1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_lib.h" 11 #include "ice_fltr.h" 12 #include "ice_dcb_lib.h" 13 #include "ice_dcb_nl.h" 14 #include "ice_devlink.h" 15 16 #define DRV_VERSION_MAJOR 0 17 #define DRV_VERSION_MINOR 8 18 #define DRV_VERSION_BUILD 2 19 20 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 21 __stringify(DRV_VERSION_MINOR) "." \ 22 __stringify(DRV_VERSION_BUILD) "-k" 23 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 24 const char ice_drv_ver[] = DRV_VERSION; 25 static const char ice_driver_string[] = DRV_SUMMARY; 26 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 27 28 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 29 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 30 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 31 32 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 33 MODULE_DESCRIPTION(DRV_SUMMARY); 34 MODULE_LICENSE("GPL v2"); 35 MODULE_VERSION(DRV_VERSION); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static struct workqueue_struct *ice_wq; 47 static const struct net_device_ops ice_netdev_safe_mode_ops; 48 static const struct net_device_ops ice_netdev_ops; 49 static int ice_vsi_open(struct ice_vsi *vsi); 50 51 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 52 53 static void ice_vsi_release_all(struct ice_pf *pf); 54 55 /** 56 * ice_get_tx_pending - returns number of Tx descriptors not processed 57 * @ring: the ring of descriptors 58 */ 59 static u16 ice_get_tx_pending(struct ice_ring *ring) 60 { 61 u16 head, tail; 62 63 head = ring->next_to_clean; 64 tail = ring->next_to_use; 65 66 if (head != tail) 67 return (head < tail) ? 68 tail - head : (tail + ring->count - head); 69 return 0; 70 } 71 72 /** 73 * ice_check_for_hang_subtask - check for and recover hung queues 74 * @pf: pointer to PF struct 75 */ 76 static void ice_check_for_hang_subtask(struct ice_pf *pf) 77 { 78 struct ice_vsi *vsi = NULL; 79 struct ice_hw *hw; 80 unsigned int i; 81 int packets; 82 u32 v; 83 84 ice_for_each_vsi(pf, v) 85 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 86 vsi = pf->vsi[v]; 87 break; 88 } 89 90 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 91 return; 92 93 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 94 return; 95 96 hw = &vsi->back->hw; 97 98 for (i = 0; i < vsi->num_txq; i++) { 99 struct ice_ring *tx_ring = vsi->tx_rings[i]; 100 101 if (tx_ring && tx_ring->desc) { 102 /* If packet counter has not changed the queue is 103 * likely stalled, so force an interrupt for this 104 * queue. 105 * 106 * prev_pkt would be negative if there was no 107 * pending work. 108 */ 109 packets = tx_ring->stats.pkts & INT_MAX; 110 if (tx_ring->tx_stats.prev_pkt == packets) { 111 /* Trigger sw interrupt to revive the queue */ 112 ice_trigger_sw_intr(hw, tx_ring->q_vector); 113 continue; 114 } 115 116 /* Memory barrier between read of packet count and call 117 * to ice_get_tx_pending() 118 */ 119 smp_rmb(); 120 tx_ring->tx_stats.prev_pkt = 121 ice_get_tx_pending(tx_ring) ? packets : -1; 122 } 123 } 124 } 125 126 /** 127 * ice_init_mac_fltr - Set initial MAC filters 128 * @pf: board private structure 129 * 130 * Set initial set of MAC filters for PF VSI; configure filters for permanent 131 * address and broadcast address. If an error is encountered, netdevice will be 132 * unregistered. 133 */ 134 static int ice_init_mac_fltr(struct ice_pf *pf) 135 { 136 enum ice_status status; 137 struct ice_vsi *vsi; 138 u8 *perm_addr; 139 140 vsi = ice_get_main_vsi(pf); 141 if (!vsi) 142 return -EINVAL; 143 144 perm_addr = vsi->port_info->mac.perm_addr; 145 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 146 if (!status) 147 return 0; 148 149 /* We aren't useful with no MAC filters, so unregister if we 150 * had an error 151 */ 152 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 153 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 154 ice_stat_str(status)); 155 unregister_netdev(vsi->netdev); 156 free_netdev(vsi->netdev); 157 vsi->netdev = NULL; 158 } 159 160 return -EIO; 161 } 162 163 /** 164 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 165 * @netdev: the net device on which the sync is happening 166 * @addr: MAC address to sync 167 * 168 * This is a callback function which is called by the in kernel device sync 169 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 170 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 171 * MAC filters from the hardware. 172 */ 173 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 174 { 175 struct ice_netdev_priv *np = netdev_priv(netdev); 176 struct ice_vsi *vsi = np->vsi; 177 178 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 179 ICE_FWD_TO_VSI)) 180 return -EINVAL; 181 182 return 0; 183 } 184 185 /** 186 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 187 * @netdev: the net device on which the unsync is happening 188 * @addr: MAC address to unsync 189 * 190 * This is a callback function which is called by the in kernel device unsync 191 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 192 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 193 * delete the MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_vsi_fltr_changed - check if filter state changed 209 * @vsi: VSI to be checked 210 * 211 * returns true if filter state has changed, false otherwise. 212 */ 213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 214 { 215 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 216 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 217 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 218 } 219 220 /** 221 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 222 * @vsi: the VSI being configured 223 * @promisc_m: mask of promiscuous config bits 224 * @set_promisc: enable or disable promisc flag request 225 * 226 */ 227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 228 { 229 struct ice_hw *hw = &vsi->back->hw; 230 enum ice_status status = 0; 231 232 if (vsi->type != ICE_VSI_PF) 233 return 0; 234 235 if (vsi->vlan_ena) { 236 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 237 set_promisc); 238 } else { 239 if (set_promisc) 240 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 241 0); 242 else 243 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 244 0); 245 } 246 247 if (status) 248 return -EIO; 249 250 return 0; 251 } 252 253 /** 254 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 255 * @vsi: ptr to the VSI 256 * 257 * Push any outstanding VSI filter changes through the AdminQ. 258 */ 259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 260 { 261 struct device *dev = ice_pf_to_dev(vsi->back); 262 struct net_device *netdev = vsi->netdev; 263 bool promisc_forced_on = false; 264 struct ice_pf *pf = vsi->back; 265 struct ice_hw *hw = &pf->hw; 266 enum ice_status status = 0; 267 u32 changed_flags = 0; 268 u8 promisc_m; 269 int err = 0; 270 271 if (!vsi->netdev) 272 return -EINVAL; 273 274 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 275 usleep_range(1000, 2000); 276 277 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 278 vsi->current_netdev_flags = vsi->netdev->flags; 279 280 INIT_LIST_HEAD(&vsi->tmp_sync_list); 281 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 282 283 if (ice_vsi_fltr_changed(vsi)) { 284 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 285 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 286 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 287 288 /* grab the netdev's addr_list_lock */ 289 netif_addr_lock_bh(netdev); 290 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 291 ice_add_mac_to_unsync_list); 292 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 293 ice_add_mac_to_unsync_list); 294 /* our temp lists are populated. release lock */ 295 netif_addr_unlock_bh(netdev); 296 } 297 298 /* Remove MAC addresses in the unsync list */ 299 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 300 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 301 if (status) { 302 netdev_err(netdev, "Failed to delete MAC filters\n"); 303 /* if we failed because of alloc failures, just bail */ 304 if (status == ICE_ERR_NO_MEMORY) { 305 err = -ENOMEM; 306 goto out; 307 } 308 } 309 310 /* Add MAC addresses in the sync list */ 311 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 312 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 313 /* If filter is added successfully or already exists, do not go into 314 * 'if' condition and report it as error. Instead continue processing 315 * rest of the function. 316 */ 317 if (status && status != ICE_ERR_ALREADY_EXISTS) { 318 netdev_err(netdev, "Failed to add MAC filters\n"); 319 /* If there is no more space for new umac filters, VSI 320 * should go into promiscuous mode. There should be some 321 * space reserved for promiscuous filters. 322 */ 323 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 324 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 325 vsi->state)) { 326 promisc_forced_on = true; 327 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 328 vsi->vsi_num); 329 } else { 330 err = -EIO; 331 goto out; 332 } 333 } 334 /* check for changes in promiscuous modes */ 335 if (changed_flags & IFF_ALLMULTI) { 336 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 337 if (vsi->vlan_ena) 338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 339 else 340 promisc_m = ICE_MCAST_PROMISC_BITS; 341 342 err = ice_cfg_promisc(vsi, promisc_m, true); 343 if (err) { 344 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 345 vsi->vsi_num); 346 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 347 goto out_promisc; 348 } 349 } else { 350 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 351 if (vsi->vlan_ena) 352 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 353 else 354 promisc_m = ICE_MCAST_PROMISC_BITS; 355 356 err = ice_cfg_promisc(vsi, promisc_m, false); 357 if (err) { 358 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 359 vsi->vsi_num); 360 vsi->current_netdev_flags |= IFF_ALLMULTI; 361 goto out_promisc; 362 } 363 } 364 } 365 366 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 367 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 368 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 369 if (vsi->current_netdev_flags & IFF_PROMISC) { 370 /* Apply Rx filter rule to get traffic from wire */ 371 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 372 err = ice_set_dflt_vsi(pf->first_sw, vsi); 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 375 err, vsi->vsi_num); 376 vsi->current_netdev_flags &= 377 ~IFF_PROMISC; 378 goto out_promisc; 379 } 380 } 381 } else { 382 /* Clear Rx filter to remove traffic from wire */ 383 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 384 err = ice_clear_dflt_vsi(pf->first_sw); 385 if (err) { 386 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 387 err, vsi->vsi_num); 388 vsi->current_netdev_flags |= 389 IFF_PROMISC; 390 goto out_promisc; 391 } 392 } 393 } 394 } 395 goto exit; 396 397 out_promisc: 398 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 399 goto exit; 400 out: 401 /* if something went wrong then set the changed flag so we try again */ 402 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 403 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 404 exit: 405 clear_bit(__ICE_CFG_BUSY, vsi->state); 406 return err; 407 } 408 409 /** 410 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 411 * @pf: board private structure 412 */ 413 static void ice_sync_fltr_subtask(struct ice_pf *pf) 414 { 415 int v; 416 417 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 418 return; 419 420 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 421 422 ice_for_each_vsi(pf, v) 423 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 424 ice_vsi_sync_fltr(pf->vsi[v])) { 425 /* come back and try again later */ 426 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 427 break; 428 } 429 } 430 431 /** 432 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 433 * @pf: the PF 434 * @locked: is the rtnl_lock already held 435 */ 436 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 437 { 438 int v; 439 440 ice_for_each_vsi(pf, v) 441 if (pf->vsi[v]) 442 ice_dis_vsi(pf->vsi[v], locked); 443 } 444 445 /** 446 * ice_prepare_for_reset - prep for the core to reset 447 * @pf: board private structure 448 * 449 * Inform or close all dependent features in prep for reset. 450 */ 451 static void 452 ice_prepare_for_reset(struct ice_pf *pf) 453 { 454 struct ice_hw *hw = &pf->hw; 455 unsigned int i; 456 457 /* already prepared for reset */ 458 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 459 return; 460 461 /* Notify VFs of impending reset */ 462 if (ice_check_sq_alive(hw, &hw->mailboxq)) 463 ice_vc_notify_reset(pf); 464 465 /* Disable VFs until reset is completed */ 466 ice_for_each_vf(pf, i) 467 ice_set_vf_state_qs_dis(&pf->vf[i]); 468 469 /* clear SW filtering DB */ 470 ice_clear_hw_tbls(hw); 471 /* disable the VSIs and their queues that are not already DOWN */ 472 ice_pf_dis_all_vsi(pf, false); 473 474 if (hw->port_info) 475 ice_sched_clear_port(hw->port_info); 476 477 ice_shutdown_all_ctrlq(hw); 478 479 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 480 } 481 482 /** 483 * ice_do_reset - Initiate one of many types of resets 484 * @pf: board private structure 485 * @reset_type: reset type requested 486 * before this function was called. 487 */ 488 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 489 { 490 struct device *dev = ice_pf_to_dev(pf); 491 struct ice_hw *hw = &pf->hw; 492 493 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 494 WARN_ON(in_interrupt()); 495 496 ice_prepare_for_reset(pf); 497 498 /* trigger the reset */ 499 if (ice_reset(hw, reset_type)) { 500 dev_err(dev, "reset %d failed\n", reset_type); 501 set_bit(__ICE_RESET_FAILED, pf->state); 502 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 503 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 504 clear_bit(__ICE_PFR_REQ, pf->state); 505 clear_bit(__ICE_CORER_REQ, pf->state); 506 clear_bit(__ICE_GLOBR_REQ, pf->state); 507 return; 508 } 509 510 /* PFR is a bit of a special case because it doesn't result in an OICR 511 * interrupt. So for PFR, rebuild after the reset and clear the reset- 512 * associated state bits. 513 */ 514 if (reset_type == ICE_RESET_PFR) { 515 pf->pfr_count++; 516 ice_rebuild(pf, reset_type); 517 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 518 clear_bit(__ICE_PFR_REQ, pf->state); 519 ice_reset_all_vfs(pf, true); 520 } 521 } 522 523 /** 524 * ice_reset_subtask - Set up for resetting the device and driver 525 * @pf: board private structure 526 */ 527 static void ice_reset_subtask(struct ice_pf *pf) 528 { 529 enum ice_reset_req reset_type = ICE_RESET_INVAL; 530 531 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 532 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 533 * of reset is pending and sets bits in pf->state indicating the reset 534 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 535 * prepare for pending reset if not already (for PF software-initiated 536 * global resets the software should already be prepared for it as 537 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 538 * by firmware or software on other PFs, that bit is not set so prepare 539 * for the reset now), poll for reset done, rebuild and return. 540 */ 541 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 542 /* Perform the largest reset requested */ 543 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 544 reset_type = ICE_RESET_CORER; 545 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 546 reset_type = ICE_RESET_GLOBR; 547 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 548 reset_type = ICE_RESET_EMPR; 549 /* return if no valid reset type requested */ 550 if (reset_type == ICE_RESET_INVAL) 551 return; 552 ice_prepare_for_reset(pf); 553 554 /* make sure we are ready to rebuild */ 555 if (ice_check_reset(&pf->hw)) { 556 set_bit(__ICE_RESET_FAILED, pf->state); 557 } else { 558 /* done with reset. start rebuild */ 559 pf->hw.reset_ongoing = false; 560 ice_rebuild(pf, reset_type); 561 /* clear bit to resume normal operations, but 562 * ICE_NEEDS_RESTART bit is set in case rebuild failed 563 */ 564 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 565 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 566 clear_bit(__ICE_PFR_REQ, pf->state); 567 clear_bit(__ICE_CORER_REQ, pf->state); 568 clear_bit(__ICE_GLOBR_REQ, pf->state); 569 ice_reset_all_vfs(pf, true); 570 } 571 572 return; 573 } 574 575 /* No pending resets to finish processing. Check for new resets */ 576 if (test_bit(__ICE_PFR_REQ, pf->state)) 577 reset_type = ICE_RESET_PFR; 578 if (test_bit(__ICE_CORER_REQ, pf->state)) 579 reset_type = ICE_RESET_CORER; 580 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 581 reset_type = ICE_RESET_GLOBR; 582 /* If no valid reset type requested just return */ 583 if (reset_type == ICE_RESET_INVAL) 584 return; 585 586 /* reset if not already down or busy */ 587 if (!test_bit(__ICE_DOWN, pf->state) && 588 !test_bit(__ICE_CFG_BUSY, pf->state)) { 589 ice_do_reset(pf, reset_type); 590 } 591 } 592 593 /** 594 * ice_print_topo_conflict - print topology conflict message 595 * @vsi: the VSI whose topology status is being checked 596 */ 597 static void ice_print_topo_conflict(struct ice_vsi *vsi) 598 { 599 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 600 case ICE_AQ_LINK_TOPO_CONFLICT: 601 case ICE_AQ_LINK_MEDIA_CONFLICT: 602 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 603 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 604 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 605 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 606 break; 607 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 608 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 609 break; 610 default: 611 break; 612 } 613 } 614 615 /** 616 * ice_print_link_msg - print link up or down message 617 * @vsi: the VSI whose link status is being queried 618 * @isup: boolean for if the link is now up or down 619 */ 620 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 621 { 622 struct ice_aqc_get_phy_caps_data *caps; 623 enum ice_status status; 624 const char *fec_req; 625 const char *speed; 626 const char *fec; 627 const char *fc; 628 const char *an; 629 630 if (!vsi) 631 return; 632 633 if (vsi->current_isup == isup) 634 return; 635 636 vsi->current_isup = isup; 637 638 if (!isup) { 639 netdev_info(vsi->netdev, "NIC Link is Down\n"); 640 return; 641 } 642 643 switch (vsi->port_info->phy.link_info.link_speed) { 644 case ICE_AQ_LINK_SPEED_100GB: 645 speed = "100 G"; 646 break; 647 case ICE_AQ_LINK_SPEED_50GB: 648 speed = "50 G"; 649 break; 650 case ICE_AQ_LINK_SPEED_40GB: 651 speed = "40 G"; 652 break; 653 case ICE_AQ_LINK_SPEED_25GB: 654 speed = "25 G"; 655 break; 656 case ICE_AQ_LINK_SPEED_20GB: 657 speed = "20 G"; 658 break; 659 case ICE_AQ_LINK_SPEED_10GB: 660 speed = "10 G"; 661 break; 662 case ICE_AQ_LINK_SPEED_5GB: 663 speed = "5 G"; 664 break; 665 case ICE_AQ_LINK_SPEED_2500MB: 666 speed = "2.5 G"; 667 break; 668 case ICE_AQ_LINK_SPEED_1000MB: 669 speed = "1 G"; 670 break; 671 case ICE_AQ_LINK_SPEED_100MB: 672 speed = "100 M"; 673 break; 674 default: 675 speed = "Unknown"; 676 break; 677 } 678 679 switch (vsi->port_info->fc.current_mode) { 680 case ICE_FC_FULL: 681 fc = "Rx/Tx"; 682 break; 683 case ICE_FC_TX_PAUSE: 684 fc = "Tx"; 685 break; 686 case ICE_FC_RX_PAUSE: 687 fc = "Rx"; 688 break; 689 case ICE_FC_NONE: 690 fc = "None"; 691 break; 692 default: 693 fc = "Unknown"; 694 break; 695 } 696 697 /* Get FEC mode based on negotiated link info */ 698 switch (vsi->port_info->phy.link_info.fec_info) { 699 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 700 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 701 fec = "RS-FEC"; 702 break; 703 case ICE_AQ_LINK_25G_KR_FEC_EN: 704 fec = "FC-FEC/BASE-R"; 705 break; 706 default: 707 fec = "NONE"; 708 break; 709 } 710 711 /* check if autoneg completed, might be false due to not supported */ 712 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 713 an = "True"; 714 else 715 an = "False"; 716 717 /* Get FEC mode requested based on PHY caps last SW configuration */ 718 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 719 if (!caps) { 720 fec_req = "Unknown"; 721 goto done; 722 } 723 724 status = ice_aq_get_phy_caps(vsi->port_info, false, 725 ICE_AQC_REPORT_SW_CFG, caps, NULL); 726 if (status) 727 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 728 729 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 730 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 731 fec_req = "RS-FEC"; 732 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 733 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 734 fec_req = "FC-FEC/BASE-R"; 735 else 736 fec_req = "NONE"; 737 738 kfree(caps); 739 740 done: 741 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 742 speed, fec_req, fec, an, fc); 743 ice_print_topo_conflict(vsi); 744 } 745 746 /** 747 * ice_vsi_link_event - update the VSI's netdev 748 * @vsi: the VSI on which the link event occurred 749 * @link_up: whether or not the VSI needs to be set up or down 750 */ 751 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 752 { 753 if (!vsi) 754 return; 755 756 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 757 return; 758 759 if (vsi->type == ICE_VSI_PF) { 760 if (link_up == netif_carrier_ok(vsi->netdev)) 761 return; 762 763 if (link_up) { 764 netif_carrier_on(vsi->netdev); 765 netif_tx_wake_all_queues(vsi->netdev); 766 } else { 767 netif_carrier_off(vsi->netdev); 768 netif_tx_stop_all_queues(vsi->netdev); 769 } 770 } 771 } 772 773 /** 774 * ice_link_event - process the link event 775 * @pf: PF that the link event is associated with 776 * @pi: port_info for the port that the link event is associated with 777 * @link_up: true if the physical link is up and false if it is down 778 * @link_speed: current link speed received from the link event 779 * 780 * Returns 0 on success and negative on failure 781 */ 782 static int 783 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 784 u16 link_speed) 785 { 786 struct device *dev = ice_pf_to_dev(pf); 787 struct ice_phy_info *phy_info; 788 struct ice_vsi *vsi; 789 u16 old_link_speed; 790 bool old_link; 791 int result; 792 793 phy_info = &pi->phy; 794 phy_info->link_info_old = phy_info->link_info; 795 796 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 797 old_link_speed = phy_info->link_info_old.link_speed; 798 799 /* update the link info structures and re-enable link events, 800 * don't bail on failure due to other book keeping needed 801 */ 802 result = ice_update_link_info(pi); 803 if (result) 804 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 805 pi->lport); 806 807 /* if the old link up/down and speed is the same as the new */ 808 if (link_up == old_link && link_speed == old_link_speed) 809 return result; 810 811 vsi = ice_get_main_vsi(pf); 812 if (!vsi || !vsi->port_info) 813 return -EINVAL; 814 815 /* turn off PHY if media was removed */ 816 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 817 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 818 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 819 820 result = ice_aq_set_link_restart_an(pi, false, NULL); 821 if (result) { 822 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 823 vsi->vsi_num, result); 824 return result; 825 } 826 } 827 828 ice_dcb_rebuild(pf); 829 ice_vsi_link_event(vsi, link_up); 830 ice_print_link_msg(vsi, link_up); 831 832 ice_vc_notify_link_state(pf); 833 834 return result; 835 } 836 837 /** 838 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 839 * @pf: board private structure 840 */ 841 static void ice_watchdog_subtask(struct ice_pf *pf) 842 { 843 int i; 844 845 /* if interface is down do nothing */ 846 if (test_bit(__ICE_DOWN, pf->state) || 847 test_bit(__ICE_CFG_BUSY, pf->state)) 848 return; 849 850 /* make sure we don't do these things too often */ 851 if (time_before(jiffies, 852 pf->serv_tmr_prev + pf->serv_tmr_period)) 853 return; 854 855 pf->serv_tmr_prev = jiffies; 856 857 /* Update the stats for active netdevs so the network stack 858 * can look at updated numbers whenever it cares to 859 */ 860 ice_update_pf_stats(pf); 861 ice_for_each_vsi(pf, i) 862 if (pf->vsi[i] && pf->vsi[i]->netdev) 863 ice_update_vsi_stats(pf->vsi[i]); 864 } 865 866 /** 867 * ice_init_link_events - enable/initialize link events 868 * @pi: pointer to the port_info instance 869 * 870 * Returns -EIO on failure, 0 on success 871 */ 872 static int ice_init_link_events(struct ice_port_info *pi) 873 { 874 u16 mask; 875 876 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 877 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 878 879 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 880 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 881 pi->lport); 882 return -EIO; 883 } 884 885 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 886 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 887 pi->lport); 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 /** 895 * ice_handle_link_event - handle link event via ARQ 896 * @pf: PF that the link event is associated with 897 * @event: event structure containing link status info 898 */ 899 static int 900 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 901 { 902 struct ice_aqc_get_link_status_data *link_data; 903 struct ice_port_info *port_info; 904 int status; 905 906 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 907 port_info = pf->hw.port_info; 908 if (!port_info) 909 return -EINVAL; 910 911 status = ice_link_event(pf, port_info, 912 !!(link_data->link_info & ICE_AQ_LINK_UP), 913 le16_to_cpu(link_data->link_speed)); 914 if (status) 915 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 916 status); 917 918 return status; 919 } 920 921 /** 922 * __ice_clean_ctrlq - helper function to clean controlq rings 923 * @pf: ptr to struct ice_pf 924 * @q_type: specific Control queue type 925 */ 926 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 927 { 928 struct device *dev = ice_pf_to_dev(pf); 929 struct ice_rq_event_info event; 930 struct ice_hw *hw = &pf->hw; 931 struct ice_ctl_q_info *cq; 932 u16 pending, i = 0; 933 const char *qtype; 934 u32 oldval, val; 935 936 /* Do not clean control queue if/when PF reset fails */ 937 if (test_bit(__ICE_RESET_FAILED, pf->state)) 938 return 0; 939 940 switch (q_type) { 941 case ICE_CTL_Q_ADMIN: 942 cq = &hw->adminq; 943 qtype = "Admin"; 944 break; 945 case ICE_CTL_Q_MAILBOX: 946 cq = &hw->mailboxq; 947 qtype = "Mailbox"; 948 break; 949 default: 950 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 951 return 0; 952 } 953 954 /* check for error indications - PF_xx_AxQLEN register layout for 955 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 956 */ 957 val = rd32(hw, cq->rq.len); 958 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 959 PF_FW_ARQLEN_ARQCRIT_M)) { 960 oldval = val; 961 if (val & PF_FW_ARQLEN_ARQVFE_M) 962 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 963 qtype); 964 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 965 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 966 qtype); 967 } 968 if (val & PF_FW_ARQLEN_ARQCRIT_M) 969 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 970 qtype); 971 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 972 PF_FW_ARQLEN_ARQCRIT_M); 973 if (oldval != val) 974 wr32(hw, cq->rq.len, val); 975 } 976 977 val = rd32(hw, cq->sq.len); 978 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 979 PF_FW_ATQLEN_ATQCRIT_M)) { 980 oldval = val; 981 if (val & PF_FW_ATQLEN_ATQVFE_M) 982 dev_dbg(dev, "%s Send Queue VF Error detected\n", 983 qtype); 984 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 985 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 986 qtype); 987 } 988 if (val & PF_FW_ATQLEN_ATQCRIT_M) 989 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 990 qtype); 991 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 992 PF_FW_ATQLEN_ATQCRIT_M); 993 if (oldval != val) 994 wr32(hw, cq->sq.len, val); 995 } 996 997 event.buf_len = cq->rq_buf_size; 998 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 999 if (!event.msg_buf) 1000 return 0; 1001 1002 do { 1003 enum ice_status ret; 1004 u16 opcode; 1005 1006 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1007 if (ret == ICE_ERR_AQ_NO_WORK) 1008 break; 1009 if (ret) { 1010 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1011 ice_stat_str(ret)); 1012 break; 1013 } 1014 1015 opcode = le16_to_cpu(event.desc.opcode); 1016 1017 switch (opcode) { 1018 case ice_aqc_opc_get_link_status: 1019 if (ice_handle_link_event(pf, &event)) 1020 dev_err(dev, "Could not handle link event\n"); 1021 break; 1022 case ice_aqc_opc_event_lan_overflow: 1023 ice_vf_lan_overflow_event(pf, &event); 1024 break; 1025 case ice_mbx_opc_send_msg_to_pf: 1026 ice_vc_process_vf_msg(pf, &event); 1027 break; 1028 case ice_aqc_opc_fw_logging: 1029 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1030 break; 1031 case ice_aqc_opc_lldp_set_mib_change: 1032 ice_dcb_process_lldp_set_mib_change(pf, &event); 1033 break; 1034 default: 1035 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1036 qtype, opcode); 1037 break; 1038 } 1039 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1040 1041 kfree(event.msg_buf); 1042 1043 return pending && (i == ICE_DFLT_IRQ_WORK); 1044 } 1045 1046 /** 1047 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1048 * @hw: pointer to hardware info 1049 * @cq: control queue information 1050 * 1051 * returns true if there are pending messages in a queue, false if there aren't 1052 */ 1053 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1054 { 1055 u16 ntu; 1056 1057 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1058 return cq->rq.next_to_clean != ntu; 1059 } 1060 1061 /** 1062 * ice_clean_adminq_subtask - clean the AdminQ rings 1063 * @pf: board private structure 1064 */ 1065 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1066 { 1067 struct ice_hw *hw = &pf->hw; 1068 1069 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1070 return; 1071 1072 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1073 return; 1074 1075 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1076 1077 /* There might be a situation where new messages arrive to a control 1078 * queue between processing the last message and clearing the 1079 * EVENT_PENDING bit. So before exiting, check queue head again (using 1080 * ice_ctrlq_pending) and process new messages if any. 1081 */ 1082 if (ice_ctrlq_pending(hw, &hw->adminq)) 1083 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1084 1085 ice_flush(hw); 1086 } 1087 1088 /** 1089 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1090 * @pf: board private structure 1091 */ 1092 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1093 { 1094 struct ice_hw *hw = &pf->hw; 1095 1096 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1097 return; 1098 1099 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1100 return; 1101 1102 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1103 1104 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1105 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1106 1107 ice_flush(hw); 1108 } 1109 1110 /** 1111 * ice_service_task_schedule - schedule the service task to wake up 1112 * @pf: board private structure 1113 * 1114 * If not already scheduled, this puts the task into the work queue. 1115 */ 1116 void ice_service_task_schedule(struct ice_pf *pf) 1117 { 1118 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1119 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1120 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1121 queue_work(ice_wq, &pf->serv_task); 1122 } 1123 1124 /** 1125 * ice_service_task_complete - finish up the service task 1126 * @pf: board private structure 1127 */ 1128 static void ice_service_task_complete(struct ice_pf *pf) 1129 { 1130 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1131 1132 /* force memory (pf->state) to sync before next service task */ 1133 smp_mb__before_atomic(); 1134 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1135 } 1136 1137 /** 1138 * ice_service_task_stop - stop service task and cancel works 1139 * @pf: board private structure 1140 */ 1141 static void ice_service_task_stop(struct ice_pf *pf) 1142 { 1143 set_bit(__ICE_SERVICE_DIS, pf->state); 1144 1145 if (pf->serv_tmr.function) 1146 del_timer_sync(&pf->serv_tmr); 1147 if (pf->serv_task.func) 1148 cancel_work_sync(&pf->serv_task); 1149 1150 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1151 } 1152 1153 /** 1154 * ice_service_task_restart - restart service task and schedule works 1155 * @pf: board private structure 1156 * 1157 * This function is needed for suspend and resume works (e.g WoL scenario) 1158 */ 1159 static void ice_service_task_restart(struct ice_pf *pf) 1160 { 1161 clear_bit(__ICE_SERVICE_DIS, pf->state); 1162 ice_service_task_schedule(pf); 1163 } 1164 1165 /** 1166 * ice_service_timer - timer callback to schedule service task 1167 * @t: pointer to timer_list 1168 */ 1169 static void ice_service_timer(struct timer_list *t) 1170 { 1171 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1172 1173 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1174 ice_service_task_schedule(pf); 1175 } 1176 1177 /** 1178 * ice_handle_mdd_event - handle malicious driver detect event 1179 * @pf: pointer to the PF structure 1180 * 1181 * Called from service task. OICR interrupt handler indicates MDD event. 1182 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1183 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1184 * disable the queue, the PF can be configured to reset the VF using ethtool 1185 * private flag mdd-auto-reset-vf. 1186 */ 1187 static void ice_handle_mdd_event(struct ice_pf *pf) 1188 { 1189 struct device *dev = ice_pf_to_dev(pf); 1190 struct ice_hw *hw = &pf->hw; 1191 unsigned int i; 1192 u32 reg; 1193 1194 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1195 /* Since the VF MDD event logging is rate limited, check if 1196 * there are pending MDD events. 1197 */ 1198 ice_print_vfs_mdd_events(pf); 1199 return; 1200 } 1201 1202 /* find what triggered an MDD event */ 1203 reg = rd32(hw, GL_MDET_TX_PQM); 1204 if (reg & GL_MDET_TX_PQM_VALID_M) { 1205 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1206 GL_MDET_TX_PQM_PF_NUM_S; 1207 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1208 GL_MDET_TX_PQM_VF_NUM_S; 1209 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1210 GL_MDET_TX_PQM_MAL_TYPE_S; 1211 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1212 GL_MDET_TX_PQM_QNUM_S); 1213 1214 if (netif_msg_tx_err(pf)) 1215 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1216 event, queue, pf_num, vf_num); 1217 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1218 } 1219 1220 reg = rd32(hw, GL_MDET_TX_TCLAN); 1221 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1222 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1223 GL_MDET_TX_TCLAN_PF_NUM_S; 1224 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1225 GL_MDET_TX_TCLAN_VF_NUM_S; 1226 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1227 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1228 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1229 GL_MDET_TX_TCLAN_QNUM_S); 1230 1231 if (netif_msg_tx_err(pf)) 1232 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1233 event, queue, pf_num, vf_num); 1234 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1235 } 1236 1237 reg = rd32(hw, GL_MDET_RX); 1238 if (reg & GL_MDET_RX_VALID_M) { 1239 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1240 GL_MDET_RX_PF_NUM_S; 1241 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1242 GL_MDET_RX_VF_NUM_S; 1243 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1244 GL_MDET_RX_MAL_TYPE_S; 1245 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1246 GL_MDET_RX_QNUM_S); 1247 1248 if (netif_msg_rx_err(pf)) 1249 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1250 event, queue, pf_num, vf_num); 1251 wr32(hw, GL_MDET_RX, 0xffffffff); 1252 } 1253 1254 /* check to see if this PF caused an MDD event */ 1255 reg = rd32(hw, PF_MDET_TX_PQM); 1256 if (reg & PF_MDET_TX_PQM_VALID_M) { 1257 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1258 if (netif_msg_tx_err(pf)) 1259 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1260 } 1261 1262 reg = rd32(hw, PF_MDET_TX_TCLAN); 1263 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1264 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1265 if (netif_msg_tx_err(pf)) 1266 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1267 } 1268 1269 reg = rd32(hw, PF_MDET_RX); 1270 if (reg & PF_MDET_RX_VALID_M) { 1271 wr32(hw, PF_MDET_RX, 0xFFFF); 1272 if (netif_msg_rx_err(pf)) 1273 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1274 } 1275 1276 /* Check to see if one of the VFs caused an MDD event, and then 1277 * increment counters and set print pending 1278 */ 1279 ice_for_each_vf(pf, i) { 1280 struct ice_vf *vf = &pf->vf[i]; 1281 1282 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1283 if (reg & VP_MDET_TX_PQM_VALID_M) { 1284 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1285 vf->mdd_tx_events.count++; 1286 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1287 if (netif_msg_tx_err(pf)) 1288 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1289 i); 1290 } 1291 1292 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1293 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1294 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1295 vf->mdd_tx_events.count++; 1296 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1297 if (netif_msg_tx_err(pf)) 1298 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1299 i); 1300 } 1301 1302 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1303 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1304 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1305 vf->mdd_tx_events.count++; 1306 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1307 if (netif_msg_tx_err(pf)) 1308 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1309 i); 1310 } 1311 1312 reg = rd32(hw, VP_MDET_RX(i)); 1313 if (reg & VP_MDET_RX_VALID_M) { 1314 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1315 vf->mdd_rx_events.count++; 1316 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1317 if (netif_msg_rx_err(pf)) 1318 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1319 i); 1320 1321 /* Since the queue is disabled on VF Rx MDD events, the 1322 * PF can be configured to reset the VF through ethtool 1323 * private flag mdd-auto-reset-vf. 1324 */ 1325 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1326 /* VF MDD event counters will be cleared by 1327 * reset, so print the event prior to reset. 1328 */ 1329 ice_print_vf_rx_mdd_event(vf); 1330 ice_reset_vf(&pf->vf[i], false); 1331 } 1332 } 1333 } 1334 1335 ice_print_vfs_mdd_events(pf); 1336 } 1337 1338 /** 1339 * ice_force_phys_link_state - Force the physical link state 1340 * @vsi: VSI to force the physical link state to up/down 1341 * @link_up: true/false indicates to set the physical link to up/down 1342 * 1343 * Force the physical link state by getting the current PHY capabilities from 1344 * hardware and setting the PHY config based on the determined capabilities. If 1345 * link changes a link event will be triggered because both the Enable Automatic 1346 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1347 * 1348 * Returns 0 on success, negative on failure 1349 */ 1350 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1351 { 1352 struct ice_aqc_get_phy_caps_data *pcaps; 1353 struct ice_aqc_set_phy_cfg_data *cfg; 1354 struct ice_port_info *pi; 1355 struct device *dev; 1356 int retcode; 1357 1358 if (!vsi || !vsi->port_info || !vsi->back) 1359 return -EINVAL; 1360 if (vsi->type != ICE_VSI_PF) 1361 return 0; 1362 1363 dev = ice_pf_to_dev(vsi->back); 1364 1365 pi = vsi->port_info; 1366 1367 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1368 if (!pcaps) 1369 return -ENOMEM; 1370 1371 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1372 NULL); 1373 if (retcode) { 1374 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1375 vsi->vsi_num, retcode); 1376 retcode = -EIO; 1377 goto out; 1378 } 1379 1380 /* No change in link */ 1381 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1382 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1383 goto out; 1384 1385 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1386 if (!cfg) { 1387 retcode = -ENOMEM; 1388 goto out; 1389 } 1390 1391 cfg->phy_type_low = pcaps->phy_type_low; 1392 cfg->phy_type_high = pcaps->phy_type_high; 1393 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1394 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1395 cfg->eee_cap = pcaps->eee_cap; 1396 cfg->eeer_value = pcaps->eeer_value; 1397 cfg->link_fec_opt = pcaps->link_fec_options; 1398 if (link_up) 1399 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1400 else 1401 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1402 1403 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1404 if (retcode) { 1405 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1406 vsi->vsi_num, retcode); 1407 retcode = -EIO; 1408 } 1409 1410 kfree(cfg); 1411 out: 1412 kfree(pcaps); 1413 return retcode; 1414 } 1415 1416 /** 1417 * ice_check_media_subtask - Check for media; bring link up if detected. 1418 * @pf: pointer to PF struct 1419 */ 1420 static void ice_check_media_subtask(struct ice_pf *pf) 1421 { 1422 struct ice_port_info *pi; 1423 struct ice_vsi *vsi; 1424 int err; 1425 1426 vsi = ice_get_main_vsi(pf); 1427 if (!vsi) 1428 return; 1429 1430 /* No need to check for media if it's already present or the interface 1431 * is down 1432 */ 1433 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1434 test_bit(__ICE_DOWN, vsi->state)) 1435 return; 1436 1437 /* Refresh link info and check if media is present */ 1438 pi = vsi->port_info; 1439 err = ice_update_link_info(pi); 1440 if (err) 1441 return; 1442 1443 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1444 err = ice_force_phys_link_state(vsi, true); 1445 if (err) 1446 return; 1447 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1448 1449 /* A Link Status Event will be generated; the event handler 1450 * will complete bringing the interface up 1451 */ 1452 } 1453 } 1454 1455 /** 1456 * ice_service_task - manage and run subtasks 1457 * @work: pointer to work_struct contained by the PF struct 1458 */ 1459 static void ice_service_task(struct work_struct *work) 1460 { 1461 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1462 unsigned long start_time = jiffies; 1463 1464 /* subtasks */ 1465 1466 /* process reset requests first */ 1467 ice_reset_subtask(pf); 1468 1469 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1470 if (ice_is_reset_in_progress(pf->state) || 1471 test_bit(__ICE_SUSPENDED, pf->state) || 1472 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1473 ice_service_task_complete(pf); 1474 return; 1475 } 1476 1477 ice_clean_adminq_subtask(pf); 1478 ice_check_media_subtask(pf); 1479 ice_check_for_hang_subtask(pf); 1480 ice_sync_fltr_subtask(pf); 1481 ice_handle_mdd_event(pf); 1482 ice_watchdog_subtask(pf); 1483 1484 if (ice_is_safe_mode(pf)) { 1485 ice_service_task_complete(pf); 1486 return; 1487 } 1488 1489 ice_process_vflr_event(pf); 1490 ice_clean_mailboxq_subtask(pf); 1491 ice_sync_arfs_fltrs(pf); 1492 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1493 ice_service_task_complete(pf); 1494 1495 /* If the tasks have taken longer than one service timer period 1496 * or there is more work to be done, reset the service timer to 1497 * schedule the service task now. 1498 */ 1499 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1500 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1501 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1502 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1503 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1504 mod_timer(&pf->serv_tmr, jiffies); 1505 } 1506 1507 /** 1508 * ice_set_ctrlq_len - helper function to set controlq length 1509 * @hw: pointer to the HW instance 1510 */ 1511 static void ice_set_ctrlq_len(struct ice_hw *hw) 1512 { 1513 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1514 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1515 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1516 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1517 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 1518 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1519 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1520 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1521 } 1522 1523 /** 1524 * ice_schedule_reset - schedule a reset 1525 * @pf: board private structure 1526 * @reset: reset being requested 1527 */ 1528 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 1529 { 1530 struct device *dev = ice_pf_to_dev(pf); 1531 1532 /* bail out if earlier reset has failed */ 1533 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 1534 dev_dbg(dev, "earlier reset has failed\n"); 1535 return -EIO; 1536 } 1537 /* bail if reset/recovery already in progress */ 1538 if (ice_is_reset_in_progress(pf->state)) { 1539 dev_dbg(dev, "Reset already in progress\n"); 1540 return -EBUSY; 1541 } 1542 1543 switch (reset) { 1544 case ICE_RESET_PFR: 1545 set_bit(__ICE_PFR_REQ, pf->state); 1546 break; 1547 case ICE_RESET_CORER: 1548 set_bit(__ICE_CORER_REQ, pf->state); 1549 break; 1550 case ICE_RESET_GLOBR: 1551 set_bit(__ICE_GLOBR_REQ, pf->state); 1552 break; 1553 default: 1554 return -EINVAL; 1555 } 1556 1557 ice_service_task_schedule(pf); 1558 return 0; 1559 } 1560 1561 /** 1562 * ice_irq_affinity_notify - Callback for affinity changes 1563 * @notify: context as to what irq was changed 1564 * @mask: the new affinity mask 1565 * 1566 * This is a callback function used by the irq_set_affinity_notifier function 1567 * so that we may register to receive changes to the irq affinity masks. 1568 */ 1569 static void 1570 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1571 const cpumask_t *mask) 1572 { 1573 struct ice_q_vector *q_vector = 1574 container_of(notify, struct ice_q_vector, affinity_notify); 1575 1576 cpumask_copy(&q_vector->affinity_mask, mask); 1577 } 1578 1579 /** 1580 * ice_irq_affinity_release - Callback for affinity notifier release 1581 * @ref: internal core kernel usage 1582 * 1583 * This is a callback function used by the irq_set_affinity_notifier function 1584 * to inform the current notification subscriber that they will no longer 1585 * receive notifications. 1586 */ 1587 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1588 1589 /** 1590 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1591 * @vsi: the VSI being configured 1592 */ 1593 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1594 { 1595 struct ice_hw *hw = &vsi->back->hw; 1596 int i; 1597 1598 ice_for_each_q_vector(vsi, i) 1599 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1600 1601 ice_flush(hw); 1602 return 0; 1603 } 1604 1605 /** 1606 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1607 * @vsi: the VSI being configured 1608 * @basename: name for the vector 1609 */ 1610 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1611 { 1612 int q_vectors = vsi->num_q_vectors; 1613 struct ice_pf *pf = vsi->back; 1614 int base = vsi->base_vector; 1615 struct device *dev; 1616 int rx_int_idx = 0; 1617 int tx_int_idx = 0; 1618 int vector, err; 1619 int irq_num; 1620 1621 dev = ice_pf_to_dev(pf); 1622 for (vector = 0; vector < q_vectors; vector++) { 1623 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1624 1625 irq_num = pf->msix_entries[base + vector].vector; 1626 1627 if (q_vector->tx.ring && q_vector->rx.ring) { 1628 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1629 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1630 tx_int_idx++; 1631 } else if (q_vector->rx.ring) { 1632 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1633 "%s-%s-%d", basename, "rx", rx_int_idx++); 1634 } else if (q_vector->tx.ring) { 1635 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1636 "%s-%s-%d", basename, "tx", tx_int_idx++); 1637 } else { 1638 /* skip this unused q_vector */ 1639 continue; 1640 } 1641 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 1642 q_vector->name, q_vector); 1643 if (err) { 1644 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 1645 err); 1646 goto free_q_irqs; 1647 } 1648 1649 /* register for affinity change notifications */ 1650 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 1651 struct irq_affinity_notify *affinity_notify; 1652 1653 affinity_notify = &q_vector->affinity_notify; 1654 affinity_notify->notify = ice_irq_affinity_notify; 1655 affinity_notify->release = ice_irq_affinity_release; 1656 irq_set_affinity_notifier(irq_num, affinity_notify); 1657 } 1658 1659 /* assign the mask for this irq */ 1660 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1661 } 1662 1663 vsi->irqs_ready = true; 1664 return 0; 1665 1666 free_q_irqs: 1667 while (vector) { 1668 vector--; 1669 irq_num = pf->msix_entries[base + vector].vector; 1670 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 1671 irq_set_affinity_notifier(irq_num, NULL); 1672 irq_set_affinity_hint(irq_num, NULL); 1673 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 1674 } 1675 return err; 1676 } 1677 1678 /** 1679 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 1680 * @vsi: VSI to setup Tx rings used by XDP 1681 * 1682 * Return 0 on success and negative value on error 1683 */ 1684 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 1685 { 1686 struct device *dev = ice_pf_to_dev(vsi->back); 1687 int i; 1688 1689 for (i = 0; i < vsi->num_xdp_txq; i++) { 1690 u16 xdp_q_idx = vsi->alloc_txq + i; 1691 struct ice_ring *xdp_ring; 1692 1693 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 1694 1695 if (!xdp_ring) 1696 goto free_xdp_rings; 1697 1698 xdp_ring->q_index = xdp_q_idx; 1699 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 1700 xdp_ring->ring_active = false; 1701 xdp_ring->vsi = vsi; 1702 xdp_ring->netdev = NULL; 1703 xdp_ring->dev = dev; 1704 xdp_ring->count = vsi->num_tx_desc; 1705 vsi->xdp_rings[i] = xdp_ring; 1706 if (ice_setup_tx_ring(xdp_ring)) 1707 goto free_xdp_rings; 1708 ice_set_ring_xdp(xdp_ring); 1709 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 1710 } 1711 1712 return 0; 1713 1714 free_xdp_rings: 1715 for (; i >= 0; i--) 1716 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 1717 ice_free_tx_ring(vsi->xdp_rings[i]); 1718 return -ENOMEM; 1719 } 1720 1721 /** 1722 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 1723 * @vsi: VSI to set the bpf prog on 1724 * @prog: the bpf prog pointer 1725 */ 1726 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 1727 { 1728 struct bpf_prog *old_prog; 1729 int i; 1730 1731 old_prog = xchg(&vsi->xdp_prog, prog); 1732 if (old_prog) 1733 bpf_prog_put(old_prog); 1734 1735 ice_for_each_rxq(vsi, i) 1736 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 1737 } 1738 1739 /** 1740 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 1741 * @vsi: VSI to bring up Tx rings used by XDP 1742 * @prog: bpf program that will be assigned to VSI 1743 * 1744 * Return 0 on success and negative value on error 1745 */ 1746 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 1747 { 1748 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1749 int xdp_rings_rem = vsi->num_xdp_txq; 1750 struct ice_pf *pf = vsi->back; 1751 struct ice_qs_cfg xdp_qs_cfg = { 1752 .qs_mutex = &pf->avail_q_mutex, 1753 .pf_map = pf->avail_txqs, 1754 .pf_map_size = pf->max_pf_txqs, 1755 .q_count = vsi->num_xdp_txq, 1756 .scatter_count = ICE_MAX_SCATTER_TXQS, 1757 .vsi_map = vsi->txq_map, 1758 .vsi_map_offset = vsi->alloc_txq, 1759 .mapping_mode = ICE_VSI_MAP_CONTIG 1760 }; 1761 enum ice_status status; 1762 struct device *dev; 1763 int i, v_idx; 1764 1765 dev = ice_pf_to_dev(pf); 1766 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 1767 sizeof(*vsi->xdp_rings), GFP_KERNEL); 1768 if (!vsi->xdp_rings) 1769 return -ENOMEM; 1770 1771 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 1772 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 1773 goto err_map_xdp; 1774 1775 if (ice_xdp_alloc_setup_rings(vsi)) 1776 goto clear_xdp_rings; 1777 1778 /* follow the logic from ice_vsi_map_rings_to_vectors */ 1779 ice_for_each_q_vector(vsi, v_idx) { 1780 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1781 int xdp_rings_per_v, q_id, q_base; 1782 1783 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 1784 vsi->num_q_vectors - v_idx); 1785 q_base = vsi->num_xdp_txq - xdp_rings_rem; 1786 1787 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 1788 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 1789 1790 xdp_ring->q_vector = q_vector; 1791 xdp_ring->next = q_vector->tx.ring; 1792 q_vector->tx.ring = xdp_ring; 1793 } 1794 xdp_rings_rem -= xdp_rings_per_v; 1795 } 1796 1797 /* omit the scheduler update if in reset path; XDP queues will be 1798 * taken into account at the end of ice_vsi_rebuild, where 1799 * ice_cfg_vsi_lan is being called 1800 */ 1801 if (ice_is_reset_in_progress(pf->state)) 1802 return 0; 1803 1804 /* tell the Tx scheduler that right now we have 1805 * additional queues 1806 */ 1807 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1808 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 1809 1810 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1811 max_txqs); 1812 if (status) { 1813 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 1814 ice_stat_str(status)); 1815 goto clear_xdp_rings; 1816 } 1817 ice_vsi_assign_bpf_prog(vsi, prog); 1818 1819 return 0; 1820 clear_xdp_rings: 1821 for (i = 0; i < vsi->num_xdp_txq; i++) 1822 if (vsi->xdp_rings[i]) { 1823 kfree_rcu(vsi->xdp_rings[i], rcu); 1824 vsi->xdp_rings[i] = NULL; 1825 } 1826 1827 err_map_xdp: 1828 mutex_lock(&pf->avail_q_mutex); 1829 for (i = 0; i < vsi->num_xdp_txq; i++) { 1830 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1831 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1832 } 1833 mutex_unlock(&pf->avail_q_mutex); 1834 1835 devm_kfree(dev, vsi->xdp_rings); 1836 return -ENOMEM; 1837 } 1838 1839 /** 1840 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 1841 * @vsi: VSI to remove XDP rings 1842 * 1843 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 1844 * resources 1845 */ 1846 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 1847 { 1848 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1849 struct ice_pf *pf = vsi->back; 1850 int i, v_idx; 1851 1852 /* q_vectors are freed in reset path so there's no point in detaching 1853 * rings; in case of rebuild being triggered not from reset reset bits 1854 * in pf->state won't be set, so additionally check first q_vector 1855 * against NULL 1856 */ 1857 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1858 goto free_qmap; 1859 1860 ice_for_each_q_vector(vsi, v_idx) { 1861 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1862 struct ice_ring *ring; 1863 1864 ice_for_each_ring(ring, q_vector->tx) 1865 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 1866 break; 1867 1868 /* restore the value of last node prior to XDP setup */ 1869 q_vector->tx.ring = ring; 1870 } 1871 1872 free_qmap: 1873 mutex_lock(&pf->avail_q_mutex); 1874 for (i = 0; i < vsi->num_xdp_txq; i++) { 1875 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1876 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1877 } 1878 mutex_unlock(&pf->avail_q_mutex); 1879 1880 for (i = 0; i < vsi->num_xdp_txq; i++) 1881 if (vsi->xdp_rings[i]) { 1882 if (vsi->xdp_rings[i]->desc) 1883 ice_free_tx_ring(vsi->xdp_rings[i]); 1884 kfree_rcu(vsi->xdp_rings[i], rcu); 1885 vsi->xdp_rings[i] = NULL; 1886 } 1887 1888 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 1889 vsi->xdp_rings = NULL; 1890 1891 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1892 return 0; 1893 1894 ice_vsi_assign_bpf_prog(vsi, NULL); 1895 1896 /* notify Tx scheduler that we destroyed XDP queues and bring 1897 * back the old number of child nodes 1898 */ 1899 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1900 max_txqs[i] = vsi->num_txq; 1901 1902 /* change number of XDP Tx queues to 0 */ 1903 vsi->num_xdp_txq = 0; 1904 1905 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1906 max_txqs); 1907 } 1908 1909 /** 1910 * ice_xdp_setup_prog - Add or remove XDP eBPF program 1911 * @vsi: VSI to setup XDP for 1912 * @prog: XDP program 1913 * @extack: netlink extended ack 1914 */ 1915 static int 1916 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 1917 struct netlink_ext_ack *extack) 1918 { 1919 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 1920 bool if_running = netif_running(vsi->netdev); 1921 int ret = 0, xdp_ring_err = 0; 1922 1923 if (frame_size > vsi->rx_buf_len) { 1924 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 1925 return -EOPNOTSUPP; 1926 } 1927 1928 /* need to stop netdev while setting up the program for Rx rings */ 1929 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 1930 ret = ice_down(vsi); 1931 if (ret) { 1932 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 1933 return ret; 1934 } 1935 } 1936 1937 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 1938 vsi->num_xdp_txq = vsi->alloc_rxq; 1939 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 1940 if (xdp_ring_err) 1941 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 1942 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 1943 xdp_ring_err = ice_destroy_xdp_rings(vsi); 1944 if (xdp_ring_err) 1945 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 1946 } else { 1947 ice_vsi_assign_bpf_prog(vsi, prog); 1948 } 1949 1950 if (if_running) 1951 ret = ice_up(vsi); 1952 1953 if (!ret && prog && vsi->xsk_umems) { 1954 int i; 1955 1956 ice_for_each_rxq(vsi, i) { 1957 struct ice_ring *rx_ring = vsi->rx_rings[i]; 1958 1959 if (rx_ring->xsk_umem) 1960 napi_schedule(&rx_ring->q_vector->napi); 1961 } 1962 } 1963 1964 return (ret || xdp_ring_err) ? -ENOMEM : 0; 1965 } 1966 1967 /** 1968 * ice_xdp - implements XDP handler 1969 * @dev: netdevice 1970 * @xdp: XDP command 1971 */ 1972 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1973 { 1974 struct ice_netdev_priv *np = netdev_priv(dev); 1975 struct ice_vsi *vsi = np->vsi; 1976 1977 if (vsi->type != ICE_VSI_PF) { 1978 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 1979 return -EINVAL; 1980 } 1981 1982 switch (xdp->command) { 1983 case XDP_SETUP_PROG: 1984 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 1985 case XDP_QUERY_PROG: 1986 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 1987 return 0; 1988 case XDP_SETUP_XSK_UMEM: 1989 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 1990 xdp->xsk.queue_id); 1991 default: 1992 return -EINVAL; 1993 } 1994 } 1995 1996 /** 1997 * ice_ena_misc_vector - enable the non-queue interrupts 1998 * @pf: board private structure 1999 */ 2000 static void ice_ena_misc_vector(struct ice_pf *pf) 2001 { 2002 struct ice_hw *hw = &pf->hw; 2003 u32 val; 2004 2005 /* Disable anti-spoof detection interrupt to prevent spurious event 2006 * interrupts during a function reset. Anti-spoof functionally is 2007 * still supported. 2008 */ 2009 val = rd32(hw, GL_MDCK_TX_TDPU); 2010 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2011 wr32(hw, GL_MDCK_TX_TDPU, val); 2012 2013 /* clear things first */ 2014 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2015 rd32(hw, PFINT_OICR); /* read to clear */ 2016 2017 val = (PFINT_OICR_ECC_ERR_M | 2018 PFINT_OICR_MAL_DETECT_M | 2019 PFINT_OICR_GRST_M | 2020 PFINT_OICR_PCI_EXCEPTION_M | 2021 PFINT_OICR_VFLR_M | 2022 PFINT_OICR_HMC_ERR_M | 2023 PFINT_OICR_PE_CRITERR_M); 2024 2025 wr32(hw, PFINT_OICR_ENA, val); 2026 2027 /* SW_ITR_IDX = 0, but don't change INTENA */ 2028 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2029 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2030 } 2031 2032 /** 2033 * ice_misc_intr - misc interrupt handler 2034 * @irq: interrupt number 2035 * @data: pointer to a q_vector 2036 */ 2037 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2038 { 2039 struct ice_pf *pf = (struct ice_pf *)data; 2040 struct ice_hw *hw = &pf->hw; 2041 irqreturn_t ret = IRQ_NONE; 2042 struct device *dev; 2043 u32 oicr, ena_mask; 2044 2045 dev = ice_pf_to_dev(pf); 2046 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2047 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2048 2049 oicr = rd32(hw, PFINT_OICR); 2050 ena_mask = rd32(hw, PFINT_OICR_ENA); 2051 2052 if (oicr & PFINT_OICR_SWINT_M) { 2053 ena_mask &= ~PFINT_OICR_SWINT_M; 2054 pf->sw_int_count++; 2055 } 2056 2057 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2058 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2059 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2060 } 2061 if (oicr & PFINT_OICR_VFLR_M) { 2062 /* disable any further VFLR event notifications */ 2063 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2064 u32 reg = rd32(hw, PFINT_OICR_ENA); 2065 2066 reg &= ~PFINT_OICR_VFLR_M; 2067 wr32(hw, PFINT_OICR_ENA, reg); 2068 } else { 2069 ena_mask &= ~PFINT_OICR_VFLR_M; 2070 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2071 } 2072 } 2073 2074 if (oicr & PFINT_OICR_GRST_M) { 2075 u32 reset; 2076 2077 /* we have a reset warning */ 2078 ena_mask &= ~PFINT_OICR_GRST_M; 2079 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2080 GLGEN_RSTAT_RESET_TYPE_S; 2081 2082 if (reset == ICE_RESET_CORER) 2083 pf->corer_count++; 2084 else if (reset == ICE_RESET_GLOBR) 2085 pf->globr_count++; 2086 else if (reset == ICE_RESET_EMPR) 2087 pf->empr_count++; 2088 else 2089 dev_dbg(dev, "Invalid reset type %d\n", reset); 2090 2091 /* If a reset cycle isn't already in progress, we set a bit in 2092 * pf->state so that the service task can start a reset/rebuild. 2093 * We also make note of which reset happened so that peer 2094 * devices/drivers can be informed. 2095 */ 2096 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2097 if (reset == ICE_RESET_CORER) 2098 set_bit(__ICE_CORER_RECV, pf->state); 2099 else if (reset == ICE_RESET_GLOBR) 2100 set_bit(__ICE_GLOBR_RECV, pf->state); 2101 else 2102 set_bit(__ICE_EMPR_RECV, pf->state); 2103 2104 /* There are couple of different bits at play here. 2105 * hw->reset_ongoing indicates whether the hardware is 2106 * in reset. This is set to true when a reset interrupt 2107 * is received and set back to false after the driver 2108 * has determined that the hardware is out of reset. 2109 * 2110 * __ICE_RESET_OICR_RECV in pf->state indicates 2111 * that a post reset rebuild is required before the 2112 * driver is operational again. This is set above. 2113 * 2114 * As this is the start of the reset/rebuild cycle, set 2115 * both to indicate that. 2116 */ 2117 hw->reset_ongoing = true; 2118 } 2119 } 2120 2121 if (oicr & PFINT_OICR_HMC_ERR_M) { 2122 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2123 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2124 rd32(hw, PFHMC_ERRORINFO), 2125 rd32(hw, PFHMC_ERRORDATA)); 2126 } 2127 2128 /* Report any remaining unexpected interrupts */ 2129 oicr &= ena_mask; 2130 if (oicr) { 2131 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2132 /* If a critical error is pending there is no choice but to 2133 * reset the device. 2134 */ 2135 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2136 PFINT_OICR_PCI_EXCEPTION_M | 2137 PFINT_OICR_ECC_ERR_M)) { 2138 set_bit(__ICE_PFR_REQ, pf->state); 2139 ice_service_task_schedule(pf); 2140 } 2141 } 2142 ret = IRQ_HANDLED; 2143 2144 ice_service_task_schedule(pf); 2145 ice_irq_dynamic_ena(hw, NULL, NULL); 2146 2147 return ret; 2148 } 2149 2150 /** 2151 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2152 * @hw: pointer to HW structure 2153 */ 2154 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2155 { 2156 /* disable Admin queue Interrupt causes */ 2157 wr32(hw, PFINT_FW_CTL, 2158 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2159 2160 /* disable Mailbox queue Interrupt causes */ 2161 wr32(hw, PFINT_MBX_CTL, 2162 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2163 2164 /* disable Control queue Interrupt causes */ 2165 wr32(hw, PFINT_OICR_CTL, 2166 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2167 2168 ice_flush(hw); 2169 } 2170 2171 /** 2172 * ice_free_irq_msix_misc - Unroll misc vector setup 2173 * @pf: board private structure 2174 */ 2175 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2176 { 2177 struct ice_hw *hw = &pf->hw; 2178 2179 ice_dis_ctrlq_interrupts(hw); 2180 2181 /* disable OICR interrupt */ 2182 wr32(hw, PFINT_OICR_ENA, 0); 2183 ice_flush(hw); 2184 2185 if (pf->msix_entries) { 2186 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2187 devm_free_irq(ice_pf_to_dev(pf), 2188 pf->msix_entries[pf->oicr_idx].vector, pf); 2189 } 2190 2191 pf->num_avail_sw_msix += 1; 2192 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2193 } 2194 2195 /** 2196 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2197 * @hw: pointer to HW structure 2198 * @reg_idx: HW vector index to associate the control queue interrupts with 2199 */ 2200 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2201 { 2202 u32 val; 2203 2204 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2205 PFINT_OICR_CTL_CAUSE_ENA_M); 2206 wr32(hw, PFINT_OICR_CTL, val); 2207 2208 /* enable Admin queue Interrupt causes */ 2209 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2210 PFINT_FW_CTL_CAUSE_ENA_M); 2211 wr32(hw, PFINT_FW_CTL, val); 2212 2213 /* enable Mailbox queue Interrupt causes */ 2214 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2215 PFINT_MBX_CTL_CAUSE_ENA_M); 2216 wr32(hw, PFINT_MBX_CTL, val); 2217 2218 ice_flush(hw); 2219 } 2220 2221 /** 2222 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2223 * @pf: board private structure 2224 * 2225 * This sets up the handler for MSIX 0, which is used to manage the 2226 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2227 * when in MSI or Legacy interrupt mode. 2228 */ 2229 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2230 { 2231 struct device *dev = ice_pf_to_dev(pf); 2232 struct ice_hw *hw = &pf->hw; 2233 int oicr_idx, err = 0; 2234 2235 if (!pf->int_name[0]) 2236 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2237 dev_driver_string(dev), dev_name(dev)); 2238 2239 /* Do not request IRQ but do enable OICR interrupt since settings are 2240 * lost during reset. Note that this function is called only during 2241 * rebuild path and not while reset is in progress. 2242 */ 2243 if (ice_is_reset_in_progress(pf->state)) 2244 goto skip_req_irq; 2245 2246 /* reserve one vector in irq_tracker for misc interrupts */ 2247 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2248 if (oicr_idx < 0) 2249 return oicr_idx; 2250 2251 pf->num_avail_sw_msix -= 1; 2252 pf->oicr_idx = (u16)oicr_idx; 2253 2254 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2255 ice_misc_intr, 0, pf->int_name, pf); 2256 if (err) { 2257 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2258 pf->int_name, err); 2259 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2260 pf->num_avail_sw_msix += 1; 2261 return err; 2262 } 2263 2264 skip_req_irq: 2265 ice_ena_misc_vector(pf); 2266 2267 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2268 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2269 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2270 2271 ice_flush(hw); 2272 ice_irq_dynamic_ena(hw, NULL, NULL); 2273 2274 return 0; 2275 } 2276 2277 /** 2278 * ice_napi_add - register NAPI handler for the VSI 2279 * @vsi: VSI for which NAPI handler is to be registered 2280 * 2281 * This function is only called in the driver's load path. Registering the NAPI 2282 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2283 * reset/rebuild, etc.) 2284 */ 2285 static void ice_napi_add(struct ice_vsi *vsi) 2286 { 2287 int v_idx; 2288 2289 if (!vsi->netdev) 2290 return; 2291 2292 ice_for_each_q_vector(vsi, v_idx) 2293 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2294 ice_napi_poll, NAPI_POLL_WEIGHT); 2295 } 2296 2297 /** 2298 * ice_set_ops - set netdev and ethtools ops for the given netdev 2299 * @netdev: netdev instance 2300 */ 2301 static void ice_set_ops(struct net_device *netdev) 2302 { 2303 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2304 2305 if (ice_is_safe_mode(pf)) { 2306 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2307 ice_set_ethtool_safe_mode_ops(netdev); 2308 return; 2309 } 2310 2311 netdev->netdev_ops = &ice_netdev_ops; 2312 ice_set_ethtool_ops(netdev); 2313 } 2314 2315 /** 2316 * ice_set_netdev_features - set features for the given netdev 2317 * @netdev: netdev instance 2318 */ 2319 static void ice_set_netdev_features(struct net_device *netdev) 2320 { 2321 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2322 netdev_features_t csumo_features; 2323 netdev_features_t vlano_features; 2324 netdev_features_t dflt_features; 2325 netdev_features_t tso_features; 2326 2327 if (ice_is_safe_mode(pf)) { 2328 /* safe mode */ 2329 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2330 netdev->hw_features = netdev->features; 2331 return; 2332 } 2333 2334 dflt_features = NETIF_F_SG | 2335 NETIF_F_HIGHDMA | 2336 NETIF_F_NTUPLE | 2337 NETIF_F_RXHASH; 2338 2339 csumo_features = NETIF_F_RXCSUM | 2340 NETIF_F_IP_CSUM | 2341 NETIF_F_SCTP_CRC | 2342 NETIF_F_IPV6_CSUM; 2343 2344 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2345 NETIF_F_HW_VLAN_CTAG_TX | 2346 NETIF_F_HW_VLAN_CTAG_RX; 2347 2348 tso_features = NETIF_F_TSO | 2349 NETIF_F_TSO_ECN | 2350 NETIF_F_TSO6 | 2351 NETIF_F_GSO_GRE | 2352 NETIF_F_GSO_UDP_TUNNEL | 2353 NETIF_F_GSO_GRE_CSUM | 2354 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2355 NETIF_F_GSO_PARTIAL | 2356 NETIF_F_GSO_IPXIP4 | 2357 NETIF_F_GSO_IPXIP6 | 2358 NETIF_F_GSO_UDP_L4; 2359 2360 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2361 NETIF_F_GSO_GRE_CSUM; 2362 /* set features that user can change */ 2363 netdev->hw_features = dflt_features | csumo_features | 2364 vlano_features | tso_features; 2365 2366 /* add support for HW_CSUM on packets with MPLS header */ 2367 netdev->mpls_features = NETIF_F_HW_CSUM; 2368 2369 /* enable features */ 2370 netdev->features |= netdev->hw_features; 2371 /* encap and VLAN devices inherit default, csumo and tso features */ 2372 netdev->hw_enc_features |= dflt_features | csumo_features | 2373 tso_features; 2374 netdev->vlan_features |= dflt_features | csumo_features | 2375 tso_features; 2376 } 2377 2378 /** 2379 * ice_cfg_netdev - Allocate, configure and register a netdev 2380 * @vsi: the VSI associated with the new netdev 2381 * 2382 * Returns 0 on success, negative value on failure 2383 */ 2384 static int ice_cfg_netdev(struct ice_vsi *vsi) 2385 { 2386 struct ice_pf *pf = vsi->back; 2387 struct ice_netdev_priv *np; 2388 struct net_device *netdev; 2389 u8 mac_addr[ETH_ALEN]; 2390 int err; 2391 2392 err = ice_devlink_create_port(pf); 2393 if (err) 2394 return err; 2395 2396 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2397 vsi->alloc_rxq); 2398 if (!netdev) { 2399 err = -ENOMEM; 2400 goto err_destroy_devlink_port; 2401 } 2402 2403 vsi->netdev = netdev; 2404 np = netdev_priv(netdev); 2405 np->vsi = vsi; 2406 2407 ice_set_netdev_features(netdev); 2408 2409 ice_set_ops(netdev); 2410 2411 if (vsi->type == ICE_VSI_PF) { 2412 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2413 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2414 ether_addr_copy(netdev->dev_addr, mac_addr); 2415 ether_addr_copy(netdev->perm_addr, mac_addr); 2416 } 2417 2418 netdev->priv_flags |= IFF_UNICAST_FLT; 2419 2420 /* Setup netdev TC information */ 2421 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2422 2423 /* setup watchdog timeout value to be 5 second */ 2424 netdev->watchdog_timeo = 5 * HZ; 2425 2426 netdev->min_mtu = ETH_MIN_MTU; 2427 netdev->max_mtu = ICE_MAX_MTU; 2428 2429 err = register_netdev(vsi->netdev); 2430 if (err) 2431 goto err_free_netdev; 2432 2433 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 2434 2435 netif_carrier_off(vsi->netdev); 2436 2437 /* make sure transmit queues start off as stopped */ 2438 netif_tx_stop_all_queues(vsi->netdev); 2439 2440 return 0; 2441 2442 err_free_netdev: 2443 free_netdev(vsi->netdev); 2444 vsi->netdev = NULL; 2445 err_destroy_devlink_port: 2446 ice_devlink_destroy_port(pf); 2447 return err; 2448 } 2449 2450 /** 2451 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2452 * @lut: Lookup table 2453 * @rss_table_size: Lookup table size 2454 * @rss_size: Range of queue number for hashing 2455 */ 2456 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2457 { 2458 u16 i; 2459 2460 for (i = 0; i < rss_table_size; i++) 2461 lut[i] = i % rss_size; 2462 } 2463 2464 /** 2465 * ice_pf_vsi_setup - Set up a PF VSI 2466 * @pf: board private structure 2467 * @pi: pointer to the port_info instance 2468 * 2469 * Returns pointer to the successfully allocated VSI software struct 2470 * on success, otherwise returns NULL on failure. 2471 */ 2472 static struct ice_vsi * 2473 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2474 { 2475 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2476 } 2477 2478 /** 2479 * ice_ctrl_vsi_setup - Set up a control VSI 2480 * @pf: board private structure 2481 * @pi: pointer to the port_info instance 2482 * 2483 * Returns pointer to the successfully allocated VSI software struct 2484 * on success, otherwise returns NULL on failure. 2485 */ 2486 static struct ice_vsi * 2487 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2488 { 2489 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 2490 } 2491 2492 /** 2493 * ice_lb_vsi_setup - Set up a loopback VSI 2494 * @pf: board private structure 2495 * @pi: pointer to the port_info instance 2496 * 2497 * Returns pointer to the successfully allocated VSI software struct 2498 * on success, otherwise returns NULL on failure. 2499 */ 2500 struct ice_vsi * 2501 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2502 { 2503 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2504 } 2505 2506 /** 2507 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2508 * @netdev: network interface to be adjusted 2509 * @proto: unused protocol 2510 * @vid: VLAN ID to be added 2511 * 2512 * net_device_ops implementation for adding VLAN IDs 2513 */ 2514 static int 2515 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2516 u16 vid) 2517 { 2518 struct ice_netdev_priv *np = netdev_priv(netdev); 2519 struct ice_vsi *vsi = np->vsi; 2520 int ret; 2521 2522 if (vid >= VLAN_N_VID) { 2523 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2524 vid, VLAN_N_VID); 2525 return -EINVAL; 2526 } 2527 2528 if (vsi->info.pvid) 2529 return -EINVAL; 2530 2531 /* VLAN 0 is added by default during load/reset */ 2532 if (!vid) 2533 return 0; 2534 2535 /* Enable VLAN pruning when a VLAN other than 0 is added */ 2536 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 2537 ret = ice_cfg_vlan_pruning(vsi, true, false); 2538 if (ret) 2539 return ret; 2540 } 2541 2542 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 2543 * packets aren't pruned by the device's internal switch on Rx 2544 */ 2545 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 2546 if (!ret) { 2547 vsi->vlan_ena = true; 2548 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2549 } 2550 2551 return ret; 2552 } 2553 2554 /** 2555 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2556 * @netdev: network interface to be adjusted 2557 * @proto: unused protocol 2558 * @vid: VLAN ID to be removed 2559 * 2560 * net_device_ops implementation for removing VLAN IDs 2561 */ 2562 static int 2563 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2564 u16 vid) 2565 { 2566 struct ice_netdev_priv *np = netdev_priv(netdev); 2567 struct ice_vsi *vsi = np->vsi; 2568 int ret; 2569 2570 if (vsi->info.pvid) 2571 return -EINVAL; 2572 2573 /* don't allow removal of VLAN 0 */ 2574 if (!vid) 2575 return 0; 2576 2577 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2578 * information 2579 */ 2580 ret = ice_vsi_kill_vlan(vsi, vid); 2581 if (ret) 2582 return ret; 2583 2584 /* Disable pruning when VLAN 0 is the only VLAN rule */ 2585 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 2586 ret = ice_cfg_vlan_pruning(vsi, false, false); 2587 2588 vsi->vlan_ena = false; 2589 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2590 return ret; 2591 } 2592 2593 /** 2594 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2595 * @pf: board private structure 2596 * 2597 * Returns 0 on success, negative value on failure 2598 */ 2599 static int ice_setup_pf_sw(struct ice_pf *pf) 2600 { 2601 struct ice_vsi *vsi; 2602 int status = 0; 2603 2604 if (ice_is_reset_in_progress(pf->state)) 2605 return -EBUSY; 2606 2607 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2608 if (!vsi) { 2609 status = -ENOMEM; 2610 goto unroll_vsi_setup; 2611 } 2612 2613 status = ice_cfg_netdev(vsi); 2614 if (status) { 2615 status = -ENODEV; 2616 goto unroll_vsi_setup; 2617 } 2618 /* netdev has to be configured before setting frame size */ 2619 ice_vsi_cfg_frame_size(vsi); 2620 2621 /* Setup DCB netlink interface */ 2622 ice_dcbnl_setup(vsi); 2623 2624 /* registering the NAPI handler requires both the queues and 2625 * netdev to be created, which are done in ice_pf_vsi_setup() 2626 * and ice_cfg_netdev() respectively 2627 */ 2628 ice_napi_add(vsi); 2629 2630 status = ice_set_cpu_rx_rmap(vsi); 2631 if (status) { 2632 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 2633 vsi->vsi_num, status); 2634 status = -EINVAL; 2635 goto unroll_napi_add; 2636 } 2637 status = ice_init_mac_fltr(pf); 2638 if (status) 2639 goto free_cpu_rx_map; 2640 2641 return status; 2642 2643 free_cpu_rx_map: 2644 ice_free_cpu_rx_rmap(vsi); 2645 2646 unroll_napi_add: 2647 if (vsi) { 2648 ice_napi_del(vsi); 2649 if (vsi->netdev) { 2650 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2651 unregister_netdev(vsi->netdev); 2652 free_netdev(vsi->netdev); 2653 vsi->netdev = NULL; 2654 } 2655 } 2656 2657 unroll_vsi_setup: 2658 if (vsi) { 2659 ice_vsi_free_q_vectors(vsi); 2660 ice_vsi_delete(vsi); 2661 ice_vsi_put_qs(vsi); 2662 ice_vsi_clear(vsi); 2663 } 2664 return status; 2665 } 2666 2667 /** 2668 * ice_get_avail_q_count - Get count of queues in use 2669 * @pf_qmap: bitmap to get queue use count from 2670 * @lock: pointer to a mutex that protects access to pf_qmap 2671 * @size: size of the bitmap 2672 */ 2673 static u16 2674 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2675 { 2676 unsigned long bit; 2677 u16 count = 0; 2678 2679 mutex_lock(lock); 2680 for_each_clear_bit(bit, pf_qmap, size) 2681 count++; 2682 mutex_unlock(lock); 2683 2684 return count; 2685 } 2686 2687 /** 2688 * ice_get_avail_txq_count - Get count of Tx queues in use 2689 * @pf: pointer to an ice_pf instance 2690 */ 2691 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2692 { 2693 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2694 pf->max_pf_txqs); 2695 } 2696 2697 /** 2698 * ice_get_avail_rxq_count - Get count of Rx queues in use 2699 * @pf: pointer to an ice_pf instance 2700 */ 2701 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2702 { 2703 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2704 pf->max_pf_rxqs); 2705 } 2706 2707 /** 2708 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2709 * @pf: board private structure to initialize 2710 */ 2711 static void ice_deinit_pf(struct ice_pf *pf) 2712 { 2713 ice_service_task_stop(pf); 2714 mutex_destroy(&pf->sw_mutex); 2715 mutex_destroy(&pf->tc_mutex); 2716 mutex_destroy(&pf->avail_q_mutex); 2717 2718 if (pf->avail_txqs) { 2719 bitmap_free(pf->avail_txqs); 2720 pf->avail_txqs = NULL; 2721 } 2722 2723 if (pf->avail_rxqs) { 2724 bitmap_free(pf->avail_rxqs); 2725 pf->avail_rxqs = NULL; 2726 } 2727 } 2728 2729 /** 2730 * ice_set_pf_caps - set PFs capability flags 2731 * @pf: pointer to the PF instance 2732 */ 2733 static void ice_set_pf_caps(struct ice_pf *pf) 2734 { 2735 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2736 2737 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2738 if (func_caps->common_cap.dcb) 2739 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2740 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2741 if (func_caps->common_cap.sr_iov_1_1) { 2742 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2743 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2744 ICE_MAX_VF_COUNT); 2745 } 2746 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2747 if (func_caps->common_cap.rss_table_size) 2748 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2749 2750 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 2751 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 2752 u16 unused; 2753 2754 /* ctrl_vsi_idx will be set to a valid value when flow director 2755 * is setup by ice_init_fdir 2756 */ 2757 pf->ctrl_vsi_idx = ICE_NO_VSI; 2758 set_bit(ICE_FLAG_FD_ENA, pf->flags); 2759 /* force guaranteed filter pool for PF */ 2760 ice_alloc_fd_guar_item(&pf->hw, &unused, 2761 func_caps->fd_fltr_guar); 2762 /* force shared filter pool for PF */ 2763 ice_alloc_fd_shrd_item(&pf->hw, &unused, 2764 func_caps->fd_fltr_best_effort); 2765 } 2766 2767 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2768 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2769 } 2770 2771 /** 2772 * ice_init_pf - Initialize general software structures (struct ice_pf) 2773 * @pf: board private structure to initialize 2774 */ 2775 static int ice_init_pf(struct ice_pf *pf) 2776 { 2777 ice_set_pf_caps(pf); 2778 2779 mutex_init(&pf->sw_mutex); 2780 mutex_init(&pf->tc_mutex); 2781 2782 /* setup service timer and periodic service task */ 2783 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2784 pf->serv_tmr_period = HZ; 2785 INIT_WORK(&pf->serv_task, ice_service_task); 2786 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2787 2788 mutex_init(&pf->avail_q_mutex); 2789 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2790 if (!pf->avail_txqs) 2791 return -ENOMEM; 2792 2793 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2794 if (!pf->avail_rxqs) { 2795 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 2796 pf->avail_txqs = NULL; 2797 return -ENOMEM; 2798 } 2799 2800 return 0; 2801 } 2802 2803 /** 2804 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2805 * @pf: board private structure 2806 * 2807 * compute the number of MSIX vectors required (v_budget) and request from 2808 * the OS. Return the number of vectors reserved or negative on failure 2809 */ 2810 static int ice_ena_msix_range(struct ice_pf *pf) 2811 { 2812 struct device *dev = ice_pf_to_dev(pf); 2813 int v_left, v_actual, v_budget = 0; 2814 int needed, err, i; 2815 2816 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2817 2818 /* reserve one vector for miscellaneous handler */ 2819 needed = 1; 2820 if (v_left < needed) 2821 goto no_hw_vecs_left_err; 2822 v_budget += needed; 2823 v_left -= needed; 2824 2825 /* reserve vectors for LAN traffic */ 2826 needed = min_t(int, num_online_cpus(), v_left); 2827 if (v_left < needed) 2828 goto no_hw_vecs_left_err; 2829 pf->num_lan_msix = needed; 2830 v_budget += needed; 2831 v_left -= needed; 2832 2833 /* reserve one vector for flow director */ 2834 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 2835 needed = ICE_FDIR_MSIX; 2836 if (v_left < needed) 2837 goto no_hw_vecs_left_err; 2838 v_budget += needed; 2839 v_left -= needed; 2840 } 2841 2842 pf->msix_entries = devm_kcalloc(dev, v_budget, 2843 sizeof(*pf->msix_entries), GFP_KERNEL); 2844 2845 if (!pf->msix_entries) { 2846 err = -ENOMEM; 2847 goto exit_err; 2848 } 2849 2850 for (i = 0; i < v_budget; i++) 2851 pf->msix_entries[i].entry = i; 2852 2853 /* actually reserve the vectors */ 2854 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2855 ICE_MIN_MSIX, v_budget); 2856 2857 if (v_actual < 0) { 2858 dev_err(dev, "unable to reserve MSI-X vectors\n"); 2859 err = v_actual; 2860 goto msix_err; 2861 } 2862 2863 if (v_actual < v_budget) { 2864 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2865 v_budget, v_actual); 2866 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */ 2867 #define ICE_MIN_LAN_VECS 2 2868 #define ICE_MIN_RDMA_VECS 2 2869 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1) 2870 2871 if (v_actual < ICE_MIN_LAN_VECS) { 2872 /* error if we can't get minimum vectors */ 2873 pci_disable_msix(pf->pdev); 2874 err = -ERANGE; 2875 goto msix_err; 2876 } else { 2877 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2878 } 2879 } 2880 2881 return v_actual; 2882 2883 msix_err: 2884 devm_kfree(dev, pf->msix_entries); 2885 goto exit_err; 2886 2887 no_hw_vecs_left_err: 2888 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 2889 needed, v_left); 2890 err = -ERANGE; 2891 exit_err: 2892 pf->num_lan_msix = 0; 2893 return err; 2894 } 2895 2896 /** 2897 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2898 * @pf: board private structure 2899 */ 2900 static void ice_dis_msix(struct ice_pf *pf) 2901 { 2902 pci_disable_msix(pf->pdev); 2903 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 2904 pf->msix_entries = NULL; 2905 } 2906 2907 /** 2908 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2909 * @pf: board private structure 2910 */ 2911 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2912 { 2913 ice_dis_msix(pf); 2914 2915 if (pf->irq_tracker) { 2916 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 2917 pf->irq_tracker = NULL; 2918 } 2919 } 2920 2921 /** 2922 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2923 * @pf: board private structure to initialize 2924 */ 2925 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2926 { 2927 int vectors; 2928 2929 vectors = ice_ena_msix_range(pf); 2930 2931 if (vectors < 0) 2932 return vectors; 2933 2934 /* set up vector assignment tracking */ 2935 pf->irq_tracker = 2936 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 2937 (sizeof(u16) * vectors), GFP_KERNEL); 2938 if (!pf->irq_tracker) { 2939 ice_dis_msix(pf); 2940 return -ENOMEM; 2941 } 2942 2943 /* populate SW interrupts pool with number of OS granted IRQs. */ 2944 pf->num_avail_sw_msix = (u16)vectors; 2945 pf->irq_tracker->num_entries = (u16)vectors; 2946 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2947 2948 return 0; 2949 } 2950 2951 /** 2952 * ice_vsi_recfg_qs - Change the number of queues on a VSI 2953 * @vsi: VSI being changed 2954 * @new_rx: new number of Rx queues 2955 * @new_tx: new number of Tx queues 2956 * 2957 * Only change the number of queues if new_tx, or new_rx is non-0. 2958 * 2959 * Returns 0 on success. 2960 */ 2961 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 2962 { 2963 struct ice_pf *pf = vsi->back; 2964 int err = 0, timeout = 50; 2965 2966 if (!new_rx && !new_tx) 2967 return -EINVAL; 2968 2969 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 2970 timeout--; 2971 if (!timeout) 2972 return -EBUSY; 2973 usleep_range(1000, 2000); 2974 } 2975 2976 if (new_tx) 2977 vsi->req_txq = (u16)new_tx; 2978 if (new_rx) 2979 vsi->req_rxq = (u16)new_rx; 2980 2981 /* set for the next time the netdev is started */ 2982 if (!netif_running(vsi->netdev)) { 2983 ice_vsi_rebuild(vsi, false); 2984 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 2985 goto done; 2986 } 2987 2988 ice_vsi_close(vsi); 2989 ice_vsi_rebuild(vsi, false); 2990 ice_pf_dcb_recfg(pf); 2991 ice_vsi_open(vsi); 2992 done: 2993 clear_bit(__ICE_CFG_BUSY, pf->state); 2994 return err; 2995 } 2996 2997 /** 2998 * ice_log_pkg_init - log result of DDP package load 2999 * @hw: pointer to hardware info 3000 * @status: status of package load 3001 */ 3002 static void 3003 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3004 { 3005 struct ice_pf *pf = (struct ice_pf *)hw->back; 3006 struct device *dev = ice_pf_to_dev(pf); 3007 3008 switch (*status) { 3009 case ICE_SUCCESS: 3010 /* The package download AdminQ command returned success because 3011 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3012 * already a package loaded on the device. 3013 */ 3014 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3015 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3016 hw->pkg_ver.update == hw->active_pkg_ver.update && 3017 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3018 !memcmp(hw->pkg_name, hw->active_pkg_name, 3019 sizeof(hw->pkg_name))) { 3020 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3021 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3022 hw->active_pkg_name, 3023 hw->active_pkg_ver.major, 3024 hw->active_pkg_ver.minor, 3025 hw->active_pkg_ver.update, 3026 hw->active_pkg_ver.draft); 3027 else 3028 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3029 hw->active_pkg_name, 3030 hw->active_pkg_ver.major, 3031 hw->active_pkg_ver.minor, 3032 hw->active_pkg_ver.update, 3033 hw->active_pkg_ver.draft); 3034 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3035 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3036 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3037 hw->active_pkg_name, 3038 hw->active_pkg_ver.major, 3039 hw->active_pkg_ver.minor, 3040 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3041 *status = ICE_ERR_NOT_SUPPORTED; 3042 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3043 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3044 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3045 hw->active_pkg_name, 3046 hw->active_pkg_ver.major, 3047 hw->active_pkg_ver.minor, 3048 hw->active_pkg_ver.update, 3049 hw->active_pkg_ver.draft, 3050 hw->pkg_name, 3051 hw->pkg_ver.major, 3052 hw->pkg_ver.minor, 3053 hw->pkg_ver.update, 3054 hw->pkg_ver.draft); 3055 } else { 3056 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3057 *status = ICE_ERR_NOT_SUPPORTED; 3058 } 3059 break; 3060 case ICE_ERR_FW_DDP_MISMATCH: 3061 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3062 break; 3063 case ICE_ERR_BUF_TOO_SHORT: 3064 case ICE_ERR_CFG: 3065 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3066 break; 3067 case ICE_ERR_NOT_SUPPORTED: 3068 /* Package File version not supported */ 3069 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3070 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3071 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3072 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3073 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3074 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3075 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3076 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3077 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3078 break; 3079 case ICE_ERR_AQ_ERROR: 3080 switch (hw->pkg_dwnld_status) { 3081 case ICE_AQ_RC_ENOSEC: 3082 case ICE_AQ_RC_EBADSIG: 3083 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3084 return; 3085 case ICE_AQ_RC_ESVN: 3086 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3087 return; 3088 case ICE_AQ_RC_EBADMAN: 3089 case ICE_AQ_RC_EBADBUF: 3090 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3091 /* poll for reset to complete */ 3092 if (ice_check_reset(hw)) 3093 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3094 return; 3095 default: 3096 break; 3097 } 3098 fallthrough; 3099 default: 3100 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3101 *status); 3102 break; 3103 } 3104 } 3105 3106 /** 3107 * ice_load_pkg - load/reload the DDP Package file 3108 * @firmware: firmware structure when firmware requested or NULL for reload 3109 * @pf: pointer to the PF instance 3110 * 3111 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3112 * initialize HW tables. 3113 */ 3114 static void 3115 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3116 { 3117 enum ice_status status = ICE_ERR_PARAM; 3118 struct device *dev = ice_pf_to_dev(pf); 3119 struct ice_hw *hw = &pf->hw; 3120 3121 /* Load DDP Package */ 3122 if (firmware && !hw->pkg_copy) { 3123 status = ice_copy_and_init_pkg(hw, firmware->data, 3124 firmware->size); 3125 ice_log_pkg_init(hw, &status); 3126 } else if (!firmware && hw->pkg_copy) { 3127 /* Reload package during rebuild after CORER/GLOBR reset */ 3128 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3129 ice_log_pkg_init(hw, &status); 3130 } else { 3131 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3132 } 3133 3134 if (status) { 3135 /* Safe Mode */ 3136 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3137 return; 3138 } 3139 3140 /* Successful download package is the precondition for advanced 3141 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3142 */ 3143 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3144 } 3145 3146 /** 3147 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3148 * @pf: pointer to the PF structure 3149 * 3150 * There is no error returned here because the driver should be able to handle 3151 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3152 * specifically with Tx. 3153 */ 3154 static void ice_verify_cacheline_size(struct ice_pf *pf) 3155 { 3156 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3157 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3158 ICE_CACHE_LINE_BYTES); 3159 } 3160 3161 /** 3162 * ice_send_version - update firmware with driver version 3163 * @pf: PF struct 3164 * 3165 * Returns ICE_SUCCESS on success, else error code 3166 */ 3167 static enum ice_status ice_send_version(struct ice_pf *pf) 3168 { 3169 struct ice_driver_ver dv; 3170 3171 dv.major_ver = DRV_VERSION_MAJOR; 3172 dv.minor_ver = DRV_VERSION_MINOR; 3173 dv.build_ver = DRV_VERSION_BUILD; 3174 dv.subbuild_ver = 0; 3175 strscpy((char *)dv.driver_string, DRV_VERSION, 3176 sizeof(dv.driver_string)); 3177 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3178 } 3179 3180 /** 3181 * ice_init_fdir - Initialize flow director VSI and configuration 3182 * @pf: pointer to the PF instance 3183 * 3184 * returns 0 on success, negative on error 3185 */ 3186 static int ice_init_fdir(struct ice_pf *pf) 3187 { 3188 struct device *dev = ice_pf_to_dev(pf); 3189 struct ice_vsi *ctrl_vsi; 3190 int err; 3191 3192 /* Side Band Flow Director needs to have a control VSI. 3193 * Allocate it and store it in the PF. 3194 */ 3195 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3196 if (!ctrl_vsi) { 3197 dev_dbg(dev, "could not create control VSI\n"); 3198 return -ENOMEM; 3199 } 3200 3201 err = ice_vsi_open_ctrl(ctrl_vsi); 3202 if (err) { 3203 dev_dbg(dev, "could not open control VSI\n"); 3204 goto err_vsi_open; 3205 } 3206 3207 mutex_init(&pf->hw.fdir_fltr_lock); 3208 3209 err = ice_fdir_create_dflt_rules(pf); 3210 if (err) 3211 goto err_fdir_rule; 3212 3213 return 0; 3214 3215 err_fdir_rule: 3216 ice_fdir_release_flows(&pf->hw); 3217 ice_vsi_close(ctrl_vsi); 3218 err_vsi_open: 3219 ice_vsi_release(ctrl_vsi); 3220 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3221 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3222 pf->ctrl_vsi_idx = ICE_NO_VSI; 3223 } 3224 return err; 3225 } 3226 3227 /** 3228 * ice_get_opt_fw_name - return optional firmware file name or NULL 3229 * @pf: pointer to the PF instance 3230 */ 3231 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3232 { 3233 /* Optional firmware name same as default with additional dash 3234 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3235 */ 3236 struct pci_dev *pdev = pf->pdev; 3237 char *opt_fw_filename; 3238 u64 dsn; 3239 3240 /* Determine the name of the optional file using the DSN (two 3241 * dwords following the start of the DSN Capability). 3242 */ 3243 dsn = pci_get_dsn(pdev); 3244 if (!dsn) 3245 return NULL; 3246 3247 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3248 if (!opt_fw_filename) 3249 return NULL; 3250 3251 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3252 ICE_DDP_PKG_PATH, dsn); 3253 3254 return opt_fw_filename; 3255 } 3256 3257 /** 3258 * ice_request_fw - Device initialization routine 3259 * @pf: pointer to the PF instance 3260 */ 3261 static void ice_request_fw(struct ice_pf *pf) 3262 { 3263 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3264 const struct firmware *firmware = NULL; 3265 struct device *dev = ice_pf_to_dev(pf); 3266 int err = 0; 3267 3268 /* optional device-specific DDP (if present) overrides the default DDP 3269 * package file. kernel logs a debug message if the file doesn't exist, 3270 * and warning messages for other errors. 3271 */ 3272 if (opt_fw_filename) { 3273 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3274 if (err) { 3275 kfree(opt_fw_filename); 3276 goto dflt_pkg_load; 3277 } 3278 3279 /* request for firmware was successful. Download to device */ 3280 ice_load_pkg(firmware, pf); 3281 kfree(opt_fw_filename); 3282 release_firmware(firmware); 3283 return; 3284 } 3285 3286 dflt_pkg_load: 3287 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3288 if (err) { 3289 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3290 return; 3291 } 3292 3293 /* request for firmware was successful. Download to device */ 3294 ice_load_pkg(firmware, pf); 3295 release_firmware(firmware); 3296 } 3297 3298 /** 3299 * ice_probe - Device initialization routine 3300 * @pdev: PCI device information struct 3301 * @ent: entry in ice_pci_tbl 3302 * 3303 * Returns 0 on success, negative on failure 3304 */ 3305 static int 3306 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3307 { 3308 struct device *dev = &pdev->dev; 3309 struct ice_pf *pf; 3310 struct ice_hw *hw; 3311 int err; 3312 3313 /* this driver uses devres, see 3314 * Documentation/driver-api/driver-model/devres.rst 3315 */ 3316 err = pcim_enable_device(pdev); 3317 if (err) 3318 return err; 3319 3320 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3321 if (err) { 3322 dev_err(dev, "BAR0 I/O map error %d\n", err); 3323 return err; 3324 } 3325 3326 pf = ice_allocate_pf(dev); 3327 if (!pf) 3328 return -ENOMEM; 3329 3330 /* set up for high or low DMA */ 3331 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3332 if (err) 3333 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3334 if (err) { 3335 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3336 return err; 3337 } 3338 3339 pci_enable_pcie_error_reporting(pdev); 3340 pci_set_master(pdev); 3341 3342 pf->pdev = pdev; 3343 pci_set_drvdata(pdev, pf); 3344 set_bit(__ICE_DOWN, pf->state); 3345 /* Disable service task until DOWN bit is cleared */ 3346 set_bit(__ICE_SERVICE_DIS, pf->state); 3347 3348 hw = &pf->hw; 3349 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 3350 pci_save_state(pdev); 3351 3352 hw->back = pf; 3353 hw->vendor_id = pdev->vendor; 3354 hw->device_id = pdev->device; 3355 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3356 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3357 hw->subsystem_device_id = pdev->subsystem_device; 3358 hw->bus.device = PCI_SLOT(pdev->devfn); 3359 hw->bus.func = PCI_FUNC(pdev->devfn); 3360 ice_set_ctrlq_len(hw); 3361 3362 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 3363 3364 err = ice_devlink_register(pf); 3365 if (err) { 3366 dev_err(dev, "ice_devlink_register failed: %d\n", err); 3367 goto err_exit_unroll; 3368 } 3369 3370 #ifndef CONFIG_DYNAMIC_DEBUG 3371 if (debug < -1) 3372 hw->debug_mask = debug; 3373 #endif 3374 3375 err = ice_init_hw(hw); 3376 if (err) { 3377 dev_err(dev, "ice_init_hw failed: %d\n", err); 3378 err = -EIO; 3379 goto err_exit_unroll; 3380 } 3381 3382 ice_request_fw(pf); 3383 3384 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 3385 * set in pf->state, which will cause ice_is_safe_mode to return 3386 * true 3387 */ 3388 if (ice_is_safe_mode(pf)) { 3389 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 3390 /* we already got function/device capabilities but these don't 3391 * reflect what the driver needs to do in safe mode. Instead of 3392 * adding conditional logic everywhere to ignore these 3393 * device/function capabilities, override them. 3394 */ 3395 ice_set_safe_mode_caps(hw); 3396 } 3397 3398 err = ice_init_pf(pf); 3399 if (err) { 3400 dev_err(dev, "ice_init_pf failed: %d\n", err); 3401 goto err_init_pf_unroll; 3402 } 3403 3404 ice_devlink_init_regions(pf); 3405 3406 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 3407 if (!pf->num_alloc_vsi) { 3408 err = -EIO; 3409 goto err_init_pf_unroll; 3410 } 3411 3412 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 3413 GFP_KERNEL); 3414 if (!pf->vsi) { 3415 err = -ENOMEM; 3416 goto err_init_pf_unroll; 3417 } 3418 3419 err = ice_init_interrupt_scheme(pf); 3420 if (err) { 3421 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 3422 err = -EIO; 3423 goto err_init_vsi_unroll; 3424 } 3425 3426 /* In case of MSIX we are going to setup the misc vector right here 3427 * to handle admin queue events etc. In case of legacy and MSI 3428 * the misc functionality and queue processing is combined in 3429 * the same vector and that gets setup at open. 3430 */ 3431 err = ice_req_irq_msix_misc(pf); 3432 if (err) { 3433 dev_err(dev, "setup of misc vector failed: %d\n", err); 3434 goto err_init_interrupt_unroll; 3435 } 3436 3437 /* create switch struct for the switch element created by FW on boot */ 3438 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 3439 if (!pf->first_sw) { 3440 err = -ENOMEM; 3441 goto err_msix_misc_unroll; 3442 } 3443 3444 if (hw->evb_veb) 3445 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 3446 else 3447 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 3448 3449 pf->first_sw->pf = pf; 3450 3451 /* record the sw_id available for later use */ 3452 pf->first_sw->sw_id = hw->port_info->sw_id; 3453 3454 err = ice_setup_pf_sw(pf); 3455 if (err) { 3456 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 3457 goto err_alloc_sw_unroll; 3458 } 3459 3460 clear_bit(__ICE_SERVICE_DIS, pf->state); 3461 3462 /* tell the firmware we are up */ 3463 err = ice_send_version(pf); 3464 if (err) { 3465 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 3466 ice_drv_ver, err); 3467 goto err_alloc_sw_unroll; 3468 } 3469 3470 /* since everything is good, start the service timer */ 3471 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3472 3473 err = ice_init_link_events(pf->hw.port_info); 3474 if (err) { 3475 dev_err(dev, "ice_init_link_events failed: %d\n", err); 3476 goto err_alloc_sw_unroll; 3477 } 3478 3479 ice_verify_cacheline_size(pf); 3480 3481 /* If no DDP driven features have to be setup, we are done with probe */ 3482 if (ice_is_safe_mode(pf)) 3483 goto probe_done; 3484 3485 /* initialize DDP driven features */ 3486 3487 /* Note: Flow director init failure is non-fatal to load */ 3488 if (ice_init_fdir(pf)) 3489 dev_err(dev, "could not initialize flow director\n"); 3490 3491 /* Note: DCB init failure is non-fatal to load */ 3492 if (ice_init_pf_dcb(pf, false)) { 3493 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3494 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 3495 } else { 3496 ice_cfg_lldp_mib_change(&pf->hw, true); 3497 } 3498 3499 /* print PCI link speed and width */ 3500 pcie_print_link_status(pf->pdev); 3501 3502 probe_done: 3503 /* ready to go, so clear down state bit */ 3504 clear_bit(__ICE_DOWN, pf->state); 3505 return 0; 3506 3507 err_alloc_sw_unroll: 3508 ice_devlink_destroy_port(pf); 3509 set_bit(__ICE_SERVICE_DIS, pf->state); 3510 set_bit(__ICE_DOWN, pf->state); 3511 devm_kfree(dev, pf->first_sw); 3512 err_msix_misc_unroll: 3513 ice_free_irq_msix_misc(pf); 3514 err_init_interrupt_unroll: 3515 ice_clear_interrupt_scheme(pf); 3516 err_init_vsi_unroll: 3517 devm_kfree(dev, pf->vsi); 3518 err_init_pf_unroll: 3519 ice_deinit_pf(pf); 3520 ice_devlink_destroy_regions(pf); 3521 ice_deinit_hw(hw); 3522 err_exit_unroll: 3523 ice_devlink_unregister(pf); 3524 pci_disable_pcie_error_reporting(pdev); 3525 return err; 3526 } 3527 3528 /** 3529 * ice_remove - Device removal routine 3530 * @pdev: PCI device information struct 3531 */ 3532 static void ice_remove(struct pci_dev *pdev) 3533 { 3534 struct ice_pf *pf = pci_get_drvdata(pdev); 3535 int i; 3536 3537 if (!pf) 3538 return; 3539 3540 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3541 if (!ice_is_reset_in_progress(pf->state)) 3542 break; 3543 msleep(100); 3544 } 3545 3546 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 3547 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 3548 ice_free_vfs(pf); 3549 } 3550 3551 set_bit(__ICE_DOWN, pf->state); 3552 ice_service_task_stop(pf); 3553 3554 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 3555 if (!ice_is_safe_mode(pf)) 3556 ice_remove_arfs(pf); 3557 ice_devlink_destroy_port(pf); 3558 ice_vsi_release_all(pf); 3559 ice_free_irq_msix_misc(pf); 3560 ice_for_each_vsi(pf, i) { 3561 if (!pf->vsi[i]) 3562 continue; 3563 ice_vsi_free_q_vectors(pf->vsi[i]); 3564 } 3565 ice_deinit_pf(pf); 3566 ice_devlink_destroy_regions(pf); 3567 ice_deinit_hw(&pf->hw); 3568 ice_devlink_unregister(pf); 3569 3570 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3571 * do it via ice_schedule_reset() since there is no need to rebuild 3572 * and the service task is already stopped. 3573 */ 3574 ice_reset(&pf->hw, ICE_RESET_PFR); 3575 pci_wait_for_pending_transaction(pdev); 3576 ice_clear_interrupt_scheme(pf); 3577 pci_disable_pcie_error_reporting(pdev); 3578 } 3579 3580 /** 3581 * ice_pci_err_detected - warning that PCI error has been detected 3582 * @pdev: PCI device information struct 3583 * @err: the type of PCI error 3584 * 3585 * Called to warn that something happened on the PCI bus and the error handling 3586 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3587 */ 3588 static pci_ers_result_t 3589 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3590 { 3591 struct ice_pf *pf = pci_get_drvdata(pdev); 3592 3593 if (!pf) { 3594 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3595 __func__, err); 3596 return PCI_ERS_RESULT_DISCONNECT; 3597 } 3598 3599 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3600 ice_service_task_stop(pf); 3601 3602 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3603 set_bit(__ICE_PFR_REQ, pf->state); 3604 ice_prepare_for_reset(pf); 3605 } 3606 } 3607 3608 return PCI_ERS_RESULT_NEED_RESET; 3609 } 3610 3611 /** 3612 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3613 * @pdev: PCI device information struct 3614 * 3615 * Called to determine if the driver can recover from the PCI slot reset by 3616 * using a register read to determine if the device is recoverable. 3617 */ 3618 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3619 { 3620 struct ice_pf *pf = pci_get_drvdata(pdev); 3621 pci_ers_result_t result; 3622 int err; 3623 u32 reg; 3624 3625 err = pci_enable_device_mem(pdev); 3626 if (err) { 3627 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 3628 err); 3629 result = PCI_ERS_RESULT_DISCONNECT; 3630 } else { 3631 pci_set_master(pdev); 3632 pci_restore_state(pdev); 3633 pci_save_state(pdev); 3634 pci_wake_from_d3(pdev, false); 3635 3636 /* Check for life */ 3637 reg = rd32(&pf->hw, GLGEN_RTRIG); 3638 if (!reg) 3639 result = PCI_ERS_RESULT_RECOVERED; 3640 else 3641 result = PCI_ERS_RESULT_DISCONNECT; 3642 } 3643 3644 err = pci_aer_clear_nonfatal_status(pdev); 3645 if (err) 3646 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 3647 err); 3648 /* non-fatal, continue */ 3649 3650 return result; 3651 } 3652 3653 /** 3654 * ice_pci_err_resume - restart operations after PCI error recovery 3655 * @pdev: PCI device information struct 3656 * 3657 * Called to allow the driver to bring things back up after PCI error and/or 3658 * reset recovery have finished 3659 */ 3660 static void ice_pci_err_resume(struct pci_dev *pdev) 3661 { 3662 struct ice_pf *pf = pci_get_drvdata(pdev); 3663 3664 if (!pf) { 3665 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 3666 __func__); 3667 return; 3668 } 3669 3670 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3671 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3672 __func__); 3673 return; 3674 } 3675 3676 ice_do_reset(pf, ICE_RESET_PFR); 3677 ice_service_task_restart(pf); 3678 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3679 } 3680 3681 /** 3682 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3683 * @pdev: PCI device information struct 3684 */ 3685 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3686 { 3687 struct ice_pf *pf = pci_get_drvdata(pdev); 3688 3689 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3690 ice_service_task_stop(pf); 3691 3692 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3693 set_bit(__ICE_PFR_REQ, pf->state); 3694 ice_prepare_for_reset(pf); 3695 } 3696 } 3697 } 3698 3699 /** 3700 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3701 * @pdev: PCI device information struct 3702 */ 3703 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3704 { 3705 ice_pci_err_resume(pdev); 3706 } 3707 3708 /* ice_pci_tbl - PCI Device ID Table 3709 * 3710 * Wildcard entries (PCI_ANY_ID) should come last 3711 * Last entry must be all 0s 3712 * 3713 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3714 * Class, Class Mask, private data (not used) } 3715 */ 3716 static const struct pci_device_id ice_pci_tbl[] = { 3717 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3718 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3719 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 3721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 3722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 3723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 3724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 3725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 3726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 3727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 3728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 3729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 3730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 3731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 3732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 3733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 3734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 3735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 3736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 3737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 3738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 3739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 3740 /* required last entry */ 3741 { 0, } 3742 }; 3743 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3744 3745 static const struct pci_error_handlers ice_pci_err_handler = { 3746 .error_detected = ice_pci_err_detected, 3747 .slot_reset = ice_pci_err_slot_reset, 3748 .reset_prepare = ice_pci_err_reset_prepare, 3749 .reset_done = ice_pci_err_reset_done, 3750 .resume = ice_pci_err_resume 3751 }; 3752 3753 static struct pci_driver ice_driver = { 3754 .name = KBUILD_MODNAME, 3755 .id_table = ice_pci_tbl, 3756 .probe = ice_probe, 3757 .remove = ice_remove, 3758 .sriov_configure = ice_sriov_configure, 3759 .err_handler = &ice_pci_err_handler 3760 }; 3761 3762 /** 3763 * ice_module_init - Driver registration routine 3764 * 3765 * ice_module_init is the first routine called when the driver is 3766 * loaded. All it does is register with the PCI subsystem. 3767 */ 3768 static int __init ice_module_init(void) 3769 { 3770 int status; 3771 3772 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 3773 pr_info("%s\n", ice_copyright); 3774 3775 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3776 if (!ice_wq) { 3777 pr_err("Failed to create workqueue\n"); 3778 return -ENOMEM; 3779 } 3780 3781 status = pci_register_driver(&ice_driver); 3782 if (status) { 3783 pr_err("failed to register PCI driver, err %d\n", status); 3784 destroy_workqueue(ice_wq); 3785 } 3786 3787 return status; 3788 } 3789 module_init(ice_module_init); 3790 3791 /** 3792 * ice_module_exit - Driver exit cleanup routine 3793 * 3794 * ice_module_exit is called just before the driver is removed 3795 * from memory. 3796 */ 3797 static void __exit ice_module_exit(void) 3798 { 3799 pci_unregister_driver(&ice_driver); 3800 destroy_workqueue(ice_wq); 3801 pr_info("module unloaded\n"); 3802 } 3803 module_exit(ice_module_exit); 3804 3805 /** 3806 * ice_set_mac_address - NDO callback to set MAC address 3807 * @netdev: network interface device structure 3808 * @pi: pointer to an address structure 3809 * 3810 * Returns 0 on success, negative on failure 3811 */ 3812 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3813 { 3814 struct ice_netdev_priv *np = netdev_priv(netdev); 3815 struct ice_vsi *vsi = np->vsi; 3816 struct ice_pf *pf = vsi->back; 3817 struct ice_hw *hw = &pf->hw; 3818 struct sockaddr *addr = pi; 3819 enum ice_status status; 3820 u8 flags = 0; 3821 int err = 0; 3822 u8 *mac; 3823 3824 mac = (u8 *)addr->sa_data; 3825 3826 if (!is_valid_ether_addr(mac)) 3827 return -EADDRNOTAVAIL; 3828 3829 if (ether_addr_equal(netdev->dev_addr, mac)) { 3830 netdev_warn(netdev, "already using mac %pM\n", mac); 3831 return 0; 3832 } 3833 3834 if (test_bit(__ICE_DOWN, pf->state) || 3835 ice_is_reset_in_progress(pf->state)) { 3836 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3837 mac); 3838 return -EBUSY; 3839 } 3840 3841 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 3842 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 3843 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 3844 err = -EADDRNOTAVAIL; 3845 goto err_update_filters; 3846 } 3847 3848 /* Add filter for new MAC. If filter exists, just return success */ 3849 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 3850 if (status == ICE_ERR_ALREADY_EXISTS) { 3851 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 3852 return 0; 3853 } 3854 3855 /* error if the new filter addition failed */ 3856 if (status) 3857 err = -EADDRNOTAVAIL; 3858 3859 err_update_filters: 3860 if (err) { 3861 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3862 mac); 3863 return err; 3864 } 3865 3866 /* change the netdev's MAC address */ 3867 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3868 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3869 netdev->dev_addr); 3870 3871 /* write new MAC address to the firmware */ 3872 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3873 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3874 if (status) { 3875 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 3876 mac, ice_stat_str(status)); 3877 } 3878 return 0; 3879 } 3880 3881 /** 3882 * ice_set_rx_mode - NDO callback to set the netdev filters 3883 * @netdev: network interface device structure 3884 */ 3885 static void ice_set_rx_mode(struct net_device *netdev) 3886 { 3887 struct ice_netdev_priv *np = netdev_priv(netdev); 3888 struct ice_vsi *vsi = np->vsi; 3889 3890 if (!vsi) 3891 return; 3892 3893 /* Set the flags to synchronize filters 3894 * ndo_set_rx_mode may be triggered even without a change in netdev 3895 * flags 3896 */ 3897 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3898 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3899 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3900 3901 /* schedule our worker thread which will take care of 3902 * applying the new filter changes 3903 */ 3904 ice_service_task_schedule(vsi->back); 3905 } 3906 3907 /** 3908 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 3909 * @netdev: network interface device structure 3910 * @queue_index: Queue ID 3911 * @maxrate: maximum bandwidth in Mbps 3912 */ 3913 static int 3914 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 3915 { 3916 struct ice_netdev_priv *np = netdev_priv(netdev); 3917 struct ice_vsi *vsi = np->vsi; 3918 enum ice_status status; 3919 u16 q_handle; 3920 u8 tc; 3921 3922 /* Validate maxrate requested is within permitted range */ 3923 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 3924 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 3925 maxrate, queue_index); 3926 return -EINVAL; 3927 } 3928 3929 q_handle = vsi->tx_rings[queue_index]->q_handle; 3930 tc = ice_dcb_get_tc(vsi, queue_index); 3931 3932 /* Set BW back to default, when user set maxrate to 0 */ 3933 if (!maxrate) 3934 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 3935 q_handle, ICE_MAX_BW); 3936 else 3937 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 3938 q_handle, ICE_MAX_BW, maxrate * 1000); 3939 if (status) { 3940 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 3941 ice_stat_str(status)); 3942 return -EIO; 3943 } 3944 3945 return 0; 3946 } 3947 3948 /** 3949 * ice_fdb_add - add an entry to the hardware database 3950 * @ndm: the input from the stack 3951 * @tb: pointer to array of nladdr (unused) 3952 * @dev: the net device pointer 3953 * @addr: the MAC address entry being added 3954 * @vid: VLAN ID 3955 * @flags: instructions from stack about fdb operation 3956 * @extack: netlink extended ack 3957 */ 3958 static int 3959 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3960 struct net_device *dev, const unsigned char *addr, u16 vid, 3961 u16 flags, struct netlink_ext_ack __always_unused *extack) 3962 { 3963 int err; 3964 3965 if (vid) { 3966 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3967 return -EINVAL; 3968 } 3969 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3970 netdev_err(dev, "FDB only supports static addresses\n"); 3971 return -EINVAL; 3972 } 3973 3974 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3975 err = dev_uc_add_excl(dev, addr); 3976 else if (is_multicast_ether_addr(addr)) 3977 err = dev_mc_add_excl(dev, addr); 3978 else 3979 err = -EINVAL; 3980 3981 /* Only return duplicate errors if NLM_F_EXCL is set */ 3982 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3983 err = 0; 3984 3985 return err; 3986 } 3987 3988 /** 3989 * ice_fdb_del - delete an entry from the hardware database 3990 * @ndm: the input from the stack 3991 * @tb: pointer to array of nladdr (unused) 3992 * @dev: the net device pointer 3993 * @addr: the MAC address entry being added 3994 * @vid: VLAN ID 3995 */ 3996 static int 3997 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3998 struct net_device *dev, const unsigned char *addr, 3999 __always_unused u16 vid) 4000 { 4001 int err; 4002 4003 if (ndm->ndm_state & NUD_PERMANENT) { 4004 netdev_err(dev, "FDB only supports static addresses\n"); 4005 return -EINVAL; 4006 } 4007 4008 if (is_unicast_ether_addr(addr)) 4009 err = dev_uc_del(dev, addr); 4010 else if (is_multicast_ether_addr(addr)) 4011 err = dev_mc_del(dev, addr); 4012 else 4013 err = -EINVAL; 4014 4015 return err; 4016 } 4017 4018 /** 4019 * ice_set_features - set the netdev feature flags 4020 * @netdev: ptr to the netdev being adjusted 4021 * @features: the feature set that the stack is suggesting 4022 */ 4023 static int 4024 ice_set_features(struct net_device *netdev, netdev_features_t features) 4025 { 4026 struct ice_netdev_priv *np = netdev_priv(netdev); 4027 struct ice_vsi *vsi = np->vsi; 4028 struct ice_pf *pf = vsi->back; 4029 int ret = 0; 4030 4031 /* Don't set any netdev advanced features with device in Safe Mode */ 4032 if (ice_is_safe_mode(vsi->back)) { 4033 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 4034 return ret; 4035 } 4036 4037 /* Do not change setting during reset */ 4038 if (ice_is_reset_in_progress(pf->state)) { 4039 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 4040 return -EBUSY; 4041 } 4042 4043 /* Multiple features can be changed in one call so keep features in 4044 * separate if/else statements to guarantee each feature is checked 4045 */ 4046 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 4047 ret = ice_vsi_manage_rss_lut(vsi, true); 4048 else if (!(features & NETIF_F_RXHASH) && 4049 netdev->features & NETIF_F_RXHASH) 4050 ret = ice_vsi_manage_rss_lut(vsi, false); 4051 4052 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 4053 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 4054 ret = ice_vsi_manage_vlan_stripping(vsi, true); 4055 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 4056 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 4057 ret = ice_vsi_manage_vlan_stripping(vsi, false); 4058 4059 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 4060 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 4061 ret = ice_vsi_manage_vlan_insertion(vsi); 4062 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 4063 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 4064 ret = ice_vsi_manage_vlan_insertion(vsi); 4065 4066 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 4067 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 4068 ret = ice_cfg_vlan_pruning(vsi, true, false); 4069 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 4070 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 4071 ret = ice_cfg_vlan_pruning(vsi, false, false); 4072 4073 if ((features & NETIF_F_NTUPLE) && 4074 !(netdev->features & NETIF_F_NTUPLE)) { 4075 ice_vsi_manage_fdir(vsi, true); 4076 ice_init_arfs(vsi); 4077 } else if (!(features & NETIF_F_NTUPLE) && 4078 (netdev->features & NETIF_F_NTUPLE)) { 4079 ice_vsi_manage_fdir(vsi, false); 4080 ice_clear_arfs(vsi); 4081 } 4082 4083 return ret; 4084 } 4085 4086 /** 4087 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 4088 * @vsi: VSI to setup VLAN properties for 4089 */ 4090 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 4091 { 4092 int ret = 0; 4093 4094 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 4095 ret = ice_vsi_manage_vlan_stripping(vsi, true); 4096 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 4097 ret = ice_vsi_manage_vlan_insertion(vsi); 4098 4099 return ret; 4100 } 4101 4102 /** 4103 * ice_vsi_cfg - Setup the VSI 4104 * @vsi: the VSI being configured 4105 * 4106 * Return 0 on success and negative value on error 4107 */ 4108 int ice_vsi_cfg(struct ice_vsi *vsi) 4109 { 4110 int err; 4111 4112 if (vsi->netdev) { 4113 ice_set_rx_mode(vsi->netdev); 4114 4115 err = ice_vsi_vlan_setup(vsi); 4116 4117 if (err) 4118 return err; 4119 } 4120 ice_vsi_cfg_dcb_rings(vsi); 4121 4122 err = ice_vsi_cfg_lan_txqs(vsi); 4123 if (!err && ice_is_xdp_ena_vsi(vsi)) 4124 err = ice_vsi_cfg_xdp_txqs(vsi); 4125 if (!err) 4126 err = ice_vsi_cfg_rxqs(vsi); 4127 4128 return err; 4129 } 4130 4131 /** 4132 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4133 * @vsi: the VSI being configured 4134 */ 4135 static void ice_napi_enable_all(struct ice_vsi *vsi) 4136 { 4137 int q_idx; 4138 4139 if (!vsi->netdev) 4140 return; 4141 4142 ice_for_each_q_vector(vsi, q_idx) { 4143 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4144 4145 if (q_vector->rx.ring || q_vector->tx.ring) 4146 napi_enable(&q_vector->napi); 4147 } 4148 } 4149 4150 /** 4151 * ice_up_complete - Finish the last steps of bringing up a connection 4152 * @vsi: The VSI being configured 4153 * 4154 * Return 0 on success and negative value on error 4155 */ 4156 static int ice_up_complete(struct ice_vsi *vsi) 4157 { 4158 struct ice_pf *pf = vsi->back; 4159 int err; 4160 4161 ice_vsi_cfg_msix(vsi); 4162 4163 /* Enable only Rx rings, Tx rings were enabled by the FW when the 4164 * Tx queue group list was configured and the context bits were 4165 * programmed using ice_vsi_cfg_txqs 4166 */ 4167 err = ice_vsi_start_all_rx_rings(vsi); 4168 if (err) 4169 return err; 4170 4171 clear_bit(__ICE_DOWN, vsi->state); 4172 ice_napi_enable_all(vsi); 4173 ice_vsi_ena_irq(vsi); 4174 4175 if (vsi->port_info && 4176 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 4177 vsi->netdev) { 4178 ice_print_link_msg(vsi, true); 4179 netif_tx_start_all_queues(vsi->netdev); 4180 netif_carrier_on(vsi->netdev); 4181 } 4182 4183 ice_service_task_schedule(pf); 4184 4185 return 0; 4186 } 4187 4188 /** 4189 * ice_up - Bring the connection back up after being down 4190 * @vsi: VSI being configured 4191 */ 4192 int ice_up(struct ice_vsi *vsi) 4193 { 4194 int err; 4195 4196 err = ice_vsi_cfg(vsi); 4197 if (!err) 4198 err = ice_up_complete(vsi); 4199 4200 return err; 4201 } 4202 4203 /** 4204 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 4205 * @ring: Tx or Rx ring to read stats from 4206 * @pkts: packets stats counter 4207 * @bytes: bytes stats counter 4208 * 4209 * This function fetches stats from the ring considering the atomic operations 4210 * that needs to be performed to read u64 values in 32 bit machine. 4211 */ 4212 static void 4213 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 4214 { 4215 unsigned int start; 4216 *pkts = 0; 4217 *bytes = 0; 4218 4219 if (!ring) 4220 return; 4221 do { 4222 start = u64_stats_fetch_begin_irq(&ring->syncp); 4223 *pkts = ring->stats.pkts; 4224 *bytes = ring->stats.bytes; 4225 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4226 } 4227 4228 /** 4229 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 4230 * @vsi: the VSI to be updated 4231 * @rings: rings to work on 4232 * @count: number of rings 4233 */ 4234 static void 4235 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 4236 u16 count) 4237 { 4238 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4239 u16 i; 4240 4241 for (i = 0; i < count; i++) { 4242 struct ice_ring *ring; 4243 u64 pkts, bytes; 4244 4245 ring = READ_ONCE(rings[i]); 4246 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4247 vsi_stats->tx_packets += pkts; 4248 vsi_stats->tx_bytes += bytes; 4249 vsi->tx_restart += ring->tx_stats.restart_q; 4250 vsi->tx_busy += ring->tx_stats.tx_busy; 4251 vsi->tx_linearize += ring->tx_stats.tx_linearize; 4252 } 4253 } 4254 4255 /** 4256 * ice_update_vsi_ring_stats - Update VSI stats counters 4257 * @vsi: the VSI to be updated 4258 */ 4259 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 4260 { 4261 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 4262 struct ice_ring *ring; 4263 u64 pkts, bytes; 4264 int i; 4265 4266 /* reset netdev stats */ 4267 vsi_stats->tx_packets = 0; 4268 vsi_stats->tx_bytes = 0; 4269 vsi_stats->rx_packets = 0; 4270 vsi_stats->rx_bytes = 0; 4271 4272 /* reset non-netdev (extended) stats */ 4273 vsi->tx_restart = 0; 4274 vsi->tx_busy = 0; 4275 vsi->tx_linearize = 0; 4276 vsi->rx_buf_failed = 0; 4277 vsi->rx_page_failed = 0; 4278 4279 rcu_read_lock(); 4280 4281 /* update Tx rings counters */ 4282 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 4283 4284 /* update Rx rings counters */ 4285 ice_for_each_rxq(vsi, i) { 4286 ring = READ_ONCE(vsi->rx_rings[i]); 4287 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4288 vsi_stats->rx_packets += pkts; 4289 vsi_stats->rx_bytes += bytes; 4290 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 4291 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 4292 } 4293 4294 /* update XDP Tx rings counters */ 4295 if (ice_is_xdp_ena_vsi(vsi)) 4296 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 4297 vsi->num_xdp_txq); 4298 4299 rcu_read_unlock(); 4300 } 4301 4302 /** 4303 * ice_update_vsi_stats - Update VSI stats counters 4304 * @vsi: the VSI to be updated 4305 */ 4306 void ice_update_vsi_stats(struct ice_vsi *vsi) 4307 { 4308 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 4309 struct ice_eth_stats *cur_es = &vsi->eth_stats; 4310 struct ice_pf *pf = vsi->back; 4311 4312 if (test_bit(__ICE_DOWN, vsi->state) || 4313 test_bit(__ICE_CFG_BUSY, pf->state)) 4314 return; 4315 4316 /* get stats as recorded by Tx/Rx rings */ 4317 ice_update_vsi_ring_stats(vsi); 4318 4319 /* get VSI stats as recorded by the hardware */ 4320 ice_update_eth_stats(vsi); 4321 4322 cur_ns->tx_errors = cur_es->tx_errors; 4323 cur_ns->rx_dropped = cur_es->rx_discards; 4324 cur_ns->tx_dropped = cur_es->tx_discards; 4325 cur_ns->multicast = cur_es->rx_multicast; 4326 4327 /* update some more netdev stats if this is main VSI */ 4328 if (vsi->type == ICE_VSI_PF) { 4329 cur_ns->rx_crc_errors = pf->stats.crc_errors; 4330 cur_ns->rx_errors = pf->stats.crc_errors + 4331 pf->stats.illegal_bytes + 4332 pf->stats.rx_len_errors + 4333 pf->stats.rx_undersize + 4334 pf->hw_csum_rx_error + 4335 pf->stats.rx_jabber + 4336 pf->stats.rx_fragments + 4337 pf->stats.rx_oversize; 4338 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 4339 /* record drops from the port level */ 4340 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 4341 } 4342 } 4343 4344 /** 4345 * ice_update_pf_stats - Update PF port stats counters 4346 * @pf: PF whose stats needs to be updated 4347 */ 4348 void ice_update_pf_stats(struct ice_pf *pf) 4349 { 4350 struct ice_hw_port_stats *prev_ps, *cur_ps; 4351 struct ice_hw *hw = &pf->hw; 4352 u16 fd_ctr_base; 4353 u8 port; 4354 4355 port = hw->port_info->lport; 4356 prev_ps = &pf->stats_prev; 4357 cur_ps = &pf->stats; 4358 4359 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 4360 &prev_ps->eth.rx_bytes, 4361 &cur_ps->eth.rx_bytes); 4362 4363 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 4364 &prev_ps->eth.rx_unicast, 4365 &cur_ps->eth.rx_unicast); 4366 4367 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 4368 &prev_ps->eth.rx_multicast, 4369 &cur_ps->eth.rx_multicast); 4370 4371 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 4372 &prev_ps->eth.rx_broadcast, 4373 &cur_ps->eth.rx_broadcast); 4374 4375 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 4376 &prev_ps->eth.rx_discards, 4377 &cur_ps->eth.rx_discards); 4378 4379 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 4380 &prev_ps->eth.tx_bytes, 4381 &cur_ps->eth.tx_bytes); 4382 4383 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 4384 &prev_ps->eth.tx_unicast, 4385 &cur_ps->eth.tx_unicast); 4386 4387 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 4388 &prev_ps->eth.tx_multicast, 4389 &cur_ps->eth.tx_multicast); 4390 4391 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 4392 &prev_ps->eth.tx_broadcast, 4393 &cur_ps->eth.tx_broadcast); 4394 4395 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 4396 &prev_ps->tx_dropped_link_down, 4397 &cur_ps->tx_dropped_link_down); 4398 4399 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 4400 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 4401 4402 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 4403 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 4404 4405 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 4406 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 4407 4408 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 4409 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 4410 4411 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 4412 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 4413 4414 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 4415 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 4416 4417 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 4418 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 4419 4420 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 4421 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 4422 4423 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 4424 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 4425 4426 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 4427 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 4428 4429 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 4430 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 4431 4432 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 4433 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 4434 4435 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 4436 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 4437 4438 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 4439 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 4440 4441 fd_ctr_base = hw->fd_ctr_base; 4442 4443 ice_stat_update40(hw, 4444 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 4445 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 4446 &cur_ps->fd_sb_match); 4447 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 4448 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 4449 4450 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 4451 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 4452 4453 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 4454 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 4455 4456 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 4457 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 4458 4459 ice_update_dcb_stats(pf); 4460 4461 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 4462 &prev_ps->crc_errors, &cur_ps->crc_errors); 4463 4464 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 4465 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 4466 4467 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 4468 &prev_ps->mac_local_faults, 4469 &cur_ps->mac_local_faults); 4470 4471 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 4472 &prev_ps->mac_remote_faults, 4473 &cur_ps->mac_remote_faults); 4474 4475 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 4476 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 4477 4478 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 4479 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 4480 4481 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 4482 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 4483 4484 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 4485 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 4486 4487 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 4488 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 4489 4490 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 4491 4492 pf->stat_prev_loaded = true; 4493 } 4494 4495 /** 4496 * ice_get_stats64 - get statistics for network device structure 4497 * @netdev: network interface device structure 4498 * @stats: main device statistics structure 4499 */ 4500 static 4501 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 4502 { 4503 struct ice_netdev_priv *np = netdev_priv(netdev); 4504 struct rtnl_link_stats64 *vsi_stats; 4505 struct ice_vsi *vsi = np->vsi; 4506 4507 vsi_stats = &vsi->net_stats; 4508 4509 if (!vsi->num_txq || !vsi->num_rxq) 4510 return; 4511 4512 /* netdev packet/byte stats come from ring counter. These are obtained 4513 * by summing up ring counters (done by ice_update_vsi_ring_stats). 4514 * But, only call the update routine and read the registers if VSI is 4515 * not down. 4516 */ 4517 if (!test_bit(__ICE_DOWN, vsi->state)) 4518 ice_update_vsi_ring_stats(vsi); 4519 stats->tx_packets = vsi_stats->tx_packets; 4520 stats->tx_bytes = vsi_stats->tx_bytes; 4521 stats->rx_packets = vsi_stats->rx_packets; 4522 stats->rx_bytes = vsi_stats->rx_bytes; 4523 4524 /* The rest of the stats can be read from the hardware but instead we 4525 * just return values that the watchdog task has already obtained from 4526 * the hardware. 4527 */ 4528 stats->multicast = vsi_stats->multicast; 4529 stats->tx_errors = vsi_stats->tx_errors; 4530 stats->tx_dropped = vsi_stats->tx_dropped; 4531 stats->rx_errors = vsi_stats->rx_errors; 4532 stats->rx_dropped = vsi_stats->rx_dropped; 4533 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 4534 stats->rx_length_errors = vsi_stats->rx_length_errors; 4535 } 4536 4537 /** 4538 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4539 * @vsi: VSI having NAPI disabled 4540 */ 4541 static void ice_napi_disable_all(struct ice_vsi *vsi) 4542 { 4543 int q_idx; 4544 4545 if (!vsi->netdev) 4546 return; 4547 4548 ice_for_each_q_vector(vsi, q_idx) { 4549 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4550 4551 if (q_vector->rx.ring || q_vector->tx.ring) 4552 napi_disable(&q_vector->napi); 4553 } 4554 } 4555 4556 /** 4557 * ice_down - Shutdown the connection 4558 * @vsi: The VSI being stopped 4559 */ 4560 int ice_down(struct ice_vsi *vsi) 4561 { 4562 int i, tx_err, rx_err, link_err = 0; 4563 4564 /* Caller of this function is expected to set the 4565 * vsi->state __ICE_DOWN bit 4566 */ 4567 if (vsi->netdev) { 4568 netif_carrier_off(vsi->netdev); 4569 netif_tx_disable(vsi->netdev); 4570 } 4571 4572 ice_vsi_dis_irq(vsi); 4573 4574 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 4575 if (tx_err) 4576 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 4577 vsi->vsi_num, tx_err); 4578 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 4579 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 4580 if (tx_err) 4581 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 4582 vsi->vsi_num, tx_err); 4583 } 4584 4585 rx_err = ice_vsi_stop_all_rx_rings(vsi); 4586 if (rx_err) 4587 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 4588 vsi->vsi_num, rx_err); 4589 4590 ice_napi_disable_all(vsi); 4591 4592 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 4593 link_err = ice_force_phys_link_state(vsi, false); 4594 if (link_err) 4595 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 4596 vsi->vsi_num, link_err); 4597 } 4598 4599 ice_for_each_txq(vsi, i) 4600 ice_clean_tx_ring(vsi->tx_rings[i]); 4601 4602 ice_for_each_rxq(vsi, i) 4603 ice_clean_rx_ring(vsi->rx_rings[i]); 4604 4605 if (tx_err || rx_err || link_err) { 4606 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 4607 vsi->vsi_num, vsi->vsw->sw_id); 4608 return -EIO; 4609 } 4610 4611 return 0; 4612 } 4613 4614 /** 4615 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 4616 * @vsi: VSI having resources allocated 4617 * 4618 * Return 0 on success, negative on failure 4619 */ 4620 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 4621 { 4622 int i, err = 0; 4623 4624 if (!vsi->num_txq) { 4625 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 4626 vsi->vsi_num); 4627 return -EINVAL; 4628 } 4629 4630 ice_for_each_txq(vsi, i) { 4631 struct ice_ring *ring = vsi->tx_rings[i]; 4632 4633 if (!ring) 4634 return -EINVAL; 4635 4636 ring->netdev = vsi->netdev; 4637 err = ice_setup_tx_ring(ring); 4638 if (err) 4639 break; 4640 } 4641 4642 return err; 4643 } 4644 4645 /** 4646 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 4647 * @vsi: VSI having resources allocated 4648 * 4649 * Return 0 on success, negative on failure 4650 */ 4651 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 4652 { 4653 int i, err = 0; 4654 4655 if (!vsi->num_rxq) { 4656 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 4657 vsi->vsi_num); 4658 return -EINVAL; 4659 } 4660 4661 ice_for_each_rxq(vsi, i) { 4662 struct ice_ring *ring = vsi->rx_rings[i]; 4663 4664 if (!ring) 4665 return -EINVAL; 4666 4667 ring->netdev = vsi->netdev; 4668 err = ice_setup_rx_ring(ring); 4669 if (err) 4670 break; 4671 } 4672 4673 return err; 4674 } 4675 4676 /** 4677 * ice_vsi_open_ctrl - open control VSI for use 4678 * @vsi: the VSI to open 4679 * 4680 * Initialization of the Control VSI 4681 * 4682 * Returns 0 on success, negative value on error 4683 */ 4684 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 4685 { 4686 char int_name[ICE_INT_NAME_STR_LEN]; 4687 struct ice_pf *pf = vsi->back; 4688 struct device *dev; 4689 int err; 4690 4691 dev = ice_pf_to_dev(pf); 4692 /* allocate descriptors */ 4693 err = ice_vsi_setup_tx_rings(vsi); 4694 if (err) 4695 goto err_setup_tx; 4696 4697 err = ice_vsi_setup_rx_rings(vsi); 4698 if (err) 4699 goto err_setup_rx; 4700 4701 err = ice_vsi_cfg(vsi); 4702 if (err) 4703 goto err_setup_rx; 4704 4705 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 4706 dev_driver_string(dev), dev_name(dev)); 4707 err = ice_vsi_req_irq_msix(vsi, int_name); 4708 if (err) 4709 goto err_setup_rx; 4710 4711 ice_vsi_cfg_msix(vsi); 4712 4713 err = ice_vsi_start_all_rx_rings(vsi); 4714 if (err) 4715 goto err_up_complete; 4716 4717 clear_bit(__ICE_DOWN, vsi->state); 4718 ice_vsi_ena_irq(vsi); 4719 4720 return 0; 4721 4722 err_up_complete: 4723 ice_down(vsi); 4724 err_setup_rx: 4725 ice_vsi_free_rx_rings(vsi); 4726 err_setup_tx: 4727 ice_vsi_free_tx_rings(vsi); 4728 4729 return err; 4730 } 4731 4732 /** 4733 * ice_vsi_open - Called when a network interface is made active 4734 * @vsi: the VSI to open 4735 * 4736 * Initialization of the VSI 4737 * 4738 * Returns 0 on success, negative value on error 4739 */ 4740 static int ice_vsi_open(struct ice_vsi *vsi) 4741 { 4742 char int_name[ICE_INT_NAME_STR_LEN]; 4743 struct ice_pf *pf = vsi->back; 4744 int err; 4745 4746 /* allocate descriptors */ 4747 err = ice_vsi_setup_tx_rings(vsi); 4748 if (err) 4749 goto err_setup_tx; 4750 4751 err = ice_vsi_setup_rx_rings(vsi); 4752 if (err) 4753 goto err_setup_rx; 4754 4755 err = ice_vsi_cfg(vsi); 4756 if (err) 4757 goto err_setup_rx; 4758 4759 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4760 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 4761 err = ice_vsi_req_irq_msix(vsi, int_name); 4762 if (err) 4763 goto err_setup_rx; 4764 4765 /* Notify the stack of the actual queue counts. */ 4766 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4767 if (err) 4768 goto err_set_qs; 4769 4770 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4771 if (err) 4772 goto err_set_qs; 4773 4774 err = ice_up_complete(vsi); 4775 if (err) 4776 goto err_up_complete; 4777 4778 return 0; 4779 4780 err_up_complete: 4781 ice_down(vsi); 4782 err_set_qs: 4783 ice_vsi_free_irq(vsi); 4784 err_setup_rx: 4785 ice_vsi_free_rx_rings(vsi); 4786 err_setup_tx: 4787 ice_vsi_free_tx_rings(vsi); 4788 4789 return err; 4790 } 4791 4792 /** 4793 * ice_vsi_release_all - Delete all VSIs 4794 * @pf: PF from which all VSIs are being removed 4795 */ 4796 static void ice_vsi_release_all(struct ice_pf *pf) 4797 { 4798 int err, i; 4799 4800 if (!pf->vsi) 4801 return; 4802 4803 ice_for_each_vsi(pf, i) { 4804 if (!pf->vsi[i]) 4805 continue; 4806 4807 err = ice_vsi_release(pf->vsi[i]); 4808 if (err) 4809 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4810 i, err, pf->vsi[i]->vsi_num); 4811 } 4812 } 4813 4814 /** 4815 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4816 * @pf: pointer to the PF instance 4817 * @type: VSI type to rebuild 4818 * 4819 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4820 */ 4821 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4822 { 4823 struct device *dev = ice_pf_to_dev(pf); 4824 enum ice_status status; 4825 int i, err; 4826 4827 ice_for_each_vsi(pf, i) { 4828 struct ice_vsi *vsi = pf->vsi[i]; 4829 4830 if (!vsi || vsi->type != type) 4831 continue; 4832 4833 /* rebuild the VSI */ 4834 err = ice_vsi_rebuild(vsi, true); 4835 if (err) { 4836 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 4837 err, vsi->idx, ice_vsi_type_str(type)); 4838 return err; 4839 } 4840 4841 /* replay filters for the VSI */ 4842 status = ice_replay_vsi(&pf->hw, vsi->idx); 4843 if (status) { 4844 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 4845 ice_stat_str(status), vsi->idx, 4846 ice_vsi_type_str(type)); 4847 return -EIO; 4848 } 4849 4850 /* Re-map HW VSI number, using VSI handle that has been 4851 * previously validated in ice_replay_vsi() call above 4852 */ 4853 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4854 4855 /* enable the VSI */ 4856 err = ice_ena_vsi(vsi, false); 4857 if (err) { 4858 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 4859 err, vsi->idx, ice_vsi_type_str(type)); 4860 return err; 4861 } 4862 4863 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 4864 ice_vsi_type_str(type)); 4865 } 4866 4867 return 0; 4868 } 4869 4870 /** 4871 * ice_update_pf_netdev_link - Update PF netdev link status 4872 * @pf: pointer to the PF instance 4873 */ 4874 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4875 { 4876 bool link_up; 4877 int i; 4878 4879 ice_for_each_vsi(pf, i) { 4880 struct ice_vsi *vsi = pf->vsi[i]; 4881 4882 if (!vsi || vsi->type != ICE_VSI_PF) 4883 return; 4884 4885 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4886 if (link_up) { 4887 netif_carrier_on(pf->vsi[i]->netdev); 4888 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4889 } else { 4890 netif_carrier_off(pf->vsi[i]->netdev); 4891 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4892 } 4893 } 4894 } 4895 4896 /** 4897 * ice_rebuild - rebuild after reset 4898 * @pf: PF to rebuild 4899 * @reset_type: type of reset 4900 * 4901 * Do not rebuild VF VSI in this flow because that is already handled via 4902 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 4903 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 4904 * to reset/rebuild all the VF VSI twice. 4905 */ 4906 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4907 { 4908 struct device *dev = ice_pf_to_dev(pf); 4909 struct ice_hw *hw = &pf->hw; 4910 enum ice_status ret; 4911 int err; 4912 4913 if (test_bit(__ICE_DOWN, pf->state)) 4914 goto clear_recovery; 4915 4916 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4917 4918 ret = ice_init_all_ctrlq(hw); 4919 if (ret) { 4920 dev_err(dev, "control queues init failed %s\n", 4921 ice_stat_str(ret)); 4922 goto err_init_ctrlq; 4923 } 4924 4925 /* if DDP was previously loaded successfully */ 4926 if (!ice_is_safe_mode(pf)) { 4927 /* reload the SW DB of filter tables */ 4928 if (reset_type == ICE_RESET_PFR) 4929 ice_fill_blk_tbls(hw); 4930 else 4931 /* Reload DDP Package after CORER/GLOBR reset */ 4932 ice_load_pkg(NULL, pf); 4933 } 4934 4935 ret = ice_clear_pf_cfg(hw); 4936 if (ret) { 4937 dev_err(dev, "clear PF configuration failed %s\n", 4938 ice_stat_str(ret)); 4939 goto err_init_ctrlq; 4940 } 4941 4942 if (pf->first_sw->dflt_vsi_ena) 4943 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 4944 /* clear the default VSI configuration if it exists */ 4945 pf->first_sw->dflt_vsi = NULL; 4946 pf->first_sw->dflt_vsi_ena = false; 4947 4948 ice_clear_pxe_mode(hw); 4949 4950 ret = ice_get_caps(hw); 4951 if (ret) { 4952 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 4953 goto err_init_ctrlq; 4954 } 4955 4956 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 4957 if (ret) { 4958 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 4959 goto err_init_ctrlq; 4960 } 4961 4962 err = ice_sched_init_port(hw->port_info); 4963 if (err) 4964 goto err_sched_init_port; 4965 4966 err = ice_update_link_info(hw->port_info); 4967 if (err) 4968 dev_err(dev, "Get link status error %d\n", err); 4969 4970 /* start misc vector */ 4971 err = ice_req_irq_msix_misc(pf); 4972 if (err) { 4973 dev_err(dev, "misc vector setup failed: %d\n", err); 4974 goto err_sched_init_port; 4975 } 4976 4977 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 4978 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 4979 if (!rd32(hw, PFQF_FD_SIZE)) { 4980 u16 unused, guar, b_effort; 4981 4982 guar = hw->func_caps.fd_fltr_guar; 4983 b_effort = hw->func_caps.fd_fltr_best_effort; 4984 4985 /* force guaranteed filter pool for PF */ 4986 ice_alloc_fd_guar_item(hw, &unused, guar); 4987 /* force shared filter pool for PF */ 4988 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 4989 } 4990 } 4991 4992 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4993 ice_dcb_rebuild(pf); 4994 4995 /* rebuild PF VSI */ 4996 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4997 if (err) { 4998 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4999 goto err_vsi_rebuild; 5000 } 5001 5002 /* If Flow Director is active */ 5003 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 5004 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 5005 if (err) { 5006 dev_err(dev, "control VSI rebuild failed: %d\n", err); 5007 goto err_vsi_rebuild; 5008 } 5009 5010 /* replay HW Flow Director recipes */ 5011 if (hw->fdir_prof) 5012 ice_fdir_replay_flows(hw); 5013 5014 /* replay Flow Director filters */ 5015 ice_fdir_replay_fltrs(pf); 5016 5017 ice_rebuild_arfs(pf); 5018 } 5019 5020 ice_update_pf_netdev_link(pf); 5021 5022 /* tell the firmware we are up */ 5023 ret = ice_send_version(pf); 5024 if (ret) { 5025 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 5026 ice_stat_str(ret)); 5027 goto err_vsi_rebuild; 5028 } 5029 5030 ice_replay_post(hw); 5031 5032 /* if we get here, reset flow is successful */ 5033 clear_bit(__ICE_RESET_FAILED, pf->state); 5034 return; 5035 5036 err_vsi_rebuild: 5037 err_sched_init_port: 5038 ice_sched_cleanup_all(hw); 5039 err_init_ctrlq: 5040 ice_shutdown_all_ctrlq(hw); 5041 set_bit(__ICE_RESET_FAILED, pf->state); 5042 clear_recovery: 5043 /* set this bit in PF state to control service task scheduling */ 5044 set_bit(__ICE_NEEDS_RESTART, pf->state); 5045 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 5046 } 5047 5048 /** 5049 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 5050 * @vsi: Pointer to VSI structure 5051 */ 5052 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 5053 { 5054 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 5055 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 5056 else 5057 return ICE_RXBUF_3072; 5058 } 5059 5060 /** 5061 * ice_change_mtu - NDO callback to change the MTU 5062 * @netdev: network interface device structure 5063 * @new_mtu: new value for maximum frame size 5064 * 5065 * Returns 0 on success, negative on failure 5066 */ 5067 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 5068 { 5069 struct ice_netdev_priv *np = netdev_priv(netdev); 5070 struct ice_vsi *vsi = np->vsi; 5071 struct ice_pf *pf = vsi->back; 5072 u8 count = 0; 5073 5074 if (new_mtu == (int)netdev->mtu) { 5075 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 5076 return 0; 5077 } 5078 5079 if (ice_is_xdp_ena_vsi(vsi)) { 5080 int frame_size = ice_max_xdp_frame_size(vsi); 5081 5082 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 5083 netdev_err(netdev, "max MTU for XDP usage is %d\n", 5084 frame_size - ICE_ETH_PKT_HDR_PAD); 5085 return -EINVAL; 5086 } 5087 } 5088 5089 if (new_mtu < (int)netdev->min_mtu) { 5090 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 5091 netdev->min_mtu); 5092 return -EINVAL; 5093 } else if (new_mtu > (int)netdev->max_mtu) { 5094 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 5095 netdev->min_mtu); 5096 return -EINVAL; 5097 } 5098 /* if a reset is in progress, wait for some time for it to complete */ 5099 do { 5100 if (ice_is_reset_in_progress(pf->state)) { 5101 count++; 5102 usleep_range(1000, 2000); 5103 } else { 5104 break; 5105 } 5106 5107 } while (count < 100); 5108 5109 if (count == 100) { 5110 netdev_err(netdev, "can't change MTU. Device is busy\n"); 5111 return -EBUSY; 5112 } 5113 5114 netdev->mtu = (unsigned int)new_mtu; 5115 5116 /* if VSI is up, bring it down and then back up */ 5117 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 5118 int err; 5119 5120 err = ice_down(vsi); 5121 if (err) { 5122 netdev_err(netdev, "change MTU if_up err %d\n", err); 5123 return err; 5124 } 5125 5126 err = ice_up(vsi); 5127 if (err) { 5128 netdev_err(netdev, "change MTU if_up err %d\n", err); 5129 return err; 5130 } 5131 } 5132 5133 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 5134 return 0; 5135 } 5136 5137 /** 5138 * ice_aq_str - convert AQ err code to a string 5139 * @aq_err: the AQ error code to convert 5140 */ 5141 const char *ice_aq_str(enum ice_aq_err aq_err) 5142 { 5143 switch (aq_err) { 5144 case ICE_AQ_RC_OK: 5145 return "OK"; 5146 case ICE_AQ_RC_EPERM: 5147 return "ICE_AQ_RC_EPERM"; 5148 case ICE_AQ_RC_ENOENT: 5149 return "ICE_AQ_RC_ENOENT"; 5150 case ICE_AQ_RC_ENOMEM: 5151 return "ICE_AQ_RC_ENOMEM"; 5152 case ICE_AQ_RC_EBUSY: 5153 return "ICE_AQ_RC_EBUSY"; 5154 case ICE_AQ_RC_EEXIST: 5155 return "ICE_AQ_RC_EEXIST"; 5156 case ICE_AQ_RC_EINVAL: 5157 return "ICE_AQ_RC_EINVAL"; 5158 case ICE_AQ_RC_ENOSPC: 5159 return "ICE_AQ_RC_ENOSPC"; 5160 case ICE_AQ_RC_ENOSYS: 5161 return "ICE_AQ_RC_ENOSYS"; 5162 case ICE_AQ_RC_EMODE: 5163 return "ICE_AQ_RC_EMODE"; 5164 case ICE_AQ_RC_ENOSEC: 5165 return "ICE_AQ_RC_ENOSEC"; 5166 case ICE_AQ_RC_EBADSIG: 5167 return "ICE_AQ_RC_EBADSIG"; 5168 case ICE_AQ_RC_ESVN: 5169 return "ICE_AQ_RC_ESVN"; 5170 case ICE_AQ_RC_EBADMAN: 5171 return "ICE_AQ_RC_EBADMAN"; 5172 case ICE_AQ_RC_EBADBUF: 5173 return "ICE_AQ_RC_EBADBUF"; 5174 } 5175 5176 return "ICE_AQ_RC_UNKNOWN"; 5177 } 5178 5179 /** 5180 * ice_stat_str - convert status err code to a string 5181 * @stat_err: the status error code to convert 5182 */ 5183 const char *ice_stat_str(enum ice_status stat_err) 5184 { 5185 switch (stat_err) { 5186 case ICE_SUCCESS: 5187 return "OK"; 5188 case ICE_ERR_PARAM: 5189 return "ICE_ERR_PARAM"; 5190 case ICE_ERR_NOT_IMPL: 5191 return "ICE_ERR_NOT_IMPL"; 5192 case ICE_ERR_NOT_READY: 5193 return "ICE_ERR_NOT_READY"; 5194 case ICE_ERR_NOT_SUPPORTED: 5195 return "ICE_ERR_NOT_SUPPORTED"; 5196 case ICE_ERR_BAD_PTR: 5197 return "ICE_ERR_BAD_PTR"; 5198 case ICE_ERR_INVAL_SIZE: 5199 return "ICE_ERR_INVAL_SIZE"; 5200 case ICE_ERR_DEVICE_NOT_SUPPORTED: 5201 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 5202 case ICE_ERR_RESET_FAILED: 5203 return "ICE_ERR_RESET_FAILED"; 5204 case ICE_ERR_FW_API_VER: 5205 return "ICE_ERR_FW_API_VER"; 5206 case ICE_ERR_NO_MEMORY: 5207 return "ICE_ERR_NO_MEMORY"; 5208 case ICE_ERR_CFG: 5209 return "ICE_ERR_CFG"; 5210 case ICE_ERR_OUT_OF_RANGE: 5211 return "ICE_ERR_OUT_OF_RANGE"; 5212 case ICE_ERR_ALREADY_EXISTS: 5213 return "ICE_ERR_ALREADY_EXISTS"; 5214 case ICE_ERR_NVM_CHECKSUM: 5215 return "ICE_ERR_NVM_CHECKSUM"; 5216 case ICE_ERR_BUF_TOO_SHORT: 5217 return "ICE_ERR_BUF_TOO_SHORT"; 5218 case ICE_ERR_NVM_BLANK_MODE: 5219 return "ICE_ERR_NVM_BLANK_MODE"; 5220 case ICE_ERR_IN_USE: 5221 return "ICE_ERR_IN_USE"; 5222 case ICE_ERR_MAX_LIMIT: 5223 return "ICE_ERR_MAX_LIMIT"; 5224 case ICE_ERR_RESET_ONGOING: 5225 return "ICE_ERR_RESET_ONGOING"; 5226 case ICE_ERR_HW_TABLE: 5227 return "ICE_ERR_HW_TABLE"; 5228 case ICE_ERR_DOES_NOT_EXIST: 5229 return "ICE_ERR_DOES_NOT_EXIST"; 5230 case ICE_ERR_FW_DDP_MISMATCH: 5231 return "ICE_ERR_FW_DDP_MISMATCH"; 5232 case ICE_ERR_AQ_ERROR: 5233 return "ICE_ERR_AQ_ERROR"; 5234 case ICE_ERR_AQ_TIMEOUT: 5235 return "ICE_ERR_AQ_TIMEOUT"; 5236 case ICE_ERR_AQ_FULL: 5237 return "ICE_ERR_AQ_FULL"; 5238 case ICE_ERR_AQ_NO_WORK: 5239 return "ICE_ERR_AQ_NO_WORK"; 5240 case ICE_ERR_AQ_EMPTY: 5241 return "ICE_ERR_AQ_EMPTY"; 5242 case ICE_ERR_AQ_FW_CRITICAL: 5243 return "ICE_ERR_AQ_FW_CRITICAL"; 5244 } 5245 5246 return "ICE_ERR_UNKNOWN"; 5247 } 5248 5249 /** 5250 * ice_set_rss - Set RSS keys and lut 5251 * @vsi: Pointer to VSI structure 5252 * @seed: RSS hash seed 5253 * @lut: Lookup table 5254 * @lut_size: Lookup table size 5255 * 5256 * Returns 0 on success, negative on failure 5257 */ 5258 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 5259 { 5260 struct ice_pf *pf = vsi->back; 5261 struct ice_hw *hw = &pf->hw; 5262 enum ice_status status; 5263 struct device *dev; 5264 5265 dev = ice_pf_to_dev(pf); 5266 if (seed) { 5267 struct ice_aqc_get_set_rss_keys *buf = 5268 (struct ice_aqc_get_set_rss_keys *)seed; 5269 5270 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 5271 5272 if (status) { 5273 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 5274 ice_stat_str(status), 5275 ice_aq_str(hw->adminq.sq_last_status)); 5276 return -EIO; 5277 } 5278 } 5279 5280 if (lut) { 5281 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 5282 lut, lut_size); 5283 if (status) { 5284 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 5285 ice_stat_str(status), 5286 ice_aq_str(hw->adminq.sq_last_status)); 5287 return -EIO; 5288 } 5289 } 5290 5291 return 0; 5292 } 5293 5294 /** 5295 * ice_get_rss - Get RSS keys and lut 5296 * @vsi: Pointer to VSI structure 5297 * @seed: Buffer to store the keys 5298 * @lut: Buffer to store the lookup table entries 5299 * @lut_size: Size of buffer to store the lookup table entries 5300 * 5301 * Returns 0 on success, negative on failure 5302 */ 5303 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 5304 { 5305 struct ice_pf *pf = vsi->back; 5306 struct ice_hw *hw = &pf->hw; 5307 enum ice_status status; 5308 struct device *dev; 5309 5310 dev = ice_pf_to_dev(pf); 5311 if (seed) { 5312 struct ice_aqc_get_set_rss_keys *buf = 5313 (struct ice_aqc_get_set_rss_keys *)seed; 5314 5315 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 5316 if (status) { 5317 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 5318 ice_stat_str(status), 5319 ice_aq_str(hw->adminq.sq_last_status)); 5320 return -EIO; 5321 } 5322 } 5323 5324 if (lut) { 5325 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 5326 lut, lut_size); 5327 if (status) { 5328 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 5329 ice_stat_str(status), 5330 ice_aq_str(hw->adminq.sq_last_status)); 5331 return -EIO; 5332 } 5333 } 5334 5335 return 0; 5336 } 5337 5338 /** 5339 * ice_bridge_getlink - Get the hardware bridge mode 5340 * @skb: skb buff 5341 * @pid: process ID 5342 * @seq: RTNL message seq 5343 * @dev: the netdev being configured 5344 * @filter_mask: filter mask passed in 5345 * @nlflags: netlink flags passed in 5346 * 5347 * Return the bridge mode (VEB/VEPA) 5348 */ 5349 static int 5350 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 5351 struct net_device *dev, u32 filter_mask, int nlflags) 5352 { 5353 struct ice_netdev_priv *np = netdev_priv(dev); 5354 struct ice_vsi *vsi = np->vsi; 5355 struct ice_pf *pf = vsi->back; 5356 u16 bmode; 5357 5358 bmode = pf->first_sw->bridge_mode; 5359 5360 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 5361 filter_mask, NULL); 5362 } 5363 5364 /** 5365 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 5366 * @vsi: Pointer to VSI structure 5367 * @bmode: Hardware bridge mode (VEB/VEPA) 5368 * 5369 * Returns 0 on success, negative on failure 5370 */ 5371 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 5372 { 5373 struct ice_aqc_vsi_props *vsi_props; 5374 struct ice_hw *hw = &vsi->back->hw; 5375 struct ice_vsi_ctx *ctxt; 5376 enum ice_status status; 5377 int ret = 0; 5378 5379 vsi_props = &vsi->info; 5380 5381 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 5382 if (!ctxt) 5383 return -ENOMEM; 5384 5385 ctxt->info = vsi->info; 5386 5387 if (bmode == BRIDGE_MODE_VEB) 5388 /* change from VEPA to VEB mode */ 5389 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 5390 else 5391 /* change from VEB to VEPA mode */ 5392 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 5393 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 5394 5395 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 5396 if (status) { 5397 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 5398 bmode, ice_stat_str(status), 5399 ice_aq_str(hw->adminq.sq_last_status)); 5400 ret = -EIO; 5401 goto out; 5402 } 5403 /* Update sw flags for book keeping */ 5404 vsi_props->sw_flags = ctxt->info.sw_flags; 5405 5406 out: 5407 kfree(ctxt); 5408 return ret; 5409 } 5410 5411 /** 5412 * ice_bridge_setlink - Set the hardware bridge mode 5413 * @dev: the netdev being configured 5414 * @nlh: RTNL message 5415 * @flags: bridge setlink flags 5416 * @extack: netlink extended ack 5417 * 5418 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 5419 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 5420 * not already set for all VSIs connected to this switch. And also update the 5421 * unicast switch filter rules for the corresponding switch of the netdev. 5422 */ 5423 static int 5424 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 5425 u16 __always_unused flags, 5426 struct netlink_ext_ack __always_unused *extack) 5427 { 5428 struct ice_netdev_priv *np = netdev_priv(dev); 5429 struct ice_pf *pf = np->vsi->back; 5430 struct nlattr *attr, *br_spec; 5431 struct ice_hw *hw = &pf->hw; 5432 enum ice_status status; 5433 struct ice_sw *pf_sw; 5434 int rem, v, err = 0; 5435 5436 pf_sw = pf->first_sw; 5437 /* find the attribute in the netlink message */ 5438 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 5439 5440 nla_for_each_nested(attr, br_spec, rem) { 5441 __u16 mode; 5442 5443 if (nla_type(attr) != IFLA_BRIDGE_MODE) 5444 continue; 5445 mode = nla_get_u16(attr); 5446 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 5447 return -EINVAL; 5448 /* Continue if bridge mode is not being flipped */ 5449 if (mode == pf_sw->bridge_mode) 5450 continue; 5451 /* Iterates through the PF VSI list and update the loopback 5452 * mode of the VSI 5453 */ 5454 ice_for_each_vsi(pf, v) { 5455 if (!pf->vsi[v]) 5456 continue; 5457 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 5458 if (err) 5459 return err; 5460 } 5461 5462 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 5463 /* Update the unicast switch filter rules for the corresponding 5464 * switch of the netdev 5465 */ 5466 status = ice_update_sw_rule_bridge_mode(hw); 5467 if (status) { 5468 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 5469 mode, ice_stat_str(status), 5470 ice_aq_str(hw->adminq.sq_last_status)); 5471 /* revert hw->evb_veb */ 5472 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 5473 return -EIO; 5474 } 5475 5476 pf_sw->bridge_mode = mode; 5477 } 5478 5479 return 0; 5480 } 5481 5482 /** 5483 * ice_tx_timeout - Respond to a Tx Hang 5484 * @netdev: network interface device structure 5485 * @txqueue: Tx queue 5486 */ 5487 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 5488 { 5489 struct ice_netdev_priv *np = netdev_priv(netdev); 5490 struct ice_ring *tx_ring = NULL; 5491 struct ice_vsi *vsi = np->vsi; 5492 struct ice_pf *pf = vsi->back; 5493 u32 i; 5494 5495 pf->tx_timeout_count++; 5496 5497 /* Check if PFC is enabled for the TC to which the queue belongs 5498 * to. If yes then Tx timeout is not caused by a hung queue, no 5499 * need to reset and rebuild 5500 */ 5501 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 5502 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 5503 txqueue); 5504 return; 5505 } 5506 5507 /* now that we have an index, find the tx_ring struct */ 5508 for (i = 0; i < vsi->num_txq; i++) 5509 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 5510 if (txqueue == vsi->tx_rings[i]->q_index) { 5511 tx_ring = vsi->tx_rings[i]; 5512 break; 5513 } 5514 5515 /* Reset recovery level if enough time has elapsed after last timeout. 5516 * Also ensure no new reset action happens before next timeout period. 5517 */ 5518 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 5519 pf->tx_timeout_recovery_level = 1; 5520 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 5521 netdev->watchdog_timeo))) 5522 return; 5523 5524 if (tx_ring) { 5525 struct ice_hw *hw = &pf->hw; 5526 u32 head, val = 0; 5527 5528 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 5529 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 5530 /* Read interrupt register */ 5531 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 5532 5533 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 5534 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 5535 head, tx_ring->next_to_use, val); 5536 } 5537 5538 pf->tx_timeout_last_recovery = jiffies; 5539 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 5540 pf->tx_timeout_recovery_level, txqueue); 5541 5542 switch (pf->tx_timeout_recovery_level) { 5543 case 1: 5544 set_bit(__ICE_PFR_REQ, pf->state); 5545 break; 5546 case 2: 5547 set_bit(__ICE_CORER_REQ, pf->state); 5548 break; 5549 case 3: 5550 set_bit(__ICE_GLOBR_REQ, pf->state); 5551 break; 5552 default: 5553 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 5554 set_bit(__ICE_DOWN, pf->state); 5555 set_bit(__ICE_NEEDS_RESTART, vsi->state); 5556 set_bit(__ICE_SERVICE_DIS, pf->state); 5557 break; 5558 } 5559 5560 ice_service_task_schedule(pf); 5561 pf->tx_timeout_recovery_level++; 5562 } 5563 5564 /** 5565 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 5566 * @netdev: This physical port's netdev 5567 * @ti: Tunnel endpoint information 5568 */ 5569 static void 5570 ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti) 5571 { 5572 struct ice_netdev_priv *np = netdev_priv(netdev); 5573 struct ice_vsi *vsi = np->vsi; 5574 struct ice_pf *pf = vsi->back; 5575 enum ice_tunnel_type tnl_type; 5576 u16 port = ntohs(ti->port); 5577 enum ice_status status; 5578 5579 switch (ti->type) { 5580 case UDP_TUNNEL_TYPE_VXLAN: 5581 tnl_type = TNL_VXLAN; 5582 break; 5583 case UDP_TUNNEL_TYPE_GENEVE: 5584 tnl_type = TNL_GENEVE; 5585 break; 5586 default: 5587 netdev_err(netdev, "Unknown tunnel type\n"); 5588 return; 5589 } 5590 5591 status = ice_create_tunnel(&pf->hw, tnl_type, port); 5592 if (status == ICE_ERR_OUT_OF_RANGE) 5593 netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n", 5594 port); 5595 else if (status) 5596 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 5597 ice_stat_str(status)); 5598 } 5599 5600 /** 5601 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 5602 * @netdev: This physical port's netdev 5603 * @ti: Tunnel endpoint information 5604 */ 5605 static void 5606 ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti) 5607 { 5608 struct ice_netdev_priv *np = netdev_priv(netdev); 5609 struct ice_vsi *vsi = np->vsi; 5610 struct ice_pf *pf = vsi->back; 5611 u16 port = ntohs(ti->port); 5612 enum ice_status status; 5613 bool retval; 5614 5615 retval = ice_tunnel_port_in_use(&pf->hw, port, NULL); 5616 if (!retval) { 5617 netdev_info(netdev, "port %d not found in UDP tunnels list\n", 5618 port); 5619 return; 5620 } 5621 5622 status = ice_destroy_tunnel(&pf->hw, port, false); 5623 if (status) 5624 netdev_err(netdev, "error deleting port %d from UDP tunnels list\n", 5625 port); 5626 } 5627 5628 /** 5629 * ice_open - Called when a network interface becomes active 5630 * @netdev: network interface device structure 5631 * 5632 * The open entry point is called when a network interface is made 5633 * active by the system (IFF_UP). At this point all resources needed 5634 * for transmit and receive operations are allocated, the interrupt 5635 * handler is registered with the OS, the netdev watchdog is enabled, 5636 * and the stack is notified that the interface is ready. 5637 * 5638 * Returns 0 on success, negative value on failure 5639 */ 5640 int ice_open(struct net_device *netdev) 5641 { 5642 struct ice_netdev_priv *np = netdev_priv(netdev); 5643 struct ice_vsi *vsi = np->vsi; 5644 struct ice_pf *pf = vsi->back; 5645 struct ice_port_info *pi; 5646 int err; 5647 5648 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 5649 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 5650 return -EIO; 5651 } 5652 5653 if (test_bit(__ICE_DOWN, pf->state)) { 5654 netdev_err(netdev, "device is not ready yet\n"); 5655 return -EBUSY; 5656 } 5657 5658 netif_carrier_off(netdev); 5659 5660 pi = vsi->port_info; 5661 err = ice_update_link_info(pi); 5662 if (err) { 5663 netdev_err(netdev, "Failed to get link info, error %d\n", 5664 err); 5665 return err; 5666 } 5667 5668 /* Set PHY if there is media, otherwise, turn off PHY */ 5669 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 5670 err = ice_force_phys_link_state(vsi, true); 5671 if (err) { 5672 netdev_err(netdev, "Failed to set physical link up, error %d\n", 5673 err); 5674 return err; 5675 } 5676 } else { 5677 err = ice_aq_set_link_restart_an(pi, false, NULL); 5678 if (err) { 5679 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 5680 vsi->vsi_num, err); 5681 return err; 5682 } 5683 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 5684 } 5685 5686 err = ice_vsi_open(vsi); 5687 if (err) 5688 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 5689 vsi->vsi_num, vsi->vsw->sw_id); 5690 5691 /* Update existing tunnels information */ 5692 udp_tunnel_get_rx_info(netdev); 5693 5694 return err; 5695 } 5696 5697 /** 5698 * ice_stop - Disables a network interface 5699 * @netdev: network interface device structure 5700 * 5701 * The stop entry point is called when an interface is de-activated by the OS, 5702 * and the netdevice enters the DOWN state. The hardware is still under the 5703 * driver's control, but the netdev interface is disabled. 5704 * 5705 * Returns success only - not allowed to fail 5706 */ 5707 int ice_stop(struct net_device *netdev) 5708 { 5709 struct ice_netdev_priv *np = netdev_priv(netdev); 5710 struct ice_vsi *vsi = np->vsi; 5711 5712 ice_vsi_close(vsi); 5713 5714 return 0; 5715 } 5716 5717 /** 5718 * ice_features_check - Validate encapsulated packet conforms to limits 5719 * @skb: skb buffer 5720 * @netdev: This port's netdev 5721 * @features: Offload features that the stack believes apply 5722 */ 5723 static netdev_features_t 5724 ice_features_check(struct sk_buff *skb, 5725 struct net_device __always_unused *netdev, 5726 netdev_features_t features) 5727 { 5728 size_t len; 5729 5730 /* No point in doing any of this if neither checksum nor GSO are 5731 * being requested for this frame. We can rule out both by just 5732 * checking for CHECKSUM_PARTIAL 5733 */ 5734 if (skb->ip_summed != CHECKSUM_PARTIAL) 5735 return features; 5736 5737 /* We cannot support GSO if the MSS is going to be less than 5738 * 64 bytes. If it is then we need to drop support for GSO. 5739 */ 5740 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 5741 features &= ~NETIF_F_GSO_MASK; 5742 5743 len = skb_network_header(skb) - skb->data; 5744 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 5745 goto out_rm_features; 5746 5747 len = skb_transport_header(skb) - skb_network_header(skb); 5748 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 5749 goto out_rm_features; 5750 5751 if (skb->encapsulation) { 5752 len = skb_inner_network_header(skb) - skb_transport_header(skb); 5753 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 5754 goto out_rm_features; 5755 5756 len = skb_inner_transport_header(skb) - 5757 skb_inner_network_header(skb); 5758 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 5759 goto out_rm_features; 5760 } 5761 5762 return features; 5763 out_rm_features: 5764 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 5765 } 5766 5767 static const struct net_device_ops ice_netdev_safe_mode_ops = { 5768 .ndo_open = ice_open, 5769 .ndo_stop = ice_stop, 5770 .ndo_start_xmit = ice_start_xmit, 5771 .ndo_set_mac_address = ice_set_mac_address, 5772 .ndo_validate_addr = eth_validate_addr, 5773 .ndo_change_mtu = ice_change_mtu, 5774 .ndo_get_stats64 = ice_get_stats64, 5775 .ndo_tx_timeout = ice_tx_timeout, 5776 }; 5777 5778 static const struct net_device_ops ice_netdev_ops = { 5779 .ndo_open = ice_open, 5780 .ndo_stop = ice_stop, 5781 .ndo_start_xmit = ice_start_xmit, 5782 .ndo_features_check = ice_features_check, 5783 .ndo_set_rx_mode = ice_set_rx_mode, 5784 .ndo_set_mac_address = ice_set_mac_address, 5785 .ndo_validate_addr = eth_validate_addr, 5786 .ndo_change_mtu = ice_change_mtu, 5787 .ndo_get_stats64 = ice_get_stats64, 5788 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 5789 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 5790 .ndo_set_vf_mac = ice_set_vf_mac, 5791 .ndo_get_vf_config = ice_get_vf_cfg, 5792 .ndo_set_vf_trust = ice_set_vf_trust, 5793 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 5794 .ndo_set_vf_link_state = ice_set_vf_link_state, 5795 .ndo_get_vf_stats = ice_get_vf_stats, 5796 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 5797 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 5798 .ndo_set_features = ice_set_features, 5799 .ndo_bridge_getlink = ice_bridge_getlink, 5800 .ndo_bridge_setlink = ice_bridge_setlink, 5801 .ndo_fdb_add = ice_fdb_add, 5802 .ndo_fdb_del = ice_fdb_del, 5803 #ifdef CONFIG_RFS_ACCEL 5804 .ndo_rx_flow_steer = ice_rx_flow_steer, 5805 #endif 5806 .ndo_tx_timeout = ice_tx_timeout, 5807 .ndo_bpf = ice_xdp, 5808 .ndo_xdp_xmit = ice_xdp_xmit, 5809 .ndo_xsk_wakeup = ice_xsk_wakeup, 5810 .ndo_udp_tunnel_add = ice_udp_tunnel_add, 5811 .ndo_udp_tunnel_del = ice_udp_tunnel_del, 5812 }; 5813