1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 18 * ice tracepoint functions. This must be done exactly once across the 19 * ice driver. 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "ice_trace.h" 23 #include "ice_eswitch.h" 24 #include "ice_tc_lib.h" 25 #include "ice_vsi_vlan_ops.h" 26 #include <net/xdp_sock_drv.h> 27 28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 29 static const char ice_driver_string[] = DRV_SUMMARY; 30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 31 32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 35 36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 37 MODULE_DESCRIPTION(DRV_SUMMARY); 38 MODULE_LICENSE("GPL v2"); 39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 40 41 static int debug = -1; 42 module_param(debug, int, 0644); 43 #ifndef CONFIG_DYNAMIC_DEBUG 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 45 #else 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 47 #endif /* !CONFIG_DYNAMIC_DEBUG */ 48 49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 50 EXPORT_SYMBOL(ice_xdp_locking_key); 51 52 /** 53 * ice_hw_to_dev - Get device pointer from the hardware structure 54 * @hw: pointer to the device HW structure 55 * 56 * Used to access the device pointer from compilation units which can't easily 57 * include the definition of struct ice_pf without leading to circular header 58 * dependencies. 59 */ 60 struct device *ice_hw_to_dev(struct ice_hw *hw) 61 { 62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 63 64 return &pf->pdev->dev; 65 } 66 67 static struct workqueue_struct *ice_wq; 68 struct workqueue_struct *ice_lag_wq; 69 static const struct net_device_ops ice_netdev_safe_mode_ops; 70 static const struct net_device_ops ice_netdev_ops; 71 72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 73 74 static void ice_vsi_release_all(struct ice_pf *pf); 75 76 static int ice_rebuild_channels(struct ice_pf *pf); 77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 78 79 static int 80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 81 void *cb_priv, enum tc_setup_type type, void *type_data, 82 void *data, 83 void (*cleanup)(struct flow_block_cb *block_cb)); 84 85 bool netif_is_ice(const struct net_device *dev) 86 { 87 return dev && (dev->netdev_ops == &ice_netdev_ops); 88 } 89 90 /** 91 * ice_get_tx_pending - returns number of Tx descriptors not processed 92 * @ring: the ring of descriptors 93 */ 94 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 95 { 96 u16 head, tail; 97 98 head = ring->next_to_clean; 99 tail = ring->next_to_use; 100 101 if (head != tail) 102 return (head < tail) ? 103 tail - head : (tail + ring->count - head); 104 return 0; 105 } 106 107 /** 108 * ice_check_for_hang_subtask - check for and recover hung queues 109 * @pf: pointer to PF struct 110 */ 111 static void ice_check_for_hang_subtask(struct ice_pf *pf) 112 { 113 struct ice_vsi *vsi = NULL; 114 struct ice_hw *hw; 115 unsigned int i; 116 int packets; 117 u32 v; 118 119 ice_for_each_vsi(pf, v) 120 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 121 vsi = pf->vsi[v]; 122 break; 123 } 124 125 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 126 return; 127 128 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 129 return; 130 131 hw = &vsi->back->hw; 132 133 ice_for_each_txq(vsi, i) { 134 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 135 struct ice_ring_stats *ring_stats; 136 137 if (!tx_ring) 138 continue; 139 if (ice_ring_ch_enabled(tx_ring)) 140 continue; 141 142 ring_stats = tx_ring->ring_stats; 143 if (!ring_stats) 144 continue; 145 146 if (tx_ring->desc) { 147 /* If packet counter has not changed the queue is 148 * likely stalled, so force an interrupt for this 149 * queue. 150 * 151 * prev_pkt would be negative if there was no 152 * pending work. 153 */ 154 packets = ring_stats->stats.pkts & INT_MAX; 155 if (ring_stats->tx_stats.prev_pkt == packets) { 156 /* Trigger sw interrupt to revive the queue */ 157 ice_trigger_sw_intr(hw, tx_ring->q_vector); 158 continue; 159 } 160 161 /* Memory barrier between read of packet count and call 162 * to ice_get_tx_pending() 163 */ 164 smp_rmb(); 165 ring_stats->tx_stats.prev_pkt = 166 ice_get_tx_pending(tx_ring) ? packets : -1; 167 } 168 } 169 } 170 171 /** 172 * ice_init_mac_fltr - Set initial MAC filters 173 * @pf: board private structure 174 * 175 * Set initial set of MAC filters for PF VSI; configure filters for permanent 176 * address and broadcast address. If an error is encountered, netdevice will be 177 * unregistered. 178 */ 179 static int ice_init_mac_fltr(struct ice_pf *pf) 180 { 181 struct ice_vsi *vsi; 182 u8 *perm_addr; 183 184 vsi = ice_get_main_vsi(pf); 185 if (!vsi) 186 return -EINVAL; 187 188 perm_addr = vsi->port_info->mac.perm_addr; 189 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 190 } 191 192 /** 193 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 194 * @netdev: the net device on which the sync is happening 195 * @addr: MAC address to sync 196 * 197 * This is a callback function which is called by the in kernel device sync 198 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 199 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 200 * MAC filters from the hardware. 201 */ 202 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 203 { 204 struct ice_netdev_priv *np = netdev_priv(netdev); 205 struct ice_vsi *vsi = np->vsi; 206 207 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 208 ICE_FWD_TO_VSI)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 /** 215 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 216 * @netdev: the net device on which the unsync is happening 217 * @addr: MAC address to unsync 218 * 219 * This is a callback function which is called by the in kernel device unsync 220 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 221 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 222 * delete the MAC filters from the hardware. 223 */ 224 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 225 { 226 struct ice_netdev_priv *np = netdev_priv(netdev); 227 struct ice_vsi *vsi = np->vsi; 228 229 /* Under some circumstances, we might receive a request to delete our 230 * own device address from our uc list. Because we store the device 231 * address in the VSI's MAC filter list, we need to ignore such 232 * requests and not delete our device address from this list. 233 */ 234 if (ether_addr_equal(addr, netdev->dev_addr)) 235 return 0; 236 237 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 238 ICE_FWD_TO_VSI)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * ice_vsi_fltr_changed - check if filter state changed 246 * @vsi: VSI to be checked 247 * 248 * returns true if filter state has changed, false otherwise. 249 */ 250 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 251 { 252 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 253 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 254 } 255 256 /** 257 * ice_set_promisc - Enable promiscuous mode for a given PF 258 * @vsi: the VSI being configured 259 * @promisc_m: mask of promiscuous config bits 260 * 261 */ 262 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 263 { 264 int status; 265 266 if (vsi->type != ICE_VSI_PF) 267 return 0; 268 269 if (ice_vsi_has_non_zero_vlans(vsi)) { 270 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 271 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 272 promisc_m); 273 } else { 274 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 275 promisc_m, 0); 276 } 277 if (status && status != -EEXIST) 278 return status; 279 280 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 281 vsi->vsi_num, promisc_m); 282 return 0; 283 } 284 285 /** 286 * ice_clear_promisc - Disable promiscuous mode for a given PF 287 * @vsi: the VSI being configured 288 * @promisc_m: mask of promiscuous config bits 289 * 290 */ 291 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 292 { 293 int status; 294 295 if (vsi->type != ICE_VSI_PF) 296 return 0; 297 298 if (ice_vsi_has_non_zero_vlans(vsi)) { 299 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 300 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 301 promisc_m); 302 } else { 303 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 304 promisc_m, 0); 305 } 306 307 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 308 vsi->vsi_num, promisc_m); 309 return status; 310 } 311 312 /** 313 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 314 * @vsi: ptr to the VSI 315 * 316 * Push any outstanding VSI filter changes through the AdminQ. 317 */ 318 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 319 { 320 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 321 struct device *dev = ice_pf_to_dev(vsi->back); 322 struct net_device *netdev = vsi->netdev; 323 bool promisc_forced_on = false; 324 struct ice_pf *pf = vsi->back; 325 struct ice_hw *hw = &pf->hw; 326 u32 changed_flags = 0; 327 int err; 328 329 if (!vsi->netdev) 330 return -EINVAL; 331 332 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 333 usleep_range(1000, 2000); 334 335 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 336 vsi->current_netdev_flags = vsi->netdev->flags; 337 338 INIT_LIST_HEAD(&vsi->tmp_sync_list); 339 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 340 341 if (ice_vsi_fltr_changed(vsi)) { 342 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 343 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 344 345 /* grab the netdev's addr_list_lock */ 346 netif_addr_lock_bh(netdev); 347 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 /* our temp lists are populated. release lock */ 352 netif_addr_unlock_bh(netdev); 353 } 354 355 /* Remove MAC addresses in the unsync list */ 356 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 357 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 358 if (err) { 359 netdev_err(netdev, "Failed to delete MAC filters\n"); 360 /* if we failed because of alloc failures, just bail */ 361 if (err == -ENOMEM) 362 goto out; 363 } 364 365 /* Add MAC addresses in the sync list */ 366 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 367 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 368 /* If filter is added successfully or already exists, do not go into 369 * 'if' condition and report it as error. Instead continue processing 370 * rest of the function. 371 */ 372 if (err && err != -EEXIST) { 373 netdev_err(netdev, "Failed to add MAC filters\n"); 374 /* If there is no more space for new umac filters, VSI 375 * should go into promiscuous mode. There should be some 376 * space reserved for promiscuous filters. 377 */ 378 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 379 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 380 vsi->state)) { 381 promisc_forced_on = true; 382 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 383 vsi->vsi_num); 384 } else { 385 goto out; 386 } 387 } 388 err = 0; 389 /* check for changes in promiscuous modes */ 390 if (changed_flags & IFF_ALLMULTI) { 391 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 392 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 393 if (err) { 394 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 395 goto out_promisc; 396 } 397 } else { 398 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 399 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 400 if (err) { 401 vsi->current_netdev_flags |= IFF_ALLMULTI; 402 goto out_promisc; 403 } 404 } 405 } 406 407 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 408 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 409 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 410 if (vsi->current_netdev_flags & IFF_PROMISC) { 411 /* Apply Rx filter rule to get traffic from wire */ 412 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 413 err = ice_set_dflt_vsi(vsi); 414 if (err && err != -EEXIST) { 415 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 416 err, vsi->vsi_num); 417 vsi->current_netdev_flags &= 418 ~IFF_PROMISC; 419 goto out_promisc; 420 } 421 err = 0; 422 vlan_ops->dis_rx_filtering(vsi); 423 424 /* promiscuous mode implies allmulticast so 425 * that VSIs that are in promiscuous mode are 426 * subscribed to multicast packets coming to 427 * the port 428 */ 429 err = ice_set_promisc(vsi, 430 ICE_MCAST_PROMISC_BITS); 431 if (err) 432 goto out_promisc; 433 } 434 } else { 435 /* Clear Rx filter to remove traffic from wire */ 436 if (ice_is_vsi_dflt_vsi(vsi)) { 437 err = ice_clear_dflt_vsi(vsi); 438 if (err) { 439 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 440 err, vsi->vsi_num); 441 vsi->current_netdev_flags |= 442 IFF_PROMISC; 443 goto out_promisc; 444 } 445 if (vsi->netdev->features & 446 NETIF_F_HW_VLAN_CTAG_FILTER) 447 vlan_ops->ena_rx_filtering(vsi); 448 } 449 450 /* disable allmulti here, but only if allmulti is not 451 * still enabled for the netdev 452 */ 453 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 454 err = ice_clear_promisc(vsi, 455 ICE_MCAST_PROMISC_BITS); 456 if (err) { 457 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 458 err, vsi->vsi_num); 459 } 460 } 461 } 462 } 463 goto exit; 464 465 out_promisc: 466 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 467 goto exit; 468 out: 469 /* if something went wrong then set the changed flag so we try again */ 470 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 471 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 472 exit: 473 clear_bit(ICE_CFG_BUSY, vsi->state); 474 return err; 475 } 476 477 /** 478 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 479 * @pf: board private structure 480 */ 481 static void ice_sync_fltr_subtask(struct ice_pf *pf) 482 { 483 int v; 484 485 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 486 return; 487 488 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 492 ice_vsi_sync_fltr(pf->vsi[v])) { 493 /* come back and try again later */ 494 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 495 break; 496 } 497 } 498 499 /** 500 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 501 * @pf: the PF 502 * @locked: is the rtnl_lock already held 503 */ 504 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 505 { 506 int node; 507 int v; 508 509 ice_for_each_vsi(pf, v) 510 if (pf->vsi[v]) 511 ice_dis_vsi(pf->vsi[v], locked); 512 513 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 514 pf->pf_agg_node[node].num_vsis = 0; 515 516 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 517 pf->vf_agg_node[node].num_vsis = 0; 518 } 519 520 /** 521 * ice_clear_sw_switch_recipes - clear switch recipes 522 * @pf: board private structure 523 * 524 * Mark switch recipes as not created in sw structures. There are cases where 525 * rules (especially advanced rules) need to be restored, either re-read from 526 * hardware or added again. For example after the reset. 'recp_created' flag 527 * prevents from doing that and need to be cleared upfront. 528 */ 529 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 530 { 531 struct ice_sw_recipe *recp; 532 u8 i; 533 534 recp = pf->hw.switch_info->recp_list; 535 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 536 recp[i].recp_created = false; 537 } 538 539 /** 540 * ice_prepare_for_reset - prep for reset 541 * @pf: board private structure 542 * @reset_type: reset type requested 543 * 544 * Inform or close all dependent features in prep for reset. 545 */ 546 static void 547 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 548 { 549 struct ice_hw *hw = &pf->hw; 550 struct ice_vsi *vsi; 551 struct ice_vf *vf; 552 unsigned int bkt; 553 554 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 555 556 /* already prepared for reset */ 557 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 558 return; 559 560 synchronize_irq(pf->oicr_irq.virq); 561 562 ice_unplug_aux_dev(pf); 563 564 /* Notify VFs of impending reset */ 565 if (ice_check_sq_alive(hw, &hw->mailboxq)) 566 ice_vc_notify_reset(pf); 567 568 /* Disable VFs until reset is completed */ 569 mutex_lock(&pf->vfs.table_lock); 570 ice_for_each_vf(pf, bkt, vf) 571 ice_set_vf_state_dis(vf); 572 mutex_unlock(&pf->vfs.table_lock); 573 574 if (ice_is_eswitch_mode_switchdev(pf)) { 575 if (reset_type != ICE_RESET_PFR) 576 ice_clear_sw_switch_recipes(pf); 577 } 578 579 /* release ADQ specific HW and SW resources */ 580 vsi = ice_get_main_vsi(pf); 581 if (!vsi) 582 goto skip; 583 584 /* to be on safe side, reset orig_rss_size so that normal flow 585 * of deciding rss_size can take precedence 586 */ 587 vsi->orig_rss_size = 0; 588 589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 590 if (reset_type == ICE_RESET_PFR) { 591 vsi->old_ena_tc = vsi->all_enatc; 592 vsi->old_numtc = vsi->all_numtc; 593 } else { 594 ice_remove_q_channels(vsi, true); 595 596 /* for other reset type, do not support channel rebuild 597 * hence reset needed info 598 */ 599 vsi->old_ena_tc = 0; 600 vsi->all_enatc = 0; 601 vsi->old_numtc = 0; 602 vsi->all_numtc = 0; 603 vsi->req_txq = 0; 604 vsi->req_rxq = 0; 605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 607 } 608 } 609 skip: 610 611 /* clear SW filtering DB */ 612 ice_clear_hw_tbls(hw); 613 /* disable the VSIs and their queues that are not already DOWN */ 614 ice_pf_dis_all_vsi(pf, false); 615 616 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 617 ice_ptp_prepare_for_reset(pf); 618 619 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 620 ice_gnss_exit(pf); 621 622 if (hw->port_info) 623 ice_sched_clear_port(hw->port_info); 624 625 ice_shutdown_all_ctrlq(hw); 626 627 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 } 629 630 /** 631 * ice_do_reset - Initiate one of many types of resets 632 * @pf: board private structure 633 * @reset_type: reset type requested before this function was called. 634 */ 635 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 636 { 637 struct device *dev = ice_pf_to_dev(pf); 638 struct ice_hw *hw = &pf->hw; 639 640 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 641 642 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 643 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 644 reset_type = ICE_RESET_CORER; 645 } 646 647 ice_prepare_for_reset(pf, reset_type); 648 649 /* trigger the reset */ 650 if (ice_reset(hw, reset_type)) { 651 dev_err(dev, "reset %d failed\n", reset_type); 652 set_bit(ICE_RESET_FAILED, pf->state); 653 clear_bit(ICE_RESET_OICR_RECV, pf->state); 654 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 655 clear_bit(ICE_PFR_REQ, pf->state); 656 clear_bit(ICE_CORER_REQ, pf->state); 657 clear_bit(ICE_GLOBR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 return; 660 } 661 662 /* PFR is a bit of a special case because it doesn't result in an OICR 663 * interrupt. So for PFR, rebuild after the reset and clear the reset- 664 * associated state bits. 665 */ 666 if (reset_type == ICE_RESET_PFR) { 667 pf->pfr_count++; 668 ice_rebuild(pf, reset_type); 669 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 670 clear_bit(ICE_PFR_REQ, pf->state); 671 wake_up(&pf->reset_wait_queue); 672 ice_reset_all_vfs(pf); 673 } 674 } 675 676 /** 677 * ice_reset_subtask - Set up for resetting the device and driver 678 * @pf: board private structure 679 */ 680 static void ice_reset_subtask(struct ice_pf *pf) 681 { 682 enum ice_reset_req reset_type = ICE_RESET_INVAL; 683 684 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 685 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 686 * of reset is pending and sets bits in pf->state indicating the reset 687 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 688 * prepare for pending reset if not already (for PF software-initiated 689 * global resets the software should already be prepared for it as 690 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 691 * by firmware or software on other PFs, that bit is not set so prepare 692 * for the reset now), poll for reset done, rebuild and return. 693 */ 694 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 695 /* Perform the largest reset requested */ 696 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 697 reset_type = ICE_RESET_CORER; 698 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 699 reset_type = ICE_RESET_GLOBR; 700 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 701 reset_type = ICE_RESET_EMPR; 702 /* return if no valid reset type requested */ 703 if (reset_type == ICE_RESET_INVAL) 704 return; 705 ice_prepare_for_reset(pf, reset_type); 706 707 /* make sure we are ready to rebuild */ 708 if (ice_check_reset(&pf->hw)) { 709 set_bit(ICE_RESET_FAILED, pf->state); 710 } else { 711 /* done with reset. start rebuild */ 712 pf->hw.reset_ongoing = false; 713 ice_rebuild(pf, reset_type); 714 /* clear bit to resume normal operations, but 715 * ICE_NEEDS_RESTART bit is set in case rebuild failed 716 */ 717 clear_bit(ICE_RESET_OICR_RECV, pf->state); 718 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 719 clear_bit(ICE_PFR_REQ, pf->state); 720 clear_bit(ICE_CORER_REQ, pf->state); 721 clear_bit(ICE_GLOBR_REQ, pf->state); 722 wake_up(&pf->reset_wait_queue); 723 ice_reset_all_vfs(pf); 724 } 725 726 return; 727 } 728 729 /* No pending resets to finish processing. Check for new resets */ 730 if (test_bit(ICE_PFR_REQ, pf->state)) { 731 reset_type = ICE_RESET_PFR; 732 if (pf->lag && pf->lag->bonded) { 733 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 734 reset_type = ICE_RESET_CORER; 735 } 736 } 737 if (test_bit(ICE_CORER_REQ, pf->state)) 738 reset_type = ICE_RESET_CORER; 739 if (test_bit(ICE_GLOBR_REQ, pf->state)) 740 reset_type = ICE_RESET_GLOBR; 741 /* If no valid reset type requested just return */ 742 if (reset_type == ICE_RESET_INVAL) 743 return; 744 745 /* reset if not already down or busy */ 746 if (!test_bit(ICE_DOWN, pf->state) && 747 !test_bit(ICE_CFG_BUSY, pf->state)) { 748 ice_do_reset(pf, reset_type); 749 } 750 } 751 752 /** 753 * ice_print_topo_conflict - print topology conflict message 754 * @vsi: the VSI whose topology status is being checked 755 */ 756 static void ice_print_topo_conflict(struct ice_vsi *vsi) 757 { 758 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 759 case ICE_AQ_LINK_TOPO_CONFLICT: 760 case ICE_AQ_LINK_MEDIA_CONFLICT: 761 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 764 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 765 break; 766 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 767 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 768 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 769 else 770 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 771 break; 772 default: 773 break; 774 } 775 } 776 777 /** 778 * ice_print_link_msg - print link up or down message 779 * @vsi: the VSI whose link status is being queried 780 * @isup: boolean for if the link is now up or down 781 */ 782 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 783 { 784 struct ice_aqc_get_phy_caps_data *caps; 785 const char *an_advertised; 786 const char *fec_req; 787 const char *speed; 788 const char *fec; 789 const char *fc; 790 const char *an; 791 int status; 792 793 if (!vsi) 794 return; 795 796 if (vsi->current_isup == isup) 797 return; 798 799 vsi->current_isup = isup; 800 801 if (!isup) { 802 netdev_info(vsi->netdev, "NIC Link is Down\n"); 803 return; 804 } 805 806 switch (vsi->port_info->phy.link_info.link_speed) { 807 case ICE_AQ_LINK_SPEED_100GB: 808 speed = "100 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_50GB: 811 speed = "50 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_40GB: 814 speed = "40 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_25GB: 817 speed = "25 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_20GB: 820 speed = "20 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_10GB: 823 speed = "10 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_5GB: 826 speed = "5 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_2500MB: 829 speed = "2.5 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_1000MB: 832 speed = "1 G"; 833 break; 834 case ICE_AQ_LINK_SPEED_100MB: 835 speed = "100 M"; 836 break; 837 default: 838 speed = "Unknown "; 839 break; 840 } 841 842 switch (vsi->port_info->fc.current_mode) { 843 case ICE_FC_FULL: 844 fc = "Rx/Tx"; 845 break; 846 case ICE_FC_TX_PAUSE: 847 fc = "Tx"; 848 break; 849 case ICE_FC_RX_PAUSE: 850 fc = "Rx"; 851 break; 852 case ICE_FC_NONE: 853 fc = "None"; 854 break; 855 default: 856 fc = "Unknown"; 857 break; 858 } 859 860 /* Get FEC mode based on negotiated link info */ 861 switch (vsi->port_info->phy.link_info.fec_info) { 862 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 863 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 864 fec = "RS-FEC"; 865 break; 866 case ICE_AQ_LINK_25G_KR_FEC_EN: 867 fec = "FC-FEC/BASE-R"; 868 break; 869 default: 870 fec = "NONE"; 871 break; 872 } 873 874 /* check if autoneg completed, might be false due to not supported */ 875 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 876 an = "True"; 877 else 878 an = "False"; 879 880 /* Get FEC mode requested based on PHY caps last SW configuration */ 881 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 882 if (!caps) { 883 fec_req = "Unknown"; 884 an_advertised = "Unknown"; 885 goto done; 886 } 887 888 status = ice_aq_get_phy_caps(vsi->port_info, false, 889 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 890 if (status) 891 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 892 893 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 894 895 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 897 fec_req = "RS-FEC"; 898 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 899 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 900 fec_req = "FC-FEC/BASE-R"; 901 else 902 fec_req = "NONE"; 903 904 kfree(caps); 905 906 done: 907 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 908 speed, fec_req, fec, an_advertised, an, fc); 909 ice_print_topo_conflict(vsi); 910 } 911 912 /** 913 * ice_vsi_link_event - update the VSI's netdev 914 * @vsi: the VSI on which the link event occurred 915 * @link_up: whether or not the VSI needs to be set up or down 916 */ 917 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 918 { 919 if (!vsi) 920 return; 921 922 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 923 return; 924 925 if (vsi->type == ICE_VSI_PF) { 926 if (link_up == netif_carrier_ok(vsi->netdev)) 927 return; 928 929 if (link_up) { 930 netif_carrier_on(vsi->netdev); 931 netif_tx_wake_all_queues(vsi->netdev); 932 } else { 933 netif_carrier_off(vsi->netdev); 934 netif_tx_stop_all_queues(vsi->netdev); 935 } 936 } 937 } 938 939 /** 940 * ice_set_dflt_mib - send a default config MIB to the FW 941 * @pf: private PF struct 942 * 943 * This function sends a default configuration MIB to the FW. 944 * 945 * If this function errors out at any point, the driver is still able to 946 * function. The main impact is that LFC may not operate as expected. 947 * Therefore an error state in this function should be treated with a DBG 948 * message and continue on with driver rebuild/reenable. 949 */ 950 static void ice_set_dflt_mib(struct ice_pf *pf) 951 { 952 struct device *dev = ice_pf_to_dev(pf); 953 u8 mib_type, *buf, *lldpmib = NULL; 954 u16 len, typelen, offset = 0; 955 struct ice_lldp_org_tlv *tlv; 956 struct ice_hw *hw = &pf->hw; 957 u32 ouisubtype; 958 959 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 960 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 961 if (!lldpmib) { 962 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 963 __func__); 964 return; 965 } 966 967 /* Add ETS CFG TLV */ 968 tlv = (struct ice_lldp_org_tlv *)lldpmib; 969 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 970 ICE_IEEE_ETS_TLV_LEN); 971 tlv->typelen = htons(typelen); 972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 973 ICE_IEEE_SUBTYPE_ETS_CFG); 974 tlv->ouisubtype = htonl(ouisubtype); 975 976 buf = tlv->tlvinfo; 977 buf[0] = 0; 978 979 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 980 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 981 * Octets 13 - 20 are TSA values - leave as zeros 982 */ 983 buf[5] = 0x64; 984 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 985 offset += len + 2; 986 tlv = (struct ice_lldp_org_tlv *) 987 ((char *)tlv + sizeof(tlv->typelen) + len); 988 989 /* Add ETS REC TLV */ 990 buf = tlv->tlvinfo; 991 tlv->typelen = htons(typelen); 992 993 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 994 ICE_IEEE_SUBTYPE_ETS_REC); 995 tlv->ouisubtype = htonl(ouisubtype); 996 997 /* First octet of buf is reserved 998 * Octets 1 - 4 map UP to TC - all UPs map to zero 999 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1000 * Octets 13 - 20 are TSA value - leave as zeros 1001 */ 1002 buf[5] = 0x64; 1003 offset += len + 2; 1004 tlv = (struct ice_lldp_org_tlv *) 1005 ((char *)tlv + sizeof(tlv->typelen) + len); 1006 1007 /* Add PFC CFG TLV */ 1008 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1009 ICE_IEEE_PFC_TLV_LEN); 1010 tlv->typelen = htons(typelen); 1011 1012 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1013 ICE_IEEE_SUBTYPE_PFC_CFG); 1014 tlv->ouisubtype = htonl(ouisubtype); 1015 1016 /* Octet 1 left as all zeros - PFC disabled */ 1017 buf[0] = 0x08; 1018 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1019 offset += len + 2; 1020 1021 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1022 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1023 1024 kfree(lldpmib); 1025 } 1026 1027 /** 1028 * ice_check_phy_fw_load - check if PHY FW load failed 1029 * @pf: pointer to PF struct 1030 * @link_cfg_err: bitmap from the link info structure 1031 * 1032 * check if external PHY FW load failed and print an error message if it did 1033 */ 1034 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1035 { 1036 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1037 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1038 return; 1039 } 1040 1041 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1042 return; 1043 1044 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1045 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1046 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1047 } 1048 } 1049 1050 /** 1051 * ice_check_module_power 1052 * @pf: pointer to PF struct 1053 * @link_cfg_err: bitmap from the link info structure 1054 * 1055 * check module power level returned by a previous call to aq_get_link_info 1056 * and print error messages if module power level is not supported 1057 */ 1058 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1059 { 1060 /* if module power level is supported, clear the flag */ 1061 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1062 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1063 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1064 return; 1065 } 1066 1067 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1068 * above block didn't clear this bit, there's nothing to do 1069 */ 1070 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1071 return; 1072 1073 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1074 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1076 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1077 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1078 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1079 } 1080 } 1081 1082 /** 1083 * ice_check_link_cfg_err - check if link configuration failed 1084 * @pf: pointer to the PF struct 1085 * @link_cfg_err: bitmap from the link info structure 1086 * 1087 * print if any link configuration failure happens due to the value in the 1088 * link_cfg_err parameter in the link info structure 1089 */ 1090 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1091 { 1092 ice_check_module_power(pf, link_cfg_err); 1093 ice_check_phy_fw_load(pf, link_cfg_err); 1094 } 1095 1096 /** 1097 * ice_link_event - process the link event 1098 * @pf: PF that the link event is associated with 1099 * @pi: port_info for the port that the link event is associated with 1100 * @link_up: true if the physical link is up and false if it is down 1101 * @link_speed: current link speed received from the link event 1102 * 1103 * Returns 0 on success and negative on failure 1104 */ 1105 static int 1106 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1107 u16 link_speed) 1108 { 1109 struct device *dev = ice_pf_to_dev(pf); 1110 struct ice_phy_info *phy_info; 1111 struct ice_vsi *vsi; 1112 u16 old_link_speed; 1113 bool old_link; 1114 int status; 1115 1116 phy_info = &pi->phy; 1117 phy_info->link_info_old = phy_info->link_info; 1118 1119 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1120 old_link_speed = phy_info->link_info_old.link_speed; 1121 1122 /* update the link info structures and re-enable link events, 1123 * don't bail on failure due to other book keeping needed 1124 */ 1125 status = ice_update_link_info(pi); 1126 if (status) 1127 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1128 pi->lport, status, 1129 ice_aq_str(pi->hw->adminq.sq_last_status)); 1130 1131 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1132 1133 /* Check if the link state is up after updating link info, and treat 1134 * this event as an UP event since the link is actually UP now. 1135 */ 1136 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1137 link_up = true; 1138 1139 vsi = ice_get_main_vsi(pf); 1140 if (!vsi || !vsi->port_info) 1141 return -EINVAL; 1142 1143 /* turn off PHY if media was removed */ 1144 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1145 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1146 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1147 ice_set_link(vsi, false); 1148 } 1149 1150 /* if the old link up/down and speed is the same as the new */ 1151 if (link_up == old_link && link_speed == old_link_speed) 1152 return 0; 1153 1154 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1155 1156 if (ice_is_dcb_active(pf)) { 1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1158 ice_dcb_rebuild(pf); 1159 } else { 1160 if (link_up) 1161 ice_set_dflt_mib(pf); 1162 } 1163 ice_vsi_link_event(vsi, link_up); 1164 ice_print_link_msg(vsi, link_up); 1165 1166 ice_vc_notify_link_state(pf); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1173 * @pf: board private structure 1174 */ 1175 static void ice_watchdog_subtask(struct ice_pf *pf) 1176 { 1177 int i; 1178 1179 /* if interface is down do nothing */ 1180 if (test_bit(ICE_DOWN, pf->state) || 1181 test_bit(ICE_CFG_BUSY, pf->state)) 1182 return; 1183 1184 /* make sure we don't do these things too often */ 1185 if (time_before(jiffies, 1186 pf->serv_tmr_prev + pf->serv_tmr_period)) 1187 return; 1188 1189 pf->serv_tmr_prev = jiffies; 1190 1191 /* Update the stats for active netdevs so the network stack 1192 * can look at updated numbers whenever it cares to 1193 */ 1194 ice_update_pf_stats(pf); 1195 ice_for_each_vsi(pf, i) 1196 if (pf->vsi[i] && pf->vsi[i]->netdev) 1197 ice_update_vsi_stats(pf->vsi[i]); 1198 } 1199 1200 /** 1201 * ice_init_link_events - enable/initialize link events 1202 * @pi: pointer to the port_info instance 1203 * 1204 * Returns -EIO on failure, 0 on success 1205 */ 1206 static int ice_init_link_events(struct ice_port_info *pi) 1207 { 1208 u16 mask; 1209 1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1213 1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1216 pi->lport); 1217 return -EIO; 1218 } 1219 1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1222 pi->lport); 1223 return -EIO; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * ice_handle_link_event - handle link event via ARQ 1231 * @pf: PF that the link event is associated with 1232 * @event: event structure containing link status info 1233 */ 1234 static int 1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1236 { 1237 struct ice_aqc_get_link_status_data *link_data; 1238 struct ice_port_info *port_info; 1239 int status; 1240 1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1242 port_info = pf->hw.port_info; 1243 if (!port_info) 1244 return -EINVAL; 1245 1246 status = ice_link_event(pf, port_info, 1247 !!(link_data->link_info & ICE_AQ_LINK_UP), 1248 le16_to_cpu(link_data->link_speed)); 1249 if (status) 1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1251 status); 1252 1253 return status; 1254 } 1255 1256 /** 1257 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @task: intermediate helper storage and identifier for waiting 1260 * @opcode: the opcode to wait for 1261 * 1262 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1263 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1264 * 1265 * Calls are separated to allow caller registering for event before sending 1266 * the command, which mitigates a race between registering and FW responding. 1267 * 1268 * To obtain only the descriptor contents, pass an task->event with null 1269 * msg_buf. If the complete data buffer is desired, allocate the 1270 * task->event.msg_buf with enough space ahead of time. 1271 */ 1272 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1273 u16 opcode) 1274 { 1275 INIT_HLIST_NODE(&task->entry); 1276 task->opcode = opcode; 1277 task->state = ICE_AQ_TASK_WAITING; 1278 1279 spin_lock_bh(&pf->aq_wait_lock); 1280 hlist_add_head(&task->entry, &pf->aq_wait_list); 1281 spin_unlock_bh(&pf->aq_wait_lock); 1282 } 1283 1284 /** 1285 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1286 * @pf: pointer to the PF private structure 1287 * @task: ptr prepared by ice_aq_prep_for_event() 1288 * @timeout: how long to wait, in jiffies 1289 * 1290 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1291 * current thread will be put to sleep until the specified event occurs or 1292 * until the given timeout is reached. 1293 * 1294 * Returns: zero on success, or a negative error code on failure. 1295 */ 1296 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1297 unsigned long timeout) 1298 { 1299 enum ice_aq_task_state *state = &task->state; 1300 struct device *dev = ice_pf_to_dev(pf); 1301 unsigned long start = jiffies; 1302 long ret; 1303 int err; 1304 1305 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1306 *state != ICE_AQ_TASK_WAITING, 1307 timeout); 1308 switch (*state) { 1309 case ICE_AQ_TASK_NOT_PREPARED: 1310 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1311 err = -EINVAL; 1312 break; 1313 case ICE_AQ_TASK_WAITING: 1314 err = ret < 0 ? ret : -ETIMEDOUT; 1315 break; 1316 case ICE_AQ_TASK_CANCELED: 1317 err = ret < 0 ? ret : -ECANCELED; 1318 break; 1319 case ICE_AQ_TASK_COMPLETE: 1320 err = ret < 0 ? ret : 0; 1321 break; 1322 default: 1323 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1324 err = -EINVAL; 1325 break; 1326 } 1327 1328 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1329 jiffies_to_msecs(jiffies - start), 1330 jiffies_to_msecs(timeout), 1331 task->opcode); 1332 1333 spin_lock_bh(&pf->aq_wait_lock); 1334 hlist_del(&task->entry); 1335 spin_unlock_bh(&pf->aq_wait_lock); 1336 1337 return err; 1338 } 1339 1340 /** 1341 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1342 * @pf: pointer to the PF private structure 1343 * @opcode: the opcode of the event 1344 * @event: the event to check 1345 * 1346 * Loops over the current list of pending threads waiting for an AdminQ event. 1347 * For each matching task, copy the contents of the event into the task 1348 * structure and wake up the thread. 1349 * 1350 * If multiple threads wait for the same opcode, they will all be woken up. 1351 * 1352 * Note that event->msg_buf will only be duplicated if the event has a buffer 1353 * with enough space already allocated. Otherwise, only the descriptor and 1354 * message length will be copied. 1355 * 1356 * Returns: true if an event was found, false otherwise 1357 */ 1358 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1359 struct ice_rq_event_info *event) 1360 { 1361 struct ice_rq_event_info *task_ev; 1362 struct ice_aq_task *task; 1363 bool found = false; 1364 1365 spin_lock_bh(&pf->aq_wait_lock); 1366 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1367 if (task->state != ICE_AQ_TASK_WAITING) 1368 continue; 1369 if (task->opcode != opcode) 1370 continue; 1371 1372 task_ev = &task->event; 1373 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1374 task_ev->msg_len = event->msg_len; 1375 1376 /* Only copy the data buffer if a destination was set */ 1377 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1378 memcpy(task_ev->msg_buf, event->msg_buf, 1379 event->buf_len); 1380 task_ev->buf_len = event->buf_len; 1381 } 1382 1383 task->state = ICE_AQ_TASK_COMPLETE; 1384 found = true; 1385 } 1386 spin_unlock_bh(&pf->aq_wait_lock); 1387 1388 if (found) 1389 wake_up(&pf->aq_wait_queue); 1390 } 1391 1392 /** 1393 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1394 * @pf: the PF private structure 1395 * 1396 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1397 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1398 */ 1399 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1400 { 1401 struct ice_aq_task *task; 1402 1403 spin_lock_bh(&pf->aq_wait_lock); 1404 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1405 task->state = ICE_AQ_TASK_CANCELED; 1406 spin_unlock_bh(&pf->aq_wait_lock); 1407 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 #define ICE_MBX_OVERFLOW_WATERMARK 64 1412 1413 /** 1414 * __ice_clean_ctrlq - helper function to clean controlq rings 1415 * @pf: ptr to struct ice_pf 1416 * @q_type: specific Control queue type 1417 */ 1418 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1419 { 1420 struct device *dev = ice_pf_to_dev(pf); 1421 struct ice_rq_event_info event; 1422 struct ice_hw *hw = &pf->hw; 1423 struct ice_ctl_q_info *cq; 1424 u16 pending, i = 0; 1425 const char *qtype; 1426 u32 oldval, val; 1427 1428 /* Do not clean control queue if/when PF reset fails */ 1429 if (test_bit(ICE_RESET_FAILED, pf->state)) 1430 return 0; 1431 1432 switch (q_type) { 1433 case ICE_CTL_Q_ADMIN: 1434 cq = &hw->adminq; 1435 qtype = "Admin"; 1436 break; 1437 case ICE_CTL_Q_SB: 1438 cq = &hw->sbq; 1439 qtype = "Sideband"; 1440 break; 1441 case ICE_CTL_Q_MAILBOX: 1442 cq = &hw->mailboxq; 1443 qtype = "Mailbox"; 1444 /* we are going to try to detect a malicious VF, so set the 1445 * state to begin detection 1446 */ 1447 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1448 break; 1449 default: 1450 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1451 return 0; 1452 } 1453 1454 /* check for error indications - PF_xx_AxQLEN register layout for 1455 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1456 */ 1457 val = rd32(hw, cq->rq.len); 1458 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1459 PF_FW_ARQLEN_ARQCRIT_M)) { 1460 oldval = val; 1461 if (val & PF_FW_ARQLEN_ARQVFE_M) 1462 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1463 qtype); 1464 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1465 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1466 qtype); 1467 } 1468 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1469 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1470 qtype); 1471 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1472 PF_FW_ARQLEN_ARQCRIT_M); 1473 if (oldval != val) 1474 wr32(hw, cq->rq.len, val); 1475 } 1476 1477 val = rd32(hw, cq->sq.len); 1478 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1479 PF_FW_ATQLEN_ATQCRIT_M)) { 1480 oldval = val; 1481 if (val & PF_FW_ATQLEN_ATQVFE_M) 1482 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1483 qtype); 1484 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1485 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1486 qtype); 1487 } 1488 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1489 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1490 qtype); 1491 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1492 PF_FW_ATQLEN_ATQCRIT_M); 1493 if (oldval != val) 1494 wr32(hw, cq->sq.len, val); 1495 } 1496 1497 event.buf_len = cq->rq_buf_size; 1498 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1499 if (!event.msg_buf) 1500 return 0; 1501 1502 do { 1503 struct ice_mbx_data data = {}; 1504 u16 opcode; 1505 int ret; 1506 1507 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1508 if (ret == -EALREADY) 1509 break; 1510 if (ret) { 1511 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1512 ret); 1513 break; 1514 } 1515 1516 opcode = le16_to_cpu(event.desc.opcode); 1517 1518 /* Notify any thread that might be waiting for this event */ 1519 ice_aq_check_events(pf, opcode, &event); 1520 1521 switch (opcode) { 1522 case ice_aqc_opc_get_link_status: 1523 if (ice_handle_link_event(pf, &event)) 1524 dev_err(dev, "Could not handle link event\n"); 1525 break; 1526 case ice_aqc_opc_event_lan_overflow: 1527 ice_vf_lan_overflow_event(pf, &event); 1528 break; 1529 case ice_mbx_opc_send_msg_to_pf: 1530 data.num_msg_proc = i; 1531 data.num_pending_arq = pending; 1532 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1533 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1534 1535 ice_vc_process_vf_msg(pf, &event, &data); 1536 break; 1537 case ice_aqc_opc_fw_logging: 1538 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1539 break; 1540 case ice_aqc_opc_lldp_set_mib_change: 1541 ice_dcb_process_lldp_set_mib_change(pf, &event); 1542 break; 1543 default: 1544 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1545 qtype, opcode); 1546 break; 1547 } 1548 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1549 1550 kfree(event.msg_buf); 1551 1552 return pending && (i == ICE_DFLT_IRQ_WORK); 1553 } 1554 1555 /** 1556 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1557 * @hw: pointer to hardware info 1558 * @cq: control queue information 1559 * 1560 * returns true if there are pending messages in a queue, false if there aren't 1561 */ 1562 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1563 { 1564 u16 ntu; 1565 1566 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1567 return cq->rq.next_to_clean != ntu; 1568 } 1569 1570 /** 1571 * ice_clean_adminq_subtask - clean the AdminQ rings 1572 * @pf: board private structure 1573 */ 1574 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1575 { 1576 struct ice_hw *hw = &pf->hw; 1577 1578 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1579 return; 1580 1581 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1582 return; 1583 1584 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1585 1586 /* There might be a situation where new messages arrive to a control 1587 * queue between processing the last message and clearing the 1588 * EVENT_PENDING bit. So before exiting, check queue head again (using 1589 * ice_ctrlq_pending) and process new messages if any. 1590 */ 1591 if (ice_ctrlq_pending(hw, &hw->adminq)) 1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1593 1594 ice_flush(hw); 1595 } 1596 1597 /** 1598 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1606 return; 1607 1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1609 return; 1610 1611 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1612 1613 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1614 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1615 1616 ice_flush(hw); 1617 } 1618 1619 /** 1620 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1621 * @pf: board private structure 1622 */ 1623 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1624 { 1625 struct ice_hw *hw = &pf->hw; 1626 1627 /* Nothing to do here if sideband queue is not supported */ 1628 if (!ice_is_sbq_supported(hw)) { 1629 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1630 return; 1631 } 1632 1633 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1634 return; 1635 1636 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1637 return; 1638 1639 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1640 1641 if (ice_ctrlq_pending(hw, &hw->sbq)) 1642 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1643 1644 ice_flush(hw); 1645 } 1646 1647 /** 1648 * ice_service_task_schedule - schedule the service task to wake up 1649 * @pf: board private structure 1650 * 1651 * If not already scheduled, this puts the task into the work queue. 1652 */ 1653 void ice_service_task_schedule(struct ice_pf *pf) 1654 { 1655 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1656 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1657 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1658 queue_work(ice_wq, &pf->serv_task); 1659 } 1660 1661 /** 1662 * ice_service_task_complete - finish up the service task 1663 * @pf: board private structure 1664 */ 1665 static void ice_service_task_complete(struct ice_pf *pf) 1666 { 1667 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1668 1669 /* force memory (pf->state) to sync before next service task */ 1670 smp_mb__before_atomic(); 1671 clear_bit(ICE_SERVICE_SCHED, pf->state); 1672 } 1673 1674 /** 1675 * ice_service_task_stop - stop service task and cancel works 1676 * @pf: board private structure 1677 * 1678 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1679 * 1 otherwise. 1680 */ 1681 static int ice_service_task_stop(struct ice_pf *pf) 1682 { 1683 int ret; 1684 1685 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1686 1687 if (pf->serv_tmr.function) 1688 del_timer_sync(&pf->serv_tmr); 1689 if (pf->serv_task.func) 1690 cancel_work_sync(&pf->serv_task); 1691 1692 clear_bit(ICE_SERVICE_SCHED, pf->state); 1693 return ret; 1694 } 1695 1696 /** 1697 * ice_service_task_restart - restart service task and schedule works 1698 * @pf: board private structure 1699 * 1700 * This function is needed for suspend and resume works (e.g WoL scenario) 1701 */ 1702 static void ice_service_task_restart(struct ice_pf *pf) 1703 { 1704 clear_bit(ICE_SERVICE_DIS, pf->state); 1705 ice_service_task_schedule(pf); 1706 } 1707 1708 /** 1709 * ice_service_timer - timer callback to schedule service task 1710 * @t: pointer to timer_list 1711 */ 1712 static void ice_service_timer(struct timer_list *t) 1713 { 1714 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1715 1716 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1717 ice_service_task_schedule(pf); 1718 } 1719 1720 /** 1721 * ice_handle_mdd_event - handle malicious driver detect event 1722 * @pf: pointer to the PF structure 1723 * 1724 * Called from service task. OICR interrupt handler indicates MDD event. 1725 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1726 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1727 * disable the queue, the PF can be configured to reset the VF using ethtool 1728 * private flag mdd-auto-reset-vf. 1729 */ 1730 static void ice_handle_mdd_event(struct ice_pf *pf) 1731 { 1732 struct device *dev = ice_pf_to_dev(pf); 1733 struct ice_hw *hw = &pf->hw; 1734 struct ice_vf *vf; 1735 unsigned int bkt; 1736 u32 reg; 1737 1738 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1739 /* Since the VF MDD event logging is rate limited, check if 1740 * there are pending MDD events. 1741 */ 1742 ice_print_vfs_mdd_events(pf); 1743 return; 1744 } 1745 1746 /* find what triggered an MDD event */ 1747 reg = rd32(hw, GL_MDET_TX_PQM); 1748 if (reg & GL_MDET_TX_PQM_VALID_M) { 1749 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1750 GL_MDET_TX_PQM_PF_NUM_S; 1751 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1752 GL_MDET_TX_PQM_VF_NUM_S; 1753 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1754 GL_MDET_TX_PQM_MAL_TYPE_S; 1755 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1756 GL_MDET_TX_PQM_QNUM_S); 1757 1758 if (netif_msg_tx_err(pf)) 1759 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1760 event, queue, pf_num, vf_num); 1761 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1762 } 1763 1764 reg = rd32(hw, GL_MDET_TX_TCLAN); 1765 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1766 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1767 GL_MDET_TX_TCLAN_PF_NUM_S; 1768 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1769 GL_MDET_TX_TCLAN_VF_NUM_S; 1770 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1771 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1772 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1773 GL_MDET_TX_TCLAN_QNUM_S); 1774 1775 if (netif_msg_tx_err(pf)) 1776 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1777 event, queue, pf_num, vf_num); 1778 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1779 } 1780 1781 reg = rd32(hw, GL_MDET_RX); 1782 if (reg & GL_MDET_RX_VALID_M) { 1783 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1784 GL_MDET_RX_PF_NUM_S; 1785 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1786 GL_MDET_RX_VF_NUM_S; 1787 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1788 GL_MDET_RX_MAL_TYPE_S; 1789 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1790 GL_MDET_RX_QNUM_S); 1791 1792 if (netif_msg_rx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1794 event, queue, pf_num, vf_num); 1795 wr32(hw, GL_MDET_RX, 0xffffffff); 1796 } 1797 1798 /* check to see if this PF caused an MDD event */ 1799 reg = rd32(hw, PF_MDET_TX_PQM); 1800 if (reg & PF_MDET_TX_PQM_VALID_M) { 1801 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1802 if (netif_msg_tx_err(pf)) 1803 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1804 } 1805 1806 reg = rd32(hw, PF_MDET_TX_TCLAN); 1807 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1808 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1809 if (netif_msg_tx_err(pf)) 1810 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1811 } 1812 1813 reg = rd32(hw, PF_MDET_RX); 1814 if (reg & PF_MDET_RX_VALID_M) { 1815 wr32(hw, PF_MDET_RX, 0xFFFF); 1816 if (netif_msg_rx_err(pf)) 1817 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1818 } 1819 1820 /* Check to see if one of the VFs caused an MDD event, and then 1821 * increment counters and set print pending 1822 */ 1823 mutex_lock(&pf->vfs.table_lock); 1824 ice_for_each_vf(pf, bkt, vf) { 1825 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1826 if (reg & VP_MDET_TX_PQM_VALID_M) { 1827 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1828 vf->mdd_tx_events.count++; 1829 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1830 if (netif_msg_tx_err(pf)) 1831 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1832 vf->vf_id); 1833 } 1834 1835 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1836 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1837 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1838 vf->mdd_tx_events.count++; 1839 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1840 if (netif_msg_tx_err(pf)) 1841 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1842 vf->vf_id); 1843 } 1844 1845 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1846 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1847 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1848 vf->mdd_tx_events.count++; 1849 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1850 if (netif_msg_tx_err(pf)) 1851 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1852 vf->vf_id); 1853 } 1854 1855 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1856 if (reg & VP_MDET_RX_VALID_M) { 1857 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1858 vf->mdd_rx_events.count++; 1859 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1860 if (netif_msg_rx_err(pf)) 1861 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1862 vf->vf_id); 1863 1864 /* Since the queue is disabled on VF Rx MDD events, the 1865 * PF can be configured to reset the VF through ethtool 1866 * private flag mdd-auto-reset-vf. 1867 */ 1868 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1869 /* VF MDD event counters will be cleared by 1870 * reset, so print the event prior to reset. 1871 */ 1872 ice_print_vf_rx_mdd_event(vf); 1873 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1874 } 1875 } 1876 } 1877 mutex_unlock(&pf->vfs.table_lock); 1878 1879 ice_print_vfs_mdd_events(pf); 1880 } 1881 1882 /** 1883 * ice_force_phys_link_state - Force the physical link state 1884 * @vsi: VSI to force the physical link state to up/down 1885 * @link_up: true/false indicates to set the physical link to up/down 1886 * 1887 * Force the physical link state by getting the current PHY capabilities from 1888 * hardware and setting the PHY config based on the determined capabilities. If 1889 * link changes a link event will be triggered because both the Enable Automatic 1890 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1891 * 1892 * Returns 0 on success, negative on failure 1893 */ 1894 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1895 { 1896 struct ice_aqc_get_phy_caps_data *pcaps; 1897 struct ice_aqc_set_phy_cfg_data *cfg; 1898 struct ice_port_info *pi; 1899 struct device *dev; 1900 int retcode; 1901 1902 if (!vsi || !vsi->port_info || !vsi->back) 1903 return -EINVAL; 1904 if (vsi->type != ICE_VSI_PF) 1905 return 0; 1906 1907 dev = ice_pf_to_dev(vsi->back); 1908 1909 pi = vsi->port_info; 1910 1911 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1912 if (!pcaps) 1913 return -ENOMEM; 1914 1915 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1916 NULL); 1917 if (retcode) { 1918 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1919 vsi->vsi_num, retcode); 1920 retcode = -EIO; 1921 goto out; 1922 } 1923 1924 /* No change in link */ 1925 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1926 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1927 goto out; 1928 1929 /* Use the current user PHY configuration. The current user PHY 1930 * configuration is initialized during probe from PHY capabilities 1931 * software mode, and updated on set PHY configuration. 1932 */ 1933 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1934 if (!cfg) { 1935 retcode = -ENOMEM; 1936 goto out; 1937 } 1938 1939 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1940 if (link_up) 1941 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1942 else 1943 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1944 1945 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1946 if (retcode) { 1947 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1948 vsi->vsi_num, retcode); 1949 retcode = -EIO; 1950 } 1951 1952 kfree(cfg); 1953 out: 1954 kfree(pcaps); 1955 return retcode; 1956 } 1957 1958 /** 1959 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1960 * @pi: port info structure 1961 * 1962 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1963 */ 1964 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1965 { 1966 struct ice_aqc_get_phy_caps_data *pcaps; 1967 struct ice_pf *pf = pi->hw->back; 1968 int err; 1969 1970 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1971 if (!pcaps) 1972 return -ENOMEM; 1973 1974 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1975 pcaps, NULL); 1976 1977 if (err) { 1978 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1979 goto out; 1980 } 1981 1982 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1983 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1984 1985 out: 1986 kfree(pcaps); 1987 return err; 1988 } 1989 1990 /** 1991 * ice_init_link_dflt_override - Initialize link default override 1992 * @pi: port info structure 1993 * 1994 * Initialize link default override and PHY total port shutdown during probe 1995 */ 1996 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1997 { 1998 struct ice_link_default_override_tlv *ldo; 1999 struct ice_pf *pf = pi->hw->back; 2000 2001 ldo = &pf->link_dflt_override; 2002 if (ice_get_link_default_override(ldo, pi)) 2003 return; 2004 2005 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2006 return; 2007 2008 /* Enable Total Port Shutdown (override/replace link-down-on-close 2009 * ethtool private flag) for ports with Port Disable bit set. 2010 */ 2011 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2012 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2013 } 2014 2015 /** 2016 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2017 * @pi: port info structure 2018 * 2019 * If default override is enabled, initialize the user PHY cfg speed and FEC 2020 * settings using the default override mask from the NVM. 2021 * 2022 * The PHY should only be configured with the default override settings the 2023 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2024 * is used to indicate that the user PHY cfg default override is initialized 2025 * and the PHY has not been configured with the default override settings. The 2026 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2027 * configured. 2028 * 2029 * This function should be called only if the FW doesn't support default 2030 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2031 */ 2032 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2033 { 2034 struct ice_link_default_override_tlv *ldo; 2035 struct ice_aqc_set_phy_cfg_data *cfg; 2036 struct ice_phy_info *phy = &pi->phy; 2037 struct ice_pf *pf = pi->hw->back; 2038 2039 ldo = &pf->link_dflt_override; 2040 2041 /* If link default override is enabled, use to mask NVM PHY capabilities 2042 * for speed and FEC default configuration. 2043 */ 2044 cfg = &phy->curr_user_phy_cfg; 2045 2046 if (ldo->phy_type_low || ldo->phy_type_high) { 2047 cfg->phy_type_low = pf->nvm_phy_type_lo & 2048 cpu_to_le64(ldo->phy_type_low); 2049 cfg->phy_type_high = pf->nvm_phy_type_hi & 2050 cpu_to_le64(ldo->phy_type_high); 2051 } 2052 cfg->link_fec_opt = ldo->fec_options; 2053 phy->curr_user_fec_req = ICE_FEC_AUTO; 2054 2055 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2056 } 2057 2058 /** 2059 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2060 * @pi: port info structure 2061 * 2062 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2063 * mode to default. The PHY defaults are from get PHY capabilities topology 2064 * with media so call when media is first available. An error is returned if 2065 * called when media is not available. The PHY initialization completed state is 2066 * set here. 2067 * 2068 * These configurations are used when setting PHY 2069 * configuration. The user PHY configuration is updated on set PHY 2070 * configuration. Returns 0 on success, negative on failure 2071 */ 2072 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2073 { 2074 struct ice_aqc_get_phy_caps_data *pcaps; 2075 struct ice_phy_info *phy = &pi->phy; 2076 struct ice_pf *pf = pi->hw->back; 2077 int err; 2078 2079 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2080 return -EIO; 2081 2082 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2083 if (!pcaps) 2084 return -ENOMEM; 2085 2086 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2087 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2088 pcaps, NULL); 2089 else 2090 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2091 pcaps, NULL); 2092 if (err) { 2093 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2094 goto err_out; 2095 } 2096 2097 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2098 2099 /* check if lenient mode is supported and enabled */ 2100 if (ice_fw_supports_link_override(pi->hw) && 2101 !(pcaps->module_compliance_enforcement & 2102 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2103 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2104 2105 /* if the FW supports default PHY configuration mode, then the driver 2106 * does not have to apply link override settings. If not, 2107 * initialize user PHY configuration with link override values 2108 */ 2109 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2110 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2111 ice_init_phy_cfg_dflt_override(pi); 2112 goto out; 2113 } 2114 } 2115 2116 /* if link default override is not enabled, set user flow control and 2117 * FEC settings based on what get_phy_caps returned 2118 */ 2119 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2120 pcaps->link_fec_options); 2121 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2122 2123 out: 2124 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2125 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2126 err_out: 2127 kfree(pcaps); 2128 return err; 2129 } 2130 2131 /** 2132 * ice_configure_phy - configure PHY 2133 * @vsi: VSI of PHY 2134 * 2135 * Set the PHY configuration. If the current PHY configuration is the same as 2136 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2137 * configure the based get PHY capabilities for topology with media. 2138 */ 2139 static int ice_configure_phy(struct ice_vsi *vsi) 2140 { 2141 struct device *dev = ice_pf_to_dev(vsi->back); 2142 struct ice_port_info *pi = vsi->port_info; 2143 struct ice_aqc_get_phy_caps_data *pcaps; 2144 struct ice_aqc_set_phy_cfg_data *cfg; 2145 struct ice_phy_info *phy = &pi->phy; 2146 struct ice_pf *pf = vsi->back; 2147 int err; 2148 2149 /* Ensure we have media as we cannot configure a medialess port */ 2150 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2151 return -ENOMEDIUM; 2152 2153 ice_print_topo_conflict(vsi); 2154 2155 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2156 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2157 return -EPERM; 2158 2159 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2160 return ice_force_phys_link_state(vsi, true); 2161 2162 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2163 if (!pcaps) 2164 return -ENOMEM; 2165 2166 /* Get current PHY config */ 2167 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2168 NULL); 2169 if (err) { 2170 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2171 vsi->vsi_num, err); 2172 goto done; 2173 } 2174 2175 /* If PHY enable link is configured and configuration has not changed, 2176 * there's nothing to do 2177 */ 2178 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2179 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2180 goto done; 2181 2182 /* Use PHY topology as baseline for configuration */ 2183 memset(pcaps, 0, sizeof(*pcaps)); 2184 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2185 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2186 pcaps, NULL); 2187 else 2188 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2189 pcaps, NULL); 2190 if (err) { 2191 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2192 vsi->vsi_num, err); 2193 goto done; 2194 } 2195 2196 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2197 if (!cfg) { 2198 err = -ENOMEM; 2199 goto done; 2200 } 2201 2202 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2203 2204 /* Speed - If default override pending, use curr_user_phy_cfg set in 2205 * ice_init_phy_user_cfg_ldo. 2206 */ 2207 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2208 vsi->back->state)) { 2209 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2210 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2211 } else { 2212 u64 phy_low = 0, phy_high = 0; 2213 2214 ice_update_phy_type(&phy_low, &phy_high, 2215 pi->phy.curr_user_speed_req); 2216 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2217 cfg->phy_type_high = pcaps->phy_type_high & 2218 cpu_to_le64(phy_high); 2219 } 2220 2221 /* Can't provide what was requested; use PHY capabilities */ 2222 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2223 cfg->phy_type_low = pcaps->phy_type_low; 2224 cfg->phy_type_high = pcaps->phy_type_high; 2225 } 2226 2227 /* FEC */ 2228 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2229 2230 /* Can't provide what was requested; use PHY capabilities */ 2231 if (cfg->link_fec_opt != 2232 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2233 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2234 cfg->link_fec_opt = pcaps->link_fec_options; 2235 } 2236 2237 /* Flow Control - always supported; no need to check against 2238 * capabilities 2239 */ 2240 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2241 2242 /* Enable link and link update */ 2243 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2244 2245 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2246 if (err) 2247 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2248 vsi->vsi_num, err); 2249 2250 kfree(cfg); 2251 done: 2252 kfree(pcaps); 2253 return err; 2254 } 2255 2256 /** 2257 * ice_check_media_subtask - Check for media 2258 * @pf: pointer to PF struct 2259 * 2260 * If media is available, then initialize PHY user configuration if it is not 2261 * been, and configure the PHY if the interface is up. 2262 */ 2263 static void ice_check_media_subtask(struct ice_pf *pf) 2264 { 2265 struct ice_port_info *pi; 2266 struct ice_vsi *vsi; 2267 int err; 2268 2269 /* No need to check for media if it's already present */ 2270 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2271 return; 2272 2273 vsi = ice_get_main_vsi(pf); 2274 if (!vsi) 2275 return; 2276 2277 /* Refresh link info and check if media is present */ 2278 pi = vsi->port_info; 2279 err = ice_update_link_info(pi); 2280 if (err) 2281 return; 2282 2283 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2284 2285 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2286 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2287 ice_init_phy_user_cfg(pi); 2288 2289 /* PHY settings are reset on media insertion, reconfigure 2290 * PHY to preserve settings. 2291 */ 2292 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2293 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2294 return; 2295 2296 err = ice_configure_phy(vsi); 2297 if (!err) 2298 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2299 2300 /* A Link Status Event will be generated; the event handler 2301 * will complete bringing the interface up 2302 */ 2303 } 2304 } 2305 2306 /** 2307 * ice_service_task - manage and run subtasks 2308 * @work: pointer to work_struct contained by the PF struct 2309 */ 2310 static void ice_service_task(struct work_struct *work) 2311 { 2312 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2313 unsigned long start_time = jiffies; 2314 2315 /* subtasks */ 2316 2317 /* process reset requests first */ 2318 ice_reset_subtask(pf); 2319 2320 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2321 if (ice_is_reset_in_progress(pf->state) || 2322 test_bit(ICE_SUSPENDED, pf->state) || 2323 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2324 ice_service_task_complete(pf); 2325 return; 2326 } 2327 2328 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2329 struct iidc_event *event; 2330 2331 event = kzalloc(sizeof(*event), GFP_KERNEL); 2332 if (event) { 2333 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2334 /* report the entire OICR value to AUX driver */ 2335 swap(event->reg, pf->oicr_err_reg); 2336 ice_send_event_to_aux(pf, event); 2337 kfree(event); 2338 } 2339 } 2340 2341 /* unplug aux dev per request, if an unplug request came in 2342 * while processing a plug request, this will handle it 2343 */ 2344 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2345 ice_unplug_aux_dev(pf); 2346 2347 /* Plug aux device per request */ 2348 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2349 ice_plug_aux_dev(pf); 2350 2351 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2352 struct iidc_event *event; 2353 2354 event = kzalloc(sizeof(*event), GFP_KERNEL); 2355 if (event) { 2356 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2357 ice_send_event_to_aux(pf, event); 2358 kfree(event); 2359 } 2360 } 2361 2362 ice_clean_adminq_subtask(pf); 2363 ice_check_media_subtask(pf); 2364 ice_check_for_hang_subtask(pf); 2365 ice_sync_fltr_subtask(pf); 2366 ice_handle_mdd_event(pf); 2367 ice_watchdog_subtask(pf); 2368 2369 if (ice_is_safe_mode(pf)) { 2370 ice_service_task_complete(pf); 2371 return; 2372 } 2373 2374 ice_process_vflr_event(pf); 2375 ice_clean_mailboxq_subtask(pf); 2376 ice_clean_sbq_subtask(pf); 2377 ice_sync_arfs_fltrs(pf); 2378 ice_flush_fdir_ctx(pf); 2379 2380 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2381 ice_service_task_complete(pf); 2382 2383 /* If the tasks have taken longer than one service timer period 2384 * or there is more work to be done, reset the service timer to 2385 * schedule the service task now. 2386 */ 2387 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2388 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2389 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2390 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2391 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2392 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2393 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2394 mod_timer(&pf->serv_tmr, jiffies); 2395 } 2396 2397 /** 2398 * ice_set_ctrlq_len - helper function to set controlq length 2399 * @hw: pointer to the HW instance 2400 */ 2401 static void ice_set_ctrlq_len(struct ice_hw *hw) 2402 { 2403 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2404 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2405 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2406 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2407 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2408 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2409 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2410 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2411 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2412 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2413 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2414 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2415 } 2416 2417 /** 2418 * ice_schedule_reset - schedule a reset 2419 * @pf: board private structure 2420 * @reset: reset being requested 2421 */ 2422 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2423 { 2424 struct device *dev = ice_pf_to_dev(pf); 2425 2426 /* bail out if earlier reset has failed */ 2427 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2428 dev_dbg(dev, "earlier reset has failed\n"); 2429 return -EIO; 2430 } 2431 /* bail if reset/recovery already in progress */ 2432 if (ice_is_reset_in_progress(pf->state)) { 2433 dev_dbg(dev, "Reset already in progress\n"); 2434 return -EBUSY; 2435 } 2436 2437 switch (reset) { 2438 case ICE_RESET_PFR: 2439 set_bit(ICE_PFR_REQ, pf->state); 2440 break; 2441 case ICE_RESET_CORER: 2442 set_bit(ICE_CORER_REQ, pf->state); 2443 break; 2444 case ICE_RESET_GLOBR: 2445 set_bit(ICE_GLOBR_REQ, pf->state); 2446 break; 2447 default: 2448 return -EINVAL; 2449 } 2450 2451 ice_service_task_schedule(pf); 2452 return 0; 2453 } 2454 2455 /** 2456 * ice_irq_affinity_notify - Callback for affinity changes 2457 * @notify: context as to what irq was changed 2458 * @mask: the new affinity mask 2459 * 2460 * This is a callback function used by the irq_set_affinity_notifier function 2461 * so that we may register to receive changes to the irq affinity masks. 2462 */ 2463 static void 2464 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2465 const cpumask_t *mask) 2466 { 2467 struct ice_q_vector *q_vector = 2468 container_of(notify, struct ice_q_vector, affinity_notify); 2469 2470 cpumask_copy(&q_vector->affinity_mask, mask); 2471 } 2472 2473 /** 2474 * ice_irq_affinity_release - Callback for affinity notifier release 2475 * @ref: internal core kernel usage 2476 * 2477 * This is a callback function used by the irq_set_affinity_notifier function 2478 * to inform the current notification subscriber that they will no longer 2479 * receive notifications. 2480 */ 2481 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2482 2483 /** 2484 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2485 * @vsi: the VSI being configured 2486 */ 2487 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2488 { 2489 struct ice_hw *hw = &vsi->back->hw; 2490 int i; 2491 2492 ice_for_each_q_vector(vsi, i) 2493 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2494 2495 ice_flush(hw); 2496 return 0; 2497 } 2498 2499 /** 2500 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2501 * @vsi: the VSI being configured 2502 * @basename: name for the vector 2503 */ 2504 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2505 { 2506 int q_vectors = vsi->num_q_vectors; 2507 struct ice_pf *pf = vsi->back; 2508 struct device *dev; 2509 int rx_int_idx = 0; 2510 int tx_int_idx = 0; 2511 int vector, err; 2512 int irq_num; 2513 2514 dev = ice_pf_to_dev(pf); 2515 for (vector = 0; vector < q_vectors; vector++) { 2516 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2517 2518 irq_num = q_vector->irq.virq; 2519 2520 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2521 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2522 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2523 tx_int_idx++; 2524 } else if (q_vector->rx.rx_ring) { 2525 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2526 "%s-%s-%d", basename, "rx", rx_int_idx++); 2527 } else if (q_vector->tx.tx_ring) { 2528 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2529 "%s-%s-%d", basename, "tx", tx_int_idx++); 2530 } else { 2531 /* skip this unused q_vector */ 2532 continue; 2533 } 2534 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2535 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2536 IRQF_SHARED, q_vector->name, 2537 q_vector); 2538 else 2539 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2540 0, q_vector->name, q_vector); 2541 if (err) { 2542 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2543 err); 2544 goto free_q_irqs; 2545 } 2546 2547 /* register for affinity change notifications */ 2548 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2549 struct irq_affinity_notify *affinity_notify; 2550 2551 affinity_notify = &q_vector->affinity_notify; 2552 affinity_notify->notify = ice_irq_affinity_notify; 2553 affinity_notify->release = ice_irq_affinity_release; 2554 irq_set_affinity_notifier(irq_num, affinity_notify); 2555 } 2556 2557 /* assign the mask for this irq */ 2558 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2559 } 2560 2561 err = ice_set_cpu_rx_rmap(vsi); 2562 if (err) { 2563 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2564 vsi->vsi_num, ERR_PTR(err)); 2565 goto free_q_irqs; 2566 } 2567 2568 vsi->irqs_ready = true; 2569 return 0; 2570 2571 free_q_irqs: 2572 while (vector--) { 2573 irq_num = vsi->q_vectors[vector]->irq.virq; 2574 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2575 irq_set_affinity_notifier(irq_num, NULL); 2576 irq_set_affinity_hint(irq_num, NULL); 2577 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2578 } 2579 return err; 2580 } 2581 2582 /** 2583 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2584 * @vsi: VSI to setup Tx rings used by XDP 2585 * 2586 * Return 0 on success and negative value on error 2587 */ 2588 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2589 { 2590 struct device *dev = ice_pf_to_dev(vsi->back); 2591 struct ice_tx_desc *tx_desc; 2592 int i, j; 2593 2594 ice_for_each_xdp_txq(vsi, i) { 2595 u16 xdp_q_idx = vsi->alloc_txq + i; 2596 struct ice_ring_stats *ring_stats; 2597 struct ice_tx_ring *xdp_ring; 2598 2599 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2600 if (!xdp_ring) 2601 goto free_xdp_rings; 2602 2603 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2604 if (!ring_stats) { 2605 ice_free_tx_ring(xdp_ring); 2606 goto free_xdp_rings; 2607 } 2608 2609 xdp_ring->ring_stats = ring_stats; 2610 xdp_ring->q_index = xdp_q_idx; 2611 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2612 xdp_ring->vsi = vsi; 2613 xdp_ring->netdev = NULL; 2614 xdp_ring->dev = dev; 2615 xdp_ring->count = vsi->num_tx_desc; 2616 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2617 if (ice_setup_tx_ring(xdp_ring)) 2618 goto free_xdp_rings; 2619 ice_set_ring_xdp(xdp_ring); 2620 spin_lock_init(&xdp_ring->tx_lock); 2621 for (j = 0; j < xdp_ring->count; j++) { 2622 tx_desc = ICE_TX_DESC(xdp_ring, j); 2623 tx_desc->cmd_type_offset_bsz = 0; 2624 } 2625 } 2626 2627 return 0; 2628 2629 free_xdp_rings: 2630 for (; i >= 0; i--) { 2631 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2632 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2633 vsi->xdp_rings[i]->ring_stats = NULL; 2634 ice_free_tx_ring(vsi->xdp_rings[i]); 2635 } 2636 } 2637 return -ENOMEM; 2638 } 2639 2640 /** 2641 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2642 * @vsi: VSI to set the bpf prog on 2643 * @prog: the bpf prog pointer 2644 */ 2645 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2646 { 2647 struct bpf_prog *old_prog; 2648 int i; 2649 2650 old_prog = xchg(&vsi->xdp_prog, prog); 2651 ice_for_each_rxq(vsi, i) 2652 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2653 2654 if (old_prog) 2655 bpf_prog_put(old_prog); 2656 } 2657 2658 /** 2659 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2660 * @vsi: VSI to bring up Tx rings used by XDP 2661 * @prog: bpf program that will be assigned to VSI 2662 * @cfg_type: create from scratch or restore the existing configuration 2663 * 2664 * Return 0 on success and negative value on error 2665 */ 2666 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2667 enum ice_xdp_cfg cfg_type) 2668 { 2669 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2670 int xdp_rings_rem = vsi->num_xdp_txq; 2671 struct ice_pf *pf = vsi->back; 2672 struct ice_qs_cfg xdp_qs_cfg = { 2673 .qs_mutex = &pf->avail_q_mutex, 2674 .pf_map = pf->avail_txqs, 2675 .pf_map_size = pf->max_pf_txqs, 2676 .q_count = vsi->num_xdp_txq, 2677 .scatter_count = ICE_MAX_SCATTER_TXQS, 2678 .vsi_map = vsi->txq_map, 2679 .vsi_map_offset = vsi->alloc_txq, 2680 .mapping_mode = ICE_VSI_MAP_CONTIG 2681 }; 2682 struct device *dev; 2683 int i, v_idx; 2684 int status; 2685 2686 dev = ice_pf_to_dev(pf); 2687 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2688 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2689 if (!vsi->xdp_rings) 2690 return -ENOMEM; 2691 2692 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2693 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2694 goto err_map_xdp; 2695 2696 if (static_key_enabled(&ice_xdp_locking_key)) 2697 netdev_warn(vsi->netdev, 2698 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2699 2700 if (ice_xdp_alloc_setup_rings(vsi)) 2701 goto clear_xdp_rings; 2702 2703 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2704 ice_for_each_q_vector(vsi, v_idx) { 2705 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2706 int xdp_rings_per_v, q_id, q_base; 2707 2708 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2709 vsi->num_q_vectors - v_idx); 2710 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2711 2712 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2713 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2714 2715 xdp_ring->q_vector = q_vector; 2716 xdp_ring->next = q_vector->tx.tx_ring; 2717 q_vector->tx.tx_ring = xdp_ring; 2718 } 2719 xdp_rings_rem -= xdp_rings_per_v; 2720 } 2721 2722 ice_for_each_rxq(vsi, i) { 2723 if (static_key_enabled(&ice_xdp_locking_key)) { 2724 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2725 } else { 2726 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2727 struct ice_tx_ring *ring; 2728 2729 ice_for_each_tx_ring(ring, q_vector->tx) { 2730 if (ice_ring_is_xdp(ring)) { 2731 vsi->rx_rings[i]->xdp_ring = ring; 2732 break; 2733 } 2734 } 2735 } 2736 ice_tx_xsk_pool(vsi, i); 2737 } 2738 2739 /* omit the scheduler update if in reset path; XDP queues will be 2740 * taken into account at the end of ice_vsi_rebuild, where 2741 * ice_cfg_vsi_lan is being called 2742 */ 2743 if (cfg_type == ICE_XDP_CFG_PART) 2744 return 0; 2745 2746 /* tell the Tx scheduler that right now we have 2747 * additional queues 2748 */ 2749 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2750 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2751 2752 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2753 max_txqs); 2754 if (status) { 2755 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2756 status); 2757 goto clear_xdp_rings; 2758 } 2759 2760 /* assign the prog only when it's not already present on VSI; 2761 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2762 * VSI rebuild that happens under ethtool -L can expose us to 2763 * the bpf_prog refcount issues as we would be swapping same 2764 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2765 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2766 * this is not harmful as dev_xdp_install bumps the refcount 2767 * before calling the op exposed by the driver; 2768 */ 2769 if (!ice_is_xdp_ena_vsi(vsi)) 2770 ice_vsi_assign_bpf_prog(vsi, prog); 2771 2772 return 0; 2773 clear_xdp_rings: 2774 ice_for_each_xdp_txq(vsi, i) 2775 if (vsi->xdp_rings[i]) { 2776 kfree_rcu(vsi->xdp_rings[i], rcu); 2777 vsi->xdp_rings[i] = NULL; 2778 } 2779 2780 err_map_xdp: 2781 mutex_lock(&pf->avail_q_mutex); 2782 ice_for_each_xdp_txq(vsi, i) { 2783 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2784 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2785 } 2786 mutex_unlock(&pf->avail_q_mutex); 2787 2788 devm_kfree(dev, vsi->xdp_rings); 2789 return -ENOMEM; 2790 } 2791 2792 /** 2793 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2794 * @vsi: VSI to remove XDP rings 2795 * @cfg_type: disable XDP permanently or allow it to be restored later 2796 * 2797 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2798 * resources 2799 */ 2800 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2801 { 2802 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2803 struct ice_pf *pf = vsi->back; 2804 int i, v_idx; 2805 2806 /* q_vectors are freed in reset path so there's no point in detaching 2807 * rings 2808 */ 2809 if (cfg_type == ICE_XDP_CFG_PART) 2810 goto free_qmap; 2811 2812 ice_for_each_q_vector(vsi, v_idx) { 2813 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2814 struct ice_tx_ring *ring; 2815 2816 ice_for_each_tx_ring(ring, q_vector->tx) 2817 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2818 break; 2819 2820 /* restore the value of last node prior to XDP setup */ 2821 q_vector->tx.tx_ring = ring; 2822 } 2823 2824 free_qmap: 2825 mutex_lock(&pf->avail_q_mutex); 2826 ice_for_each_xdp_txq(vsi, i) { 2827 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2828 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2829 } 2830 mutex_unlock(&pf->avail_q_mutex); 2831 2832 ice_for_each_xdp_txq(vsi, i) 2833 if (vsi->xdp_rings[i]) { 2834 if (vsi->xdp_rings[i]->desc) { 2835 synchronize_rcu(); 2836 ice_free_tx_ring(vsi->xdp_rings[i]); 2837 } 2838 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2839 vsi->xdp_rings[i]->ring_stats = NULL; 2840 kfree_rcu(vsi->xdp_rings[i], rcu); 2841 vsi->xdp_rings[i] = NULL; 2842 } 2843 2844 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2845 vsi->xdp_rings = NULL; 2846 2847 if (static_key_enabled(&ice_xdp_locking_key)) 2848 static_branch_dec(&ice_xdp_locking_key); 2849 2850 if (cfg_type == ICE_XDP_CFG_PART) 2851 return 0; 2852 2853 ice_vsi_assign_bpf_prog(vsi, NULL); 2854 2855 /* notify Tx scheduler that we destroyed XDP queues and bring 2856 * back the old number of child nodes 2857 */ 2858 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2859 max_txqs[i] = vsi->num_txq; 2860 2861 /* change number of XDP Tx queues to 0 */ 2862 vsi->num_xdp_txq = 0; 2863 2864 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2865 max_txqs); 2866 } 2867 2868 /** 2869 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2870 * @vsi: VSI to schedule napi on 2871 */ 2872 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2873 { 2874 int i; 2875 2876 ice_for_each_rxq(vsi, i) { 2877 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2878 2879 if (rx_ring->xsk_pool) 2880 napi_schedule(&rx_ring->q_vector->napi); 2881 } 2882 } 2883 2884 /** 2885 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2886 * @vsi: VSI to determine the count of XDP Tx qs 2887 * 2888 * returns 0 if Tx qs count is higher than at least half of CPU count, 2889 * -ENOMEM otherwise 2890 */ 2891 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2892 { 2893 u16 avail = ice_get_avail_txq_count(vsi->back); 2894 u16 cpus = num_possible_cpus(); 2895 2896 if (avail < cpus / 2) 2897 return -ENOMEM; 2898 2899 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2900 2901 if (vsi->num_xdp_txq < cpus) 2902 static_branch_inc(&ice_xdp_locking_key); 2903 2904 return 0; 2905 } 2906 2907 /** 2908 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2909 * @vsi: Pointer to VSI structure 2910 */ 2911 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2912 { 2913 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2914 return ICE_RXBUF_1664; 2915 else 2916 return ICE_RXBUF_3072; 2917 } 2918 2919 /** 2920 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2921 * @vsi: VSI to setup XDP for 2922 * @prog: XDP program 2923 * @extack: netlink extended ack 2924 */ 2925 static int 2926 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2927 struct netlink_ext_ack *extack) 2928 { 2929 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2930 bool if_running = netif_running(vsi->netdev); 2931 int ret = 0, xdp_ring_err = 0; 2932 2933 if (prog && !prog->aux->xdp_has_frags) { 2934 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2935 NL_SET_ERR_MSG_MOD(extack, 2936 "MTU is too large for linear frames and XDP prog does not support frags"); 2937 return -EOPNOTSUPP; 2938 } 2939 } 2940 2941 /* hot swap progs and avoid toggling link */ 2942 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2943 ice_vsi_assign_bpf_prog(vsi, prog); 2944 return 0; 2945 } 2946 2947 /* need to stop netdev while setting up the program for Rx rings */ 2948 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2949 ret = ice_down(vsi); 2950 if (ret) { 2951 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2952 return ret; 2953 } 2954 } 2955 2956 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2957 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2958 if (xdp_ring_err) { 2959 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2960 } else { 2961 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 2962 ICE_XDP_CFG_FULL); 2963 if (xdp_ring_err) 2964 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2965 } 2966 xdp_features_set_redirect_target(vsi->netdev, true); 2967 /* reallocate Rx queues that are used for zero-copy */ 2968 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2969 if (xdp_ring_err) 2970 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2971 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2972 xdp_features_clear_redirect_target(vsi->netdev); 2973 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 2974 if (xdp_ring_err) 2975 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2976 /* reallocate Rx queues that were used for zero-copy */ 2977 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2978 if (xdp_ring_err) 2979 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2980 } 2981 2982 if (if_running) 2983 ret = ice_up(vsi); 2984 2985 if (!ret && prog) 2986 ice_vsi_rx_napi_schedule(vsi); 2987 2988 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2989 } 2990 2991 /** 2992 * ice_xdp_safe_mode - XDP handler for safe mode 2993 * @dev: netdevice 2994 * @xdp: XDP command 2995 */ 2996 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2997 struct netdev_bpf *xdp) 2998 { 2999 NL_SET_ERR_MSG_MOD(xdp->extack, 3000 "Please provide working DDP firmware package in order to use XDP\n" 3001 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3002 return -EOPNOTSUPP; 3003 } 3004 3005 /** 3006 * ice_xdp - implements XDP handler 3007 * @dev: netdevice 3008 * @xdp: XDP command 3009 */ 3010 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3011 { 3012 struct ice_netdev_priv *np = netdev_priv(dev); 3013 struct ice_vsi *vsi = np->vsi; 3014 3015 if (vsi->type != ICE_VSI_PF) { 3016 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3017 return -EINVAL; 3018 } 3019 3020 switch (xdp->command) { 3021 case XDP_SETUP_PROG: 3022 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3023 case XDP_SETUP_XSK_POOL: 3024 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3025 xdp->xsk.queue_id); 3026 default: 3027 return -EINVAL; 3028 } 3029 } 3030 3031 /** 3032 * ice_ena_misc_vector - enable the non-queue interrupts 3033 * @pf: board private structure 3034 */ 3035 static void ice_ena_misc_vector(struct ice_pf *pf) 3036 { 3037 struct ice_hw *hw = &pf->hw; 3038 u32 val; 3039 3040 /* Disable anti-spoof detection interrupt to prevent spurious event 3041 * interrupts during a function reset. Anti-spoof functionally is 3042 * still supported. 3043 */ 3044 val = rd32(hw, GL_MDCK_TX_TDPU); 3045 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3046 wr32(hw, GL_MDCK_TX_TDPU, val); 3047 3048 /* clear things first */ 3049 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3050 rd32(hw, PFINT_OICR); /* read to clear */ 3051 3052 val = (PFINT_OICR_ECC_ERR_M | 3053 PFINT_OICR_MAL_DETECT_M | 3054 PFINT_OICR_GRST_M | 3055 PFINT_OICR_PCI_EXCEPTION_M | 3056 PFINT_OICR_VFLR_M | 3057 PFINT_OICR_HMC_ERR_M | 3058 PFINT_OICR_PE_PUSH_M | 3059 PFINT_OICR_PE_CRITERR_M); 3060 3061 wr32(hw, PFINT_OICR_ENA, val); 3062 3063 /* SW_ITR_IDX = 0, but don't change INTENA */ 3064 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3065 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3066 } 3067 3068 /** 3069 * ice_misc_intr - misc interrupt handler 3070 * @irq: interrupt number 3071 * @data: pointer to a q_vector 3072 */ 3073 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3074 { 3075 struct ice_pf *pf = (struct ice_pf *)data; 3076 struct ice_hw *hw = &pf->hw; 3077 struct device *dev; 3078 u32 oicr, ena_mask; 3079 3080 dev = ice_pf_to_dev(pf); 3081 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3082 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3083 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3084 3085 oicr = rd32(hw, PFINT_OICR); 3086 ena_mask = rd32(hw, PFINT_OICR_ENA); 3087 3088 if (oicr & PFINT_OICR_SWINT_M) { 3089 ena_mask &= ~PFINT_OICR_SWINT_M; 3090 pf->sw_int_count++; 3091 } 3092 3093 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3094 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3095 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3096 } 3097 if (oicr & PFINT_OICR_VFLR_M) { 3098 /* disable any further VFLR event notifications */ 3099 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3100 u32 reg = rd32(hw, PFINT_OICR_ENA); 3101 3102 reg &= ~PFINT_OICR_VFLR_M; 3103 wr32(hw, PFINT_OICR_ENA, reg); 3104 } else { 3105 ena_mask &= ~PFINT_OICR_VFLR_M; 3106 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3107 } 3108 } 3109 3110 if (oicr & PFINT_OICR_GRST_M) { 3111 u32 reset; 3112 3113 /* we have a reset warning */ 3114 ena_mask &= ~PFINT_OICR_GRST_M; 3115 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3116 GLGEN_RSTAT_RESET_TYPE_S; 3117 3118 if (reset == ICE_RESET_CORER) 3119 pf->corer_count++; 3120 else if (reset == ICE_RESET_GLOBR) 3121 pf->globr_count++; 3122 else if (reset == ICE_RESET_EMPR) 3123 pf->empr_count++; 3124 else 3125 dev_dbg(dev, "Invalid reset type %d\n", reset); 3126 3127 /* If a reset cycle isn't already in progress, we set a bit in 3128 * pf->state so that the service task can start a reset/rebuild. 3129 */ 3130 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3131 if (reset == ICE_RESET_CORER) 3132 set_bit(ICE_CORER_RECV, pf->state); 3133 else if (reset == ICE_RESET_GLOBR) 3134 set_bit(ICE_GLOBR_RECV, pf->state); 3135 else 3136 set_bit(ICE_EMPR_RECV, pf->state); 3137 3138 /* There are couple of different bits at play here. 3139 * hw->reset_ongoing indicates whether the hardware is 3140 * in reset. This is set to true when a reset interrupt 3141 * is received and set back to false after the driver 3142 * has determined that the hardware is out of reset. 3143 * 3144 * ICE_RESET_OICR_RECV in pf->state indicates 3145 * that a post reset rebuild is required before the 3146 * driver is operational again. This is set above. 3147 * 3148 * As this is the start of the reset/rebuild cycle, set 3149 * both to indicate that. 3150 */ 3151 hw->reset_ongoing = true; 3152 } 3153 } 3154 3155 if (oicr & PFINT_OICR_TSYN_TX_M) { 3156 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3157 if (!hw->reset_ongoing) 3158 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3159 } 3160 3161 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3162 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3163 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3164 3165 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3166 3167 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3168 /* Save EVENTs from GLTSYN register */ 3169 pf->ptp.ext_ts_irq |= gltsyn_stat & 3170 (GLTSYN_STAT_EVENT0_M | 3171 GLTSYN_STAT_EVENT1_M | 3172 GLTSYN_STAT_EVENT2_M); 3173 3174 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3175 } 3176 } 3177 3178 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3179 if (oicr & ICE_AUX_CRIT_ERR) { 3180 pf->oicr_err_reg |= oicr; 3181 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3182 ena_mask &= ~ICE_AUX_CRIT_ERR; 3183 } 3184 3185 /* Report any remaining unexpected interrupts */ 3186 oicr &= ena_mask; 3187 if (oicr) { 3188 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3189 /* If a critical error is pending there is no choice but to 3190 * reset the device. 3191 */ 3192 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3193 PFINT_OICR_ECC_ERR_M)) { 3194 set_bit(ICE_PFR_REQ, pf->state); 3195 } 3196 } 3197 3198 return IRQ_WAKE_THREAD; 3199 } 3200 3201 /** 3202 * ice_misc_intr_thread_fn - misc interrupt thread function 3203 * @irq: interrupt number 3204 * @data: pointer to a q_vector 3205 */ 3206 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3207 { 3208 struct ice_pf *pf = data; 3209 struct ice_hw *hw; 3210 3211 hw = &pf->hw; 3212 3213 if (ice_is_reset_in_progress(pf->state)) 3214 return IRQ_HANDLED; 3215 3216 ice_service_task_schedule(pf); 3217 3218 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3219 ice_ptp_extts_event(pf); 3220 3221 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3222 /* Process outstanding Tx timestamps. If there is more work, 3223 * re-arm the interrupt to trigger again. 3224 */ 3225 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3226 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3227 ice_flush(hw); 3228 } 3229 } 3230 3231 ice_irq_dynamic_ena(hw, NULL, NULL); 3232 3233 return IRQ_HANDLED; 3234 } 3235 3236 /** 3237 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3238 * @hw: pointer to HW structure 3239 */ 3240 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3241 { 3242 /* disable Admin queue Interrupt causes */ 3243 wr32(hw, PFINT_FW_CTL, 3244 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3245 3246 /* disable Mailbox queue Interrupt causes */ 3247 wr32(hw, PFINT_MBX_CTL, 3248 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3249 3250 wr32(hw, PFINT_SB_CTL, 3251 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3252 3253 /* disable Control queue Interrupt causes */ 3254 wr32(hw, PFINT_OICR_CTL, 3255 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3256 3257 ice_flush(hw); 3258 } 3259 3260 /** 3261 * ice_free_irq_msix_misc - Unroll misc vector setup 3262 * @pf: board private structure 3263 */ 3264 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3265 { 3266 int misc_irq_num = pf->oicr_irq.virq; 3267 struct ice_hw *hw = &pf->hw; 3268 3269 ice_dis_ctrlq_interrupts(hw); 3270 3271 /* disable OICR interrupt */ 3272 wr32(hw, PFINT_OICR_ENA, 0); 3273 ice_flush(hw); 3274 3275 synchronize_irq(misc_irq_num); 3276 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3277 3278 ice_free_irq(pf, pf->oicr_irq); 3279 } 3280 3281 /** 3282 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3283 * @hw: pointer to HW structure 3284 * @reg_idx: HW vector index to associate the control queue interrupts with 3285 */ 3286 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3287 { 3288 u32 val; 3289 3290 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3291 PFINT_OICR_CTL_CAUSE_ENA_M); 3292 wr32(hw, PFINT_OICR_CTL, val); 3293 3294 /* enable Admin queue Interrupt causes */ 3295 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3296 PFINT_FW_CTL_CAUSE_ENA_M); 3297 wr32(hw, PFINT_FW_CTL, val); 3298 3299 /* enable Mailbox queue Interrupt causes */ 3300 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3301 PFINT_MBX_CTL_CAUSE_ENA_M); 3302 wr32(hw, PFINT_MBX_CTL, val); 3303 3304 /* This enables Sideband queue Interrupt causes */ 3305 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3306 PFINT_SB_CTL_CAUSE_ENA_M); 3307 wr32(hw, PFINT_SB_CTL, val); 3308 3309 ice_flush(hw); 3310 } 3311 3312 /** 3313 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3314 * @pf: board private structure 3315 * 3316 * This sets up the handler for MSIX 0, which is used to manage the 3317 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3318 * when in MSI or Legacy interrupt mode. 3319 */ 3320 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3321 { 3322 struct device *dev = ice_pf_to_dev(pf); 3323 struct ice_hw *hw = &pf->hw; 3324 struct msi_map oicr_irq; 3325 int err = 0; 3326 3327 if (!pf->int_name[0]) 3328 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3329 dev_driver_string(dev), dev_name(dev)); 3330 3331 /* Do not request IRQ but do enable OICR interrupt since settings are 3332 * lost during reset. Note that this function is called only during 3333 * rebuild path and not while reset is in progress. 3334 */ 3335 if (ice_is_reset_in_progress(pf->state)) 3336 goto skip_req_irq; 3337 3338 /* reserve one vector in irq_tracker for misc interrupts */ 3339 oicr_irq = ice_alloc_irq(pf, false); 3340 if (oicr_irq.index < 0) 3341 return oicr_irq.index; 3342 3343 pf->oicr_irq = oicr_irq; 3344 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3345 ice_misc_intr_thread_fn, 0, 3346 pf->int_name, pf); 3347 if (err) { 3348 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3349 pf->int_name, err); 3350 ice_free_irq(pf, pf->oicr_irq); 3351 return err; 3352 } 3353 3354 skip_req_irq: 3355 ice_ena_misc_vector(pf); 3356 3357 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3358 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3359 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3360 3361 ice_flush(hw); 3362 ice_irq_dynamic_ena(hw, NULL, NULL); 3363 3364 return 0; 3365 } 3366 3367 /** 3368 * ice_napi_add - register NAPI handler for the VSI 3369 * @vsi: VSI for which NAPI handler is to be registered 3370 * 3371 * This function is only called in the driver's load path. Registering the NAPI 3372 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3373 * reset/rebuild, etc.) 3374 */ 3375 static void ice_napi_add(struct ice_vsi *vsi) 3376 { 3377 int v_idx; 3378 3379 if (!vsi->netdev) 3380 return; 3381 3382 ice_for_each_q_vector(vsi, v_idx) 3383 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3384 ice_napi_poll); 3385 } 3386 3387 /** 3388 * ice_set_ops - set netdev and ethtools ops for the given netdev 3389 * @vsi: the VSI associated with the new netdev 3390 */ 3391 static void ice_set_ops(struct ice_vsi *vsi) 3392 { 3393 struct net_device *netdev = vsi->netdev; 3394 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3395 3396 if (ice_is_safe_mode(pf)) { 3397 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3398 ice_set_ethtool_safe_mode_ops(netdev); 3399 return; 3400 } 3401 3402 netdev->netdev_ops = &ice_netdev_ops; 3403 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3404 ice_set_ethtool_ops(netdev); 3405 3406 if (vsi->type != ICE_VSI_PF) 3407 return; 3408 3409 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3410 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3411 NETDEV_XDP_ACT_RX_SG; 3412 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3413 } 3414 3415 /** 3416 * ice_set_netdev_features - set features for the given netdev 3417 * @netdev: netdev instance 3418 */ 3419 static void ice_set_netdev_features(struct net_device *netdev) 3420 { 3421 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3422 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3423 netdev_features_t csumo_features; 3424 netdev_features_t vlano_features; 3425 netdev_features_t dflt_features; 3426 netdev_features_t tso_features; 3427 3428 if (ice_is_safe_mode(pf)) { 3429 /* safe mode */ 3430 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3431 netdev->hw_features = netdev->features; 3432 return; 3433 } 3434 3435 dflt_features = NETIF_F_SG | 3436 NETIF_F_HIGHDMA | 3437 NETIF_F_NTUPLE | 3438 NETIF_F_RXHASH; 3439 3440 csumo_features = NETIF_F_RXCSUM | 3441 NETIF_F_IP_CSUM | 3442 NETIF_F_SCTP_CRC | 3443 NETIF_F_IPV6_CSUM; 3444 3445 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3446 NETIF_F_HW_VLAN_CTAG_TX | 3447 NETIF_F_HW_VLAN_CTAG_RX; 3448 3449 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3450 if (is_dvm_ena) 3451 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3452 3453 tso_features = NETIF_F_TSO | 3454 NETIF_F_TSO_ECN | 3455 NETIF_F_TSO6 | 3456 NETIF_F_GSO_GRE | 3457 NETIF_F_GSO_UDP_TUNNEL | 3458 NETIF_F_GSO_GRE_CSUM | 3459 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3460 NETIF_F_GSO_PARTIAL | 3461 NETIF_F_GSO_IPXIP4 | 3462 NETIF_F_GSO_IPXIP6 | 3463 NETIF_F_GSO_UDP_L4; 3464 3465 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3466 NETIF_F_GSO_GRE_CSUM; 3467 /* set features that user can change */ 3468 netdev->hw_features = dflt_features | csumo_features | 3469 vlano_features | tso_features; 3470 3471 /* add support for HW_CSUM on packets with MPLS header */ 3472 netdev->mpls_features = NETIF_F_HW_CSUM | 3473 NETIF_F_TSO | 3474 NETIF_F_TSO6; 3475 3476 /* enable features */ 3477 netdev->features |= netdev->hw_features; 3478 3479 netdev->hw_features |= NETIF_F_HW_TC; 3480 netdev->hw_features |= NETIF_F_LOOPBACK; 3481 3482 /* encap and VLAN devices inherit default, csumo and tso features */ 3483 netdev->hw_enc_features |= dflt_features | csumo_features | 3484 tso_features; 3485 netdev->vlan_features |= dflt_features | csumo_features | 3486 tso_features; 3487 3488 /* advertise support but don't enable by default since only one type of 3489 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3490 * type turns on the other has to be turned off. This is enforced by the 3491 * ice_fix_features() ndo callback. 3492 */ 3493 if (is_dvm_ena) 3494 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3495 NETIF_F_HW_VLAN_STAG_TX; 3496 3497 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3498 * be changed at runtime 3499 */ 3500 netdev->hw_features |= NETIF_F_RXFCS; 3501 3502 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3503 } 3504 3505 /** 3506 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3507 * @lut: Lookup table 3508 * @rss_table_size: Lookup table size 3509 * @rss_size: Range of queue number for hashing 3510 */ 3511 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3512 { 3513 u16 i; 3514 3515 for (i = 0; i < rss_table_size; i++) 3516 lut[i] = i % rss_size; 3517 } 3518 3519 /** 3520 * ice_pf_vsi_setup - Set up a PF VSI 3521 * @pf: board private structure 3522 * @pi: pointer to the port_info instance 3523 * 3524 * Returns pointer to the successfully allocated VSI software struct 3525 * on success, otherwise returns NULL on failure. 3526 */ 3527 static struct ice_vsi * 3528 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3529 { 3530 struct ice_vsi_cfg_params params = {}; 3531 3532 params.type = ICE_VSI_PF; 3533 params.pi = pi; 3534 params.flags = ICE_VSI_FLAG_INIT; 3535 3536 return ice_vsi_setup(pf, ¶ms); 3537 } 3538 3539 static struct ice_vsi * 3540 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3541 struct ice_channel *ch) 3542 { 3543 struct ice_vsi_cfg_params params = {}; 3544 3545 params.type = ICE_VSI_CHNL; 3546 params.pi = pi; 3547 params.ch = ch; 3548 params.flags = ICE_VSI_FLAG_INIT; 3549 3550 return ice_vsi_setup(pf, ¶ms); 3551 } 3552 3553 /** 3554 * ice_ctrl_vsi_setup - Set up a control VSI 3555 * @pf: board private structure 3556 * @pi: pointer to the port_info instance 3557 * 3558 * Returns pointer to the successfully allocated VSI software struct 3559 * on success, otherwise returns NULL on failure. 3560 */ 3561 static struct ice_vsi * 3562 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3563 { 3564 struct ice_vsi_cfg_params params = {}; 3565 3566 params.type = ICE_VSI_CTRL; 3567 params.pi = pi; 3568 params.flags = ICE_VSI_FLAG_INIT; 3569 3570 return ice_vsi_setup(pf, ¶ms); 3571 } 3572 3573 /** 3574 * ice_lb_vsi_setup - Set up a loopback VSI 3575 * @pf: board private structure 3576 * @pi: pointer to the port_info instance 3577 * 3578 * Returns pointer to the successfully allocated VSI software struct 3579 * on success, otherwise returns NULL on failure. 3580 */ 3581 struct ice_vsi * 3582 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3583 { 3584 struct ice_vsi_cfg_params params = {}; 3585 3586 params.type = ICE_VSI_LB; 3587 params.pi = pi; 3588 params.flags = ICE_VSI_FLAG_INIT; 3589 3590 return ice_vsi_setup(pf, ¶ms); 3591 } 3592 3593 /** 3594 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3595 * @netdev: network interface to be adjusted 3596 * @proto: VLAN TPID 3597 * @vid: VLAN ID to be added 3598 * 3599 * net_device_ops implementation for adding VLAN IDs 3600 */ 3601 static int 3602 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3603 { 3604 struct ice_netdev_priv *np = netdev_priv(netdev); 3605 struct ice_vsi_vlan_ops *vlan_ops; 3606 struct ice_vsi *vsi = np->vsi; 3607 struct ice_vlan vlan; 3608 int ret; 3609 3610 /* VLAN 0 is added by default during load/reset */ 3611 if (!vid) 3612 return 0; 3613 3614 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3615 usleep_range(1000, 2000); 3616 3617 /* Add multicast promisc rule for the VLAN ID to be added if 3618 * all-multicast is currently enabled. 3619 */ 3620 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3621 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3622 ICE_MCAST_VLAN_PROMISC_BITS, 3623 vid); 3624 if (ret) 3625 goto finish; 3626 } 3627 3628 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3629 3630 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3631 * packets aren't pruned by the device's internal switch on Rx 3632 */ 3633 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3634 ret = vlan_ops->add_vlan(vsi, &vlan); 3635 if (ret) 3636 goto finish; 3637 3638 /* If all-multicast is currently enabled and this VLAN ID is only one 3639 * besides VLAN-0 we have to update look-up type of multicast promisc 3640 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3641 */ 3642 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3643 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3644 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3645 ICE_MCAST_PROMISC_BITS, 0); 3646 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3647 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3648 } 3649 3650 finish: 3651 clear_bit(ICE_CFG_BUSY, vsi->state); 3652 3653 return ret; 3654 } 3655 3656 /** 3657 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3658 * @netdev: network interface to be adjusted 3659 * @proto: VLAN TPID 3660 * @vid: VLAN ID to be removed 3661 * 3662 * net_device_ops implementation for removing VLAN IDs 3663 */ 3664 static int 3665 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3666 { 3667 struct ice_netdev_priv *np = netdev_priv(netdev); 3668 struct ice_vsi_vlan_ops *vlan_ops; 3669 struct ice_vsi *vsi = np->vsi; 3670 struct ice_vlan vlan; 3671 int ret; 3672 3673 /* don't allow removal of VLAN 0 */ 3674 if (!vid) 3675 return 0; 3676 3677 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3678 usleep_range(1000, 2000); 3679 3680 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3681 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3682 if (ret) { 3683 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3684 vsi->vsi_num); 3685 vsi->current_netdev_flags |= IFF_ALLMULTI; 3686 } 3687 3688 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3689 3690 /* Make sure VLAN delete is successful before updating VLAN 3691 * information 3692 */ 3693 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3694 ret = vlan_ops->del_vlan(vsi, &vlan); 3695 if (ret) 3696 goto finish; 3697 3698 /* Remove multicast promisc rule for the removed VLAN ID if 3699 * all-multicast is enabled. 3700 */ 3701 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3702 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3703 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3704 3705 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3706 /* Update look-up type of multicast promisc rule for VLAN 0 3707 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3708 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3709 */ 3710 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3711 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3712 ICE_MCAST_VLAN_PROMISC_BITS, 3713 0); 3714 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3715 ICE_MCAST_PROMISC_BITS, 0); 3716 } 3717 } 3718 3719 finish: 3720 clear_bit(ICE_CFG_BUSY, vsi->state); 3721 3722 return ret; 3723 } 3724 3725 /** 3726 * ice_rep_indr_tc_block_unbind 3727 * @cb_priv: indirection block private data 3728 */ 3729 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3730 { 3731 struct ice_indr_block_priv *indr_priv = cb_priv; 3732 3733 list_del(&indr_priv->list); 3734 kfree(indr_priv); 3735 } 3736 3737 /** 3738 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3739 * @vsi: VSI struct which has the netdev 3740 */ 3741 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3742 { 3743 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3744 3745 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3746 ice_rep_indr_tc_block_unbind); 3747 } 3748 3749 /** 3750 * ice_tc_indir_block_register - Register TC indirect block notifications 3751 * @vsi: VSI struct which has the netdev 3752 * 3753 * Returns 0 on success, negative value on failure 3754 */ 3755 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3756 { 3757 struct ice_netdev_priv *np; 3758 3759 if (!vsi || !vsi->netdev) 3760 return -EINVAL; 3761 3762 np = netdev_priv(vsi->netdev); 3763 3764 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3765 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3766 } 3767 3768 /** 3769 * ice_get_avail_q_count - Get count of queues in use 3770 * @pf_qmap: bitmap to get queue use count from 3771 * @lock: pointer to a mutex that protects access to pf_qmap 3772 * @size: size of the bitmap 3773 */ 3774 static u16 3775 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3776 { 3777 unsigned long bit; 3778 u16 count = 0; 3779 3780 mutex_lock(lock); 3781 for_each_clear_bit(bit, pf_qmap, size) 3782 count++; 3783 mutex_unlock(lock); 3784 3785 return count; 3786 } 3787 3788 /** 3789 * ice_get_avail_txq_count - Get count of Tx queues in use 3790 * @pf: pointer to an ice_pf instance 3791 */ 3792 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3793 { 3794 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3795 pf->max_pf_txqs); 3796 } 3797 3798 /** 3799 * ice_get_avail_rxq_count - Get count of Rx queues in use 3800 * @pf: pointer to an ice_pf instance 3801 */ 3802 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3803 { 3804 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3805 pf->max_pf_rxqs); 3806 } 3807 3808 /** 3809 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3810 * @pf: board private structure to initialize 3811 */ 3812 static void ice_deinit_pf(struct ice_pf *pf) 3813 { 3814 ice_service_task_stop(pf); 3815 mutex_destroy(&pf->lag_mutex); 3816 mutex_destroy(&pf->adev_mutex); 3817 mutex_destroy(&pf->sw_mutex); 3818 mutex_destroy(&pf->tc_mutex); 3819 mutex_destroy(&pf->avail_q_mutex); 3820 mutex_destroy(&pf->vfs.table_lock); 3821 3822 if (pf->avail_txqs) { 3823 bitmap_free(pf->avail_txqs); 3824 pf->avail_txqs = NULL; 3825 } 3826 3827 if (pf->avail_rxqs) { 3828 bitmap_free(pf->avail_rxqs); 3829 pf->avail_rxqs = NULL; 3830 } 3831 3832 if (pf->ptp.clock) 3833 ptp_clock_unregister(pf->ptp.clock); 3834 } 3835 3836 /** 3837 * ice_set_pf_caps - set PFs capability flags 3838 * @pf: pointer to the PF instance 3839 */ 3840 static void ice_set_pf_caps(struct ice_pf *pf) 3841 { 3842 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3843 3844 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3845 if (func_caps->common_cap.rdma) 3846 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3847 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3848 if (func_caps->common_cap.dcb) 3849 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3850 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3851 if (func_caps->common_cap.sr_iov_1_1) { 3852 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3853 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3854 ICE_MAX_SRIOV_VFS); 3855 } 3856 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3857 if (func_caps->common_cap.rss_table_size) 3858 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3859 3860 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3861 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3862 u16 unused; 3863 3864 /* ctrl_vsi_idx will be set to a valid value when flow director 3865 * is setup by ice_init_fdir 3866 */ 3867 pf->ctrl_vsi_idx = ICE_NO_VSI; 3868 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3869 /* force guaranteed filter pool for PF */ 3870 ice_alloc_fd_guar_item(&pf->hw, &unused, 3871 func_caps->fd_fltr_guar); 3872 /* force shared filter pool for PF */ 3873 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3874 func_caps->fd_fltr_best_effort); 3875 } 3876 3877 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3878 if (func_caps->common_cap.ieee_1588) 3879 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3880 3881 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3882 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3883 } 3884 3885 /** 3886 * ice_init_pf - Initialize general software structures (struct ice_pf) 3887 * @pf: board private structure to initialize 3888 */ 3889 static int ice_init_pf(struct ice_pf *pf) 3890 { 3891 ice_set_pf_caps(pf); 3892 3893 mutex_init(&pf->sw_mutex); 3894 mutex_init(&pf->tc_mutex); 3895 mutex_init(&pf->adev_mutex); 3896 mutex_init(&pf->lag_mutex); 3897 3898 INIT_HLIST_HEAD(&pf->aq_wait_list); 3899 spin_lock_init(&pf->aq_wait_lock); 3900 init_waitqueue_head(&pf->aq_wait_queue); 3901 3902 init_waitqueue_head(&pf->reset_wait_queue); 3903 3904 /* setup service timer and periodic service task */ 3905 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3906 pf->serv_tmr_period = HZ; 3907 INIT_WORK(&pf->serv_task, ice_service_task); 3908 clear_bit(ICE_SERVICE_SCHED, pf->state); 3909 3910 mutex_init(&pf->avail_q_mutex); 3911 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3912 if (!pf->avail_txqs) 3913 return -ENOMEM; 3914 3915 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3916 if (!pf->avail_rxqs) { 3917 bitmap_free(pf->avail_txqs); 3918 pf->avail_txqs = NULL; 3919 return -ENOMEM; 3920 } 3921 3922 mutex_init(&pf->vfs.table_lock); 3923 hash_init(pf->vfs.table); 3924 ice_mbx_init_snapshot(&pf->hw); 3925 3926 return 0; 3927 } 3928 3929 /** 3930 * ice_is_wol_supported - check if WoL is supported 3931 * @hw: pointer to hardware info 3932 * 3933 * Check if WoL is supported based on the HW configuration. 3934 * Returns true if NVM supports and enables WoL for this port, false otherwise 3935 */ 3936 bool ice_is_wol_supported(struct ice_hw *hw) 3937 { 3938 u16 wol_ctrl; 3939 3940 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3941 * word) indicates WoL is not supported on the corresponding PF ID. 3942 */ 3943 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3944 return false; 3945 3946 return !(BIT(hw->port_info->lport) & wol_ctrl); 3947 } 3948 3949 /** 3950 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3951 * @vsi: VSI being changed 3952 * @new_rx: new number of Rx queues 3953 * @new_tx: new number of Tx queues 3954 * @locked: is adev device_lock held 3955 * 3956 * Only change the number of queues if new_tx, or new_rx is non-0. 3957 * 3958 * Returns 0 on success. 3959 */ 3960 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3961 { 3962 struct ice_pf *pf = vsi->back; 3963 int i, err = 0, timeout = 50; 3964 3965 if (!new_rx && !new_tx) 3966 return -EINVAL; 3967 3968 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3969 timeout--; 3970 if (!timeout) 3971 return -EBUSY; 3972 usleep_range(1000, 2000); 3973 } 3974 3975 if (new_tx) 3976 vsi->req_txq = (u16)new_tx; 3977 if (new_rx) 3978 vsi->req_rxq = (u16)new_rx; 3979 3980 /* set for the next time the netdev is started */ 3981 if (!netif_running(vsi->netdev)) { 3982 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3983 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3984 goto done; 3985 } 3986 3987 ice_vsi_close(vsi); 3988 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3989 3990 ice_for_each_traffic_class(i) { 3991 if (vsi->tc_cfg.ena_tc & BIT(i)) 3992 netdev_set_tc_queue(vsi->netdev, 3993 vsi->tc_cfg.tc_info[i].netdev_tc, 3994 vsi->tc_cfg.tc_info[i].qcount_tx, 3995 vsi->tc_cfg.tc_info[i].qoffset); 3996 } 3997 ice_pf_dcb_recfg(pf, locked); 3998 ice_vsi_open(vsi); 3999 done: 4000 clear_bit(ICE_CFG_BUSY, pf->state); 4001 return err; 4002 } 4003 4004 /** 4005 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4006 * @pf: PF to configure 4007 * 4008 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4009 * VSI can still Tx/Rx VLAN tagged packets. 4010 */ 4011 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4012 { 4013 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4014 struct ice_vsi_ctx *ctxt; 4015 struct ice_hw *hw; 4016 int status; 4017 4018 if (!vsi) 4019 return; 4020 4021 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4022 if (!ctxt) 4023 return; 4024 4025 hw = &pf->hw; 4026 ctxt->info = vsi->info; 4027 4028 ctxt->info.valid_sections = 4029 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4030 ICE_AQ_VSI_PROP_SECURITY_VALID | 4031 ICE_AQ_VSI_PROP_SW_VALID); 4032 4033 /* disable VLAN anti-spoof */ 4034 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4035 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4036 4037 /* disable VLAN pruning and keep all other settings */ 4038 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4039 4040 /* allow all VLANs on Tx and don't strip on Rx */ 4041 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4042 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4043 4044 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4045 if (status) { 4046 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4047 status, ice_aq_str(hw->adminq.sq_last_status)); 4048 } else { 4049 vsi->info.sec_flags = ctxt->info.sec_flags; 4050 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4051 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4052 } 4053 4054 kfree(ctxt); 4055 } 4056 4057 /** 4058 * ice_log_pkg_init - log result of DDP package load 4059 * @hw: pointer to hardware info 4060 * @state: state of package load 4061 */ 4062 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4063 { 4064 struct ice_pf *pf = hw->back; 4065 struct device *dev; 4066 4067 dev = ice_pf_to_dev(pf); 4068 4069 switch (state) { 4070 case ICE_DDP_PKG_SUCCESS: 4071 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4072 hw->active_pkg_name, 4073 hw->active_pkg_ver.major, 4074 hw->active_pkg_ver.minor, 4075 hw->active_pkg_ver.update, 4076 hw->active_pkg_ver.draft); 4077 break; 4078 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4079 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4080 hw->active_pkg_name, 4081 hw->active_pkg_ver.major, 4082 hw->active_pkg_ver.minor, 4083 hw->active_pkg_ver.update, 4084 hw->active_pkg_ver.draft); 4085 break; 4086 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4087 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4088 hw->active_pkg_name, 4089 hw->active_pkg_ver.major, 4090 hw->active_pkg_ver.minor, 4091 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4092 break; 4093 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4094 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4095 hw->active_pkg_name, 4096 hw->active_pkg_ver.major, 4097 hw->active_pkg_ver.minor, 4098 hw->active_pkg_ver.update, 4099 hw->active_pkg_ver.draft, 4100 hw->pkg_name, 4101 hw->pkg_ver.major, 4102 hw->pkg_ver.minor, 4103 hw->pkg_ver.update, 4104 hw->pkg_ver.draft); 4105 break; 4106 case ICE_DDP_PKG_FW_MISMATCH: 4107 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4108 break; 4109 case ICE_DDP_PKG_INVALID_FILE: 4110 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4111 break; 4112 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4113 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4114 break; 4115 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4116 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4117 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4118 break; 4119 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4120 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4121 break; 4122 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4123 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4124 break; 4125 case ICE_DDP_PKG_LOAD_ERROR: 4126 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4127 /* poll for reset to complete */ 4128 if (ice_check_reset(hw)) 4129 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4130 break; 4131 case ICE_DDP_PKG_ERR: 4132 default: 4133 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4134 break; 4135 } 4136 } 4137 4138 /** 4139 * ice_load_pkg - load/reload the DDP Package file 4140 * @firmware: firmware structure when firmware requested or NULL for reload 4141 * @pf: pointer to the PF instance 4142 * 4143 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4144 * initialize HW tables. 4145 */ 4146 static void 4147 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4148 { 4149 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4150 struct device *dev = ice_pf_to_dev(pf); 4151 struct ice_hw *hw = &pf->hw; 4152 4153 /* Load DDP Package */ 4154 if (firmware && !hw->pkg_copy) { 4155 state = ice_copy_and_init_pkg(hw, firmware->data, 4156 firmware->size); 4157 ice_log_pkg_init(hw, state); 4158 } else if (!firmware && hw->pkg_copy) { 4159 /* Reload package during rebuild after CORER/GLOBR reset */ 4160 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4161 ice_log_pkg_init(hw, state); 4162 } else { 4163 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4164 } 4165 4166 if (!ice_is_init_pkg_successful(state)) { 4167 /* Safe Mode */ 4168 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4169 return; 4170 } 4171 4172 /* Successful download package is the precondition for advanced 4173 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4174 */ 4175 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4176 } 4177 4178 /** 4179 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4180 * @pf: pointer to the PF structure 4181 * 4182 * There is no error returned here because the driver should be able to handle 4183 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4184 * specifically with Tx. 4185 */ 4186 static void ice_verify_cacheline_size(struct ice_pf *pf) 4187 { 4188 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4189 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4190 ICE_CACHE_LINE_BYTES); 4191 } 4192 4193 /** 4194 * ice_send_version - update firmware with driver version 4195 * @pf: PF struct 4196 * 4197 * Returns 0 on success, else error code 4198 */ 4199 static int ice_send_version(struct ice_pf *pf) 4200 { 4201 struct ice_driver_ver dv; 4202 4203 dv.major_ver = 0xff; 4204 dv.minor_ver = 0xff; 4205 dv.build_ver = 0xff; 4206 dv.subbuild_ver = 0; 4207 strscpy((char *)dv.driver_string, UTS_RELEASE, 4208 sizeof(dv.driver_string)); 4209 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4210 } 4211 4212 /** 4213 * ice_init_fdir - Initialize flow director VSI and configuration 4214 * @pf: pointer to the PF instance 4215 * 4216 * returns 0 on success, negative on error 4217 */ 4218 static int ice_init_fdir(struct ice_pf *pf) 4219 { 4220 struct device *dev = ice_pf_to_dev(pf); 4221 struct ice_vsi *ctrl_vsi; 4222 int err; 4223 4224 /* Side Band Flow Director needs to have a control VSI. 4225 * Allocate it and store it in the PF. 4226 */ 4227 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4228 if (!ctrl_vsi) { 4229 dev_dbg(dev, "could not create control VSI\n"); 4230 return -ENOMEM; 4231 } 4232 4233 err = ice_vsi_open_ctrl(ctrl_vsi); 4234 if (err) { 4235 dev_dbg(dev, "could not open control VSI\n"); 4236 goto err_vsi_open; 4237 } 4238 4239 mutex_init(&pf->hw.fdir_fltr_lock); 4240 4241 err = ice_fdir_create_dflt_rules(pf); 4242 if (err) 4243 goto err_fdir_rule; 4244 4245 return 0; 4246 4247 err_fdir_rule: 4248 ice_fdir_release_flows(&pf->hw); 4249 ice_vsi_close(ctrl_vsi); 4250 err_vsi_open: 4251 ice_vsi_release(ctrl_vsi); 4252 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4253 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4254 pf->ctrl_vsi_idx = ICE_NO_VSI; 4255 } 4256 return err; 4257 } 4258 4259 static void ice_deinit_fdir(struct ice_pf *pf) 4260 { 4261 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4262 4263 if (!vsi) 4264 return; 4265 4266 ice_vsi_manage_fdir(vsi, false); 4267 ice_vsi_release(vsi); 4268 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4269 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4270 pf->ctrl_vsi_idx = ICE_NO_VSI; 4271 } 4272 4273 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4274 } 4275 4276 /** 4277 * ice_get_opt_fw_name - return optional firmware file name or NULL 4278 * @pf: pointer to the PF instance 4279 */ 4280 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4281 { 4282 /* Optional firmware name same as default with additional dash 4283 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4284 */ 4285 struct pci_dev *pdev = pf->pdev; 4286 char *opt_fw_filename; 4287 u64 dsn; 4288 4289 /* Determine the name of the optional file using the DSN (two 4290 * dwords following the start of the DSN Capability). 4291 */ 4292 dsn = pci_get_dsn(pdev); 4293 if (!dsn) 4294 return NULL; 4295 4296 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4297 if (!opt_fw_filename) 4298 return NULL; 4299 4300 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4301 ICE_DDP_PKG_PATH, dsn); 4302 4303 return opt_fw_filename; 4304 } 4305 4306 /** 4307 * ice_request_fw - Device initialization routine 4308 * @pf: pointer to the PF instance 4309 */ 4310 static void ice_request_fw(struct ice_pf *pf) 4311 { 4312 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4313 const struct firmware *firmware = NULL; 4314 struct device *dev = ice_pf_to_dev(pf); 4315 int err = 0; 4316 4317 /* optional device-specific DDP (if present) overrides the default DDP 4318 * package file. kernel logs a debug message if the file doesn't exist, 4319 * and warning messages for other errors. 4320 */ 4321 if (opt_fw_filename) { 4322 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4323 if (err) { 4324 kfree(opt_fw_filename); 4325 goto dflt_pkg_load; 4326 } 4327 4328 /* request for firmware was successful. Download to device */ 4329 ice_load_pkg(firmware, pf); 4330 kfree(opt_fw_filename); 4331 release_firmware(firmware); 4332 return; 4333 } 4334 4335 dflt_pkg_load: 4336 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4337 if (err) { 4338 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4339 return; 4340 } 4341 4342 /* request for firmware was successful. Download to device */ 4343 ice_load_pkg(firmware, pf); 4344 release_firmware(firmware); 4345 } 4346 4347 /** 4348 * ice_print_wake_reason - show the wake up cause in the log 4349 * @pf: pointer to the PF struct 4350 */ 4351 static void ice_print_wake_reason(struct ice_pf *pf) 4352 { 4353 u32 wus = pf->wakeup_reason; 4354 const char *wake_str; 4355 4356 /* if no wake event, nothing to print */ 4357 if (!wus) 4358 return; 4359 4360 if (wus & PFPM_WUS_LNKC_M) 4361 wake_str = "Link\n"; 4362 else if (wus & PFPM_WUS_MAG_M) 4363 wake_str = "Magic Packet\n"; 4364 else if (wus & PFPM_WUS_MNG_M) 4365 wake_str = "Management\n"; 4366 else if (wus & PFPM_WUS_FW_RST_WK_M) 4367 wake_str = "Firmware Reset\n"; 4368 else 4369 wake_str = "Unknown\n"; 4370 4371 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4372 } 4373 4374 /** 4375 * ice_register_netdev - register netdev 4376 * @vsi: pointer to the VSI struct 4377 */ 4378 static int ice_register_netdev(struct ice_vsi *vsi) 4379 { 4380 int err; 4381 4382 if (!vsi || !vsi->netdev) 4383 return -EIO; 4384 4385 err = register_netdev(vsi->netdev); 4386 if (err) 4387 return err; 4388 4389 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4390 netif_carrier_off(vsi->netdev); 4391 netif_tx_stop_all_queues(vsi->netdev); 4392 4393 return 0; 4394 } 4395 4396 static void ice_unregister_netdev(struct ice_vsi *vsi) 4397 { 4398 if (!vsi || !vsi->netdev) 4399 return; 4400 4401 unregister_netdev(vsi->netdev); 4402 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4403 } 4404 4405 /** 4406 * ice_cfg_netdev - Allocate, configure and register a netdev 4407 * @vsi: the VSI associated with the new netdev 4408 * 4409 * Returns 0 on success, negative value on failure 4410 */ 4411 static int ice_cfg_netdev(struct ice_vsi *vsi) 4412 { 4413 struct ice_netdev_priv *np; 4414 struct net_device *netdev; 4415 u8 mac_addr[ETH_ALEN]; 4416 4417 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4418 vsi->alloc_rxq); 4419 if (!netdev) 4420 return -ENOMEM; 4421 4422 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4423 vsi->netdev = netdev; 4424 np = netdev_priv(netdev); 4425 np->vsi = vsi; 4426 4427 ice_set_netdev_features(netdev); 4428 ice_set_ops(vsi); 4429 4430 if (vsi->type == ICE_VSI_PF) { 4431 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4432 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4433 eth_hw_addr_set(netdev, mac_addr); 4434 } 4435 4436 netdev->priv_flags |= IFF_UNICAST_FLT; 4437 4438 /* Setup netdev TC information */ 4439 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4440 4441 netdev->max_mtu = ICE_MAX_MTU; 4442 4443 return 0; 4444 } 4445 4446 static void ice_decfg_netdev(struct ice_vsi *vsi) 4447 { 4448 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4449 free_netdev(vsi->netdev); 4450 vsi->netdev = NULL; 4451 } 4452 4453 static int ice_start_eth(struct ice_vsi *vsi) 4454 { 4455 int err; 4456 4457 err = ice_init_mac_fltr(vsi->back); 4458 if (err) 4459 return err; 4460 4461 err = ice_vsi_open(vsi); 4462 if (err) 4463 ice_fltr_remove_all(vsi); 4464 4465 return err; 4466 } 4467 4468 static void ice_stop_eth(struct ice_vsi *vsi) 4469 { 4470 ice_fltr_remove_all(vsi); 4471 ice_vsi_close(vsi); 4472 } 4473 4474 static int ice_init_eth(struct ice_pf *pf) 4475 { 4476 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4477 int err; 4478 4479 if (!vsi) 4480 return -EINVAL; 4481 4482 /* init channel list */ 4483 INIT_LIST_HEAD(&vsi->ch_list); 4484 4485 err = ice_cfg_netdev(vsi); 4486 if (err) 4487 return err; 4488 /* Setup DCB netlink interface */ 4489 ice_dcbnl_setup(vsi); 4490 4491 err = ice_init_mac_fltr(pf); 4492 if (err) 4493 goto err_init_mac_fltr; 4494 4495 err = ice_devlink_create_pf_port(pf); 4496 if (err) 4497 goto err_devlink_create_pf_port; 4498 4499 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4500 4501 err = ice_register_netdev(vsi); 4502 if (err) 4503 goto err_register_netdev; 4504 4505 err = ice_tc_indir_block_register(vsi); 4506 if (err) 4507 goto err_tc_indir_block_register; 4508 4509 ice_napi_add(vsi); 4510 4511 return 0; 4512 4513 err_tc_indir_block_register: 4514 ice_unregister_netdev(vsi); 4515 err_register_netdev: 4516 ice_devlink_destroy_pf_port(pf); 4517 err_devlink_create_pf_port: 4518 err_init_mac_fltr: 4519 ice_decfg_netdev(vsi); 4520 return err; 4521 } 4522 4523 static void ice_deinit_eth(struct ice_pf *pf) 4524 { 4525 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4526 4527 if (!vsi) 4528 return; 4529 4530 ice_vsi_close(vsi); 4531 ice_unregister_netdev(vsi); 4532 ice_devlink_destroy_pf_port(pf); 4533 ice_tc_indir_block_unregister(vsi); 4534 ice_decfg_netdev(vsi); 4535 } 4536 4537 /** 4538 * ice_wait_for_fw - wait for full FW readiness 4539 * @hw: pointer to the hardware structure 4540 * @timeout: milliseconds that can elapse before timing out 4541 */ 4542 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4543 { 4544 int fw_loading; 4545 u32 elapsed = 0; 4546 4547 while (elapsed <= timeout) { 4548 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4549 4550 /* firmware was not yet loaded, we have to wait more */ 4551 if (fw_loading) { 4552 elapsed += 100; 4553 msleep(100); 4554 continue; 4555 } 4556 return 0; 4557 } 4558 4559 return -ETIMEDOUT; 4560 } 4561 4562 static int ice_init_dev(struct ice_pf *pf) 4563 { 4564 struct device *dev = ice_pf_to_dev(pf); 4565 struct ice_hw *hw = &pf->hw; 4566 int err; 4567 4568 err = ice_init_hw(hw); 4569 if (err) { 4570 dev_err(dev, "ice_init_hw failed: %d\n", err); 4571 return err; 4572 } 4573 4574 /* Some cards require longer initialization times 4575 * due to necessity of loading FW from an external source. 4576 * This can take even half a minute. 4577 */ 4578 if (ice_is_pf_c827(hw)) { 4579 err = ice_wait_for_fw(hw, 30000); 4580 if (err) { 4581 dev_err(dev, "ice_wait_for_fw timed out"); 4582 return err; 4583 } 4584 } 4585 4586 ice_init_feature_support(pf); 4587 4588 ice_request_fw(pf); 4589 4590 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4591 * set in pf->state, which will cause ice_is_safe_mode to return 4592 * true 4593 */ 4594 if (ice_is_safe_mode(pf)) { 4595 /* we already got function/device capabilities but these don't 4596 * reflect what the driver needs to do in safe mode. Instead of 4597 * adding conditional logic everywhere to ignore these 4598 * device/function capabilities, override them. 4599 */ 4600 ice_set_safe_mode_caps(hw); 4601 } 4602 4603 err = ice_init_pf(pf); 4604 if (err) { 4605 dev_err(dev, "ice_init_pf failed: %d\n", err); 4606 goto err_init_pf; 4607 } 4608 4609 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4610 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4611 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4612 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4613 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4614 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4615 pf->hw.tnl.valid_count[TNL_VXLAN]; 4616 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4617 UDP_TUNNEL_TYPE_VXLAN; 4618 } 4619 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4620 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4621 pf->hw.tnl.valid_count[TNL_GENEVE]; 4622 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4623 UDP_TUNNEL_TYPE_GENEVE; 4624 } 4625 4626 err = ice_init_interrupt_scheme(pf); 4627 if (err) { 4628 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4629 err = -EIO; 4630 goto err_init_interrupt_scheme; 4631 } 4632 4633 /* In case of MSIX we are going to setup the misc vector right here 4634 * to handle admin queue events etc. In case of legacy and MSI 4635 * the misc functionality and queue processing is combined in 4636 * the same vector and that gets setup at open. 4637 */ 4638 err = ice_req_irq_msix_misc(pf); 4639 if (err) { 4640 dev_err(dev, "setup of misc vector failed: %d\n", err); 4641 goto err_req_irq_msix_misc; 4642 } 4643 4644 return 0; 4645 4646 err_req_irq_msix_misc: 4647 ice_clear_interrupt_scheme(pf); 4648 err_init_interrupt_scheme: 4649 ice_deinit_pf(pf); 4650 err_init_pf: 4651 ice_deinit_hw(hw); 4652 return err; 4653 } 4654 4655 static void ice_deinit_dev(struct ice_pf *pf) 4656 { 4657 ice_free_irq_msix_misc(pf); 4658 ice_deinit_pf(pf); 4659 ice_deinit_hw(&pf->hw); 4660 4661 /* Service task is already stopped, so call reset directly. */ 4662 ice_reset(&pf->hw, ICE_RESET_PFR); 4663 pci_wait_for_pending_transaction(pf->pdev); 4664 ice_clear_interrupt_scheme(pf); 4665 } 4666 4667 static void ice_init_features(struct ice_pf *pf) 4668 { 4669 struct device *dev = ice_pf_to_dev(pf); 4670 4671 if (ice_is_safe_mode(pf)) 4672 return; 4673 4674 /* initialize DDP driven features */ 4675 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4676 ice_ptp_init(pf); 4677 4678 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4679 ice_gnss_init(pf); 4680 4681 /* Note: Flow director init failure is non-fatal to load */ 4682 if (ice_init_fdir(pf)) 4683 dev_err(dev, "could not initialize flow director\n"); 4684 4685 /* Note: DCB init failure is non-fatal to load */ 4686 if (ice_init_pf_dcb(pf, false)) { 4687 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4688 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4689 } else { 4690 ice_cfg_lldp_mib_change(&pf->hw, true); 4691 } 4692 4693 if (ice_init_lag(pf)) 4694 dev_warn(dev, "Failed to init link aggregation support\n"); 4695 } 4696 4697 static void ice_deinit_features(struct ice_pf *pf) 4698 { 4699 if (ice_is_safe_mode(pf)) 4700 return; 4701 4702 ice_deinit_lag(pf); 4703 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4704 ice_cfg_lldp_mib_change(&pf->hw, false); 4705 ice_deinit_fdir(pf); 4706 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4707 ice_gnss_exit(pf); 4708 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4709 ice_ptp_release(pf); 4710 } 4711 4712 static void ice_init_wakeup(struct ice_pf *pf) 4713 { 4714 /* Save wakeup reason register for later use */ 4715 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4716 4717 /* check for a power management event */ 4718 ice_print_wake_reason(pf); 4719 4720 /* clear wake status, all bits */ 4721 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4722 4723 /* Disable WoL at init, wait for user to enable */ 4724 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4725 } 4726 4727 static int ice_init_link(struct ice_pf *pf) 4728 { 4729 struct device *dev = ice_pf_to_dev(pf); 4730 int err; 4731 4732 err = ice_init_link_events(pf->hw.port_info); 4733 if (err) { 4734 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4735 return err; 4736 } 4737 4738 /* not a fatal error if this fails */ 4739 err = ice_init_nvm_phy_type(pf->hw.port_info); 4740 if (err) 4741 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4742 4743 /* not a fatal error if this fails */ 4744 err = ice_update_link_info(pf->hw.port_info); 4745 if (err) 4746 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4747 4748 ice_init_link_dflt_override(pf->hw.port_info); 4749 4750 ice_check_link_cfg_err(pf, 4751 pf->hw.port_info->phy.link_info.link_cfg_err); 4752 4753 /* if media available, initialize PHY settings */ 4754 if (pf->hw.port_info->phy.link_info.link_info & 4755 ICE_AQ_MEDIA_AVAILABLE) { 4756 /* not a fatal error if this fails */ 4757 err = ice_init_phy_user_cfg(pf->hw.port_info); 4758 if (err) 4759 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4760 4761 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4762 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4763 4764 if (vsi) 4765 ice_configure_phy(vsi); 4766 } 4767 } else { 4768 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4769 } 4770 4771 return err; 4772 } 4773 4774 static int ice_init_pf_sw(struct ice_pf *pf) 4775 { 4776 bool dvm = ice_is_dvm_ena(&pf->hw); 4777 struct ice_vsi *vsi; 4778 int err; 4779 4780 /* create switch struct for the switch element created by FW on boot */ 4781 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4782 if (!pf->first_sw) 4783 return -ENOMEM; 4784 4785 if (pf->hw.evb_veb) 4786 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4787 else 4788 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4789 4790 pf->first_sw->pf = pf; 4791 4792 /* record the sw_id available for later use */ 4793 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4794 4795 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4796 if (err) 4797 goto err_aq_set_port_params; 4798 4799 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4800 if (!vsi) { 4801 err = -ENOMEM; 4802 goto err_pf_vsi_setup; 4803 } 4804 4805 return 0; 4806 4807 err_pf_vsi_setup: 4808 err_aq_set_port_params: 4809 kfree(pf->first_sw); 4810 return err; 4811 } 4812 4813 static void ice_deinit_pf_sw(struct ice_pf *pf) 4814 { 4815 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4816 4817 if (!vsi) 4818 return; 4819 4820 ice_vsi_release(vsi); 4821 kfree(pf->first_sw); 4822 } 4823 4824 static int ice_alloc_vsis(struct ice_pf *pf) 4825 { 4826 struct device *dev = ice_pf_to_dev(pf); 4827 4828 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4829 if (!pf->num_alloc_vsi) 4830 return -EIO; 4831 4832 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4833 dev_warn(dev, 4834 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4835 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4836 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4837 } 4838 4839 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4840 GFP_KERNEL); 4841 if (!pf->vsi) 4842 return -ENOMEM; 4843 4844 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4845 sizeof(*pf->vsi_stats), GFP_KERNEL); 4846 if (!pf->vsi_stats) { 4847 devm_kfree(dev, pf->vsi); 4848 return -ENOMEM; 4849 } 4850 4851 return 0; 4852 } 4853 4854 static void ice_dealloc_vsis(struct ice_pf *pf) 4855 { 4856 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4857 pf->vsi_stats = NULL; 4858 4859 pf->num_alloc_vsi = 0; 4860 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4861 pf->vsi = NULL; 4862 } 4863 4864 static int ice_init_devlink(struct ice_pf *pf) 4865 { 4866 int err; 4867 4868 err = ice_devlink_register_params(pf); 4869 if (err) 4870 return err; 4871 4872 ice_devlink_init_regions(pf); 4873 ice_devlink_register(pf); 4874 4875 return 0; 4876 } 4877 4878 static void ice_deinit_devlink(struct ice_pf *pf) 4879 { 4880 ice_devlink_unregister(pf); 4881 ice_devlink_destroy_regions(pf); 4882 ice_devlink_unregister_params(pf); 4883 } 4884 4885 static int ice_init(struct ice_pf *pf) 4886 { 4887 int err; 4888 4889 err = ice_init_dev(pf); 4890 if (err) 4891 return err; 4892 4893 err = ice_alloc_vsis(pf); 4894 if (err) 4895 goto err_alloc_vsis; 4896 4897 err = ice_init_pf_sw(pf); 4898 if (err) 4899 goto err_init_pf_sw; 4900 4901 ice_init_wakeup(pf); 4902 4903 err = ice_init_link(pf); 4904 if (err) 4905 goto err_init_link; 4906 4907 err = ice_send_version(pf); 4908 if (err) 4909 goto err_init_link; 4910 4911 ice_verify_cacheline_size(pf); 4912 4913 if (ice_is_safe_mode(pf)) 4914 ice_set_safe_mode_vlan_cfg(pf); 4915 else 4916 /* print PCI link speed and width */ 4917 pcie_print_link_status(pf->pdev); 4918 4919 /* ready to go, so clear down state bit */ 4920 clear_bit(ICE_DOWN, pf->state); 4921 clear_bit(ICE_SERVICE_DIS, pf->state); 4922 4923 /* since everything is good, start the service timer */ 4924 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4925 4926 return 0; 4927 4928 err_init_link: 4929 ice_deinit_pf_sw(pf); 4930 err_init_pf_sw: 4931 ice_dealloc_vsis(pf); 4932 err_alloc_vsis: 4933 ice_deinit_dev(pf); 4934 return err; 4935 } 4936 4937 static void ice_deinit(struct ice_pf *pf) 4938 { 4939 set_bit(ICE_SERVICE_DIS, pf->state); 4940 set_bit(ICE_DOWN, pf->state); 4941 4942 ice_deinit_pf_sw(pf); 4943 ice_dealloc_vsis(pf); 4944 ice_deinit_dev(pf); 4945 } 4946 4947 /** 4948 * ice_load - load pf by init hw and starting VSI 4949 * @pf: pointer to the pf instance 4950 */ 4951 int ice_load(struct ice_pf *pf) 4952 { 4953 struct ice_vsi_cfg_params params = {}; 4954 struct ice_vsi *vsi; 4955 int err; 4956 4957 err = ice_init_dev(pf); 4958 if (err) 4959 return err; 4960 4961 vsi = ice_get_main_vsi(pf); 4962 4963 params = ice_vsi_to_params(vsi); 4964 params.flags = ICE_VSI_FLAG_INIT; 4965 4966 rtnl_lock(); 4967 err = ice_vsi_cfg(vsi, ¶ms); 4968 if (err) 4969 goto err_vsi_cfg; 4970 4971 err = ice_start_eth(ice_get_main_vsi(pf)); 4972 if (err) 4973 goto err_start_eth; 4974 rtnl_unlock(); 4975 4976 err = ice_init_rdma(pf); 4977 if (err) 4978 goto err_init_rdma; 4979 4980 ice_init_features(pf); 4981 ice_service_task_restart(pf); 4982 4983 clear_bit(ICE_DOWN, pf->state); 4984 4985 return 0; 4986 4987 err_init_rdma: 4988 ice_vsi_close(ice_get_main_vsi(pf)); 4989 rtnl_lock(); 4990 err_start_eth: 4991 ice_vsi_decfg(ice_get_main_vsi(pf)); 4992 err_vsi_cfg: 4993 rtnl_unlock(); 4994 ice_deinit_dev(pf); 4995 return err; 4996 } 4997 4998 /** 4999 * ice_unload - unload pf by stopping VSI and deinit hw 5000 * @pf: pointer to the pf instance 5001 */ 5002 void ice_unload(struct ice_pf *pf) 5003 { 5004 ice_deinit_features(pf); 5005 ice_deinit_rdma(pf); 5006 rtnl_lock(); 5007 ice_stop_eth(ice_get_main_vsi(pf)); 5008 ice_vsi_decfg(ice_get_main_vsi(pf)); 5009 rtnl_unlock(); 5010 ice_deinit_dev(pf); 5011 } 5012 5013 /** 5014 * ice_probe - Device initialization routine 5015 * @pdev: PCI device information struct 5016 * @ent: entry in ice_pci_tbl 5017 * 5018 * Returns 0 on success, negative on failure 5019 */ 5020 static int 5021 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5022 { 5023 struct device *dev = &pdev->dev; 5024 struct ice_pf *pf; 5025 struct ice_hw *hw; 5026 int err; 5027 5028 if (pdev->is_virtfn) { 5029 dev_err(dev, "can't probe a virtual function\n"); 5030 return -EINVAL; 5031 } 5032 5033 /* when under a kdump kernel initiate a reset before enabling the 5034 * device in order to clear out any pending DMA transactions. These 5035 * transactions can cause some systems to machine check when doing 5036 * the pcim_enable_device() below. 5037 */ 5038 if (is_kdump_kernel()) { 5039 pci_save_state(pdev); 5040 pci_clear_master(pdev); 5041 err = pcie_flr(pdev); 5042 if (err) 5043 return err; 5044 pci_restore_state(pdev); 5045 } 5046 5047 /* this driver uses devres, see 5048 * Documentation/driver-api/driver-model/devres.rst 5049 */ 5050 err = pcim_enable_device(pdev); 5051 if (err) 5052 return err; 5053 5054 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5055 if (err) { 5056 dev_err(dev, "BAR0 I/O map error %d\n", err); 5057 return err; 5058 } 5059 5060 pf = ice_allocate_pf(dev); 5061 if (!pf) 5062 return -ENOMEM; 5063 5064 /* initialize Auxiliary index to invalid value */ 5065 pf->aux_idx = -1; 5066 5067 /* set up for high or low DMA */ 5068 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5069 if (err) { 5070 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5071 return err; 5072 } 5073 5074 pci_set_master(pdev); 5075 5076 pf->pdev = pdev; 5077 pci_set_drvdata(pdev, pf); 5078 set_bit(ICE_DOWN, pf->state); 5079 /* Disable service task until DOWN bit is cleared */ 5080 set_bit(ICE_SERVICE_DIS, pf->state); 5081 5082 hw = &pf->hw; 5083 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5084 pci_save_state(pdev); 5085 5086 hw->back = pf; 5087 hw->port_info = NULL; 5088 hw->vendor_id = pdev->vendor; 5089 hw->device_id = pdev->device; 5090 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5091 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5092 hw->subsystem_device_id = pdev->subsystem_device; 5093 hw->bus.device = PCI_SLOT(pdev->devfn); 5094 hw->bus.func = PCI_FUNC(pdev->devfn); 5095 ice_set_ctrlq_len(hw); 5096 5097 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5098 5099 #ifndef CONFIG_DYNAMIC_DEBUG 5100 if (debug < -1) 5101 hw->debug_mask = debug; 5102 #endif 5103 5104 err = ice_init(pf); 5105 if (err) 5106 goto err_init; 5107 5108 err = ice_init_eth(pf); 5109 if (err) 5110 goto err_init_eth; 5111 5112 err = ice_init_rdma(pf); 5113 if (err) 5114 goto err_init_rdma; 5115 5116 err = ice_init_devlink(pf); 5117 if (err) 5118 goto err_init_devlink; 5119 5120 ice_init_features(pf); 5121 5122 return 0; 5123 5124 err_init_devlink: 5125 ice_deinit_rdma(pf); 5126 err_init_rdma: 5127 ice_deinit_eth(pf); 5128 err_init_eth: 5129 ice_deinit(pf); 5130 err_init: 5131 pci_disable_device(pdev); 5132 return err; 5133 } 5134 5135 /** 5136 * ice_set_wake - enable or disable Wake on LAN 5137 * @pf: pointer to the PF struct 5138 * 5139 * Simple helper for WoL control 5140 */ 5141 static void ice_set_wake(struct ice_pf *pf) 5142 { 5143 struct ice_hw *hw = &pf->hw; 5144 bool wol = pf->wol_ena; 5145 5146 /* clear wake state, otherwise new wake events won't fire */ 5147 wr32(hw, PFPM_WUS, U32_MAX); 5148 5149 /* enable / disable APM wake up, no RMW needed */ 5150 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5151 5152 /* set magic packet filter enabled */ 5153 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5154 } 5155 5156 /** 5157 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5158 * @pf: pointer to the PF struct 5159 * 5160 * Issue firmware command to enable multicast magic wake, making 5161 * sure that any locally administered address (LAA) is used for 5162 * wake, and that PF reset doesn't undo the LAA. 5163 */ 5164 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5165 { 5166 struct device *dev = ice_pf_to_dev(pf); 5167 struct ice_hw *hw = &pf->hw; 5168 u8 mac_addr[ETH_ALEN]; 5169 struct ice_vsi *vsi; 5170 int status; 5171 u8 flags; 5172 5173 if (!pf->wol_ena) 5174 return; 5175 5176 vsi = ice_get_main_vsi(pf); 5177 if (!vsi) 5178 return; 5179 5180 /* Get current MAC address in case it's an LAA */ 5181 if (vsi->netdev) 5182 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5183 else 5184 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5185 5186 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5187 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5188 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5189 5190 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5191 if (status) 5192 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5193 status, ice_aq_str(hw->adminq.sq_last_status)); 5194 } 5195 5196 /** 5197 * ice_remove - Device removal routine 5198 * @pdev: PCI device information struct 5199 */ 5200 static void ice_remove(struct pci_dev *pdev) 5201 { 5202 struct ice_pf *pf = pci_get_drvdata(pdev); 5203 int i; 5204 5205 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5206 if (!ice_is_reset_in_progress(pf->state)) 5207 break; 5208 msleep(100); 5209 } 5210 5211 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5212 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5213 ice_free_vfs(pf); 5214 } 5215 5216 ice_service_task_stop(pf); 5217 ice_aq_cancel_waiting_tasks(pf); 5218 set_bit(ICE_DOWN, pf->state); 5219 5220 if (!ice_is_safe_mode(pf)) 5221 ice_remove_arfs(pf); 5222 ice_deinit_features(pf); 5223 ice_deinit_devlink(pf); 5224 ice_deinit_rdma(pf); 5225 ice_deinit_eth(pf); 5226 ice_deinit(pf); 5227 5228 ice_vsi_release_all(pf); 5229 5230 ice_setup_mc_magic_wake(pf); 5231 ice_set_wake(pf); 5232 5233 pci_disable_device(pdev); 5234 } 5235 5236 /** 5237 * ice_shutdown - PCI callback for shutting down device 5238 * @pdev: PCI device information struct 5239 */ 5240 static void ice_shutdown(struct pci_dev *pdev) 5241 { 5242 struct ice_pf *pf = pci_get_drvdata(pdev); 5243 5244 ice_remove(pdev); 5245 5246 if (system_state == SYSTEM_POWER_OFF) { 5247 pci_wake_from_d3(pdev, pf->wol_ena); 5248 pci_set_power_state(pdev, PCI_D3hot); 5249 } 5250 } 5251 5252 #ifdef CONFIG_PM 5253 /** 5254 * ice_prepare_for_shutdown - prep for PCI shutdown 5255 * @pf: board private structure 5256 * 5257 * Inform or close all dependent features in prep for PCI device shutdown 5258 */ 5259 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5260 { 5261 struct ice_hw *hw = &pf->hw; 5262 u32 v; 5263 5264 /* Notify VFs of impending reset */ 5265 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5266 ice_vc_notify_reset(pf); 5267 5268 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5269 5270 /* disable the VSIs and their queues that are not already DOWN */ 5271 ice_pf_dis_all_vsi(pf, false); 5272 5273 ice_for_each_vsi(pf, v) 5274 if (pf->vsi[v]) 5275 pf->vsi[v]->vsi_num = 0; 5276 5277 ice_shutdown_all_ctrlq(hw); 5278 } 5279 5280 /** 5281 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5282 * @pf: board private structure to reinitialize 5283 * 5284 * This routine reinitialize interrupt scheme that was cleared during 5285 * power management suspend callback. 5286 * 5287 * This should be called during resume routine to re-allocate the q_vectors 5288 * and reacquire interrupts. 5289 */ 5290 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5291 { 5292 struct device *dev = ice_pf_to_dev(pf); 5293 int ret, v; 5294 5295 /* Since we clear MSIX flag during suspend, we need to 5296 * set it back during resume... 5297 */ 5298 5299 ret = ice_init_interrupt_scheme(pf); 5300 if (ret) { 5301 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5302 return ret; 5303 } 5304 5305 /* Remap vectors and rings, after successful re-init interrupts */ 5306 ice_for_each_vsi(pf, v) { 5307 if (!pf->vsi[v]) 5308 continue; 5309 5310 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5311 if (ret) 5312 goto err_reinit; 5313 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5314 } 5315 5316 ret = ice_req_irq_msix_misc(pf); 5317 if (ret) { 5318 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5319 ret); 5320 goto err_reinit; 5321 } 5322 5323 return 0; 5324 5325 err_reinit: 5326 while (v--) 5327 if (pf->vsi[v]) 5328 ice_vsi_free_q_vectors(pf->vsi[v]); 5329 5330 return ret; 5331 } 5332 5333 /** 5334 * ice_suspend 5335 * @dev: generic device information structure 5336 * 5337 * Power Management callback to quiesce the device and prepare 5338 * for D3 transition. 5339 */ 5340 static int __maybe_unused ice_suspend(struct device *dev) 5341 { 5342 struct pci_dev *pdev = to_pci_dev(dev); 5343 struct ice_pf *pf; 5344 int disabled, v; 5345 5346 pf = pci_get_drvdata(pdev); 5347 5348 if (!ice_pf_state_is_nominal(pf)) { 5349 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5350 return -EBUSY; 5351 } 5352 5353 /* Stop watchdog tasks until resume completion. 5354 * Even though it is most likely that the service task is 5355 * disabled if the device is suspended or down, the service task's 5356 * state is controlled by a different state bit, and we should 5357 * store and honor whatever state that bit is in at this point. 5358 */ 5359 disabled = ice_service_task_stop(pf); 5360 5361 ice_deinit_rdma(pf); 5362 5363 /* Already suspended?, then there is nothing to do */ 5364 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5365 if (!disabled) 5366 ice_service_task_restart(pf); 5367 return 0; 5368 } 5369 5370 if (test_bit(ICE_DOWN, pf->state) || 5371 ice_is_reset_in_progress(pf->state)) { 5372 dev_err(dev, "can't suspend device in reset or already down\n"); 5373 if (!disabled) 5374 ice_service_task_restart(pf); 5375 return 0; 5376 } 5377 5378 ice_setup_mc_magic_wake(pf); 5379 5380 ice_prepare_for_shutdown(pf); 5381 5382 ice_set_wake(pf); 5383 5384 /* Free vectors, clear the interrupt scheme and release IRQs 5385 * for proper hibernation, especially with large number of CPUs. 5386 * Otherwise hibernation might fail when mapping all the vectors back 5387 * to CPU0. 5388 */ 5389 ice_free_irq_msix_misc(pf); 5390 ice_for_each_vsi(pf, v) { 5391 if (!pf->vsi[v]) 5392 continue; 5393 ice_vsi_free_q_vectors(pf->vsi[v]); 5394 } 5395 ice_clear_interrupt_scheme(pf); 5396 5397 pci_save_state(pdev); 5398 pci_wake_from_d3(pdev, pf->wol_ena); 5399 pci_set_power_state(pdev, PCI_D3hot); 5400 return 0; 5401 } 5402 5403 /** 5404 * ice_resume - PM callback for waking up from D3 5405 * @dev: generic device information structure 5406 */ 5407 static int __maybe_unused ice_resume(struct device *dev) 5408 { 5409 struct pci_dev *pdev = to_pci_dev(dev); 5410 enum ice_reset_req reset_type; 5411 struct ice_pf *pf; 5412 struct ice_hw *hw; 5413 int ret; 5414 5415 pci_set_power_state(pdev, PCI_D0); 5416 pci_restore_state(pdev); 5417 pci_save_state(pdev); 5418 5419 if (!pci_device_is_present(pdev)) 5420 return -ENODEV; 5421 5422 ret = pci_enable_device_mem(pdev); 5423 if (ret) { 5424 dev_err(dev, "Cannot enable device after suspend\n"); 5425 return ret; 5426 } 5427 5428 pf = pci_get_drvdata(pdev); 5429 hw = &pf->hw; 5430 5431 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5432 ice_print_wake_reason(pf); 5433 5434 /* We cleared the interrupt scheme when we suspended, so we need to 5435 * restore it now to resume device functionality. 5436 */ 5437 ret = ice_reinit_interrupt_scheme(pf); 5438 if (ret) 5439 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5440 5441 ret = ice_init_rdma(pf); 5442 if (ret) 5443 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5444 ret); 5445 5446 clear_bit(ICE_DOWN, pf->state); 5447 /* Now perform PF reset and rebuild */ 5448 reset_type = ICE_RESET_PFR; 5449 /* re-enable service task for reset, but allow reset to schedule it */ 5450 clear_bit(ICE_SERVICE_DIS, pf->state); 5451 5452 if (ice_schedule_reset(pf, reset_type)) 5453 dev_err(dev, "Reset during resume failed.\n"); 5454 5455 clear_bit(ICE_SUSPENDED, pf->state); 5456 ice_service_task_restart(pf); 5457 5458 /* Restart the service task */ 5459 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5460 5461 return 0; 5462 } 5463 #endif /* CONFIG_PM */ 5464 5465 /** 5466 * ice_pci_err_detected - warning that PCI error has been detected 5467 * @pdev: PCI device information struct 5468 * @err: the type of PCI error 5469 * 5470 * Called to warn that something happened on the PCI bus and the error handling 5471 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5472 */ 5473 static pci_ers_result_t 5474 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5475 { 5476 struct ice_pf *pf = pci_get_drvdata(pdev); 5477 5478 if (!pf) { 5479 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5480 __func__, err); 5481 return PCI_ERS_RESULT_DISCONNECT; 5482 } 5483 5484 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5485 ice_service_task_stop(pf); 5486 5487 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5488 set_bit(ICE_PFR_REQ, pf->state); 5489 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5490 } 5491 } 5492 5493 return PCI_ERS_RESULT_NEED_RESET; 5494 } 5495 5496 /** 5497 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5498 * @pdev: PCI device information struct 5499 * 5500 * Called to determine if the driver can recover from the PCI slot reset by 5501 * using a register read to determine if the device is recoverable. 5502 */ 5503 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5504 { 5505 struct ice_pf *pf = pci_get_drvdata(pdev); 5506 pci_ers_result_t result; 5507 int err; 5508 u32 reg; 5509 5510 err = pci_enable_device_mem(pdev); 5511 if (err) { 5512 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5513 err); 5514 result = PCI_ERS_RESULT_DISCONNECT; 5515 } else { 5516 pci_set_master(pdev); 5517 pci_restore_state(pdev); 5518 pci_save_state(pdev); 5519 pci_wake_from_d3(pdev, false); 5520 5521 /* Check for life */ 5522 reg = rd32(&pf->hw, GLGEN_RTRIG); 5523 if (!reg) 5524 result = PCI_ERS_RESULT_RECOVERED; 5525 else 5526 result = PCI_ERS_RESULT_DISCONNECT; 5527 } 5528 5529 return result; 5530 } 5531 5532 /** 5533 * ice_pci_err_resume - restart operations after PCI error recovery 5534 * @pdev: PCI device information struct 5535 * 5536 * Called to allow the driver to bring things back up after PCI error and/or 5537 * reset recovery have finished 5538 */ 5539 static void ice_pci_err_resume(struct pci_dev *pdev) 5540 { 5541 struct ice_pf *pf = pci_get_drvdata(pdev); 5542 5543 if (!pf) { 5544 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5545 __func__); 5546 return; 5547 } 5548 5549 if (test_bit(ICE_SUSPENDED, pf->state)) { 5550 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5551 __func__); 5552 return; 5553 } 5554 5555 ice_restore_all_vfs_msi_state(pdev); 5556 5557 ice_do_reset(pf, ICE_RESET_PFR); 5558 ice_service_task_restart(pf); 5559 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5560 } 5561 5562 /** 5563 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5564 * @pdev: PCI device information struct 5565 */ 5566 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5567 { 5568 struct ice_pf *pf = pci_get_drvdata(pdev); 5569 5570 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5571 ice_service_task_stop(pf); 5572 5573 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5574 set_bit(ICE_PFR_REQ, pf->state); 5575 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5576 } 5577 } 5578 } 5579 5580 /** 5581 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5582 * @pdev: PCI device information struct 5583 */ 5584 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5585 { 5586 ice_pci_err_resume(pdev); 5587 } 5588 5589 /* ice_pci_tbl - PCI Device ID Table 5590 * 5591 * Wildcard entries (PCI_ANY_ID) should come last 5592 * Last entry must be all 0s 5593 * 5594 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5595 * Class, Class Mask, private data (not used) } 5596 */ 5597 static const struct pci_device_id ice_pci_tbl[] = { 5598 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5599 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5600 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5601 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5602 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5603 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5604 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5607 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5608 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5609 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5610 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5611 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5612 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5616 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5617 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5618 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5619 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5620 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5621 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5624 /* required last entry */ 5625 { 0, } 5626 }; 5627 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5628 5629 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5630 5631 static const struct pci_error_handlers ice_pci_err_handler = { 5632 .error_detected = ice_pci_err_detected, 5633 .slot_reset = ice_pci_err_slot_reset, 5634 .reset_prepare = ice_pci_err_reset_prepare, 5635 .reset_done = ice_pci_err_reset_done, 5636 .resume = ice_pci_err_resume 5637 }; 5638 5639 static struct pci_driver ice_driver = { 5640 .name = KBUILD_MODNAME, 5641 .id_table = ice_pci_tbl, 5642 .probe = ice_probe, 5643 .remove = ice_remove, 5644 #ifdef CONFIG_PM 5645 .driver.pm = &ice_pm_ops, 5646 #endif /* CONFIG_PM */ 5647 .shutdown = ice_shutdown, 5648 .sriov_configure = ice_sriov_configure, 5649 .err_handler = &ice_pci_err_handler 5650 }; 5651 5652 /** 5653 * ice_module_init - Driver registration routine 5654 * 5655 * ice_module_init is the first routine called when the driver is 5656 * loaded. All it does is register with the PCI subsystem. 5657 */ 5658 static int __init ice_module_init(void) 5659 { 5660 int status = -ENOMEM; 5661 5662 pr_info("%s\n", ice_driver_string); 5663 pr_info("%s\n", ice_copyright); 5664 5665 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5666 if (!ice_wq) { 5667 pr_err("Failed to create workqueue\n"); 5668 return status; 5669 } 5670 5671 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5672 if (!ice_lag_wq) { 5673 pr_err("Failed to create LAG workqueue\n"); 5674 goto err_dest_wq; 5675 } 5676 5677 status = pci_register_driver(&ice_driver); 5678 if (status) { 5679 pr_err("failed to register PCI driver, err %d\n", status); 5680 goto err_dest_lag_wq; 5681 } 5682 5683 return 0; 5684 5685 err_dest_lag_wq: 5686 destroy_workqueue(ice_lag_wq); 5687 err_dest_wq: 5688 destroy_workqueue(ice_wq); 5689 return status; 5690 } 5691 module_init(ice_module_init); 5692 5693 /** 5694 * ice_module_exit - Driver exit cleanup routine 5695 * 5696 * ice_module_exit is called just before the driver is removed 5697 * from memory. 5698 */ 5699 static void __exit ice_module_exit(void) 5700 { 5701 pci_unregister_driver(&ice_driver); 5702 destroy_workqueue(ice_wq); 5703 destroy_workqueue(ice_lag_wq); 5704 pr_info("module unloaded\n"); 5705 } 5706 module_exit(ice_module_exit); 5707 5708 /** 5709 * ice_set_mac_address - NDO callback to set MAC address 5710 * @netdev: network interface device structure 5711 * @pi: pointer to an address structure 5712 * 5713 * Returns 0 on success, negative on failure 5714 */ 5715 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5716 { 5717 struct ice_netdev_priv *np = netdev_priv(netdev); 5718 struct ice_vsi *vsi = np->vsi; 5719 struct ice_pf *pf = vsi->back; 5720 struct ice_hw *hw = &pf->hw; 5721 struct sockaddr *addr = pi; 5722 u8 old_mac[ETH_ALEN]; 5723 u8 flags = 0; 5724 u8 *mac; 5725 int err; 5726 5727 mac = (u8 *)addr->sa_data; 5728 5729 if (!is_valid_ether_addr(mac)) 5730 return -EADDRNOTAVAIL; 5731 5732 if (test_bit(ICE_DOWN, pf->state) || 5733 ice_is_reset_in_progress(pf->state)) { 5734 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5735 mac); 5736 return -EBUSY; 5737 } 5738 5739 if (ice_chnl_dmac_fltr_cnt(pf)) { 5740 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5741 mac); 5742 return -EAGAIN; 5743 } 5744 5745 netif_addr_lock_bh(netdev); 5746 ether_addr_copy(old_mac, netdev->dev_addr); 5747 /* change the netdev's MAC address */ 5748 eth_hw_addr_set(netdev, mac); 5749 netif_addr_unlock_bh(netdev); 5750 5751 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5752 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5753 if (err && err != -ENOENT) { 5754 err = -EADDRNOTAVAIL; 5755 goto err_update_filters; 5756 } 5757 5758 /* Add filter for new MAC. If filter exists, return success */ 5759 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5760 if (err == -EEXIST) { 5761 /* Although this MAC filter is already present in hardware it's 5762 * possible in some cases (e.g. bonding) that dev_addr was 5763 * modified outside of the driver and needs to be restored back 5764 * to this value. 5765 */ 5766 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5767 5768 return 0; 5769 } else if (err) { 5770 /* error if the new filter addition failed */ 5771 err = -EADDRNOTAVAIL; 5772 } 5773 5774 err_update_filters: 5775 if (err) { 5776 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5777 mac); 5778 netif_addr_lock_bh(netdev); 5779 eth_hw_addr_set(netdev, old_mac); 5780 netif_addr_unlock_bh(netdev); 5781 return err; 5782 } 5783 5784 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5785 netdev->dev_addr); 5786 5787 /* write new MAC address to the firmware */ 5788 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5789 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5790 if (err) { 5791 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5792 mac, err); 5793 } 5794 return 0; 5795 } 5796 5797 /** 5798 * ice_set_rx_mode - NDO callback to set the netdev filters 5799 * @netdev: network interface device structure 5800 */ 5801 static void ice_set_rx_mode(struct net_device *netdev) 5802 { 5803 struct ice_netdev_priv *np = netdev_priv(netdev); 5804 struct ice_vsi *vsi = np->vsi; 5805 5806 if (!vsi || ice_is_switchdev_running(vsi->back)) 5807 return; 5808 5809 /* Set the flags to synchronize filters 5810 * ndo_set_rx_mode may be triggered even without a change in netdev 5811 * flags 5812 */ 5813 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5814 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5815 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5816 5817 /* schedule our worker thread which will take care of 5818 * applying the new filter changes 5819 */ 5820 ice_service_task_schedule(vsi->back); 5821 } 5822 5823 /** 5824 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5825 * @netdev: network interface device structure 5826 * @queue_index: Queue ID 5827 * @maxrate: maximum bandwidth in Mbps 5828 */ 5829 static int 5830 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5831 { 5832 struct ice_netdev_priv *np = netdev_priv(netdev); 5833 struct ice_vsi *vsi = np->vsi; 5834 u16 q_handle; 5835 int status; 5836 u8 tc; 5837 5838 /* Validate maxrate requested is within permitted range */ 5839 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5840 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5841 maxrate, queue_index); 5842 return -EINVAL; 5843 } 5844 5845 q_handle = vsi->tx_rings[queue_index]->q_handle; 5846 tc = ice_dcb_get_tc(vsi, queue_index); 5847 5848 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5849 if (!vsi) { 5850 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5851 queue_index); 5852 return -EINVAL; 5853 } 5854 5855 /* Set BW back to default, when user set maxrate to 0 */ 5856 if (!maxrate) 5857 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5858 q_handle, ICE_MAX_BW); 5859 else 5860 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5861 q_handle, ICE_MAX_BW, maxrate * 1000); 5862 if (status) 5863 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5864 status); 5865 5866 return status; 5867 } 5868 5869 /** 5870 * ice_fdb_add - add an entry to the hardware database 5871 * @ndm: the input from the stack 5872 * @tb: pointer to array of nladdr (unused) 5873 * @dev: the net device pointer 5874 * @addr: the MAC address entry being added 5875 * @vid: VLAN ID 5876 * @flags: instructions from stack about fdb operation 5877 * @extack: netlink extended ack 5878 */ 5879 static int 5880 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5881 struct net_device *dev, const unsigned char *addr, u16 vid, 5882 u16 flags, struct netlink_ext_ack __always_unused *extack) 5883 { 5884 int err; 5885 5886 if (vid) { 5887 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5888 return -EINVAL; 5889 } 5890 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5891 netdev_err(dev, "FDB only supports static addresses\n"); 5892 return -EINVAL; 5893 } 5894 5895 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5896 err = dev_uc_add_excl(dev, addr); 5897 else if (is_multicast_ether_addr(addr)) 5898 err = dev_mc_add_excl(dev, addr); 5899 else 5900 err = -EINVAL; 5901 5902 /* Only return duplicate errors if NLM_F_EXCL is set */ 5903 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5904 err = 0; 5905 5906 return err; 5907 } 5908 5909 /** 5910 * ice_fdb_del - delete an entry from the hardware database 5911 * @ndm: the input from the stack 5912 * @tb: pointer to array of nladdr (unused) 5913 * @dev: the net device pointer 5914 * @addr: the MAC address entry being added 5915 * @vid: VLAN ID 5916 * @extack: netlink extended ack 5917 */ 5918 static int 5919 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5920 struct net_device *dev, const unsigned char *addr, 5921 __always_unused u16 vid, struct netlink_ext_ack *extack) 5922 { 5923 int err; 5924 5925 if (ndm->ndm_state & NUD_PERMANENT) { 5926 netdev_err(dev, "FDB only supports static addresses\n"); 5927 return -EINVAL; 5928 } 5929 5930 if (is_unicast_ether_addr(addr)) 5931 err = dev_uc_del(dev, addr); 5932 else if (is_multicast_ether_addr(addr)) 5933 err = dev_mc_del(dev, addr); 5934 else 5935 err = -EINVAL; 5936 5937 return err; 5938 } 5939 5940 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5941 NETIF_F_HW_VLAN_CTAG_TX | \ 5942 NETIF_F_HW_VLAN_STAG_RX | \ 5943 NETIF_F_HW_VLAN_STAG_TX) 5944 5945 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5946 NETIF_F_HW_VLAN_STAG_RX) 5947 5948 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5949 NETIF_F_HW_VLAN_STAG_FILTER) 5950 5951 /** 5952 * ice_fix_features - fix the netdev features flags based on device limitations 5953 * @netdev: ptr to the netdev that flags are being fixed on 5954 * @features: features that need to be checked and possibly fixed 5955 * 5956 * Make sure any fixups are made to features in this callback. This enables the 5957 * driver to not have to check unsupported configurations throughout the driver 5958 * because that's the responsiblity of this callback. 5959 * 5960 * Single VLAN Mode (SVM) Supported Features: 5961 * NETIF_F_HW_VLAN_CTAG_FILTER 5962 * NETIF_F_HW_VLAN_CTAG_RX 5963 * NETIF_F_HW_VLAN_CTAG_TX 5964 * 5965 * Double VLAN Mode (DVM) Supported Features: 5966 * NETIF_F_HW_VLAN_CTAG_FILTER 5967 * NETIF_F_HW_VLAN_CTAG_RX 5968 * NETIF_F_HW_VLAN_CTAG_TX 5969 * 5970 * NETIF_F_HW_VLAN_STAG_FILTER 5971 * NETIF_HW_VLAN_STAG_RX 5972 * NETIF_HW_VLAN_STAG_TX 5973 * 5974 * Features that need fixing: 5975 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5976 * These are mutually exlusive as the VSI context cannot support multiple 5977 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5978 * is not done, then default to clearing the requested STAG offload 5979 * settings. 5980 * 5981 * All supported filtering has to be enabled or disabled together. For 5982 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5983 * together. If this is not done, then default to VLAN filtering disabled. 5984 * These are mutually exclusive as there is currently no way to 5985 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5986 * prune rules. 5987 */ 5988 static netdev_features_t 5989 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5990 { 5991 struct ice_netdev_priv *np = netdev_priv(netdev); 5992 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5993 bool cur_ctag, cur_stag, req_ctag, req_stag; 5994 5995 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5996 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5997 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5998 5999 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6000 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6001 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6002 6003 if (req_vlan_fltr != cur_vlan_fltr) { 6004 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6005 if (req_ctag && req_stag) { 6006 features |= NETIF_VLAN_FILTERING_FEATURES; 6007 } else if (!req_ctag && !req_stag) { 6008 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6009 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6010 (!cur_stag && req_stag && !cur_ctag)) { 6011 features |= NETIF_VLAN_FILTERING_FEATURES; 6012 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6013 } else if ((cur_ctag && !req_ctag && cur_stag) || 6014 (cur_stag && !req_stag && cur_ctag)) { 6015 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6016 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6017 } 6018 } else { 6019 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6020 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6021 6022 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6023 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6024 } 6025 } 6026 6027 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6028 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6029 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6030 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6031 NETIF_F_HW_VLAN_STAG_TX); 6032 } 6033 6034 if (!(netdev->features & NETIF_F_RXFCS) && 6035 (features & NETIF_F_RXFCS) && 6036 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6037 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6038 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6039 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6040 } 6041 6042 return features; 6043 } 6044 6045 /** 6046 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6047 * @vsi: PF's VSI 6048 * @features: features used to determine VLAN offload settings 6049 * 6050 * First, determine the vlan_ethertype based on the VLAN offload bits in 6051 * features. Then determine if stripping and insertion should be enabled or 6052 * disabled. Finally enable or disable VLAN stripping and insertion. 6053 */ 6054 static int 6055 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6056 { 6057 bool enable_stripping = true, enable_insertion = true; 6058 struct ice_vsi_vlan_ops *vlan_ops; 6059 int strip_err = 0, insert_err = 0; 6060 u16 vlan_ethertype = 0; 6061 6062 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6063 6064 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6065 vlan_ethertype = ETH_P_8021AD; 6066 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6067 vlan_ethertype = ETH_P_8021Q; 6068 6069 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6070 enable_stripping = false; 6071 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6072 enable_insertion = false; 6073 6074 if (enable_stripping) 6075 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6076 else 6077 strip_err = vlan_ops->dis_stripping(vsi); 6078 6079 if (enable_insertion) 6080 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6081 else 6082 insert_err = vlan_ops->dis_insertion(vsi); 6083 6084 if (strip_err || insert_err) 6085 return -EIO; 6086 6087 return 0; 6088 } 6089 6090 /** 6091 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6092 * @vsi: PF's VSI 6093 * @features: features used to determine VLAN filtering settings 6094 * 6095 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6096 * features. 6097 */ 6098 static int 6099 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6100 { 6101 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6102 int err = 0; 6103 6104 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6105 * if either bit is set 6106 */ 6107 if (features & 6108 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6109 err = vlan_ops->ena_rx_filtering(vsi); 6110 else 6111 err = vlan_ops->dis_rx_filtering(vsi); 6112 6113 return err; 6114 } 6115 6116 /** 6117 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6118 * @netdev: ptr to the netdev being adjusted 6119 * @features: the feature set that the stack is suggesting 6120 * 6121 * Only update VLAN settings if the requested_vlan_features are different than 6122 * the current_vlan_features. 6123 */ 6124 static int 6125 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6126 { 6127 netdev_features_t current_vlan_features, requested_vlan_features; 6128 struct ice_netdev_priv *np = netdev_priv(netdev); 6129 struct ice_vsi *vsi = np->vsi; 6130 int err; 6131 6132 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6133 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6134 if (current_vlan_features ^ requested_vlan_features) { 6135 if ((features & NETIF_F_RXFCS) && 6136 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6137 dev_err(ice_pf_to_dev(vsi->back), 6138 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6139 return -EIO; 6140 } 6141 6142 err = ice_set_vlan_offload_features(vsi, features); 6143 if (err) 6144 return err; 6145 } 6146 6147 current_vlan_features = netdev->features & 6148 NETIF_VLAN_FILTERING_FEATURES; 6149 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6150 if (current_vlan_features ^ requested_vlan_features) { 6151 err = ice_set_vlan_filtering_features(vsi, features); 6152 if (err) 6153 return err; 6154 } 6155 6156 return 0; 6157 } 6158 6159 /** 6160 * ice_set_loopback - turn on/off loopback mode on underlying PF 6161 * @vsi: ptr to VSI 6162 * @ena: flag to indicate the on/off setting 6163 */ 6164 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6165 { 6166 bool if_running = netif_running(vsi->netdev); 6167 int ret; 6168 6169 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6170 ret = ice_down(vsi); 6171 if (ret) { 6172 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6173 return ret; 6174 } 6175 } 6176 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6177 if (ret) 6178 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6179 if (if_running) 6180 ret = ice_up(vsi); 6181 6182 return ret; 6183 } 6184 6185 /** 6186 * ice_set_features - set the netdev feature flags 6187 * @netdev: ptr to the netdev being adjusted 6188 * @features: the feature set that the stack is suggesting 6189 */ 6190 static int 6191 ice_set_features(struct net_device *netdev, netdev_features_t features) 6192 { 6193 netdev_features_t changed = netdev->features ^ features; 6194 struct ice_netdev_priv *np = netdev_priv(netdev); 6195 struct ice_vsi *vsi = np->vsi; 6196 struct ice_pf *pf = vsi->back; 6197 int ret = 0; 6198 6199 /* Don't set any netdev advanced features with device in Safe Mode */ 6200 if (ice_is_safe_mode(pf)) { 6201 dev_err(ice_pf_to_dev(pf), 6202 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6203 return ret; 6204 } 6205 6206 /* Do not change setting during reset */ 6207 if (ice_is_reset_in_progress(pf->state)) { 6208 dev_err(ice_pf_to_dev(pf), 6209 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6210 return -EBUSY; 6211 } 6212 6213 /* Multiple features can be changed in one call so keep features in 6214 * separate if/else statements to guarantee each feature is checked 6215 */ 6216 if (changed & NETIF_F_RXHASH) 6217 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6218 6219 ret = ice_set_vlan_features(netdev, features); 6220 if (ret) 6221 return ret; 6222 6223 /* Turn on receive of FCS aka CRC, and after setting this 6224 * flag the packet data will have the 4 byte CRC appended 6225 */ 6226 if (changed & NETIF_F_RXFCS) { 6227 if ((features & NETIF_F_RXFCS) && 6228 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6229 dev_err(ice_pf_to_dev(vsi->back), 6230 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6231 return -EIO; 6232 } 6233 6234 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6235 ret = ice_down_up(vsi); 6236 if (ret) 6237 return ret; 6238 } 6239 6240 if (changed & NETIF_F_NTUPLE) { 6241 bool ena = !!(features & NETIF_F_NTUPLE); 6242 6243 ice_vsi_manage_fdir(vsi, ena); 6244 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6245 } 6246 6247 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6248 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6249 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6250 return -EACCES; 6251 } 6252 6253 if (changed & NETIF_F_HW_TC) { 6254 bool ena = !!(features & NETIF_F_HW_TC); 6255 6256 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6257 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6258 } 6259 6260 if (changed & NETIF_F_LOOPBACK) 6261 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6262 6263 return ret; 6264 } 6265 6266 /** 6267 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6268 * @vsi: VSI to setup VLAN properties for 6269 */ 6270 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6271 { 6272 int err; 6273 6274 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6275 if (err) 6276 return err; 6277 6278 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6279 if (err) 6280 return err; 6281 6282 return ice_vsi_add_vlan_zero(vsi); 6283 } 6284 6285 /** 6286 * ice_vsi_cfg_lan - Setup the VSI lan related config 6287 * @vsi: the VSI being configured 6288 * 6289 * Return 0 on success and negative value on error 6290 */ 6291 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6292 { 6293 int err; 6294 6295 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6296 ice_set_rx_mode(vsi->netdev); 6297 6298 err = ice_vsi_vlan_setup(vsi); 6299 if (err) 6300 return err; 6301 } 6302 ice_vsi_cfg_dcb_rings(vsi); 6303 6304 err = ice_vsi_cfg_lan_txqs(vsi); 6305 if (!err && ice_is_xdp_ena_vsi(vsi)) 6306 err = ice_vsi_cfg_xdp_txqs(vsi); 6307 if (!err) 6308 err = ice_vsi_cfg_rxqs(vsi); 6309 6310 return err; 6311 } 6312 6313 /* THEORY OF MODERATION: 6314 * The ice driver hardware works differently than the hardware that DIMLIB was 6315 * originally made for. ice hardware doesn't have packet count limits that 6316 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6317 * which is hard-coded to a limit of 250,000 ints/second. 6318 * If not using dynamic moderation, the INTRL value can be modified 6319 * by ethtool rx-usecs-high. 6320 */ 6321 struct ice_dim { 6322 /* the throttle rate for interrupts, basically worst case delay before 6323 * an initial interrupt fires, value is stored in microseconds. 6324 */ 6325 u16 itr; 6326 }; 6327 6328 /* Make a different profile for Rx that doesn't allow quite so aggressive 6329 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6330 * second. 6331 */ 6332 static const struct ice_dim rx_profile[] = { 6333 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6334 {8}, /* 125,000 ints/s */ 6335 {16}, /* 62,500 ints/s */ 6336 {62}, /* 16,129 ints/s */ 6337 {126} /* 7,936 ints/s */ 6338 }; 6339 6340 /* The transmit profile, which has the same sorts of values 6341 * as the previous struct 6342 */ 6343 static const struct ice_dim tx_profile[] = { 6344 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6345 {8}, /* 125,000 ints/s */ 6346 {40}, /* 16,125 ints/s */ 6347 {128}, /* 7,812 ints/s */ 6348 {256} /* 3,906 ints/s */ 6349 }; 6350 6351 static void ice_tx_dim_work(struct work_struct *work) 6352 { 6353 struct ice_ring_container *rc; 6354 struct dim *dim; 6355 u16 itr; 6356 6357 dim = container_of(work, struct dim, work); 6358 rc = dim->priv; 6359 6360 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6361 6362 /* look up the values in our local table */ 6363 itr = tx_profile[dim->profile_ix].itr; 6364 6365 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6366 ice_write_itr(rc, itr); 6367 6368 dim->state = DIM_START_MEASURE; 6369 } 6370 6371 static void ice_rx_dim_work(struct work_struct *work) 6372 { 6373 struct ice_ring_container *rc; 6374 struct dim *dim; 6375 u16 itr; 6376 6377 dim = container_of(work, struct dim, work); 6378 rc = dim->priv; 6379 6380 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6381 6382 /* look up the values in our local table */ 6383 itr = rx_profile[dim->profile_ix].itr; 6384 6385 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6386 ice_write_itr(rc, itr); 6387 6388 dim->state = DIM_START_MEASURE; 6389 } 6390 6391 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6392 6393 /** 6394 * ice_init_moderation - set up interrupt moderation 6395 * @q_vector: the vector containing rings to be configured 6396 * 6397 * Set up interrupt moderation registers, with the intent to do the right thing 6398 * when called from reset or from probe, and whether or not dynamic moderation 6399 * is enabled or not. Take special care to write all the registers in both 6400 * dynamic moderation mode or not in order to make sure hardware is in a known 6401 * state. 6402 */ 6403 static void ice_init_moderation(struct ice_q_vector *q_vector) 6404 { 6405 struct ice_ring_container *rc; 6406 bool tx_dynamic, rx_dynamic; 6407 6408 rc = &q_vector->tx; 6409 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6410 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6411 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6412 rc->dim.priv = rc; 6413 tx_dynamic = ITR_IS_DYNAMIC(rc); 6414 6415 /* set the initial TX ITR to match the above */ 6416 ice_write_itr(rc, tx_dynamic ? 6417 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6418 6419 rc = &q_vector->rx; 6420 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6421 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6422 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6423 rc->dim.priv = rc; 6424 rx_dynamic = ITR_IS_DYNAMIC(rc); 6425 6426 /* set the initial RX ITR to match the above */ 6427 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6428 rc->itr_setting); 6429 6430 ice_set_q_vector_intrl(q_vector); 6431 } 6432 6433 /** 6434 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6435 * @vsi: the VSI being configured 6436 */ 6437 static void ice_napi_enable_all(struct ice_vsi *vsi) 6438 { 6439 int q_idx; 6440 6441 if (!vsi->netdev) 6442 return; 6443 6444 ice_for_each_q_vector(vsi, q_idx) { 6445 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6446 6447 ice_init_moderation(q_vector); 6448 6449 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6450 napi_enable(&q_vector->napi); 6451 } 6452 } 6453 6454 /** 6455 * ice_up_complete - Finish the last steps of bringing up a connection 6456 * @vsi: The VSI being configured 6457 * 6458 * Return 0 on success and negative value on error 6459 */ 6460 static int ice_up_complete(struct ice_vsi *vsi) 6461 { 6462 struct ice_pf *pf = vsi->back; 6463 int err; 6464 6465 ice_vsi_cfg_msix(vsi); 6466 6467 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6468 * Tx queue group list was configured and the context bits were 6469 * programmed using ice_vsi_cfg_txqs 6470 */ 6471 err = ice_vsi_start_all_rx_rings(vsi); 6472 if (err) 6473 return err; 6474 6475 clear_bit(ICE_VSI_DOWN, vsi->state); 6476 ice_napi_enable_all(vsi); 6477 ice_vsi_ena_irq(vsi); 6478 6479 if (vsi->port_info && 6480 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6481 vsi->netdev && vsi->type == ICE_VSI_PF) { 6482 ice_print_link_msg(vsi, true); 6483 netif_tx_start_all_queues(vsi->netdev); 6484 netif_carrier_on(vsi->netdev); 6485 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6486 } 6487 6488 /* Perform an initial read of the statistics registers now to 6489 * set the baseline so counters are ready when interface is up 6490 */ 6491 ice_update_eth_stats(vsi); 6492 6493 if (vsi->type == ICE_VSI_PF) 6494 ice_service_task_schedule(pf); 6495 6496 return 0; 6497 } 6498 6499 /** 6500 * ice_up - Bring the connection back up after being down 6501 * @vsi: VSI being configured 6502 */ 6503 int ice_up(struct ice_vsi *vsi) 6504 { 6505 int err; 6506 6507 err = ice_vsi_cfg_lan(vsi); 6508 if (!err) 6509 err = ice_up_complete(vsi); 6510 6511 return err; 6512 } 6513 6514 /** 6515 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6516 * @syncp: pointer to u64_stats_sync 6517 * @stats: stats that pkts and bytes count will be taken from 6518 * @pkts: packets stats counter 6519 * @bytes: bytes stats counter 6520 * 6521 * This function fetches stats from the ring considering the atomic operations 6522 * that needs to be performed to read u64 values in 32 bit machine. 6523 */ 6524 void 6525 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6526 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6527 { 6528 unsigned int start; 6529 6530 do { 6531 start = u64_stats_fetch_begin(syncp); 6532 *pkts = stats.pkts; 6533 *bytes = stats.bytes; 6534 } while (u64_stats_fetch_retry(syncp, start)); 6535 } 6536 6537 /** 6538 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6539 * @vsi: the VSI to be updated 6540 * @vsi_stats: the stats struct to be updated 6541 * @rings: rings to work on 6542 * @count: number of rings 6543 */ 6544 static void 6545 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6546 struct rtnl_link_stats64 *vsi_stats, 6547 struct ice_tx_ring **rings, u16 count) 6548 { 6549 u16 i; 6550 6551 for (i = 0; i < count; i++) { 6552 struct ice_tx_ring *ring; 6553 u64 pkts = 0, bytes = 0; 6554 6555 ring = READ_ONCE(rings[i]); 6556 if (!ring || !ring->ring_stats) 6557 continue; 6558 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6559 ring->ring_stats->stats, &pkts, 6560 &bytes); 6561 vsi_stats->tx_packets += pkts; 6562 vsi_stats->tx_bytes += bytes; 6563 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6564 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6565 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6566 } 6567 } 6568 6569 /** 6570 * ice_update_vsi_ring_stats - Update VSI stats counters 6571 * @vsi: the VSI to be updated 6572 */ 6573 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6574 { 6575 struct rtnl_link_stats64 *net_stats, *stats_prev; 6576 struct rtnl_link_stats64 *vsi_stats; 6577 struct ice_pf *pf = vsi->back; 6578 u64 pkts, bytes; 6579 int i; 6580 6581 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6582 if (!vsi_stats) 6583 return; 6584 6585 /* reset non-netdev (extended) stats */ 6586 vsi->tx_restart = 0; 6587 vsi->tx_busy = 0; 6588 vsi->tx_linearize = 0; 6589 vsi->rx_buf_failed = 0; 6590 vsi->rx_page_failed = 0; 6591 6592 rcu_read_lock(); 6593 6594 /* update Tx rings counters */ 6595 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6596 vsi->num_txq); 6597 6598 /* update Rx rings counters */ 6599 ice_for_each_rxq(vsi, i) { 6600 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6601 struct ice_ring_stats *ring_stats; 6602 6603 ring_stats = ring->ring_stats; 6604 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6605 ring_stats->stats, &pkts, 6606 &bytes); 6607 vsi_stats->rx_packets += pkts; 6608 vsi_stats->rx_bytes += bytes; 6609 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6610 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6611 } 6612 6613 /* update XDP Tx rings counters */ 6614 if (ice_is_xdp_ena_vsi(vsi)) 6615 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6616 vsi->num_xdp_txq); 6617 6618 rcu_read_unlock(); 6619 6620 net_stats = &vsi->net_stats; 6621 stats_prev = &vsi->net_stats_prev; 6622 6623 /* Update netdev counters, but keep in mind that values could start at 6624 * random value after PF reset. And as we increase the reported stat by 6625 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6626 * let's skip this round. 6627 */ 6628 if (likely(pf->stat_prev_loaded)) { 6629 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6630 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6631 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6632 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6633 } 6634 6635 stats_prev->tx_packets = vsi_stats->tx_packets; 6636 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6637 stats_prev->rx_packets = vsi_stats->rx_packets; 6638 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6639 6640 kfree(vsi_stats); 6641 } 6642 6643 /** 6644 * ice_update_vsi_stats - Update VSI stats counters 6645 * @vsi: the VSI to be updated 6646 */ 6647 void ice_update_vsi_stats(struct ice_vsi *vsi) 6648 { 6649 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6650 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6651 struct ice_pf *pf = vsi->back; 6652 6653 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6654 test_bit(ICE_CFG_BUSY, pf->state)) 6655 return; 6656 6657 /* get stats as recorded by Tx/Rx rings */ 6658 ice_update_vsi_ring_stats(vsi); 6659 6660 /* get VSI stats as recorded by the hardware */ 6661 ice_update_eth_stats(vsi); 6662 6663 cur_ns->tx_errors = cur_es->tx_errors; 6664 cur_ns->rx_dropped = cur_es->rx_discards; 6665 cur_ns->tx_dropped = cur_es->tx_discards; 6666 cur_ns->multicast = cur_es->rx_multicast; 6667 6668 /* update some more netdev stats if this is main VSI */ 6669 if (vsi->type == ICE_VSI_PF) { 6670 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6671 cur_ns->rx_errors = pf->stats.crc_errors + 6672 pf->stats.illegal_bytes + 6673 pf->stats.rx_len_errors + 6674 pf->stats.rx_undersize + 6675 pf->hw_csum_rx_error + 6676 pf->stats.rx_jabber + 6677 pf->stats.rx_fragments + 6678 pf->stats.rx_oversize; 6679 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6680 /* record drops from the port level */ 6681 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6682 } 6683 } 6684 6685 /** 6686 * ice_update_pf_stats - Update PF port stats counters 6687 * @pf: PF whose stats needs to be updated 6688 */ 6689 void ice_update_pf_stats(struct ice_pf *pf) 6690 { 6691 struct ice_hw_port_stats *prev_ps, *cur_ps; 6692 struct ice_hw *hw = &pf->hw; 6693 u16 fd_ctr_base; 6694 u8 port; 6695 6696 port = hw->port_info->lport; 6697 prev_ps = &pf->stats_prev; 6698 cur_ps = &pf->stats; 6699 6700 if (ice_is_reset_in_progress(pf->state)) 6701 pf->stat_prev_loaded = false; 6702 6703 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6704 &prev_ps->eth.rx_bytes, 6705 &cur_ps->eth.rx_bytes); 6706 6707 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6708 &prev_ps->eth.rx_unicast, 6709 &cur_ps->eth.rx_unicast); 6710 6711 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6712 &prev_ps->eth.rx_multicast, 6713 &cur_ps->eth.rx_multicast); 6714 6715 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6716 &prev_ps->eth.rx_broadcast, 6717 &cur_ps->eth.rx_broadcast); 6718 6719 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6720 &prev_ps->eth.rx_discards, 6721 &cur_ps->eth.rx_discards); 6722 6723 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6724 &prev_ps->eth.tx_bytes, 6725 &cur_ps->eth.tx_bytes); 6726 6727 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6728 &prev_ps->eth.tx_unicast, 6729 &cur_ps->eth.tx_unicast); 6730 6731 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6732 &prev_ps->eth.tx_multicast, 6733 &cur_ps->eth.tx_multicast); 6734 6735 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6736 &prev_ps->eth.tx_broadcast, 6737 &cur_ps->eth.tx_broadcast); 6738 6739 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6740 &prev_ps->tx_dropped_link_down, 6741 &cur_ps->tx_dropped_link_down); 6742 6743 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6744 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6745 6746 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6747 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6748 6749 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6750 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6751 6752 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6753 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6754 6755 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6756 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6757 6758 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6759 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6760 6761 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6762 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6763 6764 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6765 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6766 6767 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6768 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6769 6770 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6771 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6772 6773 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6774 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6775 6776 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6777 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6778 6779 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6780 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6781 6782 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6783 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6784 6785 fd_ctr_base = hw->fd_ctr_base; 6786 6787 ice_stat_update40(hw, 6788 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6789 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6790 &cur_ps->fd_sb_match); 6791 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6792 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6793 6794 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6795 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6796 6797 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6798 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6799 6800 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6801 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6802 6803 ice_update_dcb_stats(pf); 6804 6805 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6806 &prev_ps->crc_errors, &cur_ps->crc_errors); 6807 6808 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6809 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6810 6811 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6812 &prev_ps->mac_local_faults, 6813 &cur_ps->mac_local_faults); 6814 6815 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6816 &prev_ps->mac_remote_faults, 6817 &cur_ps->mac_remote_faults); 6818 6819 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6820 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6821 6822 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6823 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6824 6825 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6826 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6827 6828 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6829 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6830 6831 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6832 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6833 6834 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6835 6836 pf->stat_prev_loaded = true; 6837 } 6838 6839 /** 6840 * ice_get_stats64 - get statistics for network device structure 6841 * @netdev: network interface device structure 6842 * @stats: main device statistics structure 6843 */ 6844 static 6845 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6846 { 6847 struct ice_netdev_priv *np = netdev_priv(netdev); 6848 struct rtnl_link_stats64 *vsi_stats; 6849 struct ice_vsi *vsi = np->vsi; 6850 6851 vsi_stats = &vsi->net_stats; 6852 6853 if (!vsi->num_txq || !vsi->num_rxq) 6854 return; 6855 6856 /* netdev packet/byte stats come from ring counter. These are obtained 6857 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6858 * But, only call the update routine and read the registers if VSI is 6859 * not down. 6860 */ 6861 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6862 ice_update_vsi_ring_stats(vsi); 6863 stats->tx_packets = vsi_stats->tx_packets; 6864 stats->tx_bytes = vsi_stats->tx_bytes; 6865 stats->rx_packets = vsi_stats->rx_packets; 6866 stats->rx_bytes = vsi_stats->rx_bytes; 6867 6868 /* The rest of the stats can be read from the hardware but instead we 6869 * just return values that the watchdog task has already obtained from 6870 * the hardware. 6871 */ 6872 stats->multicast = vsi_stats->multicast; 6873 stats->tx_errors = vsi_stats->tx_errors; 6874 stats->tx_dropped = vsi_stats->tx_dropped; 6875 stats->rx_errors = vsi_stats->rx_errors; 6876 stats->rx_dropped = vsi_stats->rx_dropped; 6877 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6878 stats->rx_length_errors = vsi_stats->rx_length_errors; 6879 } 6880 6881 /** 6882 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6883 * @vsi: VSI having NAPI disabled 6884 */ 6885 static void ice_napi_disable_all(struct ice_vsi *vsi) 6886 { 6887 int q_idx; 6888 6889 if (!vsi->netdev) 6890 return; 6891 6892 ice_for_each_q_vector(vsi, q_idx) { 6893 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6894 6895 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6896 napi_disable(&q_vector->napi); 6897 6898 cancel_work_sync(&q_vector->tx.dim.work); 6899 cancel_work_sync(&q_vector->rx.dim.work); 6900 } 6901 } 6902 6903 /** 6904 * ice_down - Shutdown the connection 6905 * @vsi: The VSI being stopped 6906 * 6907 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6908 */ 6909 int ice_down(struct ice_vsi *vsi) 6910 { 6911 int i, tx_err, rx_err, vlan_err = 0; 6912 6913 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6914 6915 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6916 vlan_err = ice_vsi_del_vlan_zero(vsi); 6917 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6918 netif_carrier_off(vsi->netdev); 6919 netif_tx_disable(vsi->netdev); 6920 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6921 ice_eswitch_stop_all_tx_queues(vsi->back); 6922 } 6923 6924 ice_vsi_dis_irq(vsi); 6925 6926 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6927 if (tx_err) 6928 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6929 vsi->vsi_num, tx_err); 6930 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6931 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6932 if (tx_err) 6933 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6934 vsi->vsi_num, tx_err); 6935 } 6936 6937 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6938 if (rx_err) 6939 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6940 vsi->vsi_num, rx_err); 6941 6942 ice_napi_disable_all(vsi); 6943 6944 ice_for_each_txq(vsi, i) 6945 ice_clean_tx_ring(vsi->tx_rings[i]); 6946 6947 if (ice_is_xdp_ena_vsi(vsi)) 6948 ice_for_each_xdp_txq(vsi, i) 6949 ice_clean_tx_ring(vsi->xdp_rings[i]); 6950 6951 ice_for_each_rxq(vsi, i) 6952 ice_clean_rx_ring(vsi->rx_rings[i]); 6953 6954 if (tx_err || rx_err || vlan_err) { 6955 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6956 vsi->vsi_num, vsi->vsw->sw_id); 6957 return -EIO; 6958 } 6959 6960 return 0; 6961 } 6962 6963 /** 6964 * ice_down_up - shutdown the VSI connection and bring it up 6965 * @vsi: the VSI to be reconnected 6966 */ 6967 int ice_down_up(struct ice_vsi *vsi) 6968 { 6969 int ret; 6970 6971 /* if DOWN already set, nothing to do */ 6972 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6973 return 0; 6974 6975 ret = ice_down(vsi); 6976 if (ret) 6977 return ret; 6978 6979 ret = ice_up(vsi); 6980 if (ret) { 6981 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6982 return ret; 6983 } 6984 6985 return 0; 6986 } 6987 6988 /** 6989 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6990 * @vsi: VSI having resources allocated 6991 * 6992 * Return 0 on success, negative on failure 6993 */ 6994 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6995 { 6996 int i, err = 0; 6997 6998 if (!vsi->num_txq) { 6999 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7000 vsi->vsi_num); 7001 return -EINVAL; 7002 } 7003 7004 ice_for_each_txq(vsi, i) { 7005 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7006 7007 if (!ring) 7008 return -EINVAL; 7009 7010 if (vsi->netdev) 7011 ring->netdev = vsi->netdev; 7012 err = ice_setup_tx_ring(ring); 7013 if (err) 7014 break; 7015 } 7016 7017 return err; 7018 } 7019 7020 /** 7021 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7022 * @vsi: VSI having resources allocated 7023 * 7024 * Return 0 on success, negative on failure 7025 */ 7026 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7027 { 7028 int i, err = 0; 7029 7030 if (!vsi->num_rxq) { 7031 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7032 vsi->vsi_num); 7033 return -EINVAL; 7034 } 7035 7036 ice_for_each_rxq(vsi, i) { 7037 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7038 7039 if (!ring) 7040 return -EINVAL; 7041 7042 if (vsi->netdev) 7043 ring->netdev = vsi->netdev; 7044 err = ice_setup_rx_ring(ring); 7045 if (err) 7046 break; 7047 } 7048 7049 return err; 7050 } 7051 7052 /** 7053 * ice_vsi_open_ctrl - open control VSI for use 7054 * @vsi: the VSI to open 7055 * 7056 * Initialization of the Control VSI 7057 * 7058 * Returns 0 on success, negative value on error 7059 */ 7060 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7061 { 7062 char int_name[ICE_INT_NAME_STR_LEN]; 7063 struct ice_pf *pf = vsi->back; 7064 struct device *dev; 7065 int err; 7066 7067 dev = ice_pf_to_dev(pf); 7068 /* allocate descriptors */ 7069 err = ice_vsi_setup_tx_rings(vsi); 7070 if (err) 7071 goto err_setup_tx; 7072 7073 err = ice_vsi_setup_rx_rings(vsi); 7074 if (err) 7075 goto err_setup_rx; 7076 7077 err = ice_vsi_cfg_lan(vsi); 7078 if (err) 7079 goto err_setup_rx; 7080 7081 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7082 dev_driver_string(dev), dev_name(dev)); 7083 err = ice_vsi_req_irq_msix(vsi, int_name); 7084 if (err) 7085 goto err_setup_rx; 7086 7087 ice_vsi_cfg_msix(vsi); 7088 7089 err = ice_vsi_start_all_rx_rings(vsi); 7090 if (err) 7091 goto err_up_complete; 7092 7093 clear_bit(ICE_VSI_DOWN, vsi->state); 7094 ice_vsi_ena_irq(vsi); 7095 7096 return 0; 7097 7098 err_up_complete: 7099 ice_down(vsi); 7100 err_setup_rx: 7101 ice_vsi_free_rx_rings(vsi); 7102 err_setup_tx: 7103 ice_vsi_free_tx_rings(vsi); 7104 7105 return err; 7106 } 7107 7108 /** 7109 * ice_vsi_open - Called when a network interface is made active 7110 * @vsi: the VSI to open 7111 * 7112 * Initialization of the VSI 7113 * 7114 * Returns 0 on success, negative value on error 7115 */ 7116 int ice_vsi_open(struct ice_vsi *vsi) 7117 { 7118 char int_name[ICE_INT_NAME_STR_LEN]; 7119 struct ice_pf *pf = vsi->back; 7120 int err; 7121 7122 /* allocate descriptors */ 7123 err = ice_vsi_setup_tx_rings(vsi); 7124 if (err) 7125 goto err_setup_tx; 7126 7127 err = ice_vsi_setup_rx_rings(vsi); 7128 if (err) 7129 goto err_setup_rx; 7130 7131 err = ice_vsi_cfg_lan(vsi); 7132 if (err) 7133 goto err_setup_rx; 7134 7135 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7136 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7137 err = ice_vsi_req_irq_msix(vsi, int_name); 7138 if (err) 7139 goto err_setup_rx; 7140 7141 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7142 7143 if (vsi->type == ICE_VSI_PF) { 7144 /* Notify the stack of the actual queue counts. */ 7145 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7146 if (err) 7147 goto err_set_qs; 7148 7149 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7150 if (err) 7151 goto err_set_qs; 7152 } 7153 7154 err = ice_up_complete(vsi); 7155 if (err) 7156 goto err_up_complete; 7157 7158 return 0; 7159 7160 err_up_complete: 7161 ice_down(vsi); 7162 err_set_qs: 7163 ice_vsi_free_irq(vsi); 7164 err_setup_rx: 7165 ice_vsi_free_rx_rings(vsi); 7166 err_setup_tx: 7167 ice_vsi_free_tx_rings(vsi); 7168 7169 return err; 7170 } 7171 7172 /** 7173 * ice_vsi_release_all - Delete all VSIs 7174 * @pf: PF from which all VSIs are being removed 7175 */ 7176 static void ice_vsi_release_all(struct ice_pf *pf) 7177 { 7178 int err, i; 7179 7180 if (!pf->vsi) 7181 return; 7182 7183 ice_for_each_vsi(pf, i) { 7184 if (!pf->vsi[i]) 7185 continue; 7186 7187 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7188 continue; 7189 7190 err = ice_vsi_release(pf->vsi[i]); 7191 if (err) 7192 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7193 i, err, pf->vsi[i]->vsi_num); 7194 } 7195 } 7196 7197 /** 7198 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7199 * @pf: pointer to the PF instance 7200 * @type: VSI type to rebuild 7201 * 7202 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7203 */ 7204 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7205 { 7206 struct device *dev = ice_pf_to_dev(pf); 7207 int i, err; 7208 7209 ice_for_each_vsi(pf, i) { 7210 struct ice_vsi *vsi = pf->vsi[i]; 7211 7212 if (!vsi || vsi->type != type) 7213 continue; 7214 7215 /* rebuild the VSI */ 7216 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7217 if (err) { 7218 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7219 err, vsi->idx, ice_vsi_type_str(type)); 7220 return err; 7221 } 7222 7223 /* replay filters for the VSI */ 7224 err = ice_replay_vsi(&pf->hw, vsi->idx); 7225 if (err) { 7226 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7227 err, vsi->idx, ice_vsi_type_str(type)); 7228 return err; 7229 } 7230 7231 /* Re-map HW VSI number, using VSI handle that has been 7232 * previously validated in ice_replay_vsi() call above 7233 */ 7234 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7235 7236 /* enable the VSI */ 7237 err = ice_ena_vsi(vsi, false); 7238 if (err) { 7239 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7240 err, vsi->idx, ice_vsi_type_str(type)); 7241 return err; 7242 } 7243 7244 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7245 ice_vsi_type_str(type)); 7246 } 7247 7248 return 0; 7249 } 7250 7251 /** 7252 * ice_update_pf_netdev_link - Update PF netdev link status 7253 * @pf: pointer to the PF instance 7254 */ 7255 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7256 { 7257 bool link_up; 7258 int i; 7259 7260 ice_for_each_vsi(pf, i) { 7261 struct ice_vsi *vsi = pf->vsi[i]; 7262 7263 if (!vsi || vsi->type != ICE_VSI_PF) 7264 return; 7265 7266 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7267 if (link_up) { 7268 netif_carrier_on(pf->vsi[i]->netdev); 7269 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7270 } else { 7271 netif_carrier_off(pf->vsi[i]->netdev); 7272 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7273 } 7274 } 7275 } 7276 7277 /** 7278 * ice_rebuild - rebuild after reset 7279 * @pf: PF to rebuild 7280 * @reset_type: type of reset 7281 * 7282 * Do not rebuild VF VSI in this flow because that is already handled via 7283 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7284 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7285 * to reset/rebuild all the VF VSI twice. 7286 */ 7287 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7288 { 7289 struct device *dev = ice_pf_to_dev(pf); 7290 struct ice_hw *hw = &pf->hw; 7291 bool dvm; 7292 int err; 7293 7294 if (test_bit(ICE_DOWN, pf->state)) 7295 goto clear_recovery; 7296 7297 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7298 7299 #define ICE_EMP_RESET_SLEEP_MS 5000 7300 if (reset_type == ICE_RESET_EMPR) { 7301 /* If an EMP reset has occurred, any previously pending flash 7302 * update will have completed. We no longer know whether or 7303 * not the NVM update EMP reset is restricted. 7304 */ 7305 pf->fw_emp_reset_disabled = false; 7306 7307 msleep(ICE_EMP_RESET_SLEEP_MS); 7308 } 7309 7310 err = ice_init_all_ctrlq(hw); 7311 if (err) { 7312 dev_err(dev, "control queues init failed %d\n", err); 7313 goto err_init_ctrlq; 7314 } 7315 7316 /* if DDP was previously loaded successfully */ 7317 if (!ice_is_safe_mode(pf)) { 7318 /* reload the SW DB of filter tables */ 7319 if (reset_type == ICE_RESET_PFR) 7320 ice_fill_blk_tbls(hw); 7321 else 7322 /* Reload DDP Package after CORER/GLOBR reset */ 7323 ice_load_pkg(NULL, pf); 7324 } 7325 7326 err = ice_clear_pf_cfg(hw); 7327 if (err) { 7328 dev_err(dev, "clear PF configuration failed %d\n", err); 7329 goto err_init_ctrlq; 7330 } 7331 7332 ice_clear_pxe_mode(hw); 7333 7334 err = ice_init_nvm(hw); 7335 if (err) { 7336 dev_err(dev, "ice_init_nvm failed %d\n", err); 7337 goto err_init_ctrlq; 7338 } 7339 7340 err = ice_get_caps(hw); 7341 if (err) { 7342 dev_err(dev, "ice_get_caps failed %d\n", err); 7343 goto err_init_ctrlq; 7344 } 7345 7346 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7347 if (err) { 7348 dev_err(dev, "set_mac_cfg failed %d\n", err); 7349 goto err_init_ctrlq; 7350 } 7351 7352 dvm = ice_is_dvm_ena(hw); 7353 7354 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7355 if (err) 7356 goto err_init_ctrlq; 7357 7358 err = ice_sched_init_port(hw->port_info); 7359 if (err) 7360 goto err_sched_init_port; 7361 7362 /* start misc vector */ 7363 err = ice_req_irq_msix_misc(pf); 7364 if (err) { 7365 dev_err(dev, "misc vector setup failed: %d\n", err); 7366 goto err_sched_init_port; 7367 } 7368 7369 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7370 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7371 if (!rd32(hw, PFQF_FD_SIZE)) { 7372 u16 unused, guar, b_effort; 7373 7374 guar = hw->func_caps.fd_fltr_guar; 7375 b_effort = hw->func_caps.fd_fltr_best_effort; 7376 7377 /* force guaranteed filter pool for PF */ 7378 ice_alloc_fd_guar_item(hw, &unused, guar); 7379 /* force shared filter pool for PF */ 7380 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7381 } 7382 } 7383 7384 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7385 ice_dcb_rebuild(pf); 7386 7387 /* If the PF previously had enabled PTP, PTP init needs to happen before 7388 * the VSI rebuild. If not, this causes the PTP link status events to 7389 * fail. 7390 */ 7391 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7392 ice_ptp_reset(pf); 7393 7394 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7395 ice_gnss_init(pf); 7396 7397 /* rebuild PF VSI */ 7398 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7399 if (err) { 7400 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7401 goto err_vsi_rebuild; 7402 } 7403 7404 /* configure PTP timestamping after VSI rebuild */ 7405 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7406 ice_ptp_cfg_timestamp(pf, false); 7407 7408 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7409 if (err) { 7410 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7411 goto err_vsi_rebuild; 7412 } 7413 7414 if (reset_type == ICE_RESET_PFR) { 7415 err = ice_rebuild_channels(pf); 7416 if (err) { 7417 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7418 err); 7419 goto err_vsi_rebuild; 7420 } 7421 } 7422 7423 /* If Flow Director is active */ 7424 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7425 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7426 if (err) { 7427 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7428 goto err_vsi_rebuild; 7429 } 7430 7431 /* replay HW Flow Director recipes */ 7432 if (hw->fdir_prof) 7433 ice_fdir_replay_flows(hw); 7434 7435 /* replay Flow Director filters */ 7436 ice_fdir_replay_fltrs(pf); 7437 7438 ice_rebuild_arfs(pf); 7439 } 7440 7441 ice_update_pf_netdev_link(pf); 7442 7443 /* tell the firmware we are up */ 7444 err = ice_send_version(pf); 7445 if (err) { 7446 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7447 err); 7448 goto err_vsi_rebuild; 7449 } 7450 7451 ice_replay_post(hw); 7452 7453 /* if we get here, reset flow is successful */ 7454 clear_bit(ICE_RESET_FAILED, pf->state); 7455 7456 ice_plug_aux_dev(pf); 7457 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7458 ice_lag_rebuild(pf); 7459 return; 7460 7461 err_vsi_rebuild: 7462 err_sched_init_port: 7463 ice_sched_cleanup_all(hw); 7464 err_init_ctrlq: 7465 ice_shutdown_all_ctrlq(hw); 7466 set_bit(ICE_RESET_FAILED, pf->state); 7467 clear_recovery: 7468 /* set this bit in PF state to control service task scheduling */ 7469 set_bit(ICE_NEEDS_RESTART, pf->state); 7470 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7471 } 7472 7473 /** 7474 * ice_change_mtu - NDO callback to change the MTU 7475 * @netdev: network interface device structure 7476 * @new_mtu: new value for maximum frame size 7477 * 7478 * Returns 0 on success, negative on failure 7479 */ 7480 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7481 { 7482 struct ice_netdev_priv *np = netdev_priv(netdev); 7483 struct ice_vsi *vsi = np->vsi; 7484 struct ice_pf *pf = vsi->back; 7485 struct bpf_prog *prog; 7486 u8 count = 0; 7487 int err = 0; 7488 7489 if (new_mtu == (int)netdev->mtu) { 7490 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7491 return 0; 7492 } 7493 7494 prog = vsi->xdp_prog; 7495 if (prog && !prog->aux->xdp_has_frags) { 7496 int frame_size = ice_max_xdp_frame_size(vsi); 7497 7498 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7499 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7500 frame_size - ICE_ETH_PKT_HDR_PAD); 7501 return -EINVAL; 7502 } 7503 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7504 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7505 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7506 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7507 return -EINVAL; 7508 } 7509 } 7510 7511 /* if a reset is in progress, wait for some time for it to complete */ 7512 do { 7513 if (ice_is_reset_in_progress(pf->state)) { 7514 count++; 7515 usleep_range(1000, 2000); 7516 } else { 7517 break; 7518 } 7519 7520 } while (count < 100); 7521 7522 if (count == 100) { 7523 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7524 return -EBUSY; 7525 } 7526 7527 netdev->mtu = (unsigned int)new_mtu; 7528 err = ice_down_up(vsi); 7529 if (err) 7530 return err; 7531 7532 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7533 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7534 7535 return err; 7536 } 7537 7538 /** 7539 * ice_eth_ioctl - Access the hwtstamp interface 7540 * @netdev: network interface device structure 7541 * @ifr: interface request data 7542 * @cmd: ioctl command 7543 */ 7544 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7545 { 7546 struct ice_netdev_priv *np = netdev_priv(netdev); 7547 struct ice_pf *pf = np->vsi->back; 7548 7549 switch (cmd) { 7550 case SIOCGHWTSTAMP: 7551 return ice_ptp_get_ts_config(pf, ifr); 7552 case SIOCSHWTSTAMP: 7553 return ice_ptp_set_ts_config(pf, ifr); 7554 default: 7555 return -EOPNOTSUPP; 7556 } 7557 } 7558 7559 /** 7560 * ice_aq_str - convert AQ err code to a string 7561 * @aq_err: the AQ error code to convert 7562 */ 7563 const char *ice_aq_str(enum ice_aq_err aq_err) 7564 { 7565 switch (aq_err) { 7566 case ICE_AQ_RC_OK: 7567 return "OK"; 7568 case ICE_AQ_RC_EPERM: 7569 return "ICE_AQ_RC_EPERM"; 7570 case ICE_AQ_RC_ENOENT: 7571 return "ICE_AQ_RC_ENOENT"; 7572 case ICE_AQ_RC_ENOMEM: 7573 return "ICE_AQ_RC_ENOMEM"; 7574 case ICE_AQ_RC_EBUSY: 7575 return "ICE_AQ_RC_EBUSY"; 7576 case ICE_AQ_RC_EEXIST: 7577 return "ICE_AQ_RC_EEXIST"; 7578 case ICE_AQ_RC_EINVAL: 7579 return "ICE_AQ_RC_EINVAL"; 7580 case ICE_AQ_RC_ENOSPC: 7581 return "ICE_AQ_RC_ENOSPC"; 7582 case ICE_AQ_RC_ENOSYS: 7583 return "ICE_AQ_RC_ENOSYS"; 7584 case ICE_AQ_RC_EMODE: 7585 return "ICE_AQ_RC_EMODE"; 7586 case ICE_AQ_RC_ENOSEC: 7587 return "ICE_AQ_RC_ENOSEC"; 7588 case ICE_AQ_RC_EBADSIG: 7589 return "ICE_AQ_RC_EBADSIG"; 7590 case ICE_AQ_RC_ESVN: 7591 return "ICE_AQ_RC_ESVN"; 7592 case ICE_AQ_RC_EBADMAN: 7593 return "ICE_AQ_RC_EBADMAN"; 7594 case ICE_AQ_RC_EBADBUF: 7595 return "ICE_AQ_RC_EBADBUF"; 7596 } 7597 7598 return "ICE_AQ_RC_UNKNOWN"; 7599 } 7600 7601 /** 7602 * ice_set_rss_lut - Set RSS LUT 7603 * @vsi: Pointer to VSI structure 7604 * @lut: Lookup table 7605 * @lut_size: Lookup table size 7606 * 7607 * Returns 0 on success, negative on failure 7608 */ 7609 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7610 { 7611 struct ice_aq_get_set_rss_lut_params params = {}; 7612 struct ice_hw *hw = &vsi->back->hw; 7613 int status; 7614 7615 if (!lut) 7616 return -EINVAL; 7617 7618 params.vsi_handle = vsi->idx; 7619 params.lut_size = lut_size; 7620 params.lut_type = vsi->rss_lut_type; 7621 params.lut = lut; 7622 7623 status = ice_aq_set_rss_lut(hw, ¶ms); 7624 if (status) 7625 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7626 status, ice_aq_str(hw->adminq.sq_last_status)); 7627 7628 return status; 7629 } 7630 7631 /** 7632 * ice_set_rss_key - Set RSS key 7633 * @vsi: Pointer to the VSI structure 7634 * @seed: RSS hash seed 7635 * 7636 * Returns 0 on success, negative on failure 7637 */ 7638 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7639 { 7640 struct ice_hw *hw = &vsi->back->hw; 7641 int status; 7642 7643 if (!seed) 7644 return -EINVAL; 7645 7646 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7647 if (status) 7648 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7649 status, ice_aq_str(hw->adminq.sq_last_status)); 7650 7651 return status; 7652 } 7653 7654 /** 7655 * ice_get_rss_lut - Get RSS LUT 7656 * @vsi: Pointer to VSI structure 7657 * @lut: Buffer to store the lookup table entries 7658 * @lut_size: Size of buffer to store the lookup table entries 7659 * 7660 * Returns 0 on success, negative on failure 7661 */ 7662 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7663 { 7664 struct ice_aq_get_set_rss_lut_params params = {}; 7665 struct ice_hw *hw = &vsi->back->hw; 7666 int status; 7667 7668 if (!lut) 7669 return -EINVAL; 7670 7671 params.vsi_handle = vsi->idx; 7672 params.lut_size = lut_size; 7673 params.lut_type = vsi->rss_lut_type; 7674 params.lut = lut; 7675 7676 status = ice_aq_get_rss_lut(hw, ¶ms); 7677 if (status) 7678 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7679 status, ice_aq_str(hw->adminq.sq_last_status)); 7680 7681 return status; 7682 } 7683 7684 /** 7685 * ice_get_rss_key - Get RSS key 7686 * @vsi: Pointer to VSI structure 7687 * @seed: Buffer to store the key in 7688 * 7689 * Returns 0 on success, negative on failure 7690 */ 7691 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7692 { 7693 struct ice_hw *hw = &vsi->back->hw; 7694 int status; 7695 7696 if (!seed) 7697 return -EINVAL; 7698 7699 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7700 if (status) 7701 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7702 status, ice_aq_str(hw->adminq.sq_last_status)); 7703 7704 return status; 7705 } 7706 7707 /** 7708 * ice_bridge_getlink - Get the hardware bridge mode 7709 * @skb: skb buff 7710 * @pid: process ID 7711 * @seq: RTNL message seq 7712 * @dev: the netdev being configured 7713 * @filter_mask: filter mask passed in 7714 * @nlflags: netlink flags passed in 7715 * 7716 * Return the bridge mode (VEB/VEPA) 7717 */ 7718 static int 7719 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7720 struct net_device *dev, u32 filter_mask, int nlflags) 7721 { 7722 struct ice_netdev_priv *np = netdev_priv(dev); 7723 struct ice_vsi *vsi = np->vsi; 7724 struct ice_pf *pf = vsi->back; 7725 u16 bmode; 7726 7727 bmode = pf->first_sw->bridge_mode; 7728 7729 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7730 filter_mask, NULL); 7731 } 7732 7733 /** 7734 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7735 * @vsi: Pointer to VSI structure 7736 * @bmode: Hardware bridge mode (VEB/VEPA) 7737 * 7738 * Returns 0 on success, negative on failure 7739 */ 7740 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7741 { 7742 struct ice_aqc_vsi_props *vsi_props; 7743 struct ice_hw *hw = &vsi->back->hw; 7744 struct ice_vsi_ctx *ctxt; 7745 int ret; 7746 7747 vsi_props = &vsi->info; 7748 7749 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7750 if (!ctxt) 7751 return -ENOMEM; 7752 7753 ctxt->info = vsi->info; 7754 7755 if (bmode == BRIDGE_MODE_VEB) 7756 /* change from VEPA to VEB mode */ 7757 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7758 else 7759 /* change from VEB to VEPA mode */ 7760 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7761 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7762 7763 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7764 if (ret) { 7765 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7766 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7767 goto out; 7768 } 7769 /* Update sw flags for book keeping */ 7770 vsi_props->sw_flags = ctxt->info.sw_flags; 7771 7772 out: 7773 kfree(ctxt); 7774 return ret; 7775 } 7776 7777 /** 7778 * ice_bridge_setlink - Set the hardware bridge mode 7779 * @dev: the netdev being configured 7780 * @nlh: RTNL message 7781 * @flags: bridge setlink flags 7782 * @extack: netlink extended ack 7783 * 7784 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7785 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7786 * not already set for all VSIs connected to this switch. And also update the 7787 * unicast switch filter rules for the corresponding switch of the netdev. 7788 */ 7789 static int 7790 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7791 u16 __always_unused flags, 7792 struct netlink_ext_ack __always_unused *extack) 7793 { 7794 struct ice_netdev_priv *np = netdev_priv(dev); 7795 struct ice_pf *pf = np->vsi->back; 7796 struct nlattr *attr, *br_spec; 7797 struct ice_hw *hw = &pf->hw; 7798 struct ice_sw *pf_sw; 7799 int rem, v, err = 0; 7800 7801 pf_sw = pf->first_sw; 7802 /* find the attribute in the netlink message */ 7803 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7804 if (!br_spec) 7805 return -EINVAL; 7806 7807 nla_for_each_nested(attr, br_spec, rem) { 7808 __u16 mode; 7809 7810 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7811 continue; 7812 mode = nla_get_u16(attr); 7813 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7814 return -EINVAL; 7815 /* Continue if bridge mode is not being flipped */ 7816 if (mode == pf_sw->bridge_mode) 7817 continue; 7818 /* Iterates through the PF VSI list and update the loopback 7819 * mode of the VSI 7820 */ 7821 ice_for_each_vsi(pf, v) { 7822 if (!pf->vsi[v]) 7823 continue; 7824 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7825 if (err) 7826 return err; 7827 } 7828 7829 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7830 /* Update the unicast switch filter rules for the corresponding 7831 * switch of the netdev 7832 */ 7833 err = ice_update_sw_rule_bridge_mode(hw); 7834 if (err) { 7835 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7836 mode, err, 7837 ice_aq_str(hw->adminq.sq_last_status)); 7838 /* revert hw->evb_veb */ 7839 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7840 return err; 7841 } 7842 7843 pf_sw->bridge_mode = mode; 7844 } 7845 7846 return 0; 7847 } 7848 7849 /** 7850 * ice_tx_timeout - Respond to a Tx Hang 7851 * @netdev: network interface device structure 7852 * @txqueue: Tx queue 7853 */ 7854 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7855 { 7856 struct ice_netdev_priv *np = netdev_priv(netdev); 7857 struct ice_tx_ring *tx_ring = NULL; 7858 struct ice_vsi *vsi = np->vsi; 7859 struct ice_pf *pf = vsi->back; 7860 u32 i; 7861 7862 pf->tx_timeout_count++; 7863 7864 /* Check if PFC is enabled for the TC to which the queue belongs 7865 * to. If yes then Tx timeout is not caused by a hung queue, no 7866 * need to reset and rebuild 7867 */ 7868 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7869 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7870 txqueue); 7871 return; 7872 } 7873 7874 /* now that we have an index, find the tx_ring struct */ 7875 ice_for_each_txq(vsi, i) 7876 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7877 if (txqueue == vsi->tx_rings[i]->q_index) { 7878 tx_ring = vsi->tx_rings[i]; 7879 break; 7880 } 7881 7882 /* Reset recovery level if enough time has elapsed after last timeout. 7883 * Also ensure no new reset action happens before next timeout period. 7884 */ 7885 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7886 pf->tx_timeout_recovery_level = 1; 7887 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7888 netdev->watchdog_timeo))) 7889 return; 7890 7891 if (tx_ring) { 7892 struct ice_hw *hw = &pf->hw; 7893 u32 head, val = 0; 7894 7895 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7896 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7897 /* Read interrupt register */ 7898 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7899 7900 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7901 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7902 head, tx_ring->next_to_use, val); 7903 } 7904 7905 pf->tx_timeout_last_recovery = jiffies; 7906 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7907 pf->tx_timeout_recovery_level, txqueue); 7908 7909 switch (pf->tx_timeout_recovery_level) { 7910 case 1: 7911 set_bit(ICE_PFR_REQ, pf->state); 7912 break; 7913 case 2: 7914 set_bit(ICE_CORER_REQ, pf->state); 7915 break; 7916 case 3: 7917 set_bit(ICE_GLOBR_REQ, pf->state); 7918 break; 7919 default: 7920 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7921 set_bit(ICE_DOWN, pf->state); 7922 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7923 set_bit(ICE_SERVICE_DIS, pf->state); 7924 break; 7925 } 7926 7927 ice_service_task_schedule(pf); 7928 pf->tx_timeout_recovery_level++; 7929 } 7930 7931 /** 7932 * ice_setup_tc_cls_flower - flower classifier offloads 7933 * @np: net device to configure 7934 * @filter_dev: device on which filter is added 7935 * @cls_flower: offload data 7936 */ 7937 static int 7938 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7939 struct net_device *filter_dev, 7940 struct flow_cls_offload *cls_flower) 7941 { 7942 struct ice_vsi *vsi = np->vsi; 7943 7944 if (cls_flower->common.chain_index) 7945 return -EOPNOTSUPP; 7946 7947 switch (cls_flower->command) { 7948 case FLOW_CLS_REPLACE: 7949 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7950 case FLOW_CLS_DESTROY: 7951 return ice_del_cls_flower(vsi, cls_flower); 7952 default: 7953 return -EINVAL; 7954 } 7955 } 7956 7957 /** 7958 * ice_setup_tc_block_cb - callback handler registered for TC block 7959 * @type: TC SETUP type 7960 * @type_data: TC flower offload data that contains user input 7961 * @cb_priv: netdev private data 7962 */ 7963 static int 7964 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7965 { 7966 struct ice_netdev_priv *np = cb_priv; 7967 7968 switch (type) { 7969 case TC_SETUP_CLSFLOWER: 7970 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7971 type_data); 7972 default: 7973 return -EOPNOTSUPP; 7974 } 7975 } 7976 7977 /** 7978 * ice_validate_mqprio_qopt - Validate TCF input parameters 7979 * @vsi: Pointer to VSI 7980 * @mqprio_qopt: input parameters for mqprio queue configuration 7981 * 7982 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7983 * needed), and make sure user doesn't specify qcount and BW rate limit 7984 * for TCs, which are more than "num_tc" 7985 */ 7986 static int 7987 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7988 struct tc_mqprio_qopt_offload *mqprio_qopt) 7989 { 7990 int non_power_of_2_qcount = 0; 7991 struct ice_pf *pf = vsi->back; 7992 int max_rss_q_cnt = 0; 7993 u64 sum_min_rate = 0; 7994 struct device *dev; 7995 int i, speed; 7996 u8 num_tc; 7997 7998 if (vsi->type != ICE_VSI_PF) 7999 return -EINVAL; 8000 8001 if (mqprio_qopt->qopt.offset[0] != 0 || 8002 mqprio_qopt->qopt.num_tc < 1 || 8003 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8004 return -EINVAL; 8005 8006 dev = ice_pf_to_dev(pf); 8007 vsi->ch_rss_size = 0; 8008 num_tc = mqprio_qopt->qopt.num_tc; 8009 speed = ice_get_link_speed_kbps(vsi); 8010 8011 for (i = 0; num_tc; i++) { 8012 int qcount = mqprio_qopt->qopt.count[i]; 8013 u64 max_rate, min_rate, rem; 8014 8015 if (!qcount) 8016 return -EINVAL; 8017 8018 if (is_power_of_2(qcount)) { 8019 if (non_power_of_2_qcount && 8020 qcount > non_power_of_2_qcount) { 8021 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8022 qcount, non_power_of_2_qcount); 8023 return -EINVAL; 8024 } 8025 if (qcount > max_rss_q_cnt) 8026 max_rss_q_cnt = qcount; 8027 } else { 8028 if (non_power_of_2_qcount && 8029 qcount != non_power_of_2_qcount) { 8030 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8031 qcount, non_power_of_2_qcount); 8032 return -EINVAL; 8033 } 8034 if (qcount < max_rss_q_cnt) { 8035 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8036 qcount, max_rss_q_cnt); 8037 return -EINVAL; 8038 } 8039 max_rss_q_cnt = qcount; 8040 non_power_of_2_qcount = qcount; 8041 } 8042 8043 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8044 * converts the bandwidth rate limit into Bytes/s when 8045 * passing it down to the driver. So convert input bandwidth 8046 * from Bytes/s to Kbps 8047 */ 8048 max_rate = mqprio_qopt->max_rate[i]; 8049 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8050 8051 /* min_rate is minimum guaranteed rate and it can't be zero */ 8052 min_rate = mqprio_qopt->min_rate[i]; 8053 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8054 sum_min_rate += min_rate; 8055 8056 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8057 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8058 min_rate, ICE_MIN_BW_LIMIT); 8059 return -EINVAL; 8060 } 8061 8062 if (max_rate && max_rate > speed) { 8063 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8064 i, max_rate, speed); 8065 return -EINVAL; 8066 } 8067 8068 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8069 if (rem) { 8070 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8071 i, ICE_MIN_BW_LIMIT); 8072 return -EINVAL; 8073 } 8074 8075 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8076 if (rem) { 8077 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8078 i, ICE_MIN_BW_LIMIT); 8079 return -EINVAL; 8080 } 8081 8082 /* min_rate can't be more than max_rate, except when max_rate 8083 * is zero (implies max_rate sought is max line rate). In such 8084 * a case min_rate can be more than max. 8085 */ 8086 if (max_rate && min_rate > max_rate) { 8087 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8088 min_rate, max_rate); 8089 return -EINVAL; 8090 } 8091 8092 if (i >= mqprio_qopt->qopt.num_tc - 1) 8093 break; 8094 if (mqprio_qopt->qopt.offset[i + 1] != 8095 (mqprio_qopt->qopt.offset[i] + qcount)) 8096 return -EINVAL; 8097 } 8098 if (vsi->num_rxq < 8099 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8100 return -EINVAL; 8101 if (vsi->num_txq < 8102 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8103 return -EINVAL; 8104 8105 if (sum_min_rate && sum_min_rate > (u64)speed) { 8106 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8107 sum_min_rate, speed); 8108 return -EINVAL; 8109 } 8110 8111 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8112 vsi->ch_rss_size = max_rss_q_cnt; 8113 8114 return 0; 8115 } 8116 8117 /** 8118 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8119 * @pf: ptr to PF device 8120 * @vsi: ptr to VSI 8121 */ 8122 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8123 { 8124 struct device *dev = ice_pf_to_dev(pf); 8125 bool added = false; 8126 struct ice_hw *hw; 8127 int flow; 8128 8129 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8130 return -EINVAL; 8131 8132 hw = &pf->hw; 8133 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8134 struct ice_fd_hw_prof *prof; 8135 int tun, status; 8136 u64 entry_h; 8137 8138 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8139 hw->fdir_prof[flow]->cnt)) 8140 continue; 8141 8142 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8143 enum ice_flow_priority prio; 8144 u64 prof_id; 8145 8146 /* add this VSI to FDir profile for this flow */ 8147 prio = ICE_FLOW_PRIO_NORMAL; 8148 prof = hw->fdir_prof[flow]; 8149 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8150 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8151 prof->vsi_h[0], vsi->idx, 8152 prio, prof->fdir_seg[tun], 8153 &entry_h); 8154 if (status) { 8155 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8156 vsi->idx, flow); 8157 continue; 8158 } 8159 8160 prof->entry_h[prof->cnt][tun] = entry_h; 8161 } 8162 8163 /* store VSI for filter replay and delete */ 8164 prof->vsi_h[prof->cnt] = vsi->idx; 8165 prof->cnt++; 8166 8167 added = true; 8168 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8169 flow); 8170 } 8171 8172 if (!added) 8173 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8174 8175 return 0; 8176 } 8177 8178 /** 8179 * ice_add_channel - add a channel by adding VSI 8180 * @pf: ptr to PF device 8181 * @sw_id: underlying HW switching element ID 8182 * @ch: ptr to channel structure 8183 * 8184 * Add a channel (VSI) using add_vsi and queue_map 8185 */ 8186 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8187 { 8188 struct device *dev = ice_pf_to_dev(pf); 8189 struct ice_vsi *vsi; 8190 8191 if (ch->type != ICE_VSI_CHNL) { 8192 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8193 return -EINVAL; 8194 } 8195 8196 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8197 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8198 dev_err(dev, "create chnl VSI failure\n"); 8199 return -EINVAL; 8200 } 8201 8202 ice_add_vsi_to_fdir(pf, vsi); 8203 8204 ch->sw_id = sw_id; 8205 ch->vsi_num = vsi->vsi_num; 8206 ch->info.mapping_flags = vsi->info.mapping_flags; 8207 ch->ch_vsi = vsi; 8208 /* set the back pointer of channel for newly created VSI */ 8209 vsi->ch = ch; 8210 8211 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8212 sizeof(vsi->info.q_mapping)); 8213 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8214 sizeof(vsi->info.tc_mapping)); 8215 8216 return 0; 8217 } 8218 8219 /** 8220 * ice_chnl_cfg_res 8221 * @vsi: the VSI being setup 8222 * @ch: ptr to channel structure 8223 * 8224 * Configure channel specific resources such as rings, vector. 8225 */ 8226 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8227 { 8228 int i; 8229 8230 for (i = 0; i < ch->num_txq; i++) { 8231 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8232 struct ice_ring_container *rc; 8233 struct ice_tx_ring *tx_ring; 8234 struct ice_rx_ring *rx_ring; 8235 8236 tx_ring = vsi->tx_rings[ch->base_q + i]; 8237 rx_ring = vsi->rx_rings[ch->base_q + i]; 8238 if (!tx_ring || !rx_ring) 8239 continue; 8240 8241 /* setup ring being channel enabled */ 8242 tx_ring->ch = ch; 8243 rx_ring->ch = ch; 8244 8245 /* following code block sets up vector specific attributes */ 8246 tx_q_vector = tx_ring->q_vector; 8247 rx_q_vector = rx_ring->q_vector; 8248 if (!tx_q_vector && !rx_q_vector) 8249 continue; 8250 8251 if (tx_q_vector) { 8252 tx_q_vector->ch = ch; 8253 /* setup Tx and Rx ITR setting if DIM is off */ 8254 rc = &tx_q_vector->tx; 8255 if (!ITR_IS_DYNAMIC(rc)) 8256 ice_write_itr(rc, rc->itr_setting); 8257 } 8258 if (rx_q_vector) { 8259 rx_q_vector->ch = ch; 8260 /* setup Tx and Rx ITR setting if DIM is off */ 8261 rc = &rx_q_vector->rx; 8262 if (!ITR_IS_DYNAMIC(rc)) 8263 ice_write_itr(rc, rc->itr_setting); 8264 } 8265 } 8266 8267 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8268 * GLINT_ITR register would have written to perform in-context 8269 * update, hence perform flush 8270 */ 8271 if (ch->num_txq || ch->num_rxq) 8272 ice_flush(&vsi->back->hw); 8273 } 8274 8275 /** 8276 * ice_cfg_chnl_all_res - configure channel resources 8277 * @vsi: pte to main_vsi 8278 * @ch: ptr to channel structure 8279 * 8280 * This function configures channel specific resources such as flow-director 8281 * counter index, and other resources such as queues, vectors, ITR settings 8282 */ 8283 static void 8284 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8285 { 8286 /* configure channel (aka ADQ) resources such as queues, vectors, 8287 * ITR settings for channel specific vectors and anything else 8288 */ 8289 ice_chnl_cfg_res(vsi, ch); 8290 } 8291 8292 /** 8293 * ice_setup_hw_channel - setup new channel 8294 * @pf: ptr to PF device 8295 * @vsi: the VSI being setup 8296 * @ch: ptr to channel structure 8297 * @sw_id: underlying HW switching element ID 8298 * @type: type of channel to be created (VMDq2/VF) 8299 * 8300 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8301 * and configures Tx rings accordingly 8302 */ 8303 static int 8304 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8305 struct ice_channel *ch, u16 sw_id, u8 type) 8306 { 8307 struct device *dev = ice_pf_to_dev(pf); 8308 int ret; 8309 8310 ch->base_q = vsi->next_base_q; 8311 ch->type = type; 8312 8313 ret = ice_add_channel(pf, sw_id, ch); 8314 if (ret) { 8315 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8316 return ret; 8317 } 8318 8319 /* configure/setup ADQ specific resources */ 8320 ice_cfg_chnl_all_res(vsi, ch); 8321 8322 /* make sure to update the next_base_q so that subsequent channel's 8323 * (aka ADQ) VSI queue map is correct 8324 */ 8325 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8326 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8327 ch->num_rxq); 8328 8329 return 0; 8330 } 8331 8332 /** 8333 * ice_setup_channel - setup new channel using uplink element 8334 * @pf: ptr to PF device 8335 * @vsi: the VSI being setup 8336 * @ch: ptr to channel structure 8337 * 8338 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8339 * and uplink switching element 8340 */ 8341 static bool 8342 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8343 struct ice_channel *ch) 8344 { 8345 struct device *dev = ice_pf_to_dev(pf); 8346 u16 sw_id; 8347 int ret; 8348 8349 if (vsi->type != ICE_VSI_PF) { 8350 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8351 return false; 8352 } 8353 8354 sw_id = pf->first_sw->sw_id; 8355 8356 /* create channel (VSI) */ 8357 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8358 if (ret) { 8359 dev_err(dev, "failed to setup hw_channel\n"); 8360 return false; 8361 } 8362 dev_dbg(dev, "successfully created channel()\n"); 8363 8364 return ch->ch_vsi ? true : false; 8365 } 8366 8367 /** 8368 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8369 * @vsi: VSI to be configured 8370 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8371 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8372 */ 8373 static int 8374 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8375 { 8376 int err; 8377 8378 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8379 if (err) 8380 return err; 8381 8382 return ice_set_max_bw_limit(vsi, max_tx_rate); 8383 } 8384 8385 /** 8386 * ice_create_q_channel - function to create channel 8387 * @vsi: VSI to be configured 8388 * @ch: ptr to channel (it contains channel specific params) 8389 * 8390 * This function creates channel (VSI) using num_queues specified by user, 8391 * reconfigs RSS if needed. 8392 */ 8393 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8394 { 8395 struct ice_pf *pf = vsi->back; 8396 struct device *dev; 8397 8398 if (!ch) 8399 return -EINVAL; 8400 8401 dev = ice_pf_to_dev(pf); 8402 if (!ch->num_txq || !ch->num_rxq) { 8403 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8404 return -EINVAL; 8405 } 8406 8407 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8408 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8409 vsi->cnt_q_avail, ch->num_txq); 8410 return -EINVAL; 8411 } 8412 8413 if (!ice_setup_channel(pf, vsi, ch)) { 8414 dev_info(dev, "Failed to setup channel\n"); 8415 return -EINVAL; 8416 } 8417 /* configure BW rate limit */ 8418 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8419 int ret; 8420 8421 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8422 ch->min_tx_rate); 8423 if (ret) 8424 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8425 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8426 else 8427 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8428 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8429 } 8430 8431 vsi->cnt_q_avail -= ch->num_txq; 8432 8433 return 0; 8434 } 8435 8436 /** 8437 * ice_rem_all_chnl_fltrs - removes all channel filters 8438 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8439 * 8440 * Remove all advanced switch filters only if they are channel specific 8441 * tc-flower based filter 8442 */ 8443 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8444 { 8445 struct ice_tc_flower_fltr *fltr; 8446 struct hlist_node *node; 8447 8448 /* to remove all channel filters, iterate an ordered list of filters */ 8449 hlist_for_each_entry_safe(fltr, node, 8450 &pf->tc_flower_fltr_list, 8451 tc_flower_node) { 8452 struct ice_rule_query_data rule; 8453 int status; 8454 8455 /* for now process only channel specific filters */ 8456 if (!ice_is_chnl_fltr(fltr)) 8457 continue; 8458 8459 rule.rid = fltr->rid; 8460 rule.rule_id = fltr->rule_id; 8461 rule.vsi_handle = fltr->dest_vsi_handle; 8462 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8463 if (status) { 8464 if (status == -ENOENT) 8465 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8466 rule.rule_id); 8467 else 8468 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8469 status); 8470 } else if (fltr->dest_vsi) { 8471 /* update advanced switch filter count */ 8472 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8473 u32 flags = fltr->flags; 8474 8475 fltr->dest_vsi->num_chnl_fltr--; 8476 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8477 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8478 pf->num_dmac_chnl_fltrs--; 8479 } 8480 } 8481 8482 hlist_del(&fltr->tc_flower_node); 8483 kfree(fltr); 8484 } 8485 } 8486 8487 /** 8488 * ice_remove_q_channels - Remove queue channels for the TCs 8489 * @vsi: VSI to be configured 8490 * @rem_fltr: delete advanced switch filter or not 8491 * 8492 * Remove queue channels for the TCs 8493 */ 8494 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8495 { 8496 struct ice_channel *ch, *ch_tmp; 8497 struct ice_pf *pf = vsi->back; 8498 int i; 8499 8500 /* remove all tc-flower based filter if they are channel filters only */ 8501 if (rem_fltr) 8502 ice_rem_all_chnl_fltrs(pf); 8503 8504 /* remove ntuple filters since queue configuration is being changed */ 8505 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8506 struct ice_hw *hw = &pf->hw; 8507 8508 mutex_lock(&hw->fdir_fltr_lock); 8509 ice_fdir_del_all_fltrs(vsi); 8510 mutex_unlock(&hw->fdir_fltr_lock); 8511 } 8512 8513 /* perform cleanup for channels if they exist */ 8514 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8515 struct ice_vsi *ch_vsi; 8516 8517 list_del(&ch->list); 8518 ch_vsi = ch->ch_vsi; 8519 if (!ch_vsi) { 8520 kfree(ch); 8521 continue; 8522 } 8523 8524 /* Reset queue contexts */ 8525 for (i = 0; i < ch->num_rxq; i++) { 8526 struct ice_tx_ring *tx_ring; 8527 struct ice_rx_ring *rx_ring; 8528 8529 tx_ring = vsi->tx_rings[ch->base_q + i]; 8530 rx_ring = vsi->rx_rings[ch->base_q + i]; 8531 if (tx_ring) { 8532 tx_ring->ch = NULL; 8533 if (tx_ring->q_vector) 8534 tx_ring->q_vector->ch = NULL; 8535 } 8536 if (rx_ring) { 8537 rx_ring->ch = NULL; 8538 if (rx_ring->q_vector) 8539 rx_ring->q_vector->ch = NULL; 8540 } 8541 } 8542 8543 /* Release FD resources for the channel VSI */ 8544 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8545 8546 /* clear the VSI from scheduler tree */ 8547 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8548 8549 /* Delete VSI from FW, PF and HW VSI arrays */ 8550 ice_vsi_delete(ch->ch_vsi); 8551 8552 /* free the channel */ 8553 kfree(ch); 8554 } 8555 8556 /* clear the channel VSI map which is stored in main VSI */ 8557 ice_for_each_chnl_tc(i) 8558 vsi->tc_map_vsi[i] = NULL; 8559 8560 /* reset main VSI's all TC information */ 8561 vsi->all_enatc = 0; 8562 vsi->all_numtc = 0; 8563 } 8564 8565 /** 8566 * ice_rebuild_channels - rebuild channel 8567 * @pf: ptr to PF 8568 * 8569 * Recreate channel VSIs and replay filters 8570 */ 8571 static int ice_rebuild_channels(struct ice_pf *pf) 8572 { 8573 struct device *dev = ice_pf_to_dev(pf); 8574 struct ice_vsi *main_vsi; 8575 bool rem_adv_fltr = true; 8576 struct ice_channel *ch; 8577 struct ice_vsi *vsi; 8578 int tc_idx = 1; 8579 int i, err; 8580 8581 main_vsi = ice_get_main_vsi(pf); 8582 if (!main_vsi) 8583 return 0; 8584 8585 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8586 main_vsi->old_numtc == 1) 8587 return 0; /* nothing to be done */ 8588 8589 /* reconfigure main VSI based on old value of TC and cached values 8590 * for MQPRIO opts 8591 */ 8592 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8593 if (err) { 8594 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8595 main_vsi->old_ena_tc, main_vsi->vsi_num); 8596 return err; 8597 } 8598 8599 /* rebuild ADQ VSIs */ 8600 ice_for_each_vsi(pf, i) { 8601 enum ice_vsi_type type; 8602 8603 vsi = pf->vsi[i]; 8604 if (!vsi || vsi->type != ICE_VSI_CHNL) 8605 continue; 8606 8607 type = vsi->type; 8608 8609 /* rebuild ADQ VSI */ 8610 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8611 if (err) { 8612 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8613 ice_vsi_type_str(type), vsi->idx, err); 8614 goto cleanup; 8615 } 8616 8617 /* Re-map HW VSI number, using VSI handle that has been 8618 * previously validated in ice_replay_vsi() call above 8619 */ 8620 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8621 8622 /* replay filters for the VSI */ 8623 err = ice_replay_vsi(&pf->hw, vsi->idx); 8624 if (err) { 8625 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8626 ice_vsi_type_str(type), err, vsi->idx); 8627 rem_adv_fltr = false; 8628 goto cleanup; 8629 } 8630 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8631 ice_vsi_type_str(type), vsi->idx); 8632 8633 /* store ADQ VSI at correct TC index in main VSI's 8634 * map of TC to VSI 8635 */ 8636 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8637 } 8638 8639 /* ADQ VSI(s) has been rebuilt successfully, so setup 8640 * channel for main VSI's Tx and Rx rings 8641 */ 8642 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8643 struct ice_vsi *ch_vsi; 8644 8645 ch_vsi = ch->ch_vsi; 8646 if (!ch_vsi) 8647 continue; 8648 8649 /* reconfig channel resources */ 8650 ice_cfg_chnl_all_res(main_vsi, ch); 8651 8652 /* replay BW rate limit if it is non-zero */ 8653 if (!ch->max_tx_rate && !ch->min_tx_rate) 8654 continue; 8655 8656 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8657 ch->min_tx_rate); 8658 if (err) 8659 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8660 err, ch->max_tx_rate, ch->min_tx_rate, 8661 ch_vsi->vsi_num); 8662 else 8663 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8664 ch->max_tx_rate, ch->min_tx_rate, 8665 ch_vsi->vsi_num); 8666 } 8667 8668 /* reconfig RSS for main VSI */ 8669 if (main_vsi->ch_rss_size) 8670 ice_vsi_cfg_rss_lut_key(main_vsi); 8671 8672 return 0; 8673 8674 cleanup: 8675 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8676 return err; 8677 } 8678 8679 /** 8680 * ice_create_q_channels - Add queue channel for the given TCs 8681 * @vsi: VSI to be configured 8682 * 8683 * Configures queue channel mapping to the given TCs 8684 */ 8685 static int ice_create_q_channels(struct ice_vsi *vsi) 8686 { 8687 struct ice_pf *pf = vsi->back; 8688 struct ice_channel *ch; 8689 int ret = 0, i; 8690 8691 ice_for_each_chnl_tc(i) { 8692 if (!(vsi->all_enatc & BIT(i))) 8693 continue; 8694 8695 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8696 if (!ch) { 8697 ret = -ENOMEM; 8698 goto err_free; 8699 } 8700 INIT_LIST_HEAD(&ch->list); 8701 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8702 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8703 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8704 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8705 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8706 8707 /* convert to Kbits/s */ 8708 if (ch->max_tx_rate) 8709 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8710 ICE_BW_KBPS_DIVISOR); 8711 if (ch->min_tx_rate) 8712 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8713 ICE_BW_KBPS_DIVISOR); 8714 8715 ret = ice_create_q_channel(vsi, ch); 8716 if (ret) { 8717 dev_err(ice_pf_to_dev(pf), 8718 "failed creating channel TC:%d\n", i); 8719 kfree(ch); 8720 goto err_free; 8721 } 8722 list_add_tail(&ch->list, &vsi->ch_list); 8723 vsi->tc_map_vsi[i] = ch->ch_vsi; 8724 dev_dbg(ice_pf_to_dev(pf), 8725 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8726 } 8727 return 0; 8728 8729 err_free: 8730 ice_remove_q_channels(vsi, false); 8731 8732 return ret; 8733 } 8734 8735 /** 8736 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8737 * @netdev: net device to configure 8738 * @type_data: TC offload data 8739 */ 8740 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8741 { 8742 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8743 struct ice_netdev_priv *np = netdev_priv(netdev); 8744 struct ice_vsi *vsi = np->vsi; 8745 struct ice_pf *pf = vsi->back; 8746 u16 mode, ena_tc_qdisc = 0; 8747 int cur_txq, cur_rxq; 8748 u8 hw = 0, num_tcf; 8749 struct device *dev; 8750 int ret, i; 8751 8752 dev = ice_pf_to_dev(pf); 8753 num_tcf = mqprio_qopt->qopt.num_tc; 8754 hw = mqprio_qopt->qopt.hw; 8755 mode = mqprio_qopt->mode; 8756 if (!hw) { 8757 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8758 vsi->ch_rss_size = 0; 8759 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8760 goto config_tcf; 8761 } 8762 8763 /* Generate queue region map for number of TCF requested */ 8764 for (i = 0; i < num_tcf; i++) 8765 ena_tc_qdisc |= BIT(i); 8766 8767 switch (mode) { 8768 case TC_MQPRIO_MODE_CHANNEL: 8769 8770 if (pf->hw.port_info->is_custom_tx_enabled) { 8771 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8772 return -EBUSY; 8773 } 8774 ice_tear_down_devlink_rate_tree(pf); 8775 8776 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8777 if (ret) { 8778 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8779 ret); 8780 return ret; 8781 } 8782 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8783 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8784 /* don't assume state of hw_tc_offload during driver load 8785 * and set the flag for TC flower filter if hw_tc_offload 8786 * already ON 8787 */ 8788 if (vsi->netdev->features & NETIF_F_HW_TC) 8789 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8790 break; 8791 default: 8792 return -EINVAL; 8793 } 8794 8795 config_tcf: 8796 8797 /* Requesting same TCF configuration as already enabled */ 8798 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8799 mode != TC_MQPRIO_MODE_CHANNEL) 8800 return 0; 8801 8802 /* Pause VSI queues */ 8803 ice_dis_vsi(vsi, true); 8804 8805 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8806 ice_remove_q_channels(vsi, true); 8807 8808 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8809 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8810 num_online_cpus()); 8811 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8812 num_online_cpus()); 8813 } else { 8814 /* logic to rebuild VSI, same like ethtool -L */ 8815 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8816 8817 for (i = 0; i < num_tcf; i++) { 8818 if (!(ena_tc_qdisc & BIT(i))) 8819 continue; 8820 8821 offset = vsi->mqprio_qopt.qopt.offset[i]; 8822 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8823 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8824 } 8825 vsi->req_txq = offset + qcount_tx; 8826 vsi->req_rxq = offset + qcount_rx; 8827 8828 /* store away original rss_size info, so that it gets reused 8829 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8830 * determine, what should be the rss_sizefor main VSI 8831 */ 8832 vsi->orig_rss_size = vsi->rss_size; 8833 } 8834 8835 /* save current values of Tx and Rx queues before calling VSI rebuild 8836 * for fallback option 8837 */ 8838 cur_txq = vsi->num_txq; 8839 cur_rxq = vsi->num_rxq; 8840 8841 /* proceed with rebuild main VSI using correct number of queues */ 8842 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8843 if (ret) { 8844 /* fallback to current number of queues */ 8845 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8846 vsi->req_txq = cur_txq; 8847 vsi->req_rxq = cur_rxq; 8848 clear_bit(ICE_RESET_FAILED, pf->state); 8849 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8850 dev_err(dev, "Rebuild of main VSI failed again\n"); 8851 return ret; 8852 } 8853 } 8854 8855 vsi->all_numtc = num_tcf; 8856 vsi->all_enatc = ena_tc_qdisc; 8857 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8858 if (ret) { 8859 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8860 vsi->vsi_num); 8861 goto exit; 8862 } 8863 8864 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8865 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8866 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8867 8868 /* set TC0 rate limit if specified */ 8869 if (max_tx_rate || min_tx_rate) { 8870 /* convert to Kbits/s */ 8871 if (max_tx_rate) 8872 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8873 if (min_tx_rate) 8874 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8875 8876 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8877 if (!ret) { 8878 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8879 max_tx_rate, min_tx_rate, vsi->vsi_num); 8880 } else { 8881 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8882 max_tx_rate, min_tx_rate, vsi->vsi_num); 8883 goto exit; 8884 } 8885 } 8886 ret = ice_create_q_channels(vsi); 8887 if (ret) { 8888 netdev_err(netdev, "failed configuring queue channels\n"); 8889 goto exit; 8890 } else { 8891 netdev_dbg(netdev, "successfully configured channels\n"); 8892 } 8893 } 8894 8895 if (vsi->ch_rss_size) 8896 ice_vsi_cfg_rss_lut_key(vsi); 8897 8898 exit: 8899 /* if error, reset the all_numtc and all_enatc */ 8900 if (ret) { 8901 vsi->all_numtc = 0; 8902 vsi->all_enatc = 0; 8903 } 8904 /* resume VSI */ 8905 ice_ena_vsi(vsi, true); 8906 8907 return ret; 8908 } 8909 8910 static LIST_HEAD(ice_block_cb_list); 8911 8912 static int 8913 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8914 void *type_data) 8915 { 8916 struct ice_netdev_priv *np = netdev_priv(netdev); 8917 struct ice_pf *pf = np->vsi->back; 8918 bool locked = false; 8919 int err; 8920 8921 switch (type) { 8922 case TC_SETUP_BLOCK: 8923 return flow_block_cb_setup_simple(type_data, 8924 &ice_block_cb_list, 8925 ice_setup_tc_block_cb, 8926 np, np, true); 8927 case TC_SETUP_QDISC_MQPRIO: 8928 if (ice_is_eswitch_mode_switchdev(pf)) { 8929 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8930 return -EOPNOTSUPP; 8931 } 8932 8933 if (pf->adev) { 8934 mutex_lock(&pf->adev_mutex); 8935 device_lock(&pf->adev->dev); 8936 locked = true; 8937 if (pf->adev->dev.driver) { 8938 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8939 err = -EBUSY; 8940 goto adev_unlock; 8941 } 8942 } 8943 8944 /* setup traffic classifier for receive side */ 8945 mutex_lock(&pf->tc_mutex); 8946 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8947 mutex_unlock(&pf->tc_mutex); 8948 8949 adev_unlock: 8950 if (locked) { 8951 device_unlock(&pf->adev->dev); 8952 mutex_unlock(&pf->adev_mutex); 8953 } 8954 return err; 8955 default: 8956 return -EOPNOTSUPP; 8957 } 8958 return -EOPNOTSUPP; 8959 } 8960 8961 static struct ice_indr_block_priv * 8962 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8963 struct net_device *netdev) 8964 { 8965 struct ice_indr_block_priv *cb_priv; 8966 8967 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8968 if (!cb_priv->netdev) 8969 return NULL; 8970 if (cb_priv->netdev == netdev) 8971 return cb_priv; 8972 } 8973 return NULL; 8974 } 8975 8976 static int 8977 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8978 void *indr_priv) 8979 { 8980 struct ice_indr_block_priv *priv = indr_priv; 8981 struct ice_netdev_priv *np = priv->np; 8982 8983 switch (type) { 8984 case TC_SETUP_CLSFLOWER: 8985 return ice_setup_tc_cls_flower(np, priv->netdev, 8986 (struct flow_cls_offload *) 8987 type_data); 8988 default: 8989 return -EOPNOTSUPP; 8990 } 8991 } 8992 8993 static int 8994 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8995 struct ice_netdev_priv *np, 8996 struct flow_block_offload *f, void *data, 8997 void (*cleanup)(struct flow_block_cb *block_cb)) 8998 { 8999 struct ice_indr_block_priv *indr_priv; 9000 struct flow_block_cb *block_cb; 9001 9002 if (!ice_is_tunnel_supported(netdev) && 9003 !(is_vlan_dev(netdev) && 9004 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9005 return -EOPNOTSUPP; 9006 9007 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9008 return -EOPNOTSUPP; 9009 9010 switch (f->command) { 9011 case FLOW_BLOCK_BIND: 9012 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9013 if (indr_priv) 9014 return -EEXIST; 9015 9016 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9017 if (!indr_priv) 9018 return -ENOMEM; 9019 9020 indr_priv->netdev = netdev; 9021 indr_priv->np = np; 9022 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9023 9024 block_cb = 9025 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9026 indr_priv, indr_priv, 9027 ice_rep_indr_tc_block_unbind, 9028 f, netdev, sch, data, np, 9029 cleanup); 9030 9031 if (IS_ERR(block_cb)) { 9032 list_del(&indr_priv->list); 9033 kfree(indr_priv); 9034 return PTR_ERR(block_cb); 9035 } 9036 flow_block_cb_add(block_cb, f); 9037 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9038 break; 9039 case FLOW_BLOCK_UNBIND: 9040 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9041 if (!indr_priv) 9042 return -ENOENT; 9043 9044 block_cb = flow_block_cb_lookup(f->block, 9045 ice_indr_setup_block_cb, 9046 indr_priv); 9047 if (!block_cb) 9048 return -ENOENT; 9049 9050 flow_indr_block_cb_remove(block_cb, f); 9051 9052 list_del(&block_cb->driver_list); 9053 break; 9054 default: 9055 return -EOPNOTSUPP; 9056 } 9057 return 0; 9058 } 9059 9060 static int 9061 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9062 void *cb_priv, enum tc_setup_type type, void *type_data, 9063 void *data, 9064 void (*cleanup)(struct flow_block_cb *block_cb)) 9065 { 9066 switch (type) { 9067 case TC_SETUP_BLOCK: 9068 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9069 data, cleanup); 9070 9071 default: 9072 return -EOPNOTSUPP; 9073 } 9074 } 9075 9076 /** 9077 * ice_open - Called when a network interface becomes active 9078 * @netdev: network interface device structure 9079 * 9080 * The open entry point is called when a network interface is made 9081 * active by the system (IFF_UP). At this point all resources needed 9082 * for transmit and receive operations are allocated, the interrupt 9083 * handler is registered with the OS, the netdev watchdog is enabled, 9084 * and the stack is notified that the interface is ready. 9085 * 9086 * Returns 0 on success, negative value on failure 9087 */ 9088 int ice_open(struct net_device *netdev) 9089 { 9090 struct ice_netdev_priv *np = netdev_priv(netdev); 9091 struct ice_pf *pf = np->vsi->back; 9092 9093 if (ice_is_reset_in_progress(pf->state)) { 9094 netdev_err(netdev, "can't open net device while reset is in progress"); 9095 return -EBUSY; 9096 } 9097 9098 return ice_open_internal(netdev); 9099 } 9100 9101 /** 9102 * ice_open_internal - Called when a network interface becomes active 9103 * @netdev: network interface device structure 9104 * 9105 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9106 * handling routine 9107 * 9108 * Returns 0 on success, negative value on failure 9109 */ 9110 int ice_open_internal(struct net_device *netdev) 9111 { 9112 struct ice_netdev_priv *np = netdev_priv(netdev); 9113 struct ice_vsi *vsi = np->vsi; 9114 struct ice_pf *pf = vsi->back; 9115 struct ice_port_info *pi; 9116 int err; 9117 9118 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9119 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9120 return -EIO; 9121 } 9122 9123 netif_carrier_off(netdev); 9124 9125 pi = vsi->port_info; 9126 err = ice_update_link_info(pi); 9127 if (err) { 9128 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9129 return err; 9130 } 9131 9132 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9133 9134 /* Set PHY if there is media, otherwise, turn off PHY */ 9135 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9136 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9137 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9138 err = ice_init_phy_user_cfg(pi); 9139 if (err) { 9140 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9141 err); 9142 return err; 9143 } 9144 } 9145 9146 err = ice_configure_phy(vsi); 9147 if (err) { 9148 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9149 err); 9150 return err; 9151 } 9152 } else { 9153 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9154 ice_set_link(vsi, false); 9155 } 9156 9157 err = ice_vsi_open(vsi); 9158 if (err) 9159 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9160 vsi->vsi_num, vsi->vsw->sw_id); 9161 9162 /* Update existing tunnels information */ 9163 udp_tunnel_get_rx_info(netdev); 9164 9165 return err; 9166 } 9167 9168 /** 9169 * ice_stop - Disables a network interface 9170 * @netdev: network interface device structure 9171 * 9172 * The stop entry point is called when an interface is de-activated by the OS, 9173 * and the netdevice enters the DOWN state. The hardware is still under the 9174 * driver's control, but the netdev interface is disabled. 9175 * 9176 * Returns success only - not allowed to fail 9177 */ 9178 int ice_stop(struct net_device *netdev) 9179 { 9180 struct ice_netdev_priv *np = netdev_priv(netdev); 9181 struct ice_vsi *vsi = np->vsi; 9182 struct ice_pf *pf = vsi->back; 9183 9184 if (ice_is_reset_in_progress(pf->state)) { 9185 netdev_err(netdev, "can't stop net device while reset is in progress"); 9186 return -EBUSY; 9187 } 9188 9189 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9190 int link_err = ice_force_phys_link_state(vsi, false); 9191 9192 if (link_err) { 9193 if (link_err == -ENOMEDIUM) 9194 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9195 vsi->vsi_num); 9196 else 9197 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9198 vsi->vsi_num, link_err); 9199 9200 ice_vsi_close(vsi); 9201 return -EIO; 9202 } 9203 } 9204 9205 ice_vsi_close(vsi); 9206 9207 return 0; 9208 } 9209 9210 /** 9211 * ice_features_check - Validate encapsulated packet conforms to limits 9212 * @skb: skb buffer 9213 * @netdev: This port's netdev 9214 * @features: Offload features that the stack believes apply 9215 */ 9216 static netdev_features_t 9217 ice_features_check(struct sk_buff *skb, 9218 struct net_device __always_unused *netdev, 9219 netdev_features_t features) 9220 { 9221 bool gso = skb_is_gso(skb); 9222 size_t len; 9223 9224 /* No point in doing any of this if neither checksum nor GSO are 9225 * being requested for this frame. We can rule out both by just 9226 * checking for CHECKSUM_PARTIAL 9227 */ 9228 if (skb->ip_summed != CHECKSUM_PARTIAL) 9229 return features; 9230 9231 /* We cannot support GSO if the MSS is going to be less than 9232 * 64 bytes. If it is then we need to drop support for GSO. 9233 */ 9234 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9235 features &= ~NETIF_F_GSO_MASK; 9236 9237 len = skb_network_offset(skb); 9238 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9239 goto out_rm_features; 9240 9241 len = skb_network_header_len(skb); 9242 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9243 goto out_rm_features; 9244 9245 if (skb->encapsulation) { 9246 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9247 * the case of IPIP frames, the transport header pointer is 9248 * after the inner header! So check to make sure that this 9249 * is a GRE or UDP_TUNNEL frame before doing that math. 9250 */ 9251 if (gso && (skb_shinfo(skb)->gso_type & 9252 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9253 len = skb_inner_network_header(skb) - 9254 skb_transport_header(skb); 9255 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9256 goto out_rm_features; 9257 } 9258 9259 len = skb_inner_network_header_len(skb); 9260 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9261 goto out_rm_features; 9262 } 9263 9264 return features; 9265 out_rm_features: 9266 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9267 } 9268 9269 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9270 .ndo_open = ice_open, 9271 .ndo_stop = ice_stop, 9272 .ndo_start_xmit = ice_start_xmit, 9273 .ndo_set_mac_address = ice_set_mac_address, 9274 .ndo_validate_addr = eth_validate_addr, 9275 .ndo_change_mtu = ice_change_mtu, 9276 .ndo_get_stats64 = ice_get_stats64, 9277 .ndo_tx_timeout = ice_tx_timeout, 9278 .ndo_bpf = ice_xdp_safe_mode, 9279 }; 9280 9281 static const struct net_device_ops ice_netdev_ops = { 9282 .ndo_open = ice_open, 9283 .ndo_stop = ice_stop, 9284 .ndo_start_xmit = ice_start_xmit, 9285 .ndo_select_queue = ice_select_queue, 9286 .ndo_features_check = ice_features_check, 9287 .ndo_fix_features = ice_fix_features, 9288 .ndo_set_rx_mode = ice_set_rx_mode, 9289 .ndo_set_mac_address = ice_set_mac_address, 9290 .ndo_validate_addr = eth_validate_addr, 9291 .ndo_change_mtu = ice_change_mtu, 9292 .ndo_get_stats64 = ice_get_stats64, 9293 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9294 .ndo_eth_ioctl = ice_eth_ioctl, 9295 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9296 .ndo_set_vf_mac = ice_set_vf_mac, 9297 .ndo_get_vf_config = ice_get_vf_cfg, 9298 .ndo_set_vf_trust = ice_set_vf_trust, 9299 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9300 .ndo_set_vf_link_state = ice_set_vf_link_state, 9301 .ndo_get_vf_stats = ice_get_vf_stats, 9302 .ndo_set_vf_rate = ice_set_vf_bw, 9303 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9304 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9305 .ndo_setup_tc = ice_setup_tc, 9306 .ndo_set_features = ice_set_features, 9307 .ndo_bridge_getlink = ice_bridge_getlink, 9308 .ndo_bridge_setlink = ice_bridge_setlink, 9309 .ndo_fdb_add = ice_fdb_add, 9310 .ndo_fdb_del = ice_fdb_del, 9311 #ifdef CONFIG_RFS_ACCEL 9312 .ndo_rx_flow_steer = ice_rx_flow_steer, 9313 #endif 9314 .ndo_tx_timeout = ice_tx_timeout, 9315 .ndo_bpf = ice_xdp, 9316 .ndo_xdp_xmit = ice_xdp_xmit, 9317 .ndo_xsk_wakeup = ice_xsk_wakeup, 9318 }; 9319