL; 3894 } 3895 3896 /** 3897 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3898 * @pf: board private structure 3899 */ 3900 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3901 { 3902 ice_dis_msix(pf); 3903 3904 if (pf->irq_tracker) { 3905 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3906 pf->irq_tracker = NULL; 3907 } 3908 } 3909 3910 /** 3911 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3912 * @pf: board private structure to initialize 3913 */ 3914 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3915 { 3916 int vectors; 3917 3918 vectors = ice_ena_msix_range(pf); 3919 3920 if (vectors < 0) 3921 return vectors; 3922 3923 /* set up vector assignment tracking */ 3924 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3925 struct_size(pf->irq_tracker, list, vectors), 3926 GFP_KERNEL); 3927 if (!pf->irq_tracker) { 3928 ice_dis_msix(pf); 3929 return -ENOMEM; 3930 } 3931 3932 /* populate SW interrupts pool with number of OS granted IRQs. */ 3933 pf->num_avail_sw_msix = (u16)vectors; 3934 pf->irq_tracker->num_entries = (u16)vectors; 3935 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3936 3937 return 0; 3938 } 3939 3940 /** 3941 * ice_is_wol_supported - check if WoL is supported 3942 * @hw: pointer to hardware info 3943 * 3944 * Check if WoL is supported based on the HW configuration. 3945 * Returns true if NVM supports and enables WoL for this port, false otherwise 3946 */ 3947 bool ice_is_wol_supported(struct ice_hw *hw) 3948 { 3949 u16 wol_ctrl; 3950 3951 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3952 * word) indicates WoL is not supported on the corresponding PF ID. 3953 */ 3954 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3955 return false; 3956 3957 return !(BIT(hw->port_info->lport) & wol_ctrl); 3958 } 3959 3960 /** 3961 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3962 * @vsi: VSI being changed 3963 * @new_rx: new number of Rx queues 3964 * @new_tx: new number of Tx queues 3965 * 3966 * Only change the number of queues if new_tx, or new_rx is non-0. 3967 * 3968 * Returns 0 on success. 3969 */ 3970 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3971 { 3972 struct ice_pf *pf = vsi->back; 3973 int err = 0, timeout = 50; 3974 3975 if (!new_rx && !new_tx) 3976 return -EINVAL; 3977 3978 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3979 timeout--; 3980 if (!timeout) 3981 return -EBUSY; 3982 usleep_range(1000, 2000); 3983 } 3984 3985 if (new_tx) 3986 vsi->req_txq = (u16)new_tx; 3987 if (new_rx) 3988 vsi->req_rxq = (u16)new_rx; 3989 3990 /* set for the next time the netdev is started */ 3991 if (!netif_running(vsi->netdev)) { 3992 ice_vsi_rebuild(vsi, false); 3993 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3994 goto done; 3995 } 3996 3997 ice_vsi_close(vsi); 3998 ice_vsi_rebuild(vsi, false); 3999 ice_pf_dcb_recfg(pf); 4000 ice_vsi_open(vsi); 4001 done: 4002 clear_bit(ICE_CFG_BUSY, pf->state); 4003 return err; 4004 } 4005 4006 /** 4007 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4008 * @pf: PF to configure 4009 * 4010 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4011 * VSI can still Tx/Rx VLAN tagged packets. 4012 */ 4013 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4014 { 4015 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4016 struct ice_vsi_ctx *ctxt; 4017 struct ice_hw *hw; 4018 int status; 4019 4020 if (!vsi) 4021 return; 4022 4023 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4024 if (!ctxt) 4025 return; 4026 4027 hw = &pf->hw; 4028 ctxt->info = vsi->info; 4029 4030 ctxt->info.valid_sections = 4031 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4032 ICE_AQ_VSI_PROP_SECURITY_VALID | 4033 ICE_AQ_VSI_PROP_SW_VALID); 4034 4035 /* disable VLAN anti-spoof */ 4036 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4037 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4038 4039 /* disable VLAN pruning and keep all other settings */ 4040 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4041 4042 /* allow all VLANs on Tx and don't strip on Rx */ 4043 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 4044 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 4045 4046 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4047 if (status) { 4048 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4049 status, ice_aq_str(hw->adminq.sq_last_status)); 4050 } else { 4051 vsi->info.sec_flags = ctxt->info.sec_flags; 4052 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4053 vsi->info.vlan_flags = ctxt->info.vlan_flags; 4054 } 4055 4056 kfree(ctxt); 4057 } 4058 4059 /** 4060 * ice_log_pkg_init - log result of DDP package load 4061 * @hw: pointer to hardware info 4062 * @state: state of package load 4063 */ 4064 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4065 { 4066 struct ice_pf *pf = hw->back; 4067 struct device *dev; 4068 4069 dev = ice_pf_to_dev(pf); 4070 4071 switch (state) { 4072 case ICE_DDP_PKG_SUCCESS: 4073 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4074 hw->active_pkg_name, 4075 hw->active_pkg_ver.major, 4076 hw->active_pkg_ver.minor, 4077 hw->active_pkg_ver.update, 4078 hw->active_pkg_ver.draft); 4079 break; 4080 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4081 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4082 hw->active_pkg_name, 4083 hw->active_pkg_ver.major, 4084 hw->active_pkg_ver.minor, 4085 hw->active_pkg_ver.update, 4086 hw->active_pkg_ver.draft); 4087 break; 4088 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4089 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4090 hw->active_pkg_name, 4091 hw->active_pkg_ver.major, 4092 hw->active_pkg_ver.minor, 4093 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4094 break; 4095 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4096 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4097 hw->active_pkg_name, 4098 hw->active_pkg_ver.major, 4099 hw->active_pkg_ver.minor, 4100 hw->active_pkg_ver.update, 4101 hw->active_pkg_ver.draft, 4102 hw->pkg_name, 4103 hw->pkg_ver.major, 4104 hw->pkg_ver.minor, 4105 hw->pkg_ver.update, 4106 hw->pkg_ver.draft); 4107 break; 4108 case ICE_DDP_PKG_FW_MISMATCH: 4109 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4110 break; 4111 case ICE_DDP_PKG_INVALID_FILE: 4112 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4113 break; 4114 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4115 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4116 break; 4117 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4118 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4119 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4120 break; 4121 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4122 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4123 break; 4124 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4125 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4126 break; 4127 case ICE_DDP_PKG_LOAD_ERROR: 4128 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4129 /* poll for reset to complete */ 4130 if (ice_check_reset(hw)) 4131 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4132 break; 4133 case ICE_DDP_PKG_ERR: 4134 default: 4135 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4136 break; 4137 } 4138 } 4139 4140 /** 4141 * ice_load_pkg - load/reload the DDP Package file 4142 * @firmware: firmware structure when firmware requested or NULL for reload 4143 * @pf: pointer to the PF instance 4144 * 4145 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4146 * initialize HW tables. 4147 */ 4148 static void 4149 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4150 { 4151 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4152 struct device *dev = ice_pf_to_dev(pf); 4153 struct ice_hw *hw = &pf->hw; 4154 4155 /* Load DDP Package */ 4156 if (firmware && !hw->pkg_copy) { 4157 state = ice_copy_and_init_pkg(hw, firmware->data, 4158 firmware->size); 4159 ice_log_pkg_init(hw, state); 4160 } else if (!firmware && hw->pkg_copy) { 4161 /* Reload package during rebuild after CORER/GLOBR reset */ 4162 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4163 ice_log_pkg_init(hw, state); 4164 } else { 4165 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4166 } 4167 4168 if (!ice_is_init_pkg_successful(state)) { 4169 /* Safe Mode */ 4170 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4171 return; 4172 } 4173 4174 /* Successful download package is the precondition for advanced 4175 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4176 */ 4177 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4178 } 4179 4180 /** 4181 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4182 * @pf: pointer to the PF structure 4183 * 4184 * There is no error returned here because the driver should be able to handle 4185 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4186 * specifically with Tx. 4187 */ 4188 static void ice_verify_cacheline_size(struct ice_pf *pf) 4189 { 4190 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4191 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4192 ICE_CACHE_LINE_BYTES); 4193 } 4194 4195 /** 4196 * ice_send_version - update firmware with driver version 4197 * @pf: PF struct 4198 * 4199 * Returns 0 on success, else error code 4200 */ 4201 static int ice_send_version(struct ice_pf *pf) 4202 { 4203 struct ice_driver_ver dv; 4204 4205 dv.major_ver = 0xff; 4206 dv.minor_ver = 0xff; 4207 dv.build_ver = 0xff; 4208 dv.subbuild_ver = 0; 4209 strscpy((char *)dv.driver_string, UTS_RELEASE, 4210 sizeof(dv.driver_string)); 4211 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4212 } 4213 4214 /** 4215 * ice_init_fdir - Initialize flow director VSI and configuration 4216 * @pf: pointer to the PF instance 4217 * 4218 * returns 0 on success, negative on error 4219 */ 4220 static int ice_init_fdir(struct ice_pf *pf) 4221 { 4222 struct device *dev = ice_pf_to_dev(pf); 4223 struct ice_vsi *ctrl_vsi; 4224 int err; 4225 4226 /* Side Band Flow Director needs to have a control VSI. 4227 * Allocate it and store it in the PF. 4228 */ 4229 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4230 if (!ctrl_vsi) { 4231 dev_dbg(dev, "could not create control VSI\n"); 4232 return -ENOMEM; 4233 } 4234 4235 err = ice_vsi_open_ctrl(ctrl_vsi); 4236 if (err) { 4237 dev_dbg(dev, "could not open control VSI\n"); 4238 goto err_vsi_open; 4239 } 4240 4241 mutex_init(&pf->hw.fdir_fltr_lock); 4242 4243 err = ice_fdir_create_dflt_rules(pf); 4244 if (err) 4245 goto err_fdir_rule; 4246 4247 return 0; 4248 4249 err_fdir_rule: 4250 ice_fdir_release_flows(&pf->hw); 4251 ice_vsi_close(ctrl_vsi); 4252 err_vsi_open: 4253 ice_vsi_release(ctrl_vsi); 4254 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4255 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4256 pf->ctrl_vsi_idx = ICE_NO_VSI; 4257 } 4258 return err; 4259 } 4260 4261 /** 4262 * ice_get_opt_fw_name - return optional firmware file name or NULL 4263 * @pf: pointer to the PF instance 4264 */ 4265 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4266 { 4267 /* Optional firmware name same as default with additional dash 4268 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4269 */ 4270 struct pci_dev *pdev = pf->pdev; 4271 char *opt_fw_filename; 4272 u64 dsn; 4273 4274 /* Determine the name of the optional file using the DSN (two 4275 * dwords following the start of the DSN Capability). 4276 */ 4277 dsn = pci_get_dsn(pdev); 4278 if (!dsn) 4279 return NULL; 4280 4281 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4282 if (!opt_fw_filename) 4283 return NULL; 4284 4285 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4286 ICE_DDP_PKG_PATH, dsn); 4287 4288 return opt_fw_filename; 4289 } 4290 4291 /** 4292 * ice_request_fw - Device initialization routine 4293 * @pf: pointer to the PF instance 4294 */ 4295 static void ice_request_fw(struct ice_pf *pf) 4296 { 4297 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4298 const struct firmware *firmware = NULL; 4299 struct device *dev = ice_pf_to_dev(pf); 4300 int err = 0; 4301 4302 /* optional device-specific DDP (if present) overrides the default DDP 4303 * package file. kernel logs a debug message if the file doesn't exist, 4304 * and warning messages for other errors. 4305 */ 4306 if (opt_fw_filename) { 4307 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4308 if (err) { 4309 kfree(opt_fw_filename); 4310 goto dflt_pkg_load; 4311 } 4312 4313 /* request for firmware was successful. Download to device */ 4314 ice_load_pkg(firmware, pf); 4315 kfree(opt_fw_filename); 4316 release_firmware(firmware); 4317 return; 4318 } 4319 4320 dflt_pkg_load: 4321 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4322 if (err) { 4323 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4324 return; 4325 } 4326 4327 /* request for firmware was successful. Download to device */ 4328 ice_load_pkg(firmware, pf); 4329 release_firmware(firmware); 4330 } 4331 4332 /** 4333 * ice_print_wake_reason - show the wake up cause in the log 4334 * @pf: pointer to the PF struct 4335 */ 4336 static void ice_print_wake_reason(struct ice_pf *pf) 4337 { 4338 u32 wus = pf->wakeup_reason; 4339 const char *wake_str; 4340 4341 /* if no wake event, nothing to print */ 4342 if (!wus) 4343 return; 4344 4345 if (wus & PFPM_WUS_LNKC_M) 4346 wake_str = "Link\n"; 4347 else if (wus & PFPM_WUS_MAG_M) 4348 wake_str = "Magic Packet\n"; 4349 else if (wus & PFPM_WUS_MNG_M) 4350 wake_str = "Management\n"; 4351 else if (wus & PFPM_WUS_FW_RST_WK_M) 4352 wake_str = "Firmware Reset\n"; 4353 else 4354 wake_str = "Unknown\n"; 4355 4356 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4357 } 4358 4359 /** 4360 * ice_register_netdev - register netdev and devlink port 4361 * @pf: pointer to the PF struct 4362 */ 4363 static int ice_register_netdev(struct ice_pf *pf) 4364 { 4365 struct ice_vsi *vsi; 4366 int err = 0; 4367 4368 vsi = ice_get_main_vsi(pf); 4369 if (!vsi || !vsi->netdev) 4370 return -EIO; 4371 4372 err = register_netdev(vsi->netdev); 4373 if (err) 4374 goto err_register_netdev; 4375 4376 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4377 netif_carrier_off(vsi->netdev); 4378 netif_tx_stop_all_queues(vsi->netdev); 4379 err = ice_devlink_create_pf_port(pf); 4380 if (err) 4381 goto err_devlink_create; 4382 4383 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4384 4385 return 0; 4386 err_devlink_create: 4387 unregister_netdev(vsi->netdev); 4388 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4389 err_register_netdev: 4390 free_netdev(vsi->netdev); 4391 vsi->netdev = NULL; 4392 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4393 return err; 4394 } 4395 4396 /** 4397 * ice_probe - Device initialization routine 4398 * @pdev: PCI device information struct 4399 * @ent: entry in ice_pci_tbl 4400 * 4401 * Returns 0 on success, negative on failure 4402 */ 4403 static int 4404 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4405 { 4406 struct device *dev = &pdev->dev; 4407 struct ice_pf *pf; 4408 struct ice_hw *hw; 4409 int i, err; 4410 4411 if (pdev->is_virtfn) { 4412 dev_err(dev, "can't probe a virtual function\n"); 4413 return -EINVAL; 4414 } 4415 4416 /* this driver uses devres, see 4417 * Documentation/driver-api/driver-model/devres.rst 4418 */ 4419 err = pcim_enable_device(pdev); 4420 if (err) 4421 return err; 4422 4423 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4424 if (err) { 4425 dev_err(dev, "BAR0 I/O map error %d\n", err); 4426 return err; 4427 } 4428 4429 pf = ice_allocate_pf(dev); 4430 if (!pf) 4431 return -ENOMEM; 4432 4433 /* initialize Auxiliary index to invalid value */ 4434 pf->aux_idx = -1; 4435 4436 /* set up for high or low DMA */ 4437 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4438 if (err) 4439 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4440 if (err) { 4441 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4442 return err; 4443 } 4444 4445 pci_enable_pcie_error_reporting(pdev); 4446 pci_set_master(pdev); 4447 4448 pf->pdev = pdev; 4449 pci_set_drvdata(pdev, pf); 4450 set_bit(ICE_DOWN, pf->state); 4451 /* Disable service task until DOWN bit is cleared */ 4452 set_bit(ICE_SERVICE_DIS, pf->state); 4453 4454 hw = &pf->hw; 4455 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4456 pci_save_state(pdev); 4457 4458 hw->back = pf; 4459 hw->vendor_id = pdev->vendor; 4460 hw->device_id = pdev->device; 4461 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4462 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4463 hw->subsystem_device_id = pdev->subsystem_device; 4464 hw->bus.device = PCI_SLOT(pdev->devfn); 4465 hw->bus.func = PCI_FUNC(pdev->devfn); 4466 ice_set_ctrlq_len(hw); 4467 4468 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4469 4470 #ifndef CONFIG_DYNAMIC_DEBUG 4471 if (debug < -1) 4472 hw->debug_mask = debug; 4473 #endif 4474 4475 err = ice_init_hw(hw); 4476 if (err) { 4477 dev_err(dev, "ice_init_hw failed: %d\n", err); 4478 err = -EIO; 4479 goto err_exit_unroll; 4480 } 4481 4482 ice_init_feature_support(pf); 4483 4484 ice_request_fw(pf); 4485 4486 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4487 * set in pf->state, which will cause ice_is_safe_mode to return 4488 * true 4489 */ 4490 if (ice_is_safe_mode(pf)) { 4491 /* we already got function/device capabilities but these don't 4492 * reflect what the driver needs to do in safe mode. Instead of 4493 * adding conditional logic everywhere to ignore these 4494 * device/function capabilities, override them. 4495 */ 4496 ice_set_safe_mode_caps(hw); 4497 } 4498 4499 err = ice_init_pf(pf); 4500 if (err) { 4501 dev_err(dev, "ice_init_pf failed: %d\n", err); 4502 goto err_init_pf_unroll; 4503 } 4504 4505 ice_devlink_init_regions(pf); 4506 4507 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4508 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4509 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4510 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4511 i = 0; 4512 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4513 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4514 pf->hw.tnl.valid_count[TNL_VXLAN]; 4515 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4516 UDP_TUNNEL_TYPE_VXLAN; 4517 i++; 4518 } 4519 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4520 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4521 pf->hw.tnl.valid_count[TNL_GENEVE]; 4522 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4523 UDP_TUNNEL_TYPE_GENEVE; 4524 i++; 4525 } 4526 4527 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4528 if (!pf->num_alloc_vsi) { 4529 err = -EIO; 4530 goto err_init_pf_unroll; 4531 } 4532 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4533 dev_warn(&pf->pdev->dev, 4534 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4535 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4536 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4537 } 4538 4539 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4540 GFP_KERNEL); 4541 if (!pf->vsi) { 4542 err = -ENOMEM; 4543 goto err_init_pf_unroll; 4544 } 4545 4546 err = ice_init_interrupt_scheme(pf); 4547 if (err) { 4548 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4549 err = -EIO; 4550 goto err_init_vsi_unroll; 4551 } 4552 4553 /* In case of MSIX we are going to setup the misc vector right here 4554 * to handle admin queue events etc. In case of legacy and MSI 4555 * the misc functionality and queue processing is combined in 4556 * the same vector and that gets setup at open. 4557 */ 4558 err = ice_req_irq_msix_misc(pf); 4559 if (err) { 4560 dev_err(dev, "setup of misc vector failed: %d\n", err); 4561 goto err_init_interrupt_unroll; 4562 } 4563 4564 /* create switch struct for the switch element created by FW on boot */ 4565 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4566 if (!pf->first_sw) { 4567 err = -ENOMEM; 4568 goto err_msix_misc_unroll; 4569 } 4570 4571 if (hw->evb_veb) 4572 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4573 else 4574 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4575 4576 pf->first_sw->pf = pf; 4577 4578 /* record the sw_id available for later use */ 4579 pf->first_sw->sw_id = hw->port_info->sw_id; 4580 4581 err = ice_setup_pf_sw(pf); 4582 if (err) { 4583 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4584 goto err_alloc_sw_unroll; 4585 } 4586 4587 clear_bit(ICE_SERVICE_DIS, pf->state); 4588 4589 /* tell the firmware we are up */ 4590 err = ice_send_version(pf); 4591 if (err) { 4592 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4593 UTS_RELEASE, err); 4594 goto err_send_version_unroll; 4595 } 4596 4597 /* since everything is good, start the service timer */ 4598 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4599 4600 err = ice_init_link_events(pf->hw.port_info); 4601 if (err) { 4602 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4603 goto err_send_version_unroll; 4604 } 4605 4606 /* not a fatal error if this fails */ 4607 err = ice_init_nvm_phy_type(pf->hw.port_info); 4608 if (err) 4609 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4610 4611 /* not a fatal error if this fails */ 4612 err = ice_update_link_info(pf->hw.port_info); 4613 if (err) 4614 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4615 4616 ice_init_link_dflt_override(pf->hw.port_info); 4617 4618 ice_check_link_cfg_err(pf, 4619 pf->hw.port_info->phy.link_info.link_cfg_err); 4620 4621 /* if media available, initialize PHY settings */ 4622 if (pf->hw.port_info->phy.link_info.link_info & 4623 ICE_AQ_MEDIA_AVAILABLE) { 4624 /* not a fatal error if this fails */ 4625 err = ice_init_phy_user_cfg(pf->hw.port_info); 4626 if (err) 4627 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4628 4629 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4630 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4631 4632 if (vsi) 4633 ice_configure_phy(vsi); 4634 } 4635 } else { 4636 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4637 } 4638 4639 ice_verify_cacheline_size(pf); 4640 4641 /* Save wakeup reason register for later use */ 4642 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4643 4644 /* check for a power management event */ 4645 ice_print_wake_reason(pf); 4646 4647 /* clear wake status, all bits */ 4648 wr32(hw, PFPM_WUS, U32_MAX); 4649 4650 /* Disable WoL at init, wait for user to enable */ 4651 device_set_wakeup_enable(dev, false); 4652 4653 if (ice_is_safe_mode(pf)) { 4654 ice_set_safe_mode_vlan_cfg(pf); 4655 goto probe_done; 4656 } 4657 4658 /* initialize DDP driven features */ 4659 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4660 ice_ptp_init(pf); 4661 4662 /* Note: Flow director init failure is non-fatal to load */ 4663 if (ice_init_fdir(pf)) 4664 dev_err(dev, "could not initialize flow director\n"); 4665 4666 /* Note: DCB init failure is non-fatal to load */ 4667 if (ice_init_pf_dcb(pf, false)) { 4668 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4669 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4670 } else { 4671 ice_cfg_lldp_mib_change(&pf->hw, true); 4672 } 4673 4674 if (ice_init_lag(pf)) 4675 dev_warn(dev, "Failed to init link aggregation support\n"); 4676 4677 /* print PCI link speed and width */ 4678 pcie_print_link_status(pf->pdev); 4679 4680 probe_done: 4681 err = ice_register_netdev(pf); 4682 if (err) 4683 goto err_netdev_reg; 4684 4685 err = ice_devlink_register_params(pf); 4686 if (err) 4687 goto err_netdev_reg; 4688 4689 /* ready to go, so clear down state bit */ 4690 clear_bit(ICE_DOWN, pf->state); 4691 if (ice_is_aux_ena(pf)) { 4692 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4693 if (pf->aux_idx < 0) { 4694 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4695 err = -ENOMEM; 4696 goto err_devlink_reg_param; 4697 } 4698 4699 err = ice_init_rdma(pf); 4700 if (err) { 4701 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4702 err = -EIO; 4703 goto err_init_aux_unroll; 4704 } 4705 } else { 4706 dev_warn(dev, "RDMA is not supported on this device\n"); 4707 } 4708 4709 ice_devlink_register(pf); 4710 return 0; 4711 4712 err_init_aux_unroll: 4713 pf->adev = NULL; 4714 ida_free(&ice_aux_ida, pf->aux_idx); 4715 err_devlink_reg_param: 4716 ice_devlink_unregister_params(pf); 4717 err_netdev_reg: 4718 err_send_version_unroll: 4719 ice_vsi_release_all(pf); 4720 err_alloc_sw_unroll: 4721 set_bit(ICE_SERVICE_DIS, pf->state); 4722 set_bit(ICE_DOWN, pf->state); 4723 devm_kfree(dev, pf->first_sw); 4724 err_msix_misc_unroll: 4725 ice_free_irq_msix_misc(pf); 4726 err_init_interrupt_unroll: 4727 ice_clear_interrupt_scheme(pf); 4728 err_init_vsi_unroll: 4729 devm_kfree(dev, pf->vsi); 4730 err_init_pf_unroll: 4731 ice_deinit_pf(pf); 4732 ice_devlink_destroy_regions(pf); 4733 ice_deinit_hw(hw); 4734 err_exit_unroll: 4735 pci_disable_pcie_error_reporting(pdev); 4736 pci_disable_device(pdev); 4737 return err; 4738 } 4739 4740 /** 4741 * ice_set_wake - enable or disable Wake on LAN 4742 * @pf: pointer to the PF struct 4743 * 4744 * Simple helper for WoL control 4745 */ 4746 static void ice_set_wake(struct ice_pf *pf) 4747 { 4748 struct ice_hw *hw = &pf->hw; 4749 bool wol = pf->wol_ena; 4750 4751 /* clear wake state, otherwise new wake events won't fire */ 4752 wr32(hw, PFPM_WUS, U32_MAX); 4753 4754 /* enable / disable APM wake up, no RMW needed */ 4755 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4756 4757 /* set magic packet filter enabled */ 4758 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4759 } 4760 4761 /** 4762 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4763 * @pf: pointer to the PF struct 4764 * 4765 * Issue firmware command to enable multicast magic wake, making 4766 * sure that any locally administered address (LAA) is used for 4767 * wake, and that PF reset doesn't undo the LAA. 4768 */ 4769 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4770 { 4771 struct device *dev = ice_pf_to_dev(pf); 4772 struct ice_hw *hw = &pf->hw; 4773 u8 mac_addr[ETH_ALEN]; 4774 struct ice_vsi *vsi; 4775 int status; 4776 u8 flags; 4777 4778 if (!pf->wol_ena) 4779 return; 4780 4781 vsi = ice_get_main_vsi(pf); 4782 if (!vsi) 4783 return; 4784 4785 /* Get current MAC address in case it's an LAA */ 4786 if (vsi->netdev) 4787 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4788 else 4789 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4790 4791 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4792 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4793 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4794 4795 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4796 if (status) 4797 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4798 status, ice_aq_str(hw->adminq.sq_last_status)); 4799 } 4800 4801 /** 4802 * ice_remove - Device removal routine 4803 * @pdev: PCI device information struct 4804 */ 4805 static void ice_remove(struct pci_dev *pdev) 4806 { 4807 struct ice_pf *pf = pci_get_drvdata(pdev); 4808 int i; 4809 4810 ice_devlink_unregister(pf); 4811 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4812 if (!ice_is_reset_in_progress(pf->state)) 4813 break; 4814 msleep(100); 4815 } 4816 4817 ice_tc_indir_block_remove(pf); 4818 4819 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4820 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4821 ice_free_vfs(pf); 4822 } 4823 4824 ice_service_task_stop(pf); 4825 4826 ice_aq_cancel_waiting_tasks(pf); 4827 ice_unplug_aux_dev(pf); 4828 if (pf->aux_idx >= 0) 4829 ida_free(&ice_aux_ida, pf->aux_idx); 4830 ice_devlink_unregister_params(pf); 4831 set_bit(ICE_DOWN, pf->state); 4832 4833 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4834 ice_deinit_lag(pf); 4835 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4836 ice_ptp_release(pf); 4837 if (!ice_is_safe_mode(pf)) 4838 ice_remove_arfs(pf); 4839 ice_setup_mc_magic_wake(pf); 4840 ice_vsi_release_all(pf); 4841 ice_set_wake(pf); 4842 ice_free_irq_msix_misc(pf); 4843 ice_for_each_vsi(pf, i) { 4844 if (!pf->vsi[i]) 4845 continue; 4846 ice_vsi_free_q_vectors(pf->vsi[i]); 4847 } 4848 ice_deinit_pf(pf); 4849 ice_devlink_destroy_regions(pf); 4850 ice_deinit_hw(&pf->hw); 4851 4852 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4853 * do it via ice_schedule_reset() since there is no need to rebuild 4854 * and the service task is already stopped. 4855 */ 4856 ice_reset(&pf->hw, ICE_RESET_PFR); 4857 pci_wait_for_pending_transaction(pdev); 4858 ice_clear_interrupt_scheme(pf); 4859 pci_disable_pcie_error_reporting(pdev); 4860 pci_disable_device(pdev); 4861 } 4862 4863 /** 4864 * ice_shutdown - PCI callback for shutting down device 4865 * @pdev: PCI device information struct 4866 */ 4867 static void ice_shutdown(struct pci_dev *pdev) 4868 { 4869 struct ice_pf *pf = pci_get_drvdata(pdev); 4870 4871 ice_remove(pdev); 4872 4873 if (system_state == SYSTEM_POWER_OFF) { 4874 pci_wake_from_d3(pdev, pf->wol_ena); 4875 pci_set_power_state(pdev, PCI_D3hot); 4876 } 4877 } 4878 4879 #ifdef CONFIG_PM 4880 /** 4881 * ice_prepare_for_shutdown - prep for PCI shutdown 4882 * @pf: board private structure 4883 * 4884 * Inform or close all dependent features in prep for PCI device shutdown 4885 */ 4886 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4887 { 4888 struct ice_hw *hw = &pf->hw; 4889 u32 v; 4890 4891 /* Notify VFs of impending reset */ 4892 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4893 ice_vc_notify_reset(pf); 4894 4895 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4896 4897 /* disable the VSIs and their queues that are not already DOWN */ 4898 ice_pf_dis_all_vsi(pf, false); 4899 4900 ice_for_each_vsi(pf, v) 4901 if (pf->vsi[v]) 4902 pf->vsi[v]->vsi_num = 0; 4903 4904 ice_shutdown_all_ctrlq(hw); 4905 } 4906 4907 /** 4908 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4909 * @pf: board private structure to reinitialize 4910 * 4911 * This routine reinitialize interrupt scheme that was cleared during 4912 * power management suspend callback. 4913 * 4914 * This should be called during resume routine to re-allocate the q_vectors 4915 * and reacquire interrupts. 4916 */ 4917 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4918 { 4919 struct device *dev = ice_pf_to_dev(pf); 4920 int ret, v; 4921 4922 /* Since we clear MSIX flag during suspend, we need to 4923 * set it back during resume... 4924 */ 4925 4926 ret = ice_init_interrupt_scheme(pf); 4927 if (ret) { 4928 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4929 return ret; 4930 } 4931 4932 /* Remap vectors and rings, after successful re-init interrupts */ 4933 ice_for_each_vsi(pf, v) { 4934 if (!pf->vsi[v]) 4935 continue; 4936 4937 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4938 if (ret) 4939 goto err_reinit; 4940 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4941 } 4942 4943 ret = ice_req_irq_msix_misc(pf); 4944 if (ret) { 4945 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4946 ret); 4947 goto err_reinit; 4948 } 4949 4950 return 0; 4951 4952 err_reinit: 4953 while (v--) 4954 if (pf->vsi[v]) 4955 ice_vsi_free_q_vectors(pf->vsi[v]); 4956 4957 return ret; 4958 } 4959 4960 /** 4961 * ice_suspend 4962 * @dev: generic device information structure 4963 * 4964 * Power Management callback to quiesce the device and prepare 4965 * for D3 transition. 4966 */ 4967 static int __maybe_unused ice_suspend(struct device *dev) 4968 { 4969 struct pci_dev *pdev = to_pci_dev(dev); 4970 struct ice_pf *pf; 4971 int disabled, v; 4972 4973 pf = pci_get_drvdata(pdev); 4974 4975 if (!ice_pf_state_is_nominal(pf)) { 4976 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4977 return -EBUSY; 4978 } 4979 4980 /* Stop watchdog tasks until resume completion. 4981 * Even though it is most likely that the service task is 4982 * disabled if the device is suspended or down, the service task's 4983 * state is controlled by a different state bit, and we should 4984 * store and honor whatever state that bit is in at this point. 4985 */ 4986 disabled = ice_service_task_stop(pf); 4987 4988 ice_unplug_aux_dev(pf); 4989 4990 /* Already suspended?, then there is nothing to do */ 4991 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4992 if (!disabled) 4993 ice_service_task_restart(pf); 4994 return 0; 4995 } 4996 4997 if (test_bit(ICE_DOWN, pf->state) || 4998 ice_is_reset_in_progress(pf->state)) { 4999 dev_err(dev, "can't suspend device in reset or already down\n"); 5000 if (!disabled) 5001 ice_service_task_restart(pf); 5002 return 0; 5003 } 5004 5005 ice_setup_mc_magic_wake(pf); 5006 5007 ice_prepare_for_shutdown(pf); 5008 5009 ice_set_wake(pf); 5010 5011 /* Free vectors, clear the interrupt scheme and release IRQs 5012 * for proper hibernation, especially with large number of CPUs. 5013 * Otherwise hibernation might fail when mapping all the vectors back 5014 * to CPU0. 5015 */ 5016 ice_free_irq_msix_misc(pf); 5017 ice_for_each_vsi(pf, v) { 5018 if (!pf->vsi[v]) 5019 continue; 5020 ice_vsi_free_q_vectors(pf->vsi[v]); 5021 } 5022 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5023 ice_clear_interrupt_scheme(pf); 5024 5025 pci_save_state(pdev); 5026 pci_wake_from_d3(pdev, pf->wol_ena); 5027 pci_set_power_state(pdev, PCI_D3hot); 5028 return 0; 5029 } 5030 5031 /** 5032 * ice_resume - PM callback for waking up from D3 5033 * @dev: generic device information structure 5034 */ 5035 static int __maybe_unused ice_resume(struct device *dev) 5036 { 5037 struct pci_dev *pdev = to_pci_dev(dev); 5038 enum ice_reset_req reset_type; 5039 struct ice_pf *pf; 5040 struct ice_hw *hw; 5041 int ret; 5042 5043 pci_set_power_state(pdev, PCI_D0); 5044 pci_restore_state(pdev); 5045 pci_save_state(pdev); 5046 5047 if (!pci_device_is_present(pdev)) 5048 return -ENODEV; 5049 5050 ret = pci_enable_device_mem(pdev); 5051 if (ret) { 5052 dev_err(dev, "Cannot enable device after suspend\n"); 5053 return ret; 5054 } 5055 5056 pf = pci_get_drvdata(pdev); 5057 hw = &pf->hw; 5058 5059 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5060 ice_print_wake_reason(pf); 5061 5062 /* We cleared the interrupt scheme when we suspended, so we need to 5063 * restore it now to resume device functionality. 5064 */ 5065 ret = ice_reinit_interrupt_scheme(pf); 5066 if (ret) 5067 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5068 5069 clear_bit(ICE_DOWN, pf->state); 5070 /* Now perform PF reset and rebuild */ 5071 reset_type = ICE_RESET_PFR; 5072 /* re-enable service task for reset, but allow reset to schedule it */ 5073 clear_bit(ICE_SERVICE_DIS, pf->state); 5074 5075 if (ice_schedule_reset(pf, reset_type)) 5076 dev_err(dev, "Reset during resume failed.\n"); 5077 5078 clear_bit(ICE_SUSPENDED, pf->state); 5079 ice_service_task_restart(pf); 5080 5081 /* Restart the service task */ 5082 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5083 5084 return 0; 5085 } 5086 #endif /* CONFIG_PM */ 5087 5088 /** 5089 * ice_pci_err_detected - warning that PCI error has been detected 5090 * @pdev: PCI device information struct 5091 * @err: the type of PCI error 5092 * 5093 * Called to warn that something happened on the PCI bus and the error handling 5094 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5095 */ 5096 static pci_ers_result_t 5097 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5098 { 5099 struct ice_pf *pf = pci_get_drvdata(pdev); 5100 5101 if (!pf) { 5102 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5103 __func__, err); 5104 return PCI_ERS_RESULT_DISCONNECT; 5105 } 5106 5107 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5108 ice_service_task_stop(pf); 5109 5110 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5111 set_bit(ICE_PFR_REQ, pf->state); 5112 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5113 } 5114 } 5115 5116 return PCI_ERS_RESULT_NEED_RESET; 5117 } 5118 5119 /** 5120 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5121 * @pdev: PCI device information struct 5122 * 5123 * Called to determine if the driver can recover from the PCI slot reset by 5124 * using a register read to determine if the device is recoverable. 5125 */ 5126 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5127 { 5128 struct ice_pf *pf = pci_get_drvdata(pdev); 5129 pci_ers_result_t result; 5130 int err; 5131 u32 reg; 5132 5133 err = pci_enable_device_mem(pdev); 5134 if (err) { 5135 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5136 err); 5137 result = PCI_ERS_RESULT_DISCONNECT; 5138 } else { 5139 pci_set_master(pdev); 5140 pci_restore_state(pdev); 5141 pci_save_state(pdev); 5142 pci_wake_from_d3(pdev, false); 5143 5144 /* Check for life */ 5145 reg = rd32(&pf->hw, GLGEN_RTRIG); 5146 if (!reg) 5147 result = PCI_ERS_RESULT_RECOVERED; 5148 else 5149 result = PCI_ERS_RESULT_DISCONNECT; 5150 } 5151 5152 err = pci_aer_clear_nonfatal_status(pdev); 5153 if (err) 5154 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5155 err); 5156 /* non-fatal, continue */ 5157 5158 return result; 5159 } 5160 5161 /** 5162 * ice_pci_err_resume - restart operations after PCI error recovery 5163 * @pdev: PCI device information struct 5164 * 5165 * Called to allow the driver to bring things back up after PCI error and/or 5166 * reset recovery have finished 5167 */ 5168 static void ice_pci_err_resume(struct pci_dev *pdev) 5169 { 5170 struct ice_pf *pf = pci_get_drvdata(pdev); 5171 5172 if (!pf) { 5173 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5174 __func__); 5175 return; 5176 } 5177 5178 if (test_bit(ICE_SUSPENDED, pf->state)) { 5179 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5180 __func__); 5181 return; 5182 } 5183 5184 ice_restore_all_vfs_msi_state(pdev); 5185 5186 ice_do_reset(pf, ICE_RESET_PFR); 5187 ice_service_task_restart(pf); 5188 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5189 } 5190 5191 /** 5192 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5193 * @pdev: PCI device information struct 5194 */ 5195 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5196 { 5197 struct ice_pf *pf = pci_get_drvdata(pdev); 5198 5199 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5200 ice_service_task_stop(pf); 5201 5202 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5203 set_bit(ICE_PFR_REQ, pf->state); 5204 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5205 } 5206 } 5207 } 5208 5209 /** 5210 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5211 * @pdev: PCI device information struct 5212 */ 5213 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5214 { 5215 ice_pci_err_resume(pdev); 5216 } 5217 5218 /* ice_pci_tbl - PCI Device ID Table 5219 * 5220 * Wildcard entries (PCI_ANY_ID) should come last 5221 * Last entry must be all 0s 5222 * 5223 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5224 * Class, Class Mask, private data (not used) } 5225 */ 5226 static const struct pci_device_id ice_pci_tbl[] = { 5227 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5228 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5229 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5230 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5231 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5232 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5233 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5234 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5235 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5236 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5237 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5238 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5239 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5240 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5241 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5242 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5243 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5244 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5245 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5246 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5247 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5248 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5249 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5250 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5251 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5252 /* required last entry */ 5253 { 0, } 5254 }; 5255 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5256 5257 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5258 5259 static const struct pci_error_handlers ice_pci_err_handler = { 5260 .error_detected = ice_pci_err_detected, 5261 .slot_reset = ice_pci_err_slot_reset, 5262 .reset_prepare = ice_pci_err_reset_prepare, 5263 .reset_done = ice_pci_err_reset_done, 5264 .resume = ice_pci_err_resume 5265 }; 5266 5267 static struct pci_driver ice_driver = { 5268 .name = KBUILD_MODNAME, 5269 .id_table = ice_pci_tbl, 5270 .probe = ice_probe, 5271 .remove = ice_remove, 5272 #ifdef CONFIG_PM 5273 .driver.pm = &ice_pm_ops, 5274 #endif /* CONFIG_PM */ 5275 .shutdown = ice_shutdown, 5276 .sriov_configure = ice_sriov_configure, 5277 .err_handler = &ice_pci_err_handler 5278 }; 5279 5280 /** 5281 * ice_module_init - Driver registration routine 5282 * 5283 * ice_module_init is the first routine called when the driver is 5284 * loaded. All it does is register with the PCI subsystem. 5285 */ 5286 static int __init ice_module_init(void) 5287 { 5288 int status; 5289 5290 pr_info("%s\n", ice_driver_string); 5291 pr_info("%s\n", ice_copyright); 5292 5293 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5294 if (!ice_wq) { 5295 pr_err("Failed to create workqueue\n"); 5296 return -ENOMEM; 5297 } 5298 5299 status = pci_register_driver(&ice_driver); 5300 if (status) { 5301 pr_err("failed to register PCI driver, err %d\n", status); 5302 destroy_workqueue(ice_wq); 5303 } 5304 5305 return status; 5306 } 5307 module_init(ice_module_init); 5308 5309 /** 5310 * ice_module_exit - Driver exit cleanup routine 5311 * 5312 * ice_module_exit is called just before the driver is removed 5313 * from memory. 5314 */ 5315 static void __exit ice_module_exit(void) 5316 { 5317 pci_unregister_driver(&ice_driver); 5318 destroy_workqueue(ice_wq); 5319 pr_info("module unloaded\n"); 5320 } 5321 module_exit(ice_module_exit); 5322 5323 /** 5324 * ice_set_mac_address - NDO callback to set MAC address 5325 * @netdev: network interface device structure 5326 * @pi: pointer to an address structure 5327 * 5328 * Returns 0 on success, negative on failure 5329 */ 5330 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5331 { 5332 struct ice_netdev_priv *np = netdev_priv(netdev); 5333 struct ice_vsi *vsi = np->vsi; 5334 struct ice_pf *pf = vsi->back; 5335 struct ice_hw *hw = &pf->hw; 5336 struct sockaddr *addr = pi; 5337 u8 old_mac[ETH_ALEN]; 5338 u8 flags = 0; 5339 u8 *mac; 5340 int err; 5341 5342 mac = (u8 *)addr->sa_data; 5343 5344 if (!is_valid_ether_addr(mac)) 5345 return -EADDRNOTAVAIL; 5346 5347 if (ether_addr_equal(netdev->dev_addr, mac)) { 5348 netdev_dbg(netdev, "already using mac %pM\n", mac); 5349 return 0; 5350 } 5351 5352 if (test_bit(ICE_DOWN, pf->state) || 5353 ice_is_reset_in_progress(pf->state)) { 5354 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5355 mac); 5356 return -EBUSY; 5357 } 5358 5359 if (ice_chnl_dmac_fltr_cnt(pf)) { 5360 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5361 mac); 5362 return -EAGAIN; 5363 } 5364 5365 netif_addr_lock_bh(netdev); 5366 ether_addr_copy(old_mac, netdev->dev_addr); 5367 /* change the netdev's MAC address */ 5368 eth_hw_addr_set(netdev, mac); 5369 netif_addr_unlock_bh(netdev); 5370 5371 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5372 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5373 if (err && err != -ENOENT) { 5374 err = -EADDRNOTAVAIL; 5375 goto err_update_filters; 5376 } 5377 5378 /* Add filter for new MAC. If filter exists, return success */ 5379 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5380 if (err == -EEXIST) 5381 /* Although this MAC filter is already present in hardware it's 5382 * possible in some cases (e.g. bonding) that dev_addr was 5383 * modified outside of the driver and needs to be restored back 5384 * to this value. 5385 */ 5386 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5387 else if (err) 5388 /* error if the new filter addition failed */ 5389 err = -EADDRNOTAVAIL; 5390 5391 err_update_filters: 5392 if (err) { 5393 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5394 mac); 5395 netif_addr_lock_bh(netdev); 5396 eth_hw_addr_set(netdev, old_mac); 5397 netif_addr_unlock_bh(netdev); 5398 return err; 5399 } 5400 5401 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5402 netdev->dev_addr); 5403 5404 /* write new MAC address to the firmware */ 5405 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5406 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5407 if (err) { 5408 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5409 mac, err); 5410 } 5411 return 0; 5412 } 5413 5414 /** 5415 * ice_set_rx_mode - NDO callback to set the netdev filters 5416 * @netdev: network interface device structure 5417 */ 5418 static void ice_set_rx_mode(struct net_device *netdev) 5419 { 5420 struct ice_netdev_priv *np = netdev_priv(netdev); 5421 struct ice_vsi *vsi = np->vsi; 5422 5423 if (!vsi) 5424 return; 5425 5426 /* Set the flags to synchronize filters 5427 * ndo_set_rx_mode may be triggered even without a change in netdev 5428 * flags 5429 */ 5430 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5431 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5432 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5433 5434 /* schedule our worker thread which will take care of 5435 * applying the new filter changes 5436 */ 5437 ice_service_task_schedule(vsi->back); 5438 } 5439 5440 /** 5441 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5442 * @netdev: network interface device structure 5443 * @queue_index: Queue ID 5444 * @maxrate: maximum bandwidth in Mbps 5445 */ 5446 static int 5447 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5448 { 5449 struct ice_netdev_priv *np = netdev_priv(netdev); 5450 struct ice_vsi *vsi = np->vsi; 5451 u16 q_handle; 5452 int status; 5453 u8 tc; 5454 5455 /* Validate maxrate requested is within permitted range */ 5456 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5457 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5458 maxrate, queue_index); 5459 return -EINVAL; 5460 } 5461 5462 q_handle = vsi->tx_rings[queue_index]->q_handle; 5463 tc = ice_dcb_get_tc(vsi, queue_index); 5464 5465 /* Set BW back to default, when user set maxrate to 0 */ 5466 if (!maxrate) 5467 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5468 q_handle, ICE_MAX_BW); 5469 else 5470 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5471 q_handle, ICE_MAX_BW, maxrate * 1000); 5472 if (status) 5473 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5474 status); 5475 5476 return status; 5477 } 5478 5479 /** 5480 * ice_fdb_add - add an entry to the hardware database 5481 * @ndm: the input from the stack 5482 * @tb: pointer to array of nladdr (unused) 5483 * @dev: the net device pointer 5484 * @addr: the MAC address entry being added 5485 * @vid: VLAN ID 5486 * @flags: instructions from stack about fdb operation 5487 * @extack: netlink extended ack 5488 */ 5489 static int 5490 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5491 struct net_device *dev, const unsigned char *addr, u16 vid, 5492 u16 flags, struct netlink_ext_ack __always_unused *extack) 5493 { 5494 int err; 5495 5496 if (vid) { 5497 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5498 return -EINVAL; 5499 } 5500 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5501 netdev_err(dev, "FDB only supports static addresses\n"); 5502 return -EINVAL; 5503 } 5504 5505 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5506 err = dev_uc_add_excl(dev, addr); 5507 else if (is_multicast_ether_addr(addr)) 5508 err = dev_mc_add_excl(dev, addr); 5509 else 5510 err = -EINVAL; 5511 5512 /* Only return duplicate errors if NLM_F_EXCL is set */ 5513 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5514 err = 0; 5515 5516 return err; 5517 } 5518 5519 /** 5520 * ice_fdb_del - delete an entry from the hardware database 5521 * @ndm: the input from the stack 5522 * @tb: pointer to array of nladdr (unused) 5523 * @dev: the net device pointer 5524 * @addr: the MAC address entry being added 5525 * @vid: VLAN ID 5526 */ 5527 static int 5528 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5529 struct net_device *dev, const unsigned char *addr, 5530 __always_unused u16 vid) 5531 { 5532 int err; 5533 5534 if (ndm->ndm_state & NUD_PERMANENT) { 5535 netdev_err(dev, "FDB only supports static addresses\n"); 5536 return -EINVAL; 5537 } 5538 5539 if (is_unicast_ether_addr(addr)) 5540 err = dev_uc_del(dev, addr); 5541 else if (is_multicast_ether_addr(addr)) 5542 err = dev_mc_del(dev, addr); 5543 else 5544 err = -EINVAL; 5545 5546 return err; 5547 } 5548 5549 /** 5550 * ice_set_features - set the netdev feature flags 5551 * @netdev: ptr to the netdev being adjusted 5552 * @features: the feature set that the stack is suggesting 5553 */ 5554 static int 5555 ice_set_features(struct net_device *netdev, netdev_features_t features) 5556 { 5557 struct ice_netdev_priv *np = netdev_priv(netdev); 5558 struct ice_vsi *vsi = np->vsi; 5559 struct ice_pf *pf = vsi->back; 5560 int ret = 0; 5561 5562 /* Don't set any netdev advanced features with device in Safe Mode */ 5563 if (ice_is_safe_mode(vsi->back)) { 5564 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5565 return ret; 5566 } 5567 5568 /* Do not change setting during reset */ 5569 if (ice_is_reset_in_progress(pf->state)) { 5570 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5571 return -EBUSY; 5572 } 5573 5574 /* Multiple features can be changed in one call so keep features in 5575 * separate if/else statements to guarantee each feature is checked 5576 */ 5577 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5578 ice_vsi_manage_rss_lut(vsi, true); 5579 else if (!(features & NETIF_F_RXHASH) && 5580 netdev->features & NETIF_F_RXHASH) 5581 ice_vsi_manage_rss_lut(vsi, false); 5582 5583 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5584 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5585 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5586 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5587 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5588 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5589 5590 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5591 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5592 ret = ice_vsi_manage_vlan_insertion(vsi); 5593 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5594 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5595 ret = ice_vsi_manage_vlan_insertion(vsi); 5596 5597 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5598 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5599 ret = ice_cfg_vlan_pruning(vsi, true); 5600 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5601 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5602 ret = ice_cfg_vlan_pruning(vsi, false); 5603 5604 if ((features & NETIF_F_NTUPLE) && 5605 !(netdev->features & NETIF_F_NTUPLE)) { 5606 ice_vsi_manage_fdir(vsi, true); 5607 ice_init_arfs(vsi); 5608 } else if (!(features & NETIF_F_NTUPLE) && 5609 (netdev->features & NETIF_F_NTUPLE)) { 5610 ice_vsi_manage_fdir(vsi, false); 5611 ice_clear_arfs(vsi); 5612 } 5613 5614 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5615 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5616 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5617 return -EACCES; 5618 } 5619 5620 if ((features & NETIF_F_HW_TC) && 5621 !(netdev->features & NETIF_F_HW_TC)) 5622 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5623 else 5624 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5625 5626 return ret; 5627 } 5628 5629 /** 5630 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5631 * @vsi: VSI to setup VLAN properties for 5632 */ 5633 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5634 { 5635 int ret = 0; 5636 5637 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5638 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5639 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5640 ret = ice_vsi_manage_vlan_insertion(vsi); 5641 5642 return ret; 5643 } 5644 5645 /** 5646 * ice_vsi_cfg - Setup the VSI 5647 * @vsi: the VSI being configured 5648 * 5649 * Return 0 on success and negative value on error 5650 */ 5651 int ice_vsi_cfg(struct ice_vsi *vsi) 5652 { 5653 int err; 5654 5655 if (vsi->netdev) { 5656 ice_set_rx_mode(vsi->netdev); 5657 5658 err = ice_vsi_vlan_setup(vsi); 5659 5660 if (err) 5661 return err; 5662 } 5663 ice_vsi_cfg_dcb_rings(vsi); 5664 5665 err = ice_vsi_cfg_lan_txqs(vsi); 5666 if (!err && ice_is_xdp_ena_vsi(vsi)) 5667 err = ice_vsi_cfg_xdp_txqs(vsi); 5668 if (!err) 5669 err = ice_vsi_cfg_rxqs(vsi); 5670 5671 return err; 5672 } 5673 5674 /* THEORY OF MODERATION: 5675 * The ice driver hardware works differently than the hardware that DIMLIB was 5676 * originally made for. ice hardware doesn't have packet count limits that 5677 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5678 * which is hard-coded to a limit of 250,000 ints/second. 5679 * If not using dynamic moderation, the INTRL value can be modified 5680 * by ethtool rx-usecs-high. 5681 */ 5682 struct ice_dim { 5683 /* the throttle rate for interrupts, basically worst case delay before 5684 * an initial interrupt fires, value is stored in microseconds. 5685 */ 5686 u16 itr; 5687 }; 5688 5689 /* Make a different profile for Rx that doesn't allow quite so aggressive 5690 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5691 * second. 5692 */ 5693 static const struct ice_dim rx_profile[] = { 5694 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5695 {8}, /* 125,000 ints/s */ 5696 {16}, /* 62,500 ints/s */ 5697 {62}, /* 16,129 ints/s */ 5698 {126} /* 7,936 ints/s */ 5699 }; 5700 5701 /* The transmit profile, which has the same sorts of values 5702 * as the previous struct 5703 */ 5704 static const struct ice_dim tx_profile[] = { 5705 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5706 {8}, /* 125,000 ints/s */ 5707 {40}, /* 16,125 ints/s */ 5708 {128}, /* 7,812 ints/s */ 5709 {256} /* 3,906 ints/s */ 5710 }; 5711 5712 static void ice_tx_dim_work(struct work_struct *work) 5713 { 5714 struct ice_ring_container *rc; 5715 struct dim *dim; 5716 u16 itr; 5717 5718 dim = container_of(work, struct dim, work); 5719 rc = (struct ice_ring_container *)dim->priv; 5720 5721 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5722 5723 /* look up the values in our local table */ 5724 itr = tx_profile[dim->profile_ix].itr; 5725 5726 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5727 ice_write_itr(rc, itr); 5728 5729 dim->state = DIM_START_MEASURE; 5730 } 5731 5732 static void ice_rx_dim_work(struct work_struct *work) 5733 { 5734 struct ice_ring_container *rc; 5735 struct dim *dim; 5736 u16 itr; 5737 5738 dim = container_of(work, struct dim, work); 5739 rc = (struct ice_ring_container *)dim->priv; 5740 5741 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5742 5743 /* look up the values in our local table */ 5744 itr = rx_profile[dim->profile_ix].itr; 5745 5746 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5747 ice_write_itr(rc, itr); 5748 5749 dim->state = DIM_START_MEASURE; 5750 } 5751 5752 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5753 5754 /** 5755 * ice_init_moderation - set up interrupt moderation 5756 * @q_vector: the vector containing rings to be configured 5757 * 5758 * Set up interrupt moderation registers, with the intent to do the right thing 5759 * when called from reset or from probe, and whether or not dynamic moderation 5760 * is enabled or not. Take special care to write all the registers in both 5761 * dynamic moderation mode or not in order to make sure hardware is in a known 5762 * state. 5763 */ 5764 static void ice_init_moderation(struct ice_q_vector *q_vector) 5765 { 5766 struct ice_ring_container *rc; 5767 bool tx_dynamic, rx_dynamic; 5768 5769 rc = &q_vector->tx; 5770 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5771 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5772 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5773 rc->dim.priv = rc; 5774 tx_dynamic = ITR_IS_DYNAMIC(rc); 5775 5776 /* set the initial TX ITR to match the above */ 5777 ice_write_itr(rc, tx_dynamic ? 5778 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5779 5780 rc = &q_vector->rx; 5781 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5782 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5783 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5784 rc->dim.priv = rc; 5785 rx_dynamic = ITR_IS_DYNAMIC(rc); 5786 5787 /* set the initial RX ITR to match the above */ 5788 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 5789 rc->itr_setting); 5790 5791 ice_set_q_vector_intrl(q_vector); 5792 } 5793 5794 /** 5795 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5796 * @vsi: the VSI being configured 5797 */ 5798 static void ice_napi_enable_all(struct ice_vsi *vsi) 5799 { 5800 int q_idx; 5801 5802 if (!vsi->netdev) 5803 return; 5804 5805 ice_for_each_q_vector(vsi, q_idx) { 5806 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5807 5808 ice_init_moderation(q_vector); 5809 5810 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 5811 napi_enable(&q_vector->napi); 5812 } 5813 } 5814 5815 /** 5816 * ice_up_complete - Finish the last steps of bringing up a connection 5817 * @vsi: The VSI being configured 5818 * 5819 * Return 0 on success and negative value on error 5820 */ 5821 static int ice_up_complete(struct ice_vsi *vsi) 5822 { 5823 struct ice_pf *pf = vsi->back; 5824 int err; 5825 5826 ice_vsi_cfg_msix(vsi); 5827 5828 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5829 * Tx queue group list was configured and the context bits were 5830 * programmed using ice_vsi_cfg_txqs 5831 */ 5832 err = ice_vsi_start_all_rx_rings(vsi); 5833 if (err) 5834 return err; 5835 5836 clear_bit(ICE_VSI_DOWN, vsi->state); 5837 ice_napi_enable_all(vsi); 5838 ice_vsi_ena_irq(vsi); 5839 5840 if (vsi->port_info && 5841 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5842 vsi->netdev) { 5843 ice_print_link_msg(vsi, true); 5844 netif_tx_start_all_queues(vsi->netdev); 5845 netif_carrier_on(vsi->netdev); 5846 if (!ice_is_e810(&pf->hw)) 5847 ice_ptp_link_change(pf, pf->hw.pf_id, true); 5848 } 5849 5850 /* clear this now, and the first stats read will be used as baseline */ 5851 vsi->stat_offsets_loaded = false; 5852 5853 ice_service_task_schedule(pf); 5854 5855 return 0; 5856 } 5857 5858 /** 5859 * ice_up - Bring the connection back up after being down 5860 * @vsi: VSI being configured 5861 */ 5862 int ice_up(struct ice_vsi *vsi) 5863 { 5864 int err; 5865 5866 err = ice_vsi_cfg(vsi); 5867 if (!err) 5868 err = ice_up_complete(vsi); 5869 5870 return err; 5871 } 5872 5873 /** 5874 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5875 * @syncp: pointer to u64_stats_sync 5876 * @stats: stats that pkts and bytes count will be taken from 5877 * @pkts: packets stats counter 5878 * @bytes: bytes stats counter 5879 * 5880 * This function fetches stats from the ring considering the atomic operations 5881 * that needs to be performed to read u64 values in 32 bit machine. 5882 */ 5883 static void 5884 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 5885 u64 *pkts, u64 *bytes) 5886 { 5887 unsigned int start; 5888 5889 do { 5890 start = u64_stats_fetch_begin_irq(syncp); 5891 *pkts = stats.pkts; 5892 *bytes = stats.bytes; 5893 } while (u64_stats_fetch_retry_irq(syncp, start)); 5894 } 5895 5896 /** 5897 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5898 * @vsi: the VSI to be updated 5899 * @vsi_stats: the stats struct to be updated 5900 * @rings: rings to work on 5901 * @count: number of rings 5902 */ 5903 static void 5904 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 5905 struct rtnl_link_stats64 *vsi_stats, 5906 struct ice_tx_ring **rings, u16 count) 5907 { 5908 u16 i; 5909 5910 for (i = 0; i < count; i++) { 5911 struct ice_tx_ring *ring; 5912 u64 pkts = 0, bytes = 0; 5913 5914 ring = READ_ONCE(rings[i]); 5915 if (ring) 5916 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5917 vsi_stats->tx_packets += pkts; 5918 vsi_stats->tx_bytes += bytes; 5919 vsi->tx_restart += ring->tx_stats.restart_q; 5920 vsi->tx_busy += ring->tx_stats.tx_busy; 5921 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5922 } 5923 } 5924 5925 /** 5926 * ice_update_vsi_ring_stats - Update VSI stats counters 5927 * @vsi: the VSI to be updated 5928 */ 5929 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5930 { 5931 struct rtnl_link_stats64 *vsi_stats; 5932 u64 pkts, bytes; 5933 int i; 5934 5935 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 5936 if (!vsi_stats) 5937 return; 5938 5939 /* reset non-netdev (extended) stats */ 5940 vsi->tx_restart = 0; 5941 vsi->tx_busy = 0; 5942 vsi->tx_linearize = 0; 5943 vsi->rx_buf_failed = 0; 5944 vsi->rx_page_failed = 0; 5945 5946 rcu_read_lock(); 5947 5948 /* update Tx rings counters */ 5949 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 5950 vsi->num_txq); 5951 5952 /* update Rx rings counters */ 5953 ice_for_each_rxq(vsi, i) { 5954 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5955 5956 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5957 vsi_stats->rx_packets += pkts; 5958 vsi_stats->rx_bytes += bytes; 5959 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5960 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5961 } 5962 5963 /* update XDP Tx rings counters */ 5964 if (ice_is_xdp_ena_vsi(vsi)) 5965 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 5966 vsi->num_xdp_txq); 5967 5968 rcu_read_unlock(); 5969 5970 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 5971 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 5972 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 5973 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 5974 5975 kfree(vsi_stats); 5976 } 5977 5978 /** 5979 * ice_update_vsi_stats - Update VSI stats counters 5980 * @vsi: the VSI to be updated 5981 */ 5982 void ice_update_vsi_stats(struct ice_vsi *vsi) 5983 { 5984 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5985 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5986 struct ice_pf *pf = vsi->back; 5987 5988 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5989 test_bit(ICE_CFG_BUSY, pf->state)) 5990 return; 5991 5992 /* get stats as recorded by Tx/Rx rings */ 5993 ice_update_vsi_ring_stats(vsi); 5994 5995 /* get VSI stats as recorded by the hardware */ 5996 ice_update_eth_stats(vsi); 5997 5998 cur_ns->tx_errors = cur_es->tx_errors; 5999 cur_ns->rx_dropped = cur_es->rx_discards; 6000 cur_ns->tx_dropped = cur_es->tx_discards; 6001 cur_ns->multicast = cur_es->rx_multicast; 6002 6003 /* update some more netdev stats if this is main VSI */ 6004 if (vsi->type == ICE_VSI_PF) { 6005 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6006 cur_ns->rx_errors = pf->stats.crc_errors + 6007 pf->stats.illegal_bytes + 6008 pf->stats.rx_len_errors + 6009 pf->stats.rx_undersize + 6010 pf->hw_csum_rx_error + 6011 pf->stats.rx_jabber + 6012 pf->stats.rx_fragments + 6013 pf->stats.rx_oversize; 6014 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6015 /* record drops from the port level */ 6016 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6017 } 6018 } 6019 6020 /** 6021 * ice_update_pf_stats - Update PF port stats counters 6022 * @pf: PF whose stats needs to be updated 6023 */ 6024 void ice_update_pf_stats(struct ice_pf *pf) 6025 { 6026 struct ice_hw_port_stats *prev_ps, *cur_ps; 6027 struct ice_hw *hw = &pf->hw; 6028 u16 fd_ctr_base; 6029 u8 port; 6030 6031 port = hw->port_info->lport; 6032 prev_ps = &pf->stats_prev; 6033 cur_ps = &pf->stats; 6034 6035 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6036 &prev_ps->eth.rx_bytes, 6037 &cur_ps->eth.rx_bytes); 6038 6039 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6040 &prev_ps->eth.rx_unicast, 6041 &cur_ps->eth.rx_unicast); 6042 6043 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6044 &prev_ps->eth.rx_multicast, 6045 &cur_ps->eth.rx_multicast); 6046 6047 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6048 &prev_ps->eth.rx_broadcast, 6049 &cur_ps->eth.rx_broadcast); 6050 6051 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6052 &prev_ps->eth.rx_discards, 6053 &cur_ps->eth.rx_discards); 6054 6055 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6056 &prev_ps->eth.tx_bytes, 6057 &cur_ps->eth.tx_bytes); 6058 6059 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6060 &prev_ps->eth.tx_unicast, 6061 &cur_ps->eth.tx_unicast); 6062 6063 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6064 &prev_ps->eth.tx_multicast, 6065 &cur_ps->eth.tx_multicast); 6066 6067 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6068 &prev_ps->eth.tx_broadcast, 6069 &cur_ps->eth.tx_broadcast); 6070 6071 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6072 &prev_ps->tx_dropped_link_down, 6073 &cur_ps->tx_dropped_link_down); 6074 6075 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6076 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6077 6078 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6079 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6080 6081 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6082 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6083 6084 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6085 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6086 6087 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6088 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6089 6090 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6091 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6092 6093 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6094 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6095 6096 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6097 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6098 6099 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6100 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6101 6102 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6103 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6104 6105 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6106 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6107 6108 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6109 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6110 6111 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6112 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6113 6114 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6115 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6116 6117 fd_ctr_base = hw->fd_ctr_base; 6118 6119 ice_stat_update40(hw, 6120 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6121 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6122 &cur_ps->fd_sb_match); 6123 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6124 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6125 6126 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6127 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6128 6129 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6130 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6131 6132 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6133 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6134 6135 ice_update_dcb_stats(pf); 6136 6137 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6138 &prev_ps->crc_errors, &cur_ps->crc_errors); 6139 6140 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6141 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6142 6143 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6144 &prev_ps->mac_local_faults, 6145 &cur_ps->mac_local_faults); 6146 6147 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6148 &prev_ps->mac_remote_faults, 6149 &cur_ps->mac_remote_faults); 6150 6151 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6152 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6153 6154 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6155 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6156 6157 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6158 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6159 6160 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6161 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6162 6163 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6164 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6165 6166 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6167 6168 pf->stat_prev_loaded = true; 6169 } 6170 6171 /** 6172 * ice_get_stats64 - get statistics for network device structure 6173 * @netdev: network interface device structure 6174 * @stats: main device statistics structure 6175 */ 6176 static 6177 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6178 { 6179 struct ice_netdev_priv *np = netdev_priv(netdev); 6180 struct rtnl_link_stats64 *vsi_stats; 6181 struct ice_vsi *vsi = np->vsi; 6182 6183 vsi_stats = &vsi->net_stats; 6184 6185 if (!vsi->num_txq || !vsi->num_rxq) 6186 return; 6187 6188 /* netdev packet/byte stats come from ring counter. These are obtained 6189 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6190 * But, only call the update routine and read the registers if VSI is 6191 * not down. 6192 */ 6193 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6194 ice_update_vsi_ring_stats(vsi); 6195 stats->tx_packets = vsi_stats->tx_packets; 6196 stats->tx_bytes = vsi_stats->tx_bytes; 6197 stats->rx_packets = vsi_stats->rx_packets; 6198 stats->rx_bytes = vsi_stats->rx_bytes; 6199 6200 /* The rest of the stats can be read from the hardware but instead we 6201 * just return values that the watchdog task has already obtained from 6202 * the hardware. 6203 */ 6204 stats->multicast = vsi_stats->multicast; 6205 stats->tx_errors = vsi_stats->tx_errors; 6206 stats->tx_dropped = vsi_stats->tx_dropped; 6207 stats->rx_errors = vsi_stats->rx_errors; 6208 stats->rx_dropped = vsi_stats->rx_dropped; 6209 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6210 stats->rx_length_errors = vsi_stats->rx_length_errors; 6211 } 6212 6213 /** 6214 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6215 * @vsi: VSI having NAPI disabled 6216 */ 6217 static void ice_napi_disable_all(struct ice_vsi *vsi) 6218 { 6219 int q_idx; 6220 6221 if (!vsi->netdev) 6222 return; 6223 6224 ice_for_each_q_vector(vsi, q_idx) { 6225 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6226 6227 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6228 napi_disable(&q_vector->napi); 6229 6230 cancel_work_sync(&q_vector->tx.dim.work); 6231 cancel_work_sync(&q_vector->rx.dim.work); 6232 } 6233 } 6234 6235 /** 6236 * ice_down - Shutdown the connection 6237 * @vsi: The VSI being stopped 6238 * 6239 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6240 */ 6241 int ice_down(struct ice_vsi *vsi) 6242 { 6243 int i, tx_err, rx_err, link_err = 0; 6244 6245 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6246 6247 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6248 if (!ice_is_e810(&vsi->back->hw)) 6249 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6250 netif_carrier_off(vsi->netdev); 6251 netif_tx_disable(vsi->netdev); 6252 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6253 ice_eswitch_stop_all_tx_queues(vsi->back); 6254 } 6255 6256 ice_vsi_dis_irq(vsi); 6257 6258 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6259 if (tx_err) 6260 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6261 vsi->vsi_num, tx_err); 6262 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6263 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6264 if (tx_err) 6265 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6266 vsi->vsi_num, tx_err); 6267 } 6268 6269 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6270 if (rx_err) 6271 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6272 vsi->vsi_num, rx_err); 6273 6274 ice_napi_disable_all(vsi); 6275 6276 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6277 link_err = ice_force_phys_link_state(vsi, false); 6278 if (link_err) 6279 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6280 vsi->vsi_num, link_err); 6281 } 6282 6283 ice_for_each_txq(vsi, i) 6284 ice_clean_tx_ring(vsi->tx_rings[i]); 6285 6286 ice_for_each_rxq(vsi, i) 6287 ice_clean_rx_ring(vsi->rx_rings[i]); 6288 6289 if (tx_err || rx_err || link_err) { 6290 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6291 vsi->vsi_num, vsi->vsw->sw_id); 6292 return -EIO; 6293 } 6294 6295 return 0; 6296 } 6297 6298 /** 6299 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6300 * @vsi: VSI having resources allocated 6301 * 6302 * Return 0 on success, negative on failure 6303 */ 6304 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6305 { 6306 int i, err = 0; 6307 6308 if (!vsi->num_txq) { 6309 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6310 vsi->vsi_num); 6311 return -EINVAL; 6312 } 6313 6314 ice_for_each_txq(vsi, i) { 6315 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6316 6317 if (!ring) 6318 return -EINVAL; 6319 6320 if (vsi->netdev) 6321 ring->netdev = vsi->netdev; 6322 err = ice_setup_tx_ring(ring); 6323 if (err) 6324 break; 6325 } 6326 6327 return err; 6328 } 6329 6330 /** 6331 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6332 * @vsi: VSI having resources allocated 6333 * 6334 * Return 0 on success, negative on failure 6335 */ 6336 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6337 { 6338 int i, err = 0; 6339 6340 if (!vsi->num_rxq) { 6341 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6342 vsi->vsi_num); 6343 return -EINVAL; 6344 } 6345 6346 ice_for_each_rxq(vsi, i) { 6347 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6348 6349 if (!ring) 6350 return -EINVAL; 6351 6352 if (vsi->netdev) 6353 ring->netdev = vsi->netdev; 6354 err = ice_setup_rx_ring(ring); 6355 if (err) 6356 break; 6357 } 6358 6359 return err; 6360 } 6361 6362 /** 6363 * ice_vsi_open_ctrl - open control VSI for use 6364 * @vsi: the VSI to open 6365 * 6366 * Initialization of the Control VSI 6367 * 6368 * Returns 0 on success, negative value on error 6369 */ 6370 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6371 { 6372 char int_name[ICE_INT_NAME_STR_LEN]; 6373 struct ice_pf *pf = vsi->back; 6374 struct device *dev; 6375 int err; 6376 6377 dev = ice_pf_to_dev(pf); 6378 /* allocate descriptors */ 6379 err = ice_vsi_setup_tx_rings(vsi); 6380 if (err) 6381 goto err_setup_tx; 6382 6383 err = ice_vsi_setup_rx_rings(vsi); 6384 if (err) 6385 goto err_setup_rx; 6386 6387 err = ice_vsi_cfg(vsi); 6388 if (err) 6389 goto err_setup_rx; 6390 6391 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6392 dev_driver_string(dev), dev_name(dev)); 6393 err = ice_vsi_req_irq_msix(vsi, int_name); 6394 if (err) 6395 goto err_setup_rx; 6396 6397 ice_vsi_cfg_msix(vsi); 6398 6399 err = ice_vsi_start_all_rx_rings(vsi); 6400 if (err) 6401 goto err_up_complete; 6402 6403 clear_bit(ICE_VSI_DOWN, vsi->state); 6404 ice_vsi_ena_irq(vsi); 6405 6406 return 0; 6407 6408 err_up_complete: 6409 ice_down(vsi); 6410 err_setup_rx: 6411 ice_vsi_free_rx_rings(vsi); 6412 err_setup_tx: 6413 ice_vsi_free_tx_rings(vsi); 6414 6415 return err; 6416 } 6417 6418 /** 6419 * ice_vsi_open - Called when a network interface is made active 6420 * @vsi: the VSI to open 6421 * 6422 * Initialization of the VSI 6423 * 6424 * Returns 0 on success, negative value on error 6425 */ 6426 int ice_vsi_open(struct ice_vsi *vsi) 6427 { 6428 char int_name[ICE_INT_NAME_STR_LEN]; 6429 struct ice_pf *pf = vsi->back; 6430 int err; 6431 6432 /* allocate descriptors */ 6433 err = ice_vsi_setup_tx_rings(vsi); 6434 if (err) 6435 goto err_setup_tx; 6436 6437 err = ice_vsi_setup_rx_rings(vsi); 6438 if (err) 6439 goto err_setup_rx; 6440 6441 err = ice_vsi_cfg(vsi); 6442 if (err) 6443 goto err_setup_rx; 6444 6445 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6446 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6447 err = ice_vsi_req_irq_msix(vsi, int_name); 6448 if (err) 6449 goto err_setup_rx; 6450 6451 if (vsi->type == ICE_VSI_PF) { 6452 /* Notify the stack of the actual queue counts. */ 6453 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6454 if (err) 6455 goto err_set_qs; 6456 6457 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6458 if (err) 6459 goto err_set_qs; 6460 } 6461 6462 err = ice_up_complete(vsi); 6463 if (err) 6464 goto err_up_complete; 6465 6466 return 0; 6467 6468 err_up_complete: 6469 ice_down(vsi); 6470 err_set_qs: 6471 ice_vsi_free_irq(vsi); 6472 err_setup_rx: 6473 ice_vsi_free_rx_rings(vsi); 6474 err_setup_tx: 6475 ice_vsi_free_tx_rings(vsi); 6476 6477 return err; 6478 } 6479 6480 /** 6481 * ice_vsi_release_all - Delete all VSIs 6482 * @pf: PF from which all VSIs are being removed 6483 */ 6484 static void ice_vsi_release_all(struct ice_pf *pf) 6485 { 6486 int err, i; 6487 6488 if (!pf->vsi) 6489 return; 6490 6491 ice_for_each_vsi(pf, i) { 6492 if (!pf->vsi[i]) 6493 continue; 6494 6495 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6496 continue; 6497 6498 err = ice_vsi_release(pf->vsi[i]); 6499 if (err) 6500 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6501 i, err, pf->vsi[i]->vsi_num); 6502 } 6503 } 6504 6505 /** 6506 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6507 * @pf: pointer to the PF instance 6508 * @type: VSI type to rebuild 6509 * 6510 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6511 */ 6512 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6513 { 6514 struct device *dev = ice_pf_to_dev(pf); 6515 int i, err; 6516 6517 ice_for_each_vsi(pf, i) { 6518 struct ice_vsi *vsi = pf->vsi[i]; 6519 6520 if (!vsi || vsi->type != type) 6521 continue; 6522 6523 /* rebuild the VSI */ 6524 err = ice_vsi_rebuild(vsi, true); 6525 if (err) { 6526 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6527 err, vsi->idx, ice_vsi_type_str(type)); 6528 return err; 6529 } 6530 6531 /* replay filters for the VSI */ 6532 err = ice_replay_vsi(&pf->hw, vsi->idx); 6533 if (err) { 6534 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6535 err, vsi->idx, ice_vsi_type_str(type)); 6536 return err; 6537 } 6538 6539 /* Re-map HW VSI number, using VSI handle that has been 6540 * previously validated in ice_replay_vsi() call above 6541 */ 6542 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6543 6544 /* enable the VSI */ 6545 err = ice_ena_vsi(vsi, false); 6546 if (err) { 6547 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6548 err, vsi->idx, ice_vsi_type_str(type)); 6549 return err; 6550 } 6551 6552 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6553 ice_vsi_type_str(type)); 6554 } 6555 6556 return 0; 6557 } 6558 6559 /** 6560 * ice_update_pf_netdev_link - Update PF netdev link status 6561 * @pf: pointer to the PF instance 6562 */ 6563 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6564 { 6565 bool link_up; 6566 int i; 6567 6568 ice_for_each_vsi(pf, i) { 6569 struct ice_vsi *vsi = pf->vsi[i]; 6570 6571 if (!vsi || vsi->type != ICE_VSI_PF) 6572 return; 6573 6574 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6575 if (link_up) { 6576 netif_carrier_on(pf->vsi[i]->netdev); 6577 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6578 } else { 6579 netif_carrier_off(pf->vsi[i]->netdev); 6580 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6581 } 6582 } 6583 } 6584 6585 /** 6586 * ice_rebuild - rebuild after reset 6587 * @pf: PF to rebuild 6588 * @reset_type: type of reset 6589 * 6590 * Do not rebuild VF VSI in this flow because that is already handled via 6591 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6592 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6593 * to reset/rebuild all the VF VSI twice. 6594 */ 6595 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6596 { 6597 struct device *dev = ice_pf_to_dev(pf); 6598 struct ice_hw *hw = &pf->hw; 6599 int err; 6600 6601 if (test_bit(ICE_DOWN, pf->state)) 6602 goto clear_recovery; 6603 6604 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6605 6606 if (reset_type == ICE_RESET_EMPR) { 6607 /* If an EMP reset has occurred, any previously pending flash 6608 * update will have completed. We no longer know whether or 6609 * not the NVM update EMP reset is restricted. 6610 */ 6611 pf->fw_emp_reset_disabled = false; 6612 } 6613 6614 err = ice_init_all_ctrlq(hw); 6615 if (err) { 6616 dev_err(dev, "control queues init failed %d\n", err); 6617 goto err_init_ctrlq; 6618 } 6619 6620 /* if DDP was previously loaded successfully */ 6621 if (!ice_is_safe_mode(pf)) { 6622 /* reload the SW DB of filter tables */ 6623 if (reset_type == ICE_RESET_PFR) 6624 ice_fill_blk_tbls(hw); 6625 else 6626 /* Reload DDP Package after CORER/GLOBR reset */ 6627 ice_load_pkg(NULL, pf); 6628 } 6629 6630 err = ice_clear_pf_cfg(hw); 6631 if (err) { 6632 dev_err(dev, "clear PF configuration failed %d\n", err); 6633 goto err_init_ctrlq; 6634 } 6635 6636 if (pf->first_sw->dflt_vsi_ena) 6637 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6638 /* clear the default VSI configuration if it exists */ 6639 pf->first_sw->dflt_vsi = NULL; 6640 pf->first_sw->dflt_vsi_ena = false; 6641 6642 ice_clear_pxe_mode(hw); 6643 6644 err = ice_init_nvm(hw); 6645 if (err) { 6646 dev_err(dev, "ice_init_nvm failed %d\n", err); 6647 goto err_init_ctrlq; 6648 } 6649 6650 err = ice_get_caps(hw); 6651 if (err) { 6652 dev_err(dev, "ice_get_caps failed %d\n", err); 6653 goto err_init_ctrlq; 6654 } 6655 6656 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6657 if (err) { 6658 dev_err(dev, "set_mac_cfg failed %d\n", err); 6659 goto err_init_ctrlq; 6660 } 6661 6662 err = ice_sched_init_port(hw->port_info); 6663 if (err) 6664 goto err_sched_init_port; 6665 6666 /* start misc vector */ 6667 err = ice_req_irq_msix_misc(pf); 6668 if (err) { 6669 dev_err(dev, "misc vector setup failed: %d\n", err); 6670 goto err_sched_init_port; 6671 } 6672 6673 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6674 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6675 if (!rd32(hw, PFQF_FD_SIZE)) { 6676 u16 unused, guar, b_effort; 6677 6678 guar = hw->func_caps.fd_fltr_guar; 6679 b_effort = hw->func_caps.fd_fltr_best_effort; 6680 6681 /* force guaranteed filter pool for PF */ 6682 ice_alloc_fd_guar_item(hw, &unused, guar); 6683 /* force shared filter pool for PF */ 6684 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6685 } 6686 } 6687 6688 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6689 ice_dcb_rebuild(pf); 6690 6691 /* If the PF previously had enabled PTP, PTP init needs to happen before 6692 * the VSI rebuild. If not, this causes the PTP link status events to 6693 * fail. 6694 */ 6695 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6696 ice_ptp_reset(pf); 6697 6698 /* rebuild PF VSI */ 6699 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6700 if (err) { 6701 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6702 goto err_vsi_rebuild; 6703 } 6704 6705 /* configure PTP timestamping after VSI rebuild */ 6706 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6707 ice_ptp_cfg_timestamp(pf, false); 6708 6709 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6710 if (err) { 6711 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6712 goto err_vsi_rebuild; 6713 } 6714 6715 if (reset_type == ICE_RESET_PFR) { 6716 err = ice_rebuild_channels(pf); 6717 if (err) { 6718 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6719 err); 6720 goto err_vsi_rebuild; 6721 } 6722 } 6723 6724 /* If Flow Director is active */ 6725 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6726 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6727 if (err) { 6728 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6729 goto err_vsi_rebuild; 6730 } 6731 6732 /* replay HW Flow Director recipes */ 6733 if (hw->fdir_prof) 6734 ice_fdir_replay_flows(hw); 6735 6736 /* replay Flow Director filters */ 6737 ice_fdir_replay_fltrs(pf); 6738 6739 ice_rebuild_arfs(pf); 6740 } 6741 6742 ice_update_pf_netdev_link(pf); 6743 6744 /* tell the firmware we are up */ 6745 err = ice_send_version(pf); 6746 if (err) { 6747 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6748 err); 6749 goto err_vsi_rebuild; 6750 } 6751 6752 ice_replay_post(hw); 6753 6754 /* if we get here, reset flow is successful */ 6755 clear_bit(ICE_RESET_FAILED, pf->state); 6756 6757 ice_plug_aux_dev(pf); 6758 return; 6759 6760 err_vsi_rebuild: 6761 err_sched_init_port: 6762 ice_sched_cleanup_all(hw); 6763 err_init_ctrlq: 6764 ice_shutdown_all_ctrlq(hw); 6765 set_bit(ICE_RESET_FAILED, pf->state); 6766 clear_recovery: 6767 /* set this bit in PF state to control service task scheduling */ 6768 set_bit(ICE_NEEDS_RESTART, pf->state); 6769 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6770 } 6771 6772 /** 6773 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6774 * @vsi: Pointer to VSI structure 6775 */ 6776 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6777 { 6778 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6779 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6780 else 6781 return ICE_RXBUF_3072; 6782 } 6783 6784 /** 6785 * ice_change_mtu - NDO callback to change the MTU 6786 * @netdev: network interface device structure 6787 * @new_mtu: new value for maximum frame size 6788 * 6789 * Returns 0 on success, negative on failure 6790 */ 6791 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6792 { 6793 struct ice_netdev_priv *np = netdev_priv(netdev); 6794 struct ice_vsi *vsi = np->vsi; 6795 struct ice_pf *pf = vsi->back; 6796 struct iidc_event *event; 6797 u8 count = 0; 6798 int err = 0; 6799 6800 if (new_mtu == (int)netdev->mtu) { 6801 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6802 return 0; 6803 } 6804 6805 if (ice_is_xdp_ena_vsi(vsi)) { 6806 int frame_size = ice_max_xdp_frame_size(vsi); 6807 6808 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6809 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6810 frame_size - ICE_ETH_PKT_HDR_PAD); 6811 return -EINVAL; 6812 } 6813 } 6814 6815 /* if a reset is in progress, wait for some time for it to complete */ 6816 do { 6817 if (ice_is_reset_in_progress(pf->state)) { 6818 count++; 6819 usleep_range(1000, 2000); 6820 } else { 6821 break; 6822 } 6823 6824 } while (count < 100); 6825 6826 if (count == 100) { 6827 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6828 return -EBUSY; 6829 } 6830 6831 event = kzalloc(sizeof(*event), GFP_KERNEL); 6832 if (!event) 6833 return -ENOMEM; 6834 6835 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6836 ice_send_event_to_aux(pf, event); 6837 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6838 6839 netdev->mtu = (unsigned int)new_mtu; 6840 6841 /* if VSI is up, bring it down and then back up */ 6842 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6843 err = ice_down(vsi); 6844 if (err) { 6845 netdev_err(netdev, "change MTU if_down err %d\n", err); 6846 goto event_after; 6847 } 6848 6849 err = ice_up(vsi); 6850 if (err) { 6851 netdev_err(netdev, "change MTU if_up err %d\n", err); 6852 goto event_after; 6853 } 6854 } 6855 6856 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6857 event_after: 6858 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6859 ice_send_event_to_aux(pf, event); 6860 kfree(event); 6861 6862 return err; 6863 } 6864 6865 /** 6866 * ice_eth_ioctl - Access the hwtstamp interface 6867 * @netdev: network interface device structure 6868 * @ifr: interface request data 6869 * @cmd: ioctl command 6870 */ 6871 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6872 { 6873 struct ice_netdev_priv *np = netdev_priv(netdev); 6874 struct ice_pf *pf = np->vsi->back; 6875 6876 switch (cmd) { 6877 case SIOCGHWTSTAMP: 6878 return ice_ptp_get_ts_config(pf, ifr); 6879 case SIOCSHWTSTAMP: 6880 return ice_ptp_set_ts_config(pf, ifr); 6881 default: 6882 return -EOPNOTSUPP; 6883 } 6884 } 6885 6886 /** 6887 * ice_aq_str - convert AQ err code to a string 6888 * @aq_err: the AQ error code to convert 6889 */ 6890 const char *ice_aq_str(enum ice_aq_err aq_err) 6891 { 6892 switch (aq_err) { 6893 case ICE_AQ_RC_OK: 6894 return "OK"; 6895 case ICE_AQ_RC_EPERM: 6896 return "ICE_AQ_RC_EPERM"; 6897 case ICE_AQ_RC_ENOENT: 6898 return "ICE_AQ_RC_ENOENT"; 6899 case ICE_AQ_RC_ENOMEM: 6900 return "ICE_AQ_RC_ENOMEM"; 6901 case ICE_AQ_RC_EBUSY: 6902 return "ICE_AQ_RC_EBUSY"; 6903 case ICE_AQ_RC_EEXIST: 6904 return "ICE_AQ_RC_EEXIST"; 6905 case ICE_AQ_RC_EINVAL: 6906 return "ICE_AQ_RC_EINVAL"; 6907 case ICE_AQ_RC_ENOSPC: 6908 return "ICE_AQ_RC_ENOSPC"; 6909 case ICE_AQ_RC_ENOSYS: 6910 return "ICE_AQ_RC_ENOSYS"; 6911 case ICE_AQ_RC_EMODE: 6912 return "ICE_AQ_RC_EMODE"; 6913 case ICE_AQ_RC_ENOSEC: 6914 return "ICE_AQ_RC_ENOSEC"; 6915 case ICE_AQ_RC_EBADSIG: 6916 return "ICE_AQ_RC_EBADSIG"; 6917 case ICE_AQ_RC_ESVN: 6918 return "ICE_AQ_RC_ESVN"; 6919 case ICE_AQ_RC_EBADMAN: 6920 return "ICE_AQ_RC_EBADMAN"; 6921 case ICE_AQ_RC_EBADBUF: 6922 return "ICE_AQ_RC_EBADBUF"; 6923 } 6924 6925 return "ICE_AQ_RC_UNKNOWN"; 6926 } 6927 6928 /** 6929 * ice_set_rss_lut - Set RSS LUT 6930 * @vsi: Pointer to VSI structure 6931 * @lut: Lookup table 6932 * @lut_size: Lookup table size 6933 * 6934 * Returns 0 on success, negative on failure 6935 */ 6936 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6937 { 6938 struct ice_aq_get_set_rss_lut_params params = {}; 6939 struct ice_hw *hw = &vsi->back->hw; 6940 int status; 6941 6942 if (!lut) 6943 return -EINVAL; 6944 6945 params.vsi_handle = vsi->idx; 6946 params.lut_size = lut_size; 6947 params.lut_type = vsi->rss_lut_type; 6948 params.lut = lut; 6949 6950 status = ice_aq_set_rss_lut(hw, ¶ms); 6951 if (status) 6952 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 6953 status, ice_aq_str(hw->adminq.sq_last_status)); 6954 6955 return status; 6956 } 6957 6958 /** 6959 * ice_set_rss_key - Set RSS key 6960 * @vsi: Pointer to the VSI structure 6961 * @seed: RSS hash seed 6962 * 6963 * Returns 0 on success, negative on failure 6964 */ 6965 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6966 { 6967 struct ice_hw *hw = &vsi->back->hw; 6968 int status; 6969 6970 if (!seed) 6971 return -EINVAL; 6972 6973 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6974 if (status) 6975 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 6976 status, ice_aq_str(hw->adminq.sq_last_status)); 6977 6978 return status; 6979 } 6980 6981 /** 6982 * ice_get_rss_lut - Get RSS LUT 6983 * @vsi: Pointer to VSI structure 6984 * @lut: Buffer to store the lookup table entries 6985 * @lut_size: Size of buffer to store the lookup table entries 6986 * 6987 * Returns 0 on success, negative on failure 6988 */ 6989 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6990 { 6991 struct ice_aq_get_set_rss_lut_params params = {}; 6992 struct ice_hw *hw = &vsi->back->hw; 6993 int status; 6994 6995 if (!lut) 6996 return -EINVAL; 6997 6998 params.vsi_handle = vsi->idx; 6999 params.lut_size = lut_size; 7000 params.lut_type = vsi->rss_lut_type; 7001 params.lut = lut; 7002 7003 status = ice_aq_get_rss_lut(hw, ¶ms); 7004 if (status) 7005 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7006 status, ice_aq_str(hw->adminq.sq_last_status)); 7007 7008 return status; 7009 } 7010 7011 /** 7012 * ice_get_rss_key - Get RSS key 7013 * @vsi: Pointer to VSI structure 7014 * @seed: Buffer to store the key in 7015 * 7016 * Returns 0 on success, negative on failure 7017 */ 7018 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7019 { 7020 struct ice_hw *hw = &vsi->back->hw; 7021 int status; 7022 7023 if (!seed) 7024 return -EINVAL; 7025 7026 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7027 if (status) 7028 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7029 status, ice_aq_str(hw->adminq.sq_last_status)); 7030 7031 return status; 7032 } 7033 7034 /** 7035 * ice_bridge_getlink - Get the hardware bridge mode 7036 * @skb: skb buff 7037 * @pid: process ID 7038 * @seq: RTNL message seq 7039 * @dev: the netdev being configured 7040 * @filter_mask: filter mask passed in 7041 * @nlflags: netlink flags passed in 7042 * 7043 * Return the bridge mode (VEB/VEPA) 7044 */ 7045 static int 7046 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7047 struct net_device *dev, u32 filter_mask, int nlflags) 7048 { 7049 struct ice_netdev_priv *np = netdev_priv(dev); 7050 struct ice_vsi *vsi = np->vsi; 7051 struct ice_pf *pf = vsi->back; 7052 u16 bmode; 7053 7054 bmode = pf->first_sw->bridge_mode; 7055 7056 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7057 filter_mask, NULL); 7058 } 7059 7060 /** 7061 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7062 * @vsi: Pointer to VSI structure 7063 * @bmode: Hardware bridge mode (VEB/VEPA) 7064 * 7065 * Returns 0 on success, negative on failure 7066 */ 7067 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7068 { 7069 struct ice_aqc_vsi_props *vsi_props; 7070 struct ice_hw *hw = &vsi->back->hw; 7071 struct ice_vsi_ctx *ctxt; 7072 int ret; 7073 7074 vsi_props = &vsi->info; 7075 7076 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7077 if (!ctxt) 7078 return -ENOMEM; 7079 7080 ctxt->info = vsi->info; 7081 7082 if (bmode == BRIDGE_MODE_VEB) 7083 /* change from VEPA to VEB mode */ 7084 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7085 else 7086 /* change from VEB to VEPA mode */ 7087 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7088 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7089 7090 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7091 if (ret) { 7092 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7093 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7094 goto out; 7095 } 7096 /* Update sw flags for book keeping */ 7097 vsi_props->sw_flags = ctxt->info.sw_flags; 7098 7099 out: 7100 kfree(ctxt); 7101 return ret; 7102 } 7103 7104 /** 7105 * ice_bridge_setlink - Set the hardware bridge mode 7106 * @dev: the netdev being configured 7107 * @nlh: RTNL message 7108 * @flags: bridge setlink flags 7109 * @extack: netlink extended ack 7110 * 7111 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7112 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7113 * not already set for all VSIs connected to this switch. And also update the 7114 * unicast switch filter rules for the corresponding switch of the netdev. 7115 */ 7116 static int 7117 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7118 u16 __always_unused flags, 7119 struct netlink_ext_ack __always_unused *extack) 7120 { 7121 struct ice_netdev_priv *np = netdev_priv(dev); 7122 struct ice_pf *pf = np->vsi->back; 7123 struct nlattr *attr, *br_spec; 7124 struct ice_hw *hw = &pf->hw; 7125 struct ice_sw *pf_sw; 7126 int rem, v, err = 0; 7127 7128 pf_sw = pf->first_sw; 7129 /* find the attribute in the netlink message */ 7130 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7131 7132 nla_for_each_nested(attr, br_spec, rem) { 7133 __u16 mode; 7134 7135 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7136 continue; 7137 mode = nla_get_u16(attr); 7138 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7139 return -EINVAL; 7140 /* Continue if bridge mode is not being flipped */ 7141 if (mode == pf_sw->bridge_mode) 7142 continue; 7143 /* Iterates through the PF VSI list and update the loopback 7144 * mode of the VSI 7145 */ 7146 ice_for_each_vsi(pf, v) { 7147 if (!pf->vsi[v]) 7148 continue; 7149 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7150 if (err) 7151 return err; 7152 } 7153 7154 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7155 /* Update the unicast switch filter rules for the corresponding 7156 * switch of the netdev 7157 */ 7158 err = ice_update_sw_rule_bridge_mode(hw); 7159 if (err) { 7160 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7161 mode, err, 7162 ice_aq_str(hw->adminq.sq_last_status)); 7163 /* revert hw->evb_veb */ 7164 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7165 return err; 7166 } 7167 7168 pf_sw->bridge_mode = mode; 7169 } 7170 7171 return 0; 7172 } 7173 7174 /** 7175 * ice_tx_timeout - Respond to a Tx Hang 7176 * @netdev: network interface device structure 7177 * @txqueue: Tx queue 7178 */ 7179 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7180 { 7181 struct ice_netdev_priv *np = netdev_priv(netdev); 7182 struct ice_tx_ring *tx_ring = NULL; 7183 struct ice_vsi *vsi = np->vsi; 7184 struct ice_pf *pf = vsi->back; 7185 u32 i; 7186 7187 pf->tx_timeout_count++; 7188 7189 /* Check if PFC is enabled for the TC to which the queue belongs 7190 * to. If yes then Tx timeout is not caused by a hung queue, no 7191 * need to reset and rebuild 7192 */ 7193 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7194 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7195 txqueue); 7196 return; 7197 } 7198 7199 /* now that we have an index, find the tx_ring struct */ 7200 ice_for_each_txq(vsi, i) 7201 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7202 if (txqueue == vsi->tx_rings[i]->q_index) { 7203 tx_ring = vsi->tx_rings[i]; 7204 break; 7205 } 7206 7207 /* Reset recovery level if enough time has elapsed after last timeout. 7208 * Also ensure no new reset action happens before next timeout period. 7209 */ 7210 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7211 pf->tx_timeout_recovery_level = 1; 7212 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7213 netdev->watchdog_timeo))) 7214 return; 7215 7216 if (tx_ring) { 7217 struct ice_hw *hw = &pf->hw; 7218 u32 head, val = 0; 7219 7220 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7221 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7222 /* Read interrupt register */ 7223 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7224 7225 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7226 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7227 head, tx_ring->next_to_use, val); 7228 } 7229 7230 pf->tx_timeout_last_recovery = jiffies; 7231 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7232 pf->tx_timeout_recovery_level, txqueue); 7233 7234 switch (pf->tx_timeout_recovery_level) { 7235 case 1: 7236 set_bit(ICE_PFR_REQ, pf->state); 7237 break; 7238 case 2: 7239 set_bit(ICE_CORER_REQ, pf->state); 7240 break; 7241 case 3: 7242 set_bit(ICE_GLOBR_REQ, pf->state); 7243 break; 7244 default: 7245 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7246 set_bit(ICE_DOWN, pf->state); 7247 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7248 set_bit(ICE_SERVICE_DIS, pf->state); 7249 break; 7250 } 7251 7252 ice_service_task_schedule(pf); 7253 pf->tx_timeout_recovery_level++; 7254 } 7255 7256 /** 7257 * ice_setup_tc_cls_flower - flower classifier offloads 7258 * @np: net device to configure 7259 * @filter_dev: device on which filter is added 7260 * @cls_flower: offload data 7261 */ 7262 static int 7263 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7264 struct net_device *filter_dev, 7265 struct flow_cls_offload *cls_flower) 7266 { 7267 struct ice_vsi *vsi = np->vsi; 7268 7269 if (cls_flower->common.chain_index) 7270 return -EOPNOTSUPP; 7271 7272 switch (cls_flower->command) { 7273 case FLOW_CLS_REPLACE: 7274 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7275 case FLOW_CLS_DESTROY: 7276 return ice_del_cls_flower(vsi, cls_flower); 7277 default: 7278 return -EINVAL; 7279 } 7280 } 7281 7282 /** 7283 * ice_setup_tc_block_cb - callback handler registered for TC block 7284 * @type: TC SETUP type 7285 * @type_data: TC flower offload data that contains user input 7286 * @cb_priv: netdev private data 7287 */ 7288 static int 7289 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7290 { 7291 struct ice_netdev_priv *np = cb_priv; 7292 7293 switch (type) { 7294 case TC_SETUP_CLSFLOWER: 7295 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7296 type_data); 7297 default: 7298 return -EOPNOTSUPP; 7299 } 7300 } 7301 7302 /** 7303 * ice_validate_mqprio_qopt - Validate TCF input parameters 7304 * @vsi: Pointer to VSI 7305 * @mqprio_qopt: input parameters for mqprio queue configuration 7306 * 7307 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7308 * needed), and make sure user doesn't specify qcount and BW rate limit 7309 * for TCs, which are more than "num_tc" 7310 */ 7311 static int 7312 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7313 struct tc_mqprio_qopt_offload *mqprio_qopt) 7314 { 7315 u64 sum_max_rate = 0, sum_min_rate = 0; 7316 int non_power_of_2_qcount = 0; 7317 struct ice_pf *pf = vsi->back; 7318 int max_rss_q_cnt = 0; 7319 struct device *dev; 7320 int i, speed; 7321 u8 num_tc; 7322 7323 if (vsi->type != ICE_VSI_PF) 7324 return -EINVAL; 7325 7326 if (mqprio_qopt->qopt.offset[0] != 0 || 7327 mqprio_qopt->qopt.num_tc < 1 || 7328 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7329 return -EINVAL; 7330 7331 dev = ice_pf_to_dev(pf); 7332 vsi->ch_rss_size = 0; 7333 num_tc = mqprio_qopt->qopt.num_tc; 7334 7335 for (i = 0; num_tc; i++) { 7336 int qcount = mqprio_qopt->qopt.count[i]; 7337 u64 max_rate, min_rate, rem; 7338 7339 if (!qcount) 7340 return -EINVAL; 7341 7342 if (is_power_of_2(qcount)) { 7343 if (non_power_of_2_qcount && 7344 qcount > non_power_of_2_qcount) { 7345 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7346 qcount, non_power_of_2_qcount); 7347 return -EINVAL; 7348 } 7349 if (qcount > max_rss_q_cnt) 7350 max_rss_q_cnt = qcount; 7351 } else { 7352 if (non_power_of_2_qcount && 7353 qcount != non_power_of_2_qcount) { 7354 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7355 qcount, non_power_of_2_qcount); 7356 return -EINVAL; 7357 } 7358 if (qcount < max_rss_q_cnt) { 7359 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7360 qcount, max_rss_q_cnt); 7361 return -EINVAL; 7362 } 7363 max_rss_q_cnt = qcount; 7364 non_power_of_2_qcount = qcount; 7365 } 7366 7367 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7368 * converts the bandwidth rate limit into Bytes/s when 7369 * passing it down to the driver. So convert input bandwidth 7370 * from Bytes/s to Kbps 7371 */ 7372 max_rate = mqprio_qopt->max_rate[i]; 7373 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7374 sum_max_rate += max_rate; 7375 7376 /* min_rate is minimum guaranteed rate and it can't be zero */ 7377 min_rate = mqprio_qopt->min_rate[i]; 7378 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7379 sum_min_rate += min_rate; 7380 7381 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7382 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7383 min_rate, ICE_MIN_BW_LIMIT); 7384 return -EINVAL; 7385 } 7386 7387 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7388 if (rem) { 7389 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7390 i, ICE_MIN_BW_LIMIT); 7391 return -EINVAL; 7392 } 7393 7394 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7395 if (rem) { 7396 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7397 i, ICE_MIN_BW_LIMIT); 7398 return -EINVAL; 7399 } 7400 7401 /* min_rate can't be more than max_rate, except when max_rate 7402 * is zero (implies max_rate sought is max line rate). In such 7403 * a case min_rate can be more than max. 7404 */ 7405 if (max_rate && min_rate > max_rate) { 7406 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7407 min_rate, max_rate); 7408 return -EINVAL; 7409 } 7410 7411 if (i >= mqprio_qopt->qopt.num_tc - 1) 7412 break; 7413 if (mqprio_qopt->qopt.offset[i + 1] != 7414 (mqprio_qopt->qopt.offset[i] + qcount)) 7415 return -EINVAL; 7416 } 7417 if (vsi->num_rxq < 7418 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7419 return -EINVAL; 7420 if (vsi->num_txq < 7421 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7422 return -EINVAL; 7423 7424 speed = ice_get_link_speed_kbps(vsi); 7425 if (sum_max_rate && sum_max_rate > (u64)speed) { 7426 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7427 sum_max_rate, speed); 7428 return -EINVAL; 7429 } 7430 if (sum_min_rate && sum_min_rate > (u64)speed) { 7431 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7432 sum_min_rate, speed); 7433 return -EINVAL; 7434 } 7435 7436 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7437 vsi->ch_rss_size = max_rss_q_cnt; 7438 7439 return 0; 7440 } 7441 7442 /** 7443 * ice_add_channel - add a channel by adding VSI 7444 * @pf: ptr to PF device 7445 * @sw_id: underlying HW switching element ID 7446 * @ch: ptr to channel structure 7447 * 7448 * Add a channel (VSI) using add_vsi and queue_map 7449 */ 7450 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7451 { 7452 struct device *dev = ice_pf_to_dev(pf); 7453 struct ice_vsi *vsi; 7454 7455 if (ch->type != ICE_VSI_CHNL) { 7456 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7457 return -EINVAL; 7458 } 7459 7460 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7461 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7462 dev_err(dev, "create chnl VSI failure\n"); 7463 return -EINVAL; 7464 } 7465 7466 ch->sw_id = sw_id; 7467 ch->vsi_num = vsi->vsi_num; 7468 ch->info.mapping_flags = vsi->info.mapping_flags; 7469 ch->ch_vsi = vsi; 7470 /* set the back pointer of channel for newly created VSI */ 7471 vsi->ch = ch; 7472 7473 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7474 sizeof(vsi->info.q_mapping)); 7475 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7476 sizeof(vsi->info.tc_mapping)); 7477 7478 return 0; 7479 } 7480 7481 /** 7482 * ice_chnl_cfg_res 7483 * @vsi: the VSI being setup 7484 * @ch: ptr to channel structure 7485 * 7486 * Configure channel specific resources such as rings, vector. 7487 */ 7488 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7489 { 7490 int i; 7491 7492 for (i = 0; i < ch->num_txq; i++) { 7493 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7494 struct ice_ring_container *rc; 7495 struct ice_tx_ring *tx_ring; 7496 struct ice_rx_ring *rx_ring; 7497 7498 tx_ring = vsi->tx_rings[ch->base_q + i]; 7499 rx_ring = vsi->rx_rings[ch->base_q + i]; 7500 if (!tx_ring || !rx_ring) 7501 continue; 7502 7503 /* setup ring being channel enabled */ 7504 tx_ring->ch = ch; 7505 rx_ring->ch = ch; 7506 7507 /* following code block sets up vector specific attributes */ 7508 tx_q_vector = tx_ring->q_vector; 7509 rx_q_vector = rx_ring->q_vector; 7510 if (!tx_q_vector && !rx_q_vector) 7511 continue; 7512 7513 if (tx_q_vector) { 7514 tx_q_vector->ch = ch; 7515 /* setup Tx and Rx ITR setting if DIM is off */ 7516 rc = &tx_q_vector->tx; 7517 if (!ITR_IS_DYNAMIC(rc)) 7518 ice_write_itr(rc, rc->itr_setting); 7519 } 7520 if (rx_q_vector) { 7521 rx_q_vector->ch = ch; 7522 /* setup Tx and Rx ITR setting if DIM is off */ 7523 rc = &rx_q_vector->rx; 7524 if (!ITR_IS_DYNAMIC(rc)) 7525 ice_write_itr(rc, rc->itr_setting); 7526 } 7527 } 7528 7529 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7530 * GLINT_ITR register would have written to perform in-context 7531 * update, hence perform flush 7532 */ 7533 if (ch->num_txq || ch->num_rxq) 7534 ice_flush(&vsi->back->hw); 7535 } 7536 7537 /** 7538 * ice_cfg_chnl_all_res - configure channel resources 7539 * @vsi: pte to main_vsi 7540 * @ch: ptr to channel structure 7541 * 7542 * This function configures channel specific resources such as flow-director 7543 * counter index, and other resources such as queues, vectors, ITR settings 7544 */ 7545 static void 7546 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7547 { 7548 /* configure channel (aka ADQ) resources such as queues, vectors, 7549 * ITR settings for channel specific vectors and anything else 7550 */ 7551 ice_chnl_cfg_res(vsi, ch); 7552 } 7553 7554 /** 7555 * ice_setup_hw_channel - setup new channel 7556 * @pf: ptr to PF device 7557 * @vsi: the VSI being setup 7558 * @ch: ptr to channel structure 7559 * @sw_id: underlying HW switching element ID 7560 * @type: type of channel to be created (VMDq2/VF) 7561 * 7562 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7563 * and configures Tx rings accordingly 7564 */ 7565 static int 7566 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7567 struct ice_channel *ch, u16 sw_id, u8 type) 7568 { 7569 struct device *dev = ice_pf_to_dev(pf); 7570 int ret; 7571 7572 ch->base_q = vsi->next_base_q; 7573 ch->type = type; 7574 7575 ret = ice_add_channel(pf, sw_id, ch); 7576 if (ret) { 7577 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7578 return ret; 7579 } 7580 7581 /* configure/setup ADQ specific resources */ 7582 ice_cfg_chnl_all_res(vsi, ch); 7583 7584 /* make sure to update the next_base_q so that subsequent channel's 7585 * (aka ADQ) VSI queue map is correct 7586 */ 7587 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7588 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7589 ch->num_rxq); 7590 7591 return 0; 7592 } 7593 7594 /** 7595 * ice_setup_channel - setup new channel using uplink element 7596 * @pf: ptr to PF device 7597 * @vsi: the VSI being setup 7598 * @ch: ptr to channel structure 7599 * 7600 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7601 * and uplink switching element 7602 */ 7603 static bool 7604 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7605 struct ice_channel *ch) 7606 { 7607 struct device *dev = ice_pf_to_dev(pf); 7608 u16 sw_id; 7609 int ret; 7610 7611 if (vsi->type != ICE_VSI_PF) { 7612 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7613 return false; 7614 } 7615 7616 sw_id = pf->first_sw->sw_id; 7617 7618 /* create channel (VSI) */ 7619 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7620 if (ret) { 7621 dev_err(dev, "failed to setup hw_channel\n"); 7622 return false; 7623 } 7624 dev_dbg(dev, "successfully created channel()\n"); 7625 7626 return ch->ch_vsi ? true : false; 7627 } 7628 7629 /** 7630 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7631 * @vsi: VSI to be configured 7632 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7633 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7634 */ 7635 static int 7636 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7637 { 7638 int err; 7639 7640 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7641 if (err) 7642 return err; 7643 7644 return ice_set_max_bw_limit(vsi, max_tx_rate); 7645 } 7646 7647 /** 7648 * ice_create_q_channel - function to create channel 7649 * @vsi: VSI to be configured 7650 * @ch: ptr to channel (it contains channel specific params) 7651 * 7652 * This function creates channel (VSI) using num_queues specified by user, 7653 * reconfigs RSS if needed. 7654 */ 7655 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7656 { 7657 struct ice_pf *pf = vsi->back; 7658 struct device *dev; 7659 7660 if (!ch) 7661 return -EINVAL; 7662 7663 dev = ice_pf_to_dev(pf); 7664 if (!ch->num_txq || !ch->num_rxq) { 7665 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7666 return -EINVAL; 7667 } 7668 7669 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7670 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7671 vsi->cnt_q_avail, ch->num_txq); 7672 return -EINVAL; 7673 } 7674 7675 if (!ice_setup_channel(pf, vsi, ch)) { 7676 dev_info(dev, "Failed to setup channel\n"); 7677 return -EINVAL; 7678 } 7679 /* configure BW rate limit */ 7680 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7681 int ret; 7682 7683 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7684 ch->min_tx_rate); 7685 if (ret) 7686 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7687 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7688 else 7689 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7690 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7691 } 7692 7693 vsi->cnt_q_avail -= ch->num_txq; 7694 7695 return 0; 7696 } 7697 7698 /** 7699 * ice_rem_all_chnl_fltrs - removes all channel filters 7700 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7701 * 7702 * Remove all advanced switch filters only if they are channel specific 7703 * tc-flower based filter 7704 */ 7705 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7706 { 7707 struct ice_tc_flower_fltr *fltr; 7708 struct hlist_node *node; 7709 7710 /* to remove all channel filters, iterate an ordered list of filters */ 7711 hlist_for_each_entry_safe(fltr, node, 7712 &pf->tc_flower_fltr_list, 7713 tc_flower_node) { 7714 struct ice_rule_query_data rule; 7715 int status; 7716 7717 /* for now process only channel specific filters */ 7718 if (!ice_is_chnl_fltr(fltr)) 7719 continue; 7720 7721 rule.rid = fltr->rid; 7722 rule.rule_id = fltr->rule_id; 7723 rule.vsi_handle = fltr->dest_id; 7724 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 7725 if (status) { 7726 if (status == -ENOENT) 7727 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 7728 rule.rule_id); 7729 else 7730 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 7731 status); 7732 } else if (fltr->dest_vsi) { 7733 /* update advanced switch filter count */ 7734 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 7735 u32 flags = fltr->flags; 7736 7737 fltr->dest_vsi->num_chnl_fltr--; 7738 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 7739 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 7740 pf->num_dmac_chnl_fltrs--; 7741 } 7742 } 7743 7744 hlist_del(&fltr->tc_flower_node); 7745 kfree(fltr); 7746 } 7747 } 7748 7749 /** 7750 * ice_remove_q_channels - Remove queue channels for the TCs 7751 * @vsi: VSI to be configured 7752 * @rem_fltr: delete advanced switch filter or not 7753 * 7754 * Remove queue channels for the TCs 7755 */ 7756 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 7757 { 7758 struct ice_channel *ch, *ch_tmp; 7759 struct ice_pf *pf = vsi->back; 7760 int i; 7761 7762 /* remove all tc-flower based filter if they are channel filters only */ 7763 if (rem_fltr) 7764 ice_rem_all_chnl_fltrs(pf); 7765 7766 /* perform cleanup for channels if they exist */ 7767 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 7768 struct ice_vsi *ch_vsi; 7769 7770 list_del(&ch->list); 7771 ch_vsi = ch->ch_vsi; 7772 if (!ch_vsi) { 7773 kfree(ch); 7774 continue; 7775 } 7776 7777 /* Reset queue contexts */ 7778 for (i = 0; i < ch->num_rxq; i++) { 7779 struct ice_tx_ring *tx_ring; 7780 struct ice_rx_ring *rx_ring; 7781 7782 tx_ring = vsi->tx_rings[ch->base_q + i]; 7783 rx_ring = vsi->rx_rings[ch->base_q + i]; 7784 if (tx_ring) { 7785 tx_ring->ch = NULL; 7786 if (tx_ring->q_vector) 7787 tx_ring->q_vector->ch = NULL; 7788 } 7789 if (rx_ring) { 7790 rx_ring->ch = NULL; 7791 if (rx_ring->q_vector) 7792 rx_ring->q_vector->ch = NULL; 7793 } 7794 } 7795 7796 /* clear the VSI from scheduler tree */ 7797 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 7798 7799 /* Delete VSI from FW */ 7800 ice_vsi_delete(ch->ch_vsi); 7801 7802 /* Delete VSI from PF and HW VSI arrays */ 7803 ice_vsi_clear(ch->ch_vsi); 7804 7805 /* free the channel */ 7806 kfree(ch); 7807 } 7808 7809 /* clear the channel VSI map which is stored in main VSI */ 7810 ice_for_each_chnl_tc(i) 7811 vsi->tc_map_vsi[i] = NULL; 7812 7813 /* reset main VSI's all TC information */ 7814 vsi->all_enatc = 0; 7815 vsi->all_numtc = 0; 7816 } 7817 7818 /** 7819 * ice_rebuild_channels - rebuild channel 7820 * @pf: ptr to PF 7821 * 7822 * Recreate channel VSIs and replay filters 7823 */ 7824 static int ice_rebuild_channels(struct ice_pf *pf) 7825 { 7826 struct device *dev = ice_pf_to_dev(pf); 7827 struct ice_vsi *main_vsi; 7828 bool rem_adv_fltr = true; 7829 struct ice_channel *ch; 7830 struct ice_vsi *vsi; 7831 int tc_idx = 1; 7832 int i, err; 7833 7834 main_vsi = ice_get_main_vsi(pf); 7835 if (!main_vsi) 7836 return 0; 7837 7838 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 7839 main_vsi->old_numtc == 1) 7840 return 0; /* nothing to be done */ 7841 7842 /* reconfigure main VSI based on old value of TC and cached values 7843 * for MQPRIO opts 7844 */ 7845 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 7846 if (err) { 7847 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 7848 main_vsi->old_ena_tc, main_vsi->vsi_num); 7849 return err; 7850 } 7851 7852 /* rebuild ADQ VSIs */ 7853 ice_for_each_vsi(pf, i) { 7854 enum ice_vsi_type type; 7855 7856 vsi = pf->vsi[i]; 7857 if (!vsi || vsi->type != ICE_VSI_CHNL) 7858 continue; 7859 7860 type = vsi->type; 7861 7862 /* rebuild ADQ VSI */ 7863 err = ice_vsi_rebuild(vsi, true); 7864 if (err) { 7865 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 7866 ice_vsi_type_str(type), vsi->idx, err); 7867 goto cleanup; 7868 } 7869 7870 /* Re-map HW VSI number, using VSI handle that has been 7871 * previously validated in ice_replay_vsi() call above 7872 */ 7873 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7874 7875 /* replay filters for the VSI */ 7876 err = ice_replay_vsi(&pf->hw, vsi->idx); 7877 if (err) { 7878 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 7879 ice_vsi_type_str(type), err, vsi->idx); 7880 rem_adv_fltr = false; 7881 goto cleanup; 7882 } 7883 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 7884 ice_vsi_type_str(type), vsi->idx); 7885 7886 /* store ADQ VSI at correct TC index in main VSI's 7887 * map of TC to VSI 7888 */ 7889 main_vsi->tc_map_vsi[tc_idx++] = vsi; 7890 } 7891 7892 /* ADQ VSI(s) has been rebuilt successfully, so setup 7893 * channel for main VSI's Tx and Rx rings 7894 */ 7895 list_for_each_entry(ch, &main_vsi->ch_list, list) { 7896 struct ice_vsi *ch_vsi; 7897 7898 ch_vsi = ch->ch_vsi; 7899 if (!ch_vsi) 7900 continue; 7901 7902 /* reconfig channel resources */ 7903 ice_cfg_chnl_all_res(main_vsi, ch); 7904 7905 /* replay BW rate limit if it is non-zero */ 7906 if (!ch->max_tx_rate && !ch->min_tx_rate) 7907 continue; 7908 7909 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 7910 ch->min_tx_rate); 7911 if (err) 7912 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 7913 err, ch->max_tx_rate, ch->min_tx_rate, 7914 ch_vsi->vsi_num); 7915 else 7916 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 7917 ch->max_tx_rate, ch->min_tx_rate, 7918 ch_vsi->vsi_num); 7919 } 7920 7921 /* reconfig RSS for main VSI */ 7922 if (main_vsi->ch_rss_size) 7923 ice_vsi_cfg_rss_lut_key(main_vsi); 7924 7925 return 0; 7926 7927 cleanup: 7928 ice_remove_q_channels(main_vsi, rem_adv_fltr); 7929 return err; 7930 } 7931 7932 /** 7933 * ice_create_q_channels - Add queue channel for the given TCs 7934 * @vsi: VSI to be configured 7935 * 7936 * Configures queue channel mapping to the given TCs 7937 */ 7938 static int ice_create_q_channels(struct ice_vsi *vsi) 7939 { 7940 struct ice_pf *pf = vsi->back; 7941 struct ice_channel *ch; 7942 int ret = 0, i; 7943 7944 ice_for_each_chnl_tc(i) { 7945 if (!(vsi->all_enatc & BIT(i))) 7946 continue; 7947 7948 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7949 if (!ch) { 7950 ret = -ENOMEM; 7951 goto err_free; 7952 } 7953 INIT_LIST_HEAD(&ch->list); 7954 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 7955 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 7956 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 7957 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 7958 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 7959 7960 /* convert to Kbits/s */ 7961 if (ch->max_tx_rate) 7962 ch->max_tx_rate = div_u64(ch->max_tx_rate, 7963 ICE_BW_KBPS_DIVISOR); 7964 if (ch->min_tx_rate) 7965 ch->min_tx_rate = div_u64(ch->min_tx_rate, 7966 ICE_BW_KBPS_DIVISOR); 7967 7968 ret = ice_create_q_channel(vsi, ch); 7969 if (ret) { 7970 dev_err(ice_pf_to_dev(pf), 7971 "failed creating channel TC:%d\n", i); 7972 kfree(ch); 7973 goto err_free; 7974 } 7975 list_add_tail(&ch->list, &vsi->ch_list); 7976 vsi->tc_map_vsi[i] = ch->ch_vsi; 7977 dev_dbg(ice_pf_to_dev(pf), 7978 "successfully created channel: VSI %pK\n", ch->ch_vsi); 7979 } 7980 return 0; 7981 7982 err_free: 7983 ice_remove_q_channels(vsi, false); 7984 7985 return ret; 7986 } 7987 7988 /** 7989 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 7990 * @netdev: net device to configure 7991 * @type_data: TC offload data 7992 */ 7993 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 7994 { 7995 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7996 struct ice_netdev_priv *np = netdev_priv(netdev); 7997 struct ice_vsi *vsi = np->vsi; 7998 struct ice_pf *pf = vsi->back; 7999 u16 mode, ena_tc_qdisc = 0; 8000 int cur_txq, cur_rxq; 8001 u8 hw = 0, num_tcf; 8002 struct device *dev; 8003 int ret, i; 8004 8005 dev = ice_pf_to_dev(pf); 8006 num_tcf = mqprio_qopt->qopt.num_tc; 8007 hw = mqprio_qopt->qopt.hw; 8008 mode = mqprio_qopt->mode; 8009 if (!hw) { 8010 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8011 vsi->ch_rss_size = 0; 8012 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8013 goto config_tcf; 8014 } 8015 8016 /* Generate queue region map for number of TCF requested */ 8017 for (i = 0; i < num_tcf; i++) 8018 ena_tc_qdisc |= BIT(i); 8019 8020 switch (mode) { 8021 case TC_MQPRIO_MODE_CHANNEL: 8022 8023 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8024 if (ret) { 8025 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8026 ret); 8027 return ret; 8028 } 8029 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8030 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8031 /* don't assume state of hw_tc_offload during driver load 8032 * and set the flag for TC flower filter if hw_tc_offload 8033 * already ON 8034 */ 8035 if (vsi->netdev->features & NETIF_F_HW_TC) 8036 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8037 break; 8038 default: 8039 return -EINVAL; 8040 } 8041 8042 config_tcf: 8043 8044 /* Requesting same TCF configuration as already enabled */ 8045 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8046 mode != TC_MQPRIO_MODE_CHANNEL) 8047 return 0; 8048 8049 /* Pause VSI queues */ 8050 ice_dis_vsi(vsi, true); 8051 8052 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8053 ice_remove_q_channels(vsi, true); 8054 8055 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8056 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8057 num_online_cpus()); 8058 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8059 num_online_cpus()); 8060 } else { 8061 /* logic to rebuild VSI, same like ethtool -L */ 8062 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8063 8064 for (i = 0; i < num_tcf; i++) { 8065 if (!(ena_tc_qdisc & BIT(i))) 8066 continue; 8067 8068 offset = vsi->mqprio_qopt.qopt.offset[i]; 8069 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8070 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8071 } 8072 vsi->req_txq = offset + qcount_tx; 8073 vsi->req_rxq = offset + qcount_rx; 8074 8075 /* store away original rss_size info, so that it gets reused 8076 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8077 * determine, what should be the rss_sizefor main VSI 8078 */ 8079 vsi->orig_rss_size = vsi->rss_size; 8080 } 8081 8082 /* save current values of Tx and Rx queues before calling VSI rebuild 8083 * for fallback option 8084 */ 8085 cur_txq = vsi->num_txq; 8086 cur_rxq = vsi->num_rxq; 8087 8088 /* proceed with rebuild main VSI using correct number of queues */ 8089 ret = ice_vsi_rebuild(vsi, false); 8090 if (ret) { 8091 /* fallback to current number of queues */ 8092 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8093 vsi->req_txq = cur_txq; 8094 vsi->req_rxq = cur_rxq; 8095 clear_bit(ICE_RESET_FAILED, pf->state); 8096 if (ice_vsi_rebuild(vsi, false)) { 8097 dev_err(dev, "Rebuild of main VSI failed again\n"); 8098 return ret; 8099 } 8100 } 8101 8102 vsi->all_numtc = num_tcf; 8103 vsi->all_enatc = ena_tc_qdisc; 8104 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8105 if (ret) { 8106 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8107 vsi->vsi_num); 8108 goto exit; 8109 } 8110 8111 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8112 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8113 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8114 8115 /* set TC0 rate limit if specified */ 8116 if (max_tx_rate || min_tx_rate) { 8117 /* convert to Kbits/s */ 8118 if (max_tx_rate) 8119 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8120 if (min_tx_rate) 8121 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8122 8123 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8124 if (!ret) { 8125 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8126 max_tx_rate, min_tx_rate, vsi->vsi_num); 8127 } else { 8128 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8129 max_tx_rate, min_tx_rate, vsi->vsi_num); 8130 goto exit; 8131 } 8132 } 8133 ret = ice_create_q_channels(vsi); 8134 if (ret) { 8135 netdev_err(netdev, "failed configuring queue channels\n"); 8136 goto exit; 8137 } else { 8138 netdev_dbg(netdev, "successfully configured channels\n"); 8139 } 8140 } 8141 8142 if (vsi->ch_rss_size) 8143 ice_vsi_cfg_rss_lut_key(vsi); 8144 8145 exit: 8146 /* if error, reset the all_numtc and all_enatc */ 8147 if (ret) { 8148 vsi->all_numtc = 0; 8149 vsi->all_enatc = 0; 8150 } 8151 /* resume VSI */ 8152 ice_ena_vsi(vsi, true); 8153 8154 return ret; 8155 } 8156 8157 static LIST_HEAD(ice_block_cb_list); 8158 8159 static int 8160 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8161 void *type_data) 8162 { 8163 struct ice_netdev_priv *np = netdev_priv(netdev); 8164 struct ice_pf *pf = np->vsi->back; 8165 int err; 8166 8167 switch (type) { 8168 case TC_SETUP_BLOCK: 8169 return flow_block_cb_setup_simple(type_data, 8170 &ice_block_cb_list, 8171 ice_setup_tc_block_cb, 8172 np, np, true); 8173 case TC_SETUP_QDISC_MQPRIO: 8174 /* setup traffic classifier for receive side */ 8175 mutex_lock(&pf->tc_mutex); 8176 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8177 mutex_unlock(&pf->tc_mutex); 8178 return err; 8179 default: 8180 return -EOPNOTSUPP; 8181 } 8182 return -EOPNOTSUPP; 8183 } 8184 8185 static struct ice_indr_block_priv * 8186 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8187 struct net_device *netdev) 8188 { 8189 struct ice_indr_block_priv *cb_priv; 8190 8191 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8192 if (!cb_priv->netdev) 8193 return NULL; 8194 if (cb_priv->netdev == netdev) 8195 return cb_priv; 8196 } 8197 return NULL; 8198 } 8199 8200 static int 8201 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8202 void *indr_priv) 8203 { 8204 struct ice_indr_block_priv *priv = indr_priv; 8205 struct ice_netdev_priv *np = priv->np; 8206 8207 switch (type) { 8208 case TC_SETUP_CLSFLOWER: 8209 return ice_setup_tc_cls_flower(np, priv->netdev, 8210 (struct flow_cls_offload *) 8211 type_data); 8212 default: 8213 return -EOPNOTSUPP; 8214 } 8215 } 8216 8217 static int 8218 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8219 struct ice_netdev_priv *np, 8220 struct flow_block_offload *f, void *data, 8221 void (*cleanup)(struct flow_block_cb *block_cb)) 8222 { 8223 struct ice_indr_block_priv *indr_priv; 8224 struct flow_block_cb *block_cb; 8225 8226 if (!ice_is_tunnel_supported(netdev) && 8227 !(is_vlan_dev(netdev) && 8228 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8229 return -EOPNOTSUPP; 8230 8231 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8232 return -EOPNOTSUPP; 8233 8234 switch (f->command) { 8235 case FLOW_BLOCK_BIND: 8236 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8237 if (indr_priv) 8238 return -EEXIST; 8239 8240 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8241 if (!indr_priv) 8242 return -ENOMEM; 8243 8244 indr_priv->netdev = netdev; 8245 indr_priv->np = np; 8246 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8247 8248 block_cb = 8249 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8250 indr_priv, indr_priv, 8251 ice_rep_indr_tc_block_unbind, 8252 f, netdev, sch, data, np, 8253 cleanup); 8254 8255 if (IS_ERR(block_cb)) { 8256 list_del(&indr_priv->list); 8257 kfree(indr_priv); 8258 return PTR_ERR(block_cb); 8259 } 8260 flow_block_cb_add(block_cb, f); 8261 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8262 break; 8263 case FLOW_BLOCK_UNBIND: 8264 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8265 if (!indr_priv) 8266 return -ENOENT; 8267 8268 block_cb = flow_block_cb_lookup(f->block, 8269 ice_indr_setup_block_cb, 8270 indr_priv); 8271 if (!block_cb) 8272 return -ENOENT; 8273 8274 flow_indr_block_cb_remove(block_cb, f); 8275 8276 list_del(&block_cb->driver_list); 8277 break; 8278 default: 8279 return -EOPNOTSUPP; 8280 } 8281 return 0; 8282 } 8283 8284 static int 8285 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8286 void *cb_priv, enum tc_setup_type type, void *type_data, 8287 void *data, 8288 void (*cleanup)(struct flow_block_cb *block_cb)) 8289 { 8290 switch (type) { 8291 case TC_SETUP_BLOCK: 8292 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8293 data, cleanup); 8294 8295 default: 8296 return -EOPNOTSUPP; 8297 } 8298 } 8299 8300 /** 8301 * ice_open - Called when a network interface becomes active 8302 * @netdev: network interface device structure 8303 * 8304 * The open entry point is called when a network interface is made 8305 * active by the system (IFF_UP). At this point all resources needed 8306 * for transmit and receive operations are allocated, the interrupt 8307 * handler is registered with the OS, the netdev watchdog is enabled, 8308 * and the stack is notified that the interface is ready. 8309 * 8310 * Returns 0 on success, negative value on failure 8311 */ 8312 int ice_open(struct net_device *netdev) 8313 { 8314 struct ice_netdev_priv *np = netdev_priv(netdev); 8315 struct ice_pf *pf = np->vsi->back; 8316 8317 if (ice_is_reset_in_progress(pf->state)) { 8318 netdev_err(netdev, "can't open net device while reset is in progress"); 8319 return -EBUSY; 8320 } 8321 8322 return ice_open_internal(netdev); 8323 } 8324 8325 /** 8326 * ice_open_internal - Called when a network interface becomes active 8327 * @netdev: network interface device structure 8328 * 8329 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8330 * handling routine 8331 * 8332 * Returns 0 on success, negative value on failure 8333 */ 8334 int ice_open_internal(struct net_device *netdev) 8335 { 8336 struct ice_netdev_priv *np = netdev_priv(netdev); 8337 struct ice_vsi *vsi = np->vsi; 8338 struct ice_pf *pf = vsi->back; 8339 struct ice_port_info *pi; 8340 int err; 8341 8342 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8343 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8344 return -EIO; 8345 } 8346 8347 netif_carrier_off(netdev); 8348 8349 pi = vsi->port_info; 8350 err = ice_update_link_info(pi); 8351 if (err) { 8352 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8353 return err; 8354 } 8355 8356 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8357 8358 /* Set PHY if there is media, otherwise, turn off PHY */ 8359 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8360 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8361 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8362 err = ice_init_phy_user_cfg(pi); 8363 if (err) { 8364 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8365 err); 8366 return err; 8367 } 8368 } 8369 8370 err = ice_configure_phy(vsi); 8371 if (err) { 8372 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8373 err); 8374 return err; 8375 } 8376 } else { 8377 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8378 ice_set_link(vsi, false); 8379 } 8380 8381 err = ice_vsi_open(vsi); 8382 if (err) 8383 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8384 vsi->vsi_num, vsi->vsw->sw_id); 8385 8386 /* Update existing tunnels information */ 8387 udp_tunnel_get_rx_info(netdev); 8388 8389 return err; 8390 } 8391 8392 /** 8393 * ice_stop - Disables a network interface 8394 * @netdev: network interface device structure 8395 * 8396 * The stop entry point is called when an interface is de-activated by the OS, 8397 * and the netdevice enters the DOWN state. The hardware is still under the 8398 * driver's control, but the netdev interface is disabled. 8399 * 8400 * Returns success only - not allowed to fail 8401 */ 8402 int ice_stop(struct net_device *netdev) 8403 { 8404 struct ice_netdev_priv *np = netdev_priv(netdev); 8405 struct ice_vsi *vsi = np->vsi; 8406 struct ice_pf *pf = vsi->back; 8407 8408 if (ice_is_reset_in_progress(pf->state)) { 8409 netdev_err(netdev, "can't stop net device while reset is in progress"); 8410 return -EBUSY; 8411 } 8412 8413 ice_vsi_close(vsi); 8414 8415 return 0; 8416 } 8417 8418 /** 8419 * ice_features_check - Validate encapsulated packet conforms to limits 8420 * @skb: skb buffer 8421 * @netdev: This port's netdev 8422 * @features: Offload features that the stack believes apply 8423 */ 8424 static netdev_features_t 8425 ice_features_check(struct sk_buff *skb, 8426 struct net_device __always_unused *netdev, 8427 netdev_features_t features) 8428 { 8429 size_t len; 8430 8431 /* No point in doing any of this if neither checksum nor GSO are 8432 * being requested for this frame. We can rule out both by just 8433 * checking for CHECKSUM_PARTIAL 8434 */ 8435 if (skb->ip_summed != CHECKSUM_PARTIAL) 8436 return features; 8437 8438 /* We cannot support GSO if the MSS is going to be less than 8439 * 64 bytes. If it is then we need to drop support for GSO. 8440 */ 8441 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 8442 features &= ~NETIF_F_GSO_MASK; 8443 8444 len = skb_network_header(skb) - skb->data; 8445 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8446 goto out_rm_features; 8447 8448 len = skb_transport_header(skb) - skb_network_header(skb); 8449 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8450 goto out_rm_features; 8451 8452 if (skb->encapsulation) { 8453 len = skb_inner_network_header(skb) - skb_transport_header(skb); 8454 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8455 goto out_rm_features; 8456 8457 len = skb_inner_transport_header(skb) - 8458 skb_inner_network_header(skb); 8459 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8460 goto out_rm_features; 8461 } 8462 8463 return features; 8464 out_rm_features: 8465 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8466 } 8467 8468 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8469 .ndo_open = ice_open, 8470 .ndo_stop = ice_stop, 8471 .ndo_start_xmit = ice_start_xmit, 8472 .ndo_set_mac_address = ice_set_mac_address, 8473 .ndo_validate_addr = eth_validate_addr, 8474 .ndo_change_mtu = ice_change_mtu, 8475 .ndo_get_stats64 = ice_get_stats64, 8476 .ndo_tx_timeout = ice_tx_timeout, 8477 .ndo_bpf = ice_xdp_safe_mode, 8478 }; 8479 8480 static const struct net_device_ops ice_netdev_ops = { 8481 .ndo_open = ice_open, 8482 .ndo_stop = ice_stop, 8483 .ndo_start_xmit = ice_start_xmit, 8484 .ndo_select_queue = ice_select_queue, 8485 .ndo_features_check = ice_features_check, 8486 .ndo_set_rx_mode = ice_set_rx_mode, 8487 .ndo_set_mac_address = ice_set_mac_address, 8488 .ndo_validate_addr = eth_validate_addr, 8489 .ndo_change_mtu = ice_change_mtu, 8490 .ndo_get_stats64 = ice_get_stats64, 8491 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8492 .ndo_eth_ioctl = ice_eth_ioctl, 8493 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8494 .ndo_set_vf_mac = ice_set_vf_mac, 8495 .ndo_get_vf_config = ice_get_vf_cfg, 8496 .ndo_set_vf_trust = ice_set_vf_trust, 8497 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8498 .ndo_set_vf_link_state = ice_set_vf_link_state, 8499 .ndo_get_vf_stats = ice_get_vf_stats, 8500 .ndo_set_vf_rate = ice_set_vf_bw, 8501 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8502 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8503 .ndo_setup_tc = ice_setup_tc, 8504 .ndo_set_features = ice_set_features, 8505 .ndo_bridge_getlink = ice_bridge_getlink, 8506 .ndo_bridge_setlink = ice_bridge_setlink, 8507 .ndo_fdb_add = ice_fdb_add, 8508 .ndo_fdb_del = ice_fdb_del, 8509 #ifdef CONFIG_RFS_ACCEL 8510 .ndo_rx_flow_steer = ice_rx_flow_steer, 8511 #endif 8512 .ndo_tx_timeout = ice_tx_timeout, 8513 .ndo_bpf = ice_xdp, 8514 .ndo_xdp_xmit = ice_xdp_xmit, 8515 .ndo_xsk_wakeup = ice_xsk_wakeup, 8516 }; 8517