1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 bool netif_is_ice(struct net_device *dev) 48 { 49 return dev && (dev->netdev_ops == &ice_netdev_ops); 50 } 51 52 /** 53 * ice_get_tx_pending - returns number of Tx descriptors not processed 54 * @ring: the ring of descriptors 55 */ 56 static u16 ice_get_tx_pending(struct ice_ring *ring) 57 { 58 u16 head, tail; 59 60 head = ring->next_to_clean; 61 tail = ring->next_to_use; 62 63 if (head != tail) 64 return (head < tail) ? 65 tail - head : (tail + ring->count - head); 66 return 0; 67 } 68 69 /** 70 * ice_check_for_hang_subtask - check for and recover hung queues 71 * @pf: pointer to PF struct 72 */ 73 static void ice_check_for_hang_subtask(struct ice_pf *pf) 74 { 75 struct ice_vsi *vsi = NULL; 76 struct ice_hw *hw; 77 unsigned int i; 78 int packets; 79 u32 v; 80 81 ice_for_each_vsi(pf, v) 82 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 83 vsi = pf->vsi[v]; 84 break; 85 } 86 87 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 88 return; 89 90 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 91 return; 92 93 hw = &vsi->back->hw; 94 95 for (i = 0; i < vsi->num_txq; i++) { 96 struct ice_ring *tx_ring = vsi->tx_rings[i]; 97 98 if (tx_ring && tx_ring->desc) { 99 /* If packet counter has not changed the queue is 100 * likely stalled, so force an interrupt for this 101 * queue. 102 * 103 * prev_pkt would be negative if there was no 104 * pending work. 105 */ 106 packets = tx_ring->stats.pkts & INT_MAX; 107 if (tx_ring->tx_stats.prev_pkt == packets) { 108 /* Trigger sw interrupt to revive the queue */ 109 ice_trigger_sw_intr(hw, tx_ring->q_vector); 110 continue; 111 } 112 113 /* Memory barrier between read of packet count and call 114 * to ice_get_tx_pending() 115 */ 116 smp_rmb(); 117 tx_ring->tx_stats.prev_pkt = 118 ice_get_tx_pending(tx_ring) ? packets : -1; 119 } 120 } 121 } 122 123 /** 124 * ice_init_mac_fltr - Set initial MAC filters 125 * @pf: board private structure 126 * 127 * Set initial set of MAC filters for PF VSI; configure filters for permanent 128 * address and broadcast address. If an error is encountered, netdevice will be 129 * unregistered. 130 */ 131 static int ice_init_mac_fltr(struct ice_pf *pf) 132 { 133 enum ice_status status; 134 struct ice_vsi *vsi; 135 u8 *perm_addr; 136 137 vsi = ice_get_main_vsi(pf); 138 if (!vsi) 139 return -EINVAL; 140 141 perm_addr = vsi->port_info->mac.perm_addr; 142 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 143 if (!status) 144 return 0; 145 146 /* We aren't useful with no MAC filters, so unregister if we 147 * had an error 148 */ 149 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 150 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 151 ice_stat_str(status)); 152 unregister_netdev(vsi->netdev); 153 free_netdev(vsi->netdev); 154 vsi->netdev = NULL; 155 } 156 157 return -EIO; 158 } 159 160 /** 161 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 162 * @netdev: the net device on which the sync is happening 163 * @addr: MAC address to sync 164 * 165 * This is a callback function which is called by the in kernel device sync 166 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 167 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 168 * MAC filters from the hardware. 169 */ 170 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 171 { 172 struct ice_netdev_priv *np = netdev_priv(netdev); 173 struct ice_vsi *vsi = np->vsi; 174 175 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 176 ICE_FWD_TO_VSI)) 177 return -EINVAL; 178 179 return 0; 180 } 181 182 /** 183 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 184 * @netdev: the net device on which the unsync is happening 185 * @addr: MAC address to unsync 186 * 187 * This is a callback function which is called by the in kernel device unsync 188 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 189 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 190 * delete the MAC filters from the hardware. 191 */ 192 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 193 { 194 struct ice_netdev_priv *np = netdev_priv(netdev); 195 struct ice_vsi *vsi = np->vsi; 196 197 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 198 ICE_FWD_TO_VSI)) 199 return -EINVAL; 200 201 return 0; 202 } 203 204 /** 205 * ice_vsi_fltr_changed - check if filter state changed 206 * @vsi: VSI to be checked 207 * 208 * returns true if filter state has changed, false otherwise. 209 */ 210 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 211 { 212 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 213 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 214 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 215 } 216 217 /** 218 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 219 * @vsi: the VSI being configured 220 * @promisc_m: mask of promiscuous config bits 221 * @set_promisc: enable or disable promisc flag request 222 * 223 */ 224 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 225 { 226 struct ice_hw *hw = &vsi->back->hw; 227 enum ice_status status = 0; 228 229 if (vsi->type != ICE_VSI_PF) 230 return 0; 231 232 if (vsi->num_vlan > 1) { 233 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 234 set_promisc); 235 } else { 236 if (set_promisc) 237 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 238 0); 239 else 240 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 241 0); 242 } 243 244 if (status) 245 return -EIO; 246 247 return 0; 248 } 249 250 /** 251 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 252 * @vsi: ptr to the VSI 253 * 254 * Push any outstanding VSI filter changes through the AdminQ. 255 */ 256 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 257 { 258 struct device *dev = ice_pf_to_dev(vsi->back); 259 struct net_device *netdev = vsi->netdev; 260 bool promisc_forced_on = false; 261 struct ice_pf *pf = vsi->back; 262 struct ice_hw *hw = &pf->hw; 263 enum ice_status status = 0; 264 u32 changed_flags = 0; 265 u8 promisc_m; 266 int err = 0; 267 268 if (!vsi->netdev) 269 return -EINVAL; 270 271 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 272 usleep_range(1000, 2000); 273 274 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 275 vsi->current_netdev_flags = vsi->netdev->flags; 276 277 INIT_LIST_HEAD(&vsi->tmp_sync_list); 278 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 279 280 if (ice_vsi_fltr_changed(vsi)) { 281 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 282 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 283 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 284 285 /* grab the netdev's addr_list_lock */ 286 netif_addr_lock_bh(netdev); 287 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 288 ice_add_mac_to_unsync_list); 289 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 290 ice_add_mac_to_unsync_list); 291 /* our temp lists are populated. release lock */ 292 netif_addr_unlock_bh(netdev); 293 } 294 295 /* Remove MAC addresses in the unsync list */ 296 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 297 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 298 if (status) { 299 netdev_err(netdev, "Failed to delete MAC filters\n"); 300 /* if we failed because of alloc failures, just bail */ 301 if (status == ICE_ERR_NO_MEMORY) { 302 err = -ENOMEM; 303 goto out; 304 } 305 } 306 307 /* Add MAC addresses in the sync list */ 308 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 309 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 310 /* If filter is added successfully or already exists, do not go into 311 * 'if' condition and report it as error. Instead continue processing 312 * rest of the function. 313 */ 314 if (status && status != ICE_ERR_ALREADY_EXISTS) { 315 netdev_err(netdev, "Failed to add MAC filters\n"); 316 /* If there is no more space for new umac filters, VSI 317 * should go into promiscuous mode. There should be some 318 * space reserved for promiscuous filters. 319 */ 320 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 321 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 322 vsi->state)) { 323 promisc_forced_on = true; 324 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 325 vsi->vsi_num); 326 } else { 327 err = -EIO; 328 goto out; 329 } 330 } 331 /* check for changes in promiscuous modes */ 332 if (changed_flags & IFF_ALLMULTI) { 333 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 334 if (vsi->num_vlan > 1) 335 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 336 else 337 promisc_m = ICE_MCAST_PROMISC_BITS; 338 339 err = ice_cfg_promisc(vsi, promisc_m, true); 340 if (err) { 341 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 342 vsi->vsi_num); 343 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 344 goto out_promisc; 345 } 346 } else { 347 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 348 if (vsi->num_vlan > 1) 349 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 350 else 351 promisc_m = ICE_MCAST_PROMISC_BITS; 352 353 err = ice_cfg_promisc(vsi, promisc_m, false); 354 if (err) { 355 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 356 vsi->vsi_num); 357 vsi->current_netdev_flags |= IFF_ALLMULTI; 358 goto out_promisc; 359 } 360 } 361 } 362 363 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 364 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 365 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 366 if (vsi->current_netdev_flags & IFF_PROMISC) { 367 /* Apply Rx filter rule to get traffic from wire */ 368 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 369 err = ice_set_dflt_vsi(pf->first_sw, vsi); 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 372 err, vsi->vsi_num); 373 vsi->current_netdev_flags &= 374 ~IFF_PROMISC; 375 goto out_promisc; 376 } 377 ice_cfg_vlan_pruning(vsi, false, false); 378 } 379 } else { 380 /* Clear Rx filter to remove traffic from wire */ 381 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 382 err = ice_clear_dflt_vsi(pf->first_sw); 383 if (err) { 384 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 385 err, vsi->vsi_num); 386 vsi->current_netdev_flags |= 387 IFF_PROMISC; 388 goto out_promisc; 389 } 390 if (vsi->num_vlan > 1) 391 ice_cfg_vlan_pruning(vsi, true, false); 392 } 393 } 394 } 395 goto exit; 396 397 out_promisc: 398 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 399 goto exit; 400 out: 401 /* if something went wrong then set the changed flag so we try again */ 402 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 403 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 404 exit: 405 clear_bit(__ICE_CFG_BUSY, vsi->state); 406 return err; 407 } 408 409 /** 410 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 411 * @pf: board private structure 412 */ 413 static void ice_sync_fltr_subtask(struct ice_pf *pf) 414 { 415 int v; 416 417 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 418 return; 419 420 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 421 422 ice_for_each_vsi(pf, v) 423 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 424 ice_vsi_sync_fltr(pf->vsi[v])) { 425 /* come back and try again later */ 426 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 427 break; 428 } 429 } 430 431 /** 432 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 433 * @pf: the PF 434 * @locked: is the rtnl_lock already held 435 */ 436 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 437 { 438 int node; 439 int v; 440 441 ice_for_each_vsi(pf, v) 442 if (pf->vsi[v]) 443 ice_dis_vsi(pf->vsi[v], locked); 444 445 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 446 pf->pf_agg_node[node].num_vsis = 0; 447 448 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 449 pf->vf_agg_node[node].num_vsis = 0; 450 451 } 452 453 /** 454 * ice_prepare_for_reset - prep for the core to reset 455 * @pf: board private structure 456 * 457 * Inform or close all dependent features in prep for reset. 458 */ 459 static void 460 ice_prepare_for_reset(struct ice_pf *pf) 461 { 462 struct ice_hw *hw = &pf->hw; 463 unsigned int i; 464 465 /* already prepared for reset */ 466 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 467 return; 468 469 /* Notify VFs of impending reset */ 470 if (ice_check_sq_alive(hw, &hw->mailboxq)) 471 ice_vc_notify_reset(pf); 472 473 /* Disable VFs until reset is completed */ 474 ice_for_each_vf(pf, i) 475 ice_set_vf_state_qs_dis(&pf->vf[i]); 476 477 /* clear SW filtering DB */ 478 ice_clear_hw_tbls(hw); 479 /* disable the VSIs and their queues that are not already DOWN */ 480 ice_pf_dis_all_vsi(pf, false); 481 482 if (hw->port_info) 483 ice_sched_clear_port(hw->port_info); 484 485 ice_shutdown_all_ctrlq(hw); 486 487 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 488 } 489 490 /** 491 * ice_do_reset - Initiate one of many types of resets 492 * @pf: board private structure 493 * @reset_type: reset type requested 494 * before this function was called. 495 */ 496 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 497 { 498 struct device *dev = ice_pf_to_dev(pf); 499 struct ice_hw *hw = &pf->hw; 500 501 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 502 503 ice_prepare_for_reset(pf); 504 505 /* trigger the reset */ 506 if (ice_reset(hw, reset_type)) { 507 dev_err(dev, "reset %d failed\n", reset_type); 508 set_bit(__ICE_RESET_FAILED, pf->state); 509 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 510 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 511 clear_bit(__ICE_PFR_REQ, pf->state); 512 clear_bit(__ICE_CORER_REQ, pf->state); 513 clear_bit(__ICE_GLOBR_REQ, pf->state); 514 return; 515 } 516 517 /* PFR is a bit of a special case because it doesn't result in an OICR 518 * interrupt. So for PFR, rebuild after the reset and clear the reset- 519 * associated state bits. 520 */ 521 if (reset_type == ICE_RESET_PFR) { 522 pf->pfr_count++; 523 ice_rebuild(pf, reset_type); 524 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 525 clear_bit(__ICE_PFR_REQ, pf->state); 526 ice_reset_all_vfs(pf, true); 527 } 528 } 529 530 /** 531 * ice_reset_subtask - Set up for resetting the device and driver 532 * @pf: board private structure 533 */ 534 static void ice_reset_subtask(struct ice_pf *pf) 535 { 536 enum ice_reset_req reset_type = ICE_RESET_INVAL; 537 538 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 539 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 540 * of reset is pending and sets bits in pf->state indicating the reset 541 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 542 * prepare for pending reset if not already (for PF software-initiated 543 * global resets the software should already be prepared for it as 544 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 545 * by firmware or software on other PFs, that bit is not set so prepare 546 * for the reset now), poll for reset done, rebuild and return. 547 */ 548 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 549 /* Perform the largest reset requested */ 550 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 551 reset_type = ICE_RESET_CORER; 552 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 553 reset_type = ICE_RESET_GLOBR; 554 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 555 reset_type = ICE_RESET_EMPR; 556 /* return if no valid reset type requested */ 557 if (reset_type == ICE_RESET_INVAL) 558 return; 559 ice_prepare_for_reset(pf); 560 561 /* make sure we are ready to rebuild */ 562 if (ice_check_reset(&pf->hw)) { 563 set_bit(__ICE_RESET_FAILED, pf->state); 564 } else { 565 /* done with reset. start rebuild */ 566 pf->hw.reset_ongoing = false; 567 ice_rebuild(pf, reset_type); 568 /* clear bit to resume normal operations, but 569 * ICE_NEEDS_RESTART bit is set in case rebuild failed 570 */ 571 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 572 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 573 clear_bit(__ICE_PFR_REQ, pf->state); 574 clear_bit(__ICE_CORER_REQ, pf->state); 575 clear_bit(__ICE_GLOBR_REQ, pf->state); 576 ice_reset_all_vfs(pf, true); 577 } 578 579 return; 580 } 581 582 /* No pending resets to finish processing. Check for new resets */ 583 if (test_bit(__ICE_PFR_REQ, pf->state)) 584 reset_type = ICE_RESET_PFR; 585 if (test_bit(__ICE_CORER_REQ, pf->state)) 586 reset_type = ICE_RESET_CORER; 587 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 588 reset_type = ICE_RESET_GLOBR; 589 /* If no valid reset type requested just return */ 590 if (reset_type == ICE_RESET_INVAL) 591 return; 592 593 /* reset if not already down or busy */ 594 if (!test_bit(__ICE_DOWN, pf->state) && 595 !test_bit(__ICE_CFG_BUSY, pf->state)) { 596 ice_do_reset(pf, reset_type); 597 } 598 } 599 600 /** 601 * ice_print_topo_conflict - print topology conflict message 602 * @vsi: the VSI whose topology status is being checked 603 */ 604 static void ice_print_topo_conflict(struct ice_vsi *vsi) 605 { 606 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 607 case ICE_AQ_LINK_TOPO_CONFLICT: 608 case ICE_AQ_LINK_MEDIA_CONFLICT: 609 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 610 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 611 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 612 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 613 break; 614 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 615 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 616 break; 617 default: 618 break; 619 } 620 } 621 622 /** 623 * ice_print_link_msg - print link up or down message 624 * @vsi: the VSI whose link status is being queried 625 * @isup: boolean for if the link is now up or down 626 */ 627 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 628 { 629 struct ice_aqc_get_phy_caps_data *caps; 630 const char *an_advertised; 631 enum ice_status status; 632 const char *fec_req; 633 const char *speed; 634 const char *fec; 635 const char *fc; 636 const char *an; 637 638 if (!vsi) 639 return; 640 641 if (vsi->current_isup == isup) 642 return; 643 644 vsi->current_isup = isup; 645 646 if (!isup) { 647 netdev_info(vsi->netdev, "NIC Link is Down\n"); 648 return; 649 } 650 651 switch (vsi->port_info->phy.link_info.link_speed) { 652 case ICE_AQ_LINK_SPEED_100GB: 653 speed = "100 G"; 654 break; 655 case ICE_AQ_LINK_SPEED_50GB: 656 speed = "50 G"; 657 break; 658 case ICE_AQ_LINK_SPEED_40GB: 659 speed = "40 G"; 660 break; 661 case ICE_AQ_LINK_SPEED_25GB: 662 speed = "25 G"; 663 break; 664 case ICE_AQ_LINK_SPEED_20GB: 665 speed = "20 G"; 666 break; 667 case ICE_AQ_LINK_SPEED_10GB: 668 speed = "10 G"; 669 break; 670 case ICE_AQ_LINK_SPEED_5GB: 671 speed = "5 G"; 672 break; 673 case ICE_AQ_LINK_SPEED_2500MB: 674 speed = "2.5 G"; 675 break; 676 case ICE_AQ_LINK_SPEED_1000MB: 677 speed = "1 G"; 678 break; 679 case ICE_AQ_LINK_SPEED_100MB: 680 speed = "100 M"; 681 break; 682 default: 683 speed = "Unknown "; 684 break; 685 } 686 687 switch (vsi->port_info->fc.current_mode) { 688 case ICE_FC_FULL: 689 fc = "Rx/Tx"; 690 break; 691 case ICE_FC_TX_PAUSE: 692 fc = "Tx"; 693 break; 694 case ICE_FC_RX_PAUSE: 695 fc = "Rx"; 696 break; 697 case ICE_FC_NONE: 698 fc = "None"; 699 break; 700 default: 701 fc = "Unknown"; 702 break; 703 } 704 705 /* Get FEC mode based on negotiated link info */ 706 switch (vsi->port_info->phy.link_info.fec_info) { 707 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 708 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 709 fec = "RS-FEC"; 710 break; 711 case ICE_AQ_LINK_25G_KR_FEC_EN: 712 fec = "FC-FEC/BASE-R"; 713 break; 714 default: 715 fec = "NONE"; 716 break; 717 } 718 719 /* check if autoneg completed, might be false due to not supported */ 720 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 721 an = "True"; 722 else 723 an = "False"; 724 725 /* Get FEC mode requested based on PHY caps last SW configuration */ 726 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 727 if (!caps) { 728 fec_req = "Unknown"; 729 an_advertised = "Unknown"; 730 goto done; 731 } 732 733 status = ice_aq_get_phy_caps(vsi->port_info, false, 734 ICE_AQC_REPORT_SW_CFG, caps, NULL); 735 if (status) 736 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 737 738 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 739 740 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 741 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 742 fec_req = "RS-FEC"; 743 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 744 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 745 fec_req = "FC-FEC/BASE-R"; 746 else 747 fec_req = "NONE"; 748 749 kfree(caps); 750 751 done: 752 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 753 speed, fec_req, fec, an_advertised, an, fc); 754 ice_print_topo_conflict(vsi); 755 } 756 757 /** 758 * ice_vsi_link_event - update the VSI's netdev 759 * @vsi: the VSI on which the link event occurred 760 * @link_up: whether or not the VSI needs to be set up or down 761 */ 762 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 763 { 764 if (!vsi) 765 return; 766 767 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 768 return; 769 770 if (vsi->type == ICE_VSI_PF) { 771 if (link_up == netif_carrier_ok(vsi->netdev)) 772 return; 773 774 if (link_up) { 775 netif_carrier_on(vsi->netdev); 776 netif_tx_wake_all_queues(vsi->netdev); 777 } else { 778 netif_carrier_off(vsi->netdev); 779 netif_tx_stop_all_queues(vsi->netdev); 780 } 781 } 782 } 783 784 /** 785 * ice_set_dflt_mib - send a default config MIB to the FW 786 * @pf: private PF struct 787 * 788 * This function sends a default configuration MIB to the FW. 789 * 790 * If this function errors out at any point, the driver is still able to 791 * function. The main impact is that LFC may not operate as expected. 792 * Therefore an error state in this function should be treated with a DBG 793 * message and continue on with driver rebuild/reenable. 794 */ 795 static void ice_set_dflt_mib(struct ice_pf *pf) 796 { 797 struct device *dev = ice_pf_to_dev(pf); 798 u8 mib_type, *buf, *lldpmib = NULL; 799 u16 len, typelen, offset = 0; 800 struct ice_lldp_org_tlv *tlv; 801 struct ice_hw *hw = &pf->hw; 802 u32 ouisubtype; 803 804 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 805 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 806 if (!lldpmib) { 807 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 808 __func__); 809 return; 810 } 811 812 /* Add ETS CFG TLV */ 813 tlv = (struct ice_lldp_org_tlv *)lldpmib; 814 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 815 ICE_IEEE_ETS_TLV_LEN); 816 tlv->typelen = htons(typelen); 817 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 818 ICE_IEEE_SUBTYPE_ETS_CFG); 819 tlv->ouisubtype = htonl(ouisubtype); 820 821 buf = tlv->tlvinfo; 822 buf[0] = 0; 823 824 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 825 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 826 * Octets 13 - 20 are TSA values - leave as zeros 827 */ 828 buf[5] = 0x64; 829 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 830 offset += len + 2; 831 tlv = (struct ice_lldp_org_tlv *) 832 ((char *)tlv + sizeof(tlv->typelen) + len); 833 834 /* Add ETS REC TLV */ 835 buf = tlv->tlvinfo; 836 tlv->typelen = htons(typelen); 837 838 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 839 ICE_IEEE_SUBTYPE_ETS_REC); 840 tlv->ouisubtype = htonl(ouisubtype); 841 842 /* First octet of buf is reserved 843 * Octets 1 - 4 map UP to TC - all UPs map to zero 844 * Octets 5 - 12 are BW values - set TC 0 to 100%. 845 * Octets 13 - 20 are TSA value - leave as zeros 846 */ 847 buf[5] = 0x64; 848 offset += len + 2; 849 tlv = (struct ice_lldp_org_tlv *) 850 ((char *)tlv + sizeof(tlv->typelen) + len); 851 852 /* Add PFC CFG TLV */ 853 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 854 ICE_IEEE_PFC_TLV_LEN); 855 tlv->typelen = htons(typelen); 856 857 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 858 ICE_IEEE_SUBTYPE_PFC_CFG); 859 tlv->ouisubtype = htonl(ouisubtype); 860 861 /* Octet 1 left as all zeros - PFC disabled */ 862 buf[0] = 0x08; 863 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 864 offset += len + 2; 865 866 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 867 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 868 869 kfree(lldpmib); 870 } 871 872 /** 873 * ice_link_event - process the link event 874 * @pf: PF that the link event is associated with 875 * @pi: port_info for the port that the link event is associated with 876 * @link_up: true if the physical link is up and false if it is down 877 * @link_speed: current link speed received from the link event 878 * 879 * Returns 0 on success and negative on failure 880 */ 881 static int 882 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 883 u16 link_speed) 884 { 885 struct device *dev = ice_pf_to_dev(pf); 886 struct ice_phy_info *phy_info; 887 struct ice_vsi *vsi; 888 u16 old_link_speed; 889 bool old_link; 890 int result; 891 892 phy_info = &pi->phy; 893 phy_info->link_info_old = phy_info->link_info; 894 895 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 896 old_link_speed = phy_info->link_info_old.link_speed; 897 898 /* update the link info structures and re-enable link events, 899 * don't bail on failure due to other book keeping needed 900 */ 901 result = ice_update_link_info(pi); 902 if (result) 903 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 904 pi->lport); 905 906 /* Check if the link state is up after updating link info, and treat 907 * this event as an UP event since the link is actually UP now. 908 */ 909 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 910 link_up = true; 911 912 vsi = ice_get_main_vsi(pf); 913 if (!vsi || !vsi->port_info) 914 return -EINVAL; 915 916 /* turn off PHY if media was removed */ 917 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 918 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 919 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 920 921 result = ice_aq_set_link_restart_an(pi, false, NULL); 922 if (result) { 923 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 924 vsi->vsi_num, result); 925 return result; 926 } 927 } 928 929 /* if the old link up/down and speed is the same as the new */ 930 if (link_up == old_link && link_speed == old_link_speed) 931 return result; 932 933 if (ice_is_dcb_active(pf)) { 934 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 935 ice_dcb_rebuild(pf); 936 } else { 937 if (link_up) 938 ice_set_dflt_mib(pf); 939 } 940 ice_vsi_link_event(vsi, link_up); 941 ice_print_link_msg(vsi, link_up); 942 943 ice_vc_notify_link_state(pf); 944 945 return result; 946 } 947 948 /** 949 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 950 * @pf: board private structure 951 */ 952 static void ice_watchdog_subtask(struct ice_pf *pf) 953 { 954 int i; 955 956 /* if interface is down do nothing */ 957 if (test_bit(__ICE_DOWN, pf->state) || 958 test_bit(__ICE_CFG_BUSY, pf->state)) 959 return; 960 961 /* make sure we don't do these things too often */ 962 if (time_before(jiffies, 963 pf->serv_tmr_prev + pf->serv_tmr_period)) 964 return; 965 966 pf->serv_tmr_prev = jiffies; 967 968 /* Update the stats for active netdevs so the network stack 969 * can look at updated numbers whenever it cares to 970 */ 971 ice_update_pf_stats(pf); 972 ice_for_each_vsi(pf, i) 973 if (pf->vsi[i] && pf->vsi[i]->netdev) 974 ice_update_vsi_stats(pf->vsi[i]); 975 } 976 977 /** 978 * ice_init_link_events - enable/initialize link events 979 * @pi: pointer to the port_info instance 980 * 981 * Returns -EIO on failure, 0 on success 982 */ 983 static int ice_init_link_events(struct ice_port_info *pi) 984 { 985 u16 mask; 986 987 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 988 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 989 990 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 991 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 992 pi->lport); 993 return -EIO; 994 } 995 996 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 997 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 998 pi->lport); 999 return -EIO; 1000 } 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * ice_handle_link_event - handle link event via ARQ 1007 * @pf: PF that the link event is associated with 1008 * @event: event structure containing link status info 1009 */ 1010 static int 1011 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1012 { 1013 struct ice_aqc_get_link_status_data *link_data; 1014 struct ice_port_info *port_info; 1015 int status; 1016 1017 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1018 port_info = pf->hw.port_info; 1019 if (!port_info) 1020 return -EINVAL; 1021 1022 status = ice_link_event(pf, port_info, 1023 !!(link_data->link_info & ICE_AQ_LINK_UP), 1024 le16_to_cpu(link_data->link_speed)); 1025 if (status) 1026 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1027 status); 1028 1029 return status; 1030 } 1031 1032 enum ice_aq_task_state { 1033 ICE_AQ_TASK_WAITING = 0, 1034 ICE_AQ_TASK_COMPLETE, 1035 ICE_AQ_TASK_CANCELED, 1036 }; 1037 1038 struct ice_aq_task { 1039 struct hlist_node entry; 1040 1041 u16 opcode; 1042 struct ice_rq_event_info *event; 1043 enum ice_aq_task_state state; 1044 }; 1045 1046 /** 1047 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1048 * @pf: pointer to the PF private structure 1049 * @opcode: the opcode to wait for 1050 * @timeout: how long to wait, in jiffies 1051 * @event: storage for the event info 1052 * 1053 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1054 * current thread will be put to sleep until the specified event occurs or 1055 * until the given timeout is reached. 1056 * 1057 * To obtain only the descriptor contents, pass an event without an allocated 1058 * msg_buf. If the complete data buffer is desired, allocate the 1059 * event->msg_buf with enough space ahead of time. 1060 * 1061 * Returns: zero on success, or a negative error code on failure. 1062 */ 1063 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1064 struct ice_rq_event_info *event) 1065 { 1066 struct device *dev = ice_pf_to_dev(pf); 1067 struct ice_aq_task *task; 1068 unsigned long start; 1069 long ret; 1070 int err; 1071 1072 task = kzalloc(sizeof(*task), GFP_KERNEL); 1073 if (!task) 1074 return -ENOMEM; 1075 1076 INIT_HLIST_NODE(&task->entry); 1077 task->opcode = opcode; 1078 task->event = event; 1079 task->state = ICE_AQ_TASK_WAITING; 1080 1081 spin_lock_bh(&pf->aq_wait_lock); 1082 hlist_add_head(&task->entry, &pf->aq_wait_list); 1083 spin_unlock_bh(&pf->aq_wait_lock); 1084 1085 start = jiffies; 1086 1087 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1088 timeout); 1089 switch (task->state) { 1090 case ICE_AQ_TASK_WAITING: 1091 err = ret < 0 ? ret : -ETIMEDOUT; 1092 break; 1093 case ICE_AQ_TASK_CANCELED: 1094 err = ret < 0 ? ret : -ECANCELED; 1095 break; 1096 case ICE_AQ_TASK_COMPLETE: 1097 err = ret < 0 ? ret : 0; 1098 break; 1099 default: 1100 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1101 err = -EINVAL; 1102 break; 1103 } 1104 1105 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1106 jiffies_to_msecs(jiffies - start), 1107 jiffies_to_msecs(timeout), 1108 opcode); 1109 1110 spin_lock_bh(&pf->aq_wait_lock); 1111 hlist_del(&task->entry); 1112 spin_unlock_bh(&pf->aq_wait_lock); 1113 kfree(task); 1114 1115 return err; 1116 } 1117 1118 /** 1119 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1120 * @pf: pointer to the PF private structure 1121 * @opcode: the opcode of the event 1122 * @event: the event to check 1123 * 1124 * Loops over the current list of pending threads waiting for an AdminQ event. 1125 * For each matching task, copy the contents of the event into the task 1126 * structure and wake up the thread. 1127 * 1128 * If multiple threads wait for the same opcode, they will all be woken up. 1129 * 1130 * Note that event->msg_buf will only be duplicated if the event has a buffer 1131 * with enough space already allocated. Otherwise, only the descriptor and 1132 * message length will be copied. 1133 * 1134 * Returns: true if an event was found, false otherwise 1135 */ 1136 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1137 struct ice_rq_event_info *event) 1138 { 1139 struct ice_aq_task *task; 1140 bool found = false; 1141 1142 spin_lock_bh(&pf->aq_wait_lock); 1143 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1144 if (task->state || task->opcode != opcode) 1145 continue; 1146 1147 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1148 task->event->msg_len = event->msg_len; 1149 1150 /* Only copy the data buffer if a destination was set */ 1151 if (task->event->msg_buf && 1152 task->event->buf_len > event->buf_len) { 1153 memcpy(task->event->msg_buf, event->msg_buf, 1154 event->buf_len); 1155 task->event->buf_len = event->buf_len; 1156 } 1157 1158 task->state = ICE_AQ_TASK_COMPLETE; 1159 found = true; 1160 } 1161 spin_unlock_bh(&pf->aq_wait_lock); 1162 1163 if (found) 1164 wake_up(&pf->aq_wait_queue); 1165 } 1166 1167 /** 1168 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1169 * @pf: the PF private structure 1170 * 1171 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1172 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1173 */ 1174 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1175 { 1176 struct ice_aq_task *task; 1177 1178 spin_lock_bh(&pf->aq_wait_lock); 1179 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1180 task->state = ICE_AQ_TASK_CANCELED; 1181 spin_unlock_bh(&pf->aq_wait_lock); 1182 1183 wake_up(&pf->aq_wait_queue); 1184 } 1185 1186 /** 1187 * __ice_clean_ctrlq - helper function to clean controlq rings 1188 * @pf: ptr to struct ice_pf 1189 * @q_type: specific Control queue type 1190 */ 1191 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1192 { 1193 struct device *dev = ice_pf_to_dev(pf); 1194 struct ice_rq_event_info event; 1195 struct ice_hw *hw = &pf->hw; 1196 struct ice_ctl_q_info *cq; 1197 u16 pending, i = 0; 1198 const char *qtype; 1199 u32 oldval, val; 1200 1201 /* Do not clean control queue if/when PF reset fails */ 1202 if (test_bit(__ICE_RESET_FAILED, pf->state)) 1203 return 0; 1204 1205 switch (q_type) { 1206 case ICE_CTL_Q_ADMIN: 1207 cq = &hw->adminq; 1208 qtype = "Admin"; 1209 break; 1210 case ICE_CTL_Q_MAILBOX: 1211 cq = &hw->mailboxq; 1212 qtype = "Mailbox"; 1213 break; 1214 default: 1215 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1216 return 0; 1217 } 1218 1219 /* check for error indications - PF_xx_AxQLEN register layout for 1220 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1221 */ 1222 val = rd32(hw, cq->rq.len); 1223 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1224 PF_FW_ARQLEN_ARQCRIT_M)) { 1225 oldval = val; 1226 if (val & PF_FW_ARQLEN_ARQVFE_M) 1227 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1228 qtype); 1229 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1230 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1231 qtype); 1232 } 1233 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1234 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1235 qtype); 1236 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1237 PF_FW_ARQLEN_ARQCRIT_M); 1238 if (oldval != val) 1239 wr32(hw, cq->rq.len, val); 1240 } 1241 1242 val = rd32(hw, cq->sq.len); 1243 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1244 PF_FW_ATQLEN_ATQCRIT_M)) { 1245 oldval = val; 1246 if (val & PF_FW_ATQLEN_ATQVFE_M) 1247 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1248 qtype); 1249 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1250 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1251 qtype); 1252 } 1253 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1254 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1255 qtype); 1256 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1257 PF_FW_ATQLEN_ATQCRIT_M); 1258 if (oldval != val) 1259 wr32(hw, cq->sq.len, val); 1260 } 1261 1262 event.buf_len = cq->rq_buf_size; 1263 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1264 if (!event.msg_buf) 1265 return 0; 1266 1267 do { 1268 enum ice_status ret; 1269 u16 opcode; 1270 1271 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1272 if (ret == ICE_ERR_AQ_NO_WORK) 1273 break; 1274 if (ret) { 1275 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1276 ice_stat_str(ret)); 1277 break; 1278 } 1279 1280 opcode = le16_to_cpu(event.desc.opcode); 1281 1282 /* Notify any thread that might be waiting for this event */ 1283 ice_aq_check_events(pf, opcode, &event); 1284 1285 switch (opcode) { 1286 case ice_aqc_opc_get_link_status: 1287 if (ice_handle_link_event(pf, &event)) 1288 dev_err(dev, "Could not handle link event\n"); 1289 break; 1290 case ice_aqc_opc_event_lan_overflow: 1291 ice_vf_lan_overflow_event(pf, &event); 1292 break; 1293 case ice_mbx_opc_send_msg_to_pf: 1294 ice_vc_process_vf_msg(pf, &event); 1295 break; 1296 case ice_aqc_opc_fw_logging: 1297 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1298 break; 1299 case ice_aqc_opc_lldp_set_mib_change: 1300 ice_dcb_process_lldp_set_mib_change(pf, &event); 1301 break; 1302 default: 1303 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1304 qtype, opcode); 1305 break; 1306 } 1307 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1308 1309 kfree(event.msg_buf); 1310 1311 return pending && (i == ICE_DFLT_IRQ_WORK); 1312 } 1313 1314 /** 1315 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1316 * @hw: pointer to hardware info 1317 * @cq: control queue information 1318 * 1319 * returns true if there are pending messages in a queue, false if there aren't 1320 */ 1321 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1322 { 1323 u16 ntu; 1324 1325 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1326 return cq->rq.next_to_clean != ntu; 1327 } 1328 1329 /** 1330 * ice_clean_adminq_subtask - clean the AdminQ rings 1331 * @pf: board private structure 1332 */ 1333 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1334 { 1335 struct ice_hw *hw = &pf->hw; 1336 1337 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1338 return; 1339 1340 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1341 return; 1342 1343 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1344 1345 /* There might be a situation where new messages arrive to a control 1346 * queue between processing the last message and clearing the 1347 * EVENT_PENDING bit. So before exiting, check queue head again (using 1348 * ice_ctrlq_pending) and process new messages if any. 1349 */ 1350 if (ice_ctrlq_pending(hw, &hw->adminq)) 1351 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1352 1353 ice_flush(hw); 1354 } 1355 1356 /** 1357 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1358 * @pf: board private structure 1359 */ 1360 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1361 { 1362 struct ice_hw *hw = &pf->hw; 1363 1364 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1365 return; 1366 1367 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1368 return; 1369 1370 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1371 1372 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1373 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1374 1375 ice_flush(hw); 1376 } 1377 1378 /** 1379 * ice_service_task_schedule - schedule the service task to wake up 1380 * @pf: board private structure 1381 * 1382 * If not already scheduled, this puts the task into the work queue. 1383 */ 1384 void ice_service_task_schedule(struct ice_pf *pf) 1385 { 1386 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1387 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1388 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1389 queue_work(ice_wq, &pf->serv_task); 1390 } 1391 1392 /** 1393 * ice_service_task_complete - finish up the service task 1394 * @pf: board private structure 1395 */ 1396 static void ice_service_task_complete(struct ice_pf *pf) 1397 { 1398 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1399 1400 /* force memory (pf->state) to sync before next service task */ 1401 smp_mb__before_atomic(); 1402 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1403 } 1404 1405 /** 1406 * ice_service_task_stop - stop service task and cancel works 1407 * @pf: board private structure 1408 * 1409 * Return 0 if the __ICE_SERVICE_DIS bit was not already set, 1410 * 1 otherwise. 1411 */ 1412 static int ice_service_task_stop(struct ice_pf *pf) 1413 { 1414 int ret; 1415 1416 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state); 1417 1418 if (pf->serv_tmr.function) 1419 del_timer_sync(&pf->serv_tmr); 1420 if (pf->serv_task.func) 1421 cancel_work_sync(&pf->serv_task); 1422 1423 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1424 return ret; 1425 } 1426 1427 /** 1428 * ice_service_task_restart - restart service task and schedule works 1429 * @pf: board private structure 1430 * 1431 * This function is needed for suspend and resume works (e.g WoL scenario) 1432 */ 1433 static void ice_service_task_restart(struct ice_pf *pf) 1434 { 1435 clear_bit(__ICE_SERVICE_DIS, pf->state); 1436 ice_service_task_schedule(pf); 1437 } 1438 1439 /** 1440 * ice_service_timer - timer callback to schedule service task 1441 * @t: pointer to timer_list 1442 */ 1443 static void ice_service_timer(struct timer_list *t) 1444 { 1445 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1446 1447 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1448 ice_service_task_schedule(pf); 1449 } 1450 1451 /** 1452 * ice_handle_mdd_event - handle malicious driver detect event 1453 * @pf: pointer to the PF structure 1454 * 1455 * Called from service task. OICR interrupt handler indicates MDD event. 1456 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1457 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1458 * disable the queue, the PF can be configured to reset the VF using ethtool 1459 * private flag mdd-auto-reset-vf. 1460 */ 1461 static void ice_handle_mdd_event(struct ice_pf *pf) 1462 { 1463 struct device *dev = ice_pf_to_dev(pf); 1464 struct ice_hw *hw = &pf->hw; 1465 unsigned int i; 1466 u32 reg; 1467 1468 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1469 /* Since the VF MDD event logging is rate limited, check if 1470 * there are pending MDD events. 1471 */ 1472 ice_print_vfs_mdd_events(pf); 1473 return; 1474 } 1475 1476 /* find what triggered an MDD event */ 1477 reg = rd32(hw, GL_MDET_TX_PQM); 1478 if (reg & GL_MDET_TX_PQM_VALID_M) { 1479 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1480 GL_MDET_TX_PQM_PF_NUM_S; 1481 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1482 GL_MDET_TX_PQM_VF_NUM_S; 1483 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1484 GL_MDET_TX_PQM_MAL_TYPE_S; 1485 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1486 GL_MDET_TX_PQM_QNUM_S); 1487 1488 if (netif_msg_tx_err(pf)) 1489 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1490 event, queue, pf_num, vf_num); 1491 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1492 } 1493 1494 reg = rd32(hw, GL_MDET_TX_TCLAN); 1495 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1496 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1497 GL_MDET_TX_TCLAN_PF_NUM_S; 1498 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1499 GL_MDET_TX_TCLAN_VF_NUM_S; 1500 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1501 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1502 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1503 GL_MDET_TX_TCLAN_QNUM_S); 1504 1505 if (netif_msg_tx_err(pf)) 1506 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1507 event, queue, pf_num, vf_num); 1508 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1509 } 1510 1511 reg = rd32(hw, GL_MDET_RX); 1512 if (reg & GL_MDET_RX_VALID_M) { 1513 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1514 GL_MDET_RX_PF_NUM_S; 1515 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1516 GL_MDET_RX_VF_NUM_S; 1517 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1518 GL_MDET_RX_MAL_TYPE_S; 1519 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1520 GL_MDET_RX_QNUM_S); 1521 1522 if (netif_msg_rx_err(pf)) 1523 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1524 event, queue, pf_num, vf_num); 1525 wr32(hw, GL_MDET_RX, 0xffffffff); 1526 } 1527 1528 /* check to see if this PF caused an MDD event */ 1529 reg = rd32(hw, PF_MDET_TX_PQM); 1530 if (reg & PF_MDET_TX_PQM_VALID_M) { 1531 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1532 if (netif_msg_tx_err(pf)) 1533 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1534 } 1535 1536 reg = rd32(hw, PF_MDET_TX_TCLAN); 1537 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1538 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1539 if (netif_msg_tx_err(pf)) 1540 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1541 } 1542 1543 reg = rd32(hw, PF_MDET_RX); 1544 if (reg & PF_MDET_RX_VALID_M) { 1545 wr32(hw, PF_MDET_RX, 0xFFFF); 1546 if (netif_msg_rx_err(pf)) 1547 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1548 } 1549 1550 /* Check to see if one of the VFs caused an MDD event, and then 1551 * increment counters and set print pending 1552 */ 1553 ice_for_each_vf(pf, i) { 1554 struct ice_vf *vf = &pf->vf[i]; 1555 1556 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1557 if (reg & VP_MDET_TX_PQM_VALID_M) { 1558 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1559 vf->mdd_tx_events.count++; 1560 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1561 if (netif_msg_tx_err(pf)) 1562 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1563 i); 1564 } 1565 1566 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1567 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1568 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1569 vf->mdd_tx_events.count++; 1570 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1571 if (netif_msg_tx_err(pf)) 1572 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1573 i); 1574 } 1575 1576 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1577 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1578 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1579 vf->mdd_tx_events.count++; 1580 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1581 if (netif_msg_tx_err(pf)) 1582 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1583 i); 1584 } 1585 1586 reg = rd32(hw, VP_MDET_RX(i)); 1587 if (reg & VP_MDET_RX_VALID_M) { 1588 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1589 vf->mdd_rx_events.count++; 1590 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1591 if (netif_msg_rx_err(pf)) 1592 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1593 i); 1594 1595 /* Since the queue is disabled on VF Rx MDD events, the 1596 * PF can be configured to reset the VF through ethtool 1597 * private flag mdd-auto-reset-vf. 1598 */ 1599 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1600 /* VF MDD event counters will be cleared by 1601 * reset, so print the event prior to reset. 1602 */ 1603 ice_print_vf_rx_mdd_event(vf); 1604 ice_reset_vf(&pf->vf[i], false); 1605 } 1606 } 1607 } 1608 1609 ice_print_vfs_mdd_events(pf); 1610 } 1611 1612 /** 1613 * ice_force_phys_link_state - Force the physical link state 1614 * @vsi: VSI to force the physical link state to up/down 1615 * @link_up: true/false indicates to set the physical link to up/down 1616 * 1617 * Force the physical link state by getting the current PHY capabilities from 1618 * hardware and setting the PHY config based on the determined capabilities. If 1619 * link changes a link event will be triggered because both the Enable Automatic 1620 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1621 * 1622 * Returns 0 on success, negative on failure 1623 */ 1624 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1625 { 1626 struct ice_aqc_get_phy_caps_data *pcaps; 1627 struct ice_aqc_set_phy_cfg_data *cfg; 1628 struct ice_port_info *pi; 1629 struct device *dev; 1630 int retcode; 1631 1632 if (!vsi || !vsi->port_info || !vsi->back) 1633 return -EINVAL; 1634 if (vsi->type != ICE_VSI_PF) 1635 return 0; 1636 1637 dev = ice_pf_to_dev(vsi->back); 1638 1639 pi = vsi->port_info; 1640 1641 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1642 if (!pcaps) 1643 return -ENOMEM; 1644 1645 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1646 NULL); 1647 if (retcode) { 1648 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1649 vsi->vsi_num, retcode); 1650 retcode = -EIO; 1651 goto out; 1652 } 1653 1654 /* No change in link */ 1655 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1656 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1657 goto out; 1658 1659 /* Use the current user PHY configuration. The current user PHY 1660 * configuration is initialized during probe from PHY capabilities 1661 * software mode, and updated on set PHY configuration. 1662 */ 1663 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1664 if (!cfg) { 1665 retcode = -ENOMEM; 1666 goto out; 1667 } 1668 1669 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1670 if (link_up) 1671 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1672 else 1673 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1674 1675 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1676 if (retcode) { 1677 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1678 vsi->vsi_num, retcode); 1679 retcode = -EIO; 1680 } 1681 1682 kfree(cfg); 1683 out: 1684 kfree(pcaps); 1685 return retcode; 1686 } 1687 1688 /** 1689 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1690 * @pi: port info structure 1691 * 1692 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1693 */ 1694 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1695 { 1696 struct ice_aqc_get_phy_caps_data *pcaps; 1697 struct ice_pf *pf = pi->hw->back; 1698 enum ice_status status; 1699 int err = 0; 1700 1701 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1702 if (!pcaps) 1703 return -ENOMEM; 1704 1705 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps, 1706 NULL); 1707 1708 if (status) { 1709 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1710 err = -EIO; 1711 goto out; 1712 } 1713 1714 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1715 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1716 1717 out: 1718 kfree(pcaps); 1719 return err; 1720 } 1721 1722 /** 1723 * ice_init_link_dflt_override - Initialize link default override 1724 * @pi: port info structure 1725 * 1726 * Initialize link default override and PHY total port shutdown during probe 1727 */ 1728 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1729 { 1730 struct ice_link_default_override_tlv *ldo; 1731 struct ice_pf *pf = pi->hw->back; 1732 1733 ldo = &pf->link_dflt_override; 1734 if (ice_get_link_default_override(ldo, pi)) 1735 return; 1736 1737 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1738 return; 1739 1740 /* Enable Total Port Shutdown (override/replace link-down-on-close 1741 * ethtool private flag) for ports with Port Disable bit set. 1742 */ 1743 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1744 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1745 } 1746 1747 /** 1748 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1749 * @pi: port info structure 1750 * 1751 * If default override is enabled, initialized the user PHY cfg speed and FEC 1752 * settings using the default override mask from the NVM. 1753 * 1754 * The PHY should only be configured with the default override settings the 1755 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1756 * is used to indicate that the user PHY cfg default override is initialized 1757 * and the PHY has not been configured with the default override settings. The 1758 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1759 * configured. 1760 */ 1761 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1762 { 1763 struct ice_link_default_override_tlv *ldo; 1764 struct ice_aqc_set_phy_cfg_data *cfg; 1765 struct ice_phy_info *phy = &pi->phy; 1766 struct ice_pf *pf = pi->hw->back; 1767 1768 ldo = &pf->link_dflt_override; 1769 1770 /* If link default override is enabled, use to mask NVM PHY capabilities 1771 * for speed and FEC default configuration. 1772 */ 1773 cfg = &phy->curr_user_phy_cfg; 1774 1775 if (ldo->phy_type_low || ldo->phy_type_high) { 1776 cfg->phy_type_low = pf->nvm_phy_type_lo & 1777 cpu_to_le64(ldo->phy_type_low); 1778 cfg->phy_type_high = pf->nvm_phy_type_hi & 1779 cpu_to_le64(ldo->phy_type_high); 1780 } 1781 cfg->link_fec_opt = ldo->fec_options; 1782 phy->curr_user_fec_req = ICE_FEC_AUTO; 1783 1784 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1785 } 1786 1787 /** 1788 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1789 * @pi: port info structure 1790 * 1791 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1792 * mode to default. The PHY defaults are from get PHY capabilities topology 1793 * with media so call when media is first available. An error is returned if 1794 * called when media is not available. The PHY initialization completed state is 1795 * set here. 1796 * 1797 * These configurations are used when setting PHY 1798 * configuration. The user PHY configuration is updated on set PHY 1799 * configuration. Returns 0 on success, negative on failure 1800 */ 1801 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1802 { 1803 struct ice_aqc_get_phy_caps_data *pcaps; 1804 struct ice_phy_info *phy = &pi->phy; 1805 struct ice_pf *pf = pi->hw->back; 1806 enum ice_status status; 1807 struct ice_vsi *vsi; 1808 int err = 0; 1809 1810 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1811 return -EIO; 1812 1813 vsi = ice_get_main_vsi(pf); 1814 if (!vsi) 1815 return -EINVAL; 1816 1817 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1818 if (!pcaps) 1819 return -ENOMEM; 1820 1821 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1822 NULL); 1823 if (status) { 1824 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1825 err = -EIO; 1826 goto err_out; 1827 } 1828 1829 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1830 1831 /* check if lenient mode is supported and enabled */ 1832 if (ice_fw_supports_link_override(&vsi->back->hw) && 1833 !(pcaps->module_compliance_enforcement & 1834 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1835 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1836 1837 /* if link default override is enabled, initialize user PHY 1838 * configuration with link default override values 1839 */ 1840 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) { 1841 ice_init_phy_cfg_dflt_override(pi); 1842 goto out; 1843 } 1844 } 1845 1846 /* if link default override is not enabled, initialize PHY using 1847 * topology with media 1848 */ 1849 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1850 pcaps->link_fec_options); 1851 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1852 1853 out: 1854 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1855 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state); 1856 err_out: 1857 kfree(pcaps); 1858 return err; 1859 } 1860 1861 /** 1862 * ice_configure_phy - configure PHY 1863 * @vsi: VSI of PHY 1864 * 1865 * Set the PHY configuration. If the current PHY configuration is the same as 1866 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1867 * configure the based get PHY capabilities for topology with media. 1868 */ 1869 static int ice_configure_phy(struct ice_vsi *vsi) 1870 { 1871 struct device *dev = ice_pf_to_dev(vsi->back); 1872 struct ice_aqc_get_phy_caps_data *pcaps; 1873 struct ice_aqc_set_phy_cfg_data *cfg; 1874 struct ice_port_info *pi; 1875 enum ice_status status; 1876 int err = 0; 1877 1878 pi = vsi->port_info; 1879 if (!pi) 1880 return -EINVAL; 1881 1882 /* Ensure we have media as we cannot configure a medialess port */ 1883 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1884 return -EPERM; 1885 1886 ice_print_topo_conflict(vsi); 1887 1888 if (vsi->port_info->phy.link_info.topo_media_conflict == 1889 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1890 return -EPERM; 1891 1892 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 1893 return ice_force_phys_link_state(vsi, true); 1894 1895 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1896 if (!pcaps) 1897 return -ENOMEM; 1898 1899 /* Get current PHY config */ 1900 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1901 NULL); 1902 if (status) { 1903 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1904 vsi->vsi_num, ice_stat_str(status)); 1905 err = -EIO; 1906 goto done; 1907 } 1908 1909 /* If PHY enable link is configured and configuration has not changed, 1910 * there's nothing to do 1911 */ 1912 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1913 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg)) 1914 goto done; 1915 1916 /* Use PHY topology as baseline for configuration */ 1917 memset(pcaps, 0, sizeof(*pcaps)); 1918 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1919 NULL); 1920 if (status) { 1921 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n", 1922 vsi->vsi_num, ice_stat_str(status)); 1923 err = -EIO; 1924 goto done; 1925 } 1926 1927 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1928 if (!cfg) { 1929 err = -ENOMEM; 1930 goto done; 1931 } 1932 1933 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1934 1935 /* Speed - If default override pending, use curr_user_phy_cfg set in 1936 * ice_init_phy_user_cfg_ldo. 1937 */ 1938 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1939 vsi->back->state)) { 1940 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low; 1941 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high; 1942 } else { 1943 u64 phy_low = 0, phy_high = 0; 1944 1945 ice_update_phy_type(&phy_low, &phy_high, 1946 pi->phy.curr_user_speed_req); 1947 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1948 cfg->phy_type_high = pcaps->phy_type_high & 1949 cpu_to_le64(phy_high); 1950 } 1951 1952 /* Can't provide what was requested; use PHY capabilities */ 1953 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1954 cfg->phy_type_low = pcaps->phy_type_low; 1955 cfg->phy_type_high = pcaps->phy_type_high; 1956 } 1957 1958 /* FEC */ 1959 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req); 1960 1961 /* Can't provide what was requested; use PHY capabilities */ 1962 if (cfg->link_fec_opt != 1963 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1964 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1965 cfg->link_fec_opt = pcaps->link_fec_options; 1966 } 1967 1968 /* Flow Control - always supported; no need to check against 1969 * capabilities 1970 */ 1971 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req); 1972 1973 /* Enable link and link update */ 1974 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1975 1976 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1977 if (status) { 1978 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1979 vsi->vsi_num, ice_stat_str(status)); 1980 err = -EIO; 1981 } 1982 1983 kfree(cfg); 1984 done: 1985 kfree(pcaps); 1986 return err; 1987 } 1988 1989 /** 1990 * ice_check_media_subtask - Check for media 1991 * @pf: pointer to PF struct 1992 * 1993 * If media is available, then initialize PHY user configuration if it is not 1994 * been, and configure the PHY if the interface is up. 1995 */ 1996 static void ice_check_media_subtask(struct ice_pf *pf) 1997 { 1998 struct ice_port_info *pi; 1999 struct ice_vsi *vsi; 2000 int err; 2001 2002 /* No need to check for media if it's already present */ 2003 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2004 return; 2005 2006 vsi = ice_get_main_vsi(pf); 2007 if (!vsi) 2008 return; 2009 2010 /* Refresh link info and check if media is present */ 2011 pi = vsi->port_info; 2012 err = ice_update_link_info(pi); 2013 if (err) 2014 return; 2015 2016 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2017 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) 2018 ice_init_phy_user_cfg(pi); 2019 2020 /* PHY settings are reset on media insertion, reconfigure 2021 * PHY to preserve settings. 2022 */ 2023 if (test_bit(__ICE_DOWN, vsi->state) && 2024 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2025 return; 2026 2027 err = ice_configure_phy(vsi); 2028 if (!err) 2029 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2030 2031 /* A Link Status Event will be generated; the event handler 2032 * will complete bringing the interface up 2033 */ 2034 } 2035 } 2036 2037 /** 2038 * ice_service_task - manage and run subtasks 2039 * @work: pointer to work_struct contained by the PF struct 2040 */ 2041 static void ice_service_task(struct work_struct *work) 2042 { 2043 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2044 unsigned long start_time = jiffies; 2045 2046 /* subtasks */ 2047 2048 /* process reset requests first */ 2049 ice_reset_subtask(pf); 2050 2051 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2052 if (ice_is_reset_in_progress(pf->state) || 2053 test_bit(__ICE_SUSPENDED, pf->state) || 2054 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 2055 ice_service_task_complete(pf); 2056 return; 2057 } 2058 2059 ice_clean_adminq_subtask(pf); 2060 ice_check_media_subtask(pf); 2061 ice_check_for_hang_subtask(pf); 2062 ice_sync_fltr_subtask(pf); 2063 ice_handle_mdd_event(pf); 2064 ice_watchdog_subtask(pf); 2065 2066 if (ice_is_safe_mode(pf)) { 2067 ice_service_task_complete(pf); 2068 return; 2069 } 2070 2071 ice_process_vflr_event(pf); 2072 ice_clean_mailboxq_subtask(pf); 2073 ice_sync_arfs_fltrs(pf); 2074 ice_flush_fdir_ctx(pf); 2075 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 2076 ice_service_task_complete(pf); 2077 2078 /* If the tasks have taken longer than one service timer period 2079 * or there is more work to be done, reset the service timer to 2080 * schedule the service task now. 2081 */ 2082 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2083 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 2084 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 2085 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2086 test_bit(__ICE_FD_VF_FLUSH_CTX, pf->state) || 2087 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 2088 mod_timer(&pf->serv_tmr, jiffies); 2089 } 2090 2091 /** 2092 * ice_set_ctrlq_len - helper function to set controlq length 2093 * @hw: pointer to the HW instance 2094 */ 2095 static void ice_set_ctrlq_len(struct ice_hw *hw) 2096 { 2097 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2098 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2099 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2100 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2101 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2102 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2103 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2104 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2105 } 2106 2107 /** 2108 * ice_schedule_reset - schedule a reset 2109 * @pf: board private structure 2110 * @reset: reset being requested 2111 */ 2112 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2113 { 2114 struct device *dev = ice_pf_to_dev(pf); 2115 2116 /* bail out if earlier reset has failed */ 2117 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 2118 dev_dbg(dev, "earlier reset has failed\n"); 2119 return -EIO; 2120 } 2121 /* bail if reset/recovery already in progress */ 2122 if (ice_is_reset_in_progress(pf->state)) { 2123 dev_dbg(dev, "Reset already in progress\n"); 2124 return -EBUSY; 2125 } 2126 2127 switch (reset) { 2128 case ICE_RESET_PFR: 2129 set_bit(__ICE_PFR_REQ, pf->state); 2130 break; 2131 case ICE_RESET_CORER: 2132 set_bit(__ICE_CORER_REQ, pf->state); 2133 break; 2134 case ICE_RESET_GLOBR: 2135 set_bit(__ICE_GLOBR_REQ, pf->state); 2136 break; 2137 default: 2138 return -EINVAL; 2139 } 2140 2141 ice_service_task_schedule(pf); 2142 return 0; 2143 } 2144 2145 /** 2146 * ice_irq_affinity_notify - Callback for affinity changes 2147 * @notify: context as to what irq was changed 2148 * @mask: the new affinity mask 2149 * 2150 * This is a callback function used by the irq_set_affinity_notifier function 2151 * so that we may register to receive changes to the irq affinity masks. 2152 */ 2153 static void 2154 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2155 const cpumask_t *mask) 2156 { 2157 struct ice_q_vector *q_vector = 2158 container_of(notify, struct ice_q_vector, affinity_notify); 2159 2160 cpumask_copy(&q_vector->affinity_mask, mask); 2161 } 2162 2163 /** 2164 * ice_irq_affinity_release - Callback for affinity notifier release 2165 * @ref: internal core kernel usage 2166 * 2167 * This is a callback function used by the irq_set_affinity_notifier function 2168 * to inform the current notification subscriber that they will no longer 2169 * receive notifications. 2170 */ 2171 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2172 2173 /** 2174 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2175 * @vsi: the VSI being configured 2176 */ 2177 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2178 { 2179 struct ice_hw *hw = &vsi->back->hw; 2180 int i; 2181 2182 ice_for_each_q_vector(vsi, i) 2183 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2184 2185 ice_flush(hw); 2186 return 0; 2187 } 2188 2189 /** 2190 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2191 * @vsi: the VSI being configured 2192 * @basename: name for the vector 2193 */ 2194 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2195 { 2196 int q_vectors = vsi->num_q_vectors; 2197 struct ice_pf *pf = vsi->back; 2198 int base = vsi->base_vector; 2199 struct device *dev; 2200 int rx_int_idx = 0; 2201 int tx_int_idx = 0; 2202 int vector, err; 2203 int irq_num; 2204 2205 dev = ice_pf_to_dev(pf); 2206 for (vector = 0; vector < q_vectors; vector++) { 2207 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2208 2209 irq_num = pf->msix_entries[base + vector].vector; 2210 2211 if (q_vector->tx.ring && q_vector->rx.ring) { 2212 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2213 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2214 tx_int_idx++; 2215 } else if (q_vector->rx.ring) { 2216 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2217 "%s-%s-%d", basename, "rx", rx_int_idx++); 2218 } else if (q_vector->tx.ring) { 2219 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2220 "%s-%s-%d", basename, "tx", tx_int_idx++); 2221 } else { 2222 /* skip this unused q_vector */ 2223 continue; 2224 } 2225 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2226 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2227 IRQF_SHARED, q_vector->name, 2228 q_vector); 2229 else 2230 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2231 0, q_vector->name, q_vector); 2232 if (err) { 2233 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2234 err); 2235 goto free_q_irqs; 2236 } 2237 2238 /* register for affinity change notifications */ 2239 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2240 struct irq_affinity_notify *affinity_notify; 2241 2242 affinity_notify = &q_vector->affinity_notify; 2243 affinity_notify->notify = ice_irq_affinity_notify; 2244 affinity_notify->release = ice_irq_affinity_release; 2245 irq_set_affinity_notifier(irq_num, affinity_notify); 2246 } 2247 2248 /* assign the mask for this irq */ 2249 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2250 } 2251 2252 vsi->irqs_ready = true; 2253 return 0; 2254 2255 free_q_irqs: 2256 while (vector) { 2257 vector--; 2258 irq_num = pf->msix_entries[base + vector].vector; 2259 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2260 irq_set_affinity_notifier(irq_num, NULL); 2261 irq_set_affinity_hint(irq_num, NULL); 2262 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2263 } 2264 return err; 2265 } 2266 2267 /** 2268 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2269 * @vsi: VSI to setup Tx rings used by XDP 2270 * 2271 * Return 0 on success and negative value on error 2272 */ 2273 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2274 { 2275 struct device *dev = ice_pf_to_dev(vsi->back); 2276 int i; 2277 2278 for (i = 0; i < vsi->num_xdp_txq; i++) { 2279 u16 xdp_q_idx = vsi->alloc_txq + i; 2280 struct ice_ring *xdp_ring; 2281 2282 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2283 2284 if (!xdp_ring) 2285 goto free_xdp_rings; 2286 2287 xdp_ring->q_index = xdp_q_idx; 2288 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2289 xdp_ring->ring_active = false; 2290 xdp_ring->vsi = vsi; 2291 xdp_ring->netdev = NULL; 2292 xdp_ring->dev = dev; 2293 xdp_ring->count = vsi->num_tx_desc; 2294 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2295 if (ice_setup_tx_ring(xdp_ring)) 2296 goto free_xdp_rings; 2297 ice_set_ring_xdp(xdp_ring); 2298 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2299 } 2300 2301 return 0; 2302 2303 free_xdp_rings: 2304 for (; i >= 0; i--) 2305 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2306 ice_free_tx_ring(vsi->xdp_rings[i]); 2307 return -ENOMEM; 2308 } 2309 2310 /** 2311 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2312 * @vsi: VSI to set the bpf prog on 2313 * @prog: the bpf prog pointer 2314 */ 2315 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2316 { 2317 struct bpf_prog *old_prog; 2318 int i; 2319 2320 old_prog = xchg(&vsi->xdp_prog, prog); 2321 if (old_prog) 2322 bpf_prog_put(old_prog); 2323 2324 ice_for_each_rxq(vsi, i) 2325 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2326 } 2327 2328 /** 2329 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2330 * @vsi: VSI to bring up Tx rings used by XDP 2331 * @prog: bpf program that will be assigned to VSI 2332 * 2333 * Return 0 on success and negative value on error 2334 */ 2335 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2336 { 2337 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2338 int xdp_rings_rem = vsi->num_xdp_txq; 2339 struct ice_pf *pf = vsi->back; 2340 struct ice_qs_cfg xdp_qs_cfg = { 2341 .qs_mutex = &pf->avail_q_mutex, 2342 .pf_map = pf->avail_txqs, 2343 .pf_map_size = pf->max_pf_txqs, 2344 .q_count = vsi->num_xdp_txq, 2345 .scatter_count = ICE_MAX_SCATTER_TXQS, 2346 .vsi_map = vsi->txq_map, 2347 .vsi_map_offset = vsi->alloc_txq, 2348 .mapping_mode = ICE_VSI_MAP_CONTIG 2349 }; 2350 enum ice_status status; 2351 struct device *dev; 2352 int i, v_idx; 2353 2354 dev = ice_pf_to_dev(pf); 2355 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2356 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2357 if (!vsi->xdp_rings) 2358 return -ENOMEM; 2359 2360 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2361 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2362 goto err_map_xdp; 2363 2364 if (ice_xdp_alloc_setup_rings(vsi)) 2365 goto clear_xdp_rings; 2366 2367 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2368 ice_for_each_q_vector(vsi, v_idx) { 2369 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2370 int xdp_rings_per_v, q_id, q_base; 2371 2372 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2373 vsi->num_q_vectors - v_idx); 2374 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2375 2376 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2377 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2378 2379 xdp_ring->q_vector = q_vector; 2380 xdp_ring->next = q_vector->tx.ring; 2381 q_vector->tx.ring = xdp_ring; 2382 } 2383 xdp_rings_rem -= xdp_rings_per_v; 2384 } 2385 2386 /* omit the scheduler update if in reset path; XDP queues will be 2387 * taken into account at the end of ice_vsi_rebuild, where 2388 * ice_cfg_vsi_lan is being called 2389 */ 2390 if (ice_is_reset_in_progress(pf->state)) 2391 return 0; 2392 2393 /* tell the Tx scheduler that right now we have 2394 * additional queues 2395 */ 2396 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2397 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2398 2399 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2400 max_txqs); 2401 if (status) { 2402 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2403 ice_stat_str(status)); 2404 goto clear_xdp_rings; 2405 } 2406 ice_vsi_assign_bpf_prog(vsi, prog); 2407 2408 return 0; 2409 clear_xdp_rings: 2410 for (i = 0; i < vsi->num_xdp_txq; i++) 2411 if (vsi->xdp_rings[i]) { 2412 kfree_rcu(vsi->xdp_rings[i], rcu); 2413 vsi->xdp_rings[i] = NULL; 2414 } 2415 2416 err_map_xdp: 2417 mutex_lock(&pf->avail_q_mutex); 2418 for (i = 0; i < vsi->num_xdp_txq; i++) { 2419 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2420 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2421 } 2422 mutex_unlock(&pf->avail_q_mutex); 2423 2424 devm_kfree(dev, vsi->xdp_rings); 2425 return -ENOMEM; 2426 } 2427 2428 /** 2429 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2430 * @vsi: VSI to remove XDP rings 2431 * 2432 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2433 * resources 2434 */ 2435 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2436 { 2437 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2438 struct ice_pf *pf = vsi->back; 2439 int i, v_idx; 2440 2441 /* q_vectors are freed in reset path so there's no point in detaching 2442 * rings; in case of rebuild being triggered not from reset bits 2443 * in pf->state won't be set, so additionally check first q_vector 2444 * against NULL 2445 */ 2446 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2447 goto free_qmap; 2448 2449 ice_for_each_q_vector(vsi, v_idx) { 2450 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2451 struct ice_ring *ring; 2452 2453 ice_for_each_ring(ring, q_vector->tx) 2454 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2455 break; 2456 2457 /* restore the value of last node prior to XDP setup */ 2458 q_vector->tx.ring = ring; 2459 } 2460 2461 free_qmap: 2462 mutex_lock(&pf->avail_q_mutex); 2463 for (i = 0; i < vsi->num_xdp_txq; i++) { 2464 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2465 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2466 } 2467 mutex_unlock(&pf->avail_q_mutex); 2468 2469 for (i = 0; i < vsi->num_xdp_txq; i++) 2470 if (vsi->xdp_rings[i]) { 2471 if (vsi->xdp_rings[i]->desc) 2472 ice_free_tx_ring(vsi->xdp_rings[i]); 2473 kfree_rcu(vsi->xdp_rings[i], rcu); 2474 vsi->xdp_rings[i] = NULL; 2475 } 2476 2477 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2478 vsi->xdp_rings = NULL; 2479 2480 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2481 return 0; 2482 2483 ice_vsi_assign_bpf_prog(vsi, NULL); 2484 2485 /* notify Tx scheduler that we destroyed XDP queues and bring 2486 * back the old number of child nodes 2487 */ 2488 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2489 max_txqs[i] = vsi->num_txq; 2490 2491 /* change number of XDP Tx queues to 0 */ 2492 vsi->num_xdp_txq = 0; 2493 2494 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2495 max_txqs); 2496 } 2497 2498 /** 2499 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2500 * @vsi: VSI to schedule napi on 2501 */ 2502 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2503 { 2504 int i; 2505 2506 ice_for_each_rxq(vsi, i) { 2507 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2508 2509 if (rx_ring->xsk_pool) 2510 napi_schedule(&rx_ring->q_vector->napi); 2511 } 2512 } 2513 2514 /** 2515 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2516 * @vsi: VSI to setup XDP for 2517 * @prog: XDP program 2518 * @extack: netlink extended ack 2519 */ 2520 static int 2521 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2522 struct netlink_ext_ack *extack) 2523 { 2524 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2525 bool if_running = netif_running(vsi->netdev); 2526 int ret = 0, xdp_ring_err = 0; 2527 2528 if (frame_size > vsi->rx_buf_len) { 2529 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2530 return -EOPNOTSUPP; 2531 } 2532 2533 /* need to stop netdev while setting up the program for Rx rings */ 2534 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 2535 ret = ice_down(vsi); 2536 if (ret) { 2537 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2538 return ret; 2539 } 2540 } 2541 2542 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2543 vsi->num_xdp_txq = vsi->alloc_rxq; 2544 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2545 if (xdp_ring_err) 2546 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2547 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2548 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2549 if (xdp_ring_err) 2550 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2551 } else { 2552 ice_vsi_assign_bpf_prog(vsi, prog); 2553 } 2554 2555 if (if_running) 2556 ret = ice_up(vsi); 2557 2558 if (!ret && prog) 2559 ice_vsi_rx_napi_schedule(vsi); 2560 2561 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2562 } 2563 2564 /** 2565 * ice_xdp - implements XDP handler 2566 * @dev: netdevice 2567 * @xdp: XDP command 2568 */ 2569 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2570 { 2571 struct ice_netdev_priv *np = netdev_priv(dev); 2572 struct ice_vsi *vsi = np->vsi; 2573 2574 if (vsi->type != ICE_VSI_PF) { 2575 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2576 return -EINVAL; 2577 } 2578 2579 switch (xdp->command) { 2580 case XDP_SETUP_PROG: 2581 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2582 case XDP_SETUP_XSK_POOL: 2583 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2584 xdp->xsk.queue_id); 2585 default: 2586 return -EINVAL; 2587 } 2588 } 2589 2590 /** 2591 * ice_ena_misc_vector - enable the non-queue interrupts 2592 * @pf: board private structure 2593 */ 2594 static void ice_ena_misc_vector(struct ice_pf *pf) 2595 { 2596 struct ice_hw *hw = &pf->hw; 2597 u32 val; 2598 2599 /* Disable anti-spoof detection interrupt to prevent spurious event 2600 * interrupts during a function reset. Anti-spoof functionally is 2601 * still supported. 2602 */ 2603 val = rd32(hw, GL_MDCK_TX_TDPU); 2604 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2605 wr32(hw, GL_MDCK_TX_TDPU, val); 2606 2607 /* clear things first */ 2608 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2609 rd32(hw, PFINT_OICR); /* read to clear */ 2610 2611 val = (PFINT_OICR_ECC_ERR_M | 2612 PFINT_OICR_MAL_DETECT_M | 2613 PFINT_OICR_GRST_M | 2614 PFINT_OICR_PCI_EXCEPTION_M | 2615 PFINT_OICR_VFLR_M | 2616 PFINT_OICR_HMC_ERR_M | 2617 PFINT_OICR_PE_CRITERR_M); 2618 2619 wr32(hw, PFINT_OICR_ENA, val); 2620 2621 /* SW_ITR_IDX = 0, but don't change INTENA */ 2622 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2623 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2624 } 2625 2626 /** 2627 * ice_misc_intr - misc interrupt handler 2628 * @irq: interrupt number 2629 * @data: pointer to a q_vector 2630 */ 2631 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2632 { 2633 struct ice_pf *pf = (struct ice_pf *)data; 2634 struct ice_hw *hw = &pf->hw; 2635 irqreturn_t ret = IRQ_NONE; 2636 struct device *dev; 2637 u32 oicr, ena_mask; 2638 2639 dev = ice_pf_to_dev(pf); 2640 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2641 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2642 2643 oicr = rd32(hw, PFINT_OICR); 2644 ena_mask = rd32(hw, PFINT_OICR_ENA); 2645 2646 if (oicr & PFINT_OICR_SWINT_M) { 2647 ena_mask &= ~PFINT_OICR_SWINT_M; 2648 pf->sw_int_count++; 2649 } 2650 2651 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2652 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2653 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2654 } 2655 if (oicr & PFINT_OICR_VFLR_M) { 2656 /* disable any further VFLR event notifications */ 2657 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2658 u32 reg = rd32(hw, PFINT_OICR_ENA); 2659 2660 reg &= ~PFINT_OICR_VFLR_M; 2661 wr32(hw, PFINT_OICR_ENA, reg); 2662 } else { 2663 ena_mask &= ~PFINT_OICR_VFLR_M; 2664 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2665 } 2666 } 2667 2668 if (oicr & PFINT_OICR_GRST_M) { 2669 u32 reset; 2670 2671 /* we have a reset warning */ 2672 ena_mask &= ~PFINT_OICR_GRST_M; 2673 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2674 GLGEN_RSTAT_RESET_TYPE_S; 2675 2676 if (reset == ICE_RESET_CORER) 2677 pf->corer_count++; 2678 else if (reset == ICE_RESET_GLOBR) 2679 pf->globr_count++; 2680 else if (reset == ICE_RESET_EMPR) 2681 pf->empr_count++; 2682 else 2683 dev_dbg(dev, "Invalid reset type %d\n", reset); 2684 2685 /* If a reset cycle isn't already in progress, we set a bit in 2686 * pf->state so that the service task can start a reset/rebuild. 2687 * We also make note of which reset happened so that peer 2688 * devices/drivers can be informed. 2689 */ 2690 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2691 if (reset == ICE_RESET_CORER) 2692 set_bit(__ICE_CORER_RECV, pf->state); 2693 else if (reset == ICE_RESET_GLOBR) 2694 set_bit(__ICE_GLOBR_RECV, pf->state); 2695 else 2696 set_bit(__ICE_EMPR_RECV, pf->state); 2697 2698 /* There are couple of different bits at play here. 2699 * hw->reset_ongoing indicates whether the hardware is 2700 * in reset. This is set to true when a reset interrupt 2701 * is received and set back to false after the driver 2702 * has determined that the hardware is out of reset. 2703 * 2704 * __ICE_RESET_OICR_RECV in pf->state indicates 2705 * that a post reset rebuild is required before the 2706 * driver is operational again. This is set above. 2707 * 2708 * As this is the start of the reset/rebuild cycle, set 2709 * both to indicate that. 2710 */ 2711 hw->reset_ongoing = true; 2712 } 2713 } 2714 2715 if (oicr & PFINT_OICR_HMC_ERR_M) { 2716 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2717 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2718 rd32(hw, PFHMC_ERRORINFO), 2719 rd32(hw, PFHMC_ERRORDATA)); 2720 } 2721 2722 /* Report any remaining unexpected interrupts */ 2723 oicr &= ena_mask; 2724 if (oicr) { 2725 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2726 /* If a critical error is pending there is no choice but to 2727 * reset the device. 2728 */ 2729 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2730 PFINT_OICR_PCI_EXCEPTION_M | 2731 PFINT_OICR_ECC_ERR_M)) { 2732 set_bit(__ICE_PFR_REQ, pf->state); 2733 ice_service_task_schedule(pf); 2734 } 2735 } 2736 ret = IRQ_HANDLED; 2737 2738 ice_service_task_schedule(pf); 2739 ice_irq_dynamic_ena(hw, NULL, NULL); 2740 2741 return ret; 2742 } 2743 2744 /** 2745 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2746 * @hw: pointer to HW structure 2747 */ 2748 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2749 { 2750 /* disable Admin queue Interrupt causes */ 2751 wr32(hw, PFINT_FW_CTL, 2752 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2753 2754 /* disable Mailbox queue Interrupt causes */ 2755 wr32(hw, PFINT_MBX_CTL, 2756 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2757 2758 /* disable Control queue Interrupt causes */ 2759 wr32(hw, PFINT_OICR_CTL, 2760 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2761 2762 ice_flush(hw); 2763 } 2764 2765 /** 2766 * ice_free_irq_msix_misc - Unroll misc vector setup 2767 * @pf: board private structure 2768 */ 2769 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2770 { 2771 struct ice_hw *hw = &pf->hw; 2772 2773 ice_dis_ctrlq_interrupts(hw); 2774 2775 /* disable OICR interrupt */ 2776 wr32(hw, PFINT_OICR_ENA, 0); 2777 ice_flush(hw); 2778 2779 if (pf->msix_entries) { 2780 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2781 devm_free_irq(ice_pf_to_dev(pf), 2782 pf->msix_entries[pf->oicr_idx].vector, pf); 2783 } 2784 2785 pf->num_avail_sw_msix += 1; 2786 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2787 } 2788 2789 /** 2790 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2791 * @hw: pointer to HW structure 2792 * @reg_idx: HW vector index to associate the control queue interrupts with 2793 */ 2794 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2795 { 2796 u32 val; 2797 2798 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2799 PFINT_OICR_CTL_CAUSE_ENA_M); 2800 wr32(hw, PFINT_OICR_CTL, val); 2801 2802 /* enable Admin queue Interrupt causes */ 2803 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2804 PFINT_FW_CTL_CAUSE_ENA_M); 2805 wr32(hw, PFINT_FW_CTL, val); 2806 2807 /* enable Mailbox queue Interrupt causes */ 2808 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2809 PFINT_MBX_CTL_CAUSE_ENA_M); 2810 wr32(hw, PFINT_MBX_CTL, val); 2811 2812 ice_flush(hw); 2813 } 2814 2815 /** 2816 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2817 * @pf: board private structure 2818 * 2819 * This sets up the handler for MSIX 0, which is used to manage the 2820 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2821 * when in MSI or Legacy interrupt mode. 2822 */ 2823 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2824 { 2825 struct device *dev = ice_pf_to_dev(pf); 2826 struct ice_hw *hw = &pf->hw; 2827 int oicr_idx, err = 0; 2828 2829 if (!pf->int_name[0]) 2830 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2831 dev_driver_string(dev), dev_name(dev)); 2832 2833 /* Do not request IRQ but do enable OICR interrupt since settings are 2834 * lost during reset. Note that this function is called only during 2835 * rebuild path and not while reset is in progress. 2836 */ 2837 if (ice_is_reset_in_progress(pf->state)) 2838 goto skip_req_irq; 2839 2840 /* reserve one vector in irq_tracker for misc interrupts */ 2841 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2842 if (oicr_idx < 0) 2843 return oicr_idx; 2844 2845 pf->num_avail_sw_msix -= 1; 2846 pf->oicr_idx = (u16)oicr_idx; 2847 2848 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2849 ice_misc_intr, 0, pf->int_name, pf); 2850 if (err) { 2851 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2852 pf->int_name, err); 2853 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2854 pf->num_avail_sw_msix += 1; 2855 return err; 2856 } 2857 2858 skip_req_irq: 2859 ice_ena_misc_vector(pf); 2860 2861 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2862 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2863 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2864 2865 ice_flush(hw); 2866 ice_irq_dynamic_ena(hw, NULL, NULL); 2867 2868 return 0; 2869 } 2870 2871 /** 2872 * ice_napi_add - register NAPI handler for the VSI 2873 * @vsi: VSI for which NAPI handler is to be registered 2874 * 2875 * This function is only called in the driver's load path. Registering the NAPI 2876 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2877 * reset/rebuild, etc.) 2878 */ 2879 static void ice_napi_add(struct ice_vsi *vsi) 2880 { 2881 int v_idx; 2882 2883 if (!vsi->netdev) 2884 return; 2885 2886 ice_for_each_q_vector(vsi, v_idx) 2887 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2888 ice_napi_poll, NAPI_POLL_WEIGHT); 2889 } 2890 2891 /** 2892 * ice_set_ops - set netdev and ethtools ops for the given netdev 2893 * @netdev: netdev instance 2894 */ 2895 static void ice_set_ops(struct net_device *netdev) 2896 { 2897 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2898 2899 if (ice_is_safe_mode(pf)) { 2900 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2901 ice_set_ethtool_safe_mode_ops(netdev); 2902 return; 2903 } 2904 2905 netdev->netdev_ops = &ice_netdev_ops; 2906 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2907 ice_set_ethtool_ops(netdev); 2908 } 2909 2910 /** 2911 * ice_set_netdev_features - set features for the given netdev 2912 * @netdev: netdev instance 2913 */ 2914 static void ice_set_netdev_features(struct net_device *netdev) 2915 { 2916 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2917 netdev_features_t csumo_features; 2918 netdev_features_t vlano_features; 2919 netdev_features_t dflt_features; 2920 netdev_features_t tso_features; 2921 2922 if (ice_is_safe_mode(pf)) { 2923 /* safe mode */ 2924 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2925 netdev->hw_features = netdev->features; 2926 return; 2927 } 2928 2929 dflt_features = NETIF_F_SG | 2930 NETIF_F_HIGHDMA | 2931 NETIF_F_NTUPLE | 2932 NETIF_F_RXHASH; 2933 2934 csumo_features = NETIF_F_RXCSUM | 2935 NETIF_F_IP_CSUM | 2936 NETIF_F_SCTP_CRC | 2937 NETIF_F_IPV6_CSUM; 2938 2939 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2940 NETIF_F_HW_VLAN_CTAG_TX | 2941 NETIF_F_HW_VLAN_CTAG_RX; 2942 2943 tso_features = NETIF_F_TSO | 2944 NETIF_F_TSO_ECN | 2945 NETIF_F_TSO6 | 2946 NETIF_F_GSO_GRE | 2947 NETIF_F_GSO_UDP_TUNNEL | 2948 NETIF_F_GSO_GRE_CSUM | 2949 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2950 NETIF_F_GSO_PARTIAL | 2951 NETIF_F_GSO_IPXIP4 | 2952 NETIF_F_GSO_IPXIP6 | 2953 NETIF_F_GSO_UDP_L4; 2954 2955 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2956 NETIF_F_GSO_GRE_CSUM; 2957 /* set features that user can change */ 2958 netdev->hw_features = dflt_features | csumo_features | 2959 vlano_features | tso_features; 2960 2961 /* add support for HW_CSUM on packets with MPLS header */ 2962 netdev->mpls_features = NETIF_F_HW_CSUM; 2963 2964 /* enable features */ 2965 netdev->features |= netdev->hw_features; 2966 /* encap and VLAN devices inherit default, csumo and tso features */ 2967 netdev->hw_enc_features |= dflt_features | csumo_features | 2968 tso_features; 2969 netdev->vlan_features |= dflt_features | csumo_features | 2970 tso_features; 2971 } 2972 2973 /** 2974 * ice_cfg_netdev - Allocate, configure and register a netdev 2975 * @vsi: the VSI associated with the new netdev 2976 * 2977 * Returns 0 on success, negative value on failure 2978 */ 2979 static int ice_cfg_netdev(struct ice_vsi *vsi) 2980 { 2981 struct ice_pf *pf = vsi->back; 2982 struct ice_netdev_priv *np; 2983 struct net_device *netdev; 2984 u8 mac_addr[ETH_ALEN]; 2985 int err; 2986 2987 err = ice_devlink_create_port(vsi); 2988 if (err) 2989 return err; 2990 2991 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2992 vsi->alloc_rxq); 2993 if (!netdev) { 2994 err = -ENOMEM; 2995 goto err_destroy_devlink_port; 2996 } 2997 2998 vsi->netdev = netdev; 2999 np = netdev_priv(netdev); 3000 np->vsi = vsi; 3001 3002 ice_set_netdev_features(netdev); 3003 3004 ice_set_ops(netdev); 3005 3006 if (vsi->type == ICE_VSI_PF) { 3007 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 3008 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3009 ether_addr_copy(netdev->dev_addr, mac_addr); 3010 ether_addr_copy(netdev->perm_addr, mac_addr); 3011 } 3012 3013 netdev->priv_flags |= IFF_UNICAST_FLT; 3014 3015 /* Setup netdev TC information */ 3016 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3017 3018 /* setup watchdog timeout value to be 5 second */ 3019 netdev->watchdog_timeo = 5 * HZ; 3020 3021 netdev->min_mtu = ETH_MIN_MTU; 3022 netdev->max_mtu = ICE_MAX_MTU; 3023 3024 err = register_netdev(vsi->netdev); 3025 if (err) 3026 goto err_free_netdev; 3027 3028 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 3029 3030 netif_carrier_off(vsi->netdev); 3031 3032 /* make sure transmit queues start off as stopped */ 3033 netif_tx_stop_all_queues(vsi->netdev); 3034 3035 return 0; 3036 3037 err_free_netdev: 3038 free_netdev(vsi->netdev); 3039 vsi->netdev = NULL; 3040 err_destroy_devlink_port: 3041 ice_devlink_destroy_port(vsi); 3042 return err; 3043 } 3044 3045 /** 3046 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3047 * @lut: Lookup table 3048 * @rss_table_size: Lookup table size 3049 * @rss_size: Range of queue number for hashing 3050 */ 3051 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3052 { 3053 u16 i; 3054 3055 for (i = 0; i < rss_table_size; i++) 3056 lut[i] = i % rss_size; 3057 } 3058 3059 /** 3060 * ice_pf_vsi_setup - Set up a PF VSI 3061 * @pf: board private structure 3062 * @pi: pointer to the port_info instance 3063 * 3064 * Returns pointer to the successfully allocated VSI software struct 3065 * on success, otherwise returns NULL on failure. 3066 */ 3067 static struct ice_vsi * 3068 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3069 { 3070 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3071 } 3072 3073 /** 3074 * ice_ctrl_vsi_setup - Set up a control VSI 3075 * @pf: board private structure 3076 * @pi: pointer to the port_info instance 3077 * 3078 * Returns pointer to the successfully allocated VSI software struct 3079 * on success, otherwise returns NULL on failure. 3080 */ 3081 static struct ice_vsi * 3082 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3083 { 3084 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3085 } 3086 3087 /** 3088 * ice_lb_vsi_setup - Set up a loopback VSI 3089 * @pf: board private structure 3090 * @pi: pointer to the port_info instance 3091 * 3092 * Returns pointer to the successfully allocated VSI software struct 3093 * on success, otherwise returns NULL on failure. 3094 */ 3095 struct ice_vsi * 3096 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3097 { 3098 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3099 } 3100 3101 /** 3102 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3103 * @netdev: network interface to be adjusted 3104 * @proto: unused protocol 3105 * @vid: VLAN ID to be added 3106 * 3107 * net_device_ops implementation for adding VLAN IDs 3108 */ 3109 static int 3110 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3111 u16 vid) 3112 { 3113 struct ice_netdev_priv *np = netdev_priv(netdev); 3114 struct ice_vsi *vsi = np->vsi; 3115 int ret; 3116 3117 if (vid >= VLAN_N_VID) { 3118 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 3119 vid, VLAN_N_VID); 3120 return -EINVAL; 3121 } 3122 3123 if (vsi->info.pvid) 3124 return -EINVAL; 3125 3126 /* VLAN 0 is added by default during load/reset */ 3127 if (!vid) 3128 return 0; 3129 3130 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3131 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3132 ret = ice_cfg_vlan_pruning(vsi, true, false); 3133 if (ret) 3134 return ret; 3135 } 3136 3137 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3138 * packets aren't pruned by the device's internal switch on Rx 3139 */ 3140 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3141 if (!ret) 3142 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3143 3144 return ret; 3145 } 3146 3147 /** 3148 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3149 * @netdev: network interface to be adjusted 3150 * @proto: unused protocol 3151 * @vid: VLAN ID to be removed 3152 * 3153 * net_device_ops implementation for removing VLAN IDs 3154 */ 3155 static int 3156 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3157 u16 vid) 3158 { 3159 struct ice_netdev_priv *np = netdev_priv(netdev); 3160 struct ice_vsi *vsi = np->vsi; 3161 int ret; 3162 3163 if (vsi->info.pvid) 3164 return -EINVAL; 3165 3166 /* don't allow removal of VLAN 0 */ 3167 if (!vid) 3168 return 0; 3169 3170 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3171 * information 3172 */ 3173 ret = ice_vsi_kill_vlan(vsi, vid); 3174 if (ret) 3175 return ret; 3176 3177 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3178 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3179 ret = ice_cfg_vlan_pruning(vsi, false, false); 3180 3181 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3182 return ret; 3183 } 3184 3185 /** 3186 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3187 * @pf: board private structure 3188 * 3189 * Returns 0 on success, negative value on failure 3190 */ 3191 static int ice_setup_pf_sw(struct ice_pf *pf) 3192 { 3193 struct ice_vsi *vsi; 3194 int status = 0; 3195 3196 if (ice_is_reset_in_progress(pf->state)) 3197 return -EBUSY; 3198 3199 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3200 if (!vsi) 3201 return -ENOMEM; 3202 3203 status = ice_cfg_netdev(vsi); 3204 if (status) { 3205 status = -ENODEV; 3206 goto unroll_vsi_setup; 3207 } 3208 /* netdev has to be configured before setting frame size */ 3209 ice_vsi_cfg_frame_size(vsi); 3210 3211 /* Setup DCB netlink interface */ 3212 ice_dcbnl_setup(vsi); 3213 3214 /* registering the NAPI handler requires both the queues and 3215 * netdev to be created, which are done in ice_pf_vsi_setup() 3216 * and ice_cfg_netdev() respectively 3217 */ 3218 ice_napi_add(vsi); 3219 3220 status = ice_set_cpu_rx_rmap(vsi); 3221 if (status) { 3222 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3223 vsi->vsi_num, status); 3224 status = -EINVAL; 3225 goto unroll_napi_add; 3226 } 3227 status = ice_init_mac_fltr(pf); 3228 if (status) 3229 goto free_cpu_rx_map; 3230 3231 return status; 3232 3233 free_cpu_rx_map: 3234 ice_free_cpu_rx_rmap(vsi); 3235 3236 unroll_napi_add: 3237 if (vsi) { 3238 ice_napi_del(vsi); 3239 if (vsi->netdev) { 3240 if (vsi->netdev->reg_state == NETREG_REGISTERED) 3241 unregister_netdev(vsi->netdev); 3242 free_netdev(vsi->netdev); 3243 vsi->netdev = NULL; 3244 } 3245 } 3246 3247 unroll_vsi_setup: 3248 ice_vsi_release(vsi); 3249 return status; 3250 } 3251 3252 /** 3253 * ice_get_avail_q_count - Get count of queues in use 3254 * @pf_qmap: bitmap to get queue use count from 3255 * @lock: pointer to a mutex that protects access to pf_qmap 3256 * @size: size of the bitmap 3257 */ 3258 static u16 3259 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3260 { 3261 unsigned long bit; 3262 u16 count = 0; 3263 3264 mutex_lock(lock); 3265 for_each_clear_bit(bit, pf_qmap, size) 3266 count++; 3267 mutex_unlock(lock); 3268 3269 return count; 3270 } 3271 3272 /** 3273 * ice_get_avail_txq_count - Get count of Tx queues in use 3274 * @pf: pointer to an ice_pf instance 3275 */ 3276 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3277 { 3278 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3279 pf->max_pf_txqs); 3280 } 3281 3282 /** 3283 * ice_get_avail_rxq_count - Get count of Rx queues in use 3284 * @pf: pointer to an ice_pf instance 3285 */ 3286 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3287 { 3288 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3289 pf->max_pf_rxqs); 3290 } 3291 3292 /** 3293 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3294 * @pf: board private structure to initialize 3295 */ 3296 static void ice_deinit_pf(struct ice_pf *pf) 3297 { 3298 ice_service_task_stop(pf); 3299 mutex_destroy(&pf->sw_mutex); 3300 mutex_destroy(&pf->tc_mutex); 3301 mutex_destroy(&pf->avail_q_mutex); 3302 3303 if (pf->avail_txqs) { 3304 bitmap_free(pf->avail_txqs); 3305 pf->avail_txqs = NULL; 3306 } 3307 3308 if (pf->avail_rxqs) { 3309 bitmap_free(pf->avail_rxqs); 3310 pf->avail_rxqs = NULL; 3311 } 3312 } 3313 3314 /** 3315 * ice_set_pf_caps - set PFs capability flags 3316 * @pf: pointer to the PF instance 3317 */ 3318 static void ice_set_pf_caps(struct ice_pf *pf) 3319 { 3320 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3321 3322 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3323 if (func_caps->common_cap.dcb) 3324 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3325 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3326 if (func_caps->common_cap.sr_iov_1_1) { 3327 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3328 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3329 ICE_MAX_VF_COUNT); 3330 } 3331 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3332 if (func_caps->common_cap.rss_table_size) 3333 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3334 3335 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3336 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3337 u16 unused; 3338 3339 /* ctrl_vsi_idx will be set to a valid value when flow director 3340 * is setup by ice_init_fdir 3341 */ 3342 pf->ctrl_vsi_idx = ICE_NO_VSI; 3343 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3344 /* force guaranteed filter pool for PF */ 3345 ice_alloc_fd_guar_item(&pf->hw, &unused, 3346 func_caps->fd_fltr_guar); 3347 /* force shared filter pool for PF */ 3348 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3349 func_caps->fd_fltr_best_effort); 3350 } 3351 3352 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3353 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3354 } 3355 3356 /** 3357 * ice_init_pf - Initialize general software structures (struct ice_pf) 3358 * @pf: board private structure to initialize 3359 */ 3360 static int ice_init_pf(struct ice_pf *pf) 3361 { 3362 ice_set_pf_caps(pf); 3363 3364 mutex_init(&pf->sw_mutex); 3365 mutex_init(&pf->tc_mutex); 3366 3367 INIT_HLIST_HEAD(&pf->aq_wait_list); 3368 spin_lock_init(&pf->aq_wait_lock); 3369 init_waitqueue_head(&pf->aq_wait_queue); 3370 3371 /* setup service timer and periodic service task */ 3372 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3373 pf->serv_tmr_period = HZ; 3374 INIT_WORK(&pf->serv_task, ice_service_task); 3375 clear_bit(__ICE_SERVICE_SCHED, pf->state); 3376 3377 mutex_init(&pf->avail_q_mutex); 3378 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3379 if (!pf->avail_txqs) 3380 return -ENOMEM; 3381 3382 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3383 if (!pf->avail_rxqs) { 3384 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3385 pf->avail_txqs = NULL; 3386 return -ENOMEM; 3387 } 3388 3389 return 0; 3390 } 3391 3392 /** 3393 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3394 * @pf: board private structure 3395 * 3396 * compute the number of MSIX vectors required (v_budget) and request from 3397 * the OS. Return the number of vectors reserved or negative on failure 3398 */ 3399 static int ice_ena_msix_range(struct ice_pf *pf) 3400 { 3401 int v_left, v_actual, v_other, v_budget = 0; 3402 struct device *dev = ice_pf_to_dev(pf); 3403 int needed, err, i; 3404 3405 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3406 3407 /* reserve for LAN miscellaneous handler */ 3408 needed = ICE_MIN_LAN_OICR_MSIX; 3409 if (v_left < needed) 3410 goto no_hw_vecs_left_err; 3411 v_budget += needed; 3412 v_left -= needed; 3413 3414 /* reserve for flow director */ 3415 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3416 needed = ICE_FDIR_MSIX; 3417 if (v_left < needed) 3418 goto no_hw_vecs_left_err; 3419 v_budget += needed; 3420 v_left -= needed; 3421 } 3422 3423 /* total used for non-traffic vectors */ 3424 v_other = v_budget; 3425 3426 /* reserve vectors for LAN traffic */ 3427 needed = min_t(int, num_online_cpus(), v_left); 3428 if (v_left < needed) 3429 goto no_hw_vecs_left_err; 3430 pf->num_lan_msix = needed; 3431 v_budget += needed; 3432 v_left -= needed; 3433 3434 pf->msix_entries = devm_kcalloc(dev, v_budget, 3435 sizeof(*pf->msix_entries), GFP_KERNEL); 3436 if (!pf->msix_entries) { 3437 err = -ENOMEM; 3438 goto exit_err; 3439 } 3440 3441 for (i = 0; i < v_budget; i++) 3442 pf->msix_entries[i].entry = i; 3443 3444 /* actually reserve the vectors */ 3445 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3446 ICE_MIN_MSIX, v_budget); 3447 if (v_actual < 0) { 3448 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3449 err = v_actual; 3450 goto msix_err; 3451 } 3452 3453 if (v_actual < v_budget) { 3454 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3455 v_budget, v_actual); 3456 3457 if (v_actual < ICE_MIN_MSIX) { 3458 /* error if we can't get minimum vectors */ 3459 pci_disable_msix(pf->pdev); 3460 err = -ERANGE; 3461 goto msix_err; 3462 } else { 3463 int v_traffic = v_actual - v_other; 3464 3465 if (v_actual == ICE_MIN_MSIX || 3466 v_traffic < ICE_MIN_LAN_TXRX_MSIX) 3467 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3468 else 3469 pf->num_lan_msix = v_traffic; 3470 3471 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3472 pf->num_lan_msix); 3473 } 3474 } 3475 3476 return v_actual; 3477 3478 msix_err: 3479 devm_kfree(dev, pf->msix_entries); 3480 goto exit_err; 3481 3482 no_hw_vecs_left_err: 3483 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3484 needed, v_left); 3485 err = -ERANGE; 3486 exit_err: 3487 pf->num_lan_msix = 0; 3488 return err; 3489 } 3490 3491 /** 3492 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3493 * @pf: board private structure 3494 */ 3495 static void ice_dis_msix(struct ice_pf *pf) 3496 { 3497 pci_disable_msix(pf->pdev); 3498 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3499 pf->msix_entries = NULL; 3500 } 3501 3502 /** 3503 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3504 * @pf: board private structure 3505 */ 3506 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3507 { 3508 ice_dis_msix(pf); 3509 3510 if (pf->irq_tracker) { 3511 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3512 pf->irq_tracker = NULL; 3513 } 3514 } 3515 3516 /** 3517 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3518 * @pf: board private structure to initialize 3519 */ 3520 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3521 { 3522 int vectors; 3523 3524 vectors = ice_ena_msix_range(pf); 3525 3526 if (vectors < 0) 3527 return vectors; 3528 3529 /* set up vector assignment tracking */ 3530 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3531 struct_size(pf->irq_tracker, list, vectors), 3532 GFP_KERNEL); 3533 if (!pf->irq_tracker) { 3534 ice_dis_msix(pf); 3535 return -ENOMEM; 3536 } 3537 3538 /* populate SW interrupts pool with number of OS granted IRQs. */ 3539 pf->num_avail_sw_msix = (u16)vectors; 3540 pf->irq_tracker->num_entries = (u16)vectors; 3541 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3542 3543 return 0; 3544 } 3545 3546 /** 3547 * ice_is_wol_supported - get NVM state of WoL 3548 * @pf: board private structure 3549 * 3550 * Check if WoL is supported based on the HW configuration. 3551 * Returns true if NVM supports and enables WoL for this port, false otherwise 3552 */ 3553 bool ice_is_wol_supported(struct ice_pf *pf) 3554 { 3555 struct ice_hw *hw = &pf->hw; 3556 u16 wol_ctrl; 3557 3558 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3559 * word) indicates WoL is not supported on the corresponding PF ID. 3560 */ 3561 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3562 return false; 3563 3564 return !(BIT(hw->pf_id) & wol_ctrl); 3565 } 3566 3567 /** 3568 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3569 * @vsi: VSI being changed 3570 * @new_rx: new number of Rx queues 3571 * @new_tx: new number of Tx queues 3572 * 3573 * Only change the number of queues if new_tx, or new_rx is non-0. 3574 * 3575 * Returns 0 on success. 3576 */ 3577 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3578 { 3579 struct ice_pf *pf = vsi->back; 3580 int err = 0, timeout = 50; 3581 3582 if (!new_rx && !new_tx) 3583 return -EINVAL; 3584 3585 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 3586 timeout--; 3587 if (!timeout) 3588 return -EBUSY; 3589 usleep_range(1000, 2000); 3590 } 3591 3592 if (new_tx) 3593 vsi->req_txq = (u16)new_tx; 3594 if (new_rx) 3595 vsi->req_rxq = (u16)new_rx; 3596 3597 /* set for the next time the netdev is started */ 3598 if (!netif_running(vsi->netdev)) { 3599 ice_vsi_rebuild(vsi, false); 3600 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3601 goto done; 3602 } 3603 3604 ice_vsi_close(vsi); 3605 ice_vsi_rebuild(vsi, false); 3606 ice_pf_dcb_recfg(pf); 3607 ice_vsi_open(vsi); 3608 done: 3609 clear_bit(__ICE_CFG_BUSY, pf->state); 3610 return err; 3611 } 3612 3613 /** 3614 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3615 * @pf: PF to configure 3616 * 3617 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3618 * VSI can still Tx/Rx VLAN tagged packets. 3619 */ 3620 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3621 { 3622 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3623 struct ice_vsi_ctx *ctxt; 3624 enum ice_status status; 3625 struct ice_hw *hw; 3626 3627 if (!vsi) 3628 return; 3629 3630 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3631 if (!ctxt) 3632 return; 3633 3634 hw = &pf->hw; 3635 ctxt->info = vsi->info; 3636 3637 ctxt->info.valid_sections = 3638 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3639 ICE_AQ_VSI_PROP_SECURITY_VALID | 3640 ICE_AQ_VSI_PROP_SW_VALID); 3641 3642 /* disable VLAN anti-spoof */ 3643 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3644 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3645 3646 /* disable VLAN pruning and keep all other settings */ 3647 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3648 3649 /* allow all VLANs on Tx and don't strip on Rx */ 3650 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3651 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3652 3653 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3654 if (status) { 3655 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3656 ice_stat_str(status), 3657 ice_aq_str(hw->adminq.sq_last_status)); 3658 } else { 3659 vsi->info.sec_flags = ctxt->info.sec_flags; 3660 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3661 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3662 } 3663 3664 kfree(ctxt); 3665 } 3666 3667 /** 3668 * ice_log_pkg_init - log result of DDP package load 3669 * @hw: pointer to hardware info 3670 * @status: status of package load 3671 */ 3672 static void 3673 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3674 { 3675 struct ice_pf *pf = (struct ice_pf *)hw->back; 3676 struct device *dev = ice_pf_to_dev(pf); 3677 3678 switch (*status) { 3679 case ICE_SUCCESS: 3680 /* The package download AdminQ command returned success because 3681 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3682 * already a package loaded on the device. 3683 */ 3684 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3685 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3686 hw->pkg_ver.update == hw->active_pkg_ver.update && 3687 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3688 !memcmp(hw->pkg_name, hw->active_pkg_name, 3689 sizeof(hw->pkg_name))) { 3690 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3691 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3692 hw->active_pkg_name, 3693 hw->active_pkg_ver.major, 3694 hw->active_pkg_ver.minor, 3695 hw->active_pkg_ver.update, 3696 hw->active_pkg_ver.draft); 3697 else 3698 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3699 hw->active_pkg_name, 3700 hw->active_pkg_ver.major, 3701 hw->active_pkg_ver.minor, 3702 hw->active_pkg_ver.update, 3703 hw->active_pkg_ver.draft); 3704 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3705 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3706 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3707 hw->active_pkg_name, 3708 hw->active_pkg_ver.major, 3709 hw->active_pkg_ver.minor, 3710 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3711 *status = ICE_ERR_NOT_SUPPORTED; 3712 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3713 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3714 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3715 hw->active_pkg_name, 3716 hw->active_pkg_ver.major, 3717 hw->active_pkg_ver.minor, 3718 hw->active_pkg_ver.update, 3719 hw->active_pkg_ver.draft, 3720 hw->pkg_name, 3721 hw->pkg_ver.major, 3722 hw->pkg_ver.minor, 3723 hw->pkg_ver.update, 3724 hw->pkg_ver.draft); 3725 } else { 3726 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3727 *status = ICE_ERR_NOT_SUPPORTED; 3728 } 3729 break; 3730 case ICE_ERR_FW_DDP_MISMATCH: 3731 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3732 break; 3733 case ICE_ERR_BUF_TOO_SHORT: 3734 case ICE_ERR_CFG: 3735 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3736 break; 3737 case ICE_ERR_NOT_SUPPORTED: 3738 /* Package File version not supported */ 3739 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3740 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3741 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3742 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3743 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3744 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3745 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3746 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3747 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3748 break; 3749 case ICE_ERR_AQ_ERROR: 3750 switch (hw->pkg_dwnld_status) { 3751 case ICE_AQ_RC_ENOSEC: 3752 case ICE_AQ_RC_EBADSIG: 3753 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3754 return; 3755 case ICE_AQ_RC_ESVN: 3756 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3757 return; 3758 case ICE_AQ_RC_EBADMAN: 3759 case ICE_AQ_RC_EBADBUF: 3760 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3761 /* poll for reset to complete */ 3762 if (ice_check_reset(hw)) 3763 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3764 return; 3765 default: 3766 break; 3767 } 3768 fallthrough; 3769 default: 3770 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3771 *status); 3772 break; 3773 } 3774 } 3775 3776 /** 3777 * ice_load_pkg - load/reload the DDP Package file 3778 * @firmware: firmware structure when firmware requested or NULL for reload 3779 * @pf: pointer to the PF instance 3780 * 3781 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3782 * initialize HW tables. 3783 */ 3784 static void 3785 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3786 { 3787 enum ice_status status = ICE_ERR_PARAM; 3788 struct device *dev = ice_pf_to_dev(pf); 3789 struct ice_hw *hw = &pf->hw; 3790 3791 /* Load DDP Package */ 3792 if (firmware && !hw->pkg_copy) { 3793 status = ice_copy_and_init_pkg(hw, firmware->data, 3794 firmware->size); 3795 ice_log_pkg_init(hw, &status); 3796 } else if (!firmware && hw->pkg_copy) { 3797 /* Reload package during rebuild after CORER/GLOBR reset */ 3798 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3799 ice_log_pkg_init(hw, &status); 3800 } else { 3801 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3802 } 3803 3804 if (status) { 3805 /* Safe Mode */ 3806 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3807 return; 3808 } 3809 3810 /* Successful download package is the precondition for advanced 3811 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3812 */ 3813 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3814 } 3815 3816 /** 3817 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3818 * @pf: pointer to the PF structure 3819 * 3820 * There is no error returned here because the driver should be able to handle 3821 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3822 * specifically with Tx. 3823 */ 3824 static void ice_verify_cacheline_size(struct ice_pf *pf) 3825 { 3826 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3827 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3828 ICE_CACHE_LINE_BYTES); 3829 } 3830 3831 /** 3832 * ice_send_version - update firmware with driver version 3833 * @pf: PF struct 3834 * 3835 * Returns ICE_SUCCESS on success, else error code 3836 */ 3837 static enum ice_status ice_send_version(struct ice_pf *pf) 3838 { 3839 struct ice_driver_ver dv; 3840 3841 dv.major_ver = 0xff; 3842 dv.minor_ver = 0xff; 3843 dv.build_ver = 0xff; 3844 dv.subbuild_ver = 0; 3845 strscpy((char *)dv.driver_string, UTS_RELEASE, 3846 sizeof(dv.driver_string)); 3847 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3848 } 3849 3850 /** 3851 * ice_init_fdir - Initialize flow director VSI and configuration 3852 * @pf: pointer to the PF instance 3853 * 3854 * returns 0 on success, negative on error 3855 */ 3856 static int ice_init_fdir(struct ice_pf *pf) 3857 { 3858 struct device *dev = ice_pf_to_dev(pf); 3859 struct ice_vsi *ctrl_vsi; 3860 int err; 3861 3862 /* Side Band Flow Director needs to have a control VSI. 3863 * Allocate it and store it in the PF. 3864 */ 3865 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3866 if (!ctrl_vsi) { 3867 dev_dbg(dev, "could not create control VSI\n"); 3868 return -ENOMEM; 3869 } 3870 3871 err = ice_vsi_open_ctrl(ctrl_vsi); 3872 if (err) { 3873 dev_dbg(dev, "could not open control VSI\n"); 3874 goto err_vsi_open; 3875 } 3876 3877 mutex_init(&pf->hw.fdir_fltr_lock); 3878 3879 err = ice_fdir_create_dflt_rules(pf); 3880 if (err) 3881 goto err_fdir_rule; 3882 3883 return 0; 3884 3885 err_fdir_rule: 3886 ice_fdir_release_flows(&pf->hw); 3887 ice_vsi_close(ctrl_vsi); 3888 err_vsi_open: 3889 ice_vsi_release(ctrl_vsi); 3890 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3891 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3892 pf->ctrl_vsi_idx = ICE_NO_VSI; 3893 } 3894 return err; 3895 } 3896 3897 /** 3898 * ice_get_opt_fw_name - return optional firmware file name or NULL 3899 * @pf: pointer to the PF instance 3900 */ 3901 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3902 { 3903 /* Optional firmware name same as default with additional dash 3904 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3905 */ 3906 struct pci_dev *pdev = pf->pdev; 3907 char *opt_fw_filename; 3908 u64 dsn; 3909 3910 /* Determine the name of the optional file using the DSN (two 3911 * dwords following the start of the DSN Capability). 3912 */ 3913 dsn = pci_get_dsn(pdev); 3914 if (!dsn) 3915 return NULL; 3916 3917 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3918 if (!opt_fw_filename) 3919 return NULL; 3920 3921 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3922 ICE_DDP_PKG_PATH, dsn); 3923 3924 return opt_fw_filename; 3925 } 3926 3927 /** 3928 * ice_request_fw - Device initialization routine 3929 * @pf: pointer to the PF instance 3930 */ 3931 static void ice_request_fw(struct ice_pf *pf) 3932 { 3933 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3934 const struct firmware *firmware = NULL; 3935 struct device *dev = ice_pf_to_dev(pf); 3936 int err = 0; 3937 3938 /* optional device-specific DDP (if present) overrides the default DDP 3939 * package file. kernel logs a debug message if the file doesn't exist, 3940 * and warning messages for other errors. 3941 */ 3942 if (opt_fw_filename) { 3943 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3944 if (err) { 3945 kfree(opt_fw_filename); 3946 goto dflt_pkg_load; 3947 } 3948 3949 /* request for firmware was successful. Download to device */ 3950 ice_load_pkg(firmware, pf); 3951 kfree(opt_fw_filename); 3952 release_firmware(firmware); 3953 return; 3954 } 3955 3956 dflt_pkg_load: 3957 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3958 if (err) { 3959 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3960 return; 3961 } 3962 3963 /* request for firmware was successful. Download to device */ 3964 ice_load_pkg(firmware, pf); 3965 release_firmware(firmware); 3966 } 3967 3968 /** 3969 * ice_print_wake_reason - show the wake up cause in the log 3970 * @pf: pointer to the PF struct 3971 */ 3972 static void ice_print_wake_reason(struct ice_pf *pf) 3973 { 3974 u32 wus = pf->wakeup_reason; 3975 const char *wake_str; 3976 3977 /* if no wake event, nothing to print */ 3978 if (!wus) 3979 return; 3980 3981 if (wus & PFPM_WUS_LNKC_M) 3982 wake_str = "Link\n"; 3983 else if (wus & PFPM_WUS_MAG_M) 3984 wake_str = "Magic Packet\n"; 3985 else if (wus & PFPM_WUS_MNG_M) 3986 wake_str = "Management\n"; 3987 else if (wus & PFPM_WUS_FW_RST_WK_M) 3988 wake_str = "Firmware Reset\n"; 3989 else 3990 wake_str = "Unknown\n"; 3991 3992 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 3993 } 3994 3995 /** 3996 * ice_probe - Device initialization routine 3997 * @pdev: PCI device information struct 3998 * @ent: entry in ice_pci_tbl 3999 * 4000 * Returns 0 on success, negative on failure 4001 */ 4002 static int 4003 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4004 { 4005 struct device *dev = &pdev->dev; 4006 struct ice_pf *pf; 4007 struct ice_hw *hw; 4008 int i, err; 4009 4010 /* this driver uses devres, see 4011 * Documentation/driver-api/driver-model/devres.rst 4012 */ 4013 err = pcim_enable_device(pdev); 4014 if (err) 4015 return err; 4016 4017 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 4018 if (err) { 4019 dev_err(dev, "BAR0 I/O map error %d\n", err); 4020 return err; 4021 } 4022 4023 pf = ice_allocate_pf(dev); 4024 if (!pf) 4025 return -ENOMEM; 4026 4027 /* set up for high or low DMA */ 4028 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4029 if (err) 4030 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4031 if (err) { 4032 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4033 return err; 4034 } 4035 4036 pci_enable_pcie_error_reporting(pdev); 4037 pci_set_master(pdev); 4038 4039 pf->pdev = pdev; 4040 pci_set_drvdata(pdev, pf); 4041 set_bit(__ICE_DOWN, pf->state); 4042 /* Disable service task until DOWN bit is cleared */ 4043 set_bit(__ICE_SERVICE_DIS, pf->state); 4044 4045 hw = &pf->hw; 4046 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4047 pci_save_state(pdev); 4048 4049 hw->back = pf; 4050 hw->vendor_id = pdev->vendor; 4051 hw->device_id = pdev->device; 4052 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4053 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4054 hw->subsystem_device_id = pdev->subsystem_device; 4055 hw->bus.device = PCI_SLOT(pdev->devfn); 4056 hw->bus.func = PCI_FUNC(pdev->devfn); 4057 ice_set_ctrlq_len(hw); 4058 4059 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4060 4061 err = ice_devlink_register(pf); 4062 if (err) { 4063 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4064 goto err_exit_unroll; 4065 } 4066 4067 #ifndef CONFIG_DYNAMIC_DEBUG 4068 if (debug < -1) 4069 hw->debug_mask = debug; 4070 #endif 4071 4072 err = ice_init_hw(hw); 4073 if (err) { 4074 dev_err(dev, "ice_init_hw failed: %d\n", err); 4075 err = -EIO; 4076 goto err_exit_unroll; 4077 } 4078 4079 ice_request_fw(pf); 4080 4081 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4082 * set in pf->state, which will cause ice_is_safe_mode to return 4083 * true 4084 */ 4085 if (ice_is_safe_mode(pf)) { 4086 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4087 /* we already got function/device capabilities but these don't 4088 * reflect what the driver needs to do in safe mode. Instead of 4089 * adding conditional logic everywhere to ignore these 4090 * device/function capabilities, override them. 4091 */ 4092 ice_set_safe_mode_caps(hw); 4093 } 4094 4095 err = ice_init_pf(pf); 4096 if (err) { 4097 dev_err(dev, "ice_init_pf failed: %d\n", err); 4098 goto err_init_pf_unroll; 4099 } 4100 4101 ice_devlink_init_regions(pf); 4102 4103 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4104 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4105 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4106 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4107 i = 0; 4108 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4109 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4110 pf->hw.tnl.valid_count[TNL_VXLAN]; 4111 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4112 UDP_TUNNEL_TYPE_VXLAN; 4113 i++; 4114 } 4115 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4116 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4117 pf->hw.tnl.valid_count[TNL_GENEVE]; 4118 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4119 UDP_TUNNEL_TYPE_GENEVE; 4120 i++; 4121 } 4122 4123 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4124 if (!pf->num_alloc_vsi) { 4125 err = -EIO; 4126 goto err_init_pf_unroll; 4127 } 4128 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4129 dev_warn(&pf->pdev->dev, 4130 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4131 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4132 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4133 } 4134 4135 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4136 GFP_KERNEL); 4137 if (!pf->vsi) { 4138 err = -ENOMEM; 4139 goto err_init_pf_unroll; 4140 } 4141 4142 err = ice_init_interrupt_scheme(pf); 4143 if (err) { 4144 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4145 err = -EIO; 4146 goto err_init_vsi_unroll; 4147 } 4148 4149 /* In case of MSIX we are going to setup the misc vector right here 4150 * to handle admin queue events etc. In case of legacy and MSI 4151 * the misc functionality and queue processing is combined in 4152 * the same vector and that gets setup at open. 4153 */ 4154 err = ice_req_irq_msix_misc(pf); 4155 if (err) { 4156 dev_err(dev, "setup of misc vector failed: %d\n", err); 4157 goto err_init_interrupt_unroll; 4158 } 4159 4160 /* create switch struct for the switch element created by FW on boot */ 4161 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4162 if (!pf->first_sw) { 4163 err = -ENOMEM; 4164 goto err_msix_misc_unroll; 4165 } 4166 4167 if (hw->evb_veb) 4168 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4169 else 4170 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4171 4172 pf->first_sw->pf = pf; 4173 4174 /* record the sw_id available for later use */ 4175 pf->first_sw->sw_id = hw->port_info->sw_id; 4176 4177 err = ice_setup_pf_sw(pf); 4178 if (err) { 4179 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4180 goto err_alloc_sw_unroll; 4181 } 4182 4183 clear_bit(__ICE_SERVICE_DIS, pf->state); 4184 4185 /* tell the firmware we are up */ 4186 err = ice_send_version(pf); 4187 if (err) { 4188 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4189 UTS_RELEASE, err); 4190 goto err_send_version_unroll; 4191 } 4192 4193 /* since everything is good, start the service timer */ 4194 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4195 4196 err = ice_init_link_events(pf->hw.port_info); 4197 if (err) { 4198 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4199 goto err_send_version_unroll; 4200 } 4201 4202 err = ice_init_nvm_phy_type(pf->hw.port_info); 4203 if (err) { 4204 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4205 goto err_send_version_unroll; 4206 } 4207 4208 err = ice_update_link_info(pf->hw.port_info); 4209 if (err) { 4210 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4211 goto err_send_version_unroll; 4212 } 4213 4214 ice_init_link_dflt_override(pf->hw.port_info); 4215 4216 /* if media available, initialize PHY settings */ 4217 if (pf->hw.port_info->phy.link_info.link_info & 4218 ICE_AQ_MEDIA_AVAILABLE) { 4219 err = ice_init_phy_user_cfg(pf->hw.port_info); 4220 if (err) { 4221 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4222 goto err_send_version_unroll; 4223 } 4224 4225 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4226 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4227 4228 if (vsi) 4229 ice_configure_phy(vsi); 4230 } 4231 } else { 4232 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4233 } 4234 4235 ice_verify_cacheline_size(pf); 4236 4237 /* Save wakeup reason register for later use */ 4238 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4239 4240 /* check for a power management event */ 4241 ice_print_wake_reason(pf); 4242 4243 /* clear wake status, all bits */ 4244 wr32(hw, PFPM_WUS, U32_MAX); 4245 4246 /* Disable WoL at init, wait for user to enable */ 4247 device_set_wakeup_enable(dev, false); 4248 4249 if (ice_is_safe_mode(pf)) { 4250 ice_set_safe_mode_vlan_cfg(pf); 4251 goto probe_done; 4252 } 4253 4254 /* initialize DDP driven features */ 4255 4256 /* Note: Flow director init failure is non-fatal to load */ 4257 if (ice_init_fdir(pf)) 4258 dev_err(dev, "could not initialize flow director\n"); 4259 4260 /* Note: DCB init failure is non-fatal to load */ 4261 if (ice_init_pf_dcb(pf, false)) { 4262 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4263 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4264 } else { 4265 ice_cfg_lldp_mib_change(&pf->hw, true); 4266 } 4267 4268 if (ice_init_lag(pf)) 4269 dev_warn(dev, "Failed to init link aggregation support\n"); 4270 4271 /* print PCI link speed and width */ 4272 pcie_print_link_status(pf->pdev); 4273 4274 probe_done: 4275 /* ready to go, so clear down state bit */ 4276 clear_bit(__ICE_DOWN, pf->state); 4277 return 0; 4278 4279 err_send_version_unroll: 4280 ice_vsi_release_all(pf); 4281 err_alloc_sw_unroll: 4282 set_bit(__ICE_SERVICE_DIS, pf->state); 4283 set_bit(__ICE_DOWN, pf->state); 4284 devm_kfree(dev, pf->first_sw); 4285 err_msix_misc_unroll: 4286 ice_free_irq_msix_misc(pf); 4287 err_init_interrupt_unroll: 4288 ice_clear_interrupt_scheme(pf); 4289 err_init_vsi_unroll: 4290 devm_kfree(dev, pf->vsi); 4291 err_init_pf_unroll: 4292 ice_deinit_pf(pf); 4293 ice_devlink_destroy_regions(pf); 4294 ice_deinit_hw(hw); 4295 err_exit_unroll: 4296 ice_devlink_unregister(pf); 4297 pci_disable_pcie_error_reporting(pdev); 4298 pci_disable_device(pdev); 4299 return err; 4300 } 4301 4302 /** 4303 * ice_set_wake - enable or disable Wake on LAN 4304 * @pf: pointer to the PF struct 4305 * 4306 * Simple helper for WoL control 4307 */ 4308 static void ice_set_wake(struct ice_pf *pf) 4309 { 4310 struct ice_hw *hw = &pf->hw; 4311 bool wol = pf->wol_ena; 4312 4313 /* clear wake state, otherwise new wake events won't fire */ 4314 wr32(hw, PFPM_WUS, U32_MAX); 4315 4316 /* enable / disable APM wake up, no RMW needed */ 4317 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4318 4319 /* set magic packet filter enabled */ 4320 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4321 } 4322 4323 /** 4324 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4325 * @pf: pointer to the PF struct 4326 * 4327 * Issue firmware command to enable multicast magic wake, making 4328 * sure that any locally administered address (LAA) is used for 4329 * wake, and that PF reset doesn't undo the LAA. 4330 */ 4331 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4332 { 4333 struct device *dev = ice_pf_to_dev(pf); 4334 struct ice_hw *hw = &pf->hw; 4335 enum ice_status status; 4336 u8 mac_addr[ETH_ALEN]; 4337 struct ice_vsi *vsi; 4338 u8 flags; 4339 4340 if (!pf->wol_ena) 4341 return; 4342 4343 vsi = ice_get_main_vsi(pf); 4344 if (!vsi) 4345 return; 4346 4347 /* Get current MAC address in case it's an LAA */ 4348 if (vsi->netdev) 4349 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4350 else 4351 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4352 4353 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4354 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4355 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4356 4357 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4358 if (status) 4359 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4360 ice_stat_str(status), 4361 ice_aq_str(hw->adminq.sq_last_status)); 4362 } 4363 4364 /** 4365 * ice_remove - Device removal routine 4366 * @pdev: PCI device information struct 4367 */ 4368 static void ice_remove(struct pci_dev *pdev) 4369 { 4370 struct ice_pf *pf = pci_get_drvdata(pdev); 4371 int i; 4372 4373 if (!pf) 4374 return; 4375 4376 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4377 if (!ice_is_reset_in_progress(pf->state)) 4378 break; 4379 msleep(100); 4380 } 4381 4382 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4383 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 4384 ice_free_vfs(pf); 4385 } 4386 4387 set_bit(__ICE_DOWN, pf->state); 4388 ice_service_task_stop(pf); 4389 4390 ice_aq_cancel_waiting_tasks(pf); 4391 4392 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4393 ice_deinit_lag(pf); 4394 if (!ice_is_safe_mode(pf)) 4395 ice_remove_arfs(pf); 4396 ice_setup_mc_magic_wake(pf); 4397 ice_vsi_release_all(pf); 4398 ice_set_wake(pf); 4399 ice_free_irq_msix_misc(pf); 4400 ice_for_each_vsi(pf, i) { 4401 if (!pf->vsi[i]) 4402 continue; 4403 ice_vsi_free_q_vectors(pf->vsi[i]); 4404 } 4405 ice_deinit_pf(pf); 4406 ice_devlink_destroy_regions(pf); 4407 ice_deinit_hw(&pf->hw); 4408 ice_devlink_unregister(pf); 4409 4410 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4411 * do it via ice_schedule_reset() since there is no need to rebuild 4412 * and the service task is already stopped. 4413 */ 4414 ice_reset(&pf->hw, ICE_RESET_PFR); 4415 pci_wait_for_pending_transaction(pdev); 4416 ice_clear_interrupt_scheme(pf); 4417 pci_disable_pcie_error_reporting(pdev); 4418 pci_disable_device(pdev); 4419 } 4420 4421 /** 4422 * ice_shutdown - PCI callback for shutting down device 4423 * @pdev: PCI device information struct 4424 */ 4425 static void ice_shutdown(struct pci_dev *pdev) 4426 { 4427 struct ice_pf *pf = pci_get_drvdata(pdev); 4428 4429 ice_remove(pdev); 4430 4431 if (system_state == SYSTEM_POWER_OFF) { 4432 pci_wake_from_d3(pdev, pf->wol_ena); 4433 pci_set_power_state(pdev, PCI_D3hot); 4434 } 4435 } 4436 4437 #ifdef CONFIG_PM 4438 /** 4439 * ice_prepare_for_shutdown - prep for PCI shutdown 4440 * @pf: board private structure 4441 * 4442 * Inform or close all dependent features in prep for PCI device shutdown 4443 */ 4444 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4445 { 4446 struct ice_hw *hw = &pf->hw; 4447 u32 v; 4448 4449 /* Notify VFs of impending reset */ 4450 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4451 ice_vc_notify_reset(pf); 4452 4453 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4454 4455 /* disable the VSIs and their queues that are not already DOWN */ 4456 ice_pf_dis_all_vsi(pf, false); 4457 4458 ice_for_each_vsi(pf, v) 4459 if (pf->vsi[v]) 4460 pf->vsi[v]->vsi_num = 0; 4461 4462 ice_shutdown_all_ctrlq(hw); 4463 } 4464 4465 /** 4466 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4467 * @pf: board private structure to reinitialize 4468 * 4469 * This routine reinitialize interrupt scheme that was cleared during 4470 * power management suspend callback. 4471 * 4472 * This should be called during resume routine to re-allocate the q_vectors 4473 * and reacquire interrupts. 4474 */ 4475 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4476 { 4477 struct device *dev = ice_pf_to_dev(pf); 4478 int ret, v; 4479 4480 /* Since we clear MSIX flag during suspend, we need to 4481 * set it back during resume... 4482 */ 4483 4484 ret = ice_init_interrupt_scheme(pf); 4485 if (ret) { 4486 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4487 return ret; 4488 } 4489 4490 /* Remap vectors and rings, after successful re-init interrupts */ 4491 ice_for_each_vsi(pf, v) { 4492 if (!pf->vsi[v]) 4493 continue; 4494 4495 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4496 if (ret) 4497 goto err_reinit; 4498 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4499 } 4500 4501 ret = ice_req_irq_msix_misc(pf); 4502 if (ret) { 4503 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4504 ret); 4505 goto err_reinit; 4506 } 4507 4508 return 0; 4509 4510 err_reinit: 4511 while (v--) 4512 if (pf->vsi[v]) 4513 ice_vsi_free_q_vectors(pf->vsi[v]); 4514 4515 return ret; 4516 } 4517 4518 /** 4519 * ice_suspend 4520 * @dev: generic device information structure 4521 * 4522 * Power Management callback to quiesce the device and prepare 4523 * for D3 transition. 4524 */ 4525 static int __maybe_unused ice_suspend(struct device *dev) 4526 { 4527 struct pci_dev *pdev = to_pci_dev(dev); 4528 struct ice_pf *pf; 4529 int disabled, v; 4530 4531 pf = pci_get_drvdata(pdev); 4532 4533 if (!ice_pf_state_is_nominal(pf)) { 4534 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4535 return -EBUSY; 4536 } 4537 4538 /* Stop watchdog tasks until resume completion. 4539 * Even though it is most likely that the service task is 4540 * disabled if the device is suspended or down, the service task's 4541 * state is controlled by a different state bit, and we should 4542 * store and honor whatever state that bit is in at this point. 4543 */ 4544 disabled = ice_service_task_stop(pf); 4545 4546 /* Already suspended?, then there is nothing to do */ 4547 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) { 4548 if (!disabled) 4549 ice_service_task_restart(pf); 4550 return 0; 4551 } 4552 4553 if (test_bit(__ICE_DOWN, pf->state) || 4554 ice_is_reset_in_progress(pf->state)) { 4555 dev_err(dev, "can't suspend device in reset or already down\n"); 4556 if (!disabled) 4557 ice_service_task_restart(pf); 4558 return 0; 4559 } 4560 4561 ice_setup_mc_magic_wake(pf); 4562 4563 ice_prepare_for_shutdown(pf); 4564 4565 ice_set_wake(pf); 4566 4567 /* Free vectors, clear the interrupt scheme and release IRQs 4568 * for proper hibernation, especially with large number of CPUs. 4569 * Otherwise hibernation might fail when mapping all the vectors back 4570 * to CPU0. 4571 */ 4572 ice_free_irq_msix_misc(pf); 4573 ice_for_each_vsi(pf, v) { 4574 if (!pf->vsi[v]) 4575 continue; 4576 ice_vsi_free_q_vectors(pf->vsi[v]); 4577 } 4578 ice_clear_interrupt_scheme(pf); 4579 4580 pci_save_state(pdev); 4581 pci_wake_from_d3(pdev, pf->wol_ena); 4582 pci_set_power_state(pdev, PCI_D3hot); 4583 return 0; 4584 } 4585 4586 /** 4587 * ice_resume - PM callback for waking up from D3 4588 * @dev: generic device information structure 4589 */ 4590 static int __maybe_unused ice_resume(struct device *dev) 4591 { 4592 struct pci_dev *pdev = to_pci_dev(dev); 4593 enum ice_reset_req reset_type; 4594 struct ice_pf *pf; 4595 struct ice_hw *hw; 4596 int ret; 4597 4598 pci_set_power_state(pdev, PCI_D0); 4599 pci_restore_state(pdev); 4600 pci_save_state(pdev); 4601 4602 if (!pci_device_is_present(pdev)) 4603 return -ENODEV; 4604 4605 ret = pci_enable_device_mem(pdev); 4606 if (ret) { 4607 dev_err(dev, "Cannot enable device after suspend\n"); 4608 return ret; 4609 } 4610 4611 pf = pci_get_drvdata(pdev); 4612 hw = &pf->hw; 4613 4614 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4615 ice_print_wake_reason(pf); 4616 4617 /* We cleared the interrupt scheme when we suspended, so we need to 4618 * restore it now to resume device functionality. 4619 */ 4620 ret = ice_reinit_interrupt_scheme(pf); 4621 if (ret) 4622 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4623 4624 clear_bit(__ICE_DOWN, pf->state); 4625 /* Now perform PF reset and rebuild */ 4626 reset_type = ICE_RESET_PFR; 4627 /* re-enable service task for reset, but allow reset to schedule it */ 4628 clear_bit(__ICE_SERVICE_DIS, pf->state); 4629 4630 if (ice_schedule_reset(pf, reset_type)) 4631 dev_err(dev, "Reset during resume failed.\n"); 4632 4633 clear_bit(__ICE_SUSPENDED, pf->state); 4634 ice_service_task_restart(pf); 4635 4636 /* Restart the service task */ 4637 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4638 4639 return 0; 4640 } 4641 #endif /* CONFIG_PM */ 4642 4643 /** 4644 * ice_pci_err_detected - warning that PCI error has been detected 4645 * @pdev: PCI device information struct 4646 * @err: the type of PCI error 4647 * 4648 * Called to warn that something happened on the PCI bus and the error handling 4649 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4650 */ 4651 static pci_ers_result_t 4652 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4653 { 4654 struct ice_pf *pf = pci_get_drvdata(pdev); 4655 4656 if (!pf) { 4657 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4658 __func__, err); 4659 return PCI_ERS_RESULT_DISCONNECT; 4660 } 4661 4662 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4663 ice_service_task_stop(pf); 4664 4665 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4666 set_bit(__ICE_PFR_REQ, pf->state); 4667 ice_prepare_for_reset(pf); 4668 } 4669 } 4670 4671 return PCI_ERS_RESULT_NEED_RESET; 4672 } 4673 4674 /** 4675 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4676 * @pdev: PCI device information struct 4677 * 4678 * Called to determine if the driver can recover from the PCI slot reset by 4679 * using a register read to determine if the device is recoverable. 4680 */ 4681 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4682 { 4683 struct ice_pf *pf = pci_get_drvdata(pdev); 4684 pci_ers_result_t result; 4685 int err; 4686 u32 reg; 4687 4688 err = pci_enable_device_mem(pdev); 4689 if (err) { 4690 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4691 err); 4692 result = PCI_ERS_RESULT_DISCONNECT; 4693 } else { 4694 pci_set_master(pdev); 4695 pci_restore_state(pdev); 4696 pci_save_state(pdev); 4697 pci_wake_from_d3(pdev, false); 4698 4699 /* Check for life */ 4700 reg = rd32(&pf->hw, GLGEN_RTRIG); 4701 if (!reg) 4702 result = PCI_ERS_RESULT_RECOVERED; 4703 else 4704 result = PCI_ERS_RESULT_DISCONNECT; 4705 } 4706 4707 err = pci_aer_clear_nonfatal_status(pdev); 4708 if (err) 4709 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4710 err); 4711 /* non-fatal, continue */ 4712 4713 return result; 4714 } 4715 4716 /** 4717 * ice_pci_err_resume - restart operations after PCI error recovery 4718 * @pdev: PCI device information struct 4719 * 4720 * Called to allow the driver to bring things back up after PCI error and/or 4721 * reset recovery have finished 4722 */ 4723 static void ice_pci_err_resume(struct pci_dev *pdev) 4724 { 4725 struct ice_pf *pf = pci_get_drvdata(pdev); 4726 4727 if (!pf) { 4728 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4729 __func__); 4730 return; 4731 } 4732 4733 if (test_bit(__ICE_SUSPENDED, pf->state)) { 4734 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4735 __func__); 4736 return; 4737 } 4738 4739 ice_restore_all_vfs_msi_state(pdev); 4740 4741 ice_do_reset(pf, ICE_RESET_PFR); 4742 ice_service_task_restart(pf); 4743 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4744 } 4745 4746 /** 4747 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4748 * @pdev: PCI device information struct 4749 */ 4750 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4751 { 4752 struct ice_pf *pf = pci_get_drvdata(pdev); 4753 4754 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4755 ice_service_task_stop(pf); 4756 4757 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4758 set_bit(__ICE_PFR_REQ, pf->state); 4759 ice_prepare_for_reset(pf); 4760 } 4761 } 4762 } 4763 4764 /** 4765 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4766 * @pdev: PCI device information struct 4767 */ 4768 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4769 { 4770 ice_pci_err_resume(pdev); 4771 } 4772 4773 /* ice_pci_tbl - PCI Device ID Table 4774 * 4775 * Wildcard entries (PCI_ANY_ID) should come last 4776 * Last entry must be all 0s 4777 * 4778 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4779 * Class, Class Mask, private data (not used) } 4780 */ 4781 static const struct pci_device_id ice_pci_tbl[] = { 4782 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4783 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4784 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4785 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4786 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4787 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4788 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4789 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4790 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4805 /* required last entry */ 4806 { 0, } 4807 }; 4808 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4809 4810 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4811 4812 static const struct pci_error_handlers ice_pci_err_handler = { 4813 .error_detected = ice_pci_err_detected, 4814 .slot_reset = ice_pci_err_slot_reset, 4815 .reset_prepare = ice_pci_err_reset_prepare, 4816 .reset_done = ice_pci_err_reset_done, 4817 .resume = ice_pci_err_resume 4818 }; 4819 4820 static struct pci_driver ice_driver = { 4821 .name = KBUILD_MODNAME, 4822 .id_table = ice_pci_tbl, 4823 .probe = ice_probe, 4824 .remove = ice_remove, 4825 #ifdef CONFIG_PM 4826 .driver.pm = &ice_pm_ops, 4827 #endif /* CONFIG_PM */ 4828 .shutdown = ice_shutdown, 4829 .sriov_configure = ice_sriov_configure, 4830 .err_handler = &ice_pci_err_handler 4831 }; 4832 4833 /** 4834 * ice_module_init - Driver registration routine 4835 * 4836 * ice_module_init is the first routine called when the driver is 4837 * loaded. All it does is register with the PCI subsystem. 4838 */ 4839 static int __init ice_module_init(void) 4840 { 4841 int status; 4842 4843 pr_info("%s\n", ice_driver_string); 4844 pr_info("%s\n", ice_copyright); 4845 4846 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4847 if (!ice_wq) { 4848 pr_err("Failed to create workqueue\n"); 4849 return -ENOMEM; 4850 } 4851 4852 status = pci_register_driver(&ice_driver); 4853 if (status) { 4854 pr_err("failed to register PCI driver, err %d\n", status); 4855 destroy_workqueue(ice_wq); 4856 } 4857 4858 return status; 4859 } 4860 module_init(ice_module_init); 4861 4862 /** 4863 * ice_module_exit - Driver exit cleanup routine 4864 * 4865 * ice_module_exit is called just before the driver is removed 4866 * from memory. 4867 */ 4868 static void __exit ice_module_exit(void) 4869 { 4870 pci_unregister_driver(&ice_driver); 4871 destroy_workqueue(ice_wq); 4872 pr_info("module unloaded\n"); 4873 } 4874 module_exit(ice_module_exit); 4875 4876 /** 4877 * ice_set_mac_address - NDO callback to set MAC address 4878 * @netdev: network interface device structure 4879 * @pi: pointer to an address structure 4880 * 4881 * Returns 0 on success, negative on failure 4882 */ 4883 static int ice_set_mac_address(struct net_device *netdev, void *pi) 4884 { 4885 struct ice_netdev_priv *np = netdev_priv(netdev); 4886 struct ice_vsi *vsi = np->vsi; 4887 struct ice_pf *pf = vsi->back; 4888 struct ice_hw *hw = &pf->hw; 4889 struct sockaddr *addr = pi; 4890 enum ice_status status; 4891 u8 flags = 0; 4892 int err = 0; 4893 u8 *mac; 4894 4895 mac = (u8 *)addr->sa_data; 4896 4897 if (!is_valid_ether_addr(mac)) 4898 return -EADDRNOTAVAIL; 4899 4900 if (ether_addr_equal(netdev->dev_addr, mac)) { 4901 netdev_warn(netdev, "already using mac %pM\n", mac); 4902 return 0; 4903 } 4904 4905 if (test_bit(__ICE_DOWN, pf->state) || 4906 ice_is_reset_in_progress(pf->state)) { 4907 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4908 mac); 4909 return -EBUSY; 4910 } 4911 4912 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4913 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 4914 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4915 err = -EADDRNOTAVAIL; 4916 goto err_update_filters; 4917 } 4918 4919 /* Add filter for new MAC. If filter exists, return success */ 4920 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4921 if (status == ICE_ERR_ALREADY_EXISTS) { 4922 /* Although this MAC filter is already present in hardware it's 4923 * possible in some cases (e.g. bonding) that dev_addr was 4924 * modified outside of the driver and needs to be restored back 4925 * to this value. 4926 */ 4927 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4928 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4929 return 0; 4930 } 4931 4932 /* error if the new filter addition failed */ 4933 if (status) 4934 err = -EADDRNOTAVAIL; 4935 4936 err_update_filters: 4937 if (err) { 4938 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4939 mac); 4940 return err; 4941 } 4942 4943 /* change the netdev's MAC address */ 4944 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4945 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4946 netdev->dev_addr); 4947 4948 /* write new MAC address to the firmware */ 4949 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4950 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4951 if (status) { 4952 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4953 mac, ice_stat_str(status)); 4954 } 4955 return 0; 4956 } 4957 4958 /** 4959 * ice_set_rx_mode - NDO callback to set the netdev filters 4960 * @netdev: network interface device structure 4961 */ 4962 static void ice_set_rx_mode(struct net_device *netdev) 4963 { 4964 struct ice_netdev_priv *np = netdev_priv(netdev); 4965 struct ice_vsi *vsi = np->vsi; 4966 4967 if (!vsi) 4968 return; 4969 4970 /* Set the flags to synchronize filters 4971 * ndo_set_rx_mode may be triggered even without a change in netdev 4972 * flags 4973 */ 4974 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 4975 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 4976 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 4977 4978 /* schedule our worker thread which will take care of 4979 * applying the new filter changes 4980 */ 4981 ice_service_task_schedule(vsi->back); 4982 } 4983 4984 /** 4985 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 4986 * @netdev: network interface device structure 4987 * @queue_index: Queue ID 4988 * @maxrate: maximum bandwidth in Mbps 4989 */ 4990 static int 4991 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 4992 { 4993 struct ice_netdev_priv *np = netdev_priv(netdev); 4994 struct ice_vsi *vsi = np->vsi; 4995 enum ice_status status; 4996 u16 q_handle; 4997 u8 tc; 4998 4999 /* Validate maxrate requested is within permitted range */ 5000 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5001 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5002 maxrate, queue_index); 5003 return -EINVAL; 5004 } 5005 5006 q_handle = vsi->tx_rings[queue_index]->q_handle; 5007 tc = ice_dcb_get_tc(vsi, queue_index); 5008 5009 /* Set BW back to default, when user set maxrate to 0 */ 5010 if (!maxrate) 5011 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5012 q_handle, ICE_MAX_BW); 5013 else 5014 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5015 q_handle, ICE_MAX_BW, maxrate * 1000); 5016 if (status) { 5017 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5018 ice_stat_str(status)); 5019 return -EIO; 5020 } 5021 5022 return 0; 5023 } 5024 5025 /** 5026 * ice_fdb_add - add an entry to the hardware database 5027 * @ndm: the input from the stack 5028 * @tb: pointer to array of nladdr (unused) 5029 * @dev: the net device pointer 5030 * @addr: the MAC address entry being added 5031 * @vid: VLAN ID 5032 * @flags: instructions from stack about fdb operation 5033 * @extack: netlink extended ack 5034 */ 5035 static int 5036 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5037 struct net_device *dev, const unsigned char *addr, u16 vid, 5038 u16 flags, struct netlink_ext_ack __always_unused *extack) 5039 { 5040 int err; 5041 5042 if (vid) { 5043 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5044 return -EINVAL; 5045 } 5046 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5047 netdev_err(dev, "FDB only supports static addresses\n"); 5048 return -EINVAL; 5049 } 5050 5051 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5052 err = dev_uc_add_excl(dev, addr); 5053 else if (is_multicast_ether_addr(addr)) 5054 err = dev_mc_add_excl(dev, addr); 5055 else 5056 err = -EINVAL; 5057 5058 /* Only return duplicate errors if NLM_F_EXCL is set */ 5059 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5060 err = 0; 5061 5062 return err; 5063 } 5064 5065 /** 5066 * ice_fdb_del - delete an entry from the hardware database 5067 * @ndm: the input from the stack 5068 * @tb: pointer to array of nladdr (unused) 5069 * @dev: the net device pointer 5070 * @addr: the MAC address entry being added 5071 * @vid: VLAN ID 5072 */ 5073 static int 5074 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5075 struct net_device *dev, const unsigned char *addr, 5076 __always_unused u16 vid) 5077 { 5078 int err; 5079 5080 if (ndm->ndm_state & NUD_PERMANENT) { 5081 netdev_err(dev, "FDB only supports static addresses\n"); 5082 return -EINVAL; 5083 } 5084 5085 if (is_unicast_ether_addr(addr)) 5086 err = dev_uc_del(dev, addr); 5087 else if (is_multicast_ether_addr(addr)) 5088 err = dev_mc_del(dev, addr); 5089 else 5090 err = -EINVAL; 5091 5092 return err; 5093 } 5094 5095 /** 5096 * ice_set_features - set the netdev feature flags 5097 * @netdev: ptr to the netdev being adjusted 5098 * @features: the feature set that the stack is suggesting 5099 */ 5100 static int 5101 ice_set_features(struct net_device *netdev, netdev_features_t features) 5102 { 5103 struct ice_netdev_priv *np = netdev_priv(netdev); 5104 struct ice_vsi *vsi = np->vsi; 5105 struct ice_pf *pf = vsi->back; 5106 int ret = 0; 5107 5108 /* Don't set any netdev advanced features with device in Safe Mode */ 5109 if (ice_is_safe_mode(vsi->back)) { 5110 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5111 return ret; 5112 } 5113 5114 /* Do not change setting during reset */ 5115 if (ice_is_reset_in_progress(pf->state)) { 5116 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5117 return -EBUSY; 5118 } 5119 5120 /* Multiple features can be changed in one call so keep features in 5121 * separate if/else statements to guarantee each feature is checked 5122 */ 5123 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5124 ret = ice_vsi_manage_rss_lut(vsi, true); 5125 else if (!(features & NETIF_F_RXHASH) && 5126 netdev->features & NETIF_F_RXHASH) 5127 ret = ice_vsi_manage_rss_lut(vsi, false); 5128 5129 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5130 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5131 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5132 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5133 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5134 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5135 5136 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5137 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5138 ret = ice_vsi_manage_vlan_insertion(vsi); 5139 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5140 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5141 ret = ice_vsi_manage_vlan_insertion(vsi); 5142 5143 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5144 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5145 ret = ice_cfg_vlan_pruning(vsi, true, false); 5146 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5147 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5148 ret = ice_cfg_vlan_pruning(vsi, false, false); 5149 5150 if ((features & NETIF_F_NTUPLE) && 5151 !(netdev->features & NETIF_F_NTUPLE)) { 5152 ice_vsi_manage_fdir(vsi, true); 5153 ice_init_arfs(vsi); 5154 } else if (!(features & NETIF_F_NTUPLE) && 5155 (netdev->features & NETIF_F_NTUPLE)) { 5156 ice_vsi_manage_fdir(vsi, false); 5157 ice_clear_arfs(vsi); 5158 } 5159 5160 return ret; 5161 } 5162 5163 /** 5164 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5165 * @vsi: VSI to setup VLAN properties for 5166 */ 5167 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5168 { 5169 int ret = 0; 5170 5171 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5172 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5173 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5174 ret = ice_vsi_manage_vlan_insertion(vsi); 5175 5176 return ret; 5177 } 5178 5179 /** 5180 * ice_vsi_cfg - Setup the VSI 5181 * @vsi: the VSI being configured 5182 * 5183 * Return 0 on success and negative value on error 5184 */ 5185 int ice_vsi_cfg(struct ice_vsi *vsi) 5186 { 5187 int err; 5188 5189 if (vsi->netdev) { 5190 ice_set_rx_mode(vsi->netdev); 5191 5192 err = ice_vsi_vlan_setup(vsi); 5193 5194 if (err) 5195 return err; 5196 } 5197 ice_vsi_cfg_dcb_rings(vsi); 5198 5199 err = ice_vsi_cfg_lan_txqs(vsi); 5200 if (!err && ice_is_xdp_ena_vsi(vsi)) 5201 err = ice_vsi_cfg_xdp_txqs(vsi); 5202 if (!err) 5203 err = ice_vsi_cfg_rxqs(vsi); 5204 5205 return err; 5206 } 5207 5208 /** 5209 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5210 * @vsi: the VSI being configured 5211 */ 5212 static void ice_napi_enable_all(struct ice_vsi *vsi) 5213 { 5214 int q_idx; 5215 5216 if (!vsi->netdev) 5217 return; 5218 5219 ice_for_each_q_vector(vsi, q_idx) { 5220 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5221 5222 if (q_vector->rx.ring || q_vector->tx.ring) 5223 napi_enable(&q_vector->napi); 5224 } 5225 } 5226 5227 /** 5228 * ice_up_complete - Finish the last steps of bringing up a connection 5229 * @vsi: The VSI being configured 5230 * 5231 * Return 0 on success and negative value on error 5232 */ 5233 static int ice_up_complete(struct ice_vsi *vsi) 5234 { 5235 struct ice_pf *pf = vsi->back; 5236 int err; 5237 5238 ice_vsi_cfg_msix(vsi); 5239 5240 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5241 * Tx queue group list was configured and the context bits were 5242 * programmed using ice_vsi_cfg_txqs 5243 */ 5244 err = ice_vsi_start_all_rx_rings(vsi); 5245 if (err) 5246 return err; 5247 5248 clear_bit(__ICE_DOWN, vsi->state); 5249 ice_napi_enable_all(vsi); 5250 ice_vsi_ena_irq(vsi); 5251 5252 if (vsi->port_info && 5253 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5254 vsi->netdev) { 5255 ice_print_link_msg(vsi, true); 5256 netif_tx_start_all_queues(vsi->netdev); 5257 netif_carrier_on(vsi->netdev); 5258 } 5259 5260 ice_service_task_schedule(pf); 5261 5262 return 0; 5263 } 5264 5265 /** 5266 * ice_up - Bring the connection back up after being down 5267 * @vsi: VSI being configured 5268 */ 5269 int ice_up(struct ice_vsi *vsi) 5270 { 5271 int err; 5272 5273 err = ice_vsi_cfg(vsi); 5274 if (!err) 5275 err = ice_up_complete(vsi); 5276 5277 return err; 5278 } 5279 5280 /** 5281 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5282 * @ring: Tx or Rx ring to read stats from 5283 * @pkts: packets stats counter 5284 * @bytes: bytes stats counter 5285 * 5286 * This function fetches stats from the ring considering the atomic operations 5287 * that needs to be performed to read u64 values in 32 bit machine. 5288 */ 5289 static void 5290 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5291 { 5292 unsigned int start; 5293 *pkts = 0; 5294 *bytes = 0; 5295 5296 if (!ring) 5297 return; 5298 do { 5299 start = u64_stats_fetch_begin_irq(&ring->syncp); 5300 *pkts = ring->stats.pkts; 5301 *bytes = ring->stats.bytes; 5302 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5303 } 5304 5305 /** 5306 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5307 * @vsi: the VSI to be updated 5308 * @rings: rings to work on 5309 * @count: number of rings 5310 */ 5311 static void 5312 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5313 u16 count) 5314 { 5315 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5316 u16 i; 5317 5318 for (i = 0; i < count; i++) { 5319 struct ice_ring *ring; 5320 u64 pkts, bytes; 5321 5322 ring = READ_ONCE(rings[i]); 5323 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5324 vsi_stats->tx_packets += pkts; 5325 vsi_stats->tx_bytes += bytes; 5326 vsi->tx_restart += ring->tx_stats.restart_q; 5327 vsi->tx_busy += ring->tx_stats.tx_busy; 5328 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5329 } 5330 } 5331 5332 /** 5333 * ice_update_vsi_ring_stats - Update VSI stats counters 5334 * @vsi: the VSI to be updated 5335 */ 5336 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5337 { 5338 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5339 struct ice_ring *ring; 5340 u64 pkts, bytes; 5341 int i; 5342 5343 /* reset netdev stats */ 5344 vsi_stats->tx_packets = 0; 5345 vsi_stats->tx_bytes = 0; 5346 vsi_stats->rx_packets = 0; 5347 vsi_stats->rx_bytes = 0; 5348 5349 /* reset non-netdev (extended) stats */ 5350 vsi->tx_restart = 0; 5351 vsi->tx_busy = 0; 5352 vsi->tx_linearize = 0; 5353 vsi->rx_buf_failed = 0; 5354 vsi->rx_page_failed = 0; 5355 vsi->rx_gro_dropped = 0; 5356 5357 rcu_read_lock(); 5358 5359 /* update Tx rings counters */ 5360 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5361 5362 /* update Rx rings counters */ 5363 ice_for_each_rxq(vsi, i) { 5364 ring = READ_ONCE(vsi->rx_rings[i]); 5365 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5366 vsi_stats->rx_packets += pkts; 5367 vsi_stats->rx_bytes += bytes; 5368 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5369 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5370 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped; 5371 } 5372 5373 /* update XDP Tx rings counters */ 5374 if (ice_is_xdp_ena_vsi(vsi)) 5375 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5376 vsi->num_xdp_txq); 5377 5378 rcu_read_unlock(); 5379 } 5380 5381 /** 5382 * ice_update_vsi_stats - Update VSI stats counters 5383 * @vsi: the VSI to be updated 5384 */ 5385 void ice_update_vsi_stats(struct ice_vsi *vsi) 5386 { 5387 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5388 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5389 struct ice_pf *pf = vsi->back; 5390 5391 if (test_bit(__ICE_DOWN, vsi->state) || 5392 test_bit(__ICE_CFG_BUSY, pf->state)) 5393 return; 5394 5395 /* get stats as recorded by Tx/Rx rings */ 5396 ice_update_vsi_ring_stats(vsi); 5397 5398 /* get VSI stats as recorded by the hardware */ 5399 ice_update_eth_stats(vsi); 5400 5401 cur_ns->tx_errors = cur_es->tx_errors; 5402 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped; 5403 cur_ns->tx_dropped = cur_es->tx_discards; 5404 cur_ns->multicast = cur_es->rx_multicast; 5405 5406 /* update some more netdev stats if this is main VSI */ 5407 if (vsi->type == ICE_VSI_PF) { 5408 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5409 cur_ns->rx_errors = pf->stats.crc_errors + 5410 pf->stats.illegal_bytes + 5411 pf->stats.rx_len_errors + 5412 pf->stats.rx_undersize + 5413 pf->hw_csum_rx_error + 5414 pf->stats.rx_jabber + 5415 pf->stats.rx_fragments + 5416 pf->stats.rx_oversize; 5417 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5418 /* record drops from the port level */ 5419 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5420 } 5421 } 5422 5423 /** 5424 * ice_update_pf_stats - Update PF port stats counters 5425 * @pf: PF whose stats needs to be updated 5426 */ 5427 void ice_update_pf_stats(struct ice_pf *pf) 5428 { 5429 struct ice_hw_port_stats *prev_ps, *cur_ps; 5430 struct ice_hw *hw = &pf->hw; 5431 u16 fd_ctr_base; 5432 u8 port; 5433 5434 port = hw->port_info->lport; 5435 prev_ps = &pf->stats_prev; 5436 cur_ps = &pf->stats; 5437 5438 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5439 &prev_ps->eth.rx_bytes, 5440 &cur_ps->eth.rx_bytes); 5441 5442 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5443 &prev_ps->eth.rx_unicast, 5444 &cur_ps->eth.rx_unicast); 5445 5446 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5447 &prev_ps->eth.rx_multicast, 5448 &cur_ps->eth.rx_multicast); 5449 5450 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5451 &prev_ps->eth.rx_broadcast, 5452 &cur_ps->eth.rx_broadcast); 5453 5454 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5455 &prev_ps->eth.rx_discards, 5456 &cur_ps->eth.rx_discards); 5457 5458 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5459 &prev_ps->eth.tx_bytes, 5460 &cur_ps->eth.tx_bytes); 5461 5462 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5463 &prev_ps->eth.tx_unicast, 5464 &cur_ps->eth.tx_unicast); 5465 5466 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5467 &prev_ps->eth.tx_multicast, 5468 &cur_ps->eth.tx_multicast); 5469 5470 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5471 &prev_ps->eth.tx_broadcast, 5472 &cur_ps->eth.tx_broadcast); 5473 5474 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5475 &prev_ps->tx_dropped_link_down, 5476 &cur_ps->tx_dropped_link_down); 5477 5478 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5479 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5480 5481 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5482 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5483 5484 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5485 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5486 5487 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5488 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5489 5490 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5491 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5492 5493 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5494 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5495 5496 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5497 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5498 5499 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5500 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5501 5502 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5503 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5504 5505 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5506 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5507 5508 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5509 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5510 5511 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5512 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5513 5514 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5515 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5516 5517 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5518 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5519 5520 fd_ctr_base = hw->fd_ctr_base; 5521 5522 ice_stat_update40(hw, 5523 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5524 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5525 &cur_ps->fd_sb_match); 5526 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5527 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5528 5529 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5530 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5531 5532 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5533 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5534 5535 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5536 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5537 5538 ice_update_dcb_stats(pf); 5539 5540 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5541 &prev_ps->crc_errors, &cur_ps->crc_errors); 5542 5543 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5544 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5545 5546 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5547 &prev_ps->mac_local_faults, 5548 &cur_ps->mac_local_faults); 5549 5550 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5551 &prev_ps->mac_remote_faults, 5552 &cur_ps->mac_remote_faults); 5553 5554 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5555 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5556 5557 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5558 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5559 5560 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5561 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5562 5563 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5564 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5565 5566 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5567 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5568 5569 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5570 5571 pf->stat_prev_loaded = true; 5572 } 5573 5574 /** 5575 * ice_get_stats64 - get statistics for network device structure 5576 * @netdev: network interface device structure 5577 * @stats: main device statistics structure 5578 */ 5579 static 5580 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5581 { 5582 struct ice_netdev_priv *np = netdev_priv(netdev); 5583 struct rtnl_link_stats64 *vsi_stats; 5584 struct ice_vsi *vsi = np->vsi; 5585 5586 vsi_stats = &vsi->net_stats; 5587 5588 if (!vsi->num_txq || !vsi->num_rxq) 5589 return; 5590 5591 /* netdev packet/byte stats come from ring counter. These are obtained 5592 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5593 * But, only call the update routine and read the registers if VSI is 5594 * not down. 5595 */ 5596 if (!test_bit(__ICE_DOWN, vsi->state)) 5597 ice_update_vsi_ring_stats(vsi); 5598 stats->tx_packets = vsi_stats->tx_packets; 5599 stats->tx_bytes = vsi_stats->tx_bytes; 5600 stats->rx_packets = vsi_stats->rx_packets; 5601 stats->rx_bytes = vsi_stats->rx_bytes; 5602 5603 /* The rest of the stats can be read from the hardware but instead we 5604 * just return values that the watchdog task has already obtained from 5605 * the hardware. 5606 */ 5607 stats->multicast = vsi_stats->multicast; 5608 stats->tx_errors = vsi_stats->tx_errors; 5609 stats->tx_dropped = vsi_stats->tx_dropped; 5610 stats->rx_errors = vsi_stats->rx_errors; 5611 stats->rx_dropped = vsi_stats->rx_dropped; 5612 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5613 stats->rx_length_errors = vsi_stats->rx_length_errors; 5614 } 5615 5616 /** 5617 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5618 * @vsi: VSI having NAPI disabled 5619 */ 5620 static void ice_napi_disable_all(struct ice_vsi *vsi) 5621 { 5622 int q_idx; 5623 5624 if (!vsi->netdev) 5625 return; 5626 5627 ice_for_each_q_vector(vsi, q_idx) { 5628 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5629 5630 if (q_vector->rx.ring || q_vector->tx.ring) 5631 napi_disable(&q_vector->napi); 5632 } 5633 } 5634 5635 /** 5636 * ice_down - Shutdown the connection 5637 * @vsi: The VSI being stopped 5638 */ 5639 int ice_down(struct ice_vsi *vsi) 5640 { 5641 int i, tx_err, rx_err, link_err = 0; 5642 5643 /* Caller of this function is expected to set the 5644 * vsi->state __ICE_DOWN bit 5645 */ 5646 if (vsi->netdev) { 5647 netif_carrier_off(vsi->netdev); 5648 netif_tx_disable(vsi->netdev); 5649 } 5650 5651 ice_vsi_dis_irq(vsi); 5652 5653 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5654 if (tx_err) 5655 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5656 vsi->vsi_num, tx_err); 5657 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5658 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5659 if (tx_err) 5660 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5661 vsi->vsi_num, tx_err); 5662 } 5663 5664 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5665 if (rx_err) 5666 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5667 vsi->vsi_num, rx_err); 5668 5669 ice_napi_disable_all(vsi); 5670 5671 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5672 link_err = ice_force_phys_link_state(vsi, false); 5673 if (link_err) 5674 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5675 vsi->vsi_num, link_err); 5676 } 5677 5678 ice_for_each_txq(vsi, i) 5679 ice_clean_tx_ring(vsi->tx_rings[i]); 5680 5681 ice_for_each_rxq(vsi, i) 5682 ice_clean_rx_ring(vsi->rx_rings[i]); 5683 5684 if (tx_err || rx_err || link_err) { 5685 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5686 vsi->vsi_num, vsi->vsw->sw_id); 5687 return -EIO; 5688 } 5689 5690 return 0; 5691 } 5692 5693 /** 5694 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5695 * @vsi: VSI having resources allocated 5696 * 5697 * Return 0 on success, negative on failure 5698 */ 5699 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5700 { 5701 int i, err = 0; 5702 5703 if (!vsi->num_txq) { 5704 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5705 vsi->vsi_num); 5706 return -EINVAL; 5707 } 5708 5709 ice_for_each_txq(vsi, i) { 5710 struct ice_ring *ring = vsi->tx_rings[i]; 5711 5712 if (!ring) 5713 return -EINVAL; 5714 5715 ring->netdev = vsi->netdev; 5716 err = ice_setup_tx_ring(ring); 5717 if (err) 5718 break; 5719 } 5720 5721 return err; 5722 } 5723 5724 /** 5725 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5726 * @vsi: VSI having resources allocated 5727 * 5728 * Return 0 on success, negative on failure 5729 */ 5730 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5731 { 5732 int i, err = 0; 5733 5734 if (!vsi->num_rxq) { 5735 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5736 vsi->vsi_num); 5737 return -EINVAL; 5738 } 5739 5740 ice_for_each_rxq(vsi, i) { 5741 struct ice_ring *ring = vsi->rx_rings[i]; 5742 5743 if (!ring) 5744 return -EINVAL; 5745 5746 ring->netdev = vsi->netdev; 5747 err = ice_setup_rx_ring(ring); 5748 if (err) 5749 break; 5750 } 5751 5752 return err; 5753 } 5754 5755 /** 5756 * ice_vsi_open_ctrl - open control VSI for use 5757 * @vsi: the VSI to open 5758 * 5759 * Initialization of the Control VSI 5760 * 5761 * Returns 0 on success, negative value on error 5762 */ 5763 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5764 { 5765 char int_name[ICE_INT_NAME_STR_LEN]; 5766 struct ice_pf *pf = vsi->back; 5767 struct device *dev; 5768 int err; 5769 5770 dev = ice_pf_to_dev(pf); 5771 /* allocate descriptors */ 5772 err = ice_vsi_setup_tx_rings(vsi); 5773 if (err) 5774 goto err_setup_tx; 5775 5776 err = ice_vsi_setup_rx_rings(vsi); 5777 if (err) 5778 goto err_setup_rx; 5779 5780 err = ice_vsi_cfg(vsi); 5781 if (err) 5782 goto err_setup_rx; 5783 5784 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5785 dev_driver_string(dev), dev_name(dev)); 5786 err = ice_vsi_req_irq_msix(vsi, int_name); 5787 if (err) 5788 goto err_setup_rx; 5789 5790 ice_vsi_cfg_msix(vsi); 5791 5792 err = ice_vsi_start_all_rx_rings(vsi); 5793 if (err) 5794 goto err_up_complete; 5795 5796 clear_bit(__ICE_DOWN, vsi->state); 5797 ice_vsi_ena_irq(vsi); 5798 5799 return 0; 5800 5801 err_up_complete: 5802 ice_down(vsi); 5803 err_setup_rx: 5804 ice_vsi_free_rx_rings(vsi); 5805 err_setup_tx: 5806 ice_vsi_free_tx_rings(vsi); 5807 5808 return err; 5809 } 5810 5811 /** 5812 * ice_vsi_open - Called when a network interface is made active 5813 * @vsi: the VSI to open 5814 * 5815 * Initialization of the VSI 5816 * 5817 * Returns 0 on success, negative value on error 5818 */ 5819 static int ice_vsi_open(struct ice_vsi *vsi) 5820 { 5821 char int_name[ICE_INT_NAME_STR_LEN]; 5822 struct ice_pf *pf = vsi->back; 5823 int err; 5824 5825 /* allocate descriptors */ 5826 err = ice_vsi_setup_tx_rings(vsi); 5827 if (err) 5828 goto err_setup_tx; 5829 5830 err = ice_vsi_setup_rx_rings(vsi); 5831 if (err) 5832 goto err_setup_rx; 5833 5834 err = ice_vsi_cfg(vsi); 5835 if (err) 5836 goto err_setup_rx; 5837 5838 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5839 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5840 err = ice_vsi_req_irq_msix(vsi, int_name); 5841 if (err) 5842 goto err_setup_rx; 5843 5844 /* Notify the stack of the actual queue counts. */ 5845 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5846 if (err) 5847 goto err_set_qs; 5848 5849 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5850 if (err) 5851 goto err_set_qs; 5852 5853 err = ice_up_complete(vsi); 5854 if (err) 5855 goto err_up_complete; 5856 5857 return 0; 5858 5859 err_up_complete: 5860 ice_down(vsi); 5861 err_set_qs: 5862 ice_vsi_free_irq(vsi); 5863 err_setup_rx: 5864 ice_vsi_free_rx_rings(vsi); 5865 err_setup_tx: 5866 ice_vsi_free_tx_rings(vsi); 5867 5868 return err; 5869 } 5870 5871 /** 5872 * ice_vsi_release_all - Delete all VSIs 5873 * @pf: PF from which all VSIs are being removed 5874 */ 5875 static void ice_vsi_release_all(struct ice_pf *pf) 5876 { 5877 int err, i; 5878 5879 if (!pf->vsi) 5880 return; 5881 5882 ice_for_each_vsi(pf, i) { 5883 if (!pf->vsi[i]) 5884 continue; 5885 5886 err = ice_vsi_release(pf->vsi[i]); 5887 if (err) 5888 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 5889 i, err, pf->vsi[i]->vsi_num); 5890 } 5891 } 5892 5893 /** 5894 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 5895 * @pf: pointer to the PF instance 5896 * @type: VSI type to rebuild 5897 * 5898 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 5899 */ 5900 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 5901 { 5902 struct device *dev = ice_pf_to_dev(pf); 5903 enum ice_status status; 5904 int i, err; 5905 5906 ice_for_each_vsi(pf, i) { 5907 struct ice_vsi *vsi = pf->vsi[i]; 5908 5909 if (!vsi || vsi->type != type) 5910 continue; 5911 5912 /* rebuild the VSI */ 5913 err = ice_vsi_rebuild(vsi, true); 5914 if (err) { 5915 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 5916 err, vsi->idx, ice_vsi_type_str(type)); 5917 return err; 5918 } 5919 5920 /* replay filters for the VSI */ 5921 status = ice_replay_vsi(&pf->hw, vsi->idx); 5922 if (status) { 5923 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 5924 ice_stat_str(status), vsi->idx, 5925 ice_vsi_type_str(type)); 5926 return -EIO; 5927 } 5928 5929 /* Re-map HW VSI number, using VSI handle that has been 5930 * previously validated in ice_replay_vsi() call above 5931 */ 5932 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 5933 5934 /* enable the VSI */ 5935 err = ice_ena_vsi(vsi, false); 5936 if (err) { 5937 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 5938 err, vsi->idx, ice_vsi_type_str(type)); 5939 return err; 5940 } 5941 5942 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 5943 ice_vsi_type_str(type)); 5944 } 5945 5946 return 0; 5947 } 5948 5949 /** 5950 * ice_update_pf_netdev_link - Update PF netdev link status 5951 * @pf: pointer to the PF instance 5952 */ 5953 static void ice_update_pf_netdev_link(struct ice_pf *pf) 5954 { 5955 bool link_up; 5956 int i; 5957 5958 ice_for_each_vsi(pf, i) { 5959 struct ice_vsi *vsi = pf->vsi[i]; 5960 5961 if (!vsi || vsi->type != ICE_VSI_PF) 5962 return; 5963 5964 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 5965 if (link_up) { 5966 netif_carrier_on(pf->vsi[i]->netdev); 5967 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 5968 } else { 5969 netif_carrier_off(pf->vsi[i]->netdev); 5970 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 5971 } 5972 } 5973 } 5974 5975 /** 5976 * ice_rebuild - rebuild after reset 5977 * @pf: PF to rebuild 5978 * @reset_type: type of reset 5979 * 5980 * Do not rebuild VF VSI in this flow because that is already handled via 5981 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 5982 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 5983 * to reset/rebuild all the VF VSI twice. 5984 */ 5985 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 5986 { 5987 struct device *dev = ice_pf_to_dev(pf); 5988 struct ice_hw *hw = &pf->hw; 5989 enum ice_status ret; 5990 int err; 5991 5992 if (test_bit(__ICE_DOWN, pf->state)) 5993 goto clear_recovery; 5994 5995 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 5996 5997 ret = ice_init_all_ctrlq(hw); 5998 if (ret) { 5999 dev_err(dev, "control queues init failed %s\n", 6000 ice_stat_str(ret)); 6001 goto err_init_ctrlq; 6002 } 6003 6004 /* if DDP was previously loaded successfully */ 6005 if (!ice_is_safe_mode(pf)) { 6006 /* reload the SW DB of filter tables */ 6007 if (reset_type == ICE_RESET_PFR) 6008 ice_fill_blk_tbls(hw); 6009 else 6010 /* Reload DDP Package after CORER/GLOBR reset */ 6011 ice_load_pkg(NULL, pf); 6012 } 6013 6014 ret = ice_clear_pf_cfg(hw); 6015 if (ret) { 6016 dev_err(dev, "clear PF configuration failed %s\n", 6017 ice_stat_str(ret)); 6018 goto err_init_ctrlq; 6019 } 6020 6021 if (pf->first_sw->dflt_vsi_ena) 6022 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6023 /* clear the default VSI configuration if it exists */ 6024 pf->first_sw->dflt_vsi = NULL; 6025 pf->first_sw->dflt_vsi_ena = false; 6026 6027 ice_clear_pxe_mode(hw); 6028 6029 ret = ice_get_caps(hw); 6030 if (ret) { 6031 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6032 goto err_init_ctrlq; 6033 } 6034 6035 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6036 if (ret) { 6037 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6038 goto err_init_ctrlq; 6039 } 6040 6041 err = ice_sched_init_port(hw->port_info); 6042 if (err) 6043 goto err_sched_init_port; 6044 6045 /* start misc vector */ 6046 err = ice_req_irq_msix_misc(pf); 6047 if (err) { 6048 dev_err(dev, "misc vector setup failed: %d\n", err); 6049 goto err_sched_init_port; 6050 } 6051 6052 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6053 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6054 if (!rd32(hw, PFQF_FD_SIZE)) { 6055 u16 unused, guar, b_effort; 6056 6057 guar = hw->func_caps.fd_fltr_guar; 6058 b_effort = hw->func_caps.fd_fltr_best_effort; 6059 6060 /* force guaranteed filter pool for PF */ 6061 ice_alloc_fd_guar_item(hw, &unused, guar); 6062 /* force shared filter pool for PF */ 6063 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6064 } 6065 } 6066 6067 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6068 ice_dcb_rebuild(pf); 6069 6070 /* rebuild PF VSI */ 6071 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6072 if (err) { 6073 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6074 goto err_vsi_rebuild; 6075 } 6076 6077 /* If Flow Director is active */ 6078 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6079 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6080 if (err) { 6081 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6082 goto err_vsi_rebuild; 6083 } 6084 6085 /* replay HW Flow Director recipes */ 6086 if (hw->fdir_prof) 6087 ice_fdir_replay_flows(hw); 6088 6089 /* replay Flow Director filters */ 6090 ice_fdir_replay_fltrs(pf); 6091 6092 ice_rebuild_arfs(pf); 6093 } 6094 6095 ice_update_pf_netdev_link(pf); 6096 6097 /* tell the firmware we are up */ 6098 ret = ice_send_version(pf); 6099 if (ret) { 6100 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6101 ice_stat_str(ret)); 6102 goto err_vsi_rebuild; 6103 } 6104 6105 ice_replay_post(hw); 6106 6107 /* if we get here, reset flow is successful */ 6108 clear_bit(__ICE_RESET_FAILED, pf->state); 6109 return; 6110 6111 err_vsi_rebuild: 6112 err_sched_init_port: 6113 ice_sched_cleanup_all(hw); 6114 err_init_ctrlq: 6115 ice_shutdown_all_ctrlq(hw); 6116 set_bit(__ICE_RESET_FAILED, pf->state); 6117 clear_recovery: 6118 /* set this bit in PF state to control service task scheduling */ 6119 set_bit(__ICE_NEEDS_RESTART, pf->state); 6120 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6121 } 6122 6123 /** 6124 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6125 * @vsi: Pointer to VSI structure 6126 */ 6127 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6128 { 6129 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6130 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6131 else 6132 return ICE_RXBUF_3072; 6133 } 6134 6135 /** 6136 * ice_change_mtu - NDO callback to change the MTU 6137 * @netdev: network interface device structure 6138 * @new_mtu: new value for maximum frame size 6139 * 6140 * Returns 0 on success, negative on failure 6141 */ 6142 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6143 { 6144 struct ice_netdev_priv *np = netdev_priv(netdev); 6145 struct ice_vsi *vsi = np->vsi; 6146 struct ice_pf *pf = vsi->back; 6147 u8 count = 0; 6148 6149 if (new_mtu == (int)netdev->mtu) { 6150 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6151 return 0; 6152 } 6153 6154 if (ice_is_xdp_ena_vsi(vsi)) { 6155 int frame_size = ice_max_xdp_frame_size(vsi); 6156 6157 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6158 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6159 frame_size - ICE_ETH_PKT_HDR_PAD); 6160 return -EINVAL; 6161 } 6162 } 6163 6164 /* if a reset is in progress, wait for some time for it to complete */ 6165 do { 6166 if (ice_is_reset_in_progress(pf->state)) { 6167 count++; 6168 usleep_range(1000, 2000); 6169 } else { 6170 break; 6171 } 6172 6173 } while (count < 100); 6174 6175 if (count == 100) { 6176 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6177 return -EBUSY; 6178 } 6179 6180 netdev->mtu = (unsigned int)new_mtu; 6181 6182 /* if VSI is up, bring it down and then back up */ 6183 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 6184 int err; 6185 6186 err = ice_down(vsi); 6187 if (err) { 6188 netdev_err(netdev, "change MTU if_down err %d\n", err); 6189 return err; 6190 } 6191 6192 err = ice_up(vsi); 6193 if (err) { 6194 netdev_err(netdev, "change MTU if_up err %d\n", err); 6195 return err; 6196 } 6197 } 6198 6199 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6200 return 0; 6201 } 6202 6203 /** 6204 * ice_aq_str - convert AQ err code to a string 6205 * @aq_err: the AQ error code to convert 6206 */ 6207 const char *ice_aq_str(enum ice_aq_err aq_err) 6208 { 6209 switch (aq_err) { 6210 case ICE_AQ_RC_OK: 6211 return "OK"; 6212 case ICE_AQ_RC_EPERM: 6213 return "ICE_AQ_RC_EPERM"; 6214 case ICE_AQ_RC_ENOENT: 6215 return "ICE_AQ_RC_ENOENT"; 6216 case ICE_AQ_RC_ENOMEM: 6217 return "ICE_AQ_RC_ENOMEM"; 6218 case ICE_AQ_RC_EBUSY: 6219 return "ICE_AQ_RC_EBUSY"; 6220 case ICE_AQ_RC_EEXIST: 6221 return "ICE_AQ_RC_EEXIST"; 6222 case ICE_AQ_RC_EINVAL: 6223 return "ICE_AQ_RC_EINVAL"; 6224 case ICE_AQ_RC_ENOSPC: 6225 return "ICE_AQ_RC_ENOSPC"; 6226 case ICE_AQ_RC_ENOSYS: 6227 return "ICE_AQ_RC_ENOSYS"; 6228 case ICE_AQ_RC_EMODE: 6229 return "ICE_AQ_RC_EMODE"; 6230 case ICE_AQ_RC_ENOSEC: 6231 return "ICE_AQ_RC_ENOSEC"; 6232 case ICE_AQ_RC_EBADSIG: 6233 return "ICE_AQ_RC_EBADSIG"; 6234 case ICE_AQ_RC_ESVN: 6235 return "ICE_AQ_RC_ESVN"; 6236 case ICE_AQ_RC_EBADMAN: 6237 return "ICE_AQ_RC_EBADMAN"; 6238 case ICE_AQ_RC_EBADBUF: 6239 return "ICE_AQ_RC_EBADBUF"; 6240 } 6241 6242 return "ICE_AQ_RC_UNKNOWN"; 6243 } 6244 6245 /** 6246 * ice_stat_str - convert status err code to a string 6247 * @stat_err: the status error code to convert 6248 */ 6249 const char *ice_stat_str(enum ice_status stat_err) 6250 { 6251 switch (stat_err) { 6252 case ICE_SUCCESS: 6253 return "OK"; 6254 case ICE_ERR_PARAM: 6255 return "ICE_ERR_PARAM"; 6256 case ICE_ERR_NOT_IMPL: 6257 return "ICE_ERR_NOT_IMPL"; 6258 case ICE_ERR_NOT_READY: 6259 return "ICE_ERR_NOT_READY"; 6260 case ICE_ERR_NOT_SUPPORTED: 6261 return "ICE_ERR_NOT_SUPPORTED"; 6262 case ICE_ERR_BAD_PTR: 6263 return "ICE_ERR_BAD_PTR"; 6264 case ICE_ERR_INVAL_SIZE: 6265 return "ICE_ERR_INVAL_SIZE"; 6266 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6267 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6268 case ICE_ERR_RESET_FAILED: 6269 return "ICE_ERR_RESET_FAILED"; 6270 case ICE_ERR_FW_API_VER: 6271 return "ICE_ERR_FW_API_VER"; 6272 case ICE_ERR_NO_MEMORY: 6273 return "ICE_ERR_NO_MEMORY"; 6274 case ICE_ERR_CFG: 6275 return "ICE_ERR_CFG"; 6276 case ICE_ERR_OUT_OF_RANGE: 6277 return "ICE_ERR_OUT_OF_RANGE"; 6278 case ICE_ERR_ALREADY_EXISTS: 6279 return "ICE_ERR_ALREADY_EXISTS"; 6280 case ICE_ERR_NVM: 6281 return "ICE_ERR_NVM"; 6282 case ICE_ERR_NVM_CHECKSUM: 6283 return "ICE_ERR_NVM_CHECKSUM"; 6284 case ICE_ERR_BUF_TOO_SHORT: 6285 return "ICE_ERR_BUF_TOO_SHORT"; 6286 case ICE_ERR_NVM_BLANK_MODE: 6287 return "ICE_ERR_NVM_BLANK_MODE"; 6288 case ICE_ERR_IN_USE: 6289 return "ICE_ERR_IN_USE"; 6290 case ICE_ERR_MAX_LIMIT: 6291 return "ICE_ERR_MAX_LIMIT"; 6292 case ICE_ERR_RESET_ONGOING: 6293 return "ICE_ERR_RESET_ONGOING"; 6294 case ICE_ERR_HW_TABLE: 6295 return "ICE_ERR_HW_TABLE"; 6296 case ICE_ERR_DOES_NOT_EXIST: 6297 return "ICE_ERR_DOES_NOT_EXIST"; 6298 case ICE_ERR_FW_DDP_MISMATCH: 6299 return "ICE_ERR_FW_DDP_MISMATCH"; 6300 case ICE_ERR_AQ_ERROR: 6301 return "ICE_ERR_AQ_ERROR"; 6302 case ICE_ERR_AQ_TIMEOUT: 6303 return "ICE_ERR_AQ_TIMEOUT"; 6304 case ICE_ERR_AQ_FULL: 6305 return "ICE_ERR_AQ_FULL"; 6306 case ICE_ERR_AQ_NO_WORK: 6307 return "ICE_ERR_AQ_NO_WORK"; 6308 case ICE_ERR_AQ_EMPTY: 6309 return "ICE_ERR_AQ_EMPTY"; 6310 case ICE_ERR_AQ_FW_CRITICAL: 6311 return "ICE_ERR_AQ_FW_CRITICAL"; 6312 } 6313 6314 return "ICE_ERR_UNKNOWN"; 6315 } 6316 6317 /** 6318 * ice_set_rss - Set RSS keys and lut 6319 * @vsi: Pointer to VSI structure 6320 * @seed: RSS hash seed 6321 * @lut: Lookup table 6322 * @lut_size: Lookup table size 6323 * 6324 * Returns 0 on success, negative on failure 6325 */ 6326 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6327 { 6328 struct ice_pf *pf = vsi->back; 6329 struct ice_hw *hw = &pf->hw; 6330 enum ice_status status; 6331 struct device *dev; 6332 6333 dev = ice_pf_to_dev(pf); 6334 if (seed) { 6335 struct ice_aqc_get_set_rss_keys *buf = 6336 (struct ice_aqc_get_set_rss_keys *)seed; 6337 6338 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 6339 6340 if (status) { 6341 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 6342 ice_stat_str(status), 6343 ice_aq_str(hw->adminq.sq_last_status)); 6344 return -EIO; 6345 } 6346 } 6347 6348 if (lut) { 6349 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6350 lut, lut_size); 6351 if (status) { 6352 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 6353 ice_stat_str(status), 6354 ice_aq_str(hw->adminq.sq_last_status)); 6355 return -EIO; 6356 } 6357 } 6358 6359 return 0; 6360 } 6361 6362 /** 6363 * ice_get_rss - Get RSS keys and lut 6364 * @vsi: Pointer to VSI structure 6365 * @seed: Buffer to store the keys 6366 * @lut: Buffer to store the lookup table entries 6367 * @lut_size: Size of buffer to store the lookup table entries 6368 * 6369 * Returns 0 on success, negative on failure 6370 */ 6371 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6372 { 6373 struct ice_pf *pf = vsi->back; 6374 struct ice_hw *hw = &pf->hw; 6375 enum ice_status status; 6376 struct device *dev; 6377 6378 dev = ice_pf_to_dev(pf); 6379 if (seed) { 6380 struct ice_aqc_get_set_rss_keys *buf = 6381 (struct ice_aqc_get_set_rss_keys *)seed; 6382 6383 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 6384 if (status) { 6385 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 6386 ice_stat_str(status), 6387 ice_aq_str(hw->adminq.sq_last_status)); 6388 return -EIO; 6389 } 6390 } 6391 6392 if (lut) { 6393 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6394 lut, lut_size); 6395 if (status) { 6396 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 6397 ice_stat_str(status), 6398 ice_aq_str(hw->adminq.sq_last_status)); 6399 return -EIO; 6400 } 6401 } 6402 6403 return 0; 6404 } 6405 6406 /** 6407 * ice_bridge_getlink - Get the hardware bridge mode 6408 * @skb: skb buff 6409 * @pid: process ID 6410 * @seq: RTNL message seq 6411 * @dev: the netdev being configured 6412 * @filter_mask: filter mask passed in 6413 * @nlflags: netlink flags passed in 6414 * 6415 * Return the bridge mode (VEB/VEPA) 6416 */ 6417 static int 6418 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6419 struct net_device *dev, u32 filter_mask, int nlflags) 6420 { 6421 struct ice_netdev_priv *np = netdev_priv(dev); 6422 struct ice_vsi *vsi = np->vsi; 6423 struct ice_pf *pf = vsi->back; 6424 u16 bmode; 6425 6426 bmode = pf->first_sw->bridge_mode; 6427 6428 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6429 filter_mask, NULL); 6430 } 6431 6432 /** 6433 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6434 * @vsi: Pointer to VSI structure 6435 * @bmode: Hardware bridge mode (VEB/VEPA) 6436 * 6437 * Returns 0 on success, negative on failure 6438 */ 6439 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6440 { 6441 struct ice_aqc_vsi_props *vsi_props; 6442 struct ice_hw *hw = &vsi->back->hw; 6443 struct ice_vsi_ctx *ctxt; 6444 enum ice_status status; 6445 int ret = 0; 6446 6447 vsi_props = &vsi->info; 6448 6449 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6450 if (!ctxt) 6451 return -ENOMEM; 6452 6453 ctxt->info = vsi->info; 6454 6455 if (bmode == BRIDGE_MODE_VEB) 6456 /* change from VEPA to VEB mode */ 6457 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6458 else 6459 /* change from VEB to VEPA mode */ 6460 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6461 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6462 6463 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6464 if (status) { 6465 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6466 bmode, ice_stat_str(status), 6467 ice_aq_str(hw->adminq.sq_last_status)); 6468 ret = -EIO; 6469 goto out; 6470 } 6471 /* Update sw flags for book keeping */ 6472 vsi_props->sw_flags = ctxt->info.sw_flags; 6473 6474 out: 6475 kfree(ctxt); 6476 return ret; 6477 } 6478 6479 /** 6480 * ice_bridge_setlink - Set the hardware bridge mode 6481 * @dev: the netdev being configured 6482 * @nlh: RTNL message 6483 * @flags: bridge setlink flags 6484 * @extack: netlink extended ack 6485 * 6486 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6487 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6488 * not already set for all VSIs connected to this switch. And also update the 6489 * unicast switch filter rules for the corresponding switch of the netdev. 6490 */ 6491 static int 6492 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6493 u16 __always_unused flags, 6494 struct netlink_ext_ack __always_unused *extack) 6495 { 6496 struct ice_netdev_priv *np = netdev_priv(dev); 6497 struct ice_pf *pf = np->vsi->back; 6498 struct nlattr *attr, *br_spec; 6499 struct ice_hw *hw = &pf->hw; 6500 enum ice_status status; 6501 struct ice_sw *pf_sw; 6502 int rem, v, err = 0; 6503 6504 pf_sw = pf->first_sw; 6505 /* find the attribute in the netlink message */ 6506 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6507 6508 nla_for_each_nested(attr, br_spec, rem) { 6509 __u16 mode; 6510 6511 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6512 continue; 6513 mode = nla_get_u16(attr); 6514 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6515 return -EINVAL; 6516 /* Continue if bridge mode is not being flipped */ 6517 if (mode == pf_sw->bridge_mode) 6518 continue; 6519 /* Iterates through the PF VSI list and update the loopback 6520 * mode of the VSI 6521 */ 6522 ice_for_each_vsi(pf, v) { 6523 if (!pf->vsi[v]) 6524 continue; 6525 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6526 if (err) 6527 return err; 6528 } 6529 6530 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6531 /* Update the unicast switch filter rules for the corresponding 6532 * switch of the netdev 6533 */ 6534 status = ice_update_sw_rule_bridge_mode(hw); 6535 if (status) { 6536 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6537 mode, ice_stat_str(status), 6538 ice_aq_str(hw->adminq.sq_last_status)); 6539 /* revert hw->evb_veb */ 6540 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6541 return -EIO; 6542 } 6543 6544 pf_sw->bridge_mode = mode; 6545 } 6546 6547 return 0; 6548 } 6549 6550 /** 6551 * ice_tx_timeout - Respond to a Tx Hang 6552 * @netdev: network interface device structure 6553 * @txqueue: Tx queue 6554 */ 6555 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6556 { 6557 struct ice_netdev_priv *np = netdev_priv(netdev); 6558 struct ice_ring *tx_ring = NULL; 6559 struct ice_vsi *vsi = np->vsi; 6560 struct ice_pf *pf = vsi->back; 6561 u32 i; 6562 6563 pf->tx_timeout_count++; 6564 6565 /* Check if PFC is enabled for the TC to which the queue belongs 6566 * to. If yes then Tx timeout is not caused by a hung queue, no 6567 * need to reset and rebuild 6568 */ 6569 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6570 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6571 txqueue); 6572 return; 6573 } 6574 6575 /* now that we have an index, find the tx_ring struct */ 6576 for (i = 0; i < vsi->num_txq; i++) 6577 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6578 if (txqueue == vsi->tx_rings[i]->q_index) { 6579 tx_ring = vsi->tx_rings[i]; 6580 break; 6581 } 6582 6583 /* Reset recovery level if enough time has elapsed after last timeout. 6584 * Also ensure no new reset action happens before next timeout period. 6585 */ 6586 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6587 pf->tx_timeout_recovery_level = 1; 6588 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6589 netdev->watchdog_timeo))) 6590 return; 6591 6592 if (tx_ring) { 6593 struct ice_hw *hw = &pf->hw; 6594 u32 head, val = 0; 6595 6596 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6597 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6598 /* Read interrupt register */ 6599 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6600 6601 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6602 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6603 head, tx_ring->next_to_use, val); 6604 } 6605 6606 pf->tx_timeout_last_recovery = jiffies; 6607 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6608 pf->tx_timeout_recovery_level, txqueue); 6609 6610 switch (pf->tx_timeout_recovery_level) { 6611 case 1: 6612 set_bit(__ICE_PFR_REQ, pf->state); 6613 break; 6614 case 2: 6615 set_bit(__ICE_CORER_REQ, pf->state); 6616 break; 6617 case 3: 6618 set_bit(__ICE_GLOBR_REQ, pf->state); 6619 break; 6620 default: 6621 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6622 set_bit(__ICE_DOWN, pf->state); 6623 set_bit(__ICE_NEEDS_RESTART, vsi->state); 6624 set_bit(__ICE_SERVICE_DIS, pf->state); 6625 break; 6626 } 6627 6628 ice_service_task_schedule(pf); 6629 pf->tx_timeout_recovery_level++; 6630 } 6631 6632 /** 6633 * ice_open - Called when a network interface becomes active 6634 * @netdev: network interface device structure 6635 * 6636 * The open entry point is called when a network interface is made 6637 * active by the system (IFF_UP). At this point all resources needed 6638 * for transmit and receive operations are allocated, the interrupt 6639 * handler is registered with the OS, the netdev watchdog is enabled, 6640 * and the stack is notified that the interface is ready. 6641 * 6642 * Returns 0 on success, negative value on failure 6643 */ 6644 int ice_open(struct net_device *netdev) 6645 { 6646 struct ice_netdev_priv *np = netdev_priv(netdev); 6647 struct ice_vsi *vsi = np->vsi; 6648 struct ice_pf *pf = vsi->back; 6649 struct ice_port_info *pi; 6650 int err; 6651 6652 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 6653 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6654 return -EIO; 6655 } 6656 6657 if (test_bit(__ICE_DOWN, pf->state)) { 6658 netdev_err(netdev, "device is not ready yet\n"); 6659 return -EBUSY; 6660 } 6661 6662 netif_carrier_off(netdev); 6663 6664 pi = vsi->port_info; 6665 err = ice_update_link_info(pi); 6666 if (err) { 6667 netdev_err(netdev, "Failed to get link info, error %d\n", 6668 err); 6669 return err; 6670 } 6671 6672 /* Set PHY if there is media, otherwise, turn off PHY */ 6673 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6674 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6675 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) { 6676 err = ice_init_phy_user_cfg(pi); 6677 if (err) { 6678 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6679 err); 6680 return err; 6681 } 6682 } 6683 6684 err = ice_configure_phy(vsi); 6685 if (err) { 6686 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6687 err); 6688 return err; 6689 } 6690 } else { 6691 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6692 err = ice_aq_set_link_restart_an(pi, false, NULL); 6693 if (err) { 6694 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 6695 vsi->vsi_num, err); 6696 return err; 6697 } 6698 } 6699 6700 err = ice_vsi_open(vsi); 6701 if (err) 6702 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6703 vsi->vsi_num, vsi->vsw->sw_id); 6704 6705 /* Update existing tunnels information */ 6706 udp_tunnel_get_rx_info(netdev); 6707 6708 return err; 6709 } 6710 6711 /** 6712 * ice_stop - Disables a network interface 6713 * @netdev: network interface device structure 6714 * 6715 * The stop entry point is called when an interface is de-activated by the OS, 6716 * and the netdevice enters the DOWN state. The hardware is still under the 6717 * driver's control, but the netdev interface is disabled. 6718 * 6719 * Returns success only - not allowed to fail 6720 */ 6721 int ice_stop(struct net_device *netdev) 6722 { 6723 struct ice_netdev_priv *np = netdev_priv(netdev); 6724 struct ice_vsi *vsi = np->vsi; 6725 6726 ice_vsi_close(vsi); 6727 6728 return 0; 6729 } 6730 6731 /** 6732 * ice_features_check - Validate encapsulated packet conforms to limits 6733 * @skb: skb buffer 6734 * @netdev: This port's netdev 6735 * @features: Offload features that the stack believes apply 6736 */ 6737 static netdev_features_t 6738 ice_features_check(struct sk_buff *skb, 6739 struct net_device __always_unused *netdev, 6740 netdev_features_t features) 6741 { 6742 size_t len; 6743 6744 /* No point in doing any of this if neither checksum nor GSO are 6745 * being requested for this frame. We can rule out both by just 6746 * checking for CHECKSUM_PARTIAL 6747 */ 6748 if (skb->ip_summed != CHECKSUM_PARTIAL) 6749 return features; 6750 6751 /* We cannot support GSO if the MSS is going to be less than 6752 * 64 bytes. If it is then we need to drop support for GSO. 6753 */ 6754 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6755 features &= ~NETIF_F_GSO_MASK; 6756 6757 len = skb_network_header(skb) - skb->data; 6758 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6759 goto out_rm_features; 6760 6761 len = skb_transport_header(skb) - skb_network_header(skb); 6762 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6763 goto out_rm_features; 6764 6765 if (skb->encapsulation) { 6766 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6767 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6768 goto out_rm_features; 6769 6770 len = skb_inner_transport_header(skb) - 6771 skb_inner_network_header(skb); 6772 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6773 goto out_rm_features; 6774 } 6775 6776 return features; 6777 out_rm_features: 6778 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6779 } 6780 6781 static const struct net_device_ops ice_netdev_safe_mode_ops = { 6782 .ndo_open = ice_open, 6783 .ndo_stop = ice_stop, 6784 .ndo_start_xmit = ice_start_xmit, 6785 .ndo_set_mac_address = ice_set_mac_address, 6786 .ndo_validate_addr = eth_validate_addr, 6787 .ndo_change_mtu = ice_change_mtu, 6788 .ndo_get_stats64 = ice_get_stats64, 6789 .ndo_tx_timeout = ice_tx_timeout, 6790 }; 6791 6792 static const struct net_device_ops ice_netdev_ops = { 6793 .ndo_open = ice_open, 6794 .ndo_stop = ice_stop, 6795 .ndo_start_xmit = ice_start_xmit, 6796 .ndo_features_check = ice_features_check, 6797 .ndo_set_rx_mode = ice_set_rx_mode, 6798 .ndo_set_mac_address = ice_set_mac_address, 6799 .ndo_validate_addr = eth_validate_addr, 6800 .ndo_change_mtu = ice_change_mtu, 6801 .ndo_get_stats64 = ice_get_stats64, 6802 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6803 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6804 .ndo_set_vf_mac = ice_set_vf_mac, 6805 .ndo_get_vf_config = ice_get_vf_cfg, 6806 .ndo_set_vf_trust = ice_set_vf_trust, 6807 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6808 .ndo_set_vf_link_state = ice_set_vf_link_state, 6809 .ndo_get_vf_stats = ice_get_vf_stats, 6810 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6811 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6812 .ndo_set_features = ice_set_features, 6813 .ndo_bridge_getlink = ice_bridge_getlink, 6814 .ndo_bridge_setlink = ice_bridge_setlink, 6815 .ndo_fdb_add = ice_fdb_add, 6816 .ndo_fdb_del = ice_fdb_del, 6817 #ifdef CONFIG_RFS_ACCEL 6818 .ndo_rx_flow_steer = ice_rx_flow_steer, 6819 #endif 6820 .ndo_tx_timeout = ice_tx_timeout, 6821 .ndo_bpf = ice_xdp, 6822 .ndo_xdp_xmit = ice_xdp_xmit, 6823 .ndo_xsk_wakeup = ice_xsk_wakeup, 6824 }; 6825