1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 
17 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20 
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
24 
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29 
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37 
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42 
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44 
45 static void ice_vsi_release_all(struct ice_pf *pf);
46 
47 /**
48  * ice_get_tx_pending - returns number of Tx descriptors not processed
49  * @ring: the ring of descriptors
50  */
51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 	u16 head, tail;
54 
55 	head = ring->next_to_clean;
56 	tail = ring->next_to_use;
57 
58 	if (head != tail)
59 		return (head < tail) ?
60 			tail - head : (tail + ring->count - head);
61 	return 0;
62 }
63 
64 /**
65  * ice_check_for_hang_subtask - check for and recover hung queues
66  * @pf: pointer to PF struct
67  */
68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 	struct ice_vsi *vsi = NULL;
71 	struct ice_hw *hw;
72 	unsigned int i;
73 	int packets;
74 	u32 v;
75 
76 	ice_for_each_vsi(pf, v)
77 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 			vsi = pf->vsi[v];
79 			break;
80 		}
81 
82 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 		return;
84 
85 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 		return;
87 
88 	hw = &vsi->back->hw;
89 
90 	for (i = 0; i < vsi->num_txq; i++) {
91 		struct ice_ring *tx_ring = vsi->tx_rings[i];
92 
93 		if (tx_ring && tx_ring->desc) {
94 			/* If packet counter has not changed the queue is
95 			 * likely stalled, so force an interrupt for this
96 			 * queue.
97 			 *
98 			 * prev_pkt would be negative if there was no
99 			 * pending work.
100 			 */
101 			packets = tx_ring->stats.pkts & INT_MAX;
102 			if (tx_ring->tx_stats.prev_pkt == packets) {
103 				/* Trigger sw interrupt to revive the queue */
104 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 				continue;
106 			}
107 
108 			/* Memory barrier between read of packet count and call
109 			 * to ice_get_tx_pending()
110 			 */
111 			smp_rmb();
112 			tx_ring->tx_stats.prev_pkt =
113 			    ice_get_tx_pending(tx_ring) ? packets : -1;
114 		}
115 	}
116 }
117 
118 /**
119  * ice_init_mac_fltr - Set initial MAC filters
120  * @pf: board private structure
121  *
122  * Set initial set of MAC filters for PF VSI; configure filters for permanent
123  * address and broadcast address. If an error is encountered, netdevice will be
124  * unregistered.
125  */
126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 	enum ice_status status;
129 	struct ice_vsi *vsi;
130 	u8 *perm_addr;
131 
132 	vsi = ice_get_main_vsi(pf);
133 	if (!vsi)
134 		return -EINVAL;
135 
136 	perm_addr = vsi->port_info->mac.perm_addr;
137 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 	if (!status)
139 		return 0;
140 
141 	/* We aren't useful with no MAC filters, so unregister if we
142 	 * had an error
143 	 */
144 	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 			ice_stat_str(status));
147 		unregister_netdev(vsi->netdev);
148 		free_netdev(vsi->netdev);
149 		vsi->netdev = NULL;
150 	}
151 
152 	return -EIO;
153 }
154 
155 /**
156  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157  * @netdev: the net device on which the sync is happening
158  * @addr: MAC address to sync
159  *
160  * This is a callback function which is called by the in kernel device sync
161  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163  * MAC filters from the hardware.
164  */
165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 	struct ice_netdev_priv *np = netdev_priv(netdev);
168 	struct ice_vsi *vsi = np->vsi;
169 
170 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 				     ICE_FWD_TO_VSI))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 /**
178  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179  * @netdev: the net device on which the unsync is happening
180  * @addr: MAC address to unsync
181  *
182  * This is a callback function which is called by the in kernel device unsync
183  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185  * delete the MAC filters from the hardware.
186  */
187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 	struct ice_netdev_priv *np = netdev_priv(netdev);
190 	struct ice_vsi *vsi = np->vsi;
191 
192 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
193 				     ICE_FWD_TO_VSI))
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
199 /**
200  * ice_vsi_fltr_changed - check if filter state changed
201  * @vsi: VSI to be checked
202  *
203  * returns true if filter state has changed, false otherwise.
204  */
205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
206 {
207 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
208 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
209 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
210 }
211 
212 /**
213  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
214  * @vsi: the VSI being configured
215  * @promisc_m: mask of promiscuous config bits
216  * @set_promisc: enable or disable promisc flag request
217  *
218  */
219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
220 {
221 	struct ice_hw *hw = &vsi->back->hw;
222 	enum ice_status status = 0;
223 
224 	if (vsi->type != ICE_VSI_PF)
225 		return 0;
226 
227 	if (vsi->num_vlan > 1) {
228 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
229 						  set_promisc);
230 	} else {
231 		if (set_promisc)
232 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
233 						     0);
234 		else
235 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
236 						       0);
237 	}
238 
239 	if (status)
240 		return -EIO;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
247  * @vsi: ptr to the VSI
248  *
249  * Push any outstanding VSI filter changes through the AdminQ.
250  */
251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
252 {
253 	struct device *dev = ice_pf_to_dev(vsi->back);
254 	struct net_device *netdev = vsi->netdev;
255 	bool promisc_forced_on = false;
256 	struct ice_pf *pf = vsi->back;
257 	struct ice_hw *hw = &pf->hw;
258 	enum ice_status status = 0;
259 	u32 changed_flags = 0;
260 	u8 promisc_m;
261 	int err = 0;
262 
263 	if (!vsi->netdev)
264 		return -EINVAL;
265 
266 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
267 		usleep_range(1000, 2000);
268 
269 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
270 	vsi->current_netdev_flags = vsi->netdev->flags;
271 
272 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
273 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
274 
275 	if (ice_vsi_fltr_changed(vsi)) {
276 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
277 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
278 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
279 
280 		/* grab the netdev's addr_list_lock */
281 		netif_addr_lock_bh(netdev);
282 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
283 			      ice_add_mac_to_unsync_list);
284 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
285 			      ice_add_mac_to_unsync_list);
286 		/* our temp lists are populated. release lock */
287 		netif_addr_unlock_bh(netdev);
288 	}
289 
290 	/* Remove MAC addresses in the unsync list */
291 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
292 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
293 	if (status) {
294 		netdev_err(netdev, "Failed to delete MAC filters\n");
295 		/* if we failed because of alloc failures, just bail */
296 		if (status == ICE_ERR_NO_MEMORY) {
297 			err = -ENOMEM;
298 			goto out;
299 		}
300 	}
301 
302 	/* Add MAC addresses in the sync list */
303 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
304 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
305 	/* If filter is added successfully or already exists, do not go into
306 	 * 'if' condition and report it as error. Instead continue processing
307 	 * rest of the function.
308 	 */
309 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
310 		netdev_err(netdev, "Failed to add MAC filters\n");
311 		/* If there is no more space for new umac filters, VSI
312 		 * should go into promiscuous mode. There should be some
313 		 * space reserved for promiscuous filters.
314 		 */
315 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
316 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
317 				      vsi->state)) {
318 			promisc_forced_on = true;
319 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
320 				    vsi->vsi_num);
321 		} else {
322 			err = -EIO;
323 			goto out;
324 		}
325 	}
326 	/* check for changes in promiscuous modes */
327 	if (changed_flags & IFF_ALLMULTI) {
328 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
329 			if (vsi->num_vlan > 1)
330 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
331 			else
332 				promisc_m = ICE_MCAST_PROMISC_BITS;
333 
334 			err = ice_cfg_promisc(vsi, promisc_m, true);
335 			if (err) {
336 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
337 					   vsi->vsi_num);
338 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
339 				goto out_promisc;
340 			}
341 		} else {
342 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
343 			if (vsi->num_vlan > 1)
344 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
345 			else
346 				promisc_m = ICE_MCAST_PROMISC_BITS;
347 
348 			err = ice_cfg_promisc(vsi, promisc_m, false);
349 			if (err) {
350 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
351 					   vsi->vsi_num);
352 				vsi->current_netdev_flags |= IFF_ALLMULTI;
353 				goto out_promisc;
354 			}
355 		}
356 	}
357 
358 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
359 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
360 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
361 		if (vsi->current_netdev_flags & IFF_PROMISC) {
362 			/* Apply Rx filter rule to get traffic from wire */
363 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
364 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
365 				if (err && err != -EEXIST) {
366 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
367 						   err, vsi->vsi_num);
368 					vsi->current_netdev_flags &=
369 						~IFF_PROMISC;
370 					goto out_promisc;
371 				}
372 				ice_cfg_vlan_pruning(vsi, false, false);
373 			}
374 		} else {
375 			/* Clear Rx filter to remove traffic from wire */
376 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
377 				err = ice_clear_dflt_vsi(pf->first_sw);
378 				if (err) {
379 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
380 						   err, vsi->vsi_num);
381 					vsi->current_netdev_flags |=
382 						IFF_PROMISC;
383 					goto out_promisc;
384 				}
385 				if (vsi->num_vlan > 1)
386 					ice_cfg_vlan_pruning(vsi, true, false);
387 			}
388 		}
389 	}
390 	goto exit;
391 
392 out_promisc:
393 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
394 	goto exit;
395 out:
396 	/* if something went wrong then set the changed flag so we try again */
397 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
398 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
399 exit:
400 	clear_bit(__ICE_CFG_BUSY, vsi->state);
401 	return err;
402 }
403 
404 /**
405  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
406  * @pf: board private structure
407  */
408 static void ice_sync_fltr_subtask(struct ice_pf *pf)
409 {
410 	int v;
411 
412 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
413 		return;
414 
415 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
416 
417 	ice_for_each_vsi(pf, v)
418 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
419 		    ice_vsi_sync_fltr(pf->vsi[v])) {
420 			/* come back and try again later */
421 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
422 			break;
423 		}
424 }
425 
426 /**
427  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
428  * @pf: the PF
429  * @locked: is the rtnl_lock already held
430  */
431 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
432 {
433 	int v;
434 
435 	ice_for_each_vsi(pf, v)
436 		if (pf->vsi[v])
437 			ice_dis_vsi(pf->vsi[v], locked);
438 }
439 
440 /**
441  * ice_prepare_for_reset - prep for the core to reset
442  * @pf: board private structure
443  *
444  * Inform or close all dependent features in prep for reset.
445  */
446 static void
447 ice_prepare_for_reset(struct ice_pf *pf)
448 {
449 	struct ice_hw *hw = &pf->hw;
450 	unsigned int i;
451 
452 	/* already prepared for reset */
453 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
454 		return;
455 
456 	/* Notify VFs of impending reset */
457 	if (ice_check_sq_alive(hw, &hw->mailboxq))
458 		ice_vc_notify_reset(pf);
459 
460 	/* Disable VFs until reset is completed */
461 	ice_for_each_vf(pf, i)
462 		ice_set_vf_state_qs_dis(&pf->vf[i]);
463 
464 	/* clear SW filtering DB */
465 	ice_clear_hw_tbls(hw);
466 	/* disable the VSIs and their queues that are not already DOWN */
467 	ice_pf_dis_all_vsi(pf, false);
468 
469 	if (hw->port_info)
470 		ice_sched_clear_port(hw->port_info);
471 
472 	ice_shutdown_all_ctrlq(hw);
473 
474 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
475 }
476 
477 /**
478  * ice_do_reset - Initiate one of many types of resets
479  * @pf: board private structure
480  * @reset_type: reset type requested
481  * before this function was called.
482  */
483 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
484 {
485 	struct device *dev = ice_pf_to_dev(pf);
486 	struct ice_hw *hw = &pf->hw;
487 
488 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
489 
490 	ice_prepare_for_reset(pf);
491 
492 	/* trigger the reset */
493 	if (ice_reset(hw, reset_type)) {
494 		dev_err(dev, "reset %d failed\n", reset_type);
495 		set_bit(__ICE_RESET_FAILED, pf->state);
496 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
497 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
498 		clear_bit(__ICE_PFR_REQ, pf->state);
499 		clear_bit(__ICE_CORER_REQ, pf->state);
500 		clear_bit(__ICE_GLOBR_REQ, pf->state);
501 		return;
502 	}
503 
504 	/* PFR is a bit of a special case because it doesn't result in an OICR
505 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
506 	 * associated state bits.
507 	 */
508 	if (reset_type == ICE_RESET_PFR) {
509 		pf->pfr_count++;
510 		ice_rebuild(pf, reset_type);
511 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
512 		clear_bit(__ICE_PFR_REQ, pf->state);
513 		ice_reset_all_vfs(pf, true);
514 	}
515 }
516 
517 /**
518  * ice_reset_subtask - Set up for resetting the device and driver
519  * @pf: board private structure
520  */
521 static void ice_reset_subtask(struct ice_pf *pf)
522 {
523 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
524 
525 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
526 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
527 	 * of reset is pending and sets bits in pf->state indicating the reset
528 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
529 	 * prepare for pending reset if not already (for PF software-initiated
530 	 * global resets the software should already be prepared for it as
531 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
532 	 * by firmware or software on other PFs, that bit is not set so prepare
533 	 * for the reset now), poll for reset done, rebuild and return.
534 	 */
535 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
536 		/* Perform the largest reset requested */
537 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
538 			reset_type = ICE_RESET_CORER;
539 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
540 			reset_type = ICE_RESET_GLOBR;
541 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
542 			reset_type = ICE_RESET_EMPR;
543 		/* return if no valid reset type requested */
544 		if (reset_type == ICE_RESET_INVAL)
545 			return;
546 		ice_prepare_for_reset(pf);
547 
548 		/* make sure we are ready to rebuild */
549 		if (ice_check_reset(&pf->hw)) {
550 			set_bit(__ICE_RESET_FAILED, pf->state);
551 		} else {
552 			/* done with reset. start rebuild */
553 			pf->hw.reset_ongoing = false;
554 			ice_rebuild(pf, reset_type);
555 			/* clear bit to resume normal operations, but
556 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
557 			 */
558 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
559 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
560 			clear_bit(__ICE_PFR_REQ, pf->state);
561 			clear_bit(__ICE_CORER_REQ, pf->state);
562 			clear_bit(__ICE_GLOBR_REQ, pf->state);
563 			ice_reset_all_vfs(pf, true);
564 		}
565 
566 		return;
567 	}
568 
569 	/* No pending resets to finish processing. Check for new resets */
570 	if (test_bit(__ICE_PFR_REQ, pf->state))
571 		reset_type = ICE_RESET_PFR;
572 	if (test_bit(__ICE_CORER_REQ, pf->state))
573 		reset_type = ICE_RESET_CORER;
574 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
575 		reset_type = ICE_RESET_GLOBR;
576 	/* If no valid reset type requested just return */
577 	if (reset_type == ICE_RESET_INVAL)
578 		return;
579 
580 	/* reset if not already down or busy */
581 	if (!test_bit(__ICE_DOWN, pf->state) &&
582 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
583 		ice_do_reset(pf, reset_type);
584 	}
585 }
586 
587 /**
588  * ice_print_topo_conflict - print topology conflict message
589  * @vsi: the VSI whose topology status is being checked
590  */
591 static void ice_print_topo_conflict(struct ice_vsi *vsi)
592 {
593 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
594 	case ICE_AQ_LINK_TOPO_CONFLICT:
595 	case ICE_AQ_LINK_MEDIA_CONFLICT:
596 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
597 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
598 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
599 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
600 		break;
601 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
602 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
603 		break;
604 	default:
605 		break;
606 	}
607 }
608 
609 /**
610  * ice_print_link_msg - print link up or down message
611  * @vsi: the VSI whose link status is being queried
612  * @isup: boolean for if the link is now up or down
613  */
614 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
615 {
616 	struct ice_aqc_get_phy_caps_data *caps;
617 	const char *an_advertised;
618 	enum ice_status status;
619 	const char *fec_req;
620 	const char *speed;
621 	const char *fec;
622 	const char *fc;
623 	const char *an;
624 
625 	if (!vsi)
626 		return;
627 
628 	if (vsi->current_isup == isup)
629 		return;
630 
631 	vsi->current_isup = isup;
632 
633 	if (!isup) {
634 		netdev_info(vsi->netdev, "NIC Link is Down\n");
635 		return;
636 	}
637 
638 	switch (vsi->port_info->phy.link_info.link_speed) {
639 	case ICE_AQ_LINK_SPEED_100GB:
640 		speed = "100 G";
641 		break;
642 	case ICE_AQ_LINK_SPEED_50GB:
643 		speed = "50 G";
644 		break;
645 	case ICE_AQ_LINK_SPEED_40GB:
646 		speed = "40 G";
647 		break;
648 	case ICE_AQ_LINK_SPEED_25GB:
649 		speed = "25 G";
650 		break;
651 	case ICE_AQ_LINK_SPEED_20GB:
652 		speed = "20 G";
653 		break;
654 	case ICE_AQ_LINK_SPEED_10GB:
655 		speed = "10 G";
656 		break;
657 	case ICE_AQ_LINK_SPEED_5GB:
658 		speed = "5 G";
659 		break;
660 	case ICE_AQ_LINK_SPEED_2500MB:
661 		speed = "2.5 G";
662 		break;
663 	case ICE_AQ_LINK_SPEED_1000MB:
664 		speed = "1 G";
665 		break;
666 	case ICE_AQ_LINK_SPEED_100MB:
667 		speed = "100 M";
668 		break;
669 	default:
670 		speed = "Unknown ";
671 		break;
672 	}
673 
674 	switch (vsi->port_info->fc.current_mode) {
675 	case ICE_FC_FULL:
676 		fc = "Rx/Tx";
677 		break;
678 	case ICE_FC_TX_PAUSE:
679 		fc = "Tx";
680 		break;
681 	case ICE_FC_RX_PAUSE:
682 		fc = "Rx";
683 		break;
684 	case ICE_FC_NONE:
685 		fc = "None";
686 		break;
687 	default:
688 		fc = "Unknown";
689 		break;
690 	}
691 
692 	/* Get FEC mode based on negotiated link info */
693 	switch (vsi->port_info->phy.link_info.fec_info) {
694 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
695 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
696 		fec = "RS-FEC";
697 		break;
698 	case ICE_AQ_LINK_25G_KR_FEC_EN:
699 		fec = "FC-FEC/BASE-R";
700 		break;
701 	default:
702 		fec = "NONE";
703 		break;
704 	}
705 
706 	/* check if autoneg completed, might be false due to not supported */
707 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
708 		an = "True";
709 	else
710 		an = "False";
711 
712 	/* Get FEC mode requested based on PHY caps last SW configuration */
713 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
714 	if (!caps) {
715 		fec_req = "Unknown";
716 		an_advertised = "Unknown";
717 		goto done;
718 	}
719 
720 	status = ice_aq_get_phy_caps(vsi->port_info, false,
721 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
722 	if (status)
723 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
724 
725 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
726 
727 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
728 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
729 		fec_req = "RS-FEC";
730 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
731 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
732 		fec_req = "FC-FEC/BASE-R";
733 	else
734 		fec_req = "NONE";
735 
736 	kfree(caps);
737 
738 done:
739 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
740 		    speed, fec_req, fec, an_advertised, an, fc);
741 	ice_print_topo_conflict(vsi);
742 }
743 
744 /**
745  * ice_vsi_link_event - update the VSI's netdev
746  * @vsi: the VSI on which the link event occurred
747  * @link_up: whether or not the VSI needs to be set up or down
748  */
749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
750 {
751 	if (!vsi)
752 		return;
753 
754 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
755 		return;
756 
757 	if (vsi->type == ICE_VSI_PF) {
758 		if (link_up == netif_carrier_ok(vsi->netdev))
759 			return;
760 
761 		if (link_up) {
762 			netif_carrier_on(vsi->netdev);
763 			netif_tx_wake_all_queues(vsi->netdev);
764 		} else {
765 			netif_carrier_off(vsi->netdev);
766 			netif_tx_stop_all_queues(vsi->netdev);
767 		}
768 	}
769 }
770 
771 /**
772  * ice_set_dflt_mib - send a default config MIB to the FW
773  * @pf: private PF struct
774  *
775  * This function sends a default configuration MIB to the FW.
776  *
777  * If this function errors out at any point, the driver is still able to
778  * function.  The main impact is that LFC may not operate as expected.
779  * Therefore an error state in this function should be treated with a DBG
780  * message and continue on with driver rebuild/reenable.
781  */
782 static void ice_set_dflt_mib(struct ice_pf *pf)
783 {
784 	struct device *dev = ice_pf_to_dev(pf);
785 	u8 mib_type, *buf, *lldpmib = NULL;
786 	u16 len, typelen, offset = 0;
787 	struct ice_lldp_org_tlv *tlv;
788 	struct ice_hw *hw;
789 	u32 ouisubtype;
790 
791 	if (!pf) {
792 		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
793 		return;
794 	}
795 
796 	hw = &pf->hw;
797 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
798 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
799 	if (!lldpmib) {
800 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
801 			__func__);
802 		return;
803 	}
804 
805 	/* Add ETS CFG TLV */
806 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
807 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
808 		   ICE_IEEE_ETS_TLV_LEN);
809 	tlv->typelen = htons(typelen);
810 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
811 		      ICE_IEEE_SUBTYPE_ETS_CFG);
812 	tlv->ouisubtype = htonl(ouisubtype);
813 
814 	buf = tlv->tlvinfo;
815 	buf[0] = 0;
816 
817 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
818 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
819 	 * Octets 13 - 20 are TSA values - leave as zeros
820 	 */
821 	buf[5] = 0x64;
822 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
823 	offset += len + 2;
824 	tlv = (struct ice_lldp_org_tlv *)
825 		((char *)tlv + sizeof(tlv->typelen) + len);
826 
827 	/* Add ETS REC TLV */
828 	buf = tlv->tlvinfo;
829 	tlv->typelen = htons(typelen);
830 
831 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
832 		      ICE_IEEE_SUBTYPE_ETS_REC);
833 	tlv->ouisubtype = htonl(ouisubtype);
834 
835 	/* First octet of buf is reserved
836 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
837 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
838 	 * Octets 13 - 20 are TSA value - leave as zeros
839 	 */
840 	buf[5] = 0x64;
841 	offset += len + 2;
842 	tlv = (struct ice_lldp_org_tlv *)
843 		((char *)tlv + sizeof(tlv->typelen) + len);
844 
845 	/* Add PFC CFG TLV */
846 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
847 		   ICE_IEEE_PFC_TLV_LEN);
848 	tlv->typelen = htons(typelen);
849 
850 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
851 		      ICE_IEEE_SUBTYPE_PFC_CFG);
852 	tlv->ouisubtype = htonl(ouisubtype);
853 
854 	/* Octet 1 left as all zeros - PFC disabled */
855 	buf[0] = 0x08;
856 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
857 	offset += len + 2;
858 
859 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
860 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
861 
862 	kfree(lldpmib);
863 }
864 
865 /**
866  * ice_link_event - process the link event
867  * @pf: PF that the link event is associated with
868  * @pi: port_info for the port that the link event is associated with
869  * @link_up: true if the physical link is up and false if it is down
870  * @link_speed: current link speed received from the link event
871  *
872  * Returns 0 on success and negative on failure
873  */
874 static int
875 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
876 	       u16 link_speed)
877 {
878 	struct device *dev = ice_pf_to_dev(pf);
879 	struct ice_phy_info *phy_info;
880 	struct ice_vsi *vsi;
881 	u16 old_link_speed;
882 	bool old_link;
883 	int result;
884 
885 	phy_info = &pi->phy;
886 	phy_info->link_info_old = phy_info->link_info;
887 
888 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
889 	old_link_speed = phy_info->link_info_old.link_speed;
890 
891 	/* update the link info structures and re-enable link events,
892 	 * don't bail on failure due to other book keeping needed
893 	 */
894 	result = ice_update_link_info(pi);
895 	if (result)
896 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
897 			pi->lport);
898 
899 	/* Check if the link state is up after updating link info, and treat
900 	 * this event as an UP event since the link is actually UP now.
901 	 */
902 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
903 		link_up = true;
904 
905 	vsi = ice_get_main_vsi(pf);
906 	if (!vsi || !vsi->port_info)
907 		return -EINVAL;
908 
909 	/* turn off PHY if media was removed */
910 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
911 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
912 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
913 
914 		result = ice_aq_set_link_restart_an(pi, false, NULL);
915 		if (result) {
916 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
917 				vsi->vsi_num, result);
918 			return result;
919 		}
920 	}
921 
922 	/* if the old link up/down and speed is the same as the new */
923 	if (link_up == old_link && link_speed == old_link_speed)
924 		return result;
925 
926 	if (ice_is_dcb_active(pf)) {
927 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
928 			ice_dcb_rebuild(pf);
929 	} else {
930 		if (link_up)
931 			ice_set_dflt_mib(pf);
932 	}
933 	ice_vsi_link_event(vsi, link_up);
934 	ice_print_link_msg(vsi, link_up);
935 
936 	ice_vc_notify_link_state(pf);
937 
938 	return result;
939 }
940 
941 /**
942  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
943  * @pf: board private structure
944  */
945 static void ice_watchdog_subtask(struct ice_pf *pf)
946 {
947 	int i;
948 
949 	/* if interface is down do nothing */
950 	if (test_bit(__ICE_DOWN, pf->state) ||
951 	    test_bit(__ICE_CFG_BUSY, pf->state))
952 		return;
953 
954 	/* make sure we don't do these things too often */
955 	if (time_before(jiffies,
956 			pf->serv_tmr_prev + pf->serv_tmr_period))
957 		return;
958 
959 	pf->serv_tmr_prev = jiffies;
960 
961 	/* Update the stats for active netdevs so the network stack
962 	 * can look at updated numbers whenever it cares to
963 	 */
964 	ice_update_pf_stats(pf);
965 	ice_for_each_vsi(pf, i)
966 		if (pf->vsi[i] && pf->vsi[i]->netdev)
967 			ice_update_vsi_stats(pf->vsi[i]);
968 }
969 
970 /**
971  * ice_init_link_events - enable/initialize link events
972  * @pi: pointer to the port_info instance
973  *
974  * Returns -EIO on failure, 0 on success
975  */
976 static int ice_init_link_events(struct ice_port_info *pi)
977 {
978 	u16 mask;
979 
980 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
981 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
982 
983 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
984 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
985 			pi->lport);
986 		return -EIO;
987 	}
988 
989 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
990 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
991 			pi->lport);
992 		return -EIO;
993 	}
994 
995 	return 0;
996 }
997 
998 /**
999  * ice_handle_link_event - handle link event via ARQ
1000  * @pf: PF that the link event is associated with
1001  * @event: event structure containing link status info
1002  */
1003 static int
1004 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1005 {
1006 	struct ice_aqc_get_link_status_data *link_data;
1007 	struct ice_port_info *port_info;
1008 	int status;
1009 
1010 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1011 	port_info = pf->hw.port_info;
1012 	if (!port_info)
1013 		return -EINVAL;
1014 
1015 	status = ice_link_event(pf, port_info,
1016 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1017 				le16_to_cpu(link_data->link_speed));
1018 	if (status)
1019 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1020 			status);
1021 
1022 	return status;
1023 }
1024 
1025 enum ice_aq_task_state {
1026 	ICE_AQ_TASK_WAITING = 0,
1027 	ICE_AQ_TASK_COMPLETE,
1028 	ICE_AQ_TASK_CANCELED,
1029 };
1030 
1031 struct ice_aq_task {
1032 	struct hlist_node entry;
1033 
1034 	u16 opcode;
1035 	struct ice_rq_event_info *event;
1036 	enum ice_aq_task_state state;
1037 };
1038 
1039 /**
1040  * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1041  * @pf: pointer to the PF private structure
1042  * @opcode: the opcode to wait for
1043  * @timeout: how long to wait, in jiffies
1044  * @event: storage for the event info
1045  *
1046  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1047  * current thread will be put to sleep until the specified event occurs or
1048  * until the given timeout is reached.
1049  *
1050  * To obtain only the descriptor contents, pass an event without an allocated
1051  * msg_buf. If the complete data buffer is desired, allocate the
1052  * event->msg_buf with enough space ahead of time.
1053  *
1054  * Returns: zero on success, or a negative error code on failure.
1055  */
1056 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1057 			  struct ice_rq_event_info *event)
1058 {
1059 	struct device *dev = ice_pf_to_dev(pf);
1060 	struct ice_aq_task *task;
1061 	unsigned long start;
1062 	long ret;
1063 	int err;
1064 
1065 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1066 	if (!task)
1067 		return -ENOMEM;
1068 
1069 	INIT_HLIST_NODE(&task->entry);
1070 	task->opcode = opcode;
1071 	task->event = event;
1072 	task->state = ICE_AQ_TASK_WAITING;
1073 
1074 	spin_lock_bh(&pf->aq_wait_lock);
1075 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1076 	spin_unlock_bh(&pf->aq_wait_lock);
1077 
1078 	start = jiffies;
1079 
1080 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1081 					       timeout);
1082 	switch (task->state) {
1083 	case ICE_AQ_TASK_WAITING:
1084 		err = ret < 0 ? ret : -ETIMEDOUT;
1085 		break;
1086 	case ICE_AQ_TASK_CANCELED:
1087 		err = ret < 0 ? ret : -ECANCELED;
1088 		break;
1089 	case ICE_AQ_TASK_COMPLETE:
1090 		err = ret < 0 ? ret : 0;
1091 		break;
1092 	default:
1093 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1094 		err = -EINVAL;
1095 		break;
1096 	}
1097 
1098 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1099 		jiffies_to_msecs(jiffies - start),
1100 		jiffies_to_msecs(timeout),
1101 		opcode);
1102 
1103 	spin_lock_bh(&pf->aq_wait_lock);
1104 	hlist_del(&task->entry);
1105 	spin_unlock_bh(&pf->aq_wait_lock);
1106 	kfree(task);
1107 
1108 	return err;
1109 }
1110 
1111 /**
1112  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1113  * @pf: pointer to the PF private structure
1114  * @opcode: the opcode of the event
1115  * @event: the event to check
1116  *
1117  * Loops over the current list of pending threads waiting for an AdminQ event.
1118  * For each matching task, copy the contents of the event into the task
1119  * structure and wake up the thread.
1120  *
1121  * If multiple threads wait for the same opcode, they will all be woken up.
1122  *
1123  * Note that event->msg_buf will only be duplicated if the event has a buffer
1124  * with enough space already allocated. Otherwise, only the descriptor and
1125  * message length will be copied.
1126  *
1127  * Returns: true if an event was found, false otherwise
1128  */
1129 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1130 				struct ice_rq_event_info *event)
1131 {
1132 	struct ice_aq_task *task;
1133 	bool found = false;
1134 
1135 	spin_lock_bh(&pf->aq_wait_lock);
1136 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1137 		if (task->state || task->opcode != opcode)
1138 			continue;
1139 
1140 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1141 		task->event->msg_len = event->msg_len;
1142 
1143 		/* Only copy the data buffer if a destination was set */
1144 		if (task->event->msg_buf &&
1145 		    task->event->buf_len > event->buf_len) {
1146 			memcpy(task->event->msg_buf, event->msg_buf,
1147 			       event->buf_len);
1148 			task->event->buf_len = event->buf_len;
1149 		}
1150 
1151 		task->state = ICE_AQ_TASK_COMPLETE;
1152 		found = true;
1153 	}
1154 	spin_unlock_bh(&pf->aq_wait_lock);
1155 
1156 	if (found)
1157 		wake_up(&pf->aq_wait_queue);
1158 }
1159 
1160 /**
1161  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1162  * @pf: the PF private structure
1163  *
1164  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1165  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1166  */
1167 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1168 {
1169 	struct ice_aq_task *task;
1170 
1171 	spin_lock_bh(&pf->aq_wait_lock);
1172 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1173 		task->state = ICE_AQ_TASK_CANCELED;
1174 	spin_unlock_bh(&pf->aq_wait_lock);
1175 
1176 	wake_up(&pf->aq_wait_queue);
1177 }
1178 
1179 /**
1180  * __ice_clean_ctrlq - helper function to clean controlq rings
1181  * @pf: ptr to struct ice_pf
1182  * @q_type: specific Control queue type
1183  */
1184 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1185 {
1186 	struct device *dev = ice_pf_to_dev(pf);
1187 	struct ice_rq_event_info event;
1188 	struct ice_hw *hw = &pf->hw;
1189 	struct ice_ctl_q_info *cq;
1190 	u16 pending, i = 0;
1191 	const char *qtype;
1192 	u32 oldval, val;
1193 
1194 	/* Do not clean control queue if/when PF reset fails */
1195 	if (test_bit(__ICE_RESET_FAILED, pf->state))
1196 		return 0;
1197 
1198 	switch (q_type) {
1199 	case ICE_CTL_Q_ADMIN:
1200 		cq = &hw->adminq;
1201 		qtype = "Admin";
1202 		break;
1203 	case ICE_CTL_Q_MAILBOX:
1204 		cq = &hw->mailboxq;
1205 		qtype = "Mailbox";
1206 		break;
1207 	default:
1208 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1209 		return 0;
1210 	}
1211 
1212 	/* check for error indications - PF_xx_AxQLEN register layout for
1213 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1214 	 */
1215 	val = rd32(hw, cq->rq.len);
1216 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1217 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1218 		oldval = val;
1219 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1220 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1221 				qtype);
1222 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1223 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1224 				qtype);
1225 		}
1226 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1227 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1228 				qtype);
1229 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1230 			 PF_FW_ARQLEN_ARQCRIT_M);
1231 		if (oldval != val)
1232 			wr32(hw, cq->rq.len, val);
1233 	}
1234 
1235 	val = rd32(hw, cq->sq.len);
1236 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1237 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1238 		oldval = val;
1239 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1240 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1241 				qtype);
1242 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1243 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1244 				qtype);
1245 		}
1246 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1247 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1248 				qtype);
1249 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1250 			 PF_FW_ATQLEN_ATQCRIT_M);
1251 		if (oldval != val)
1252 			wr32(hw, cq->sq.len, val);
1253 	}
1254 
1255 	event.buf_len = cq->rq_buf_size;
1256 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1257 	if (!event.msg_buf)
1258 		return 0;
1259 
1260 	do {
1261 		enum ice_status ret;
1262 		u16 opcode;
1263 
1264 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1265 		if (ret == ICE_ERR_AQ_NO_WORK)
1266 			break;
1267 		if (ret) {
1268 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1269 				ice_stat_str(ret));
1270 			break;
1271 		}
1272 
1273 		opcode = le16_to_cpu(event.desc.opcode);
1274 
1275 		/* Notify any thread that might be waiting for this event */
1276 		ice_aq_check_events(pf, opcode, &event);
1277 
1278 		switch (opcode) {
1279 		case ice_aqc_opc_get_link_status:
1280 			if (ice_handle_link_event(pf, &event))
1281 				dev_err(dev, "Could not handle link event\n");
1282 			break;
1283 		case ice_aqc_opc_event_lan_overflow:
1284 			ice_vf_lan_overflow_event(pf, &event);
1285 			break;
1286 		case ice_mbx_opc_send_msg_to_pf:
1287 			ice_vc_process_vf_msg(pf, &event);
1288 			break;
1289 		case ice_aqc_opc_fw_logging:
1290 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1291 			break;
1292 		case ice_aqc_opc_lldp_set_mib_change:
1293 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1294 			break;
1295 		default:
1296 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1297 				qtype, opcode);
1298 			break;
1299 		}
1300 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1301 
1302 	kfree(event.msg_buf);
1303 
1304 	return pending && (i == ICE_DFLT_IRQ_WORK);
1305 }
1306 
1307 /**
1308  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1309  * @hw: pointer to hardware info
1310  * @cq: control queue information
1311  *
1312  * returns true if there are pending messages in a queue, false if there aren't
1313  */
1314 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1315 {
1316 	u16 ntu;
1317 
1318 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1319 	return cq->rq.next_to_clean != ntu;
1320 }
1321 
1322 /**
1323  * ice_clean_adminq_subtask - clean the AdminQ rings
1324  * @pf: board private structure
1325  */
1326 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1327 {
1328 	struct ice_hw *hw = &pf->hw;
1329 
1330 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1331 		return;
1332 
1333 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1334 		return;
1335 
1336 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1337 
1338 	/* There might be a situation where new messages arrive to a control
1339 	 * queue between processing the last message and clearing the
1340 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1341 	 * ice_ctrlq_pending) and process new messages if any.
1342 	 */
1343 	if (ice_ctrlq_pending(hw, &hw->adminq))
1344 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1345 
1346 	ice_flush(hw);
1347 }
1348 
1349 /**
1350  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1351  * @pf: board private structure
1352  */
1353 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1354 {
1355 	struct ice_hw *hw = &pf->hw;
1356 
1357 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1358 		return;
1359 
1360 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1361 		return;
1362 
1363 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1364 
1365 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1366 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1367 
1368 	ice_flush(hw);
1369 }
1370 
1371 /**
1372  * ice_service_task_schedule - schedule the service task to wake up
1373  * @pf: board private structure
1374  *
1375  * If not already scheduled, this puts the task into the work queue.
1376  */
1377 void ice_service_task_schedule(struct ice_pf *pf)
1378 {
1379 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1380 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1381 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1382 		queue_work(ice_wq, &pf->serv_task);
1383 }
1384 
1385 /**
1386  * ice_service_task_complete - finish up the service task
1387  * @pf: board private structure
1388  */
1389 static void ice_service_task_complete(struct ice_pf *pf)
1390 {
1391 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1392 
1393 	/* force memory (pf->state) to sync before next service task */
1394 	smp_mb__before_atomic();
1395 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1396 }
1397 
1398 /**
1399  * ice_service_task_stop - stop service task and cancel works
1400  * @pf: board private structure
1401  *
1402  * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1403  * 1 otherwise.
1404  */
1405 static int ice_service_task_stop(struct ice_pf *pf)
1406 {
1407 	int ret;
1408 
1409 	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1410 
1411 	if (pf->serv_tmr.function)
1412 		del_timer_sync(&pf->serv_tmr);
1413 	if (pf->serv_task.func)
1414 		cancel_work_sync(&pf->serv_task);
1415 
1416 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1417 	return ret;
1418 }
1419 
1420 /**
1421  * ice_service_task_restart - restart service task and schedule works
1422  * @pf: board private structure
1423  *
1424  * This function is needed for suspend and resume works (e.g WoL scenario)
1425  */
1426 static void ice_service_task_restart(struct ice_pf *pf)
1427 {
1428 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1429 	ice_service_task_schedule(pf);
1430 }
1431 
1432 /**
1433  * ice_service_timer - timer callback to schedule service task
1434  * @t: pointer to timer_list
1435  */
1436 static void ice_service_timer(struct timer_list *t)
1437 {
1438 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1439 
1440 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1441 	ice_service_task_schedule(pf);
1442 }
1443 
1444 /**
1445  * ice_handle_mdd_event - handle malicious driver detect event
1446  * @pf: pointer to the PF structure
1447  *
1448  * Called from service task. OICR interrupt handler indicates MDD event.
1449  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1450  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1451  * disable the queue, the PF can be configured to reset the VF using ethtool
1452  * private flag mdd-auto-reset-vf.
1453  */
1454 static void ice_handle_mdd_event(struct ice_pf *pf)
1455 {
1456 	struct device *dev = ice_pf_to_dev(pf);
1457 	struct ice_hw *hw = &pf->hw;
1458 	unsigned int i;
1459 	u32 reg;
1460 
1461 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1462 		/* Since the VF MDD event logging is rate limited, check if
1463 		 * there are pending MDD events.
1464 		 */
1465 		ice_print_vfs_mdd_events(pf);
1466 		return;
1467 	}
1468 
1469 	/* find what triggered an MDD event */
1470 	reg = rd32(hw, GL_MDET_TX_PQM);
1471 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1472 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1473 				GL_MDET_TX_PQM_PF_NUM_S;
1474 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1475 				GL_MDET_TX_PQM_VF_NUM_S;
1476 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1477 				GL_MDET_TX_PQM_MAL_TYPE_S;
1478 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1479 				GL_MDET_TX_PQM_QNUM_S);
1480 
1481 		if (netif_msg_tx_err(pf))
1482 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1483 				 event, queue, pf_num, vf_num);
1484 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1485 	}
1486 
1487 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1488 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1489 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1490 				GL_MDET_TX_TCLAN_PF_NUM_S;
1491 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1492 				GL_MDET_TX_TCLAN_VF_NUM_S;
1493 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1494 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1495 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1496 				GL_MDET_TX_TCLAN_QNUM_S);
1497 
1498 		if (netif_msg_tx_err(pf))
1499 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1500 				 event, queue, pf_num, vf_num);
1501 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1502 	}
1503 
1504 	reg = rd32(hw, GL_MDET_RX);
1505 	if (reg & GL_MDET_RX_VALID_M) {
1506 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1507 				GL_MDET_RX_PF_NUM_S;
1508 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1509 				GL_MDET_RX_VF_NUM_S;
1510 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1511 				GL_MDET_RX_MAL_TYPE_S;
1512 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1513 				GL_MDET_RX_QNUM_S);
1514 
1515 		if (netif_msg_rx_err(pf))
1516 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1517 				 event, queue, pf_num, vf_num);
1518 		wr32(hw, GL_MDET_RX, 0xffffffff);
1519 	}
1520 
1521 	/* check to see if this PF caused an MDD event */
1522 	reg = rd32(hw, PF_MDET_TX_PQM);
1523 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1524 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1525 		if (netif_msg_tx_err(pf))
1526 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1527 	}
1528 
1529 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1530 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1531 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1532 		if (netif_msg_tx_err(pf))
1533 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1534 	}
1535 
1536 	reg = rd32(hw, PF_MDET_RX);
1537 	if (reg & PF_MDET_RX_VALID_M) {
1538 		wr32(hw, PF_MDET_RX, 0xFFFF);
1539 		if (netif_msg_rx_err(pf))
1540 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1541 	}
1542 
1543 	/* Check to see if one of the VFs caused an MDD event, and then
1544 	 * increment counters and set print pending
1545 	 */
1546 	ice_for_each_vf(pf, i) {
1547 		struct ice_vf *vf = &pf->vf[i];
1548 
1549 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1550 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1551 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1552 			vf->mdd_tx_events.count++;
1553 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1554 			if (netif_msg_tx_err(pf))
1555 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1556 					 i);
1557 		}
1558 
1559 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1560 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1561 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1562 			vf->mdd_tx_events.count++;
1563 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1564 			if (netif_msg_tx_err(pf))
1565 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1566 					 i);
1567 		}
1568 
1569 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1570 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1571 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1572 			vf->mdd_tx_events.count++;
1573 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1574 			if (netif_msg_tx_err(pf))
1575 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1576 					 i);
1577 		}
1578 
1579 		reg = rd32(hw, VP_MDET_RX(i));
1580 		if (reg & VP_MDET_RX_VALID_M) {
1581 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1582 			vf->mdd_rx_events.count++;
1583 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1584 			if (netif_msg_rx_err(pf))
1585 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1586 					 i);
1587 
1588 			/* Since the queue is disabled on VF Rx MDD events, the
1589 			 * PF can be configured to reset the VF through ethtool
1590 			 * private flag mdd-auto-reset-vf.
1591 			 */
1592 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1593 				/* VF MDD event counters will be cleared by
1594 				 * reset, so print the event prior to reset.
1595 				 */
1596 				ice_print_vf_rx_mdd_event(vf);
1597 				ice_reset_vf(&pf->vf[i], false);
1598 			}
1599 		}
1600 	}
1601 
1602 	ice_print_vfs_mdd_events(pf);
1603 }
1604 
1605 /**
1606  * ice_force_phys_link_state - Force the physical link state
1607  * @vsi: VSI to force the physical link state to up/down
1608  * @link_up: true/false indicates to set the physical link to up/down
1609  *
1610  * Force the physical link state by getting the current PHY capabilities from
1611  * hardware and setting the PHY config based on the determined capabilities. If
1612  * link changes a link event will be triggered because both the Enable Automatic
1613  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1614  *
1615  * Returns 0 on success, negative on failure
1616  */
1617 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1618 {
1619 	struct ice_aqc_get_phy_caps_data *pcaps;
1620 	struct ice_aqc_set_phy_cfg_data *cfg;
1621 	struct ice_port_info *pi;
1622 	struct device *dev;
1623 	int retcode;
1624 
1625 	if (!vsi || !vsi->port_info || !vsi->back)
1626 		return -EINVAL;
1627 	if (vsi->type != ICE_VSI_PF)
1628 		return 0;
1629 
1630 	dev = ice_pf_to_dev(vsi->back);
1631 
1632 	pi = vsi->port_info;
1633 
1634 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1635 	if (!pcaps)
1636 		return -ENOMEM;
1637 
1638 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1639 				      NULL);
1640 	if (retcode) {
1641 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1642 			vsi->vsi_num, retcode);
1643 		retcode = -EIO;
1644 		goto out;
1645 	}
1646 
1647 	/* No change in link */
1648 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1649 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1650 		goto out;
1651 
1652 	/* Use the current user PHY configuration. The current user PHY
1653 	 * configuration is initialized during probe from PHY capabilities
1654 	 * software mode, and updated on set PHY configuration.
1655 	 */
1656 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1657 	if (!cfg) {
1658 		retcode = -ENOMEM;
1659 		goto out;
1660 	}
1661 
1662 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1663 	if (link_up)
1664 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1665 	else
1666 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1667 
1668 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1669 	if (retcode) {
1670 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1671 			vsi->vsi_num, retcode);
1672 		retcode = -EIO;
1673 	}
1674 
1675 	kfree(cfg);
1676 out:
1677 	kfree(pcaps);
1678 	return retcode;
1679 }
1680 
1681 /**
1682  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1683  * @pi: port info structure
1684  *
1685  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1686  */
1687 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1688 {
1689 	struct ice_aqc_get_phy_caps_data *pcaps;
1690 	struct ice_pf *pf = pi->hw->back;
1691 	enum ice_status status;
1692 	int err = 0;
1693 
1694 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1695 	if (!pcaps)
1696 		return -ENOMEM;
1697 
1698 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1699 				     NULL);
1700 
1701 	if (status) {
1702 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1703 		err = -EIO;
1704 		goto out;
1705 	}
1706 
1707 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1708 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1709 
1710 out:
1711 	kfree(pcaps);
1712 	return err;
1713 }
1714 
1715 /**
1716  * ice_init_link_dflt_override - Initialize link default override
1717  * @pi: port info structure
1718  *
1719  * Initialize link default override and PHY total port shutdown during probe
1720  */
1721 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1722 {
1723 	struct ice_link_default_override_tlv *ldo;
1724 	struct ice_pf *pf = pi->hw->back;
1725 
1726 	ldo = &pf->link_dflt_override;
1727 	if (ice_get_link_default_override(ldo, pi))
1728 		return;
1729 
1730 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1731 		return;
1732 
1733 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1734 	 * ethtool private flag) for ports with Port Disable bit set.
1735 	 */
1736 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1737 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1738 }
1739 
1740 /**
1741  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1742  * @pi: port info structure
1743  *
1744  * If default override is enabled, initialized the user PHY cfg speed and FEC
1745  * settings using the default override mask from the NVM.
1746  *
1747  * The PHY should only be configured with the default override settings the
1748  * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1749  * is used to indicate that the user PHY cfg default override is initialized
1750  * and the PHY has not been configured with the default override settings. The
1751  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1752  * configured.
1753  */
1754 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1755 {
1756 	struct ice_link_default_override_tlv *ldo;
1757 	struct ice_aqc_set_phy_cfg_data *cfg;
1758 	struct ice_phy_info *phy = &pi->phy;
1759 	struct ice_pf *pf = pi->hw->back;
1760 
1761 	ldo = &pf->link_dflt_override;
1762 
1763 	/* If link default override is enabled, use to mask NVM PHY capabilities
1764 	 * for speed and FEC default configuration.
1765 	 */
1766 	cfg = &phy->curr_user_phy_cfg;
1767 
1768 	if (ldo->phy_type_low || ldo->phy_type_high) {
1769 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1770 				    cpu_to_le64(ldo->phy_type_low);
1771 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1772 				     cpu_to_le64(ldo->phy_type_high);
1773 	}
1774 	cfg->link_fec_opt = ldo->fec_options;
1775 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1776 
1777 	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1778 }
1779 
1780 /**
1781  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1782  * @pi: port info structure
1783  *
1784  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1785  * mode to default. The PHY defaults are from get PHY capabilities topology
1786  * with media so call when media is first available. An error is returned if
1787  * called when media is not available. The PHY initialization completed state is
1788  * set here.
1789  *
1790  * These configurations are used when setting PHY
1791  * configuration. The user PHY configuration is updated on set PHY
1792  * configuration. Returns 0 on success, negative on failure
1793  */
1794 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1795 {
1796 	struct ice_aqc_get_phy_caps_data *pcaps;
1797 	struct ice_phy_info *phy = &pi->phy;
1798 	struct ice_pf *pf = pi->hw->back;
1799 	enum ice_status status;
1800 	struct ice_vsi *vsi;
1801 	int err = 0;
1802 
1803 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1804 		return -EIO;
1805 
1806 	vsi = ice_get_main_vsi(pf);
1807 	if (!vsi)
1808 		return -EINVAL;
1809 
1810 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1811 	if (!pcaps)
1812 		return -ENOMEM;
1813 
1814 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1815 				     NULL);
1816 	if (status) {
1817 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1818 		err = -EIO;
1819 		goto err_out;
1820 	}
1821 
1822 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1823 
1824 	/* check if lenient mode is supported and enabled */
1825 	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1826 	    !(pcaps->module_compliance_enforcement &
1827 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1828 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1829 
1830 		/* if link default override is enabled, initialize user PHY
1831 		 * configuration with link default override values
1832 		 */
1833 		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1834 			ice_init_phy_cfg_dflt_override(pi);
1835 			goto out;
1836 		}
1837 	}
1838 
1839 	/* if link default override is not enabled, initialize PHY using
1840 	 * topology with media
1841 	 */
1842 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1843 						      pcaps->link_fec_options);
1844 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1845 
1846 out:
1847 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1848 	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1849 err_out:
1850 	kfree(pcaps);
1851 	return err;
1852 }
1853 
1854 /**
1855  * ice_configure_phy - configure PHY
1856  * @vsi: VSI of PHY
1857  *
1858  * Set the PHY configuration. If the current PHY configuration is the same as
1859  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1860  * configure the based get PHY capabilities for topology with media.
1861  */
1862 static int ice_configure_phy(struct ice_vsi *vsi)
1863 {
1864 	struct device *dev = ice_pf_to_dev(vsi->back);
1865 	struct ice_aqc_get_phy_caps_data *pcaps;
1866 	struct ice_aqc_set_phy_cfg_data *cfg;
1867 	struct ice_port_info *pi;
1868 	enum ice_status status;
1869 	int err = 0;
1870 
1871 	pi = vsi->port_info;
1872 	if (!pi)
1873 		return -EINVAL;
1874 
1875 	/* Ensure we have media as we cannot configure a medialess port */
1876 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1877 		return -EPERM;
1878 
1879 	ice_print_topo_conflict(vsi);
1880 
1881 	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1882 	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1883 		return -EPERM;
1884 
1885 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1886 		return ice_force_phys_link_state(vsi, true);
1887 
1888 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1889 	if (!pcaps)
1890 		return -ENOMEM;
1891 
1892 	/* Get current PHY config */
1893 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1894 				     NULL);
1895 	if (status) {
1896 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1897 			vsi->vsi_num, ice_stat_str(status));
1898 		err = -EIO;
1899 		goto done;
1900 	}
1901 
1902 	/* If PHY enable link is configured and configuration has not changed,
1903 	 * there's nothing to do
1904 	 */
1905 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1906 	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1907 		goto done;
1908 
1909 	/* Use PHY topology as baseline for configuration */
1910 	memset(pcaps, 0, sizeof(*pcaps));
1911 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1912 				     NULL);
1913 	if (status) {
1914 		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1915 			vsi->vsi_num, ice_stat_str(status));
1916 		err = -EIO;
1917 		goto done;
1918 	}
1919 
1920 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1921 	if (!cfg) {
1922 		err = -ENOMEM;
1923 		goto done;
1924 	}
1925 
1926 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1927 
1928 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1929 	 * ice_init_phy_user_cfg_ldo.
1930 	 */
1931 	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1932 			       vsi->back->state)) {
1933 		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1934 		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1935 	} else {
1936 		u64 phy_low = 0, phy_high = 0;
1937 
1938 		ice_update_phy_type(&phy_low, &phy_high,
1939 				    pi->phy.curr_user_speed_req);
1940 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1941 		cfg->phy_type_high = pcaps->phy_type_high &
1942 				     cpu_to_le64(phy_high);
1943 	}
1944 
1945 	/* Can't provide what was requested; use PHY capabilities */
1946 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1947 		cfg->phy_type_low = pcaps->phy_type_low;
1948 		cfg->phy_type_high = pcaps->phy_type_high;
1949 	}
1950 
1951 	/* FEC */
1952 	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1953 
1954 	/* Can't provide what was requested; use PHY capabilities */
1955 	if (cfg->link_fec_opt !=
1956 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1957 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1958 		cfg->link_fec_opt = pcaps->link_fec_options;
1959 	}
1960 
1961 	/* Flow Control - always supported; no need to check against
1962 	 * capabilities
1963 	 */
1964 	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1965 
1966 	/* Enable link and link update */
1967 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1968 
1969 	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1970 	if (status) {
1971 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1972 			vsi->vsi_num, ice_stat_str(status));
1973 		err = -EIO;
1974 	}
1975 
1976 	kfree(cfg);
1977 done:
1978 	kfree(pcaps);
1979 	return err;
1980 }
1981 
1982 /**
1983  * ice_check_media_subtask - Check for media
1984  * @pf: pointer to PF struct
1985  *
1986  * If media is available, then initialize PHY user configuration if it is not
1987  * been, and configure the PHY if the interface is up.
1988  */
1989 static void ice_check_media_subtask(struct ice_pf *pf)
1990 {
1991 	struct ice_port_info *pi;
1992 	struct ice_vsi *vsi;
1993 	int err;
1994 
1995 	/* No need to check for media if it's already present */
1996 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1997 		return;
1998 
1999 	vsi = ice_get_main_vsi(pf);
2000 	if (!vsi)
2001 		return;
2002 
2003 	/* Refresh link info and check if media is present */
2004 	pi = vsi->port_info;
2005 	err = ice_update_link_info(pi);
2006 	if (err)
2007 		return;
2008 
2009 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2010 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2011 			ice_init_phy_user_cfg(pi);
2012 
2013 		/* PHY settings are reset on media insertion, reconfigure
2014 		 * PHY to preserve settings.
2015 		 */
2016 		if (test_bit(__ICE_DOWN, vsi->state) &&
2017 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2018 			return;
2019 
2020 		err = ice_configure_phy(vsi);
2021 		if (!err)
2022 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2023 
2024 		/* A Link Status Event will be generated; the event handler
2025 		 * will complete bringing the interface up
2026 		 */
2027 	}
2028 }
2029 
2030 /**
2031  * ice_service_task - manage and run subtasks
2032  * @work: pointer to work_struct contained by the PF struct
2033  */
2034 static void ice_service_task(struct work_struct *work)
2035 {
2036 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2037 	unsigned long start_time = jiffies;
2038 
2039 	/* subtasks */
2040 
2041 	/* process reset requests first */
2042 	ice_reset_subtask(pf);
2043 
2044 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2045 	if (ice_is_reset_in_progress(pf->state) ||
2046 	    test_bit(__ICE_SUSPENDED, pf->state) ||
2047 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2048 		ice_service_task_complete(pf);
2049 		return;
2050 	}
2051 
2052 	ice_clean_adminq_subtask(pf);
2053 	ice_check_media_subtask(pf);
2054 	ice_check_for_hang_subtask(pf);
2055 	ice_sync_fltr_subtask(pf);
2056 	ice_handle_mdd_event(pf);
2057 	ice_watchdog_subtask(pf);
2058 
2059 	if (ice_is_safe_mode(pf)) {
2060 		ice_service_task_complete(pf);
2061 		return;
2062 	}
2063 
2064 	ice_process_vflr_event(pf);
2065 	ice_clean_mailboxq_subtask(pf);
2066 	ice_sync_arfs_fltrs(pf);
2067 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2068 	ice_service_task_complete(pf);
2069 
2070 	/* If the tasks have taken longer than one service timer period
2071 	 * or there is more work to be done, reset the service timer to
2072 	 * schedule the service task now.
2073 	 */
2074 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2075 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2076 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2077 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2078 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2079 		mod_timer(&pf->serv_tmr, jiffies);
2080 }
2081 
2082 /**
2083  * ice_set_ctrlq_len - helper function to set controlq length
2084  * @hw: pointer to the HW instance
2085  */
2086 static void ice_set_ctrlq_len(struct ice_hw *hw)
2087 {
2088 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2089 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2090 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2091 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2092 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2093 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2094 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2095 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2096 }
2097 
2098 /**
2099  * ice_schedule_reset - schedule a reset
2100  * @pf: board private structure
2101  * @reset: reset being requested
2102  */
2103 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2104 {
2105 	struct device *dev = ice_pf_to_dev(pf);
2106 
2107 	/* bail out if earlier reset has failed */
2108 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2109 		dev_dbg(dev, "earlier reset has failed\n");
2110 		return -EIO;
2111 	}
2112 	/* bail if reset/recovery already in progress */
2113 	if (ice_is_reset_in_progress(pf->state)) {
2114 		dev_dbg(dev, "Reset already in progress\n");
2115 		return -EBUSY;
2116 	}
2117 
2118 	switch (reset) {
2119 	case ICE_RESET_PFR:
2120 		set_bit(__ICE_PFR_REQ, pf->state);
2121 		break;
2122 	case ICE_RESET_CORER:
2123 		set_bit(__ICE_CORER_REQ, pf->state);
2124 		break;
2125 	case ICE_RESET_GLOBR:
2126 		set_bit(__ICE_GLOBR_REQ, pf->state);
2127 		break;
2128 	default:
2129 		return -EINVAL;
2130 	}
2131 
2132 	ice_service_task_schedule(pf);
2133 	return 0;
2134 }
2135 
2136 /**
2137  * ice_irq_affinity_notify - Callback for affinity changes
2138  * @notify: context as to what irq was changed
2139  * @mask: the new affinity mask
2140  *
2141  * This is a callback function used by the irq_set_affinity_notifier function
2142  * so that we may register to receive changes to the irq affinity masks.
2143  */
2144 static void
2145 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2146 			const cpumask_t *mask)
2147 {
2148 	struct ice_q_vector *q_vector =
2149 		container_of(notify, struct ice_q_vector, affinity_notify);
2150 
2151 	cpumask_copy(&q_vector->affinity_mask, mask);
2152 }
2153 
2154 /**
2155  * ice_irq_affinity_release - Callback for affinity notifier release
2156  * @ref: internal core kernel usage
2157  *
2158  * This is a callback function used by the irq_set_affinity_notifier function
2159  * to inform the current notification subscriber that they will no longer
2160  * receive notifications.
2161  */
2162 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2163 
2164 /**
2165  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2166  * @vsi: the VSI being configured
2167  */
2168 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2169 {
2170 	struct ice_hw *hw = &vsi->back->hw;
2171 	int i;
2172 
2173 	ice_for_each_q_vector(vsi, i)
2174 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2175 
2176 	ice_flush(hw);
2177 	return 0;
2178 }
2179 
2180 /**
2181  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2182  * @vsi: the VSI being configured
2183  * @basename: name for the vector
2184  */
2185 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2186 {
2187 	int q_vectors = vsi->num_q_vectors;
2188 	struct ice_pf *pf = vsi->back;
2189 	int base = vsi->base_vector;
2190 	struct device *dev;
2191 	int rx_int_idx = 0;
2192 	int tx_int_idx = 0;
2193 	int vector, err;
2194 	int irq_num;
2195 
2196 	dev = ice_pf_to_dev(pf);
2197 	for (vector = 0; vector < q_vectors; vector++) {
2198 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2199 
2200 		irq_num = pf->msix_entries[base + vector].vector;
2201 
2202 		if (q_vector->tx.ring && q_vector->rx.ring) {
2203 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2204 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2205 			tx_int_idx++;
2206 		} else if (q_vector->rx.ring) {
2207 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2208 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2209 		} else if (q_vector->tx.ring) {
2210 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2211 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2212 		} else {
2213 			/* skip this unused q_vector */
2214 			continue;
2215 		}
2216 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2217 				       q_vector->name, q_vector);
2218 		if (err) {
2219 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2220 				   err);
2221 			goto free_q_irqs;
2222 		}
2223 
2224 		/* register for affinity change notifications */
2225 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2226 			struct irq_affinity_notify *affinity_notify;
2227 
2228 			affinity_notify = &q_vector->affinity_notify;
2229 			affinity_notify->notify = ice_irq_affinity_notify;
2230 			affinity_notify->release = ice_irq_affinity_release;
2231 			irq_set_affinity_notifier(irq_num, affinity_notify);
2232 		}
2233 
2234 		/* assign the mask for this irq */
2235 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2236 	}
2237 
2238 	vsi->irqs_ready = true;
2239 	return 0;
2240 
2241 free_q_irqs:
2242 	while (vector) {
2243 		vector--;
2244 		irq_num = pf->msix_entries[base + vector].vector;
2245 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2246 			irq_set_affinity_notifier(irq_num, NULL);
2247 		irq_set_affinity_hint(irq_num, NULL);
2248 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2249 	}
2250 	return err;
2251 }
2252 
2253 /**
2254  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2255  * @vsi: VSI to setup Tx rings used by XDP
2256  *
2257  * Return 0 on success and negative value on error
2258  */
2259 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2260 {
2261 	struct device *dev = ice_pf_to_dev(vsi->back);
2262 	int i;
2263 
2264 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2265 		u16 xdp_q_idx = vsi->alloc_txq + i;
2266 		struct ice_ring *xdp_ring;
2267 
2268 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2269 
2270 		if (!xdp_ring)
2271 			goto free_xdp_rings;
2272 
2273 		xdp_ring->q_index = xdp_q_idx;
2274 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2275 		xdp_ring->ring_active = false;
2276 		xdp_ring->vsi = vsi;
2277 		xdp_ring->netdev = NULL;
2278 		xdp_ring->dev = dev;
2279 		xdp_ring->count = vsi->num_tx_desc;
2280 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2281 		if (ice_setup_tx_ring(xdp_ring))
2282 			goto free_xdp_rings;
2283 		ice_set_ring_xdp(xdp_ring);
2284 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2285 	}
2286 
2287 	return 0;
2288 
2289 free_xdp_rings:
2290 	for (; i >= 0; i--)
2291 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2292 			ice_free_tx_ring(vsi->xdp_rings[i]);
2293 	return -ENOMEM;
2294 }
2295 
2296 /**
2297  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2298  * @vsi: VSI to set the bpf prog on
2299  * @prog: the bpf prog pointer
2300  */
2301 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2302 {
2303 	struct bpf_prog *old_prog;
2304 	int i;
2305 
2306 	old_prog = xchg(&vsi->xdp_prog, prog);
2307 	if (old_prog)
2308 		bpf_prog_put(old_prog);
2309 
2310 	ice_for_each_rxq(vsi, i)
2311 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2312 }
2313 
2314 /**
2315  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2316  * @vsi: VSI to bring up Tx rings used by XDP
2317  * @prog: bpf program that will be assigned to VSI
2318  *
2319  * Return 0 on success and negative value on error
2320  */
2321 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2322 {
2323 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2324 	int xdp_rings_rem = vsi->num_xdp_txq;
2325 	struct ice_pf *pf = vsi->back;
2326 	struct ice_qs_cfg xdp_qs_cfg = {
2327 		.qs_mutex = &pf->avail_q_mutex,
2328 		.pf_map = pf->avail_txqs,
2329 		.pf_map_size = pf->max_pf_txqs,
2330 		.q_count = vsi->num_xdp_txq,
2331 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2332 		.vsi_map = vsi->txq_map,
2333 		.vsi_map_offset = vsi->alloc_txq,
2334 		.mapping_mode = ICE_VSI_MAP_CONTIG
2335 	};
2336 	enum ice_status status;
2337 	struct device *dev;
2338 	int i, v_idx;
2339 
2340 	dev = ice_pf_to_dev(pf);
2341 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2342 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2343 	if (!vsi->xdp_rings)
2344 		return -ENOMEM;
2345 
2346 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2347 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2348 		goto err_map_xdp;
2349 
2350 	if (ice_xdp_alloc_setup_rings(vsi))
2351 		goto clear_xdp_rings;
2352 
2353 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2354 	ice_for_each_q_vector(vsi, v_idx) {
2355 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2356 		int xdp_rings_per_v, q_id, q_base;
2357 
2358 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2359 					       vsi->num_q_vectors - v_idx);
2360 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2361 
2362 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2363 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2364 
2365 			xdp_ring->q_vector = q_vector;
2366 			xdp_ring->next = q_vector->tx.ring;
2367 			q_vector->tx.ring = xdp_ring;
2368 		}
2369 		xdp_rings_rem -= xdp_rings_per_v;
2370 	}
2371 
2372 	/* omit the scheduler update if in reset path; XDP queues will be
2373 	 * taken into account at the end of ice_vsi_rebuild, where
2374 	 * ice_cfg_vsi_lan is being called
2375 	 */
2376 	if (ice_is_reset_in_progress(pf->state))
2377 		return 0;
2378 
2379 	/* tell the Tx scheduler that right now we have
2380 	 * additional queues
2381 	 */
2382 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2383 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2384 
2385 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2386 				 max_txqs);
2387 	if (status) {
2388 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2389 			ice_stat_str(status));
2390 		goto clear_xdp_rings;
2391 	}
2392 	ice_vsi_assign_bpf_prog(vsi, prog);
2393 
2394 	return 0;
2395 clear_xdp_rings:
2396 	for (i = 0; i < vsi->num_xdp_txq; i++)
2397 		if (vsi->xdp_rings[i]) {
2398 			kfree_rcu(vsi->xdp_rings[i], rcu);
2399 			vsi->xdp_rings[i] = NULL;
2400 		}
2401 
2402 err_map_xdp:
2403 	mutex_lock(&pf->avail_q_mutex);
2404 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2405 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2406 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2407 	}
2408 	mutex_unlock(&pf->avail_q_mutex);
2409 
2410 	devm_kfree(dev, vsi->xdp_rings);
2411 	return -ENOMEM;
2412 }
2413 
2414 /**
2415  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2416  * @vsi: VSI to remove XDP rings
2417  *
2418  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2419  * resources
2420  */
2421 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2422 {
2423 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2424 	struct ice_pf *pf = vsi->back;
2425 	int i, v_idx;
2426 
2427 	/* q_vectors are freed in reset path so there's no point in detaching
2428 	 * rings; in case of rebuild being triggered not from reset bits
2429 	 * in pf->state won't be set, so additionally check first q_vector
2430 	 * against NULL
2431 	 */
2432 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2433 		goto free_qmap;
2434 
2435 	ice_for_each_q_vector(vsi, v_idx) {
2436 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2437 		struct ice_ring *ring;
2438 
2439 		ice_for_each_ring(ring, q_vector->tx)
2440 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2441 				break;
2442 
2443 		/* restore the value of last node prior to XDP setup */
2444 		q_vector->tx.ring = ring;
2445 	}
2446 
2447 free_qmap:
2448 	mutex_lock(&pf->avail_q_mutex);
2449 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2450 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2451 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2452 	}
2453 	mutex_unlock(&pf->avail_q_mutex);
2454 
2455 	for (i = 0; i < vsi->num_xdp_txq; i++)
2456 		if (vsi->xdp_rings[i]) {
2457 			if (vsi->xdp_rings[i]->desc)
2458 				ice_free_tx_ring(vsi->xdp_rings[i]);
2459 			kfree_rcu(vsi->xdp_rings[i], rcu);
2460 			vsi->xdp_rings[i] = NULL;
2461 		}
2462 
2463 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2464 	vsi->xdp_rings = NULL;
2465 
2466 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2467 		return 0;
2468 
2469 	ice_vsi_assign_bpf_prog(vsi, NULL);
2470 
2471 	/* notify Tx scheduler that we destroyed XDP queues and bring
2472 	 * back the old number of child nodes
2473 	 */
2474 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2475 		max_txqs[i] = vsi->num_txq;
2476 
2477 	/* change number of XDP Tx queues to 0 */
2478 	vsi->num_xdp_txq = 0;
2479 
2480 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2481 			       max_txqs);
2482 }
2483 
2484 /**
2485  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2486  * @vsi: VSI to setup XDP for
2487  * @prog: XDP program
2488  * @extack: netlink extended ack
2489  */
2490 static int
2491 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2492 		   struct netlink_ext_ack *extack)
2493 {
2494 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2495 	bool if_running = netif_running(vsi->netdev);
2496 	int ret = 0, xdp_ring_err = 0;
2497 
2498 	if (frame_size > vsi->rx_buf_len) {
2499 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2500 		return -EOPNOTSUPP;
2501 	}
2502 
2503 	/* need to stop netdev while setting up the program for Rx rings */
2504 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2505 		ret = ice_down(vsi);
2506 		if (ret) {
2507 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2508 			return ret;
2509 		}
2510 	}
2511 
2512 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2513 		vsi->num_xdp_txq = vsi->alloc_rxq;
2514 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2515 		if (xdp_ring_err)
2516 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2517 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2518 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2519 		if (xdp_ring_err)
2520 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2521 	} else {
2522 		ice_vsi_assign_bpf_prog(vsi, prog);
2523 	}
2524 
2525 	if (if_running)
2526 		ret = ice_up(vsi);
2527 
2528 	if (!ret && prog && vsi->xsk_pools) {
2529 		int i;
2530 
2531 		ice_for_each_rxq(vsi, i) {
2532 			struct ice_ring *rx_ring = vsi->rx_rings[i];
2533 
2534 			if (rx_ring->xsk_pool)
2535 				napi_schedule(&rx_ring->q_vector->napi);
2536 		}
2537 	}
2538 
2539 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2540 }
2541 
2542 /**
2543  * ice_xdp - implements XDP handler
2544  * @dev: netdevice
2545  * @xdp: XDP command
2546  */
2547 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2548 {
2549 	struct ice_netdev_priv *np = netdev_priv(dev);
2550 	struct ice_vsi *vsi = np->vsi;
2551 
2552 	if (vsi->type != ICE_VSI_PF) {
2553 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2554 		return -EINVAL;
2555 	}
2556 
2557 	switch (xdp->command) {
2558 	case XDP_SETUP_PROG:
2559 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2560 	case XDP_SETUP_XSK_POOL:
2561 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2562 					  xdp->xsk.queue_id);
2563 	default:
2564 		return -EINVAL;
2565 	}
2566 }
2567 
2568 /**
2569  * ice_ena_misc_vector - enable the non-queue interrupts
2570  * @pf: board private structure
2571  */
2572 static void ice_ena_misc_vector(struct ice_pf *pf)
2573 {
2574 	struct ice_hw *hw = &pf->hw;
2575 	u32 val;
2576 
2577 	/* Disable anti-spoof detection interrupt to prevent spurious event
2578 	 * interrupts during a function reset. Anti-spoof functionally is
2579 	 * still supported.
2580 	 */
2581 	val = rd32(hw, GL_MDCK_TX_TDPU);
2582 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2583 	wr32(hw, GL_MDCK_TX_TDPU, val);
2584 
2585 	/* clear things first */
2586 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2587 	rd32(hw, PFINT_OICR);		/* read to clear */
2588 
2589 	val = (PFINT_OICR_ECC_ERR_M |
2590 	       PFINT_OICR_MAL_DETECT_M |
2591 	       PFINT_OICR_GRST_M |
2592 	       PFINT_OICR_PCI_EXCEPTION_M |
2593 	       PFINT_OICR_VFLR_M |
2594 	       PFINT_OICR_HMC_ERR_M |
2595 	       PFINT_OICR_PE_CRITERR_M);
2596 
2597 	wr32(hw, PFINT_OICR_ENA, val);
2598 
2599 	/* SW_ITR_IDX = 0, but don't change INTENA */
2600 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2601 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2602 }
2603 
2604 /**
2605  * ice_misc_intr - misc interrupt handler
2606  * @irq: interrupt number
2607  * @data: pointer to a q_vector
2608  */
2609 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2610 {
2611 	struct ice_pf *pf = (struct ice_pf *)data;
2612 	struct ice_hw *hw = &pf->hw;
2613 	irqreturn_t ret = IRQ_NONE;
2614 	struct device *dev;
2615 	u32 oicr, ena_mask;
2616 
2617 	dev = ice_pf_to_dev(pf);
2618 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2619 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2620 
2621 	oicr = rd32(hw, PFINT_OICR);
2622 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2623 
2624 	if (oicr & PFINT_OICR_SWINT_M) {
2625 		ena_mask &= ~PFINT_OICR_SWINT_M;
2626 		pf->sw_int_count++;
2627 	}
2628 
2629 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2630 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2631 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2632 	}
2633 	if (oicr & PFINT_OICR_VFLR_M) {
2634 		/* disable any further VFLR event notifications */
2635 		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2636 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2637 
2638 			reg &= ~PFINT_OICR_VFLR_M;
2639 			wr32(hw, PFINT_OICR_ENA, reg);
2640 		} else {
2641 			ena_mask &= ~PFINT_OICR_VFLR_M;
2642 			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2643 		}
2644 	}
2645 
2646 	if (oicr & PFINT_OICR_GRST_M) {
2647 		u32 reset;
2648 
2649 		/* we have a reset warning */
2650 		ena_mask &= ~PFINT_OICR_GRST_M;
2651 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2652 			GLGEN_RSTAT_RESET_TYPE_S;
2653 
2654 		if (reset == ICE_RESET_CORER)
2655 			pf->corer_count++;
2656 		else if (reset == ICE_RESET_GLOBR)
2657 			pf->globr_count++;
2658 		else if (reset == ICE_RESET_EMPR)
2659 			pf->empr_count++;
2660 		else
2661 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2662 
2663 		/* If a reset cycle isn't already in progress, we set a bit in
2664 		 * pf->state so that the service task can start a reset/rebuild.
2665 		 * We also make note of which reset happened so that peer
2666 		 * devices/drivers can be informed.
2667 		 */
2668 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2669 			if (reset == ICE_RESET_CORER)
2670 				set_bit(__ICE_CORER_RECV, pf->state);
2671 			else if (reset == ICE_RESET_GLOBR)
2672 				set_bit(__ICE_GLOBR_RECV, pf->state);
2673 			else
2674 				set_bit(__ICE_EMPR_RECV, pf->state);
2675 
2676 			/* There are couple of different bits at play here.
2677 			 * hw->reset_ongoing indicates whether the hardware is
2678 			 * in reset. This is set to true when a reset interrupt
2679 			 * is received and set back to false after the driver
2680 			 * has determined that the hardware is out of reset.
2681 			 *
2682 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2683 			 * that a post reset rebuild is required before the
2684 			 * driver is operational again. This is set above.
2685 			 *
2686 			 * As this is the start of the reset/rebuild cycle, set
2687 			 * both to indicate that.
2688 			 */
2689 			hw->reset_ongoing = true;
2690 		}
2691 	}
2692 
2693 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2694 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2695 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2696 			rd32(hw, PFHMC_ERRORINFO),
2697 			rd32(hw, PFHMC_ERRORDATA));
2698 	}
2699 
2700 	/* Report any remaining unexpected interrupts */
2701 	oicr &= ena_mask;
2702 	if (oicr) {
2703 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2704 		/* If a critical error is pending there is no choice but to
2705 		 * reset the device.
2706 		 */
2707 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2708 			    PFINT_OICR_PCI_EXCEPTION_M |
2709 			    PFINT_OICR_ECC_ERR_M)) {
2710 			set_bit(__ICE_PFR_REQ, pf->state);
2711 			ice_service_task_schedule(pf);
2712 		}
2713 	}
2714 	ret = IRQ_HANDLED;
2715 
2716 	ice_service_task_schedule(pf);
2717 	ice_irq_dynamic_ena(hw, NULL, NULL);
2718 
2719 	return ret;
2720 }
2721 
2722 /**
2723  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2724  * @hw: pointer to HW structure
2725  */
2726 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2727 {
2728 	/* disable Admin queue Interrupt causes */
2729 	wr32(hw, PFINT_FW_CTL,
2730 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2731 
2732 	/* disable Mailbox queue Interrupt causes */
2733 	wr32(hw, PFINT_MBX_CTL,
2734 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2735 
2736 	/* disable Control queue Interrupt causes */
2737 	wr32(hw, PFINT_OICR_CTL,
2738 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2739 
2740 	ice_flush(hw);
2741 }
2742 
2743 /**
2744  * ice_free_irq_msix_misc - Unroll misc vector setup
2745  * @pf: board private structure
2746  */
2747 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2748 {
2749 	struct ice_hw *hw = &pf->hw;
2750 
2751 	ice_dis_ctrlq_interrupts(hw);
2752 
2753 	/* disable OICR interrupt */
2754 	wr32(hw, PFINT_OICR_ENA, 0);
2755 	ice_flush(hw);
2756 
2757 	if (pf->msix_entries) {
2758 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2759 		devm_free_irq(ice_pf_to_dev(pf),
2760 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2761 	}
2762 
2763 	pf->num_avail_sw_msix += 1;
2764 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2765 }
2766 
2767 /**
2768  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2769  * @hw: pointer to HW structure
2770  * @reg_idx: HW vector index to associate the control queue interrupts with
2771  */
2772 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2773 {
2774 	u32 val;
2775 
2776 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2777 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2778 	wr32(hw, PFINT_OICR_CTL, val);
2779 
2780 	/* enable Admin queue Interrupt causes */
2781 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2782 	       PFINT_FW_CTL_CAUSE_ENA_M);
2783 	wr32(hw, PFINT_FW_CTL, val);
2784 
2785 	/* enable Mailbox queue Interrupt causes */
2786 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2787 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2788 	wr32(hw, PFINT_MBX_CTL, val);
2789 
2790 	ice_flush(hw);
2791 }
2792 
2793 /**
2794  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2795  * @pf: board private structure
2796  *
2797  * This sets up the handler for MSIX 0, which is used to manage the
2798  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2799  * when in MSI or Legacy interrupt mode.
2800  */
2801 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2802 {
2803 	struct device *dev = ice_pf_to_dev(pf);
2804 	struct ice_hw *hw = &pf->hw;
2805 	int oicr_idx, err = 0;
2806 
2807 	if (!pf->int_name[0])
2808 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2809 			 dev_driver_string(dev), dev_name(dev));
2810 
2811 	/* Do not request IRQ but do enable OICR interrupt since settings are
2812 	 * lost during reset. Note that this function is called only during
2813 	 * rebuild path and not while reset is in progress.
2814 	 */
2815 	if (ice_is_reset_in_progress(pf->state))
2816 		goto skip_req_irq;
2817 
2818 	/* reserve one vector in irq_tracker for misc interrupts */
2819 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2820 	if (oicr_idx < 0)
2821 		return oicr_idx;
2822 
2823 	pf->num_avail_sw_msix -= 1;
2824 	pf->oicr_idx = (u16)oicr_idx;
2825 
2826 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2827 			       ice_misc_intr, 0, pf->int_name, pf);
2828 	if (err) {
2829 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2830 			pf->int_name, err);
2831 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2832 		pf->num_avail_sw_msix += 1;
2833 		return err;
2834 	}
2835 
2836 skip_req_irq:
2837 	ice_ena_misc_vector(pf);
2838 
2839 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2840 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2841 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2842 
2843 	ice_flush(hw);
2844 	ice_irq_dynamic_ena(hw, NULL, NULL);
2845 
2846 	return 0;
2847 }
2848 
2849 /**
2850  * ice_napi_add - register NAPI handler for the VSI
2851  * @vsi: VSI for which NAPI handler is to be registered
2852  *
2853  * This function is only called in the driver's load path. Registering the NAPI
2854  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2855  * reset/rebuild, etc.)
2856  */
2857 static void ice_napi_add(struct ice_vsi *vsi)
2858 {
2859 	int v_idx;
2860 
2861 	if (!vsi->netdev)
2862 		return;
2863 
2864 	ice_for_each_q_vector(vsi, v_idx)
2865 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2866 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2867 }
2868 
2869 /**
2870  * ice_set_ops - set netdev and ethtools ops for the given netdev
2871  * @netdev: netdev instance
2872  */
2873 static void ice_set_ops(struct net_device *netdev)
2874 {
2875 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2876 
2877 	if (ice_is_safe_mode(pf)) {
2878 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2879 		ice_set_ethtool_safe_mode_ops(netdev);
2880 		return;
2881 	}
2882 
2883 	netdev->netdev_ops = &ice_netdev_ops;
2884 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2885 	ice_set_ethtool_ops(netdev);
2886 }
2887 
2888 /**
2889  * ice_set_netdev_features - set features for the given netdev
2890  * @netdev: netdev instance
2891  */
2892 static void ice_set_netdev_features(struct net_device *netdev)
2893 {
2894 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2895 	netdev_features_t csumo_features;
2896 	netdev_features_t vlano_features;
2897 	netdev_features_t dflt_features;
2898 	netdev_features_t tso_features;
2899 
2900 	if (ice_is_safe_mode(pf)) {
2901 		/* safe mode */
2902 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2903 		netdev->hw_features = netdev->features;
2904 		return;
2905 	}
2906 
2907 	dflt_features = NETIF_F_SG	|
2908 			NETIF_F_HIGHDMA	|
2909 			NETIF_F_NTUPLE	|
2910 			NETIF_F_RXHASH;
2911 
2912 	csumo_features = NETIF_F_RXCSUM	  |
2913 			 NETIF_F_IP_CSUM  |
2914 			 NETIF_F_SCTP_CRC |
2915 			 NETIF_F_IPV6_CSUM;
2916 
2917 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2918 			 NETIF_F_HW_VLAN_CTAG_TX     |
2919 			 NETIF_F_HW_VLAN_CTAG_RX;
2920 
2921 	tso_features = NETIF_F_TSO			|
2922 		       NETIF_F_TSO_ECN			|
2923 		       NETIF_F_TSO6			|
2924 		       NETIF_F_GSO_GRE			|
2925 		       NETIF_F_GSO_UDP_TUNNEL		|
2926 		       NETIF_F_GSO_GRE_CSUM		|
2927 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2928 		       NETIF_F_GSO_PARTIAL		|
2929 		       NETIF_F_GSO_IPXIP4		|
2930 		       NETIF_F_GSO_IPXIP6		|
2931 		       NETIF_F_GSO_UDP_L4;
2932 
2933 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2934 					NETIF_F_GSO_GRE_CSUM;
2935 	/* set features that user can change */
2936 	netdev->hw_features = dflt_features | csumo_features |
2937 			      vlano_features | tso_features;
2938 
2939 	/* add support for HW_CSUM on packets with MPLS header */
2940 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2941 
2942 	/* enable features */
2943 	netdev->features |= netdev->hw_features;
2944 	/* encap and VLAN devices inherit default, csumo and tso features */
2945 	netdev->hw_enc_features |= dflt_features | csumo_features |
2946 				   tso_features;
2947 	netdev->vlan_features |= dflt_features | csumo_features |
2948 				 tso_features;
2949 }
2950 
2951 /**
2952  * ice_cfg_netdev - Allocate, configure and register a netdev
2953  * @vsi: the VSI associated with the new netdev
2954  *
2955  * Returns 0 on success, negative value on failure
2956  */
2957 static int ice_cfg_netdev(struct ice_vsi *vsi)
2958 {
2959 	struct ice_pf *pf = vsi->back;
2960 	struct ice_netdev_priv *np;
2961 	struct net_device *netdev;
2962 	u8 mac_addr[ETH_ALEN];
2963 	int err;
2964 
2965 	err = ice_devlink_create_port(vsi);
2966 	if (err)
2967 		return err;
2968 
2969 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2970 				    vsi->alloc_rxq);
2971 	if (!netdev) {
2972 		err = -ENOMEM;
2973 		goto err_destroy_devlink_port;
2974 	}
2975 
2976 	vsi->netdev = netdev;
2977 	np = netdev_priv(netdev);
2978 	np->vsi = vsi;
2979 
2980 	ice_set_netdev_features(netdev);
2981 
2982 	ice_set_ops(netdev);
2983 
2984 	if (vsi->type == ICE_VSI_PF) {
2985 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2986 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2987 		ether_addr_copy(netdev->dev_addr, mac_addr);
2988 		ether_addr_copy(netdev->perm_addr, mac_addr);
2989 	}
2990 
2991 	netdev->priv_flags |= IFF_UNICAST_FLT;
2992 
2993 	/* Setup netdev TC information */
2994 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2995 
2996 	/* setup watchdog timeout value to be 5 second */
2997 	netdev->watchdog_timeo = 5 * HZ;
2998 
2999 	netdev->min_mtu = ETH_MIN_MTU;
3000 	netdev->max_mtu = ICE_MAX_MTU;
3001 
3002 	err = register_netdev(vsi->netdev);
3003 	if (err)
3004 		goto err_free_netdev;
3005 
3006 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3007 
3008 	netif_carrier_off(vsi->netdev);
3009 
3010 	/* make sure transmit queues start off as stopped */
3011 	netif_tx_stop_all_queues(vsi->netdev);
3012 
3013 	return 0;
3014 
3015 err_free_netdev:
3016 	free_netdev(vsi->netdev);
3017 	vsi->netdev = NULL;
3018 err_destroy_devlink_port:
3019 	ice_devlink_destroy_port(vsi);
3020 	return err;
3021 }
3022 
3023 /**
3024  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3025  * @lut: Lookup table
3026  * @rss_table_size: Lookup table size
3027  * @rss_size: Range of queue number for hashing
3028  */
3029 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3030 {
3031 	u16 i;
3032 
3033 	for (i = 0; i < rss_table_size; i++)
3034 		lut[i] = i % rss_size;
3035 }
3036 
3037 /**
3038  * ice_pf_vsi_setup - Set up a PF VSI
3039  * @pf: board private structure
3040  * @pi: pointer to the port_info instance
3041  *
3042  * Returns pointer to the successfully allocated VSI software struct
3043  * on success, otherwise returns NULL on failure.
3044  */
3045 static struct ice_vsi *
3046 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3047 {
3048 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3049 }
3050 
3051 /**
3052  * ice_ctrl_vsi_setup - Set up a control VSI
3053  * @pf: board private structure
3054  * @pi: pointer to the port_info instance
3055  *
3056  * Returns pointer to the successfully allocated VSI software struct
3057  * on success, otherwise returns NULL on failure.
3058  */
3059 static struct ice_vsi *
3060 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3061 {
3062 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3063 }
3064 
3065 /**
3066  * ice_lb_vsi_setup - Set up a loopback VSI
3067  * @pf: board private structure
3068  * @pi: pointer to the port_info instance
3069  *
3070  * Returns pointer to the successfully allocated VSI software struct
3071  * on success, otherwise returns NULL on failure.
3072  */
3073 struct ice_vsi *
3074 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3075 {
3076 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3077 }
3078 
3079 /**
3080  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3081  * @netdev: network interface to be adjusted
3082  * @proto: unused protocol
3083  * @vid: VLAN ID to be added
3084  *
3085  * net_device_ops implementation for adding VLAN IDs
3086  */
3087 static int
3088 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3089 		    u16 vid)
3090 {
3091 	struct ice_netdev_priv *np = netdev_priv(netdev);
3092 	struct ice_vsi *vsi = np->vsi;
3093 	int ret;
3094 
3095 	if (vid >= VLAN_N_VID) {
3096 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3097 			   vid, VLAN_N_VID);
3098 		return -EINVAL;
3099 	}
3100 
3101 	if (vsi->info.pvid)
3102 		return -EINVAL;
3103 
3104 	/* VLAN 0 is added by default during load/reset */
3105 	if (!vid)
3106 		return 0;
3107 
3108 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3109 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3110 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3111 		if (ret)
3112 			return ret;
3113 	}
3114 
3115 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3116 	 * packets aren't pruned by the device's internal switch on Rx
3117 	 */
3118 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3119 	if (!ret)
3120 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3121 
3122 	return ret;
3123 }
3124 
3125 /**
3126  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3127  * @netdev: network interface to be adjusted
3128  * @proto: unused protocol
3129  * @vid: VLAN ID to be removed
3130  *
3131  * net_device_ops implementation for removing VLAN IDs
3132  */
3133 static int
3134 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3135 		     u16 vid)
3136 {
3137 	struct ice_netdev_priv *np = netdev_priv(netdev);
3138 	struct ice_vsi *vsi = np->vsi;
3139 	int ret;
3140 
3141 	if (vsi->info.pvid)
3142 		return -EINVAL;
3143 
3144 	/* don't allow removal of VLAN 0 */
3145 	if (!vid)
3146 		return 0;
3147 
3148 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3149 	 * information
3150 	 */
3151 	ret = ice_vsi_kill_vlan(vsi, vid);
3152 	if (ret)
3153 		return ret;
3154 
3155 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3156 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3157 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3158 
3159 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3160 	return ret;
3161 }
3162 
3163 /**
3164  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3165  * @pf: board private structure
3166  *
3167  * Returns 0 on success, negative value on failure
3168  */
3169 static int ice_setup_pf_sw(struct ice_pf *pf)
3170 {
3171 	struct ice_vsi *vsi;
3172 	int status = 0;
3173 
3174 	if (ice_is_reset_in_progress(pf->state))
3175 		return -EBUSY;
3176 
3177 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3178 	if (!vsi)
3179 		return -ENOMEM;
3180 
3181 	status = ice_cfg_netdev(vsi);
3182 	if (status) {
3183 		status = -ENODEV;
3184 		goto unroll_vsi_setup;
3185 	}
3186 	/* netdev has to be configured before setting frame size */
3187 	ice_vsi_cfg_frame_size(vsi);
3188 
3189 	/* Setup DCB netlink interface */
3190 	ice_dcbnl_setup(vsi);
3191 
3192 	/* registering the NAPI handler requires both the queues and
3193 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3194 	 * and ice_cfg_netdev() respectively
3195 	 */
3196 	ice_napi_add(vsi);
3197 
3198 	status = ice_set_cpu_rx_rmap(vsi);
3199 	if (status) {
3200 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3201 			vsi->vsi_num, status);
3202 		status = -EINVAL;
3203 		goto unroll_napi_add;
3204 	}
3205 	status = ice_init_mac_fltr(pf);
3206 	if (status)
3207 		goto free_cpu_rx_map;
3208 
3209 	return status;
3210 
3211 free_cpu_rx_map:
3212 	ice_free_cpu_rx_rmap(vsi);
3213 
3214 unroll_napi_add:
3215 	if (vsi) {
3216 		ice_napi_del(vsi);
3217 		if (vsi->netdev) {
3218 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3219 				unregister_netdev(vsi->netdev);
3220 			free_netdev(vsi->netdev);
3221 			vsi->netdev = NULL;
3222 		}
3223 	}
3224 
3225 unroll_vsi_setup:
3226 	ice_vsi_release(vsi);
3227 	return status;
3228 }
3229 
3230 /**
3231  * ice_get_avail_q_count - Get count of queues in use
3232  * @pf_qmap: bitmap to get queue use count from
3233  * @lock: pointer to a mutex that protects access to pf_qmap
3234  * @size: size of the bitmap
3235  */
3236 static u16
3237 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3238 {
3239 	unsigned long bit;
3240 	u16 count = 0;
3241 
3242 	mutex_lock(lock);
3243 	for_each_clear_bit(bit, pf_qmap, size)
3244 		count++;
3245 	mutex_unlock(lock);
3246 
3247 	return count;
3248 }
3249 
3250 /**
3251  * ice_get_avail_txq_count - Get count of Tx queues in use
3252  * @pf: pointer to an ice_pf instance
3253  */
3254 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3255 {
3256 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3257 				     pf->max_pf_txqs);
3258 }
3259 
3260 /**
3261  * ice_get_avail_rxq_count - Get count of Rx queues in use
3262  * @pf: pointer to an ice_pf instance
3263  */
3264 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3265 {
3266 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3267 				     pf->max_pf_rxqs);
3268 }
3269 
3270 /**
3271  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3272  * @pf: board private structure to initialize
3273  */
3274 static void ice_deinit_pf(struct ice_pf *pf)
3275 {
3276 	ice_service_task_stop(pf);
3277 	mutex_destroy(&pf->sw_mutex);
3278 	mutex_destroy(&pf->tc_mutex);
3279 	mutex_destroy(&pf->avail_q_mutex);
3280 
3281 	if (pf->avail_txqs) {
3282 		bitmap_free(pf->avail_txqs);
3283 		pf->avail_txqs = NULL;
3284 	}
3285 
3286 	if (pf->avail_rxqs) {
3287 		bitmap_free(pf->avail_rxqs);
3288 		pf->avail_rxqs = NULL;
3289 	}
3290 }
3291 
3292 /**
3293  * ice_set_pf_caps - set PFs capability flags
3294  * @pf: pointer to the PF instance
3295  */
3296 static void ice_set_pf_caps(struct ice_pf *pf)
3297 {
3298 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3299 
3300 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3301 	if (func_caps->common_cap.dcb)
3302 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3303 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3304 	if (func_caps->common_cap.sr_iov_1_1) {
3305 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3306 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3307 					      ICE_MAX_VF_COUNT);
3308 	}
3309 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3310 	if (func_caps->common_cap.rss_table_size)
3311 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3312 
3313 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3314 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3315 		u16 unused;
3316 
3317 		/* ctrl_vsi_idx will be set to a valid value when flow director
3318 		 * is setup by ice_init_fdir
3319 		 */
3320 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3321 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3322 		/* force guaranteed filter pool for PF */
3323 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3324 				       func_caps->fd_fltr_guar);
3325 		/* force shared filter pool for PF */
3326 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3327 				       func_caps->fd_fltr_best_effort);
3328 	}
3329 
3330 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3331 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3332 }
3333 
3334 /**
3335  * ice_init_pf - Initialize general software structures (struct ice_pf)
3336  * @pf: board private structure to initialize
3337  */
3338 static int ice_init_pf(struct ice_pf *pf)
3339 {
3340 	ice_set_pf_caps(pf);
3341 
3342 	mutex_init(&pf->sw_mutex);
3343 	mutex_init(&pf->tc_mutex);
3344 
3345 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3346 	spin_lock_init(&pf->aq_wait_lock);
3347 	init_waitqueue_head(&pf->aq_wait_queue);
3348 
3349 	/* setup service timer and periodic service task */
3350 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3351 	pf->serv_tmr_period = HZ;
3352 	INIT_WORK(&pf->serv_task, ice_service_task);
3353 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3354 
3355 	mutex_init(&pf->avail_q_mutex);
3356 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3357 	if (!pf->avail_txqs)
3358 		return -ENOMEM;
3359 
3360 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3361 	if (!pf->avail_rxqs) {
3362 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3363 		pf->avail_txqs = NULL;
3364 		return -ENOMEM;
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 /**
3371  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3372  * @pf: board private structure
3373  *
3374  * compute the number of MSIX vectors required (v_budget) and request from
3375  * the OS. Return the number of vectors reserved or negative on failure
3376  */
3377 static int ice_ena_msix_range(struct ice_pf *pf)
3378 {
3379 	struct device *dev = ice_pf_to_dev(pf);
3380 	int v_left, v_actual, v_budget = 0;
3381 	int needed, err, i;
3382 
3383 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3384 
3385 	/* reserve one vector for miscellaneous handler */
3386 	needed = 1;
3387 	if (v_left < needed)
3388 		goto no_hw_vecs_left_err;
3389 	v_budget += needed;
3390 	v_left -= needed;
3391 
3392 	/* reserve vectors for LAN traffic */
3393 	needed = min_t(int, num_online_cpus(), v_left);
3394 	if (v_left < needed)
3395 		goto no_hw_vecs_left_err;
3396 	pf->num_lan_msix = needed;
3397 	v_budget += needed;
3398 	v_left -= needed;
3399 
3400 	/* reserve one vector for flow director */
3401 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3402 		needed = ICE_FDIR_MSIX;
3403 		if (v_left < needed)
3404 			goto no_hw_vecs_left_err;
3405 		v_budget += needed;
3406 		v_left -= needed;
3407 	}
3408 
3409 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3410 					sizeof(*pf->msix_entries), GFP_KERNEL);
3411 
3412 	if (!pf->msix_entries) {
3413 		err = -ENOMEM;
3414 		goto exit_err;
3415 	}
3416 
3417 	for (i = 0; i < v_budget; i++)
3418 		pf->msix_entries[i].entry = i;
3419 
3420 	/* actually reserve the vectors */
3421 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3422 					 ICE_MIN_MSIX, v_budget);
3423 
3424 	if (v_actual < 0) {
3425 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3426 		err = v_actual;
3427 		goto msix_err;
3428 	}
3429 
3430 	if (v_actual < v_budget) {
3431 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3432 			 v_budget, v_actual);
3433 
3434 		if (v_actual < ICE_MIN_MSIX) {
3435 			/* error if we can't get minimum vectors */
3436 			pci_disable_msix(pf->pdev);
3437 			err = -ERANGE;
3438 			goto msix_err;
3439 		} else {
3440 			pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3441 		}
3442 	}
3443 
3444 	return v_actual;
3445 
3446 msix_err:
3447 	devm_kfree(dev, pf->msix_entries);
3448 	goto exit_err;
3449 
3450 no_hw_vecs_left_err:
3451 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3452 		needed, v_left);
3453 	err = -ERANGE;
3454 exit_err:
3455 	pf->num_lan_msix = 0;
3456 	return err;
3457 }
3458 
3459 /**
3460  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3461  * @pf: board private structure
3462  */
3463 static void ice_dis_msix(struct ice_pf *pf)
3464 {
3465 	pci_disable_msix(pf->pdev);
3466 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3467 	pf->msix_entries = NULL;
3468 }
3469 
3470 /**
3471  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3472  * @pf: board private structure
3473  */
3474 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3475 {
3476 	ice_dis_msix(pf);
3477 
3478 	if (pf->irq_tracker) {
3479 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3480 		pf->irq_tracker = NULL;
3481 	}
3482 }
3483 
3484 /**
3485  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3486  * @pf: board private structure to initialize
3487  */
3488 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3489 {
3490 	int vectors;
3491 
3492 	vectors = ice_ena_msix_range(pf);
3493 
3494 	if (vectors < 0)
3495 		return vectors;
3496 
3497 	/* set up vector assignment tracking */
3498 	pf->irq_tracker =
3499 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3500 			     (sizeof(u16) * vectors), GFP_KERNEL);
3501 	if (!pf->irq_tracker) {
3502 		ice_dis_msix(pf);
3503 		return -ENOMEM;
3504 	}
3505 
3506 	/* populate SW interrupts pool with number of OS granted IRQs. */
3507 	pf->num_avail_sw_msix = (u16)vectors;
3508 	pf->irq_tracker->num_entries = (u16)vectors;
3509 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3510 
3511 	return 0;
3512 }
3513 
3514 /**
3515  * ice_is_wol_supported - get NVM state of WoL
3516  * @pf: board private structure
3517  *
3518  * Check if WoL is supported based on the HW configuration.
3519  * Returns true if NVM supports and enables WoL for this port, false otherwise
3520  */
3521 bool ice_is_wol_supported(struct ice_pf *pf)
3522 {
3523 	struct ice_hw *hw = &pf->hw;
3524 	u16 wol_ctrl;
3525 
3526 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3527 	 * word) indicates WoL is not supported on the corresponding PF ID.
3528 	 */
3529 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3530 		return false;
3531 
3532 	return !(BIT(hw->pf_id) & wol_ctrl);
3533 }
3534 
3535 /**
3536  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3537  * @vsi: VSI being changed
3538  * @new_rx: new number of Rx queues
3539  * @new_tx: new number of Tx queues
3540  *
3541  * Only change the number of queues if new_tx, or new_rx is non-0.
3542  *
3543  * Returns 0 on success.
3544  */
3545 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3546 {
3547 	struct ice_pf *pf = vsi->back;
3548 	int err = 0, timeout = 50;
3549 
3550 	if (!new_rx && !new_tx)
3551 		return -EINVAL;
3552 
3553 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3554 		timeout--;
3555 		if (!timeout)
3556 			return -EBUSY;
3557 		usleep_range(1000, 2000);
3558 	}
3559 
3560 	if (new_tx)
3561 		vsi->req_txq = (u16)new_tx;
3562 	if (new_rx)
3563 		vsi->req_rxq = (u16)new_rx;
3564 
3565 	/* set for the next time the netdev is started */
3566 	if (!netif_running(vsi->netdev)) {
3567 		ice_vsi_rebuild(vsi, false);
3568 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3569 		goto done;
3570 	}
3571 
3572 	ice_vsi_close(vsi);
3573 	ice_vsi_rebuild(vsi, false);
3574 	ice_pf_dcb_recfg(pf);
3575 	ice_vsi_open(vsi);
3576 done:
3577 	clear_bit(__ICE_CFG_BUSY, pf->state);
3578 	return err;
3579 }
3580 
3581 /**
3582  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3583  * @pf: PF to configure
3584  *
3585  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3586  * VSI can still Tx/Rx VLAN tagged packets.
3587  */
3588 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3589 {
3590 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3591 	struct ice_vsi_ctx *ctxt;
3592 	enum ice_status status;
3593 	struct ice_hw *hw;
3594 
3595 	if (!vsi)
3596 		return;
3597 
3598 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3599 	if (!ctxt)
3600 		return;
3601 
3602 	hw = &pf->hw;
3603 	ctxt->info = vsi->info;
3604 
3605 	ctxt->info.valid_sections =
3606 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3607 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3608 			    ICE_AQ_VSI_PROP_SW_VALID);
3609 
3610 	/* disable VLAN anti-spoof */
3611 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3612 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3613 
3614 	/* disable VLAN pruning and keep all other settings */
3615 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3616 
3617 	/* allow all VLANs on Tx and don't strip on Rx */
3618 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3619 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3620 
3621 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3622 	if (status) {
3623 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3624 			ice_stat_str(status),
3625 			ice_aq_str(hw->adminq.sq_last_status));
3626 	} else {
3627 		vsi->info.sec_flags = ctxt->info.sec_flags;
3628 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3629 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3630 	}
3631 
3632 	kfree(ctxt);
3633 }
3634 
3635 /**
3636  * ice_log_pkg_init - log result of DDP package load
3637  * @hw: pointer to hardware info
3638  * @status: status of package load
3639  */
3640 static void
3641 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3642 {
3643 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3644 	struct device *dev = ice_pf_to_dev(pf);
3645 
3646 	switch (*status) {
3647 	case ICE_SUCCESS:
3648 		/* The package download AdminQ command returned success because
3649 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3650 		 * already a package loaded on the device.
3651 		 */
3652 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3653 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3654 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3655 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3656 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3657 			    sizeof(hw->pkg_name))) {
3658 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3659 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3660 					 hw->active_pkg_name,
3661 					 hw->active_pkg_ver.major,
3662 					 hw->active_pkg_ver.minor,
3663 					 hw->active_pkg_ver.update,
3664 					 hw->active_pkg_ver.draft);
3665 			else
3666 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3667 					 hw->active_pkg_name,
3668 					 hw->active_pkg_ver.major,
3669 					 hw->active_pkg_ver.minor,
3670 					 hw->active_pkg_ver.update,
3671 					 hw->active_pkg_ver.draft);
3672 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3673 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3674 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3675 				hw->active_pkg_name,
3676 				hw->active_pkg_ver.major,
3677 				hw->active_pkg_ver.minor,
3678 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3679 			*status = ICE_ERR_NOT_SUPPORTED;
3680 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3681 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3682 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3683 				 hw->active_pkg_name,
3684 				 hw->active_pkg_ver.major,
3685 				 hw->active_pkg_ver.minor,
3686 				 hw->active_pkg_ver.update,
3687 				 hw->active_pkg_ver.draft,
3688 				 hw->pkg_name,
3689 				 hw->pkg_ver.major,
3690 				 hw->pkg_ver.minor,
3691 				 hw->pkg_ver.update,
3692 				 hw->pkg_ver.draft);
3693 		} else {
3694 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3695 			*status = ICE_ERR_NOT_SUPPORTED;
3696 		}
3697 		break;
3698 	case ICE_ERR_FW_DDP_MISMATCH:
3699 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3700 		break;
3701 	case ICE_ERR_BUF_TOO_SHORT:
3702 	case ICE_ERR_CFG:
3703 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3704 		break;
3705 	case ICE_ERR_NOT_SUPPORTED:
3706 		/* Package File version not supported */
3707 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3708 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3709 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3710 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3711 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3712 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3713 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3714 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3715 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3716 		break;
3717 	case ICE_ERR_AQ_ERROR:
3718 		switch (hw->pkg_dwnld_status) {
3719 		case ICE_AQ_RC_ENOSEC:
3720 		case ICE_AQ_RC_EBADSIG:
3721 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3722 			return;
3723 		case ICE_AQ_RC_ESVN:
3724 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3725 			return;
3726 		case ICE_AQ_RC_EBADMAN:
3727 		case ICE_AQ_RC_EBADBUF:
3728 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3729 			/* poll for reset to complete */
3730 			if (ice_check_reset(hw))
3731 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3732 			return;
3733 		default:
3734 			break;
3735 		}
3736 		fallthrough;
3737 	default:
3738 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3739 			*status);
3740 		break;
3741 	}
3742 }
3743 
3744 /**
3745  * ice_load_pkg - load/reload the DDP Package file
3746  * @firmware: firmware structure when firmware requested or NULL for reload
3747  * @pf: pointer to the PF instance
3748  *
3749  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3750  * initialize HW tables.
3751  */
3752 static void
3753 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3754 {
3755 	enum ice_status status = ICE_ERR_PARAM;
3756 	struct device *dev = ice_pf_to_dev(pf);
3757 	struct ice_hw *hw = &pf->hw;
3758 
3759 	/* Load DDP Package */
3760 	if (firmware && !hw->pkg_copy) {
3761 		status = ice_copy_and_init_pkg(hw, firmware->data,
3762 					       firmware->size);
3763 		ice_log_pkg_init(hw, &status);
3764 	} else if (!firmware && hw->pkg_copy) {
3765 		/* Reload package during rebuild after CORER/GLOBR reset */
3766 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3767 		ice_log_pkg_init(hw, &status);
3768 	} else {
3769 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3770 	}
3771 
3772 	if (status) {
3773 		/* Safe Mode */
3774 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3775 		return;
3776 	}
3777 
3778 	/* Successful download package is the precondition for advanced
3779 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3780 	 */
3781 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3782 }
3783 
3784 /**
3785  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3786  * @pf: pointer to the PF structure
3787  *
3788  * There is no error returned here because the driver should be able to handle
3789  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3790  * specifically with Tx.
3791  */
3792 static void ice_verify_cacheline_size(struct ice_pf *pf)
3793 {
3794 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3795 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3796 			 ICE_CACHE_LINE_BYTES);
3797 }
3798 
3799 /**
3800  * ice_send_version - update firmware with driver version
3801  * @pf: PF struct
3802  *
3803  * Returns ICE_SUCCESS on success, else error code
3804  */
3805 static enum ice_status ice_send_version(struct ice_pf *pf)
3806 {
3807 	struct ice_driver_ver dv;
3808 
3809 	dv.major_ver = 0xff;
3810 	dv.minor_ver = 0xff;
3811 	dv.build_ver = 0xff;
3812 	dv.subbuild_ver = 0;
3813 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3814 		sizeof(dv.driver_string));
3815 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3816 }
3817 
3818 /**
3819  * ice_init_fdir - Initialize flow director VSI and configuration
3820  * @pf: pointer to the PF instance
3821  *
3822  * returns 0 on success, negative on error
3823  */
3824 static int ice_init_fdir(struct ice_pf *pf)
3825 {
3826 	struct device *dev = ice_pf_to_dev(pf);
3827 	struct ice_vsi *ctrl_vsi;
3828 	int err;
3829 
3830 	/* Side Band Flow Director needs to have a control VSI.
3831 	 * Allocate it and store it in the PF.
3832 	 */
3833 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3834 	if (!ctrl_vsi) {
3835 		dev_dbg(dev, "could not create control VSI\n");
3836 		return -ENOMEM;
3837 	}
3838 
3839 	err = ice_vsi_open_ctrl(ctrl_vsi);
3840 	if (err) {
3841 		dev_dbg(dev, "could not open control VSI\n");
3842 		goto err_vsi_open;
3843 	}
3844 
3845 	mutex_init(&pf->hw.fdir_fltr_lock);
3846 
3847 	err = ice_fdir_create_dflt_rules(pf);
3848 	if (err)
3849 		goto err_fdir_rule;
3850 
3851 	return 0;
3852 
3853 err_fdir_rule:
3854 	ice_fdir_release_flows(&pf->hw);
3855 	ice_vsi_close(ctrl_vsi);
3856 err_vsi_open:
3857 	ice_vsi_release(ctrl_vsi);
3858 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3859 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3860 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3861 	}
3862 	return err;
3863 }
3864 
3865 /**
3866  * ice_get_opt_fw_name - return optional firmware file name or NULL
3867  * @pf: pointer to the PF instance
3868  */
3869 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3870 {
3871 	/* Optional firmware name same as default with additional dash
3872 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3873 	 */
3874 	struct pci_dev *pdev = pf->pdev;
3875 	char *opt_fw_filename;
3876 	u64 dsn;
3877 
3878 	/* Determine the name of the optional file using the DSN (two
3879 	 * dwords following the start of the DSN Capability).
3880 	 */
3881 	dsn = pci_get_dsn(pdev);
3882 	if (!dsn)
3883 		return NULL;
3884 
3885 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3886 	if (!opt_fw_filename)
3887 		return NULL;
3888 
3889 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3890 		 ICE_DDP_PKG_PATH, dsn);
3891 
3892 	return opt_fw_filename;
3893 }
3894 
3895 /**
3896  * ice_request_fw - Device initialization routine
3897  * @pf: pointer to the PF instance
3898  */
3899 static void ice_request_fw(struct ice_pf *pf)
3900 {
3901 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3902 	const struct firmware *firmware = NULL;
3903 	struct device *dev = ice_pf_to_dev(pf);
3904 	int err = 0;
3905 
3906 	/* optional device-specific DDP (if present) overrides the default DDP
3907 	 * package file. kernel logs a debug message if the file doesn't exist,
3908 	 * and warning messages for other errors.
3909 	 */
3910 	if (opt_fw_filename) {
3911 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3912 		if (err) {
3913 			kfree(opt_fw_filename);
3914 			goto dflt_pkg_load;
3915 		}
3916 
3917 		/* request for firmware was successful. Download to device */
3918 		ice_load_pkg(firmware, pf);
3919 		kfree(opt_fw_filename);
3920 		release_firmware(firmware);
3921 		return;
3922 	}
3923 
3924 dflt_pkg_load:
3925 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3926 	if (err) {
3927 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3928 		return;
3929 	}
3930 
3931 	/* request for firmware was successful. Download to device */
3932 	ice_load_pkg(firmware, pf);
3933 	release_firmware(firmware);
3934 }
3935 
3936 /**
3937  * ice_print_wake_reason - show the wake up cause in the log
3938  * @pf: pointer to the PF struct
3939  */
3940 static void ice_print_wake_reason(struct ice_pf *pf)
3941 {
3942 	u32 wus = pf->wakeup_reason;
3943 	const char *wake_str;
3944 
3945 	/* if no wake event, nothing to print */
3946 	if (!wus)
3947 		return;
3948 
3949 	if (wus & PFPM_WUS_LNKC_M)
3950 		wake_str = "Link\n";
3951 	else if (wus & PFPM_WUS_MAG_M)
3952 		wake_str = "Magic Packet\n";
3953 	else if (wus & PFPM_WUS_MNG_M)
3954 		wake_str = "Management\n";
3955 	else if (wus & PFPM_WUS_FW_RST_WK_M)
3956 		wake_str = "Firmware Reset\n";
3957 	else
3958 		wake_str = "Unknown\n";
3959 
3960 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3961 }
3962 
3963 /**
3964  * ice_probe - Device initialization routine
3965  * @pdev: PCI device information struct
3966  * @ent: entry in ice_pci_tbl
3967  *
3968  * Returns 0 on success, negative on failure
3969  */
3970 static int
3971 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3972 {
3973 	struct device *dev = &pdev->dev;
3974 	struct ice_pf *pf;
3975 	struct ice_hw *hw;
3976 	int i, err;
3977 
3978 	/* this driver uses devres, see
3979 	 * Documentation/driver-api/driver-model/devres.rst
3980 	 */
3981 	err = pcim_enable_device(pdev);
3982 	if (err)
3983 		return err;
3984 
3985 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3986 	if (err) {
3987 		dev_err(dev, "BAR0 I/O map error %d\n", err);
3988 		return err;
3989 	}
3990 
3991 	pf = ice_allocate_pf(dev);
3992 	if (!pf)
3993 		return -ENOMEM;
3994 
3995 	/* set up for high or low DMA */
3996 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3997 	if (err)
3998 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3999 	if (err) {
4000 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4001 		return err;
4002 	}
4003 
4004 	pci_enable_pcie_error_reporting(pdev);
4005 	pci_set_master(pdev);
4006 
4007 	pf->pdev = pdev;
4008 	pci_set_drvdata(pdev, pf);
4009 	set_bit(__ICE_DOWN, pf->state);
4010 	/* Disable service task until DOWN bit is cleared */
4011 	set_bit(__ICE_SERVICE_DIS, pf->state);
4012 
4013 	hw = &pf->hw;
4014 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4015 	pci_save_state(pdev);
4016 
4017 	hw->back = pf;
4018 	hw->vendor_id = pdev->vendor;
4019 	hw->device_id = pdev->device;
4020 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4021 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4022 	hw->subsystem_device_id = pdev->subsystem_device;
4023 	hw->bus.device = PCI_SLOT(pdev->devfn);
4024 	hw->bus.func = PCI_FUNC(pdev->devfn);
4025 	ice_set_ctrlq_len(hw);
4026 
4027 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4028 
4029 	err = ice_devlink_register(pf);
4030 	if (err) {
4031 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4032 		goto err_exit_unroll;
4033 	}
4034 
4035 #ifndef CONFIG_DYNAMIC_DEBUG
4036 	if (debug < -1)
4037 		hw->debug_mask = debug;
4038 #endif
4039 
4040 	err = ice_init_hw(hw);
4041 	if (err) {
4042 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4043 		err = -EIO;
4044 		goto err_exit_unroll;
4045 	}
4046 
4047 	ice_request_fw(pf);
4048 
4049 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4050 	 * set in pf->state, which will cause ice_is_safe_mode to return
4051 	 * true
4052 	 */
4053 	if (ice_is_safe_mode(pf)) {
4054 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4055 		/* we already got function/device capabilities but these don't
4056 		 * reflect what the driver needs to do in safe mode. Instead of
4057 		 * adding conditional logic everywhere to ignore these
4058 		 * device/function capabilities, override them.
4059 		 */
4060 		ice_set_safe_mode_caps(hw);
4061 	}
4062 
4063 	err = ice_init_pf(pf);
4064 	if (err) {
4065 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4066 		goto err_init_pf_unroll;
4067 	}
4068 
4069 	ice_devlink_init_regions(pf);
4070 
4071 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4072 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4073 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4074 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4075 	i = 0;
4076 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4077 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4078 			pf->hw.tnl.valid_count[TNL_VXLAN];
4079 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4080 			UDP_TUNNEL_TYPE_VXLAN;
4081 		i++;
4082 	}
4083 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4084 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4085 			pf->hw.tnl.valid_count[TNL_GENEVE];
4086 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4087 			UDP_TUNNEL_TYPE_GENEVE;
4088 		i++;
4089 	}
4090 
4091 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4092 	if (!pf->num_alloc_vsi) {
4093 		err = -EIO;
4094 		goto err_init_pf_unroll;
4095 	}
4096 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4097 		dev_warn(&pf->pdev->dev,
4098 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4099 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4100 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4101 	}
4102 
4103 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4104 			       GFP_KERNEL);
4105 	if (!pf->vsi) {
4106 		err = -ENOMEM;
4107 		goto err_init_pf_unroll;
4108 	}
4109 
4110 	err = ice_init_interrupt_scheme(pf);
4111 	if (err) {
4112 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4113 		err = -EIO;
4114 		goto err_init_vsi_unroll;
4115 	}
4116 
4117 	/* In case of MSIX we are going to setup the misc vector right here
4118 	 * to handle admin queue events etc. In case of legacy and MSI
4119 	 * the misc functionality and queue processing is combined in
4120 	 * the same vector and that gets setup at open.
4121 	 */
4122 	err = ice_req_irq_msix_misc(pf);
4123 	if (err) {
4124 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4125 		goto err_init_interrupt_unroll;
4126 	}
4127 
4128 	/* create switch struct for the switch element created by FW on boot */
4129 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4130 	if (!pf->first_sw) {
4131 		err = -ENOMEM;
4132 		goto err_msix_misc_unroll;
4133 	}
4134 
4135 	if (hw->evb_veb)
4136 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4137 	else
4138 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4139 
4140 	pf->first_sw->pf = pf;
4141 
4142 	/* record the sw_id available for later use */
4143 	pf->first_sw->sw_id = hw->port_info->sw_id;
4144 
4145 	err = ice_setup_pf_sw(pf);
4146 	if (err) {
4147 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4148 		goto err_alloc_sw_unroll;
4149 	}
4150 
4151 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4152 
4153 	/* tell the firmware we are up */
4154 	err = ice_send_version(pf);
4155 	if (err) {
4156 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4157 			UTS_RELEASE, err);
4158 		goto err_send_version_unroll;
4159 	}
4160 
4161 	/* since everything is good, start the service timer */
4162 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4163 
4164 	err = ice_init_link_events(pf->hw.port_info);
4165 	if (err) {
4166 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4167 		goto err_send_version_unroll;
4168 	}
4169 
4170 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4171 	if (err) {
4172 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4173 		goto err_send_version_unroll;
4174 	}
4175 
4176 	err = ice_update_link_info(pf->hw.port_info);
4177 	if (err) {
4178 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4179 		goto err_send_version_unroll;
4180 	}
4181 
4182 	ice_init_link_dflt_override(pf->hw.port_info);
4183 
4184 	/* if media available, initialize PHY settings */
4185 	if (pf->hw.port_info->phy.link_info.link_info &
4186 	    ICE_AQ_MEDIA_AVAILABLE) {
4187 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4188 		if (err) {
4189 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4190 			goto err_send_version_unroll;
4191 		}
4192 
4193 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4194 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4195 
4196 			if (vsi)
4197 				ice_configure_phy(vsi);
4198 		}
4199 	} else {
4200 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4201 	}
4202 
4203 	ice_verify_cacheline_size(pf);
4204 
4205 	/* Save wakeup reason register for later use */
4206 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4207 
4208 	/* check for a power management event */
4209 	ice_print_wake_reason(pf);
4210 
4211 	/* clear wake status, all bits */
4212 	wr32(hw, PFPM_WUS, U32_MAX);
4213 
4214 	/* Disable WoL at init, wait for user to enable */
4215 	device_set_wakeup_enable(dev, false);
4216 
4217 	if (ice_is_safe_mode(pf)) {
4218 		ice_set_safe_mode_vlan_cfg(pf);
4219 		goto probe_done;
4220 	}
4221 
4222 	/* initialize DDP driven features */
4223 
4224 	/* Note: Flow director init failure is non-fatal to load */
4225 	if (ice_init_fdir(pf))
4226 		dev_err(dev, "could not initialize flow director\n");
4227 
4228 	/* Note: DCB init failure is non-fatal to load */
4229 	if (ice_init_pf_dcb(pf, false)) {
4230 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4231 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4232 	} else {
4233 		ice_cfg_lldp_mib_change(&pf->hw, true);
4234 	}
4235 
4236 	/* print PCI link speed and width */
4237 	pcie_print_link_status(pf->pdev);
4238 
4239 probe_done:
4240 	/* ready to go, so clear down state bit */
4241 	clear_bit(__ICE_DOWN, pf->state);
4242 	return 0;
4243 
4244 err_send_version_unroll:
4245 	ice_vsi_release_all(pf);
4246 err_alloc_sw_unroll:
4247 	set_bit(__ICE_SERVICE_DIS, pf->state);
4248 	set_bit(__ICE_DOWN, pf->state);
4249 	devm_kfree(dev, pf->first_sw);
4250 err_msix_misc_unroll:
4251 	ice_free_irq_msix_misc(pf);
4252 err_init_interrupt_unroll:
4253 	ice_clear_interrupt_scheme(pf);
4254 err_init_vsi_unroll:
4255 	devm_kfree(dev, pf->vsi);
4256 err_init_pf_unroll:
4257 	ice_deinit_pf(pf);
4258 	ice_devlink_destroy_regions(pf);
4259 	ice_deinit_hw(hw);
4260 err_exit_unroll:
4261 	ice_devlink_unregister(pf);
4262 	pci_disable_pcie_error_reporting(pdev);
4263 	pci_disable_device(pdev);
4264 	return err;
4265 }
4266 
4267 /**
4268  * ice_set_wake - enable or disable Wake on LAN
4269  * @pf: pointer to the PF struct
4270  *
4271  * Simple helper for WoL control
4272  */
4273 static void ice_set_wake(struct ice_pf *pf)
4274 {
4275 	struct ice_hw *hw = &pf->hw;
4276 	bool wol = pf->wol_ena;
4277 
4278 	/* clear wake state, otherwise new wake events won't fire */
4279 	wr32(hw, PFPM_WUS, U32_MAX);
4280 
4281 	/* enable / disable APM wake up, no RMW needed */
4282 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4283 
4284 	/* set magic packet filter enabled */
4285 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4286 }
4287 
4288 /**
4289  * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4290  * @pf: pointer to the PF struct
4291  *
4292  * Issue firmware command to enable multicast magic wake, making
4293  * sure that any locally administered address (LAA) is used for
4294  * wake, and that PF reset doesn't undo the LAA.
4295  */
4296 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4297 {
4298 	struct device *dev = ice_pf_to_dev(pf);
4299 	struct ice_hw *hw = &pf->hw;
4300 	enum ice_status status;
4301 	u8 mac_addr[ETH_ALEN];
4302 	struct ice_vsi *vsi;
4303 	u8 flags;
4304 
4305 	if (!pf->wol_ena)
4306 		return;
4307 
4308 	vsi = ice_get_main_vsi(pf);
4309 	if (!vsi)
4310 		return;
4311 
4312 	/* Get current MAC address in case it's an LAA */
4313 	if (vsi->netdev)
4314 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4315 	else
4316 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4317 
4318 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4319 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4320 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4321 
4322 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4323 	if (status)
4324 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4325 			ice_stat_str(status),
4326 			ice_aq_str(hw->adminq.sq_last_status));
4327 }
4328 
4329 /**
4330  * ice_remove - Device removal routine
4331  * @pdev: PCI device information struct
4332  */
4333 static void ice_remove(struct pci_dev *pdev)
4334 {
4335 	struct ice_pf *pf = pci_get_drvdata(pdev);
4336 	int i;
4337 
4338 	if (!pf)
4339 		return;
4340 
4341 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4342 		if (!ice_is_reset_in_progress(pf->state))
4343 			break;
4344 		msleep(100);
4345 	}
4346 
4347 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4348 		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4349 		ice_free_vfs(pf);
4350 	}
4351 
4352 	set_bit(__ICE_DOWN, pf->state);
4353 	ice_service_task_stop(pf);
4354 
4355 	ice_aq_cancel_waiting_tasks(pf);
4356 
4357 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4358 	if (!ice_is_safe_mode(pf))
4359 		ice_remove_arfs(pf);
4360 	ice_setup_mc_magic_wake(pf);
4361 	ice_vsi_release_all(pf);
4362 	ice_set_wake(pf);
4363 	ice_free_irq_msix_misc(pf);
4364 	ice_for_each_vsi(pf, i) {
4365 		if (!pf->vsi[i])
4366 			continue;
4367 		ice_vsi_free_q_vectors(pf->vsi[i]);
4368 	}
4369 	ice_deinit_pf(pf);
4370 	ice_devlink_destroy_regions(pf);
4371 	ice_deinit_hw(&pf->hw);
4372 	ice_devlink_unregister(pf);
4373 
4374 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4375 	 * do it via ice_schedule_reset() since there is no need to rebuild
4376 	 * and the service task is already stopped.
4377 	 */
4378 	ice_reset(&pf->hw, ICE_RESET_PFR);
4379 	pci_wait_for_pending_transaction(pdev);
4380 	ice_clear_interrupt_scheme(pf);
4381 	pci_disable_pcie_error_reporting(pdev);
4382 	pci_disable_device(pdev);
4383 }
4384 
4385 /**
4386  * ice_shutdown - PCI callback for shutting down device
4387  * @pdev: PCI device information struct
4388  */
4389 static void ice_shutdown(struct pci_dev *pdev)
4390 {
4391 	struct ice_pf *pf = pci_get_drvdata(pdev);
4392 
4393 	ice_remove(pdev);
4394 
4395 	if (system_state == SYSTEM_POWER_OFF) {
4396 		pci_wake_from_d3(pdev, pf->wol_ena);
4397 		pci_set_power_state(pdev, PCI_D3hot);
4398 	}
4399 }
4400 
4401 #ifdef CONFIG_PM
4402 /**
4403  * ice_prepare_for_shutdown - prep for PCI shutdown
4404  * @pf: board private structure
4405  *
4406  * Inform or close all dependent features in prep for PCI device shutdown
4407  */
4408 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4409 {
4410 	struct ice_hw *hw = &pf->hw;
4411 	u32 v;
4412 
4413 	/* Notify VFs of impending reset */
4414 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4415 		ice_vc_notify_reset(pf);
4416 
4417 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4418 
4419 	/* disable the VSIs and their queues that are not already DOWN */
4420 	ice_pf_dis_all_vsi(pf, false);
4421 
4422 	ice_for_each_vsi(pf, v)
4423 		if (pf->vsi[v])
4424 			pf->vsi[v]->vsi_num = 0;
4425 
4426 	ice_shutdown_all_ctrlq(hw);
4427 }
4428 
4429 /**
4430  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4431  * @pf: board private structure to reinitialize
4432  *
4433  * This routine reinitialize interrupt scheme that was cleared during
4434  * power management suspend callback.
4435  *
4436  * This should be called during resume routine to re-allocate the q_vectors
4437  * and reacquire interrupts.
4438  */
4439 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4440 {
4441 	struct device *dev = ice_pf_to_dev(pf);
4442 	int ret, v;
4443 
4444 	/* Since we clear MSIX flag during suspend, we need to
4445 	 * set it back during resume...
4446 	 */
4447 
4448 	ret = ice_init_interrupt_scheme(pf);
4449 	if (ret) {
4450 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4451 		return ret;
4452 	}
4453 
4454 	/* Remap vectors and rings, after successful re-init interrupts */
4455 	ice_for_each_vsi(pf, v) {
4456 		if (!pf->vsi[v])
4457 			continue;
4458 
4459 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4460 		if (ret)
4461 			goto err_reinit;
4462 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4463 	}
4464 
4465 	ret = ice_req_irq_msix_misc(pf);
4466 	if (ret) {
4467 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4468 			ret);
4469 		goto err_reinit;
4470 	}
4471 
4472 	return 0;
4473 
4474 err_reinit:
4475 	while (v--)
4476 		if (pf->vsi[v])
4477 			ice_vsi_free_q_vectors(pf->vsi[v]);
4478 
4479 	return ret;
4480 }
4481 
4482 /**
4483  * ice_suspend
4484  * @dev: generic device information structure
4485  *
4486  * Power Management callback to quiesce the device and prepare
4487  * for D3 transition.
4488  */
4489 static int __maybe_unused ice_suspend(struct device *dev)
4490 {
4491 	struct pci_dev *pdev = to_pci_dev(dev);
4492 	struct ice_pf *pf;
4493 	int disabled, v;
4494 
4495 	pf = pci_get_drvdata(pdev);
4496 
4497 	if (!ice_pf_state_is_nominal(pf)) {
4498 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4499 		return -EBUSY;
4500 	}
4501 
4502 	/* Stop watchdog tasks until resume completion.
4503 	 * Even though it is most likely that the service task is
4504 	 * disabled if the device is suspended or down, the service task's
4505 	 * state is controlled by a different state bit, and we should
4506 	 * store and honor whatever state that bit is in at this point.
4507 	 */
4508 	disabled = ice_service_task_stop(pf);
4509 
4510 	/* Already suspended?, then there is nothing to do */
4511 	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4512 		if (!disabled)
4513 			ice_service_task_restart(pf);
4514 		return 0;
4515 	}
4516 
4517 	if (test_bit(__ICE_DOWN, pf->state) ||
4518 	    ice_is_reset_in_progress(pf->state)) {
4519 		dev_err(dev, "can't suspend device in reset or already down\n");
4520 		if (!disabled)
4521 			ice_service_task_restart(pf);
4522 		return 0;
4523 	}
4524 
4525 	ice_setup_mc_magic_wake(pf);
4526 
4527 	ice_prepare_for_shutdown(pf);
4528 
4529 	ice_set_wake(pf);
4530 
4531 	/* Free vectors, clear the interrupt scheme and release IRQs
4532 	 * for proper hibernation, especially with large number of CPUs.
4533 	 * Otherwise hibernation might fail when mapping all the vectors back
4534 	 * to CPU0.
4535 	 */
4536 	ice_free_irq_msix_misc(pf);
4537 	ice_for_each_vsi(pf, v) {
4538 		if (!pf->vsi[v])
4539 			continue;
4540 		ice_vsi_free_q_vectors(pf->vsi[v]);
4541 	}
4542 	ice_clear_interrupt_scheme(pf);
4543 
4544 	pci_save_state(pdev);
4545 	pci_wake_from_d3(pdev, pf->wol_ena);
4546 	pci_set_power_state(pdev, PCI_D3hot);
4547 	return 0;
4548 }
4549 
4550 /**
4551  * ice_resume - PM callback for waking up from D3
4552  * @dev: generic device information structure
4553  */
4554 static int __maybe_unused ice_resume(struct device *dev)
4555 {
4556 	struct pci_dev *pdev = to_pci_dev(dev);
4557 	enum ice_reset_req reset_type;
4558 	struct ice_pf *pf;
4559 	struct ice_hw *hw;
4560 	int ret;
4561 
4562 	pci_set_power_state(pdev, PCI_D0);
4563 	pci_restore_state(pdev);
4564 	pci_save_state(pdev);
4565 
4566 	if (!pci_device_is_present(pdev))
4567 		return -ENODEV;
4568 
4569 	ret = pci_enable_device_mem(pdev);
4570 	if (ret) {
4571 		dev_err(dev, "Cannot enable device after suspend\n");
4572 		return ret;
4573 	}
4574 
4575 	pf = pci_get_drvdata(pdev);
4576 	hw = &pf->hw;
4577 
4578 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4579 	ice_print_wake_reason(pf);
4580 
4581 	/* We cleared the interrupt scheme when we suspended, so we need to
4582 	 * restore it now to resume device functionality.
4583 	 */
4584 	ret = ice_reinit_interrupt_scheme(pf);
4585 	if (ret)
4586 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4587 
4588 	clear_bit(__ICE_DOWN, pf->state);
4589 	/* Now perform PF reset and rebuild */
4590 	reset_type = ICE_RESET_PFR;
4591 	/* re-enable service task for reset, but allow reset to schedule it */
4592 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4593 
4594 	if (ice_schedule_reset(pf, reset_type))
4595 		dev_err(dev, "Reset during resume failed.\n");
4596 
4597 	clear_bit(__ICE_SUSPENDED, pf->state);
4598 	ice_service_task_restart(pf);
4599 
4600 	/* Restart the service task */
4601 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4602 
4603 	return 0;
4604 }
4605 #endif /* CONFIG_PM */
4606 
4607 /**
4608  * ice_pci_err_detected - warning that PCI error has been detected
4609  * @pdev: PCI device information struct
4610  * @err: the type of PCI error
4611  *
4612  * Called to warn that something happened on the PCI bus and the error handling
4613  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4614  */
4615 static pci_ers_result_t
4616 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4617 {
4618 	struct ice_pf *pf = pci_get_drvdata(pdev);
4619 
4620 	if (!pf) {
4621 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4622 			__func__, err);
4623 		return PCI_ERS_RESULT_DISCONNECT;
4624 	}
4625 
4626 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4627 		ice_service_task_stop(pf);
4628 
4629 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4630 			set_bit(__ICE_PFR_REQ, pf->state);
4631 			ice_prepare_for_reset(pf);
4632 		}
4633 	}
4634 
4635 	return PCI_ERS_RESULT_NEED_RESET;
4636 }
4637 
4638 /**
4639  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4640  * @pdev: PCI device information struct
4641  *
4642  * Called to determine if the driver can recover from the PCI slot reset by
4643  * using a register read to determine if the device is recoverable.
4644  */
4645 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4646 {
4647 	struct ice_pf *pf = pci_get_drvdata(pdev);
4648 	pci_ers_result_t result;
4649 	int err;
4650 	u32 reg;
4651 
4652 	err = pci_enable_device_mem(pdev);
4653 	if (err) {
4654 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4655 			err);
4656 		result = PCI_ERS_RESULT_DISCONNECT;
4657 	} else {
4658 		pci_set_master(pdev);
4659 		pci_restore_state(pdev);
4660 		pci_save_state(pdev);
4661 		pci_wake_from_d3(pdev, false);
4662 
4663 		/* Check for life */
4664 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4665 		if (!reg)
4666 			result = PCI_ERS_RESULT_RECOVERED;
4667 		else
4668 			result = PCI_ERS_RESULT_DISCONNECT;
4669 	}
4670 
4671 	err = pci_aer_clear_nonfatal_status(pdev);
4672 	if (err)
4673 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4674 			err);
4675 		/* non-fatal, continue */
4676 
4677 	return result;
4678 }
4679 
4680 /**
4681  * ice_pci_err_resume - restart operations after PCI error recovery
4682  * @pdev: PCI device information struct
4683  *
4684  * Called to allow the driver to bring things back up after PCI error and/or
4685  * reset recovery have finished
4686  */
4687 static void ice_pci_err_resume(struct pci_dev *pdev)
4688 {
4689 	struct ice_pf *pf = pci_get_drvdata(pdev);
4690 
4691 	if (!pf) {
4692 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4693 			__func__);
4694 		return;
4695 	}
4696 
4697 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4698 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4699 			__func__);
4700 		return;
4701 	}
4702 
4703 	ice_restore_all_vfs_msi_state(pdev);
4704 
4705 	ice_do_reset(pf, ICE_RESET_PFR);
4706 	ice_service_task_restart(pf);
4707 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4708 }
4709 
4710 /**
4711  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4712  * @pdev: PCI device information struct
4713  */
4714 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4715 {
4716 	struct ice_pf *pf = pci_get_drvdata(pdev);
4717 
4718 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4719 		ice_service_task_stop(pf);
4720 
4721 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4722 			set_bit(__ICE_PFR_REQ, pf->state);
4723 			ice_prepare_for_reset(pf);
4724 		}
4725 	}
4726 }
4727 
4728 /**
4729  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4730  * @pdev: PCI device information struct
4731  */
4732 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4733 {
4734 	ice_pci_err_resume(pdev);
4735 }
4736 
4737 /* ice_pci_tbl - PCI Device ID Table
4738  *
4739  * Wildcard entries (PCI_ANY_ID) should come last
4740  * Last entry must be all 0s
4741  *
4742  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4743  *   Class, Class Mask, private data (not used) }
4744  */
4745 static const struct pci_device_id ice_pci_tbl[] = {
4746 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4747 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4748 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4749 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4750 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4751 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4752 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4753 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4754 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4755 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4756 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4757 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4758 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4759 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4760 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4761 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4762 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4763 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4764 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4765 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4766 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4767 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4768 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4769 	/* required last entry */
4770 	{ 0, }
4771 };
4772 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4773 
4774 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4775 
4776 static const struct pci_error_handlers ice_pci_err_handler = {
4777 	.error_detected = ice_pci_err_detected,
4778 	.slot_reset = ice_pci_err_slot_reset,
4779 	.reset_prepare = ice_pci_err_reset_prepare,
4780 	.reset_done = ice_pci_err_reset_done,
4781 	.resume = ice_pci_err_resume
4782 };
4783 
4784 static struct pci_driver ice_driver = {
4785 	.name = KBUILD_MODNAME,
4786 	.id_table = ice_pci_tbl,
4787 	.probe = ice_probe,
4788 	.remove = ice_remove,
4789 #ifdef CONFIG_PM
4790 	.driver.pm = &ice_pm_ops,
4791 #endif /* CONFIG_PM */
4792 	.shutdown = ice_shutdown,
4793 	.sriov_configure = ice_sriov_configure,
4794 	.err_handler = &ice_pci_err_handler
4795 };
4796 
4797 /**
4798  * ice_module_init - Driver registration routine
4799  *
4800  * ice_module_init is the first routine called when the driver is
4801  * loaded. All it does is register with the PCI subsystem.
4802  */
4803 static int __init ice_module_init(void)
4804 {
4805 	int status;
4806 
4807 	pr_info("%s\n", ice_driver_string);
4808 	pr_info("%s\n", ice_copyright);
4809 
4810 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4811 	if (!ice_wq) {
4812 		pr_err("Failed to create workqueue\n");
4813 		return -ENOMEM;
4814 	}
4815 
4816 	status = pci_register_driver(&ice_driver);
4817 	if (status) {
4818 		pr_err("failed to register PCI driver, err %d\n", status);
4819 		destroy_workqueue(ice_wq);
4820 	}
4821 
4822 	return status;
4823 }
4824 module_init(ice_module_init);
4825 
4826 /**
4827  * ice_module_exit - Driver exit cleanup routine
4828  *
4829  * ice_module_exit is called just before the driver is removed
4830  * from memory.
4831  */
4832 static void __exit ice_module_exit(void)
4833 {
4834 	pci_unregister_driver(&ice_driver);
4835 	destroy_workqueue(ice_wq);
4836 	pr_info("module unloaded\n");
4837 }
4838 module_exit(ice_module_exit);
4839 
4840 /**
4841  * ice_set_mac_address - NDO callback to set MAC address
4842  * @netdev: network interface device structure
4843  * @pi: pointer to an address structure
4844  *
4845  * Returns 0 on success, negative on failure
4846  */
4847 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4848 {
4849 	struct ice_netdev_priv *np = netdev_priv(netdev);
4850 	struct ice_vsi *vsi = np->vsi;
4851 	struct ice_pf *pf = vsi->back;
4852 	struct ice_hw *hw = &pf->hw;
4853 	struct sockaddr *addr = pi;
4854 	enum ice_status status;
4855 	u8 flags = 0;
4856 	int err = 0;
4857 	u8 *mac;
4858 
4859 	mac = (u8 *)addr->sa_data;
4860 
4861 	if (!is_valid_ether_addr(mac))
4862 		return -EADDRNOTAVAIL;
4863 
4864 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4865 		netdev_warn(netdev, "already using mac %pM\n", mac);
4866 		return 0;
4867 	}
4868 
4869 	if (test_bit(__ICE_DOWN, pf->state) ||
4870 	    ice_is_reset_in_progress(pf->state)) {
4871 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4872 			   mac);
4873 		return -EBUSY;
4874 	}
4875 
4876 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4877 	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4878 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4879 		err = -EADDRNOTAVAIL;
4880 		goto err_update_filters;
4881 	}
4882 
4883 	/* Add filter for new MAC. If filter exists, return success */
4884 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4885 	if (status == ICE_ERR_ALREADY_EXISTS) {
4886 		/* Although this MAC filter is already present in hardware it's
4887 		 * possible in some cases (e.g. bonding) that dev_addr was
4888 		 * modified outside of the driver and needs to be restored back
4889 		 * to this value.
4890 		 */
4891 		memcpy(netdev->dev_addr, mac, netdev->addr_len);
4892 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4893 		return 0;
4894 	}
4895 
4896 	/* error if the new filter addition failed */
4897 	if (status)
4898 		err = -EADDRNOTAVAIL;
4899 
4900 err_update_filters:
4901 	if (err) {
4902 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4903 			   mac);
4904 		return err;
4905 	}
4906 
4907 	/* change the netdev's MAC address */
4908 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4909 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4910 		   netdev->dev_addr);
4911 
4912 	/* write new MAC address to the firmware */
4913 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4914 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4915 	if (status) {
4916 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4917 			   mac, ice_stat_str(status));
4918 	}
4919 	return 0;
4920 }
4921 
4922 /**
4923  * ice_set_rx_mode - NDO callback to set the netdev filters
4924  * @netdev: network interface device structure
4925  */
4926 static void ice_set_rx_mode(struct net_device *netdev)
4927 {
4928 	struct ice_netdev_priv *np = netdev_priv(netdev);
4929 	struct ice_vsi *vsi = np->vsi;
4930 
4931 	if (!vsi)
4932 		return;
4933 
4934 	/* Set the flags to synchronize filters
4935 	 * ndo_set_rx_mode may be triggered even without a change in netdev
4936 	 * flags
4937 	 */
4938 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4939 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4940 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4941 
4942 	/* schedule our worker thread which will take care of
4943 	 * applying the new filter changes
4944 	 */
4945 	ice_service_task_schedule(vsi->back);
4946 }
4947 
4948 /**
4949  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4950  * @netdev: network interface device structure
4951  * @queue_index: Queue ID
4952  * @maxrate: maximum bandwidth in Mbps
4953  */
4954 static int
4955 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4956 {
4957 	struct ice_netdev_priv *np = netdev_priv(netdev);
4958 	struct ice_vsi *vsi = np->vsi;
4959 	enum ice_status status;
4960 	u16 q_handle;
4961 	u8 tc;
4962 
4963 	/* Validate maxrate requested is within permitted range */
4964 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4965 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4966 			   maxrate, queue_index);
4967 		return -EINVAL;
4968 	}
4969 
4970 	q_handle = vsi->tx_rings[queue_index]->q_handle;
4971 	tc = ice_dcb_get_tc(vsi, queue_index);
4972 
4973 	/* Set BW back to default, when user set maxrate to 0 */
4974 	if (!maxrate)
4975 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4976 					       q_handle, ICE_MAX_BW);
4977 	else
4978 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4979 					  q_handle, ICE_MAX_BW, maxrate * 1000);
4980 	if (status) {
4981 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4982 			   ice_stat_str(status));
4983 		return -EIO;
4984 	}
4985 
4986 	return 0;
4987 }
4988 
4989 /**
4990  * ice_fdb_add - add an entry to the hardware database
4991  * @ndm: the input from the stack
4992  * @tb: pointer to array of nladdr (unused)
4993  * @dev: the net device pointer
4994  * @addr: the MAC address entry being added
4995  * @vid: VLAN ID
4996  * @flags: instructions from stack about fdb operation
4997  * @extack: netlink extended ack
4998  */
4999 static int
5000 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5001 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5002 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5003 {
5004 	int err;
5005 
5006 	if (vid) {
5007 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5008 		return -EINVAL;
5009 	}
5010 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5011 		netdev_err(dev, "FDB only supports static addresses\n");
5012 		return -EINVAL;
5013 	}
5014 
5015 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5016 		err = dev_uc_add_excl(dev, addr);
5017 	else if (is_multicast_ether_addr(addr))
5018 		err = dev_mc_add_excl(dev, addr);
5019 	else
5020 		err = -EINVAL;
5021 
5022 	/* Only return duplicate errors if NLM_F_EXCL is set */
5023 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5024 		err = 0;
5025 
5026 	return err;
5027 }
5028 
5029 /**
5030  * ice_fdb_del - delete an entry from the hardware database
5031  * @ndm: the input from the stack
5032  * @tb: pointer to array of nladdr (unused)
5033  * @dev: the net device pointer
5034  * @addr: the MAC address entry being added
5035  * @vid: VLAN ID
5036  */
5037 static int
5038 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5039 	    struct net_device *dev, const unsigned char *addr,
5040 	    __always_unused u16 vid)
5041 {
5042 	int err;
5043 
5044 	if (ndm->ndm_state & NUD_PERMANENT) {
5045 		netdev_err(dev, "FDB only supports static addresses\n");
5046 		return -EINVAL;
5047 	}
5048 
5049 	if (is_unicast_ether_addr(addr))
5050 		err = dev_uc_del(dev, addr);
5051 	else if (is_multicast_ether_addr(addr))
5052 		err = dev_mc_del(dev, addr);
5053 	else
5054 		err = -EINVAL;
5055 
5056 	return err;
5057 }
5058 
5059 /**
5060  * ice_set_features - set the netdev feature flags
5061  * @netdev: ptr to the netdev being adjusted
5062  * @features: the feature set that the stack is suggesting
5063  */
5064 static int
5065 ice_set_features(struct net_device *netdev, netdev_features_t features)
5066 {
5067 	struct ice_netdev_priv *np = netdev_priv(netdev);
5068 	struct ice_vsi *vsi = np->vsi;
5069 	struct ice_pf *pf = vsi->back;
5070 	int ret = 0;
5071 
5072 	/* Don't set any netdev advanced features with device in Safe Mode */
5073 	if (ice_is_safe_mode(vsi->back)) {
5074 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5075 		return ret;
5076 	}
5077 
5078 	/* Do not change setting during reset */
5079 	if (ice_is_reset_in_progress(pf->state)) {
5080 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5081 		return -EBUSY;
5082 	}
5083 
5084 	/* Multiple features can be changed in one call so keep features in
5085 	 * separate if/else statements to guarantee each feature is checked
5086 	 */
5087 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5088 		ret = ice_vsi_manage_rss_lut(vsi, true);
5089 	else if (!(features & NETIF_F_RXHASH) &&
5090 		 netdev->features & NETIF_F_RXHASH)
5091 		ret = ice_vsi_manage_rss_lut(vsi, false);
5092 
5093 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5094 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5095 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5096 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5097 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5098 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5099 
5100 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5101 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5102 		ret = ice_vsi_manage_vlan_insertion(vsi);
5103 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5104 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5105 		ret = ice_vsi_manage_vlan_insertion(vsi);
5106 
5107 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5108 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5109 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5110 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5111 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5112 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5113 
5114 	if ((features & NETIF_F_NTUPLE) &&
5115 	    !(netdev->features & NETIF_F_NTUPLE)) {
5116 		ice_vsi_manage_fdir(vsi, true);
5117 		ice_init_arfs(vsi);
5118 	} else if (!(features & NETIF_F_NTUPLE) &&
5119 		 (netdev->features & NETIF_F_NTUPLE)) {
5120 		ice_vsi_manage_fdir(vsi, false);
5121 		ice_clear_arfs(vsi);
5122 	}
5123 
5124 	return ret;
5125 }
5126 
5127 /**
5128  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5129  * @vsi: VSI to setup VLAN properties for
5130  */
5131 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5132 {
5133 	int ret = 0;
5134 
5135 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5136 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5137 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5138 		ret = ice_vsi_manage_vlan_insertion(vsi);
5139 
5140 	return ret;
5141 }
5142 
5143 /**
5144  * ice_vsi_cfg - Setup the VSI
5145  * @vsi: the VSI being configured
5146  *
5147  * Return 0 on success and negative value on error
5148  */
5149 int ice_vsi_cfg(struct ice_vsi *vsi)
5150 {
5151 	int err;
5152 
5153 	if (vsi->netdev) {
5154 		ice_set_rx_mode(vsi->netdev);
5155 
5156 		err = ice_vsi_vlan_setup(vsi);
5157 
5158 		if (err)
5159 			return err;
5160 	}
5161 	ice_vsi_cfg_dcb_rings(vsi);
5162 
5163 	err = ice_vsi_cfg_lan_txqs(vsi);
5164 	if (!err && ice_is_xdp_ena_vsi(vsi))
5165 		err = ice_vsi_cfg_xdp_txqs(vsi);
5166 	if (!err)
5167 		err = ice_vsi_cfg_rxqs(vsi);
5168 
5169 	return err;
5170 }
5171 
5172 /**
5173  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5174  * @vsi: the VSI being configured
5175  */
5176 static void ice_napi_enable_all(struct ice_vsi *vsi)
5177 {
5178 	int q_idx;
5179 
5180 	if (!vsi->netdev)
5181 		return;
5182 
5183 	ice_for_each_q_vector(vsi, q_idx) {
5184 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5185 
5186 		if (q_vector->rx.ring || q_vector->tx.ring)
5187 			napi_enable(&q_vector->napi);
5188 	}
5189 }
5190 
5191 /**
5192  * ice_up_complete - Finish the last steps of bringing up a connection
5193  * @vsi: The VSI being configured
5194  *
5195  * Return 0 on success and negative value on error
5196  */
5197 static int ice_up_complete(struct ice_vsi *vsi)
5198 {
5199 	struct ice_pf *pf = vsi->back;
5200 	int err;
5201 
5202 	ice_vsi_cfg_msix(vsi);
5203 
5204 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5205 	 * Tx queue group list was configured and the context bits were
5206 	 * programmed using ice_vsi_cfg_txqs
5207 	 */
5208 	err = ice_vsi_start_all_rx_rings(vsi);
5209 	if (err)
5210 		return err;
5211 
5212 	clear_bit(__ICE_DOWN, vsi->state);
5213 	ice_napi_enable_all(vsi);
5214 	ice_vsi_ena_irq(vsi);
5215 
5216 	if (vsi->port_info &&
5217 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5218 	    vsi->netdev) {
5219 		ice_print_link_msg(vsi, true);
5220 		netif_tx_start_all_queues(vsi->netdev);
5221 		netif_carrier_on(vsi->netdev);
5222 	}
5223 
5224 	ice_service_task_schedule(pf);
5225 
5226 	return 0;
5227 }
5228 
5229 /**
5230  * ice_up - Bring the connection back up after being down
5231  * @vsi: VSI being configured
5232  */
5233 int ice_up(struct ice_vsi *vsi)
5234 {
5235 	int err;
5236 
5237 	err = ice_vsi_cfg(vsi);
5238 	if (!err)
5239 		err = ice_up_complete(vsi);
5240 
5241 	return err;
5242 }
5243 
5244 /**
5245  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5246  * @ring: Tx or Rx ring to read stats from
5247  * @pkts: packets stats counter
5248  * @bytes: bytes stats counter
5249  *
5250  * This function fetches stats from the ring considering the atomic operations
5251  * that needs to be performed to read u64 values in 32 bit machine.
5252  */
5253 static void
5254 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5255 {
5256 	unsigned int start;
5257 	*pkts = 0;
5258 	*bytes = 0;
5259 
5260 	if (!ring)
5261 		return;
5262 	do {
5263 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5264 		*pkts = ring->stats.pkts;
5265 		*bytes = ring->stats.bytes;
5266 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5267 }
5268 
5269 /**
5270  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5271  * @vsi: the VSI to be updated
5272  * @rings: rings to work on
5273  * @count: number of rings
5274  */
5275 static void
5276 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5277 			     u16 count)
5278 {
5279 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5280 	u16 i;
5281 
5282 	for (i = 0; i < count; i++) {
5283 		struct ice_ring *ring;
5284 		u64 pkts, bytes;
5285 
5286 		ring = READ_ONCE(rings[i]);
5287 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5288 		vsi_stats->tx_packets += pkts;
5289 		vsi_stats->tx_bytes += bytes;
5290 		vsi->tx_restart += ring->tx_stats.restart_q;
5291 		vsi->tx_busy += ring->tx_stats.tx_busy;
5292 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5293 	}
5294 }
5295 
5296 /**
5297  * ice_update_vsi_ring_stats - Update VSI stats counters
5298  * @vsi: the VSI to be updated
5299  */
5300 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5301 {
5302 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5303 	struct ice_ring *ring;
5304 	u64 pkts, bytes;
5305 	int i;
5306 
5307 	/* reset netdev stats */
5308 	vsi_stats->tx_packets = 0;
5309 	vsi_stats->tx_bytes = 0;
5310 	vsi_stats->rx_packets = 0;
5311 	vsi_stats->rx_bytes = 0;
5312 
5313 	/* reset non-netdev (extended) stats */
5314 	vsi->tx_restart = 0;
5315 	vsi->tx_busy = 0;
5316 	vsi->tx_linearize = 0;
5317 	vsi->rx_buf_failed = 0;
5318 	vsi->rx_page_failed = 0;
5319 	vsi->rx_gro_dropped = 0;
5320 
5321 	rcu_read_lock();
5322 
5323 	/* update Tx rings counters */
5324 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5325 
5326 	/* update Rx rings counters */
5327 	ice_for_each_rxq(vsi, i) {
5328 		ring = READ_ONCE(vsi->rx_rings[i]);
5329 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5330 		vsi_stats->rx_packets += pkts;
5331 		vsi_stats->rx_bytes += bytes;
5332 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5333 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5334 		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5335 	}
5336 
5337 	/* update XDP Tx rings counters */
5338 	if (ice_is_xdp_ena_vsi(vsi))
5339 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5340 					     vsi->num_xdp_txq);
5341 
5342 	rcu_read_unlock();
5343 }
5344 
5345 /**
5346  * ice_update_vsi_stats - Update VSI stats counters
5347  * @vsi: the VSI to be updated
5348  */
5349 void ice_update_vsi_stats(struct ice_vsi *vsi)
5350 {
5351 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5352 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5353 	struct ice_pf *pf = vsi->back;
5354 
5355 	if (test_bit(__ICE_DOWN, vsi->state) ||
5356 	    test_bit(__ICE_CFG_BUSY, pf->state))
5357 		return;
5358 
5359 	/* get stats as recorded by Tx/Rx rings */
5360 	ice_update_vsi_ring_stats(vsi);
5361 
5362 	/* get VSI stats as recorded by the hardware */
5363 	ice_update_eth_stats(vsi);
5364 
5365 	cur_ns->tx_errors = cur_es->tx_errors;
5366 	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5367 	cur_ns->tx_dropped = cur_es->tx_discards;
5368 	cur_ns->multicast = cur_es->rx_multicast;
5369 
5370 	/* update some more netdev stats if this is main VSI */
5371 	if (vsi->type == ICE_VSI_PF) {
5372 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5373 		cur_ns->rx_errors = pf->stats.crc_errors +
5374 				    pf->stats.illegal_bytes +
5375 				    pf->stats.rx_len_errors +
5376 				    pf->stats.rx_undersize +
5377 				    pf->hw_csum_rx_error +
5378 				    pf->stats.rx_jabber +
5379 				    pf->stats.rx_fragments +
5380 				    pf->stats.rx_oversize;
5381 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5382 		/* record drops from the port level */
5383 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5384 	}
5385 }
5386 
5387 /**
5388  * ice_update_pf_stats - Update PF port stats counters
5389  * @pf: PF whose stats needs to be updated
5390  */
5391 void ice_update_pf_stats(struct ice_pf *pf)
5392 {
5393 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5394 	struct ice_hw *hw = &pf->hw;
5395 	u16 fd_ctr_base;
5396 	u8 port;
5397 
5398 	port = hw->port_info->lport;
5399 	prev_ps = &pf->stats_prev;
5400 	cur_ps = &pf->stats;
5401 
5402 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5403 			  &prev_ps->eth.rx_bytes,
5404 			  &cur_ps->eth.rx_bytes);
5405 
5406 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5407 			  &prev_ps->eth.rx_unicast,
5408 			  &cur_ps->eth.rx_unicast);
5409 
5410 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5411 			  &prev_ps->eth.rx_multicast,
5412 			  &cur_ps->eth.rx_multicast);
5413 
5414 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5415 			  &prev_ps->eth.rx_broadcast,
5416 			  &cur_ps->eth.rx_broadcast);
5417 
5418 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5419 			  &prev_ps->eth.rx_discards,
5420 			  &cur_ps->eth.rx_discards);
5421 
5422 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5423 			  &prev_ps->eth.tx_bytes,
5424 			  &cur_ps->eth.tx_bytes);
5425 
5426 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5427 			  &prev_ps->eth.tx_unicast,
5428 			  &cur_ps->eth.tx_unicast);
5429 
5430 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5431 			  &prev_ps->eth.tx_multicast,
5432 			  &cur_ps->eth.tx_multicast);
5433 
5434 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5435 			  &prev_ps->eth.tx_broadcast,
5436 			  &cur_ps->eth.tx_broadcast);
5437 
5438 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5439 			  &prev_ps->tx_dropped_link_down,
5440 			  &cur_ps->tx_dropped_link_down);
5441 
5442 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5443 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5444 
5445 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5446 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5447 
5448 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5449 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5450 
5451 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5452 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5453 
5454 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5455 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5456 
5457 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5458 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5459 
5460 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5461 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5462 
5463 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5464 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5465 
5466 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5467 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5468 
5469 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5470 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5471 
5472 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5473 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5474 
5475 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5476 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5477 
5478 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5479 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5480 
5481 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5482 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5483 
5484 	fd_ctr_base = hw->fd_ctr_base;
5485 
5486 	ice_stat_update40(hw,
5487 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5488 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5489 			  &cur_ps->fd_sb_match);
5490 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5491 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5492 
5493 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5494 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5495 
5496 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5497 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5498 
5499 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5500 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5501 
5502 	ice_update_dcb_stats(pf);
5503 
5504 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5505 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5506 
5507 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5508 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5509 
5510 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5511 			  &prev_ps->mac_local_faults,
5512 			  &cur_ps->mac_local_faults);
5513 
5514 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5515 			  &prev_ps->mac_remote_faults,
5516 			  &cur_ps->mac_remote_faults);
5517 
5518 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5519 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5520 
5521 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5522 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5523 
5524 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5525 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5526 
5527 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5528 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5529 
5530 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5531 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5532 
5533 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5534 
5535 	pf->stat_prev_loaded = true;
5536 }
5537 
5538 /**
5539  * ice_get_stats64 - get statistics for network device structure
5540  * @netdev: network interface device structure
5541  * @stats: main device statistics structure
5542  */
5543 static
5544 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5545 {
5546 	struct ice_netdev_priv *np = netdev_priv(netdev);
5547 	struct rtnl_link_stats64 *vsi_stats;
5548 	struct ice_vsi *vsi = np->vsi;
5549 
5550 	vsi_stats = &vsi->net_stats;
5551 
5552 	if (!vsi->num_txq || !vsi->num_rxq)
5553 		return;
5554 
5555 	/* netdev packet/byte stats come from ring counter. These are obtained
5556 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5557 	 * But, only call the update routine and read the registers if VSI is
5558 	 * not down.
5559 	 */
5560 	if (!test_bit(__ICE_DOWN, vsi->state))
5561 		ice_update_vsi_ring_stats(vsi);
5562 	stats->tx_packets = vsi_stats->tx_packets;
5563 	stats->tx_bytes = vsi_stats->tx_bytes;
5564 	stats->rx_packets = vsi_stats->rx_packets;
5565 	stats->rx_bytes = vsi_stats->rx_bytes;
5566 
5567 	/* The rest of the stats can be read from the hardware but instead we
5568 	 * just return values that the watchdog task has already obtained from
5569 	 * the hardware.
5570 	 */
5571 	stats->multicast = vsi_stats->multicast;
5572 	stats->tx_errors = vsi_stats->tx_errors;
5573 	stats->tx_dropped = vsi_stats->tx_dropped;
5574 	stats->rx_errors = vsi_stats->rx_errors;
5575 	stats->rx_dropped = vsi_stats->rx_dropped;
5576 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5577 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5578 }
5579 
5580 /**
5581  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5582  * @vsi: VSI having NAPI disabled
5583  */
5584 static void ice_napi_disable_all(struct ice_vsi *vsi)
5585 {
5586 	int q_idx;
5587 
5588 	if (!vsi->netdev)
5589 		return;
5590 
5591 	ice_for_each_q_vector(vsi, q_idx) {
5592 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5593 
5594 		if (q_vector->rx.ring || q_vector->tx.ring)
5595 			napi_disable(&q_vector->napi);
5596 	}
5597 }
5598 
5599 /**
5600  * ice_down - Shutdown the connection
5601  * @vsi: The VSI being stopped
5602  */
5603 int ice_down(struct ice_vsi *vsi)
5604 {
5605 	int i, tx_err, rx_err, link_err = 0;
5606 
5607 	/* Caller of this function is expected to set the
5608 	 * vsi->state __ICE_DOWN bit
5609 	 */
5610 	if (vsi->netdev) {
5611 		netif_carrier_off(vsi->netdev);
5612 		netif_tx_disable(vsi->netdev);
5613 	}
5614 
5615 	ice_vsi_dis_irq(vsi);
5616 
5617 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5618 	if (tx_err)
5619 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5620 			   vsi->vsi_num, tx_err);
5621 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5622 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5623 		if (tx_err)
5624 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5625 				   vsi->vsi_num, tx_err);
5626 	}
5627 
5628 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5629 	if (rx_err)
5630 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5631 			   vsi->vsi_num, rx_err);
5632 
5633 	ice_napi_disable_all(vsi);
5634 
5635 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5636 		link_err = ice_force_phys_link_state(vsi, false);
5637 		if (link_err)
5638 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5639 				   vsi->vsi_num, link_err);
5640 	}
5641 
5642 	ice_for_each_txq(vsi, i)
5643 		ice_clean_tx_ring(vsi->tx_rings[i]);
5644 
5645 	ice_for_each_rxq(vsi, i)
5646 		ice_clean_rx_ring(vsi->rx_rings[i]);
5647 
5648 	if (tx_err || rx_err || link_err) {
5649 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5650 			   vsi->vsi_num, vsi->vsw->sw_id);
5651 		return -EIO;
5652 	}
5653 
5654 	return 0;
5655 }
5656 
5657 /**
5658  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5659  * @vsi: VSI having resources allocated
5660  *
5661  * Return 0 on success, negative on failure
5662  */
5663 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5664 {
5665 	int i, err = 0;
5666 
5667 	if (!vsi->num_txq) {
5668 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5669 			vsi->vsi_num);
5670 		return -EINVAL;
5671 	}
5672 
5673 	ice_for_each_txq(vsi, i) {
5674 		struct ice_ring *ring = vsi->tx_rings[i];
5675 
5676 		if (!ring)
5677 			return -EINVAL;
5678 
5679 		ring->netdev = vsi->netdev;
5680 		err = ice_setup_tx_ring(ring);
5681 		if (err)
5682 			break;
5683 	}
5684 
5685 	return err;
5686 }
5687 
5688 /**
5689  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5690  * @vsi: VSI having resources allocated
5691  *
5692  * Return 0 on success, negative on failure
5693  */
5694 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5695 {
5696 	int i, err = 0;
5697 
5698 	if (!vsi->num_rxq) {
5699 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5700 			vsi->vsi_num);
5701 		return -EINVAL;
5702 	}
5703 
5704 	ice_for_each_rxq(vsi, i) {
5705 		struct ice_ring *ring = vsi->rx_rings[i];
5706 
5707 		if (!ring)
5708 			return -EINVAL;
5709 
5710 		ring->netdev = vsi->netdev;
5711 		err = ice_setup_rx_ring(ring);
5712 		if (err)
5713 			break;
5714 	}
5715 
5716 	return err;
5717 }
5718 
5719 /**
5720  * ice_vsi_open_ctrl - open control VSI for use
5721  * @vsi: the VSI to open
5722  *
5723  * Initialization of the Control VSI
5724  *
5725  * Returns 0 on success, negative value on error
5726  */
5727 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5728 {
5729 	char int_name[ICE_INT_NAME_STR_LEN];
5730 	struct ice_pf *pf = vsi->back;
5731 	struct device *dev;
5732 	int err;
5733 
5734 	dev = ice_pf_to_dev(pf);
5735 	/* allocate descriptors */
5736 	err = ice_vsi_setup_tx_rings(vsi);
5737 	if (err)
5738 		goto err_setup_tx;
5739 
5740 	err = ice_vsi_setup_rx_rings(vsi);
5741 	if (err)
5742 		goto err_setup_rx;
5743 
5744 	err = ice_vsi_cfg(vsi);
5745 	if (err)
5746 		goto err_setup_rx;
5747 
5748 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5749 		 dev_driver_string(dev), dev_name(dev));
5750 	err = ice_vsi_req_irq_msix(vsi, int_name);
5751 	if (err)
5752 		goto err_setup_rx;
5753 
5754 	ice_vsi_cfg_msix(vsi);
5755 
5756 	err = ice_vsi_start_all_rx_rings(vsi);
5757 	if (err)
5758 		goto err_up_complete;
5759 
5760 	clear_bit(__ICE_DOWN, vsi->state);
5761 	ice_vsi_ena_irq(vsi);
5762 
5763 	return 0;
5764 
5765 err_up_complete:
5766 	ice_down(vsi);
5767 err_setup_rx:
5768 	ice_vsi_free_rx_rings(vsi);
5769 err_setup_tx:
5770 	ice_vsi_free_tx_rings(vsi);
5771 
5772 	return err;
5773 }
5774 
5775 /**
5776  * ice_vsi_open - Called when a network interface is made active
5777  * @vsi: the VSI to open
5778  *
5779  * Initialization of the VSI
5780  *
5781  * Returns 0 on success, negative value on error
5782  */
5783 static int ice_vsi_open(struct ice_vsi *vsi)
5784 {
5785 	char int_name[ICE_INT_NAME_STR_LEN];
5786 	struct ice_pf *pf = vsi->back;
5787 	int err;
5788 
5789 	/* allocate descriptors */
5790 	err = ice_vsi_setup_tx_rings(vsi);
5791 	if (err)
5792 		goto err_setup_tx;
5793 
5794 	err = ice_vsi_setup_rx_rings(vsi);
5795 	if (err)
5796 		goto err_setup_rx;
5797 
5798 	err = ice_vsi_cfg(vsi);
5799 	if (err)
5800 		goto err_setup_rx;
5801 
5802 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5803 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5804 	err = ice_vsi_req_irq_msix(vsi, int_name);
5805 	if (err)
5806 		goto err_setup_rx;
5807 
5808 	/* Notify the stack of the actual queue counts. */
5809 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5810 	if (err)
5811 		goto err_set_qs;
5812 
5813 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5814 	if (err)
5815 		goto err_set_qs;
5816 
5817 	err = ice_up_complete(vsi);
5818 	if (err)
5819 		goto err_up_complete;
5820 
5821 	return 0;
5822 
5823 err_up_complete:
5824 	ice_down(vsi);
5825 err_set_qs:
5826 	ice_vsi_free_irq(vsi);
5827 err_setup_rx:
5828 	ice_vsi_free_rx_rings(vsi);
5829 err_setup_tx:
5830 	ice_vsi_free_tx_rings(vsi);
5831 
5832 	return err;
5833 }
5834 
5835 /**
5836  * ice_vsi_release_all - Delete all VSIs
5837  * @pf: PF from which all VSIs are being removed
5838  */
5839 static void ice_vsi_release_all(struct ice_pf *pf)
5840 {
5841 	int err, i;
5842 
5843 	if (!pf->vsi)
5844 		return;
5845 
5846 	ice_for_each_vsi(pf, i) {
5847 		if (!pf->vsi[i])
5848 			continue;
5849 
5850 		err = ice_vsi_release(pf->vsi[i]);
5851 		if (err)
5852 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5853 				i, err, pf->vsi[i]->vsi_num);
5854 	}
5855 }
5856 
5857 /**
5858  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5859  * @pf: pointer to the PF instance
5860  * @type: VSI type to rebuild
5861  *
5862  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5863  */
5864 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5865 {
5866 	struct device *dev = ice_pf_to_dev(pf);
5867 	enum ice_status status;
5868 	int i, err;
5869 
5870 	ice_for_each_vsi(pf, i) {
5871 		struct ice_vsi *vsi = pf->vsi[i];
5872 
5873 		if (!vsi || vsi->type != type)
5874 			continue;
5875 
5876 		/* rebuild the VSI */
5877 		err = ice_vsi_rebuild(vsi, true);
5878 		if (err) {
5879 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5880 				err, vsi->idx, ice_vsi_type_str(type));
5881 			return err;
5882 		}
5883 
5884 		/* replay filters for the VSI */
5885 		status = ice_replay_vsi(&pf->hw, vsi->idx);
5886 		if (status) {
5887 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5888 				ice_stat_str(status), vsi->idx,
5889 				ice_vsi_type_str(type));
5890 			return -EIO;
5891 		}
5892 
5893 		/* Re-map HW VSI number, using VSI handle that has been
5894 		 * previously validated in ice_replay_vsi() call above
5895 		 */
5896 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5897 
5898 		/* enable the VSI */
5899 		err = ice_ena_vsi(vsi, false);
5900 		if (err) {
5901 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5902 				err, vsi->idx, ice_vsi_type_str(type));
5903 			return err;
5904 		}
5905 
5906 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5907 			 ice_vsi_type_str(type));
5908 	}
5909 
5910 	return 0;
5911 }
5912 
5913 /**
5914  * ice_update_pf_netdev_link - Update PF netdev link status
5915  * @pf: pointer to the PF instance
5916  */
5917 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5918 {
5919 	bool link_up;
5920 	int i;
5921 
5922 	ice_for_each_vsi(pf, i) {
5923 		struct ice_vsi *vsi = pf->vsi[i];
5924 
5925 		if (!vsi || vsi->type != ICE_VSI_PF)
5926 			return;
5927 
5928 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5929 		if (link_up) {
5930 			netif_carrier_on(pf->vsi[i]->netdev);
5931 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5932 		} else {
5933 			netif_carrier_off(pf->vsi[i]->netdev);
5934 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5935 		}
5936 	}
5937 }
5938 
5939 /**
5940  * ice_rebuild - rebuild after reset
5941  * @pf: PF to rebuild
5942  * @reset_type: type of reset
5943  *
5944  * Do not rebuild VF VSI in this flow because that is already handled via
5945  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5946  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5947  * to reset/rebuild all the VF VSI twice.
5948  */
5949 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5950 {
5951 	struct device *dev = ice_pf_to_dev(pf);
5952 	struct ice_hw *hw = &pf->hw;
5953 	enum ice_status ret;
5954 	int err;
5955 
5956 	if (test_bit(__ICE_DOWN, pf->state))
5957 		goto clear_recovery;
5958 
5959 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5960 
5961 	ret = ice_init_all_ctrlq(hw);
5962 	if (ret) {
5963 		dev_err(dev, "control queues init failed %s\n",
5964 			ice_stat_str(ret));
5965 		goto err_init_ctrlq;
5966 	}
5967 
5968 	/* if DDP was previously loaded successfully */
5969 	if (!ice_is_safe_mode(pf)) {
5970 		/* reload the SW DB of filter tables */
5971 		if (reset_type == ICE_RESET_PFR)
5972 			ice_fill_blk_tbls(hw);
5973 		else
5974 			/* Reload DDP Package after CORER/GLOBR reset */
5975 			ice_load_pkg(NULL, pf);
5976 	}
5977 
5978 	ret = ice_clear_pf_cfg(hw);
5979 	if (ret) {
5980 		dev_err(dev, "clear PF configuration failed %s\n",
5981 			ice_stat_str(ret));
5982 		goto err_init_ctrlq;
5983 	}
5984 
5985 	if (pf->first_sw->dflt_vsi_ena)
5986 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5987 	/* clear the default VSI configuration if it exists */
5988 	pf->first_sw->dflt_vsi = NULL;
5989 	pf->first_sw->dflt_vsi_ena = false;
5990 
5991 	ice_clear_pxe_mode(hw);
5992 
5993 	ret = ice_get_caps(hw);
5994 	if (ret) {
5995 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5996 		goto err_init_ctrlq;
5997 	}
5998 
5999 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6000 	if (ret) {
6001 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6002 		goto err_init_ctrlq;
6003 	}
6004 
6005 	err = ice_sched_init_port(hw->port_info);
6006 	if (err)
6007 		goto err_sched_init_port;
6008 
6009 	/* start misc vector */
6010 	err = ice_req_irq_msix_misc(pf);
6011 	if (err) {
6012 		dev_err(dev, "misc vector setup failed: %d\n", err);
6013 		goto err_sched_init_port;
6014 	}
6015 
6016 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6017 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6018 		if (!rd32(hw, PFQF_FD_SIZE)) {
6019 			u16 unused, guar, b_effort;
6020 
6021 			guar = hw->func_caps.fd_fltr_guar;
6022 			b_effort = hw->func_caps.fd_fltr_best_effort;
6023 
6024 			/* force guaranteed filter pool for PF */
6025 			ice_alloc_fd_guar_item(hw, &unused, guar);
6026 			/* force shared filter pool for PF */
6027 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6028 		}
6029 	}
6030 
6031 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6032 		ice_dcb_rebuild(pf);
6033 
6034 	/* rebuild PF VSI */
6035 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6036 	if (err) {
6037 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6038 		goto err_vsi_rebuild;
6039 	}
6040 
6041 	/* If Flow Director is active */
6042 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6043 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6044 		if (err) {
6045 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6046 			goto err_vsi_rebuild;
6047 		}
6048 
6049 		/* replay HW Flow Director recipes */
6050 		if (hw->fdir_prof)
6051 			ice_fdir_replay_flows(hw);
6052 
6053 		/* replay Flow Director filters */
6054 		ice_fdir_replay_fltrs(pf);
6055 
6056 		ice_rebuild_arfs(pf);
6057 	}
6058 
6059 	ice_update_pf_netdev_link(pf);
6060 
6061 	/* tell the firmware we are up */
6062 	ret = ice_send_version(pf);
6063 	if (ret) {
6064 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6065 			ice_stat_str(ret));
6066 		goto err_vsi_rebuild;
6067 	}
6068 
6069 	ice_replay_post(hw);
6070 
6071 	/* if we get here, reset flow is successful */
6072 	clear_bit(__ICE_RESET_FAILED, pf->state);
6073 	return;
6074 
6075 err_vsi_rebuild:
6076 err_sched_init_port:
6077 	ice_sched_cleanup_all(hw);
6078 err_init_ctrlq:
6079 	ice_shutdown_all_ctrlq(hw);
6080 	set_bit(__ICE_RESET_FAILED, pf->state);
6081 clear_recovery:
6082 	/* set this bit in PF state to control service task scheduling */
6083 	set_bit(__ICE_NEEDS_RESTART, pf->state);
6084 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6085 }
6086 
6087 /**
6088  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6089  * @vsi: Pointer to VSI structure
6090  */
6091 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6092 {
6093 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6094 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6095 	else
6096 		return ICE_RXBUF_3072;
6097 }
6098 
6099 /**
6100  * ice_change_mtu - NDO callback to change the MTU
6101  * @netdev: network interface device structure
6102  * @new_mtu: new value for maximum frame size
6103  *
6104  * Returns 0 on success, negative on failure
6105  */
6106 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6107 {
6108 	struct ice_netdev_priv *np = netdev_priv(netdev);
6109 	struct ice_vsi *vsi = np->vsi;
6110 	struct ice_pf *pf = vsi->back;
6111 	u8 count = 0;
6112 
6113 	if (new_mtu == (int)netdev->mtu) {
6114 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6115 		return 0;
6116 	}
6117 
6118 	if (ice_is_xdp_ena_vsi(vsi)) {
6119 		int frame_size = ice_max_xdp_frame_size(vsi);
6120 
6121 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6122 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6123 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6124 			return -EINVAL;
6125 		}
6126 	}
6127 
6128 	if (new_mtu < (int)netdev->min_mtu) {
6129 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6130 			   netdev->min_mtu);
6131 		return -EINVAL;
6132 	} else if (new_mtu > (int)netdev->max_mtu) {
6133 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6134 			   netdev->min_mtu);
6135 		return -EINVAL;
6136 	}
6137 	/* if a reset is in progress, wait for some time for it to complete */
6138 	do {
6139 		if (ice_is_reset_in_progress(pf->state)) {
6140 			count++;
6141 			usleep_range(1000, 2000);
6142 		} else {
6143 			break;
6144 		}
6145 
6146 	} while (count < 100);
6147 
6148 	if (count == 100) {
6149 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6150 		return -EBUSY;
6151 	}
6152 
6153 	netdev->mtu = (unsigned int)new_mtu;
6154 
6155 	/* if VSI is up, bring it down and then back up */
6156 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6157 		int err;
6158 
6159 		err = ice_down(vsi);
6160 		if (err) {
6161 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6162 			return err;
6163 		}
6164 
6165 		err = ice_up(vsi);
6166 		if (err) {
6167 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6168 			return err;
6169 		}
6170 	}
6171 
6172 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6173 	return 0;
6174 }
6175 
6176 /**
6177  * ice_aq_str - convert AQ err code to a string
6178  * @aq_err: the AQ error code to convert
6179  */
6180 const char *ice_aq_str(enum ice_aq_err aq_err)
6181 {
6182 	switch (aq_err) {
6183 	case ICE_AQ_RC_OK:
6184 		return "OK";
6185 	case ICE_AQ_RC_EPERM:
6186 		return "ICE_AQ_RC_EPERM";
6187 	case ICE_AQ_RC_ENOENT:
6188 		return "ICE_AQ_RC_ENOENT";
6189 	case ICE_AQ_RC_ENOMEM:
6190 		return "ICE_AQ_RC_ENOMEM";
6191 	case ICE_AQ_RC_EBUSY:
6192 		return "ICE_AQ_RC_EBUSY";
6193 	case ICE_AQ_RC_EEXIST:
6194 		return "ICE_AQ_RC_EEXIST";
6195 	case ICE_AQ_RC_EINVAL:
6196 		return "ICE_AQ_RC_EINVAL";
6197 	case ICE_AQ_RC_ENOSPC:
6198 		return "ICE_AQ_RC_ENOSPC";
6199 	case ICE_AQ_RC_ENOSYS:
6200 		return "ICE_AQ_RC_ENOSYS";
6201 	case ICE_AQ_RC_EMODE:
6202 		return "ICE_AQ_RC_EMODE";
6203 	case ICE_AQ_RC_ENOSEC:
6204 		return "ICE_AQ_RC_ENOSEC";
6205 	case ICE_AQ_RC_EBADSIG:
6206 		return "ICE_AQ_RC_EBADSIG";
6207 	case ICE_AQ_RC_ESVN:
6208 		return "ICE_AQ_RC_ESVN";
6209 	case ICE_AQ_RC_EBADMAN:
6210 		return "ICE_AQ_RC_EBADMAN";
6211 	case ICE_AQ_RC_EBADBUF:
6212 		return "ICE_AQ_RC_EBADBUF";
6213 	}
6214 
6215 	return "ICE_AQ_RC_UNKNOWN";
6216 }
6217 
6218 /**
6219  * ice_stat_str - convert status err code to a string
6220  * @stat_err: the status error code to convert
6221  */
6222 const char *ice_stat_str(enum ice_status stat_err)
6223 {
6224 	switch (stat_err) {
6225 	case ICE_SUCCESS:
6226 		return "OK";
6227 	case ICE_ERR_PARAM:
6228 		return "ICE_ERR_PARAM";
6229 	case ICE_ERR_NOT_IMPL:
6230 		return "ICE_ERR_NOT_IMPL";
6231 	case ICE_ERR_NOT_READY:
6232 		return "ICE_ERR_NOT_READY";
6233 	case ICE_ERR_NOT_SUPPORTED:
6234 		return "ICE_ERR_NOT_SUPPORTED";
6235 	case ICE_ERR_BAD_PTR:
6236 		return "ICE_ERR_BAD_PTR";
6237 	case ICE_ERR_INVAL_SIZE:
6238 		return "ICE_ERR_INVAL_SIZE";
6239 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6240 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6241 	case ICE_ERR_RESET_FAILED:
6242 		return "ICE_ERR_RESET_FAILED";
6243 	case ICE_ERR_FW_API_VER:
6244 		return "ICE_ERR_FW_API_VER";
6245 	case ICE_ERR_NO_MEMORY:
6246 		return "ICE_ERR_NO_MEMORY";
6247 	case ICE_ERR_CFG:
6248 		return "ICE_ERR_CFG";
6249 	case ICE_ERR_OUT_OF_RANGE:
6250 		return "ICE_ERR_OUT_OF_RANGE";
6251 	case ICE_ERR_ALREADY_EXISTS:
6252 		return "ICE_ERR_ALREADY_EXISTS";
6253 	case ICE_ERR_NVM_CHECKSUM:
6254 		return "ICE_ERR_NVM_CHECKSUM";
6255 	case ICE_ERR_BUF_TOO_SHORT:
6256 		return "ICE_ERR_BUF_TOO_SHORT";
6257 	case ICE_ERR_NVM_BLANK_MODE:
6258 		return "ICE_ERR_NVM_BLANK_MODE";
6259 	case ICE_ERR_IN_USE:
6260 		return "ICE_ERR_IN_USE";
6261 	case ICE_ERR_MAX_LIMIT:
6262 		return "ICE_ERR_MAX_LIMIT";
6263 	case ICE_ERR_RESET_ONGOING:
6264 		return "ICE_ERR_RESET_ONGOING";
6265 	case ICE_ERR_HW_TABLE:
6266 		return "ICE_ERR_HW_TABLE";
6267 	case ICE_ERR_DOES_NOT_EXIST:
6268 		return "ICE_ERR_DOES_NOT_EXIST";
6269 	case ICE_ERR_FW_DDP_MISMATCH:
6270 		return "ICE_ERR_FW_DDP_MISMATCH";
6271 	case ICE_ERR_AQ_ERROR:
6272 		return "ICE_ERR_AQ_ERROR";
6273 	case ICE_ERR_AQ_TIMEOUT:
6274 		return "ICE_ERR_AQ_TIMEOUT";
6275 	case ICE_ERR_AQ_FULL:
6276 		return "ICE_ERR_AQ_FULL";
6277 	case ICE_ERR_AQ_NO_WORK:
6278 		return "ICE_ERR_AQ_NO_WORK";
6279 	case ICE_ERR_AQ_EMPTY:
6280 		return "ICE_ERR_AQ_EMPTY";
6281 	case ICE_ERR_AQ_FW_CRITICAL:
6282 		return "ICE_ERR_AQ_FW_CRITICAL";
6283 	}
6284 
6285 	return "ICE_ERR_UNKNOWN";
6286 }
6287 
6288 /**
6289  * ice_set_rss - Set RSS keys and lut
6290  * @vsi: Pointer to VSI structure
6291  * @seed: RSS hash seed
6292  * @lut: Lookup table
6293  * @lut_size: Lookup table size
6294  *
6295  * Returns 0 on success, negative on failure
6296  */
6297 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6298 {
6299 	struct ice_pf *pf = vsi->back;
6300 	struct ice_hw *hw = &pf->hw;
6301 	enum ice_status status;
6302 	struct device *dev;
6303 
6304 	dev = ice_pf_to_dev(pf);
6305 	if (seed) {
6306 		struct ice_aqc_get_set_rss_keys *buf =
6307 				  (struct ice_aqc_get_set_rss_keys *)seed;
6308 
6309 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6310 
6311 		if (status) {
6312 			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6313 				ice_stat_str(status),
6314 				ice_aq_str(hw->adminq.sq_last_status));
6315 			return -EIO;
6316 		}
6317 	}
6318 
6319 	if (lut) {
6320 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6321 					    lut, lut_size);
6322 		if (status) {
6323 			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6324 				ice_stat_str(status),
6325 				ice_aq_str(hw->adminq.sq_last_status));
6326 			return -EIO;
6327 		}
6328 	}
6329 
6330 	return 0;
6331 }
6332 
6333 /**
6334  * ice_get_rss - Get RSS keys and lut
6335  * @vsi: Pointer to VSI structure
6336  * @seed: Buffer to store the keys
6337  * @lut: Buffer to store the lookup table entries
6338  * @lut_size: Size of buffer to store the lookup table entries
6339  *
6340  * Returns 0 on success, negative on failure
6341  */
6342 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6343 {
6344 	struct ice_pf *pf = vsi->back;
6345 	struct ice_hw *hw = &pf->hw;
6346 	enum ice_status status;
6347 	struct device *dev;
6348 
6349 	dev = ice_pf_to_dev(pf);
6350 	if (seed) {
6351 		struct ice_aqc_get_set_rss_keys *buf =
6352 				  (struct ice_aqc_get_set_rss_keys *)seed;
6353 
6354 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6355 		if (status) {
6356 			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6357 				ice_stat_str(status),
6358 				ice_aq_str(hw->adminq.sq_last_status));
6359 			return -EIO;
6360 		}
6361 	}
6362 
6363 	if (lut) {
6364 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6365 					    lut, lut_size);
6366 		if (status) {
6367 			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6368 				ice_stat_str(status),
6369 				ice_aq_str(hw->adminq.sq_last_status));
6370 			return -EIO;
6371 		}
6372 	}
6373 
6374 	return 0;
6375 }
6376 
6377 /**
6378  * ice_bridge_getlink - Get the hardware bridge mode
6379  * @skb: skb buff
6380  * @pid: process ID
6381  * @seq: RTNL message seq
6382  * @dev: the netdev being configured
6383  * @filter_mask: filter mask passed in
6384  * @nlflags: netlink flags passed in
6385  *
6386  * Return the bridge mode (VEB/VEPA)
6387  */
6388 static int
6389 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6390 		   struct net_device *dev, u32 filter_mask, int nlflags)
6391 {
6392 	struct ice_netdev_priv *np = netdev_priv(dev);
6393 	struct ice_vsi *vsi = np->vsi;
6394 	struct ice_pf *pf = vsi->back;
6395 	u16 bmode;
6396 
6397 	bmode = pf->first_sw->bridge_mode;
6398 
6399 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6400 				       filter_mask, NULL);
6401 }
6402 
6403 /**
6404  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6405  * @vsi: Pointer to VSI structure
6406  * @bmode: Hardware bridge mode (VEB/VEPA)
6407  *
6408  * Returns 0 on success, negative on failure
6409  */
6410 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6411 {
6412 	struct ice_aqc_vsi_props *vsi_props;
6413 	struct ice_hw *hw = &vsi->back->hw;
6414 	struct ice_vsi_ctx *ctxt;
6415 	enum ice_status status;
6416 	int ret = 0;
6417 
6418 	vsi_props = &vsi->info;
6419 
6420 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6421 	if (!ctxt)
6422 		return -ENOMEM;
6423 
6424 	ctxt->info = vsi->info;
6425 
6426 	if (bmode == BRIDGE_MODE_VEB)
6427 		/* change from VEPA to VEB mode */
6428 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6429 	else
6430 		/* change from VEB to VEPA mode */
6431 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6432 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6433 
6434 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6435 	if (status) {
6436 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6437 			bmode, ice_stat_str(status),
6438 			ice_aq_str(hw->adminq.sq_last_status));
6439 		ret = -EIO;
6440 		goto out;
6441 	}
6442 	/* Update sw flags for book keeping */
6443 	vsi_props->sw_flags = ctxt->info.sw_flags;
6444 
6445 out:
6446 	kfree(ctxt);
6447 	return ret;
6448 }
6449 
6450 /**
6451  * ice_bridge_setlink - Set the hardware bridge mode
6452  * @dev: the netdev being configured
6453  * @nlh: RTNL message
6454  * @flags: bridge setlink flags
6455  * @extack: netlink extended ack
6456  *
6457  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6458  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6459  * not already set for all VSIs connected to this switch. And also update the
6460  * unicast switch filter rules for the corresponding switch of the netdev.
6461  */
6462 static int
6463 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6464 		   u16 __always_unused flags,
6465 		   struct netlink_ext_ack __always_unused *extack)
6466 {
6467 	struct ice_netdev_priv *np = netdev_priv(dev);
6468 	struct ice_pf *pf = np->vsi->back;
6469 	struct nlattr *attr, *br_spec;
6470 	struct ice_hw *hw = &pf->hw;
6471 	enum ice_status status;
6472 	struct ice_sw *pf_sw;
6473 	int rem, v, err = 0;
6474 
6475 	pf_sw = pf->first_sw;
6476 	/* find the attribute in the netlink message */
6477 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6478 
6479 	nla_for_each_nested(attr, br_spec, rem) {
6480 		__u16 mode;
6481 
6482 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6483 			continue;
6484 		mode = nla_get_u16(attr);
6485 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6486 			return -EINVAL;
6487 		/* Continue  if bridge mode is not being flipped */
6488 		if (mode == pf_sw->bridge_mode)
6489 			continue;
6490 		/* Iterates through the PF VSI list and update the loopback
6491 		 * mode of the VSI
6492 		 */
6493 		ice_for_each_vsi(pf, v) {
6494 			if (!pf->vsi[v])
6495 				continue;
6496 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6497 			if (err)
6498 				return err;
6499 		}
6500 
6501 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6502 		/* Update the unicast switch filter rules for the corresponding
6503 		 * switch of the netdev
6504 		 */
6505 		status = ice_update_sw_rule_bridge_mode(hw);
6506 		if (status) {
6507 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6508 				   mode, ice_stat_str(status),
6509 				   ice_aq_str(hw->adminq.sq_last_status));
6510 			/* revert hw->evb_veb */
6511 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6512 			return -EIO;
6513 		}
6514 
6515 		pf_sw->bridge_mode = mode;
6516 	}
6517 
6518 	return 0;
6519 }
6520 
6521 /**
6522  * ice_tx_timeout - Respond to a Tx Hang
6523  * @netdev: network interface device structure
6524  * @txqueue: Tx queue
6525  */
6526 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6527 {
6528 	struct ice_netdev_priv *np = netdev_priv(netdev);
6529 	struct ice_ring *tx_ring = NULL;
6530 	struct ice_vsi *vsi = np->vsi;
6531 	struct ice_pf *pf = vsi->back;
6532 	u32 i;
6533 
6534 	pf->tx_timeout_count++;
6535 
6536 	/* Check if PFC is enabled for the TC to which the queue belongs
6537 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6538 	 * need to reset and rebuild
6539 	 */
6540 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6541 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6542 			 txqueue);
6543 		return;
6544 	}
6545 
6546 	/* now that we have an index, find the tx_ring struct */
6547 	for (i = 0; i < vsi->num_txq; i++)
6548 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6549 			if (txqueue == vsi->tx_rings[i]->q_index) {
6550 				tx_ring = vsi->tx_rings[i];
6551 				break;
6552 			}
6553 
6554 	/* Reset recovery level if enough time has elapsed after last timeout.
6555 	 * Also ensure no new reset action happens before next timeout period.
6556 	 */
6557 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6558 		pf->tx_timeout_recovery_level = 1;
6559 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6560 				       netdev->watchdog_timeo)))
6561 		return;
6562 
6563 	if (tx_ring) {
6564 		struct ice_hw *hw = &pf->hw;
6565 		u32 head, val = 0;
6566 
6567 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6568 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6569 		/* Read interrupt register */
6570 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6571 
6572 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6573 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6574 			    head, tx_ring->next_to_use, val);
6575 	}
6576 
6577 	pf->tx_timeout_last_recovery = jiffies;
6578 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6579 		    pf->tx_timeout_recovery_level, txqueue);
6580 
6581 	switch (pf->tx_timeout_recovery_level) {
6582 	case 1:
6583 		set_bit(__ICE_PFR_REQ, pf->state);
6584 		break;
6585 	case 2:
6586 		set_bit(__ICE_CORER_REQ, pf->state);
6587 		break;
6588 	case 3:
6589 		set_bit(__ICE_GLOBR_REQ, pf->state);
6590 		break;
6591 	default:
6592 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6593 		set_bit(__ICE_DOWN, pf->state);
6594 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6595 		set_bit(__ICE_SERVICE_DIS, pf->state);
6596 		break;
6597 	}
6598 
6599 	ice_service_task_schedule(pf);
6600 	pf->tx_timeout_recovery_level++;
6601 }
6602 
6603 /**
6604  * ice_open - Called when a network interface becomes active
6605  * @netdev: network interface device structure
6606  *
6607  * The open entry point is called when a network interface is made
6608  * active by the system (IFF_UP). At this point all resources needed
6609  * for transmit and receive operations are allocated, the interrupt
6610  * handler is registered with the OS, the netdev watchdog is enabled,
6611  * and the stack is notified that the interface is ready.
6612  *
6613  * Returns 0 on success, negative value on failure
6614  */
6615 int ice_open(struct net_device *netdev)
6616 {
6617 	struct ice_netdev_priv *np = netdev_priv(netdev);
6618 	struct ice_vsi *vsi = np->vsi;
6619 	struct ice_pf *pf = vsi->back;
6620 	struct ice_port_info *pi;
6621 	int err;
6622 
6623 	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6624 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6625 		return -EIO;
6626 	}
6627 
6628 	if (test_bit(__ICE_DOWN, pf->state)) {
6629 		netdev_err(netdev, "device is not ready yet\n");
6630 		return -EBUSY;
6631 	}
6632 
6633 	netif_carrier_off(netdev);
6634 
6635 	pi = vsi->port_info;
6636 	err = ice_update_link_info(pi);
6637 	if (err) {
6638 		netdev_err(netdev, "Failed to get link info, error %d\n",
6639 			   err);
6640 		return err;
6641 	}
6642 
6643 	/* Set PHY if there is media, otherwise, turn off PHY */
6644 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6645 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6646 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6647 			err = ice_init_phy_user_cfg(pi);
6648 			if (err) {
6649 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6650 					   err);
6651 				return err;
6652 			}
6653 		}
6654 
6655 		err = ice_configure_phy(vsi);
6656 		if (err) {
6657 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6658 				   err);
6659 			return err;
6660 		}
6661 	} else {
6662 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6663 		err = ice_aq_set_link_restart_an(pi, false, NULL);
6664 		if (err) {
6665 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6666 				   vsi->vsi_num, err);
6667 			return err;
6668 		}
6669 	}
6670 
6671 	err = ice_vsi_open(vsi);
6672 	if (err)
6673 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6674 			   vsi->vsi_num, vsi->vsw->sw_id);
6675 
6676 	/* Update existing tunnels information */
6677 	udp_tunnel_get_rx_info(netdev);
6678 
6679 	return err;
6680 }
6681 
6682 /**
6683  * ice_stop - Disables a network interface
6684  * @netdev: network interface device structure
6685  *
6686  * The stop entry point is called when an interface is de-activated by the OS,
6687  * and the netdevice enters the DOWN state. The hardware is still under the
6688  * driver's control, but the netdev interface is disabled.
6689  *
6690  * Returns success only - not allowed to fail
6691  */
6692 int ice_stop(struct net_device *netdev)
6693 {
6694 	struct ice_netdev_priv *np = netdev_priv(netdev);
6695 	struct ice_vsi *vsi = np->vsi;
6696 
6697 	ice_vsi_close(vsi);
6698 
6699 	return 0;
6700 }
6701 
6702 /**
6703  * ice_features_check - Validate encapsulated packet conforms to limits
6704  * @skb: skb buffer
6705  * @netdev: This port's netdev
6706  * @features: Offload features that the stack believes apply
6707  */
6708 static netdev_features_t
6709 ice_features_check(struct sk_buff *skb,
6710 		   struct net_device __always_unused *netdev,
6711 		   netdev_features_t features)
6712 {
6713 	size_t len;
6714 
6715 	/* No point in doing any of this if neither checksum nor GSO are
6716 	 * being requested for this frame. We can rule out both by just
6717 	 * checking for CHECKSUM_PARTIAL
6718 	 */
6719 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6720 		return features;
6721 
6722 	/* We cannot support GSO if the MSS is going to be less than
6723 	 * 64 bytes. If it is then we need to drop support for GSO.
6724 	 */
6725 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6726 		features &= ~NETIF_F_GSO_MASK;
6727 
6728 	len = skb_network_header(skb) - skb->data;
6729 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6730 		goto out_rm_features;
6731 
6732 	len = skb_transport_header(skb) - skb_network_header(skb);
6733 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6734 		goto out_rm_features;
6735 
6736 	if (skb->encapsulation) {
6737 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6738 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6739 			goto out_rm_features;
6740 
6741 		len = skb_inner_transport_header(skb) -
6742 		      skb_inner_network_header(skb);
6743 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6744 			goto out_rm_features;
6745 	}
6746 
6747 	return features;
6748 out_rm_features:
6749 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6750 }
6751 
6752 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6753 	.ndo_open = ice_open,
6754 	.ndo_stop = ice_stop,
6755 	.ndo_start_xmit = ice_start_xmit,
6756 	.ndo_set_mac_address = ice_set_mac_address,
6757 	.ndo_validate_addr = eth_validate_addr,
6758 	.ndo_change_mtu = ice_change_mtu,
6759 	.ndo_get_stats64 = ice_get_stats64,
6760 	.ndo_tx_timeout = ice_tx_timeout,
6761 };
6762 
6763 static const struct net_device_ops ice_netdev_ops = {
6764 	.ndo_open = ice_open,
6765 	.ndo_stop = ice_stop,
6766 	.ndo_start_xmit = ice_start_xmit,
6767 	.ndo_features_check = ice_features_check,
6768 	.ndo_set_rx_mode = ice_set_rx_mode,
6769 	.ndo_set_mac_address = ice_set_mac_address,
6770 	.ndo_validate_addr = eth_validate_addr,
6771 	.ndo_change_mtu = ice_change_mtu,
6772 	.ndo_get_stats64 = ice_get_stats64,
6773 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6774 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6775 	.ndo_set_vf_mac = ice_set_vf_mac,
6776 	.ndo_get_vf_config = ice_get_vf_cfg,
6777 	.ndo_set_vf_trust = ice_set_vf_trust,
6778 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6779 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6780 	.ndo_get_vf_stats = ice_get_vf_stats,
6781 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6782 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6783 	.ndo_set_features = ice_set_features,
6784 	.ndo_bridge_getlink = ice_bridge_getlink,
6785 	.ndo_bridge_setlink = ice_bridge_setlink,
6786 	.ndo_fdb_add = ice_fdb_add,
6787 	.ndo_fdb_del = ice_fdb_del,
6788 #ifdef CONFIG_RFS_ACCEL
6789 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6790 #endif
6791 	.ndo_tx_timeout = ice_tx_timeout,
6792 	.ndo_bpf = ice_xdp,
6793 	.ndo_xdp_xmit = ice_xdp_xmit,
6794 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6795 	.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6796 	.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6797 };
6798