1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 struct workqueue_struct *ice_lag_wq; 68 static const struct net_device_ops ice_netdev_safe_mode_ops; 69 static const struct net_device_ops ice_netdev_ops; 70 71 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 72 73 static void ice_vsi_release_all(struct ice_pf *pf); 74 75 static int ice_rebuild_channels(struct ice_pf *pf); 76 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 77 78 static int 79 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 80 void *cb_priv, enum tc_setup_type type, void *type_data, 81 void *data, 82 void (*cleanup)(struct flow_block_cb *block_cb)); 83 84 bool netif_is_ice(const struct net_device *dev) 85 { 86 return dev && (dev->netdev_ops == &ice_netdev_ops); 87 } 88 89 /** 90 * ice_get_tx_pending - returns number of Tx descriptors not processed 91 * @ring: the ring of descriptors 92 */ 93 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 94 { 95 u16 head, tail; 96 97 head = ring->next_to_clean; 98 tail = ring->next_to_use; 99 100 if (head != tail) 101 return (head < tail) ? 102 tail - head : (tail + ring->count - head); 103 return 0; 104 } 105 106 /** 107 * ice_check_for_hang_subtask - check for and recover hung queues 108 * @pf: pointer to PF struct 109 */ 110 static void ice_check_for_hang_subtask(struct ice_pf *pf) 111 { 112 struct ice_vsi *vsi = NULL; 113 struct ice_hw *hw; 114 unsigned int i; 115 int packets; 116 u32 v; 117 118 ice_for_each_vsi(pf, v) 119 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 120 vsi = pf->vsi[v]; 121 break; 122 } 123 124 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 125 return; 126 127 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 128 return; 129 130 hw = &vsi->back->hw; 131 132 ice_for_each_txq(vsi, i) { 133 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 134 struct ice_ring_stats *ring_stats; 135 136 if (!tx_ring) 137 continue; 138 if (ice_ring_ch_enabled(tx_ring)) 139 continue; 140 141 ring_stats = tx_ring->ring_stats; 142 if (!ring_stats) 143 continue; 144 145 if (tx_ring->desc) { 146 /* If packet counter has not changed the queue is 147 * likely stalled, so force an interrupt for this 148 * queue. 149 * 150 * prev_pkt would be negative if there was no 151 * pending work. 152 */ 153 packets = ring_stats->stats.pkts & INT_MAX; 154 if (ring_stats->tx_stats.prev_pkt == packets) { 155 /* Trigger sw interrupt to revive the queue */ 156 ice_trigger_sw_intr(hw, tx_ring->q_vector); 157 continue; 158 } 159 160 /* Memory barrier between read of packet count and call 161 * to ice_get_tx_pending() 162 */ 163 smp_rmb(); 164 ring_stats->tx_stats.prev_pkt = 165 ice_get_tx_pending(tx_ring) ? packets : -1; 166 } 167 } 168 } 169 170 /** 171 * ice_init_mac_fltr - Set initial MAC filters 172 * @pf: board private structure 173 * 174 * Set initial set of MAC filters for PF VSI; configure filters for permanent 175 * address and broadcast address. If an error is encountered, netdevice will be 176 * unregistered. 177 */ 178 static int ice_init_mac_fltr(struct ice_pf *pf) 179 { 180 struct ice_vsi *vsi; 181 u8 *perm_addr; 182 183 vsi = ice_get_main_vsi(pf); 184 if (!vsi) 185 return -EINVAL; 186 187 perm_addr = vsi->port_info->mac.perm_addr; 188 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 189 } 190 191 /** 192 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 193 * @netdev: the net device on which the sync is happening 194 * @addr: MAC address to sync 195 * 196 * This is a callback function which is called by the in kernel device sync 197 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 198 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 199 * MAC filters from the hardware. 200 */ 201 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 202 { 203 struct ice_netdev_priv *np = netdev_priv(netdev); 204 struct ice_vsi *vsi = np->vsi; 205 206 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 207 ICE_FWD_TO_VSI)) 208 return -EINVAL; 209 210 return 0; 211 } 212 213 /** 214 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 215 * @netdev: the net device on which the unsync is happening 216 * @addr: MAC address to unsync 217 * 218 * This is a callback function which is called by the in kernel device unsync 219 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 220 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 221 * delete the MAC filters from the hardware. 222 */ 223 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 224 { 225 struct ice_netdev_priv *np = netdev_priv(netdev); 226 struct ice_vsi *vsi = np->vsi; 227 228 /* Under some circumstances, we might receive a request to delete our 229 * own device address from our uc list. Because we store the device 230 * address in the VSI's MAC filter list, we need to ignore such 231 * requests and not delete our device address from this list. 232 */ 233 if (ether_addr_equal(addr, netdev->dev_addr)) 234 return 0; 235 236 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 237 ICE_FWD_TO_VSI)) 238 return -EINVAL; 239 240 return 0; 241 } 242 243 /** 244 * ice_vsi_fltr_changed - check if filter state changed 245 * @vsi: VSI to be checked 246 * 247 * returns true if filter state has changed, false otherwise. 248 */ 249 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 250 { 251 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 252 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 253 } 254 255 /** 256 * ice_set_promisc - Enable promiscuous mode for a given PF 257 * @vsi: the VSI being configured 258 * @promisc_m: mask of promiscuous config bits 259 * 260 */ 261 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 262 { 263 int status; 264 265 if (vsi->type != ICE_VSI_PF) 266 return 0; 267 268 if (ice_vsi_has_non_zero_vlans(vsi)) { 269 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 270 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 271 promisc_m); 272 } else { 273 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 274 promisc_m, 0); 275 } 276 if (status && status != -EEXIST) 277 return status; 278 279 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 280 vsi->vsi_num, promisc_m); 281 return 0; 282 } 283 284 /** 285 * ice_clear_promisc - Disable promiscuous mode for a given PF 286 * @vsi: the VSI being configured 287 * @promisc_m: mask of promiscuous config bits 288 * 289 */ 290 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 291 { 292 int status; 293 294 if (vsi->type != ICE_VSI_PF) 295 return 0; 296 297 if (ice_vsi_has_non_zero_vlans(vsi)) { 298 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 299 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 300 promisc_m); 301 } else { 302 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 303 promisc_m, 0); 304 } 305 306 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 307 vsi->vsi_num, promisc_m); 308 return status; 309 } 310 311 /** 312 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 313 * @vsi: ptr to the VSI 314 * 315 * Push any outstanding VSI filter changes through the AdminQ. 316 */ 317 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 318 { 319 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 320 struct device *dev = ice_pf_to_dev(vsi->back); 321 struct net_device *netdev = vsi->netdev; 322 bool promisc_forced_on = false; 323 struct ice_pf *pf = vsi->back; 324 struct ice_hw *hw = &pf->hw; 325 u32 changed_flags = 0; 326 int err; 327 328 if (!vsi->netdev) 329 return -EINVAL; 330 331 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 332 usleep_range(1000, 2000); 333 334 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 335 vsi->current_netdev_flags = vsi->netdev->flags; 336 337 INIT_LIST_HEAD(&vsi->tmp_sync_list); 338 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 339 340 if (ice_vsi_fltr_changed(vsi)) { 341 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 342 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 343 344 /* grab the netdev's addr_list_lock */ 345 netif_addr_lock_bh(netdev); 346 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 347 ice_add_mac_to_unsync_list); 348 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 /* our temp lists are populated. release lock */ 351 netif_addr_unlock_bh(netdev); 352 } 353 354 /* Remove MAC addresses in the unsync list */ 355 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 356 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 357 if (err) { 358 netdev_err(netdev, "Failed to delete MAC filters\n"); 359 /* if we failed because of alloc failures, just bail */ 360 if (err == -ENOMEM) 361 goto out; 362 } 363 364 /* Add MAC addresses in the sync list */ 365 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 366 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 367 /* If filter is added successfully or already exists, do not go into 368 * 'if' condition and report it as error. Instead continue processing 369 * rest of the function. 370 */ 371 if (err && err != -EEXIST) { 372 netdev_err(netdev, "Failed to add MAC filters\n"); 373 /* If there is no more space for new umac filters, VSI 374 * should go into promiscuous mode. There should be some 375 * space reserved for promiscuous filters. 376 */ 377 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 378 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 379 vsi->state)) { 380 promisc_forced_on = true; 381 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 382 vsi->vsi_num); 383 } else { 384 goto out; 385 } 386 } 387 err = 0; 388 /* check for changes in promiscuous modes */ 389 if (changed_flags & IFF_ALLMULTI) { 390 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 391 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 392 if (err) { 393 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 394 goto out_promisc; 395 } 396 } else { 397 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 398 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 399 if (err) { 400 vsi->current_netdev_flags |= IFF_ALLMULTI; 401 goto out_promisc; 402 } 403 } 404 } 405 406 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 407 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 408 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 409 if (vsi->current_netdev_flags & IFF_PROMISC) { 410 /* Apply Rx filter rule to get traffic from wire */ 411 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 412 err = ice_set_dflt_vsi(vsi); 413 if (err && err != -EEXIST) { 414 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 415 err, vsi->vsi_num); 416 vsi->current_netdev_flags &= 417 ~IFF_PROMISC; 418 goto out_promisc; 419 } 420 err = 0; 421 vlan_ops->dis_rx_filtering(vsi); 422 423 /* promiscuous mode implies allmulticast so 424 * that VSIs that are in promiscuous mode are 425 * subscribed to multicast packets coming to 426 * the port 427 */ 428 err = ice_set_promisc(vsi, 429 ICE_MCAST_PROMISC_BITS); 430 if (err) 431 goto out_promisc; 432 } 433 } else { 434 /* Clear Rx filter to remove traffic from wire */ 435 if (ice_is_vsi_dflt_vsi(vsi)) { 436 err = ice_clear_dflt_vsi(vsi); 437 if (err) { 438 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 439 err, vsi->vsi_num); 440 vsi->current_netdev_flags |= 441 IFF_PROMISC; 442 goto out_promisc; 443 } 444 if (vsi->netdev->features & 445 NETIF_F_HW_VLAN_CTAG_FILTER) 446 vlan_ops->ena_rx_filtering(vsi); 447 } 448 449 /* disable allmulti here, but only if allmulti is not 450 * still enabled for the netdev 451 */ 452 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 453 err = ice_clear_promisc(vsi, 454 ICE_MCAST_PROMISC_BITS); 455 if (err) { 456 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 457 err, vsi->vsi_num); 458 } 459 } 460 } 461 } 462 goto exit; 463 464 out_promisc: 465 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 466 goto exit; 467 out: 468 /* if something went wrong then set the changed flag so we try again */ 469 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 470 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 471 exit: 472 clear_bit(ICE_CFG_BUSY, vsi->state); 473 return err; 474 } 475 476 /** 477 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 478 * @pf: board private structure 479 */ 480 static void ice_sync_fltr_subtask(struct ice_pf *pf) 481 { 482 int v; 483 484 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 485 return; 486 487 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 488 489 ice_for_each_vsi(pf, v) 490 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 491 ice_vsi_sync_fltr(pf->vsi[v])) { 492 /* come back and try again later */ 493 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 494 break; 495 } 496 } 497 498 /** 499 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 500 * @pf: the PF 501 * @locked: is the rtnl_lock already held 502 */ 503 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 504 { 505 int node; 506 int v; 507 508 ice_for_each_vsi(pf, v) 509 if (pf->vsi[v]) 510 ice_dis_vsi(pf->vsi[v], locked); 511 512 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 513 pf->pf_agg_node[node].num_vsis = 0; 514 515 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 516 pf->vf_agg_node[node].num_vsis = 0; 517 } 518 519 /** 520 * ice_clear_sw_switch_recipes - clear switch recipes 521 * @pf: board private structure 522 * 523 * Mark switch recipes as not created in sw structures. There are cases where 524 * rules (especially advanced rules) need to be restored, either re-read from 525 * hardware or added again. For example after the reset. 'recp_created' flag 526 * prevents from doing that and need to be cleared upfront. 527 */ 528 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 529 { 530 struct ice_sw_recipe *recp; 531 u8 i; 532 533 recp = pf->hw.switch_info->recp_list; 534 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 535 recp[i].recp_created = false; 536 } 537 538 /** 539 * ice_prepare_for_reset - prep for reset 540 * @pf: board private structure 541 * @reset_type: reset type requested 542 * 543 * Inform or close all dependent features in prep for reset. 544 */ 545 static void 546 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 547 { 548 struct ice_hw *hw = &pf->hw; 549 struct ice_vsi *vsi; 550 struct ice_vf *vf; 551 unsigned int bkt; 552 553 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 554 555 /* already prepared for reset */ 556 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 557 return; 558 559 ice_unplug_aux_dev(pf); 560 561 /* Notify VFs of impending reset */ 562 if (ice_check_sq_alive(hw, &hw->mailboxq)) 563 ice_vc_notify_reset(pf); 564 565 /* Disable VFs until reset is completed */ 566 mutex_lock(&pf->vfs.table_lock); 567 ice_for_each_vf(pf, bkt, vf) 568 ice_set_vf_state_dis(vf); 569 mutex_unlock(&pf->vfs.table_lock); 570 571 if (ice_is_eswitch_mode_switchdev(pf)) { 572 if (reset_type != ICE_RESET_PFR) 573 ice_clear_sw_switch_recipes(pf); 574 } 575 576 /* release ADQ specific HW and SW resources */ 577 vsi = ice_get_main_vsi(pf); 578 if (!vsi) 579 goto skip; 580 581 /* to be on safe side, reset orig_rss_size so that normal flow 582 * of deciding rss_size can take precedence 583 */ 584 vsi->orig_rss_size = 0; 585 586 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 587 if (reset_type == ICE_RESET_PFR) { 588 vsi->old_ena_tc = vsi->all_enatc; 589 vsi->old_numtc = vsi->all_numtc; 590 } else { 591 ice_remove_q_channels(vsi, true); 592 593 /* for other reset type, do not support channel rebuild 594 * hence reset needed info 595 */ 596 vsi->old_ena_tc = 0; 597 vsi->all_enatc = 0; 598 vsi->old_numtc = 0; 599 vsi->all_numtc = 0; 600 vsi->req_txq = 0; 601 vsi->req_rxq = 0; 602 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 603 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 604 } 605 } 606 skip: 607 608 /* clear SW filtering DB */ 609 ice_clear_hw_tbls(hw); 610 /* disable the VSIs and their queues that are not already DOWN */ 611 ice_pf_dis_all_vsi(pf, false); 612 613 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 614 ice_ptp_prepare_for_reset(pf); 615 616 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 617 ice_gnss_exit(pf); 618 619 if (hw->port_info) 620 ice_sched_clear_port(hw->port_info); 621 622 ice_shutdown_all_ctrlq(hw); 623 624 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 625 } 626 627 /** 628 * ice_do_reset - Initiate one of many types of resets 629 * @pf: board private structure 630 * @reset_type: reset type requested before this function was called. 631 */ 632 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 633 { 634 struct device *dev = ice_pf_to_dev(pf); 635 struct ice_hw *hw = &pf->hw; 636 637 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 638 639 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 640 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 641 reset_type = ICE_RESET_CORER; 642 } 643 644 ice_prepare_for_reset(pf, reset_type); 645 646 /* trigger the reset */ 647 if (ice_reset(hw, reset_type)) { 648 dev_err(dev, "reset %d failed\n", reset_type); 649 set_bit(ICE_RESET_FAILED, pf->state); 650 clear_bit(ICE_RESET_OICR_RECV, pf->state); 651 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 652 clear_bit(ICE_PFR_REQ, pf->state); 653 clear_bit(ICE_CORER_REQ, pf->state); 654 clear_bit(ICE_GLOBR_REQ, pf->state); 655 wake_up(&pf->reset_wait_queue); 656 return; 657 } 658 659 /* PFR is a bit of a special case because it doesn't result in an OICR 660 * interrupt. So for PFR, rebuild after the reset and clear the reset- 661 * associated state bits. 662 */ 663 if (reset_type == ICE_RESET_PFR) { 664 pf->pfr_count++; 665 ice_rebuild(pf, reset_type); 666 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 667 clear_bit(ICE_PFR_REQ, pf->state); 668 wake_up(&pf->reset_wait_queue); 669 ice_reset_all_vfs(pf); 670 } 671 } 672 673 /** 674 * ice_reset_subtask - Set up for resetting the device and driver 675 * @pf: board private structure 676 */ 677 static void ice_reset_subtask(struct ice_pf *pf) 678 { 679 enum ice_reset_req reset_type = ICE_RESET_INVAL; 680 681 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 682 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 683 * of reset is pending and sets bits in pf->state indicating the reset 684 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 685 * prepare for pending reset if not already (for PF software-initiated 686 * global resets the software should already be prepared for it as 687 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 688 * by firmware or software on other PFs, that bit is not set so prepare 689 * for the reset now), poll for reset done, rebuild and return. 690 */ 691 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 692 /* Perform the largest reset requested */ 693 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 694 reset_type = ICE_RESET_CORER; 695 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 696 reset_type = ICE_RESET_GLOBR; 697 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 698 reset_type = ICE_RESET_EMPR; 699 /* return if no valid reset type requested */ 700 if (reset_type == ICE_RESET_INVAL) 701 return; 702 ice_prepare_for_reset(pf, reset_type); 703 704 /* make sure we are ready to rebuild */ 705 if (ice_check_reset(&pf->hw)) { 706 set_bit(ICE_RESET_FAILED, pf->state); 707 } else { 708 /* done with reset. start rebuild */ 709 pf->hw.reset_ongoing = false; 710 ice_rebuild(pf, reset_type); 711 /* clear bit to resume normal operations, but 712 * ICE_NEEDS_RESTART bit is set in case rebuild failed 713 */ 714 clear_bit(ICE_RESET_OICR_RECV, pf->state); 715 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 716 clear_bit(ICE_PFR_REQ, pf->state); 717 clear_bit(ICE_CORER_REQ, pf->state); 718 clear_bit(ICE_GLOBR_REQ, pf->state); 719 wake_up(&pf->reset_wait_queue); 720 ice_reset_all_vfs(pf); 721 } 722 723 return; 724 } 725 726 /* No pending resets to finish processing. Check for new resets */ 727 if (test_bit(ICE_PFR_REQ, pf->state)) { 728 reset_type = ICE_RESET_PFR; 729 if (pf->lag && pf->lag->bonded) { 730 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 731 reset_type = ICE_RESET_CORER; 732 } 733 } 734 if (test_bit(ICE_CORER_REQ, pf->state)) 735 reset_type = ICE_RESET_CORER; 736 if (test_bit(ICE_GLOBR_REQ, pf->state)) 737 reset_type = ICE_RESET_GLOBR; 738 /* If no valid reset type requested just return */ 739 if (reset_type == ICE_RESET_INVAL) 740 return; 741 742 /* reset if not already down or busy */ 743 if (!test_bit(ICE_DOWN, pf->state) && 744 !test_bit(ICE_CFG_BUSY, pf->state)) { 745 ice_do_reset(pf, reset_type); 746 } 747 } 748 749 /** 750 * ice_print_topo_conflict - print topology conflict message 751 * @vsi: the VSI whose topology status is being checked 752 */ 753 static void ice_print_topo_conflict(struct ice_vsi *vsi) 754 { 755 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 756 case ICE_AQ_LINK_TOPO_CONFLICT: 757 case ICE_AQ_LINK_MEDIA_CONFLICT: 758 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 759 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 760 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 761 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 762 break; 763 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 764 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 765 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 766 else 767 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 768 break; 769 default: 770 break; 771 } 772 } 773 774 /** 775 * ice_print_link_msg - print link up or down message 776 * @vsi: the VSI whose link status is being queried 777 * @isup: boolean for if the link is now up or down 778 */ 779 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 780 { 781 struct ice_aqc_get_phy_caps_data *caps; 782 const char *an_advertised; 783 const char *fec_req; 784 const char *speed; 785 const char *fec; 786 const char *fc; 787 const char *an; 788 int status; 789 790 if (!vsi) 791 return; 792 793 if (vsi->current_isup == isup) 794 return; 795 796 vsi->current_isup = isup; 797 798 if (!isup) { 799 netdev_info(vsi->netdev, "NIC Link is Down\n"); 800 return; 801 } 802 803 switch (vsi->port_info->phy.link_info.link_speed) { 804 case ICE_AQ_LINK_SPEED_100GB: 805 speed = "100 G"; 806 break; 807 case ICE_AQ_LINK_SPEED_50GB: 808 speed = "50 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_40GB: 811 speed = "40 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_25GB: 814 speed = "25 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_20GB: 817 speed = "20 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_10GB: 820 speed = "10 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_5GB: 823 speed = "5 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_2500MB: 826 speed = "2.5 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_1000MB: 829 speed = "1 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_100MB: 832 speed = "100 M"; 833 break; 834 default: 835 speed = "Unknown "; 836 break; 837 } 838 839 switch (vsi->port_info->fc.current_mode) { 840 case ICE_FC_FULL: 841 fc = "Rx/Tx"; 842 break; 843 case ICE_FC_TX_PAUSE: 844 fc = "Tx"; 845 break; 846 case ICE_FC_RX_PAUSE: 847 fc = "Rx"; 848 break; 849 case ICE_FC_NONE: 850 fc = "None"; 851 break; 852 default: 853 fc = "Unknown"; 854 break; 855 } 856 857 /* Get FEC mode based on negotiated link info */ 858 switch (vsi->port_info->phy.link_info.fec_info) { 859 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 860 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 861 fec = "RS-FEC"; 862 break; 863 case ICE_AQ_LINK_25G_KR_FEC_EN: 864 fec = "FC-FEC/BASE-R"; 865 break; 866 default: 867 fec = "NONE"; 868 break; 869 } 870 871 /* check if autoneg completed, might be false due to not supported */ 872 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 873 an = "True"; 874 else 875 an = "False"; 876 877 /* Get FEC mode requested based on PHY caps last SW configuration */ 878 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 879 if (!caps) { 880 fec_req = "Unknown"; 881 an_advertised = "Unknown"; 882 goto done; 883 } 884 885 status = ice_aq_get_phy_caps(vsi->port_info, false, 886 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 887 if (status) 888 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 889 890 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 891 892 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 894 fec_req = "RS-FEC"; 895 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 897 fec_req = "FC-FEC/BASE-R"; 898 else 899 fec_req = "NONE"; 900 901 kfree(caps); 902 903 done: 904 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 905 speed, fec_req, fec, an_advertised, an, fc); 906 ice_print_topo_conflict(vsi); 907 } 908 909 /** 910 * ice_vsi_link_event - update the VSI's netdev 911 * @vsi: the VSI on which the link event occurred 912 * @link_up: whether or not the VSI needs to be set up or down 913 */ 914 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 915 { 916 if (!vsi) 917 return; 918 919 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 920 return; 921 922 if (vsi->type == ICE_VSI_PF) { 923 if (link_up == netif_carrier_ok(vsi->netdev)) 924 return; 925 926 if (link_up) { 927 netif_carrier_on(vsi->netdev); 928 netif_tx_wake_all_queues(vsi->netdev); 929 } else { 930 netif_carrier_off(vsi->netdev); 931 netif_tx_stop_all_queues(vsi->netdev); 932 } 933 } 934 } 935 936 /** 937 * ice_set_dflt_mib - send a default config MIB to the FW 938 * @pf: private PF struct 939 * 940 * This function sends a default configuration MIB to the FW. 941 * 942 * If this function errors out at any point, the driver is still able to 943 * function. The main impact is that LFC may not operate as expected. 944 * Therefore an error state in this function should be treated with a DBG 945 * message and continue on with driver rebuild/reenable. 946 */ 947 static void ice_set_dflt_mib(struct ice_pf *pf) 948 { 949 struct device *dev = ice_pf_to_dev(pf); 950 u8 mib_type, *buf, *lldpmib = NULL; 951 u16 len, typelen, offset = 0; 952 struct ice_lldp_org_tlv *tlv; 953 struct ice_hw *hw = &pf->hw; 954 u32 ouisubtype; 955 956 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 957 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 958 if (!lldpmib) { 959 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 960 __func__); 961 return; 962 } 963 964 /* Add ETS CFG TLV */ 965 tlv = (struct ice_lldp_org_tlv *)lldpmib; 966 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 967 ICE_IEEE_ETS_TLV_LEN); 968 tlv->typelen = htons(typelen); 969 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 970 ICE_IEEE_SUBTYPE_ETS_CFG); 971 tlv->ouisubtype = htonl(ouisubtype); 972 973 buf = tlv->tlvinfo; 974 buf[0] = 0; 975 976 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 977 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 978 * Octets 13 - 20 are TSA values - leave as zeros 979 */ 980 buf[5] = 0x64; 981 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 982 offset += len + 2; 983 tlv = (struct ice_lldp_org_tlv *) 984 ((char *)tlv + sizeof(tlv->typelen) + len); 985 986 /* Add ETS REC TLV */ 987 buf = tlv->tlvinfo; 988 tlv->typelen = htons(typelen); 989 990 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 991 ICE_IEEE_SUBTYPE_ETS_REC); 992 tlv->ouisubtype = htonl(ouisubtype); 993 994 /* First octet of buf is reserved 995 * Octets 1 - 4 map UP to TC - all UPs map to zero 996 * Octets 5 - 12 are BW values - set TC 0 to 100%. 997 * Octets 13 - 20 are TSA value - leave as zeros 998 */ 999 buf[5] = 0x64; 1000 offset += len + 2; 1001 tlv = (struct ice_lldp_org_tlv *) 1002 ((char *)tlv + sizeof(tlv->typelen) + len); 1003 1004 /* Add PFC CFG TLV */ 1005 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1006 ICE_IEEE_PFC_TLV_LEN); 1007 tlv->typelen = htons(typelen); 1008 1009 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1010 ICE_IEEE_SUBTYPE_PFC_CFG); 1011 tlv->ouisubtype = htonl(ouisubtype); 1012 1013 /* Octet 1 left as all zeros - PFC disabled */ 1014 buf[0] = 0x08; 1015 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1016 offset += len + 2; 1017 1018 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1019 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1020 1021 kfree(lldpmib); 1022 } 1023 1024 /** 1025 * ice_check_phy_fw_load - check if PHY FW load failed 1026 * @pf: pointer to PF struct 1027 * @link_cfg_err: bitmap from the link info structure 1028 * 1029 * check if external PHY FW load failed and print an error message if it did 1030 */ 1031 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1032 { 1033 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1034 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1035 return; 1036 } 1037 1038 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1039 return; 1040 1041 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1042 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1043 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1044 } 1045 } 1046 1047 /** 1048 * ice_check_module_power 1049 * @pf: pointer to PF struct 1050 * @link_cfg_err: bitmap from the link info structure 1051 * 1052 * check module power level returned by a previous call to aq_get_link_info 1053 * and print error messages if module power level is not supported 1054 */ 1055 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1056 { 1057 /* if module power level is supported, clear the flag */ 1058 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1059 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1060 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1061 return; 1062 } 1063 1064 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1065 * above block didn't clear this bit, there's nothing to do 1066 */ 1067 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1068 return; 1069 1070 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1071 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1073 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1074 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1076 } 1077 } 1078 1079 /** 1080 * ice_check_link_cfg_err - check if link configuration failed 1081 * @pf: pointer to the PF struct 1082 * @link_cfg_err: bitmap from the link info structure 1083 * 1084 * print if any link configuration failure happens due to the value in the 1085 * link_cfg_err parameter in the link info structure 1086 */ 1087 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1088 { 1089 ice_check_module_power(pf, link_cfg_err); 1090 ice_check_phy_fw_load(pf, link_cfg_err); 1091 } 1092 1093 /** 1094 * ice_link_event - process the link event 1095 * @pf: PF that the link event is associated with 1096 * @pi: port_info for the port that the link event is associated with 1097 * @link_up: true if the physical link is up and false if it is down 1098 * @link_speed: current link speed received from the link event 1099 * 1100 * Returns 0 on success and negative on failure 1101 */ 1102 static int 1103 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1104 u16 link_speed) 1105 { 1106 struct device *dev = ice_pf_to_dev(pf); 1107 struct ice_phy_info *phy_info; 1108 struct ice_vsi *vsi; 1109 u16 old_link_speed; 1110 bool old_link; 1111 int status; 1112 1113 phy_info = &pi->phy; 1114 phy_info->link_info_old = phy_info->link_info; 1115 1116 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1117 old_link_speed = phy_info->link_info_old.link_speed; 1118 1119 /* update the link info structures and re-enable link events, 1120 * don't bail on failure due to other book keeping needed 1121 */ 1122 status = ice_update_link_info(pi); 1123 if (status) 1124 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1125 pi->lport, status, 1126 ice_aq_str(pi->hw->adminq.sq_last_status)); 1127 1128 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1129 1130 /* Check if the link state is up after updating link info, and treat 1131 * this event as an UP event since the link is actually UP now. 1132 */ 1133 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1134 link_up = true; 1135 1136 vsi = ice_get_main_vsi(pf); 1137 if (!vsi || !vsi->port_info) 1138 return -EINVAL; 1139 1140 /* turn off PHY if media was removed */ 1141 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1142 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1143 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1144 ice_set_link(vsi, false); 1145 } 1146 1147 /* if the old link up/down and speed is the same as the new */ 1148 if (link_up == old_link && link_speed == old_link_speed) 1149 return 0; 1150 1151 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1152 1153 if (ice_is_dcb_active(pf)) { 1154 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1155 ice_dcb_rebuild(pf); 1156 } else { 1157 if (link_up) 1158 ice_set_dflt_mib(pf); 1159 } 1160 ice_vsi_link_event(vsi, link_up); 1161 ice_print_link_msg(vsi, link_up); 1162 1163 ice_vc_notify_link_state(pf); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1170 * @pf: board private structure 1171 */ 1172 static void ice_watchdog_subtask(struct ice_pf *pf) 1173 { 1174 int i; 1175 1176 /* if interface is down do nothing */ 1177 if (test_bit(ICE_DOWN, pf->state) || 1178 test_bit(ICE_CFG_BUSY, pf->state)) 1179 return; 1180 1181 /* make sure we don't do these things too often */ 1182 if (time_before(jiffies, 1183 pf->serv_tmr_prev + pf->serv_tmr_period)) 1184 return; 1185 1186 pf->serv_tmr_prev = jiffies; 1187 1188 /* Update the stats for active netdevs so the network stack 1189 * can look at updated numbers whenever it cares to 1190 */ 1191 ice_update_pf_stats(pf); 1192 ice_for_each_vsi(pf, i) 1193 if (pf->vsi[i] && pf->vsi[i]->netdev) 1194 ice_update_vsi_stats(pf->vsi[i]); 1195 } 1196 1197 /** 1198 * ice_init_link_events - enable/initialize link events 1199 * @pi: pointer to the port_info instance 1200 * 1201 * Returns -EIO on failure, 0 on success 1202 */ 1203 static int ice_init_link_events(struct ice_port_info *pi) 1204 { 1205 u16 mask; 1206 1207 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1208 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1209 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1210 1211 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1212 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1213 pi->lport); 1214 return -EIO; 1215 } 1216 1217 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1219 pi->lport); 1220 return -EIO; 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * ice_handle_link_event - handle link event via ARQ 1228 * @pf: PF that the link event is associated with 1229 * @event: event structure containing link status info 1230 */ 1231 static int 1232 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1233 { 1234 struct ice_aqc_get_link_status_data *link_data; 1235 struct ice_port_info *port_info; 1236 int status; 1237 1238 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1239 port_info = pf->hw.port_info; 1240 if (!port_info) 1241 return -EINVAL; 1242 1243 status = ice_link_event(pf, port_info, 1244 !!(link_data->link_info & ICE_AQ_LINK_UP), 1245 le16_to_cpu(link_data->link_speed)); 1246 if (status) 1247 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1248 status); 1249 1250 return status; 1251 } 1252 1253 /** 1254 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1255 * @pf: pointer to the PF private structure 1256 * @task: intermediate helper storage and identifier for waiting 1257 * @opcode: the opcode to wait for 1258 * 1259 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1260 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1261 * 1262 * Calls are separated to allow caller registering for event before sending 1263 * the command, which mitigates a race between registering and FW responding. 1264 * 1265 * To obtain only the descriptor contents, pass an task->event with null 1266 * msg_buf. If the complete data buffer is desired, allocate the 1267 * task->event.msg_buf with enough space ahead of time. 1268 */ 1269 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1270 u16 opcode) 1271 { 1272 INIT_HLIST_NODE(&task->entry); 1273 task->opcode = opcode; 1274 task->state = ICE_AQ_TASK_WAITING; 1275 1276 spin_lock_bh(&pf->aq_wait_lock); 1277 hlist_add_head(&task->entry, &pf->aq_wait_list); 1278 spin_unlock_bh(&pf->aq_wait_lock); 1279 } 1280 1281 /** 1282 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1283 * @pf: pointer to the PF private structure 1284 * @task: ptr prepared by ice_aq_prep_for_event() 1285 * @timeout: how long to wait, in jiffies 1286 * 1287 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1288 * current thread will be put to sleep until the specified event occurs or 1289 * until the given timeout is reached. 1290 * 1291 * Returns: zero on success, or a negative error code on failure. 1292 */ 1293 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1294 unsigned long timeout) 1295 { 1296 enum ice_aq_task_state *state = &task->state; 1297 struct device *dev = ice_pf_to_dev(pf); 1298 unsigned long start = jiffies; 1299 long ret; 1300 int err; 1301 1302 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1303 *state != ICE_AQ_TASK_WAITING, 1304 timeout); 1305 switch (*state) { 1306 case ICE_AQ_TASK_NOT_PREPARED: 1307 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1308 err = -EINVAL; 1309 break; 1310 case ICE_AQ_TASK_WAITING: 1311 err = ret < 0 ? ret : -ETIMEDOUT; 1312 break; 1313 case ICE_AQ_TASK_CANCELED: 1314 err = ret < 0 ? ret : -ECANCELED; 1315 break; 1316 case ICE_AQ_TASK_COMPLETE: 1317 err = ret < 0 ? ret : 0; 1318 break; 1319 default: 1320 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1321 err = -EINVAL; 1322 break; 1323 } 1324 1325 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1326 jiffies_to_msecs(jiffies - start), 1327 jiffies_to_msecs(timeout), 1328 task->opcode); 1329 1330 spin_lock_bh(&pf->aq_wait_lock); 1331 hlist_del(&task->entry); 1332 spin_unlock_bh(&pf->aq_wait_lock); 1333 1334 return err; 1335 } 1336 1337 /** 1338 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1339 * @pf: pointer to the PF private structure 1340 * @opcode: the opcode of the event 1341 * @event: the event to check 1342 * 1343 * Loops over the current list of pending threads waiting for an AdminQ event. 1344 * For each matching task, copy the contents of the event into the task 1345 * structure and wake up the thread. 1346 * 1347 * If multiple threads wait for the same opcode, they will all be woken up. 1348 * 1349 * Note that event->msg_buf will only be duplicated if the event has a buffer 1350 * with enough space already allocated. Otherwise, only the descriptor and 1351 * message length will be copied. 1352 * 1353 * Returns: true if an event was found, false otherwise 1354 */ 1355 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1356 struct ice_rq_event_info *event) 1357 { 1358 struct ice_rq_event_info *task_ev; 1359 struct ice_aq_task *task; 1360 bool found = false; 1361 1362 spin_lock_bh(&pf->aq_wait_lock); 1363 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1364 if (task->state != ICE_AQ_TASK_WAITING) 1365 continue; 1366 if (task->opcode != opcode) 1367 continue; 1368 1369 task_ev = &task->event; 1370 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1371 task_ev->msg_len = event->msg_len; 1372 1373 /* Only copy the data buffer if a destination was set */ 1374 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1375 memcpy(task_ev->msg_buf, event->msg_buf, 1376 event->buf_len); 1377 task_ev->buf_len = event->buf_len; 1378 } 1379 1380 task->state = ICE_AQ_TASK_COMPLETE; 1381 found = true; 1382 } 1383 spin_unlock_bh(&pf->aq_wait_lock); 1384 1385 if (found) 1386 wake_up(&pf->aq_wait_queue); 1387 } 1388 1389 /** 1390 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1391 * @pf: the PF private structure 1392 * 1393 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1394 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1395 */ 1396 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1397 { 1398 struct ice_aq_task *task; 1399 1400 spin_lock_bh(&pf->aq_wait_lock); 1401 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1402 task->state = ICE_AQ_TASK_CANCELED; 1403 spin_unlock_bh(&pf->aq_wait_lock); 1404 1405 wake_up(&pf->aq_wait_queue); 1406 } 1407 1408 #define ICE_MBX_OVERFLOW_WATERMARK 64 1409 1410 /** 1411 * __ice_clean_ctrlq - helper function to clean controlq rings 1412 * @pf: ptr to struct ice_pf 1413 * @q_type: specific Control queue type 1414 */ 1415 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1416 { 1417 struct device *dev = ice_pf_to_dev(pf); 1418 struct ice_rq_event_info event; 1419 struct ice_hw *hw = &pf->hw; 1420 struct ice_ctl_q_info *cq; 1421 u16 pending, i = 0; 1422 const char *qtype; 1423 u32 oldval, val; 1424 1425 /* Do not clean control queue if/when PF reset fails */ 1426 if (test_bit(ICE_RESET_FAILED, pf->state)) 1427 return 0; 1428 1429 switch (q_type) { 1430 case ICE_CTL_Q_ADMIN: 1431 cq = &hw->adminq; 1432 qtype = "Admin"; 1433 break; 1434 case ICE_CTL_Q_SB: 1435 cq = &hw->sbq; 1436 qtype = "Sideband"; 1437 break; 1438 case ICE_CTL_Q_MAILBOX: 1439 cq = &hw->mailboxq; 1440 qtype = "Mailbox"; 1441 /* we are going to try to detect a malicious VF, so set the 1442 * state to begin detection 1443 */ 1444 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1445 break; 1446 default: 1447 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1448 return 0; 1449 } 1450 1451 /* check for error indications - PF_xx_AxQLEN register layout for 1452 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1453 */ 1454 val = rd32(hw, cq->rq.len); 1455 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1456 PF_FW_ARQLEN_ARQCRIT_M)) { 1457 oldval = val; 1458 if (val & PF_FW_ARQLEN_ARQVFE_M) 1459 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1460 qtype); 1461 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1462 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1463 qtype); 1464 } 1465 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1466 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1467 qtype); 1468 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1469 PF_FW_ARQLEN_ARQCRIT_M); 1470 if (oldval != val) 1471 wr32(hw, cq->rq.len, val); 1472 } 1473 1474 val = rd32(hw, cq->sq.len); 1475 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1476 PF_FW_ATQLEN_ATQCRIT_M)) { 1477 oldval = val; 1478 if (val & PF_FW_ATQLEN_ATQVFE_M) 1479 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1480 qtype); 1481 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1482 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1483 qtype); 1484 } 1485 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1486 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1487 qtype); 1488 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1489 PF_FW_ATQLEN_ATQCRIT_M); 1490 if (oldval != val) 1491 wr32(hw, cq->sq.len, val); 1492 } 1493 1494 event.buf_len = cq->rq_buf_size; 1495 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1496 if (!event.msg_buf) 1497 return 0; 1498 1499 do { 1500 struct ice_mbx_data data = {}; 1501 u16 opcode; 1502 int ret; 1503 1504 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1505 if (ret == -EALREADY) 1506 break; 1507 if (ret) { 1508 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1509 ret); 1510 break; 1511 } 1512 1513 opcode = le16_to_cpu(event.desc.opcode); 1514 1515 /* Notify any thread that might be waiting for this event */ 1516 ice_aq_check_events(pf, opcode, &event); 1517 1518 switch (opcode) { 1519 case ice_aqc_opc_get_link_status: 1520 if (ice_handle_link_event(pf, &event)) 1521 dev_err(dev, "Could not handle link event\n"); 1522 break; 1523 case ice_aqc_opc_event_lan_overflow: 1524 ice_vf_lan_overflow_event(pf, &event); 1525 break; 1526 case ice_mbx_opc_send_msg_to_pf: 1527 data.num_msg_proc = i; 1528 data.num_pending_arq = pending; 1529 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1530 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1531 1532 ice_vc_process_vf_msg(pf, &event, &data); 1533 break; 1534 case ice_aqc_opc_fw_logging: 1535 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1536 break; 1537 case ice_aqc_opc_lldp_set_mib_change: 1538 ice_dcb_process_lldp_set_mib_change(pf, &event); 1539 break; 1540 default: 1541 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1542 qtype, opcode); 1543 break; 1544 } 1545 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1546 1547 kfree(event.msg_buf); 1548 1549 return pending && (i == ICE_DFLT_IRQ_WORK); 1550 } 1551 1552 /** 1553 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1554 * @hw: pointer to hardware info 1555 * @cq: control queue information 1556 * 1557 * returns true if there are pending messages in a queue, false if there aren't 1558 */ 1559 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1560 { 1561 u16 ntu; 1562 1563 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1564 return cq->rq.next_to_clean != ntu; 1565 } 1566 1567 /** 1568 * ice_clean_adminq_subtask - clean the AdminQ rings 1569 * @pf: board private structure 1570 */ 1571 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1572 { 1573 struct ice_hw *hw = &pf->hw; 1574 1575 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1576 return; 1577 1578 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1579 return; 1580 1581 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1582 1583 /* There might be a situation where new messages arrive to a control 1584 * queue between processing the last message and clearing the 1585 * EVENT_PENDING bit. So before exiting, check queue head again (using 1586 * ice_ctrlq_pending) and process new messages if any. 1587 */ 1588 if (ice_ctrlq_pending(hw, &hw->adminq)) 1589 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1590 1591 ice_flush(hw); 1592 } 1593 1594 /** 1595 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1596 * @pf: board private structure 1597 */ 1598 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1599 { 1600 struct ice_hw *hw = &pf->hw; 1601 1602 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1603 return; 1604 1605 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1606 return; 1607 1608 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1609 1610 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1611 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1612 1613 ice_flush(hw); 1614 } 1615 1616 /** 1617 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1618 * @pf: board private structure 1619 */ 1620 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1621 { 1622 struct ice_hw *hw = &pf->hw; 1623 1624 /* Nothing to do here if sideband queue is not supported */ 1625 if (!ice_is_sbq_supported(hw)) { 1626 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1627 return; 1628 } 1629 1630 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1631 return; 1632 1633 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1634 return; 1635 1636 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1637 1638 if (ice_ctrlq_pending(hw, &hw->sbq)) 1639 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1640 1641 ice_flush(hw); 1642 } 1643 1644 /** 1645 * ice_service_task_schedule - schedule the service task to wake up 1646 * @pf: board private structure 1647 * 1648 * If not already scheduled, this puts the task into the work queue. 1649 */ 1650 void ice_service_task_schedule(struct ice_pf *pf) 1651 { 1652 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1653 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1654 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1655 queue_work(ice_wq, &pf->serv_task); 1656 } 1657 1658 /** 1659 * ice_service_task_complete - finish up the service task 1660 * @pf: board private structure 1661 */ 1662 static void ice_service_task_complete(struct ice_pf *pf) 1663 { 1664 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1665 1666 /* force memory (pf->state) to sync before next service task */ 1667 smp_mb__before_atomic(); 1668 clear_bit(ICE_SERVICE_SCHED, pf->state); 1669 } 1670 1671 /** 1672 * ice_service_task_stop - stop service task and cancel works 1673 * @pf: board private structure 1674 * 1675 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1676 * 1 otherwise. 1677 */ 1678 static int ice_service_task_stop(struct ice_pf *pf) 1679 { 1680 int ret; 1681 1682 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1683 1684 if (pf->serv_tmr.function) 1685 del_timer_sync(&pf->serv_tmr); 1686 if (pf->serv_task.func) 1687 cancel_work_sync(&pf->serv_task); 1688 1689 clear_bit(ICE_SERVICE_SCHED, pf->state); 1690 return ret; 1691 } 1692 1693 /** 1694 * ice_service_task_restart - restart service task and schedule works 1695 * @pf: board private structure 1696 * 1697 * This function is needed for suspend and resume works (e.g WoL scenario) 1698 */ 1699 static void ice_service_task_restart(struct ice_pf *pf) 1700 { 1701 clear_bit(ICE_SERVICE_DIS, pf->state); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_service_timer - timer callback to schedule service task 1707 * @t: pointer to timer_list 1708 */ 1709 static void ice_service_timer(struct timer_list *t) 1710 { 1711 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1712 1713 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1714 ice_service_task_schedule(pf); 1715 } 1716 1717 /** 1718 * ice_handle_mdd_event - handle malicious driver detect event 1719 * @pf: pointer to the PF structure 1720 * 1721 * Called from service task. OICR interrupt handler indicates MDD event. 1722 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1723 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1724 * disable the queue, the PF can be configured to reset the VF using ethtool 1725 * private flag mdd-auto-reset-vf. 1726 */ 1727 static void ice_handle_mdd_event(struct ice_pf *pf) 1728 { 1729 struct device *dev = ice_pf_to_dev(pf); 1730 struct ice_hw *hw = &pf->hw; 1731 struct ice_vf *vf; 1732 unsigned int bkt; 1733 u32 reg; 1734 1735 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1736 /* Since the VF MDD event logging is rate limited, check if 1737 * there are pending MDD events. 1738 */ 1739 ice_print_vfs_mdd_events(pf); 1740 return; 1741 } 1742 1743 /* find what triggered an MDD event */ 1744 reg = rd32(hw, GL_MDET_TX_PQM); 1745 if (reg & GL_MDET_TX_PQM_VALID_M) { 1746 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1747 GL_MDET_TX_PQM_PF_NUM_S; 1748 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1749 GL_MDET_TX_PQM_VF_NUM_S; 1750 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1751 GL_MDET_TX_PQM_MAL_TYPE_S; 1752 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1753 GL_MDET_TX_PQM_QNUM_S); 1754 1755 if (netif_msg_tx_err(pf)) 1756 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1757 event, queue, pf_num, vf_num); 1758 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1759 } 1760 1761 reg = rd32(hw, GL_MDET_TX_TCLAN); 1762 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1763 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1764 GL_MDET_TX_TCLAN_PF_NUM_S; 1765 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1766 GL_MDET_TX_TCLAN_VF_NUM_S; 1767 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1768 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1769 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1770 GL_MDET_TX_TCLAN_QNUM_S); 1771 1772 if (netif_msg_tx_err(pf)) 1773 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1774 event, queue, pf_num, vf_num); 1775 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1776 } 1777 1778 reg = rd32(hw, GL_MDET_RX); 1779 if (reg & GL_MDET_RX_VALID_M) { 1780 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1781 GL_MDET_RX_PF_NUM_S; 1782 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1783 GL_MDET_RX_VF_NUM_S; 1784 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1785 GL_MDET_RX_MAL_TYPE_S; 1786 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1787 GL_MDET_RX_QNUM_S); 1788 1789 if (netif_msg_rx_err(pf)) 1790 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1791 event, queue, pf_num, vf_num); 1792 wr32(hw, GL_MDET_RX, 0xffffffff); 1793 } 1794 1795 /* check to see if this PF caused an MDD event */ 1796 reg = rd32(hw, PF_MDET_TX_PQM); 1797 if (reg & PF_MDET_TX_PQM_VALID_M) { 1798 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1799 if (netif_msg_tx_err(pf)) 1800 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1801 } 1802 1803 reg = rd32(hw, PF_MDET_TX_TCLAN); 1804 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1805 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1806 if (netif_msg_tx_err(pf)) 1807 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1808 } 1809 1810 reg = rd32(hw, PF_MDET_RX); 1811 if (reg & PF_MDET_RX_VALID_M) { 1812 wr32(hw, PF_MDET_RX, 0xFFFF); 1813 if (netif_msg_rx_err(pf)) 1814 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1815 } 1816 1817 /* Check to see if one of the VFs caused an MDD event, and then 1818 * increment counters and set print pending 1819 */ 1820 mutex_lock(&pf->vfs.table_lock); 1821 ice_for_each_vf(pf, bkt, vf) { 1822 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1823 if (reg & VP_MDET_TX_PQM_VALID_M) { 1824 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1825 vf->mdd_tx_events.count++; 1826 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1827 if (netif_msg_tx_err(pf)) 1828 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1829 vf->vf_id); 1830 } 1831 1832 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1833 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1834 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1835 vf->mdd_tx_events.count++; 1836 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1837 if (netif_msg_tx_err(pf)) 1838 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1839 vf->vf_id); 1840 } 1841 1842 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1843 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1844 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1845 vf->mdd_tx_events.count++; 1846 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1847 if (netif_msg_tx_err(pf)) 1848 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1849 vf->vf_id); 1850 } 1851 1852 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1853 if (reg & VP_MDET_RX_VALID_M) { 1854 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1855 vf->mdd_rx_events.count++; 1856 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1857 if (netif_msg_rx_err(pf)) 1858 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1859 vf->vf_id); 1860 1861 /* Since the queue is disabled on VF Rx MDD events, the 1862 * PF can be configured to reset the VF through ethtool 1863 * private flag mdd-auto-reset-vf. 1864 */ 1865 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1866 /* VF MDD event counters will be cleared by 1867 * reset, so print the event prior to reset. 1868 */ 1869 ice_print_vf_rx_mdd_event(vf); 1870 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1871 } 1872 } 1873 } 1874 mutex_unlock(&pf->vfs.table_lock); 1875 1876 ice_print_vfs_mdd_events(pf); 1877 } 1878 1879 /** 1880 * ice_force_phys_link_state - Force the physical link state 1881 * @vsi: VSI to force the physical link state to up/down 1882 * @link_up: true/false indicates to set the physical link to up/down 1883 * 1884 * Force the physical link state by getting the current PHY capabilities from 1885 * hardware and setting the PHY config based on the determined capabilities. If 1886 * link changes a link event will be triggered because both the Enable Automatic 1887 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1888 * 1889 * Returns 0 on success, negative on failure 1890 */ 1891 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1892 { 1893 struct ice_aqc_get_phy_caps_data *pcaps; 1894 struct ice_aqc_set_phy_cfg_data *cfg; 1895 struct ice_port_info *pi; 1896 struct device *dev; 1897 int retcode; 1898 1899 if (!vsi || !vsi->port_info || !vsi->back) 1900 return -EINVAL; 1901 if (vsi->type != ICE_VSI_PF) 1902 return 0; 1903 1904 dev = ice_pf_to_dev(vsi->back); 1905 1906 pi = vsi->port_info; 1907 1908 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1909 if (!pcaps) 1910 return -ENOMEM; 1911 1912 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1913 NULL); 1914 if (retcode) { 1915 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1916 vsi->vsi_num, retcode); 1917 retcode = -EIO; 1918 goto out; 1919 } 1920 1921 /* No change in link */ 1922 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1923 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1924 goto out; 1925 1926 /* Use the current user PHY configuration. The current user PHY 1927 * configuration is initialized during probe from PHY capabilities 1928 * software mode, and updated on set PHY configuration. 1929 */ 1930 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1931 if (!cfg) { 1932 retcode = -ENOMEM; 1933 goto out; 1934 } 1935 1936 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1937 if (link_up) 1938 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1939 else 1940 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1941 1942 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1943 if (retcode) { 1944 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1945 vsi->vsi_num, retcode); 1946 retcode = -EIO; 1947 } 1948 1949 kfree(cfg); 1950 out: 1951 kfree(pcaps); 1952 return retcode; 1953 } 1954 1955 /** 1956 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1957 * @pi: port info structure 1958 * 1959 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1960 */ 1961 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1962 { 1963 struct ice_aqc_get_phy_caps_data *pcaps; 1964 struct ice_pf *pf = pi->hw->back; 1965 int err; 1966 1967 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1968 if (!pcaps) 1969 return -ENOMEM; 1970 1971 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1972 pcaps, NULL); 1973 1974 if (err) { 1975 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1976 goto out; 1977 } 1978 1979 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1980 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1981 1982 out: 1983 kfree(pcaps); 1984 return err; 1985 } 1986 1987 /** 1988 * ice_init_link_dflt_override - Initialize link default override 1989 * @pi: port info structure 1990 * 1991 * Initialize link default override and PHY total port shutdown during probe 1992 */ 1993 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1994 { 1995 struct ice_link_default_override_tlv *ldo; 1996 struct ice_pf *pf = pi->hw->back; 1997 1998 ldo = &pf->link_dflt_override; 1999 if (ice_get_link_default_override(ldo, pi)) 2000 return; 2001 2002 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2003 return; 2004 2005 /* Enable Total Port Shutdown (override/replace link-down-on-close 2006 * ethtool private flag) for ports with Port Disable bit set. 2007 */ 2008 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2009 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2010 } 2011 2012 /** 2013 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2014 * @pi: port info structure 2015 * 2016 * If default override is enabled, initialize the user PHY cfg speed and FEC 2017 * settings using the default override mask from the NVM. 2018 * 2019 * The PHY should only be configured with the default override settings the 2020 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2021 * is used to indicate that the user PHY cfg default override is initialized 2022 * and the PHY has not been configured with the default override settings. The 2023 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2024 * configured. 2025 * 2026 * This function should be called only if the FW doesn't support default 2027 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2028 */ 2029 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2030 { 2031 struct ice_link_default_override_tlv *ldo; 2032 struct ice_aqc_set_phy_cfg_data *cfg; 2033 struct ice_phy_info *phy = &pi->phy; 2034 struct ice_pf *pf = pi->hw->back; 2035 2036 ldo = &pf->link_dflt_override; 2037 2038 /* If link default override is enabled, use to mask NVM PHY capabilities 2039 * for speed and FEC default configuration. 2040 */ 2041 cfg = &phy->curr_user_phy_cfg; 2042 2043 if (ldo->phy_type_low || ldo->phy_type_high) { 2044 cfg->phy_type_low = pf->nvm_phy_type_lo & 2045 cpu_to_le64(ldo->phy_type_low); 2046 cfg->phy_type_high = pf->nvm_phy_type_hi & 2047 cpu_to_le64(ldo->phy_type_high); 2048 } 2049 cfg->link_fec_opt = ldo->fec_options; 2050 phy->curr_user_fec_req = ICE_FEC_AUTO; 2051 2052 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2053 } 2054 2055 /** 2056 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2057 * @pi: port info structure 2058 * 2059 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2060 * mode to default. The PHY defaults are from get PHY capabilities topology 2061 * with media so call when media is first available. An error is returned if 2062 * called when media is not available. The PHY initialization completed state is 2063 * set here. 2064 * 2065 * These configurations are used when setting PHY 2066 * configuration. The user PHY configuration is updated on set PHY 2067 * configuration. Returns 0 on success, negative on failure 2068 */ 2069 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2070 { 2071 struct ice_aqc_get_phy_caps_data *pcaps; 2072 struct ice_phy_info *phy = &pi->phy; 2073 struct ice_pf *pf = pi->hw->back; 2074 int err; 2075 2076 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2077 return -EIO; 2078 2079 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2080 if (!pcaps) 2081 return -ENOMEM; 2082 2083 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2084 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2085 pcaps, NULL); 2086 else 2087 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2088 pcaps, NULL); 2089 if (err) { 2090 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2091 goto err_out; 2092 } 2093 2094 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2095 2096 /* check if lenient mode is supported and enabled */ 2097 if (ice_fw_supports_link_override(pi->hw) && 2098 !(pcaps->module_compliance_enforcement & 2099 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2100 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2101 2102 /* if the FW supports default PHY configuration mode, then the driver 2103 * does not have to apply link override settings. If not, 2104 * initialize user PHY configuration with link override values 2105 */ 2106 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2107 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2108 ice_init_phy_cfg_dflt_override(pi); 2109 goto out; 2110 } 2111 } 2112 2113 /* if link default override is not enabled, set user flow control and 2114 * FEC settings based on what get_phy_caps returned 2115 */ 2116 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2117 pcaps->link_fec_options); 2118 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2119 2120 out: 2121 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2122 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2123 err_out: 2124 kfree(pcaps); 2125 return err; 2126 } 2127 2128 /** 2129 * ice_configure_phy - configure PHY 2130 * @vsi: VSI of PHY 2131 * 2132 * Set the PHY configuration. If the current PHY configuration is the same as 2133 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2134 * configure the based get PHY capabilities for topology with media. 2135 */ 2136 static int ice_configure_phy(struct ice_vsi *vsi) 2137 { 2138 struct device *dev = ice_pf_to_dev(vsi->back); 2139 struct ice_port_info *pi = vsi->port_info; 2140 struct ice_aqc_get_phy_caps_data *pcaps; 2141 struct ice_aqc_set_phy_cfg_data *cfg; 2142 struct ice_phy_info *phy = &pi->phy; 2143 struct ice_pf *pf = vsi->back; 2144 int err; 2145 2146 /* Ensure we have media as we cannot configure a medialess port */ 2147 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2148 return -EPERM; 2149 2150 ice_print_topo_conflict(vsi); 2151 2152 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2153 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2154 return -EPERM; 2155 2156 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2157 return ice_force_phys_link_state(vsi, true); 2158 2159 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2160 if (!pcaps) 2161 return -ENOMEM; 2162 2163 /* Get current PHY config */ 2164 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2165 NULL); 2166 if (err) { 2167 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2168 vsi->vsi_num, err); 2169 goto done; 2170 } 2171 2172 /* If PHY enable link is configured and configuration has not changed, 2173 * there's nothing to do 2174 */ 2175 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2176 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2177 goto done; 2178 2179 /* Use PHY topology as baseline for configuration */ 2180 memset(pcaps, 0, sizeof(*pcaps)); 2181 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2182 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2183 pcaps, NULL); 2184 else 2185 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2186 pcaps, NULL); 2187 if (err) { 2188 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2189 vsi->vsi_num, err); 2190 goto done; 2191 } 2192 2193 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2194 if (!cfg) { 2195 err = -ENOMEM; 2196 goto done; 2197 } 2198 2199 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2200 2201 /* Speed - If default override pending, use curr_user_phy_cfg set in 2202 * ice_init_phy_user_cfg_ldo. 2203 */ 2204 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2205 vsi->back->state)) { 2206 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2207 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2208 } else { 2209 u64 phy_low = 0, phy_high = 0; 2210 2211 ice_update_phy_type(&phy_low, &phy_high, 2212 pi->phy.curr_user_speed_req); 2213 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2214 cfg->phy_type_high = pcaps->phy_type_high & 2215 cpu_to_le64(phy_high); 2216 } 2217 2218 /* Can't provide what was requested; use PHY capabilities */ 2219 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2220 cfg->phy_type_low = pcaps->phy_type_low; 2221 cfg->phy_type_high = pcaps->phy_type_high; 2222 } 2223 2224 /* FEC */ 2225 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2226 2227 /* Can't provide what was requested; use PHY capabilities */ 2228 if (cfg->link_fec_opt != 2229 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2230 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2231 cfg->link_fec_opt = pcaps->link_fec_options; 2232 } 2233 2234 /* Flow Control - always supported; no need to check against 2235 * capabilities 2236 */ 2237 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2238 2239 /* Enable link and link update */ 2240 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2241 2242 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2243 if (err) 2244 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2245 vsi->vsi_num, err); 2246 2247 kfree(cfg); 2248 done: 2249 kfree(pcaps); 2250 return err; 2251 } 2252 2253 /** 2254 * ice_check_media_subtask - Check for media 2255 * @pf: pointer to PF struct 2256 * 2257 * If media is available, then initialize PHY user configuration if it is not 2258 * been, and configure the PHY if the interface is up. 2259 */ 2260 static void ice_check_media_subtask(struct ice_pf *pf) 2261 { 2262 struct ice_port_info *pi; 2263 struct ice_vsi *vsi; 2264 int err; 2265 2266 /* No need to check for media if it's already present */ 2267 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2268 return; 2269 2270 vsi = ice_get_main_vsi(pf); 2271 if (!vsi) 2272 return; 2273 2274 /* Refresh link info and check if media is present */ 2275 pi = vsi->port_info; 2276 err = ice_update_link_info(pi); 2277 if (err) 2278 return; 2279 2280 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2281 2282 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2283 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2284 ice_init_phy_user_cfg(pi); 2285 2286 /* PHY settings are reset on media insertion, reconfigure 2287 * PHY to preserve settings. 2288 */ 2289 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2290 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2291 return; 2292 2293 err = ice_configure_phy(vsi); 2294 if (!err) 2295 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2296 2297 /* A Link Status Event will be generated; the event handler 2298 * will complete bringing the interface up 2299 */ 2300 } 2301 } 2302 2303 /** 2304 * ice_service_task - manage and run subtasks 2305 * @work: pointer to work_struct contained by the PF struct 2306 */ 2307 static void ice_service_task(struct work_struct *work) 2308 { 2309 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2310 unsigned long start_time = jiffies; 2311 2312 /* subtasks */ 2313 2314 /* process reset requests first */ 2315 ice_reset_subtask(pf); 2316 2317 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2318 if (ice_is_reset_in_progress(pf->state) || 2319 test_bit(ICE_SUSPENDED, pf->state) || 2320 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2321 ice_service_task_complete(pf); 2322 return; 2323 } 2324 2325 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2326 struct iidc_event *event; 2327 2328 event = kzalloc(sizeof(*event), GFP_KERNEL); 2329 if (event) { 2330 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2331 /* report the entire OICR value to AUX driver */ 2332 swap(event->reg, pf->oicr_err_reg); 2333 ice_send_event_to_aux(pf, event); 2334 kfree(event); 2335 } 2336 } 2337 2338 /* unplug aux dev per request, if an unplug request came in 2339 * while processing a plug request, this will handle it 2340 */ 2341 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2342 ice_unplug_aux_dev(pf); 2343 2344 /* Plug aux device per request */ 2345 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2346 ice_plug_aux_dev(pf); 2347 2348 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2349 struct iidc_event *event; 2350 2351 event = kzalloc(sizeof(*event), GFP_KERNEL); 2352 if (event) { 2353 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2354 ice_send_event_to_aux(pf, event); 2355 kfree(event); 2356 } 2357 } 2358 2359 ice_clean_adminq_subtask(pf); 2360 ice_check_media_subtask(pf); 2361 ice_check_for_hang_subtask(pf); 2362 ice_sync_fltr_subtask(pf); 2363 ice_handle_mdd_event(pf); 2364 ice_watchdog_subtask(pf); 2365 2366 if (ice_is_safe_mode(pf)) { 2367 ice_service_task_complete(pf); 2368 return; 2369 } 2370 2371 ice_process_vflr_event(pf); 2372 ice_clean_mailboxq_subtask(pf); 2373 ice_clean_sbq_subtask(pf); 2374 ice_sync_arfs_fltrs(pf); 2375 ice_flush_fdir_ctx(pf); 2376 2377 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2378 ice_service_task_complete(pf); 2379 2380 /* If the tasks have taken longer than one service timer period 2381 * or there is more work to be done, reset the service timer to 2382 * schedule the service task now. 2383 */ 2384 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2385 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2386 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2387 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2388 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2389 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2390 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2391 mod_timer(&pf->serv_tmr, jiffies); 2392 } 2393 2394 /** 2395 * ice_set_ctrlq_len - helper function to set controlq length 2396 * @hw: pointer to the HW instance 2397 */ 2398 static void ice_set_ctrlq_len(struct ice_hw *hw) 2399 { 2400 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2401 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2402 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2403 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2404 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2405 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2406 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2407 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2408 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2409 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2410 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2411 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2412 } 2413 2414 /** 2415 * ice_schedule_reset - schedule a reset 2416 * @pf: board private structure 2417 * @reset: reset being requested 2418 */ 2419 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2420 { 2421 struct device *dev = ice_pf_to_dev(pf); 2422 2423 /* bail out if earlier reset has failed */ 2424 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2425 dev_dbg(dev, "earlier reset has failed\n"); 2426 return -EIO; 2427 } 2428 /* bail if reset/recovery already in progress */ 2429 if (ice_is_reset_in_progress(pf->state)) { 2430 dev_dbg(dev, "Reset already in progress\n"); 2431 return -EBUSY; 2432 } 2433 2434 switch (reset) { 2435 case ICE_RESET_PFR: 2436 set_bit(ICE_PFR_REQ, pf->state); 2437 break; 2438 case ICE_RESET_CORER: 2439 set_bit(ICE_CORER_REQ, pf->state); 2440 break; 2441 case ICE_RESET_GLOBR: 2442 set_bit(ICE_GLOBR_REQ, pf->state); 2443 break; 2444 default: 2445 return -EINVAL; 2446 } 2447 2448 ice_service_task_schedule(pf); 2449 return 0; 2450 } 2451 2452 /** 2453 * ice_irq_affinity_notify - Callback for affinity changes 2454 * @notify: context as to what irq was changed 2455 * @mask: the new affinity mask 2456 * 2457 * This is a callback function used by the irq_set_affinity_notifier function 2458 * so that we may register to receive changes to the irq affinity masks. 2459 */ 2460 static void 2461 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2462 const cpumask_t *mask) 2463 { 2464 struct ice_q_vector *q_vector = 2465 container_of(notify, struct ice_q_vector, affinity_notify); 2466 2467 cpumask_copy(&q_vector->affinity_mask, mask); 2468 } 2469 2470 /** 2471 * ice_irq_affinity_release - Callback for affinity notifier release 2472 * @ref: internal core kernel usage 2473 * 2474 * This is a callback function used by the irq_set_affinity_notifier function 2475 * to inform the current notification subscriber that they will no longer 2476 * receive notifications. 2477 */ 2478 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2479 2480 /** 2481 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2482 * @vsi: the VSI being configured 2483 */ 2484 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2485 { 2486 struct ice_hw *hw = &vsi->back->hw; 2487 int i; 2488 2489 ice_for_each_q_vector(vsi, i) 2490 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2491 2492 ice_flush(hw); 2493 return 0; 2494 } 2495 2496 /** 2497 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2498 * @vsi: the VSI being configured 2499 * @basename: name for the vector 2500 */ 2501 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2502 { 2503 int q_vectors = vsi->num_q_vectors; 2504 struct ice_pf *pf = vsi->back; 2505 struct device *dev; 2506 int rx_int_idx = 0; 2507 int tx_int_idx = 0; 2508 int vector, err; 2509 int irq_num; 2510 2511 dev = ice_pf_to_dev(pf); 2512 for (vector = 0; vector < q_vectors; vector++) { 2513 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2514 2515 irq_num = q_vector->irq.virq; 2516 2517 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2518 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2519 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2520 tx_int_idx++; 2521 } else if (q_vector->rx.rx_ring) { 2522 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2523 "%s-%s-%d", basename, "rx", rx_int_idx++); 2524 } else if (q_vector->tx.tx_ring) { 2525 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2526 "%s-%s-%d", basename, "tx", tx_int_idx++); 2527 } else { 2528 /* skip this unused q_vector */ 2529 continue; 2530 } 2531 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2532 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2533 IRQF_SHARED, q_vector->name, 2534 q_vector); 2535 else 2536 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2537 0, q_vector->name, q_vector); 2538 if (err) { 2539 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2540 err); 2541 goto free_q_irqs; 2542 } 2543 2544 /* register for affinity change notifications */ 2545 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2546 struct irq_affinity_notify *affinity_notify; 2547 2548 affinity_notify = &q_vector->affinity_notify; 2549 affinity_notify->notify = ice_irq_affinity_notify; 2550 affinity_notify->release = ice_irq_affinity_release; 2551 irq_set_affinity_notifier(irq_num, affinity_notify); 2552 } 2553 2554 /* assign the mask for this irq */ 2555 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2556 } 2557 2558 err = ice_set_cpu_rx_rmap(vsi); 2559 if (err) { 2560 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2561 vsi->vsi_num, ERR_PTR(err)); 2562 goto free_q_irqs; 2563 } 2564 2565 vsi->irqs_ready = true; 2566 return 0; 2567 2568 free_q_irqs: 2569 while (vector--) { 2570 irq_num = vsi->q_vectors[vector]->irq.virq; 2571 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2572 irq_set_affinity_notifier(irq_num, NULL); 2573 irq_set_affinity_hint(irq_num, NULL); 2574 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2575 } 2576 return err; 2577 } 2578 2579 /** 2580 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2581 * @vsi: VSI to setup Tx rings used by XDP 2582 * 2583 * Return 0 on success and negative value on error 2584 */ 2585 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2586 { 2587 struct device *dev = ice_pf_to_dev(vsi->back); 2588 struct ice_tx_desc *tx_desc; 2589 int i, j; 2590 2591 ice_for_each_xdp_txq(vsi, i) { 2592 u16 xdp_q_idx = vsi->alloc_txq + i; 2593 struct ice_ring_stats *ring_stats; 2594 struct ice_tx_ring *xdp_ring; 2595 2596 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2597 if (!xdp_ring) 2598 goto free_xdp_rings; 2599 2600 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2601 if (!ring_stats) { 2602 ice_free_tx_ring(xdp_ring); 2603 goto free_xdp_rings; 2604 } 2605 2606 xdp_ring->ring_stats = ring_stats; 2607 xdp_ring->q_index = xdp_q_idx; 2608 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2609 xdp_ring->vsi = vsi; 2610 xdp_ring->netdev = NULL; 2611 xdp_ring->dev = dev; 2612 xdp_ring->count = vsi->num_tx_desc; 2613 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2614 if (ice_setup_tx_ring(xdp_ring)) 2615 goto free_xdp_rings; 2616 ice_set_ring_xdp(xdp_ring); 2617 spin_lock_init(&xdp_ring->tx_lock); 2618 for (j = 0; j < xdp_ring->count; j++) { 2619 tx_desc = ICE_TX_DESC(xdp_ring, j); 2620 tx_desc->cmd_type_offset_bsz = 0; 2621 } 2622 } 2623 2624 return 0; 2625 2626 free_xdp_rings: 2627 for (; i >= 0; i--) { 2628 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2629 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2630 vsi->xdp_rings[i]->ring_stats = NULL; 2631 ice_free_tx_ring(vsi->xdp_rings[i]); 2632 } 2633 } 2634 return -ENOMEM; 2635 } 2636 2637 /** 2638 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2639 * @vsi: VSI to set the bpf prog on 2640 * @prog: the bpf prog pointer 2641 */ 2642 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2643 { 2644 struct bpf_prog *old_prog; 2645 int i; 2646 2647 old_prog = xchg(&vsi->xdp_prog, prog); 2648 ice_for_each_rxq(vsi, i) 2649 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2650 2651 if (old_prog) 2652 bpf_prog_put(old_prog); 2653 } 2654 2655 /** 2656 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2657 * @vsi: VSI to bring up Tx rings used by XDP 2658 * @prog: bpf program that will be assigned to VSI 2659 * 2660 * Return 0 on success and negative value on error 2661 */ 2662 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2663 { 2664 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2665 int xdp_rings_rem = vsi->num_xdp_txq; 2666 struct ice_pf *pf = vsi->back; 2667 struct ice_qs_cfg xdp_qs_cfg = { 2668 .qs_mutex = &pf->avail_q_mutex, 2669 .pf_map = pf->avail_txqs, 2670 .pf_map_size = pf->max_pf_txqs, 2671 .q_count = vsi->num_xdp_txq, 2672 .scatter_count = ICE_MAX_SCATTER_TXQS, 2673 .vsi_map = vsi->txq_map, 2674 .vsi_map_offset = vsi->alloc_txq, 2675 .mapping_mode = ICE_VSI_MAP_CONTIG 2676 }; 2677 struct device *dev; 2678 int i, v_idx; 2679 int status; 2680 2681 dev = ice_pf_to_dev(pf); 2682 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2683 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2684 if (!vsi->xdp_rings) 2685 return -ENOMEM; 2686 2687 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2688 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2689 goto err_map_xdp; 2690 2691 if (static_key_enabled(&ice_xdp_locking_key)) 2692 netdev_warn(vsi->netdev, 2693 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2694 2695 if (ice_xdp_alloc_setup_rings(vsi)) 2696 goto clear_xdp_rings; 2697 2698 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2699 ice_for_each_q_vector(vsi, v_idx) { 2700 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2701 int xdp_rings_per_v, q_id, q_base; 2702 2703 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2704 vsi->num_q_vectors - v_idx); 2705 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2706 2707 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2708 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2709 2710 xdp_ring->q_vector = q_vector; 2711 xdp_ring->next = q_vector->tx.tx_ring; 2712 q_vector->tx.tx_ring = xdp_ring; 2713 } 2714 xdp_rings_rem -= xdp_rings_per_v; 2715 } 2716 2717 ice_for_each_rxq(vsi, i) { 2718 if (static_key_enabled(&ice_xdp_locking_key)) { 2719 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2720 } else { 2721 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2722 struct ice_tx_ring *ring; 2723 2724 ice_for_each_tx_ring(ring, q_vector->tx) { 2725 if (ice_ring_is_xdp(ring)) { 2726 vsi->rx_rings[i]->xdp_ring = ring; 2727 break; 2728 } 2729 } 2730 } 2731 ice_tx_xsk_pool(vsi, i); 2732 } 2733 2734 /* omit the scheduler update if in reset path; XDP queues will be 2735 * taken into account at the end of ice_vsi_rebuild, where 2736 * ice_cfg_vsi_lan is being called 2737 */ 2738 if (ice_is_reset_in_progress(pf->state)) 2739 return 0; 2740 2741 /* tell the Tx scheduler that right now we have 2742 * additional queues 2743 */ 2744 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2745 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2746 2747 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2748 max_txqs); 2749 if (status) { 2750 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2751 status); 2752 goto clear_xdp_rings; 2753 } 2754 2755 /* assign the prog only when it's not already present on VSI; 2756 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2757 * VSI rebuild that happens under ethtool -L can expose us to 2758 * the bpf_prog refcount issues as we would be swapping same 2759 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2760 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2761 * this is not harmful as dev_xdp_install bumps the refcount 2762 * before calling the op exposed by the driver; 2763 */ 2764 if (!ice_is_xdp_ena_vsi(vsi)) 2765 ice_vsi_assign_bpf_prog(vsi, prog); 2766 2767 return 0; 2768 clear_xdp_rings: 2769 ice_for_each_xdp_txq(vsi, i) 2770 if (vsi->xdp_rings[i]) { 2771 kfree_rcu(vsi->xdp_rings[i], rcu); 2772 vsi->xdp_rings[i] = NULL; 2773 } 2774 2775 err_map_xdp: 2776 mutex_lock(&pf->avail_q_mutex); 2777 ice_for_each_xdp_txq(vsi, i) { 2778 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2779 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2780 } 2781 mutex_unlock(&pf->avail_q_mutex); 2782 2783 devm_kfree(dev, vsi->xdp_rings); 2784 return -ENOMEM; 2785 } 2786 2787 /** 2788 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2789 * @vsi: VSI to remove XDP rings 2790 * 2791 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2792 * resources 2793 */ 2794 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2795 { 2796 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2797 struct ice_pf *pf = vsi->back; 2798 int i, v_idx; 2799 2800 /* q_vectors are freed in reset path so there's no point in detaching 2801 * rings; in case of rebuild being triggered not from reset bits 2802 * in pf->state won't be set, so additionally check first q_vector 2803 * against NULL 2804 */ 2805 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2806 goto free_qmap; 2807 2808 ice_for_each_q_vector(vsi, v_idx) { 2809 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2810 struct ice_tx_ring *ring; 2811 2812 ice_for_each_tx_ring(ring, q_vector->tx) 2813 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2814 break; 2815 2816 /* restore the value of last node prior to XDP setup */ 2817 q_vector->tx.tx_ring = ring; 2818 } 2819 2820 free_qmap: 2821 mutex_lock(&pf->avail_q_mutex); 2822 ice_for_each_xdp_txq(vsi, i) { 2823 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2824 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2825 } 2826 mutex_unlock(&pf->avail_q_mutex); 2827 2828 ice_for_each_xdp_txq(vsi, i) 2829 if (vsi->xdp_rings[i]) { 2830 if (vsi->xdp_rings[i]->desc) { 2831 synchronize_rcu(); 2832 ice_free_tx_ring(vsi->xdp_rings[i]); 2833 } 2834 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2835 vsi->xdp_rings[i]->ring_stats = NULL; 2836 kfree_rcu(vsi->xdp_rings[i], rcu); 2837 vsi->xdp_rings[i] = NULL; 2838 } 2839 2840 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2841 vsi->xdp_rings = NULL; 2842 2843 if (static_key_enabled(&ice_xdp_locking_key)) 2844 static_branch_dec(&ice_xdp_locking_key); 2845 2846 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2847 return 0; 2848 2849 ice_vsi_assign_bpf_prog(vsi, NULL); 2850 2851 /* notify Tx scheduler that we destroyed XDP queues and bring 2852 * back the old number of child nodes 2853 */ 2854 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2855 max_txqs[i] = vsi->num_txq; 2856 2857 /* change number of XDP Tx queues to 0 */ 2858 vsi->num_xdp_txq = 0; 2859 2860 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2861 max_txqs); 2862 } 2863 2864 /** 2865 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2866 * @vsi: VSI to schedule napi on 2867 */ 2868 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2869 { 2870 int i; 2871 2872 ice_for_each_rxq(vsi, i) { 2873 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2874 2875 if (rx_ring->xsk_pool) 2876 napi_schedule(&rx_ring->q_vector->napi); 2877 } 2878 } 2879 2880 /** 2881 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2882 * @vsi: VSI to determine the count of XDP Tx qs 2883 * 2884 * returns 0 if Tx qs count is higher than at least half of CPU count, 2885 * -ENOMEM otherwise 2886 */ 2887 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2888 { 2889 u16 avail = ice_get_avail_txq_count(vsi->back); 2890 u16 cpus = num_possible_cpus(); 2891 2892 if (avail < cpus / 2) 2893 return -ENOMEM; 2894 2895 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2896 2897 if (vsi->num_xdp_txq < cpus) 2898 static_branch_inc(&ice_xdp_locking_key); 2899 2900 return 0; 2901 } 2902 2903 /** 2904 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2905 * @vsi: Pointer to VSI structure 2906 */ 2907 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2908 { 2909 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2910 return ICE_RXBUF_1664; 2911 else 2912 return ICE_RXBUF_3072; 2913 } 2914 2915 /** 2916 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2917 * @vsi: VSI to setup XDP for 2918 * @prog: XDP program 2919 * @extack: netlink extended ack 2920 */ 2921 static int 2922 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2923 struct netlink_ext_ack *extack) 2924 { 2925 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2926 bool if_running = netif_running(vsi->netdev); 2927 int ret = 0, xdp_ring_err = 0; 2928 2929 if (prog && !prog->aux->xdp_has_frags) { 2930 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2931 NL_SET_ERR_MSG_MOD(extack, 2932 "MTU is too large for linear frames and XDP prog does not support frags"); 2933 return -EOPNOTSUPP; 2934 } 2935 } 2936 2937 /* hot swap progs and avoid toggling link */ 2938 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2939 ice_vsi_assign_bpf_prog(vsi, prog); 2940 return 0; 2941 } 2942 2943 /* need to stop netdev while setting up the program for Rx rings */ 2944 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2945 ret = ice_down(vsi); 2946 if (ret) { 2947 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2948 return ret; 2949 } 2950 } 2951 2952 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2953 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2954 if (xdp_ring_err) { 2955 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2956 } else { 2957 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2958 if (xdp_ring_err) 2959 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2960 } 2961 xdp_features_set_redirect_target(vsi->netdev, true); 2962 /* reallocate Rx queues that are used for zero-copy */ 2963 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2964 if (xdp_ring_err) 2965 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2966 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2967 xdp_features_clear_redirect_target(vsi->netdev); 2968 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2969 if (xdp_ring_err) 2970 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2971 /* reallocate Rx queues that were used for zero-copy */ 2972 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2973 if (xdp_ring_err) 2974 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2975 } 2976 2977 if (if_running) 2978 ret = ice_up(vsi); 2979 2980 if (!ret && prog) 2981 ice_vsi_rx_napi_schedule(vsi); 2982 2983 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2984 } 2985 2986 /** 2987 * ice_xdp_safe_mode - XDP handler for safe mode 2988 * @dev: netdevice 2989 * @xdp: XDP command 2990 */ 2991 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2992 struct netdev_bpf *xdp) 2993 { 2994 NL_SET_ERR_MSG_MOD(xdp->extack, 2995 "Please provide working DDP firmware package in order to use XDP\n" 2996 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2997 return -EOPNOTSUPP; 2998 } 2999 3000 /** 3001 * ice_xdp - implements XDP handler 3002 * @dev: netdevice 3003 * @xdp: XDP command 3004 */ 3005 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3006 { 3007 struct ice_netdev_priv *np = netdev_priv(dev); 3008 struct ice_vsi *vsi = np->vsi; 3009 3010 if (vsi->type != ICE_VSI_PF) { 3011 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3012 return -EINVAL; 3013 } 3014 3015 switch (xdp->command) { 3016 case XDP_SETUP_PROG: 3017 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3018 case XDP_SETUP_XSK_POOL: 3019 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3020 xdp->xsk.queue_id); 3021 default: 3022 return -EINVAL; 3023 } 3024 } 3025 3026 /** 3027 * ice_ena_misc_vector - enable the non-queue interrupts 3028 * @pf: board private structure 3029 */ 3030 static void ice_ena_misc_vector(struct ice_pf *pf) 3031 { 3032 struct ice_hw *hw = &pf->hw; 3033 u32 val; 3034 3035 /* Disable anti-spoof detection interrupt to prevent spurious event 3036 * interrupts during a function reset. Anti-spoof functionally is 3037 * still supported. 3038 */ 3039 val = rd32(hw, GL_MDCK_TX_TDPU); 3040 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3041 wr32(hw, GL_MDCK_TX_TDPU, val); 3042 3043 /* clear things first */ 3044 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3045 rd32(hw, PFINT_OICR); /* read to clear */ 3046 3047 val = (PFINT_OICR_ECC_ERR_M | 3048 PFINT_OICR_MAL_DETECT_M | 3049 PFINT_OICR_GRST_M | 3050 PFINT_OICR_PCI_EXCEPTION_M | 3051 PFINT_OICR_VFLR_M | 3052 PFINT_OICR_HMC_ERR_M | 3053 PFINT_OICR_PE_PUSH_M | 3054 PFINT_OICR_PE_CRITERR_M); 3055 3056 wr32(hw, PFINT_OICR_ENA, val); 3057 3058 /* SW_ITR_IDX = 0, but don't change INTENA */ 3059 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3060 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3061 } 3062 3063 /** 3064 * ice_misc_intr - misc interrupt handler 3065 * @irq: interrupt number 3066 * @data: pointer to a q_vector 3067 */ 3068 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3069 { 3070 struct ice_pf *pf = (struct ice_pf *)data; 3071 struct ice_hw *hw = &pf->hw; 3072 struct device *dev; 3073 u32 oicr, ena_mask; 3074 3075 dev = ice_pf_to_dev(pf); 3076 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3077 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3078 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3079 3080 oicr = rd32(hw, PFINT_OICR); 3081 ena_mask = rd32(hw, PFINT_OICR_ENA); 3082 3083 if (oicr & PFINT_OICR_SWINT_M) { 3084 ena_mask &= ~PFINT_OICR_SWINT_M; 3085 pf->sw_int_count++; 3086 } 3087 3088 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3089 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3090 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3091 } 3092 if (oicr & PFINT_OICR_VFLR_M) { 3093 /* disable any further VFLR event notifications */ 3094 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3095 u32 reg = rd32(hw, PFINT_OICR_ENA); 3096 3097 reg &= ~PFINT_OICR_VFLR_M; 3098 wr32(hw, PFINT_OICR_ENA, reg); 3099 } else { 3100 ena_mask &= ~PFINT_OICR_VFLR_M; 3101 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3102 } 3103 } 3104 3105 if (oicr & PFINT_OICR_GRST_M) { 3106 u32 reset; 3107 3108 /* we have a reset warning */ 3109 ena_mask &= ~PFINT_OICR_GRST_M; 3110 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3111 GLGEN_RSTAT_RESET_TYPE_S; 3112 3113 if (reset == ICE_RESET_CORER) 3114 pf->corer_count++; 3115 else if (reset == ICE_RESET_GLOBR) 3116 pf->globr_count++; 3117 else if (reset == ICE_RESET_EMPR) 3118 pf->empr_count++; 3119 else 3120 dev_dbg(dev, "Invalid reset type %d\n", reset); 3121 3122 /* If a reset cycle isn't already in progress, we set a bit in 3123 * pf->state so that the service task can start a reset/rebuild. 3124 */ 3125 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3126 if (reset == ICE_RESET_CORER) 3127 set_bit(ICE_CORER_RECV, pf->state); 3128 else if (reset == ICE_RESET_GLOBR) 3129 set_bit(ICE_GLOBR_RECV, pf->state); 3130 else 3131 set_bit(ICE_EMPR_RECV, pf->state); 3132 3133 /* There are couple of different bits at play here. 3134 * hw->reset_ongoing indicates whether the hardware is 3135 * in reset. This is set to true when a reset interrupt 3136 * is received and set back to false after the driver 3137 * has determined that the hardware is out of reset. 3138 * 3139 * ICE_RESET_OICR_RECV in pf->state indicates 3140 * that a post reset rebuild is required before the 3141 * driver is operational again. This is set above. 3142 * 3143 * As this is the start of the reset/rebuild cycle, set 3144 * both to indicate that. 3145 */ 3146 hw->reset_ongoing = true; 3147 } 3148 } 3149 3150 if (oicr & PFINT_OICR_TSYN_TX_M) { 3151 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3152 if (!hw->reset_ongoing) 3153 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3154 } 3155 3156 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3157 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3158 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3159 3160 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3161 3162 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3163 /* Save EVENTs from GLTSYN register */ 3164 pf->ptp.ext_ts_irq |= gltsyn_stat & 3165 (GLTSYN_STAT_EVENT0_M | 3166 GLTSYN_STAT_EVENT1_M | 3167 GLTSYN_STAT_EVENT2_M); 3168 3169 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3170 } 3171 } 3172 3173 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3174 if (oicr & ICE_AUX_CRIT_ERR) { 3175 pf->oicr_err_reg |= oicr; 3176 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3177 ena_mask &= ~ICE_AUX_CRIT_ERR; 3178 } 3179 3180 /* Report any remaining unexpected interrupts */ 3181 oicr &= ena_mask; 3182 if (oicr) { 3183 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3184 /* If a critical error is pending there is no choice but to 3185 * reset the device. 3186 */ 3187 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3188 PFINT_OICR_ECC_ERR_M)) { 3189 set_bit(ICE_PFR_REQ, pf->state); 3190 } 3191 } 3192 3193 return IRQ_WAKE_THREAD; 3194 } 3195 3196 /** 3197 * ice_misc_intr_thread_fn - misc interrupt thread function 3198 * @irq: interrupt number 3199 * @data: pointer to a q_vector 3200 */ 3201 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3202 { 3203 struct ice_pf *pf = data; 3204 struct ice_hw *hw; 3205 3206 hw = &pf->hw; 3207 3208 if (ice_is_reset_in_progress(pf->state)) 3209 return IRQ_HANDLED; 3210 3211 ice_service_task_schedule(pf); 3212 3213 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3214 ice_ptp_extts_event(pf); 3215 3216 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3217 /* Process outstanding Tx timestamps. If there is more work, 3218 * re-arm the interrupt to trigger again. 3219 */ 3220 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3221 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3222 ice_flush(hw); 3223 } 3224 } 3225 3226 ice_irq_dynamic_ena(hw, NULL, NULL); 3227 3228 return IRQ_HANDLED; 3229 } 3230 3231 /** 3232 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3233 * @hw: pointer to HW structure 3234 */ 3235 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3236 { 3237 /* disable Admin queue Interrupt causes */ 3238 wr32(hw, PFINT_FW_CTL, 3239 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3240 3241 /* disable Mailbox queue Interrupt causes */ 3242 wr32(hw, PFINT_MBX_CTL, 3243 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3244 3245 wr32(hw, PFINT_SB_CTL, 3246 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3247 3248 /* disable Control queue Interrupt causes */ 3249 wr32(hw, PFINT_OICR_CTL, 3250 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3251 3252 ice_flush(hw); 3253 } 3254 3255 /** 3256 * ice_free_irq_msix_misc - Unroll misc vector setup 3257 * @pf: board private structure 3258 */ 3259 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3260 { 3261 int misc_irq_num = pf->oicr_irq.virq; 3262 struct ice_hw *hw = &pf->hw; 3263 3264 ice_dis_ctrlq_interrupts(hw); 3265 3266 /* disable OICR interrupt */ 3267 wr32(hw, PFINT_OICR_ENA, 0); 3268 ice_flush(hw); 3269 3270 synchronize_irq(misc_irq_num); 3271 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3272 3273 ice_free_irq(pf, pf->oicr_irq); 3274 } 3275 3276 /** 3277 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3278 * @hw: pointer to HW structure 3279 * @reg_idx: HW vector index to associate the control queue interrupts with 3280 */ 3281 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3282 { 3283 u32 val; 3284 3285 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3286 PFINT_OICR_CTL_CAUSE_ENA_M); 3287 wr32(hw, PFINT_OICR_CTL, val); 3288 3289 /* enable Admin queue Interrupt causes */ 3290 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3291 PFINT_FW_CTL_CAUSE_ENA_M); 3292 wr32(hw, PFINT_FW_CTL, val); 3293 3294 /* enable Mailbox queue Interrupt causes */ 3295 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3296 PFINT_MBX_CTL_CAUSE_ENA_M); 3297 wr32(hw, PFINT_MBX_CTL, val); 3298 3299 /* This enables Sideband queue Interrupt causes */ 3300 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3301 PFINT_SB_CTL_CAUSE_ENA_M); 3302 wr32(hw, PFINT_SB_CTL, val); 3303 3304 ice_flush(hw); 3305 } 3306 3307 /** 3308 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3309 * @pf: board private structure 3310 * 3311 * This sets up the handler for MSIX 0, which is used to manage the 3312 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3313 * when in MSI or Legacy interrupt mode. 3314 */ 3315 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3316 { 3317 struct device *dev = ice_pf_to_dev(pf); 3318 struct ice_hw *hw = &pf->hw; 3319 struct msi_map oicr_irq; 3320 int err = 0; 3321 3322 if (!pf->int_name[0]) 3323 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3324 dev_driver_string(dev), dev_name(dev)); 3325 3326 /* Do not request IRQ but do enable OICR interrupt since settings are 3327 * lost during reset. Note that this function is called only during 3328 * rebuild path and not while reset is in progress. 3329 */ 3330 if (ice_is_reset_in_progress(pf->state)) 3331 goto skip_req_irq; 3332 3333 /* reserve one vector in irq_tracker for misc interrupts */ 3334 oicr_irq = ice_alloc_irq(pf, false); 3335 if (oicr_irq.index < 0) 3336 return oicr_irq.index; 3337 3338 pf->oicr_irq = oicr_irq; 3339 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3340 ice_misc_intr_thread_fn, 0, 3341 pf->int_name, pf); 3342 if (err) { 3343 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3344 pf->int_name, err); 3345 ice_free_irq(pf, pf->oicr_irq); 3346 return err; 3347 } 3348 3349 skip_req_irq: 3350 ice_ena_misc_vector(pf); 3351 3352 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3353 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3354 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3355 3356 ice_flush(hw); 3357 ice_irq_dynamic_ena(hw, NULL, NULL); 3358 3359 return 0; 3360 } 3361 3362 /** 3363 * ice_napi_add - register NAPI handler for the VSI 3364 * @vsi: VSI for which NAPI handler is to be registered 3365 * 3366 * This function is only called in the driver's load path. Registering the NAPI 3367 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3368 * reset/rebuild, etc.) 3369 */ 3370 static void ice_napi_add(struct ice_vsi *vsi) 3371 { 3372 int v_idx; 3373 3374 if (!vsi->netdev) 3375 return; 3376 3377 ice_for_each_q_vector(vsi, v_idx) 3378 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3379 ice_napi_poll); 3380 } 3381 3382 /** 3383 * ice_set_ops - set netdev and ethtools ops for the given netdev 3384 * @vsi: the VSI associated with the new netdev 3385 */ 3386 static void ice_set_ops(struct ice_vsi *vsi) 3387 { 3388 struct net_device *netdev = vsi->netdev; 3389 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3390 3391 if (ice_is_safe_mode(pf)) { 3392 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3393 ice_set_ethtool_safe_mode_ops(netdev); 3394 return; 3395 } 3396 3397 netdev->netdev_ops = &ice_netdev_ops; 3398 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3399 ice_set_ethtool_ops(netdev); 3400 3401 if (vsi->type != ICE_VSI_PF) 3402 return; 3403 3404 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3405 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3406 NETDEV_XDP_ACT_RX_SG; 3407 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3408 } 3409 3410 /** 3411 * ice_set_netdev_features - set features for the given netdev 3412 * @netdev: netdev instance 3413 */ 3414 static void ice_set_netdev_features(struct net_device *netdev) 3415 { 3416 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3417 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3418 netdev_features_t csumo_features; 3419 netdev_features_t vlano_features; 3420 netdev_features_t dflt_features; 3421 netdev_features_t tso_features; 3422 3423 if (ice_is_safe_mode(pf)) { 3424 /* safe mode */ 3425 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3426 netdev->hw_features = netdev->features; 3427 return; 3428 } 3429 3430 dflt_features = NETIF_F_SG | 3431 NETIF_F_HIGHDMA | 3432 NETIF_F_NTUPLE | 3433 NETIF_F_RXHASH; 3434 3435 csumo_features = NETIF_F_RXCSUM | 3436 NETIF_F_IP_CSUM | 3437 NETIF_F_SCTP_CRC | 3438 NETIF_F_IPV6_CSUM; 3439 3440 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3441 NETIF_F_HW_VLAN_CTAG_TX | 3442 NETIF_F_HW_VLAN_CTAG_RX; 3443 3444 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3445 if (is_dvm_ena) 3446 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3447 3448 tso_features = NETIF_F_TSO | 3449 NETIF_F_TSO_ECN | 3450 NETIF_F_TSO6 | 3451 NETIF_F_GSO_GRE | 3452 NETIF_F_GSO_UDP_TUNNEL | 3453 NETIF_F_GSO_GRE_CSUM | 3454 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3455 NETIF_F_GSO_PARTIAL | 3456 NETIF_F_GSO_IPXIP4 | 3457 NETIF_F_GSO_IPXIP6 | 3458 NETIF_F_GSO_UDP_L4; 3459 3460 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3461 NETIF_F_GSO_GRE_CSUM; 3462 /* set features that user can change */ 3463 netdev->hw_features = dflt_features | csumo_features | 3464 vlano_features | tso_features; 3465 3466 /* add support for HW_CSUM on packets with MPLS header */ 3467 netdev->mpls_features = NETIF_F_HW_CSUM | 3468 NETIF_F_TSO | 3469 NETIF_F_TSO6; 3470 3471 /* enable features */ 3472 netdev->features |= netdev->hw_features; 3473 3474 netdev->hw_features |= NETIF_F_HW_TC; 3475 netdev->hw_features |= NETIF_F_LOOPBACK; 3476 3477 /* encap and VLAN devices inherit default, csumo and tso features */ 3478 netdev->hw_enc_features |= dflt_features | csumo_features | 3479 tso_features; 3480 netdev->vlan_features |= dflt_features | csumo_features | 3481 tso_features; 3482 3483 /* advertise support but don't enable by default since only one type of 3484 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3485 * type turns on the other has to be turned off. This is enforced by the 3486 * ice_fix_features() ndo callback. 3487 */ 3488 if (is_dvm_ena) 3489 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3490 NETIF_F_HW_VLAN_STAG_TX; 3491 3492 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3493 * be changed at runtime 3494 */ 3495 netdev->hw_features |= NETIF_F_RXFCS; 3496 3497 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3498 } 3499 3500 /** 3501 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3502 * @lut: Lookup table 3503 * @rss_table_size: Lookup table size 3504 * @rss_size: Range of queue number for hashing 3505 */ 3506 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3507 { 3508 u16 i; 3509 3510 for (i = 0; i < rss_table_size; i++) 3511 lut[i] = i % rss_size; 3512 } 3513 3514 /** 3515 * ice_pf_vsi_setup - Set up a PF VSI 3516 * @pf: board private structure 3517 * @pi: pointer to the port_info instance 3518 * 3519 * Returns pointer to the successfully allocated VSI software struct 3520 * on success, otherwise returns NULL on failure. 3521 */ 3522 static struct ice_vsi * 3523 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3524 { 3525 struct ice_vsi_cfg_params params = {}; 3526 3527 params.type = ICE_VSI_PF; 3528 params.pi = pi; 3529 params.flags = ICE_VSI_FLAG_INIT; 3530 3531 return ice_vsi_setup(pf, ¶ms); 3532 } 3533 3534 static struct ice_vsi * 3535 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3536 struct ice_channel *ch) 3537 { 3538 struct ice_vsi_cfg_params params = {}; 3539 3540 params.type = ICE_VSI_CHNL; 3541 params.pi = pi; 3542 params.ch = ch; 3543 params.flags = ICE_VSI_FLAG_INIT; 3544 3545 return ice_vsi_setup(pf, ¶ms); 3546 } 3547 3548 /** 3549 * ice_ctrl_vsi_setup - Set up a control VSI 3550 * @pf: board private structure 3551 * @pi: pointer to the port_info instance 3552 * 3553 * Returns pointer to the successfully allocated VSI software struct 3554 * on success, otherwise returns NULL on failure. 3555 */ 3556 static struct ice_vsi * 3557 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3558 { 3559 struct ice_vsi_cfg_params params = {}; 3560 3561 params.type = ICE_VSI_CTRL; 3562 params.pi = pi; 3563 params.flags = ICE_VSI_FLAG_INIT; 3564 3565 return ice_vsi_setup(pf, ¶ms); 3566 } 3567 3568 /** 3569 * ice_lb_vsi_setup - Set up a loopback VSI 3570 * @pf: board private structure 3571 * @pi: pointer to the port_info instance 3572 * 3573 * Returns pointer to the successfully allocated VSI software struct 3574 * on success, otherwise returns NULL on failure. 3575 */ 3576 struct ice_vsi * 3577 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3578 { 3579 struct ice_vsi_cfg_params params = {}; 3580 3581 params.type = ICE_VSI_LB; 3582 params.pi = pi; 3583 params.flags = ICE_VSI_FLAG_INIT; 3584 3585 return ice_vsi_setup(pf, ¶ms); 3586 } 3587 3588 /** 3589 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3590 * @netdev: network interface to be adjusted 3591 * @proto: VLAN TPID 3592 * @vid: VLAN ID to be added 3593 * 3594 * net_device_ops implementation for adding VLAN IDs 3595 */ 3596 static int 3597 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3598 { 3599 struct ice_netdev_priv *np = netdev_priv(netdev); 3600 struct ice_vsi_vlan_ops *vlan_ops; 3601 struct ice_vsi *vsi = np->vsi; 3602 struct ice_vlan vlan; 3603 int ret; 3604 3605 /* VLAN 0 is added by default during load/reset */ 3606 if (!vid) 3607 return 0; 3608 3609 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3610 usleep_range(1000, 2000); 3611 3612 /* Add multicast promisc rule for the VLAN ID to be added if 3613 * all-multicast is currently enabled. 3614 */ 3615 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3616 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3617 ICE_MCAST_VLAN_PROMISC_BITS, 3618 vid); 3619 if (ret) 3620 goto finish; 3621 } 3622 3623 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3624 3625 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3626 * packets aren't pruned by the device's internal switch on Rx 3627 */ 3628 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3629 ret = vlan_ops->add_vlan(vsi, &vlan); 3630 if (ret) 3631 goto finish; 3632 3633 /* If all-multicast is currently enabled and this VLAN ID is only one 3634 * besides VLAN-0 we have to update look-up type of multicast promisc 3635 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3636 */ 3637 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3638 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3639 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3640 ICE_MCAST_PROMISC_BITS, 0); 3641 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3642 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3643 } 3644 3645 finish: 3646 clear_bit(ICE_CFG_BUSY, vsi->state); 3647 3648 return ret; 3649 } 3650 3651 /** 3652 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3653 * @netdev: network interface to be adjusted 3654 * @proto: VLAN TPID 3655 * @vid: VLAN ID to be removed 3656 * 3657 * net_device_ops implementation for removing VLAN IDs 3658 */ 3659 static int 3660 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3661 { 3662 struct ice_netdev_priv *np = netdev_priv(netdev); 3663 struct ice_vsi_vlan_ops *vlan_ops; 3664 struct ice_vsi *vsi = np->vsi; 3665 struct ice_vlan vlan; 3666 int ret; 3667 3668 /* don't allow removal of VLAN 0 */ 3669 if (!vid) 3670 return 0; 3671 3672 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3673 usleep_range(1000, 2000); 3674 3675 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3676 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3677 if (ret) { 3678 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3679 vsi->vsi_num); 3680 vsi->current_netdev_flags |= IFF_ALLMULTI; 3681 } 3682 3683 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3684 3685 /* Make sure VLAN delete is successful before updating VLAN 3686 * information 3687 */ 3688 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3689 ret = vlan_ops->del_vlan(vsi, &vlan); 3690 if (ret) 3691 goto finish; 3692 3693 /* Remove multicast promisc rule for the removed VLAN ID if 3694 * all-multicast is enabled. 3695 */ 3696 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3697 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3698 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3699 3700 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3701 /* Update look-up type of multicast promisc rule for VLAN 0 3702 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3703 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3704 */ 3705 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3706 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3707 ICE_MCAST_VLAN_PROMISC_BITS, 3708 0); 3709 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3710 ICE_MCAST_PROMISC_BITS, 0); 3711 } 3712 } 3713 3714 finish: 3715 clear_bit(ICE_CFG_BUSY, vsi->state); 3716 3717 return ret; 3718 } 3719 3720 /** 3721 * ice_rep_indr_tc_block_unbind 3722 * @cb_priv: indirection block private data 3723 */ 3724 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3725 { 3726 struct ice_indr_block_priv *indr_priv = cb_priv; 3727 3728 list_del(&indr_priv->list); 3729 kfree(indr_priv); 3730 } 3731 3732 /** 3733 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3734 * @vsi: VSI struct which has the netdev 3735 */ 3736 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3737 { 3738 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3739 3740 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3741 ice_rep_indr_tc_block_unbind); 3742 } 3743 3744 /** 3745 * ice_tc_indir_block_register - Register TC indirect block notifications 3746 * @vsi: VSI struct which has the netdev 3747 * 3748 * Returns 0 on success, negative value on failure 3749 */ 3750 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3751 { 3752 struct ice_netdev_priv *np; 3753 3754 if (!vsi || !vsi->netdev) 3755 return -EINVAL; 3756 3757 np = netdev_priv(vsi->netdev); 3758 3759 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3760 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3761 } 3762 3763 /** 3764 * ice_get_avail_q_count - Get count of queues in use 3765 * @pf_qmap: bitmap to get queue use count from 3766 * @lock: pointer to a mutex that protects access to pf_qmap 3767 * @size: size of the bitmap 3768 */ 3769 static u16 3770 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3771 { 3772 unsigned long bit; 3773 u16 count = 0; 3774 3775 mutex_lock(lock); 3776 for_each_clear_bit(bit, pf_qmap, size) 3777 count++; 3778 mutex_unlock(lock); 3779 3780 return count; 3781 } 3782 3783 /** 3784 * ice_get_avail_txq_count - Get count of Tx queues in use 3785 * @pf: pointer to an ice_pf instance 3786 */ 3787 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3788 { 3789 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3790 pf->max_pf_txqs); 3791 } 3792 3793 /** 3794 * ice_get_avail_rxq_count - Get count of Rx queues in use 3795 * @pf: pointer to an ice_pf instance 3796 */ 3797 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3798 { 3799 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3800 pf->max_pf_rxqs); 3801 } 3802 3803 /** 3804 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3805 * @pf: board private structure to initialize 3806 */ 3807 static void ice_deinit_pf(struct ice_pf *pf) 3808 { 3809 ice_service_task_stop(pf); 3810 mutex_destroy(&pf->lag_mutex); 3811 mutex_destroy(&pf->adev_mutex); 3812 mutex_destroy(&pf->sw_mutex); 3813 mutex_destroy(&pf->tc_mutex); 3814 mutex_destroy(&pf->avail_q_mutex); 3815 mutex_destroy(&pf->vfs.table_lock); 3816 3817 if (pf->avail_txqs) { 3818 bitmap_free(pf->avail_txqs); 3819 pf->avail_txqs = NULL; 3820 } 3821 3822 if (pf->avail_rxqs) { 3823 bitmap_free(pf->avail_rxqs); 3824 pf->avail_rxqs = NULL; 3825 } 3826 3827 if (pf->ptp.clock) 3828 ptp_clock_unregister(pf->ptp.clock); 3829 } 3830 3831 /** 3832 * ice_set_pf_caps - set PFs capability flags 3833 * @pf: pointer to the PF instance 3834 */ 3835 static void ice_set_pf_caps(struct ice_pf *pf) 3836 { 3837 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3838 3839 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3840 if (func_caps->common_cap.rdma) 3841 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3842 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3843 if (func_caps->common_cap.dcb) 3844 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3845 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3846 if (func_caps->common_cap.sr_iov_1_1) { 3847 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3848 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3849 ICE_MAX_SRIOV_VFS); 3850 } 3851 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3852 if (func_caps->common_cap.rss_table_size) 3853 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3854 3855 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3856 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3857 u16 unused; 3858 3859 /* ctrl_vsi_idx will be set to a valid value when flow director 3860 * is setup by ice_init_fdir 3861 */ 3862 pf->ctrl_vsi_idx = ICE_NO_VSI; 3863 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3864 /* force guaranteed filter pool for PF */ 3865 ice_alloc_fd_guar_item(&pf->hw, &unused, 3866 func_caps->fd_fltr_guar); 3867 /* force shared filter pool for PF */ 3868 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3869 func_caps->fd_fltr_best_effort); 3870 } 3871 3872 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3873 if (func_caps->common_cap.ieee_1588) 3874 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3875 3876 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3877 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3878 } 3879 3880 /** 3881 * ice_init_pf - Initialize general software structures (struct ice_pf) 3882 * @pf: board private structure to initialize 3883 */ 3884 static int ice_init_pf(struct ice_pf *pf) 3885 { 3886 ice_set_pf_caps(pf); 3887 3888 mutex_init(&pf->sw_mutex); 3889 mutex_init(&pf->tc_mutex); 3890 mutex_init(&pf->adev_mutex); 3891 mutex_init(&pf->lag_mutex); 3892 3893 INIT_HLIST_HEAD(&pf->aq_wait_list); 3894 spin_lock_init(&pf->aq_wait_lock); 3895 init_waitqueue_head(&pf->aq_wait_queue); 3896 3897 init_waitqueue_head(&pf->reset_wait_queue); 3898 3899 /* setup service timer and periodic service task */ 3900 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3901 pf->serv_tmr_period = HZ; 3902 INIT_WORK(&pf->serv_task, ice_service_task); 3903 clear_bit(ICE_SERVICE_SCHED, pf->state); 3904 3905 mutex_init(&pf->avail_q_mutex); 3906 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3907 if (!pf->avail_txqs) 3908 return -ENOMEM; 3909 3910 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3911 if (!pf->avail_rxqs) { 3912 bitmap_free(pf->avail_txqs); 3913 pf->avail_txqs = NULL; 3914 return -ENOMEM; 3915 } 3916 3917 mutex_init(&pf->vfs.table_lock); 3918 hash_init(pf->vfs.table); 3919 ice_mbx_init_snapshot(&pf->hw); 3920 3921 return 0; 3922 } 3923 3924 /** 3925 * ice_is_wol_supported - check if WoL is supported 3926 * @hw: pointer to hardware info 3927 * 3928 * Check if WoL is supported based on the HW configuration. 3929 * Returns true if NVM supports and enables WoL for this port, false otherwise 3930 */ 3931 bool ice_is_wol_supported(struct ice_hw *hw) 3932 { 3933 u16 wol_ctrl; 3934 3935 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3936 * word) indicates WoL is not supported on the corresponding PF ID. 3937 */ 3938 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3939 return false; 3940 3941 return !(BIT(hw->port_info->lport) & wol_ctrl); 3942 } 3943 3944 /** 3945 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3946 * @vsi: VSI being changed 3947 * @new_rx: new number of Rx queues 3948 * @new_tx: new number of Tx queues 3949 * @locked: is adev device_lock held 3950 * 3951 * Only change the number of queues if new_tx, or new_rx is non-0. 3952 * 3953 * Returns 0 on success. 3954 */ 3955 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3956 { 3957 struct ice_pf *pf = vsi->back; 3958 int err = 0, timeout = 50; 3959 3960 if (!new_rx && !new_tx) 3961 return -EINVAL; 3962 3963 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3964 timeout--; 3965 if (!timeout) 3966 return -EBUSY; 3967 usleep_range(1000, 2000); 3968 } 3969 3970 if (new_tx) 3971 vsi->req_txq = (u16)new_tx; 3972 if (new_rx) 3973 vsi->req_rxq = (u16)new_rx; 3974 3975 /* set for the next time the netdev is started */ 3976 if (!netif_running(vsi->netdev)) { 3977 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3978 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3979 goto done; 3980 } 3981 3982 ice_vsi_close(vsi); 3983 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3984 ice_pf_dcb_recfg(pf, locked); 3985 ice_vsi_open(vsi); 3986 done: 3987 clear_bit(ICE_CFG_BUSY, pf->state); 3988 return err; 3989 } 3990 3991 /** 3992 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3993 * @pf: PF to configure 3994 * 3995 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3996 * VSI can still Tx/Rx VLAN tagged packets. 3997 */ 3998 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3999 { 4000 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4001 struct ice_vsi_ctx *ctxt; 4002 struct ice_hw *hw; 4003 int status; 4004 4005 if (!vsi) 4006 return; 4007 4008 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4009 if (!ctxt) 4010 return; 4011 4012 hw = &pf->hw; 4013 ctxt->info = vsi->info; 4014 4015 ctxt->info.valid_sections = 4016 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4017 ICE_AQ_VSI_PROP_SECURITY_VALID | 4018 ICE_AQ_VSI_PROP_SW_VALID); 4019 4020 /* disable VLAN anti-spoof */ 4021 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4022 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4023 4024 /* disable VLAN pruning and keep all other settings */ 4025 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4026 4027 /* allow all VLANs on Tx and don't strip on Rx */ 4028 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4029 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4030 4031 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4032 if (status) { 4033 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4034 status, ice_aq_str(hw->adminq.sq_last_status)); 4035 } else { 4036 vsi->info.sec_flags = ctxt->info.sec_flags; 4037 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4038 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4039 } 4040 4041 kfree(ctxt); 4042 } 4043 4044 /** 4045 * ice_log_pkg_init - log result of DDP package load 4046 * @hw: pointer to hardware info 4047 * @state: state of package load 4048 */ 4049 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4050 { 4051 struct ice_pf *pf = hw->back; 4052 struct device *dev; 4053 4054 dev = ice_pf_to_dev(pf); 4055 4056 switch (state) { 4057 case ICE_DDP_PKG_SUCCESS: 4058 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4059 hw->active_pkg_name, 4060 hw->active_pkg_ver.major, 4061 hw->active_pkg_ver.minor, 4062 hw->active_pkg_ver.update, 4063 hw->active_pkg_ver.draft); 4064 break; 4065 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4066 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4067 hw->active_pkg_name, 4068 hw->active_pkg_ver.major, 4069 hw->active_pkg_ver.minor, 4070 hw->active_pkg_ver.update, 4071 hw->active_pkg_ver.draft); 4072 break; 4073 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4074 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4075 hw->active_pkg_name, 4076 hw->active_pkg_ver.major, 4077 hw->active_pkg_ver.minor, 4078 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4079 break; 4080 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4081 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4082 hw->active_pkg_name, 4083 hw->active_pkg_ver.major, 4084 hw->active_pkg_ver.minor, 4085 hw->active_pkg_ver.update, 4086 hw->active_pkg_ver.draft, 4087 hw->pkg_name, 4088 hw->pkg_ver.major, 4089 hw->pkg_ver.minor, 4090 hw->pkg_ver.update, 4091 hw->pkg_ver.draft); 4092 break; 4093 case ICE_DDP_PKG_FW_MISMATCH: 4094 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4095 break; 4096 case ICE_DDP_PKG_INVALID_FILE: 4097 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4098 break; 4099 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4100 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4101 break; 4102 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4103 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4104 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4105 break; 4106 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4107 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4108 break; 4109 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4110 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4111 break; 4112 case ICE_DDP_PKG_LOAD_ERROR: 4113 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4114 /* poll for reset to complete */ 4115 if (ice_check_reset(hw)) 4116 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4117 break; 4118 case ICE_DDP_PKG_ERR: 4119 default: 4120 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4121 break; 4122 } 4123 } 4124 4125 /** 4126 * ice_load_pkg - load/reload the DDP Package file 4127 * @firmware: firmware structure when firmware requested or NULL for reload 4128 * @pf: pointer to the PF instance 4129 * 4130 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4131 * initialize HW tables. 4132 */ 4133 static void 4134 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4135 { 4136 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4137 struct device *dev = ice_pf_to_dev(pf); 4138 struct ice_hw *hw = &pf->hw; 4139 4140 /* Load DDP Package */ 4141 if (firmware && !hw->pkg_copy) { 4142 state = ice_copy_and_init_pkg(hw, firmware->data, 4143 firmware->size); 4144 ice_log_pkg_init(hw, state); 4145 } else if (!firmware && hw->pkg_copy) { 4146 /* Reload package during rebuild after CORER/GLOBR reset */ 4147 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4148 ice_log_pkg_init(hw, state); 4149 } else { 4150 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4151 } 4152 4153 if (!ice_is_init_pkg_successful(state)) { 4154 /* Safe Mode */ 4155 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4156 return; 4157 } 4158 4159 /* Successful download package is the precondition for advanced 4160 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4161 */ 4162 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4163 } 4164 4165 /** 4166 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4167 * @pf: pointer to the PF structure 4168 * 4169 * There is no error returned here because the driver should be able to handle 4170 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4171 * specifically with Tx. 4172 */ 4173 static void ice_verify_cacheline_size(struct ice_pf *pf) 4174 { 4175 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4176 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4177 ICE_CACHE_LINE_BYTES); 4178 } 4179 4180 /** 4181 * ice_send_version - update firmware with driver version 4182 * @pf: PF struct 4183 * 4184 * Returns 0 on success, else error code 4185 */ 4186 static int ice_send_version(struct ice_pf *pf) 4187 { 4188 struct ice_driver_ver dv; 4189 4190 dv.major_ver = 0xff; 4191 dv.minor_ver = 0xff; 4192 dv.build_ver = 0xff; 4193 dv.subbuild_ver = 0; 4194 strscpy((char *)dv.driver_string, UTS_RELEASE, 4195 sizeof(dv.driver_string)); 4196 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4197 } 4198 4199 /** 4200 * ice_init_fdir - Initialize flow director VSI and configuration 4201 * @pf: pointer to the PF instance 4202 * 4203 * returns 0 on success, negative on error 4204 */ 4205 static int ice_init_fdir(struct ice_pf *pf) 4206 { 4207 struct device *dev = ice_pf_to_dev(pf); 4208 struct ice_vsi *ctrl_vsi; 4209 int err; 4210 4211 /* Side Band Flow Director needs to have a control VSI. 4212 * Allocate it and store it in the PF. 4213 */ 4214 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4215 if (!ctrl_vsi) { 4216 dev_dbg(dev, "could not create control VSI\n"); 4217 return -ENOMEM; 4218 } 4219 4220 err = ice_vsi_open_ctrl(ctrl_vsi); 4221 if (err) { 4222 dev_dbg(dev, "could not open control VSI\n"); 4223 goto err_vsi_open; 4224 } 4225 4226 mutex_init(&pf->hw.fdir_fltr_lock); 4227 4228 err = ice_fdir_create_dflt_rules(pf); 4229 if (err) 4230 goto err_fdir_rule; 4231 4232 return 0; 4233 4234 err_fdir_rule: 4235 ice_fdir_release_flows(&pf->hw); 4236 ice_vsi_close(ctrl_vsi); 4237 err_vsi_open: 4238 ice_vsi_release(ctrl_vsi); 4239 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4240 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4241 pf->ctrl_vsi_idx = ICE_NO_VSI; 4242 } 4243 return err; 4244 } 4245 4246 static void ice_deinit_fdir(struct ice_pf *pf) 4247 { 4248 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4249 4250 if (!vsi) 4251 return; 4252 4253 ice_vsi_manage_fdir(vsi, false); 4254 ice_vsi_release(vsi); 4255 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4256 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4257 pf->ctrl_vsi_idx = ICE_NO_VSI; 4258 } 4259 4260 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4261 } 4262 4263 /** 4264 * ice_get_opt_fw_name - return optional firmware file name or NULL 4265 * @pf: pointer to the PF instance 4266 */ 4267 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4268 { 4269 /* Optional firmware name same as default with additional dash 4270 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4271 */ 4272 struct pci_dev *pdev = pf->pdev; 4273 char *opt_fw_filename; 4274 u64 dsn; 4275 4276 /* Determine the name of the optional file using the DSN (two 4277 * dwords following the start of the DSN Capability). 4278 */ 4279 dsn = pci_get_dsn(pdev); 4280 if (!dsn) 4281 return NULL; 4282 4283 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4284 if (!opt_fw_filename) 4285 return NULL; 4286 4287 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4288 ICE_DDP_PKG_PATH, dsn); 4289 4290 return opt_fw_filename; 4291 } 4292 4293 /** 4294 * ice_request_fw - Device initialization routine 4295 * @pf: pointer to the PF instance 4296 */ 4297 static void ice_request_fw(struct ice_pf *pf) 4298 { 4299 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4300 const struct firmware *firmware = NULL; 4301 struct device *dev = ice_pf_to_dev(pf); 4302 int err = 0; 4303 4304 /* optional device-specific DDP (if present) overrides the default DDP 4305 * package file. kernel logs a debug message if the file doesn't exist, 4306 * and warning messages for other errors. 4307 */ 4308 if (opt_fw_filename) { 4309 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4310 if (err) { 4311 kfree(opt_fw_filename); 4312 goto dflt_pkg_load; 4313 } 4314 4315 /* request for firmware was successful. Download to device */ 4316 ice_load_pkg(firmware, pf); 4317 kfree(opt_fw_filename); 4318 release_firmware(firmware); 4319 return; 4320 } 4321 4322 dflt_pkg_load: 4323 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4324 if (err) { 4325 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4326 return; 4327 } 4328 4329 /* request for firmware was successful. Download to device */ 4330 ice_load_pkg(firmware, pf); 4331 release_firmware(firmware); 4332 } 4333 4334 /** 4335 * ice_print_wake_reason - show the wake up cause in the log 4336 * @pf: pointer to the PF struct 4337 */ 4338 static void ice_print_wake_reason(struct ice_pf *pf) 4339 { 4340 u32 wus = pf->wakeup_reason; 4341 const char *wake_str; 4342 4343 /* if no wake event, nothing to print */ 4344 if (!wus) 4345 return; 4346 4347 if (wus & PFPM_WUS_LNKC_M) 4348 wake_str = "Link\n"; 4349 else if (wus & PFPM_WUS_MAG_M) 4350 wake_str = "Magic Packet\n"; 4351 else if (wus & PFPM_WUS_MNG_M) 4352 wake_str = "Management\n"; 4353 else if (wus & PFPM_WUS_FW_RST_WK_M) 4354 wake_str = "Firmware Reset\n"; 4355 else 4356 wake_str = "Unknown\n"; 4357 4358 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4359 } 4360 4361 /** 4362 * ice_register_netdev - register netdev 4363 * @vsi: pointer to the VSI struct 4364 */ 4365 static int ice_register_netdev(struct ice_vsi *vsi) 4366 { 4367 int err; 4368 4369 if (!vsi || !vsi->netdev) 4370 return -EIO; 4371 4372 err = register_netdev(vsi->netdev); 4373 if (err) 4374 return err; 4375 4376 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4377 netif_carrier_off(vsi->netdev); 4378 netif_tx_stop_all_queues(vsi->netdev); 4379 4380 return 0; 4381 } 4382 4383 static void ice_unregister_netdev(struct ice_vsi *vsi) 4384 { 4385 if (!vsi || !vsi->netdev) 4386 return; 4387 4388 unregister_netdev(vsi->netdev); 4389 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4390 } 4391 4392 /** 4393 * ice_cfg_netdev - Allocate, configure and register a netdev 4394 * @vsi: the VSI associated with the new netdev 4395 * 4396 * Returns 0 on success, negative value on failure 4397 */ 4398 static int ice_cfg_netdev(struct ice_vsi *vsi) 4399 { 4400 struct ice_netdev_priv *np; 4401 struct net_device *netdev; 4402 u8 mac_addr[ETH_ALEN]; 4403 4404 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4405 vsi->alloc_rxq); 4406 if (!netdev) 4407 return -ENOMEM; 4408 4409 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4410 vsi->netdev = netdev; 4411 np = netdev_priv(netdev); 4412 np->vsi = vsi; 4413 4414 ice_set_netdev_features(netdev); 4415 ice_set_ops(vsi); 4416 4417 if (vsi->type == ICE_VSI_PF) { 4418 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4419 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4420 eth_hw_addr_set(netdev, mac_addr); 4421 } 4422 4423 netdev->priv_flags |= IFF_UNICAST_FLT; 4424 4425 /* Setup netdev TC information */ 4426 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4427 4428 netdev->max_mtu = ICE_MAX_MTU; 4429 4430 return 0; 4431 } 4432 4433 static void ice_decfg_netdev(struct ice_vsi *vsi) 4434 { 4435 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4436 free_netdev(vsi->netdev); 4437 vsi->netdev = NULL; 4438 } 4439 4440 static int ice_start_eth(struct ice_vsi *vsi) 4441 { 4442 int err; 4443 4444 err = ice_init_mac_fltr(vsi->back); 4445 if (err) 4446 return err; 4447 4448 err = ice_vsi_open(vsi); 4449 if (err) 4450 ice_fltr_remove_all(vsi); 4451 4452 return err; 4453 } 4454 4455 static void ice_stop_eth(struct ice_vsi *vsi) 4456 { 4457 ice_fltr_remove_all(vsi); 4458 ice_vsi_close(vsi); 4459 } 4460 4461 static int ice_init_eth(struct ice_pf *pf) 4462 { 4463 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4464 int err; 4465 4466 if (!vsi) 4467 return -EINVAL; 4468 4469 /* init channel list */ 4470 INIT_LIST_HEAD(&vsi->ch_list); 4471 4472 err = ice_cfg_netdev(vsi); 4473 if (err) 4474 return err; 4475 /* Setup DCB netlink interface */ 4476 ice_dcbnl_setup(vsi); 4477 4478 err = ice_init_mac_fltr(pf); 4479 if (err) 4480 goto err_init_mac_fltr; 4481 4482 err = ice_devlink_create_pf_port(pf); 4483 if (err) 4484 goto err_devlink_create_pf_port; 4485 4486 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4487 4488 err = ice_register_netdev(vsi); 4489 if (err) 4490 goto err_register_netdev; 4491 4492 err = ice_tc_indir_block_register(vsi); 4493 if (err) 4494 goto err_tc_indir_block_register; 4495 4496 ice_napi_add(vsi); 4497 4498 return 0; 4499 4500 err_tc_indir_block_register: 4501 ice_unregister_netdev(vsi); 4502 err_register_netdev: 4503 ice_devlink_destroy_pf_port(pf); 4504 err_devlink_create_pf_port: 4505 err_init_mac_fltr: 4506 ice_decfg_netdev(vsi); 4507 return err; 4508 } 4509 4510 static void ice_deinit_eth(struct ice_pf *pf) 4511 { 4512 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4513 4514 if (!vsi) 4515 return; 4516 4517 ice_vsi_close(vsi); 4518 ice_unregister_netdev(vsi); 4519 ice_devlink_destroy_pf_port(pf); 4520 ice_tc_indir_block_unregister(vsi); 4521 ice_decfg_netdev(vsi); 4522 } 4523 4524 /** 4525 * ice_wait_for_fw - wait for full FW readiness 4526 * @hw: pointer to the hardware structure 4527 * @timeout: milliseconds that can elapse before timing out 4528 */ 4529 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4530 { 4531 int fw_loading; 4532 u32 elapsed = 0; 4533 4534 while (elapsed <= timeout) { 4535 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4536 4537 /* firmware was not yet loaded, we have to wait more */ 4538 if (fw_loading) { 4539 elapsed += 100; 4540 msleep(100); 4541 continue; 4542 } 4543 return 0; 4544 } 4545 4546 return -ETIMEDOUT; 4547 } 4548 4549 static int ice_init_dev(struct ice_pf *pf) 4550 { 4551 struct device *dev = ice_pf_to_dev(pf); 4552 struct ice_hw *hw = &pf->hw; 4553 int err; 4554 4555 err = ice_init_hw(hw); 4556 if (err) { 4557 dev_err(dev, "ice_init_hw failed: %d\n", err); 4558 return err; 4559 } 4560 4561 /* Some cards require longer initialization times 4562 * due to necessity of loading FW from an external source. 4563 * This can take even half a minute. 4564 */ 4565 if (ice_is_pf_c827(hw)) { 4566 err = ice_wait_for_fw(hw, 30000); 4567 if (err) { 4568 dev_err(dev, "ice_wait_for_fw timed out"); 4569 return err; 4570 } 4571 } 4572 4573 ice_init_feature_support(pf); 4574 4575 ice_request_fw(pf); 4576 4577 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4578 * set in pf->state, which will cause ice_is_safe_mode to return 4579 * true 4580 */ 4581 if (ice_is_safe_mode(pf)) { 4582 /* we already got function/device capabilities but these don't 4583 * reflect what the driver needs to do in safe mode. Instead of 4584 * adding conditional logic everywhere to ignore these 4585 * device/function capabilities, override them. 4586 */ 4587 ice_set_safe_mode_caps(hw); 4588 } 4589 4590 err = ice_init_pf(pf); 4591 if (err) { 4592 dev_err(dev, "ice_init_pf failed: %d\n", err); 4593 goto err_init_pf; 4594 } 4595 4596 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4597 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4598 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4599 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4600 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4601 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4602 pf->hw.tnl.valid_count[TNL_VXLAN]; 4603 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4604 UDP_TUNNEL_TYPE_VXLAN; 4605 } 4606 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4607 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4608 pf->hw.tnl.valid_count[TNL_GENEVE]; 4609 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4610 UDP_TUNNEL_TYPE_GENEVE; 4611 } 4612 4613 err = ice_init_interrupt_scheme(pf); 4614 if (err) { 4615 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4616 err = -EIO; 4617 goto err_init_interrupt_scheme; 4618 } 4619 4620 /* In case of MSIX we are going to setup the misc vector right here 4621 * to handle admin queue events etc. In case of legacy and MSI 4622 * the misc functionality and queue processing is combined in 4623 * the same vector and that gets setup at open. 4624 */ 4625 err = ice_req_irq_msix_misc(pf); 4626 if (err) { 4627 dev_err(dev, "setup of misc vector failed: %d\n", err); 4628 goto err_req_irq_msix_misc; 4629 } 4630 4631 return 0; 4632 4633 err_req_irq_msix_misc: 4634 ice_clear_interrupt_scheme(pf); 4635 err_init_interrupt_scheme: 4636 ice_deinit_pf(pf); 4637 err_init_pf: 4638 ice_deinit_hw(hw); 4639 return err; 4640 } 4641 4642 static void ice_deinit_dev(struct ice_pf *pf) 4643 { 4644 ice_free_irq_msix_misc(pf); 4645 ice_deinit_pf(pf); 4646 ice_deinit_hw(&pf->hw); 4647 4648 /* Service task is already stopped, so call reset directly. */ 4649 ice_reset(&pf->hw, ICE_RESET_PFR); 4650 pci_wait_for_pending_transaction(pf->pdev); 4651 ice_clear_interrupt_scheme(pf); 4652 } 4653 4654 static void ice_init_features(struct ice_pf *pf) 4655 { 4656 struct device *dev = ice_pf_to_dev(pf); 4657 4658 if (ice_is_safe_mode(pf)) 4659 return; 4660 4661 /* initialize DDP driven features */ 4662 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4663 ice_ptp_init(pf); 4664 4665 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4666 ice_gnss_init(pf); 4667 4668 /* Note: Flow director init failure is non-fatal to load */ 4669 if (ice_init_fdir(pf)) 4670 dev_err(dev, "could not initialize flow director\n"); 4671 4672 /* Note: DCB init failure is non-fatal to load */ 4673 if (ice_init_pf_dcb(pf, false)) { 4674 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4675 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4676 } else { 4677 ice_cfg_lldp_mib_change(&pf->hw, true); 4678 } 4679 4680 if (ice_init_lag(pf)) 4681 dev_warn(dev, "Failed to init link aggregation support\n"); 4682 } 4683 4684 static void ice_deinit_features(struct ice_pf *pf) 4685 { 4686 ice_deinit_lag(pf); 4687 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4688 ice_cfg_lldp_mib_change(&pf->hw, false); 4689 ice_deinit_fdir(pf); 4690 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4691 ice_gnss_exit(pf); 4692 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4693 ice_ptp_release(pf); 4694 } 4695 4696 static void ice_init_wakeup(struct ice_pf *pf) 4697 { 4698 /* Save wakeup reason register for later use */ 4699 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4700 4701 /* check for a power management event */ 4702 ice_print_wake_reason(pf); 4703 4704 /* clear wake status, all bits */ 4705 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4706 4707 /* Disable WoL at init, wait for user to enable */ 4708 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4709 } 4710 4711 static int ice_init_link(struct ice_pf *pf) 4712 { 4713 struct device *dev = ice_pf_to_dev(pf); 4714 int err; 4715 4716 err = ice_init_link_events(pf->hw.port_info); 4717 if (err) { 4718 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4719 return err; 4720 } 4721 4722 /* not a fatal error if this fails */ 4723 err = ice_init_nvm_phy_type(pf->hw.port_info); 4724 if (err) 4725 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4726 4727 /* not a fatal error if this fails */ 4728 err = ice_update_link_info(pf->hw.port_info); 4729 if (err) 4730 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4731 4732 ice_init_link_dflt_override(pf->hw.port_info); 4733 4734 ice_check_link_cfg_err(pf, 4735 pf->hw.port_info->phy.link_info.link_cfg_err); 4736 4737 /* if media available, initialize PHY settings */ 4738 if (pf->hw.port_info->phy.link_info.link_info & 4739 ICE_AQ_MEDIA_AVAILABLE) { 4740 /* not a fatal error if this fails */ 4741 err = ice_init_phy_user_cfg(pf->hw.port_info); 4742 if (err) 4743 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4744 4745 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4746 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4747 4748 if (vsi) 4749 ice_configure_phy(vsi); 4750 } 4751 } else { 4752 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4753 } 4754 4755 return err; 4756 } 4757 4758 static int ice_init_pf_sw(struct ice_pf *pf) 4759 { 4760 bool dvm = ice_is_dvm_ena(&pf->hw); 4761 struct ice_vsi *vsi; 4762 int err; 4763 4764 /* create switch struct for the switch element created by FW on boot */ 4765 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4766 if (!pf->first_sw) 4767 return -ENOMEM; 4768 4769 if (pf->hw.evb_veb) 4770 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4771 else 4772 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4773 4774 pf->first_sw->pf = pf; 4775 4776 /* record the sw_id available for later use */ 4777 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4778 4779 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4780 if (err) 4781 goto err_aq_set_port_params; 4782 4783 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4784 if (!vsi) { 4785 err = -ENOMEM; 4786 goto err_pf_vsi_setup; 4787 } 4788 4789 return 0; 4790 4791 err_pf_vsi_setup: 4792 err_aq_set_port_params: 4793 kfree(pf->first_sw); 4794 return err; 4795 } 4796 4797 static void ice_deinit_pf_sw(struct ice_pf *pf) 4798 { 4799 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4800 4801 if (!vsi) 4802 return; 4803 4804 ice_vsi_release(vsi); 4805 kfree(pf->first_sw); 4806 } 4807 4808 static int ice_alloc_vsis(struct ice_pf *pf) 4809 { 4810 struct device *dev = ice_pf_to_dev(pf); 4811 4812 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4813 if (!pf->num_alloc_vsi) 4814 return -EIO; 4815 4816 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4817 dev_warn(dev, 4818 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4819 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4820 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4821 } 4822 4823 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4824 GFP_KERNEL); 4825 if (!pf->vsi) 4826 return -ENOMEM; 4827 4828 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4829 sizeof(*pf->vsi_stats), GFP_KERNEL); 4830 if (!pf->vsi_stats) { 4831 devm_kfree(dev, pf->vsi); 4832 return -ENOMEM; 4833 } 4834 4835 return 0; 4836 } 4837 4838 static void ice_dealloc_vsis(struct ice_pf *pf) 4839 { 4840 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4841 pf->vsi_stats = NULL; 4842 4843 pf->num_alloc_vsi = 0; 4844 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4845 pf->vsi = NULL; 4846 } 4847 4848 static int ice_init_devlink(struct ice_pf *pf) 4849 { 4850 int err; 4851 4852 err = ice_devlink_register_params(pf); 4853 if (err) 4854 return err; 4855 4856 ice_devlink_init_regions(pf); 4857 ice_devlink_register(pf); 4858 4859 return 0; 4860 } 4861 4862 static void ice_deinit_devlink(struct ice_pf *pf) 4863 { 4864 ice_devlink_unregister(pf); 4865 ice_devlink_destroy_regions(pf); 4866 ice_devlink_unregister_params(pf); 4867 } 4868 4869 static int ice_init(struct ice_pf *pf) 4870 { 4871 int err; 4872 4873 err = ice_init_dev(pf); 4874 if (err) 4875 return err; 4876 4877 err = ice_alloc_vsis(pf); 4878 if (err) 4879 goto err_alloc_vsis; 4880 4881 err = ice_init_pf_sw(pf); 4882 if (err) 4883 goto err_init_pf_sw; 4884 4885 ice_init_wakeup(pf); 4886 4887 err = ice_init_link(pf); 4888 if (err) 4889 goto err_init_link; 4890 4891 err = ice_send_version(pf); 4892 if (err) 4893 goto err_init_link; 4894 4895 ice_verify_cacheline_size(pf); 4896 4897 if (ice_is_safe_mode(pf)) 4898 ice_set_safe_mode_vlan_cfg(pf); 4899 else 4900 /* print PCI link speed and width */ 4901 pcie_print_link_status(pf->pdev); 4902 4903 /* ready to go, so clear down state bit */ 4904 clear_bit(ICE_DOWN, pf->state); 4905 clear_bit(ICE_SERVICE_DIS, pf->state); 4906 4907 /* since everything is good, start the service timer */ 4908 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4909 4910 return 0; 4911 4912 err_init_link: 4913 ice_deinit_pf_sw(pf); 4914 err_init_pf_sw: 4915 ice_dealloc_vsis(pf); 4916 err_alloc_vsis: 4917 ice_deinit_dev(pf); 4918 return err; 4919 } 4920 4921 static void ice_deinit(struct ice_pf *pf) 4922 { 4923 set_bit(ICE_SERVICE_DIS, pf->state); 4924 set_bit(ICE_DOWN, pf->state); 4925 4926 ice_deinit_pf_sw(pf); 4927 ice_dealloc_vsis(pf); 4928 ice_deinit_dev(pf); 4929 } 4930 4931 /** 4932 * ice_load - load pf by init hw and starting VSI 4933 * @pf: pointer to the pf instance 4934 */ 4935 int ice_load(struct ice_pf *pf) 4936 { 4937 struct ice_vsi_cfg_params params = {}; 4938 struct ice_vsi *vsi; 4939 int err; 4940 4941 err = ice_init_dev(pf); 4942 if (err) 4943 return err; 4944 4945 vsi = ice_get_main_vsi(pf); 4946 4947 params = ice_vsi_to_params(vsi); 4948 params.flags = ICE_VSI_FLAG_INIT; 4949 4950 rtnl_lock(); 4951 err = ice_vsi_cfg(vsi, ¶ms); 4952 if (err) 4953 goto err_vsi_cfg; 4954 4955 err = ice_start_eth(ice_get_main_vsi(pf)); 4956 if (err) 4957 goto err_start_eth; 4958 rtnl_unlock(); 4959 4960 err = ice_init_rdma(pf); 4961 if (err) 4962 goto err_init_rdma; 4963 4964 ice_init_features(pf); 4965 ice_service_task_restart(pf); 4966 4967 clear_bit(ICE_DOWN, pf->state); 4968 4969 return 0; 4970 4971 err_init_rdma: 4972 ice_vsi_close(ice_get_main_vsi(pf)); 4973 rtnl_lock(); 4974 err_start_eth: 4975 ice_vsi_decfg(ice_get_main_vsi(pf)); 4976 err_vsi_cfg: 4977 rtnl_unlock(); 4978 ice_deinit_dev(pf); 4979 return err; 4980 } 4981 4982 /** 4983 * ice_unload - unload pf by stopping VSI and deinit hw 4984 * @pf: pointer to the pf instance 4985 */ 4986 void ice_unload(struct ice_pf *pf) 4987 { 4988 ice_deinit_features(pf); 4989 ice_deinit_rdma(pf); 4990 rtnl_lock(); 4991 ice_stop_eth(ice_get_main_vsi(pf)); 4992 ice_vsi_decfg(ice_get_main_vsi(pf)); 4993 rtnl_unlock(); 4994 ice_deinit_dev(pf); 4995 } 4996 4997 /** 4998 * ice_probe - Device initialization routine 4999 * @pdev: PCI device information struct 5000 * @ent: entry in ice_pci_tbl 5001 * 5002 * Returns 0 on success, negative on failure 5003 */ 5004 static int 5005 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5006 { 5007 struct device *dev = &pdev->dev; 5008 struct ice_pf *pf; 5009 struct ice_hw *hw; 5010 int err; 5011 5012 if (pdev->is_virtfn) { 5013 dev_err(dev, "can't probe a virtual function\n"); 5014 return -EINVAL; 5015 } 5016 5017 /* this driver uses devres, see 5018 * Documentation/driver-api/driver-model/devres.rst 5019 */ 5020 err = pcim_enable_device(pdev); 5021 if (err) 5022 return err; 5023 5024 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5025 if (err) { 5026 dev_err(dev, "BAR0 I/O map error %d\n", err); 5027 return err; 5028 } 5029 5030 pf = ice_allocate_pf(dev); 5031 if (!pf) 5032 return -ENOMEM; 5033 5034 /* initialize Auxiliary index to invalid value */ 5035 pf->aux_idx = -1; 5036 5037 /* set up for high or low DMA */ 5038 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5039 if (err) { 5040 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5041 return err; 5042 } 5043 5044 pci_set_master(pdev); 5045 5046 pf->pdev = pdev; 5047 pci_set_drvdata(pdev, pf); 5048 set_bit(ICE_DOWN, pf->state); 5049 /* Disable service task until DOWN bit is cleared */ 5050 set_bit(ICE_SERVICE_DIS, pf->state); 5051 5052 hw = &pf->hw; 5053 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5054 pci_save_state(pdev); 5055 5056 hw->back = pf; 5057 hw->port_info = NULL; 5058 hw->vendor_id = pdev->vendor; 5059 hw->device_id = pdev->device; 5060 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5061 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5062 hw->subsystem_device_id = pdev->subsystem_device; 5063 hw->bus.device = PCI_SLOT(pdev->devfn); 5064 hw->bus.func = PCI_FUNC(pdev->devfn); 5065 ice_set_ctrlq_len(hw); 5066 5067 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5068 5069 #ifndef CONFIG_DYNAMIC_DEBUG 5070 if (debug < -1) 5071 hw->debug_mask = debug; 5072 #endif 5073 5074 err = ice_init(pf); 5075 if (err) 5076 goto err_init; 5077 5078 err = ice_init_eth(pf); 5079 if (err) 5080 goto err_init_eth; 5081 5082 err = ice_init_rdma(pf); 5083 if (err) 5084 goto err_init_rdma; 5085 5086 err = ice_init_devlink(pf); 5087 if (err) 5088 goto err_init_devlink; 5089 5090 ice_init_features(pf); 5091 5092 return 0; 5093 5094 err_init_devlink: 5095 ice_deinit_rdma(pf); 5096 err_init_rdma: 5097 ice_deinit_eth(pf); 5098 err_init_eth: 5099 ice_deinit(pf); 5100 err_init: 5101 pci_disable_device(pdev); 5102 return err; 5103 } 5104 5105 /** 5106 * ice_set_wake - enable or disable Wake on LAN 5107 * @pf: pointer to the PF struct 5108 * 5109 * Simple helper for WoL control 5110 */ 5111 static void ice_set_wake(struct ice_pf *pf) 5112 { 5113 struct ice_hw *hw = &pf->hw; 5114 bool wol = pf->wol_ena; 5115 5116 /* clear wake state, otherwise new wake events won't fire */ 5117 wr32(hw, PFPM_WUS, U32_MAX); 5118 5119 /* enable / disable APM wake up, no RMW needed */ 5120 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5121 5122 /* set magic packet filter enabled */ 5123 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5124 } 5125 5126 /** 5127 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5128 * @pf: pointer to the PF struct 5129 * 5130 * Issue firmware command to enable multicast magic wake, making 5131 * sure that any locally administered address (LAA) is used for 5132 * wake, and that PF reset doesn't undo the LAA. 5133 */ 5134 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5135 { 5136 struct device *dev = ice_pf_to_dev(pf); 5137 struct ice_hw *hw = &pf->hw; 5138 u8 mac_addr[ETH_ALEN]; 5139 struct ice_vsi *vsi; 5140 int status; 5141 u8 flags; 5142 5143 if (!pf->wol_ena) 5144 return; 5145 5146 vsi = ice_get_main_vsi(pf); 5147 if (!vsi) 5148 return; 5149 5150 /* Get current MAC address in case it's an LAA */ 5151 if (vsi->netdev) 5152 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5153 else 5154 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5155 5156 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5157 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5158 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5159 5160 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5161 if (status) 5162 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5163 status, ice_aq_str(hw->adminq.sq_last_status)); 5164 } 5165 5166 /** 5167 * ice_remove - Device removal routine 5168 * @pdev: PCI device information struct 5169 */ 5170 static void ice_remove(struct pci_dev *pdev) 5171 { 5172 struct ice_pf *pf = pci_get_drvdata(pdev); 5173 int i; 5174 5175 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5176 if (!ice_is_reset_in_progress(pf->state)) 5177 break; 5178 msleep(100); 5179 } 5180 5181 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5182 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5183 ice_free_vfs(pf); 5184 } 5185 5186 ice_service_task_stop(pf); 5187 ice_aq_cancel_waiting_tasks(pf); 5188 set_bit(ICE_DOWN, pf->state); 5189 5190 if (!ice_is_safe_mode(pf)) 5191 ice_remove_arfs(pf); 5192 ice_deinit_features(pf); 5193 ice_deinit_devlink(pf); 5194 ice_deinit_rdma(pf); 5195 ice_deinit_eth(pf); 5196 ice_deinit(pf); 5197 5198 ice_vsi_release_all(pf); 5199 5200 ice_setup_mc_magic_wake(pf); 5201 ice_set_wake(pf); 5202 5203 pci_disable_device(pdev); 5204 } 5205 5206 /** 5207 * ice_shutdown - PCI callback for shutting down device 5208 * @pdev: PCI device information struct 5209 */ 5210 static void ice_shutdown(struct pci_dev *pdev) 5211 { 5212 struct ice_pf *pf = pci_get_drvdata(pdev); 5213 5214 ice_remove(pdev); 5215 5216 if (system_state == SYSTEM_POWER_OFF) { 5217 pci_wake_from_d3(pdev, pf->wol_ena); 5218 pci_set_power_state(pdev, PCI_D3hot); 5219 } 5220 } 5221 5222 #ifdef CONFIG_PM 5223 /** 5224 * ice_prepare_for_shutdown - prep for PCI shutdown 5225 * @pf: board private structure 5226 * 5227 * Inform or close all dependent features in prep for PCI device shutdown 5228 */ 5229 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5230 { 5231 struct ice_hw *hw = &pf->hw; 5232 u32 v; 5233 5234 /* Notify VFs of impending reset */ 5235 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5236 ice_vc_notify_reset(pf); 5237 5238 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5239 5240 /* disable the VSIs and their queues that are not already DOWN */ 5241 ice_pf_dis_all_vsi(pf, false); 5242 5243 ice_for_each_vsi(pf, v) 5244 if (pf->vsi[v]) 5245 pf->vsi[v]->vsi_num = 0; 5246 5247 ice_shutdown_all_ctrlq(hw); 5248 } 5249 5250 /** 5251 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5252 * @pf: board private structure to reinitialize 5253 * 5254 * This routine reinitialize interrupt scheme that was cleared during 5255 * power management suspend callback. 5256 * 5257 * This should be called during resume routine to re-allocate the q_vectors 5258 * and reacquire interrupts. 5259 */ 5260 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5261 { 5262 struct device *dev = ice_pf_to_dev(pf); 5263 int ret, v; 5264 5265 /* Since we clear MSIX flag during suspend, we need to 5266 * set it back during resume... 5267 */ 5268 5269 ret = ice_init_interrupt_scheme(pf); 5270 if (ret) { 5271 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5272 return ret; 5273 } 5274 5275 /* Remap vectors and rings, after successful re-init interrupts */ 5276 ice_for_each_vsi(pf, v) { 5277 if (!pf->vsi[v]) 5278 continue; 5279 5280 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5281 if (ret) 5282 goto err_reinit; 5283 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5284 } 5285 5286 ret = ice_req_irq_msix_misc(pf); 5287 if (ret) { 5288 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5289 ret); 5290 goto err_reinit; 5291 } 5292 5293 return 0; 5294 5295 err_reinit: 5296 while (v--) 5297 if (pf->vsi[v]) 5298 ice_vsi_free_q_vectors(pf->vsi[v]); 5299 5300 return ret; 5301 } 5302 5303 /** 5304 * ice_suspend 5305 * @dev: generic device information structure 5306 * 5307 * Power Management callback to quiesce the device and prepare 5308 * for D3 transition. 5309 */ 5310 static int __maybe_unused ice_suspend(struct device *dev) 5311 { 5312 struct pci_dev *pdev = to_pci_dev(dev); 5313 struct ice_pf *pf; 5314 int disabled, v; 5315 5316 pf = pci_get_drvdata(pdev); 5317 5318 if (!ice_pf_state_is_nominal(pf)) { 5319 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5320 return -EBUSY; 5321 } 5322 5323 /* Stop watchdog tasks until resume completion. 5324 * Even though it is most likely that the service task is 5325 * disabled if the device is suspended or down, the service task's 5326 * state is controlled by a different state bit, and we should 5327 * store and honor whatever state that bit is in at this point. 5328 */ 5329 disabled = ice_service_task_stop(pf); 5330 5331 ice_unplug_aux_dev(pf); 5332 5333 /* Already suspended?, then there is nothing to do */ 5334 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5335 if (!disabled) 5336 ice_service_task_restart(pf); 5337 return 0; 5338 } 5339 5340 if (test_bit(ICE_DOWN, pf->state) || 5341 ice_is_reset_in_progress(pf->state)) { 5342 dev_err(dev, "can't suspend device in reset or already down\n"); 5343 if (!disabled) 5344 ice_service_task_restart(pf); 5345 return 0; 5346 } 5347 5348 ice_setup_mc_magic_wake(pf); 5349 5350 ice_prepare_for_shutdown(pf); 5351 5352 ice_set_wake(pf); 5353 5354 /* Free vectors, clear the interrupt scheme and release IRQs 5355 * for proper hibernation, especially with large number of CPUs. 5356 * Otherwise hibernation might fail when mapping all the vectors back 5357 * to CPU0. 5358 */ 5359 ice_free_irq_msix_misc(pf); 5360 ice_for_each_vsi(pf, v) { 5361 if (!pf->vsi[v]) 5362 continue; 5363 ice_vsi_free_q_vectors(pf->vsi[v]); 5364 } 5365 ice_clear_interrupt_scheme(pf); 5366 5367 pci_save_state(pdev); 5368 pci_wake_from_d3(pdev, pf->wol_ena); 5369 pci_set_power_state(pdev, PCI_D3hot); 5370 return 0; 5371 } 5372 5373 /** 5374 * ice_resume - PM callback for waking up from D3 5375 * @dev: generic device information structure 5376 */ 5377 static int __maybe_unused ice_resume(struct device *dev) 5378 { 5379 struct pci_dev *pdev = to_pci_dev(dev); 5380 enum ice_reset_req reset_type; 5381 struct ice_pf *pf; 5382 struct ice_hw *hw; 5383 int ret; 5384 5385 pci_set_power_state(pdev, PCI_D0); 5386 pci_restore_state(pdev); 5387 pci_save_state(pdev); 5388 5389 if (!pci_device_is_present(pdev)) 5390 return -ENODEV; 5391 5392 ret = pci_enable_device_mem(pdev); 5393 if (ret) { 5394 dev_err(dev, "Cannot enable device after suspend\n"); 5395 return ret; 5396 } 5397 5398 pf = pci_get_drvdata(pdev); 5399 hw = &pf->hw; 5400 5401 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5402 ice_print_wake_reason(pf); 5403 5404 /* We cleared the interrupt scheme when we suspended, so we need to 5405 * restore it now to resume device functionality. 5406 */ 5407 ret = ice_reinit_interrupt_scheme(pf); 5408 if (ret) 5409 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5410 5411 clear_bit(ICE_DOWN, pf->state); 5412 /* Now perform PF reset and rebuild */ 5413 reset_type = ICE_RESET_PFR; 5414 /* re-enable service task for reset, but allow reset to schedule it */ 5415 clear_bit(ICE_SERVICE_DIS, pf->state); 5416 5417 if (ice_schedule_reset(pf, reset_type)) 5418 dev_err(dev, "Reset during resume failed.\n"); 5419 5420 clear_bit(ICE_SUSPENDED, pf->state); 5421 ice_service_task_restart(pf); 5422 5423 /* Restart the service task */ 5424 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5425 5426 return 0; 5427 } 5428 #endif /* CONFIG_PM */ 5429 5430 /** 5431 * ice_pci_err_detected - warning that PCI error has been detected 5432 * @pdev: PCI device information struct 5433 * @err: the type of PCI error 5434 * 5435 * Called to warn that something happened on the PCI bus and the error handling 5436 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5437 */ 5438 static pci_ers_result_t 5439 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5440 { 5441 struct ice_pf *pf = pci_get_drvdata(pdev); 5442 5443 if (!pf) { 5444 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5445 __func__, err); 5446 return PCI_ERS_RESULT_DISCONNECT; 5447 } 5448 5449 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5450 ice_service_task_stop(pf); 5451 5452 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5453 set_bit(ICE_PFR_REQ, pf->state); 5454 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5455 } 5456 } 5457 5458 return PCI_ERS_RESULT_NEED_RESET; 5459 } 5460 5461 /** 5462 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5463 * @pdev: PCI device information struct 5464 * 5465 * Called to determine if the driver can recover from the PCI slot reset by 5466 * using a register read to determine if the device is recoverable. 5467 */ 5468 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5469 { 5470 struct ice_pf *pf = pci_get_drvdata(pdev); 5471 pci_ers_result_t result; 5472 int err; 5473 u32 reg; 5474 5475 err = pci_enable_device_mem(pdev); 5476 if (err) { 5477 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5478 err); 5479 result = PCI_ERS_RESULT_DISCONNECT; 5480 } else { 5481 pci_set_master(pdev); 5482 pci_restore_state(pdev); 5483 pci_save_state(pdev); 5484 pci_wake_from_d3(pdev, false); 5485 5486 /* Check for life */ 5487 reg = rd32(&pf->hw, GLGEN_RTRIG); 5488 if (!reg) 5489 result = PCI_ERS_RESULT_RECOVERED; 5490 else 5491 result = PCI_ERS_RESULT_DISCONNECT; 5492 } 5493 5494 return result; 5495 } 5496 5497 /** 5498 * ice_pci_err_resume - restart operations after PCI error recovery 5499 * @pdev: PCI device information struct 5500 * 5501 * Called to allow the driver to bring things back up after PCI error and/or 5502 * reset recovery have finished 5503 */ 5504 static void ice_pci_err_resume(struct pci_dev *pdev) 5505 { 5506 struct ice_pf *pf = pci_get_drvdata(pdev); 5507 5508 if (!pf) { 5509 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5510 __func__); 5511 return; 5512 } 5513 5514 if (test_bit(ICE_SUSPENDED, pf->state)) { 5515 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5516 __func__); 5517 return; 5518 } 5519 5520 ice_restore_all_vfs_msi_state(pdev); 5521 5522 ice_do_reset(pf, ICE_RESET_PFR); 5523 ice_service_task_restart(pf); 5524 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5525 } 5526 5527 /** 5528 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5529 * @pdev: PCI device information struct 5530 */ 5531 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5532 { 5533 struct ice_pf *pf = pci_get_drvdata(pdev); 5534 5535 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5536 ice_service_task_stop(pf); 5537 5538 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5539 set_bit(ICE_PFR_REQ, pf->state); 5540 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5541 } 5542 } 5543 } 5544 5545 /** 5546 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5547 * @pdev: PCI device information struct 5548 */ 5549 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5550 { 5551 ice_pci_err_resume(pdev); 5552 } 5553 5554 /* ice_pci_tbl - PCI Device ID Table 5555 * 5556 * Wildcard entries (PCI_ANY_ID) should come last 5557 * Last entry must be all 0s 5558 * 5559 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5560 * Class, Class Mask, private data (not used) } 5561 */ 5562 static const struct pci_device_id ice_pci_tbl[] = { 5563 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5564 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5565 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5566 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5567 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5568 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5569 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5570 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5571 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5572 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5573 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5574 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5575 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5576 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5577 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5578 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5579 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5580 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5581 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5582 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5583 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5584 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5585 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5586 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5587 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5588 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5589 /* required last entry */ 5590 { 0, } 5591 }; 5592 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5593 5594 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5595 5596 static const struct pci_error_handlers ice_pci_err_handler = { 5597 .error_detected = ice_pci_err_detected, 5598 .slot_reset = ice_pci_err_slot_reset, 5599 .reset_prepare = ice_pci_err_reset_prepare, 5600 .reset_done = ice_pci_err_reset_done, 5601 .resume = ice_pci_err_resume 5602 }; 5603 5604 static struct pci_driver ice_driver = { 5605 .name = KBUILD_MODNAME, 5606 .id_table = ice_pci_tbl, 5607 .probe = ice_probe, 5608 .remove = ice_remove, 5609 #ifdef CONFIG_PM 5610 .driver.pm = &ice_pm_ops, 5611 #endif /* CONFIG_PM */ 5612 .shutdown = ice_shutdown, 5613 .sriov_configure = ice_sriov_configure, 5614 .err_handler = &ice_pci_err_handler 5615 }; 5616 5617 /** 5618 * ice_module_init - Driver registration routine 5619 * 5620 * ice_module_init is the first routine called when the driver is 5621 * loaded. All it does is register with the PCI subsystem. 5622 */ 5623 static int __init ice_module_init(void) 5624 { 5625 int status = -ENOMEM; 5626 5627 pr_info("%s\n", ice_driver_string); 5628 pr_info("%s\n", ice_copyright); 5629 5630 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5631 if (!ice_wq) { 5632 pr_err("Failed to create workqueue\n"); 5633 return status; 5634 } 5635 5636 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5637 if (!ice_lag_wq) { 5638 pr_err("Failed to create LAG workqueue\n"); 5639 goto err_dest_wq; 5640 } 5641 5642 status = pci_register_driver(&ice_driver); 5643 if (status) { 5644 pr_err("failed to register PCI driver, err %d\n", status); 5645 goto err_dest_lag_wq; 5646 } 5647 5648 return 0; 5649 5650 err_dest_lag_wq: 5651 destroy_workqueue(ice_lag_wq); 5652 err_dest_wq: 5653 destroy_workqueue(ice_wq); 5654 return status; 5655 } 5656 module_init(ice_module_init); 5657 5658 /** 5659 * ice_module_exit - Driver exit cleanup routine 5660 * 5661 * ice_module_exit is called just before the driver is removed 5662 * from memory. 5663 */ 5664 static void __exit ice_module_exit(void) 5665 { 5666 pci_unregister_driver(&ice_driver); 5667 destroy_workqueue(ice_wq); 5668 destroy_workqueue(ice_lag_wq); 5669 pr_info("module unloaded\n"); 5670 } 5671 module_exit(ice_module_exit); 5672 5673 /** 5674 * ice_set_mac_address - NDO callback to set MAC address 5675 * @netdev: network interface device structure 5676 * @pi: pointer to an address structure 5677 * 5678 * Returns 0 on success, negative on failure 5679 */ 5680 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5681 { 5682 struct ice_netdev_priv *np = netdev_priv(netdev); 5683 struct ice_vsi *vsi = np->vsi; 5684 struct ice_pf *pf = vsi->back; 5685 struct ice_hw *hw = &pf->hw; 5686 struct sockaddr *addr = pi; 5687 u8 old_mac[ETH_ALEN]; 5688 u8 flags = 0; 5689 u8 *mac; 5690 int err; 5691 5692 mac = (u8 *)addr->sa_data; 5693 5694 if (!is_valid_ether_addr(mac)) 5695 return -EADDRNOTAVAIL; 5696 5697 if (test_bit(ICE_DOWN, pf->state) || 5698 ice_is_reset_in_progress(pf->state)) { 5699 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5700 mac); 5701 return -EBUSY; 5702 } 5703 5704 if (ice_chnl_dmac_fltr_cnt(pf)) { 5705 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5706 mac); 5707 return -EAGAIN; 5708 } 5709 5710 netif_addr_lock_bh(netdev); 5711 ether_addr_copy(old_mac, netdev->dev_addr); 5712 /* change the netdev's MAC address */ 5713 eth_hw_addr_set(netdev, mac); 5714 netif_addr_unlock_bh(netdev); 5715 5716 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5717 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5718 if (err && err != -ENOENT) { 5719 err = -EADDRNOTAVAIL; 5720 goto err_update_filters; 5721 } 5722 5723 /* Add filter for new MAC. If filter exists, return success */ 5724 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5725 if (err == -EEXIST) { 5726 /* Although this MAC filter is already present in hardware it's 5727 * possible in some cases (e.g. bonding) that dev_addr was 5728 * modified outside of the driver and needs to be restored back 5729 * to this value. 5730 */ 5731 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5732 5733 return 0; 5734 } else if (err) { 5735 /* error if the new filter addition failed */ 5736 err = -EADDRNOTAVAIL; 5737 } 5738 5739 err_update_filters: 5740 if (err) { 5741 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5742 mac); 5743 netif_addr_lock_bh(netdev); 5744 eth_hw_addr_set(netdev, old_mac); 5745 netif_addr_unlock_bh(netdev); 5746 return err; 5747 } 5748 5749 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5750 netdev->dev_addr); 5751 5752 /* write new MAC address to the firmware */ 5753 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5754 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5755 if (err) { 5756 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5757 mac, err); 5758 } 5759 return 0; 5760 } 5761 5762 /** 5763 * ice_set_rx_mode - NDO callback to set the netdev filters 5764 * @netdev: network interface device structure 5765 */ 5766 static void ice_set_rx_mode(struct net_device *netdev) 5767 { 5768 struct ice_netdev_priv *np = netdev_priv(netdev); 5769 struct ice_vsi *vsi = np->vsi; 5770 5771 if (!vsi || ice_is_switchdev_running(vsi->back)) 5772 return; 5773 5774 /* Set the flags to synchronize filters 5775 * ndo_set_rx_mode may be triggered even without a change in netdev 5776 * flags 5777 */ 5778 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5779 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5780 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5781 5782 /* schedule our worker thread which will take care of 5783 * applying the new filter changes 5784 */ 5785 ice_service_task_schedule(vsi->back); 5786 } 5787 5788 /** 5789 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5790 * @netdev: network interface device structure 5791 * @queue_index: Queue ID 5792 * @maxrate: maximum bandwidth in Mbps 5793 */ 5794 static int 5795 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5796 { 5797 struct ice_netdev_priv *np = netdev_priv(netdev); 5798 struct ice_vsi *vsi = np->vsi; 5799 u16 q_handle; 5800 int status; 5801 u8 tc; 5802 5803 /* Validate maxrate requested is within permitted range */ 5804 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5805 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5806 maxrate, queue_index); 5807 return -EINVAL; 5808 } 5809 5810 q_handle = vsi->tx_rings[queue_index]->q_handle; 5811 tc = ice_dcb_get_tc(vsi, queue_index); 5812 5813 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5814 if (!vsi) { 5815 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5816 queue_index); 5817 return -EINVAL; 5818 } 5819 5820 /* Set BW back to default, when user set maxrate to 0 */ 5821 if (!maxrate) 5822 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5823 q_handle, ICE_MAX_BW); 5824 else 5825 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5826 q_handle, ICE_MAX_BW, maxrate * 1000); 5827 if (status) 5828 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5829 status); 5830 5831 return status; 5832 } 5833 5834 /** 5835 * ice_fdb_add - add an entry to the hardware database 5836 * @ndm: the input from the stack 5837 * @tb: pointer to array of nladdr (unused) 5838 * @dev: the net device pointer 5839 * @addr: the MAC address entry being added 5840 * @vid: VLAN ID 5841 * @flags: instructions from stack about fdb operation 5842 * @extack: netlink extended ack 5843 */ 5844 static int 5845 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5846 struct net_device *dev, const unsigned char *addr, u16 vid, 5847 u16 flags, struct netlink_ext_ack __always_unused *extack) 5848 { 5849 int err; 5850 5851 if (vid) { 5852 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5853 return -EINVAL; 5854 } 5855 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5856 netdev_err(dev, "FDB only supports static addresses\n"); 5857 return -EINVAL; 5858 } 5859 5860 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5861 err = dev_uc_add_excl(dev, addr); 5862 else if (is_multicast_ether_addr(addr)) 5863 err = dev_mc_add_excl(dev, addr); 5864 else 5865 err = -EINVAL; 5866 5867 /* Only return duplicate errors if NLM_F_EXCL is set */ 5868 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5869 err = 0; 5870 5871 return err; 5872 } 5873 5874 /** 5875 * ice_fdb_del - delete an entry from the hardware database 5876 * @ndm: the input from the stack 5877 * @tb: pointer to array of nladdr (unused) 5878 * @dev: the net device pointer 5879 * @addr: the MAC address entry being added 5880 * @vid: VLAN ID 5881 * @extack: netlink extended ack 5882 */ 5883 static int 5884 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5885 struct net_device *dev, const unsigned char *addr, 5886 __always_unused u16 vid, struct netlink_ext_ack *extack) 5887 { 5888 int err; 5889 5890 if (ndm->ndm_state & NUD_PERMANENT) { 5891 netdev_err(dev, "FDB only supports static addresses\n"); 5892 return -EINVAL; 5893 } 5894 5895 if (is_unicast_ether_addr(addr)) 5896 err = dev_uc_del(dev, addr); 5897 else if (is_multicast_ether_addr(addr)) 5898 err = dev_mc_del(dev, addr); 5899 else 5900 err = -EINVAL; 5901 5902 return err; 5903 } 5904 5905 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5906 NETIF_F_HW_VLAN_CTAG_TX | \ 5907 NETIF_F_HW_VLAN_STAG_RX | \ 5908 NETIF_F_HW_VLAN_STAG_TX) 5909 5910 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5911 NETIF_F_HW_VLAN_STAG_RX) 5912 5913 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5914 NETIF_F_HW_VLAN_STAG_FILTER) 5915 5916 /** 5917 * ice_fix_features - fix the netdev features flags based on device limitations 5918 * @netdev: ptr to the netdev that flags are being fixed on 5919 * @features: features that need to be checked and possibly fixed 5920 * 5921 * Make sure any fixups are made to features in this callback. This enables the 5922 * driver to not have to check unsupported configurations throughout the driver 5923 * because that's the responsiblity of this callback. 5924 * 5925 * Single VLAN Mode (SVM) Supported Features: 5926 * NETIF_F_HW_VLAN_CTAG_FILTER 5927 * NETIF_F_HW_VLAN_CTAG_RX 5928 * NETIF_F_HW_VLAN_CTAG_TX 5929 * 5930 * Double VLAN Mode (DVM) Supported Features: 5931 * NETIF_F_HW_VLAN_CTAG_FILTER 5932 * NETIF_F_HW_VLAN_CTAG_RX 5933 * NETIF_F_HW_VLAN_CTAG_TX 5934 * 5935 * NETIF_F_HW_VLAN_STAG_FILTER 5936 * NETIF_HW_VLAN_STAG_RX 5937 * NETIF_HW_VLAN_STAG_TX 5938 * 5939 * Features that need fixing: 5940 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5941 * These are mutually exlusive as the VSI context cannot support multiple 5942 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5943 * is not done, then default to clearing the requested STAG offload 5944 * settings. 5945 * 5946 * All supported filtering has to be enabled or disabled together. For 5947 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5948 * together. If this is not done, then default to VLAN filtering disabled. 5949 * These are mutually exclusive as there is currently no way to 5950 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5951 * prune rules. 5952 */ 5953 static netdev_features_t 5954 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5955 { 5956 struct ice_netdev_priv *np = netdev_priv(netdev); 5957 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5958 bool cur_ctag, cur_stag, req_ctag, req_stag; 5959 5960 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5961 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5962 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5963 5964 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5965 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5966 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5967 5968 if (req_vlan_fltr != cur_vlan_fltr) { 5969 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5970 if (req_ctag && req_stag) { 5971 features |= NETIF_VLAN_FILTERING_FEATURES; 5972 } else if (!req_ctag && !req_stag) { 5973 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5974 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5975 (!cur_stag && req_stag && !cur_ctag)) { 5976 features |= NETIF_VLAN_FILTERING_FEATURES; 5977 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5978 } else if ((cur_ctag && !req_ctag && cur_stag) || 5979 (cur_stag && !req_stag && cur_ctag)) { 5980 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5981 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5982 } 5983 } else { 5984 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5985 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5986 5987 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5988 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5989 } 5990 } 5991 5992 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5993 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5994 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5995 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5996 NETIF_F_HW_VLAN_STAG_TX); 5997 } 5998 5999 if (!(netdev->features & NETIF_F_RXFCS) && 6000 (features & NETIF_F_RXFCS) && 6001 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6002 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6003 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6004 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6005 } 6006 6007 return features; 6008 } 6009 6010 /** 6011 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6012 * @vsi: PF's VSI 6013 * @features: features used to determine VLAN offload settings 6014 * 6015 * First, determine the vlan_ethertype based on the VLAN offload bits in 6016 * features. Then determine if stripping and insertion should be enabled or 6017 * disabled. Finally enable or disable VLAN stripping and insertion. 6018 */ 6019 static int 6020 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6021 { 6022 bool enable_stripping = true, enable_insertion = true; 6023 struct ice_vsi_vlan_ops *vlan_ops; 6024 int strip_err = 0, insert_err = 0; 6025 u16 vlan_ethertype = 0; 6026 6027 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6028 6029 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6030 vlan_ethertype = ETH_P_8021AD; 6031 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6032 vlan_ethertype = ETH_P_8021Q; 6033 6034 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6035 enable_stripping = false; 6036 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6037 enable_insertion = false; 6038 6039 if (enable_stripping) 6040 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6041 else 6042 strip_err = vlan_ops->dis_stripping(vsi); 6043 6044 if (enable_insertion) 6045 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6046 else 6047 insert_err = vlan_ops->dis_insertion(vsi); 6048 6049 if (strip_err || insert_err) 6050 return -EIO; 6051 6052 return 0; 6053 } 6054 6055 /** 6056 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6057 * @vsi: PF's VSI 6058 * @features: features used to determine VLAN filtering settings 6059 * 6060 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6061 * features. 6062 */ 6063 static int 6064 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6065 { 6066 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6067 int err = 0; 6068 6069 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6070 * if either bit is set 6071 */ 6072 if (features & 6073 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6074 err = vlan_ops->ena_rx_filtering(vsi); 6075 else 6076 err = vlan_ops->dis_rx_filtering(vsi); 6077 6078 return err; 6079 } 6080 6081 /** 6082 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6083 * @netdev: ptr to the netdev being adjusted 6084 * @features: the feature set that the stack is suggesting 6085 * 6086 * Only update VLAN settings if the requested_vlan_features are different than 6087 * the current_vlan_features. 6088 */ 6089 static int 6090 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6091 { 6092 netdev_features_t current_vlan_features, requested_vlan_features; 6093 struct ice_netdev_priv *np = netdev_priv(netdev); 6094 struct ice_vsi *vsi = np->vsi; 6095 int err; 6096 6097 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6098 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6099 if (current_vlan_features ^ requested_vlan_features) { 6100 if ((features & NETIF_F_RXFCS) && 6101 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6102 dev_err(ice_pf_to_dev(vsi->back), 6103 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6104 return -EIO; 6105 } 6106 6107 err = ice_set_vlan_offload_features(vsi, features); 6108 if (err) 6109 return err; 6110 } 6111 6112 current_vlan_features = netdev->features & 6113 NETIF_VLAN_FILTERING_FEATURES; 6114 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6115 if (current_vlan_features ^ requested_vlan_features) { 6116 err = ice_set_vlan_filtering_features(vsi, features); 6117 if (err) 6118 return err; 6119 } 6120 6121 return 0; 6122 } 6123 6124 /** 6125 * ice_set_loopback - turn on/off loopback mode on underlying PF 6126 * @vsi: ptr to VSI 6127 * @ena: flag to indicate the on/off setting 6128 */ 6129 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6130 { 6131 bool if_running = netif_running(vsi->netdev); 6132 int ret; 6133 6134 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6135 ret = ice_down(vsi); 6136 if (ret) { 6137 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6138 return ret; 6139 } 6140 } 6141 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6142 if (ret) 6143 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6144 if (if_running) 6145 ret = ice_up(vsi); 6146 6147 return ret; 6148 } 6149 6150 /** 6151 * ice_set_features - set the netdev feature flags 6152 * @netdev: ptr to the netdev being adjusted 6153 * @features: the feature set that the stack is suggesting 6154 */ 6155 static int 6156 ice_set_features(struct net_device *netdev, netdev_features_t features) 6157 { 6158 netdev_features_t changed = netdev->features ^ features; 6159 struct ice_netdev_priv *np = netdev_priv(netdev); 6160 struct ice_vsi *vsi = np->vsi; 6161 struct ice_pf *pf = vsi->back; 6162 int ret = 0; 6163 6164 /* Don't set any netdev advanced features with device in Safe Mode */ 6165 if (ice_is_safe_mode(pf)) { 6166 dev_err(ice_pf_to_dev(pf), 6167 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6168 return ret; 6169 } 6170 6171 /* Do not change setting during reset */ 6172 if (ice_is_reset_in_progress(pf->state)) { 6173 dev_err(ice_pf_to_dev(pf), 6174 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6175 return -EBUSY; 6176 } 6177 6178 /* Multiple features can be changed in one call so keep features in 6179 * separate if/else statements to guarantee each feature is checked 6180 */ 6181 if (changed & NETIF_F_RXHASH) 6182 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6183 6184 ret = ice_set_vlan_features(netdev, features); 6185 if (ret) 6186 return ret; 6187 6188 /* Turn on receive of FCS aka CRC, and after setting this 6189 * flag the packet data will have the 4 byte CRC appended 6190 */ 6191 if (changed & NETIF_F_RXFCS) { 6192 if ((features & NETIF_F_RXFCS) && 6193 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6194 dev_err(ice_pf_to_dev(vsi->back), 6195 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6196 return -EIO; 6197 } 6198 6199 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6200 ret = ice_down_up(vsi); 6201 if (ret) 6202 return ret; 6203 } 6204 6205 if (changed & NETIF_F_NTUPLE) { 6206 bool ena = !!(features & NETIF_F_NTUPLE); 6207 6208 ice_vsi_manage_fdir(vsi, ena); 6209 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6210 } 6211 6212 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6213 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6214 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6215 return -EACCES; 6216 } 6217 6218 if (changed & NETIF_F_HW_TC) { 6219 bool ena = !!(features & NETIF_F_HW_TC); 6220 6221 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6222 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6223 } 6224 6225 if (changed & NETIF_F_LOOPBACK) 6226 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6227 6228 return ret; 6229 } 6230 6231 /** 6232 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6233 * @vsi: VSI to setup VLAN properties for 6234 */ 6235 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6236 { 6237 int err; 6238 6239 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6240 if (err) 6241 return err; 6242 6243 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6244 if (err) 6245 return err; 6246 6247 return ice_vsi_add_vlan_zero(vsi); 6248 } 6249 6250 /** 6251 * ice_vsi_cfg_lan - Setup the VSI lan related config 6252 * @vsi: the VSI being configured 6253 * 6254 * Return 0 on success and negative value on error 6255 */ 6256 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6257 { 6258 int err; 6259 6260 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6261 ice_set_rx_mode(vsi->netdev); 6262 6263 err = ice_vsi_vlan_setup(vsi); 6264 if (err) 6265 return err; 6266 } 6267 ice_vsi_cfg_dcb_rings(vsi); 6268 6269 err = ice_vsi_cfg_lan_txqs(vsi); 6270 if (!err && ice_is_xdp_ena_vsi(vsi)) 6271 err = ice_vsi_cfg_xdp_txqs(vsi); 6272 if (!err) 6273 err = ice_vsi_cfg_rxqs(vsi); 6274 6275 return err; 6276 } 6277 6278 /* THEORY OF MODERATION: 6279 * The ice driver hardware works differently than the hardware that DIMLIB was 6280 * originally made for. ice hardware doesn't have packet count limits that 6281 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6282 * which is hard-coded to a limit of 250,000 ints/second. 6283 * If not using dynamic moderation, the INTRL value can be modified 6284 * by ethtool rx-usecs-high. 6285 */ 6286 struct ice_dim { 6287 /* the throttle rate for interrupts, basically worst case delay before 6288 * an initial interrupt fires, value is stored in microseconds. 6289 */ 6290 u16 itr; 6291 }; 6292 6293 /* Make a different profile for Rx that doesn't allow quite so aggressive 6294 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6295 * second. 6296 */ 6297 static const struct ice_dim rx_profile[] = { 6298 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6299 {8}, /* 125,000 ints/s */ 6300 {16}, /* 62,500 ints/s */ 6301 {62}, /* 16,129 ints/s */ 6302 {126} /* 7,936 ints/s */ 6303 }; 6304 6305 /* The transmit profile, which has the same sorts of values 6306 * as the previous struct 6307 */ 6308 static const struct ice_dim tx_profile[] = { 6309 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6310 {8}, /* 125,000 ints/s */ 6311 {40}, /* 16,125 ints/s */ 6312 {128}, /* 7,812 ints/s */ 6313 {256} /* 3,906 ints/s */ 6314 }; 6315 6316 static void ice_tx_dim_work(struct work_struct *work) 6317 { 6318 struct ice_ring_container *rc; 6319 struct dim *dim; 6320 u16 itr; 6321 6322 dim = container_of(work, struct dim, work); 6323 rc = dim->priv; 6324 6325 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6326 6327 /* look up the values in our local table */ 6328 itr = tx_profile[dim->profile_ix].itr; 6329 6330 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6331 ice_write_itr(rc, itr); 6332 6333 dim->state = DIM_START_MEASURE; 6334 } 6335 6336 static void ice_rx_dim_work(struct work_struct *work) 6337 { 6338 struct ice_ring_container *rc; 6339 struct dim *dim; 6340 u16 itr; 6341 6342 dim = container_of(work, struct dim, work); 6343 rc = dim->priv; 6344 6345 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6346 6347 /* look up the values in our local table */ 6348 itr = rx_profile[dim->profile_ix].itr; 6349 6350 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6351 ice_write_itr(rc, itr); 6352 6353 dim->state = DIM_START_MEASURE; 6354 } 6355 6356 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6357 6358 /** 6359 * ice_init_moderation - set up interrupt moderation 6360 * @q_vector: the vector containing rings to be configured 6361 * 6362 * Set up interrupt moderation registers, with the intent to do the right thing 6363 * when called from reset or from probe, and whether or not dynamic moderation 6364 * is enabled or not. Take special care to write all the registers in both 6365 * dynamic moderation mode or not in order to make sure hardware is in a known 6366 * state. 6367 */ 6368 static void ice_init_moderation(struct ice_q_vector *q_vector) 6369 { 6370 struct ice_ring_container *rc; 6371 bool tx_dynamic, rx_dynamic; 6372 6373 rc = &q_vector->tx; 6374 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6375 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6376 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6377 rc->dim.priv = rc; 6378 tx_dynamic = ITR_IS_DYNAMIC(rc); 6379 6380 /* set the initial TX ITR to match the above */ 6381 ice_write_itr(rc, tx_dynamic ? 6382 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6383 6384 rc = &q_vector->rx; 6385 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6386 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6387 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6388 rc->dim.priv = rc; 6389 rx_dynamic = ITR_IS_DYNAMIC(rc); 6390 6391 /* set the initial RX ITR to match the above */ 6392 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6393 rc->itr_setting); 6394 6395 ice_set_q_vector_intrl(q_vector); 6396 } 6397 6398 /** 6399 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6400 * @vsi: the VSI being configured 6401 */ 6402 static void ice_napi_enable_all(struct ice_vsi *vsi) 6403 { 6404 int q_idx; 6405 6406 if (!vsi->netdev) 6407 return; 6408 6409 ice_for_each_q_vector(vsi, q_idx) { 6410 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6411 6412 ice_init_moderation(q_vector); 6413 6414 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6415 napi_enable(&q_vector->napi); 6416 } 6417 } 6418 6419 /** 6420 * ice_up_complete - Finish the last steps of bringing up a connection 6421 * @vsi: The VSI being configured 6422 * 6423 * Return 0 on success and negative value on error 6424 */ 6425 static int ice_up_complete(struct ice_vsi *vsi) 6426 { 6427 struct ice_pf *pf = vsi->back; 6428 int err; 6429 6430 ice_vsi_cfg_msix(vsi); 6431 6432 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6433 * Tx queue group list was configured and the context bits were 6434 * programmed using ice_vsi_cfg_txqs 6435 */ 6436 err = ice_vsi_start_all_rx_rings(vsi); 6437 if (err) 6438 return err; 6439 6440 clear_bit(ICE_VSI_DOWN, vsi->state); 6441 ice_napi_enable_all(vsi); 6442 ice_vsi_ena_irq(vsi); 6443 6444 if (vsi->port_info && 6445 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6446 vsi->netdev && vsi->type == ICE_VSI_PF) { 6447 ice_print_link_msg(vsi, true); 6448 netif_tx_start_all_queues(vsi->netdev); 6449 netif_carrier_on(vsi->netdev); 6450 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6451 } 6452 6453 /* Perform an initial read of the statistics registers now to 6454 * set the baseline so counters are ready when interface is up 6455 */ 6456 ice_update_eth_stats(vsi); 6457 6458 if (vsi->type == ICE_VSI_PF) 6459 ice_service_task_schedule(pf); 6460 6461 return 0; 6462 } 6463 6464 /** 6465 * ice_up - Bring the connection back up after being down 6466 * @vsi: VSI being configured 6467 */ 6468 int ice_up(struct ice_vsi *vsi) 6469 { 6470 int err; 6471 6472 err = ice_vsi_cfg_lan(vsi); 6473 if (!err) 6474 err = ice_up_complete(vsi); 6475 6476 return err; 6477 } 6478 6479 /** 6480 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6481 * @syncp: pointer to u64_stats_sync 6482 * @stats: stats that pkts and bytes count will be taken from 6483 * @pkts: packets stats counter 6484 * @bytes: bytes stats counter 6485 * 6486 * This function fetches stats from the ring considering the atomic operations 6487 * that needs to be performed to read u64 values in 32 bit machine. 6488 */ 6489 void 6490 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6491 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6492 { 6493 unsigned int start; 6494 6495 do { 6496 start = u64_stats_fetch_begin(syncp); 6497 *pkts = stats.pkts; 6498 *bytes = stats.bytes; 6499 } while (u64_stats_fetch_retry(syncp, start)); 6500 } 6501 6502 /** 6503 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6504 * @vsi: the VSI to be updated 6505 * @vsi_stats: the stats struct to be updated 6506 * @rings: rings to work on 6507 * @count: number of rings 6508 */ 6509 static void 6510 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6511 struct rtnl_link_stats64 *vsi_stats, 6512 struct ice_tx_ring **rings, u16 count) 6513 { 6514 u16 i; 6515 6516 for (i = 0; i < count; i++) { 6517 struct ice_tx_ring *ring; 6518 u64 pkts = 0, bytes = 0; 6519 6520 ring = READ_ONCE(rings[i]); 6521 if (!ring || !ring->ring_stats) 6522 continue; 6523 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6524 ring->ring_stats->stats, &pkts, 6525 &bytes); 6526 vsi_stats->tx_packets += pkts; 6527 vsi_stats->tx_bytes += bytes; 6528 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6529 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6530 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6531 } 6532 } 6533 6534 /** 6535 * ice_update_vsi_ring_stats - Update VSI stats counters 6536 * @vsi: the VSI to be updated 6537 */ 6538 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6539 { 6540 struct rtnl_link_stats64 *net_stats, *stats_prev; 6541 struct rtnl_link_stats64 *vsi_stats; 6542 u64 pkts, bytes; 6543 int i; 6544 6545 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6546 if (!vsi_stats) 6547 return; 6548 6549 /* reset non-netdev (extended) stats */ 6550 vsi->tx_restart = 0; 6551 vsi->tx_busy = 0; 6552 vsi->tx_linearize = 0; 6553 vsi->rx_buf_failed = 0; 6554 vsi->rx_page_failed = 0; 6555 6556 rcu_read_lock(); 6557 6558 /* update Tx rings counters */ 6559 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6560 vsi->num_txq); 6561 6562 /* update Rx rings counters */ 6563 ice_for_each_rxq(vsi, i) { 6564 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6565 struct ice_ring_stats *ring_stats; 6566 6567 ring_stats = ring->ring_stats; 6568 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6569 ring_stats->stats, &pkts, 6570 &bytes); 6571 vsi_stats->rx_packets += pkts; 6572 vsi_stats->rx_bytes += bytes; 6573 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6574 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6575 } 6576 6577 /* update XDP Tx rings counters */ 6578 if (ice_is_xdp_ena_vsi(vsi)) 6579 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6580 vsi->num_xdp_txq); 6581 6582 rcu_read_unlock(); 6583 6584 net_stats = &vsi->net_stats; 6585 stats_prev = &vsi->net_stats_prev; 6586 6587 /* clear prev counters after reset */ 6588 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6589 vsi_stats->rx_packets < stats_prev->rx_packets) { 6590 stats_prev->tx_packets = 0; 6591 stats_prev->tx_bytes = 0; 6592 stats_prev->rx_packets = 0; 6593 stats_prev->rx_bytes = 0; 6594 } 6595 6596 /* update netdev counters */ 6597 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6598 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6599 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6600 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6601 6602 stats_prev->tx_packets = vsi_stats->tx_packets; 6603 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6604 stats_prev->rx_packets = vsi_stats->rx_packets; 6605 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6606 6607 kfree(vsi_stats); 6608 } 6609 6610 /** 6611 * ice_update_vsi_stats - Update VSI stats counters 6612 * @vsi: the VSI to be updated 6613 */ 6614 void ice_update_vsi_stats(struct ice_vsi *vsi) 6615 { 6616 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6617 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6618 struct ice_pf *pf = vsi->back; 6619 6620 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6621 test_bit(ICE_CFG_BUSY, pf->state)) 6622 return; 6623 6624 /* get stats as recorded by Tx/Rx rings */ 6625 ice_update_vsi_ring_stats(vsi); 6626 6627 /* get VSI stats as recorded by the hardware */ 6628 ice_update_eth_stats(vsi); 6629 6630 cur_ns->tx_errors = cur_es->tx_errors; 6631 cur_ns->rx_dropped = cur_es->rx_discards; 6632 cur_ns->tx_dropped = cur_es->tx_discards; 6633 cur_ns->multicast = cur_es->rx_multicast; 6634 6635 /* update some more netdev stats if this is main VSI */ 6636 if (vsi->type == ICE_VSI_PF) { 6637 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6638 cur_ns->rx_errors = pf->stats.crc_errors + 6639 pf->stats.illegal_bytes + 6640 pf->stats.rx_len_errors + 6641 pf->stats.rx_undersize + 6642 pf->hw_csum_rx_error + 6643 pf->stats.rx_jabber + 6644 pf->stats.rx_fragments + 6645 pf->stats.rx_oversize; 6646 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6647 /* record drops from the port level */ 6648 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6649 } 6650 } 6651 6652 /** 6653 * ice_update_pf_stats - Update PF port stats counters 6654 * @pf: PF whose stats needs to be updated 6655 */ 6656 void ice_update_pf_stats(struct ice_pf *pf) 6657 { 6658 struct ice_hw_port_stats *prev_ps, *cur_ps; 6659 struct ice_hw *hw = &pf->hw; 6660 u16 fd_ctr_base; 6661 u8 port; 6662 6663 port = hw->port_info->lport; 6664 prev_ps = &pf->stats_prev; 6665 cur_ps = &pf->stats; 6666 6667 if (ice_is_reset_in_progress(pf->state)) 6668 pf->stat_prev_loaded = false; 6669 6670 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6671 &prev_ps->eth.rx_bytes, 6672 &cur_ps->eth.rx_bytes); 6673 6674 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6675 &prev_ps->eth.rx_unicast, 6676 &cur_ps->eth.rx_unicast); 6677 6678 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6679 &prev_ps->eth.rx_multicast, 6680 &cur_ps->eth.rx_multicast); 6681 6682 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6683 &prev_ps->eth.rx_broadcast, 6684 &cur_ps->eth.rx_broadcast); 6685 6686 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6687 &prev_ps->eth.rx_discards, 6688 &cur_ps->eth.rx_discards); 6689 6690 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6691 &prev_ps->eth.tx_bytes, 6692 &cur_ps->eth.tx_bytes); 6693 6694 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6695 &prev_ps->eth.tx_unicast, 6696 &cur_ps->eth.tx_unicast); 6697 6698 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6699 &prev_ps->eth.tx_multicast, 6700 &cur_ps->eth.tx_multicast); 6701 6702 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6703 &prev_ps->eth.tx_broadcast, 6704 &cur_ps->eth.tx_broadcast); 6705 6706 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6707 &prev_ps->tx_dropped_link_down, 6708 &cur_ps->tx_dropped_link_down); 6709 6710 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6711 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6712 6713 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6714 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6715 6716 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6717 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6718 6719 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6720 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6721 6722 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6723 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6724 6725 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6726 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6727 6728 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6729 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6730 6731 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6732 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6733 6734 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6735 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6736 6737 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6738 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6739 6740 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6741 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6742 6743 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6744 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6745 6746 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6747 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6748 6749 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6750 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6751 6752 fd_ctr_base = hw->fd_ctr_base; 6753 6754 ice_stat_update40(hw, 6755 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6756 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6757 &cur_ps->fd_sb_match); 6758 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6759 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6760 6761 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6762 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6763 6764 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6765 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6766 6767 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6768 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6769 6770 ice_update_dcb_stats(pf); 6771 6772 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6773 &prev_ps->crc_errors, &cur_ps->crc_errors); 6774 6775 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6776 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6777 6778 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6779 &prev_ps->mac_local_faults, 6780 &cur_ps->mac_local_faults); 6781 6782 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6783 &prev_ps->mac_remote_faults, 6784 &cur_ps->mac_remote_faults); 6785 6786 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6787 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6788 6789 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6790 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6791 6792 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6793 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6794 6795 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6796 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6797 6798 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6799 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6800 6801 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6802 6803 pf->stat_prev_loaded = true; 6804 } 6805 6806 /** 6807 * ice_get_stats64 - get statistics for network device structure 6808 * @netdev: network interface device structure 6809 * @stats: main device statistics structure 6810 */ 6811 static 6812 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6813 { 6814 struct ice_netdev_priv *np = netdev_priv(netdev); 6815 struct rtnl_link_stats64 *vsi_stats; 6816 struct ice_vsi *vsi = np->vsi; 6817 6818 vsi_stats = &vsi->net_stats; 6819 6820 if (!vsi->num_txq || !vsi->num_rxq) 6821 return; 6822 6823 /* netdev packet/byte stats come from ring counter. These are obtained 6824 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6825 * But, only call the update routine and read the registers if VSI is 6826 * not down. 6827 */ 6828 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6829 ice_update_vsi_ring_stats(vsi); 6830 stats->tx_packets = vsi_stats->tx_packets; 6831 stats->tx_bytes = vsi_stats->tx_bytes; 6832 stats->rx_packets = vsi_stats->rx_packets; 6833 stats->rx_bytes = vsi_stats->rx_bytes; 6834 6835 /* The rest of the stats can be read from the hardware but instead we 6836 * just return values that the watchdog task has already obtained from 6837 * the hardware. 6838 */ 6839 stats->multicast = vsi_stats->multicast; 6840 stats->tx_errors = vsi_stats->tx_errors; 6841 stats->tx_dropped = vsi_stats->tx_dropped; 6842 stats->rx_errors = vsi_stats->rx_errors; 6843 stats->rx_dropped = vsi_stats->rx_dropped; 6844 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6845 stats->rx_length_errors = vsi_stats->rx_length_errors; 6846 } 6847 6848 /** 6849 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6850 * @vsi: VSI having NAPI disabled 6851 */ 6852 static void ice_napi_disable_all(struct ice_vsi *vsi) 6853 { 6854 int q_idx; 6855 6856 if (!vsi->netdev) 6857 return; 6858 6859 ice_for_each_q_vector(vsi, q_idx) { 6860 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6861 6862 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6863 napi_disable(&q_vector->napi); 6864 6865 cancel_work_sync(&q_vector->tx.dim.work); 6866 cancel_work_sync(&q_vector->rx.dim.work); 6867 } 6868 } 6869 6870 /** 6871 * ice_down - Shutdown the connection 6872 * @vsi: The VSI being stopped 6873 * 6874 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6875 */ 6876 int ice_down(struct ice_vsi *vsi) 6877 { 6878 int i, tx_err, rx_err, vlan_err = 0; 6879 6880 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6881 6882 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6883 vlan_err = ice_vsi_del_vlan_zero(vsi); 6884 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6885 netif_carrier_off(vsi->netdev); 6886 netif_tx_disable(vsi->netdev); 6887 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6888 ice_eswitch_stop_all_tx_queues(vsi->back); 6889 } 6890 6891 ice_vsi_dis_irq(vsi); 6892 6893 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6894 if (tx_err) 6895 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6896 vsi->vsi_num, tx_err); 6897 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6898 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6899 if (tx_err) 6900 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6901 vsi->vsi_num, tx_err); 6902 } 6903 6904 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6905 if (rx_err) 6906 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6907 vsi->vsi_num, rx_err); 6908 6909 ice_napi_disable_all(vsi); 6910 6911 ice_for_each_txq(vsi, i) 6912 ice_clean_tx_ring(vsi->tx_rings[i]); 6913 6914 if (ice_is_xdp_ena_vsi(vsi)) 6915 ice_for_each_xdp_txq(vsi, i) 6916 ice_clean_tx_ring(vsi->xdp_rings[i]); 6917 6918 ice_for_each_rxq(vsi, i) 6919 ice_clean_rx_ring(vsi->rx_rings[i]); 6920 6921 if (tx_err || rx_err || vlan_err) { 6922 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6923 vsi->vsi_num, vsi->vsw->sw_id); 6924 return -EIO; 6925 } 6926 6927 return 0; 6928 } 6929 6930 /** 6931 * ice_down_up - shutdown the VSI connection and bring it up 6932 * @vsi: the VSI to be reconnected 6933 */ 6934 int ice_down_up(struct ice_vsi *vsi) 6935 { 6936 int ret; 6937 6938 /* if DOWN already set, nothing to do */ 6939 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6940 return 0; 6941 6942 ret = ice_down(vsi); 6943 if (ret) 6944 return ret; 6945 6946 ret = ice_up(vsi); 6947 if (ret) { 6948 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6949 return ret; 6950 } 6951 6952 return 0; 6953 } 6954 6955 /** 6956 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6957 * @vsi: VSI having resources allocated 6958 * 6959 * Return 0 on success, negative on failure 6960 */ 6961 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6962 { 6963 int i, err = 0; 6964 6965 if (!vsi->num_txq) { 6966 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6967 vsi->vsi_num); 6968 return -EINVAL; 6969 } 6970 6971 ice_for_each_txq(vsi, i) { 6972 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6973 6974 if (!ring) 6975 return -EINVAL; 6976 6977 if (vsi->netdev) 6978 ring->netdev = vsi->netdev; 6979 err = ice_setup_tx_ring(ring); 6980 if (err) 6981 break; 6982 } 6983 6984 return err; 6985 } 6986 6987 /** 6988 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6989 * @vsi: VSI having resources allocated 6990 * 6991 * Return 0 on success, negative on failure 6992 */ 6993 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6994 { 6995 int i, err = 0; 6996 6997 if (!vsi->num_rxq) { 6998 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6999 vsi->vsi_num); 7000 return -EINVAL; 7001 } 7002 7003 ice_for_each_rxq(vsi, i) { 7004 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7005 7006 if (!ring) 7007 return -EINVAL; 7008 7009 if (vsi->netdev) 7010 ring->netdev = vsi->netdev; 7011 err = ice_setup_rx_ring(ring); 7012 if (err) 7013 break; 7014 } 7015 7016 return err; 7017 } 7018 7019 /** 7020 * ice_vsi_open_ctrl - open control VSI for use 7021 * @vsi: the VSI to open 7022 * 7023 * Initialization of the Control VSI 7024 * 7025 * Returns 0 on success, negative value on error 7026 */ 7027 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7028 { 7029 char int_name[ICE_INT_NAME_STR_LEN]; 7030 struct ice_pf *pf = vsi->back; 7031 struct device *dev; 7032 int err; 7033 7034 dev = ice_pf_to_dev(pf); 7035 /* allocate descriptors */ 7036 err = ice_vsi_setup_tx_rings(vsi); 7037 if (err) 7038 goto err_setup_tx; 7039 7040 err = ice_vsi_setup_rx_rings(vsi); 7041 if (err) 7042 goto err_setup_rx; 7043 7044 err = ice_vsi_cfg_lan(vsi); 7045 if (err) 7046 goto err_setup_rx; 7047 7048 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7049 dev_driver_string(dev), dev_name(dev)); 7050 err = ice_vsi_req_irq_msix(vsi, int_name); 7051 if (err) 7052 goto err_setup_rx; 7053 7054 ice_vsi_cfg_msix(vsi); 7055 7056 err = ice_vsi_start_all_rx_rings(vsi); 7057 if (err) 7058 goto err_up_complete; 7059 7060 clear_bit(ICE_VSI_DOWN, vsi->state); 7061 ice_vsi_ena_irq(vsi); 7062 7063 return 0; 7064 7065 err_up_complete: 7066 ice_down(vsi); 7067 err_setup_rx: 7068 ice_vsi_free_rx_rings(vsi); 7069 err_setup_tx: 7070 ice_vsi_free_tx_rings(vsi); 7071 7072 return err; 7073 } 7074 7075 /** 7076 * ice_vsi_open - Called when a network interface is made active 7077 * @vsi: the VSI to open 7078 * 7079 * Initialization of the VSI 7080 * 7081 * Returns 0 on success, negative value on error 7082 */ 7083 int ice_vsi_open(struct ice_vsi *vsi) 7084 { 7085 char int_name[ICE_INT_NAME_STR_LEN]; 7086 struct ice_pf *pf = vsi->back; 7087 int err; 7088 7089 /* allocate descriptors */ 7090 err = ice_vsi_setup_tx_rings(vsi); 7091 if (err) 7092 goto err_setup_tx; 7093 7094 err = ice_vsi_setup_rx_rings(vsi); 7095 if (err) 7096 goto err_setup_rx; 7097 7098 err = ice_vsi_cfg_lan(vsi); 7099 if (err) 7100 goto err_setup_rx; 7101 7102 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7103 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7104 err = ice_vsi_req_irq_msix(vsi, int_name); 7105 if (err) 7106 goto err_setup_rx; 7107 7108 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7109 7110 if (vsi->type == ICE_VSI_PF) { 7111 /* Notify the stack of the actual queue counts. */ 7112 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7113 if (err) 7114 goto err_set_qs; 7115 7116 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7117 if (err) 7118 goto err_set_qs; 7119 } 7120 7121 err = ice_up_complete(vsi); 7122 if (err) 7123 goto err_up_complete; 7124 7125 return 0; 7126 7127 err_up_complete: 7128 ice_down(vsi); 7129 err_set_qs: 7130 ice_vsi_free_irq(vsi); 7131 err_setup_rx: 7132 ice_vsi_free_rx_rings(vsi); 7133 err_setup_tx: 7134 ice_vsi_free_tx_rings(vsi); 7135 7136 return err; 7137 } 7138 7139 /** 7140 * ice_vsi_release_all - Delete all VSIs 7141 * @pf: PF from which all VSIs are being removed 7142 */ 7143 static void ice_vsi_release_all(struct ice_pf *pf) 7144 { 7145 int err, i; 7146 7147 if (!pf->vsi) 7148 return; 7149 7150 ice_for_each_vsi(pf, i) { 7151 if (!pf->vsi[i]) 7152 continue; 7153 7154 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7155 continue; 7156 7157 err = ice_vsi_release(pf->vsi[i]); 7158 if (err) 7159 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7160 i, err, pf->vsi[i]->vsi_num); 7161 } 7162 } 7163 7164 /** 7165 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7166 * @pf: pointer to the PF instance 7167 * @type: VSI type to rebuild 7168 * 7169 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7170 */ 7171 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7172 { 7173 struct device *dev = ice_pf_to_dev(pf); 7174 int i, err; 7175 7176 ice_for_each_vsi(pf, i) { 7177 struct ice_vsi *vsi = pf->vsi[i]; 7178 7179 if (!vsi || vsi->type != type) 7180 continue; 7181 7182 /* rebuild the VSI */ 7183 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7184 if (err) { 7185 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7186 err, vsi->idx, ice_vsi_type_str(type)); 7187 return err; 7188 } 7189 7190 /* replay filters for the VSI */ 7191 err = ice_replay_vsi(&pf->hw, vsi->idx); 7192 if (err) { 7193 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7194 err, vsi->idx, ice_vsi_type_str(type)); 7195 return err; 7196 } 7197 7198 /* Re-map HW VSI number, using VSI handle that has been 7199 * previously validated in ice_replay_vsi() call above 7200 */ 7201 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7202 7203 /* enable the VSI */ 7204 err = ice_ena_vsi(vsi, false); 7205 if (err) { 7206 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7207 err, vsi->idx, ice_vsi_type_str(type)); 7208 return err; 7209 } 7210 7211 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7212 ice_vsi_type_str(type)); 7213 } 7214 7215 return 0; 7216 } 7217 7218 /** 7219 * ice_update_pf_netdev_link - Update PF netdev link status 7220 * @pf: pointer to the PF instance 7221 */ 7222 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7223 { 7224 bool link_up; 7225 int i; 7226 7227 ice_for_each_vsi(pf, i) { 7228 struct ice_vsi *vsi = pf->vsi[i]; 7229 7230 if (!vsi || vsi->type != ICE_VSI_PF) 7231 return; 7232 7233 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7234 if (link_up) { 7235 netif_carrier_on(pf->vsi[i]->netdev); 7236 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7237 } else { 7238 netif_carrier_off(pf->vsi[i]->netdev); 7239 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7240 } 7241 } 7242 } 7243 7244 /** 7245 * ice_rebuild - rebuild after reset 7246 * @pf: PF to rebuild 7247 * @reset_type: type of reset 7248 * 7249 * Do not rebuild VF VSI in this flow because that is already handled via 7250 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7251 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7252 * to reset/rebuild all the VF VSI twice. 7253 */ 7254 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7255 { 7256 struct device *dev = ice_pf_to_dev(pf); 7257 struct ice_hw *hw = &pf->hw; 7258 bool dvm; 7259 int err; 7260 7261 if (test_bit(ICE_DOWN, pf->state)) 7262 goto clear_recovery; 7263 7264 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7265 7266 #define ICE_EMP_RESET_SLEEP_MS 5000 7267 if (reset_type == ICE_RESET_EMPR) { 7268 /* If an EMP reset has occurred, any previously pending flash 7269 * update will have completed. We no longer know whether or 7270 * not the NVM update EMP reset is restricted. 7271 */ 7272 pf->fw_emp_reset_disabled = false; 7273 7274 msleep(ICE_EMP_RESET_SLEEP_MS); 7275 } 7276 7277 err = ice_init_all_ctrlq(hw); 7278 if (err) { 7279 dev_err(dev, "control queues init failed %d\n", err); 7280 goto err_init_ctrlq; 7281 } 7282 7283 /* if DDP was previously loaded successfully */ 7284 if (!ice_is_safe_mode(pf)) { 7285 /* reload the SW DB of filter tables */ 7286 if (reset_type == ICE_RESET_PFR) 7287 ice_fill_blk_tbls(hw); 7288 else 7289 /* Reload DDP Package after CORER/GLOBR reset */ 7290 ice_load_pkg(NULL, pf); 7291 } 7292 7293 err = ice_clear_pf_cfg(hw); 7294 if (err) { 7295 dev_err(dev, "clear PF configuration failed %d\n", err); 7296 goto err_init_ctrlq; 7297 } 7298 7299 ice_clear_pxe_mode(hw); 7300 7301 err = ice_init_nvm(hw); 7302 if (err) { 7303 dev_err(dev, "ice_init_nvm failed %d\n", err); 7304 goto err_init_ctrlq; 7305 } 7306 7307 err = ice_get_caps(hw); 7308 if (err) { 7309 dev_err(dev, "ice_get_caps failed %d\n", err); 7310 goto err_init_ctrlq; 7311 } 7312 7313 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7314 if (err) { 7315 dev_err(dev, "set_mac_cfg failed %d\n", err); 7316 goto err_init_ctrlq; 7317 } 7318 7319 dvm = ice_is_dvm_ena(hw); 7320 7321 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7322 if (err) 7323 goto err_init_ctrlq; 7324 7325 err = ice_sched_init_port(hw->port_info); 7326 if (err) 7327 goto err_sched_init_port; 7328 7329 /* start misc vector */ 7330 err = ice_req_irq_msix_misc(pf); 7331 if (err) { 7332 dev_err(dev, "misc vector setup failed: %d\n", err); 7333 goto err_sched_init_port; 7334 } 7335 7336 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7337 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7338 if (!rd32(hw, PFQF_FD_SIZE)) { 7339 u16 unused, guar, b_effort; 7340 7341 guar = hw->func_caps.fd_fltr_guar; 7342 b_effort = hw->func_caps.fd_fltr_best_effort; 7343 7344 /* force guaranteed filter pool for PF */ 7345 ice_alloc_fd_guar_item(hw, &unused, guar); 7346 /* force shared filter pool for PF */ 7347 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7348 } 7349 } 7350 7351 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7352 ice_dcb_rebuild(pf); 7353 7354 /* If the PF previously had enabled PTP, PTP init needs to happen before 7355 * the VSI rebuild. If not, this causes the PTP link status events to 7356 * fail. 7357 */ 7358 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7359 ice_ptp_reset(pf); 7360 7361 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7362 ice_gnss_init(pf); 7363 7364 /* rebuild PF VSI */ 7365 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7366 if (err) { 7367 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7368 goto err_vsi_rebuild; 7369 } 7370 7371 /* configure PTP timestamping after VSI rebuild */ 7372 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7373 ice_ptp_cfg_timestamp(pf, false); 7374 7375 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7376 if (err) { 7377 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7378 goto err_vsi_rebuild; 7379 } 7380 7381 if (reset_type == ICE_RESET_PFR) { 7382 err = ice_rebuild_channels(pf); 7383 if (err) { 7384 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7385 err); 7386 goto err_vsi_rebuild; 7387 } 7388 } 7389 7390 /* If Flow Director is active */ 7391 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7392 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7393 if (err) { 7394 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7395 goto err_vsi_rebuild; 7396 } 7397 7398 /* replay HW Flow Director recipes */ 7399 if (hw->fdir_prof) 7400 ice_fdir_replay_flows(hw); 7401 7402 /* replay Flow Director filters */ 7403 ice_fdir_replay_fltrs(pf); 7404 7405 ice_rebuild_arfs(pf); 7406 } 7407 7408 ice_update_pf_netdev_link(pf); 7409 7410 /* tell the firmware we are up */ 7411 err = ice_send_version(pf); 7412 if (err) { 7413 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7414 err); 7415 goto err_vsi_rebuild; 7416 } 7417 7418 ice_replay_post(hw); 7419 7420 /* if we get here, reset flow is successful */ 7421 clear_bit(ICE_RESET_FAILED, pf->state); 7422 7423 ice_plug_aux_dev(pf); 7424 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7425 ice_lag_rebuild(pf); 7426 return; 7427 7428 err_vsi_rebuild: 7429 err_sched_init_port: 7430 ice_sched_cleanup_all(hw); 7431 err_init_ctrlq: 7432 ice_shutdown_all_ctrlq(hw); 7433 set_bit(ICE_RESET_FAILED, pf->state); 7434 clear_recovery: 7435 /* set this bit in PF state to control service task scheduling */ 7436 set_bit(ICE_NEEDS_RESTART, pf->state); 7437 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7438 } 7439 7440 /** 7441 * ice_change_mtu - NDO callback to change the MTU 7442 * @netdev: network interface device structure 7443 * @new_mtu: new value for maximum frame size 7444 * 7445 * Returns 0 on success, negative on failure 7446 */ 7447 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7448 { 7449 struct ice_netdev_priv *np = netdev_priv(netdev); 7450 struct ice_vsi *vsi = np->vsi; 7451 struct ice_pf *pf = vsi->back; 7452 struct bpf_prog *prog; 7453 u8 count = 0; 7454 int err = 0; 7455 7456 if (new_mtu == (int)netdev->mtu) { 7457 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7458 return 0; 7459 } 7460 7461 prog = vsi->xdp_prog; 7462 if (prog && !prog->aux->xdp_has_frags) { 7463 int frame_size = ice_max_xdp_frame_size(vsi); 7464 7465 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7466 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7467 frame_size - ICE_ETH_PKT_HDR_PAD); 7468 return -EINVAL; 7469 } 7470 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7471 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7472 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7473 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7474 return -EINVAL; 7475 } 7476 } 7477 7478 /* if a reset is in progress, wait for some time for it to complete */ 7479 do { 7480 if (ice_is_reset_in_progress(pf->state)) { 7481 count++; 7482 usleep_range(1000, 2000); 7483 } else { 7484 break; 7485 } 7486 7487 } while (count < 100); 7488 7489 if (count == 100) { 7490 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7491 return -EBUSY; 7492 } 7493 7494 netdev->mtu = (unsigned int)new_mtu; 7495 err = ice_down_up(vsi); 7496 if (err) 7497 return err; 7498 7499 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7500 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7501 7502 return err; 7503 } 7504 7505 /** 7506 * ice_eth_ioctl - Access the hwtstamp interface 7507 * @netdev: network interface device structure 7508 * @ifr: interface request data 7509 * @cmd: ioctl command 7510 */ 7511 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7512 { 7513 struct ice_netdev_priv *np = netdev_priv(netdev); 7514 struct ice_pf *pf = np->vsi->back; 7515 7516 switch (cmd) { 7517 case SIOCGHWTSTAMP: 7518 return ice_ptp_get_ts_config(pf, ifr); 7519 case SIOCSHWTSTAMP: 7520 return ice_ptp_set_ts_config(pf, ifr); 7521 default: 7522 return -EOPNOTSUPP; 7523 } 7524 } 7525 7526 /** 7527 * ice_aq_str - convert AQ err code to a string 7528 * @aq_err: the AQ error code to convert 7529 */ 7530 const char *ice_aq_str(enum ice_aq_err aq_err) 7531 { 7532 switch (aq_err) { 7533 case ICE_AQ_RC_OK: 7534 return "OK"; 7535 case ICE_AQ_RC_EPERM: 7536 return "ICE_AQ_RC_EPERM"; 7537 case ICE_AQ_RC_ENOENT: 7538 return "ICE_AQ_RC_ENOENT"; 7539 case ICE_AQ_RC_ENOMEM: 7540 return "ICE_AQ_RC_ENOMEM"; 7541 case ICE_AQ_RC_EBUSY: 7542 return "ICE_AQ_RC_EBUSY"; 7543 case ICE_AQ_RC_EEXIST: 7544 return "ICE_AQ_RC_EEXIST"; 7545 case ICE_AQ_RC_EINVAL: 7546 return "ICE_AQ_RC_EINVAL"; 7547 case ICE_AQ_RC_ENOSPC: 7548 return "ICE_AQ_RC_ENOSPC"; 7549 case ICE_AQ_RC_ENOSYS: 7550 return "ICE_AQ_RC_ENOSYS"; 7551 case ICE_AQ_RC_EMODE: 7552 return "ICE_AQ_RC_EMODE"; 7553 case ICE_AQ_RC_ENOSEC: 7554 return "ICE_AQ_RC_ENOSEC"; 7555 case ICE_AQ_RC_EBADSIG: 7556 return "ICE_AQ_RC_EBADSIG"; 7557 case ICE_AQ_RC_ESVN: 7558 return "ICE_AQ_RC_ESVN"; 7559 case ICE_AQ_RC_EBADMAN: 7560 return "ICE_AQ_RC_EBADMAN"; 7561 case ICE_AQ_RC_EBADBUF: 7562 return "ICE_AQ_RC_EBADBUF"; 7563 } 7564 7565 return "ICE_AQ_RC_UNKNOWN"; 7566 } 7567 7568 /** 7569 * ice_set_rss_lut - Set RSS LUT 7570 * @vsi: Pointer to VSI structure 7571 * @lut: Lookup table 7572 * @lut_size: Lookup table size 7573 * 7574 * Returns 0 on success, negative on failure 7575 */ 7576 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7577 { 7578 struct ice_aq_get_set_rss_lut_params params = {}; 7579 struct ice_hw *hw = &vsi->back->hw; 7580 int status; 7581 7582 if (!lut) 7583 return -EINVAL; 7584 7585 params.vsi_handle = vsi->idx; 7586 params.lut_size = lut_size; 7587 params.lut_type = vsi->rss_lut_type; 7588 params.lut = lut; 7589 7590 status = ice_aq_set_rss_lut(hw, ¶ms); 7591 if (status) 7592 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7593 status, ice_aq_str(hw->adminq.sq_last_status)); 7594 7595 return status; 7596 } 7597 7598 /** 7599 * ice_set_rss_key - Set RSS key 7600 * @vsi: Pointer to the VSI structure 7601 * @seed: RSS hash seed 7602 * 7603 * Returns 0 on success, negative on failure 7604 */ 7605 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7606 { 7607 struct ice_hw *hw = &vsi->back->hw; 7608 int status; 7609 7610 if (!seed) 7611 return -EINVAL; 7612 7613 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7614 if (status) 7615 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7616 status, ice_aq_str(hw->adminq.sq_last_status)); 7617 7618 return status; 7619 } 7620 7621 /** 7622 * ice_get_rss_lut - Get RSS LUT 7623 * @vsi: Pointer to VSI structure 7624 * @lut: Buffer to store the lookup table entries 7625 * @lut_size: Size of buffer to store the lookup table entries 7626 * 7627 * Returns 0 on success, negative on failure 7628 */ 7629 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7630 { 7631 struct ice_aq_get_set_rss_lut_params params = {}; 7632 struct ice_hw *hw = &vsi->back->hw; 7633 int status; 7634 7635 if (!lut) 7636 return -EINVAL; 7637 7638 params.vsi_handle = vsi->idx; 7639 params.lut_size = lut_size; 7640 params.lut_type = vsi->rss_lut_type; 7641 params.lut = lut; 7642 7643 status = ice_aq_get_rss_lut(hw, ¶ms); 7644 if (status) 7645 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7646 status, ice_aq_str(hw->adminq.sq_last_status)); 7647 7648 return status; 7649 } 7650 7651 /** 7652 * ice_get_rss_key - Get RSS key 7653 * @vsi: Pointer to VSI structure 7654 * @seed: Buffer to store the key in 7655 * 7656 * Returns 0 on success, negative on failure 7657 */ 7658 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7659 { 7660 struct ice_hw *hw = &vsi->back->hw; 7661 int status; 7662 7663 if (!seed) 7664 return -EINVAL; 7665 7666 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7667 if (status) 7668 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7669 status, ice_aq_str(hw->adminq.sq_last_status)); 7670 7671 return status; 7672 } 7673 7674 /** 7675 * ice_bridge_getlink - Get the hardware bridge mode 7676 * @skb: skb buff 7677 * @pid: process ID 7678 * @seq: RTNL message seq 7679 * @dev: the netdev being configured 7680 * @filter_mask: filter mask passed in 7681 * @nlflags: netlink flags passed in 7682 * 7683 * Return the bridge mode (VEB/VEPA) 7684 */ 7685 static int 7686 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7687 struct net_device *dev, u32 filter_mask, int nlflags) 7688 { 7689 struct ice_netdev_priv *np = netdev_priv(dev); 7690 struct ice_vsi *vsi = np->vsi; 7691 struct ice_pf *pf = vsi->back; 7692 u16 bmode; 7693 7694 bmode = pf->first_sw->bridge_mode; 7695 7696 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7697 filter_mask, NULL); 7698 } 7699 7700 /** 7701 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7702 * @vsi: Pointer to VSI structure 7703 * @bmode: Hardware bridge mode (VEB/VEPA) 7704 * 7705 * Returns 0 on success, negative on failure 7706 */ 7707 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7708 { 7709 struct ice_aqc_vsi_props *vsi_props; 7710 struct ice_hw *hw = &vsi->back->hw; 7711 struct ice_vsi_ctx *ctxt; 7712 int ret; 7713 7714 vsi_props = &vsi->info; 7715 7716 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7717 if (!ctxt) 7718 return -ENOMEM; 7719 7720 ctxt->info = vsi->info; 7721 7722 if (bmode == BRIDGE_MODE_VEB) 7723 /* change from VEPA to VEB mode */ 7724 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7725 else 7726 /* change from VEB to VEPA mode */ 7727 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7728 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7729 7730 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7731 if (ret) { 7732 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7733 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7734 goto out; 7735 } 7736 /* Update sw flags for book keeping */ 7737 vsi_props->sw_flags = ctxt->info.sw_flags; 7738 7739 out: 7740 kfree(ctxt); 7741 return ret; 7742 } 7743 7744 /** 7745 * ice_bridge_setlink - Set the hardware bridge mode 7746 * @dev: the netdev being configured 7747 * @nlh: RTNL message 7748 * @flags: bridge setlink flags 7749 * @extack: netlink extended ack 7750 * 7751 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7752 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7753 * not already set for all VSIs connected to this switch. And also update the 7754 * unicast switch filter rules for the corresponding switch of the netdev. 7755 */ 7756 static int 7757 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7758 u16 __always_unused flags, 7759 struct netlink_ext_ack __always_unused *extack) 7760 { 7761 struct ice_netdev_priv *np = netdev_priv(dev); 7762 struct ice_pf *pf = np->vsi->back; 7763 struct nlattr *attr, *br_spec; 7764 struct ice_hw *hw = &pf->hw; 7765 struct ice_sw *pf_sw; 7766 int rem, v, err = 0; 7767 7768 pf_sw = pf->first_sw; 7769 /* find the attribute in the netlink message */ 7770 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7771 7772 nla_for_each_nested(attr, br_spec, rem) { 7773 __u16 mode; 7774 7775 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7776 continue; 7777 mode = nla_get_u16(attr); 7778 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7779 return -EINVAL; 7780 /* Continue if bridge mode is not being flipped */ 7781 if (mode == pf_sw->bridge_mode) 7782 continue; 7783 /* Iterates through the PF VSI list and update the loopback 7784 * mode of the VSI 7785 */ 7786 ice_for_each_vsi(pf, v) { 7787 if (!pf->vsi[v]) 7788 continue; 7789 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7790 if (err) 7791 return err; 7792 } 7793 7794 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7795 /* Update the unicast switch filter rules for the corresponding 7796 * switch of the netdev 7797 */ 7798 err = ice_update_sw_rule_bridge_mode(hw); 7799 if (err) { 7800 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7801 mode, err, 7802 ice_aq_str(hw->adminq.sq_last_status)); 7803 /* revert hw->evb_veb */ 7804 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7805 return err; 7806 } 7807 7808 pf_sw->bridge_mode = mode; 7809 } 7810 7811 return 0; 7812 } 7813 7814 /** 7815 * ice_tx_timeout - Respond to a Tx Hang 7816 * @netdev: network interface device structure 7817 * @txqueue: Tx queue 7818 */ 7819 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7820 { 7821 struct ice_netdev_priv *np = netdev_priv(netdev); 7822 struct ice_tx_ring *tx_ring = NULL; 7823 struct ice_vsi *vsi = np->vsi; 7824 struct ice_pf *pf = vsi->back; 7825 u32 i; 7826 7827 pf->tx_timeout_count++; 7828 7829 /* Check if PFC is enabled for the TC to which the queue belongs 7830 * to. If yes then Tx timeout is not caused by a hung queue, no 7831 * need to reset and rebuild 7832 */ 7833 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7834 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7835 txqueue); 7836 return; 7837 } 7838 7839 /* now that we have an index, find the tx_ring struct */ 7840 ice_for_each_txq(vsi, i) 7841 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7842 if (txqueue == vsi->tx_rings[i]->q_index) { 7843 tx_ring = vsi->tx_rings[i]; 7844 break; 7845 } 7846 7847 /* Reset recovery level if enough time has elapsed after last timeout. 7848 * Also ensure no new reset action happens before next timeout period. 7849 */ 7850 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7851 pf->tx_timeout_recovery_level = 1; 7852 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7853 netdev->watchdog_timeo))) 7854 return; 7855 7856 if (tx_ring) { 7857 struct ice_hw *hw = &pf->hw; 7858 u32 head, val = 0; 7859 7860 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7861 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7862 /* Read interrupt register */ 7863 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7864 7865 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7866 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7867 head, tx_ring->next_to_use, val); 7868 } 7869 7870 pf->tx_timeout_last_recovery = jiffies; 7871 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7872 pf->tx_timeout_recovery_level, txqueue); 7873 7874 switch (pf->tx_timeout_recovery_level) { 7875 case 1: 7876 set_bit(ICE_PFR_REQ, pf->state); 7877 break; 7878 case 2: 7879 set_bit(ICE_CORER_REQ, pf->state); 7880 break; 7881 case 3: 7882 set_bit(ICE_GLOBR_REQ, pf->state); 7883 break; 7884 default: 7885 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7886 set_bit(ICE_DOWN, pf->state); 7887 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7888 set_bit(ICE_SERVICE_DIS, pf->state); 7889 break; 7890 } 7891 7892 ice_service_task_schedule(pf); 7893 pf->tx_timeout_recovery_level++; 7894 } 7895 7896 /** 7897 * ice_setup_tc_cls_flower - flower classifier offloads 7898 * @np: net device to configure 7899 * @filter_dev: device on which filter is added 7900 * @cls_flower: offload data 7901 */ 7902 static int 7903 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7904 struct net_device *filter_dev, 7905 struct flow_cls_offload *cls_flower) 7906 { 7907 struct ice_vsi *vsi = np->vsi; 7908 7909 if (cls_flower->common.chain_index) 7910 return -EOPNOTSUPP; 7911 7912 switch (cls_flower->command) { 7913 case FLOW_CLS_REPLACE: 7914 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7915 case FLOW_CLS_DESTROY: 7916 return ice_del_cls_flower(vsi, cls_flower); 7917 default: 7918 return -EINVAL; 7919 } 7920 } 7921 7922 /** 7923 * ice_setup_tc_block_cb - callback handler registered for TC block 7924 * @type: TC SETUP type 7925 * @type_data: TC flower offload data that contains user input 7926 * @cb_priv: netdev private data 7927 */ 7928 static int 7929 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7930 { 7931 struct ice_netdev_priv *np = cb_priv; 7932 7933 switch (type) { 7934 case TC_SETUP_CLSFLOWER: 7935 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7936 type_data); 7937 default: 7938 return -EOPNOTSUPP; 7939 } 7940 } 7941 7942 /** 7943 * ice_validate_mqprio_qopt - Validate TCF input parameters 7944 * @vsi: Pointer to VSI 7945 * @mqprio_qopt: input parameters for mqprio queue configuration 7946 * 7947 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7948 * needed), and make sure user doesn't specify qcount and BW rate limit 7949 * for TCs, which are more than "num_tc" 7950 */ 7951 static int 7952 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7953 struct tc_mqprio_qopt_offload *mqprio_qopt) 7954 { 7955 int non_power_of_2_qcount = 0; 7956 struct ice_pf *pf = vsi->back; 7957 int max_rss_q_cnt = 0; 7958 u64 sum_min_rate = 0; 7959 struct device *dev; 7960 int i, speed; 7961 u8 num_tc; 7962 7963 if (vsi->type != ICE_VSI_PF) 7964 return -EINVAL; 7965 7966 if (mqprio_qopt->qopt.offset[0] != 0 || 7967 mqprio_qopt->qopt.num_tc < 1 || 7968 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7969 return -EINVAL; 7970 7971 dev = ice_pf_to_dev(pf); 7972 vsi->ch_rss_size = 0; 7973 num_tc = mqprio_qopt->qopt.num_tc; 7974 speed = ice_get_link_speed_kbps(vsi); 7975 7976 for (i = 0; num_tc; i++) { 7977 int qcount = mqprio_qopt->qopt.count[i]; 7978 u64 max_rate, min_rate, rem; 7979 7980 if (!qcount) 7981 return -EINVAL; 7982 7983 if (is_power_of_2(qcount)) { 7984 if (non_power_of_2_qcount && 7985 qcount > non_power_of_2_qcount) { 7986 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7987 qcount, non_power_of_2_qcount); 7988 return -EINVAL; 7989 } 7990 if (qcount > max_rss_q_cnt) 7991 max_rss_q_cnt = qcount; 7992 } else { 7993 if (non_power_of_2_qcount && 7994 qcount != non_power_of_2_qcount) { 7995 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7996 qcount, non_power_of_2_qcount); 7997 return -EINVAL; 7998 } 7999 if (qcount < max_rss_q_cnt) { 8000 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8001 qcount, max_rss_q_cnt); 8002 return -EINVAL; 8003 } 8004 max_rss_q_cnt = qcount; 8005 non_power_of_2_qcount = qcount; 8006 } 8007 8008 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8009 * converts the bandwidth rate limit into Bytes/s when 8010 * passing it down to the driver. So convert input bandwidth 8011 * from Bytes/s to Kbps 8012 */ 8013 max_rate = mqprio_qopt->max_rate[i]; 8014 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8015 8016 /* min_rate is minimum guaranteed rate and it can't be zero */ 8017 min_rate = mqprio_qopt->min_rate[i]; 8018 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8019 sum_min_rate += min_rate; 8020 8021 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8022 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8023 min_rate, ICE_MIN_BW_LIMIT); 8024 return -EINVAL; 8025 } 8026 8027 if (max_rate && max_rate > speed) { 8028 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8029 i, max_rate, speed); 8030 return -EINVAL; 8031 } 8032 8033 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8034 if (rem) { 8035 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8036 i, ICE_MIN_BW_LIMIT); 8037 return -EINVAL; 8038 } 8039 8040 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8041 if (rem) { 8042 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8043 i, ICE_MIN_BW_LIMIT); 8044 return -EINVAL; 8045 } 8046 8047 /* min_rate can't be more than max_rate, except when max_rate 8048 * is zero (implies max_rate sought is max line rate). In such 8049 * a case min_rate can be more than max. 8050 */ 8051 if (max_rate && min_rate > max_rate) { 8052 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8053 min_rate, max_rate); 8054 return -EINVAL; 8055 } 8056 8057 if (i >= mqprio_qopt->qopt.num_tc - 1) 8058 break; 8059 if (mqprio_qopt->qopt.offset[i + 1] != 8060 (mqprio_qopt->qopt.offset[i] + qcount)) 8061 return -EINVAL; 8062 } 8063 if (vsi->num_rxq < 8064 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8065 return -EINVAL; 8066 if (vsi->num_txq < 8067 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8068 return -EINVAL; 8069 8070 if (sum_min_rate && sum_min_rate > (u64)speed) { 8071 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8072 sum_min_rate, speed); 8073 return -EINVAL; 8074 } 8075 8076 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8077 vsi->ch_rss_size = max_rss_q_cnt; 8078 8079 return 0; 8080 } 8081 8082 /** 8083 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8084 * @pf: ptr to PF device 8085 * @vsi: ptr to VSI 8086 */ 8087 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8088 { 8089 struct device *dev = ice_pf_to_dev(pf); 8090 bool added = false; 8091 struct ice_hw *hw; 8092 int flow; 8093 8094 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8095 return -EINVAL; 8096 8097 hw = &pf->hw; 8098 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8099 struct ice_fd_hw_prof *prof; 8100 int tun, status; 8101 u64 entry_h; 8102 8103 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8104 hw->fdir_prof[flow]->cnt)) 8105 continue; 8106 8107 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8108 enum ice_flow_priority prio; 8109 u64 prof_id; 8110 8111 /* add this VSI to FDir profile for this flow */ 8112 prio = ICE_FLOW_PRIO_NORMAL; 8113 prof = hw->fdir_prof[flow]; 8114 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8115 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8116 prof->vsi_h[0], vsi->idx, 8117 prio, prof->fdir_seg[tun], 8118 &entry_h); 8119 if (status) { 8120 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8121 vsi->idx, flow); 8122 continue; 8123 } 8124 8125 prof->entry_h[prof->cnt][tun] = entry_h; 8126 } 8127 8128 /* store VSI for filter replay and delete */ 8129 prof->vsi_h[prof->cnt] = vsi->idx; 8130 prof->cnt++; 8131 8132 added = true; 8133 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8134 flow); 8135 } 8136 8137 if (!added) 8138 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8139 8140 return 0; 8141 } 8142 8143 /** 8144 * ice_add_channel - add a channel by adding VSI 8145 * @pf: ptr to PF device 8146 * @sw_id: underlying HW switching element ID 8147 * @ch: ptr to channel structure 8148 * 8149 * Add a channel (VSI) using add_vsi and queue_map 8150 */ 8151 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8152 { 8153 struct device *dev = ice_pf_to_dev(pf); 8154 struct ice_vsi *vsi; 8155 8156 if (ch->type != ICE_VSI_CHNL) { 8157 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8158 return -EINVAL; 8159 } 8160 8161 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8162 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8163 dev_err(dev, "create chnl VSI failure\n"); 8164 return -EINVAL; 8165 } 8166 8167 ice_add_vsi_to_fdir(pf, vsi); 8168 8169 ch->sw_id = sw_id; 8170 ch->vsi_num = vsi->vsi_num; 8171 ch->info.mapping_flags = vsi->info.mapping_flags; 8172 ch->ch_vsi = vsi; 8173 /* set the back pointer of channel for newly created VSI */ 8174 vsi->ch = ch; 8175 8176 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8177 sizeof(vsi->info.q_mapping)); 8178 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8179 sizeof(vsi->info.tc_mapping)); 8180 8181 return 0; 8182 } 8183 8184 /** 8185 * ice_chnl_cfg_res 8186 * @vsi: the VSI being setup 8187 * @ch: ptr to channel structure 8188 * 8189 * Configure channel specific resources such as rings, vector. 8190 */ 8191 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8192 { 8193 int i; 8194 8195 for (i = 0; i < ch->num_txq; i++) { 8196 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8197 struct ice_ring_container *rc; 8198 struct ice_tx_ring *tx_ring; 8199 struct ice_rx_ring *rx_ring; 8200 8201 tx_ring = vsi->tx_rings[ch->base_q + i]; 8202 rx_ring = vsi->rx_rings[ch->base_q + i]; 8203 if (!tx_ring || !rx_ring) 8204 continue; 8205 8206 /* setup ring being channel enabled */ 8207 tx_ring->ch = ch; 8208 rx_ring->ch = ch; 8209 8210 /* following code block sets up vector specific attributes */ 8211 tx_q_vector = tx_ring->q_vector; 8212 rx_q_vector = rx_ring->q_vector; 8213 if (!tx_q_vector && !rx_q_vector) 8214 continue; 8215 8216 if (tx_q_vector) { 8217 tx_q_vector->ch = ch; 8218 /* setup Tx and Rx ITR setting if DIM is off */ 8219 rc = &tx_q_vector->tx; 8220 if (!ITR_IS_DYNAMIC(rc)) 8221 ice_write_itr(rc, rc->itr_setting); 8222 } 8223 if (rx_q_vector) { 8224 rx_q_vector->ch = ch; 8225 /* setup Tx and Rx ITR setting if DIM is off */ 8226 rc = &rx_q_vector->rx; 8227 if (!ITR_IS_DYNAMIC(rc)) 8228 ice_write_itr(rc, rc->itr_setting); 8229 } 8230 } 8231 8232 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8233 * GLINT_ITR register would have written to perform in-context 8234 * update, hence perform flush 8235 */ 8236 if (ch->num_txq || ch->num_rxq) 8237 ice_flush(&vsi->back->hw); 8238 } 8239 8240 /** 8241 * ice_cfg_chnl_all_res - configure channel resources 8242 * @vsi: pte to main_vsi 8243 * @ch: ptr to channel structure 8244 * 8245 * This function configures channel specific resources such as flow-director 8246 * counter index, and other resources such as queues, vectors, ITR settings 8247 */ 8248 static void 8249 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8250 { 8251 /* configure channel (aka ADQ) resources such as queues, vectors, 8252 * ITR settings for channel specific vectors and anything else 8253 */ 8254 ice_chnl_cfg_res(vsi, ch); 8255 } 8256 8257 /** 8258 * ice_setup_hw_channel - setup new channel 8259 * @pf: ptr to PF device 8260 * @vsi: the VSI being setup 8261 * @ch: ptr to channel structure 8262 * @sw_id: underlying HW switching element ID 8263 * @type: type of channel to be created (VMDq2/VF) 8264 * 8265 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8266 * and configures Tx rings accordingly 8267 */ 8268 static int 8269 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8270 struct ice_channel *ch, u16 sw_id, u8 type) 8271 { 8272 struct device *dev = ice_pf_to_dev(pf); 8273 int ret; 8274 8275 ch->base_q = vsi->next_base_q; 8276 ch->type = type; 8277 8278 ret = ice_add_channel(pf, sw_id, ch); 8279 if (ret) { 8280 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8281 return ret; 8282 } 8283 8284 /* configure/setup ADQ specific resources */ 8285 ice_cfg_chnl_all_res(vsi, ch); 8286 8287 /* make sure to update the next_base_q so that subsequent channel's 8288 * (aka ADQ) VSI queue map is correct 8289 */ 8290 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8291 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8292 ch->num_rxq); 8293 8294 return 0; 8295 } 8296 8297 /** 8298 * ice_setup_channel - setup new channel using uplink element 8299 * @pf: ptr to PF device 8300 * @vsi: the VSI being setup 8301 * @ch: ptr to channel structure 8302 * 8303 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8304 * and uplink switching element 8305 */ 8306 static bool 8307 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8308 struct ice_channel *ch) 8309 { 8310 struct device *dev = ice_pf_to_dev(pf); 8311 u16 sw_id; 8312 int ret; 8313 8314 if (vsi->type != ICE_VSI_PF) { 8315 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8316 return false; 8317 } 8318 8319 sw_id = pf->first_sw->sw_id; 8320 8321 /* create channel (VSI) */ 8322 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8323 if (ret) { 8324 dev_err(dev, "failed to setup hw_channel\n"); 8325 return false; 8326 } 8327 dev_dbg(dev, "successfully created channel()\n"); 8328 8329 return ch->ch_vsi ? true : false; 8330 } 8331 8332 /** 8333 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8334 * @vsi: VSI to be configured 8335 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8336 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8337 */ 8338 static int 8339 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8340 { 8341 int err; 8342 8343 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8344 if (err) 8345 return err; 8346 8347 return ice_set_max_bw_limit(vsi, max_tx_rate); 8348 } 8349 8350 /** 8351 * ice_create_q_channel - function to create channel 8352 * @vsi: VSI to be configured 8353 * @ch: ptr to channel (it contains channel specific params) 8354 * 8355 * This function creates channel (VSI) using num_queues specified by user, 8356 * reconfigs RSS if needed. 8357 */ 8358 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8359 { 8360 struct ice_pf *pf = vsi->back; 8361 struct device *dev; 8362 8363 if (!ch) 8364 return -EINVAL; 8365 8366 dev = ice_pf_to_dev(pf); 8367 if (!ch->num_txq || !ch->num_rxq) { 8368 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8369 return -EINVAL; 8370 } 8371 8372 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8373 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8374 vsi->cnt_q_avail, ch->num_txq); 8375 return -EINVAL; 8376 } 8377 8378 if (!ice_setup_channel(pf, vsi, ch)) { 8379 dev_info(dev, "Failed to setup channel\n"); 8380 return -EINVAL; 8381 } 8382 /* configure BW rate limit */ 8383 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8384 int ret; 8385 8386 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8387 ch->min_tx_rate); 8388 if (ret) 8389 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8390 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8391 else 8392 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8393 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8394 } 8395 8396 vsi->cnt_q_avail -= ch->num_txq; 8397 8398 return 0; 8399 } 8400 8401 /** 8402 * ice_rem_all_chnl_fltrs - removes all channel filters 8403 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8404 * 8405 * Remove all advanced switch filters only if they are channel specific 8406 * tc-flower based filter 8407 */ 8408 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8409 { 8410 struct ice_tc_flower_fltr *fltr; 8411 struct hlist_node *node; 8412 8413 /* to remove all channel filters, iterate an ordered list of filters */ 8414 hlist_for_each_entry_safe(fltr, node, 8415 &pf->tc_flower_fltr_list, 8416 tc_flower_node) { 8417 struct ice_rule_query_data rule; 8418 int status; 8419 8420 /* for now process only channel specific filters */ 8421 if (!ice_is_chnl_fltr(fltr)) 8422 continue; 8423 8424 rule.rid = fltr->rid; 8425 rule.rule_id = fltr->rule_id; 8426 rule.vsi_handle = fltr->dest_vsi_handle; 8427 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8428 if (status) { 8429 if (status == -ENOENT) 8430 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8431 rule.rule_id); 8432 else 8433 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8434 status); 8435 } else if (fltr->dest_vsi) { 8436 /* update advanced switch filter count */ 8437 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8438 u32 flags = fltr->flags; 8439 8440 fltr->dest_vsi->num_chnl_fltr--; 8441 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8442 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8443 pf->num_dmac_chnl_fltrs--; 8444 } 8445 } 8446 8447 hlist_del(&fltr->tc_flower_node); 8448 kfree(fltr); 8449 } 8450 } 8451 8452 /** 8453 * ice_remove_q_channels - Remove queue channels for the TCs 8454 * @vsi: VSI to be configured 8455 * @rem_fltr: delete advanced switch filter or not 8456 * 8457 * Remove queue channels for the TCs 8458 */ 8459 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8460 { 8461 struct ice_channel *ch, *ch_tmp; 8462 struct ice_pf *pf = vsi->back; 8463 int i; 8464 8465 /* remove all tc-flower based filter if they are channel filters only */ 8466 if (rem_fltr) 8467 ice_rem_all_chnl_fltrs(pf); 8468 8469 /* remove ntuple filters since queue configuration is being changed */ 8470 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8471 struct ice_hw *hw = &pf->hw; 8472 8473 mutex_lock(&hw->fdir_fltr_lock); 8474 ice_fdir_del_all_fltrs(vsi); 8475 mutex_unlock(&hw->fdir_fltr_lock); 8476 } 8477 8478 /* perform cleanup for channels if they exist */ 8479 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8480 struct ice_vsi *ch_vsi; 8481 8482 list_del(&ch->list); 8483 ch_vsi = ch->ch_vsi; 8484 if (!ch_vsi) { 8485 kfree(ch); 8486 continue; 8487 } 8488 8489 /* Reset queue contexts */ 8490 for (i = 0; i < ch->num_rxq; i++) { 8491 struct ice_tx_ring *tx_ring; 8492 struct ice_rx_ring *rx_ring; 8493 8494 tx_ring = vsi->tx_rings[ch->base_q + i]; 8495 rx_ring = vsi->rx_rings[ch->base_q + i]; 8496 if (tx_ring) { 8497 tx_ring->ch = NULL; 8498 if (tx_ring->q_vector) 8499 tx_ring->q_vector->ch = NULL; 8500 } 8501 if (rx_ring) { 8502 rx_ring->ch = NULL; 8503 if (rx_ring->q_vector) 8504 rx_ring->q_vector->ch = NULL; 8505 } 8506 } 8507 8508 /* Release FD resources for the channel VSI */ 8509 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8510 8511 /* clear the VSI from scheduler tree */ 8512 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8513 8514 /* Delete VSI from FW, PF and HW VSI arrays */ 8515 ice_vsi_delete(ch->ch_vsi); 8516 8517 /* free the channel */ 8518 kfree(ch); 8519 } 8520 8521 /* clear the channel VSI map which is stored in main VSI */ 8522 ice_for_each_chnl_tc(i) 8523 vsi->tc_map_vsi[i] = NULL; 8524 8525 /* reset main VSI's all TC information */ 8526 vsi->all_enatc = 0; 8527 vsi->all_numtc = 0; 8528 } 8529 8530 /** 8531 * ice_rebuild_channels - rebuild channel 8532 * @pf: ptr to PF 8533 * 8534 * Recreate channel VSIs and replay filters 8535 */ 8536 static int ice_rebuild_channels(struct ice_pf *pf) 8537 { 8538 struct device *dev = ice_pf_to_dev(pf); 8539 struct ice_vsi *main_vsi; 8540 bool rem_adv_fltr = true; 8541 struct ice_channel *ch; 8542 struct ice_vsi *vsi; 8543 int tc_idx = 1; 8544 int i, err; 8545 8546 main_vsi = ice_get_main_vsi(pf); 8547 if (!main_vsi) 8548 return 0; 8549 8550 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8551 main_vsi->old_numtc == 1) 8552 return 0; /* nothing to be done */ 8553 8554 /* reconfigure main VSI based on old value of TC and cached values 8555 * for MQPRIO opts 8556 */ 8557 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8558 if (err) { 8559 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8560 main_vsi->old_ena_tc, main_vsi->vsi_num); 8561 return err; 8562 } 8563 8564 /* rebuild ADQ VSIs */ 8565 ice_for_each_vsi(pf, i) { 8566 enum ice_vsi_type type; 8567 8568 vsi = pf->vsi[i]; 8569 if (!vsi || vsi->type != ICE_VSI_CHNL) 8570 continue; 8571 8572 type = vsi->type; 8573 8574 /* rebuild ADQ VSI */ 8575 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8576 if (err) { 8577 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8578 ice_vsi_type_str(type), vsi->idx, err); 8579 goto cleanup; 8580 } 8581 8582 /* Re-map HW VSI number, using VSI handle that has been 8583 * previously validated in ice_replay_vsi() call above 8584 */ 8585 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8586 8587 /* replay filters for the VSI */ 8588 err = ice_replay_vsi(&pf->hw, vsi->idx); 8589 if (err) { 8590 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8591 ice_vsi_type_str(type), err, vsi->idx); 8592 rem_adv_fltr = false; 8593 goto cleanup; 8594 } 8595 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8596 ice_vsi_type_str(type), vsi->idx); 8597 8598 /* store ADQ VSI at correct TC index in main VSI's 8599 * map of TC to VSI 8600 */ 8601 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8602 } 8603 8604 /* ADQ VSI(s) has been rebuilt successfully, so setup 8605 * channel for main VSI's Tx and Rx rings 8606 */ 8607 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8608 struct ice_vsi *ch_vsi; 8609 8610 ch_vsi = ch->ch_vsi; 8611 if (!ch_vsi) 8612 continue; 8613 8614 /* reconfig channel resources */ 8615 ice_cfg_chnl_all_res(main_vsi, ch); 8616 8617 /* replay BW rate limit if it is non-zero */ 8618 if (!ch->max_tx_rate && !ch->min_tx_rate) 8619 continue; 8620 8621 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8622 ch->min_tx_rate); 8623 if (err) 8624 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8625 err, ch->max_tx_rate, ch->min_tx_rate, 8626 ch_vsi->vsi_num); 8627 else 8628 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8629 ch->max_tx_rate, ch->min_tx_rate, 8630 ch_vsi->vsi_num); 8631 } 8632 8633 /* reconfig RSS for main VSI */ 8634 if (main_vsi->ch_rss_size) 8635 ice_vsi_cfg_rss_lut_key(main_vsi); 8636 8637 return 0; 8638 8639 cleanup: 8640 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8641 return err; 8642 } 8643 8644 /** 8645 * ice_create_q_channels - Add queue channel for the given TCs 8646 * @vsi: VSI to be configured 8647 * 8648 * Configures queue channel mapping to the given TCs 8649 */ 8650 static int ice_create_q_channels(struct ice_vsi *vsi) 8651 { 8652 struct ice_pf *pf = vsi->back; 8653 struct ice_channel *ch; 8654 int ret = 0, i; 8655 8656 ice_for_each_chnl_tc(i) { 8657 if (!(vsi->all_enatc & BIT(i))) 8658 continue; 8659 8660 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8661 if (!ch) { 8662 ret = -ENOMEM; 8663 goto err_free; 8664 } 8665 INIT_LIST_HEAD(&ch->list); 8666 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8667 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8668 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8669 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8670 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8671 8672 /* convert to Kbits/s */ 8673 if (ch->max_tx_rate) 8674 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8675 ICE_BW_KBPS_DIVISOR); 8676 if (ch->min_tx_rate) 8677 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8678 ICE_BW_KBPS_DIVISOR); 8679 8680 ret = ice_create_q_channel(vsi, ch); 8681 if (ret) { 8682 dev_err(ice_pf_to_dev(pf), 8683 "failed creating channel TC:%d\n", i); 8684 kfree(ch); 8685 goto err_free; 8686 } 8687 list_add_tail(&ch->list, &vsi->ch_list); 8688 vsi->tc_map_vsi[i] = ch->ch_vsi; 8689 dev_dbg(ice_pf_to_dev(pf), 8690 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8691 } 8692 return 0; 8693 8694 err_free: 8695 ice_remove_q_channels(vsi, false); 8696 8697 return ret; 8698 } 8699 8700 /** 8701 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8702 * @netdev: net device to configure 8703 * @type_data: TC offload data 8704 */ 8705 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8706 { 8707 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8708 struct ice_netdev_priv *np = netdev_priv(netdev); 8709 struct ice_vsi *vsi = np->vsi; 8710 struct ice_pf *pf = vsi->back; 8711 u16 mode, ena_tc_qdisc = 0; 8712 int cur_txq, cur_rxq; 8713 u8 hw = 0, num_tcf; 8714 struct device *dev; 8715 int ret, i; 8716 8717 dev = ice_pf_to_dev(pf); 8718 num_tcf = mqprio_qopt->qopt.num_tc; 8719 hw = mqprio_qopt->qopt.hw; 8720 mode = mqprio_qopt->mode; 8721 if (!hw) { 8722 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8723 vsi->ch_rss_size = 0; 8724 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8725 goto config_tcf; 8726 } 8727 8728 /* Generate queue region map for number of TCF requested */ 8729 for (i = 0; i < num_tcf; i++) 8730 ena_tc_qdisc |= BIT(i); 8731 8732 switch (mode) { 8733 case TC_MQPRIO_MODE_CHANNEL: 8734 8735 if (pf->hw.port_info->is_custom_tx_enabled) { 8736 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8737 return -EBUSY; 8738 } 8739 ice_tear_down_devlink_rate_tree(pf); 8740 8741 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8742 if (ret) { 8743 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8744 ret); 8745 return ret; 8746 } 8747 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8748 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8749 /* don't assume state of hw_tc_offload during driver load 8750 * and set the flag for TC flower filter if hw_tc_offload 8751 * already ON 8752 */ 8753 if (vsi->netdev->features & NETIF_F_HW_TC) 8754 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8755 break; 8756 default: 8757 return -EINVAL; 8758 } 8759 8760 config_tcf: 8761 8762 /* Requesting same TCF configuration as already enabled */ 8763 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8764 mode != TC_MQPRIO_MODE_CHANNEL) 8765 return 0; 8766 8767 /* Pause VSI queues */ 8768 ice_dis_vsi(vsi, true); 8769 8770 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8771 ice_remove_q_channels(vsi, true); 8772 8773 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8774 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8775 num_online_cpus()); 8776 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8777 num_online_cpus()); 8778 } else { 8779 /* logic to rebuild VSI, same like ethtool -L */ 8780 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8781 8782 for (i = 0; i < num_tcf; i++) { 8783 if (!(ena_tc_qdisc & BIT(i))) 8784 continue; 8785 8786 offset = vsi->mqprio_qopt.qopt.offset[i]; 8787 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8788 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8789 } 8790 vsi->req_txq = offset + qcount_tx; 8791 vsi->req_rxq = offset + qcount_rx; 8792 8793 /* store away original rss_size info, so that it gets reused 8794 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8795 * determine, what should be the rss_sizefor main VSI 8796 */ 8797 vsi->orig_rss_size = vsi->rss_size; 8798 } 8799 8800 /* save current values of Tx and Rx queues before calling VSI rebuild 8801 * for fallback option 8802 */ 8803 cur_txq = vsi->num_txq; 8804 cur_rxq = vsi->num_rxq; 8805 8806 /* proceed with rebuild main VSI using correct number of queues */ 8807 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8808 if (ret) { 8809 /* fallback to current number of queues */ 8810 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8811 vsi->req_txq = cur_txq; 8812 vsi->req_rxq = cur_rxq; 8813 clear_bit(ICE_RESET_FAILED, pf->state); 8814 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8815 dev_err(dev, "Rebuild of main VSI failed again\n"); 8816 return ret; 8817 } 8818 } 8819 8820 vsi->all_numtc = num_tcf; 8821 vsi->all_enatc = ena_tc_qdisc; 8822 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8823 if (ret) { 8824 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8825 vsi->vsi_num); 8826 goto exit; 8827 } 8828 8829 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8830 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8831 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8832 8833 /* set TC0 rate limit if specified */ 8834 if (max_tx_rate || min_tx_rate) { 8835 /* convert to Kbits/s */ 8836 if (max_tx_rate) 8837 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8838 if (min_tx_rate) 8839 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8840 8841 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8842 if (!ret) { 8843 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8844 max_tx_rate, min_tx_rate, vsi->vsi_num); 8845 } else { 8846 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8847 max_tx_rate, min_tx_rate, vsi->vsi_num); 8848 goto exit; 8849 } 8850 } 8851 ret = ice_create_q_channels(vsi); 8852 if (ret) { 8853 netdev_err(netdev, "failed configuring queue channels\n"); 8854 goto exit; 8855 } else { 8856 netdev_dbg(netdev, "successfully configured channels\n"); 8857 } 8858 } 8859 8860 if (vsi->ch_rss_size) 8861 ice_vsi_cfg_rss_lut_key(vsi); 8862 8863 exit: 8864 /* if error, reset the all_numtc and all_enatc */ 8865 if (ret) { 8866 vsi->all_numtc = 0; 8867 vsi->all_enatc = 0; 8868 } 8869 /* resume VSI */ 8870 ice_ena_vsi(vsi, true); 8871 8872 return ret; 8873 } 8874 8875 static LIST_HEAD(ice_block_cb_list); 8876 8877 static int 8878 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8879 void *type_data) 8880 { 8881 struct ice_netdev_priv *np = netdev_priv(netdev); 8882 struct ice_pf *pf = np->vsi->back; 8883 bool locked = false; 8884 int err; 8885 8886 switch (type) { 8887 case TC_SETUP_BLOCK: 8888 return flow_block_cb_setup_simple(type_data, 8889 &ice_block_cb_list, 8890 ice_setup_tc_block_cb, 8891 np, np, true); 8892 case TC_SETUP_QDISC_MQPRIO: 8893 if (ice_is_eswitch_mode_switchdev(pf)) { 8894 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8895 return -EOPNOTSUPP; 8896 } 8897 8898 if (pf->adev) { 8899 mutex_lock(&pf->adev_mutex); 8900 device_lock(&pf->adev->dev); 8901 locked = true; 8902 if (pf->adev->dev.driver) { 8903 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8904 err = -EBUSY; 8905 goto adev_unlock; 8906 } 8907 } 8908 8909 /* setup traffic classifier for receive side */ 8910 mutex_lock(&pf->tc_mutex); 8911 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8912 mutex_unlock(&pf->tc_mutex); 8913 8914 adev_unlock: 8915 if (locked) { 8916 device_unlock(&pf->adev->dev); 8917 mutex_unlock(&pf->adev_mutex); 8918 } 8919 return err; 8920 default: 8921 return -EOPNOTSUPP; 8922 } 8923 return -EOPNOTSUPP; 8924 } 8925 8926 static struct ice_indr_block_priv * 8927 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8928 struct net_device *netdev) 8929 { 8930 struct ice_indr_block_priv *cb_priv; 8931 8932 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8933 if (!cb_priv->netdev) 8934 return NULL; 8935 if (cb_priv->netdev == netdev) 8936 return cb_priv; 8937 } 8938 return NULL; 8939 } 8940 8941 static int 8942 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8943 void *indr_priv) 8944 { 8945 struct ice_indr_block_priv *priv = indr_priv; 8946 struct ice_netdev_priv *np = priv->np; 8947 8948 switch (type) { 8949 case TC_SETUP_CLSFLOWER: 8950 return ice_setup_tc_cls_flower(np, priv->netdev, 8951 (struct flow_cls_offload *) 8952 type_data); 8953 default: 8954 return -EOPNOTSUPP; 8955 } 8956 } 8957 8958 static int 8959 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8960 struct ice_netdev_priv *np, 8961 struct flow_block_offload *f, void *data, 8962 void (*cleanup)(struct flow_block_cb *block_cb)) 8963 { 8964 struct ice_indr_block_priv *indr_priv; 8965 struct flow_block_cb *block_cb; 8966 8967 if (!ice_is_tunnel_supported(netdev) && 8968 !(is_vlan_dev(netdev) && 8969 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8970 return -EOPNOTSUPP; 8971 8972 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8973 return -EOPNOTSUPP; 8974 8975 switch (f->command) { 8976 case FLOW_BLOCK_BIND: 8977 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8978 if (indr_priv) 8979 return -EEXIST; 8980 8981 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8982 if (!indr_priv) 8983 return -ENOMEM; 8984 8985 indr_priv->netdev = netdev; 8986 indr_priv->np = np; 8987 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8988 8989 block_cb = 8990 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8991 indr_priv, indr_priv, 8992 ice_rep_indr_tc_block_unbind, 8993 f, netdev, sch, data, np, 8994 cleanup); 8995 8996 if (IS_ERR(block_cb)) { 8997 list_del(&indr_priv->list); 8998 kfree(indr_priv); 8999 return PTR_ERR(block_cb); 9000 } 9001 flow_block_cb_add(block_cb, f); 9002 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9003 break; 9004 case FLOW_BLOCK_UNBIND: 9005 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9006 if (!indr_priv) 9007 return -ENOENT; 9008 9009 block_cb = flow_block_cb_lookup(f->block, 9010 ice_indr_setup_block_cb, 9011 indr_priv); 9012 if (!block_cb) 9013 return -ENOENT; 9014 9015 flow_indr_block_cb_remove(block_cb, f); 9016 9017 list_del(&block_cb->driver_list); 9018 break; 9019 default: 9020 return -EOPNOTSUPP; 9021 } 9022 return 0; 9023 } 9024 9025 static int 9026 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9027 void *cb_priv, enum tc_setup_type type, void *type_data, 9028 void *data, 9029 void (*cleanup)(struct flow_block_cb *block_cb)) 9030 { 9031 switch (type) { 9032 case TC_SETUP_BLOCK: 9033 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9034 data, cleanup); 9035 9036 default: 9037 return -EOPNOTSUPP; 9038 } 9039 } 9040 9041 /** 9042 * ice_open - Called when a network interface becomes active 9043 * @netdev: network interface device structure 9044 * 9045 * The open entry point is called when a network interface is made 9046 * active by the system (IFF_UP). At this point all resources needed 9047 * for transmit and receive operations are allocated, the interrupt 9048 * handler is registered with the OS, the netdev watchdog is enabled, 9049 * and the stack is notified that the interface is ready. 9050 * 9051 * Returns 0 on success, negative value on failure 9052 */ 9053 int ice_open(struct net_device *netdev) 9054 { 9055 struct ice_netdev_priv *np = netdev_priv(netdev); 9056 struct ice_pf *pf = np->vsi->back; 9057 9058 if (ice_is_reset_in_progress(pf->state)) { 9059 netdev_err(netdev, "can't open net device while reset is in progress"); 9060 return -EBUSY; 9061 } 9062 9063 return ice_open_internal(netdev); 9064 } 9065 9066 /** 9067 * ice_open_internal - Called when a network interface becomes active 9068 * @netdev: network interface device structure 9069 * 9070 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9071 * handling routine 9072 * 9073 * Returns 0 on success, negative value on failure 9074 */ 9075 int ice_open_internal(struct net_device *netdev) 9076 { 9077 struct ice_netdev_priv *np = netdev_priv(netdev); 9078 struct ice_vsi *vsi = np->vsi; 9079 struct ice_pf *pf = vsi->back; 9080 struct ice_port_info *pi; 9081 int err; 9082 9083 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9084 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9085 return -EIO; 9086 } 9087 9088 netif_carrier_off(netdev); 9089 9090 pi = vsi->port_info; 9091 err = ice_update_link_info(pi); 9092 if (err) { 9093 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9094 return err; 9095 } 9096 9097 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9098 9099 /* Set PHY if there is media, otherwise, turn off PHY */ 9100 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9101 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9102 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9103 err = ice_init_phy_user_cfg(pi); 9104 if (err) { 9105 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9106 err); 9107 return err; 9108 } 9109 } 9110 9111 err = ice_configure_phy(vsi); 9112 if (err) { 9113 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9114 err); 9115 return err; 9116 } 9117 } else { 9118 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9119 ice_set_link(vsi, false); 9120 } 9121 9122 err = ice_vsi_open(vsi); 9123 if (err) 9124 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9125 vsi->vsi_num, vsi->vsw->sw_id); 9126 9127 /* Update existing tunnels information */ 9128 udp_tunnel_get_rx_info(netdev); 9129 9130 return err; 9131 } 9132 9133 /** 9134 * ice_stop - Disables a network interface 9135 * @netdev: network interface device structure 9136 * 9137 * The stop entry point is called when an interface is de-activated by the OS, 9138 * and the netdevice enters the DOWN state. The hardware is still under the 9139 * driver's control, but the netdev interface is disabled. 9140 * 9141 * Returns success only - not allowed to fail 9142 */ 9143 int ice_stop(struct net_device *netdev) 9144 { 9145 struct ice_netdev_priv *np = netdev_priv(netdev); 9146 struct ice_vsi *vsi = np->vsi; 9147 struct ice_pf *pf = vsi->back; 9148 9149 if (ice_is_reset_in_progress(pf->state)) { 9150 netdev_err(netdev, "can't stop net device while reset is in progress"); 9151 return -EBUSY; 9152 } 9153 9154 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9155 int link_err = ice_force_phys_link_state(vsi, false); 9156 9157 if (link_err) { 9158 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9159 vsi->vsi_num, link_err); 9160 return -EIO; 9161 } 9162 } 9163 9164 ice_vsi_close(vsi); 9165 9166 return 0; 9167 } 9168 9169 /** 9170 * ice_features_check - Validate encapsulated packet conforms to limits 9171 * @skb: skb buffer 9172 * @netdev: This port's netdev 9173 * @features: Offload features that the stack believes apply 9174 */ 9175 static netdev_features_t 9176 ice_features_check(struct sk_buff *skb, 9177 struct net_device __always_unused *netdev, 9178 netdev_features_t features) 9179 { 9180 bool gso = skb_is_gso(skb); 9181 size_t len; 9182 9183 /* No point in doing any of this if neither checksum nor GSO are 9184 * being requested for this frame. We can rule out both by just 9185 * checking for CHECKSUM_PARTIAL 9186 */ 9187 if (skb->ip_summed != CHECKSUM_PARTIAL) 9188 return features; 9189 9190 /* We cannot support GSO if the MSS is going to be less than 9191 * 64 bytes. If it is then we need to drop support for GSO. 9192 */ 9193 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9194 features &= ~NETIF_F_GSO_MASK; 9195 9196 len = skb_network_offset(skb); 9197 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9198 goto out_rm_features; 9199 9200 len = skb_network_header_len(skb); 9201 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9202 goto out_rm_features; 9203 9204 if (skb->encapsulation) { 9205 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9206 * the case of IPIP frames, the transport header pointer is 9207 * after the inner header! So check to make sure that this 9208 * is a GRE or UDP_TUNNEL frame before doing that math. 9209 */ 9210 if (gso && (skb_shinfo(skb)->gso_type & 9211 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9212 len = skb_inner_network_header(skb) - 9213 skb_transport_header(skb); 9214 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9215 goto out_rm_features; 9216 } 9217 9218 len = skb_inner_network_header_len(skb); 9219 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9220 goto out_rm_features; 9221 } 9222 9223 return features; 9224 out_rm_features: 9225 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9226 } 9227 9228 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9229 .ndo_open = ice_open, 9230 .ndo_stop = ice_stop, 9231 .ndo_start_xmit = ice_start_xmit, 9232 .ndo_set_mac_address = ice_set_mac_address, 9233 .ndo_validate_addr = eth_validate_addr, 9234 .ndo_change_mtu = ice_change_mtu, 9235 .ndo_get_stats64 = ice_get_stats64, 9236 .ndo_tx_timeout = ice_tx_timeout, 9237 .ndo_bpf = ice_xdp_safe_mode, 9238 }; 9239 9240 static const struct net_device_ops ice_netdev_ops = { 9241 .ndo_open = ice_open, 9242 .ndo_stop = ice_stop, 9243 .ndo_start_xmit = ice_start_xmit, 9244 .ndo_select_queue = ice_select_queue, 9245 .ndo_features_check = ice_features_check, 9246 .ndo_fix_features = ice_fix_features, 9247 .ndo_set_rx_mode = ice_set_rx_mode, 9248 .ndo_set_mac_address = ice_set_mac_address, 9249 .ndo_validate_addr = eth_validate_addr, 9250 .ndo_change_mtu = ice_change_mtu, 9251 .ndo_get_stats64 = ice_get_stats64, 9252 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9253 .ndo_eth_ioctl = ice_eth_ioctl, 9254 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9255 .ndo_set_vf_mac = ice_set_vf_mac, 9256 .ndo_get_vf_config = ice_get_vf_cfg, 9257 .ndo_set_vf_trust = ice_set_vf_trust, 9258 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9259 .ndo_set_vf_link_state = ice_set_vf_link_state, 9260 .ndo_get_vf_stats = ice_get_vf_stats, 9261 .ndo_set_vf_rate = ice_set_vf_bw, 9262 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9263 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9264 .ndo_setup_tc = ice_setup_tc, 9265 .ndo_set_features = ice_set_features, 9266 .ndo_bridge_getlink = ice_bridge_getlink, 9267 .ndo_bridge_setlink = ice_bridge_setlink, 9268 .ndo_fdb_add = ice_fdb_add, 9269 .ndo_fdb_del = ice_fdb_del, 9270 #ifdef CONFIG_RFS_ACCEL 9271 .ndo_rx_flow_steer = ice_rx_flow_steer, 9272 #endif 9273 .ndo_tx_timeout = ice_tx_timeout, 9274 .ndo_bpf = ice_xdp, 9275 .ndo_xdp_xmit = ice_xdp_xmit, 9276 .ndo_xsk_wakeup = ice_xsk_wakeup, 9277 }; 9278