1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 bool netif_is_ice(struct net_device *dev) 48 { 49 return dev && (dev->netdev_ops == &ice_netdev_ops); 50 } 51 52 /** 53 * ice_get_tx_pending - returns number of Tx descriptors not processed 54 * @ring: the ring of descriptors 55 */ 56 static u16 ice_get_tx_pending(struct ice_ring *ring) 57 { 58 u16 head, tail; 59 60 head = ring->next_to_clean; 61 tail = ring->next_to_use; 62 63 if (head != tail) 64 return (head < tail) ? 65 tail - head : (tail + ring->count - head); 66 return 0; 67 } 68 69 /** 70 * ice_check_for_hang_subtask - check for and recover hung queues 71 * @pf: pointer to PF struct 72 */ 73 static void ice_check_for_hang_subtask(struct ice_pf *pf) 74 { 75 struct ice_vsi *vsi = NULL; 76 struct ice_hw *hw; 77 unsigned int i; 78 int packets; 79 u32 v; 80 81 ice_for_each_vsi(pf, v) 82 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 83 vsi = pf->vsi[v]; 84 break; 85 } 86 87 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 88 return; 89 90 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 91 return; 92 93 hw = &vsi->back->hw; 94 95 for (i = 0; i < vsi->num_txq; i++) { 96 struct ice_ring *tx_ring = vsi->tx_rings[i]; 97 98 if (tx_ring && tx_ring->desc) { 99 /* If packet counter has not changed the queue is 100 * likely stalled, so force an interrupt for this 101 * queue. 102 * 103 * prev_pkt would be negative if there was no 104 * pending work. 105 */ 106 packets = tx_ring->stats.pkts & INT_MAX; 107 if (tx_ring->tx_stats.prev_pkt == packets) { 108 /* Trigger sw interrupt to revive the queue */ 109 ice_trigger_sw_intr(hw, tx_ring->q_vector); 110 continue; 111 } 112 113 /* Memory barrier between read of packet count and call 114 * to ice_get_tx_pending() 115 */ 116 smp_rmb(); 117 tx_ring->tx_stats.prev_pkt = 118 ice_get_tx_pending(tx_ring) ? packets : -1; 119 } 120 } 121 } 122 123 /** 124 * ice_init_mac_fltr - Set initial MAC filters 125 * @pf: board private structure 126 * 127 * Set initial set of MAC filters for PF VSI; configure filters for permanent 128 * address and broadcast address. If an error is encountered, netdevice will be 129 * unregistered. 130 */ 131 static int ice_init_mac_fltr(struct ice_pf *pf) 132 { 133 enum ice_status status; 134 struct ice_vsi *vsi; 135 u8 *perm_addr; 136 137 vsi = ice_get_main_vsi(pf); 138 if (!vsi) 139 return -EINVAL; 140 141 perm_addr = vsi->port_info->mac.perm_addr; 142 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 143 if (status) 144 return -EIO; 145 146 return 0; 147 } 148 149 /** 150 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 151 * @netdev: the net device on which the sync is happening 152 * @addr: MAC address to sync 153 * 154 * This is a callback function which is called by the in kernel device sync 155 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 156 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 157 * MAC filters from the hardware. 158 */ 159 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 160 { 161 struct ice_netdev_priv *np = netdev_priv(netdev); 162 struct ice_vsi *vsi = np->vsi; 163 164 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 165 ICE_FWD_TO_VSI)) 166 return -EINVAL; 167 168 return 0; 169 } 170 171 /** 172 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 173 * @netdev: the net device on which the unsync is happening 174 * @addr: MAC address to unsync 175 * 176 * This is a callback function which is called by the in kernel device unsync 177 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 178 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 179 * delete the MAC filters from the hardware. 180 */ 181 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 182 { 183 struct ice_netdev_priv *np = netdev_priv(netdev); 184 struct ice_vsi *vsi = np->vsi; 185 186 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 187 ICE_FWD_TO_VSI)) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 /** 194 * ice_vsi_fltr_changed - check if filter state changed 195 * @vsi: VSI to be checked 196 * 197 * returns true if filter state has changed, false otherwise. 198 */ 199 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 200 { 201 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 202 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 203 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 204 } 205 206 /** 207 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 208 * @vsi: the VSI being configured 209 * @promisc_m: mask of promiscuous config bits 210 * @set_promisc: enable or disable promisc flag request 211 * 212 */ 213 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 214 { 215 struct ice_hw *hw = &vsi->back->hw; 216 enum ice_status status = 0; 217 218 if (vsi->type != ICE_VSI_PF) 219 return 0; 220 221 if (vsi->num_vlan > 1) { 222 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 223 set_promisc); 224 } else { 225 if (set_promisc) 226 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 227 0); 228 else 229 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 230 0); 231 } 232 233 if (status) 234 return -EIO; 235 236 return 0; 237 } 238 239 /** 240 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 241 * @vsi: ptr to the VSI 242 * 243 * Push any outstanding VSI filter changes through the AdminQ. 244 */ 245 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 246 { 247 struct device *dev = ice_pf_to_dev(vsi->back); 248 struct net_device *netdev = vsi->netdev; 249 bool promisc_forced_on = false; 250 struct ice_pf *pf = vsi->back; 251 struct ice_hw *hw = &pf->hw; 252 enum ice_status status = 0; 253 u32 changed_flags = 0; 254 u8 promisc_m; 255 int err = 0; 256 257 if (!vsi->netdev) 258 return -EINVAL; 259 260 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 261 usleep_range(1000, 2000); 262 263 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 264 vsi->current_netdev_flags = vsi->netdev->flags; 265 266 INIT_LIST_HEAD(&vsi->tmp_sync_list); 267 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 268 269 if (ice_vsi_fltr_changed(vsi)) { 270 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 271 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 272 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 273 274 /* grab the netdev's addr_list_lock */ 275 netif_addr_lock_bh(netdev); 276 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 277 ice_add_mac_to_unsync_list); 278 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 279 ice_add_mac_to_unsync_list); 280 /* our temp lists are populated. release lock */ 281 netif_addr_unlock_bh(netdev); 282 } 283 284 /* Remove MAC addresses in the unsync list */ 285 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 286 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 287 if (status) { 288 netdev_err(netdev, "Failed to delete MAC filters\n"); 289 /* if we failed because of alloc failures, just bail */ 290 if (status == ICE_ERR_NO_MEMORY) { 291 err = -ENOMEM; 292 goto out; 293 } 294 } 295 296 /* Add MAC addresses in the sync list */ 297 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 298 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 299 /* If filter is added successfully or already exists, do not go into 300 * 'if' condition and report it as error. Instead continue processing 301 * rest of the function. 302 */ 303 if (status && status != ICE_ERR_ALREADY_EXISTS) { 304 netdev_err(netdev, "Failed to add MAC filters\n"); 305 /* If there is no more space for new umac filters, VSI 306 * should go into promiscuous mode. There should be some 307 * space reserved for promiscuous filters. 308 */ 309 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 310 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 311 vsi->state)) { 312 promisc_forced_on = true; 313 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 314 vsi->vsi_num); 315 } else { 316 err = -EIO; 317 goto out; 318 } 319 } 320 /* check for changes in promiscuous modes */ 321 if (changed_flags & IFF_ALLMULTI) { 322 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 323 if (vsi->num_vlan > 1) 324 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 325 else 326 promisc_m = ICE_MCAST_PROMISC_BITS; 327 328 err = ice_cfg_promisc(vsi, promisc_m, true); 329 if (err) { 330 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 331 vsi->vsi_num); 332 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 333 goto out_promisc; 334 } 335 } else { 336 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 337 if (vsi->num_vlan > 1) 338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 339 else 340 promisc_m = ICE_MCAST_PROMISC_BITS; 341 342 err = ice_cfg_promisc(vsi, promisc_m, false); 343 if (err) { 344 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 345 vsi->vsi_num); 346 vsi->current_netdev_flags |= IFF_ALLMULTI; 347 goto out_promisc; 348 } 349 } 350 } 351 352 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 353 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 354 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 355 if (vsi->current_netdev_flags & IFF_PROMISC) { 356 /* Apply Rx filter rule to get traffic from wire */ 357 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 358 err = ice_set_dflt_vsi(pf->first_sw, vsi); 359 if (err && err != -EEXIST) { 360 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 361 err, vsi->vsi_num); 362 vsi->current_netdev_flags &= 363 ~IFF_PROMISC; 364 goto out_promisc; 365 } 366 ice_cfg_vlan_pruning(vsi, false, false); 367 } 368 } else { 369 /* Clear Rx filter to remove traffic from wire */ 370 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 371 err = ice_clear_dflt_vsi(pf->first_sw); 372 if (err) { 373 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 374 err, vsi->vsi_num); 375 vsi->current_netdev_flags |= 376 IFF_PROMISC; 377 goto out_promisc; 378 } 379 if (vsi->num_vlan > 1) 380 ice_cfg_vlan_pruning(vsi, true, false); 381 } 382 } 383 } 384 goto exit; 385 386 out_promisc: 387 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 388 goto exit; 389 out: 390 /* if something went wrong then set the changed flag so we try again */ 391 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 392 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 393 exit: 394 clear_bit(ICE_CFG_BUSY, vsi->state); 395 return err; 396 } 397 398 /** 399 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 400 * @pf: board private structure 401 */ 402 static void ice_sync_fltr_subtask(struct ice_pf *pf) 403 { 404 int v; 405 406 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 407 return; 408 409 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 410 411 ice_for_each_vsi(pf, v) 412 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 413 ice_vsi_sync_fltr(pf->vsi[v])) { 414 /* come back and try again later */ 415 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 416 break; 417 } 418 } 419 420 /** 421 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 422 * @pf: the PF 423 * @locked: is the rtnl_lock already held 424 */ 425 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 426 { 427 int node; 428 int v; 429 430 ice_for_each_vsi(pf, v) 431 if (pf->vsi[v]) 432 ice_dis_vsi(pf->vsi[v], locked); 433 434 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 435 pf->pf_agg_node[node].num_vsis = 0; 436 437 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 438 pf->vf_agg_node[node].num_vsis = 0; 439 } 440 441 /** 442 * ice_prepare_for_reset - prep for the core to reset 443 * @pf: board private structure 444 * 445 * Inform or close all dependent features in prep for reset. 446 */ 447 static void 448 ice_prepare_for_reset(struct ice_pf *pf) 449 { 450 struct ice_hw *hw = &pf->hw; 451 unsigned int i; 452 453 /* already prepared for reset */ 454 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 455 return; 456 457 /* Notify VFs of impending reset */ 458 if (ice_check_sq_alive(hw, &hw->mailboxq)) 459 ice_vc_notify_reset(pf); 460 461 /* Disable VFs until reset is completed */ 462 ice_for_each_vf(pf, i) 463 ice_set_vf_state_qs_dis(&pf->vf[i]); 464 465 /* clear SW filtering DB */ 466 ice_clear_hw_tbls(hw); 467 /* disable the VSIs and their queues that are not already DOWN */ 468 ice_pf_dis_all_vsi(pf, false); 469 470 if (hw->port_info) 471 ice_sched_clear_port(hw->port_info); 472 473 ice_shutdown_all_ctrlq(hw); 474 475 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 476 } 477 478 /** 479 * ice_do_reset - Initiate one of many types of resets 480 * @pf: board private structure 481 * @reset_type: reset type requested 482 * before this function was called. 483 */ 484 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 485 { 486 struct device *dev = ice_pf_to_dev(pf); 487 struct ice_hw *hw = &pf->hw; 488 489 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 490 491 ice_prepare_for_reset(pf); 492 493 /* trigger the reset */ 494 if (ice_reset(hw, reset_type)) { 495 dev_err(dev, "reset %d failed\n", reset_type); 496 set_bit(ICE_RESET_FAILED, pf->state); 497 clear_bit(ICE_RESET_OICR_RECV, pf->state); 498 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 499 clear_bit(ICE_PFR_REQ, pf->state); 500 clear_bit(ICE_CORER_REQ, pf->state); 501 clear_bit(ICE_GLOBR_REQ, pf->state); 502 return; 503 } 504 505 /* PFR is a bit of a special case because it doesn't result in an OICR 506 * interrupt. So for PFR, rebuild after the reset and clear the reset- 507 * associated state bits. 508 */ 509 if (reset_type == ICE_RESET_PFR) { 510 pf->pfr_count++; 511 ice_rebuild(pf, reset_type); 512 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 513 clear_bit(ICE_PFR_REQ, pf->state); 514 ice_reset_all_vfs(pf, true); 515 } 516 } 517 518 /** 519 * ice_reset_subtask - Set up for resetting the device and driver 520 * @pf: board private structure 521 */ 522 static void ice_reset_subtask(struct ice_pf *pf) 523 { 524 enum ice_reset_req reset_type = ICE_RESET_INVAL; 525 526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 528 * of reset is pending and sets bits in pf->state indicating the reset 529 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 530 * prepare for pending reset if not already (for PF software-initiated 531 * global resets the software should already be prepared for it as 532 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 533 * by firmware or software on other PFs, that bit is not set so prepare 534 * for the reset now), poll for reset done, rebuild and return. 535 */ 536 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 537 /* Perform the largest reset requested */ 538 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 539 reset_type = ICE_RESET_CORER; 540 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 541 reset_type = ICE_RESET_GLOBR; 542 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 543 reset_type = ICE_RESET_EMPR; 544 /* return if no valid reset type requested */ 545 if (reset_type == ICE_RESET_INVAL) 546 return; 547 ice_prepare_for_reset(pf); 548 549 /* make sure we are ready to rebuild */ 550 if (ice_check_reset(&pf->hw)) { 551 set_bit(ICE_RESET_FAILED, pf->state); 552 } else { 553 /* done with reset. start rebuild */ 554 pf->hw.reset_ongoing = false; 555 ice_rebuild(pf, reset_type); 556 /* clear bit to resume normal operations, but 557 * ICE_NEEDS_RESTART bit is set in case rebuild failed 558 */ 559 clear_bit(ICE_RESET_OICR_RECV, pf->state); 560 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 561 clear_bit(ICE_PFR_REQ, pf->state); 562 clear_bit(ICE_CORER_REQ, pf->state); 563 clear_bit(ICE_GLOBR_REQ, pf->state); 564 ice_reset_all_vfs(pf, true); 565 } 566 567 return; 568 } 569 570 /* No pending resets to finish processing. Check for new resets */ 571 if (test_bit(ICE_PFR_REQ, pf->state)) 572 reset_type = ICE_RESET_PFR; 573 if (test_bit(ICE_CORER_REQ, pf->state)) 574 reset_type = ICE_RESET_CORER; 575 if (test_bit(ICE_GLOBR_REQ, pf->state)) 576 reset_type = ICE_RESET_GLOBR; 577 /* If no valid reset type requested just return */ 578 if (reset_type == ICE_RESET_INVAL) 579 return; 580 581 /* reset if not already down or busy */ 582 if (!test_bit(ICE_DOWN, pf->state) && 583 !test_bit(ICE_CFG_BUSY, pf->state)) { 584 ice_do_reset(pf, reset_type); 585 } 586 } 587 588 /** 589 * ice_print_topo_conflict - print topology conflict message 590 * @vsi: the VSI whose topology status is being checked 591 */ 592 static void ice_print_topo_conflict(struct ice_vsi *vsi) 593 { 594 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 595 case ICE_AQ_LINK_TOPO_CONFLICT: 596 case ICE_AQ_LINK_MEDIA_CONFLICT: 597 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 598 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 599 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 600 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 601 break; 602 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 603 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 604 break; 605 default: 606 break; 607 } 608 } 609 610 /** 611 * ice_print_link_msg - print link up or down message 612 * @vsi: the VSI whose link status is being queried 613 * @isup: boolean for if the link is now up or down 614 */ 615 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 616 { 617 struct ice_aqc_get_phy_caps_data *caps; 618 const char *an_advertised; 619 enum ice_status status; 620 const char *fec_req; 621 const char *speed; 622 const char *fec; 623 const char *fc; 624 const char *an; 625 626 if (!vsi) 627 return; 628 629 if (vsi->current_isup == isup) 630 return; 631 632 vsi->current_isup = isup; 633 634 if (!isup) { 635 netdev_info(vsi->netdev, "NIC Link is Down\n"); 636 return; 637 } 638 639 switch (vsi->port_info->phy.link_info.link_speed) { 640 case ICE_AQ_LINK_SPEED_100GB: 641 speed = "100 G"; 642 break; 643 case ICE_AQ_LINK_SPEED_50GB: 644 speed = "50 G"; 645 break; 646 case ICE_AQ_LINK_SPEED_40GB: 647 speed = "40 G"; 648 break; 649 case ICE_AQ_LINK_SPEED_25GB: 650 speed = "25 G"; 651 break; 652 case ICE_AQ_LINK_SPEED_20GB: 653 speed = "20 G"; 654 break; 655 case ICE_AQ_LINK_SPEED_10GB: 656 speed = "10 G"; 657 break; 658 case ICE_AQ_LINK_SPEED_5GB: 659 speed = "5 G"; 660 break; 661 case ICE_AQ_LINK_SPEED_2500MB: 662 speed = "2.5 G"; 663 break; 664 case ICE_AQ_LINK_SPEED_1000MB: 665 speed = "1 G"; 666 break; 667 case ICE_AQ_LINK_SPEED_100MB: 668 speed = "100 M"; 669 break; 670 default: 671 speed = "Unknown "; 672 break; 673 } 674 675 switch (vsi->port_info->fc.current_mode) { 676 case ICE_FC_FULL: 677 fc = "Rx/Tx"; 678 break; 679 case ICE_FC_TX_PAUSE: 680 fc = "Tx"; 681 break; 682 case ICE_FC_RX_PAUSE: 683 fc = "Rx"; 684 break; 685 case ICE_FC_NONE: 686 fc = "None"; 687 break; 688 default: 689 fc = "Unknown"; 690 break; 691 } 692 693 /* Get FEC mode based on negotiated link info */ 694 switch (vsi->port_info->phy.link_info.fec_info) { 695 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 696 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 697 fec = "RS-FEC"; 698 break; 699 case ICE_AQ_LINK_25G_KR_FEC_EN: 700 fec = "FC-FEC/BASE-R"; 701 break; 702 default: 703 fec = "NONE"; 704 break; 705 } 706 707 /* check if autoneg completed, might be false due to not supported */ 708 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 709 an = "True"; 710 else 711 an = "False"; 712 713 /* Get FEC mode requested based on PHY caps last SW configuration */ 714 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 715 if (!caps) { 716 fec_req = "Unknown"; 717 an_advertised = "Unknown"; 718 goto done; 719 } 720 721 status = ice_aq_get_phy_caps(vsi->port_info, false, 722 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 723 if (status) 724 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 725 726 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 727 728 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 729 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 730 fec_req = "RS-FEC"; 731 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 732 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 733 fec_req = "FC-FEC/BASE-R"; 734 else 735 fec_req = "NONE"; 736 737 kfree(caps); 738 739 done: 740 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 741 speed, fec_req, fec, an_advertised, an, fc); 742 ice_print_topo_conflict(vsi); 743 } 744 745 /** 746 * ice_vsi_link_event - update the VSI's netdev 747 * @vsi: the VSI on which the link event occurred 748 * @link_up: whether or not the VSI needs to be set up or down 749 */ 750 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 751 { 752 if (!vsi) 753 return; 754 755 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 756 return; 757 758 if (vsi->type == ICE_VSI_PF) { 759 if (link_up == netif_carrier_ok(vsi->netdev)) 760 return; 761 762 if (link_up) { 763 netif_carrier_on(vsi->netdev); 764 netif_tx_wake_all_queues(vsi->netdev); 765 } else { 766 netif_carrier_off(vsi->netdev); 767 netif_tx_stop_all_queues(vsi->netdev); 768 } 769 } 770 } 771 772 /** 773 * ice_set_dflt_mib - send a default config MIB to the FW 774 * @pf: private PF struct 775 * 776 * This function sends a default configuration MIB to the FW. 777 * 778 * If this function errors out at any point, the driver is still able to 779 * function. The main impact is that LFC may not operate as expected. 780 * Therefore an error state in this function should be treated with a DBG 781 * message and continue on with driver rebuild/reenable. 782 */ 783 static void ice_set_dflt_mib(struct ice_pf *pf) 784 { 785 struct device *dev = ice_pf_to_dev(pf); 786 u8 mib_type, *buf, *lldpmib = NULL; 787 u16 len, typelen, offset = 0; 788 struct ice_lldp_org_tlv *tlv; 789 struct ice_hw *hw = &pf->hw; 790 u32 ouisubtype; 791 792 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 793 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 794 if (!lldpmib) { 795 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 796 __func__); 797 return; 798 } 799 800 /* Add ETS CFG TLV */ 801 tlv = (struct ice_lldp_org_tlv *)lldpmib; 802 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 803 ICE_IEEE_ETS_TLV_LEN); 804 tlv->typelen = htons(typelen); 805 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 806 ICE_IEEE_SUBTYPE_ETS_CFG); 807 tlv->ouisubtype = htonl(ouisubtype); 808 809 buf = tlv->tlvinfo; 810 buf[0] = 0; 811 812 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 813 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 814 * Octets 13 - 20 are TSA values - leave as zeros 815 */ 816 buf[5] = 0x64; 817 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 818 offset += len + 2; 819 tlv = (struct ice_lldp_org_tlv *) 820 ((char *)tlv + sizeof(tlv->typelen) + len); 821 822 /* Add ETS REC TLV */ 823 buf = tlv->tlvinfo; 824 tlv->typelen = htons(typelen); 825 826 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 827 ICE_IEEE_SUBTYPE_ETS_REC); 828 tlv->ouisubtype = htonl(ouisubtype); 829 830 /* First octet of buf is reserved 831 * Octets 1 - 4 map UP to TC - all UPs map to zero 832 * Octets 5 - 12 are BW values - set TC 0 to 100%. 833 * Octets 13 - 20 are TSA value - leave as zeros 834 */ 835 buf[5] = 0x64; 836 offset += len + 2; 837 tlv = (struct ice_lldp_org_tlv *) 838 ((char *)tlv + sizeof(tlv->typelen) + len); 839 840 /* Add PFC CFG TLV */ 841 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 842 ICE_IEEE_PFC_TLV_LEN); 843 tlv->typelen = htons(typelen); 844 845 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 846 ICE_IEEE_SUBTYPE_PFC_CFG); 847 tlv->ouisubtype = htonl(ouisubtype); 848 849 /* Octet 1 left as all zeros - PFC disabled */ 850 buf[0] = 0x08; 851 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 852 offset += len + 2; 853 854 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 855 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 856 857 kfree(lldpmib); 858 } 859 860 /** 861 * ice_link_event - process the link event 862 * @pf: PF that the link event is associated with 863 * @pi: port_info for the port that the link event is associated with 864 * @link_up: true if the physical link is up and false if it is down 865 * @link_speed: current link speed received from the link event 866 * 867 * Returns 0 on success and negative on failure 868 */ 869 static int 870 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 871 u16 link_speed) 872 { 873 struct device *dev = ice_pf_to_dev(pf); 874 struct ice_phy_info *phy_info; 875 enum ice_status status; 876 struct ice_vsi *vsi; 877 u16 old_link_speed; 878 bool old_link; 879 880 phy_info = &pi->phy; 881 phy_info->link_info_old = phy_info->link_info; 882 883 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 884 old_link_speed = phy_info->link_info_old.link_speed; 885 886 /* update the link info structures and re-enable link events, 887 * don't bail on failure due to other book keeping needed 888 */ 889 status = ice_update_link_info(pi); 890 if (status) 891 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 892 pi->lport, ice_stat_str(status), 893 ice_aq_str(pi->hw->adminq.sq_last_status)); 894 895 /* Check if the link state is up after updating link info, and treat 896 * this event as an UP event since the link is actually UP now. 897 */ 898 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 899 link_up = true; 900 901 vsi = ice_get_main_vsi(pf); 902 if (!vsi || !vsi->port_info) 903 return -EINVAL; 904 905 /* turn off PHY if media was removed */ 906 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 907 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 908 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 909 ice_set_link(vsi, false); 910 } 911 912 /* if the old link up/down and speed is the same as the new */ 913 if (link_up == old_link && link_speed == old_link_speed) 914 return 0; 915 916 if (ice_is_dcb_active(pf)) { 917 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 918 ice_dcb_rebuild(pf); 919 } else { 920 if (link_up) 921 ice_set_dflt_mib(pf); 922 } 923 ice_vsi_link_event(vsi, link_up); 924 ice_print_link_msg(vsi, link_up); 925 926 ice_vc_notify_link_state(pf); 927 928 return 0; 929 } 930 931 /** 932 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 933 * @pf: board private structure 934 */ 935 static void ice_watchdog_subtask(struct ice_pf *pf) 936 { 937 int i; 938 939 /* if interface is down do nothing */ 940 if (test_bit(ICE_DOWN, pf->state) || 941 test_bit(ICE_CFG_BUSY, pf->state)) 942 return; 943 944 /* make sure we don't do these things too often */ 945 if (time_before(jiffies, 946 pf->serv_tmr_prev + pf->serv_tmr_period)) 947 return; 948 949 pf->serv_tmr_prev = jiffies; 950 951 /* Update the stats for active netdevs so the network stack 952 * can look at updated numbers whenever it cares to 953 */ 954 ice_update_pf_stats(pf); 955 ice_for_each_vsi(pf, i) 956 if (pf->vsi[i] && pf->vsi[i]->netdev) 957 ice_update_vsi_stats(pf->vsi[i]); 958 } 959 960 /** 961 * ice_init_link_events - enable/initialize link events 962 * @pi: pointer to the port_info instance 963 * 964 * Returns -EIO on failure, 0 on success 965 */ 966 static int ice_init_link_events(struct ice_port_info *pi) 967 { 968 u16 mask; 969 970 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 971 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 972 973 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 974 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 975 pi->lport); 976 return -EIO; 977 } 978 979 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 980 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 981 pi->lport); 982 return -EIO; 983 } 984 985 return 0; 986 } 987 988 /** 989 * ice_handle_link_event - handle link event via ARQ 990 * @pf: PF that the link event is associated with 991 * @event: event structure containing link status info 992 */ 993 static int 994 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 995 { 996 struct ice_aqc_get_link_status_data *link_data; 997 struct ice_port_info *port_info; 998 int status; 999 1000 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1001 port_info = pf->hw.port_info; 1002 if (!port_info) 1003 return -EINVAL; 1004 1005 status = ice_link_event(pf, port_info, 1006 !!(link_data->link_info & ICE_AQ_LINK_UP), 1007 le16_to_cpu(link_data->link_speed)); 1008 if (status) 1009 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1010 status); 1011 1012 return status; 1013 } 1014 1015 enum ice_aq_task_state { 1016 ICE_AQ_TASK_WAITING = 0, 1017 ICE_AQ_TASK_COMPLETE, 1018 ICE_AQ_TASK_CANCELED, 1019 }; 1020 1021 struct ice_aq_task { 1022 struct hlist_node entry; 1023 1024 u16 opcode; 1025 struct ice_rq_event_info *event; 1026 enum ice_aq_task_state state; 1027 }; 1028 1029 /** 1030 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1031 * @pf: pointer to the PF private structure 1032 * @opcode: the opcode to wait for 1033 * @timeout: how long to wait, in jiffies 1034 * @event: storage for the event info 1035 * 1036 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1037 * current thread will be put to sleep until the specified event occurs or 1038 * until the given timeout is reached. 1039 * 1040 * To obtain only the descriptor contents, pass an event without an allocated 1041 * msg_buf. If the complete data buffer is desired, allocate the 1042 * event->msg_buf with enough space ahead of time. 1043 * 1044 * Returns: zero on success, or a negative error code on failure. 1045 */ 1046 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1047 struct ice_rq_event_info *event) 1048 { 1049 struct device *dev = ice_pf_to_dev(pf); 1050 struct ice_aq_task *task; 1051 unsigned long start; 1052 long ret; 1053 int err; 1054 1055 task = kzalloc(sizeof(*task), GFP_KERNEL); 1056 if (!task) 1057 return -ENOMEM; 1058 1059 INIT_HLIST_NODE(&task->entry); 1060 task->opcode = opcode; 1061 task->event = event; 1062 task->state = ICE_AQ_TASK_WAITING; 1063 1064 spin_lock_bh(&pf->aq_wait_lock); 1065 hlist_add_head(&task->entry, &pf->aq_wait_list); 1066 spin_unlock_bh(&pf->aq_wait_lock); 1067 1068 start = jiffies; 1069 1070 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1071 timeout); 1072 switch (task->state) { 1073 case ICE_AQ_TASK_WAITING: 1074 err = ret < 0 ? ret : -ETIMEDOUT; 1075 break; 1076 case ICE_AQ_TASK_CANCELED: 1077 err = ret < 0 ? ret : -ECANCELED; 1078 break; 1079 case ICE_AQ_TASK_COMPLETE: 1080 err = ret < 0 ? ret : 0; 1081 break; 1082 default: 1083 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1084 err = -EINVAL; 1085 break; 1086 } 1087 1088 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1089 jiffies_to_msecs(jiffies - start), 1090 jiffies_to_msecs(timeout), 1091 opcode); 1092 1093 spin_lock_bh(&pf->aq_wait_lock); 1094 hlist_del(&task->entry); 1095 spin_unlock_bh(&pf->aq_wait_lock); 1096 kfree(task); 1097 1098 return err; 1099 } 1100 1101 /** 1102 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1103 * @pf: pointer to the PF private structure 1104 * @opcode: the opcode of the event 1105 * @event: the event to check 1106 * 1107 * Loops over the current list of pending threads waiting for an AdminQ event. 1108 * For each matching task, copy the contents of the event into the task 1109 * structure and wake up the thread. 1110 * 1111 * If multiple threads wait for the same opcode, they will all be woken up. 1112 * 1113 * Note that event->msg_buf will only be duplicated if the event has a buffer 1114 * with enough space already allocated. Otherwise, only the descriptor and 1115 * message length will be copied. 1116 * 1117 * Returns: true if an event was found, false otherwise 1118 */ 1119 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1120 struct ice_rq_event_info *event) 1121 { 1122 struct ice_aq_task *task; 1123 bool found = false; 1124 1125 spin_lock_bh(&pf->aq_wait_lock); 1126 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1127 if (task->state || task->opcode != opcode) 1128 continue; 1129 1130 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1131 task->event->msg_len = event->msg_len; 1132 1133 /* Only copy the data buffer if a destination was set */ 1134 if (task->event->msg_buf && 1135 task->event->buf_len > event->buf_len) { 1136 memcpy(task->event->msg_buf, event->msg_buf, 1137 event->buf_len); 1138 task->event->buf_len = event->buf_len; 1139 } 1140 1141 task->state = ICE_AQ_TASK_COMPLETE; 1142 found = true; 1143 } 1144 spin_unlock_bh(&pf->aq_wait_lock); 1145 1146 if (found) 1147 wake_up(&pf->aq_wait_queue); 1148 } 1149 1150 /** 1151 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1152 * @pf: the PF private structure 1153 * 1154 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1155 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1156 */ 1157 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1158 { 1159 struct ice_aq_task *task; 1160 1161 spin_lock_bh(&pf->aq_wait_lock); 1162 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1163 task->state = ICE_AQ_TASK_CANCELED; 1164 spin_unlock_bh(&pf->aq_wait_lock); 1165 1166 wake_up(&pf->aq_wait_queue); 1167 } 1168 1169 /** 1170 * __ice_clean_ctrlq - helper function to clean controlq rings 1171 * @pf: ptr to struct ice_pf 1172 * @q_type: specific Control queue type 1173 */ 1174 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1175 { 1176 struct device *dev = ice_pf_to_dev(pf); 1177 struct ice_rq_event_info event; 1178 struct ice_hw *hw = &pf->hw; 1179 struct ice_ctl_q_info *cq; 1180 u16 pending, i = 0; 1181 const char *qtype; 1182 u32 oldval, val; 1183 1184 /* Do not clean control queue if/when PF reset fails */ 1185 if (test_bit(ICE_RESET_FAILED, pf->state)) 1186 return 0; 1187 1188 switch (q_type) { 1189 case ICE_CTL_Q_ADMIN: 1190 cq = &hw->adminq; 1191 qtype = "Admin"; 1192 break; 1193 case ICE_CTL_Q_MAILBOX: 1194 cq = &hw->mailboxq; 1195 qtype = "Mailbox"; 1196 /* we are going to try to detect a malicious VF, so set the 1197 * state to begin detection 1198 */ 1199 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1200 break; 1201 default: 1202 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1203 return 0; 1204 } 1205 1206 /* check for error indications - PF_xx_AxQLEN register layout for 1207 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1208 */ 1209 val = rd32(hw, cq->rq.len); 1210 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1211 PF_FW_ARQLEN_ARQCRIT_M)) { 1212 oldval = val; 1213 if (val & PF_FW_ARQLEN_ARQVFE_M) 1214 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1215 qtype); 1216 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1217 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1218 qtype); 1219 } 1220 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1221 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1222 qtype); 1223 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1224 PF_FW_ARQLEN_ARQCRIT_M); 1225 if (oldval != val) 1226 wr32(hw, cq->rq.len, val); 1227 } 1228 1229 val = rd32(hw, cq->sq.len); 1230 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1231 PF_FW_ATQLEN_ATQCRIT_M)) { 1232 oldval = val; 1233 if (val & PF_FW_ATQLEN_ATQVFE_M) 1234 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1235 qtype); 1236 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1237 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1238 qtype); 1239 } 1240 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1241 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1242 qtype); 1243 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1244 PF_FW_ATQLEN_ATQCRIT_M); 1245 if (oldval != val) 1246 wr32(hw, cq->sq.len, val); 1247 } 1248 1249 event.buf_len = cq->rq_buf_size; 1250 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1251 if (!event.msg_buf) 1252 return 0; 1253 1254 do { 1255 enum ice_status ret; 1256 u16 opcode; 1257 1258 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1259 if (ret == ICE_ERR_AQ_NO_WORK) 1260 break; 1261 if (ret) { 1262 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1263 ice_stat_str(ret)); 1264 break; 1265 } 1266 1267 opcode = le16_to_cpu(event.desc.opcode); 1268 1269 /* Notify any thread that might be waiting for this event */ 1270 ice_aq_check_events(pf, opcode, &event); 1271 1272 switch (opcode) { 1273 case ice_aqc_opc_get_link_status: 1274 if (ice_handle_link_event(pf, &event)) 1275 dev_err(dev, "Could not handle link event\n"); 1276 break; 1277 case ice_aqc_opc_event_lan_overflow: 1278 ice_vf_lan_overflow_event(pf, &event); 1279 break; 1280 case ice_mbx_opc_send_msg_to_pf: 1281 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1282 ice_vc_process_vf_msg(pf, &event); 1283 break; 1284 case ice_aqc_opc_fw_logging: 1285 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1286 break; 1287 case ice_aqc_opc_lldp_set_mib_change: 1288 ice_dcb_process_lldp_set_mib_change(pf, &event); 1289 break; 1290 default: 1291 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1292 qtype, opcode); 1293 break; 1294 } 1295 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1296 1297 kfree(event.msg_buf); 1298 1299 return pending && (i == ICE_DFLT_IRQ_WORK); 1300 } 1301 1302 /** 1303 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1304 * @hw: pointer to hardware info 1305 * @cq: control queue information 1306 * 1307 * returns true if there are pending messages in a queue, false if there aren't 1308 */ 1309 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1310 { 1311 u16 ntu; 1312 1313 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1314 return cq->rq.next_to_clean != ntu; 1315 } 1316 1317 /** 1318 * ice_clean_adminq_subtask - clean the AdminQ rings 1319 * @pf: board private structure 1320 */ 1321 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1322 { 1323 struct ice_hw *hw = &pf->hw; 1324 1325 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1326 return; 1327 1328 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1329 return; 1330 1331 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1332 1333 /* There might be a situation where new messages arrive to a control 1334 * queue between processing the last message and clearing the 1335 * EVENT_PENDING bit. So before exiting, check queue head again (using 1336 * ice_ctrlq_pending) and process new messages if any. 1337 */ 1338 if (ice_ctrlq_pending(hw, &hw->adminq)) 1339 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1340 1341 ice_flush(hw); 1342 } 1343 1344 /** 1345 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1346 * @pf: board private structure 1347 */ 1348 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1349 { 1350 struct ice_hw *hw = &pf->hw; 1351 1352 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1353 return; 1354 1355 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1356 return; 1357 1358 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1359 1360 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1361 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1362 1363 ice_flush(hw); 1364 } 1365 1366 /** 1367 * ice_service_task_schedule - schedule the service task to wake up 1368 * @pf: board private structure 1369 * 1370 * If not already scheduled, this puts the task into the work queue. 1371 */ 1372 void ice_service_task_schedule(struct ice_pf *pf) 1373 { 1374 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1375 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1376 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1377 queue_work(ice_wq, &pf->serv_task); 1378 } 1379 1380 /** 1381 * ice_service_task_complete - finish up the service task 1382 * @pf: board private structure 1383 */ 1384 static void ice_service_task_complete(struct ice_pf *pf) 1385 { 1386 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1387 1388 /* force memory (pf->state) to sync before next service task */ 1389 smp_mb__before_atomic(); 1390 clear_bit(ICE_SERVICE_SCHED, pf->state); 1391 } 1392 1393 /** 1394 * ice_service_task_stop - stop service task and cancel works 1395 * @pf: board private structure 1396 * 1397 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1398 * 1 otherwise. 1399 */ 1400 static int ice_service_task_stop(struct ice_pf *pf) 1401 { 1402 int ret; 1403 1404 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1405 1406 if (pf->serv_tmr.function) 1407 del_timer_sync(&pf->serv_tmr); 1408 if (pf->serv_task.func) 1409 cancel_work_sync(&pf->serv_task); 1410 1411 clear_bit(ICE_SERVICE_SCHED, pf->state); 1412 return ret; 1413 } 1414 1415 /** 1416 * ice_service_task_restart - restart service task and schedule works 1417 * @pf: board private structure 1418 * 1419 * This function is needed for suspend and resume works (e.g WoL scenario) 1420 */ 1421 static void ice_service_task_restart(struct ice_pf *pf) 1422 { 1423 clear_bit(ICE_SERVICE_DIS, pf->state); 1424 ice_service_task_schedule(pf); 1425 } 1426 1427 /** 1428 * ice_service_timer - timer callback to schedule service task 1429 * @t: pointer to timer_list 1430 */ 1431 static void ice_service_timer(struct timer_list *t) 1432 { 1433 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1434 1435 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1436 ice_service_task_schedule(pf); 1437 } 1438 1439 /** 1440 * ice_handle_mdd_event - handle malicious driver detect event 1441 * @pf: pointer to the PF structure 1442 * 1443 * Called from service task. OICR interrupt handler indicates MDD event. 1444 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1445 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1446 * disable the queue, the PF can be configured to reset the VF using ethtool 1447 * private flag mdd-auto-reset-vf. 1448 */ 1449 static void ice_handle_mdd_event(struct ice_pf *pf) 1450 { 1451 struct device *dev = ice_pf_to_dev(pf); 1452 struct ice_hw *hw = &pf->hw; 1453 unsigned int i; 1454 u32 reg; 1455 1456 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1457 /* Since the VF MDD event logging is rate limited, check if 1458 * there are pending MDD events. 1459 */ 1460 ice_print_vfs_mdd_events(pf); 1461 return; 1462 } 1463 1464 /* find what triggered an MDD event */ 1465 reg = rd32(hw, GL_MDET_TX_PQM); 1466 if (reg & GL_MDET_TX_PQM_VALID_M) { 1467 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1468 GL_MDET_TX_PQM_PF_NUM_S; 1469 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1470 GL_MDET_TX_PQM_VF_NUM_S; 1471 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1472 GL_MDET_TX_PQM_MAL_TYPE_S; 1473 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1474 GL_MDET_TX_PQM_QNUM_S); 1475 1476 if (netif_msg_tx_err(pf)) 1477 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1478 event, queue, pf_num, vf_num); 1479 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1480 } 1481 1482 reg = rd32(hw, GL_MDET_TX_TCLAN); 1483 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1484 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1485 GL_MDET_TX_TCLAN_PF_NUM_S; 1486 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1487 GL_MDET_TX_TCLAN_VF_NUM_S; 1488 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1489 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1490 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1491 GL_MDET_TX_TCLAN_QNUM_S); 1492 1493 if (netif_msg_tx_err(pf)) 1494 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1495 event, queue, pf_num, vf_num); 1496 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1497 } 1498 1499 reg = rd32(hw, GL_MDET_RX); 1500 if (reg & GL_MDET_RX_VALID_M) { 1501 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1502 GL_MDET_RX_PF_NUM_S; 1503 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1504 GL_MDET_RX_VF_NUM_S; 1505 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1506 GL_MDET_RX_MAL_TYPE_S; 1507 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1508 GL_MDET_RX_QNUM_S); 1509 1510 if (netif_msg_rx_err(pf)) 1511 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1512 event, queue, pf_num, vf_num); 1513 wr32(hw, GL_MDET_RX, 0xffffffff); 1514 } 1515 1516 /* check to see if this PF caused an MDD event */ 1517 reg = rd32(hw, PF_MDET_TX_PQM); 1518 if (reg & PF_MDET_TX_PQM_VALID_M) { 1519 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1520 if (netif_msg_tx_err(pf)) 1521 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1522 } 1523 1524 reg = rd32(hw, PF_MDET_TX_TCLAN); 1525 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1526 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1527 if (netif_msg_tx_err(pf)) 1528 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1529 } 1530 1531 reg = rd32(hw, PF_MDET_RX); 1532 if (reg & PF_MDET_RX_VALID_M) { 1533 wr32(hw, PF_MDET_RX, 0xFFFF); 1534 if (netif_msg_rx_err(pf)) 1535 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1536 } 1537 1538 /* Check to see if one of the VFs caused an MDD event, and then 1539 * increment counters and set print pending 1540 */ 1541 ice_for_each_vf(pf, i) { 1542 struct ice_vf *vf = &pf->vf[i]; 1543 1544 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1545 if (reg & VP_MDET_TX_PQM_VALID_M) { 1546 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1547 vf->mdd_tx_events.count++; 1548 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1549 if (netif_msg_tx_err(pf)) 1550 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1551 i); 1552 } 1553 1554 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1555 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1556 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1557 vf->mdd_tx_events.count++; 1558 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1559 if (netif_msg_tx_err(pf)) 1560 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1561 i); 1562 } 1563 1564 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1565 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1566 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1567 vf->mdd_tx_events.count++; 1568 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1569 if (netif_msg_tx_err(pf)) 1570 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1571 i); 1572 } 1573 1574 reg = rd32(hw, VP_MDET_RX(i)); 1575 if (reg & VP_MDET_RX_VALID_M) { 1576 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1577 vf->mdd_rx_events.count++; 1578 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1579 if (netif_msg_rx_err(pf)) 1580 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1581 i); 1582 1583 /* Since the queue is disabled on VF Rx MDD events, the 1584 * PF can be configured to reset the VF through ethtool 1585 * private flag mdd-auto-reset-vf. 1586 */ 1587 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1588 /* VF MDD event counters will be cleared by 1589 * reset, so print the event prior to reset. 1590 */ 1591 ice_print_vf_rx_mdd_event(vf); 1592 ice_reset_vf(&pf->vf[i], false); 1593 } 1594 } 1595 } 1596 1597 ice_print_vfs_mdd_events(pf); 1598 } 1599 1600 /** 1601 * ice_force_phys_link_state - Force the physical link state 1602 * @vsi: VSI to force the physical link state to up/down 1603 * @link_up: true/false indicates to set the physical link to up/down 1604 * 1605 * Force the physical link state by getting the current PHY capabilities from 1606 * hardware and setting the PHY config based on the determined capabilities. If 1607 * link changes a link event will be triggered because both the Enable Automatic 1608 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1609 * 1610 * Returns 0 on success, negative on failure 1611 */ 1612 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1613 { 1614 struct ice_aqc_get_phy_caps_data *pcaps; 1615 struct ice_aqc_set_phy_cfg_data *cfg; 1616 struct ice_port_info *pi; 1617 struct device *dev; 1618 int retcode; 1619 1620 if (!vsi || !vsi->port_info || !vsi->back) 1621 return -EINVAL; 1622 if (vsi->type != ICE_VSI_PF) 1623 return 0; 1624 1625 dev = ice_pf_to_dev(vsi->back); 1626 1627 pi = vsi->port_info; 1628 1629 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1630 if (!pcaps) 1631 return -ENOMEM; 1632 1633 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1634 NULL); 1635 if (retcode) { 1636 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1637 vsi->vsi_num, retcode); 1638 retcode = -EIO; 1639 goto out; 1640 } 1641 1642 /* No change in link */ 1643 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1644 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1645 goto out; 1646 1647 /* Use the current user PHY configuration. The current user PHY 1648 * configuration is initialized during probe from PHY capabilities 1649 * software mode, and updated on set PHY configuration. 1650 */ 1651 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1652 if (!cfg) { 1653 retcode = -ENOMEM; 1654 goto out; 1655 } 1656 1657 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1658 if (link_up) 1659 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1660 else 1661 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1662 1663 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1664 if (retcode) { 1665 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1666 vsi->vsi_num, retcode); 1667 retcode = -EIO; 1668 } 1669 1670 kfree(cfg); 1671 out: 1672 kfree(pcaps); 1673 return retcode; 1674 } 1675 1676 /** 1677 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1678 * @pi: port info structure 1679 * 1680 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1681 */ 1682 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1683 { 1684 struct ice_aqc_get_phy_caps_data *pcaps; 1685 struct ice_pf *pf = pi->hw->back; 1686 enum ice_status status; 1687 int err = 0; 1688 1689 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1690 if (!pcaps) 1691 return -ENOMEM; 1692 1693 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1694 NULL); 1695 1696 if (status) { 1697 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1698 err = -EIO; 1699 goto out; 1700 } 1701 1702 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1703 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1704 1705 out: 1706 kfree(pcaps); 1707 return err; 1708 } 1709 1710 /** 1711 * ice_init_link_dflt_override - Initialize link default override 1712 * @pi: port info structure 1713 * 1714 * Initialize link default override and PHY total port shutdown during probe 1715 */ 1716 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1717 { 1718 struct ice_link_default_override_tlv *ldo; 1719 struct ice_pf *pf = pi->hw->back; 1720 1721 ldo = &pf->link_dflt_override; 1722 if (ice_get_link_default_override(ldo, pi)) 1723 return; 1724 1725 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1726 return; 1727 1728 /* Enable Total Port Shutdown (override/replace link-down-on-close 1729 * ethtool private flag) for ports with Port Disable bit set. 1730 */ 1731 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1732 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1733 } 1734 1735 /** 1736 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1737 * @pi: port info structure 1738 * 1739 * If default override is enabled, initialize the user PHY cfg speed and FEC 1740 * settings using the default override mask from the NVM. 1741 * 1742 * The PHY should only be configured with the default override settings the 1743 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1744 * is used to indicate that the user PHY cfg default override is initialized 1745 * and the PHY has not been configured with the default override settings. The 1746 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1747 * configured. 1748 * 1749 * This function should be called only if the FW doesn't support default 1750 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1751 */ 1752 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1753 { 1754 struct ice_link_default_override_tlv *ldo; 1755 struct ice_aqc_set_phy_cfg_data *cfg; 1756 struct ice_phy_info *phy = &pi->phy; 1757 struct ice_pf *pf = pi->hw->back; 1758 1759 ldo = &pf->link_dflt_override; 1760 1761 /* If link default override is enabled, use to mask NVM PHY capabilities 1762 * for speed and FEC default configuration. 1763 */ 1764 cfg = &phy->curr_user_phy_cfg; 1765 1766 if (ldo->phy_type_low || ldo->phy_type_high) { 1767 cfg->phy_type_low = pf->nvm_phy_type_lo & 1768 cpu_to_le64(ldo->phy_type_low); 1769 cfg->phy_type_high = pf->nvm_phy_type_hi & 1770 cpu_to_le64(ldo->phy_type_high); 1771 } 1772 cfg->link_fec_opt = ldo->fec_options; 1773 phy->curr_user_fec_req = ICE_FEC_AUTO; 1774 1775 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1776 } 1777 1778 /** 1779 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1780 * @pi: port info structure 1781 * 1782 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1783 * mode to default. The PHY defaults are from get PHY capabilities topology 1784 * with media so call when media is first available. An error is returned if 1785 * called when media is not available. The PHY initialization completed state is 1786 * set here. 1787 * 1788 * These configurations are used when setting PHY 1789 * configuration. The user PHY configuration is updated on set PHY 1790 * configuration. Returns 0 on success, negative on failure 1791 */ 1792 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1793 { 1794 struct ice_aqc_get_phy_caps_data *pcaps; 1795 struct ice_phy_info *phy = &pi->phy; 1796 struct ice_pf *pf = pi->hw->back; 1797 enum ice_status status; 1798 int err = 0; 1799 1800 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1801 return -EIO; 1802 1803 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1804 if (!pcaps) 1805 return -ENOMEM; 1806 1807 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1808 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1809 pcaps, NULL); 1810 else 1811 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1812 pcaps, NULL); 1813 if (status) { 1814 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1815 err = -EIO; 1816 goto err_out; 1817 } 1818 1819 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1820 1821 /* check if lenient mode is supported and enabled */ 1822 if (ice_fw_supports_link_override(pi->hw) && 1823 !(pcaps->module_compliance_enforcement & 1824 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1825 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1826 1827 /* if the FW supports default PHY configuration mode, then the driver 1828 * does not have to apply link override settings. If not, 1829 * initialize user PHY configuration with link override values 1830 */ 1831 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1832 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1833 ice_init_phy_cfg_dflt_override(pi); 1834 goto out; 1835 } 1836 } 1837 1838 /* if link default override is not enabled, set user flow control and 1839 * FEC settings based on what get_phy_caps returned 1840 */ 1841 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1842 pcaps->link_fec_options); 1843 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1844 1845 out: 1846 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1847 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1848 err_out: 1849 kfree(pcaps); 1850 return err; 1851 } 1852 1853 /** 1854 * ice_configure_phy - configure PHY 1855 * @vsi: VSI of PHY 1856 * 1857 * Set the PHY configuration. If the current PHY configuration is the same as 1858 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1859 * configure the based get PHY capabilities for topology with media. 1860 */ 1861 static int ice_configure_phy(struct ice_vsi *vsi) 1862 { 1863 struct device *dev = ice_pf_to_dev(vsi->back); 1864 struct ice_port_info *pi = vsi->port_info; 1865 struct ice_aqc_get_phy_caps_data *pcaps; 1866 struct ice_aqc_set_phy_cfg_data *cfg; 1867 struct ice_phy_info *phy = &pi->phy; 1868 struct ice_pf *pf = vsi->back; 1869 enum ice_status status; 1870 int err = 0; 1871 1872 /* Ensure we have media as we cannot configure a medialess port */ 1873 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1874 return -EPERM; 1875 1876 ice_print_topo_conflict(vsi); 1877 1878 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1879 return -EPERM; 1880 1881 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 1882 return ice_force_phys_link_state(vsi, true); 1883 1884 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1885 if (!pcaps) 1886 return -ENOMEM; 1887 1888 /* Get current PHY config */ 1889 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1890 NULL); 1891 if (status) { 1892 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1893 vsi->vsi_num, ice_stat_str(status)); 1894 err = -EIO; 1895 goto done; 1896 } 1897 1898 /* If PHY enable link is configured and configuration has not changed, 1899 * there's nothing to do 1900 */ 1901 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1902 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 1903 goto done; 1904 1905 /* Use PHY topology as baseline for configuration */ 1906 memset(pcaps, 0, sizeof(*pcaps)); 1907 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1908 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1909 pcaps, NULL); 1910 else 1911 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1912 pcaps, NULL); 1913 if (status) { 1914 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 1915 vsi->vsi_num, ice_stat_str(status)); 1916 err = -EIO; 1917 goto done; 1918 } 1919 1920 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1921 if (!cfg) { 1922 err = -ENOMEM; 1923 goto done; 1924 } 1925 1926 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1927 1928 /* Speed - If default override pending, use curr_user_phy_cfg set in 1929 * ice_init_phy_user_cfg_ldo. 1930 */ 1931 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1932 vsi->back->state)) { 1933 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 1934 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 1935 } else { 1936 u64 phy_low = 0, phy_high = 0; 1937 1938 ice_update_phy_type(&phy_low, &phy_high, 1939 pi->phy.curr_user_speed_req); 1940 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1941 cfg->phy_type_high = pcaps->phy_type_high & 1942 cpu_to_le64(phy_high); 1943 } 1944 1945 /* Can't provide what was requested; use PHY capabilities */ 1946 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1947 cfg->phy_type_low = pcaps->phy_type_low; 1948 cfg->phy_type_high = pcaps->phy_type_high; 1949 } 1950 1951 /* FEC */ 1952 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 1953 1954 /* Can't provide what was requested; use PHY capabilities */ 1955 if (cfg->link_fec_opt != 1956 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1957 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1958 cfg->link_fec_opt = pcaps->link_fec_options; 1959 } 1960 1961 /* Flow Control - always supported; no need to check against 1962 * capabilities 1963 */ 1964 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 1965 1966 /* Enable link and link update */ 1967 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1968 1969 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 1970 if (status) { 1971 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1972 vsi->vsi_num, ice_stat_str(status)); 1973 err = -EIO; 1974 } 1975 1976 kfree(cfg); 1977 done: 1978 kfree(pcaps); 1979 return err; 1980 } 1981 1982 /** 1983 * ice_check_media_subtask - Check for media 1984 * @pf: pointer to PF struct 1985 * 1986 * If media is available, then initialize PHY user configuration if it is not 1987 * been, and configure the PHY if the interface is up. 1988 */ 1989 static void ice_check_media_subtask(struct ice_pf *pf) 1990 { 1991 struct ice_port_info *pi; 1992 struct ice_vsi *vsi; 1993 int err; 1994 1995 /* No need to check for media if it's already present */ 1996 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 1997 return; 1998 1999 vsi = ice_get_main_vsi(pf); 2000 if (!vsi) 2001 return; 2002 2003 /* Refresh link info and check if media is present */ 2004 pi = vsi->port_info; 2005 err = ice_update_link_info(pi); 2006 if (err) 2007 return; 2008 2009 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2010 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2011 ice_init_phy_user_cfg(pi); 2012 2013 /* PHY settings are reset on media insertion, reconfigure 2014 * PHY to preserve settings. 2015 */ 2016 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2017 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2018 return; 2019 2020 err = ice_configure_phy(vsi); 2021 if (!err) 2022 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2023 2024 /* A Link Status Event will be generated; the event handler 2025 * will complete bringing the interface up 2026 */ 2027 } 2028 } 2029 2030 /** 2031 * ice_service_task - manage and run subtasks 2032 * @work: pointer to work_struct contained by the PF struct 2033 */ 2034 static void ice_service_task(struct work_struct *work) 2035 { 2036 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2037 unsigned long start_time = jiffies; 2038 2039 /* subtasks */ 2040 2041 /* process reset requests first */ 2042 ice_reset_subtask(pf); 2043 2044 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2045 if (ice_is_reset_in_progress(pf->state) || 2046 test_bit(ICE_SUSPENDED, pf->state) || 2047 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2048 ice_service_task_complete(pf); 2049 return; 2050 } 2051 2052 ice_clean_adminq_subtask(pf); 2053 ice_check_media_subtask(pf); 2054 ice_check_for_hang_subtask(pf); 2055 ice_sync_fltr_subtask(pf); 2056 ice_handle_mdd_event(pf); 2057 ice_watchdog_subtask(pf); 2058 2059 if (ice_is_safe_mode(pf)) { 2060 ice_service_task_complete(pf); 2061 return; 2062 } 2063 2064 ice_process_vflr_event(pf); 2065 ice_clean_mailboxq_subtask(pf); 2066 ice_sync_arfs_fltrs(pf); 2067 ice_flush_fdir_ctx(pf); 2068 2069 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2070 ice_service_task_complete(pf); 2071 2072 /* If the tasks have taken longer than one service timer period 2073 * or there is more work to be done, reset the service timer to 2074 * schedule the service task now. 2075 */ 2076 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2077 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2078 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2079 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2080 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2081 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2082 mod_timer(&pf->serv_tmr, jiffies); 2083 } 2084 2085 /** 2086 * ice_set_ctrlq_len - helper function to set controlq length 2087 * @hw: pointer to the HW instance 2088 */ 2089 static void ice_set_ctrlq_len(struct ice_hw *hw) 2090 { 2091 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2092 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2093 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2094 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2095 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2096 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2097 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2098 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2099 } 2100 2101 /** 2102 * ice_schedule_reset - schedule a reset 2103 * @pf: board private structure 2104 * @reset: reset being requested 2105 */ 2106 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2107 { 2108 struct device *dev = ice_pf_to_dev(pf); 2109 2110 /* bail out if earlier reset has failed */ 2111 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2112 dev_dbg(dev, "earlier reset has failed\n"); 2113 return -EIO; 2114 } 2115 /* bail if reset/recovery already in progress */ 2116 if (ice_is_reset_in_progress(pf->state)) { 2117 dev_dbg(dev, "Reset already in progress\n"); 2118 return -EBUSY; 2119 } 2120 2121 switch (reset) { 2122 case ICE_RESET_PFR: 2123 set_bit(ICE_PFR_REQ, pf->state); 2124 break; 2125 case ICE_RESET_CORER: 2126 set_bit(ICE_CORER_REQ, pf->state); 2127 break; 2128 case ICE_RESET_GLOBR: 2129 set_bit(ICE_GLOBR_REQ, pf->state); 2130 break; 2131 default: 2132 return -EINVAL; 2133 } 2134 2135 ice_service_task_schedule(pf); 2136 return 0; 2137 } 2138 2139 /** 2140 * ice_irq_affinity_notify - Callback for affinity changes 2141 * @notify: context as to what irq was changed 2142 * @mask: the new affinity mask 2143 * 2144 * This is a callback function used by the irq_set_affinity_notifier function 2145 * so that we may register to receive changes to the irq affinity masks. 2146 */ 2147 static void 2148 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2149 const cpumask_t *mask) 2150 { 2151 struct ice_q_vector *q_vector = 2152 container_of(notify, struct ice_q_vector, affinity_notify); 2153 2154 cpumask_copy(&q_vector->affinity_mask, mask); 2155 } 2156 2157 /** 2158 * ice_irq_affinity_release - Callback for affinity notifier release 2159 * @ref: internal core kernel usage 2160 * 2161 * This is a callback function used by the irq_set_affinity_notifier function 2162 * to inform the current notification subscriber that they will no longer 2163 * receive notifications. 2164 */ 2165 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2166 2167 /** 2168 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2169 * @vsi: the VSI being configured 2170 */ 2171 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2172 { 2173 struct ice_hw *hw = &vsi->back->hw; 2174 int i; 2175 2176 ice_for_each_q_vector(vsi, i) 2177 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2178 2179 ice_flush(hw); 2180 return 0; 2181 } 2182 2183 /** 2184 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2185 * @vsi: the VSI being configured 2186 * @basename: name for the vector 2187 */ 2188 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2189 { 2190 int q_vectors = vsi->num_q_vectors; 2191 struct ice_pf *pf = vsi->back; 2192 int base = vsi->base_vector; 2193 struct device *dev; 2194 int rx_int_idx = 0; 2195 int tx_int_idx = 0; 2196 int vector, err; 2197 int irq_num; 2198 2199 dev = ice_pf_to_dev(pf); 2200 for (vector = 0; vector < q_vectors; vector++) { 2201 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2202 2203 irq_num = pf->msix_entries[base + vector].vector; 2204 2205 if (q_vector->tx.ring && q_vector->rx.ring) { 2206 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2207 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2208 tx_int_idx++; 2209 } else if (q_vector->rx.ring) { 2210 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2211 "%s-%s-%d", basename, "rx", rx_int_idx++); 2212 } else if (q_vector->tx.ring) { 2213 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2214 "%s-%s-%d", basename, "tx", tx_int_idx++); 2215 } else { 2216 /* skip this unused q_vector */ 2217 continue; 2218 } 2219 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2220 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2221 IRQF_SHARED, q_vector->name, 2222 q_vector); 2223 else 2224 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2225 0, q_vector->name, q_vector); 2226 if (err) { 2227 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2228 err); 2229 goto free_q_irqs; 2230 } 2231 2232 /* register for affinity change notifications */ 2233 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2234 struct irq_affinity_notify *affinity_notify; 2235 2236 affinity_notify = &q_vector->affinity_notify; 2237 affinity_notify->notify = ice_irq_affinity_notify; 2238 affinity_notify->release = ice_irq_affinity_release; 2239 irq_set_affinity_notifier(irq_num, affinity_notify); 2240 } 2241 2242 /* assign the mask for this irq */ 2243 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2244 } 2245 2246 vsi->irqs_ready = true; 2247 return 0; 2248 2249 free_q_irqs: 2250 while (vector) { 2251 vector--; 2252 irq_num = pf->msix_entries[base + vector].vector; 2253 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2254 irq_set_affinity_notifier(irq_num, NULL); 2255 irq_set_affinity_hint(irq_num, NULL); 2256 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2257 } 2258 return err; 2259 } 2260 2261 /** 2262 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2263 * @vsi: VSI to setup Tx rings used by XDP 2264 * 2265 * Return 0 on success and negative value on error 2266 */ 2267 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2268 { 2269 struct device *dev = ice_pf_to_dev(vsi->back); 2270 int i; 2271 2272 for (i = 0; i < vsi->num_xdp_txq; i++) { 2273 u16 xdp_q_idx = vsi->alloc_txq + i; 2274 struct ice_ring *xdp_ring; 2275 2276 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2277 2278 if (!xdp_ring) 2279 goto free_xdp_rings; 2280 2281 xdp_ring->q_index = xdp_q_idx; 2282 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2283 xdp_ring->ring_active = false; 2284 xdp_ring->vsi = vsi; 2285 xdp_ring->netdev = NULL; 2286 xdp_ring->dev = dev; 2287 xdp_ring->count = vsi->num_tx_desc; 2288 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2289 if (ice_setup_tx_ring(xdp_ring)) 2290 goto free_xdp_rings; 2291 ice_set_ring_xdp(xdp_ring); 2292 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2293 } 2294 2295 return 0; 2296 2297 free_xdp_rings: 2298 for (; i >= 0; i--) 2299 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2300 ice_free_tx_ring(vsi->xdp_rings[i]); 2301 return -ENOMEM; 2302 } 2303 2304 /** 2305 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2306 * @vsi: VSI to set the bpf prog on 2307 * @prog: the bpf prog pointer 2308 */ 2309 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2310 { 2311 struct bpf_prog *old_prog; 2312 int i; 2313 2314 old_prog = xchg(&vsi->xdp_prog, prog); 2315 if (old_prog) 2316 bpf_prog_put(old_prog); 2317 2318 ice_for_each_rxq(vsi, i) 2319 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2320 } 2321 2322 /** 2323 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2324 * @vsi: VSI to bring up Tx rings used by XDP 2325 * @prog: bpf program that will be assigned to VSI 2326 * 2327 * Return 0 on success and negative value on error 2328 */ 2329 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2330 { 2331 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2332 int xdp_rings_rem = vsi->num_xdp_txq; 2333 struct ice_pf *pf = vsi->back; 2334 struct ice_qs_cfg xdp_qs_cfg = { 2335 .qs_mutex = &pf->avail_q_mutex, 2336 .pf_map = pf->avail_txqs, 2337 .pf_map_size = pf->max_pf_txqs, 2338 .q_count = vsi->num_xdp_txq, 2339 .scatter_count = ICE_MAX_SCATTER_TXQS, 2340 .vsi_map = vsi->txq_map, 2341 .vsi_map_offset = vsi->alloc_txq, 2342 .mapping_mode = ICE_VSI_MAP_CONTIG 2343 }; 2344 enum ice_status status; 2345 struct device *dev; 2346 int i, v_idx; 2347 2348 dev = ice_pf_to_dev(pf); 2349 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2350 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2351 if (!vsi->xdp_rings) 2352 return -ENOMEM; 2353 2354 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2355 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2356 goto err_map_xdp; 2357 2358 if (ice_xdp_alloc_setup_rings(vsi)) 2359 goto clear_xdp_rings; 2360 2361 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2362 ice_for_each_q_vector(vsi, v_idx) { 2363 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2364 int xdp_rings_per_v, q_id, q_base; 2365 2366 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2367 vsi->num_q_vectors - v_idx); 2368 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2369 2370 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2371 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2372 2373 xdp_ring->q_vector = q_vector; 2374 xdp_ring->next = q_vector->tx.ring; 2375 q_vector->tx.ring = xdp_ring; 2376 } 2377 xdp_rings_rem -= xdp_rings_per_v; 2378 } 2379 2380 /* omit the scheduler update if in reset path; XDP queues will be 2381 * taken into account at the end of ice_vsi_rebuild, where 2382 * ice_cfg_vsi_lan is being called 2383 */ 2384 if (ice_is_reset_in_progress(pf->state)) 2385 return 0; 2386 2387 /* tell the Tx scheduler that right now we have 2388 * additional queues 2389 */ 2390 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2391 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2392 2393 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2394 max_txqs); 2395 if (status) { 2396 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2397 ice_stat_str(status)); 2398 goto clear_xdp_rings; 2399 } 2400 ice_vsi_assign_bpf_prog(vsi, prog); 2401 2402 return 0; 2403 clear_xdp_rings: 2404 for (i = 0; i < vsi->num_xdp_txq; i++) 2405 if (vsi->xdp_rings[i]) { 2406 kfree_rcu(vsi->xdp_rings[i], rcu); 2407 vsi->xdp_rings[i] = NULL; 2408 } 2409 2410 err_map_xdp: 2411 mutex_lock(&pf->avail_q_mutex); 2412 for (i = 0; i < vsi->num_xdp_txq; i++) { 2413 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2414 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2415 } 2416 mutex_unlock(&pf->avail_q_mutex); 2417 2418 devm_kfree(dev, vsi->xdp_rings); 2419 return -ENOMEM; 2420 } 2421 2422 /** 2423 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2424 * @vsi: VSI to remove XDP rings 2425 * 2426 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2427 * resources 2428 */ 2429 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2430 { 2431 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2432 struct ice_pf *pf = vsi->back; 2433 int i, v_idx; 2434 2435 /* q_vectors are freed in reset path so there's no point in detaching 2436 * rings; in case of rebuild being triggered not from reset bits 2437 * in pf->state won't be set, so additionally check first q_vector 2438 * against NULL 2439 */ 2440 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2441 goto free_qmap; 2442 2443 ice_for_each_q_vector(vsi, v_idx) { 2444 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2445 struct ice_ring *ring; 2446 2447 ice_for_each_ring(ring, q_vector->tx) 2448 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2449 break; 2450 2451 /* restore the value of last node prior to XDP setup */ 2452 q_vector->tx.ring = ring; 2453 } 2454 2455 free_qmap: 2456 mutex_lock(&pf->avail_q_mutex); 2457 for (i = 0; i < vsi->num_xdp_txq; i++) { 2458 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2459 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2460 } 2461 mutex_unlock(&pf->avail_q_mutex); 2462 2463 for (i = 0; i < vsi->num_xdp_txq; i++) 2464 if (vsi->xdp_rings[i]) { 2465 if (vsi->xdp_rings[i]->desc) 2466 ice_free_tx_ring(vsi->xdp_rings[i]); 2467 kfree_rcu(vsi->xdp_rings[i], rcu); 2468 vsi->xdp_rings[i] = NULL; 2469 } 2470 2471 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2472 vsi->xdp_rings = NULL; 2473 2474 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2475 return 0; 2476 2477 ice_vsi_assign_bpf_prog(vsi, NULL); 2478 2479 /* notify Tx scheduler that we destroyed XDP queues and bring 2480 * back the old number of child nodes 2481 */ 2482 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2483 max_txqs[i] = vsi->num_txq; 2484 2485 /* change number of XDP Tx queues to 0 */ 2486 vsi->num_xdp_txq = 0; 2487 2488 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2489 max_txqs); 2490 } 2491 2492 /** 2493 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2494 * @vsi: VSI to schedule napi on 2495 */ 2496 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2497 { 2498 int i; 2499 2500 ice_for_each_rxq(vsi, i) { 2501 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2502 2503 if (rx_ring->xsk_pool) 2504 napi_schedule(&rx_ring->q_vector->napi); 2505 } 2506 } 2507 2508 /** 2509 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2510 * @vsi: VSI to setup XDP for 2511 * @prog: XDP program 2512 * @extack: netlink extended ack 2513 */ 2514 static int 2515 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2516 struct netlink_ext_ack *extack) 2517 { 2518 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2519 bool if_running = netif_running(vsi->netdev); 2520 int ret = 0, xdp_ring_err = 0; 2521 2522 if (frame_size > vsi->rx_buf_len) { 2523 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2524 return -EOPNOTSUPP; 2525 } 2526 2527 /* need to stop netdev while setting up the program for Rx rings */ 2528 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2529 ret = ice_down(vsi); 2530 if (ret) { 2531 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2532 return ret; 2533 } 2534 } 2535 2536 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2537 vsi->num_xdp_txq = vsi->alloc_rxq; 2538 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2539 if (xdp_ring_err) 2540 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2541 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2542 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2543 if (xdp_ring_err) 2544 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2545 } else { 2546 ice_vsi_assign_bpf_prog(vsi, prog); 2547 } 2548 2549 if (if_running) 2550 ret = ice_up(vsi); 2551 2552 if (!ret && prog) 2553 ice_vsi_rx_napi_schedule(vsi); 2554 2555 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2556 } 2557 2558 /** 2559 * ice_xdp_safe_mode - XDP handler for safe mode 2560 * @dev: netdevice 2561 * @xdp: XDP command 2562 */ 2563 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2564 struct netdev_bpf *xdp) 2565 { 2566 NL_SET_ERR_MSG_MOD(xdp->extack, 2567 "Please provide working DDP firmware package in order to use XDP\n" 2568 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2569 return -EOPNOTSUPP; 2570 } 2571 2572 /** 2573 * ice_xdp - implements XDP handler 2574 * @dev: netdevice 2575 * @xdp: XDP command 2576 */ 2577 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2578 { 2579 struct ice_netdev_priv *np = netdev_priv(dev); 2580 struct ice_vsi *vsi = np->vsi; 2581 2582 if (vsi->type != ICE_VSI_PF) { 2583 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2584 return -EINVAL; 2585 } 2586 2587 switch (xdp->command) { 2588 case XDP_SETUP_PROG: 2589 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2590 case XDP_SETUP_XSK_POOL: 2591 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2592 xdp->xsk.queue_id); 2593 default: 2594 return -EINVAL; 2595 } 2596 } 2597 2598 /** 2599 * ice_ena_misc_vector - enable the non-queue interrupts 2600 * @pf: board private structure 2601 */ 2602 static void ice_ena_misc_vector(struct ice_pf *pf) 2603 { 2604 struct ice_hw *hw = &pf->hw; 2605 u32 val; 2606 2607 /* Disable anti-spoof detection interrupt to prevent spurious event 2608 * interrupts during a function reset. Anti-spoof functionally is 2609 * still supported. 2610 */ 2611 val = rd32(hw, GL_MDCK_TX_TDPU); 2612 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2613 wr32(hw, GL_MDCK_TX_TDPU, val); 2614 2615 /* clear things first */ 2616 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2617 rd32(hw, PFINT_OICR); /* read to clear */ 2618 2619 val = (PFINT_OICR_ECC_ERR_M | 2620 PFINT_OICR_MAL_DETECT_M | 2621 PFINT_OICR_GRST_M | 2622 PFINT_OICR_PCI_EXCEPTION_M | 2623 PFINT_OICR_VFLR_M | 2624 PFINT_OICR_HMC_ERR_M | 2625 PFINT_OICR_PE_CRITERR_M); 2626 2627 wr32(hw, PFINT_OICR_ENA, val); 2628 2629 /* SW_ITR_IDX = 0, but don't change INTENA */ 2630 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2631 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2632 } 2633 2634 /** 2635 * ice_misc_intr - misc interrupt handler 2636 * @irq: interrupt number 2637 * @data: pointer to a q_vector 2638 */ 2639 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2640 { 2641 struct ice_pf *pf = (struct ice_pf *)data; 2642 struct ice_hw *hw = &pf->hw; 2643 irqreturn_t ret = IRQ_NONE; 2644 struct device *dev; 2645 u32 oicr, ena_mask; 2646 2647 dev = ice_pf_to_dev(pf); 2648 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2649 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2650 2651 oicr = rd32(hw, PFINT_OICR); 2652 ena_mask = rd32(hw, PFINT_OICR_ENA); 2653 2654 if (oicr & PFINT_OICR_SWINT_M) { 2655 ena_mask &= ~PFINT_OICR_SWINT_M; 2656 pf->sw_int_count++; 2657 } 2658 2659 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2660 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2661 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2662 } 2663 if (oicr & PFINT_OICR_VFLR_M) { 2664 /* disable any further VFLR event notifications */ 2665 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2666 u32 reg = rd32(hw, PFINT_OICR_ENA); 2667 2668 reg &= ~PFINT_OICR_VFLR_M; 2669 wr32(hw, PFINT_OICR_ENA, reg); 2670 } else { 2671 ena_mask &= ~PFINT_OICR_VFLR_M; 2672 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2673 } 2674 } 2675 2676 if (oicr & PFINT_OICR_GRST_M) { 2677 u32 reset; 2678 2679 /* we have a reset warning */ 2680 ena_mask &= ~PFINT_OICR_GRST_M; 2681 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2682 GLGEN_RSTAT_RESET_TYPE_S; 2683 2684 if (reset == ICE_RESET_CORER) 2685 pf->corer_count++; 2686 else if (reset == ICE_RESET_GLOBR) 2687 pf->globr_count++; 2688 else if (reset == ICE_RESET_EMPR) 2689 pf->empr_count++; 2690 else 2691 dev_dbg(dev, "Invalid reset type %d\n", reset); 2692 2693 /* If a reset cycle isn't already in progress, we set a bit in 2694 * pf->state so that the service task can start a reset/rebuild. 2695 * We also make note of which reset happened so that peer 2696 * devices/drivers can be informed. 2697 */ 2698 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2699 if (reset == ICE_RESET_CORER) 2700 set_bit(ICE_CORER_RECV, pf->state); 2701 else if (reset == ICE_RESET_GLOBR) 2702 set_bit(ICE_GLOBR_RECV, pf->state); 2703 else 2704 set_bit(ICE_EMPR_RECV, pf->state); 2705 2706 /* There are couple of different bits at play here. 2707 * hw->reset_ongoing indicates whether the hardware is 2708 * in reset. This is set to true when a reset interrupt 2709 * is received and set back to false after the driver 2710 * has determined that the hardware is out of reset. 2711 * 2712 * ICE_RESET_OICR_RECV in pf->state indicates 2713 * that a post reset rebuild is required before the 2714 * driver is operational again. This is set above. 2715 * 2716 * As this is the start of the reset/rebuild cycle, set 2717 * both to indicate that. 2718 */ 2719 hw->reset_ongoing = true; 2720 } 2721 } 2722 2723 if (oicr & PFINT_OICR_HMC_ERR_M) { 2724 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2725 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2726 rd32(hw, PFHMC_ERRORINFO), 2727 rd32(hw, PFHMC_ERRORDATA)); 2728 } 2729 2730 /* Report any remaining unexpected interrupts */ 2731 oicr &= ena_mask; 2732 if (oicr) { 2733 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2734 /* If a critical error is pending there is no choice but to 2735 * reset the device. 2736 */ 2737 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2738 PFINT_OICR_PCI_EXCEPTION_M | 2739 PFINT_OICR_ECC_ERR_M)) { 2740 set_bit(ICE_PFR_REQ, pf->state); 2741 ice_service_task_schedule(pf); 2742 } 2743 } 2744 ret = IRQ_HANDLED; 2745 2746 ice_service_task_schedule(pf); 2747 ice_irq_dynamic_ena(hw, NULL, NULL); 2748 2749 return ret; 2750 } 2751 2752 /** 2753 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2754 * @hw: pointer to HW structure 2755 */ 2756 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2757 { 2758 /* disable Admin queue Interrupt causes */ 2759 wr32(hw, PFINT_FW_CTL, 2760 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2761 2762 /* disable Mailbox queue Interrupt causes */ 2763 wr32(hw, PFINT_MBX_CTL, 2764 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2765 2766 /* disable Control queue Interrupt causes */ 2767 wr32(hw, PFINT_OICR_CTL, 2768 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2769 2770 ice_flush(hw); 2771 } 2772 2773 /** 2774 * ice_free_irq_msix_misc - Unroll misc vector setup 2775 * @pf: board private structure 2776 */ 2777 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2778 { 2779 struct ice_hw *hw = &pf->hw; 2780 2781 ice_dis_ctrlq_interrupts(hw); 2782 2783 /* disable OICR interrupt */ 2784 wr32(hw, PFINT_OICR_ENA, 0); 2785 ice_flush(hw); 2786 2787 if (pf->msix_entries) { 2788 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2789 devm_free_irq(ice_pf_to_dev(pf), 2790 pf->msix_entries[pf->oicr_idx].vector, pf); 2791 } 2792 2793 pf->num_avail_sw_msix += 1; 2794 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2795 } 2796 2797 /** 2798 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2799 * @hw: pointer to HW structure 2800 * @reg_idx: HW vector index to associate the control queue interrupts with 2801 */ 2802 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2803 { 2804 u32 val; 2805 2806 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2807 PFINT_OICR_CTL_CAUSE_ENA_M); 2808 wr32(hw, PFINT_OICR_CTL, val); 2809 2810 /* enable Admin queue Interrupt causes */ 2811 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2812 PFINT_FW_CTL_CAUSE_ENA_M); 2813 wr32(hw, PFINT_FW_CTL, val); 2814 2815 /* enable Mailbox queue Interrupt causes */ 2816 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2817 PFINT_MBX_CTL_CAUSE_ENA_M); 2818 wr32(hw, PFINT_MBX_CTL, val); 2819 2820 ice_flush(hw); 2821 } 2822 2823 /** 2824 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2825 * @pf: board private structure 2826 * 2827 * This sets up the handler for MSIX 0, which is used to manage the 2828 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2829 * when in MSI or Legacy interrupt mode. 2830 */ 2831 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2832 { 2833 struct device *dev = ice_pf_to_dev(pf); 2834 struct ice_hw *hw = &pf->hw; 2835 int oicr_idx, err = 0; 2836 2837 if (!pf->int_name[0]) 2838 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2839 dev_driver_string(dev), dev_name(dev)); 2840 2841 /* Do not request IRQ but do enable OICR interrupt since settings are 2842 * lost during reset. Note that this function is called only during 2843 * rebuild path and not while reset is in progress. 2844 */ 2845 if (ice_is_reset_in_progress(pf->state)) 2846 goto skip_req_irq; 2847 2848 /* reserve one vector in irq_tracker for misc interrupts */ 2849 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2850 if (oicr_idx < 0) 2851 return oicr_idx; 2852 2853 pf->num_avail_sw_msix -= 1; 2854 pf->oicr_idx = (u16)oicr_idx; 2855 2856 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2857 ice_misc_intr, 0, pf->int_name, pf); 2858 if (err) { 2859 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2860 pf->int_name, err); 2861 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2862 pf->num_avail_sw_msix += 1; 2863 return err; 2864 } 2865 2866 skip_req_irq: 2867 ice_ena_misc_vector(pf); 2868 2869 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2870 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2871 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2872 2873 ice_flush(hw); 2874 ice_irq_dynamic_ena(hw, NULL, NULL); 2875 2876 return 0; 2877 } 2878 2879 /** 2880 * ice_napi_add - register NAPI handler for the VSI 2881 * @vsi: VSI for which NAPI handler is to be registered 2882 * 2883 * This function is only called in the driver's load path. Registering the NAPI 2884 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2885 * reset/rebuild, etc.) 2886 */ 2887 static void ice_napi_add(struct ice_vsi *vsi) 2888 { 2889 int v_idx; 2890 2891 if (!vsi->netdev) 2892 return; 2893 2894 ice_for_each_q_vector(vsi, v_idx) 2895 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2896 ice_napi_poll, NAPI_POLL_WEIGHT); 2897 } 2898 2899 /** 2900 * ice_set_ops - set netdev and ethtools ops for the given netdev 2901 * @netdev: netdev instance 2902 */ 2903 static void ice_set_ops(struct net_device *netdev) 2904 { 2905 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2906 2907 if (ice_is_safe_mode(pf)) { 2908 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2909 ice_set_ethtool_safe_mode_ops(netdev); 2910 return; 2911 } 2912 2913 netdev->netdev_ops = &ice_netdev_ops; 2914 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2915 ice_set_ethtool_ops(netdev); 2916 } 2917 2918 /** 2919 * ice_set_netdev_features - set features for the given netdev 2920 * @netdev: netdev instance 2921 */ 2922 static void ice_set_netdev_features(struct net_device *netdev) 2923 { 2924 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2925 netdev_features_t csumo_features; 2926 netdev_features_t vlano_features; 2927 netdev_features_t dflt_features; 2928 netdev_features_t tso_features; 2929 2930 if (ice_is_safe_mode(pf)) { 2931 /* safe mode */ 2932 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2933 netdev->hw_features = netdev->features; 2934 return; 2935 } 2936 2937 dflt_features = NETIF_F_SG | 2938 NETIF_F_HIGHDMA | 2939 NETIF_F_NTUPLE | 2940 NETIF_F_RXHASH; 2941 2942 csumo_features = NETIF_F_RXCSUM | 2943 NETIF_F_IP_CSUM | 2944 NETIF_F_SCTP_CRC | 2945 NETIF_F_IPV6_CSUM; 2946 2947 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2948 NETIF_F_HW_VLAN_CTAG_TX | 2949 NETIF_F_HW_VLAN_CTAG_RX; 2950 2951 tso_features = NETIF_F_TSO | 2952 NETIF_F_TSO_ECN | 2953 NETIF_F_TSO6 | 2954 NETIF_F_GSO_GRE | 2955 NETIF_F_GSO_UDP_TUNNEL | 2956 NETIF_F_GSO_GRE_CSUM | 2957 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2958 NETIF_F_GSO_PARTIAL | 2959 NETIF_F_GSO_IPXIP4 | 2960 NETIF_F_GSO_IPXIP6 | 2961 NETIF_F_GSO_UDP_L4; 2962 2963 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2964 NETIF_F_GSO_GRE_CSUM; 2965 /* set features that user can change */ 2966 netdev->hw_features = dflt_features | csumo_features | 2967 vlano_features | tso_features; 2968 2969 /* add support for HW_CSUM on packets with MPLS header */ 2970 netdev->mpls_features = NETIF_F_HW_CSUM; 2971 2972 /* enable features */ 2973 netdev->features |= netdev->hw_features; 2974 /* encap and VLAN devices inherit default, csumo and tso features */ 2975 netdev->hw_enc_features |= dflt_features | csumo_features | 2976 tso_features; 2977 netdev->vlan_features |= dflt_features | csumo_features | 2978 tso_features; 2979 } 2980 2981 /** 2982 * ice_cfg_netdev - Allocate, configure and register a netdev 2983 * @vsi: the VSI associated with the new netdev 2984 * 2985 * Returns 0 on success, negative value on failure 2986 */ 2987 static int ice_cfg_netdev(struct ice_vsi *vsi) 2988 { 2989 struct ice_pf *pf = vsi->back; 2990 struct ice_netdev_priv *np; 2991 struct net_device *netdev; 2992 u8 mac_addr[ETH_ALEN]; 2993 2994 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2995 vsi->alloc_rxq); 2996 if (!netdev) 2997 return -ENOMEM; 2998 2999 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3000 vsi->netdev = netdev; 3001 np = netdev_priv(netdev); 3002 np->vsi = vsi; 3003 3004 ice_set_netdev_features(netdev); 3005 3006 ice_set_ops(netdev); 3007 3008 if (vsi->type == ICE_VSI_PF) { 3009 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 3010 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3011 ether_addr_copy(netdev->dev_addr, mac_addr); 3012 ether_addr_copy(netdev->perm_addr, mac_addr); 3013 } 3014 3015 netdev->priv_flags |= IFF_UNICAST_FLT; 3016 3017 /* Setup netdev TC information */ 3018 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3019 3020 /* setup watchdog timeout value to be 5 second */ 3021 netdev->watchdog_timeo = 5 * HZ; 3022 3023 netdev->min_mtu = ETH_MIN_MTU; 3024 netdev->max_mtu = ICE_MAX_MTU; 3025 3026 return 0; 3027 } 3028 3029 /** 3030 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3031 * @lut: Lookup table 3032 * @rss_table_size: Lookup table size 3033 * @rss_size: Range of queue number for hashing 3034 */ 3035 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3036 { 3037 u16 i; 3038 3039 for (i = 0; i < rss_table_size; i++) 3040 lut[i] = i % rss_size; 3041 } 3042 3043 /** 3044 * ice_pf_vsi_setup - Set up a PF VSI 3045 * @pf: board private structure 3046 * @pi: pointer to the port_info instance 3047 * 3048 * Returns pointer to the successfully allocated VSI software struct 3049 * on success, otherwise returns NULL on failure. 3050 */ 3051 static struct ice_vsi * 3052 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3053 { 3054 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3055 } 3056 3057 /** 3058 * ice_ctrl_vsi_setup - Set up a control VSI 3059 * @pf: board private structure 3060 * @pi: pointer to the port_info instance 3061 * 3062 * Returns pointer to the successfully allocated VSI software struct 3063 * on success, otherwise returns NULL on failure. 3064 */ 3065 static struct ice_vsi * 3066 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3067 { 3068 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3069 } 3070 3071 /** 3072 * ice_lb_vsi_setup - Set up a loopback VSI 3073 * @pf: board private structure 3074 * @pi: pointer to the port_info instance 3075 * 3076 * Returns pointer to the successfully allocated VSI software struct 3077 * on success, otherwise returns NULL on failure. 3078 */ 3079 struct ice_vsi * 3080 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3081 { 3082 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3083 } 3084 3085 /** 3086 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3087 * @netdev: network interface to be adjusted 3088 * @proto: unused protocol 3089 * @vid: VLAN ID to be added 3090 * 3091 * net_device_ops implementation for adding VLAN IDs 3092 */ 3093 static int 3094 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3095 u16 vid) 3096 { 3097 struct ice_netdev_priv *np = netdev_priv(netdev); 3098 struct ice_vsi *vsi = np->vsi; 3099 int ret; 3100 3101 /* VLAN 0 is added by default during load/reset */ 3102 if (!vid) 3103 return 0; 3104 3105 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3106 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3107 ret = ice_cfg_vlan_pruning(vsi, true, false); 3108 if (ret) 3109 return ret; 3110 } 3111 3112 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3113 * packets aren't pruned by the device's internal switch on Rx 3114 */ 3115 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3116 if (!ret) 3117 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3118 3119 return ret; 3120 } 3121 3122 /** 3123 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3124 * @netdev: network interface to be adjusted 3125 * @proto: unused protocol 3126 * @vid: VLAN ID to be removed 3127 * 3128 * net_device_ops implementation for removing VLAN IDs 3129 */ 3130 static int 3131 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3132 u16 vid) 3133 { 3134 struct ice_netdev_priv *np = netdev_priv(netdev); 3135 struct ice_vsi *vsi = np->vsi; 3136 int ret; 3137 3138 /* don't allow removal of VLAN 0 */ 3139 if (!vid) 3140 return 0; 3141 3142 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3143 * information 3144 */ 3145 ret = ice_vsi_kill_vlan(vsi, vid); 3146 if (ret) 3147 return ret; 3148 3149 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3150 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3151 ret = ice_cfg_vlan_pruning(vsi, false, false); 3152 3153 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3154 return ret; 3155 } 3156 3157 /** 3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3159 * @pf: board private structure 3160 * 3161 * Returns 0 on success, negative value on failure 3162 */ 3163 static int ice_setup_pf_sw(struct ice_pf *pf) 3164 { 3165 struct ice_vsi *vsi; 3166 int status = 0; 3167 3168 if (ice_is_reset_in_progress(pf->state)) 3169 return -EBUSY; 3170 3171 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3172 if (!vsi) 3173 return -ENOMEM; 3174 3175 status = ice_cfg_netdev(vsi); 3176 if (status) { 3177 status = -ENODEV; 3178 goto unroll_vsi_setup; 3179 } 3180 /* netdev has to be configured before setting frame size */ 3181 ice_vsi_cfg_frame_size(vsi); 3182 3183 /* Setup DCB netlink interface */ 3184 ice_dcbnl_setup(vsi); 3185 3186 /* registering the NAPI handler requires both the queues and 3187 * netdev to be created, which are done in ice_pf_vsi_setup() 3188 * and ice_cfg_netdev() respectively 3189 */ 3190 ice_napi_add(vsi); 3191 3192 status = ice_set_cpu_rx_rmap(vsi); 3193 if (status) { 3194 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3195 vsi->vsi_num, status); 3196 status = -EINVAL; 3197 goto unroll_napi_add; 3198 } 3199 status = ice_init_mac_fltr(pf); 3200 if (status) 3201 goto free_cpu_rx_map; 3202 3203 return status; 3204 3205 free_cpu_rx_map: 3206 ice_free_cpu_rx_rmap(vsi); 3207 3208 unroll_napi_add: 3209 if (vsi) { 3210 ice_napi_del(vsi); 3211 if (vsi->netdev) { 3212 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3213 free_netdev(vsi->netdev); 3214 vsi->netdev = NULL; 3215 } 3216 } 3217 3218 unroll_vsi_setup: 3219 ice_vsi_release(vsi); 3220 return status; 3221 } 3222 3223 /** 3224 * ice_get_avail_q_count - Get count of queues in use 3225 * @pf_qmap: bitmap to get queue use count from 3226 * @lock: pointer to a mutex that protects access to pf_qmap 3227 * @size: size of the bitmap 3228 */ 3229 static u16 3230 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3231 { 3232 unsigned long bit; 3233 u16 count = 0; 3234 3235 mutex_lock(lock); 3236 for_each_clear_bit(bit, pf_qmap, size) 3237 count++; 3238 mutex_unlock(lock); 3239 3240 return count; 3241 } 3242 3243 /** 3244 * ice_get_avail_txq_count - Get count of Tx queues in use 3245 * @pf: pointer to an ice_pf instance 3246 */ 3247 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3248 { 3249 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3250 pf->max_pf_txqs); 3251 } 3252 3253 /** 3254 * ice_get_avail_rxq_count - Get count of Rx queues in use 3255 * @pf: pointer to an ice_pf instance 3256 */ 3257 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3258 { 3259 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3260 pf->max_pf_rxqs); 3261 } 3262 3263 /** 3264 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3265 * @pf: board private structure to initialize 3266 */ 3267 static void ice_deinit_pf(struct ice_pf *pf) 3268 { 3269 ice_service_task_stop(pf); 3270 mutex_destroy(&pf->sw_mutex); 3271 mutex_destroy(&pf->tc_mutex); 3272 mutex_destroy(&pf->avail_q_mutex); 3273 3274 if (pf->avail_txqs) { 3275 bitmap_free(pf->avail_txqs); 3276 pf->avail_txqs = NULL; 3277 } 3278 3279 if (pf->avail_rxqs) { 3280 bitmap_free(pf->avail_rxqs); 3281 pf->avail_rxqs = NULL; 3282 } 3283 } 3284 3285 /** 3286 * ice_set_pf_caps - set PFs capability flags 3287 * @pf: pointer to the PF instance 3288 */ 3289 static void ice_set_pf_caps(struct ice_pf *pf) 3290 { 3291 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3292 3293 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3294 if (func_caps->common_cap.dcb) 3295 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3296 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3297 if (func_caps->common_cap.sr_iov_1_1) { 3298 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3299 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3300 ICE_MAX_VF_COUNT); 3301 } 3302 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3303 if (func_caps->common_cap.rss_table_size) 3304 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3305 3306 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3307 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3308 u16 unused; 3309 3310 /* ctrl_vsi_idx will be set to a valid value when flow director 3311 * is setup by ice_init_fdir 3312 */ 3313 pf->ctrl_vsi_idx = ICE_NO_VSI; 3314 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3315 /* force guaranteed filter pool for PF */ 3316 ice_alloc_fd_guar_item(&pf->hw, &unused, 3317 func_caps->fd_fltr_guar); 3318 /* force shared filter pool for PF */ 3319 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3320 func_caps->fd_fltr_best_effort); 3321 } 3322 3323 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3324 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3325 } 3326 3327 /** 3328 * ice_init_pf - Initialize general software structures (struct ice_pf) 3329 * @pf: board private structure to initialize 3330 */ 3331 static int ice_init_pf(struct ice_pf *pf) 3332 { 3333 ice_set_pf_caps(pf); 3334 3335 mutex_init(&pf->sw_mutex); 3336 mutex_init(&pf->tc_mutex); 3337 3338 INIT_HLIST_HEAD(&pf->aq_wait_list); 3339 spin_lock_init(&pf->aq_wait_lock); 3340 init_waitqueue_head(&pf->aq_wait_queue); 3341 3342 /* setup service timer and periodic service task */ 3343 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3344 pf->serv_tmr_period = HZ; 3345 INIT_WORK(&pf->serv_task, ice_service_task); 3346 clear_bit(ICE_SERVICE_SCHED, pf->state); 3347 3348 mutex_init(&pf->avail_q_mutex); 3349 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3350 if (!pf->avail_txqs) 3351 return -ENOMEM; 3352 3353 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3354 if (!pf->avail_rxqs) { 3355 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3356 pf->avail_txqs = NULL; 3357 return -ENOMEM; 3358 } 3359 3360 return 0; 3361 } 3362 3363 /** 3364 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3365 * @pf: board private structure 3366 * 3367 * compute the number of MSIX vectors required (v_budget) and request from 3368 * the OS. Return the number of vectors reserved or negative on failure 3369 */ 3370 static int ice_ena_msix_range(struct ice_pf *pf) 3371 { 3372 int v_left, v_actual, v_other, v_budget = 0; 3373 struct device *dev = ice_pf_to_dev(pf); 3374 int needed, err, i; 3375 3376 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3377 3378 /* reserve for LAN miscellaneous handler */ 3379 needed = ICE_MIN_LAN_OICR_MSIX; 3380 if (v_left < needed) 3381 goto no_hw_vecs_left_err; 3382 v_budget += needed; 3383 v_left -= needed; 3384 3385 /* reserve for flow director */ 3386 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3387 needed = ICE_FDIR_MSIX; 3388 if (v_left < needed) 3389 goto no_hw_vecs_left_err; 3390 v_budget += needed; 3391 v_left -= needed; 3392 } 3393 3394 /* total used for non-traffic vectors */ 3395 v_other = v_budget; 3396 3397 /* reserve vectors for LAN traffic */ 3398 needed = min_t(int, num_online_cpus(), v_left); 3399 if (v_left < needed) 3400 goto no_hw_vecs_left_err; 3401 pf->num_lan_msix = needed; 3402 v_budget += needed; 3403 v_left -= needed; 3404 3405 pf->msix_entries = devm_kcalloc(dev, v_budget, 3406 sizeof(*pf->msix_entries), GFP_KERNEL); 3407 if (!pf->msix_entries) { 3408 err = -ENOMEM; 3409 goto exit_err; 3410 } 3411 3412 for (i = 0; i < v_budget; i++) 3413 pf->msix_entries[i].entry = i; 3414 3415 /* actually reserve the vectors */ 3416 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3417 ICE_MIN_MSIX, v_budget); 3418 if (v_actual < 0) { 3419 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3420 err = v_actual; 3421 goto msix_err; 3422 } 3423 3424 if (v_actual < v_budget) { 3425 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3426 v_budget, v_actual); 3427 3428 if (v_actual < ICE_MIN_MSIX) { 3429 /* error if we can't get minimum vectors */ 3430 pci_disable_msix(pf->pdev); 3431 err = -ERANGE; 3432 goto msix_err; 3433 } else { 3434 int v_traffic = v_actual - v_other; 3435 3436 if (v_actual == ICE_MIN_MSIX || 3437 v_traffic < ICE_MIN_LAN_TXRX_MSIX) 3438 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3439 else 3440 pf->num_lan_msix = v_traffic; 3441 3442 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3443 pf->num_lan_msix); 3444 } 3445 } 3446 3447 return v_actual; 3448 3449 msix_err: 3450 devm_kfree(dev, pf->msix_entries); 3451 goto exit_err; 3452 3453 no_hw_vecs_left_err: 3454 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3455 needed, v_left); 3456 err = -ERANGE; 3457 exit_err: 3458 pf->num_lan_msix = 0; 3459 return err; 3460 } 3461 3462 /** 3463 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3464 * @pf: board private structure 3465 */ 3466 static void ice_dis_msix(struct ice_pf *pf) 3467 { 3468 pci_disable_msix(pf->pdev); 3469 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3470 pf->msix_entries = NULL; 3471 } 3472 3473 /** 3474 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3475 * @pf: board private structure 3476 */ 3477 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3478 { 3479 ice_dis_msix(pf); 3480 3481 if (pf->irq_tracker) { 3482 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3483 pf->irq_tracker = NULL; 3484 } 3485 } 3486 3487 /** 3488 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3489 * @pf: board private structure to initialize 3490 */ 3491 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3492 { 3493 int vectors; 3494 3495 vectors = ice_ena_msix_range(pf); 3496 3497 if (vectors < 0) 3498 return vectors; 3499 3500 /* set up vector assignment tracking */ 3501 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3502 struct_size(pf->irq_tracker, list, vectors), 3503 GFP_KERNEL); 3504 if (!pf->irq_tracker) { 3505 ice_dis_msix(pf); 3506 return -ENOMEM; 3507 } 3508 3509 /* populate SW interrupts pool with number of OS granted IRQs. */ 3510 pf->num_avail_sw_msix = (u16)vectors; 3511 pf->irq_tracker->num_entries = (u16)vectors; 3512 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3513 3514 return 0; 3515 } 3516 3517 /** 3518 * ice_is_wol_supported - check if WoL is supported 3519 * @hw: pointer to hardware info 3520 * 3521 * Check if WoL is supported based on the HW configuration. 3522 * Returns true if NVM supports and enables WoL for this port, false otherwise 3523 */ 3524 bool ice_is_wol_supported(struct ice_hw *hw) 3525 { 3526 u16 wol_ctrl; 3527 3528 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3529 * word) indicates WoL is not supported on the corresponding PF ID. 3530 */ 3531 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3532 return false; 3533 3534 return !(BIT(hw->port_info->lport) & wol_ctrl); 3535 } 3536 3537 /** 3538 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3539 * @vsi: VSI being changed 3540 * @new_rx: new number of Rx queues 3541 * @new_tx: new number of Tx queues 3542 * 3543 * Only change the number of queues if new_tx, or new_rx is non-0. 3544 * 3545 * Returns 0 on success. 3546 */ 3547 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3548 { 3549 struct ice_pf *pf = vsi->back; 3550 int err = 0, timeout = 50; 3551 3552 if (!new_rx && !new_tx) 3553 return -EINVAL; 3554 3555 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3556 timeout--; 3557 if (!timeout) 3558 return -EBUSY; 3559 usleep_range(1000, 2000); 3560 } 3561 3562 if (new_tx) 3563 vsi->req_txq = (u16)new_tx; 3564 if (new_rx) 3565 vsi->req_rxq = (u16)new_rx; 3566 3567 /* set for the next time the netdev is started */ 3568 if (!netif_running(vsi->netdev)) { 3569 ice_vsi_rebuild(vsi, false); 3570 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3571 goto done; 3572 } 3573 3574 ice_vsi_close(vsi); 3575 ice_vsi_rebuild(vsi, false); 3576 ice_pf_dcb_recfg(pf); 3577 ice_vsi_open(vsi); 3578 done: 3579 clear_bit(ICE_CFG_BUSY, pf->state); 3580 return err; 3581 } 3582 3583 /** 3584 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3585 * @pf: PF to configure 3586 * 3587 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3588 * VSI can still Tx/Rx VLAN tagged packets. 3589 */ 3590 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3591 { 3592 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3593 struct ice_vsi_ctx *ctxt; 3594 enum ice_status status; 3595 struct ice_hw *hw; 3596 3597 if (!vsi) 3598 return; 3599 3600 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3601 if (!ctxt) 3602 return; 3603 3604 hw = &pf->hw; 3605 ctxt->info = vsi->info; 3606 3607 ctxt->info.valid_sections = 3608 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3609 ICE_AQ_VSI_PROP_SECURITY_VALID | 3610 ICE_AQ_VSI_PROP_SW_VALID); 3611 3612 /* disable VLAN anti-spoof */ 3613 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3614 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3615 3616 /* disable VLAN pruning and keep all other settings */ 3617 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3618 3619 /* allow all VLANs on Tx and don't strip on Rx */ 3620 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3621 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3622 3623 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3624 if (status) { 3625 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3626 ice_stat_str(status), 3627 ice_aq_str(hw->adminq.sq_last_status)); 3628 } else { 3629 vsi->info.sec_flags = ctxt->info.sec_flags; 3630 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3631 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3632 } 3633 3634 kfree(ctxt); 3635 } 3636 3637 /** 3638 * ice_log_pkg_init - log result of DDP package load 3639 * @hw: pointer to hardware info 3640 * @status: status of package load 3641 */ 3642 static void 3643 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3644 { 3645 struct ice_pf *pf = (struct ice_pf *)hw->back; 3646 struct device *dev = ice_pf_to_dev(pf); 3647 3648 switch (*status) { 3649 case ICE_SUCCESS: 3650 /* The package download AdminQ command returned success because 3651 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3652 * already a package loaded on the device. 3653 */ 3654 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3655 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3656 hw->pkg_ver.update == hw->active_pkg_ver.update && 3657 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3658 !memcmp(hw->pkg_name, hw->active_pkg_name, 3659 sizeof(hw->pkg_name))) { 3660 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3661 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3662 hw->active_pkg_name, 3663 hw->active_pkg_ver.major, 3664 hw->active_pkg_ver.minor, 3665 hw->active_pkg_ver.update, 3666 hw->active_pkg_ver.draft); 3667 else 3668 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3669 hw->active_pkg_name, 3670 hw->active_pkg_ver.major, 3671 hw->active_pkg_ver.minor, 3672 hw->active_pkg_ver.update, 3673 hw->active_pkg_ver.draft); 3674 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3675 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3676 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3677 hw->active_pkg_name, 3678 hw->active_pkg_ver.major, 3679 hw->active_pkg_ver.minor, 3680 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3681 *status = ICE_ERR_NOT_SUPPORTED; 3682 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3683 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3684 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3685 hw->active_pkg_name, 3686 hw->active_pkg_ver.major, 3687 hw->active_pkg_ver.minor, 3688 hw->active_pkg_ver.update, 3689 hw->active_pkg_ver.draft, 3690 hw->pkg_name, 3691 hw->pkg_ver.major, 3692 hw->pkg_ver.minor, 3693 hw->pkg_ver.update, 3694 hw->pkg_ver.draft); 3695 } else { 3696 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3697 *status = ICE_ERR_NOT_SUPPORTED; 3698 } 3699 break; 3700 case ICE_ERR_FW_DDP_MISMATCH: 3701 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3702 break; 3703 case ICE_ERR_BUF_TOO_SHORT: 3704 case ICE_ERR_CFG: 3705 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3706 break; 3707 case ICE_ERR_NOT_SUPPORTED: 3708 /* Package File version not supported */ 3709 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3710 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3711 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3712 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3713 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3714 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3715 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3716 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3717 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3718 break; 3719 case ICE_ERR_AQ_ERROR: 3720 switch (hw->pkg_dwnld_status) { 3721 case ICE_AQ_RC_ENOSEC: 3722 case ICE_AQ_RC_EBADSIG: 3723 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3724 return; 3725 case ICE_AQ_RC_ESVN: 3726 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3727 return; 3728 case ICE_AQ_RC_EBADMAN: 3729 case ICE_AQ_RC_EBADBUF: 3730 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3731 /* poll for reset to complete */ 3732 if (ice_check_reset(hw)) 3733 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3734 return; 3735 default: 3736 break; 3737 } 3738 fallthrough; 3739 default: 3740 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3741 *status); 3742 break; 3743 } 3744 } 3745 3746 /** 3747 * ice_load_pkg - load/reload the DDP Package file 3748 * @firmware: firmware structure when firmware requested or NULL for reload 3749 * @pf: pointer to the PF instance 3750 * 3751 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3752 * initialize HW tables. 3753 */ 3754 static void 3755 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3756 { 3757 enum ice_status status = ICE_ERR_PARAM; 3758 struct device *dev = ice_pf_to_dev(pf); 3759 struct ice_hw *hw = &pf->hw; 3760 3761 /* Load DDP Package */ 3762 if (firmware && !hw->pkg_copy) { 3763 status = ice_copy_and_init_pkg(hw, firmware->data, 3764 firmware->size); 3765 ice_log_pkg_init(hw, &status); 3766 } else if (!firmware && hw->pkg_copy) { 3767 /* Reload package during rebuild after CORER/GLOBR reset */ 3768 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3769 ice_log_pkg_init(hw, &status); 3770 } else { 3771 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3772 } 3773 3774 if (status) { 3775 /* Safe Mode */ 3776 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3777 return; 3778 } 3779 3780 /* Successful download package is the precondition for advanced 3781 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3782 */ 3783 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3784 } 3785 3786 /** 3787 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3788 * @pf: pointer to the PF structure 3789 * 3790 * There is no error returned here because the driver should be able to handle 3791 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3792 * specifically with Tx. 3793 */ 3794 static void ice_verify_cacheline_size(struct ice_pf *pf) 3795 { 3796 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3797 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3798 ICE_CACHE_LINE_BYTES); 3799 } 3800 3801 /** 3802 * ice_send_version - update firmware with driver version 3803 * @pf: PF struct 3804 * 3805 * Returns ICE_SUCCESS on success, else error code 3806 */ 3807 static enum ice_status ice_send_version(struct ice_pf *pf) 3808 { 3809 struct ice_driver_ver dv; 3810 3811 dv.major_ver = 0xff; 3812 dv.minor_ver = 0xff; 3813 dv.build_ver = 0xff; 3814 dv.subbuild_ver = 0; 3815 strscpy((char *)dv.driver_string, UTS_RELEASE, 3816 sizeof(dv.driver_string)); 3817 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3818 } 3819 3820 /** 3821 * ice_init_fdir - Initialize flow director VSI and configuration 3822 * @pf: pointer to the PF instance 3823 * 3824 * returns 0 on success, negative on error 3825 */ 3826 static int ice_init_fdir(struct ice_pf *pf) 3827 { 3828 struct device *dev = ice_pf_to_dev(pf); 3829 struct ice_vsi *ctrl_vsi; 3830 int err; 3831 3832 /* Side Band Flow Director needs to have a control VSI. 3833 * Allocate it and store it in the PF. 3834 */ 3835 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3836 if (!ctrl_vsi) { 3837 dev_dbg(dev, "could not create control VSI\n"); 3838 return -ENOMEM; 3839 } 3840 3841 err = ice_vsi_open_ctrl(ctrl_vsi); 3842 if (err) { 3843 dev_dbg(dev, "could not open control VSI\n"); 3844 goto err_vsi_open; 3845 } 3846 3847 mutex_init(&pf->hw.fdir_fltr_lock); 3848 3849 err = ice_fdir_create_dflt_rules(pf); 3850 if (err) 3851 goto err_fdir_rule; 3852 3853 return 0; 3854 3855 err_fdir_rule: 3856 ice_fdir_release_flows(&pf->hw); 3857 ice_vsi_close(ctrl_vsi); 3858 err_vsi_open: 3859 ice_vsi_release(ctrl_vsi); 3860 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3861 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3862 pf->ctrl_vsi_idx = ICE_NO_VSI; 3863 } 3864 return err; 3865 } 3866 3867 /** 3868 * ice_get_opt_fw_name - return optional firmware file name or NULL 3869 * @pf: pointer to the PF instance 3870 */ 3871 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3872 { 3873 /* Optional firmware name same as default with additional dash 3874 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3875 */ 3876 struct pci_dev *pdev = pf->pdev; 3877 char *opt_fw_filename; 3878 u64 dsn; 3879 3880 /* Determine the name of the optional file using the DSN (two 3881 * dwords following the start of the DSN Capability). 3882 */ 3883 dsn = pci_get_dsn(pdev); 3884 if (!dsn) 3885 return NULL; 3886 3887 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3888 if (!opt_fw_filename) 3889 return NULL; 3890 3891 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3892 ICE_DDP_PKG_PATH, dsn); 3893 3894 return opt_fw_filename; 3895 } 3896 3897 /** 3898 * ice_request_fw - Device initialization routine 3899 * @pf: pointer to the PF instance 3900 */ 3901 static void ice_request_fw(struct ice_pf *pf) 3902 { 3903 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3904 const struct firmware *firmware = NULL; 3905 struct device *dev = ice_pf_to_dev(pf); 3906 int err = 0; 3907 3908 /* optional device-specific DDP (if present) overrides the default DDP 3909 * package file. kernel logs a debug message if the file doesn't exist, 3910 * and warning messages for other errors. 3911 */ 3912 if (opt_fw_filename) { 3913 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3914 if (err) { 3915 kfree(opt_fw_filename); 3916 goto dflt_pkg_load; 3917 } 3918 3919 /* request for firmware was successful. Download to device */ 3920 ice_load_pkg(firmware, pf); 3921 kfree(opt_fw_filename); 3922 release_firmware(firmware); 3923 return; 3924 } 3925 3926 dflt_pkg_load: 3927 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3928 if (err) { 3929 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3930 return; 3931 } 3932 3933 /* request for firmware was successful. Download to device */ 3934 ice_load_pkg(firmware, pf); 3935 release_firmware(firmware); 3936 } 3937 3938 /** 3939 * ice_print_wake_reason - show the wake up cause in the log 3940 * @pf: pointer to the PF struct 3941 */ 3942 static void ice_print_wake_reason(struct ice_pf *pf) 3943 { 3944 u32 wus = pf->wakeup_reason; 3945 const char *wake_str; 3946 3947 /* if no wake event, nothing to print */ 3948 if (!wus) 3949 return; 3950 3951 if (wus & PFPM_WUS_LNKC_M) 3952 wake_str = "Link\n"; 3953 else if (wus & PFPM_WUS_MAG_M) 3954 wake_str = "Magic Packet\n"; 3955 else if (wus & PFPM_WUS_MNG_M) 3956 wake_str = "Management\n"; 3957 else if (wus & PFPM_WUS_FW_RST_WK_M) 3958 wake_str = "Firmware Reset\n"; 3959 else 3960 wake_str = "Unknown\n"; 3961 3962 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 3963 } 3964 3965 /** 3966 * ice_register_netdev - register netdev and devlink port 3967 * @pf: pointer to the PF struct 3968 */ 3969 static int ice_register_netdev(struct ice_pf *pf) 3970 { 3971 struct ice_vsi *vsi; 3972 int err = 0; 3973 3974 vsi = ice_get_main_vsi(pf); 3975 if (!vsi || !vsi->netdev) 3976 return -EIO; 3977 3978 err = register_netdev(vsi->netdev); 3979 if (err) 3980 goto err_register_netdev; 3981 3982 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3983 netif_carrier_off(vsi->netdev); 3984 netif_tx_stop_all_queues(vsi->netdev); 3985 err = ice_devlink_create_port(vsi); 3986 if (err) 3987 goto err_devlink_create; 3988 3989 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 3990 3991 return 0; 3992 err_devlink_create: 3993 unregister_netdev(vsi->netdev); 3994 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3995 err_register_netdev: 3996 free_netdev(vsi->netdev); 3997 vsi->netdev = NULL; 3998 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3999 return err; 4000 } 4001 4002 /** 4003 * ice_probe - Device initialization routine 4004 * @pdev: PCI device information struct 4005 * @ent: entry in ice_pci_tbl 4006 * 4007 * Returns 0 on success, negative on failure 4008 */ 4009 static int 4010 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4011 { 4012 struct device *dev = &pdev->dev; 4013 struct ice_pf *pf; 4014 struct ice_hw *hw; 4015 int i, err; 4016 4017 /* this driver uses devres, see 4018 * Documentation/driver-api/driver-model/devres.rst 4019 */ 4020 err = pcim_enable_device(pdev); 4021 if (err) 4022 return err; 4023 4024 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4025 if (err) { 4026 dev_err(dev, "BAR0 I/O map error %d\n", err); 4027 return err; 4028 } 4029 4030 pf = ice_allocate_pf(dev); 4031 if (!pf) 4032 return -ENOMEM; 4033 4034 /* set up for high or low DMA */ 4035 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4036 if (err) 4037 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4038 if (err) { 4039 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4040 return err; 4041 } 4042 4043 pci_enable_pcie_error_reporting(pdev); 4044 pci_set_master(pdev); 4045 4046 pf->pdev = pdev; 4047 pci_set_drvdata(pdev, pf); 4048 set_bit(ICE_DOWN, pf->state); 4049 /* Disable service task until DOWN bit is cleared */ 4050 set_bit(ICE_SERVICE_DIS, pf->state); 4051 4052 hw = &pf->hw; 4053 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4054 pci_save_state(pdev); 4055 4056 hw->back = pf; 4057 hw->vendor_id = pdev->vendor; 4058 hw->device_id = pdev->device; 4059 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4060 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4061 hw->subsystem_device_id = pdev->subsystem_device; 4062 hw->bus.device = PCI_SLOT(pdev->devfn); 4063 hw->bus.func = PCI_FUNC(pdev->devfn); 4064 ice_set_ctrlq_len(hw); 4065 4066 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4067 4068 err = ice_devlink_register(pf); 4069 if (err) { 4070 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4071 goto err_exit_unroll; 4072 } 4073 4074 #ifndef CONFIG_DYNAMIC_DEBUG 4075 if (debug < -1) 4076 hw->debug_mask = debug; 4077 #endif 4078 4079 err = ice_init_hw(hw); 4080 if (err) { 4081 dev_err(dev, "ice_init_hw failed: %d\n", err); 4082 err = -EIO; 4083 goto err_exit_unroll; 4084 } 4085 4086 ice_request_fw(pf); 4087 4088 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4089 * set in pf->state, which will cause ice_is_safe_mode to return 4090 * true 4091 */ 4092 if (ice_is_safe_mode(pf)) { 4093 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4094 /* we already got function/device capabilities but these don't 4095 * reflect what the driver needs to do in safe mode. Instead of 4096 * adding conditional logic everywhere to ignore these 4097 * device/function capabilities, override them. 4098 */ 4099 ice_set_safe_mode_caps(hw); 4100 } 4101 4102 err = ice_init_pf(pf); 4103 if (err) { 4104 dev_err(dev, "ice_init_pf failed: %d\n", err); 4105 goto err_init_pf_unroll; 4106 } 4107 4108 ice_devlink_init_regions(pf); 4109 4110 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4111 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4112 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4113 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4114 i = 0; 4115 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4116 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4117 pf->hw.tnl.valid_count[TNL_VXLAN]; 4118 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4119 UDP_TUNNEL_TYPE_VXLAN; 4120 i++; 4121 } 4122 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4123 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4124 pf->hw.tnl.valid_count[TNL_GENEVE]; 4125 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4126 UDP_TUNNEL_TYPE_GENEVE; 4127 i++; 4128 } 4129 4130 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4131 if (!pf->num_alloc_vsi) { 4132 err = -EIO; 4133 goto err_init_pf_unroll; 4134 } 4135 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4136 dev_warn(&pf->pdev->dev, 4137 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4138 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4139 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4140 } 4141 4142 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4143 GFP_KERNEL); 4144 if (!pf->vsi) { 4145 err = -ENOMEM; 4146 goto err_init_pf_unroll; 4147 } 4148 4149 err = ice_init_interrupt_scheme(pf); 4150 if (err) { 4151 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4152 err = -EIO; 4153 goto err_init_vsi_unroll; 4154 } 4155 4156 /* In case of MSIX we are going to setup the misc vector right here 4157 * to handle admin queue events etc. In case of legacy and MSI 4158 * the misc functionality and queue processing is combined in 4159 * the same vector and that gets setup at open. 4160 */ 4161 err = ice_req_irq_msix_misc(pf); 4162 if (err) { 4163 dev_err(dev, "setup of misc vector failed: %d\n", err); 4164 goto err_init_interrupt_unroll; 4165 } 4166 4167 /* create switch struct for the switch element created by FW on boot */ 4168 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4169 if (!pf->first_sw) { 4170 err = -ENOMEM; 4171 goto err_msix_misc_unroll; 4172 } 4173 4174 if (hw->evb_veb) 4175 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4176 else 4177 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4178 4179 pf->first_sw->pf = pf; 4180 4181 /* record the sw_id available for later use */ 4182 pf->first_sw->sw_id = hw->port_info->sw_id; 4183 4184 err = ice_setup_pf_sw(pf); 4185 if (err) { 4186 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4187 goto err_alloc_sw_unroll; 4188 } 4189 4190 clear_bit(ICE_SERVICE_DIS, pf->state); 4191 4192 /* tell the firmware we are up */ 4193 err = ice_send_version(pf); 4194 if (err) { 4195 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4196 UTS_RELEASE, err); 4197 goto err_send_version_unroll; 4198 } 4199 4200 /* since everything is good, start the service timer */ 4201 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4202 4203 err = ice_init_link_events(pf->hw.port_info); 4204 if (err) { 4205 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4206 goto err_send_version_unroll; 4207 } 4208 4209 /* not a fatal error if this fails */ 4210 err = ice_init_nvm_phy_type(pf->hw.port_info); 4211 if (err) 4212 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4213 4214 /* not a fatal error if this fails */ 4215 err = ice_update_link_info(pf->hw.port_info); 4216 if (err) 4217 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4218 4219 ice_init_link_dflt_override(pf->hw.port_info); 4220 4221 /* if media available, initialize PHY settings */ 4222 if (pf->hw.port_info->phy.link_info.link_info & 4223 ICE_AQ_MEDIA_AVAILABLE) { 4224 /* not a fatal error if this fails */ 4225 err = ice_init_phy_user_cfg(pf->hw.port_info); 4226 if (err) 4227 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4228 4229 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4230 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4231 4232 if (vsi) 4233 ice_configure_phy(vsi); 4234 } 4235 } else { 4236 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4237 } 4238 4239 ice_verify_cacheline_size(pf); 4240 4241 /* Save wakeup reason register for later use */ 4242 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4243 4244 /* check for a power management event */ 4245 ice_print_wake_reason(pf); 4246 4247 /* clear wake status, all bits */ 4248 wr32(hw, PFPM_WUS, U32_MAX); 4249 4250 /* Disable WoL at init, wait for user to enable */ 4251 device_set_wakeup_enable(dev, false); 4252 4253 if (ice_is_safe_mode(pf)) { 4254 ice_set_safe_mode_vlan_cfg(pf); 4255 goto probe_done; 4256 } 4257 4258 /* initialize DDP driven features */ 4259 4260 /* Note: Flow director init failure is non-fatal to load */ 4261 if (ice_init_fdir(pf)) 4262 dev_err(dev, "could not initialize flow director\n"); 4263 4264 /* Note: DCB init failure is non-fatal to load */ 4265 if (ice_init_pf_dcb(pf, false)) { 4266 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4267 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4268 } else { 4269 ice_cfg_lldp_mib_change(&pf->hw, true); 4270 } 4271 4272 if (ice_init_lag(pf)) 4273 dev_warn(dev, "Failed to init link aggregation support\n"); 4274 4275 /* print PCI link speed and width */ 4276 pcie_print_link_status(pf->pdev); 4277 4278 probe_done: 4279 err = ice_register_netdev(pf); 4280 if (err) 4281 goto err_netdev_reg; 4282 4283 /* ready to go, so clear down state bit */ 4284 clear_bit(ICE_DOWN, pf->state); 4285 return 0; 4286 4287 err_netdev_reg: 4288 err_send_version_unroll: 4289 ice_vsi_release_all(pf); 4290 err_alloc_sw_unroll: 4291 set_bit(ICE_SERVICE_DIS, pf->state); 4292 set_bit(ICE_DOWN, pf->state); 4293 devm_kfree(dev, pf->first_sw); 4294 err_msix_misc_unroll: 4295 ice_free_irq_msix_misc(pf); 4296 err_init_interrupt_unroll: 4297 ice_clear_interrupt_scheme(pf); 4298 err_init_vsi_unroll: 4299 devm_kfree(dev, pf->vsi); 4300 err_init_pf_unroll: 4301 ice_deinit_pf(pf); 4302 ice_devlink_destroy_regions(pf); 4303 ice_deinit_hw(hw); 4304 err_exit_unroll: 4305 ice_devlink_unregister(pf); 4306 pci_disable_pcie_error_reporting(pdev); 4307 pci_disable_device(pdev); 4308 return err; 4309 } 4310 4311 /** 4312 * ice_set_wake - enable or disable Wake on LAN 4313 * @pf: pointer to the PF struct 4314 * 4315 * Simple helper for WoL control 4316 */ 4317 static void ice_set_wake(struct ice_pf *pf) 4318 { 4319 struct ice_hw *hw = &pf->hw; 4320 bool wol = pf->wol_ena; 4321 4322 /* clear wake state, otherwise new wake events won't fire */ 4323 wr32(hw, PFPM_WUS, U32_MAX); 4324 4325 /* enable / disable APM wake up, no RMW needed */ 4326 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4327 4328 /* set magic packet filter enabled */ 4329 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4330 } 4331 4332 /** 4333 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4334 * @pf: pointer to the PF struct 4335 * 4336 * Issue firmware command to enable multicast magic wake, making 4337 * sure that any locally administered address (LAA) is used for 4338 * wake, and that PF reset doesn't undo the LAA. 4339 */ 4340 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4341 { 4342 struct device *dev = ice_pf_to_dev(pf); 4343 struct ice_hw *hw = &pf->hw; 4344 enum ice_status status; 4345 u8 mac_addr[ETH_ALEN]; 4346 struct ice_vsi *vsi; 4347 u8 flags; 4348 4349 if (!pf->wol_ena) 4350 return; 4351 4352 vsi = ice_get_main_vsi(pf); 4353 if (!vsi) 4354 return; 4355 4356 /* Get current MAC address in case it's an LAA */ 4357 if (vsi->netdev) 4358 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4359 else 4360 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4361 4362 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4363 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4364 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4365 4366 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4367 if (status) 4368 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4369 ice_stat_str(status), 4370 ice_aq_str(hw->adminq.sq_last_status)); 4371 } 4372 4373 /** 4374 * ice_remove - Device removal routine 4375 * @pdev: PCI device information struct 4376 */ 4377 static void ice_remove(struct pci_dev *pdev) 4378 { 4379 struct ice_pf *pf = pci_get_drvdata(pdev); 4380 int i; 4381 4382 if (!pf) 4383 return; 4384 4385 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4386 if (!ice_is_reset_in_progress(pf->state)) 4387 break; 4388 msleep(100); 4389 } 4390 4391 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4392 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4393 ice_free_vfs(pf); 4394 } 4395 4396 set_bit(ICE_DOWN, pf->state); 4397 ice_service_task_stop(pf); 4398 4399 ice_aq_cancel_waiting_tasks(pf); 4400 4401 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4402 ice_deinit_lag(pf); 4403 if (!ice_is_safe_mode(pf)) 4404 ice_remove_arfs(pf); 4405 ice_setup_mc_magic_wake(pf); 4406 ice_vsi_release_all(pf); 4407 ice_set_wake(pf); 4408 ice_free_irq_msix_misc(pf); 4409 ice_for_each_vsi(pf, i) { 4410 if (!pf->vsi[i]) 4411 continue; 4412 ice_vsi_free_q_vectors(pf->vsi[i]); 4413 } 4414 ice_deinit_pf(pf); 4415 ice_devlink_destroy_regions(pf); 4416 ice_deinit_hw(&pf->hw); 4417 ice_devlink_unregister(pf); 4418 4419 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4420 * do it via ice_schedule_reset() since there is no need to rebuild 4421 * and the service task is already stopped. 4422 */ 4423 ice_reset(&pf->hw, ICE_RESET_PFR); 4424 pci_wait_for_pending_transaction(pdev); 4425 ice_clear_interrupt_scheme(pf); 4426 pci_disable_pcie_error_reporting(pdev); 4427 pci_disable_device(pdev); 4428 } 4429 4430 /** 4431 * ice_shutdown - PCI callback for shutting down device 4432 * @pdev: PCI device information struct 4433 */ 4434 static void ice_shutdown(struct pci_dev *pdev) 4435 { 4436 struct ice_pf *pf = pci_get_drvdata(pdev); 4437 4438 ice_remove(pdev); 4439 4440 if (system_state == SYSTEM_POWER_OFF) { 4441 pci_wake_from_d3(pdev, pf->wol_ena); 4442 pci_set_power_state(pdev, PCI_D3hot); 4443 } 4444 } 4445 4446 #ifdef CONFIG_PM 4447 /** 4448 * ice_prepare_for_shutdown - prep for PCI shutdown 4449 * @pf: board private structure 4450 * 4451 * Inform or close all dependent features in prep for PCI device shutdown 4452 */ 4453 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4454 { 4455 struct ice_hw *hw = &pf->hw; 4456 u32 v; 4457 4458 /* Notify VFs of impending reset */ 4459 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4460 ice_vc_notify_reset(pf); 4461 4462 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4463 4464 /* disable the VSIs and their queues that are not already DOWN */ 4465 ice_pf_dis_all_vsi(pf, false); 4466 4467 ice_for_each_vsi(pf, v) 4468 if (pf->vsi[v]) 4469 pf->vsi[v]->vsi_num = 0; 4470 4471 ice_shutdown_all_ctrlq(hw); 4472 } 4473 4474 /** 4475 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4476 * @pf: board private structure to reinitialize 4477 * 4478 * This routine reinitialize interrupt scheme that was cleared during 4479 * power management suspend callback. 4480 * 4481 * This should be called during resume routine to re-allocate the q_vectors 4482 * and reacquire interrupts. 4483 */ 4484 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4485 { 4486 struct device *dev = ice_pf_to_dev(pf); 4487 int ret, v; 4488 4489 /* Since we clear MSIX flag during suspend, we need to 4490 * set it back during resume... 4491 */ 4492 4493 ret = ice_init_interrupt_scheme(pf); 4494 if (ret) { 4495 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4496 return ret; 4497 } 4498 4499 /* Remap vectors and rings, after successful re-init interrupts */ 4500 ice_for_each_vsi(pf, v) { 4501 if (!pf->vsi[v]) 4502 continue; 4503 4504 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4505 if (ret) 4506 goto err_reinit; 4507 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4508 } 4509 4510 ret = ice_req_irq_msix_misc(pf); 4511 if (ret) { 4512 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4513 ret); 4514 goto err_reinit; 4515 } 4516 4517 return 0; 4518 4519 err_reinit: 4520 while (v--) 4521 if (pf->vsi[v]) 4522 ice_vsi_free_q_vectors(pf->vsi[v]); 4523 4524 return ret; 4525 } 4526 4527 /** 4528 * ice_suspend 4529 * @dev: generic device information structure 4530 * 4531 * Power Management callback to quiesce the device and prepare 4532 * for D3 transition. 4533 */ 4534 static int __maybe_unused ice_suspend(struct device *dev) 4535 { 4536 struct pci_dev *pdev = to_pci_dev(dev); 4537 struct ice_pf *pf; 4538 int disabled, v; 4539 4540 pf = pci_get_drvdata(pdev); 4541 4542 if (!ice_pf_state_is_nominal(pf)) { 4543 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4544 return -EBUSY; 4545 } 4546 4547 /* Stop watchdog tasks until resume completion. 4548 * Even though it is most likely that the service task is 4549 * disabled if the device is suspended or down, the service task's 4550 * state is controlled by a different state bit, and we should 4551 * store and honor whatever state that bit is in at this point. 4552 */ 4553 disabled = ice_service_task_stop(pf); 4554 4555 /* Already suspended?, then there is nothing to do */ 4556 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4557 if (!disabled) 4558 ice_service_task_restart(pf); 4559 return 0; 4560 } 4561 4562 if (test_bit(ICE_DOWN, pf->state) || 4563 ice_is_reset_in_progress(pf->state)) { 4564 dev_err(dev, "can't suspend device in reset or already down\n"); 4565 if (!disabled) 4566 ice_service_task_restart(pf); 4567 return 0; 4568 } 4569 4570 ice_setup_mc_magic_wake(pf); 4571 4572 ice_prepare_for_shutdown(pf); 4573 4574 ice_set_wake(pf); 4575 4576 /* Free vectors, clear the interrupt scheme and release IRQs 4577 * for proper hibernation, especially with large number of CPUs. 4578 * Otherwise hibernation might fail when mapping all the vectors back 4579 * to CPU0. 4580 */ 4581 ice_free_irq_msix_misc(pf); 4582 ice_for_each_vsi(pf, v) { 4583 if (!pf->vsi[v]) 4584 continue; 4585 ice_vsi_free_q_vectors(pf->vsi[v]); 4586 } 4587 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4588 ice_clear_interrupt_scheme(pf); 4589 4590 pci_save_state(pdev); 4591 pci_wake_from_d3(pdev, pf->wol_ena); 4592 pci_set_power_state(pdev, PCI_D3hot); 4593 return 0; 4594 } 4595 4596 /** 4597 * ice_resume - PM callback for waking up from D3 4598 * @dev: generic device information structure 4599 */ 4600 static int __maybe_unused ice_resume(struct device *dev) 4601 { 4602 struct pci_dev *pdev = to_pci_dev(dev); 4603 enum ice_reset_req reset_type; 4604 struct ice_pf *pf; 4605 struct ice_hw *hw; 4606 int ret; 4607 4608 pci_set_power_state(pdev, PCI_D0); 4609 pci_restore_state(pdev); 4610 pci_save_state(pdev); 4611 4612 if (!pci_device_is_present(pdev)) 4613 return -ENODEV; 4614 4615 ret = pci_enable_device_mem(pdev); 4616 if (ret) { 4617 dev_err(dev, "Cannot enable device after suspend\n"); 4618 return ret; 4619 } 4620 4621 pf = pci_get_drvdata(pdev); 4622 hw = &pf->hw; 4623 4624 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4625 ice_print_wake_reason(pf); 4626 4627 /* We cleared the interrupt scheme when we suspended, so we need to 4628 * restore it now to resume device functionality. 4629 */ 4630 ret = ice_reinit_interrupt_scheme(pf); 4631 if (ret) 4632 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4633 4634 clear_bit(ICE_DOWN, pf->state); 4635 /* Now perform PF reset and rebuild */ 4636 reset_type = ICE_RESET_PFR; 4637 /* re-enable service task for reset, but allow reset to schedule it */ 4638 clear_bit(ICE_SERVICE_DIS, pf->state); 4639 4640 if (ice_schedule_reset(pf, reset_type)) 4641 dev_err(dev, "Reset during resume failed.\n"); 4642 4643 clear_bit(ICE_SUSPENDED, pf->state); 4644 ice_service_task_restart(pf); 4645 4646 /* Restart the service task */ 4647 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4648 4649 return 0; 4650 } 4651 #endif /* CONFIG_PM */ 4652 4653 /** 4654 * ice_pci_err_detected - warning that PCI error has been detected 4655 * @pdev: PCI device information struct 4656 * @err: the type of PCI error 4657 * 4658 * Called to warn that something happened on the PCI bus and the error handling 4659 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4660 */ 4661 static pci_ers_result_t 4662 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4663 { 4664 struct ice_pf *pf = pci_get_drvdata(pdev); 4665 4666 if (!pf) { 4667 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4668 __func__, err); 4669 return PCI_ERS_RESULT_DISCONNECT; 4670 } 4671 4672 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4673 ice_service_task_stop(pf); 4674 4675 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4676 set_bit(ICE_PFR_REQ, pf->state); 4677 ice_prepare_for_reset(pf); 4678 } 4679 } 4680 4681 return PCI_ERS_RESULT_NEED_RESET; 4682 } 4683 4684 /** 4685 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4686 * @pdev: PCI device information struct 4687 * 4688 * Called to determine if the driver can recover from the PCI slot reset by 4689 * using a register read to determine if the device is recoverable. 4690 */ 4691 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4692 { 4693 struct ice_pf *pf = pci_get_drvdata(pdev); 4694 pci_ers_result_t result; 4695 int err; 4696 u32 reg; 4697 4698 err = pci_enable_device_mem(pdev); 4699 if (err) { 4700 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4701 err); 4702 result = PCI_ERS_RESULT_DISCONNECT; 4703 } else { 4704 pci_set_master(pdev); 4705 pci_restore_state(pdev); 4706 pci_save_state(pdev); 4707 pci_wake_from_d3(pdev, false); 4708 4709 /* Check for life */ 4710 reg = rd32(&pf->hw, GLGEN_RTRIG); 4711 if (!reg) 4712 result = PCI_ERS_RESULT_RECOVERED; 4713 else 4714 result = PCI_ERS_RESULT_DISCONNECT; 4715 } 4716 4717 err = pci_aer_clear_nonfatal_status(pdev); 4718 if (err) 4719 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4720 err); 4721 /* non-fatal, continue */ 4722 4723 return result; 4724 } 4725 4726 /** 4727 * ice_pci_err_resume - restart operations after PCI error recovery 4728 * @pdev: PCI device information struct 4729 * 4730 * Called to allow the driver to bring things back up after PCI error and/or 4731 * reset recovery have finished 4732 */ 4733 static void ice_pci_err_resume(struct pci_dev *pdev) 4734 { 4735 struct ice_pf *pf = pci_get_drvdata(pdev); 4736 4737 if (!pf) { 4738 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4739 __func__); 4740 return; 4741 } 4742 4743 if (test_bit(ICE_SUSPENDED, pf->state)) { 4744 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4745 __func__); 4746 return; 4747 } 4748 4749 ice_restore_all_vfs_msi_state(pdev); 4750 4751 ice_do_reset(pf, ICE_RESET_PFR); 4752 ice_service_task_restart(pf); 4753 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4754 } 4755 4756 /** 4757 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4758 * @pdev: PCI device information struct 4759 */ 4760 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4761 { 4762 struct ice_pf *pf = pci_get_drvdata(pdev); 4763 4764 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4765 ice_service_task_stop(pf); 4766 4767 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4768 set_bit(ICE_PFR_REQ, pf->state); 4769 ice_prepare_for_reset(pf); 4770 } 4771 } 4772 } 4773 4774 /** 4775 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4776 * @pdev: PCI device information struct 4777 */ 4778 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4779 { 4780 ice_pci_err_resume(pdev); 4781 } 4782 4783 /* ice_pci_tbl - PCI Device ID Table 4784 * 4785 * Wildcard entries (PCI_ANY_ID) should come last 4786 * Last entry must be all 0s 4787 * 4788 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4789 * Class, Class Mask, private data (not used) } 4790 */ 4791 static const struct pci_device_id ice_pci_tbl[] = { 4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4805 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4815 /* required last entry */ 4816 { 0, } 4817 }; 4818 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4819 4820 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4821 4822 static const struct pci_error_handlers ice_pci_err_handler = { 4823 .error_detected = ice_pci_err_detected, 4824 .slot_reset = ice_pci_err_slot_reset, 4825 .reset_prepare = ice_pci_err_reset_prepare, 4826 .reset_done = ice_pci_err_reset_done, 4827 .resume = ice_pci_err_resume 4828 }; 4829 4830 static struct pci_driver ice_driver = { 4831 .name = KBUILD_MODNAME, 4832 .id_table = ice_pci_tbl, 4833 .probe = ice_probe, 4834 .remove = ice_remove, 4835 #ifdef CONFIG_PM 4836 .driver.pm = &ice_pm_ops, 4837 #endif /* CONFIG_PM */ 4838 .shutdown = ice_shutdown, 4839 .sriov_configure = ice_sriov_configure, 4840 .err_handler = &ice_pci_err_handler 4841 }; 4842 4843 /** 4844 * ice_module_init - Driver registration routine 4845 * 4846 * ice_module_init is the first routine called when the driver is 4847 * loaded. All it does is register with the PCI subsystem. 4848 */ 4849 static int __init ice_module_init(void) 4850 { 4851 int status; 4852 4853 pr_info("%s\n", ice_driver_string); 4854 pr_info("%s\n", ice_copyright); 4855 4856 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4857 if (!ice_wq) { 4858 pr_err("Failed to create workqueue\n"); 4859 return -ENOMEM; 4860 } 4861 4862 status = pci_register_driver(&ice_driver); 4863 if (status) { 4864 pr_err("failed to register PCI driver, err %d\n", status); 4865 destroy_workqueue(ice_wq); 4866 } 4867 4868 return status; 4869 } 4870 module_init(ice_module_init); 4871 4872 /** 4873 * ice_module_exit - Driver exit cleanup routine 4874 * 4875 * ice_module_exit is called just before the driver is removed 4876 * from memory. 4877 */ 4878 static void __exit ice_module_exit(void) 4879 { 4880 pci_unregister_driver(&ice_driver); 4881 destroy_workqueue(ice_wq); 4882 pr_info("module unloaded\n"); 4883 } 4884 module_exit(ice_module_exit); 4885 4886 /** 4887 * ice_set_mac_address - NDO callback to set MAC address 4888 * @netdev: network interface device structure 4889 * @pi: pointer to an address structure 4890 * 4891 * Returns 0 on success, negative on failure 4892 */ 4893 static int ice_set_mac_address(struct net_device *netdev, void *pi) 4894 { 4895 struct ice_netdev_priv *np = netdev_priv(netdev); 4896 struct ice_vsi *vsi = np->vsi; 4897 struct ice_pf *pf = vsi->back; 4898 struct ice_hw *hw = &pf->hw; 4899 struct sockaddr *addr = pi; 4900 enum ice_status status; 4901 u8 flags = 0; 4902 int err = 0; 4903 u8 *mac; 4904 4905 mac = (u8 *)addr->sa_data; 4906 4907 if (!is_valid_ether_addr(mac)) 4908 return -EADDRNOTAVAIL; 4909 4910 if (ether_addr_equal(netdev->dev_addr, mac)) { 4911 netdev_warn(netdev, "already using mac %pM\n", mac); 4912 return 0; 4913 } 4914 4915 if (test_bit(ICE_DOWN, pf->state) || 4916 ice_is_reset_in_progress(pf->state)) { 4917 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4918 mac); 4919 return -EBUSY; 4920 } 4921 4922 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4923 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 4924 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4925 err = -EADDRNOTAVAIL; 4926 goto err_update_filters; 4927 } 4928 4929 /* Add filter for new MAC. If filter exists, return success */ 4930 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4931 if (status == ICE_ERR_ALREADY_EXISTS) { 4932 /* Although this MAC filter is already present in hardware it's 4933 * possible in some cases (e.g. bonding) that dev_addr was 4934 * modified outside of the driver and needs to be restored back 4935 * to this value. 4936 */ 4937 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4938 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4939 return 0; 4940 } 4941 4942 /* error if the new filter addition failed */ 4943 if (status) 4944 err = -EADDRNOTAVAIL; 4945 4946 err_update_filters: 4947 if (err) { 4948 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4949 mac); 4950 return err; 4951 } 4952 4953 /* change the netdev's MAC address */ 4954 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4955 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4956 netdev->dev_addr); 4957 4958 /* write new MAC address to the firmware */ 4959 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4960 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4961 if (status) { 4962 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4963 mac, ice_stat_str(status)); 4964 } 4965 return 0; 4966 } 4967 4968 /** 4969 * ice_set_rx_mode - NDO callback to set the netdev filters 4970 * @netdev: network interface device structure 4971 */ 4972 static void ice_set_rx_mode(struct net_device *netdev) 4973 { 4974 struct ice_netdev_priv *np = netdev_priv(netdev); 4975 struct ice_vsi *vsi = np->vsi; 4976 4977 if (!vsi) 4978 return; 4979 4980 /* Set the flags to synchronize filters 4981 * ndo_set_rx_mode may be triggered even without a change in netdev 4982 * flags 4983 */ 4984 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 4985 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 4986 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 4987 4988 /* schedule our worker thread which will take care of 4989 * applying the new filter changes 4990 */ 4991 ice_service_task_schedule(vsi->back); 4992 } 4993 4994 /** 4995 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 4996 * @netdev: network interface device structure 4997 * @queue_index: Queue ID 4998 * @maxrate: maximum bandwidth in Mbps 4999 */ 5000 static int 5001 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5002 { 5003 struct ice_netdev_priv *np = netdev_priv(netdev); 5004 struct ice_vsi *vsi = np->vsi; 5005 enum ice_status status; 5006 u16 q_handle; 5007 u8 tc; 5008 5009 /* Validate maxrate requested is within permitted range */ 5010 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5011 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5012 maxrate, queue_index); 5013 return -EINVAL; 5014 } 5015 5016 q_handle = vsi->tx_rings[queue_index]->q_handle; 5017 tc = ice_dcb_get_tc(vsi, queue_index); 5018 5019 /* Set BW back to default, when user set maxrate to 0 */ 5020 if (!maxrate) 5021 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5022 q_handle, ICE_MAX_BW); 5023 else 5024 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5025 q_handle, ICE_MAX_BW, maxrate * 1000); 5026 if (status) { 5027 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5028 ice_stat_str(status)); 5029 return -EIO; 5030 } 5031 5032 return 0; 5033 } 5034 5035 /** 5036 * ice_fdb_add - add an entry to the hardware database 5037 * @ndm: the input from the stack 5038 * @tb: pointer to array of nladdr (unused) 5039 * @dev: the net device pointer 5040 * @addr: the MAC address entry being added 5041 * @vid: VLAN ID 5042 * @flags: instructions from stack about fdb operation 5043 * @extack: netlink extended ack 5044 */ 5045 static int 5046 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5047 struct net_device *dev, const unsigned char *addr, u16 vid, 5048 u16 flags, struct netlink_ext_ack __always_unused *extack) 5049 { 5050 int err; 5051 5052 if (vid) { 5053 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5054 return -EINVAL; 5055 } 5056 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5057 netdev_err(dev, "FDB only supports static addresses\n"); 5058 return -EINVAL; 5059 } 5060 5061 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5062 err = dev_uc_add_excl(dev, addr); 5063 else if (is_multicast_ether_addr(addr)) 5064 err = dev_mc_add_excl(dev, addr); 5065 else 5066 err = -EINVAL; 5067 5068 /* Only return duplicate errors if NLM_F_EXCL is set */ 5069 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5070 err = 0; 5071 5072 return err; 5073 } 5074 5075 /** 5076 * ice_fdb_del - delete an entry from the hardware database 5077 * @ndm: the input from the stack 5078 * @tb: pointer to array of nladdr (unused) 5079 * @dev: the net device pointer 5080 * @addr: the MAC address entry being added 5081 * @vid: VLAN ID 5082 */ 5083 static int 5084 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5085 struct net_device *dev, const unsigned char *addr, 5086 __always_unused u16 vid) 5087 { 5088 int err; 5089 5090 if (ndm->ndm_state & NUD_PERMANENT) { 5091 netdev_err(dev, "FDB only supports static addresses\n"); 5092 return -EINVAL; 5093 } 5094 5095 if (is_unicast_ether_addr(addr)) 5096 err = dev_uc_del(dev, addr); 5097 else if (is_multicast_ether_addr(addr)) 5098 err = dev_mc_del(dev, addr); 5099 else 5100 err = -EINVAL; 5101 5102 return err; 5103 } 5104 5105 /** 5106 * ice_set_features - set the netdev feature flags 5107 * @netdev: ptr to the netdev being adjusted 5108 * @features: the feature set that the stack is suggesting 5109 */ 5110 static int 5111 ice_set_features(struct net_device *netdev, netdev_features_t features) 5112 { 5113 struct ice_netdev_priv *np = netdev_priv(netdev); 5114 struct ice_vsi *vsi = np->vsi; 5115 struct ice_pf *pf = vsi->back; 5116 int ret = 0; 5117 5118 /* Don't set any netdev advanced features with device in Safe Mode */ 5119 if (ice_is_safe_mode(vsi->back)) { 5120 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5121 return ret; 5122 } 5123 5124 /* Do not change setting during reset */ 5125 if (ice_is_reset_in_progress(pf->state)) { 5126 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5127 return -EBUSY; 5128 } 5129 5130 /* Multiple features can be changed in one call so keep features in 5131 * separate if/else statements to guarantee each feature is checked 5132 */ 5133 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5134 ice_vsi_manage_rss_lut(vsi, true); 5135 else if (!(features & NETIF_F_RXHASH) && 5136 netdev->features & NETIF_F_RXHASH) 5137 ice_vsi_manage_rss_lut(vsi, false); 5138 5139 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5140 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5141 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5142 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5143 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5144 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5145 5146 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5147 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5148 ret = ice_vsi_manage_vlan_insertion(vsi); 5149 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5150 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5151 ret = ice_vsi_manage_vlan_insertion(vsi); 5152 5153 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5154 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5155 ret = ice_cfg_vlan_pruning(vsi, true, false); 5156 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5157 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5158 ret = ice_cfg_vlan_pruning(vsi, false, false); 5159 5160 if ((features & NETIF_F_NTUPLE) && 5161 !(netdev->features & NETIF_F_NTUPLE)) { 5162 ice_vsi_manage_fdir(vsi, true); 5163 ice_init_arfs(vsi); 5164 } else if (!(features & NETIF_F_NTUPLE) && 5165 (netdev->features & NETIF_F_NTUPLE)) { 5166 ice_vsi_manage_fdir(vsi, false); 5167 ice_clear_arfs(vsi); 5168 } 5169 5170 return ret; 5171 } 5172 5173 /** 5174 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5175 * @vsi: VSI to setup VLAN properties for 5176 */ 5177 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5178 { 5179 int ret = 0; 5180 5181 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5182 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5183 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5184 ret = ice_vsi_manage_vlan_insertion(vsi); 5185 5186 return ret; 5187 } 5188 5189 /** 5190 * ice_vsi_cfg - Setup the VSI 5191 * @vsi: the VSI being configured 5192 * 5193 * Return 0 on success and negative value on error 5194 */ 5195 int ice_vsi_cfg(struct ice_vsi *vsi) 5196 { 5197 int err; 5198 5199 if (vsi->netdev) { 5200 ice_set_rx_mode(vsi->netdev); 5201 5202 err = ice_vsi_vlan_setup(vsi); 5203 5204 if (err) 5205 return err; 5206 } 5207 ice_vsi_cfg_dcb_rings(vsi); 5208 5209 err = ice_vsi_cfg_lan_txqs(vsi); 5210 if (!err && ice_is_xdp_ena_vsi(vsi)) 5211 err = ice_vsi_cfg_xdp_txqs(vsi); 5212 if (!err) 5213 err = ice_vsi_cfg_rxqs(vsi); 5214 5215 return err; 5216 } 5217 5218 /* THEORY OF MODERATION: 5219 * The below code creates custom DIM profiles for use by this driver, because 5220 * the ice driver hardware works differently than the hardware that DIMLIB was 5221 * originally made for. ice hardware doesn't have packet count limits that 5222 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5223 * and this code adds that capability to be used by the driver when it's using 5224 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver 5225 * for how to "respond" to traffic and interrupts, so this driver uses a 5226 * slightly different set of moderation parameters to get best performance. 5227 */ 5228 struct ice_dim { 5229 /* the throttle rate for interrupts, basically worst case delay before 5230 * an initial interrupt fires, value is stored in microseconds. 5231 */ 5232 u16 itr; 5233 /* the rate limit for interrupts, which can cap a delay from a small 5234 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR 5235 * could yield as much as 500,000 interrupts per second, but with a 5236 * 10us rate limit, it limits to 100,000 interrupts per second. Value 5237 * is stored in microseconds. 5238 */ 5239 u16 intrl; 5240 }; 5241 5242 /* Make a different profile for Rx that doesn't allow quite so aggressive 5243 * moderation at the high end (it maxes out at 128us or about 8k interrupts a 5244 * second. The INTRL/rate parameters here are only useful to cap small ITR 5245 * values, which is why for larger ITR's - like 128, which can only generate 5246 * 8k interrupts per second, there is no point to rate limit and the values 5247 * are set to zero. The rate limit values do affect latency, and so must 5248 * be reasonably small so to not impact latency sensitive tests. 5249 */ 5250 static const struct ice_dim rx_profile[] = { 5251 {2, 10}, 5252 {8, 16}, 5253 {32, 0}, 5254 {96, 0}, 5255 {128, 0} 5256 }; 5257 5258 /* The transmit profile, which has the same sorts of values 5259 * as the previous struct 5260 */ 5261 static const struct ice_dim tx_profile[] = { 5262 {2, 10}, 5263 {8, 16}, 5264 {64, 0}, 5265 {128, 0}, 5266 {256, 0} 5267 }; 5268 5269 static void ice_tx_dim_work(struct work_struct *work) 5270 { 5271 struct ice_ring_container *rc; 5272 struct ice_q_vector *q_vector; 5273 struct dim *dim; 5274 u16 itr, intrl; 5275 5276 dim = container_of(work, struct dim, work); 5277 rc = container_of(dim, struct ice_ring_container, dim); 5278 q_vector = container_of(rc, struct ice_q_vector, tx); 5279 5280 if (dim->profile_ix >= ARRAY_SIZE(tx_profile)) 5281 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1; 5282 5283 /* look up the values in our local table */ 5284 itr = tx_profile[dim->profile_ix].itr; 5285 intrl = tx_profile[dim->profile_ix].intrl; 5286 5287 ice_write_itr(rc, itr); 5288 ice_write_intrl(q_vector, intrl); 5289 5290 dim->state = DIM_START_MEASURE; 5291 } 5292 5293 static void ice_rx_dim_work(struct work_struct *work) 5294 { 5295 struct ice_ring_container *rc; 5296 struct ice_q_vector *q_vector; 5297 struct dim *dim; 5298 u16 itr, intrl; 5299 5300 dim = container_of(work, struct dim, work); 5301 rc = container_of(dim, struct ice_ring_container, dim); 5302 q_vector = container_of(rc, struct ice_q_vector, rx); 5303 5304 if (dim->profile_ix >= ARRAY_SIZE(rx_profile)) 5305 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1; 5306 5307 /* look up the values in our local table */ 5308 itr = rx_profile[dim->profile_ix].itr; 5309 intrl = rx_profile[dim->profile_ix].intrl; 5310 5311 ice_write_itr(rc, itr); 5312 ice_write_intrl(q_vector, intrl); 5313 5314 dim->state = DIM_START_MEASURE; 5315 } 5316 5317 /** 5318 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5319 * @vsi: the VSI being configured 5320 */ 5321 static void ice_napi_enable_all(struct ice_vsi *vsi) 5322 { 5323 int q_idx; 5324 5325 if (!vsi->netdev) 5326 return; 5327 5328 ice_for_each_q_vector(vsi, q_idx) { 5329 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5330 5331 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work); 5332 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5333 5334 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work); 5335 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5336 5337 if (q_vector->rx.ring || q_vector->tx.ring) 5338 napi_enable(&q_vector->napi); 5339 } 5340 } 5341 5342 /** 5343 * ice_up_complete - Finish the last steps of bringing up a connection 5344 * @vsi: The VSI being configured 5345 * 5346 * Return 0 on success and negative value on error 5347 */ 5348 static int ice_up_complete(struct ice_vsi *vsi) 5349 { 5350 struct ice_pf *pf = vsi->back; 5351 int err; 5352 5353 ice_vsi_cfg_msix(vsi); 5354 5355 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5356 * Tx queue group list was configured and the context bits were 5357 * programmed using ice_vsi_cfg_txqs 5358 */ 5359 err = ice_vsi_start_all_rx_rings(vsi); 5360 if (err) 5361 return err; 5362 5363 clear_bit(ICE_VSI_DOWN, vsi->state); 5364 ice_napi_enable_all(vsi); 5365 ice_vsi_ena_irq(vsi); 5366 5367 if (vsi->port_info && 5368 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5369 vsi->netdev) { 5370 ice_print_link_msg(vsi, true); 5371 netif_tx_start_all_queues(vsi->netdev); 5372 netif_carrier_on(vsi->netdev); 5373 } 5374 5375 ice_service_task_schedule(pf); 5376 5377 return 0; 5378 } 5379 5380 /** 5381 * ice_up - Bring the connection back up after being down 5382 * @vsi: VSI being configured 5383 */ 5384 int ice_up(struct ice_vsi *vsi) 5385 { 5386 int err; 5387 5388 err = ice_vsi_cfg(vsi); 5389 if (!err) 5390 err = ice_up_complete(vsi); 5391 5392 return err; 5393 } 5394 5395 /** 5396 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5397 * @ring: Tx or Rx ring to read stats from 5398 * @pkts: packets stats counter 5399 * @bytes: bytes stats counter 5400 * 5401 * This function fetches stats from the ring considering the atomic operations 5402 * that needs to be performed to read u64 values in 32 bit machine. 5403 */ 5404 static void 5405 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5406 { 5407 unsigned int start; 5408 *pkts = 0; 5409 *bytes = 0; 5410 5411 if (!ring) 5412 return; 5413 do { 5414 start = u64_stats_fetch_begin_irq(&ring->syncp); 5415 *pkts = ring->stats.pkts; 5416 *bytes = ring->stats.bytes; 5417 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5418 } 5419 5420 /** 5421 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5422 * @vsi: the VSI to be updated 5423 * @rings: rings to work on 5424 * @count: number of rings 5425 */ 5426 static void 5427 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5428 u16 count) 5429 { 5430 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5431 u16 i; 5432 5433 for (i = 0; i < count; i++) { 5434 struct ice_ring *ring; 5435 u64 pkts, bytes; 5436 5437 ring = READ_ONCE(rings[i]); 5438 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5439 vsi_stats->tx_packets += pkts; 5440 vsi_stats->tx_bytes += bytes; 5441 vsi->tx_restart += ring->tx_stats.restart_q; 5442 vsi->tx_busy += ring->tx_stats.tx_busy; 5443 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5444 } 5445 } 5446 5447 /** 5448 * ice_update_vsi_ring_stats - Update VSI stats counters 5449 * @vsi: the VSI to be updated 5450 */ 5451 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5452 { 5453 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5454 struct ice_ring *ring; 5455 u64 pkts, bytes; 5456 int i; 5457 5458 /* reset netdev stats */ 5459 vsi_stats->tx_packets = 0; 5460 vsi_stats->tx_bytes = 0; 5461 vsi_stats->rx_packets = 0; 5462 vsi_stats->rx_bytes = 0; 5463 5464 /* reset non-netdev (extended) stats */ 5465 vsi->tx_restart = 0; 5466 vsi->tx_busy = 0; 5467 vsi->tx_linearize = 0; 5468 vsi->rx_buf_failed = 0; 5469 vsi->rx_page_failed = 0; 5470 5471 rcu_read_lock(); 5472 5473 /* update Tx rings counters */ 5474 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5475 5476 /* update Rx rings counters */ 5477 ice_for_each_rxq(vsi, i) { 5478 ring = READ_ONCE(vsi->rx_rings[i]); 5479 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5480 vsi_stats->rx_packets += pkts; 5481 vsi_stats->rx_bytes += bytes; 5482 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5483 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5484 } 5485 5486 /* update XDP Tx rings counters */ 5487 if (ice_is_xdp_ena_vsi(vsi)) 5488 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5489 vsi->num_xdp_txq); 5490 5491 rcu_read_unlock(); 5492 } 5493 5494 /** 5495 * ice_update_vsi_stats - Update VSI stats counters 5496 * @vsi: the VSI to be updated 5497 */ 5498 void ice_update_vsi_stats(struct ice_vsi *vsi) 5499 { 5500 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5501 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5502 struct ice_pf *pf = vsi->back; 5503 5504 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5505 test_bit(ICE_CFG_BUSY, pf->state)) 5506 return; 5507 5508 /* get stats as recorded by Tx/Rx rings */ 5509 ice_update_vsi_ring_stats(vsi); 5510 5511 /* get VSI stats as recorded by the hardware */ 5512 ice_update_eth_stats(vsi); 5513 5514 cur_ns->tx_errors = cur_es->tx_errors; 5515 cur_ns->rx_dropped = cur_es->rx_discards; 5516 cur_ns->tx_dropped = cur_es->tx_discards; 5517 cur_ns->multicast = cur_es->rx_multicast; 5518 5519 /* update some more netdev stats if this is main VSI */ 5520 if (vsi->type == ICE_VSI_PF) { 5521 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5522 cur_ns->rx_errors = pf->stats.crc_errors + 5523 pf->stats.illegal_bytes + 5524 pf->stats.rx_len_errors + 5525 pf->stats.rx_undersize + 5526 pf->hw_csum_rx_error + 5527 pf->stats.rx_jabber + 5528 pf->stats.rx_fragments + 5529 pf->stats.rx_oversize; 5530 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5531 /* record drops from the port level */ 5532 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5533 } 5534 } 5535 5536 /** 5537 * ice_update_pf_stats - Update PF port stats counters 5538 * @pf: PF whose stats needs to be updated 5539 */ 5540 void ice_update_pf_stats(struct ice_pf *pf) 5541 { 5542 struct ice_hw_port_stats *prev_ps, *cur_ps; 5543 struct ice_hw *hw = &pf->hw; 5544 u16 fd_ctr_base; 5545 u8 port; 5546 5547 port = hw->port_info->lport; 5548 prev_ps = &pf->stats_prev; 5549 cur_ps = &pf->stats; 5550 5551 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5552 &prev_ps->eth.rx_bytes, 5553 &cur_ps->eth.rx_bytes); 5554 5555 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5556 &prev_ps->eth.rx_unicast, 5557 &cur_ps->eth.rx_unicast); 5558 5559 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5560 &prev_ps->eth.rx_multicast, 5561 &cur_ps->eth.rx_multicast); 5562 5563 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5564 &prev_ps->eth.rx_broadcast, 5565 &cur_ps->eth.rx_broadcast); 5566 5567 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5568 &prev_ps->eth.rx_discards, 5569 &cur_ps->eth.rx_discards); 5570 5571 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5572 &prev_ps->eth.tx_bytes, 5573 &cur_ps->eth.tx_bytes); 5574 5575 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5576 &prev_ps->eth.tx_unicast, 5577 &cur_ps->eth.tx_unicast); 5578 5579 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5580 &prev_ps->eth.tx_multicast, 5581 &cur_ps->eth.tx_multicast); 5582 5583 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5584 &prev_ps->eth.tx_broadcast, 5585 &cur_ps->eth.tx_broadcast); 5586 5587 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5588 &prev_ps->tx_dropped_link_down, 5589 &cur_ps->tx_dropped_link_down); 5590 5591 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5592 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5593 5594 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5595 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5596 5597 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5598 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5599 5600 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5601 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5602 5603 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5604 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5605 5606 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5607 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5608 5609 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5610 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5611 5612 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5613 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5614 5615 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5616 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5617 5618 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5619 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5620 5621 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5622 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5623 5624 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5625 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5626 5627 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5628 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5629 5630 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5631 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5632 5633 fd_ctr_base = hw->fd_ctr_base; 5634 5635 ice_stat_update40(hw, 5636 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5637 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5638 &cur_ps->fd_sb_match); 5639 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5640 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5641 5642 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5643 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5644 5645 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5646 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5647 5648 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5649 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5650 5651 ice_update_dcb_stats(pf); 5652 5653 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5654 &prev_ps->crc_errors, &cur_ps->crc_errors); 5655 5656 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5657 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5658 5659 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5660 &prev_ps->mac_local_faults, 5661 &cur_ps->mac_local_faults); 5662 5663 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5664 &prev_ps->mac_remote_faults, 5665 &cur_ps->mac_remote_faults); 5666 5667 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5668 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5669 5670 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5671 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5672 5673 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5674 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5675 5676 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5677 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5678 5679 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5680 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5681 5682 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5683 5684 pf->stat_prev_loaded = true; 5685 } 5686 5687 /** 5688 * ice_get_stats64 - get statistics for network device structure 5689 * @netdev: network interface device structure 5690 * @stats: main device statistics structure 5691 */ 5692 static 5693 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5694 { 5695 struct ice_netdev_priv *np = netdev_priv(netdev); 5696 struct rtnl_link_stats64 *vsi_stats; 5697 struct ice_vsi *vsi = np->vsi; 5698 5699 vsi_stats = &vsi->net_stats; 5700 5701 if (!vsi->num_txq || !vsi->num_rxq) 5702 return; 5703 5704 /* netdev packet/byte stats come from ring counter. These are obtained 5705 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5706 * But, only call the update routine and read the registers if VSI is 5707 * not down. 5708 */ 5709 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 5710 ice_update_vsi_ring_stats(vsi); 5711 stats->tx_packets = vsi_stats->tx_packets; 5712 stats->tx_bytes = vsi_stats->tx_bytes; 5713 stats->rx_packets = vsi_stats->rx_packets; 5714 stats->rx_bytes = vsi_stats->rx_bytes; 5715 5716 /* The rest of the stats can be read from the hardware but instead we 5717 * just return values that the watchdog task has already obtained from 5718 * the hardware. 5719 */ 5720 stats->multicast = vsi_stats->multicast; 5721 stats->tx_errors = vsi_stats->tx_errors; 5722 stats->tx_dropped = vsi_stats->tx_dropped; 5723 stats->rx_errors = vsi_stats->rx_errors; 5724 stats->rx_dropped = vsi_stats->rx_dropped; 5725 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5726 stats->rx_length_errors = vsi_stats->rx_length_errors; 5727 } 5728 5729 /** 5730 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5731 * @vsi: VSI having NAPI disabled 5732 */ 5733 static void ice_napi_disable_all(struct ice_vsi *vsi) 5734 { 5735 int q_idx; 5736 5737 if (!vsi->netdev) 5738 return; 5739 5740 ice_for_each_q_vector(vsi, q_idx) { 5741 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5742 5743 if (q_vector->rx.ring || q_vector->tx.ring) 5744 napi_disable(&q_vector->napi); 5745 5746 cancel_work_sync(&q_vector->tx.dim.work); 5747 cancel_work_sync(&q_vector->rx.dim.work); 5748 } 5749 } 5750 5751 /** 5752 * ice_down - Shutdown the connection 5753 * @vsi: The VSI being stopped 5754 */ 5755 int ice_down(struct ice_vsi *vsi) 5756 { 5757 int i, tx_err, rx_err, link_err = 0; 5758 5759 /* Caller of this function is expected to set the 5760 * vsi->state ICE_DOWN bit 5761 */ 5762 if (vsi->netdev) { 5763 netif_carrier_off(vsi->netdev); 5764 netif_tx_disable(vsi->netdev); 5765 } 5766 5767 ice_vsi_dis_irq(vsi); 5768 5769 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5770 if (tx_err) 5771 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5772 vsi->vsi_num, tx_err); 5773 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5774 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5775 if (tx_err) 5776 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5777 vsi->vsi_num, tx_err); 5778 } 5779 5780 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5781 if (rx_err) 5782 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5783 vsi->vsi_num, rx_err); 5784 5785 ice_napi_disable_all(vsi); 5786 5787 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5788 link_err = ice_force_phys_link_state(vsi, false); 5789 if (link_err) 5790 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5791 vsi->vsi_num, link_err); 5792 } 5793 5794 ice_for_each_txq(vsi, i) 5795 ice_clean_tx_ring(vsi->tx_rings[i]); 5796 5797 ice_for_each_rxq(vsi, i) 5798 ice_clean_rx_ring(vsi->rx_rings[i]); 5799 5800 if (tx_err || rx_err || link_err) { 5801 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5802 vsi->vsi_num, vsi->vsw->sw_id); 5803 return -EIO; 5804 } 5805 5806 return 0; 5807 } 5808 5809 /** 5810 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5811 * @vsi: VSI having resources allocated 5812 * 5813 * Return 0 on success, negative on failure 5814 */ 5815 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5816 { 5817 int i, err = 0; 5818 5819 if (!vsi->num_txq) { 5820 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5821 vsi->vsi_num); 5822 return -EINVAL; 5823 } 5824 5825 ice_for_each_txq(vsi, i) { 5826 struct ice_ring *ring = vsi->tx_rings[i]; 5827 5828 if (!ring) 5829 return -EINVAL; 5830 5831 ring->netdev = vsi->netdev; 5832 err = ice_setup_tx_ring(ring); 5833 if (err) 5834 break; 5835 } 5836 5837 return err; 5838 } 5839 5840 /** 5841 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5842 * @vsi: VSI having resources allocated 5843 * 5844 * Return 0 on success, negative on failure 5845 */ 5846 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5847 { 5848 int i, err = 0; 5849 5850 if (!vsi->num_rxq) { 5851 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5852 vsi->vsi_num); 5853 return -EINVAL; 5854 } 5855 5856 ice_for_each_rxq(vsi, i) { 5857 struct ice_ring *ring = vsi->rx_rings[i]; 5858 5859 if (!ring) 5860 return -EINVAL; 5861 5862 ring->netdev = vsi->netdev; 5863 err = ice_setup_rx_ring(ring); 5864 if (err) 5865 break; 5866 } 5867 5868 return err; 5869 } 5870 5871 /** 5872 * ice_vsi_open_ctrl - open control VSI for use 5873 * @vsi: the VSI to open 5874 * 5875 * Initialization of the Control VSI 5876 * 5877 * Returns 0 on success, negative value on error 5878 */ 5879 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5880 { 5881 char int_name[ICE_INT_NAME_STR_LEN]; 5882 struct ice_pf *pf = vsi->back; 5883 struct device *dev; 5884 int err; 5885 5886 dev = ice_pf_to_dev(pf); 5887 /* allocate descriptors */ 5888 err = ice_vsi_setup_tx_rings(vsi); 5889 if (err) 5890 goto err_setup_tx; 5891 5892 err = ice_vsi_setup_rx_rings(vsi); 5893 if (err) 5894 goto err_setup_rx; 5895 5896 err = ice_vsi_cfg(vsi); 5897 if (err) 5898 goto err_setup_rx; 5899 5900 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5901 dev_driver_string(dev), dev_name(dev)); 5902 err = ice_vsi_req_irq_msix(vsi, int_name); 5903 if (err) 5904 goto err_setup_rx; 5905 5906 ice_vsi_cfg_msix(vsi); 5907 5908 err = ice_vsi_start_all_rx_rings(vsi); 5909 if (err) 5910 goto err_up_complete; 5911 5912 clear_bit(ICE_VSI_DOWN, vsi->state); 5913 ice_vsi_ena_irq(vsi); 5914 5915 return 0; 5916 5917 err_up_complete: 5918 ice_down(vsi); 5919 err_setup_rx: 5920 ice_vsi_free_rx_rings(vsi); 5921 err_setup_tx: 5922 ice_vsi_free_tx_rings(vsi); 5923 5924 return err; 5925 } 5926 5927 /** 5928 * ice_vsi_open - Called when a network interface is made active 5929 * @vsi: the VSI to open 5930 * 5931 * Initialization of the VSI 5932 * 5933 * Returns 0 on success, negative value on error 5934 */ 5935 static int ice_vsi_open(struct ice_vsi *vsi) 5936 { 5937 char int_name[ICE_INT_NAME_STR_LEN]; 5938 struct ice_pf *pf = vsi->back; 5939 int err; 5940 5941 /* allocate descriptors */ 5942 err = ice_vsi_setup_tx_rings(vsi); 5943 if (err) 5944 goto err_setup_tx; 5945 5946 err = ice_vsi_setup_rx_rings(vsi); 5947 if (err) 5948 goto err_setup_rx; 5949 5950 err = ice_vsi_cfg(vsi); 5951 if (err) 5952 goto err_setup_rx; 5953 5954 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5955 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5956 err = ice_vsi_req_irq_msix(vsi, int_name); 5957 if (err) 5958 goto err_setup_rx; 5959 5960 /* Notify the stack of the actual queue counts. */ 5961 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5962 if (err) 5963 goto err_set_qs; 5964 5965 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5966 if (err) 5967 goto err_set_qs; 5968 5969 err = ice_up_complete(vsi); 5970 if (err) 5971 goto err_up_complete; 5972 5973 return 0; 5974 5975 err_up_complete: 5976 ice_down(vsi); 5977 err_set_qs: 5978 ice_vsi_free_irq(vsi); 5979 err_setup_rx: 5980 ice_vsi_free_rx_rings(vsi); 5981 err_setup_tx: 5982 ice_vsi_free_tx_rings(vsi); 5983 5984 return err; 5985 } 5986 5987 /** 5988 * ice_vsi_release_all - Delete all VSIs 5989 * @pf: PF from which all VSIs are being removed 5990 */ 5991 static void ice_vsi_release_all(struct ice_pf *pf) 5992 { 5993 int err, i; 5994 5995 if (!pf->vsi) 5996 return; 5997 5998 ice_for_each_vsi(pf, i) { 5999 if (!pf->vsi[i]) 6000 continue; 6001 6002 err = ice_vsi_release(pf->vsi[i]); 6003 if (err) 6004 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6005 i, err, pf->vsi[i]->vsi_num); 6006 } 6007 } 6008 6009 /** 6010 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6011 * @pf: pointer to the PF instance 6012 * @type: VSI type to rebuild 6013 * 6014 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6015 */ 6016 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6017 { 6018 struct device *dev = ice_pf_to_dev(pf); 6019 enum ice_status status; 6020 int i, err; 6021 6022 ice_for_each_vsi(pf, i) { 6023 struct ice_vsi *vsi = pf->vsi[i]; 6024 6025 if (!vsi || vsi->type != type) 6026 continue; 6027 6028 /* rebuild the VSI */ 6029 err = ice_vsi_rebuild(vsi, true); 6030 if (err) { 6031 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6032 err, vsi->idx, ice_vsi_type_str(type)); 6033 return err; 6034 } 6035 6036 /* replay filters for the VSI */ 6037 status = ice_replay_vsi(&pf->hw, vsi->idx); 6038 if (status) { 6039 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6040 ice_stat_str(status), vsi->idx, 6041 ice_vsi_type_str(type)); 6042 return -EIO; 6043 } 6044 6045 /* Re-map HW VSI number, using VSI handle that has been 6046 * previously validated in ice_replay_vsi() call above 6047 */ 6048 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6049 6050 /* enable the VSI */ 6051 err = ice_ena_vsi(vsi, false); 6052 if (err) { 6053 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6054 err, vsi->idx, ice_vsi_type_str(type)); 6055 return err; 6056 } 6057 6058 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6059 ice_vsi_type_str(type)); 6060 } 6061 6062 return 0; 6063 } 6064 6065 /** 6066 * ice_update_pf_netdev_link - Update PF netdev link status 6067 * @pf: pointer to the PF instance 6068 */ 6069 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6070 { 6071 bool link_up; 6072 int i; 6073 6074 ice_for_each_vsi(pf, i) { 6075 struct ice_vsi *vsi = pf->vsi[i]; 6076 6077 if (!vsi || vsi->type != ICE_VSI_PF) 6078 return; 6079 6080 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6081 if (link_up) { 6082 netif_carrier_on(pf->vsi[i]->netdev); 6083 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6084 } else { 6085 netif_carrier_off(pf->vsi[i]->netdev); 6086 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6087 } 6088 } 6089 } 6090 6091 /** 6092 * ice_rebuild - rebuild after reset 6093 * @pf: PF to rebuild 6094 * @reset_type: type of reset 6095 * 6096 * Do not rebuild VF VSI in this flow because that is already handled via 6097 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6098 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6099 * to reset/rebuild all the VF VSI twice. 6100 */ 6101 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6102 { 6103 struct device *dev = ice_pf_to_dev(pf); 6104 struct ice_hw *hw = &pf->hw; 6105 enum ice_status ret; 6106 int err; 6107 6108 if (test_bit(ICE_DOWN, pf->state)) 6109 goto clear_recovery; 6110 6111 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6112 6113 ret = ice_init_all_ctrlq(hw); 6114 if (ret) { 6115 dev_err(dev, "control queues init failed %s\n", 6116 ice_stat_str(ret)); 6117 goto err_init_ctrlq; 6118 } 6119 6120 /* if DDP was previously loaded successfully */ 6121 if (!ice_is_safe_mode(pf)) { 6122 /* reload the SW DB of filter tables */ 6123 if (reset_type == ICE_RESET_PFR) 6124 ice_fill_blk_tbls(hw); 6125 else 6126 /* Reload DDP Package after CORER/GLOBR reset */ 6127 ice_load_pkg(NULL, pf); 6128 } 6129 6130 ret = ice_clear_pf_cfg(hw); 6131 if (ret) { 6132 dev_err(dev, "clear PF configuration failed %s\n", 6133 ice_stat_str(ret)); 6134 goto err_init_ctrlq; 6135 } 6136 6137 if (pf->first_sw->dflt_vsi_ena) 6138 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6139 /* clear the default VSI configuration if it exists */ 6140 pf->first_sw->dflt_vsi = NULL; 6141 pf->first_sw->dflt_vsi_ena = false; 6142 6143 ice_clear_pxe_mode(hw); 6144 6145 ret = ice_get_caps(hw); 6146 if (ret) { 6147 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6148 goto err_init_ctrlq; 6149 } 6150 6151 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6152 if (ret) { 6153 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6154 goto err_init_ctrlq; 6155 } 6156 6157 err = ice_sched_init_port(hw->port_info); 6158 if (err) 6159 goto err_sched_init_port; 6160 6161 /* start misc vector */ 6162 err = ice_req_irq_msix_misc(pf); 6163 if (err) { 6164 dev_err(dev, "misc vector setup failed: %d\n", err); 6165 goto err_sched_init_port; 6166 } 6167 6168 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6169 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6170 if (!rd32(hw, PFQF_FD_SIZE)) { 6171 u16 unused, guar, b_effort; 6172 6173 guar = hw->func_caps.fd_fltr_guar; 6174 b_effort = hw->func_caps.fd_fltr_best_effort; 6175 6176 /* force guaranteed filter pool for PF */ 6177 ice_alloc_fd_guar_item(hw, &unused, guar); 6178 /* force shared filter pool for PF */ 6179 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6180 } 6181 } 6182 6183 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6184 ice_dcb_rebuild(pf); 6185 6186 /* rebuild PF VSI */ 6187 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6188 if (err) { 6189 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6190 goto err_vsi_rebuild; 6191 } 6192 6193 /* If Flow Director is active */ 6194 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6195 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6196 if (err) { 6197 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6198 goto err_vsi_rebuild; 6199 } 6200 6201 /* replay HW Flow Director recipes */ 6202 if (hw->fdir_prof) 6203 ice_fdir_replay_flows(hw); 6204 6205 /* replay Flow Director filters */ 6206 ice_fdir_replay_fltrs(pf); 6207 6208 ice_rebuild_arfs(pf); 6209 } 6210 6211 ice_update_pf_netdev_link(pf); 6212 6213 /* tell the firmware we are up */ 6214 ret = ice_send_version(pf); 6215 if (ret) { 6216 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6217 ice_stat_str(ret)); 6218 goto err_vsi_rebuild; 6219 } 6220 6221 ice_replay_post(hw); 6222 6223 /* if we get here, reset flow is successful */ 6224 clear_bit(ICE_RESET_FAILED, pf->state); 6225 return; 6226 6227 err_vsi_rebuild: 6228 err_sched_init_port: 6229 ice_sched_cleanup_all(hw); 6230 err_init_ctrlq: 6231 ice_shutdown_all_ctrlq(hw); 6232 set_bit(ICE_RESET_FAILED, pf->state); 6233 clear_recovery: 6234 /* set this bit in PF state to control service task scheduling */ 6235 set_bit(ICE_NEEDS_RESTART, pf->state); 6236 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6237 } 6238 6239 /** 6240 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6241 * @vsi: Pointer to VSI structure 6242 */ 6243 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6244 { 6245 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6246 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6247 else 6248 return ICE_RXBUF_3072; 6249 } 6250 6251 /** 6252 * ice_change_mtu - NDO callback to change the MTU 6253 * @netdev: network interface device structure 6254 * @new_mtu: new value for maximum frame size 6255 * 6256 * Returns 0 on success, negative on failure 6257 */ 6258 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6259 { 6260 struct ice_netdev_priv *np = netdev_priv(netdev); 6261 struct ice_vsi *vsi = np->vsi; 6262 struct ice_pf *pf = vsi->back; 6263 u8 count = 0; 6264 6265 if (new_mtu == (int)netdev->mtu) { 6266 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6267 return 0; 6268 } 6269 6270 if (ice_is_xdp_ena_vsi(vsi)) { 6271 int frame_size = ice_max_xdp_frame_size(vsi); 6272 6273 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6274 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6275 frame_size - ICE_ETH_PKT_HDR_PAD); 6276 return -EINVAL; 6277 } 6278 } 6279 6280 /* if a reset is in progress, wait for some time for it to complete */ 6281 do { 6282 if (ice_is_reset_in_progress(pf->state)) { 6283 count++; 6284 usleep_range(1000, 2000); 6285 } else { 6286 break; 6287 } 6288 6289 } while (count < 100); 6290 6291 if (count == 100) { 6292 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6293 return -EBUSY; 6294 } 6295 6296 netdev->mtu = (unsigned int)new_mtu; 6297 6298 /* if VSI is up, bring it down and then back up */ 6299 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6300 int err; 6301 6302 err = ice_down(vsi); 6303 if (err) { 6304 netdev_err(netdev, "change MTU if_down err %d\n", err); 6305 return err; 6306 } 6307 6308 err = ice_up(vsi); 6309 if (err) { 6310 netdev_err(netdev, "change MTU if_up err %d\n", err); 6311 return err; 6312 } 6313 } 6314 6315 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6316 return 0; 6317 } 6318 6319 /** 6320 * ice_aq_str - convert AQ err code to a string 6321 * @aq_err: the AQ error code to convert 6322 */ 6323 const char *ice_aq_str(enum ice_aq_err aq_err) 6324 { 6325 switch (aq_err) { 6326 case ICE_AQ_RC_OK: 6327 return "OK"; 6328 case ICE_AQ_RC_EPERM: 6329 return "ICE_AQ_RC_EPERM"; 6330 case ICE_AQ_RC_ENOENT: 6331 return "ICE_AQ_RC_ENOENT"; 6332 case ICE_AQ_RC_ENOMEM: 6333 return "ICE_AQ_RC_ENOMEM"; 6334 case ICE_AQ_RC_EBUSY: 6335 return "ICE_AQ_RC_EBUSY"; 6336 case ICE_AQ_RC_EEXIST: 6337 return "ICE_AQ_RC_EEXIST"; 6338 case ICE_AQ_RC_EINVAL: 6339 return "ICE_AQ_RC_EINVAL"; 6340 case ICE_AQ_RC_ENOSPC: 6341 return "ICE_AQ_RC_ENOSPC"; 6342 case ICE_AQ_RC_ENOSYS: 6343 return "ICE_AQ_RC_ENOSYS"; 6344 case ICE_AQ_RC_EMODE: 6345 return "ICE_AQ_RC_EMODE"; 6346 case ICE_AQ_RC_ENOSEC: 6347 return "ICE_AQ_RC_ENOSEC"; 6348 case ICE_AQ_RC_EBADSIG: 6349 return "ICE_AQ_RC_EBADSIG"; 6350 case ICE_AQ_RC_ESVN: 6351 return "ICE_AQ_RC_ESVN"; 6352 case ICE_AQ_RC_EBADMAN: 6353 return "ICE_AQ_RC_EBADMAN"; 6354 case ICE_AQ_RC_EBADBUF: 6355 return "ICE_AQ_RC_EBADBUF"; 6356 } 6357 6358 return "ICE_AQ_RC_UNKNOWN"; 6359 } 6360 6361 /** 6362 * ice_stat_str - convert status err code to a string 6363 * @stat_err: the status error code to convert 6364 */ 6365 const char *ice_stat_str(enum ice_status stat_err) 6366 { 6367 switch (stat_err) { 6368 case ICE_SUCCESS: 6369 return "OK"; 6370 case ICE_ERR_PARAM: 6371 return "ICE_ERR_PARAM"; 6372 case ICE_ERR_NOT_IMPL: 6373 return "ICE_ERR_NOT_IMPL"; 6374 case ICE_ERR_NOT_READY: 6375 return "ICE_ERR_NOT_READY"; 6376 case ICE_ERR_NOT_SUPPORTED: 6377 return "ICE_ERR_NOT_SUPPORTED"; 6378 case ICE_ERR_BAD_PTR: 6379 return "ICE_ERR_BAD_PTR"; 6380 case ICE_ERR_INVAL_SIZE: 6381 return "ICE_ERR_INVAL_SIZE"; 6382 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6383 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6384 case ICE_ERR_RESET_FAILED: 6385 return "ICE_ERR_RESET_FAILED"; 6386 case ICE_ERR_FW_API_VER: 6387 return "ICE_ERR_FW_API_VER"; 6388 case ICE_ERR_NO_MEMORY: 6389 return "ICE_ERR_NO_MEMORY"; 6390 case ICE_ERR_CFG: 6391 return "ICE_ERR_CFG"; 6392 case ICE_ERR_OUT_OF_RANGE: 6393 return "ICE_ERR_OUT_OF_RANGE"; 6394 case ICE_ERR_ALREADY_EXISTS: 6395 return "ICE_ERR_ALREADY_EXISTS"; 6396 case ICE_ERR_NVM: 6397 return "ICE_ERR_NVM"; 6398 case ICE_ERR_NVM_CHECKSUM: 6399 return "ICE_ERR_NVM_CHECKSUM"; 6400 case ICE_ERR_BUF_TOO_SHORT: 6401 return "ICE_ERR_BUF_TOO_SHORT"; 6402 case ICE_ERR_NVM_BLANK_MODE: 6403 return "ICE_ERR_NVM_BLANK_MODE"; 6404 case ICE_ERR_IN_USE: 6405 return "ICE_ERR_IN_USE"; 6406 case ICE_ERR_MAX_LIMIT: 6407 return "ICE_ERR_MAX_LIMIT"; 6408 case ICE_ERR_RESET_ONGOING: 6409 return "ICE_ERR_RESET_ONGOING"; 6410 case ICE_ERR_HW_TABLE: 6411 return "ICE_ERR_HW_TABLE"; 6412 case ICE_ERR_DOES_NOT_EXIST: 6413 return "ICE_ERR_DOES_NOT_EXIST"; 6414 case ICE_ERR_FW_DDP_MISMATCH: 6415 return "ICE_ERR_FW_DDP_MISMATCH"; 6416 case ICE_ERR_AQ_ERROR: 6417 return "ICE_ERR_AQ_ERROR"; 6418 case ICE_ERR_AQ_TIMEOUT: 6419 return "ICE_ERR_AQ_TIMEOUT"; 6420 case ICE_ERR_AQ_FULL: 6421 return "ICE_ERR_AQ_FULL"; 6422 case ICE_ERR_AQ_NO_WORK: 6423 return "ICE_ERR_AQ_NO_WORK"; 6424 case ICE_ERR_AQ_EMPTY: 6425 return "ICE_ERR_AQ_EMPTY"; 6426 case ICE_ERR_AQ_FW_CRITICAL: 6427 return "ICE_ERR_AQ_FW_CRITICAL"; 6428 } 6429 6430 return "ICE_ERR_UNKNOWN"; 6431 } 6432 6433 /** 6434 * ice_set_rss_lut - Set RSS LUT 6435 * @vsi: Pointer to VSI structure 6436 * @lut: Lookup table 6437 * @lut_size: Lookup table size 6438 * 6439 * Returns 0 on success, negative on failure 6440 */ 6441 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6442 { 6443 struct ice_aq_get_set_rss_lut_params params = {}; 6444 struct ice_hw *hw = &vsi->back->hw; 6445 enum ice_status status; 6446 6447 if (!lut) 6448 return -EINVAL; 6449 6450 params.vsi_handle = vsi->idx; 6451 params.lut_size = lut_size; 6452 params.lut_type = vsi->rss_lut_type; 6453 params.lut = lut; 6454 6455 status = ice_aq_set_rss_lut(hw, ¶ms); 6456 if (status) { 6457 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6458 ice_stat_str(status), 6459 ice_aq_str(hw->adminq.sq_last_status)); 6460 return -EIO; 6461 } 6462 6463 return 0; 6464 } 6465 6466 /** 6467 * ice_set_rss_key - Set RSS key 6468 * @vsi: Pointer to the VSI structure 6469 * @seed: RSS hash seed 6470 * 6471 * Returns 0 on success, negative on failure 6472 */ 6473 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6474 { 6475 struct ice_hw *hw = &vsi->back->hw; 6476 enum ice_status status; 6477 6478 if (!seed) 6479 return -EINVAL; 6480 6481 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6482 if (status) { 6483 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6484 ice_stat_str(status), 6485 ice_aq_str(hw->adminq.sq_last_status)); 6486 return -EIO; 6487 } 6488 6489 return 0; 6490 } 6491 6492 /** 6493 * ice_get_rss_lut - Get RSS LUT 6494 * @vsi: Pointer to VSI structure 6495 * @lut: Buffer to store the lookup table entries 6496 * @lut_size: Size of buffer to store the lookup table entries 6497 * 6498 * Returns 0 on success, negative on failure 6499 */ 6500 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6501 { 6502 struct ice_aq_get_set_rss_lut_params params = {}; 6503 struct ice_hw *hw = &vsi->back->hw; 6504 enum ice_status status; 6505 6506 if (!lut) 6507 return -EINVAL; 6508 6509 params.vsi_handle = vsi->idx; 6510 params.lut_size = lut_size; 6511 params.lut_type = vsi->rss_lut_type; 6512 params.lut = lut; 6513 6514 status = ice_aq_get_rss_lut(hw, ¶ms); 6515 if (status) { 6516 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6517 ice_stat_str(status), 6518 ice_aq_str(hw->adminq.sq_last_status)); 6519 return -EIO; 6520 } 6521 6522 return 0; 6523 } 6524 6525 /** 6526 * ice_get_rss_key - Get RSS key 6527 * @vsi: Pointer to VSI structure 6528 * @seed: Buffer to store the key in 6529 * 6530 * Returns 0 on success, negative on failure 6531 */ 6532 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6533 { 6534 struct ice_hw *hw = &vsi->back->hw; 6535 enum ice_status status; 6536 6537 if (!seed) 6538 return -EINVAL; 6539 6540 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6541 if (status) { 6542 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6543 ice_stat_str(status), 6544 ice_aq_str(hw->adminq.sq_last_status)); 6545 return -EIO; 6546 } 6547 6548 return 0; 6549 } 6550 6551 /** 6552 * ice_bridge_getlink - Get the hardware bridge mode 6553 * @skb: skb buff 6554 * @pid: process ID 6555 * @seq: RTNL message seq 6556 * @dev: the netdev being configured 6557 * @filter_mask: filter mask passed in 6558 * @nlflags: netlink flags passed in 6559 * 6560 * Return the bridge mode (VEB/VEPA) 6561 */ 6562 static int 6563 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6564 struct net_device *dev, u32 filter_mask, int nlflags) 6565 { 6566 struct ice_netdev_priv *np = netdev_priv(dev); 6567 struct ice_vsi *vsi = np->vsi; 6568 struct ice_pf *pf = vsi->back; 6569 u16 bmode; 6570 6571 bmode = pf->first_sw->bridge_mode; 6572 6573 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6574 filter_mask, NULL); 6575 } 6576 6577 /** 6578 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6579 * @vsi: Pointer to VSI structure 6580 * @bmode: Hardware bridge mode (VEB/VEPA) 6581 * 6582 * Returns 0 on success, negative on failure 6583 */ 6584 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6585 { 6586 struct ice_aqc_vsi_props *vsi_props; 6587 struct ice_hw *hw = &vsi->back->hw; 6588 struct ice_vsi_ctx *ctxt; 6589 enum ice_status status; 6590 int ret = 0; 6591 6592 vsi_props = &vsi->info; 6593 6594 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6595 if (!ctxt) 6596 return -ENOMEM; 6597 6598 ctxt->info = vsi->info; 6599 6600 if (bmode == BRIDGE_MODE_VEB) 6601 /* change from VEPA to VEB mode */ 6602 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6603 else 6604 /* change from VEB to VEPA mode */ 6605 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6606 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6607 6608 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6609 if (status) { 6610 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6611 bmode, ice_stat_str(status), 6612 ice_aq_str(hw->adminq.sq_last_status)); 6613 ret = -EIO; 6614 goto out; 6615 } 6616 /* Update sw flags for book keeping */ 6617 vsi_props->sw_flags = ctxt->info.sw_flags; 6618 6619 out: 6620 kfree(ctxt); 6621 return ret; 6622 } 6623 6624 /** 6625 * ice_bridge_setlink - Set the hardware bridge mode 6626 * @dev: the netdev being configured 6627 * @nlh: RTNL message 6628 * @flags: bridge setlink flags 6629 * @extack: netlink extended ack 6630 * 6631 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6632 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6633 * not already set for all VSIs connected to this switch. And also update the 6634 * unicast switch filter rules for the corresponding switch of the netdev. 6635 */ 6636 static int 6637 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6638 u16 __always_unused flags, 6639 struct netlink_ext_ack __always_unused *extack) 6640 { 6641 struct ice_netdev_priv *np = netdev_priv(dev); 6642 struct ice_pf *pf = np->vsi->back; 6643 struct nlattr *attr, *br_spec; 6644 struct ice_hw *hw = &pf->hw; 6645 enum ice_status status; 6646 struct ice_sw *pf_sw; 6647 int rem, v, err = 0; 6648 6649 pf_sw = pf->first_sw; 6650 /* find the attribute in the netlink message */ 6651 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6652 6653 nla_for_each_nested(attr, br_spec, rem) { 6654 __u16 mode; 6655 6656 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6657 continue; 6658 mode = nla_get_u16(attr); 6659 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6660 return -EINVAL; 6661 /* Continue if bridge mode is not being flipped */ 6662 if (mode == pf_sw->bridge_mode) 6663 continue; 6664 /* Iterates through the PF VSI list and update the loopback 6665 * mode of the VSI 6666 */ 6667 ice_for_each_vsi(pf, v) { 6668 if (!pf->vsi[v]) 6669 continue; 6670 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6671 if (err) 6672 return err; 6673 } 6674 6675 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6676 /* Update the unicast switch filter rules for the corresponding 6677 * switch of the netdev 6678 */ 6679 status = ice_update_sw_rule_bridge_mode(hw); 6680 if (status) { 6681 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6682 mode, ice_stat_str(status), 6683 ice_aq_str(hw->adminq.sq_last_status)); 6684 /* revert hw->evb_veb */ 6685 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6686 return -EIO; 6687 } 6688 6689 pf_sw->bridge_mode = mode; 6690 } 6691 6692 return 0; 6693 } 6694 6695 /** 6696 * ice_tx_timeout - Respond to a Tx Hang 6697 * @netdev: network interface device structure 6698 * @txqueue: Tx queue 6699 */ 6700 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6701 { 6702 struct ice_netdev_priv *np = netdev_priv(netdev); 6703 struct ice_ring *tx_ring = NULL; 6704 struct ice_vsi *vsi = np->vsi; 6705 struct ice_pf *pf = vsi->back; 6706 u32 i; 6707 6708 pf->tx_timeout_count++; 6709 6710 /* Check if PFC is enabled for the TC to which the queue belongs 6711 * to. If yes then Tx timeout is not caused by a hung queue, no 6712 * need to reset and rebuild 6713 */ 6714 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6715 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6716 txqueue); 6717 return; 6718 } 6719 6720 /* now that we have an index, find the tx_ring struct */ 6721 for (i = 0; i < vsi->num_txq; i++) 6722 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6723 if (txqueue == vsi->tx_rings[i]->q_index) { 6724 tx_ring = vsi->tx_rings[i]; 6725 break; 6726 } 6727 6728 /* Reset recovery level if enough time has elapsed after last timeout. 6729 * Also ensure no new reset action happens before next timeout period. 6730 */ 6731 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6732 pf->tx_timeout_recovery_level = 1; 6733 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6734 netdev->watchdog_timeo))) 6735 return; 6736 6737 if (tx_ring) { 6738 struct ice_hw *hw = &pf->hw; 6739 u32 head, val = 0; 6740 6741 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6742 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6743 /* Read interrupt register */ 6744 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6745 6746 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6747 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6748 head, tx_ring->next_to_use, val); 6749 } 6750 6751 pf->tx_timeout_last_recovery = jiffies; 6752 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6753 pf->tx_timeout_recovery_level, txqueue); 6754 6755 switch (pf->tx_timeout_recovery_level) { 6756 case 1: 6757 set_bit(ICE_PFR_REQ, pf->state); 6758 break; 6759 case 2: 6760 set_bit(ICE_CORER_REQ, pf->state); 6761 break; 6762 case 3: 6763 set_bit(ICE_GLOBR_REQ, pf->state); 6764 break; 6765 default: 6766 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6767 set_bit(ICE_DOWN, pf->state); 6768 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 6769 set_bit(ICE_SERVICE_DIS, pf->state); 6770 break; 6771 } 6772 6773 ice_service_task_schedule(pf); 6774 pf->tx_timeout_recovery_level++; 6775 } 6776 6777 /** 6778 * ice_open - Called when a network interface becomes active 6779 * @netdev: network interface device structure 6780 * 6781 * The open entry point is called when a network interface is made 6782 * active by the system (IFF_UP). At this point all resources needed 6783 * for transmit and receive operations are allocated, the interrupt 6784 * handler is registered with the OS, the netdev watchdog is enabled, 6785 * and the stack is notified that the interface is ready. 6786 * 6787 * Returns 0 on success, negative value on failure 6788 */ 6789 int ice_open(struct net_device *netdev) 6790 { 6791 struct ice_netdev_priv *np = netdev_priv(netdev); 6792 struct ice_pf *pf = np->vsi->back; 6793 6794 if (ice_is_reset_in_progress(pf->state)) { 6795 netdev_err(netdev, "can't open net device while reset is in progress"); 6796 return -EBUSY; 6797 } 6798 6799 return ice_open_internal(netdev); 6800 } 6801 6802 /** 6803 * ice_open_internal - Called when a network interface becomes active 6804 * @netdev: network interface device structure 6805 * 6806 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 6807 * handling routine 6808 * 6809 * Returns 0 on success, negative value on failure 6810 */ 6811 int ice_open_internal(struct net_device *netdev) 6812 { 6813 struct ice_netdev_priv *np = netdev_priv(netdev); 6814 struct ice_vsi *vsi = np->vsi; 6815 struct ice_pf *pf = vsi->back; 6816 struct ice_port_info *pi; 6817 enum ice_status status; 6818 int err; 6819 6820 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 6821 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6822 return -EIO; 6823 } 6824 6825 netif_carrier_off(netdev); 6826 6827 pi = vsi->port_info; 6828 status = ice_update_link_info(pi); 6829 if (status) { 6830 netdev_err(netdev, "Failed to get link info, error %s\n", 6831 ice_stat_str(status)); 6832 return -EIO; 6833 } 6834 6835 /* Set PHY if there is media, otherwise, turn off PHY */ 6836 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6837 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6838 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 6839 err = ice_init_phy_user_cfg(pi); 6840 if (err) { 6841 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6842 err); 6843 return err; 6844 } 6845 } 6846 6847 err = ice_configure_phy(vsi); 6848 if (err) { 6849 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6850 err); 6851 return err; 6852 } 6853 } else { 6854 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6855 ice_set_link(vsi, false); 6856 } 6857 6858 err = ice_vsi_open(vsi); 6859 if (err) 6860 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6861 vsi->vsi_num, vsi->vsw->sw_id); 6862 6863 /* Update existing tunnels information */ 6864 udp_tunnel_get_rx_info(netdev); 6865 6866 return err; 6867 } 6868 6869 /** 6870 * ice_stop - Disables a network interface 6871 * @netdev: network interface device structure 6872 * 6873 * The stop entry point is called when an interface is de-activated by the OS, 6874 * and the netdevice enters the DOWN state. The hardware is still under the 6875 * driver's control, but the netdev interface is disabled. 6876 * 6877 * Returns success only - not allowed to fail 6878 */ 6879 int ice_stop(struct net_device *netdev) 6880 { 6881 struct ice_netdev_priv *np = netdev_priv(netdev); 6882 struct ice_vsi *vsi = np->vsi; 6883 struct ice_pf *pf = vsi->back; 6884 6885 if (ice_is_reset_in_progress(pf->state)) { 6886 netdev_err(netdev, "can't stop net device while reset is in progress"); 6887 return -EBUSY; 6888 } 6889 6890 ice_vsi_close(vsi); 6891 6892 return 0; 6893 } 6894 6895 /** 6896 * ice_features_check - Validate encapsulated packet conforms to limits 6897 * @skb: skb buffer 6898 * @netdev: This port's netdev 6899 * @features: Offload features that the stack believes apply 6900 */ 6901 static netdev_features_t 6902 ice_features_check(struct sk_buff *skb, 6903 struct net_device __always_unused *netdev, 6904 netdev_features_t features) 6905 { 6906 size_t len; 6907 6908 /* No point in doing any of this if neither checksum nor GSO are 6909 * being requested for this frame. We can rule out both by just 6910 * checking for CHECKSUM_PARTIAL 6911 */ 6912 if (skb->ip_summed != CHECKSUM_PARTIAL) 6913 return features; 6914 6915 /* We cannot support GSO if the MSS is going to be less than 6916 * 64 bytes. If it is then we need to drop support for GSO. 6917 */ 6918 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6919 features &= ~NETIF_F_GSO_MASK; 6920 6921 len = skb_network_header(skb) - skb->data; 6922 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6923 goto out_rm_features; 6924 6925 len = skb_transport_header(skb) - skb_network_header(skb); 6926 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6927 goto out_rm_features; 6928 6929 if (skb->encapsulation) { 6930 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6931 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6932 goto out_rm_features; 6933 6934 len = skb_inner_transport_header(skb) - 6935 skb_inner_network_header(skb); 6936 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6937 goto out_rm_features; 6938 } 6939 6940 return features; 6941 out_rm_features: 6942 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6943 } 6944 6945 static const struct net_device_ops ice_netdev_safe_mode_ops = { 6946 .ndo_open = ice_open, 6947 .ndo_stop = ice_stop, 6948 .ndo_start_xmit = ice_start_xmit, 6949 .ndo_set_mac_address = ice_set_mac_address, 6950 .ndo_validate_addr = eth_validate_addr, 6951 .ndo_change_mtu = ice_change_mtu, 6952 .ndo_get_stats64 = ice_get_stats64, 6953 .ndo_tx_timeout = ice_tx_timeout, 6954 .ndo_bpf = ice_xdp_safe_mode, 6955 }; 6956 6957 static const struct net_device_ops ice_netdev_ops = { 6958 .ndo_open = ice_open, 6959 .ndo_stop = ice_stop, 6960 .ndo_start_xmit = ice_start_xmit, 6961 .ndo_features_check = ice_features_check, 6962 .ndo_set_rx_mode = ice_set_rx_mode, 6963 .ndo_set_mac_address = ice_set_mac_address, 6964 .ndo_validate_addr = eth_validate_addr, 6965 .ndo_change_mtu = ice_change_mtu, 6966 .ndo_get_stats64 = ice_get_stats64, 6967 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6968 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6969 .ndo_set_vf_mac = ice_set_vf_mac, 6970 .ndo_get_vf_config = ice_get_vf_cfg, 6971 .ndo_set_vf_trust = ice_set_vf_trust, 6972 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6973 .ndo_set_vf_link_state = ice_set_vf_link_state, 6974 .ndo_get_vf_stats = ice_get_vf_stats, 6975 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6976 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6977 .ndo_set_features = ice_set_features, 6978 .ndo_bridge_getlink = ice_bridge_getlink, 6979 .ndo_bridge_setlink = ice_bridge_setlink, 6980 .ndo_fdb_add = ice_fdb_add, 6981 .ndo_fdb_del = ice_fdb_del, 6982 #ifdef CONFIG_RFS_ACCEL 6983 .ndo_rx_flow_steer = ice_rx_flow_steer, 6984 #endif 6985 .ndo_tx_timeout = ice_tx_timeout, 6986 .ndo_bpf = ice_xdp, 6987 .ndo_xdp_xmit = ice_xdp_xmit, 6988 .ndo_xsk_wakeup = ice_xsk_wakeup, 6989 }; 6990