1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include "ice_dcb_nl.h" 13 14 #define DRV_VERSION_MAJOR 0 15 #define DRV_VERSION_MINOR 8 16 #define DRV_VERSION_BUILD 2 17 18 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 19 __stringify(DRV_VERSION_MINOR) "." \ 20 __stringify(DRV_VERSION_BUILD) "-k" 21 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 22 const char ice_drv_ver[] = DRV_VERSION; 23 static const char ice_driver_string[] = DRV_SUMMARY; 24 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 25 26 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 27 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 28 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 29 30 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 31 MODULE_DESCRIPTION(DRV_SUMMARY); 32 MODULE_LICENSE("GPL v2"); 33 MODULE_VERSION(DRV_VERSION); 34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 35 36 static int debug = -1; 37 module_param(debug, int, 0644); 38 #ifndef CONFIG_DYNAMIC_DEBUG 39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 40 #else 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 42 #endif /* !CONFIG_DYNAMIC_DEBUG */ 43 44 static struct workqueue_struct *ice_wq; 45 static const struct net_device_ops ice_netdev_safe_mode_ops; 46 static const struct net_device_ops ice_netdev_ops; 47 static int ice_vsi_open(struct ice_vsi *vsi); 48 49 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 50 51 static void ice_vsi_release_all(struct ice_pf *pf); 52 53 /** 54 * ice_get_tx_pending - returns number of Tx descriptors not processed 55 * @ring: the ring of descriptors 56 */ 57 static u16 ice_get_tx_pending(struct ice_ring *ring) 58 { 59 u16 head, tail; 60 61 head = ring->next_to_clean; 62 tail = ring->next_to_use; 63 64 if (head != tail) 65 return (head < tail) ? 66 tail - head : (tail + ring->count - head); 67 return 0; 68 } 69 70 /** 71 * ice_check_for_hang_subtask - check for and recover hung queues 72 * @pf: pointer to PF struct 73 */ 74 static void ice_check_for_hang_subtask(struct ice_pf *pf) 75 { 76 struct ice_vsi *vsi = NULL; 77 struct ice_hw *hw; 78 unsigned int i; 79 int packets; 80 u32 v; 81 82 ice_for_each_vsi(pf, v) 83 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 84 vsi = pf->vsi[v]; 85 break; 86 } 87 88 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 89 return; 90 91 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 92 return; 93 94 hw = &vsi->back->hw; 95 96 for (i = 0; i < vsi->num_txq; i++) { 97 struct ice_ring *tx_ring = vsi->tx_rings[i]; 98 99 if (tx_ring && tx_ring->desc) { 100 /* If packet counter has not changed the queue is 101 * likely stalled, so force an interrupt for this 102 * queue. 103 * 104 * prev_pkt would be negative if there was no 105 * pending work. 106 */ 107 packets = tx_ring->stats.pkts & INT_MAX; 108 if (tx_ring->tx_stats.prev_pkt == packets) { 109 /* Trigger sw interrupt to revive the queue */ 110 ice_trigger_sw_intr(hw, tx_ring->q_vector); 111 continue; 112 } 113 114 /* Memory barrier between read of packet count and call 115 * to ice_get_tx_pending() 116 */ 117 smp_rmb(); 118 tx_ring->tx_stats.prev_pkt = 119 ice_get_tx_pending(tx_ring) ? packets : -1; 120 } 121 } 122 } 123 124 /** 125 * ice_init_mac_fltr - Set initial MAC filters 126 * @pf: board private structure 127 * 128 * Set initial set of MAC filters for PF VSI; configure filters for permanent 129 * address and broadcast address. If an error is encountered, netdevice will be 130 * unregistered. 131 */ 132 static int ice_init_mac_fltr(struct ice_pf *pf) 133 { 134 enum ice_status status; 135 u8 broadcast[ETH_ALEN]; 136 struct ice_vsi *vsi; 137 138 vsi = ice_get_main_vsi(pf); 139 if (!vsi) 140 return -EINVAL; 141 142 /* To add a MAC filter, first add the MAC to a list and then 143 * pass the list to ice_add_mac. 144 */ 145 146 /* Add a unicast MAC filter so the VSI can get its packets */ 147 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true); 148 if (status) 149 goto unregister; 150 151 /* VSI needs to receive broadcast traffic, so add the broadcast 152 * MAC address to the list as well. 153 */ 154 eth_broadcast_addr(broadcast); 155 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true); 156 if (status) 157 goto unregister; 158 159 return 0; 160 unregister: 161 /* We aren't useful with no MAC filters, so unregister if we 162 * had an error 163 */ 164 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 165 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %d. Unregistering device\n", 166 status); 167 unregister_netdev(vsi->netdev); 168 free_netdev(vsi->netdev); 169 vsi->netdev = NULL; 170 } 171 172 return -EIO; 173 } 174 175 /** 176 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 177 * @netdev: the net device on which the sync is happening 178 * @addr: MAC address to sync 179 * 180 * This is a callback function which is called by the in kernel device sync 181 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 182 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 183 * MAC filters from the hardware. 184 */ 185 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 186 { 187 struct ice_netdev_priv *np = netdev_priv(netdev); 188 struct ice_vsi *vsi = np->vsi; 189 190 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 /** 197 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 198 * @netdev: the net device on which the unsync is happening 199 * @addr: MAC address to unsync 200 * 201 * This is a callback function which is called by the in kernel device unsync 202 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 203 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 204 * delete the MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_vsi_fltr_changed - check if filter state changed 219 * @vsi: VSI to be checked 220 * 221 * returns true if filter state has changed, false otherwise. 222 */ 223 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 224 { 225 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 226 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 227 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 228 } 229 230 /** 231 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 232 * @vsi: the VSI being configured 233 * @promisc_m: mask of promiscuous config bits 234 * @set_promisc: enable or disable promisc flag request 235 * 236 */ 237 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 238 { 239 struct ice_hw *hw = &vsi->back->hw; 240 enum ice_status status = 0; 241 242 if (vsi->type != ICE_VSI_PF) 243 return 0; 244 245 if (vsi->vlan_ena) { 246 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 247 set_promisc); 248 } else { 249 if (set_promisc) 250 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 251 0); 252 else 253 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 254 0); 255 } 256 257 if (status) 258 return -EIO; 259 260 return 0; 261 } 262 263 /** 264 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 265 * @vsi: ptr to the VSI 266 * 267 * Push any outstanding VSI filter changes through the AdminQ. 268 */ 269 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 270 { 271 struct device *dev = ice_pf_to_dev(vsi->back); 272 struct net_device *netdev = vsi->netdev; 273 bool promisc_forced_on = false; 274 struct ice_pf *pf = vsi->back; 275 struct ice_hw *hw = &pf->hw; 276 enum ice_status status = 0; 277 u32 changed_flags = 0; 278 u8 promisc_m; 279 int err = 0; 280 281 if (!vsi->netdev) 282 return -EINVAL; 283 284 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 285 usleep_range(1000, 2000); 286 287 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 288 vsi->current_netdev_flags = vsi->netdev->flags; 289 290 INIT_LIST_HEAD(&vsi->tmp_sync_list); 291 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 292 293 if (ice_vsi_fltr_changed(vsi)) { 294 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 295 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 296 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 297 298 /* grab the netdev's addr_list_lock */ 299 netif_addr_lock_bh(netdev); 300 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 301 ice_add_mac_to_unsync_list); 302 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 303 ice_add_mac_to_unsync_list); 304 /* our temp lists are populated. release lock */ 305 netif_addr_unlock_bh(netdev); 306 } 307 308 /* Remove MAC addresses in the unsync list */ 309 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 310 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 311 if (status) { 312 netdev_err(netdev, "Failed to delete MAC filters\n"); 313 /* if we failed because of alloc failures, just bail */ 314 if (status == ICE_ERR_NO_MEMORY) { 315 err = -ENOMEM; 316 goto out; 317 } 318 } 319 320 /* Add MAC addresses in the sync list */ 321 status = ice_add_mac(hw, &vsi->tmp_sync_list); 322 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 323 /* If filter is added successfully or already exists, do not go into 324 * 'if' condition and report it as error. Instead continue processing 325 * rest of the function. 326 */ 327 if (status && status != ICE_ERR_ALREADY_EXISTS) { 328 netdev_err(netdev, "Failed to add MAC filters\n"); 329 /* If there is no more space for new umac filters, VSI 330 * should go into promiscuous mode. There should be some 331 * space reserved for promiscuous filters. 332 */ 333 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 334 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 335 vsi->state)) { 336 promisc_forced_on = true; 337 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 338 vsi->vsi_num); 339 } else { 340 err = -EIO; 341 goto out; 342 } 343 } 344 /* check for changes in promiscuous modes */ 345 if (changed_flags & IFF_ALLMULTI) { 346 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 347 if (vsi->vlan_ena) 348 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 349 else 350 promisc_m = ICE_MCAST_PROMISC_BITS; 351 352 err = ice_cfg_promisc(vsi, promisc_m, true); 353 if (err) { 354 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 355 vsi->vsi_num); 356 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 357 goto out_promisc; 358 } 359 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 360 if (vsi->vlan_ena) 361 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 362 else 363 promisc_m = ICE_MCAST_PROMISC_BITS; 364 365 err = ice_cfg_promisc(vsi, promisc_m, false); 366 if (err) { 367 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 368 vsi->vsi_num); 369 vsi->current_netdev_flags |= IFF_ALLMULTI; 370 goto out_promisc; 371 } 372 } 373 } 374 375 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 376 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 377 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 378 if (vsi->current_netdev_flags & IFF_PROMISC) { 379 /* Apply Rx filter rule to get traffic from wire */ 380 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 381 err = ice_set_dflt_vsi(pf->first_sw, vsi); 382 if (err && err != -EEXIST) { 383 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 384 err, vsi->vsi_num); 385 vsi->current_netdev_flags &= 386 ~IFF_PROMISC; 387 goto out_promisc; 388 } 389 } 390 } else { 391 /* Clear Rx filter to remove traffic from wire */ 392 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 393 err = ice_clear_dflt_vsi(pf->first_sw); 394 if (err) { 395 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 396 err, vsi->vsi_num); 397 vsi->current_netdev_flags |= 398 IFF_PROMISC; 399 goto out_promisc; 400 } 401 } 402 } 403 } 404 goto exit; 405 406 out_promisc: 407 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 408 goto exit; 409 out: 410 /* if something went wrong then set the changed flag so we try again */ 411 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 412 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 413 exit: 414 clear_bit(__ICE_CFG_BUSY, vsi->state); 415 return err; 416 } 417 418 /** 419 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 420 * @pf: board private structure 421 */ 422 static void ice_sync_fltr_subtask(struct ice_pf *pf) 423 { 424 int v; 425 426 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 427 return; 428 429 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 430 431 ice_for_each_vsi(pf, v) 432 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 433 ice_vsi_sync_fltr(pf->vsi[v])) { 434 /* come back and try again later */ 435 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 436 break; 437 } 438 } 439 440 /** 441 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 442 * @pf: the PF 443 * @locked: is the rtnl_lock already held 444 */ 445 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 446 { 447 int v; 448 449 ice_for_each_vsi(pf, v) 450 if (pf->vsi[v]) 451 ice_dis_vsi(pf->vsi[v], locked); 452 } 453 454 /** 455 * ice_prepare_for_reset - prep for the core to reset 456 * @pf: board private structure 457 * 458 * Inform or close all dependent features in prep for reset. 459 */ 460 static void 461 ice_prepare_for_reset(struct ice_pf *pf) 462 { 463 struct ice_hw *hw = &pf->hw; 464 int i; 465 466 /* already prepared for reset */ 467 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 468 return; 469 470 /* Notify VFs of impending reset */ 471 if (ice_check_sq_alive(hw, &hw->mailboxq)) 472 ice_vc_notify_reset(pf); 473 474 /* Disable VFs until reset is completed */ 475 ice_for_each_vf(pf, i) 476 ice_set_vf_state_qs_dis(&pf->vf[i]); 477 478 /* clear SW filtering DB */ 479 ice_clear_hw_tbls(hw); 480 /* disable the VSIs and their queues that are not already DOWN */ 481 ice_pf_dis_all_vsi(pf, false); 482 483 if (hw->port_info) 484 ice_sched_clear_port(hw->port_info); 485 486 ice_shutdown_all_ctrlq(hw); 487 488 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 489 } 490 491 /** 492 * ice_do_reset - Initiate one of many types of resets 493 * @pf: board private structure 494 * @reset_type: reset type requested 495 * before this function was called. 496 */ 497 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 498 { 499 struct device *dev = ice_pf_to_dev(pf); 500 struct ice_hw *hw = &pf->hw; 501 502 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 503 WARN_ON(in_interrupt()); 504 505 ice_prepare_for_reset(pf); 506 507 /* trigger the reset */ 508 if (ice_reset(hw, reset_type)) { 509 dev_err(dev, "reset %d failed\n", reset_type); 510 set_bit(__ICE_RESET_FAILED, pf->state); 511 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 512 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 513 clear_bit(__ICE_PFR_REQ, pf->state); 514 clear_bit(__ICE_CORER_REQ, pf->state); 515 clear_bit(__ICE_GLOBR_REQ, pf->state); 516 return; 517 } 518 519 /* PFR is a bit of a special case because it doesn't result in an OICR 520 * interrupt. So for PFR, rebuild after the reset and clear the reset- 521 * associated state bits. 522 */ 523 if (reset_type == ICE_RESET_PFR) { 524 pf->pfr_count++; 525 ice_rebuild(pf, reset_type); 526 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 527 clear_bit(__ICE_PFR_REQ, pf->state); 528 ice_reset_all_vfs(pf, true); 529 } 530 } 531 532 /** 533 * ice_reset_subtask - Set up for resetting the device and driver 534 * @pf: board private structure 535 */ 536 static void ice_reset_subtask(struct ice_pf *pf) 537 { 538 enum ice_reset_req reset_type = ICE_RESET_INVAL; 539 540 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 541 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 542 * of reset is pending and sets bits in pf->state indicating the reset 543 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 544 * prepare for pending reset if not already (for PF software-initiated 545 * global resets the software should already be prepared for it as 546 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 547 * by firmware or software on other PFs, that bit is not set so prepare 548 * for the reset now), poll for reset done, rebuild and return. 549 */ 550 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 551 /* Perform the largest reset requested */ 552 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 553 reset_type = ICE_RESET_CORER; 554 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 555 reset_type = ICE_RESET_GLOBR; 556 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 557 reset_type = ICE_RESET_EMPR; 558 /* return if no valid reset type requested */ 559 if (reset_type == ICE_RESET_INVAL) 560 return; 561 ice_prepare_for_reset(pf); 562 563 /* make sure we are ready to rebuild */ 564 if (ice_check_reset(&pf->hw)) { 565 set_bit(__ICE_RESET_FAILED, pf->state); 566 } else { 567 /* done with reset. start rebuild */ 568 pf->hw.reset_ongoing = false; 569 ice_rebuild(pf, reset_type); 570 /* clear bit to resume normal operations, but 571 * ICE_NEEDS_RESTART bit is set in case rebuild failed 572 */ 573 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 574 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 575 clear_bit(__ICE_PFR_REQ, pf->state); 576 clear_bit(__ICE_CORER_REQ, pf->state); 577 clear_bit(__ICE_GLOBR_REQ, pf->state); 578 ice_reset_all_vfs(pf, true); 579 } 580 581 return; 582 } 583 584 /* No pending resets to finish processing. Check for new resets */ 585 if (test_bit(__ICE_PFR_REQ, pf->state)) 586 reset_type = ICE_RESET_PFR; 587 if (test_bit(__ICE_CORER_REQ, pf->state)) 588 reset_type = ICE_RESET_CORER; 589 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 590 reset_type = ICE_RESET_GLOBR; 591 /* If no valid reset type requested just return */ 592 if (reset_type == ICE_RESET_INVAL) 593 return; 594 595 /* reset if not already down or busy */ 596 if (!test_bit(__ICE_DOWN, pf->state) && 597 !test_bit(__ICE_CFG_BUSY, pf->state)) { 598 ice_do_reset(pf, reset_type); 599 } 600 } 601 602 /** 603 * ice_print_topo_conflict - print topology conflict message 604 * @vsi: the VSI whose topology status is being checked 605 */ 606 static void ice_print_topo_conflict(struct ice_vsi *vsi) 607 { 608 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 609 case ICE_AQ_LINK_TOPO_CONFLICT: 610 case ICE_AQ_LINK_MEDIA_CONFLICT: 611 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 612 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 613 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 614 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 615 break; 616 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 617 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 618 break; 619 default: 620 break; 621 } 622 } 623 624 /** 625 * ice_print_link_msg - print link up or down message 626 * @vsi: the VSI whose link status is being queried 627 * @isup: boolean for if the link is now up or down 628 */ 629 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 630 { 631 struct ice_aqc_get_phy_caps_data *caps; 632 enum ice_status status; 633 const char *fec_req; 634 const char *speed; 635 const char *fec; 636 const char *fc; 637 const char *an; 638 639 if (!vsi) 640 return; 641 642 if (vsi->current_isup == isup) 643 return; 644 645 vsi->current_isup = isup; 646 647 if (!isup) { 648 netdev_info(vsi->netdev, "NIC Link is Down\n"); 649 return; 650 } 651 652 switch (vsi->port_info->phy.link_info.link_speed) { 653 case ICE_AQ_LINK_SPEED_100GB: 654 speed = "100 G"; 655 break; 656 case ICE_AQ_LINK_SPEED_50GB: 657 speed = "50 G"; 658 break; 659 case ICE_AQ_LINK_SPEED_40GB: 660 speed = "40 G"; 661 break; 662 case ICE_AQ_LINK_SPEED_25GB: 663 speed = "25 G"; 664 break; 665 case ICE_AQ_LINK_SPEED_20GB: 666 speed = "20 G"; 667 break; 668 case ICE_AQ_LINK_SPEED_10GB: 669 speed = "10 G"; 670 break; 671 case ICE_AQ_LINK_SPEED_5GB: 672 speed = "5 G"; 673 break; 674 case ICE_AQ_LINK_SPEED_2500MB: 675 speed = "2.5 G"; 676 break; 677 case ICE_AQ_LINK_SPEED_1000MB: 678 speed = "1 G"; 679 break; 680 case ICE_AQ_LINK_SPEED_100MB: 681 speed = "100 M"; 682 break; 683 default: 684 speed = "Unknown"; 685 break; 686 } 687 688 switch (vsi->port_info->fc.current_mode) { 689 case ICE_FC_FULL: 690 fc = "Rx/Tx"; 691 break; 692 case ICE_FC_TX_PAUSE: 693 fc = "Tx"; 694 break; 695 case ICE_FC_RX_PAUSE: 696 fc = "Rx"; 697 break; 698 case ICE_FC_NONE: 699 fc = "None"; 700 break; 701 default: 702 fc = "Unknown"; 703 break; 704 } 705 706 /* Get FEC mode based on negotiated link info */ 707 switch (vsi->port_info->phy.link_info.fec_info) { 708 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 709 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 710 fec = "RS-FEC"; 711 break; 712 case ICE_AQ_LINK_25G_KR_FEC_EN: 713 fec = "FC-FEC/BASE-R"; 714 break; 715 default: 716 fec = "NONE"; 717 break; 718 } 719 720 /* check if autoneg completed, might be false due to not supported */ 721 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 722 an = "True"; 723 else 724 an = "False"; 725 726 /* Get FEC mode requested based on PHY caps last SW configuration */ 727 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 728 if (!caps) { 729 fec_req = "Unknown"; 730 goto done; 731 } 732 733 status = ice_aq_get_phy_caps(vsi->port_info, false, 734 ICE_AQC_REPORT_SW_CFG, caps, NULL); 735 if (status) 736 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 737 738 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 740 fec_req = "RS-FEC"; 741 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 742 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 743 fec_req = "FC-FEC/BASE-R"; 744 else 745 fec_req = "NONE"; 746 747 kfree(caps); 748 749 done: 750 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 751 speed, fec_req, fec, an, fc); 752 ice_print_topo_conflict(vsi); 753 } 754 755 /** 756 * ice_vsi_link_event - update the VSI's netdev 757 * @vsi: the VSI on which the link event occurred 758 * @link_up: whether or not the VSI needs to be set up or down 759 */ 760 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 761 { 762 if (!vsi) 763 return; 764 765 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 766 return; 767 768 if (vsi->type == ICE_VSI_PF) { 769 if (link_up == netif_carrier_ok(vsi->netdev)) 770 return; 771 772 if (link_up) { 773 netif_carrier_on(vsi->netdev); 774 netif_tx_wake_all_queues(vsi->netdev); 775 } else { 776 netif_carrier_off(vsi->netdev); 777 netif_tx_stop_all_queues(vsi->netdev); 778 } 779 } 780 } 781 782 /** 783 * ice_link_event - process the link event 784 * @pf: PF that the link event is associated with 785 * @pi: port_info for the port that the link event is associated with 786 * @link_up: true if the physical link is up and false if it is down 787 * @link_speed: current link speed received from the link event 788 * 789 * Returns 0 on success and negative on failure 790 */ 791 static int 792 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 793 u16 link_speed) 794 { 795 struct device *dev = ice_pf_to_dev(pf); 796 struct ice_phy_info *phy_info; 797 struct ice_vsi *vsi; 798 u16 old_link_speed; 799 bool old_link; 800 int result; 801 802 phy_info = &pi->phy; 803 phy_info->link_info_old = phy_info->link_info; 804 805 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 806 old_link_speed = phy_info->link_info_old.link_speed; 807 808 /* update the link info structures and re-enable link events, 809 * don't bail on failure due to other book keeping needed 810 */ 811 result = ice_update_link_info(pi); 812 if (result) 813 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 814 pi->lport); 815 816 /* if the old link up/down and speed is the same as the new */ 817 if (link_up == old_link && link_speed == old_link_speed) 818 return result; 819 820 vsi = ice_get_main_vsi(pf); 821 if (!vsi || !vsi->port_info) 822 return -EINVAL; 823 824 /* turn off PHY if media was removed */ 825 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 826 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 827 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 828 829 result = ice_aq_set_link_restart_an(pi, false, NULL); 830 if (result) { 831 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 832 vsi->vsi_num, result); 833 return result; 834 } 835 } 836 837 ice_dcb_rebuild(pf); 838 ice_vsi_link_event(vsi, link_up); 839 ice_print_link_msg(vsi, link_up); 840 841 ice_vc_notify_link_state(pf); 842 843 return result; 844 } 845 846 /** 847 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 848 * @pf: board private structure 849 */ 850 static void ice_watchdog_subtask(struct ice_pf *pf) 851 { 852 int i; 853 854 /* if interface is down do nothing */ 855 if (test_bit(__ICE_DOWN, pf->state) || 856 test_bit(__ICE_CFG_BUSY, pf->state)) 857 return; 858 859 /* make sure we don't do these things too often */ 860 if (time_before(jiffies, 861 pf->serv_tmr_prev + pf->serv_tmr_period)) 862 return; 863 864 pf->serv_tmr_prev = jiffies; 865 866 /* Update the stats for active netdevs so the network stack 867 * can look at updated numbers whenever it cares to 868 */ 869 ice_update_pf_stats(pf); 870 ice_for_each_vsi(pf, i) 871 if (pf->vsi[i] && pf->vsi[i]->netdev) 872 ice_update_vsi_stats(pf->vsi[i]); 873 } 874 875 /** 876 * ice_init_link_events - enable/initialize link events 877 * @pi: pointer to the port_info instance 878 * 879 * Returns -EIO on failure, 0 on success 880 */ 881 static int ice_init_link_events(struct ice_port_info *pi) 882 { 883 u16 mask; 884 885 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 886 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 887 888 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 889 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 890 pi->lport); 891 return -EIO; 892 } 893 894 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 895 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 896 pi->lport); 897 return -EIO; 898 } 899 900 return 0; 901 } 902 903 /** 904 * ice_handle_link_event - handle link event via ARQ 905 * @pf: PF that the link event is associated with 906 * @event: event structure containing link status info 907 */ 908 static int 909 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 910 { 911 struct ice_aqc_get_link_status_data *link_data; 912 struct ice_port_info *port_info; 913 int status; 914 915 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 916 port_info = pf->hw.port_info; 917 if (!port_info) 918 return -EINVAL; 919 920 status = ice_link_event(pf, port_info, 921 !!(link_data->link_info & ICE_AQ_LINK_UP), 922 le16_to_cpu(link_data->link_speed)); 923 if (status) 924 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 925 status); 926 927 return status; 928 } 929 930 /** 931 * __ice_clean_ctrlq - helper function to clean controlq rings 932 * @pf: ptr to struct ice_pf 933 * @q_type: specific Control queue type 934 */ 935 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 936 { 937 struct device *dev = ice_pf_to_dev(pf); 938 struct ice_rq_event_info event; 939 struct ice_hw *hw = &pf->hw; 940 struct ice_ctl_q_info *cq; 941 u16 pending, i = 0; 942 const char *qtype; 943 u32 oldval, val; 944 945 /* Do not clean control queue if/when PF reset fails */ 946 if (test_bit(__ICE_RESET_FAILED, pf->state)) 947 return 0; 948 949 switch (q_type) { 950 case ICE_CTL_Q_ADMIN: 951 cq = &hw->adminq; 952 qtype = "Admin"; 953 break; 954 case ICE_CTL_Q_MAILBOX: 955 cq = &hw->mailboxq; 956 qtype = "Mailbox"; 957 break; 958 default: 959 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 960 return 0; 961 } 962 963 /* check for error indications - PF_xx_AxQLEN register layout for 964 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 965 */ 966 val = rd32(hw, cq->rq.len); 967 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 968 PF_FW_ARQLEN_ARQCRIT_M)) { 969 oldval = val; 970 if (val & PF_FW_ARQLEN_ARQVFE_M) 971 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 972 qtype); 973 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 974 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 975 qtype); 976 } 977 if (val & PF_FW_ARQLEN_ARQCRIT_M) 978 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 979 qtype); 980 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 981 PF_FW_ARQLEN_ARQCRIT_M); 982 if (oldval != val) 983 wr32(hw, cq->rq.len, val); 984 } 985 986 val = rd32(hw, cq->sq.len); 987 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 988 PF_FW_ATQLEN_ATQCRIT_M)) { 989 oldval = val; 990 if (val & PF_FW_ATQLEN_ATQVFE_M) 991 dev_dbg(dev, "%s Send Queue VF Error detected\n", 992 qtype); 993 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 994 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 995 qtype); 996 } 997 if (val & PF_FW_ATQLEN_ATQCRIT_M) 998 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 999 qtype); 1000 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1001 PF_FW_ATQLEN_ATQCRIT_M); 1002 if (oldval != val) 1003 wr32(hw, cq->sq.len, val); 1004 } 1005 1006 event.buf_len = cq->rq_buf_size; 1007 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1008 if (!event.msg_buf) 1009 return 0; 1010 1011 do { 1012 enum ice_status ret; 1013 u16 opcode; 1014 1015 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1016 if (ret == ICE_ERR_AQ_NO_WORK) 1017 break; 1018 if (ret) { 1019 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1020 ret); 1021 break; 1022 } 1023 1024 opcode = le16_to_cpu(event.desc.opcode); 1025 1026 switch (opcode) { 1027 case ice_aqc_opc_get_link_status: 1028 if (ice_handle_link_event(pf, &event)) 1029 dev_err(dev, "Could not handle link event\n"); 1030 break; 1031 case ice_aqc_opc_event_lan_overflow: 1032 ice_vf_lan_overflow_event(pf, &event); 1033 break; 1034 case ice_mbx_opc_send_msg_to_pf: 1035 ice_vc_process_vf_msg(pf, &event); 1036 break; 1037 case ice_aqc_opc_fw_logging: 1038 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1039 break; 1040 case ice_aqc_opc_lldp_set_mib_change: 1041 ice_dcb_process_lldp_set_mib_change(pf, &event); 1042 break; 1043 default: 1044 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1045 qtype, opcode); 1046 break; 1047 } 1048 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1049 1050 kfree(event.msg_buf); 1051 1052 return pending && (i == ICE_DFLT_IRQ_WORK); 1053 } 1054 1055 /** 1056 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1057 * @hw: pointer to hardware info 1058 * @cq: control queue information 1059 * 1060 * returns true if there are pending messages in a queue, false if there aren't 1061 */ 1062 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1063 { 1064 u16 ntu; 1065 1066 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1067 return cq->rq.next_to_clean != ntu; 1068 } 1069 1070 /** 1071 * ice_clean_adminq_subtask - clean the AdminQ rings 1072 * @pf: board private structure 1073 */ 1074 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1075 { 1076 struct ice_hw *hw = &pf->hw; 1077 1078 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1079 return; 1080 1081 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1082 return; 1083 1084 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1085 1086 /* There might be a situation where new messages arrive to a control 1087 * queue between processing the last message and clearing the 1088 * EVENT_PENDING bit. So before exiting, check queue head again (using 1089 * ice_ctrlq_pending) and process new messages if any. 1090 */ 1091 if (ice_ctrlq_pending(hw, &hw->adminq)) 1092 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1093 1094 ice_flush(hw); 1095 } 1096 1097 /** 1098 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1099 * @pf: board private structure 1100 */ 1101 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1102 { 1103 struct ice_hw *hw = &pf->hw; 1104 1105 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1106 return; 1107 1108 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1109 return; 1110 1111 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1112 1113 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1114 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1115 1116 ice_flush(hw); 1117 } 1118 1119 /** 1120 * ice_service_task_schedule - schedule the service task to wake up 1121 * @pf: board private structure 1122 * 1123 * If not already scheduled, this puts the task into the work queue. 1124 */ 1125 static void ice_service_task_schedule(struct ice_pf *pf) 1126 { 1127 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1128 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1129 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1130 queue_work(ice_wq, &pf->serv_task); 1131 } 1132 1133 /** 1134 * ice_service_task_complete - finish up the service task 1135 * @pf: board private structure 1136 */ 1137 static void ice_service_task_complete(struct ice_pf *pf) 1138 { 1139 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1140 1141 /* force memory (pf->state) to sync before next service task */ 1142 smp_mb__before_atomic(); 1143 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1144 } 1145 1146 /** 1147 * ice_service_task_stop - stop service task and cancel works 1148 * @pf: board private structure 1149 */ 1150 static void ice_service_task_stop(struct ice_pf *pf) 1151 { 1152 set_bit(__ICE_SERVICE_DIS, pf->state); 1153 1154 if (pf->serv_tmr.function) 1155 del_timer_sync(&pf->serv_tmr); 1156 if (pf->serv_task.func) 1157 cancel_work_sync(&pf->serv_task); 1158 1159 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1160 } 1161 1162 /** 1163 * ice_service_task_restart - restart service task and schedule works 1164 * @pf: board private structure 1165 * 1166 * This function is needed for suspend and resume works (e.g WoL scenario) 1167 */ 1168 static void ice_service_task_restart(struct ice_pf *pf) 1169 { 1170 clear_bit(__ICE_SERVICE_DIS, pf->state); 1171 ice_service_task_schedule(pf); 1172 } 1173 1174 /** 1175 * ice_service_timer - timer callback to schedule service task 1176 * @t: pointer to timer_list 1177 */ 1178 static void ice_service_timer(struct timer_list *t) 1179 { 1180 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1181 1182 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1183 ice_service_task_schedule(pf); 1184 } 1185 1186 /** 1187 * ice_handle_mdd_event - handle malicious driver detect event 1188 * @pf: pointer to the PF structure 1189 * 1190 * Called from service task. OICR interrupt handler indicates MDD event. 1191 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1192 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1193 * disable the queue, the PF can be configured to reset the VF using ethtool 1194 * private flag mdd-auto-reset-vf. 1195 */ 1196 static void ice_handle_mdd_event(struct ice_pf *pf) 1197 { 1198 struct device *dev = ice_pf_to_dev(pf); 1199 struct ice_hw *hw = &pf->hw; 1200 u32 reg; 1201 int i; 1202 1203 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1204 /* Since the VF MDD event logging is rate limited, check if 1205 * there are pending MDD events. 1206 */ 1207 ice_print_vfs_mdd_events(pf); 1208 return; 1209 } 1210 1211 /* find what triggered an MDD event */ 1212 reg = rd32(hw, GL_MDET_TX_PQM); 1213 if (reg & GL_MDET_TX_PQM_VALID_M) { 1214 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1215 GL_MDET_TX_PQM_PF_NUM_S; 1216 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1217 GL_MDET_TX_PQM_VF_NUM_S; 1218 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1219 GL_MDET_TX_PQM_MAL_TYPE_S; 1220 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1221 GL_MDET_TX_PQM_QNUM_S); 1222 1223 if (netif_msg_tx_err(pf)) 1224 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1225 event, queue, pf_num, vf_num); 1226 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1227 } 1228 1229 reg = rd32(hw, GL_MDET_TX_TCLAN); 1230 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1231 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1232 GL_MDET_TX_TCLAN_PF_NUM_S; 1233 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1234 GL_MDET_TX_TCLAN_VF_NUM_S; 1235 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1236 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1237 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1238 GL_MDET_TX_TCLAN_QNUM_S); 1239 1240 if (netif_msg_tx_err(pf)) 1241 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1242 event, queue, pf_num, vf_num); 1243 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1244 } 1245 1246 reg = rd32(hw, GL_MDET_RX); 1247 if (reg & GL_MDET_RX_VALID_M) { 1248 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1249 GL_MDET_RX_PF_NUM_S; 1250 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1251 GL_MDET_RX_VF_NUM_S; 1252 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1253 GL_MDET_RX_MAL_TYPE_S; 1254 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1255 GL_MDET_RX_QNUM_S); 1256 1257 if (netif_msg_rx_err(pf)) 1258 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1259 event, queue, pf_num, vf_num); 1260 wr32(hw, GL_MDET_RX, 0xffffffff); 1261 } 1262 1263 /* check to see if this PF caused an MDD event */ 1264 reg = rd32(hw, PF_MDET_TX_PQM); 1265 if (reg & PF_MDET_TX_PQM_VALID_M) { 1266 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1267 if (netif_msg_tx_err(pf)) 1268 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1269 } 1270 1271 reg = rd32(hw, PF_MDET_TX_TCLAN); 1272 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1273 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1274 if (netif_msg_tx_err(pf)) 1275 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1276 } 1277 1278 reg = rd32(hw, PF_MDET_RX); 1279 if (reg & PF_MDET_RX_VALID_M) { 1280 wr32(hw, PF_MDET_RX, 0xFFFF); 1281 if (netif_msg_rx_err(pf)) 1282 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1283 } 1284 1285 /* Check to see if one of the VFs caused an MDD event, and then 1286 * increment counters and set print pending 1287 */ 1288 ice_for_each_vf(pf, i) { 1289 struct ice_vf *vf = &pf->vf[i]; 1290 1291 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1292 if (reg & VP_MDET_TX_PQM_VALID_M) { 1293 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1294 vf->mdd_tx_events.count++; 1295 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1296 if (netif_msg_tx_err(pf)) 1297 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1298 i); 1299 } 1300 1301 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1302 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1303 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1304 vf->mdd_tx_events.count++; 1305 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1306 if (netif_msg_tx_err(pf)) 1307 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1308 i); 1309 } 1310 1311 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1312 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1313 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1314 vf->mdd_tx_events.count++; 1315 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1316 if (netif_msg_tx_err(pf)) 1317 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1318 i); 1319 } 1320 1321 reg = rd32(hw, VP_MDET_RX(i)); 1322 if (reg & VP_MDET_RX_VALID_M) { 1323 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1324 vf->mdd_rx_events.count++; 1325 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1326 if (netif_msg_rx_err(pf)) 1327 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1328 i); 1329 1330 /* Since the queue is disabled on VF Rx MDD events, the 1331 * PF can be configured to reset the VF through ethtool 1332 * private flag mdd-auto-reset-vf. 1333 */ 1334 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1335 ice_reset_vf(&pf->vf[i], false); 1336 } 1337 } 1338 1339 ice_print_vfs_mdd_events(pf); 1340 } 1341 1342 /** 1343 * ice_force_phys_link_state - Force the physical link state 1344 * @vsi: VSI to force the physical link state to up/down 1345 * @link_up: true/false indicates to set the physical link to up/down 1346 * 1347 * Force the physical link state by getting the current PHY capabilities from 1348 * hardware and setting the PHY config based on the determined capabilities. If 1349 * link changes a link event will be triggered because both the Enable Automatic 1350 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1351 * 1352 * Returns 0 on success, negative on failure 1353 */ 1354 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1355 { 1356 struct ice_aqc_get_phy_caps_data *pcaps; 1357 struct ice_aqc_set_phy_cfg_data *cfg; 1358 struct ice_port_info *pi; 1359 struct device *dev; 1360 int retcode; 1361 1362 if (!vsi || !vsi->port_info || !vsi->back) 1363 return -EINVAL; 1364 if (vsi->type != ICE_VSI_PF) 1365 return 0; 1366 1367 dev = ice_pf_to_dev(vsi->back); 1368 1369 pi = vsi->port_info; 1370 1371 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1372 if (!pcaps) 1373 return -ENOMEM; 1374 1375 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1376 NULL); 1377 if (retcode) { 1378 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1379 vsi->vsi_num, retcode); 1380 retcode = -EIO; 1381 goto out; 1382 } 1383 1384 /* No change in link */ 1385 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1386 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1387 goto out; 1388 1389 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1390 if (!cfg) { 1391 retcode = -ENOMEM; 1392 goto out; 1393 } 1394 1395 cfg->phy_type_low = pcaps->phy_type_low; 1396 cfg->phy_type_high = pcaps->phy_type_high; 1397 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1398 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1399 cfg->eee_cap = pcaps->eee_cap; 1400 cfg->eeer_value = pcaps->eeer_value; 1401 cfg->link_fec_opt = pcaps->link_fec_options; 1402 if (link_up) 1403 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1404 else 1405 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1406 1407 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1408 if (retcode) { 1409 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1410 vsi->vsi_num, retcode); 1411 retcode = -EIO; 1412 } 1413 1414 kfree(cfg); 1415 out: 1416 kfree(pcaps); 1417 return retcode; 1418 } 1419 1420 /** 1421 * ice_check_media_subtask - Check for media; bring link up if detected. 1422 * @pf: pointer to PF struct 1423 */ 1424 static void ice_check_media_subtask(struct ice_pf *pf) 1425 { 1426 struct ice_port_info *pi; 1427 struct ice_vsi *vsi; 1428 int err; 1429 1430 vsi = ice_get_main_vsi(pf); 1431 if (!vsi) 1432 return; 1433 1434 /* No need to check for media if it's already present or the interface 1435 * is down 1436 */ 1437 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1438 test_bit(__ICE_DOWN, vsi->state)) 1439 return; 1440 1441 /* Refresh link info and check if media is present */ 1442 pi = vsi->port_info; 1443 err = ice_update_link_info(pi); 1444 if (err) 1445 return; 1446 1447 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1448 err = ice_force_phys_link_state(vsi, true); 1449 if (err) 1450 return; 1451 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1452 1453 /* A Link Status Event will be generated; the event handler 1454 * will complete bringing the interface up 1455 */ 1456 } 1457 } 1458 1459 /** 1460 * ice_service_task - manage and run subtasks 1461 * @work: pointer to work_struct contained by the PF struct 1462 */ 1463 static void ice_service_task(struct work_struct *work) 1464 { 1465 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1466 unsigned long start_time = jiffies; 1467 1468 /* subtasks */ 1469 1470 /* process reset requests first */ 1471 ice_reset_subtask(pf); 1472 1473 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1474 if (ice_is_reset_in_progress(pf->state) || 1475 test_bit(__ICE_SUSPENDED, pf->state) || 1476 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1477 ice_service_task_complete(pf); 1478 return; 1479 } 1480 1481 ice_clean_adminq_subtask(pf); 1482 ice_check_media_subtask(pf); 1483 ice_check_for_hang_subtask(pf); 1484 ice_sync_fltr_subtask(pf); 1485 ice_handle_mdd_event(pf); 1486 ice_watchdog_subtask(pf); 1487 1488 if (ice_is_safe_mode(pf)) { 1489 ice_service_task_complete(pf); 1490 return; 1491 } 1492 1493 ice_process_vflr_event(pf); 1494 ice_clean_mailboxq_subtask(pf); 1495 1496 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1497 ice_service_task_complete(pf); 1498 1499 /* If the tasks have taken longer than one service timer period 1500 * or there is more work to be done, reset the service timer to 1501 * schedule the service task now. 1502 */ 1503 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1504 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1505 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1506 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1507 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1508 mod_timer(&pf->serv_tmr, jiffies); 1509 } 1510 1511 /** 1512 * ice_set_ctrlq_len - helper function to set controlq length 1513 * @hw: pointer to the HW instance 1514 */ 1515 static void ice_set_ctrlq_len(struct ice_hw *hw) 1516 { 1517 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1518 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1519 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1520 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1521 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 1522 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1523 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1524 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1525 } 1526 1527 /** 1528 * ice_schedule_reset - schedule a reset 1529 * @pf: board private structure 1530 * @reset: reset being requested 1531 */ 1532 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 1533 { 1534 struct device *dev = ice_pf_to_dev(pf); 1535 1536 /* bail out if earlier reset has failed */ 1537 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 1538 dev_dbg(dev, "earlier reset has failed\n"); 1539 return -EIO; 1540 } 1541 /* bail if reset/recovery already in progress */ 1542 if (ice_is_reset_in_progress(pf->state)) { 1543 dev_dbg(dev, "Reset already in progress\n"); 1544 return -EBUSY; 1545 } 1546 1547 switch (reset) { 1548 case ICE_RESET_PFR: 1549 set_bit(__ICE_PFR_REQ, pf->state); 1550 break; 1551 case ICE_RESET_CORER: 1552 set_bit(__ICE_CORER_REQ, pf->state); 1553 break; 1554 case ICE_RESET_GLOBR: 1555 set_bit(__ICE_GLOBR_REQ, pf->state); 1556 break; 1557 default: 1558 return -EINVAL; 1559 } 1560 1561 ice_service_task_schedule(pf); 1562 return 0; 1563 } 1564 1565 /** 1566 * ice_irq_affinity_notify - Callback for affinity changes 1567 * @notify: context as to what irq was changed 1568 * @mask: the new affinity mask 1569 * 1570 * This is a callback function used by the irq_set_affinity_notifier function 1571 * so that we may register to receive changes to the irq affinity masks. 1572 */ 1573 static void 1574 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1575 const cpumask_t *mask) 1576 { 1577 struct ice_q_vector *q_vector = 1578 container_of(notify, struct ice_q_vector, affinity_notify); 1579 1580 cpumask_copy(&q_vector->affinity_mask, mask); 1581 } 1582 1583 /** 1584 * ice_irq_affinity_release - Callback for affinity notifier release 1585 * @ref: internal core kernel usage 1586 * 1587 * This is a callback function used by the irq_set_affinity_notifier function 1588 * to inform the current notification subscriber that they will no longer 1589 * receive notifications. 1590 */ 1591 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1592 1593 /** 1594 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1595 * @vsi: the VSI being configured 1596 */ 1597 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1598 { 1599 struct ice_hw *hw = &vsi->back->hw; 1600 int i; 1601 1602 ice_for_each_q_vector(vsi, i) 1603 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1604 1605 ice_flush(hw); 1606 return 0; 1607 } 1608 1609 /** 1610 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1611 * @vsi: the VSI being configured 1612 * @basename: name for the vector 1613 */ 1614 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1615 { 1616 int q_vectors = vsi->num_q_vectors; 1617 struct ice_pf *pf = vsi->back; 1618 int base = vsi->base_vector; 1619 struct device *dev; 1620 int rx_int_idx = 0; 1621 int tx_int_idx = 0; 1622 int vector, err; 1623 int irq_num; 1624 1625 dev = ice_pf_to_dev(pf); 1626 for (vector = 0; vector < q_vectors; vector++) { 1627 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1628 1629 irq_num = pf->msix_entries[base + vector].vector; 1630 1631 if (q_vector->tx.ring && q_vector->rx.ring) { 1632 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1633 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1634 tx_int_idx++; 1635 } else if (q_vector->rx.ring) { 1636 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1637 "%s-%s-%d", basename, "rx", rx_int_idx++); 1638 } else if (q_vector->tx.ring) { 1639 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1640 "%s-%s-%d", basename, "tx", tx_int_idx++); 1641 } else { 1642 /* skip this unused q_vector */ 1643 continue; 1644 } 1645 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 1646 q_vector->name, q_vector); 1647 if (err) { 1648 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 1649 err); 1650 goto free_q_irqs; 1651 } 1652 1653 /* register for affinity change notifications */ 1654 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1655 q_vector->affinity_notify.release = ice_irq_affinity_release; 1656 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1657 1658 /* assign the mask for this irq */ 1659 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1660 } 1661 1662 vsi->irqs_ready = true; 1663 return 0; 1664 1665 free_q_irqs: 1666 while (vector) { 1667 vector--; 1668 irq_num = pf->msix_entries[base + vector].vector, 1669 irq_set_affinity_notifier(irq_num, NULL); 1670 irq_set_affinity_hint(irq_num, NULL); 1671 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 1672 } 1673 return err; 1674 } 1675 1676 /** 1677 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 1678 * @vsi: VSI to setup Tx rings used by XDP 1679 * 1680 * Return 0 on success and negative value on error 1681 */ 1682 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 1683 { 1684 struct device *dev = ice_pf_to_dev(vsi->back); 1685 int i; 1686 1687 for (i = 0; i < vsi->num_xdp_txq; i++) { 1688 u16 xdp_q_idx = vsi->alloc_txq + i; 1689 struct ice_ring *xdp_ring; 1690 1691 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 1692 1693 if (!xdp_ring) 1694 goto free_xdp_rings; 1695 1696 xdp_ring->q_index = xdp_q_idx; 1697 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 1698 xdp_ring->ring_active = false; 1699 xdp_ring->vsi = vsi; 1700 xdp_ring->netdev = NULL; 1701 xdp_ring->dev = dev; 1702 xdp_ring->count = vsi->num_tx_desc; 1703 vsi->xdp_rings[i] = xdp_ring; 1704 if (ice_setup_tx_ring(xdp_ring)) 1705 goto free_xdp_rings; 1706 ice_set_ring_xdp(xdp_ring); 1707 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 1708 } 1709 1710 return 0; 1711 1712 free_xdp_rings: 1713 for (; i >= 0; i--) 1714 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 1715 ice_free_tx_ring(vsi->xdp_rings[i]); 1716 return -ENOMEM; 1717 } 1718 1719 /** 1720 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 1721 * @vsi: VSI to set the bpf prog on 1722 * @prog: the bpf prog pointer 1723 */ 1724 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 1725 { 1726 struct bpf_prog *old_prog; 1727 int i; 1728 1729 old_prog = xchg(&vsi->xdp_prog, prog); 1730 if (old_prog) 1731 bpf_prog_put(old_prog); 1732 1733 ice_for_each_rxq(vsi, i) 1734 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 1735 } 1736 1737 /** 1738 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 1739 * @vsi: VSI to bring up Tx rings used by XDP 1740 * @prog: bpf program that will be assigned to VSI 1741 * 1742 * Return 0 on success and negative value on error 1743 */ 1744 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 1745 { 1746 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1747 int xdp_rings_rem = vsi->num_xdp_txq; 1748 struct ice_pf *pf = vsi->back; 1749 struct ice_qs_cfg xdp_qs_cfg = { 1750 .qs_mutex = &pf->avail_q_mutex, 1751 .pf_map = pf->avail_txqs, 1752 .pf_map_size = pf->max_pf_txqs, 1753 .q_count = vsi->num_xdp_txq, 1754 .scatter_count = ICE_MAX_SCATTER_TXQS, 1755 .vsi_map = vsi->txq_map, 1756 .vsi_map_offset = vsi->alloc_txq, 1757 .mapping_mode = ICE_VSI_MAP_CONTIG 1758 }; 1759 enum ice_status status; 1760 struct device *dev; 1761 int i, v_idx; 1762 1763 dev = ice_pf_to_dev(pf); 1764 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 1765 sizeof(*vsi->xdp_rings), GFP_KERNEL); 1766 if (!vsi->xdp_rings) 1767 return -ENOMEM; 1768 1769 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 1770 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 1771 goto err_map_xdp; 1772 1773 if (ice_xdp_alloc_setup_rings(vsi)) 1774 goto clear_xdp_rings; 1775 1776 /* follow the logic from ice_vsi_map_rings_to_vectors */ 1777 ice_for_each_q_vector(vsi, v_idx) { 1778 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1779 int xdp_rings_per_v, q_id, q_base; 1780 1781 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 1782 vsi->num_q_vectors - v_idx); 1783 q_base = vsi->num_xdp_txq - xdp_rings_rem; 1784 1785 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 1786 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 1787 1788 xdp_ring->q_vector = q_vector; 1789 xdp_ring->next = q_vector->tx.ring; 1790 q_vector->tx.ring = xdp_ring; 1791 } 1792 xdp_rings_rem -= xdp_rings_per_v; 1793 } 1794 1795 /* omit the scheduler update if in reset path; XDP queues will be 1796 * taken into account at the end of ice_vsi_rebuild, where 1797 * ice_cfg_vsi_lan is being called 1798 */ 1799 if (ice_is_reset_in_progress(pf->state)) 1800 return 0; 1801 1802 /* tell the Tx scheduler that right now we have 1803 * additional queues 1804 */ 1805 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1806 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 1807 1808 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1809 max_txqs); 1810 if (status) { 1811 dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n", 1812 status); 1813 goto clear_xdp_rings; 1814 } 1815 ice_vsi_assign_bpf_prog(vsi, prog); 1816 1817 return 0; 1818 clear_xdp_rings: 1819 for (i = 0; i < vsi->num_xdp_txq; i++) 1820 if (vsi->xdp_rings[i]) { 1821 kfree_rcu(vsi->xdp_rings[i], rcu); 1822 vsi->xdp_rings[i] = NULL; 1823 } 1824 1825 err_map_xdp: 1826 mutex_lock(&pf->avail_q_mutex); 1827 for (i = 0; i < vsi->num_xdp_txq; i++) { 1828 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1829 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1830 } 1831 mutex_unlock(&pf->avail_q_mutex); 1832 1833 devm_kfree(dev, vsi->xdp_rings); 1834 return -ENOMEM; 1835 } 1836 1837 /** 1838 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 1839 * @vsi: VSI to remove XDP rings 1840 * 1841 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 1842 * resources 1843 */ 1844 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 1845 { 1846 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1847 struct ice_pf *pf = vsi->back; 1848 int i, v_idx; 1849 1850 /* q_vectors are freed in reset path so there's no point in detaching 1851 * rings; in case of rebuild being triggered not from reset reset bits 1852 * in pf->state won't be set, so additionally check first q_vector 1853 * against NULL 1854 */ 1855 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1856 goto free_qmap; 1857 1858 ice_for_each_q_vector(vsi, v_idx) { 1859 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1860 struct ice_ring *ring; 1861 1862 ice_for_each_ring(ring, q_vector->tx) 1863 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 1864 break; 1865 1866 /* restore the value of last node prior to XDP setup */ 1867 q_vector->tx.ring = ring; 1868 } 1869 1870 free_qmap: 1871 mutex_lock(&pf->avail_q_mutex); 1872 for (i = 0; i < vsi->num_xdp_txq; i++) { 1873 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1874 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1875 } 1876 mutex_unlock(&pf->avail_q_mutex); 1877 1878 for (i = 0; i < vsi->num_xdp_txq; i++) 1879 if (vsi->xdp_rings[i]) { 1880 if (vsi->xdp_rings[i]->desc) 1881 ice_free_tx_ring(vsi->xdp_rings[i]); 1882 kfree_rcu(vsi->xdp_rings[i], rcu); 1883 vsi->xdp_rings[i] = NULL; 1884 } 1885 1886 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 1887 vsi->xdp_rings = NULL; 1888 1889 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1890 return 0; 1891 1892 ice_vsi_assign_bpf_prog(vsi, NULL); 1893 1894 /* notify Tx scheduler that we destroyed XDP queues and bring 1895 * back the old number of child nodes 1896 */ 1897 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1898 max_txqs[i] = vsi->num_txq; 1899 1900 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1901 max_txqs); 1902 } 1903 1904 /** 1905 * ice_xdp_setup_prog - Add or remove XDP eBPF program 1906 * @vsi: VSI to setup XDP for 1907 * @prog: XDP program 1908 * @extack: netlink extended ack 1909 */ 1910 static int 1911 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 1912 struct netlink_ext_ack *extack) 1913 { 1914 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 1915 bool if_running = netif_running(vsi->netdev); 1916 int ret = 0, xdp_ring_err = 0; 1917 1918 if (frame_size > vsi->rx_buf_len) { 1919 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 1920 return -EOPNOTSUPP; 1921 } 1922 1923 /* need to stop netdev while setting up the program for Rx rings */ 1924 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 1925 ret = ice_down(vsi); 1926 if (ret) { 1927 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 1928 return ret; 1929 } 1930 } 1931 1932 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 1933 vsi->num_xdp_txq = vsi->alloc_txq; 1934 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 1935 if (xdp_ring_err) 1936 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 1937 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 1938 xdp_ring_err = ice_destroy_xdp_rings(vsi); 1939 if (xdp_ring_err) 1940 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 1941 } else { 1942 ice_vsi_assign_bpf_prog(vsi, prog); 1943 } 1944 1945 if (if_running) 1946 ret = ice_up(vsi); 1947 1948 if (!ret && prog && vsi->xsk_umems) { 1949 int i; 1950 1951 ice_for_each_rxq(vsi, i) { 1952 struct ice_ring *rx_ring = vsi->rx_rings[i]; 1953 1954 if (rx_ring->xsk_umem) 1955 napi_schedule(&rx_ring->q_vector->napi); 1956 } 1957 } 1958 1959 return (ret || xdp_ring_err) ? -ENOMEM : 0; 1960 } 1961 1962 /** 1963 * ice_xdp - implements XDP handler 1964 * @dev: netdevice 1965 * @xdp: XDP command 1966 */ 1967 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1968 { 1969 struct ice_netdev_priv *np = netdev_priv(dev); 1970 struct ice_vsi *vsi = np->vsi; 1971 1972 if (vsi->type != ICE_VSI_PF) { 1973 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 1974 return -EINVAL; 1975 } 1976 1977 switch (xdp->command) { 1978 case XDP_SETUP_PROG: 1979 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 1980 case XDP_QUERY_PROG: 1981 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 1982 return 0; 1983 case XDP_SETUP_XSK_UMEM: 1984 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 1985 xdp->xsk.queue_id); 1986 default: 1987 return -EINVAL; 1988 } 1989 } 1990 1991 /** 1992 * ice_ena_misc_vector - enable the non-queue interrupts 1993 * @pf: board private structure 1994 */ 1995 static void ice_ena_misc_vector(struct ice_pf *pf) 1996 { 1997 struct ice_hw *hw = &pf->hw; 1998 u32 val; 1999 2000 /* Disable anti-spoof detection interrupt to prevent spurious event 2001 * interrupts during a function reset. Anti-spoof functionally is 2002 * still supported. 2003 */ 2004 val = rd32(hw, GL_MDCK_TX_TDPU); 2005 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2006 wr32(hw, GL_MDCK_TX_TDPU, val); 2007 2008 /* clear things first */ 2009 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2010 rd32(hw, PFINT_OICR); /* read to clear */ 2011 2012 val = (PFINT_OICR_ECC_ERR_M | 2013 PFINT_OICR_MAL_DETECT_M | 2014 PFINT_OICR_GRST_M | 2015 PFINT_OICR_PCI_EXCEPTION_M | 2016 PFINT_OICR_VFLR_M | 2017 PFINT_OICR_HMC_ERR_M | 2018 PFINT_OICR_PE_CRITERR_M); 2019 2020 wr32(hw, PFINT_OICR_ENA, val); 2021 2022 /* SW_ITR_IDX = 0, but don't change INTENA */ 2023 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2024 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2025 } 2026 2027 /** 2028 * ice_misc_intr - misc interrupt handler 2029 * @irq: interrupt number 2030 * @data: pointer to a q_vector 2031 */ 2032 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2033 { 2034 struct ice_pf *pf = (struct ice_pf *)data; 2035 struct ice_hw *hw = &pf->hw; 2036 irqreturn_t ret = IRQ_NONE; 2037 struct device *dev; 2038 u32 oicr, ena_mask; 2039 2040 dev = ice_pf_to_dev(pf); 2041 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2042 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2043 2044 oicr = rd32(hw, PFINT_OICR); 2045 ena_mask = rd32(hw, PFINT_OICR_ENA); 2046 2047 if (oicr & PFINT_OICR_SWINT_M) { 2048 ena_mask &= ~PFINT_OICR_SWINT_M; 2049 pf->sw_int_count++; 2050 } 2051 2052 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2053 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2054 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2055 } 2056 if (oicr & PFINT_OICR_VFLR_M) { 2057 /* disable any further VFLR event notifications */ 2058 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2059 u32 reg = rd32(hw, PFINT_OICR_ENA); 2060 2061 reg &= ~PFINT_OICR_VFLR_M; 2062 wr32(hw, PFINT_OICR_ENA, reg); 2063 } else { 2064 ena_mask &= ~PFINT_OICR_VFLR_M; 2065 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2066 } 2067 } 2068 2069 if (oicr & PFINT_OICR_GRST_M) { 2070 u32 reset; 2071 2072 /* we have a reset warning */ 2073 ena_mask &= ~PFINT_OICR_GRST_M; 2074 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2075 GLGEN_RSTAT_RESET_TYPE_S; 2076 2077 if (reset == ICE_RESET_CORER) 2078 pf->corer_count++; 2079 else if (reset == ICE_RESET_GLOBR) 2080 pf->globr_count++; 2081 else if (reset == ICE_RESET_EMPR) 2082 pf->empr_count++; 2083 else 2084 dev_dbg(dev, "Invalid reset type %d\n", reset); 2085 2086 /* If a reset cycle isn't already in progress, we set a bit in 2087 * pf->state so that the service task can start a reset/rebuild. 2088 * We also make note of which reset happened so that peer 2089 * devices/drivers can be informed. 2090 */ 2091 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2092 if (reset == ICE_RESET_CORER) 2093 set_bit(__ICE_CORER_RECV, pf->state); 2094 else if (reset == ICE_RESET_GLOBR) 2095 set_bit(__ICE_GLOBR_RECV, pf->state); 2096 else 2097 set_bit(__ICE_EMPR_RECV, pf->state); 2098 2099 /* There are couple of different bits at play here. 2100 * hw->reset_ongoing indicates whether the hardware is 2101 * in reset. This is set to true when a reset interrupt 2102 * is received and set back to false after the driver 2103 * has determined that the hardware is out of reset. 2104 * 2105 * __ICE_RESET_OICR_RECV in pf->state indicates 2106 * that a post reset rebuild is required before the 2107 * driver is operational again. This is set above. 2108 * 2109 * As this is the start of the reset/rebuild cycle, set 2110 * both to indicate that. 2111 */ 2112 hw->reset_ongoing = true; 2113 } 2114 } 2115 2116 if (oicr & PFINT_OICR_HMC_ERR_M) { 2117 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2118 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2119 rd32(hw, PFHMC_ERRORINFO), 2120 rd32(hw, PFHMC_ERRORDATA)); 2121 } 2122 2123 /* Report any remaining unexpected interrupts */ 2124 oicr &= ena_mask; 2125 if (oicr) { 2126 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2127 /* If a critical error is pending there is no choice but to 2128 * reset the device. 2129 */ 2130 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2131 PFINT_OICR_PCI_EXCEPTION_M | 2132 PFINT_OICR_ECC_ERR_M)) { 2133 set_bit(__ICE_PFR_REQ, pf->state); 2134 ice_service_task_schedule(pf); 2135 } 2136 } 2137 ret = IRQ_HANDLED; 2138 2139 if (!test_bit(__ICE_DOWN, pf->state)) { 2140 ice_service_task_schedule(pf); 2141 ice_irq_dynamic_ena(hw, NULL, NULL); 2142 } 2143 2144 return ret; 2145 } 2146 2147 /** 2148 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2149 * @hw: pointer to HW structure 2150 */ 2151 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2152 { 2153 /* disable Admin queue Interrupt causes */ 2154 wr32(hw, PFINT_FW_CTL, 2155 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2156 2157 /* disable Mailbox queue Interrupt causes */ 2158 wr32(hw, PFINT_MBX_CTL, 2159 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2160 2161 /* disable Control queue Interrupt causes */ 2162 wr32(hw, PFINT_OICR_CTL, 2163 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2164 2165 ice_flush(hw); 2166 } 2167 2168 /** 2169 * ice_free_irq_msix_misc - Unroll misc vector setup 2170 * @pf: board private structure 2171 */ 2172 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2173 { 2174 struct ice_hw *hw = &pf->hw; 2175 2176 ice_dis_ctrlq_interrupts(hw); 2177 2178 /* disable OICR interrupt */ 2179 wr32(hw, PFINT_OICR_ENA, 0); 2180 ice_flush(hw); 2181 2182 if (pf->msix_entries) { 2183 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2184 devm_free_irq(ice_pf_to_dev(pf), 2185 pf->msix_entries[pf->oicr_idx].vector, pf); 2186 } 2187 2188 pf->num_avail_sw_msix += 1; 2189 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2190 } 2191 2192 /** 2193 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2194 * @hw: pointer to HW structure 2195 * @reg_idx: HW vector index to associate the control queue interrupts with 2196 */ 2197 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2198 { 2199 u32 val; 2200 2201 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2202 PFINT_OICR_CTL_CAUSE_ENA_M); 2203 wr32(hw, PFINT_OICR_CTL, val); 2204 2205 /* enable Admin queue Interrupt causes */ 2206 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2207 PFINT_FW_CTL_CAUSE_ENA_M); 2208 wr32(hw, PFINT_FW_CTL, val); 2209 2210 /* enable Mailbox queue Interrupt causes */ 2211 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2212 PFINT_MBX_CTL_CAUSE_ENA_M); 2213 wr32(hw, PFINT_MBX_CTL, val); 2214 2215 ice_flush(hw); 2216 } 2217 2218 /** 2219 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2220 * @pf: board private structure 2221 * 2222 * This sets up the handler for MSIX 0, which is used to manage the 2223 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2224 * when in MSI or Legacy interrupt mode. 2225 */ 2226 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2227 { 2228 struct device *dev = ice_pf_to_dev(pf); 2229 struct ice_hw *hw = &pf->hw; 2230 int oicr_idx, err = 0; 2231 2232 if (!pf->int_name[0]) 2233 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2234 dev_driver_string(dev), dev_name(dev)); 2235 2236 /* Do not request IRQ but do enable OICR interrupt since settings are 2237 * lost during reset. Note that this function is called only during 2238 * rebuild path and not while reset is in progress. 2239 */ 2240 if (ice_is_reset_in_progress(pf->state)) 2241 goto skip_req_irq; 2242 2243 /* reserve one vector in irq_tracker for misc interrupts */ 2244 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2245 if (oicr_idx < 0) 2246 return oicr_idx; 2247 2248 pf->num_avail_sw_msix -= 1; 2249 pf->oicr_idx = oicr_idx; 2250 2251 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2252 ice_misc_intr, 0, pf->int_name, pf); 2253 if (err) { 2254 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2255 pf->int_name, err); 2256 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2257 pf->num_avail_sw_msix += 1; 2258 return err; 2259 } 2260 2261 skip_req_irq: 2262 ice_ena_misc_vector(pf); 2263 2264 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2265 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2266 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2267 2268 ice_flush(hw); 2269 ice_irq_dynamic_ena(hw, NULL, NULL); 2270 2271 return 0; 2272 } 2273 2274 /** 2275 * ice_napi_add - register NAPI handler for the VSI 2276 * @vsi: VSI for which NAPI handler is to be registered 2277 * 2278 * This function is only called in the driver's load path. Registering the NAPI 2279 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2280 * reset/rebuild, etc.) 2281 */ 2282 static void ice_napi_add(struct ice_vsi *vsi) 2283 { 2284 int v_idx; 2285 2286 if (!vsi->netdev) 2287 return; 2288 2289 ice_for_each_q_vector(vsi, v_idx) 2290 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2291 ice_napi_poll, NAPI_POLL_WEIGHT); 2292 } 2293 2294 /** 2295 * ice_set_ops - set netdev and ethtools ops for the given netdev 2296 * @netdev: netdev instance 2297 */ 2298 static void ice_set_ops(struct net_device *netdev) 2299 { 2300 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2301 2302 if (ice_is_safe_mode(pf)) { 2303 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2304 ice_set_ethtool_safe_mode_ops(netdev); 2305 return; 2306 } 2307 2308 netdev->netdev_ops = &ice_netdev_ops; 2309 ice_set_ethtool_ops(netdev); 2310 } 2311 2312 /** 2313 * ice_set_netdev_features - set features for the given netdev 2314 * @netdev: netdev instance 2315 */ 2316 static void ice_set_netdev_features(struct net_device *netdev) 2317 { 2318 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2319 netdev_features_t csumo_features; 2320 netdev_features_t vlano_features; 2321 netdev_features_t dflt_features; 2322 netdev_features_t tso_features; 2323 2324 if (ice_is_safe_mode(pf)) { 2325 /* safe mode */ 2326 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2327 netdev->hw_features = netdev->features; 2328 return; 2329 } 2330 2331 dflt_features = NETIF_F_SG | 2332 NETIF_F_HIGHDMA | 2333 NETIF_F_RXHASH; 2334 2335 csumo_features = NETIF_F_RXCSUM | 2336 NETIF_F_IP_CSUM | 2337 NETIF_F_SCTP_CRC | 2338 NETIF_F_IPV6_CSUM; 2339 2340 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2341 NETIF_F_HW_VLAN_CTAG_TX | 2342 NETIF_F_HW_VLAN_CTAG_RX; 2343 2344 tso_features = NETIF_F_TSO | 2345 NETIF_F_GSO_UDP_L4; 2346 2347 /* set features that user can change */ 2348 netdev->hw_features = dflt_features | csumo_features | 2349 vlano_features | tso_features; 2350 2351 /* enable features */ 2352 netdev->features |= netdev->hw_features; 2353 /* encap and VLAN devices inherit default, csumo and tso features */ 2354 netdev->hw_enc_features |= dflt_features | csumo_features | 2355 tso_features; 2356 netdev->vlan_features |= dflt_features | csumo_features | 2357 tso_features; 2358 } 2359 2360 /** 2361 * ice_cfg_netdev - Allocate, configure and register a netdev 2362 * @vsi: the VSI associated with the new netdev 2363 * 2364 * Returns 0 on success, negative value on failure 2365 */ 2366 static int ice_cfg_netdev(struct ice_vsi *vsi) 2367 { 2368 struct ice_pf *pf = vsi->back; 2369 struct ice_netdev_priv *np; 2370 struct net_device *netdev; 2371 u8 mac_addr[ETH_ALEN]; 2372 int err; 2373 2374 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2375 vsi->alloc_rxq); 2376 if (!netdev) 2377 return -ENOMEM; 2378 2379 vsi->netdev = netdev; 2380 np = netdev_priv(netdev); 2381 np->vsi = vsi; 2382 2383 ice_set_netdev_features(netdev); 2384 2385 ice_set_ops(netdev); 2386 2387 if (vsi->type == ICE_VSI_PF) { 2388 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2389 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2390 ether_addr_copy(netdev->dev_addr, mac_addr); 2391 ether_addr_copy(netdev->perm_addr, mac_addr); 2392 } 2393 2394 netdev->priv_flags |= IFF_UNICAST_FLT; 2395 2396 /* Setup netdev TC information */ 2397 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2398 2399 /* setup watchdog timeout value to be 5 second */ 2400 netdev->watchdog_timeo = 5 * HZ; 2401 2402 netdev->min_mtu = ETH_MIN_MTU; 2403 netdev->max_mtu = ICE_MAX_MTU; 2404 2405 err = register_netdev(vsi->netdev); 2406 if (err) 2407 return err; 2408 2409 netif_carrier_off(vsi->netdev); 2410 2411 /* make sure transmit queues start off as stopped */ 2412 netif_tx_stop_all_queues(vsi->netdev); 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2419 * @lut: Lookup table 2420 * @rss_table_size: Lookup table size 2421 * @rss_size: Range of queue number for hashing 2422 */ 2423 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2424 { 2425 u16 i; 2426 2427 for (i = 0; i < rss_table_size; i++) 2428 lut[i] = i % rss_size; 2429 } 2430 2431 /** 2432 * ice_pf_vsi_setup - Set up a PF VSI 2433 * @pf: board private structure 2434 * @pi: pointer to the port_info instance 2435 * 2436 * Returns pointer to the successfully allocated VSI software struct 2437 * on success, otherwise returns NULL on failure. 2438 */ 2439 static struct ice_vsi * 2440 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2441 { 2442 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2443 } 2444 2445 /** 2446 * ice_lb_vsi_setup - Set up a loopback VSI 2447 * @pf: board private structure 2448 * @pi: pointer to the port_info instance 2449 * 2450 * Returns pointer to the successfully allocated VSI software struct 2451 * on success, otherwise returns NULL on failure. 2452 */ 2453 struct ice_vsi * 2454 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2455 { 2456 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2457 } 2458 2459 /** 2460 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2461 * @netdev: network interface to be adjusted 2462 * @proto: unused protocol 2463 * @vid: VLAN ID to be added 2464 * 2465 * net_device_ops implementation for adding VLAN IDs 2466 */ 2467 static int 2468 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2469 u16 vid) 2470 { 2471 struct ice_netdev_priv *np = netdev_priv(netdev); 2472 struct ice_vsi *vsi = np->vsi; 2473 int ret; 2474 2475 if (vid >= VLAN_N_VID) { 2476 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2477 vid, VLAN_N_VID); 2478 return -EINVAL; 2479 } 2480 2481 if (vsi->info.pvid) 2482 return -EINVAL; 2483 2484 /* VLAN 0 is added by default during load/reset */ 2485 if (!vid) 2486 return 0; 2487 2488 /* Enable VLAN pruning when a VLAN other than 0 is added */ 2489 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 2490 ret = ice_cfg_vlan_pruning(vsi, true, false); 2491 if (ret) 2492 return ret; 2493 } 2494 2495 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 2496 * packets aren't pruned by the device's internal switch on Rx 2497 */ 2498 ret = ice_vsi_add_vlan(vsi, vid); 2499 if (!ret) { 2500 vsi->vlan_ena = true; 2501 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2502 } 2503 2504 return ret; 2505 } 2506 2507 /** 2508 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2509 * @netdev: network interface to be adjusted 2510 * @proto: unused protocol 2511 * @vid: VLAN ID to be removed 2512 * 2513 * net_device_ops implementation for removing VLAN IDs 2514 */ 2515 static int 2516 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2517 u16 vid) 2518 { 2519 struct ice_netdev_priv *np = netdev_priv(netdev); 2520 struct ice_vsi *vsi = np->vsi; 2521 int ret; 2522 2523 if (vsi->info.pvid) 2524 return -EINVAL; 2525 2526 /* don't allow removal of VLAN 0 */ 2527 if (!vid) 2528 return 0; 2529 2530 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2531 * information 2532 */ 2533 ret = ice_vsi_kill_vlan(vsi, vid); 2534 if (ret) 2535 return ret; 2536 2537 /* Disable pruning when VLAN 0 is the only VLAN rule */ 2538 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 2539 ret = ice_cfg_vlan_pruning(vsi, false, false); 2540 2541 vsi->vlan_ena = false; 2542 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2543 return ret; 2544 } 2545 2546 /** 2547 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2548 * @pf: board private structure 2549 * 2550 * Returns 0 on success, negative value on failure 2551 */ 2552 static int ice_setup_pf_sw(struct ice_pf *pf) 2553 { 2554 struct ice_vsi *vsi; 2555 int status = 0; 2556 2557 if (ice_is_reset_in_progress(pf->state)) 2558 return -EBUSY; 2559 2560 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2561 if (!vsi) { 2562 status = -ENOMEM; 2563 goto unroll_vsi_setup; 2564 } 2565 2566 status = ice_cfg_netdev(vsi); 2567 if (status) { 2568 status = -ENODEV; 2569 goto unroll_vsi_setup; 2570 } 2571 /* netdev has to be configured before setting frame size */ 2572 ice_vsi_cfg_frame_size(vsi); 2573 2574 /* Setup DCB netlink interface */ 2575 ice_dcbnl_setup(vsi); 2576 2577 /* registering the NAPI handler requires both the queues and 2578 * netdev to be created, which are done in ice_pf_vsi_setup() 2579 * and ice_cfg_netdev() respectively 2580 */ 2581 ice_napi_add(vsi); 2582 2583 status = ice_init_mac_fltr(pf); 2584 if (status) 2585 goto unroll_napi_add; 2586 2587 return status; 2588 2589 unroll_napi_add: 2590 if (vsi) { 2591 ice_napi_del(vsi); 2592 if (vsi->netdev) { 2593 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2594 unregister_netdev(vsi->netdev); 2595 free_netdev(vsi->netdev); 2596 vsi->netdev = NULL; 2597 } 2598 } 2599 2600 unroll_vsi_setup: 2601 if (vsi) { 2602 ice_vsi_free_q_vectors(vsi); 2603 ice_vsi_delete(vsi); 2604 ice_vsi_put_qs(vsi); 2605 ice_vsi_clear(vsi); 2606 } 2607 return status; 2608 } 2609 2610 /** 2611 * ice_get_avail_q_count - Get count of queues in use 2612 * @pf_qmap: bitmap to get queue use count from 2613 * @lock: pointer to a mutex that protects access to pf_qmap 2614 * @size: size of the bitmap 2615 */ 2616 static u16 2617 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2618 { 2619 u16 count = 0, bit; 2620 2621 mutex_lock(lock); 2622 for_each_clear_bit(bit, pf_qmap, size) 2623 count++; 2624 mutex_unlock(lock); 2625 2626 return count; 2627 } 2628 2629 /** 2630 * ice_get_avail_txq_count - Get count of Tx queues in use 2631 * @pf: pointer to an ice_pf instance 2632 */ 2633 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2634 { 2635 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2636 pf->max_pf_txqs); 2637 } 2638 2639 /** 2640 * ice_get_avail_rxq_count - Get count of Rx queues in use 2641 * @pf: pointer to an ice_pf instance 2642 */ 2643 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2644 { 2645 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2646 pf->max_pf_rxqs); 2647 } 2648 2649 /** 2650 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2651 * @pf: board private structure to initialize 2652 */ 2653 static void ice_deinit_pf(struct ice_pf *pf) 2654 { 2655 ice_service_task_stop(pf); 2656 mutex_destroy(&pf->sw_mutex); 2657 mutex_destroy(&pf->tc_mutex); 2658 mutex_destroy(&pf->avail_q_mutex); 2659 2660 if (pf->avail_txqs) { 2661 bitmap_free(pf->avail_txqs); 2662 pf->avail_txqs = NULL; 2663 } 2664 2665 if (pf->avail_rxqs) { 2666 bitmap_free(pf->avail_rxqs); 2667 pf->avail_rxqs = NULL; 2668 } 2669 } 2670 2671 /** 2672 * ice_set_pf_caps - set PFs capability flags 2673 * @pf: pointer to the PF instance 2674 */ 2675 static void ice_set_pf_caps(struct ice_pf *pf) 2676 { 2677 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2678 2679 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2680 if (func_caps->common_cap.dcb) 2681 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2682 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2683 if (func_caps->common_cap.sr_iov_1_1) { 2684 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2685 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2686 ICE_MAX_VF_COUNT); 2687 } 2688 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2689 if (func_caps->common_cap.rss_table_size) 2690 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2691 2692 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2693 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2694 } 2695 2696 /** 2697 * ice_init_pf - Initialize general software structures (struct ice_pf) 2698 * @pf: board private structure to initialize 2699 */ 2700 static int ice_init_pf(struct ice_pf *pf) 2701 { 2702 ice_set_pf_caps(pf); 2703 2704 mutex_init(&pf->sw_mutex); 2705 mutex_init(&pf->tc_mutex); 2706 2707 /* setup service timer and periodic service task */ 2708 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2709 pf->serv_tmr_period = HZ; 2710 INIT_WORK(&pf->serv_task, ice_service_task); 2711 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2712 2713 mutex_init(&pf->avail_q_mutex); 2714 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2715 if (!pf->avail_txqs) 2716 return -ENOMEM; 2717 2718 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2719 if (!pf->avail_rxqs) { 2720 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 2721 pf->avail_txqs = NULL; 2722 return -ENOMEM; 2723 } 2724 2725 return 0; 2726 } 2727 2728 /** 2729 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2730 * @pf: board private structure 2731 * 2732 * compute the number of MSIX vectors required (v_budget) and request from 2733 * the OS. Return the number of vectors reserved or negative on failure 2734 */ 2735 static int ice_ena_msix_range(struct ice_pf *pf) 2736 { 2737 struct device *dev = ice_pf_to_dev(pf); 2738 int v_left, v_actual, v_budget = 0; 2739 int needed, err, i; 2740 2741 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2742 2743 /* reserve one vector for miscellaneous handler */ 2744 needed = 1; 2745 if (v_left < needed) 2746 goto no_hw_vecs_left_err; 2747 v_budget += needed; 2748 v_left -= needed; 2749 2750 /* reserve vectors for LAN traffic */ 2751 needed = min_t(int, num_online_cpus(), v_left); 2752 if (v_left < needed) 2753 goto no_hw_vecs_left_err; 2754 pf->num_lan_msix = needed; 2755 v_budget += needed; 2756 v_left -= needed; 2757 2758 pf->msix_entries = devm_kcalloc(dev, v_budget, 2759 sizeof(*pf->msix_entries), GFP_KERNEL); 2760 2761 if (!pf->msix_entries) { 2762 err = -ENOMEM; 2763 goto exit_err; 2764 } 2765 2766 for (i = 0; i < v_budget; i++) 2767 pf->msix_entries[i].entry = i; 2768 2769 /* actually reserve the vectors */ 2770 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2771 ICE_MIN_MSIX, v_budget); 2772 2773 if (v_actual < 0) { 2774 dev_err(dev, "unable to reserve MSI-X vectors\n"); 2775 err = v_actual; 2776 goto msix_err; 2777 } 2778 2779 if (v_actual < v_budget) { 2780 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2781 v_budget, v_actual); 2782 /* 2 vectors for LAN (traffic + OICR) */ 2783 #define ICE_MIN_LAN_VECS 2 2784 2785 if (v_actual < ICE_MIN_LAN_VECS) { 2786 /* error if we can't get minimum vectors */ 2787 pci_disable_msix(pf->pdev); 2788 err = -ERANGE; 2789 goto msix_err; 2790 } else { 2791 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2792 } 2793 } 2794 2795 return v_actual; 2796 2797 msix_err: 2798 devm_kfree(dev, pf->msix_entries); 2799 goto exit_err; 2800 2801 no_hw_vecs_left_err: 2802 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 2803 needed, v_left); 2804 err = -ERANGE; 2805 exit_err: 2806 pf->num_lan_msix = 0; 2807 return err; 2808 } 2809 2810 /** 2811 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2812 * @pf: board private structure 2813 */ 2814 static void ice_dis_msix(struct ice_pf *pf) 2815 { 2816 pci_disable_msix(pf->pdev); 2817 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 2818 pf->msix_entries = NULL; 2819 } 2820 2821 /** 2822 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2823 * @pf: board private structure 2824 */ 2825 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2826 { 2827 ice_dis_msix(pf); 2828 2829 if (pf->irq_tracker) { 2830 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 2831 pf->irq_tracker = NULL; 2832 } 2833 } 2834 2835 /** 2836 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2837 * @pf: board private structure to initialize 2838 */ 2839 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2840 { 2841 int vectors; 2842 2843 vectors = ice_ena_msix_range(pf); 2844 2845 if (vectors < 0) 2846 return vectors; 2847 2848 /* set up vector assignment tracking */ 2849 pf->irq_tracker = 2850 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 2851 (sizeof(u16) * vectors), GFP_KERNEL); 2852 if (!pf->irq_tracker) { 2853 ice_dis_msix(pf); 2854 return -ENOMEM; 2855 } 2856 2857 /* populate SW interrupts pool with number of OS granted IRQs. */ 2858 pf->num_avail_sw_msix = vectors; 2859 pf->irq_tracker->num_entries = vectors; 2860 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2861 2862 return 0; 2863 } 2864 2865 /** 2866 * ice_vsi_recfg_qs - Change the number of queues on a VSI 2867 * @vsi: VSI being changed 2868 * @new_rx: new number of Rx queues 2869 * @new_tx: new number of Tx queues 2870 * 2871 * Only change the number of queues if new_tx, or new_rx is non-0. 2872 * 2873 * Returns 0 on success. 2874 */ 2875 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 2876 { 2877 struct ice_pf *pf = vsi->back; 2878 int err = 0, timeout = 50; 2879 2880 if (!new_rx && !new_tx) 2881 return -EINVAL; 2882 2883 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 2884 timeout--; 2885 if (!timeout) 2886 return -EBUSY; 2887 usleep_range(1000, 2000); 2888 } 2889 2890 if (new_tx) 2891 vsi->req_txq = new_tx; 2892 if (new_rx) 2893 vsi->req_rxq = new_rx; 2894 2895 /* set for the next time the netdev is started */ 2896 if (!netif_running(vsi->netdev)) { 2897 ice_vsi_rebuild(vsi, false); 2898 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 2899 goto done; 2900 } 2901 2902 ice_vsi_close(vsi); 2903 ice_vsi_rebuild(vsi, false); 2904 ice_pf_dcb_recfg(pf); 2905 ice_vsi_open(vsi); 2906 done: 2907 clear_bit(__ICE_CFG_BUSY, pf->state); 2908 return err; 2909 } 2910 2911 /** 2912 * ice_log_pkg_init - log result of DDP package load 2913 * @hw: pointer to hardware info 2914 * @status: status of package load 2915 */ 2916 static void 2917 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 2918 { 2919 struct ice_pf *pf = (struct ice_pf *)hw->back; 2920 struct device *dev = ice_pf_to_dev(pf); 2921 2922 switch (*status) { 2923 case ICE_SUCCESS: 2924 /* The package download AdminQ command returned success because 2925 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 2926 * already a package loaded on the device. 2927 */ 2928 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 2929 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 2930 hw->pkg_ver.update == hw->active_pkg_ver.update && 2931 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 2932 !memcmp(hw->pkg_name, hw->active_pkg_name, 2933 sizeof(hw->pkg_name))) { 2934 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 2935 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 2936 hw->active_pkg_name, 2937 hw->active_pkg_ver.major, 2938 hw->active_pkg_ver.minor, 2939 hw->active_pkg_ver.update, 2940 hw->active_pkg_ver.draft); 2941 else 2942 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 2943 hw->active_pkg_name, 2944 hw->active_pkg_ver.major, 2945 hw->active_pkg_ver.minor, 2946 hw->active_pkg_ver.update, 2947 hw->active_pkg_ver.draft); 2948 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 2949 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 2950 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 2951 hw->active_pkg_name, 2952 hw->active_pkg_ver.major, 2953 hw->active_pkg_ver.minor, 2954 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2955 *status = ICE_ERR_NOT_SUPPORTED; 2956 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2957 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 2958 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 2959 hw->active_pkg_name, 2960 hw->active_pkg_ver.major, 2961 hw->active_pkg_ver.minor, 2962 hw->active_pkg_ver.update, 2963 hw->active_pkg_ver.draft, 2964 hw->pkg_name, 2965 hw->pkg_ver.major, 2966 hw->pkg_ver.minor, 2967 hw->pkg_ver.update, 2968 hw->pkg_ver.draft); 2969 } else { 2970 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 2971 *status = ICE_ERR_NOT_SUPPORTED; 2972 } 2973 break; 2974 case ICE_ERR_BUF_TOO_SHORT: 2975 case ICE_ERR_CFG: 2976 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 2977 break; 2978 case ICE_ERR_NOT_SUPPORTED: 2979 /* Package File version not supported */ 2980 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 2981 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2982 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 2983 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 2984 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 2985 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2986 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 2987 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 2988 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2989 break; 2990 case ICE_ERR_AQ_ERROR: 2991 switch (hw->pkg_dwnld_status) { 2992 case ICE_AQ_RC_ENOSEC: 2993 case ICE_AQ_RC_EBADSIG: 2994 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 2995 return; 2996 case ICE_AQ_RC_ESVN: 2997 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 2998 return; 2999 case ICE_AQ_RC_EBADMAN: 3000 case ICE_AQ_RC_EBADBUF: 3001 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3002 return; 3003 default: 3004 break; 3005 } 3006 fallthrough; 3007 default: 3008 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3009 *status); 3010 break; 3011 } 3012 } 3013 3014 /** 3015 * ice_load_pkg - load/reload the DDP Package file 3016 * @firmware: firmware structure when firmware requested or NULL for reload 3017 * @pf: pointer to the PF instance 3018 * 3019 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3020 * initialize HW tables. 3021 */ 3022 static void 3023 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3024 { 3025 enum ice_status status = ICE_ERR_PARAM; 3026 struct device *dev = ice_pf_to_dev(pf); 3027 struct ice_hw *hw = &pf->hw; 3028 3029 /* Load DDP Package */ 3030 if (firmware && !hw->pkg_copy) { 3031 status = ice_copy_and_init_pkg(hw, firmware->data, 3032 firmware->size); 3033 ice_log_pkg_init(hw, &status); 3034 } else if (!firmware && hw->pkg_copy) { 3035 /* Reload package during rebuild after CORER/GLOBR reset */ 3036 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3037 ice_log_pkg_init(hw, &status); 3038 } else { 3039 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3040 } 3041 3042 if (status) { 3043 /* Safe Mode */ 3044 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3045 return; 3046 } 3047 3048 /* Successful download package is the precondition for advanced 3049 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3050 */ 3051 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3052 } 3053 3054 /** 3055 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3056 * @pf: pointer to the PF structure 3057 * 3058 * There is no error returned here because the driver should be able to handle 3059 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3060 * specifically with Tx. 3061 */ 3062 static void ice_verify_cacheline_size(struct ice_pf *pf) 3063 { 3064 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3065 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3066 ICE_CACHE_LINE_BYTES); 3067 } 3068 3069 /** 3070 * ice_send_version - update firmware with driver version 3071 * @pf: PF struct 3072 * 3073 * Returns ICE_SUCCESS on success, else error code 3074 */ 3075 static enum ice_status ice_send_version(struct ice_pf *pf) 3076 { 3077 struct ice_driver_ver dv; 3078 3079 dv.major_ver = DRV_VERSION_MAJOR; 3080 dv.minor_ver = DRV_VERSION_MINOR; 3081 dv.build_ver = DRV_VERSION_BUILD; 3082 dv.subbuild_ver = 0; 3083 strscpy((char *)dv.driver_string, DRV_VERSION, 3084 sizeof(dv.driver_string)); 3085 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3086 } 3087 3088 /** 3089 * ice_get_opt_fw_name - return optional firmware file name or NULL 3090 * @pf: pointer to the PF instance 3091 */ 3092 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3093 { 3094 /* Optional firmware name same as default with additional dash 3095 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3096 */ 3097 struct pci_dev *pdev = pf->pdev; 3098 char *opt_fw_filename; 3099 u64 dsn; 3100 3101 /* Determine the name of the optional file using the DSN (two 3102 * dwords following the start of the DSN Capability). 3103 */ 3104 dsn = pci_get_dsn(pdev); 3105 if (!dsn) 3106 return NULL; 3107 3108 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3109 if (!opt_fw_filename) 3110 return NULL; 3111 3112 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llX.pkg", 3113 ICE_DDP_PKG_PATH, dsn); 3114 3115 return opt_fw_filename; 3116 } 3117 3118 /** 3119 * ice_request_fw - Device initialization routine 3120 * @pf: pointer to the PF instance 3121 */ 3122 static void ice_request_fw(struct ice_pf *pf) 3123 { 3124 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3125 const struct firmware *firmware = NULL; 3126 struct device *dev = ice_pf_to_dev(pf); 3127 int err = 0; 3128 3129 /* optional device-specific DDP (if present) overrides the default DDP 3130 * package file. kernel logs a debug message if the file doesn't exist, 3131 * and warning messages for other errors. 3132 */ 3133 if (opt_fw_filename) { 3134 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3135 if (err) { 3136 kfree(opt_fw_filename); 3137 goto dflt_pkg_load; 3138 } 3139 3140 /* request for firmware was successful. Download to device */ 3141 ice_load_pkg(firmware, pf); 3142 kfree(opt_fw_filename); 3143 release_firmware(firmware); 3144 return; 3145 } 3146 3147 dflt_pkg_load: 3148 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3149 if (err) { 3150 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3151 return; 3152 } 3153 3154 /* request for firmware was successful. Download to device */ 3155 ice_load_pkg(firmware, pf); 3156 release_firmware(firmware); 3157 } 3158 3159 /** 3160 * ice_probe - Device initialization routine 3161 * @pdev: PCI device information struct 3162 * @ent: entry in ice_pci_tbl 3163 * 3164 * Returns 0 on success, negative on failure 3165 */ 3166 static int 3167 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3168 { 3169 struct device *dev = &pdev->dev; 3170 struct ice_pf *pf; 3171 struct ice_hw *hw; 3172 int err; 3173 3174 /* this driver uses devres, see 3175 * Documentation/driver-api/driver-model/devres.rst 3176 */ 3177 err = pcim_enable_device(pdev); 3178 if (err) 3179 return err; 3180 3181 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3182 if (err) { 3183 dev_err(dev, "BAR0 I/O map error %d\n", err); 3184 return err; 3185 } 3186 3187 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 3188 if (!pf) 3189 return -ENOMEM; 3190 3191 /* set up for high or low DMA */ 3192 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3193 if (err) 3194 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3195 if (err) { 3196 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3197 return err; 3198 } 3199 3200 pci_enable_pcie_error_reporting(pdev); 3201 pci_set_master(pdev); 3202 3203 pf->pdev = pdev; 3204 pci_set_drvdata(pdev, pf); 3205 set_bit(__ICE_DOWN, pf->state); 3206 /* Disable service task until DOWN bit is cleared */ 3207 set_bit(__ICE_SERVICE_DIS, pf->state); 3208 3209 hw = &pf->hw; 3210 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 3211 pci_save_state(pdev); 3212 3213 hw->back = pf; 3214 hw->vendor_id = pdev->vendor; 3215 hw->device_id = pdev->device; 3216 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3217 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3218 hw->subsystem_device_id = pdev->subsystem_device; 3219 hw->bus.device = PCI_SLOT(pdev->devfn); 3220 hw->bus.func = PCI_FUNC(pdev->devfn); 3221 ice_set_ctrlq_len(hw); 3222 3223 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 3224 3225 #ifndef CONFIG_DYNAMIC_DEBUG 3226 if (debug < -1) 3227 hw->debug_mask = debug; 3228 #endif 3229 3230 err = ice_init_hw(hw); 3231 if (err) { 3232 dev_err(dev, "ice_init_hw failed: %d\n", err); 3233 err = -EIO; 3234 goto err_exit_unroll; 3235 } 3236 3237 ice_request_fw(pf); 3238 3239 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 3240 * set in pf->state, which will cause ice_is_safe_mode to return 3241 * true 3242 */ 3243 if (ice_is_safe_mode(pf)) { 3244 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 3245 /* we already got function/device capabilities but these don't 3246 * reflect what the driver needs to do in safe mode. Instead of 3247 * adding conditional logic everywhere to ignore these 3248 * device/function capabilities, override them. 3249 */ 3250 ice_set_safe_mode_caps(hw); 3251 } 3252 3253 err = ice_init_pf(pf); 3254 if (err) { 3255 dev_err(dev, "ice_init_pf failed: %d\n", err); 3256 goto err_init_pf_unroll; 3257 } 3258 3259 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 3260 if (!pf->num_alloc_vsi) { 3261 err = -EIO; 3262 goto err_init_pf_unroll; 3263 } 3264 3265 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 3266 GFP_KERNEL); 3267 if (!pf->vsi) { 3268 err = -ENOMEM; 3269 goto err_init_pf_unroll; 3270 } 3271 3272 err = ice_init_interrupt_scheme(pf); 3273 if (err) { 3274 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 3275 err = -EIO; 3276 goto err_init_interrupt_unroll; 3277 } 3278 3279 /* Driver is mostly up */ 3280 clear_bit(__ICE_DOWN, pf->state); 3281 3282 /* In case of MSIX we are going to setup the misc vector right here 3283 * to handle admin queue events etc. In case of legacy and MSI 3284 * the misc functionality and queue processing is combined in 3285 * the same vector and that gets setup at open. 3286 */ 3287 err = ice_req_irq_msix_misc(pf); 3288 if (err) { 3289 dev_err(dev, "setup of misc vector failed: %d\n", err); 3290 goto err_init_interrupt_unroll; 3291 } 3292 3293 /* create switch struct for the switch element created by FW on boot */ 3294 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 3295 if (!pf->first_sw) { 3296 err = -ENOMEM; 3297 goto err_msix_misc_unroll; 3298 } 3299 3300 if (hw->evb_veb) 3301 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 3302 else 3303 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 3304 3305 pf->first_sw->pf = pf; 3306 3307 /* record the sw_id available for later use */ 3308 pf->first_sw->sw_id = hw->port_info->sw_id; 3309 3310 err = ice_setup_pf_sw(pf); 3311 if (err) { 3312 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 3313 goto err_alloc_sw_unroll; 3314 } 3315 3316 clear_bit(__ICE_SERVICE_DIS, pf->state); 3317 3318 /* tell the firmware we are up */ 3319 err = ice_send_version(pf); 3320 if (err) { 3321 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 3322 ice_drv_ver, err); 3323 goto err_alloc_sw_unroll; 3324 } 3325 3326 /* since everything is good, start the service timer */ 3327 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3328 3329 err = ice_init_link_events(pf->hw.port_info); 3330 if (err) { 3331 dev_err(dev, "ice_init_link_events failed: %d\n", err); 3332 goto err_alloc_sw_unroll; 3333 } 3334 3335 ice_verify_cacheline_size(pf); 3336 3337 /* If no DDP driven features have to be setup, return here */ 3338 if (ice_is_safe_mode(pf)) 3339 return 0; 3340 3341 /* initialize DDP driven features */ 3342 3343 /* Note: DCB init failure is non-fatal to load */ 3344 if (ice_init_pf_dcb(pf, false)) { 3345 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3346 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 3347 } else { 3348 ice_cfg_lldp_mib_change(&pf->hw, true); 3349 } 3350 3351 /* print PCI link speed and width */ 3352 pcie_print_link_status(pf->pdev); 3353 3354 return 0; 3355 3356 err_alloc_sw_unroll: 3357 set_bit(__ICE_SERVICE_DIS, pf->state); 3358 set_bit(__ICE_DOWN, pf->state); 3359 devm_kfree(dev, pf->first_sw); 3360 err_msix_misc_unroll: 3361 ice_free_irq_msix_misc(pf); 3362 err_init_interrupt_unroll: 3363 ice_clear_interrupt_scheme(pf); 3364 devm_kfree(dev, pf->vsi); 3365 err_init_pf_unroll: 3366 ice_deinit_pf(pf); 3367 ice_deinit_hw(hw); 3368 err_exit_unroll: 3369 pci_disable_pcie_error_reporting(pdev); 3370 return err; 3371 } 3372 3373 /** 3374 * ice_remove - Device removal routine 3375 * @pdev: PCI device information struct 3376 */ 3377 static void ice_remove(struct pci_dev *pdev) 3378 { 3379 struct ice_pf *pf = pci_get_drvdata(pdev); 3380 int i; 3381 3382 if (!pf) 3383 return; 3384 3385 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3386 if (!ice_is_reset_in_progress(pf->state)) 3387 break; 3388 msleep(100); 3389 } 3390 3391 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 3392 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 3393 ice_free_vfs(pf); 3394 } 3395 3396 set_bit(__ICE_DOWN, pf->state); 3397 ice_service_task_stop(pf); 3398 3399 ice_vsi_release_all(pf); 3400 ice_free_irq_msix_misc(pf); 3401 ice_for_each_vsi(pf, i) { 3402 if (!pf->vsi[i]) 3403 continue; 3404 ice_vsi_free_q_vectors(pf->vsi[i]); 3405 } 3406 ice_deinit_pf(pf); 3407 ice_deinit_hw(&pf->hw); 3408 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3409 * do it via ice_schedule_reset() since there is no need to rebuild 3410 * and the service task is already stopped. 3411 */ 3412 ice_reset(&pf->hw, ICE_RESET_PFR); 3413 pci_wait_for_pending_transaction(pdev); 3414 ice_clear_interrupt_scheme(pf); 3415 pci_disable_pcie_error_reporting(pdev); 3416 } 3417 3418 /** 3419 * ice_pci_err_detected - warning that PCI error has been detected 3420 * @pdev: PCI device information struct 3421 * @err: the type of PCI error 3422 * 3423 * Called to warn that something happened on the PCI bus and the error handling 3424 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3425 */ 3426 static pci_ers_result_t 3427 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3428 { 3429 struct ice_pf *pf = pci_get_drvdata(pdev); 3430 3431 if (!pf) { 3432 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3433 __func__, err); 3434 return PCI_ERS_RESULT_DISCONNECT; 3435 } 3436 3437 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3438 ice_service_task_stop(pf); 3439 3440 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3441 set_bit(__ICE_PFR_REQ, pf->state); 3442 ice_prepare_for_reset(pf); 3443 } 3444 } 3445 3446 return PCI_ERS_RESULT_NEED_RESET; 3447 } 3448 3449 /** 3450 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3451 * @pdev: PCI device information struct 3452 * 3453 * Called to determine if the driver can recover from the PCI slot reset by 3454 * using a register read to determine if the device is recoverable. 3455 */ 3456 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3457 { 3458 struct ice_pf *pf = pci_get_drvdata(pdev); 3459 pci_ers_result_t result; 3460 int err; 3461 u32 reg; 3462 3463 err = pci_enable_device_mem(pdev); 3464 if (err) { 3465 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 3466 err); 3467 result = PCI_ERS_RESULT_DISCONNECT; 3468 } else { 3469 pci_set_master(pdev); 3470 pci_restore_state(pdev); 3471 pci_save_state(pdev); 3472 pci_wake_from_d3(pdev, false); 3473 3474 /* Check for life */ 3475 reg = rd32(&pf->hw, GLGEN_RTRIG); 3476 if (!reg) 3477 result = PCI_ERS_RESULT_RECOVERED; 3478 else 3479 result = PCI_ERS_RESULT_DISCONNECT; 3480 } 3481 3482 err = pci_cleanup_aer_uncorrect_error_status(pdev); 3483 if (err) 3484 dev_dbg(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 3485 err); 3486 /* non-fatal, continue */ 3487 3488 return result; 3489 } 3490 3491 /** 3492 * ice_pci_err_resume - restart operations after PCI error recovery 3493 * @pdev: PCI device information struct 3494 * 3495 * Called to allow the driver to bring things back up after PCI error and/or 3496 * reset recovery have finished 3497 */ 3498 static void ice_pci_err_resume(struct pci_dev *pdev) 3499 { 3500 struct ice_pf *pf = pci_get_drvdata(pdev); 3501 3502 if (!pf) { 3503 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 3504 __func__); 3505 return; 3506 } 3507 3508 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3509 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3510 __func__); 3511 return; 3512 } 3513 3514 ice_do_reset(pf, ICE_RESET_PFR); 3515 ice_service_task_restart(pf); 3516 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3517 } 3518 3519 /** 3520 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3521 * @pdev: PCI device information struct 3522 */ 3523 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3524 { 3525 struct ice_pf *pf = pci_get_drvdata(pdev); 3526 3527 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3528 ice_service_task_stop(pf); 3529 3530 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3531 set_bit(__ICE_PFR_REQ, pf->state); 3532 ice_prepare_for_reset(pf); 3533 } 3534 } 3535 } 3536 3537 /** 3538 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3539 * @pdev: PCI device information struct 3540 */ 3541 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3542 { 3543 ice_pci_err_resume(pdev); 3544 } 3545 3546 /* ice_pci_tbl - PCI Device ID Table 3547 * 3548 * Wildcard entries (PCI_ANY_ID) should come last 3549 * Last entry must be all 0s 3550 * 3551 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3552 * Class, Class Mask, private data (not used) } 3553 */ 3554 static const struct pci_device_id ice_pci_tbl[] = { 3555 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3556 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3557 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3558 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 3559 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 3560 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 3561 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 3562 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 3563 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 3564 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 3565 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 3566 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 3567 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 3568 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 3569 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 3570 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 3571 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 3572 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 3573 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 3574 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 3575 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 3576 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 3577 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 3578 /* required last entry */ 3579 { 0, } 3580 }; 3581 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3582 3583 static const struct pci_error_handlers ice_pci_err_handler = { 3584 .error_detected = ice_pci_err_detected, 3585 .slot_reset = ice_pci_err_slot_reset, 3586 .reset_prepare = ice_pci_err_reset_prepare, 3587 .reset_done = ice_pci_err_reset_done, 3588 .resume = ice_pci_err_resume 3589 }; 3590 3591 static struct pci_driver ice_driver = { 3592 .name = KBUILD_MODNAME, 3593 .id_table = ice_pci_tbl, 3594 .probe = ice_probe, 3595 .remove = ice_remove, 3596 .sriov_configure = ice_sriov_configure, 3597 .err_handler = &ice_pci_err_handler 3598 }; 3599 3600 /** 3601 * ice_module_init - Driver registration routine 3602 * 3603 * ice_module_init is the first routine called when the driver is 3604 * loaded. All it does is register with the PCI subsystem. 3605 */ 3606 static int __init ice_module_init(void) 3607 { 3608 int status; 3609 3610 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 3611 pr_info("%s\n", ice_copyright); 3612 3613 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3614 if (!ice_wq) { 3615 pr_err("Failed to create workqueue\n"); 3616 return -ENOMEM; 3617 } 3618 3619 status = pci_register_driver(&ice_driver); 3620 if (status) { 3621 pr_err("failed to register PCI driver, err %d\n", status); 3622 destroy_workqueue(ice_wq); 3623 } 3624 3625 return status; 3626 } 3627 module_init(ice_module_init); 3628 3629 /** 3630 * ice_module_exit - Driver exit cleanup routine 3631 * 3632 * ice_module_exit is called just before the driver is removed 3633 * from memory. 3634 */ 3635 static void __exit ice_module_exit(void) 3636 { 3637 pci_unregister_driver(&ice_driver); 3638 destroy_workqueue(ice_wq); 3639 pr_info("module unloaded\n"); 3640 } 3641 module_exit(ice_module_exit); 3642 3643 /** 3644 * ice_set_mac_address - NDO callback to set MAC address 3645 * @netdev: network interface device structure 3646 * @pi: pointer to an address structure 3647 * 3648 * Returns 0 on success, negative on failure 3649 */ 3650 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3651 { 3652 struct ice_netdev_priv *np = netdev_priv(netdev); 3653 struct ice_vsi *vsi = np->vsi; 3654 struct ice_pf *pf = vsi->back; 3655 struct ice_hw *hw = &pf->hw; 3656 struct sockaddr *addr = pi; 3657 enum ice_status status; 3658 u8 flags = 0; 3659 int err = 0; 3660 u8 *mac; 3661 3662 mac = (u8 *)addr->sa_data; 3663 3664 if (!is_valid_ether_addr(mac)) 3665 return -EADDRNOTAVAIL; 3666 3667 if (ether_addr_equal(netdev->dev_addr, mac)) { 3668 netdev_warn(netdev, "already using mac %pM\n", mac); 3669 return 0; 3670 } 3671 3672 if (test_bit(__ICE_DOWN, pf->state) || 3673 ice_is_reset_in_progress(pf->state)) { 3674 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3675 mac); 3676 return -EBUSY; 3677 } 3678 3679 /* When we change the MAC address we also have to change the MAC address 3680 * based filter rules that were created previously for the old MAC 3681 * address. So first, we remove the old filter rule using ice_remove_mac 3682 * and then create a new filter rule using ice_add_mac via 3683 * ice_vsi_cfg_mac_fltr function call for both add and/or remove 3684 * filters. 3685 */ 3686 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false); 3687 if (status) { 3688 err = -EADDRNOTAVAIL; 3689 goto err_update_filters; 3690 } 3691 3692 status = ice_vsi_cfg_mac_fltr(vsi, mac, true); 3693 if (status) { 3694 err = -EADDRNOTAVAIL; 3695 goto err_update_filters; 3696 } 3697 3698 err_update_filters: 3699 if (err) { 3700 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3701 mac); 3702 return err; 3703 } 3704 3705 /* change the netdev's MAC address */ 3706 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3707 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3708 netdev->dev_addr); 3709 3710 /* write new MAC address to the firmware */ 3711 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3712 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3713 if (status) { 3714 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 3715 mac, status); 3716 } 3717 return 0; 3718 } 3719 3720 /** 3721 * ice_set_rx_mode - NDO callback to set the netdev filters 3722 * @netdev: network interface device structure 3723 */ 3724 static void ice_set_rx_mode(struct net_device *netdev) 3725 { 3726 struct ice_netdev_priv *np = netdev_priv(netdev); 3727 struct ice_vsi *vsi = np->vsi; 3728 3729 if (!vsi) 3730 return; 3731 3732 /* Set the flags to synchronize filters 3733 * ndo_set_rx_mode may be triggered even without a change in netdev 3734 * flags 3735 */ 3736 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3737 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3738 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3739 3740 /* schedule our worker thread which will take care of 3741 * applying the new filter changes 3742 */ 3743 ice_service_task_schedule(vsi->back); 3744 } 3745 3746 /** 3747 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 3748 * @netdev: network interface device structure 3749 * @queue_index: Queue ID 3750 * @maxrate: maximum bandwidth in Mbps 3751 */ 3752 static int 3753 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 3754 { 3755 struct ice_netdev_priv *np = netdev_priv(netdev); 3756 struct ice_vsi *vsi = np->vsi; 3757 enum ice_status status; 3758 u16 q_handle; 3759 u8 tc; 3760 3761 /* Validate maxrate requested is within permitted range */ 3762 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 3763 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 3764 maxrate, queue_index); 3765 return -EINVAL; 3766 } 3767 3768 q_handle = vsi->tx_rings[queue_index]->q_handle; 3769 tc = ice_dcb_get_tc(vsi, queue_index); 3770 3771 /* Set BW back to default, when user set maxrate to 0 */ 3772 if (!maxrate) 3773 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 3774 q_handle, ICE_MAX_BW); 3775 else 3776 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 3777 q_handle, ICE_MAX_BW, maxrate * 1000); 3778 if (status) { 3779 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 3780 status); 3781 return -EIO; 3782 } 3783 3784 return 0; 3785 } 3786 3787 /** 3788 * ice_fdb_add - add an entry to the hardware database 3789 * @ndm: the input from the stack 3790 * @tb: pointer to array of nladdr (unused) 3791 * @dev: the net device pointer 3792 * @addr: the MAC address entry being added 3793 * @vid: VLAN ID 3794 * @flags: instructions from stack about fdb operation 3795 * @extack: netlink extended ack 3796 */ 3797 static int 3798 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3799 struct net_device *dev, const unsigned char *addr, u16 vid, 3800 u16 flags, struct netlink_ext_ack __always_unused *extack) 3801 { 3802 int err; 3803 3804 if (vid) { 3805 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3806 return -EINVAL; 3807 } 3808 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3809 netdev_err(dev, "FDB only supports static addresses\n"); 3810 return -EINVAL; 3811 } 3812 3813 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3814 err = dev_uc_add_excl(dev, addr); 3815 else if (is_multicast_ether_addr(addr)) 3816 err = dev_mc_add_excl(dev, addr); 3817 else 3818 err = -EINVAL; 3819 3820 /* Only return duplicate errors if NLM_F_EXCL is set */ 3821 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3822 err = 0; 3823 3824 return err; 3825 } 3826 3827 /** 3828 * ice_fdb_del - delete an entry from the hardware database 3829 * @ndm: the input from the stack 3830 * @tb: pointer to array of nladdr (unused) 3831 * @dev: the net device pointer 3832 * @addr: the MAC address entry being added 3833 * @vid: VLAN ID 3834 */ 3835 static int 3836 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3837 struct net_device *dev, const unsigned char *addr, 3838 __always_unused u16 vid) 3839 { 3840 int err; 3841 3842 if (ndm->ndm_state & NUD_PERMANENT) { 3843 netdev_err(dev, "FDB only supports static addresses\n"); 3844 return -EINVAL; 3845 } 3846 3847 if (is_unicast_ether_addr(addr)) 3848 err = dev_uc_del(dev, addr); 3849 else if (is_multicast_ether_addr(addr)) 3850 err = dev_mc_del(dev, addr); 3851 else 3852 err = -EINVAL; 3853 3854 return err; 3855 } 3856 3857 /** 3858 * ice_set_features - set the netdev feature flags 3859 * @netdev: ptr to the netdev being adjusted 3860 * @features: the feature set that the stack is suggesting 3861 */ 3862 static int 3863 ice_set_features(struct net_device *netdev, netdev_features_t features) 3864 { 3865 struct ice_netdev_priv *np = netdev_priv(netdev); 3866 struct ice_vsi *vsi = np->vsi; 3867 struct ice_pf *pf = vsi->back; 3868 int ret = 0; 3869 3870 /* Don't set any netdev advanced features with device in Safe Mode */ 3871 if (ice_is_safe_mode(vsi->back)) { 3872 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 3873 return ret; 3874 } 3875 3876 /* Do not change setting during reset */ 3877 if (ice_is_reset_in_progress(pf->state)) { 3878 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 3879 return -EBUSY; 3880 } 3881 3882 /* Multiple features can be changed in one call so keep features in 3883 * separate if/else statements to guarantee each feature is checked 3884 */ 3885 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 3886 ret = ice_vsi_manage_rss_lut(vsi, true); 3887 else if (!(features & NETIF_F_RXHASH) && 3888 netdev->features & NETIF_F_RXHASH) 3889 ret = ice_vsi_manage_rss_lut(vsi, false); 3890 3891 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 3892 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3893 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3894 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 3895 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3896 ret = ice_vsi_manage_vlan_stripping(vsi, false); 3897 3898 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 3899 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3900 ret = ice_vsi_manage_vlan_insertion(vsi); 3901 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 3902 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3903 ret = ice_vsi_manage_vlan_insertion(vsi); 3904 3905 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3906 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3907 ret = ice_cfg_vlan_pruning(vsi, true, false); 3908 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3909 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3910 ret = ice_cfg_vlan_pruning(vsi, false, false); 3911 3912 return ret; 3913 } 3914 3915 /** 3916 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 3917 * @vsi: VSI to setup VLAN properties for 3918 */ 3919 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 3920 { 3921 int ret = 0; 3922 3923 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3924 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3925 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 3926 ret = ice_vsi_manage_vlan_insertion(vsi); 3927 3928 return ret; 3929 } 3930 3931 /** 3932 * ice_vsi_cfg - Setup the VSI 3933 * @vsi: the VSI being configured 3934 * 3935 * Return 0 on success and negative value on error 3936 */ 3937 int ice_vsi_cfg(struct ice_vsi *vsi) 3938 { 3939 int err; 3940 3941 if (vsi->netdev) { 3942 ice_set_rx_mode(vsi->netdev); 3943 3944 err = ice_vsi_vlan_setup(vsi); 3945 3946 if (err) 3947 return err; 3948 } 3949 ice_vsi_cfg_dcb_rings(vsi); 3950 3951 err = ice_vsi_cfg_lan_txqs(vsi); 3952 if (!err && ice_is_xdp_ena_vsi(vsi)) 3953 err = ice_vsi_cfg_xdp_txqs(vsi); 3954 if (!err) 3955 err = ice_vsi_cfg_rxqs(vsi); 3956 3957 return err; 3958 } 3959 3960 /** 3961 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 3962 * @vsi: the VSI being configured 3963 */ 3964 static void ice_napi_enable_all(struct ice_vsi *vsi) 3965 { 3966 int q_idx; 3967 3968 if (!vsi->netdev) 3969 return; 3970 3971 ice_for_each_q_vector(vsi, q_idx) { 3972 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3973 3974 if (q_vector->rx.ring || q_vector->tx.ring) 3975 napi_enable(&q_vector->napi); 3976 } 3977 } 3978 3979 /** 3980 * ice_up_complete - Finish the last steps of bringing up a connection 3981 * @vsi: The VSI being configured 3982 * 3983 * Return 0 on success and negative value on error 3984 */ 3985 static int ice_up_complete(struct ice_vsi *vsi) 3986 { 3987 struct ice_pf *pf = vsi->back; 3988 int err; 3989 3990 ice_vsi_cfg_msix(vsi); 3991 3992 /* Enable only Rx rings, Tx rings were enabled by the FW when the 3993 * Tx queue group list was configured and the context bits were 3994 * programmed using ice_vsi_cfg_txqs 3995 */ 3996 err = ice_vsi_start_all_rx_rings(vsi); 3997 if (err) 3998 return err; 3999 4000 clear_bit(__ICE_DOWN, vsi->state); 4001 ice_napi_enable_all(vsi); 4002 ice_vsi_ena_irq(vsi); 4003 4004 if (vsi->port_info && 4005 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 4006 vsi->netdev) { 4007 ice_print_link_msg(vsi, true); 4008 netif_tx_start_all_queues(vsi->netdev); 4009 netif_carrier_on(vsi->netdev); 4010 } 4011 4012 ice_service_task_schedule(pf); 4013 4014 return 0; 4015 } 4016 4017 /** 4018 * ice_up - Bring the connection back up after being down 4019 * @vsi: VSI being configured 4020 */ 4021 int ice_up(struct ice_vsi *vsi) 4022 { 4023 int err; 4024 4025 err = ice_vsi_cfg(vsi); 4026 if (!err) 4027 err = ice_up_complete(vsi); 4028 4029 return err; 4030 } 4031 4032 /** 4033 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 4034 * @ring: Tx or Rx ring to read stats from 4035 * @pkts: packets stats counter 4036 * @bytes: bytes stats counter 4037 * 4038 * This function fetches stats from the ring considering the atomic operations 4039 * that needs to be performed to read u64 values in 32 bit machine. 4040 */ 4041 static void 4042 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 4043 { 4044 unsigned int start; 4045 *pkts = 0; 4046 *bytes = 0; 4047 4048 if (!ring) 4049 return; 4050 do { 4051 start = u64_stats_fetch_begin_irq(&ring->syncp); 4052 *pkts = ring->stats.pkts; 4053 *bytes = ring->stats.bytes; 4054 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4055 } 4056 4057 /** 4058 * ice_update_vsi_ring_stats - Update VSI stats counters 4059 * @vsi: the VSI to be updated 4060 */ 4061 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 4062 { 4063 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4064 struct ice_ring *ring; 4065 u64 pkts, bytes; 4066 int i; 4067 4068 /* reset netdev stats */ 4069 vsi_stats->tx_packets = 0; 4070 vsi_stats->tx_bytes = 0; 4071 vsi_stats->rx_packets = 0; 4072 vsi_stats->rx_bytes = 0; 4073 4074 /* reset non-netdev (extended) stats */ 4075 vsi->tx_restart = 0; 4076 vsi->tx_busy = 0; 4077 vsi->tx_linearize = 0; 4078 vsi->rx_buf_failed = 0; 4079 vsi->rx_page_failed = 0; 4080 4081 rcu_read_lock(); 4082 4083 /* update Tx rings counters */ 4084 ice_for_each_txq(vsi, i) { 4085 ring = READ_ONCE(vsi->tx_rings[i]); 4086 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4087 vsi_stats->tx_packets += pkts; 4088 vsi_stats->tx_bytes += bytes; 4089 vsi->tx_restart += ring->tx_stats.restart_q; 4090 vsi->tx_busy += ring->tx_stats.tx_busy; 4091 vsi->tx_linearize += ring->tx_stats.tx_linearize; 4092 } 4093 4094 /* update Rx rings counters */ 4095 ice_for_each_rxq(vsi, i) { 4096 ring = READ_ONCE(vsi->rx_rings[i]); 4097 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4098 vsi_stats->rx_packets += pkts; 4099 vsi_stats->rx_bytes += bytes; 4100 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 4101 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 4102 } 4103 4104 rcu_read_unlock(); 4105 } 4106 4107 /** 4108 * ice_update_vsi_stats - Update VSI stats counters 4109 * @vsi: the VSI to be updated 4110 */ 4111 void ice_update_vsi_stats(struct ice_vsi *vsi) 4112 { 4113 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 4114 struct ice_eth_stats *cur_es = &vsi->eth_stats; 4115 struct ice_pf *pf = vsi->back; 4116 4117 if (test_bit(__ICE_DOWN, vsi->state) || 4118 test_bit(__ICE_CFG_BUSY, pf->state)) 4119 return; 4120 4121 /* get stats as recorded by Tx/Rx rings */ 4122 ice_update_vsi_ring_stats(vsi); 4123 4124 /* get VSI stats as recorded by the hardware */ 4125 ice_update_eth_stats(vsi); 4126 4127 cur_ns->tx_errors = cur_es->tx_errors; 4128 cur_ns->rx_dropped = cur_es->rx_discards; 4129 cur_ns->tx_dropped = cur_es->tx_discards; 4130 cur_ns->multicast = cur_es->rx_multicast; 4131 4132 /* update some more netdev stats if this is main VSI */ 4133 if (vsi->type == ICE_VSI_PF) { 4134 cur_ns->rx_crc_errors = pf->stats.crc_errors; 4135 cur_ns->rx_errors = pf->stats.crc_errors + 4136 pf->stats.illegal_bytes; 4137 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 4138 /* record drops from the port level */ 4139 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 4140 } 4141 } 4142 4143 /** 4144 * ice_update_pf_stats - Update PF port stats counters 4145 * @pf: PF whose stats needs to be updated 4146 */ 4147 void ice_update_pf_stats(struct ice_pf *pf) 4148 { 4149 struct ice_hw_port_stats *prev_ps, *cur_ps; 4150 struct ice_hw *hw = &pf->hw; 4151 u8 port; 4152 4153 port = hw->port_info->lport; 4154 prev_ps = &pf->stats_prev; 4155 cur_ps = &pf->stats; 4156 4157 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 4158 &prev_ps->eth.rx_bytes, 4159 &cur_ps->eth.rx_bytes); 4160 4161 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 4162 &prev_ps->eth.rx_unicast, 4163 &cur_ps->eth.rx_unicast); 4164 4165 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 4166 &prev_ps->eth.rx_multicast, 4167 &cur_ps->eth.rx_multicast); 4168 4169 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 4170 &prev_ps->eth.rx_broadcast, 4171 &cur_ps->eth.rx_broadcast); 4172 4173 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 4174 &prev_ps->eth.rx_discards, 4175 &cur_ps->eth.rx_discards); 4176 4177 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 4178 &prev_ps->eth.tx_bytes, 4179 &cur_ps->eth.tx_bytes); 4180 4181 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 4182 &prev_ps->eth.tx_unicast, 4183 &cur_ps->eth.tx_unicast); 4184 4185 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 4186 &prev_ps->eth.tx_multicast, 4187 &cur_ps->eth.tx_multicast); 4188 4189 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 4190 &prev_ps->eth.tx_broadcast, 4191 &cur_ps->eth.tx_broadcast); 4192 4193 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 4194 &prev_ps->tx_dropped_link_down, 4195 &cur_ps->tx_dropped_link_down); 4196 4197 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 4198 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 4199 4200 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 4201 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 4202 4203 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 4204 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 4205 4206 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 4207 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 4208 4209 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 4210 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 4211 4212 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 4213 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 4214 4215 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 4216 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 4217 4218 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 4219 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 4220 4221 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 4222 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 4223 4224 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 4225 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 4226 4227 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 4228 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 4229 4230 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 4231 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 4232 4233 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 4234 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 4235 4236 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 4237 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 4238 4239 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 4240 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 4241 4242 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 4243 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 4244 4245 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 4246 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 4247 4248 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 4249 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 4250 4251 ice_update_dcb_stats(pf); 4252 4253 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 4254 &prev_ps->crc_errors, &cur_ps->crc_errors); 4255 4256 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 4257 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 4258 4259 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 4260 &prev_ps->mac_local_faults, 4261 &cur_ps->mac_local_faults); 4262 4263 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 4264 &prev_ps->mac_remote_faults, 4265 &cur_ps->mac_remote_faults); 4266 4267 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 4268 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 4269 4270 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 4271 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 4272 4273 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 4274 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 4275 4276 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 4277 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 4278 4279 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 4280 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 4281 4282 pf->stat_prev_loaded = true; 4283 } 4284 4285 /** 4286 * ice_get_stats64 - get statistics for network device structure 4287 * @netdev: network interface device structure 4288 * @stats: main device statistics structure 4289 */ 4290 static 4291 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 4292 { 4293 struct ice_netdev_priv *np = netdev_priv(netdev); 4294 struct rtnl_link_stats64 *vsi_stats; 4295 struct ice_vsi *vsi = np->vsi; 4296 4297 vsi_stats = &vsi->net_stats; 4298 4299 if (!vsi->num_txq || !vsi->num_rxq) 4300 return; 4301 4302 /* netdev packet/byte stats come from ring counter. These are obtained 4303 * by summing up ring counters (done by ice_update_vsi_ring_stats). 4304 * But, only call the update routine and read the registers if VSI is 4305 * not down. 4306 */ 4307 if (!test_bit(__ICE_DOWN, vsi->state)) 4308 ice_update_vsi_ring_stats(vsi); 4309 stats->tx_packets = vsi_stats->tx_packets; 4310 stats->tx_bytes = vsi_stats->tx_bytes; 4311 stats->rx_packets = vsi_stats->rx_packets; 4312 stats->rx_bytes = vsi_stats->rx_bytes; 4313 4314 /* The rest of the stats can be read from the hardware but instead we 4315 * just return values that the watchdog task has already obtained from 4316 * the hardware. 4317 */ 4318 stats->multicast = vsi_stats->multicast; 4319 stats->tx_errors = vsi_stats->tx_errors; 4320 stats->tx_dropped = vsi_stats->tx_dropped; 4321 stats->rx_errors = vsi_stats->rx_errors; 4322 stats->rx_dropped = vsi_stats->rx_dropped; 4323 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 4324 stats->rx_length_errors = vsi_stats->rx_length_errors; 4325 } 4326 4327 /** 4328 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4329 * @vsi: VSI having NAPI disabled 4330 */ 4331 static void ice_napi_disable_all(struct ice_vsi *vsi) 4332 { 4333 int q_idx; 4334 4335 if (!vsi->netdev) 4336 return; 4337 4338 ice_for_each_q_vector(vsi, q_idx) { 4339 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4340 4341 if (q_vector->rx.ring || q_vector->tx.ring) 4342 napi_disable(&q_vector->napi); 4343 } 4344 } 4345 4346 /** 4347 * ice_down - Shutdown the connection 4348 * @vsi: The VSI being stopped 4349 */ 4350 int ice_down(struct ice_vsi *vsi) 4351 { 4352 int i, tx_err, rx_err, link_err = 0; 4353 4354 /* Caller of this function is expected to set the 4355 * vsi->state __ICE_DOWN bit 4356 */ 4357 if (vsi->netdev) { 4358 netif_carrier_off(vsi->netdev); 4359 netif_tx_disable(vsi->netdev); 4360 } 4361 4362 ice_vsi_dis_irq(vsi); 4363 4364 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 4365 if (tx_err) 4366 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 4367 vsi->vsi_num, tx_err); 4368 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 4369 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 4370 if (tx_err) 4371 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 4372 vsi->vsi_num, tx_err); 4373 } 4374 4375 rx_err = ice_vsi_stop_all_rx_rings(vsi); 4376 if (rx_err) 4377 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 4378 vsi->vsi_num, rx_err); 4379 4380 ice_napi_disable_all(vsi); 4381 4382 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 4383 link_err = ice_force_phys_link_state(vsi, false); 4384 if (link_err) 4385 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 4386 vsi->vsi_num, link_err); 4387 } 4388 4389 ice_for_each_txq(vsi, i) 4390 ice_clean_tx_ring(vsi->tx_rings[i]); 4391 4392 ice_for_each_rxq(vsi, i) 4393 ice_clean_rx_ring(vsi->rx_rings[i]); 4394 4395 if (tx_err || rx_err || link_err) { 4396 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 4397 vsi->vsi_num, vsi->vsw->sw_id); 4398 return -EIO; 4399 } 4400 4401 return 0; 4402 } 4403 4404 /** 4405 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 4406 * @vsi: VSI having resources allocated 4407 * 4408 * Return 0 on success, negative on failure 4409 */ 4410 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 4411 { 4412 int i, err = 0; 4413 4414 if (!vsi->num_txq) { 4415 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 4416 vsi->vsi_num); 4417 return -EINVAL; 4418 } 4419 4420 ice_for_each_txq(vsi, i) { 4421 struct ice_ring *ring = vsi->tx_rings[i]; 4422 4423 if (!ring) 4424 return -EINVAL; 4425 4426 ring->netdev = vsi->netdev; 4427 err = ice_setup_tx_ring(ring); 4428 if (err) 4429 break; 4430 } 4431 4432 return err; 4433 } 4434 4435 /** 4436 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 4437 * @vsi: VSI having resources allocated 4438 * 4439 * Return 0 on success, negative on failure 4440 */ 4441 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 4442 { 4443 int i, err = 0; 4444 4445 if (!vsi->num_rxq) { 4446 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 4447 vsi->vsi_num); 4448 return -EINVAL; 4449 } 4450 4451 ice_for_each_rxq(vsi, i) { 4452 struct ice_ring *ring = vsi->rx_rings[i]; 4453 4454 if (!ring) 4455 return -EINVAL; 4456 4457 ring->netdev = vsi->netdev; 4458 err = ice_setup_rx_ring(ring); 4459 if (err) 4460 break; 4461 } 4462 4463 return err; 4464 } 4465 4466 /** 4467 * ice_vsi_open - Called when a network interface is made active 4468 * @vsi: the VSI to open 4469 * 4470 * Initialization of the VSI 4471 * 4472 * Returns 0 on success, negative value on error 4473 */ 4474 static int ice_vsi_open(struct ice_vsi *vsi) 4475 { 4476 char int_name[ICE_INT_NAME_STR_LEN]; 4477 struct ice_pf *pf = vsi->back; 4478 int err; 4479 4480 /* allocate descriptors */ 4481 err = ice_vsi_setup_tx_rings(vsi); 4482 if (err) 4483 goto err_setup_tx; 4484 4485 err = ice_vsi_setup_rx_rings(vsi); 4486 if (err) 4487 goto err_setup_rx; 4488 4489 err = ice_vsi_cfg(vsi); 4490 if (err) 4491 goto err_setup_rx; 4492 4493 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4494 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 4495 err = ice_vsi_req_irq_msix(vsi, int_name); 4496 if (err) 4497 goto err_setup_rx; 4498 4499 /* Notify the stack of the actual queue counts. */ 4500 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4501 if (err) 4502 goto err_set_qs; 4503 4504 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4505 if (err) 4506 goto err_set_qs; 4507 4508 err = ice_up_complete(vsi); 4509 if (err) 4510 goto err_up_complete; 4511 4512 return 0; 4513 4514 err_up_complete: 4515 ice_down(vsi); 4516 err_set_qs: 4517 ice_vsi_free_irq(vsi); 4518 err_setup_rx: 4519 ice_vsi_free_rx_rings(vsi); 4520 err_setup_tx: 4521 ice_vsi_free_tx_rings(vsi); 4522 4523 return err; 4524 } 4525 4526 /** 4527 * ice_vsi_release_all - Delete all VSIs 4528 * @pf: PF from which all VSIs are being removed 4529 */ 4530 static void ice_vsi_release_all(struct ice_pf *pf) 4531 { 4532 int err, i; 4533 4534 if (!pf->vsi) 4535 return; 4536 4537 ice_for_each_vsi(pf, i) { 4538 if (!pf->vsi[i]) 4539 continue; 4540 4541 err = ice_vsi_release(pf->vsi[i]); 4542 if (err) 4543 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4544 i, err, pf->vsi[i]->vsi_num); 4545 } 4546 } 4547 4548 /** 4549 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4550 * @pf: pointer to the PF instance 4551 * @type: VSI type to rebuild 4552 * 4553 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4554 */ 4555 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4556 { 4557 struct device *dev = ice_pf_to_dev(pf); 4558 enum ice_status status; 4559 int i, err; 4560 4561 ice_for_each_vsi(pf, i) { 4562 struct ice_vsi *vsi = pf->vsi[i]; 4563 4564 if (!vsi || vsi->type != type) 4565 continue; 4566 4567 /* rebuild the VSI */ 4568 err = ice_vsi_rebuild(vsi, true); 4569 if (err) { 4570 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 4571 err, vsi->idx, ice_vsi_type_str(type)); 4572 return err; 4573 } 4574 4575 /* replay filters for the VSI */ 4576 status = ice_replay_vsi(&pf->hw, vsi->idx); 4577 if (status) { 4578 dev_err(dev, "replay VSI failed, status %d, VSI index %d, type %s\n", 4579 status, vsi->idx, ice_vsi_type_str(type)); 4580 return -EIO; 4581 } 4582 4583 /* Re-map HW VSI number, using VSI handle that has been 4584 * previously validated in ice_replay_vsi() call above 4585 */ 4586 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4587 4588 /* enable the VSI */ 4589 err = ice_ena_vsi(vsi, false); 4590 if (err) { 4591 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 4592 err, vsi->idx, ice_vsi_type_str(type)); 4593 return err; 4594 } 4595 4596 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 4597 ice_vsi_type_str(type)); 4598 } 4599 4600 return 0; 4601 } 4602 4603 /** 4604 * ice_update_pf_netdev_link - Update PF netdev link status 4605 * @pf: pointer to the PF instance 4606 */ 4607 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4608 { 4609 bool link_up; 4610 int i; 4611 4612 ice_for_each_vsi(pf, i) { 4613 struct ice_vsi *vsi = pf->vsi[i]; 4614 4615 if (!vsi || vsi->type != ICE_VSI_PF) 4616 return; 4617 4618 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4619 if (link_up) { 4620 netif_carrier_on(pf->vsi[i]->netdev); 4621 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4622 } else { 4623 netif_carrier_off(pf->vsi[i]->netdev); 4624 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4625 } 4626 } 4627 } 4628 4629 /** 4630 * ice_rebuild - rebuild after reset 4631 * @pf: PF to rebuild 4632 * @reset_type: type of reset 4633 */ 4634 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4635 { 4636 struct device *dev = ice_pf_to_dev(pf); 4637 struct ice_hw *hw = &pf->hw; 4638 enum ice_status ret; 4639 int err; 4640 4641 if (test_bit(__ICE_DOWN, pf->state)) 4642 goto clear_recovery; 4643 4644 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4645 4646 ret = ice_init_all_ctrlq(hw); 4647 if (ret) { 4648 dev_err(dev, "control queues init failed %d\n", ret); 4649 goto err_init_ctrlq; 4650 } 4651 4652 /* if DDP was previously loaded successfully */ 4653 if (!ice_is_safe_mode(pf)) { 4654 /* reload the SW DB of filter tables */ 4655 if (reset_type == ICE_RESET_PFR) 4656 ice_fill_blk_tbls(hw); 4657 else 4658 /* Reload DDP Package after CORER/GLOBR reset */ 4659 ice_load_pkg(NULL, pf); 4660 } 4661 4662 ret = ice_clear_pf_cfg(hw); 4663 if (ret) { 4664 dev_err(dev, "clear PF configuration failed %d\n", ret); 4665 goto err_init_ctrlq; 4666 } 4667 4668 if (pf->first_sw->dflt_vsi_ena) 4669 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 4670 /* clear the default VSI configuration if it exists */ 4671 pf->first_sw->dflt_vsi = NULL; 4672 pf->first_sw->dflt_vsi_ena = false; 4673 4674 ice_clear_pxe_mode(hw); 4675 4676 ret = ice_get_caps(hw); 4677 if (ret) { 4678 dev_err(dev, "ice_get_caps failed %d\n", ret); 4679 goto err_init_ctrlq; 4680 } 4681 4682 err = ice_sched_init_port(hw->port_info); 4683 if (err) 4684 goto err_sched_init_port; 4685 4686 err = ice_update_link_info(hw->port_info); 4687 if (err) 4688 dev_err(dev, "Get link status error %d\n", err); 4689 4690 /* start misc vector */ 4691 err = ice_req_irq_msix_misc(pf); 4692 if (err) { 4693 dev_err(dev, "misc vector setup failed: %d\n", err); 4694 goto err_sched_init_port; 4695 } 4696 4697 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4698 ice_dcb_rebuild(pf); 4699 4700 /* rebuild PF VSI */ 4701 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4702 if (err) { 4703 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4704 goto err_vsi_rebuild; 4705 } 4706 4707 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4708 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF); 4709 if (err) { 4710 dev_err(dev, "VF VSI rebuild failed: %d\n", err); 4711 goto err_vsi_rebuild; 4712 } 4713 } 4714 4715 ice_update_pf_netdev_link(pf); 4716 4717 /* tell the firmware we are up */ 4718 ret = ice_send_version(pf); 4719 if (ret) { 4720 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 4721 ret); 4722 goto err_vsi_rebuild; 4723 } 4724 4725 ice_replay_post(hw); 4726 4727 /* if we get here, reset flow is successful */ 4728 clear_bit(__ICE_RESET_FAILED, pf->state); 4729 return; 4730 4731 err_vsi_rebuild: 4732 err_sched_init_port: 4733 ice_sched_cleanup_all(hw); 4734 err_init_ctrlq: 4735 ice_shutdown_all_ctrlq(hw); 4736 set_bit(__ICE_RESET_FAILED, pf->state); 4737 clear_recovery: 4738 /* set this bit in PF state to control service task scheduling */ 4739 set_bit(__ICE_NEEDS_RESTART, pf->state); 4740 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 4741 } 4742 4743 /** 4744 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 4745 * @vsi: Pointer to VSI structure 4746 */ 4747 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 4748 { 4749 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 4750 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 4751 else 4752 return ICE_RXBUF_3072; 4753 } 4754 4755 /** 4756 * ice_change_mtu - NDO callback to change the MTU 4757 * @netdev: network interface device structure 4758 * @new_mtu: new value for maximum frame size 4759 * 4760 * Returns 0 on success, negative on failure 4761 */ 4762 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 4763 { 4764 struct ice_netdev_priv *np = netdev_priv(netdev); 4765 struct ice_vsi *vsi = np->vsi; 4766 struct ice_pf *pf = vsi->back; 4767 u8 count = 0; 4768 4769 if (new_mtu == netdev->mtu) { 4770 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 4771 return 0; 4772 } 4773 4774 if (ice_is_xdp_ena_vsi(vsi)) { 4775 int frame_size = ice_max_xdp_frame_size(vsi); 4776 4777 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 4778 netdev_err(netdev, "max MTU for XDP usage is %d\n", 4779 frame_size - ICE_ETH_PKT_HDR_PAD); 4780 return -EINVAL; 4781 } 4782 } 4783 4784 if (new_mtu < netdev->min_mtu) { 4785 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 4786 netdev->min_mtu); 4787 return -EINVAL; 4788 } else if (new_mtu > netdev->max_mtu) { 4789 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 4790 netdev->min_mtu); 4791 return -EINVAL; 4792 } 4793 /* if a reset is in progress, wait for some time for it to complete */ 4794 do { 4795 if (ice_is_reset_in_progress(pf->state)) { 4796 count++; 4797 usleep_range(1000, 2000); 4798 } else { 4799 break; 4800 } 4801 4802 } while (count < 100); 4803 4804 if (count == 100) { 4805 netdev_err(netdev, "can't change MTU. Device is busy\n"); 4806 return -EBUSY; 4807 } 4808 4809 netdev->mtu = new_mtu; 4810 4811 /* if VSI is up, bring it down and then back up */ 4812 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 4813 int err; 4814 4815 err = ice_down(vsi); 4816 if (err) { 4817 netdev_err(netdev, "change MTU if_up err %d\n", err); 4818 return err; 4819 } 4820 4821 err = ice_up(vsi); 4822 if (err) { 4823 netdev_err(netdev, "change MTU if_up err %d\n", err); 4824 return err; 4825 } 4826 } 4827 4828 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 4829 return 0; 4830 } 4831 4832 /** 4833 * ice_set_rss - Set RSS keys and lut 4834 * @vsi: Pointer to VSI structure 4835 * @seed: RSS hash seed 4836 * @lut: Lookup table 4837 * @lut_size: Lookup table size 4838 * 4839 * Returns 0 on success, negative on failure 4840 */ 4841 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4842 { 4843 struct ice_pf *pf = vsi->back; 4844 struct ice_hw *hw = &pf->hw; 4845 enum ice_status status; 4846 struct device *dev; 4847 4848 dev = ice_pf_to_dev(pf); 4849 if (seed) { 4850 struct ice_aqc_get_set_rss_keys *buf = 4851 (struct ice_aqc_get_set_rss_keys *)seed; 4852 4853 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 4854 4855 if (status) { 4856 dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n", 4857 status, hw->adminq.rq_last_status); 4858 return -EIO; 4859 } 4860 } 4861 4862 if (lut) { 4863 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4864 lut, lut_size); 4865 if (status) { 4866 dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n", 4867 status, hw->adminq.rq_last_status); 4868 return -EIO; 4869 } 4870 } 4871 4872 return 0; 4873 } 4874 4875 /** 4876 * ice_get_rss - Get RSS keys and lut 4877 * @vsi: Pointer to VSI structure 4878 * @seed: Buffer to store the keys 4879 * @lut: Buffer to store the lookup table entries 4880 * @lut_size: Size of buffer to store the lookup table entries 4881 * 4882 * Returns 0 on success, negative on failure 4883 */ 4884 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4885 { 4886 struct ice_pf *pf = vsi->back; 4887 struct ice_hw *hw = &pf->hw; 4888 enum ice_status status; 4889 struct device *dev; 4890 4891 dev = ice_pf_to_dev(pf); 4892 if (seed) { 4893 struct ice_aqc_get_set_rss_keys *buf = 4894 (struct ice_aqc_get_set_rss_keys *)seed; 4895 4896 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4897 if (status) { 4898 dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n", 4899 status, hw->adminq.rq_last_status); 4900 return -EIO; 4901 } 4902 } 4903 4904 if (lut) { 4905 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4906 lut, lut_size); 4907 if (status) { 4908 dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n", 4909 status, hw->adminq.rq_last_status); 4910 return -EIO; 4911 } 4912 } 4913 4914 return 0; 4915 } 4916 4917 /** 4918 * ice_bridge_getlink - Get the hardware bridge mode 4919 * @skb: skb buff 4920 * @pid: process ID 4921 * @seq: RTNL message seq 4922 * @dev: the netdev being configured 4923 * @filter_mask: filter mask passed in 4924 * @nlflags: netlink flags passed in 4925 * 4926 * Return the bridge mode (VEB/VEPA) 4927 */ 4928 static int 4929 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4930 struct net_device *dev, u32 filter_mask, int nlflags) 4931 { 4932 struct ice_netdev_priv *np = netdev_priv(dev); 4933 struct ice_vsi *vsi = np->vsi; 4934 struct ice_pf *pf = vsi->back; 4935 u16 bmode; 4936 4937 bmode = pf->first_sw->bridge_mode; 4938 4939 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4940 filter_mask, NULL); 4941 } 4942 4943 /** 4944 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4945 * @vsi: Pointer to VSI structure 4946 * @bmode: Hardware bridge mode (VEB/VEPA) 4947 * 4948 * Returns 0 on success, negative on failure 4949 */ 4950 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4951 { 4952 struct ice_aqc_vsi_props *vsi_props; 4953 struct ice_hw *hw = &vsi->back->hw; 4954 struct ice_vsi_ctx *ctxt; 4955 enum ice_status status; 4956 int ret = 0; 4957 4958 vsi_props = &vsi->info; 4959 4960 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4961 if (!ctxt) 4962 return -ENOMEM; 4963 4964 ctxt->info = vsi->info; 4965 4966 if (bmode == BRIDGE_MODE_VEB) 4967 /* change from VEPA to VEB mode */ 4968 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4969 else 4970 /* change from VEB to VEPA mode */ 4971 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4972 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4973 4974 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4975 if (status) { 4976 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4977 bmode, status, hw->adminq.sq_last_status); 4978 ret = -EIO; 4979 goto out; 4980 } 4981 /* Update sw flags for book keeping */ 4982 vsi_props->sw_flags = ctxt->info.sw_flags; 4983 4984 out: 4985 kfree(ctxt); 4986 return ret; 4987 } 4988 4989 /** 4990 * ice_bridge_setlink - Set the hardware bridge mode 4991 * @dev: the netdev being configured 4992 * @nlh: RTNL message 4993 * @flags: bridge setlink flags 4994 * @extack: netlink extended ack 4995 * 4996 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4997 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4998 * not already set for all VSIs connected to this switch. And also update the 4999 * unicast switch filter rules for the corresponding switch of the netdev. 5000 */ 5001 static int 5002 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 5003 u16 __always_unused flags, 5004 struct netlink_ext_ack __always_unused *extack) 5005 { 5006 struct ice_netdev_priv *np = netdev_priv(dev); 5007 struct ice_pf *pf = np->vsi->back; 5008 struct nlattr *attr, *br_spec; 5009 struct ice_hw *hw = &pf->hw; 5010 enum ice_status status; 5011 struct ice_sw *pf_sw; 5012 int rem, v, err = 0; 5013 5014 pf_sw = pf->first_sw; 5015 /* find the attribute in the netlink message */ 5016 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 5017 5018 nla_for_each_nested(attr, br_spec, rem) { 5019 __u16 mode; 5020 5021 if (nla_type(attr) != IFLA_BRIDGE_MODE) 5022 continue; 5023 mode = nla_get_u16(attr); 5024 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 5025 return -EINVAL; 5026 /* Continue if bridge mode is not being flipped */ 5027 if (mode == pf_sw->bridge_mode) 5028 continue; 5029 /* Iterates through the PF VSI list and update the loopback 5030 * mode of the VSI 5031 */ 5032 ice_for_each_vsi(pf, v) { 5033 if (!pf->vsi[v]) 5034 continue; 5035 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 5036 if (err) 5037 return err; 5038 } 5039 5040 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 5041 /* Update the unicast switch filter rules for the corresponding 5042 * switch of the netdev 5043 */ 5044 status = ice_update_sw_rule_bridge_mode(hw); 5045 if (status) { 5046 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 5047 mode, status, hw->adminq.sq_last_status); 5048 /* revert hw->evb_veb */ 5049 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 5050 return -EIO; 5051 } 5052 5053 pf_sw->bridge_mode = mode; 5054 } 5055 5056 return 0; 5057 } 5058 5059 /** 5060 * ice_tx_timeout - Respond to a Tx Hang 5061 * @netdev: network interface device structure 5062 * @txqueue: Tx queue 5063 */ 5064 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 5065 { 5066 struct ice_netdev_priv *np = netdev_priv(netdev); 5067 struct ice_ring *tx_ring = NULL; 5068 struct ice_vsi *vsi = np->vsi; 5069 struct ice_pf *pf = vsi->back; 5070 u32 i; 5071 5072 pf->tx_timeout_count++; 5073 5074 /* now that we have an index, find the tx_ring struct */ 5075 for (i = 0; i < vsi->num_txq; i++) 5076 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 5077 if (txqueue == vsi->tx_rings[i]->q_index) { 5078 tx_ring = vsi->tx_rings[i]; 5079 break; 5080 } 5081 5082 /* Reset recovery level if enough time has elapsed after last timeout. 5083 * Also ensure no new reset action happens before next timeout period. 5084 */ 5085 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 5086 pf->tx_timeout_recovery_level = 1; 5087 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 5088 netdev->watchdog_timeo))) 5089 return; 5090 5091 if (tx_ring) { 5092 struct ice_hw *hw = &pf->hw; 5093 u32 head, val = 0; 5094 5095 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 5096 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 5097 /* Read interrupt register */ 5098 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 5099 5100 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 5101 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 5102 head, tx_ring->next_to_use, val); 5103 } 5104 5105 pf->tx_timeout_last_recovery = jiffies; 5106 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 5107 pf->tx_timeout_recovery_level, txqueue); 5108 5109 switch (pf->tx_timeout_recovery_level) { 5110 case 1: 5111 set_bit(__ICE_PFR_REQ, pf->state); 5112 break; 5113 case 2: 5114 set_bit(__ICE_CORER_REQ, pf->state); 5115 break; 5116 case 3: 5117 set_bit(__ICE_GLOBR_REQ, pf->state); 5118 break; 5119 default: 5120 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 5121 set_bit(__ICE_DOWN, pf->state); 5122 set_bit(__ICE_NEEDS_RESTART, vsi->state); 5123 set_bit(__ICE_SERVICE_DIS, pf->state); 5124 break; 5125 } 5126 5127 ice_service_task_schedule(pf); 5128 pf->tx_timeout_recovery_level++; 5129 } 5130 5131 /** 5132 * ice_open - Called when a network interface becomes active 5133 * @netdev: network interface device structure 5134 * 5135 * The open entry point is called when a network interface is made 5136 * active by the system (IFF_UP). At this point all resources needed 5137 * for transmit and receive operations are allocated, the interrupt 5138 * handler is registered with the OS, the netdev watchdog is enabled, 5139 * and the stack is notified that the interface is ready. 5140 * 5141 * Returns 0 on success, negative value on failure 5142 */ 5143 int ice_open(struct net_device *netdev) 5144 { 5145 struct ice_netdev_priv *np = netdev_priv(netdev); 5146 struct ice_vsi *vsi = np->vsi; 5147 struct ice_port_info *pi; 5148 int err; 5149 5150 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 5151 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 5152 return -EIO; 5153 } 5154 5155 netif_carrier_off(netdev); 5156 5157 pi = vsi->port_info; 5158 err = ice_update_link_info(pi); 5159 if (err) { 5160 netdev_err(netdev, "Failed to get link info, error %d\n", 5161 err); 5162 return err; 5163 } 5164 5165 /* Set PHY if there is media, otherwise, turn off PHY */ 5166 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 5167 err = ice_force_phys_link_state(vsi, true); 5168 if (err) { 5169 netdev_err(netdev, "Failed to set physical link up, error %d\n", 5170 err); 5171 return err; 5172 } 5173 } else { 5174 err = ice_aq_set_link_restart_an(pi, false, NULL); 5175 if (err) { 5176 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 5177 vsi->vsi_num, err); 5178 return err; 5179 } 5180 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 5181 } 5182 5183 err = ice_vsi_open(vsi); 5184 if (err) 5185 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 5186 vsi->vsi_num, vsi->vsw->sw_id); 5187 return err; 5188 } 5189 5190 /** 5191 * ice_stop - Disables a network interface 5192 * @netdev: network interface device structure 5193 * 5194 * The stop entry point is called when an interface is de-activated by the OS, 5195 * and the netdevice enters the DOWN state. The hardware is still under the 5196 * driver's control, but the netdev interface is disabled. 5197 * 5198 * Returns success only - not allowed to fail 5199 */ 5200 int ice_stop(struct net_device *netdev) 5201 { 5202 struct ice_netdev_priv *np = netdev_priv(netdev); 5203 struct ice_vsi *vsi = np->vsi; 5204 5205 ice_vsi_close(vsi); 5206 5207 return 0; 5208 } 5209 5210 /** 5211 * ice_features_check - Validate encapsulated packet conforms to limits 5212 * @skb: skb buffer 5213 * @netdev: This port's netdev 5214 * @features: Offload features that the stack believes apply 5215 */ 5216 static netdev_features_t 5217 ice_features_check(struct sk_buff *skb, 5218 struct net_device __always_unused *netdev, 5219 netdev_features_t features) 5220 { 5221 size_t len; 5222 5223 /* No point in doing any of this if neither checksum nor GSO are 5224 * being requested for this frame. We can rule out both by just 5225 * checking for CHECKSUM_PARTIAL 5226 */ 5227 if (skb->ip_summed != CHECKSUM_PARTIAL) 5228 return features; 5229 5230 /* We cannot support GSO if the MSS is going to be less than 5231 * 64 bytes. If it is then we need to drop support for GSO. 5232 */ 5233 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 5234 features &= ~NETIF_F_GSO_MASK; 5235 5236 len = skb_network_header(skb) - skb->data; 5237 if (len & ~(ICE_TXD_MACLEN_MAX)) 5238 goto out_rm_features; 5239 5240 len = skb_transport_header(skb) - skb_network_header(skb); 5241 if (len & ~(ICE_TXD_IPLEN_MAX)) 5242 goto out_rm_features; 5243 5244 if (skb->encapsulation) { 5245 len = skb_inner_network_header(skb) - skb_transport_header(skb); 5246 if (len & ~(ICE_TXD_L4LEN_MAX)) 5247 goto out_rm_features; 5248 5249 len = skb_inner_transport_header(skb) - 5250 skb_inner_network_header(skb); 5251 if (len & ~(ICE_TXD_IPLEN_MAX)) 5252 goto out_rm_features; 5253 } 5254 5255 return features; 5256 out_rm_features: 5257 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 5258 } 5259 5260 static const struct net_device_ops ice_netdev_safe_mode_ops = { 5261 .ndo_open = ice_open, 5262 .ndo_stop = ice_stop, 5263 .ndo_start_xmit = ice_start_xmit, 5264 .ndo_set_mac_address = ice_set_mac_address, 5265 .ndo_validate_addr = eth_validate_addr, 5266 .ndo_change_mtu = ice_change_mtu, 5267 .ndo_get_stats64 = ice_get_stats64, 5268 .ndo_tx_timeout = ice_tx_timeout, 5269 }; 5270 5271 static const struct net_device_ops ice_netdev_ops = { 5272 .ndo_open = ice_open, 5273 .ndo_stop = ice_stop, 5274 .ndo_start_xmit = ice_start_xmit, 5275 .ndo_features_check = ice_features_check, 5276 .ndo_set_rx_mode = ice_set_rx_mode, 5277 .ndo_set_mac_address = ice_set_mac_address, 5278 .ndo_validate_addr = eth_validate_addr, 5279 .ndo_change_mtu = ice_change_mtu, 5280 .ndo_get_stats64 = ice_get_stats64, 5281 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 5282 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 5283 .ndo_set_vf_mac = ice_set_vf_mac, 5284 .ndo_get_vf_config = ice_get_vf_cfg, 5285 .ndo_set_vf_trust = ice_set_vf_trust, 5286 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 5287 .ndo_set_vf_link_state = ice_set_vf_link_state, 5288 .ndo_get_vf_stats = ice_get_vf_stats, 5289 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 5290 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 5291 .ndo_set_features = ice_set_features, 5292 .ndo_bridge_getlink = ice_bridge_getlink, 5293 .ndo_bridge_setlink = ice_bridge_setlink, 5294 .ndo_fdb_add = ice_fdb_add, 5295 .ndo_fdb_del = ice_fdb_del, 5296 .ndo_tx_timeout = ice_tx_timeout, 5297 .ndo_bpf = ice_xdp, 5298 .ndo_xdp_xmit = ice_xdp_xmit, 5299 .ndo_xsk_wakeup = ice_xsk_wakeup, 5300 }; 5301