1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 /** 48 * ice_get_tx_pending - returns number of Tx descriptors not processed 49 * @ring: the ring of descriptors 50 */ 51 static u16 ice_get_tx_pending(struct ice_ring *ring) 52 { 53 u16 head, tail; 54 55 head = ring->next_to_clean; 56 tail = ring->next_to_use; 57 58 if (head != tail) 59 return (head < tail) ? 60 tail - head : (tail + ring->count - head); 61 return 0; 62 } 63 64 /** 65 * ice_check_for_hang_subtask - check for and recover hung queues 66 * @pf: pointer to PF struct 67 */ 68 static void ice_check_for_hang_subtask(struct ice_pf *pf) 69 { 70 struct ice_vsi *vsi = NULL; 71 struct ice_hw *hw; 72 unsigned int i; 73 int packets; 74 u32 v; 75 76 ice_for_each_vsi(pf, v) 77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 78 vsi = pf->vsi[v]; 79 break; 80 } 81 82 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 83 return; 84 85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 86 return; 87 88 hw = &vsi->back->hw; 89 90 for (i = 0; i < vsi->num_txq; i++) { 91 struct ice_ring *tx_ring = vsi->tx_rings[i]; 92 93 if (tx_ring && tx_ring->desc) { 94 /* If packet counter has not changed the queue is 95 * likely stalled, so force an interrupt for this 96 * queue. 97 * 98 * prev_pkt would be negative if there was no 99 * pending work. 100 */ 101 packets = tx_ring->stats.pkts & INT_MAX; 102 if (tx_ring->tx_stats.prev_pkt == packets) { 103 /* Trigger sw interrupt to revive the queue */ 104 ice_trigger_sw_intr(hw, tx_ring->q_vector); 105 continue; 106 } 107 108 /* Memory barrier between read of packet count and call 109 * to ice_get_tx_pending() 110 */ 111 smp_rmb(); 112 tx_ring->tx_stats.prev_pkt = 113 ice_get_tx_pending(tx_ring) ? packets : -1; 114 } 115 } 116 } 117 118 /** 119 * ice_init_mac_fltr - Set initial MAC filters 120 * @pf: board private structure 121 * 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent 123 * address and broadcast address. If an error is encountered, netdevice will be 124 * unregistered. 125 */ 126 static int ice_init_mac_fltr(struct ice_pf *pf) 127 { 128 enum ice_status status; 129 struct ice_vsi *vsi; 130 u8 *perm_addr; 131 132 vsi = ice_get_main_vsi(pf); 133 if (!vsi) 134 return -EINVAL; 135 136 perm_addr = vsi->port_info->mac.perm_addr; 137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 138 if (!status) 139 return 0; 140 141 /* We aren't useful with no MAC filters, so unregister if we 142 * had an error 143 */ 144 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 146 ice_stat_str(status)); 147 unregister_netdev(vsi->netdev); 148 free_netdev(vsi->netdev); 149 vsi->netdev = NULL; 150 } 151 152 return -EIO; 153 } 154 155 /** 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 157 * @netdev: the net device on which the sync is happening 158 * @addr: MAC address to sync 159 * 160 * This is a callback function which is called by the in kernel device sync 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 163 * MAC filters from the hardware. 164 */ 165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 166 { 167 struct ice_netdev_priv *np = netdev_priv(netdev); 168 struct ice_vsi *vsi = np->vsi; 169 170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 171 ICE_FWD_TO_VSI)) 172 return -EINVAL; 173 174 return 0; 175 } 176 177 /** 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 179 * @netdev: the net device on which the unsync is happening 180 * @addr: MAC address to unsync 181 * 182 * This is a callback function which is called by the in kernel device unsync 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 185 * delete the MAC filters from the hardware. 186 */ 187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 188 { 189 struct ice_netdev_priv *np = netdev_priv(netdev); 190 struct ice_vsi *vsi = np->vsi; 191 192 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 193 ICE_FWD_TO_VSI)) 194 return -EINVAL; 195 196 return 0; 197 } 198 199 /** 200 * ice_vsi_fltr_changed - check if filter state changed 201 * @vsi: VSI to be checked 202 * 203 * returns true if filter state has changed, false otherwise. 204 */ 205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 206 { 207 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 208 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 209 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 210 } 211 212 /** 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 214 * @vsi: the VSI being configured 215 * @promisc_m: mask of promiscuous config bits 216 * @set_promisc: enable or disable promisc flag request 217 * 218 */ 219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 220 { 221 struct ice_hw *hw = &vsi->back->hw; 222 enum ice_status status = 0; 223 224 if (vsi->type != ICE_VSI_PF) 225 return 0; 226 227 if (vsi->vlan_ena) { 228 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 229 set_promisc); 230 } else { 231 if (set_promisc) 232 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 233 0); 234 else 235 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 236 0); 237 } 238 239 if (status) 240 return -EIO; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 247 * @vsi: ptr to the VSI 248 * 249 * Push any outstanding VSI filter changes through the AdminQ. 250 */ 251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 252 { 253 struct device *dev = ice_pf_to_dev(vsi->back); 254 struct net_device *netdev = vsi->netdev; 255 bool promisc_forced_on = false; 256 struct ice_pf *pf = vsi->back; 257 struct ice_hw *hw = &pf->hw; 258 enum ice_status status = 0; 259 u32 changed_flags = 0; 260 u8 promisc_m; 261 int err = 0; 262 263 if (!vsi->netdev) 264 return -EINVAL; 265 266 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 267 usleep_range(1000, 2000); 268 269 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 270 vsi->current_netdev_flags = vsi->netdev->flags; 271 272 INIT_LIST_HEAD(&vsi->tmp_sync_list); 273 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 274 275 if (ice_vsi_fltr_changed(vsi)) { 276 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 277 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 278 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 279 280 /* grab the netdev's addr_list_lock */ 281 netif_addr_lock_bh(netdev); 282 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 283 ice_add_mac_to_unsync_list); 284 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 285 ice_add_mac_to_unsync_list); 286 /* our temp lists are populated. release lock */ 287 netif_addr_unlock_bh(netdev); 288 } 289 290 /* Remove MAC addresses in the unsync list */ 291 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 292 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 293 if (status) { 294 netdev_err(netdev, "Failed to delete MAC filters\n"); 295 /* if we failed because of alloc failures, just bail */ 296 if (status == ICE_ERR_NO_MEMORY) { 297 err = -ENOMEM; 298 goto out; 299 } 300 } 301 302 /* Add MAC addresses in the sync list */ 303 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 304 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 305 /* If filter is added successfully or already exists, do not go into 306 * 'if' condition and report it as error. Instead continue processing 307 * rest of the function. 308 */ 309 if (status && status != ICE_ERR_ALREADY_EXISTS) { 310 netdev_err(netdev, "Failed to add MAC filters\n"); 311 /* If there is no more space for new umac filters, VSI 312 * should go into promiscuous mode. There should be some 313 * space reserved for promiscuous filters. 314 */ 315 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 316 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 317 vsi->state)) { 318 promisc_forced_on = true; 319 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 320 vsi->vsi_num); 321 } else { 322 err = -EIO; 323 goto out; 324 } 325 } 326 /* check for changes in promiscuous modes */ 327 if (changed_flags & IFF_ALLMULTI) { 328 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 329 if (vsi->vlan_ena) 330 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 331 else 332 promisc_m = ICE_MCAST_PROMISC_BITS; 333 334 err = ice_cfg_promisc(vsi, promisc_m, true); 335 if (err) { 336 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 337 vsi->vsi_num); 338 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 339 goto out_promisc; 340 } 341 } else { 342 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 343 if (vsi->vlan_ena) 344 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 345 else 346 promisc_m = ICE_MCAST_PROMISC_BITS; 347 348 err = ice_cfg_promisc(vsi, promisc_m, false); 349 if (err) { 350 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 351 vsi->vsi_num); 352 vsi->current_netdev_flags |= IFF_ALLMULTI; 353 goto out_promisc; 354 } 355 } 356 } 357 358 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 359 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 360 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 361 if (vsi->current_netdev_flags & IFF_PROMISC) { 362 /* Apply Rx filter rule to get traffic from wire */ 363 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 364 err = ice_set_dflt_vsi(pf->first_sw, vsi); 365 if (err && err != -EEXIST) { 366 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 367 err, vsi->vsi_num); 368 vsi->current_netdev_flags &= 369 ~IFF_PROMISC; 370 goto out_promisc; 371 } 372 ice_cfg_vlan_pruning(vsi, false, false); 373 } 374 } else { 375 /* Clear Rx filter to remove traffic from wire */ 376 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 377 err = ice_clear_dflt_vsi(pf->first_sw); 378 if (err) { 379 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 380 err, vsi->vsi_num); 381 vsi->current_netdev_flags |= 382 IFF_PROMISC; 383 goto out_promisc; 384 } 385 if (vsi->num_vlan > 1) 386 ice_cfg_vlan_pruning(vsi, true, false); 387 } 388 } 389 } 390 goto exit; 391 392 out_promisc: 393 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 394 goto exit; 395 out: 396 /* if something went wrong then set the changed flag so we try again */ 397 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 398 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 399 exit: 400 clear_bit(__ICE_CFG_BUSY, vsi->state); 401 return err; 402 } 403 404 /** 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 406 * @pf: board private structure 407 */ 408 static void ice_sync_fltr_subtask(struct ice_pf *pf) 409 { 410 int v; 411 412 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 413 return; 414 415 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 416 417 ice_for_each_vsi(pf, v) 418 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 419 ice_vsi_sync_fltr(pf->vsi[v])) { 420 /* come back and try again later */ 421 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 422 break; 423 } 424 } 425 426 /** 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 428 * @pf: the PF 429 * @locked: is the rtnl_lock already held 430 */ 431 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 432 { 433 int v; 434 435 ice_for_each_vsi(pf, v) 436 if (pf->vsi[v]) 437 ice_dis_vsi(pf->vsi[v], locked); 438 } 439 440 /** 441 * ice_prepare_for_reset - prep for the core to reset 442 * @pf: board private structure 443 * 444 * Inform or close all dependent features in prep for reset. 445 */ 446 static void 447 ice_prepare_for_reset(struct ice_pf *pf) 448 { 449 struct ice_hw *hw = &pf->hw; 450 unsigned int i; 451 452 /* already prepared for reset */ 453 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 454 return; 455 456 /* Notify VFs of impending reset */ 457 if (ice_check_sq_alive(hw, &hw->mailboxq)) 458 ice_vc_notify_reset(pf); 459 460 /* Disable VFs until reset is completed */ 461 ice_for_each_vf(pf, i) 462 ice_set_vf_state_qs_dis(&pf->vf[i]); 463 464 /* clear SW filtering DB */ 465 ice_clear_hw_tbls(hw); 466 /* disable the VSIs and their queues that are not already DOWN */ 467 ice_pf_dis_all_vsi(pf, false); 468 469 if (hw->port_info) 470 ice_sched_clear_port(hw->port_info); 471 472 ice_shutdown_all_ctrlq(hw); 473 474 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 475 } 476 477 /** 478 * ice_do_reset - Initiate one of many types of resets 479 * @pf: board private structure 480 * @reset_type: reset type requested 481 * before this function was called. 482 */ 483 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 484 { 485 struct device *dev = ice_pf_to_dev(pf); 486 struct ice_hw *hw = &pf->hw; 487 488 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 489 WARN_ON(in_interrupt()); 490 491 ice_prepare_for_reset(pf); 492 493 /* trigger the reset */ 494 if (ice_reset(hw, reset_type)) { 495 dev_err(dev, "reset %d failed\n", reset_type); 496 set_bit(__ICE_RESET_FAILED, pf->state); 497 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 498 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 499 clear_bit(__ICE_PFR_REQ, pf->state); 500 clear_bit(__ICE_CORER_REQ, pf->state); 501 clear_bit(__ICE_GLOBR_REQ, pf->state); 502 return; 503 } 504 505 /* PFR is a bit of a special case because it doesn't result in an OICR 506 * interrupt. So for PFR, rebuild after the reset and clear the reset- 507 * associated state bits. 508 */ 509 if (reset_type == ICE_RESET_PFR) { 510 pf->pfr_count++; 511 ice_rebuild(pf, reset_type); 512 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 513 clear_bit(__ICE_PFR_REQ, pf->state); 514 ice_reset_all_vfs(pf, true); 515 } 516 } 517 518 /** 519 * ice_reset_subtask - Set up for resetting the device and driver 520 * @pf: board private structure 521 */ 522 static void ice_reset_subtask(struct ice_pf *pf) 523 { 524 enum ice_reset_req reset_type = ICE_RESET_INVAL; 525 526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 528 * of reset is pending and sets bits in pf->state indicating the reset 529 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 530 * prepare for pending reset if not already (for PF software-initiated 531 * global resets the software should already be prepared for it as 532 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 533 * by firmware or software on other PFs, that bit is not set so prepare 534 * for the reset now), poll for reset done, rebuild and return. 535 */ 536 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 537 /* Perform the largest reset requested */ 538 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 539 reset_type = ICE_RESET_CORER; 540 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 541 reset_type = ICE_RESET_GLOBR; 542 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 543 reset_type = ICE_RESET_EMPR; 544 /* return if no valid reset type requested */ 545 if (reset_type == ICE_RESET_INVAL) 546 return; 547 ice_prepare_for_reset(pf); 548 549 /* make sure we are ready to rebuild */ 550 if (ice_check_reset(&pf->hw)) { 551 set_bit(__ICE_RESET_FAILED, pf->state); 552 } else { 553 /* done with reset. start rebuild */ 554 pf->hw.reset_ongoing = false; 555 ice_rebuild(pf, reset_type); 556 /* clear bit to resume normal operations, but 557 * ICE_NEEDS_RESTART bit is set in case rebuild failed 558 */ 559 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 560 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 561 clear_bit(__ICE_PFR_REQ, pf->state); 562 clear_bit(__ICE_CORER_REQ, pf->state); 563 clear_bit(__ICE_GLOBR_REQ, pf->state); 564 ice_reset_all_vfs(pf, true); 565 } 566 567 return; 568 } 569 570 /* No pending resets to finish processing. Check for new resets */ 571 if (test_bit(__ICE_PFR_REQ, pf->state)) 572 reset_type = ICE_RESET_PFR; 573 if (test_bit(__ICE_CORER_REQ, pf->state)) 574 reset_type = ICE_RESET_CORER; 575 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 576 reset_type = ICE_RESET_GLOBR; 577 /* If no valid reset type requested just return */ 578 if (reset_type == ICE_RESET_INVAL) 579 return; 580 581 /* reset if not already down or busy */ 582 if (!test_bit(__ICE_DOWN, pf->state) && 583 !test_bit(__ICE_CFG_BUSY, pf->state)) { 584 ice_do_reset(pf, reset_type); 585 } 586 } 587 588 /** 589 * ice_print_topo_conflict - print topology conflict message 590 * @vsi: the VSI whose topology status is being checked 591 */ 592 static void ice_print_topo_conflict(struct ice_vsi *vsi) 593 { 594 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 595 case ICE_AQ_LINK_TOPO_CONFLICT: 596 case ICE_AQ_LINK_MEDIA_CONFLICT: 597 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 598 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 599 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 600 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 601 break; 602 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 603 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 604 break; 605 default: 606 break; 607 } 608 } 609 610 /** 611 * ice_print_link_msg - print link up or down message 612 * @vsi: the VSI whose link status is being queried 613 * @isup: boolean for if the link is now up or down 614 */ 615 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 616 { 617 struct ice_aqc_get_phy_caps_data *caps; 618 const char *an_advertised; 619 enum ice_status status; 620 const char *fec_req; 621 const char *speed; 622 const char *fec; 623 const char *fc; 624 const char *an; 625 626 if (!vsi) 627 return; 628 629 if (vsi->current_isup == isup) 630 return; 631 632 vsi->current_isup = isup; 633 634 if (!isup) { 635 netdev_info(vsi->netdev, "NIC Link is Down\n"); 636 return; 637 } 638 639 switch (vsi->port_info->phy.link_info.link_speed) { 640 case ICE_AQ_LINK_SPEED_100GB: 641 speed = "100 G"; 642 break; 643 case ICE_AQ_LINK_SPEED_50GB: 644 speed = "50 G"; 645 break; 646 case ICE_AQ_LINK_SPEED_40GB: 647 speed = "40 G"; 648 break; 649 case ICE_AQ_LINK_SPEED_25GB: 650 speed = "25 G"; 651 break; 652 case ICE_AQ_LINK_SPEED_20GB: 653 speed = "20 G"; 654 break; 655 case ICE_AQ_LINK_SPEED_10GB: 656 speed = "10 G"; 657 break; 658 case ICE_AQ_LINK_SPEED_5GB: 659 speed = "5 G"; 660 break; 661 case ICE_AQ_LINK_SPEED_2500MB: 662 speed = "2.5 G"; 663 break; 664 case ICE_AQ_LINK_SPEED_1000MB: 665 speed = "1 G"; 666 break; 667 case ICE_AQ_LINK_SPEED_100MB: 668 speed = "100 M"; 669 break; 670 default: 671 speed = "Unknown"; 672 break; 673 } 674 675 switch (vsi->port_info->fc.current_mode) { 676 case ICE_FC_FULL: 677 fc = "Rx/Tx"; 678 break; 679 case ICE_FC_TX_PAUSE: 680 fc = "Tx"; 681 break; 682 case ICE_FC_RX_PAUSE: 683 fc = "Rx"; 684 break; 685 case ICE_FC_NONE: 686 fc = "None"; 687 break; 688 default: 689 fc = "Unknown"; 690 break; 691 } 692 693 /* Get FEC mode based on negotiated link info */ 694 switch (vsi->port_info->phy.link_info.fec_info) { 695 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 696 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 697 fec = "RS-FEC"; 698 break; 699 case ICE_AQ_LINK_25G_KR_FEC_EN: 700 fec = "FC-FEC/BASE-R"; 701 break; 702 default: 703 fec = "NONE"; 704 break; 705 } 706 707 /* check if autoneg completed, might be false due to not supported */ 708 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 709 an = "True"; 710 else 711 an = "False"; 712 713 /* Get FEC mode requested based on PHY caps last SW configuration */ 714 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 715 if (!caps) { 716 fec_req = "Unknown"; 717 an_advertised = "Unknown"; 718 goto done; 719 } 720 721 status = ice_aq_get_phy_caps(vsi->port_info, false, 722 ICE_AQC_REPORT_SW_CFG, caps, NULL); 723 if (status) 724 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 725 726 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 727 728 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 729 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 730 fec_req = "RS-FEC"; 731 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 732 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 733 fec_req = "FC-FEC/BASE-R"; 734 else 735 fec_req = "NONE"; 736 737 kfree(caps); 738 739 done: 740 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 741 speed, fec_req, fec, an_advertised, an, fc); 742 ice_print_topo_conflict(vsi); 743 } 744 745 /** 746 * ice_vsi_link_event - update the VSI's netdev 747 * @vsi: the VSI on which the link event occurred 748 * @link_up: whether or not the VSI needs to be set up or down 749 */ 750 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 751 { 752 if (!vsi) 753 return; 754 755 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 756 return; 757 758 if (vsi->type == ICE_VSI_PF) { 759 if (link_up == netif_carrier_ok(vsi->netdev)) 760 return; 761 762 if (link_up) { 763 netif_carrier_on(vsi->netdev); 764 netif_tx_wake_all_queues(vsi->netdev); 765 } else { 766 netif_carrier_off(vsi->netdev); 767 netif_tx_stop_all_queues(vsi->netdev); 768 } 769 } 770 } 771 772 /** 773 * ice_set_dflt_mib - send a default config MIB to the FW 774 * @pf: private PF struct 775 * 776 * This function sends a default configuration MIB to the FW. 777 * 778 * If this function errors out at any point, the driver is still able to 779 * function. The main impact is that LFC may not operate as expected. 780 * Therefore an error state in this function should be treated with a DBG 781 * message and continue on with driver rebuild/reenable. 782 */ 783 static void ice_set_dflt_mib(struct ice_pf *pf) 784 { 785 struct device *dev = ice_pf_to_dev(pf); 786 u8 mib_type, *buf, *lldpmib = NULL; 787 u16 len, typelen, offset = 0; 788 struct ice_lldp_org_tlv *tlv; 789 struct ice_hw *hw; 790 u32 ouisubtype; 791 792 if (!pf) { 793 dev_dbg(dev, "%s NULL pf pointer\n", __func__); 794 return; 795 } 796 797 hw = &pf->hw; 798 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 799 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 800 if (!lldpmib) { 801 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 802 __func__); 803 return; 804 } 805 806 /* Add ETS CFG TLV */ 807 tlv = (struct ice_lldp_org_tlv *)lldpmib; 808 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 809 ICE_IEEE_ETS_TLV_LEN); 810 tlv->typelen = htons(typelen); 811 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 812 ICE_IEEE_SUBTYPE_ETS_CFG); 813 tlv->ouisubtype = htonl(ouisubtype); 814 815 buf = tlv->tlvinfo; 816 buf[0] = 0; 817 818 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 819 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 820 * Octets 13 - 20 are TSA values - leave as zeros 821 */ 822 buf[5] = 0x64; 823 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 824 offset += len + 2; 825 tlv = (struct ice_lldp_org_tlv *) 826 ((char *)tlv + sizeof(tlv->typelen) + len); 827 828 /* Add ETS REC TLV */ 829 buf = tlv->tlvinfo; 830 tlv->typelen = htons(typelen); 831 832 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 833 ICE_IEEE_SUBTYPE_ETS_REC); 834 tlv->ouisubtype = htonl(ouisubtype); 835 836 /* First octet of buf is reserved 837 * Octets 1 - 4 map UP to TC - all UPs map to zero 838 * Octets 5 - 12 are BW values - set TC 0 to 100%. 839 * Octets 13 - 20 are TSA value - leave as zeros 840 */ 841 buf[5] = 0x64; 842 offset += len + 2; 843 tlv = (struct ice_lldp_org_tlv *) 844 ((char *)tlv + sizeof(tlv->typelen) + len); 845 846 /* Add PFC CFG TLV */ 847 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 848 ICE_IEEE_PFC_TLV_LEN); 849 tlv->typelen = htons(typelen); 850 851 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 852 ICE_IEEE_SUBTYPE_PFC_CFG); 853 tlv->ouisubtype = htonl(ouisubtype); 854 855 /* Octet 1 left as all zeros - PFC disabled */ 856 buf[0] = 0x08; 857 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 858 offset += len + 2; 859 860 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 861 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 862 863 kfree(lldpmib); 864 } 865 866 /** 867 * ice_link_event - process the link event 868 * @pf: PF that the link event is associated with 869 * @pi: port_info for the port that the link event is associated with 870 * @link_up: true if the physical link is up and false if it is down 871 * @link_speed: current link speed received from the link event 872 * 873 * Returns 0 on success and negative on failure 874 */ 875 static int 876 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 877 u16 link_speed) 878 { 879 struct device *dev = ice_pf_to_dev(pf); 880 struct ice_phy_info *phy_info; 881 struct ice_vsi *vsi; 882 u16 old_link_speed; 883 bool old_link; 884 int result; 885 886 phy_info = &pi->phy; 887 phy_info->link_info_old = phy_info->link_info; 888 889 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 890 old_link_speed = phy_info->link_info_old.link_speed; 891 892 /* update the link info structures and re-enable link events, 893 * don't bail on failure due to other book keeping needed 894 */ 895 result = ice_update_link_info(pi); 896 if (result) 897 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 898 pi->lport); 899 900 /* Check if the link state is up after updating link info, and treat 901 * this event as an UP event since the link is actually UP now. 902 */ 903 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 904 link_up = true; 905 906 vsi = ice_get_main_vsi(pf); 907 if (!vsi || !vsi->port_info) 908 return -EINVAL; 909 910 /* turn off PHY if media was removed */ 911 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 912 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 913 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 914 915 result = ice_aq_set_link_restart_an(pi, false, NULL); 916 if (result) { 917 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 918 vsi->vsi_num, result); 919 return result; 920 } 921 } 922 923 /* if the old link up/down and speed is the same as the new */ 924 if (link_up == old_link && link_speed == old_link_speed) 925 return result; 926 927 if (ice_is_dcb_active(pf)) { 928 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 929 ice_dcb_rebuild(pf); 930 } else { 931 if (link_up) 932 ice_set_dflt_mib(pf); 933 } 934 ice_vsi_link_event(vsi, link_up); 935 ice_print_link_msg(vsi, link_up); 936 937 ice_vc_notify_link_state(pf); 938 939 return result; 940 } 941 942 /** 943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 944 * @pf: board private structure 945 */ 946 static void ice_watchdog_subtask(struct ice_pf *pf) 947 { 948 int i; 949 950 /* if interface is down do nothing */ 951 if (test_bit(__ICE_DOWN, pf->state) || 952 test_bit(__ICE_CFG_BUSY, pf->state)) 953 return; 954 955 /* make sure we don't do these things too often */ 956 if (time_before(jiffies, 957 pf->serv_tmr_prev + pf->serv_tmr_period)) 958 return; 959 960 pf->serv_tmr_prev = jiffies; 961 962 /* Update the stats for active netdevs so the network stack 963 * can look at updated numbers whenever it cares to 964 */ 965 ice_update_pf_stats(pf); 966 ice_for_each_vsi(pf, i) 967 if (pf->vsi[i] && pf->vsi[i]->netdev) 968 ice_update_vsi_stats(pf->vsi[i]); 969 } 970 971 /** 972 * ice_init_link_events - enable/initialize link events 973 * @pi: pointer to the port_info instance 974 * 975 * Returns -EIO on failure, 0 on success 976 */ 977 static int ice_init_link_events(struct ice_port_info *pi) 978 { 979 u16 mask; 980 981 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 982 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 983 984 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 985 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 986 pi->lport); 987 return -EIO; 988 } 989 990 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 991 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 992 pi->lport); 993 return -EIO; 994 } 995 996 return 0; 997 } 998 999 /** 1000 * ice_handle_link_event - handle link event via ARQ 1001 * @pf: PF that the link event is associated with 1002 * @event: event structure containing link status info 1003 */ 1004 static int 1005 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1006 { 1007 struct ice_aqc_get_link_status_data *link_data; 1008 struct ice_port_info *port_info; 1009 int status; 1010 1011 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1012 port_info = pf->hw.port_info; 1013 if (!port_info) 1014 return -EINVAL; 1015 1016 status = ice_link_event(pf, port_info, 1017 !!(link_data->link_info & ICE_AQ_LINK_UP), 1018 le16_to_cpu(link_data->link_speed)); 1019 if (status) 1020 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1021 status); 1022 1023 return status; 1024 } 1025 1026 enum ice_aq_task_state { 1027 ICE_AQ_TASK_WAITING = 0, 1028 ICE_AQ_TASK_COMPLETE, 1029 ICE_AQ_TASK_CANCELED, 1030 }; 1031 1032 struct ice_aq_task { 1033 struct hlist_node entry; 1034 1035 u16 opcode; 1036 struct ice_rq_event_info *event; 1037 enum ice_aq_task_state state; 1038 }; 1039 1040 /** 1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware 1042 * @pf: pointer to the PF private structure 1043 * @opcode: the opcode to wait for 1044 * @timeout: how long to wait, in jiffies 1045 * @event: storage for the event info 1046 * 1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1048 * current thread will be put to sleep until the specified event occurs or 1049 * until the given timeout is reached. 1050 * 1051 * To obtain only the descriptor contents, pass an event without an allocated 1052 * msg_buf. If the complete data buffer is desired, allocate the 1053 * event->msg_buf with enough space ahead of time. 1054 * 1055 * Returns: zero on success, or a negative error code on failure. 1056 */ 1057 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1058 struct ice_rq_event_info *event) 1059 { 1060 struct ice_aq_task *task; 1061 long ret; 1062 int err; 1063 1064 task = kzalloc(sizeof(*task), GFP_KERNEL); 1065 if (!task) 1066 return -ENOMEM; 1067 1068 INIT_HLIST_NODE(&task->entry); 1069 task->opcode = opcode; 1070 task->event = event; 1071 task->state = ICE_AQ_TASK_WAITING; 1072 1073 spin_lock_bh(&pf->aq_wait_lock); 1074 hlist_add_head(&task->entry, &pf->aq_wait_list); 1075 spin_unlock_bh(&pf->aq_wait_lock); 1076 1077 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1078 timeout); 1079 switch (task->state) { 1080 case ICE_AQ_TASK_WAITING: 1081 err = ret < 0 ? ret : -ETIMEDOUT; 1082 break; 1083 case ICE_AQ_TASK_CANCELED: 1084 err = ret < 0 ? ret : -ECANCELED; 1085 break; 1086 case ICE_AQ_TASK_COMPLETE: 1087 err = ret < 0 ? ret : 0; 1088 break; 1089 default: 1090 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1091 err = -EINVAL; 1092 break; 1093 } 1094 1095 spin_lock_bh(&pf->aq_wait_lock); 1096 hlist_del(&task->entry); 1097 spin_unlock_bh(&pf->aq_wait_lock); 1098 kfree(task); 1099 1100 return err; 1101 } 1102 1103 /** 1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1105 * @pf: pointer to the PF private structure 1106 * @opcode: the opcode of the event 1107 * @event: the event to check 1108 * 1109 * Loops over the current list of pending threads waiting for an AdminQ event. 1110 * For each matching task, copy the contents of the event into the task 1111 * structure and wake up the thread. 1112 * 1113 * If multiple threads wait for the same opcode, they will all be woken up. 1114 * 1115 * Note that event->msg_buf will only be duplicated if the event has a buffer 1116 * with enough space already allocated. Otherwise, only the descriptor and 1117 * message length will be copied. 1118 * 1119 * Returns: true if an event was found, false otherwise 1120 */ 1121 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1122 struct ice_rq_event_info *event) 1123 { 1124 struct ice_aq_task *task; 1125 bool found = false; 1126 1127 spin_lock_bh(&pf->aq_wait_lock); 1128 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1129 if (task->state || task->opcode != opcode) 1130 continue; 1131 1132 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1133 task->event->msg_len = event->msg_len; 1134 1135 /* Only copy the data buffer if a destination was set */ 1136 if (task->event->msg_buf && 1137 task->event->buf_len > event->buf_len) { 1138 memcpy(task->event->msg_buf, event->msg_buf, 1139 event->buf_len); 1140 task->event->buf_len = event->buf_len; 1141 } 1142 1143 task->state = ICE_AQ_TASK_COMPLETE; 1144 found = true; 1145 } 1146 spin_unlock_bh(&pf->aq_wait_lock); 1147 1148 if (found) 1149 wake_up(&pf->aq_wait_queue); 1150 } 1151 1152 /** 1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1154 * @pf: the PF private structure 1155 * 1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1158 */ 1159 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1160 { 1161 struct ice_aq_task *task; 1162 1163 spin_lock_bh(&pf->aq_wait_lock); 1164 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1165 task->state = ICE_AQ_TASK_CANCELED; 1166 spin_unlock_bh(&pf->aq_wait_lock); 1167 1168 wake_up(&pf->aq_wait_queue); 1169 } 1170 1171 /** 1172 * __ice_clean_ctrlq - helper function to clean controlq rings 1173 * @pf: ptr to struct ice_pf 1174 * @q_type: specific Control queue type 1175 */ 1176 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1177 { 1178 struct device *dev = ice_pf_to_dev(pf); 1179 struct ice_rq_event_info event; 1180 struct ice_hw *hw = &pf->hw; 1181 struct ice_ctl_q_info *cq; 1182 u16 pending, i = 0; 1183 const char *qtype; 1184 u32 oldval, val; 1185 1186 /* Do not clean control queue if/when PF reset fails */ 1187 if (test_bit(__ICE_RESET_FAILED, pf->state)) 1188 return 0; 1189 1190 switch (q_type) { 1191 case ICE_CTL_Q_ADMIN: 1192 cq = &hw->adminq; 1193 qtype = "Admin"; 1194 break; 1195 case ICE_CTL_Q_MAILBOX: 1196 cq = &hw->mailboxq; 1197 qtype = "Mailbox"; 1198 break; 1199 default: 1200 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1201 return 0; 1202 } 1203 1204 /* check for error indications - PF_xx_AxQLEN register layout for 1205 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1206 */ 1207 val = rd32(hw, cq->rq.len); 1208 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1209 PF_FW_ARQLEN_ARQCRIT_M)) { 1210 oldval = val; 1211 if (val & PF_FW_ARQLEN_ARQVFE_M) 1212 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1213 qtype); 1214 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1215 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1216 qtype); 1217 } 1218 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1219 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1220 qtype); 1221 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1222 PF_FW_ARQLEN_ARQCRIT_M); 1223 if (oldval != val) 1224 wr32(hw, cq->rq.len, val); 1225 } 1226 1227 val = rd32(hw, cq->sq.len); 1228 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1229 PF_FW_ATQLEN_ATQCRIT_M)) { 1230 oldval = val; 1231 if (val & PF_FW_ATQLEN_ATQVFE_M) 1232 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1233 qtype); 1234 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1235 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1236 qtype); 1237 } 1238 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1239 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1240 qtype); 1241 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1242 PF_FW_ATQLEN_ATQCRIT_M); 1243 if (oldval != val) 1244 wr32(hw, cq->sq.len, val); 1245 } 1246 1247 event.buf_len = cq->rq_buf_size; 1248 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1249 if (!event.msg_buf) 1250 return 0; 1251 1252 do { 1253 enum ice_status ret; 1254 u16 opcode; 1255 1256 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1257 if (ret == ICE_ERR_AQ_NO_WORK) 1258 break; 1259 if (ret) { 1260 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1261 ice_stat_str(ret)); 1262 break; 1263 } 1264 1265 opcode = le16_to_cpu(event.desc.opcode); 1266 1267 /* Notify any thread that might be waiting for this event */ 1268 ice_aq_check_events(pf, opcode, &event); 1269 1270 switch (opcode) { 1271 case ice_aqc_opc_get_link_status: 1272 if (ice_handle_link_event(pf, &event)) 1273 dev_err(dev, "Could not handle link event\n"); 1274 break; 1275 case ice_aqc_opc_event_lan_overflow: 1276 ice_vf_lan_overflow_event(pf, &event); 1277 break; 1278 case ice_mbx_opc_send_msg_to_pf: 1279 ice_vc_process_vf_msg(pf, &event); 1280 break; 1281 case ice_aqc_opc_fw_logging: 1282 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1283 break; 1284 case ice_aqc_opc_lldp_set_mib_change: 1285 ice_dcb_process_lldp_set_mib_change(pf, &event); 1286 break; 1287 default: 1288 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1289 qtype, opcode); 1290 break; 1291 } 1292 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1293 1294 kfree(event.msg_buf); 1295 1296 return pending && (i == ICE_DFLT_IRQ_WORK); 1297 } 1298 1299 /** 1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1301 * @hw: pointer to hardware info 1302 * @cq: control queue information 1303 * 1304 * returns true if there are pending messages in a queue, false if there aren't 1305 */ 1306 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1307 { 1308 u16 ntu; 1309 1310 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1311 return cq->rq.next_to_clean != ntu; 1312 } 1313 1314 /** 1315 * ice_clean_adminq_subtask - clean the AdminQ rings 1316 * @pf: board private structure 1317 */ 1318 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1319 { 1320 struct ice_hw *hw = &pf->hw; 1321 1322 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1323 return; 1324 1325 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1326 return; 1327 1328 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1329 1330 /* There might be a situation where new messages arrive to a control 1331 * queue between processing the last message and clearing the 1332 * EVENT_PENDING bit. So before exiting, check queue head again (using 1333 * ice_ctrlq_pending) and process new messages if any. 1334 */ 1335 if (ice_ctrlq_pending(hw, &hw->adminq)) 1336 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1337 1338 ice_flush(hw); 1339 } 1340 1341 /** 1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1343 * @pf: board private structure 1344 */ 1345 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1346 { 1347 struct ice_hw *hw = &pf->hw; 1348 1349 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1350 return; 1351 1352 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1353 return; 1354 1355 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1356 1357 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1358 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1359 1360 ice_flush(hw); 1361 } 1362 1363 /** 1364 * ice_service_task_schedule - schedule the service task to wake up 1365 * @pf: board private structure 1366 * 1367 * If not already scheduled, this puts the task into the work queue. 1368 */ 1369 void ice_service_task_schedule(struct ice_pf *pf) 1370 { 1371 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1372 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1373 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1374 queue_work(ice_wq, &pf->serv_task); 1375 } 1376 1377 /** 1378 * ice_service_task_complete - finish up the service task 1379 * @pf: board private structure 1380 */ 1381 static void ice_service_task_complete(struct ice_pf *pf) 1382 { 1383 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1384 1385 /* force memory (pf->state) to sync before next service task */ 1386 smp_mb__before_atomic(); 1387 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1388 } 1389 1390 /** 1391 * ice_service_task_stop - stop service task and cancel works 1392 * @pf: board private structure 1393 * 1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set, 1395 * 1 otherwise. 1396 */ 1397 static int ice_service_task_stop(struct ice_pf *pf) 1398 { 1399 int ret; 1400 1401 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state); 1402 1403 if (pf->serv_tmr.function) 1404 del_timer_sync(&pf->serv_tmr); 1405 if (pf->serv_task.func) 1406 cancel_work_sync(&pf->serv_task); 1407 1408 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1409 return ret; 1410 } 1411 1412 /** 1413 * ice_service_task_restart - restart service task and schedule works 1414 * @pf: board private structure 1415 * 1416 * This function is needed for suspend and resume works (e.g WoL scenario) 1417 */ 1418 static void ice_service_task_restart(struct ice_pf *pf) 1419 { 1420 clear_bit(__ICE_SERVICE_DIS, pf->state); 1421 ice_service_task_schedule(pf); 1422 } 1423 1424 /** 1425 * ice_service_timer - timer callback to schedule service task 1426 * @t: pointer to timer_list 1427 */ 1428 static void ice_service_timer(struct timer_list *t) 1429 { 1430 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1431 1432 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1433 ice_service_task_schedule(pf); 1434 } 1435 1436 /** 1437 * ice_handle_mdd_event - handle malicious driver detect event 1438 * @pf: pointer to the PF structure 1439 * 1440 * Called from service task. OICR interrupt handler indicates MDD event. 1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1443 * disable the queue, the PF can be configured to reset the VF using ethtool 1444 * private flag mdd-auto-reset-vf. 1445 */ 1446 static void ice_handle_mdd_event(struct ice_pf *pf) 1447 { 1448 struct device *dev = ice_pf_to_dev(pf); 1449 struct ice_hw *hw = &pf->hw; 1450 unsigned int i; 1451 u32 reg; 1452 1453 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1454 /* Since the VF MDD event logging is rate limited, check if 1455 * there are pending MDD events. 1456 */ 1457 ice_print_vfs_mdd_events(pf); 1458 return; 1459 } 1460 1461 /* find what triggered an MDD event */ 1462 reg = rd32(hw, GL_MDET_TX_PQM); 1463 if (reg & GL_MDET_TX_PQM_VALID_M) { 1464 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1465 GL_MDET_TX_PQM_PF_NUM_S; 1466 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1467 GL_MDET_TX_PQM_VF_NUM_S; 1468 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1469 GL_MDET_TX_PQM_MAL_TYPE_S; 1470 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1471 GL_MDET_TX_PQM_QNUM_S); 1472 1473 if (netif_msg_tx_err(pf)) 1474 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1475 event, queue, pf_num, vf_num); 1476 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1477 } 1478 1479 reg = rd32(hw, GL_MDET_TX_TCLAN); 1480 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1481 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1482 GL_MDET_TX_TCLAN_PF_NUM_S; 1483 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1484 GL_MDET_TX_TCLAN_VF_NUM_S; 1485 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1486 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1487 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1488 GL_MDET_TX_TCLAN_QNUM_S); 1489 1490 if (netif_msg_tx_err(pf)) 1491 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1492 event, queue, pf_num, vf_num); 1493 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1494 } 1495 1496 reg = rd32(hw, GL_MDET_RX); 1497 if (reg & GL_MDET_RX_VALID_M) { 1498 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1499 GL_MDET_RX_PF_NUM_S; 1500 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1501 GL_MDET_RX_VF_NUM_S; 1502 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1503 GL_MDET_RX_MAL_TYPE_S; 1504 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1505 GL_MDET_RX_QNUM_S); 1506 1507 if (netif_msg_rx_err(pf)) 1508 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1509 event, queue, pf_num, vf_num); 1510 wr32(hw, GL_MDET_RX, 0xffffffff); 1511 } 1512 1513 /* check to see if this PF caused an MDD event */ 1514 reg = rd32(hw, PF_MDET_TX_PQM); 1515 if (reg & PF_MDET_TX_PQM_VALID_M) { 1516 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1517 if (netif_msg_tx_err(pf)) 1518 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1519 } 1520 1521 reg = rd32(hw, PF_MDET_TX_TCLAN); 1522 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1523 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1524 if (netif_msg_tx_err(pf)) 1525 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1526 } 1527 1528 reg = rd32(hw, PF_MDET_RX); 1529 if (reg & PF_MDET_RX_VALID_M) { 1530 wr32(hw, PF_MDET_RX, 0xFFFF); 1531 if (netif_msg_rx_err(pf)) 1532 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1533 } 1534 1535 /* Check to see if one of the VFs caused an MDD event, and then 1536 * increment counters and set print pending 1537 */ 1538 ice_for_each_vf(pf, i) { 1539 struct ice_vf *vf = &pf->vf[i]; 1540 1541 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1542 if (reg & VP_MDET_TX_PQM_VALID_M) { 1543 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1544 vf->mdd_tx_events.count++; 1545 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1546 if (netif_msg_tx_err(pf)) 1547 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1548 i); 1549 } 1550 1551 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1552 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1553 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1554 vf->mdd_tx_events.count++; 1555 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1556 if (netif_msg_tx_err(pf)) 1557 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1558 i); 1559 } 1560 1561 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1562 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1563 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1564 vf->mdd_tx_events.count++; 1565 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1566 if (netif_msg_tx_err(pf)) 1567 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1568 i); 1569 } 1570 1571 reg = rd32(hw, VP_MDET_RX(i)); 1572 if (reg & VP_MDET_RX_VALID_M) { 1573 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1574 vf->mdd_rx_events.count++; 1575 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1576 if (netif_msg_rx_err(pf)) 1577 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1578 i); 1579 1580 /* Since the queue is disabled on VF Rx MDD events, the 1581 * PF can be configured to reset the VF through ethtool 1582 * private flag mdd-auto-reset-vf. 1583 */ 1584 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1585 /* VF MDD event counters will be cleared by 1586 * reset, so print the event prior to reset. 1587 */ 1588 ice_print_vf_rx_mdd_event(vf); 1589 ice_reset_vf(&pf->vf[i], false); 1590 } 1591 } 1592 } 1593 1594 ice_print_vfs_mdd_events(pf); 1595 } 1596 1597 /** 1598 * ice_force_phys_link_state - Force the physical link state 1599 * @vsi: VSI to force the physical link state to up/down 1600 * @link_up: true/false indicates to set the physical link to up/down 1601 * 1602 * Force the physical link state by getting the current PHY capabilities from 1603 * hardware and setting the PHY config based on the determined capabilities. If 1604 * link changes a link event will be triggered because both the Enable Automatic 1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1606 * 1607 * Returns 0 on success, negative on failure 1608 */ 1609 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1610 { 1611 struct ice_aqc_get_phy_caps_data *pcaps; 1612 struct ice_aqc_set_phy_cfg_data *cfg; 1613 struct ice_port_info *pi; 1614 struct device *dev; 1615 int retcode; 1616 1617 if (!vsi || !vsi->port_info || !vsi->back) 1618 return -EINVAL; 1619 if (vsi->type != ICE_VSI_PF) 1620 return 0; 1621 1622 dev = ice_pf_to_dev(vsi->back); 1623 1624 pi = vsi->port_info; 1625 1626 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1627 if (!pcaps) 1628 return -ENOMEM; 1629 1630 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1631 NULL); 1632 if (retcode) { 1633 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1634 vsi->vsi_num, retcode); 1635 retcode = -EIO; 1636 goto out; 1637 } 1638 1639 /* No change in link */ 1640 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1641 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1642 goto out; 1643 1644 /* Use the current user PHY configuration. The current user PHY 1645 * configuration is initialized during probe from PHY capabilities 1646 * software mode, and updated on set PHY configuration. 1647 */ 1648 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1649 if (!cfg) { 1650 retcode = -ENOMEM; 1651 goto out; 1652 } 1653 1654 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1655 if (link_up) 1656 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1657 else 1658 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1659 1660 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1661 if (retcode) { 1662 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1663 vsi->vsi_num, retcode); 1664 retcode = -EIO; 1665 } 1666 1667 kfree(cfg); 1668 out: 1669 kfree(pcaps); 1670 return retcode; 1671 } 1672 1673 /** 1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1675 * @pi: port info structure 1676 * 1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1678 */ 1679 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1680 { 1681 struct ice_aqc_get_phy_caps_data *pcaps; 1682 struct ice_pf *pf = pi->hw->back; 1683 enum ice_status status; 1684 int err = 0; 1685 1686 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1687 if (!pcaps) 1688 return -ENOMEM; 1689 1690 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps, 1691 NULL); 1692 1693 if (status) { 1694 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1695 err = -EIO; 1696 goto out; 1697 } 1698 1699 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1700 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1701 1702 out: 1703 kfree(pcaps); 1704 return err; 1705 } 1706 1707 /** 1708 * ice_init_link_dflt_override - Initialize link default override 1709 * @pi: port info structure 1710 * 1711 * Initialize link default override and PHY total port shutdown during probe 1712 */ 1713 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1714 { 1715 struct ice_link_default_override_tlv *ldo; 1716 struct ice_pf *pf = pi->hw->back; 1717 1718 ldo = &pf->link_dflt_override; 1719 if (ice_get_link_default_override(ldo, pi)) 1720 return; 1721 1722 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1723 return; 1724 1725 /* Enable Total Port Shutdown (override/replace link-down-on-close 1726 * ethtool private flag) for ports with Port Disable bit set. 1727 */ 1728 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1729 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1730 } 1731 1732 /** 1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1734 * @pi: port info structure 1735 * 1736 * If default override is enabled, initialized the user PHY cfg speed and FEC 1737 * settings using the default override mask from the NVM. 1738 * 1739 * The PHY should only be configured with the default override settings the 1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1741 * is used to indicate that the user PHY cfg default override is initialized 1742 * and the PHY has not been configured with the default override settings. The 1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1744 * configured. 1745 */ 1746 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1747 { 1748 struct ice_link_default_override_tlv *ldo; 1749 struct ice_aqc_set_phy_cfg_data *cfg; 1750 struct ice_phy_info *phy = &pi->phy; 1751 struct ice_pf *pf = pi->hw->back; 1752 1753 ldo = &pf->link_dflt_override; 1754 1755 /* If link default override is enabled, use to mask NVM PHY capabilities 1756 * for speed and FEC default configuration. 1757 */ 1758 cfg = &phy->curr_user_phy_cfg; 1759 1760 if (ldo->phy_type_low || ldo->phy_type_high) { 1761 cfg->phy_type_low = pf->nvm_phy_type_lo & 1762 cpu_to_le64(ldo->phy_type_low); 1763 cfg->phy_type_high = pf->nvm_phy_type_hi & 1764 cpu_to_le64(ldo->phy_type_high); 1765 } 1766 cfg->link_fec_opt = ldo->fec_options; 1767 phy->curr_user_fec_req = ICE_FEC_AUTO; 1768 1769 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1770 } 1771 1772 /** 1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1774 * @pi: port info structure 1775 * 1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1777 * mode to default. The PHY defaults are from get PHY capabilities topology 1778 * with media so call when media is first available. An error is returned if 1779 * called when media is not available. The PHY initialization completed state is 1780 * set here. 1781 * 1782 * These configurations are used when setting PHY 1783 * configuration. The user PHY configuration is updated on set PHY 1784 * configuration. Returns 0 on success, negative on failure 1785 */ 1786 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1787 { 1788 struct ice_aqc_get_phy_caps_data *pcaps; 1789 struct ice_phy_info *phy = &pi->phy; 1790 struct ice_pf *pf = pi->hw->back; 1791 enum ice_status status; 1792 struct ice_vsi *vsi; 1793 int err = 0; 1794 1795 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1796 return -EIO; 1797 1798 vsi = ice_get_main_vsi(pf); 1799 if (!vsi) 1800 return -EINVAL; 1801 1802 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1803 if (!pcaps) 1804 return -ENOMEM; 1805 1806 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1807 NULL); 1808 if (status) { 1809 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1810 err = -EIO; 1811 goto err_out; 1812 } 1813 1814 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1815 1816 /* check if lenient mode is supported and enabled */ 1817 if (ice_fw_supports_link_override(&vsi->back->hw) && 1818 !(pcaps->module_compliance_enforcement & 1819 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1820 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1821 1822 /* if link default override is enabled, initialize user PHY 1823 * configuration with link default override values 1824 */ 1825 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) { 1826 ice_init_phy_cfg_dflt_override(pi); 1827 goto out; 1828 } 1829 } 1830 1831 /* if link default override is not enabled, initialize PHY using 1832 * topology with media 1833 */ 1834 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1835 pcaps->link_fec_options); 1836 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1837 1838 out: 1839 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1840 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state); 1841 err_out: 1842 kfree(pcaps); 1843 return err; 1844 } 1845 1846 /** 1847 * ice_configure_phy - configure PHY 1848 * @vsi: VSI of PHY 1849 * 1850 * Set the PHY configuration. If the current PHY configuration is the same as 1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1852 * configure the based get PHY capabilities for topology with media. 1853 */ 1854 static int ice_configure_phy(struct ice_vsi *vsi) 1855 { 1856 struct device *dev = ice_pf_to_dev(vsi->back); 1857 struct ice_aqc_get_phy_caps_data *pcaps; 1858 struct ice_aqc_set_phy_cfg_data *cfg; 1859 struct ice_port_info *pi; 1860 enum ice_status status; 1861 int err = 0; 1862 1863 pi = vsi->port_info; 1864 if (!pi) 1865 return -EINVAL; 1866 1867 /* Ensure we have media as we cannot configure a medialess port */ 1868 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1869 return -EPERM; 1870 1871 ice_print_topo_conflict(vsi); 1872 1873 if (vsi->port_info->phy.link_info.topo_media_conflict == 1874 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1875 return -EPERM; 1876 1877 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 1878 return ice_force_phys_link_state(vsi, true); 1879 1880 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1881 if (!pcaps) 1882 return -ENOMEM; 1883 1884 /* Get current PHY config */ 1885 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1886 NULL); 1887 if (status) { 1888 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1889 vsi->vsi_num, ice_stat_str(status)); 1890 err = -EIO; 1891 goto done; 1892 } 1893 1894 /* If PHY enable link is configured and configuration has not changed, 1895 * there's nothing to do 1896 */ 1897 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1898 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg)) 1899 goto done; 1900 1901 /* Use PHY topology as baseline for configuration */ 1902 memset(pcaps, 0, sizeof(*pcaps)); 1903 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1904 NULL); 1905 if (status) { 1906 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n", 1907 vsi->vsi_num, ice_stat_str(status)); 1908 err = -EIO; 1909 goto done; 1910 } 1911 1912 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1913 if (!cfg) { 1914 err = -ENOMEM; 1915 goto done; 1916 } 1917 1918 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1919 1920 /* Speed - If default override pending, use curr_user_phy_cfg set in 1921 * ice_init_phy_user_cfg_ldo. 1922 */ 1923 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1924 vsi->back->state)) { 1925 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low; 1926 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high; 1927 } else { 1928 u64 phy_low = 0, phy_high = 0; 1929 1930 ice_update_phy_type(&phy_low, &phy_high, 1931 pi->phy.curr_user_speed_req); 1932 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1933 cfg->phy_type_high = pcaps->phy_type_high & 1934 cpu_to_le64(phy_high); 1935 } 1936 1937 /* Can't provide what was requested; use PHY capabilities */ 1938 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1939 cfg->phy_type_low = pcaps->phy_type_low; 1940 cfg->phy_type_high = pcaps->phy_type_high; 1941 } 1942 1943 /* FEC */ 1944 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req); 1945 1946 /* Can't provide what was requested; use PHY capabilities */ 1947 if (cfg->link_fec_opt != 1948 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1949 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1950 cfg->link_fec_opt = pcaps->link_fec_options; 1951 } 1952 1953 /* Flow Control - always supported; no need to check against 1954 * capabilities 1955 */ 1956 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req); 1957 1958 /* Enable link and link update */ 1959 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1960 1961 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1962 if (status) { 1963 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1964 vsi->vsi_num, ice_stat_str(status)); 1965 err = -EIO; 1966 } 1967 1968 kfree(cfg); 1969 done: 1970 kfree(pcaps); 1971 return err; 1972 } 1973 1974 /** 1975 * ice_check_media_subtask - Check for media 1976 * @pf: pointer to PF struct 1977 * 1978 * If media is available, then initialize PHY user configuration if it is not 1979 * been, and configure the PHY if the interface is up. 1980 */ 1981 static void ice_check_media_subtask(struct ice_pf *pf) 1982 { 1983 struct ice_port_info *pi; 1984 struct ice_vsi *vsi; 1985 int err; 1986 1987 /* No need to check for media if it's already present */ 1988 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 1989 return; 1990 1991 vsi = ice_get_main_vsi(pf); 1992 if (!vsi) 1993 return; 1994 1995 /* Refresh link info and check if media is present */ 1996 pi = vsi->port_info; 1997 err = ice_update_link_info(pi); 1998 if (err) 1999 return; 2000 2001 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2002 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) 2003 ice_init_phy_user_cfg(pi); 2004 2005 /* PHY settings are reset on media insertion, reconfigure 2006 * PHY to preserve settings. 2007 */ 2008 if (test_bit(__ICE_DOWN, vsi->state) && 2009 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2010 return; 2011 2012 err = ice_configure_phy(vsi); 2013 if (!err) 2014 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2015 2016 /* A Link Status Event will be generated; the event handler 2017 * will complete bringing the interface up 2018 */ 2019 } 2020 } 2021 2022 /** 2023 * ice_service_task - manage and run subtasks 2024 * @work: pointer to work_struct contained by the PF struct 2025 */ 2026 static void ice_service_task(struct work_struct *work) 2027 { 2028 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2029 unsigned long start_time = jiffies; 2030 2031 /* subtasks */ 2032 2033 /* process reset requests first */ 2034 ice_reset_subtask(pf); 2035 2036 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2037 if (ice_is_reset_in_progress(pf->state) || 2038 test_bit(__ICE_SUSPENDED, pf->state) || 2039 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 2040 ice_service_task_complete(pf); 2041 return; 2042 } 2043 2044 ice_clean_adminq_subtask(pf); 2045 ice_check_media_subtask(pf); 2046 ice_check_for_hang_subtask(pf); 2047 ice_sync_fltr_subtask(pf); 2048 ice_handle_mdd_event(pf); 2049 ice_watchdog_subtask(pf); 2050 2051 if (ice_is_safe_mode(pf)) { 2052 ice_service_task_complete(pf); 2053 return; 2054 } 2055 2056 ice_process_vflr_event(pf); 2057 ice_clean_mailboxq_subtask(pf); 2058 ice_sync_arfs_fltrs(pf); 2059 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 2060 ice_service_task_complete(pf); 2061 2062 /* If the tasks have taken longer than one service timer period 2063 * or there is more work to be done, reset the service timer to 2064 * schedule the service task now. 2065 */ 2066 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2067 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 2068 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 2069 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2070 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 2071 mod_timer(&pf->serv_tmr, jiffies); 2072 } 2073 2074 /** 2075 * ice_set_ctrlq_len - helper function to set controlq length 2076 * @hw: pointer to the HW instance 2077 */ 2078 static void ice_set_ctrlq_len(struct ice_hw *hw) 2079 { 2080 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2081 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2082 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2083 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2084 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2085 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2086 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2087 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2088 } 2089 2090 /** 2091 * ice_schedule_reset - schedule a reset 2092 * @pf: board private structure 2093 * @reset: reset being requested 2094 */ 2095 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2096 { 2097 struct device *dev = ice_pf_to_dev(pf); 2098 2099 /* bail out if earlier reset has failed */ 2100 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 2101 dev_dbg(dev, "earlier reset has failed\n"); 2102 return -EIO; 2103 } 2104 /* bail if reset/recovery already in progress */ 2105 if (ice_is_reset_in_progress(pf->state)) { 2106 dev_dbg(dev, "Reset already in progress\n"); 2107 return -EBUSY; 2108 } 2109 2110 switch (reset) { 2111 case ICE_RESET_PFR: 2112 set_bit(__ICE_PFR_REQ, pf->state); 2113 break; 2114 case ICE_RESET_CORER: 2115 set_bit(__ICE_CORER_REQ, pf->state); 2116 break; 2117 case ICE_RESET_GLOBR: 2118 set_bit(__ICE_GLOBR_REQ, pf->state); 2119 break; 2120 default: 2121 return -EINVAL; 2122 } 2123 2124 ice_service_task_schedule(pf); 2125 return 0; 2126 } 2127 2128 /** 2129 * ice_irq_affinity_notify - Callback for affinity changes 2130 * @notify: context as to what irq was changed 2131 * @mask: the new affinity mask 2132 * 2133 * This is a callback function used by the irq_set_affinity_notifier function 2134 * so that we may register to receive changes to the irq affinity masks. 2135 */ 2136 static void 2137 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2138 const cpumask_t *mask) 2139 { 2140 struct ice_q_vector *q_vector = 2141 container_of(notify, struct ice_q_vector, affinity_notify); 2142 2143 cpumask_copy(&q_vector->affinity_mask, mask); 2144 } 2145 2146 /** 2147 * ice_irq_affinity_release - Callback for affinity notifier release 2148 * @ref: internal core kernel usage 2149 * 2150 * This is a callback function used by the irq_set_affinity_notifier function 2151 * to inform the current notification subscriber that they will no longer 2152 * receive notifications. 2153 */ 2154 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2155 2156 /** 2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2158 * @vsi: the VSI being configured 2159 */ 2160 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2161 { 2162 struct ice_hw *hw = &vsi->back->hw; 2163 int i; 2164 2165 ice_for_each_q_vector(vsi, i) 2166 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2167 2168 ice_flush(hw); 2169 return 0; 2170 } 2171 2172 /** 2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2174 * @vsi: the VSI being configured 2175 * @basename: name for the vector 2176 */ 2177 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2178 { 2179 int q_vectors = vsi->num_q_vectors; 2180 struct ice_pf *pf = vsi->back; 2181 int base = vsi->base_vector; 2182 struct device *dev; 2183 int rx_int_idx = 0; 2184 int tx_int_idx = 0; 2185 int vector, err; 2186 int irq_num; 2187 2188 dev = ice_pf_to_dev(pf); 2189 for (vector = 0; vector < q_vectors; vector++) { 2190 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2191 2192 irq_num = pf->msix_entries[base + vector].vector; 2193 2194 if (q_vector->tx.ring && q_vector->rx.ring) { 2195 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2196 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2197 tx_int_idx++; 2198 } else if (q_vector->rx.ring) { 2199 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2200 "%s-%s-%d", basename, "rx", rx_int_idx++); 2201 } else if (q_vector->tx.ring) { 2202 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2203 "%s-%s-%d", basename, "tx", tx_int_idx++); 2204 } else { 2205 /* skip this unused q_vector */ 2206 continue; 2207 } 2208 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 2209 q_vector->name, q_vector); 2210 if (err) { 2211 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2212 err); 2213 goto free_q_irqs; 2214 } 2215 2216 /* register for affinity change notifications */ 2217 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2218 struct irq_affinity_notify *affinity_notify; 2219 2220 affinity_notify = &q_vector->affinity_notify; 2221 affinity_notify->notify = ice_irq_affinity_notify; 2222 affinity_notify->release = ice_irq_affinity_release; 2223 irq_set_affinity_notifier(irq_num, affinity_notify); 2224 } 2225 2226 /* assign the mask for this irq */ 2227 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2228 } 2229 2230 vsi->irqs_ready = true; 2231 return 0; 2232 2233 free_q_irqs: 2234 while (vector) { 2235 vector--; 2236 irq_num = pf->msix_entries[base + vector].vector; 2237 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2238 irq_set_affinity_notifier(irq_num, NULL); 2239 irq_set_affinity_hint(irq_num, NULL); 2240 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2241 } 2242 return err; 2243 } 2244 2245 /** 2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2247 * @vsi: VSI to setup Tx rings used by XDP 2248 * 2249 * Return 0 on success and negative value on error 2250 */ 2251 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2252 { 2253 struct device *dev = ice_pf_to_dev(vsi->back); 2254 int i; 2255 2256 for (i = 0; i < vsi->num_xdp_txq; i++) { 2257 u16 xdp_q_idx = vsi->alloc_txq + i; 2258 struct ice_ring *xdp_ring; 2259 2260 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2261 2262 if (!xdp_ring) 2263 goto free_xdp_rings; 2264 2265 xdp_ring->q_index = xdp_q_idx; 2266 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2267 xdp_ring->ring_active = false; 2268 xdp_ring->vsi = vsi; 2269 xdp_ring->netdev = NULL; 2270 xdp_ring->dev = dev; 2271 xdp_ring->count = vsi->num_tx_desc; 2272 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2273 if (ice_setup_tx_ring(xdp_ring)) 2274 goto free_xdp_rings; 2275 ice_set_ring_xdp(xdp_ring); 2276 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 2277 } 2278 2279 return 0; 2280 2281 free_xdp_rings: 2282 for (; i >= 0; i--) 2283 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2284 ice_free_tx_ring(vsi->xdp_rings[i]); 2285 return -ENOMEM; 2286 } 2287 2288 /** 2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2290 * @vsi: VSI to set the bpf prog on 2291 * @prog: the bpf prog pointer 2292 */ 2293 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2294 { 2295 struct bpf_prog *old_prog; 2296 int i; 2297 2298 old_prog = xchg(&vsi->xdp_prog, prog); 2299 if (old_prog) 2300 bpf_prog_put(old_prog); 2301 2302 ice_for_each_rxq(vsi, i) 2303 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2304 } 2305 2306 /** 2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2308 * @vsi: VSI to bring up Tx rings used by XDP 2309 * @prog: bpf program that will be assigned to VSI 2310 * 2311 * Return 0 on success and negative value on error 2312 */ 2313 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2314 { 2315 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2316 int xdp_rings_rem = vsi->num_xdp_txq; 2317 struct ice_pf *pf = vsi->back; 2318 struct ice_qs_cfg xdp_qs_cfg = { 2319 .qs_mutex = &pf->avail_q_mutex, 2320 .pf_map = pf->avail_txqs, 2321 .pf_map_size = pf->max_pf_txqs, 2322 .q_count = vsi->num_xdp_txq, 2323 .scatter_count = ICE_MAX_SCATTER_TXQS, 2324 .vsi_map = vsi->txq_map, 2325 .vsi_map_offset = vsi->alloc_txq, 2326 .mapping_mode = ICE_VSI_MAP_CONTIG 2327 }; 2328 enum ice_status status; 2329 struct device *dev; 2330 int i, v_idx; 2331 2332 dev = ice_pf_to_dev(pf); 2333 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2334 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2335 if (!vsi->xdp_rings) 2336 return -ENOMEM; 2337 2338 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2339 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2340 goto err_map_xdp; 2341 2342 if (ice_xdp_alloc_setup_rings(vsi)) 2343 goto clear_xdp_rings; 2344 2345 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2346 ice_for_each_q_vector(vsi, v_idx) { 2347 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2348 int xdp_rings_per_v, q_id, q_base; 2349 2350 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2351 vsi->num_q_vectors - v_idx); 2352 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2353 2354 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2355 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2356 2357 xdp_ring->q_vector = q_vector; 2358 xdp_ring->next = q_vector->tx.ring; 2359 q_vector->tx.ring = xdp_ring; 2360 } 2361 xdp_rings_rem -= xdp_rings_per_v; 2362 } 2363 2364 /* omit the scheduler update if in reset path; XDP queues will be 2365 * taken into account at the end of ice_vsi_rebuild, where 2366 * ice_cfg_vsi_lan is being called 2367 */ 2368 if (ice_is_reset_in_progress(pf->state)) 2369 return 0; 2370 2371 /* tell the Tx scheduler that right now we have 2372 * additional queues 2373 */ 2374 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2375 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2376 2377 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2378 max_txqs); 2379 if (status) { 2380 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2381 ice_stat_str(status)); 2382 goto clear_xdp_rings; 2383 } 2384 ice_vsi_assign_bpf_prog(vsi, prog); 2385 2386 return 0; 2387 clear_xdp_rings: 2388 for (i = 0; i < vsi->num_xdp_txq; i++) 2389 if (vsi->xdp_rings[i]) { 2390 kfree_rcu(vsi->xdp_rings[i], rcu); 2391 vsi->xdp_rings[i] = NULL; 2392 } 2393 2394 err_map_xdp: 2395 mutex_lock(&pf->avail_q_mutex); 2396 for (i = 0; i < vsi->num_xdp_txq; i++) { 2397 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2398 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2399 } 2400 mutex_unlock(&pf->avail_q_mutex); 2401 2402 devm_kfree(dev, vsi->xdp_rings); 2403 return -ENOMEM; 2404 } 2405 2406 /** 2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2408 * @vsi: VSI to remove XDP rings 2409 * 2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2411 * resources 2412 */ 2413 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2414 { 2415 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2416 struct ice_pf *pf = vsi->back; 2417 int i, v_idx; 2418 2419 /* q_vectors are freed in reset path so there's no point in detaching 2420 * rings; in case of rebuild being triggered not from reset reset bits 2421 * in pf->state won't be set, so additionally check first q_vector 2422 * against NULL 2423 */ 2424 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2425 goto free_qmap; 2426 2427 ice_for_each_q_vector(vsi, v_idx) { 2428 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2429 struct ice_ring *ring; 2430 2431 ice_for_each_ring(ring, q_vector->tx) 2432 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2433 break; 2434 2435 /* restore the value of last node prior to XDP setup */ 2436 q_vector->tx.ring = ring; 2437 } 2438 2439 free_qmap: 2440 mutex_lock(&pf->avail_q_mutex); 2441 for (i = 0; i < vsi->num_xdp_txq; i++) { 2442 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2443 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2444 } 2445 mutex_unlock(&pf->avail_q_mutex); 2446 2447 for (i = 0; i < vsi->num_xdp_txq; i++) 2448 if (vsi->xdp_rings[i]) { 2449 if (vsi->xdp_rings[i]->desc) 2450 ice_free_tx_ring(vsi->xdp_rings[i]); 2451 kfree_rcu(vsi->xdp_rings[i], rcu); 2452 vsi->xdp_rings[i] = NULL; 2453 } 2454 2455 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2456 vsi->xdp_rings = NULL; 2457 2458 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2459 return 0; 2460 2461 ice_vsi_assign_bpf_prog(vsi, NULL); 2462 2463 /* notify Tx scheduler that we destroyed XDP queues and bring 2464 * back the old number of child nodes 2465 */ 2466 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2467 max_txqs[i] = vsi->num_txq; 2468 2469 /* change number of XDP Tx queues to 0 */ 2470 vsi->num_xdp_txq = 0; 2471 2472 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2473 max_txqs); 2474 } 2475 2476 /** 2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2478 * @vsi: VSI to setup XDP for 2479 * @prog: XDP program 2480 * @extack: netlink extended ack 2481 */ 2482 static int 2483 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2484 struct netlink_ext_ack *extack) 2485 { 2486 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2487 bool if_running = netif_running(vsi->netdev); 2488 int ret = 0, xdp_ring_err = 0; 2489 2490 if (frame_size > vsi->rx_buf_len) { 2491 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2492 return -EOPNOTSUPP; 2493 } 2494 2495 /* need to stop netdev while setting up the program for Rx rings */ 2496 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 2497 ret = ice_down(vsi); 2498 if (ret) { 2499 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2500 return ret; 2501 } 2502 } 2503 2504 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2505 vsi->num_xdp_txq = vsi->alloc_rxq; 2506 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2507 if (xdp_ring_err) 2508 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2509 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2510 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2511 if (xdp_ring_err) 2512 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2513 } else { 2514 ice_vsi_assign_bpf_prog(vsi, prog); 2515 } 2516 2517 if (if_running) 2518 ret = ice_up(vsi); 2519 2520 if (!ret && prog && vsi->xsk_umems) { 2521 int i; 2522 2523 ice_for_each_rxq(vsi, i) { 2524 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2525 2526 if (rx_ring->xsk_umem) 2527 napi_schedule(&rx_ring->q_vector->napi); 2528 } 2529 } 2530 2531 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2532 } 2533 2534 /** 2535 * ice_xdp - implements XDP handler 2536 * @dev: netdevice 2537 * @xdp: XDP command 2538 */ 2539 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2540 { 2541 struct ice_netdev_priv *np = netdev_priv(dev); 2542 struct ice_vsi *vsi = np->vsi; 2543 2544 if (vsi->type != ICE_VSI_PF) { 2545 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2546 return -EINVAL; 2547 } 2548 2549 switch (xdp->command) { 2550 case XDP_SETUP_PROG: 2551 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2552 case XDP_SETUP_XSK_UMEM: 2553 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 2554 xdp->xsk.queue_id); 2555 default: 2556 return -EINVAL; 2557 } 2558 } 2559 2560 /** 2561 * ice_ena_misc_vector - enable the non-queue interrupts 2562 * @pf: board private structure 2563 */ 2564 static void ice_ena_misc_vector(struct ice_pf *pf) 2565 { 2566 struct ice_hw *hw = &pf->hw; 2567 u32 val; 2568 2569 /* Disable anti-spoof detection interrupt to prevent spurious event 2570 * interrupts during a function reset. Anti-spoof functionally is 2571 * still supported. 2572 */ 2573 val = rd32(hw, GL_MDCK_TX_TDPU); 2574 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2575 wr32(hw, GL_MDCK_TX_TDPU, val); 2576 2577 /* clear things first */ 2578 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2579 rd32(hw, PFINT_OICR); /* read to clear */ 2580 2581 val = (PFINT_OICR_ECC_ERR_M | 2582 PFINT_OICR_MAL_DETECT_M | 2583 PFINT_OICR_GRST_M | 2584 PFINT_OICR_PCI_EXCEPTION_M | 2585 PFINT_OICR_VFLR_M | 2586 PFINT_OICR_HMC_ERR_M | 2587 PFINT_OICR_PE_CRITERR_M); 2588 2589 wr32(hw, PFINT_OICR_ENA, val); 2590 2591 /* SW_ITR_IDX = 0, but don't change INTENA */ 2592 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2593 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2594 } 2595 2596 /** 2597 * ice_misc_intr - misc interrupt handler 2598 * @irq: interrupt number 2599 * @data: pointer to a q_vector 2600 */ 2601 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2602 { 2603 struct ice_pf *pf = (struct ice_pf *)data; 2604 struct ice_hw *hw = &pf->hw; 2605 irqreturn_t ret = IRQ_NONE; 2606 struct device *dev; 2607 u32 oicr, ena_mask; 2608 2609 dev = ice_pf_to_dev(pf); 2610 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2611 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2612 2613 oicr = rd32(hw, PFINT_OICR); 2614 ena_mask = rd32(hw, PFINT_OICR_ENA); 2615 2616 if (oicr & PFINT_OICR_SWINT_M) { 2617 ena_mask &= ~PFINT_OICR_SWINT_M; 2618 pf->sw_int_count++; 2619 } 2620 2621 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2622 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2623 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2624 } 2625 if (oicr & PFINT_OICR_VFLR_M) { 2626 /* disable any further VFLR event notifications */ 2627 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2628 u32 reg = rd32(hw, PFINT_OICR_ENA); 2629 2630 reg &= ~PFINT_OICR_VFLR_M; 2631 wr32(hw, PFINT_OICR_ENA, reg); 2632 } else { 2633 ena_mask &= ~PFINT_OICR_VFLR_M; 2634 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2635 } 2636 } 2637 2638 if (oicr & PFINT_OICR_GRST_M) { 2639 u32 reset; 2640 2641 /* we have a reset warning */ 2642 ena_mask &= ~PFINT_OICR_GRST_M; 2643 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2644 GLGEN_RSTAT_RESET_TYPE_S; 2645 2646 if (reset == ICE_RESET_CORER) 2647 pf->corer_count++; 2648 else if (reset == ICE_RESET_GLOBR) 2649 pf->globr_count++; 2650 else if (reset == ICE_RESET_EMPR) 2651 pf->empr_count++; 2652 else 2653 dev_dbg(dev, "Invalid reset type %d\n", reset); 2654 2655 /* If a reset cycle isn't already in progress, we set a bit in 2656 * pf->state so that the service task can start a reset/rebuild. 2657 * We also make note of which reset happened so that peer 2658 * devices/drivers can be informed. 2659 */ 2660 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2661 if (reset == ICE_RESET_CORER) 2662 set_bit(__ICE_CORER_RECV, pf->state); 2663 else if (reset == ICE_RESET_GLOBR) 2664 set_bit(__ICE_GLOBR_RECV, pf->state); 2665 else 2666 set_bit(__ICE_EMPR_RECV, pf->state); 2667 2668 /* There are couple of different bits at play here. 2669 * hw->reset_ongoing indicates whether the hardware is 2670 * in reset. This is set to true when a reset interrupt 2671 * is received and set back to false after the driver 2672 * has determined that the hardware is out of reset. 2673 * 2674 * __ICE_RESET_OICR_RECV in pf->state indicates 2675 * that a post reset rebuild is required before the 2676 * driver is operational again. This is set above. 2677 * 2678 * As this is the start of the reset/rebuild cycle, set 2679 * both to indicate that. 2680 */ 2681 hw->reset_ongoing = true; 2682 } 2683 } 2684 2685 if (oicr & PFINT_OICR_HMC_ERR_M) { 2686 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2687 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2688 rd32(hw, PFHMC_ERRORINFO), 2689 rd32(hw, PFHMC_ERRORDATA)); 2690 } 2691 2692 /* Report any remaining unexpected interrupts */ 2693 oicr &= ena_mask; 2694 if (oicr) { 2695 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2696 /* If a critical error is pending there is no choice but to 2697 * reset the device. 2698 */ 2699 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2700 PFINT_OICR_PCI_EXCEPTION_M | 2701 PFINT_OICR_ECC_ERR_M)) { 2702 set_bit(__ICE_PFR_REQ, pf->state); 2703 ice_service_task_schedule(pf); 2704 } 2705 } 2706 ret = IRQ_HANDLED; 2707 2708 ice_service_task_schedule(pf); 2709 ice_irq_dynamic_ena(hw, NULL, NULL); 2710 2711 return ret; 2712 } 2713 2714 /** 2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2716 * @hw: pointer to HW structure 2717 */ 2718 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2719 { 2720 /* disable Admin queue Interrupt causes */ 2721 wr32(hw, PFINT_FW_CTL, 2722 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2723 2724 /* disable Mailbox queue Interrupt causes */ 2725 wr32(hw, PFINT_MBX_CTL, 2726 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2727 2728 /* disable Control queue Interrupt causes */ 2729 wr32(hw, PFINT_OICR_CTL, 2730 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2731 2732 ice_flush(hw); 2733 } 2734 2735 /** 2736 * ice_free_irq_msix_misc - Unroll misc vector setup 2737 * @pf: board private structure 2738 */ 2739 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2740 { 2741 struct ice_hw *hw = &pf->hw; 2742 2743 ice_dis_ctrlq_interrupts(hw); 2744 2745 /* disable OICR interrupt */ 2746 wr32(hw, PFINT_OICR_ENA, 0); 2747 ice_flush(hw); 2748 2749 if (pf->msix_entries) { 2750 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2751 devm_free_irq(ice_pf_to_dev(pf), 2752 pf->msix_entries[pf->oicr_idx].vector, pf); 2753 } 2754 2755 pf->num_avail_sw_msix += 1; 2756 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2757 } 2758 2759 /** 2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2761 * @hw: pointer to HW structure 2762 * @reg_idx: HW vector index to associate the control queue interrupts with 2763 */ 2764 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2765 { 2766 u32 val; 2767 2768 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2769 PFINT_OICR_CTL_CAUSE_ENA_M); 2770 wr32(hw, PFINT_OICR_CTL, val); 2771 2772 /* enable Admin queue Interrupt causes */ 2773 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2774 PFINT_FW_CTL_CAUSE_ENA_M); 2775 wr32(hw, PFINT_FW_CTL, val); 2776 2777 /* enable Mailbox queue Interrupt causes */ 2778 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2779 PFINT_MBX_CTL_CAUSE_ENA_M); 2780 wr32(hw, PFINT_MBX_CTL, val); 2781 2782 ice_flush(hw); 2783 } 2784 2785 /** 2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2787 * @pf: board private structure 2788 * 2789 * This sets up the handler for MSIX 0, which is used to manage the 2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2791 * when in MSI or Legacy interrupt mode. 2792 */ 2793 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2794 { 2795 struct device *dev = ice_pf_to_dev(pf); 2796 struct ice_hw *hw = &pf->hw; 2797 int oicr_idx, err = 0; 2798 2799 if (!pf->int_name[0]) 2800 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2801 dev_driver_string(dev), dev_name(dev)); 2802 2803 /* Do not request IRQ but do enable OICR interrupt since settings are 2804 * lost during reset. Note that this function is called only during 2805 * rebuild path and not while reset is in progress. 2806 */ 2807 if (ice_is_reset_in_progress(pf->state)) 2808 goto skip_req_irq; 2809 2810 /* reserve one vector in irq_tracker for misc interrupts */ 2811 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2812 if (oicr_idx < 0) 2813 return oicr_idx; 2814 2815 pf->num_avail_sw_msix -= 1; 2816 pf->oicr_idx = (u16)oicr_idx; 2817 2818 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2819 ice_misc_intr, 0, pf->int_name, pf); 2820 if (err) { 2821 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2822 pf->int_name, err); 2823 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2824 pf->num_avail_sw_msix += 1; 2825 return err; 2826 } 2827 2828 skip_req_irq: 2829 ice_ena_misc_vector(pf); 2830 2831 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2832 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2833 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2834 2835 ice_flush(hw); 2836 ice_irq_dynamic_ena(hw, NULL, NULL); 2837 2838 return 0; 2839 } 2840 2841 /** 2842 * ice_napi_add - register NAPI handler for the VSI 2843 * @vsi: VSI for which NAPI handler is to be registered 2844 * 2845 * This function is only called in the driver's load path. Registering the NAPI 2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2847 * reset/rebuild, etc.) 2848 */ 2849 static void ice_napi_add(struct ice_vsi *vsi) 2850 { 2851 int v_idx; 2852 2853 if (!vsi->netdev) 2854 return; 2855 2856 ice_for_each_q_vector(vsi, v_idx) 2857 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2858 ice_napi_poll, NAPI_POLL_WEIGHT); 2859 } 2860 2861 /** 2862 * ice_set_ops - set netdev and ethtools ops for the given netdev 2863 * @netdev: netdev instance 2864 */ 2865 static void ice_set_ops(struct net_device *netdev) 2866 { 2867 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2868 2869 if (ice_is_safe_mode(pf)) { 2870 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2871 ice_set_ethtool_safe_mode_ops(netdev); 2872 return; 2873 } 2874 2875 netdev->netdev_ops = &ice_netdev_ops; 2876 ice_set_ethtool_ops(netdev); 2877 } 2878 2879 /** 2880 * ice_set_netdev_features - set features for the given netdev 2881 * @netdev: netdev instance 2882 */ 2883 static void ice_set_netdev_features(struct net_device *netdev) 2884 { 2885 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2886 netdev_features_t csumo_features; 2887 netdev_features_t vlano_features; 2888 netdev_features_t dflt_features; 2889 netdev_features_t tso_features; 2890 2891 if (ice_is_safe_mode(pf)) { 2892 /* safe mode */ 2893 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2894 netdev->hw_features = netdev->features; 2895 return; 2896 } 2897 2898 dflt_features = NETIF_F_SG | 2899 NETIF_F_HIGHDMA | 2900 NETIF_F_NTUPLE | 2901 NETIF_F_RXHASH; 2902 2903 csumo_features = NETIF_F_RXCSUM | 2904 NETIF_F_IP_CSUM | 2905 NETIF_F_SCTP_CRC | 2906 NETIF_F_IPV6_CSUM; 2907 2908 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2909 NETIF_F_HW_VLAN_CTAG_TX | 2910 NETIF_F_HW_VLAN_CTAG_RX; 2911 2912 tso_features = NETIF_F_TSO | 2913 NETIF_F_TSO_ECN | 2914 NETIF_F_TSO6 | 2915 NETIF_F_GSO_GRE | 2916 NETIF_F_GSO_UDP_TUNNEL | 2917 NETIF_F_GSO_GRE_CSUM | 2918 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2919 NETIF_F_GSO_PARTIAL | 2920 NETIF_F_GSO_IPXIP4 | 2921 NETIF_F_GSO_IPXIP6 | 2922 NETIF_F_GSO_UDP_L4; 2923 2924 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2925 NETIF_F_GSO_GRE_CSUM; 2926 /* set features that user can change */ 2927 netdev->hw_features = dflt_features | csumo_features | 2928 vlano_features | tso_features; 2929 2930 /* add support for HW_CSUM on packets with MPLS header */ 2931 netdev->mpls_features = NETIF_F_HW_CSUM; 2932 2933 /* enable features */ 2934 netdev->features |= netdev->hw_features; 2935 /* encap and VLAN devices inherit default, csumo and tso features */ 2936 netdev->hw_enc_features |= dflt_features | csumo_features | 2937 tso_features; 2938 netdev->vlan_features |= dflt_features | csumo_features | 2939 tso_features; 2940 } 2941 2942 /** 2943 * ice_cfg_netdev - Allocate, configure and register a netdev 2944 * @vsi: the VSI associated with the new netdev 2945 * 2946 * Returns 0 on success, negative value on failure 2947 */ 2948 static int ice_cfg_netdev(struct ice_vsi *vsi) 2949 { 2950 struct ice_pf *pf = vsi->back; 2951 struct ice_netdev_priv *np; 2952 struct net_device *netdev; 2953 u8 mac_addr[ETH_ALEN]; 2954 int err; 2955 2956 err = ice_devlink_create_port(pf); 2957 if (err) 2958 return err; 2959 2960 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2961 vsi->alloc_rxq); 2962 if (!netdev) { 2963 err = -ENOMEM; 2964 goto err_destroy_devlink_port; 2965 } 2966 2967 vsi->netdev = netdev; 2968 np = netdev_priv(netdev); 2969 np->vsi = vsi; 2970 2971 ice_set_netdev_features(netdev); 2972 2973 ice_set_ops(netdev); 2974 2975 if (vsi->type == ICE_VSI_PF) { 2976 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2977 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2978 ether_addr_copy(netdev->dev_addr, mac_addr); 2979 ether_addr_copy(netdev->perm_addr, mac_addr); 2980 } 2981 2982 netdev->priv_flags |= IFF_UNICAST_FLT; 2983 2984 /* Setup netdev TC information */ 2985 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2986 2987 /* setup watchdog timeout value to be 5 second */ 2988 netdev->watchdog_timeo = 5 * HZ; 2989 2990 netdev->min_mtu = ETH_MIN_MTU; 2991 netdev->max_mtu = ICE_MAX_MTU; 2992 2993 err = register_netdev(vsi->netdev); 2994 if (err) 2995 goto err_free_netdev; 2996 2997 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 2998 2999 netif_carrier_off(vsi->netdev); 3000 3001 /* make sure transmit queues start off as stopped */ 3002 netif_tx_stop_all_queues(vsi->netdev); 3003 3004 return 0; 3005 3006 err_free_netdev: 3007 free_netdev(vsi->netdev); 3008 vsi->netdev = NULL; 3009 err_destroy_devlink_port: 3010 ice_devlink_destroy_port(pf); 3011 return err; 3012 } 3013 3014 /** 3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3016 * @lut: Lookup table 3017 * @rss_table_size: Lookup table size 3018 * @rss_size: Range of queue number for hashing 3019 */ 3020 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3021 { 3022 u16 i; 3023 3024 for (i = 0; i < rss_table_size; i++) 3025 lut[i] = i % rss_size; 3026 } 3027 3028 /** 3029 * ice_pf_vsi_setup - Set up a PF VSI 3030 * @pf: board private structure 3031 * @pi: pointer to the port_info instance 3032 * 3033 * Returns pointer to the successfully allocated VSI software struct 3034 * on success, otherwise returns NULL on failure. 3035 */ 3036 static struct ice_vsi * 3037 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3038 { 3039 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3040 } 3041 3042 /** 3043 * ice_ctrl_vsi_setup - Set up a control VSI 3044 * @pf: board private structure 3045 * @pi: pointer to the port_info instance 3046 * 3047 * Returns pointer to the successfully allocated VSI software struct 3048 * on success, otherwise returns NULL on failure. 3049 */ 3050 static struct ice_vsi * 3051 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3052 { 3053 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3054 } 3055 3056 /** 3057 * ice_lb_vsi_setup - Set up a loopback VSI 3058 * @pf: board private structure 3059 * @pi: pointer to the port_info instance 3060 * 3061 * Returns pointer to the successfully allocated VSI software struct 3062 * on success, otherwise returns NULL on failure. 3063 */ 3064 struct ice_vsi * 3065 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3066 { 3067 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3068 } 3069 3070 /** 3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3072 * @netdev: network interface to be adjusted 3073 * @proto: unused protocol 3074 * @vid: VLAN ID to be added 3075 * 3076 * net_device_ops implementation for adding VLAN IDs 3077 */ 3078 static int 3079 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3080 u16 vid) 3081 { 3082 struct ice_netdev_priv *np = netdev_priv(netdev); 3083 struct ice_vsi *vsi = np->vsi; 3084 int ret; 3085 3086 if (vid >= VLAN_N_VID) { 3087 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 3088 vid, VLAN_N_VID); 3089 return -EINVAL; 3090 } 3091 3092 if (vsi->info.pvid) 3093 return -EINVAL; 3094 3095 /* VLAN 0 is added by default during load/reset */ 3096 if (!vid) 3097 return 0; 3098 3099 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3100 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3101 ret = ice_cfg_vlan_pruning(vsi, true, false); 3102 if (ret) 3103 return ret; 3104 } 3105 3106 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3107 * packets aren't pruned by the device's internal switch on Rx 3108 */ 3109 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3110 if (!ret) { 3111 vsi->vlan_ena = true; 3112 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3113 } 3114 3115 return ret; 3116 } 3117 3118 /** 3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3120 * @netdev: network interface to be adjusted 3121 * @proto: unused protocol 3122 * @vid: VLAN ID to be removed 3123 * 3124 * net_device_ops implementation for removing VLAN IDs 3125 */ 3126 static int 3127 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3128 u16 vid) 3129 { 3130 struct ice_netdev_priv *np = netdev_priv(netdev); 3131 struct ice_vsi *vsi = np->vsi; 3132 int ret; 3133 3134 if (vsi->info.pvid) 3135 return -EINVAL; 3136 3137 /* don't allow removal of VLAN 0 */ 3138 if (!vid) 3139 return 0; 3140 3141 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3142 * information 3143 */ 3144 ret = ice_vsi_kill_vlan(vsi, vid); 3145 if (ret) 3146 return ret; 3147 3148 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3149 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3150 ret = ice_cfg_vlan_pruning(vsi, false, false); 3151 3152 vsi->vlan_ena = false; 3153 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3154 return ret; 3155 } 3156 3157 /** 3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3159 * @pf: board private structure 3160 * 3161 * Returns 0 on success, negative value on failure 3162 */ 3163 static int ice_setup_pf_sw(struct ice_pf *pf) 3164 { 3165 struct ice_vsi *vsi; 3166 int status = 0; 3167 3168 if (ice_is_reset_in_progress(pf->state)) 3169 return -EBUSY; 3170 3171 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3172 if (!vsi) 3173 return -ENOMEM; 3174 3175 status = ice_cfg_netdev(vsi); 3176 if (status) { 3177 status = -ENODEV; 3178 goto unroll_vsi_setup; 3179 } 3180 /* netdev has to be configured before setting frame size */ 3181 ice_vsi_cfg_frame_size(vsi); 3182 3183 /* Setup DCB netlink interface */ 3184 ice_dcbnl_setup(vsi); 3185 3186 /* registering the NAPI handler requires both the queues and 3187 * netdev to be created, which are done in ice_pf_vsi_setup() 3188 * and ice_cfg_netdev() respectively 3189 */ 3190 ice_napi_add(vsi); 3191 3192 status = ice_set_cpu_rx_rmap(vsi); 3193 if (status) { 3194 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3195 vsi->vsi_num, status); 3196 status = -EINVAL; 3197 goto unroll_napi_add; 3198 } 3199 status = ice_init_mac_fltr(pf); 3200 if (status) 3201 goto free_cpu_rx_map; 3202 3203 return status; 3204 3205 free_cpu_rx_map: 3206 ice_free_cpu_rx_rmap(vsi); 3207 3208 unroll_napi_add: 3209 if (vsi) { 3210 ice_napi_del(vsi); 3211 if (vsi->netdev) { 3212 if (vsi->netdev->reg_state == NETREG_REGISTERED) 3213 unregister_netdev(vsi->netdev); 3214 free_netdev(vsi->netdev); 3215 vsi->netdev = NULL; 3216 } 3217 } 3218 3219 unroll_vsi_setup: 3220 ice_vsi_release(vsi); 3221 return status; 3222 } 3223 3224 /** 3225 * ice_get_avail_q_count - Get count of queues in use 3226 * @pf_qmap: bitmap to get queue use count from 3227 * @lock: pointer to a mutex that protects access to pf_qmap 3228 * @size: size of the bitmap 3229 */ 3230 static u16 3231 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3232 { 3233 unsigned long bit; 3234 u16 count = 0; 3235 3236 mutex_lock(lock); 3237 for_each_clear_bit(bit, pf_qmap, size) 3238 count++; 3239 mutex_unlock(lock); 3240 3241 return count; 3242 } 3243 3244 /** 3245 * ice_get_avail_txq_count - Get count of Tx queues in use 3246 * @pf: pointer to an ice_pf instance 3247 */ 3248 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3249 { 3250 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3251 pf->max_pf_txqs); 3252 } 3253 3254 /** 3255 * ice_get_avail_rxq_count - Get count of Rx queues in use 3256 * @pf: pointer to an ice_pf instance 3257 */ 3258 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3259 { 3260 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3261 pf->max_pf_rxqs); 3262 } 3263 3264 /** 3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3266 * @pf: board private structure to initialize 3267 */ 3268 static void ice_deinit_pf(struct ice_pf *pf) 3269 { 3270 ice_service_task_stop(pf); 3271 mutex_destroy(&pf->sw_mutex); 3272 mutex_destroy(&pf->tc_mutex); 3273 mutex_destroy(&pf->avail_q_mutex); 3274 3275 if (pf->avail_txqs) { 3276 bitmap_free(pf->avail_txqs); 3277 pf->avail_txqs = NULL; 3278 } 3279 3280 if (pf->avail_rxqs) { 3281 bitmap_free(pf->avail_rxqs); 3282 pf->avail_rxqs = NULL; 3283 } 3284 } 3285 3286 /** 3287 * ice_set_pf_caps - set PFs capability flags 3288 * @pf: pointer to the PF instance 3289 */ 3290 static void ice_set_pf_caps(struct ice_pf *pf) 3291 { 3292 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3293 3294 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3295 if (func_caps->common_cap.dcb) 3296 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3297 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3298 if (func_caps->common_cap.sr_iov_1_1) { 3299 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3300 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3301 ICE_MAX_VF_COUNT); 3302 } 3303 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3304 if (func_caps->common_cap.rss_table_size) 3305 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3306 3307 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3308 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3309 u16 unused; 3310 3311 /* ctrl_vsi_idx will be set to a valid value when flow director 3312 * is setup by ice_init_fdir 3313 */ 3314 pf->ctrl_vsi_idx = ICE_NO_VSI; 3315 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3316 /* force guaranteed filter pool for PF */ 3317 ice_alloc_fd_guar_item(&pf->hw, &unused, 3318 func_caps->fd_fltr_guar); 3319 /* force shared filter pool for PF */ 3320 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3321 func_caps->fd_fltr_best_effort); 3322 } 3323 3324 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3325 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3326 } 3327 3328 /** 3329 * ice_init_pf - Initialize general software structures (struct ice_pf) 3330 * @pf: board private structure to initialize 3331 */ 3332 static int ice_init_pf(struct ice_pf *pf) 3333 { 3334 ice_set_pf_caps(pf); 3335 3336 mutex_init(&pf->sw_mutex); 3337 mutex_init(&pf->tc_mutex); 3338 3339 INIT_HLIST_HEAD(&pf->aq_wait_list); 3340 spin_lock_init(&pf->aq_wait_lock); 3341 init_waitqueue_head(&pf->aq_wait_queue); 3342 3343 /* setup service timer and periodic service task */ 3344 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3345 pf->serv_tmr_period = HZ; 3346 INIT_WORK(&pf->serv_task, ice_service_task); 3347 clear_bit(__ICE_SERVICE_SCHED, pf->state); 3348 3349 mutex_init(&pf->avail_q_mutex); 3350 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3351 if (!pf->avail_txqs) 3352 return -ENOMEM; 3353 3354 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3355 if (!pf->avail_rxqs) { 3356 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3357 pf->avail_txqs = NULL; 3358 return -ENOMEM; 3359 } 3360 3361 return 0; 3362 } 3363 3364 /** 3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3366 * @pf: board private structure 3367 * 3368 * compute the number of MSIX vectors required (v_budget) and request from 3369 * the OS. Return the number of vectors reserved or negative on failure 3370 */ 3371 static int ice_ena_msix_range(struct ice_pf *pf) 3372 { 3373 struct device *dev = ice_pf_to_dev(pf); 3374 int v_left, v_actual, v_budget = 0; 3375 int needed, err, i; 3376 3377 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3378 3379 /* reserve one vector for miscellaneous handler */ 3380 needed = 1; 3381 if (v_left < needed) 3382 goto no_hw_vecs_left_err; 3383 v_budget += needed; 3384 v_left -= needed; 3385 3386 /* reserve vectors for LAN traffic */ 3387 needed = min_t(int, num_online_cpus(), v_left); 3388 if (v_left < needed) 3389 goto no_hw_vecs_left_err; 3390 pf->num_lan_msix = needed; 3391 v_budget += needed; 3392 v_left -= needed; 3393 3394 /* reserve one vector for flow director */ 3395 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3396 needed = ICE_FDIR_MSIX; 3397 if (v_left < needed) 3398 goto no_hw_vecs_left_err; 3399 v_budget += needed; 3400 v_left -= needed; 3401 } 3402 3403 pf->msix_entries = devm_kcalloc(dev, v_budget, 3404 sizeof(*pf->msix_entries), GFP_KERNEL); 3405 3406 if (!pf->msix_entries) { 3407 err = -ENOMEM; 3408 goto exit_err; 3409 } 3410 3411 for (i = 0; i < v_budget; i++) 3412 pf->msix_entries[i].entry = i; 3413 3414 /* actually reserve the vectors */ 3415 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3416 ICE_MIN_MSIX, v_budget); 3417 3418 if (v_actual < 0) { 3419 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3420 err = v_actual; 3421 goto msix_err; 3422 } 3423 3424 if (v_actual < v_budget) { 3425 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3426 v_budget, v_actual); 3427 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */ 3428 #define ICE_MIN_LAN_VECS 2 3429 #define ICE_MIN_RDMA_VECS 2 3430 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1) 3431 3432 if (v_actual < ICE_MIN_LAN_VECS) { 3433 /* error if we can't get minimum vectors */ 3434 pci_disable_msix(pf->pdev); 3435 err = -ERANGE; 3436 goto msix_err; 3437 } else { 3438 pf->num_lan_msix = ICE_MIN_LAN_VECS; 3439 } 3440 } 3441 3442 return v_actual; 3443 3444 msix_err: 3445 devm_kfree(dev, pf->msix_entries); 3446 goto exit_err; 3447 3448 no_hw_vecs_left_err: 3449 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3450 needed, v_left); 3451 err = -ERANGE; 3452 exit_err: 3453 pf->num_lan_msix = 0; 3454 return err; 3455 } 3456 3457 /** 3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3459 * @pf: board private structure 3460 */ 3461 static void ice_dis_msix(struct ice_pf *pf) 3462 { 3463 pci_disable_msix(pf->pdev); 3464 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3465 pf->msix_entries = NULL; 3466 } 3467 3468 /** 3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3470 * @pf: board private structure 3471 */ 3472 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3473 { 3474 ice_dis_msix(pf); 3475 3476 if (pf->irq_tracker) { 3477 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3478 pf->irq_tracker = NULL; 3479 } 3480 } 3481 3482 /** 3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3484 * @pf: board private structure to initialize 3485 */ 3486 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3487 { 3488 int vectors; 3489 3490 vectors = ice_ena_msix_range(pf); 3491 3492 if (vectors < 0) 3493 return vectors; 3494 3495 /* set up vector assignment tracking */ 3496 pf->irq_tracker = 3497 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 3498 (sizeof(u16) * vectors), GFP_KERNEL); 3499 if (!pf->irq_tracker) { 3500 ice_dis_msix(pf); 3501 return -ENOMEM; 3502 } 3503 3504 /* populate SW interrupts pool with number of OS granted IRQs. */ 3505 pf->num_avail_sw_msix = (u16)vectors; 3506 pf->irq_tracker->num_entries = (u16)vectors; 3507 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3508 3509 return 0; 3510 } 3511 3512 /** 3513 * ice_is_wol_supported - get NVM state of WoL 3514 * @pf: board private structure 3515 * 3516 * Check if WoL is supported based on the HW configuration. 3517 * Returns true if NVM supports and enables WoL for this port, false otherwise 3518 */ 3519 bool ice_is_wol_supported(struct ice_pf *pf) 3520 { 3521 struct ice_hw *hw = &pf->hw; 3522 u16 wol_ctrl; 3523 3524 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3525 * word) indicates WoL is not supported on the corresponding PF ID. 3526 */ 3527 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3528 return false; 3529 3530 return !(BIT(hw->pf_id) & wol_ctrl); 3531 } 3532 3533 /** 3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3535 * @vsi: VSI being changed 3536 * @new_rx: new number of Rx queues 3537 * @new_tx: new number of Tx queues 3538 * 3539 * Only change the number of queues if new_tx, or new_rx is non-0. 3540 * 3541 * Returns 0 on success. 3542 */ 3543 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3544 { 3545 struct ice_pf *pf = vsi->back; 3546 int err = 0, timeout = 50; 3547 3548 if (!new_rx && !new_tx) 3549 return -EINVAL; 3550 3551 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 3552 timeout--; 3553 if (!timeout) 3554 return -EBUSY; 3555 usleep_range(1000, 2000); 3556 } 3557 3558 if (new_tx) 3559 vsi->req_txq = (u16)new_tx; 3560 if (new_rx) 3561 vsi->req_rxq = (u16)new_rx; 3562 3563 /* set for the next time the netdev is started */ 3564 if (!netif_running(vsi->netdev)) { 3565 ice_vsi_rebuild(vsi, false); 3566 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3567 goto done; 3568 } 3569 3570 ice_vsi_close(vsi); 3571 ice_vsi_rebuild(vsi, false); 3572 ice_pf_dcb_recfg(pf); 3573 ice_vsi_open(vsi); 3574 done: 3575 clear_bit(__ICE_CFG_BUSY, pf->state); 3576 return err; 3577 } 3578 3579 /** 3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3581 * @pf: PF to configure 3582 * 3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3584 * VSI can still Tx/Rx VLAN tagged packets. 3585 */ 3586 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3587 { 3588 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3589 struct ice_vsi_ctx *ctxt; 3590 enum ice_status status; 3591 struct ice_hw *hw; 3592 3593 if (!vsi) 3594 return; 3595 3596 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3597 if (!ctxt) 3598 return; 3599 3600 hw = &pf->hw; 3601 ctxt->info = vsi->info; 3602 3603 ctxt->info.valid_sections = 3604 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3605 ICE_AQ_VSI_PROP_SECURITY_VALID | 3606 ICE_AQ_VSI_PROP_SW_VALID); 3607 3608 /* disable VLAN anti-spoof */ 3609 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3610 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3611 3612 /* disable VLAN pruning and keep all other settings */ 3613 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3614 3615 /* allow all VLANs on Tx and don't strip on Rx */ 3616 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3617 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3618 3619 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3620 if (status) { 3621 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3622 ice_stat_str(status), 3623 ice_aq_str(hw->adminq.sq_last_status)); 3624 } else { 3625 vsi->info.sec_flags = ctxt->info.sec_flags; 3626 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3627 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3628 } 3629 3630 kfree(ctxt); 3631 } 3632 3633 /** 3634 * ice_log_pkg_init - log result of DDP package load 3635 * @hw: pointer to hardware info 3636 * @status: status of package load 3637 */ 3638 static void 3639 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3640 { 3641 struct ice_pf *pf = (struct ice_pf *)hw->back; 3642 struct device *dev = ice_pf_to_dev(pf); 3643 3644 switch (*status) { 3645 case ICE_SUCCESS: 3646 /* The package download AdminQ command returned success because 3647 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3648 * already a package loaded on the device. 3649 */ 3650 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3651 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3652 hw->pkg_ver.update == hw->active_pkg_ver.update && 3653 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3654 !memcmp(hw->pkg_name, hw->active_pkg_name, 3655 sizeof(hw->pkg_name))) { 3656 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3657 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3658 hw->active_pkg_name, 3659 hw->active_pkg_ver.major, 3660 hw->active_pkg_ver.minor, 3661 hw->active_pkg_ver.update, 3662 hw->active_pkg_ver.draft); 3663 else 3664 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3665 hw->active_pkg_name, 3666 hw->active_pkg_ver.major, 3667 hw->active_pkg_ver.minor, 3668 hw->active_pkg_ver.update, 3669 hw->active_pkg_ver.draft); 3670 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3671 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3672 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3673 hw->active_pkg_name, 3674 hw->active_pkg_ver.major, 3675 hw->active_pkg_ver.minor, 3676 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3677 *status = ICE_ERR_NOT_SUPPORTED; 3678 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3679 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3680 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3681 hw->active_pkg_name, 3682 hw->active_pkg_ver.major, 3683 hw->active_pkg_ver.minor, 3684 hw->active_pkg_ver.update, 3685 hw->active_pkg_ver.draft, 3686 hw->pkg_name, 3687 hw->pkg_ver.major, 3688 hw->pkg_ver.minor, 3689 hw->pkg_ver.update, 3690 hw->pkg_ver.draft); 3691 } else { 3692 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3693 *status = ICE_ERR_NOT_SUPPORTED; 3694 } 3695 break; 3696 case ICE_ERR_FW_DDP_MISMATCH: 3697 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3698 break; 3699 case ICE_ERR_BUF_TOO_SHORT: 3700 case ICE_ERR_CFG: 3701 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3702 break; 3703 case ICE_ERR_NOT_SUPPORTED: 3704 /* Package File version not supported */ 3705 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3706 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3707 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3708 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3709 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3710 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3711 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3712 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3713 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3714 break; 3715 case ICE_ERR_AQ_ERROR: 3716 switch (hw->pkg_dwnld_status) { 3717 case ICE_AQ_RC_ENOSEC: 3718 case ICE_AQ_RC_EBADSIG: 3719 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3720 return; 3721 case ICE_AQ_RC_ESVN: 3722 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3723 return; 3724 case ICE_AQ_RC_EBADMAN: 3725 case ICE_AQ_RC_EBADBUF: 3726 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3727 /* poll for reset to complete */ 3728 if (ice_check_reset(hw)) 3729 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3730 return; 3731 default: 3732 break; 3733 } 3734 fallthrough; 3735 default: 3736 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3737 *status); 3738 break; 3739 } 3740 } 3741 3742 /** 3743 * ice_load_pkg - load/reload the DDP Package file 3744 * @firmware: firmware structure when firmware requested or NULL for reload 3745 * @pf: pointer to the PF instance 3746 * 3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3748 * initialize HW tables. 3749 */ 3750 static void 3751 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3752 { 3753 enum ice_status status = ICE_ERR_PARAM; 3754 struct device *dev = ice_pf_to_dev(pf); 3755 struct ice_hw *hw = &pf->hw; 3756 3757 /* Load DDP Package */ 3758 if (firmware && !hw->pkg_copy) { 3759 status = ice_copy_and_init_pkg(hw, firmware->data, 3760 firmware->size); 3761 ice_log_pkg_init(hw, &status); 3762 } else if (!firmware && hw->pkg_copy) { 3763 /* Reload package during rebuild after CORER/GLOBR reset */ 3764 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3765 ice_log_pkg_init(hw, &status); 3766 } else { 3767 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3768 } 3769 3770 if (status) { 3771 /* Safe Mode */ 3772 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3773 return; 3774 } 3775 3776 /* Successful download package is the precondition for advanced 3777 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3778 */ 3779 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3780 } 3781 3782 /** 3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3784 * @pf: pointer to the PF structure 3785 * 3786 * There is no error returned here because the driver should be able to handle 3787 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3788 * specifically with Tx. 3789 */ 3790 static void ice_verify_cacheline_size(struct ice_pf *pf) 3791 { 3792 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3793 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3794 ICE_CACHE_LINE_BYTES); 3795 } 3796 3797 /** 3798 * ice_send_version - update firmware with driver version 3799 * @pf: PF struct 3800 * 3801 * Returns ICE_SUCCESS on success, else error code 3802 */ 3803 static enum ice_status ice_send_version(struct ice_pf *pf) 3804 { 3805 struct ice_driver_ver dv; 3806 3807 dv.major_ver = 0xff; 3808 dv.minor_ver = 0xff; 3809 dv.build_ver = 0xff; 3810 dv.subbuild_ver = 0; 3811 strscpy((char *)dv.driver_string, UTS_RELEASE, 3812 sizeof(dv.driver_string)); 3813 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3814 } 3815 3816 /** 3817 * ice_init_fdir - Initialize flow director VSI and configuration 3818 * @pf: pointer to the PF instance 3819 * 3820 * returns 0 on success, negative on error 3821 */ 3822 static int ice_init_fdir(struct ice_pf *pf) 3823 { 3824 struct device *dev = ice_pf_to_dev(pf); 3825 struct ice_vsi *ctrl_vsi; 3826 int err; 3827 3828 /* Side Band Flow Director needs to have a control VSI. 3829 * Allocate it and store it in the PF. 3830 */ 3831 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3832 if (!ctrl_vsi) { 3833 dev_dbg(dev, "could not create control VSI\n"); 3834 return -ENOMEM; 3835 } 3836 3837 err = ice_vsi_open_ctrl(ctrl_vsi); 3838 if (err) { 3839 dev_dbg(dev, "could not open control VSI\n"); 3840 goto err_vsi_open; 3841 } 3842 3843 mutex_init(&pf->hw.fdir_fltr_lock); 3844 3845 err = ice_fdir_create_dflt_rules(pf); 3846 if (err) 3847 goto err_fdir_rule; 3848 3849 return 0; 3850 3851 err_fdir_rule: 3852 ice_fdir_release_flows(&pf->hw); 3853 ice_vsi_close(ctrl_vsi); 3854 err_vsi_open: 3855 ice_vsi_release(ctrl_vsi); 3856 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3857 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3858 pf->ctrl_vsi_idx = ICE_NO_VSI; 3859 } 3860 return err; 3861 } 3862 3863 /** 3864 * ice_get_opt_fw_name - return optional firmware file name or NULL 3865 * @pf: pointer to the PF instance 3866 */ 3867 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3868 { 3869 /* Optional firmware name same as default with additional dash 3870 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3871 */ 3872 struct pci_dev *pdev = pf->pdev; 3873 char *opt_fw_filename; 3874 u64 dsn; 3875 3876 /* Determine the name of the optional file using the DSN (two 3877 * dwords following the start of the DSN Capability). 3878 */ 3879 dsn = pci_get_dsn(pdev); 3880 if (!dsn) 3881 return NULL; 3882 3883 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3884 if (!opt_fw_filename) 3885 return NULL; 3886 3887 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3888 ICE_DDP_PKG_PATH, dsn); 3889 3890 return opt_fw_filename; 3891 } 3892 3893 /** 3894 * ice_request_fw - Device initialization routine 3895 * @pf: pointer to the PF instance 3896 */ 3897 static void ice_request_fw(struct ice_pf *pf) 3898 { 3899 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3900 const struct firmware *firmware = NULL; 3901 struct device *dev = ice_pf_to_dev(pf); 3902 int err = 0; 3903 3904 /* optional device-specific DDP (if present) overrides the default DDP 3905 * package file. kernel logs a debug message if the file doesn't exist, 3906 * and warning messages for other errors. 3907 */ 3908 if (opt_fw_filename) { 3909 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3910 if (err) { 3911 kfree(opt_fw_filename); 3912 goto dflt_pkg_load; 3913 } 3914 3915 /* request for firmware was successful. Download to device */ 3916 ice_load_pkg(firmware, pf); 3917 kfree(opt_fw_filename); 3918 release_firmware(firmware); 3919 return; 3920 } 3921 3922 dflt_pkg_load: 3923 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3924 if (err) { 3925 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3926 return; 3927 } 3928 3929 /* request for firmware was successful. Download to device */ 3930 ice_load_pkg(firmware, pf); 3931 release_firmware(firmware); 3932 } 3933 3934 /** 3935 * ice_print_wake_reason - show the wake up cause in the log 3936 * @pf: pointer to the PF struct 3937 */ 3938 static void ice_print_wake_reason(struct ice_pf *pf) 3939 { 3940 u32 wus = pf->wakeup_reason; 3941 const char *wake_str; 3942 3943 /* if no wake event, nothing to print */ 3944 if (!wus) 3945 return; 3946 3947 if (wus & PFPM_WUS_LNKC_M) 3948 wake_str = "Link\n"; 3949 else if (wus & PFPM_WUS_MAG_M) 3950 wake_str = "Magic Packet\n"; 3951 else if (wus & PFPM_WUS_MNG_M) 3952 wake_str = "Management\n"; 3953 else if (wus & PFPM_WUS_FW_RST_WK_M) 3954 wake_str = "Firmware Reset\n"; 3955 else 3956 wake_str = "Unknown\n"; 3957 3958 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 3959 } 3960 3961 /** 3962 * ice_probe - Device initialization routine 3963 * @pdev: PCI device information struct 3964 * @ent: entry in ice_pci_tbl 3965 * 3966 * Returns 0 on success, negative on failure 3967 */ 3968 static int 3969 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3970 { 3971 struct device *dev = &pdev->dev; 3972 struct ice_pf *pf; 3973 struct ice_hw *hw; 3974 int err; 3975 3976 /* this driver uses devres, see 3977 * Documentation/driver-api/driver-model/devres.rst 3978 */ 3979 err = pcim_enable_device(pdev); 3980 if (err) 3981 return err; 3982 3983 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3984 if (err) { 3985 dev_err(dev, "BAR0 I/O map error %d\n", err); 3986 return err; 3987 } 3988 3989 pf = ice_allocate_pf(dev); 3990 if (!pf) 3991 return -ENOMEM; 3992 3993 /* set up for high or low DMA */ 3994 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3995 if (err) 3996 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3997 if (err) { 3998 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3999 return err; 4000 } 4001 4002 pci_enable_pcie_error_reporting(pdev); 4003 pci_set_master(pdev); 4004 4005 pf->pdev = pdev; 4006 pci_set_drvdata(pdev, pf); 4007 set_bit(__ICE_DOWN, pf->state); 4008 /* Disable service task until DOWN bit is cleared */ 4009 set_bit(__ICE_SERVICE_DIS, pf->state); 4010 4011 hw = &pf->hw; 4012 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4013 pci_save_state(pdev); 4014 4015 hw->back = pf; 4016 hw->vendor_id = pdev->vendor; 4017 hw->device_id = pdev->device; 4018 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4019 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4020 hw->subsystem_device_id = pdev->subsystem_device; 4021 hw->bus.device = PCI_SLOT(pdev->devfn); 4022 hw->bus.func = PCI_FUNC(pdev->devfn); 4023 ice_set_ctrlq_len(hw); 4024 4025 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4026 4027 err = ice_devlink_register(pf); 4028 if (err) { 4029 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4030 goto err_exit_unroll; 4031 } 4032 4033 #ifndef CONFIG_DYNAMIC_DEBUG 4034 if (debug < -1) 4035 hw->debug_mask = debug; 4036 #endif 4037 4038 err = ice_init_hw(hw); 4039 if (err) { 4040 dev_err(dev, "ice_init_hw failed: %d\n", err); 4041 err = -EIO; 4042 goto err_exit_unroll; 4043 } 4044 4045 ice_request_fw(pf); 4046 4047 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4048 * set in pf->state, which will cause ice_is_safe_mode to return 4049 * true 4050 */ 4051 if (ice_is_safe_mode(pf)) { 4052 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4053 /* we already got function/device capabilities but these don't 4054 * reflect what the driver needs to do in safe mode. Instead of 4055 * adding conditional logic everywhere to ignore these 4056 * device/function capabilities, override them. 4057 */ 4058 ice_set_safe_mode_caps(hw); 4059 } 4060 4061 err = ice_init_pf(pf); 4062 if (err) { 4063 dev_err(dev, "ice_init_pf failed: %d\n", err); 4064 goto err_init_pf_unroll; 4065 } 4066 4067 ice_devlink_init_regions(pf); 4068 4069 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4070 if (!pf->num_alloc_vsi) { 4071 err = -EIO; 4072 goto err_init_pf_unroll; 4073 } 4074 4075 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4076 GFP_KERNEL); 4077 if (!pf->vsi) { 4078 err = -ENOMEM; 4079 goto err_init_pf_unroll; 4080 } 4081 4082 err = ice_init_interrupt_scheme(pf); 4083 if (err) { 4084 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4085 err = -EIO; 4086 goto err_init_vsi_unroll; 4087 } 4088 4089 /* In case of MSIX we are going to setup the misc vector right here 4090 * to handle admin queue events etc. In case of legacy and MSI 4091 * the misc functionality and queue processing is combined in 4092 * the same vector and that gets setup at open. 4093 */ 4094 err = ice_req_irq_msix_misc(pf); 4095 if (err) { 4096 dev_err(dev, "setup of misc vector failed: %d\n", err); 4097 goto err_init_interrupt_unroll; 4098 } 4099 4100 /* create switch struct for the switch element created by FW on boot */ 4101 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4102 if (!pf->first_sw) { 4103 err = -ENOMEM; 4104 goto err_msix_misc_unroll; 4105 } 4106 4107 if (hw->evb_veb) 4108 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4109 else 4110 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4111 4112 pf->first_sw->pf = pf; 4113 4114 /* record the sw_id available for later use */ 4115 pf->first_sw->sw_id = hw->port_info->sw_id; 4116 4117 err = ice_setup_pf_sw(pf); 4118 if (err) { 4119 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4120 goto err_alloc_sw_unroll; 4121 } 4122 4123 clear_bit(__ICE_SERVICE_DIS, pf->state); 4124 4125 /* tell the firmware we are up */ 4126 err = ice_send_version(pf); 4127 if (err) { 4128 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4129 UTS_RELEASE, err); 4130 goto err_send_version_unroll; 4131 } 4132 4133 /* since everything is good, start the service timer */ 4134 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4135 4136 err = ice_init_link_events(pf->hw.port_info); 4137 if (err) { 4138 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4139 goto err_send_version_unroll; 4140 } 4141 4142 err = ice_init_nvm_phy_type(pf->hw.port_info); 4143 if (err) { 4144 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4145 goto err_send_version_unroll; 4146 } 4147 4148 err = ice_update_link_info(pf->hw.port_info); 4149 if (err) { 4150 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4151 goto err_send_version_unroll; 4152 } 4153 4154 ice_init_link_dflt_override(pf->hw.port_info); 4155 4156 /* if media available, initialize PHY settings */ 4157 if (pf->hw.port_info->phy.link_info.link_info & 4158 ICE_AQ_MEDIA_AVAILABLE) { 4159 err = ice_init_phy_user_cfg(pf->hw.port_info); 4160 if (err) { 4161 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4162 goto err_send_version_unroll; 4163 } 4164 4165 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4166 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4167 4168 if (vsi) 4169 ice_configure_phy(vsi); 4170 } 4171 } else { 4172 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4173 } 4174 4175 ice_verify_cacheline_size(pf); 4176 4177 /* Save wakeup reason register for later use */ 4178 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4179 4180 /* check for a power management event */ 4181 ice_print_wake_reason(pf); 4182 4183 /* clear wake status, all bits */ 4184 wr32(hw, PFPM_WUS, U32_MAX); 4185 4186 /* Disable WoL at init, wait for user to enable */ 4187 device_set_wakeup_enable(dev, false); 4188 4189 if (ice_is_safe_mode(pf)) { 4190 ice_set_safe_mode_vlan_cfg(pf); 4191 goto probe_done; 4192 } 4193 4194 /* initialize DDP driven features */ 4195 4196 /* Note: Flow director init failure is non-fatal to load */ 4197 if (ice_init_fdir(pf)) 4198 dev_err(dev, "could not initialize flow director\n"); 4199 4200 /* Note: DCB init failure is non-fatal to load */ 4201 if (ice_init_pf_dcb(pf, false)) { 4202 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4203 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4204 } else { 4205 ice_cfg_lldp_mib_change(&pf->hw, true); 4206 } 4207 4208 /* print PCI link speed and width */ 4209 pcie_print_link_status(pf->pdev); 4210 4211 probe_done: 4212 /* ready to go, so clear down state bit */ 4213 clear_bit(__ICE_DOWN, pf->state); 4214 return 0; 4215 4216 err_send_version_unroll: 4217 ice_vsi_release_all(pf); 4218 err_alloc_sw_unroll: 4219 ice_devlink_destroy_port(pf); 4220 set_bit(__ICE_SERVICE_DIS, pf->state); 4221 set_bit(__ICE_DOWN, pf->state); 4222 devm_kfree(dev, pf->first_sw); 4223 err_msix_misc_unroll: 4224 ice_free_irq_msix_misc(pf); 4225 err_init_interrupt_unroll: 4226 ice_clear_interrupt_scheme(pf); 4227 err_init_vsi_unroll: 4228 devm_kfree(dev, pf->vsi); 4229 err_init_pf_unroll: 4230 ice_deinit_pf(pf); 4231 ice_devlink_destroy_regions(pf); 4232 ice_deinit_hw(hw); 4233 err_exit_unroll: 4234 ice_devlink_unregister(pf); 4235 pci_disable_pcie_error_reporting(pdev); 4236 pci_disable_device(pdev); 4237 return err; 4238 } 4239 4240 /** 4241 * ice_set_wake - enable or disable Wake on LAN 4242 * @pf: pointer to the PF struct 4243 * 4244 * Simple helper for WoL control 4245 */ 4246 static void ice_set_wake(struct ice_pf *pf) 4247 { 4248 struct ice_hw *hw = &pf->hw; 4249 bool wol = pf->wol_ena; 4250 4251 /* clear wake state, otherwise new wake events won't fire */ 4252 wr32(hw, PFPM_WUS, U32_MAX); 4253 4254 /* enable / disable APM wake up, no RMW needed */ 4255 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4256 4257 /* set magic packet filter enabled */ 4258 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4259 } 4260 4261 /** 4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet 4263 * @pf: pointer to the PF struct 4264 * 4265 * Issue firmware command to enable multicast magic wake, making 4266 * sure that any locally administered address (LAA) is used for 4267 * wake, and that PF reset doesn't undo the LAA. 4268 */ 4269 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4270 { 4271 struct device *dev = ice_pf_to_dev(pf); 4272 struct ice_hw *hw = &pf->hw; 4273 enum ice_status status; 4274 u8 mac_addr[ETH_ALEN]; 4275 struct ice_vsi *vsi; 4276 u8 flags; 4277 4278 if (!pf->wol_ena) 4279 return; 4280 4281 vsi = ice_get_main_vsi(pf); 4282 if (!vsi) 4283 return; 4284 4285 /* Get current MAC address in case it's an LAA */ 4286 if (vsi->netdev) 4287 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4288 else 4289 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4290 4291 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4292 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4293 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4294 4295 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4296 if (status) 4297 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4298 ice_stat_str(status), 4299 ice_aq_str(hw->adminq.sq_last_status)); 4300 } 4301 4302 /** 4303 * ice_remove - Device removal routine 4304 * @pdev: PCI device information struct 4305 */ 4306 static void ice_remove(struct pci_dev *pdev) 4307 { 4308 struct ice_pf *pf = pci_get_drvdata(pdev); 4309 int i; 4310 4311 if (!pf) 4312 return; 4313 4314 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4315 if (!ice_is_reset_in_progress(pf->state)) 4316 break; 4317 msleep(100); 4318 } 4319 4320 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4321 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 4322 ice_free_vfs(pf); 4323 } 4324 4325 set_bit(__ICE_DOWN, pf->state); 4326 ice_service_task_stop(pf); 4327 4328 ice_aq_cancel_waiting_tasks(pf); 4329 4330 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4331 if (!ice_is_safe_mode(pf)) 4332 ice_remove_arfs(pf); 4333 ice_setup_mc_magic_wake(pf); 4334 ice_devlink_destroy_port(pf); 4335 ice_vsi_release_all(pf); 4336 ice_set_wake(pf); 4337 ice_free_irq_msix_misc(pf); 4338 ice_for_each_vsi(pf, i) { 4339 if (!pf->vsi[i]) 4340 continue; 4341 ice_vsi_free_q_vectors(pf->vsi[i]); 4342 } 4343 ice_deinit_pf(pf); 4344 ice_devlink_destroy_regions(pf); 4345 ice_deinit_hw(&pf->hw); 4346 ice_devlink_unregister(pf); 4347 4348 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4349 * do it via ice_schedule_reset() since there is no need to rebuild 4350 * and the service task is already stopped. 4351 */ 4352 ice_reset(&pf->hw, ICE_RESET_PFR); 4353 pci_wait_for_pending_transaction(pdev); 4354 ice_clear_interrupt_scheme(pf); 4355 pci_disable_pcie_error_reporting(pdev); 4356 pci_disable_device(pdev); 4357 } 4358 4359 /** 4360 * ice_shutdown - PCI callback for shutting down device 4361 * @pdev: PCI device information struct 4362 */ 4363 static void ice_shutdown(struct pci_dev *pdev) 4364 { 4365 struct ice_pf *pf = pci_get_drvdata(pdev); 4366 4367 ice_remove(pdev); 4368 4369 if (system_state == SYSTEM_POWER_OFF) { 4370 pci_wake_from_d3(pdev, pf->wol_ena); 4371 pci_set_power_state(pdev, PCI_D3hot); 4372 } 4373 } 4374 4375 #ifdef CONFIG_PM 4376 /** 4377 * ice_prepare_for_shutdown - prep for PCI shutdown 4378 * @pf: board private structure 4379 * 4380 * Inform or close all dependent features in prep for PCI device shutdown 4381 */ 4382 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4383 { 4384 struct ice_hw *hw = &pf->hw; 4385 u32 v; 4386 4387 /* Notify VFs of impending reset */ 4388 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4389 ice_vc_notify_reset(pf); 4390 4391 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4392 4393 /* disable the VSIs and their queues that are not already DOWN */ 4394 ice_pf_dis_all_vsi(pf, false); 4395 4396 ice_for_each_vsi(pf, v) 4397 if (pf->vsi[v]) 4398 pf->vsi[v]->vsi_num = 0; 4399 4400 ice_shutdown_all_ctrlq(hw); 4401 } 4402 4403 /** 4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4405 * @pf: board private structure to reinitialize 4406 * 4407 * This routine reinitialize interrupt scheme that was cleared during 4408 * power management suspend callback. 4409 * 4410 * This should be called during resume routine to re-allocate the q_vectors 4411 * and reacquire interrupts. 4412 */ 4413 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4414 { 4415 struct device *dev = ice_pf_to_dev(pf); 4416 int ret, v; 4417 4418 /* Since we clear MSIX flag during suspend, we need to 4419 * set it back during resume... 4420 */ 4421 4422 ret = ice_init_interrupt_scheme(pf); 4423 if (ret) { 4424 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4425 return ret; 4426 } 4427 4428 /* Remap vectors and rings, after successful re-init interrupts */ 4429 ice_for_each_vsi(pf, v) { 4430 if (!pf->vsi[v]) 4431 continue; 4432 4433 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4434 if (ret) 4435 goto err_reinit; 4436 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4437 } 4438 4439 ret = ice_req_irq_msix_misc(pf); 4440 if (ret) { 4441 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4442 ret); 4443 goto err_reinit; 4444 } 4445 4446 return 0; 4447 4448 err_reinit: 4449 while (v--) 4450 if (pf->vsi[v]) 4451 ice_vsi_free_q_vectors(pf->vsi[v]); 4452 4453 return ret; 4454 } 4455 4456 /** 4457 * ice_suspend 4458 * @dev: generic device information structure 4459 * 4460 * Power Management callback to quiesce the device and prepare 4461 * for D3 transition. 4462 */ 4463 static int __maybe_unused ice_suspend(struct device *dev) 4464 { 4465 struct pci_dev *pdev = to_pci_dev(dev); 4466 struct ice_pf *pf; 4467 int disabled, v; 4468 4469 pf = pci_get_drvdata(pdev); 4470 4471 if (!ice_pf_state_is_nominal(pf)) { 4472 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4473 return -EBUSY; 4474 } 4475 4476 /* Stop watchdog tasks until resume completion. 4477 * Even though it is most likely that the service task is 4478 * disabled if the device is suspended or down, the service task's 4479 * state is controlled by a different state bit, and we should 4480 * store and honor whatever state that bit is in at this point. 4481 */ 4482 disabled = ice_service_task_stop(pf); 4483 4484 /* Already suspended?, then there is nothing to do */ 4485 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) { 4486 if (!disabled) 4487 ice_service_task_restart(pf); 4488 return 0; 4489 } 4490 4491 if (test_bit(__ICE_DOWN, pf->state) || 4492 ice_is_reset_in_progress(pf->state)) { 4493 dev_err(dev, "can't suspend device in reset or already down\n"); 4494 if (!disabled) 4495 ice_service_task_restart(pf); 4496 return 0; 4497 } 4498 4499 ice_setup_mc_magic_wake(pf); 4500 4501 ice_prepare_for_shutdown(pf); 4502 4503 ice_set_wake(pf); 4504 4505 /* Free vectors, clear the interrupt scheme and release IRQs 4506 * for proper hibernation, especially with large number of CPUs. 4507 * Otherwise hibernation might fail when mapping all the vectors back 4508 * to CPU0. 4509 */ 4510 ice_free_irq_msix_misc(pf); 4511 ice_for_each_vsi(pf, v) { 4512 if (!pf->vsi[v]) 4513 continue; 4514 ice_vsi_free_q_vectors(pf->vsi[v]); 4515 } 4516 ice_clear_interrupt_scheme(pf); 4517 4518 pci_save_state(pdev); 4519 pci_wake_from_d3(pdev, pf->wol_ena); 4520 pci_set_power_state(pdev, PCI_D3hot); 4521 return 0; 4522 } 4523 4524 /** 4525 * ice_resume - PM callback for waking up from D3 4526 * @dev: generic device information structure 4527 */ 4528 static int __maybe_unused ice_resume(struct device *dev) 4529 { 4530 struct pci_dev *pdev = to_pci_dev(dev); 4531 enum ice_reset_req reset_type; 4532 struct ice_pf *pf; 4533 struct ice_hw *hw; 4534 int ret; 4535 4536 pci_set_power_state(pdev, PCI_D0); 4537 pci_restore_state(pdev); 4538 pci_save_state(pdev); 4539 4540 if (!pci_device_is_present(pdev)) 4541 return -ENODEV; 4542 4543 ret = pci_enable_device_mem(pdev); 4544 if (ret) { 4545 dev_err(dev, "Cannot enable device after suspend\n"); 4546 return ret; 4547 } 4548 4549 pf = pci_get_drvdata(pdev); 4550 hw = &pf->hw; 4551 4552 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4553 ice_print_wake_reason(pf); 4554 4555 /* We cleared the interrupt scheme when we suspended, so we need to 4556 * restore it now to resume device functionality. 4557 */ 4558 ret = ice_reinit_interrupt_scheme(pf); 4559 if (ret) 4560 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4561 4562 clear_bit(__ICE_DOWN, pf->state); 4563 /* Now perform PF reset and rebuild */ 4564 reset_type = ICE_RESET_PFR; 4565 /* re-enable service task for reset, but allow reset to schedule it */ 4566 clear_bit(__ICE_SERVICE_DIS, pf->state); 4567 4568 if (ice_schedule_reset(pf, reset_type)) 4569 dev_err(dev, "Reset during resume failed.\n"); 4570 4571 clear_bit(__ICE_SUSPENDED, pf->state); 4572 ice_service_task_restart(pf); 4573 4574 /* Restart the service task */ 4575 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4576 4577 return 0; 4578 } 4579 #endif /* CONFIG_PM */ 4580 4581 /** 4582 * ice_pci_err_detected - warning that PCI error has been detected 4583 * @pdev: PCI device information struct 4584 * @err: the type of PCI error 4585 * 4586 * Called to warn that something happened on the PCI bus and the error handling 4587 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4588 */ 4589 static pci_ers_result_t 4590 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4591 { 4592 struct ice_pf *pf = pci_get_drvdata(pdev); 4593 4594 if (!pf) { 4595 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4596 __func__, err); 4597 return PCI_ERS_RESULT_DISCONNECT; 4598 } 4599 4600 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4601 ice_service_task_stop(pf); 4602 4603 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4604 set_bit(__ICE_PFR_REQ, pf->state); 4605 ice_prepare_for_reset(pf); 4606 } 4607 } 4608 4609 return PCI_ERS_RESULT_NEED_RESET; 4610 } 4611 4612 /** 4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4614 * @pdev: PCI device information struct 4615 * 4616 * Called to determine if the driver can recover from the PCI slot reset by 4617 * using a register read to determine if the device is recoverable. 4618 */ 4619 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4620 { 4621 struct ice_pf *pf = pci_get_drvdata(pdev); 4622 pci_ers_result_t result; 4623 int err; 4624 u32 reg; 4625 4626 err = pci_enable_device_mem(pdev); 4627 if (err) { 4628 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4629 err); 4630 result = PCI_ERS_RESULT_DISCONNECT; 4631 } else { 4632 pci_set_master(pdev); 4633 pci_restore_state(pdev); 4634 pci_save_state(pdev); 4635 pci_wake_from_d3(pdev, false); 4636 4637 /* Check for life */ 4638 reg = rd32(&pf->hw, GLGEN_RTRIG); 4639 if (!reg) 4640 result = PCI_ERS_RESULT_RECOVERED; 4641 else 4642 result = PCI_ERS_RESULT_DISCONNECT; 4643 } 4644 4645 err = pci_aer_clear_nonfatal_status(pdev); 4646 if (err) 4647 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4648 err); 4649 /* non-fatal, continue */ 4650 4651 return result; 4652 } 4653 4654 /** 4655 * ice_pci_err_resume - restart operations after PCI error recovery 4656 * @pdev: PCI device information struct 4657 * 4658 * Called to allow the driver to bring things back up after PCI error and/or 4659 * reset recovery have finished 4660 */ 4661 static void ice_pci_err_resume(struct pci_dev *pdev) 4662 { 4663 struct ice_pf *pf = pci_get_drvdata(pdev); 4664 4665 if (!pf) { 4666 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4667 __func__); 4668 return; 4669 } 4670 4671 if (test_bit(__ICE_SUSPENDED, pf->state)) { 4672 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4673 __func__); 4674 return; 4675 } 4676 4677 ice_restore_all_vfs_msi_state(pdev); 4678 4679 ice_do_reset(pf, ICE_RESET_PFR); 4680 ice_service_task_restart(pf); 4681 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4682 } 4683 4684 /** 4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4686 * @pdev: PCI device information struct 4687 */ 4688 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4689 { 4690 struct ice_pf *pf = pci_get_drvdata(pdev); 4691 4692 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4693 ice_service_task_stop(pf); 4694 4695 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4696 set_bit(__ICE_PFR_REQ, pf->state); 4697 ice_prepare_for_reset(pf); 4698 } 4699 } 4700 } 4701 4702 /** 4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4704 * @pdev: PCI device information struct 4705 */ 4706 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4707 { 4708 ice_pci_err_resume(pdev); 4709 } 4710 4711 /* ice_pci_tbl - PCI Device ID Table 4712 * 4713 * Wildcard entries (PCI_ANY_ID) should come last 4714 * Last entry must be all 0s 4715 * 4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4717 * Class, Class Mask, private data (not used) } 4718 */ 4719 static const struct pci_device_id ice_pci_tbl[] = { 4720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4743 /* required last entry */ 4744 { 0, } 4745 }; 4746 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4747 4748 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4749 4750 static const struct pci_error_handlers ice_pci_err_handler = { 4751 .error_detected = ice_pci_err_detected, 4752 .slot_reset = ice_pci_err_slot_reset, 4753 .reset_prepare = ice_pci_err_reset_prepare, 4754 .reset_done = ice_pci_err_reset_done, 4755 .resume = ice_pci_err_resume 4756 }; 4757 4758 static struct pci_driver ice_driver = { 4759 .name = KBUILD_MODNAME, 4760 .id_table = ice_pci_tbl, 4761 .probe = ice_probe, 4762 .remove = ice_remove, 4763 #ifdef CONFIG_PM 4764 .driver.pm = &ice_pm_ops, 4765 #endif /* CONFIG_PM */ 4766 .shutdown = ice_shutdown, 4767 .sriov_configure = ice_sriov_configure, 4768 .err_handler = &ice_pci_err_handler 4769 }; 4770 4771 /** 4772 * ice_module_init - Driver registration routine 4773 * 4774 * ice_module_init is the first routine called when the driver is 4775 * loaded. All it does is register with the PCI subsystem. 4776 */ 4777 static int __init ice_module_init(void) 4778 { 4779 int status; 4780 4781 pr_info("%s\n", ice_driver_string); 4782 pr_info("%s\n", ice_copyright); 4783 4784 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4785 if (!ice_wq) { 4786 pr_err("Failed to create workqueue\n"); 4787 return -ENOMEM; 4788 } 4789 4790 status = pci_register_driver(&ice_driver); 4791 if (status) { 4792 pr_err("failed to register PCI driver, err %d\n", status); 4793 destroy_workqueue(ice_wq); 4794 } 4795 4796 return status; 4797 } 4798 module_init(ice_module_init); 4799 4800 /** 4801 * ice_module_exit - Driver exit cleanup routine 4802 * 4803 * ice_module_exit is called just before the driver is removed 4804 * from memory. 4805 */ 4806 static void __exit ice_module_exit(void) 4807 { 4808 pci_unregister_driver(&ice_driver); 4809 destroy_workqueue(ice_wq); 4810 pr_info("module unloaded\n"); 4811 } 4812 module_exit(ice_module_exit); 4813 4814 /** 4815 * ice_set_mac_address - NDO callback to set MAC address 4816 * @netdev: network interface device structure 4817 * @pi: pointer to an address structure 4818 * 4819 * Returns 0 on success, negative on failure 4820 */ 4821 static int ice_set_mac_address(struct net_device *netdev, void *pi) 4822 { 4823 struct ice_netdev_priv *np = netdev_priv(netdev); 4824 struct ice_vsi *vsi = np->vsi; 4825 struct ice_pf *pf = vsi->back; 4826 struct ice_hw *hw = &pf->hw; 4827 struct sockaddr *addr = pi; 4828 enum ice_status status; 4829 u8 flags = 0; 4830 int err = 0; 4831 u8 *mac; 4832 4833 mac = (u8 *)addr->sa_data; 4834 4835 if (!is_valid_ether_addr(mac)) 4836 return -EADDRNOTAVAIL; 4837 4838 if (ether_addr_equal(netdev->dev_addr, mac)) { 4839 netdev_warn(netdev, "already using mac %pM\n", mac); 4840 return 0; 4841 } 4842 4843 if (test_bit(__ICE_DOWN, pf->state) || 4844 ice_is_reset_in_progress(pf->state)) { 4845 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4846 mac); 4847 return -EBUSY; 4848 } 4849 4850 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4851 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 4852 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4853 err = -EADDRNOTAVAIL; 4854 goto err_update_filters; 4855 } 4856 4857 /* Add filter for new MAC. If filter exists, just return success */ 4858 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4859 if (status == ICE_ERR_ALREADY_EXISTS) { 4860 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4861 return 0; 4862 } 4863 4864 /* error if the new filter addition failed */ 4865 if (status) 4866 err = -EADDRNOTAVAIL; 4867 4868 err_update_filters: 4869 if (err) { 4870 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4871 mac); 4872 return err; 4873 } 4874 4875 /* change the netdev's MAC address */ 4876 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4877 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4878 netdev->dev_addr); 4879 4880 /* write new MAC address to the firmware */ 4881 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4882 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4883 if (status) { 4884 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4885 mac, ice_stat_str(status)); 4886 } 4887 return 0; 4888 } 4889 4890 /** 4891 * ice_set_rx_mode - NDO callback to set the netdev filters 4892 * @netdev: network interface device structure 4893 */ 4894 static void ice_set_rx_mode(struct net_device *netdev) 4895 { 4896 struct ice_netdev_priv *np = netdev_priv(netdev); 4897 struct ice_vsi *vsi = np->vsi; 4898 4899 if (!vsi) 4900 return; 4901 4902 /* Set the flags to synchronize filters 4903 * ndo_set_rx_mode may be triggered even without a change in netdev 4904 * flags 4905 */ 4906 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 4907 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 4908 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 4909 4910 /* schedule our worker thread which will take care of 4911 * applying the new filter changes 4912 */ 4913 ice_service_task_schedule(vsi->back); 4914 } 4915 4916 /** 4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 4918 * @netdev: network interface device structure 4919 * @queue_index: Queue ID 4920 * @maxrate: maximum bandwidth in Mbps 4921 */ 4922 static int 4923 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 4924 { 4925 struct ice_netdev_priv *np = netdev_priv(netdev); 4926 struct ice_vsi *vsi = np->vsi; 4927 enum ice_status status; 4928 u16 q_handle; 4929 u8 tc; 4930 4931 /* Validate maxrate requested is within permitted range */ 4932 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 4933 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 4934 maxrate, queue_index); 4935 return -EINVAL; 4936 } 4937 4938 q_handle = vsi->tx_rings[queue_index]->q_handle; 4939 tc = ice_dcb_get_tc(vsi, queue_index); 4940 4941 /* Set BW back to default, when user set maxrate to 0 */ 4942 if (!maxrate) 4943 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 4944 q_handle, ICE_MAX_BW); 4945 else 4946 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 4947 q_handle, ICE_MAX_BW, maxrate * 1000); 4948 if (status) { 4949 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 4950 ice_stat_str(status)); 4951 return -EIO; 4952 } 4953 4954 return 0; 4955 } 4956 4957 /** 4958 * ice_fdb_add - add an entry to the hardware database 4959 * @ndm: the input from the stack 4960 * @tb: pointer to array of nladdr (unused) 4961 * @dev: the net device pointer 4962 * @addr: the MAC address entry being added 4963 * @vid: VLAN ID 4964 * @flags: instructions from stack about fdb operation 4965 * @extack: netlink extended ack 4966 */ 4967 static int 4968 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 4969 struct net_device *dev, const unsigned char *addr, u16 vid, 4970 u16 flags, struct netlink_ext_ack __always_unused *extack) 4971 { 4972 int err; 4973 4974 if (vid) { 4975 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 4976 return -EINVAL; 4977 } 4978 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 4979 netdev_err(dev, "FDB only supports static addresses\n"); 4980 return -EINVAL; 4981 } 4982 4983 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 4984 err = dev_uc_add_excl(dev, addr); 4985 else if (is_multicast_ether_addr(addr)) 4986 err = dev_mc_add_excl(dev, addr); 4987 else 4988 err = -EINVAL; 4989 4990 /* Only return duplicate errors if NLM_F_EXCL is set */ 4991 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 4992 err = 0; 4993 4994 return err; 4995 } 4996 4997 /** 4998 * ice_fdb_del - delete an entry from the hardware database 4999 * @ndm: the input from the stack 5000 * @tb: pointer to array of nladdr (unused) 5001 * @dev: the net device pointer 5002 * @addr: the MAC address entry being added 5003 * @vid: VLAN ID 5004 */ 5005 static int 5006 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5007 struct net_device *dev, const unsigned char *addr, 5008 __always_unused u16 vid) 5009 { 5010 int err; 5011 5012 if (ndm->ndm_state & NUD_PERMANENT) { 5013 netdev_err(dev, "FDB only supports static addresses\n"); 5014 return -EINVAL; 5015 } 5016 5017 if (is_unicast_ether_addr(addr)) 5018 err = dev_uc_del(dev, addr); 5019 else if (is_multicast_ether_addr(addr)) 5020 err = dev_mc_del(dev, addr); 5021 else 5022 err = -EINVAL; 5023 5024 return err; 5025 } 5026 5027 /** 5028 * ice_set_features - set the netdev feature flags 5029 * @netdev: ptr to the netdev being adjusted 5030 * @features: the feature set that the stack is suggesting 5031 */ 5032 static int 5033 ice_set_features(struct net_device *netdev, netdev_features_t features) 5034 { 5035 struct ice_netdev_priv *np = netdev_priv(netdev); 5036 struct ice_vsi *vsi = np->vsi; 5037 struct ice_pf *pf = vsi->back; 5038 int ret = 0; 5039 5040 /* Don't set any netdev advanced features with device in Safe Mode */ 5041 if (ice_is_safe_mode(vsi->back)) { 5042 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5043 return ret; 5044 } 5045 5046 /* Do not change setting during reset */ 5047 if (ice_is_reset_in_progress(pf->state)) { 5048 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5049 return -EBUSY; 5050 } 5051 5052 /* Multiple features can be changed in one call so keep features in 5053 * separate if/else statements to guarantee each feature is checked 5054 */ 5055 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5056 ret = ice_vsi_manage_rss_lut(vsi, true); 5057 else if (!(features & NETIF_F_RXHASH) && 5058 netdev->features & NETIF_F_RXHASH) 5059 ret = ice_vsi_manage_rss_lut(vsi, false); 5060 5061 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5062 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5063 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5064 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5065 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5066 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5067 5068 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5069 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5070 ret = ice_vsi_manage_vlan_insertion(vsi); 5071 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5072 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5073 ret = ice_vsi_manage_vlan_insertion(vsi); 5074 5075 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5076 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5077 ret = ice_cfg_vlan_pruning(vsi, true, false); 5078 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5079 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5080 ret = ice_cfg_vlan_pruning(vsi, false, false); 5081 5082 if ((features & NETIF_F_NTUPLE) && 5083 !(netdev->features & NETIF_F_NTUPLE)) { 5084 ice_vsi_manage_fdir(vsi, true); 5085 ice_init_arfs(vsi); 5086 } else if (!(features & NETIF_F_NTUPLE) && 5087 (netdev->features & NETIF_F_NTUPLE)) { 5088 ice_vsi_manage_fdir(vsi, false); 5089 ice_clear_arfs(vsi); 5090 } 5091 5092 return ret; 5093 } 5094 5095 /** 5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5097 * @vsi: VSI to setup VLAN properties for 5098 */ 5099 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5100 { 5101 int ret = 0; 5102 5103 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5104 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5105 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5106 ret = ice_vsi_manage_vlan_insertion(vsi); 5107 5108 return ret; 5109 } 5110 5111 /** 5112 * ice_vsi_cfg - Setup the VSI 5113 * @vsi: the VSI being configured 5114 * 5115 * Return 0 on success and negative value on error 5116 */ 5117 int ice_vsi_cfg(struct ice_vsi *vsi) 5118 { 5119 int err; 5120 5121 if (vsi->netdev) { 5122 ice_set_rx_mode(vsi->netdev); 5123 5124 err = ice_vsi_vlan_setup(vsi); 5125 5126 if (err) 5127 return err; 5128 } 5129 ice_vsi_cfg_dcb_rings(vsi); 5130 5131 err = ice_vsi_cfg_lan_txqs(vsi); 5132 if (!err && ice_is_xdp_ena_vsi(vsi)) 5133 err = ice_vsi_cfg_xdp_txqs(vsi); 5134 if (!err) 5135 err = ice_vsi_cfg_rxqs(vsi); 5136 5137 return err; 5138 } 5139 5140 /** 5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5142 * @vsi: the VSI being configured 5143 */ 5144 static void ice_napi_enable_all(struct ice_vsi *vsi) 5145 { 5146 int q_idx; 5147 5148 if (!vsi->netdev) 5149 return; 5150 5151 ice_for_each_q_vector(vsi, q_idx) { 5152 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5153 5154 if (q_vector->rx.ring || q_vector->tx.ring) 5155 napi_enable(&q_vector->napi); 5156 } 5157 } 5158 5159 /** 5160 * ice_up_complete - Finish the last steps of bringing up a connection 5161 * @vsi: The VSI being configured 5162 * 5163 * Return 0 on success and negative value on error 5164 */ 5165 static int ice_up_complete(struct ice_vsi *vsi) 5166 { 5167 struct ice_pf *pf = vsi->back; 5168 int err; 5169 5170 ice_vsi_cfg_msix(vsi); 5171 5172 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5173 * Tx queue group list was configured and the context bits were 5174 * programmed using ice_vsi_cfg_txqs 5175 */ 5176 err = ice_vsi_start_all_rx_rings(vsi); 5177 if (err) 5178 return err; 5179 5180 clear_bit(__ICE_DOWN, vsi->state); 5181 ice_napi_enable_all(vsi); 5182 ice_vsi_ena_irq(vsi); 5183 5184 if (vsi->port_info && 5185 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5186 vsi->netdev) { 5187 ice_print_link_msg(vsi, true); 5188 netif_tx_start_all_queues(vsi->netdev); 5189 netif_carrier_on(vsi->netdev); 5190 } 5191 5192 ice_service_task_schedule(pf); 5193 5194 return 0; 5195 } 5196 5197 /** 5198 * ice_up - Bring the connection back up after being down 5199 * @vsi: VSI being configured 5200 */ 5201 int ice_up(struct ice_vsi *vsi) 5202 { 5203 int err; 5204 5205 err = ice_vsi_cfg(vsi); 5206 if (!err) 5207 err = ice_up_complete(vsi); 5208 5209 return err; 5210 } 5211 5212 /** 5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5214 * @ring: Tx or Rx ring to read stats from 5215 * @pkts: packets stats counter 5216 * @bytes: bytes stats counter 5217 * 5218 * This function fetches stats from the ring considering the atomic operations 5219 * that needs to be performed to read u64 values in 32 bit machine. 5220 */ 5221 static void 5222 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5223 { 5224 unsigned int start; 5225 *pkts = 0; 5226 *bytes = 0; 5227 5228 if (!ring) 5229 return; 5230 do { 5231 start = u64_stats_fetch_begin_irq(&ring->syncp); 5232 *pkts = ring->stats.pkts; 5233 *bytes = ring->stats.bytes; 5234 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5235 } 5236 5237 /** 5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5239 * @vsi: the VSI to be updated 5240 * @rings: rings to work on 5241 * @count: number of rings 5242 */ 5243 static void 5244 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5245 u16 count) 5246 { 5247 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5248 u16 i; 5249 5250 for (i = 0; i < count; i++) { 5251 struct ice_ring *ring; 5252 u64 pkts, bytes; 5253 5254 ring = READ_ONCE(rings[i]); 5255 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5256 vsi_stats->tx_packets += pkts; 5257 vsi_stats->tx_bytes += bytes; 5258 vsi->tx_restart += ring->tx_stats.restart_q; 5259 vsi->tx_busy += ring->tx_stats.tx_busy; 5260 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5261 } 5262 } 5263 5264 /** 5265 * ice_update_vsi_ring_stats - Update VSI stats counters 5266 * @vsi: the VSI to be updated 5267 */ 5268 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5269 { 5270 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5271 struct ice_ring *ring; 5272 u64 pkts, bytes; 5273 int i; 5274 5275 /* reset netdev stats */ 5276 vsi_stats->tx_packets = 0; 5277 vsi_stats->tx_bytes = 0; 5278 vsi_stats->rx_packets = 0; 5279 vsi_stats->rx_bytes = 0; 5280 5281 /* reset non-netdev (extended) stats */ 5282 vsi->tx_restart = 0; 5283 vsi->tx_busy = 0; 5284 vsi->tx_linearize = 0; 5285 vsi->rx_buf_failed = 0; 5286 vsi->rx_page_failed = 0; 5287 vsi->rx_gro_dropped = 0; 5288 5289 rcu_read_lock(); 5290 5291 /* update Tx rings counters */ 5292 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5293 5294 /* update Rx rings counters */ 5295 ice_for_each_rxq(vsi, i) { 5296 ring = READ_ONCE(vsi->rx_rings[i]); 5297 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5298 vsi_stats->rx_packets += pkts; 5299 vsi_stats->rx_bytes += bytes; 5300 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5301 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5302 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped; 5303 } 5304 5305 /* update XDP Tx rings counters */ 5306 if (ice_is_xdp_ena_vsi(vsi)) 5307 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5308 vsi->num_xdp_txq); 5309 5310 rcu_read_unlock(); 5311 } 5312 5313 /** 5314 * ice_update_vsi_stats - Update VSI stats counters 5315 * @vsi: the VSI to be updated 5316 */ 5317 void ice_update_vsi_stats(struct ice_vsi *vsi) 5318 { 5319 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5320 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5321 struct ice_pf *pf = vsi->back; 5322 5323 if (test_bit(__ICE_DOWN, vsi->state) || 5324 test_bit(__ICE_CFG_BUSY, pf->state)) 5325 return; 5326 5327 /* get stats as recorded by Tx/Rx rings */ 5328 ice_update_vsi_ring_stats(vsi); 5329 5330 /* get VSI stats as recorded by the hardware */ 5331 ice_update_eth_stats(vsi); 5332 5333 cur_ns->tx_errors = cur_es->tx_errors; 5334 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped; 5335 cur_ns->tx_dropped = cur_es->tx_discards; 5336 cur_ns->multicast = cur_es->rx_multicast; 5337 5338 /* update some more netdev stats if this is main VSI */ 5339 if (vsi->type == ICE_VSI_PF) { 5340 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5341 cur_ns->rx_errors = pf->stats.crc_errors + 5342 pf->stats.illegal_bytes + 5343 pf->stats.rx_len_errors + 5344 pf->stats.rx_undersize + 5345 pf->hw_csum_rx_error + 5346 pf->stats.rx_jabber + 5347 pf->stats.rx_fragments + 5348 pf->stats.rx_oversize; 5349 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5350 /* record drops from the port level */ 5351 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5352 } 5353 } 5354 5355 /** 5356 * ice_update_pf_stats - Update PF port stats counters 5357 * @pf: PF whose stats needs to be updated 5358 */ 5359 void ice_update_pf_stats(struct ice_pf *pf) 5360 { 5361 struct ice_hw_port_stats *prev_ps, *cur_ps; 5362 struct ice_hw *hw = &pf->hw; 5363 u16 fd_ctr_base; 5364 u8 port; 5365 5366 port = hw->port_info->lport; 5367 prev_ps = &pf->stats_prev; 5368 cur_ps = &pf->stats; 5369 5370 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5371 &prev_ps->eth.rx_bytes, 5372 &cur_ps->eth.rx_bytes); 5373 5374 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5375 &prev_ps->eth.rx_unicast, 5376 &cur_ps->eth.rx_unicast); 5377 5378 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5379 &prev_ps->eth.rx_multicast, 5380 &cur_ps->eth.rx_multicast); 5381 5382 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5383 &prev_ps->eth.rx_broadcast, 5384 &cur_ps->eth.rx_broadcast); 5385 5386 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5387 &prev_ps->eth.rx_discards, 5388 &cur_ps->eth.rx_discards); 5389 5390 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5391 &prev_ps->eth.tx_bytes, 5392 &cur_ps->eth.tx_bytes); 5393 5394 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5395 &prev_ps->eth.tx_unicast, 5396 &cur_ps->eth.tx_unicast); 5397 5398 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5399 &prev_ps->eth.tx_multicast, 5400 &cur_ps->eth.tx_multicast); 5401 5402 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5403 &prev_ps->eth.tx_broadcast, 5404 &cur_ps->eth.tx_broadcast); 5405 5406 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5407 &prev_ps->tx_dropped_link_down, 5408 &cur_ps->tx_dropped_link_down); 5409 5410 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5411 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5412 5413 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5414 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5415 5416 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5417 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5418 5419 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5420 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5421 5422 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5423 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5424 5425 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5426 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5427 5428 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5429 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5430 5431 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5432 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5433 5434 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5435 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5436 5437 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5438 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5439 5440 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5441 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5442 5443 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5444 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5445 5446 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5447 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5448 5449 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5450 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5451 5452 fd_ctr_base = hw->fd_ctr_base; 5453 5454 ice_stat_update40(hw, 5455 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5456 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5457 &cur_ps->fd_sb_match); 5458 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5459 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5460 5461 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5462 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5463 5464 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5465 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5466 5467 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5468 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5469 5470 ice_update_dcb_stats(pf); 5471 5472 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5473 &prev_ps->crc_errors, &cur_ps->crc_errors); 5474 5475 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5476 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5477 5478 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5479 &prev_ps->mac_local_faults, 5480 &cur_ps->mac_local_faults); 5481 5482 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5483 &prev_ps->mac_remote_faults, 5484 &cur_ps->mac_remote_faults); 5485 5486 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5487 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5488 5489 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5490 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5491 5492 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5493 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5494 5495 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5496 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5497 5498 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5499 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5500 5501 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5502 5503 pf->stat_prev_loaded = true; 5504 } 5505 5506 /** 5507 * ice_get_stats64 - get statistics for network device structure 5508 * @netdev: network interface device structure 5509 * @stats: main device statistics structure 5510 */ 5511 static 5512 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5513 { 5514 struct ice_netdev_priv *np = netdev_priv(netdev); 5515 struct rtnl_link_stats64 *vsi_stats; 5516 struct ice_vsi *vsi = np->vsi; 5517 5518 vsi_stats = &vsi->net_stats; 5519 5520 if (!vsi->num_txq || !vsi->num_rxq) 5521 return; 5522 5523 /* netdev packet/byte stats come from ring counter. These are obtained 5524 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5525 * But, only call the update routine and read the registers if VSI is 5526 * not down. 5527 */ 5528 if (!test_bit(__ICE_DOWN, vsi->state)) 5529 ice_update_vsi_ring_stats(vsi); 5530 stats->tx_packets = vsi_stats->tx_packets; 5531 stats->tx_bytes = vsi_stats->tx_bytes; 5532 stats->rx_packets = vsi_stats->rx_packets; 5533 stats->rx_bytes = vsi_stats->rx_bytes; 5534 5535 /* The rest of the stats can be read from the hardware but instead we 5536 * just return values that the watchdog task has already obtained from 5537 * the hardware. 5538 */ 5539 stats->multicast = vsi_stats->multicast; 5540 stats->tx_errors = vsi_stats->tx_errors; 5541 stats->tx_dropped = vsi_stats->tx_dropped; 5542 stats->rx_errors = vsi_stats->rx_errors; 5543 stats->rx_dropped = vsi_stats->rx_dropped; 5544 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5545 stats->rx_length_errors = vsi_stats->rx_length_errors; 5546 } 5547 5548 /** 5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5550 * @vsi: VSI having NAPI disabled 5551 */ 5552 static void ice_napi_disable_all(struct ice_vsi *vsi) 5553 { 5554 int q_idx; 5555 5556 if (!vsi->netdev) 5557 return; 5558 5559 ice_for_each_q_vector(vsi, q_idx) { 5560 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5561 5562 if (q_vector->rx.ring || q_vector->tx.ring) 5563 napi_disable(&q_vector->napi); 5564 } 5565 } 5566 5567 /** 5568 * ice_down - Shutdown the connection 5569 * @vsi: The VSI being stopped 5570 */ 5571 int ice_down(struct ice_vsi *vsi) 5572 { 5573 int i, tx_err, rx_err, link_err = 0; 5574 5575 /* Caller of this function is expected to set the 5576 * vsi->state __ICE_DOWN bit 5577 */ 5578 if (vsi->netdev) { 5579 netif_carrier_off(vsi->netdev); 5580 netif_tx_disable(vsi->netdev); 5581 } 5582 5583 ice_vsi_dis_irq(vsi); 5584 5585 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5586 if (tx_err) 5587 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5588 vsi->vsi_num, tx_err); 5589 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5590 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5591 if (tx_err) 5592 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5593 vsi->vsi_num, tx_err); 5594 } 5595 5596 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5597 if (rx_err) 5598 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5599 vsi->vsi_num, rx_err); 5600 5601 ice_napi_disable_all(vsi); 5602 5603 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5604 link_err = ice_force_phys_link_state(vsi, false); 5605 if (link_err) 5606 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5607 vsi->vsi_num, link_err); 5608 } 5609 5610 ice_for_each_txq(vsi, i) 5611 ice_clean_tx_ring(vsi->tx_rings[i]); 5612 5613 ice_for_each_rxq(vsi, i) 5614 ice_clean_rx_ring(vsi->rx_rings[i]); 5615 5616 if (tx_err || rx_err || link_err) { 5617 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5618 vsi->vsi_num, vsi->vsw->sw_id); 5619 return -EIO; 5620 } 5621 5622 return 0; 5623 } 5624 5625 /** 5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5627 * @vsi: VSI having resources allocated 5628 * 5629 * Return 0 on success, negative on failure 5630 */ 5631 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5632 { 5633 int i, err = 0; 5634 5635 if (!vsi->num_txq) { 5636 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5637 vsi->vsi_num); 5638 return -EINVAL; 5639 } 5640 5641 ice_for_each_txq(vsi, i) { 5642 struct ice_ring *ring = vsi->tx_rings[i]; 5643 5644 if (!ring) 5645 return -EINVAL; 5646 5647 ring->netdev = vsi->netdev; 5648 err = ice_setup_tx_ring(ring); 5649 if (err) 5650 break; 5651 } 5652 5653 return err; 5654 } 5655 5656 /** 5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5658 * @vsi: VSI having resources allocated 5659 * 5660 * Return 0 on success, negative on failure 5661 */ 5662 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5663 { 5664 int i, err = 0; 5665 5666 if (!vsi->num_rxq) { 5667 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5668 vsi->vsi_num); 5669 return -EINVAL; 5670 } 5671 5672 ice_for_each_rxq(vsi, i) { 5673 struct ice_ring *ring = vsi->rx_rings[i]; 5674 5675 if (!ring) 5676 return -EINVAL; 5677 5678 ring->netdev = vsi->netdev; 5679 err = ice_setup_rx_ring(ring); 5680 if (err) 5681 break; 5682 } 5683 5684 return err; 5685 } 5686 5687 /** 5688 * ice_vsi_open_ctrl - open control VSI for use 5689 * @vsi: the VSI to open 5690 * 5691 * Initialization of the Control VSI 5692 * 5693 * Returns 0 on success, negative value on error 5694 */ 5695 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5696 { 5697 char int_name[ICE_INT_NAME_STR_LEN]; 5698 struct ice_pf *pf = vsi->back; 5699 struct device *dev; 5700 int err; 5701 5702 dev = ice_pf_to_dev(pf); 5703 /* allocate descriptors */ 5704 err = ice_vsi_setup_tx_rings(vsi); 5705 if (err) 5706 goto err_setup_tx; 5707 5708 err = ice_vsi_setup_rx_rings(vsi); 5709 if (err) 5710 goto err_setup_rx; 5711 5712 err = ice_vsi_cfg(vsi); 5713 if (err) 5714 goto err_setup_rx; 5715 5716 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5717 dev_driver_string(dev), dev_name(dev)); 5718 err = ice_vsi_req_irq_msix(vsi, int_name); 5719 if (err) 5720 goto err_setup_rx; 5721 5722 ice_vsi_cfg_msix(vsi); 5723 5724 err = ice_vsi_start_all_rx_rings(vsi); 5725 if (err) 5726 goto err_up_complete; 5727 5728 clear_bit(__ICE_DOWN, vsi->state); 5729 ice_vsi_ena_irq(vsi); 5730 5731 return 0; 5732 5733 err_up_complete: 5734 ice_down(vsi); 5735 err_setup_rx: 5736 ice_vsi_free_rx_rings(vsi); 5737 err_setup_tx: 5738 ice_vsi_free_tx_rings(vsi); 5739 5740 return err; 5741 } 5742 5743 /** 5744 * ice_vsi_open - Called when a network interface is made active 5745 * @vsi: the VSI to open 5746 * 5747 * Initialization of the VSI 5748 * 5749 * Returns 0 on success, negative value on error 5750 */ 5751 static int ice_vsi_open(struct ice_vsi *vsi) 5752 { 5753 char int_name[ICE_INT_NAME_STR_LEN]; 5754 struct ice_pf *pf = vsi->back; 5755 int err; 5756 5757 /* allocate descriptors */ 5758 err = ice_vsi_setup_tx_rings(vsi); 5759 if (err) 5760 goto err_setup_tx; 5761 5762 err = ice_vsi_setup_rx_rings(vsi); 5763 if (err) 5764 goto err_setup_rx; 5765 5766 err = ice_vsi_cfg(vsi); 5767 if (err) 5768 goto err_setup_rx; 5769 5770 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5771 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5772 err = ice_vsi_req_irq_msix(vsi, int_name); 5773 if (err) 5774 goto err_setup_rx; 5775 5776 /* Notify the stack of the actual queue counts. */ 5777 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5778 if (err) 5779 goto err_set_qs; 5780 5781 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5782 if (err) 5783 goto err_set_qs; 5784 5785 err = ice_up_complete(vsi); 5786 if (err) 5787 goto err_up_complete; 5788 5789 return 0; 5790 5791 err_up_complete: 5792 ice_down(vsi); 5793 err_set_qs: 5794 ice_vsi_free_irq(vsi); 5795 err_setup_rx: 5796 ice_vsi_free_rx_rings(vsi); 5797 err_setup_tx: 5798 ice_vsi_free_tx_rings(vsi); 5799 5800 return err; 5801 } 5802 5803 /** 5804 * ice_vsi_release_all - Delete all VSIs 5805 * @pf: PF from which all VSIs are being removed 5806 */ 5807 static void ice_vsi_release_all(struct ice_pf *pf) 5808 { 5809 int err, i; 5810 5811 if (!pf->vsi) 5812 return; 5813 5814 ice_for_each_vsi(pf, i) { 5815 if (!pf->vsi[i]) 5816 continue; 5817 5818 err = ice_vsi_release(pf->vsi[i]); 5819 if (err) 5820 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 5821 i, err, pf->vsi[i]->vsi_num); 5822 } 5823 } 5824 5825 /** 5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 5827 * @pf: pointer to the PF instance 5828 * @type: VSI type to rebuild 5829 * 5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 5831 */ 5832 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 5833 { 5834 struct device *dev = ice_pf_to_dev(pf); 5835 enum ice_status status; 5836 int i, err; 5837 5838 ice_for_each_vsi(pf, i) { 5839 struct ice_vsi *vsi = pf->vsi[i]; 5840 5841 if (!vsi || vsi->type != type) 5842 continue; 5843 5844 /* rebuild the VSI */ 5845 err = ice_vsi_rebuild(vsi, true); 5846 if (err) { 5847 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 5848 err, vsi->idx, ice_vsi_type_str(type)); 5849 return err; 5850 } 5851 5852 /* replay filters for the VSI */ 5853 status = ice_replay_vsi(&pf->hw, vsi->idx); 5854 if (status) { 5855 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 5856 ice_stat_str(status), vsi->idx, 5857 ice_vsi_type_str(type)); 5858 return -EIO; 5859 } 5860 5861 /* Re-map HW VSI number, using VSI handle that has been 5862 * previously validated in ice_replay_vsi() call above 5863 */ 5864 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 5865 5866 /* enable the VSI */ 5867 err = ice_ena_vsi(vsi, false); 5868 if (err) { 5869 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 5870 err, vsi->idx, ice_vsi_type_str(type)); 5871 return err; 5872 } 5873 5874 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 5875 ice_vsi_type_str(type)); 5876 } 5877 5878 return 0; 5879 } 5880 5881 /** 5882 * ice_update_pf_netdev_link - Update PF netdev link status 5883 * @pf: pointer to the PF instance 5884 */ 5885 static void ice_update_pf_netdev_link(struct ice_pf *pf) 5886 { 5887 bool link_up; 5888 int i; 5889 5890 ice_for_each_vsi(pf, i) { 5891 struct ice_vsi *vsi = pf->vsi[i]; 5892 5893 if (!vsi || vsi->type != ICE_VSI_PF) 5894 return; 5895 5896 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 5897 if (link_up) { 5898 netif_carrier_on(pf->vsi[i]->netdev); 5899 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 5900 } else { 5901 netif_carrier_off(pf->vsi[i]->netdev); 5902 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 5903 } 5904 } 5905 } 5906 5907 /** 5908 * ice_rebuild - rebuild after reset 5909 * @pf: PF to rebuild 5910 * @reset_type: type of reset 5911 * 5912 * Do not rebuild VF VSI in this flow because that is already handled via 5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 5915 * to reset/rebuild all the VF VSI twice. 5916 */ 5917 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 5918 { 5919 struct device *dev = ice_pf_to_dev(pf); 5920 struct ice_hw *hw = &pf->hw; 5921 enum ice_status ret; 5922 int err; 5923 5924 if (test_bit(__ICE_DOWN, pf->state)) 5925 goto clear_recovery; 5926 5927 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 5928 5929 ret = ice_init_all_ctrlq(hw); 5930 if (ret) { 5931 dev_err(dev, "control queues init failed %s\n", 5932 ice_stat_str(ret)); 5933 goto err_init_ctrlq; 5934 } 5935 5936 /* if DDP was previously loaded successfully */ 5937 if (!ice_is_safe_mode(pf)) { 5938 /* reload the SW DB of filter tables */ 5939 if (reset_type == ICE_RESET_PFR) 5940 ice_fill_blk_tbls(hw); 5941 else 5942 /* Reload DDP Package after CORER/GLOBR reset */ 5943 ice_load_pkg(NULL, pf); 5944 } 5945 5946 ret = ice_clear_pf_cfg(hw); 5947 if (ret) { 5948 dev_err(dev, "clear PF configuration failed %s\n", 5949 ice_stat_str(ret)); 5950 goto err_init_ctrlq; 5951 } 5952 5953 if (pf->first_sw->dflt_vsi_ena) 5954 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 5955 /* clear the default VSI configuration if it exists */ 5956 pf->first_sw->dflt_vsi = NULL; 5957 pf->first_sw->dflt_vsi_ena = false; 5958 5959 ice_clear_pxe_mode(hw); 5960 5961 ret = ice_get_caps(hw); 5962 if (ret) { 5963 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 5964 goto err_init_ctrlq; 5965 } 5966 5967 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 5968 if (ret) { 5969 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 5970 goto err_init_ctrlq; 5971 } 5972 5973 err = ice_sched_init_port(hw->port_info); 5974 if (err) 5975 goto err_sched_init_port; 5976 5977 /* start misc vector */ 5978 err = ice_req_irq_msix_misc(pf); 5979 if (err) { 5980 dev_err(dev, "misc vector setup failed: %d\n", err); 5981 goto err_sched_init_port; 5982 } 5983 5984 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 5985 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 5986 if (!rd32(hw, PFQF_FD_SIZE)) { 5987 u16 unused, guar, b_effort; 5988 5989 guar = hw->func_caps.fd_fltr_guar; 5990 b_effort = hw->func_caps.fd_fltr_best_effort; 5991 5992 /* force guaranteed filter pool for PF */ 5993 ice_alloc_fd_guar_item(hw, &unused, guar); 5994 /* force shared filter pool for PF */ 5995 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 5996 } 5997 } 5998 5999 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6000 ice_dcb_rebuild(pf); 6001 6002 /* rebuild PF VSI */ 6003 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6004 if (err) { 6005 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6006 goto err_vsi_rebuild; 6007 } 6008 6009 /* If Flow Director is active */ 6010 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6011 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6012 if (err) { 6013 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6014 goto err_vsi_rebuild; 6015 } 6016 6017 /* replay HW Flow Director recipes */ 6018 if (hw->fdir_prof) 6019 ice_fdir_replay_flows(hw); 6020 6021 /* replay Flow Director filters */ 6022 ice_fdir_replay_fltrs(pf); 6023 6024 ice_rebuild_arfs(pf); 6025 } 6026 6027 ice_update_pf_netdev_link(pf); 6028 6029 /* tell the firmware we are up */ 6030 ret = ice_send_version(pf); 6031 if (ret) { 6032 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6033 ice_stat_str(ret)); 6034 goto err_vsi_rebuild; 6035 } 6036 6037 ice_replay_post(hw); 6038 6039 /* if we get here, reset flow is successful */ 6040 clear_bit(__ICE_RESET_FAILED, pf->state); 6041 return; 6042 6043 err_vsi_rebuild: 6044 err_sched_init_port: 6045 ice_sched_cleanup_all(hw); 6046 err_init_ctrlq: 6047 ice_shutdown_all_ctrlq(hw); 6048 set_bit(__ICE_RESET_FAILED, pf->state); 6049 clear_recovery: 6050 /* set this bit in PF state to control service task scheduling */ 6051 set_bit(__ICE_NEEDS_RESTART, pf->state); 6052 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6053 } 6054 6055 /** 6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6057 * @vsi: Pointer to VSI structure 6058 */ 6059 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6060 { 6061 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6062 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6063 else 6064 return ICE_RXBUF_3072; 6065 } 6066 6067 /** 6068 * ice_change_mtu - NDO callback to change the MTU 6069 * @netdev: network interface device structure 6070 * @new_mtu: new value for maximum frame size 6071 * 6072 * Returns 0 on success, negative on failure 6073 */ 6074 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6075 { 6076 struct ice_netdev_priv *np = netdev_priv(netdev); 6077 struct ice_vsi *vsi = np->vsi; 6078 struct ice_pf *pf = vsi->back; 6079 u8 count = 0; 6080 6081 if (new_mtu == (int)netdev->mtu) { 6082 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6083 return 0; 6084 } 6085 6086 if (ice_is_xdp_ena_vsi(vsi)) { 6087 int frame_size = ice_max_xdp_frame_size(vsi); 6088 6089 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6090 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6091 frame_size - ICE_ETH_PKT_HDR_PAD); 6092 return -EINVAL; 6093 } 6094 } 6095 6096 if (new_mtu < (int)netdev->min_mtu) { 6097 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 6098 netdev->min_mtu); 6099 return -EINVAL; 6100 } else if (new_mtu > (int)netdev->max_mtu) { 6101 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 6102 netdev->min_mtu); 6103 return -EINVAL; 6104 } 6105 /* if a reset is in progress, wait for some time for it to complete */ 6106 do { 6107 if (ice_is_reset_in_progress(pf->state)) { 6108 count++; 6109 usleep_range(1000, 2000); 6110 } else { 6111 break; 6112 } 6113 6114 } while (count < 100); 6115 6116 if (count == 100) { 6117 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6118 return -EBUSY; 6119 } 6120 6121 netdev->mtu = (unsigned int)new_mtu; 6122 6123 /* if VSI is up, bring it down and then back up */ 6124 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 6125 int err; 6126 6127 err = ice_down(vsi); 6128 if (err) { 6129 netdev_err(netdev, "change MTU if_up err %d\n", err); 6130 return err; 6131 } 6132 6133 err = ice_up(vsi); 6134 if (err) { 6135 netdev_err(netdev, "change MTU if_up err %d\n", err); 6136 return err; 6137 } 6138 } 6139 6140 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6141 return 0; 6142 } 6143 6144 /** 6145 * ice_aq_str - convert AQ err code to a string 6146 * @aq_err: the AQ error code to convert 6147 */ 6148 const char *ice_aq_str(enum ice_aq_err aq_err) 6149 { 6150 switch (aq_err) { 6151 case ICE_AQ_RC_OK: 6152 return "OK"; 6153 case ICE_AQ_RC_EPERM: 6154 return "ICE_AQ_RC_EPERM"; 6155 case ICE_AQ_RC_ENOENT: 6156 return "ICE_AQ_RC_ENOENT"; 6157 case ICE_AQ_RC_ENOMEM: 6158 return "ICE_AQ_RC_ENOMEM"; 6159 case ICE_AQ_RC_EBUSY: 6160 return "ICE_AQ_RC_EBUSY"; 6161 case ICE_AQ_RC_EEXIST: 6162 return "ICE_AQ_RC_EEXIST"; 6163 case ICE_AQ_RC_EINVAL: 6164 return "ICE_AQ_RC_EINVAL"; 6165 case ICE_AQ_RC_ENOSPC: 6166 return "ICE_AQ_RC_ENOSPC"; 6167 case ICE_AQ_RC_ENOSYS: 6168 return "ICE_AQ_RC_ENOSYS"; 6169 case ICE_AQ_RC_EMODE: 6170 return "ICE_AQ_RC_EMODE"; 6171 case ICE_AQ_RC_ENOSEC: 6172 return "ICE_AQ_RC_ENOSEC"; 6173 case ICE_AQ_RC_EBADSIG: 6174 return "ICE_AQ_RC_EBADSIG"; 6175 case ICE_AQ_RC_ESVN: 6176 return "ICE_AQ_RC_ESVN"; 6177 case ICE_AQ_RC_EBADMAN: 6178 return "ICE_AQ_RC_EBADMAN"; 6179 case ICE_AQ_RC_EBADBUF: 6180 return "ICE_AQ_RC_EBADBUF"; 6181 } 6182 6183 return "ICE_AQ_RC_UNKNOWN"; 6184 } 6185 6186 /** 6187 * ice_stat_str - convert status err code to a string 6188 * @stat_err: the status error code to convert 6189 */ 6190 const char *ice_stat_str(enum ice_status stat_err) 6191 { 6192 switch (stat_err) { 6193 case ICE_SUCCESS: 6194 return "OK"; 6195 case ICE_ERR_PARAM: 6196 return "ICE_ERR_PARAM"; 6197 case ICE_ERR_NOT_IMPL: 6198 return "ICE_ERR_NOT_IMPL"; 6199 case ICE_ERR_NOT_READY: 6200 return "ICE_ERR_NOT_READY"; 6201 case ICE_ERR_NOT_SUPPORTED: 6202 return "ICE_ERR_NOT_SUPPORTED"; 6203 case ICE_ERR_BAD_PTR: 6204 return "ICE_ERR_BAD_PTR"; 6205 case ICE_ERR_INVAL_SIZE: 6206 return "ICE_ERR_INVAL_SIZE"; 6207 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6208 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6209 case ICE_ERR_RESET_FAILED: 6210 return "ICE_ERR_RESET_FAILED"; 6211 case ICE_ERR_FW_API_VER: 6212 return "ICE_ERR_FW_API_VER"; 6213 case ICE_ERR_NO_MEMORY: 6214 return "ICE_ERR_NO_MEMORY"; 6215 case ICE_ERR_CFG: 6216 return "ICE_ERR_CFG"; 6217 case ICE_ERR_OUT_OF_RANGE: 6218 return "ICE_ERR_OUT_OF_RANGE"; 6219 case ICE_ERR_ALREADY_EXISTS: 6220 return "ICE_ERR_ALREADY_EXISTS"; 6221 case ICE_ERR_NVM_CHECKSUM: 6222 return "ICE_ERR_NVM_CHECKSUM"; 6223 case ICE_ERR_BUF_TOO_SHORT: 6224 return "ICE_ERR_BUF_TOO_SHORT"; 6225 case ICE_ERR_NVM_BLANK_MODE: 6226 return "ICE_ERR_NVM_BLANK_MODE"; 6227 case ICE_ERR_IN_USE: 6228 return "ICE_ERR_IN_USE"; 6229 case ICE_ERR_MAX_LIMIT: 6230 return "ICE_ERR_MAX_LIMIT"; 6231 case ICE_ERR_RESET_ONGOING: 6232 return "ICE_ERR_RESET_ONGOING"; 6233 case ICE_ERR_HW_TABLE: 6234 return "ICE_ERR_HW_TABLE"; 6235 case ICE_ERR_DOES_NOT_EXIST: 6236 return "ICE_ERR_DOES_NOT_EXIST"; 6237 case ICE_ERR_FW_DDP_MISMATCH: 6238 return "ICE_ERR_FW_DDP_MISMATCH"; 6239 case ICE_ERR_AQ_ERROR: 6240 return "ICE_ERR_AQ_ERROR"; 6241 case ICE_ERR_AQ_TIMEOUT: 6242 return "ICE_ERR_AQ_TIMEOUT"; 6243 case ICE_ERR_AQ_FULL: 6244 return "ICE_ERR_AQ_FULL"; 6245 case ICE_ERR_AQ_NO_WORK: 6246 return "ICE_ERR_AQ_NO_WORK"; 6247 case ICE_ERR_AQ_EMPTY: 6248 return "ICE_ERR_AQ_EMPTY"; 6249 case ICE_ERR_AQ_FW_CRITICAL: 6250 return "ICE_ERR_AQ_FW_CRITICAL"; 6251 } 6252 6253 return "ICE_ERR_UNKNOWN"; 6254 } 6255 6256 /** 6257 * ice_set_rss - Set RSS keys and lut 6258 * @vsi: Pointer to VSI structure 6259 * @seed: RSS hash seed 6260 * @lut: Lookup table 6261 * @lut_size: Lookup table size 6262 * 6263 * Returns 0 on success, negative on failure 6264 */ 6265 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6266 { 6267 struct ice_pf *pf = vsi->back; 6268 struct ice_hw *hw = &pf->hw; 6269 enum ice_status status; 6270 struct device *dev; 6271 6272 dev = ice_pf_to_dev(pf); 6273 if (seed) { 6274 struct ice_aqc_get_set_rss_keys *buf = 6275 (struct ice_aqc_get_set_rss_keys *)seed; 6276 6277 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 6278 6279 if (status) { 6280 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 6281 ice_stat_str(status), 6282 ice_aq_str(hw->adminq.sq_last_status)); 6283 return -EIO; 6284 } 6285 } 6286 6287 if (lut) { 6288 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6289 lut, lut_size); 6290 if (status) { 6291 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 6292 ice_stat_str(status), 6293 ice_aq_str(hw->adminq.sq_last_status)); 6294 return -EIO; 6295 } 6296 } 6297 6298 return 0; 6299 } 6300 6301 /** 6302 * ice_get_rss - Get RSS keys and lut 6303 * @vsi: Pointer to VSI structure 6304 * @seed: Buffer to store the keys 6305 * @lut: Buffer to store the lookup table entries 6306 * @lut_size: Size of buffer to store the lookup table entries 6307 * 6308 * Returns 0 on success, negative on failure 6309 */ 6310 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6311 { 6312 struct ice_pf *pf = vsi->back; 6313 struct ice_hw *hw = &pf->hw; 6314 enum ice_status status; 6315 struct device *dev; 6316 6317 dev = ice_pf_to_dev(pf); 6318 if (seed) { 6319 struct ice_aqc_get_set_rss_keys *buf = 6320 (struct ice_aqc_get_set_rss_keys *)seed; 6321 6322 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 6323 if (status) { 6324 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 6325 ice_stat_str(status), 6326 ice_aq_str(hw->adminq.sq_last_status)); 6327 return -EIO; 6328 } 6329 } 6330 6331 if (lut) { 6332 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6333 lut, lut_size); 6334 if (status) { 6335 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 6336 ice_stat_str(status), 6337 ice_aq_str(hw->adminq.sq_last_status)); 6338 return -EIO; 6339 } 6340 } 6341 6342 return 0; 6343 } 6344 6345 /** 6346 * ice_bridge_getlink - Get the hardware bridge mode 6347 * @skb: skb buff 6348 * @pid: process ID 6349 * @seq: RTNL message seq 6350 * @dev: the netdev being configured 6351 * @filter_mask: filter mask passed in 6352 * @nlflags: netlink flags passed in 6353 * 6354 * Return the bridge mode (VEB/VEPA) 6355 */ 6356 static int 6357 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6358 struct net_device *dev, u32 filter_mask, int nlflags) 6359 { 6360 struct ice_netdev_priv *np = netdev_priv(dev); 6361 struct ice_vsi *vsi = np->vsi; 6362 struct ice_pf *pf = vsi->back; 6363 u16 bmode; 6364 6365 bmode = pf->first_sw->bridge_mode; 6366 6367 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6368 filter_mask, NULL); 6369 } 6370 6371 /** 6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6373 * @vsi: Pointer to VSI structure 6374 * @bmode: Hardware bridge mode (VEB/VEPA) 6375 * 6376 * Returns 0 on success, negative on failure 6377 */ 6378 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6379 { 6380 struct ice_aqc_vsi_props *vsi_props; 6381 struct ice_hw *hw = &vsi->back->hw; 6382 struct ice_vsi_ctx *ctxt; 6383 enum ice_status status; 6384 int ret = 0; 6385 6386 vsi_props = &vsi->info; 6387 6388 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6389 if (!ctxt) 6390 return -ENOMEM; 6391 6392 ctxt->info = vsi->info; 6393 6394 if (bmode == BRIDGE_MODE_VEB) 6395 /* change from VEPA to VEB mode */ 6396 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6397 else 6398 /* change from VEB to VEPA mode */ 6399 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6400 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6401 6402 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6403 if (status) { 6404 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6405 bmode, ice_stat_str(status), 6406 ice_aq_str(hw->adminq.sq_last_status)); 6407 ret = -EIO; 6408 goto out; 6409 } 6410 /* Update sw flags for book keeping */ 6411 vsi_props->sw_flags = ctxt->info.sw_flags; 6412 6413 out: 6414 kfree(ctxt); 6415 return ret; 6416 } 6417 6418 /** 6419 * ice_bridge_setlink - Set the hardware bridge mode 6420 * @dev: the netdev being configured 6421 * @nlh: RTNL message 6422 * @flags: bridge setlink flags 6423 * @extack: netlink extended ack 6424 * 6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6427 * not already set for all VSIs connected to this switch. And also update the 6428 * unicast switch filter rules for the corresponding switch of the netdev. 6429 */ 6430 static int 6431 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6432 u16 __always_unused flags, 6433 struct netlink_ext_ack __always_unused *extack) 6434 { 6435 struct ice_netdev_priv *np = netdev_priv(dev); 6436 struct ice_pf *pf = np->vsi->back; 6437 struct nlattr *attr, *br_spec; 6438 struct ice_hw *hw = &pf->hw; 6439 enum ice_status status; 6440 struct ice_sw *pf_sw; 6441 int rem, v, err = 0; 6442 6443 pf_sw = pf->first_sw; 6444 /* find the attribute in the netlink message */ 6445 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6446 6447 nla_for_each_nested(attr, br_spec, rem) { 6448 __u16 mode; 6449 6450 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6451 continue; 6452 mode = nla_get_u16(attr); 6453 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6454 return -EINVAL; 6455 /* Continue if bridge mode is not being flipped */ 6456 if (mode == pf_sw->bridge_mode) 6457 continue; 6458 /* Iterates through the PF VSI list and update the loopback 6459 * mode of the VSI 6460 */ 6461 ice_for_each_vsi(pf, v) { 6462 if (!pf->vsi[v]) 6463 continue; 6464 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6465 if (err) 6466 return err; 6467 } 6468 6469 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6470 /* Update the unicast switch filter rules for the corresponding 6471 * switch of the netdev 6472 */ 6473 status = ice_update_sw_rule_bridge_mode(hw); 6474 if (status) { 6475 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6476 mode, ice_stat_str(status), 6477 ice_aq_str(hw->adminq.sq_last_status)); 6478 /* revert hw->evb_veb */ 6479 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6480 return -EIO; 6481 } 6482 6483 pf_sw->bridge_mode = mode; 6484 } 6485 6486 return 0; 6487 } 6488 6489 /** 6490 * ice_tx_timeout - Respond to a Tx Hang 6491 * @netdev: network interface device structure 6492 * @txqueue: Tx queue 6493 */ 6494 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6495 { 6496 struct ice_netdev_priv *np = netdev_priv(netdev); 6497 struct ice_ring *tx_ring = NULL; 6498 struct ice_vsi *vsi = np->vsi; 6499 struct ice_pf *pf = vsi->back; 6500 u32 i; 6501 6502 pf->tx_timeout_count++; 6503 6504 /* Check if PFC is enabled for the TC to which the queue belongs 6505 * to. If yes then Tx timeout is not caused by a hung queue, no 6506 * need to reset and rebuild 6507 */ 6508 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6509 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6510 txqueue); 6511 return; 6512 } 6513 6514 /* now that we have an index, find the tx_ring struct */ 6515 for (i = 0; i < vsi->num_txq; i++) 6516 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6517 if (txqueue == vsi->tx_rings[i]->q_index) { 6518 tx_ring = vsi->tx_rings[i]; 6519 break; 6520 } 6521 6522 /* Reset recovery level if enough time has elapsed after last timeout. 6523 * Also ensure no new reset action happens before next timeout period. 6524 */ 6525 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6526 pf->tx_timeout_recovery_level = 1; 6527 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6528 netdev->watchdog_timeo))) 6529 return; 6530 6531 if (tx_ring) { 6532 struct ice_hw *hw = &pf->hw; 6533 u32 head, val = 0; 6534 6535 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6536 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6537 /* Read interrupt register */ 6538 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6539 6540 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6541 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6542 head, tx_ring->next_to_use, val); 6543 } 6544 6545 pf->tx_timeout_last_recovery = jiffies; 6546 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6547 pf->tx_timeout_recovery_level, txqueue); 6548 6549 switch (pf->tx_timeout_recovery_level) { 6550 case 1: 6551 set_bit(__ICE_PFR_REQ, pf->state); 6552 break; 6553 case 2: 6554 set_bit(__ICE_CORER_REQ, pf->state); 6555 break; 6556 case 3: 6557 set_bit(__ICE_GLOBR_REQ, pf->state); 6558 break; 6559 default: 6560 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6561 set_bit(__ICE_DOWN, pf->state); 6562 set_bit(__ICE_NEEDS_RESTART, vsi->state); 6563 set_bit(__ICE_SERVICE_DIS, pf->state); 6564 break; 6565 } 6566 6567 ice_service_task_schedule(pf); 6568 pf->tx_timeout_recovery_level++; 6569 } 6570 6571 /** 6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 6573 * @netdev: This physical port's netdev 6574 * @ti: Tunnel endpoint information 6575 */ 6576 static void 6577 ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti) 6578 { 6579 struct ice_netdev_priv *np = netdev_priv(netdev); 6580 struct ice_vsi *vsi = np->vsi; 6581 struct ice_pf *pf = vsi->back; 6582 enum ice_tunnel_type tnl_type; 6583 u16 port = ntohs(ti->port); 6584 enum ice_status status; 6585 6586 switch (ti->type) { 6587 case UDP_TUNNEL_TYPE_VXLAN: 6588 tnl_type = TNL_VXLAN; 6589 break; 6590 case UDP_TUNNEL_TYPE_GENEVE: 6591 tnl_type = TNL_GENEVE; 6592 break; 6593 default: 6594 netdev_err(netdev, "Unknown tunnel type\n"); 6595 return; 6596 } 6597 6598 status = ice_create_tunnel(&pf->hw, tnl_type, port); 6599 if (status == ICE_ERR_OUT_OF_RANGE) 6600 netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n", 6601 port); 6602 else if (status) 6603 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 6604 ice_stat_str(status)); 6605 } 6606 6607 /** 6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 6609 * @netdev: This physical port's netdev 6610 * @ti: Tunnel endpoint information 6611 */ 6612 static void 6613 ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti) 6614 { 6615 struct ice_netdev_priv *np = netdev_priv(netdev); 6616 struct ice_vsi *vsi = np->vsi; 6617 struct ice_pf *pf = vsi->back; 6618 u16 port = ntohs(ti->port); 6619 enum ice_status status; 6620 bool retval; 6621 6622 retval = ice_tunnel_port_in_use(&pf->hw, port, NULL); 6623 if (!retval) { 6624 netdev_info(netdev, "port %d not found in UDP tunnels list\n", 6625 port); 6626 return; 6627 } 6628 6629 status = ice_destroy_tunnel(&pf->hw, port, false); 6630 if (status) 6631 netdev_err(netdev, "error deleting port %d from UDP tunnels list\n", 6632 port); 6633 } 6634 6635 /** 6636 * ice_open - Called when a network interface becomes active 6637 * @netdev: network interface device structure 6638 * 6639 * The open entry point is called when a network interface is made 6640 * active by the system (IFF_UP). At this point all resources needed 6641 * for transmit and receive operations are allocated, the interrupt 6642 * handler is registered with the OS, the netdev watchdog is enabled, 6643 * and the stack is notified that the interface is ready. 6644 * 6645 * Returns 0 on success, negative value on failure 6646 */ 6647 int ice_open(struct net_device *netdev) 6648 { 6649 struct ice_netdev_priv *np = netdev_priv(netdev); 6650 struct ice_vsi *vsi = np->vsi; 6651 struct ice_pf *pf = vsi->back; 6652 struct ice_port_info *pi; 6653 int err; 6654 6655 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 6656 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6657 return -EIO; 6658 } 6659 6660 if (test_bit(__ICE_DOWN, pf->state)) { 6661 netdev_err(netdev, "device is not ready yet\n"); 6662 return -EBUSY; 6663 } 6664 6665 netif_carrier_off(netdev); 6666 6667 pi = vsi->port_info; 6668 err = ice_update_link_info(pi); 6669 if (err) { 6670 netdev_err(netdev, "Failed to get link info, error %d\n", 6671 err); 6672 return err; 6673 } 6674 6675 /* Set PHY if there is media, otherwise, turn off PHY */ 6676 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6677 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6678 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) { 6679 err = ice_init_phy_user_cfg(pi); 6680 if (err) { 6681 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6682 err); 6683 return err; 6684 } 6685 } 6686 6687 err = ice_configure_phy(vsi); 6688 if (err) { 6689 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6690 err); 6691 return err; 6692 } 6693 } else { 6694 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6695 err = ice_aq_set_link_restart_an(pi, false, NULL); 6696 if (err) { 6697 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 6698 vsi->vsi_num, err); 6699 return err; 6700 } 6701 } 6702 6703 err = ice_vsi_open(vsi); 6704 if (err) 6705 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6706 vsi->vsi_num, vsi->vsw->sw_id); 6707 6708 /* Update existing tunnels information */ 6709 udp_tunnel_get_rx_info(netdev); 6710 6711 return err; 6712 } 6713 6714 /** 6715 * ice_stop - Disables a network interface 6716 * @netdev: network interface device structure 6717 * 6718 * The stop entry point is called when an interface is de-activated by the OS, 6719 * and the netdevice enters the DOWN state. The hardware is still under the 6720 * driver's control, but the netdev interface is disabled. 6721 * 6722 * Returns success only - not allowed to fail 6723 */ 6724 int ice_stop(struct net_device *netdev) 6725 { 6726 struct ice_netdev_priv *np = netdev_priv(netdev); 6727 struct ice_vsi *vsi = np->vsi; 6728 6729 ice_vsi_close(vsi); 6730 6731 return 0; 6732 } 6733 6734 /** 6735 * ice_features_check - Validate encapsulated packet conforms to limits 6736 * @skb: skb buffer 6737 * @netdev: This port's netdev 6738 * @features: Offload features that the stack believes apply 6739 */ 6740 static netdev_features_t 6741 ice_features_check(struct sk_buff *skb, 6742 struct net_device __always_unused *netdev, 6743 netdev_features_t features) 6744 { 6745 size_t len; 6746 6747 /* No point in doing any of this if neither checksum nor GSO are 6748 * being requested for this frame. We can rule out both by just 6749 * checking for CHECKSUM_PARTIAL 6750 */ 6751 if (skb->ip_summed != CHECKSUM_PARTIAL) 6752 return features; 6753 6754 /* We cannot support GSO if the MSS is going to be less than 6755 * 64 bytes. If it is then we need to drop support for GSO. 6756 */ 6757 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6758 features &= ~NETIF_F_GSO_MASK; 6759 6760 len = skb_network_header(skb) - skb->data; 6761 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6762 goto out_rm_features; 6763 6764 len = skb_transport_header(skb) - skb_network_header(skb); 6765 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6766 goto out_rm_features; 6767 6768 if (skb->encapsulation) { 6769 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6770 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6771 goto out_rm_features; 6772 6773 len = skb_inner_transport_header(skb) - 6774 skb_inner_network_header(skb); 6775 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6776 goto out_rm_features; 6777 } 6778 6779 return features; 6780 out_rm_features: 6781 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6782 } 6783 6784 static const struct net_device_ops ice_netdev_safe_mode_ops = { 6785 .ndo_open = ice_open, 6786 .ndo_stop = ice_stop, 6787 .ndo_start_xmit = ice_start_xmit, 6788 .ndo_set_mac_address = ice_set_mac_address, 6789 .ndo_validate_addr = eth_validate_addr, 6790 .ndo_change_mtu = ice_change_mtu, 6791 .ndo_get_stats64 = ice_get_stats64, 6792 .ndo_tx_timeout = ice_tx_timeout, 6793 }; 6794 6795 static const struct net_device_ops ice_netdev_ops = { 6796 .ndo_open = ice_open, 6797 .ndo_stop = ice_stop, 6798 .ndo_start_xmit = ice_start_xmit, 6799 .ndo_features_check = ice_features_check, 6800 .ndo_set_rx_mode = ice_set_rx_mode, 6801 .ndo_set_mac_address = ice_set_mac_address, 6802 .ndo_validate_addr = eth_validate_addr, 6803 .ndo_change_mtu = ice_change_mtu, 6804 .ndo_get_stats64 = ice_get_stats64, 6805 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6806 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6807 .ndo_set_vf_mac = ice_set_vf_mac, 6808 .ndo_get_vf_config = ice_get_vf_cfg, 6809 .ndo_set_vf_trust = ice_set_vf_trust, 6810 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6811 .ndo_set_vf_link_state = ice_set_vf_link_state, 6812 .ndo_get_vf_stats = ice_get_vf_stats, 6813 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6814 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6815 .ndo_set_features = ice_set_features, 6816 .ndo_bridge_getlink = ice_bridge_getlink, 6817 .ndo_bridge_setlink = ice_bridge_setlink, 6818 .ndo_fdb_add = ice_fdb_add, 6819 .ndo_fdb_del = ice_fdb_del, 6820 #ifdef CONFIG_RFS_ACCEL 6821 .ndo_rx_flow_steer = ice_rx_flow_steer, 6822 #endif 6823 .ndo_tx_timeout = ice_tx_timeout, 6824 .ndo_bpf = ice_xdp, 6825 .ndo_xdp_xmit = ice_xdp_xmit, 6826 .ndo_xsk_wakeup = ice_xsk_wakeup, 6827 .ndo_udp_tunnel_add = ice_udp_tunnel_add, 6828 .ndo_udp_tunnel_del = ice_udp_tunnel_del, 6829 }; 6830