1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 if (tx_ring->desc) { 140 /* If packet counter has not changed the queue is 141 * likely stalled, so force an interrupt for this 142 * queue. 143 * 144 * prev_pkt would be negative if there was no 145 * pending work. 146 */ 147 packets = tx_ring->stats.pkts & INT_MAX; 148 if (tx_ring->tx_stats.prev_pkt == packets) { 149 /* Trigger sw interrupt to revive the queue */ 150 ice_trigger_sw_intr(hw, tx_ring->q_vector); 151 continue; 152 } 153 154 /* Memory barrier between read of packet count and call 155 * to ice_get_tx_pending() 156 */ 157 smp_rmb(); 158 tx_ring->tx_stats.prev_pkt = 159 ice_get_tx_pending(tx_ring) ? packets : -1; 160 } 161 } 162 } 163 164 /** 165 * ice_init_mac_fltr - Set initial MAC filters 166 * @pf: board private structure 167 * 168 * Set initial set of MAC filters for PF VSI; configure filters for permanent 169 * address and broadcast address. If an error is encountered, netdevice will be 170 * unregistered. 171 */ 172 static int ice_init_mac_fltr(struct ice_pf *pf) 173 { 174 struct ice_vsi *vsi; 175 u8 *perm_addr; 176 177 vsi = ice_get_main_vsi(pf); 178 if (!vsi) 179 return -EINVAL; 180 181 perm_addr = vsi->port_info->mac.perm_addr; 182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 183 } 184 185 /** 186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 187 * @netdev: the net device on which the sync is happening 188 * @addr: MAC address to sync 189 * 190 * This is a callback function which is called by the in kernel device sync 191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 193 * MAC filters from the hardware. 194 */ 195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 196 { 197 struct ice_netdev_priv *np = netdev_priv(netdev); 198 struct ice_vsi *vsi = np->vsi; 199 200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 201 ICE_FWD_TO_VSI)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /** 208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 209 * @netdev: the net device on which the unsync is happening 210 * @addr: MAC address to unsync 211 * 212 * This is a callback function which is called by the in kernel device unsync 213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 215 * delete the MAC filters from the hardware. 216 */ 217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 218 { 219 struct ice_netdev_priv *np = netdev_priv(netdev); 220 struct ice_vsi *vsi = np->vsi; 221 222 /* Under some circumstances, we might receive a request to delete our 223 * own device address from our uc list. Because we store the device 224 * address in the VSI's MAC filter list, we need to ignore such 225 * requests and not delete our device address from this list. 226 */ 227 if (ether_addr_equal(addr, netdev->dev_addr)) 228 return 0; 229 230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 231 ICE_FWD_TO_VSI)) 232 return -EINVAL; 233 234 return 0; 235 } 236 237 /** 238 * ice_vsi_fltr_changed - check if filter state changed 239 * @vsi: VSI to be checked 240 * 241 * returns true if filter state has changed, false otherwise. 242 */ 243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 244 { 245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 247 } 248 249 /** 250 * ice_set_promisc - Enable promiscuous mode for a given PF 251 * @vsi: the VSI being configured 252 * @promisc_m: mask of promiscuous config bits 253 * 254 */ 255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 256 { 257 int status; 258 259 if (vsi->type != ICE_VSI_PF) 260 return 0; 261 262 if (ice_vsi_has_non_zero_vlans(vsi)) { 263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 265 promisc_m); 266 } else { 267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 268 promisc_m, 0); 269 } 270 if (status && status != -EEXIST) 271 return status; 272 273 return 0; 274 } 275 276 /** 277 * ice_clear_promisc - Disable promiscuous mode for a given PF 278 * @vsi: the VSI being configured 279 * @promisc_m: mask of promiscuous config bits 280 * 281 */ 282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 283 { 284 int status; 285 286 if (vsi->type != ICE_VSI_PF) 287 return 0; 288 289 if (ice_vsi_has_non_zero_vlans(vsi)) { 290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 292 promisc_m); 293 } else { 294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 295 promisc_m, 0); 296 } 297 298 return status; 299 } 300 301 /** 302 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 303 * @vsi: ptr to the VSI 304 * 305 * Push any outstanding VSI filter changes through the AdminQ. 306 */ 307 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 308 { 309 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 310 struct device *dev = ice_pf_to_dev(vsi->back); 311 struct net_device *netdev = vsi->netdev; 312 bool promisc_forced_on = false; 313 struct ice_pf *pf = vsi->back; 314 struct ice_hw *hw = &pf->hw; 315 u32 changed_flags = 0; 316 int err; 317 318 if (!vsi->netdev) 319 return -EINVAL; 320 321 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 322 usleep_range(1000, 2000); 323 324 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 325 vsi->current_netdev_flags = vsi->netdev->flags; 326 327 INIT_LIST_HEAD(&vsi->tmp_sync_list); 328 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 329 330 if (ice_vsi_fltr_changed(vsi)) { 331 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 332 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 333 334 /* grab the netdev's addr_list_lock */ 335 netif_addr_lock_bh(netdev); 336 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 337 ice_add_mac_to_unsync_list); 338 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 339 ice_add_mac_to_unsync_list); 340 /* our temp lists are populated. release lock */ 341 netif_addr_unlock_bh(netdev); 342 } 343 344 /* Remove MAC addresses in the unsync list */ 345 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 346 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 347 if (err) { 348 netdev_err(netdev, "Failed to delete MAC filters\n"); 349 /* if we failed because of alloc failures, just bail */ 350 if (err == -ENOMEM) 351 goto out; 352 } 353 354 /* Add MAC addresses in the sync list */ 355 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 356 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 357 /* If filter is added successfully or already exists, do not go into 358 * 'if' condition and report it as error. Instead continue processing 359 * rest of the function. 360 */ 361 if (err && err != -EEXIST) { 362 netdev_err(netdev, "Failed to add MAC filters\n"); 363 /* If there is no more space for new umac filters, VSI 364 * should go into promiscuous mode. There should be some 365 * space reserved for promiscuous filters. 366 */ 367 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 368 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 369 vsi->state)) { 370 promisc_forced_on = true; 371 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 372 vsi->vsi_num); 373 } else { 374 goto out; 375 } 376 } 377 err = 0; 378 /* check for changes in promiscuous modes */ 379 if (changed_flags & IFF_ALLMULTI) { 380 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 381 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 382 if (err) { 383 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 384 goto out_promisc; 385 } 386 } else { 387 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 388 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 389 if (err) { 390 vsi->current_netdev_flags |= IFF_ALLMULTI; 391 goto out_promisc; 392 } 393 } 394 } 395 396 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 397 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 398 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 399 if (vsi->current_netdev_flags & IFF_PROMISC) { 400 /* Apply Rx filter rule to get traffic from wire */ 401 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 402 err = ice_set_dflt_vsi(vsi); 403 if (err && err != -EEXIST) { 404 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 405 err, vsi->vsi_num); 406 vsi->current_netdev_flags &= 407 ~IFF_PROMISC; 408 goto out_promisc; 409 } 410 err = 0; 411 vlan_ops->dis_rx_filtering(vsi); 412 } 413 } else { 414 /* Clear Rx filter to remove traffic from wire */ 415 if (ice_is_vsi_dflt_vsi(vsi)) { 416 err = ice_clear_dflt_vsi(vsi); 417 if (err) { 418 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags |= 421 IFF_PROMISC; 422 goto out_promisc; 423 } 424 if (vsi->netdev->features & 425 NETIF_F_HW_VLAN_CTAG_FILTER) 426 vlan_ops->ena_rx_filtering(vsi); 427 } 428 } 429 } 430 goto exit; 431 432 out_promisc: 433 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 434 goto exit; 435 out: 436 /* if something went wrong then set the changed flag so we try again */ 437 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 438 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 439 exit: 440 clear_bit(ICE_CFG_BUSY, vsi->state); 441 return err; 442 } 443 444 /** 445 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 446 * @pf: board private structure 447 */ 448 static void ice_sync_fltr_subtask(struct ice_pf *pf) 449 { 450 int v; 451 452 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 453 return; 454 455 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 456 457 ice_for_each_vsi(pf, v) 458 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 459 ice_vsi_sync_fltr(pf->vsi[v])) { 460 /* come back and try again later */ 461 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 462 break; 463 } 464 } 465 466 /** 467 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 468 * @pf: the PF 469 * @locked: is the rtnl_lock already held 470 */ 471 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 472 { 473 int node; 474 int v; 475 476 ice_for_each_vsi(pf, v) 477 if (pf->vsi[v]) 478 ice_dis_vsi(pf->vsi[v], locked); 479 480 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 481 pf->pf_agg_node[node].num_vsis = 0; 482 483 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 484 pf->vf_agg_node[node].num_vsis = 0; 485 } 486 487 /** 488 * ice_clear_sw_switch_recipes - clear switch recipes 489 * @pf: board private structure 490 * 491 * Mark switch recipes as not created in sw structures. There are cases where 492 * rules (especially advanced rules) need to be restored, either re-read from 493 * hardware or added again. For example after the reset. 'recp_created' flag 494 * prevents from doing that and need to be cleared upfront. 495 */ 496 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 497 { 498 struct ice_sw_recipe *recp; 499 u8 i; 500 501 recp = pf->hw.switch_info->recp_list; 502 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 503 recp[i].recp_created = false; 504 } 505 506 /** 507 * ice_prepare_for_reset - prep for reset 508 * @pf: board private structure 509 * @reset_type: reset type requested 510 * 511 * Inform or close all dependent features in prep for reset. 512 */ 513 static void 514 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 515 { 516 struct ice_hw *hw = &pf->hw; 517 struct ice_vsi *vsi; 518 struct ice_vf *vf; 519 unsigned int bkt; 520 521 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 522 523 /* already prepared for reset */ 524 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 525 return; 526 527 ice_unplug_aux_dev(pf); 528 529 /* Notify VFs of impending reset */ 530 if (ice_check_sq_alive(hw, &hw->mailboxq)) 531 ice_vc_notify_reset(pf); 532 533 /* Disable VFs until reset is completed */ 534 mutex_lock(&pf->vfs.table_lock); 535 ice_for_each_vf(pf, bkt, vf) 536 ice_set_vf_state_qs_dis(vf); 537 mutex_unlock(&pf->vfs.table_lock); 538 539 if (ice_is_eswitch_mode_switchdev(pf)) { 540 if (reset_type != ICE_RESET_PFR) 541 ice_clear_sw_switch_recipes(pf); 542 } 543 544 /* release ADQ specific HW and SW resources */ 545 vsi = ice_get_main_vsi(pf); 546 if (!vsi) 547 goto skip; 548 549 /* to be on safe side, reset orig_rss_size so that normal flow 550 * of deciding rss_size can take precedence 551 */ 552 vsi->orig_rss_size = 0; 553 554 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 555 if (reset_type == ICE_RESET_PFR) { 556 vsi->old_ena_tc = vsi->all_enatc; 557 vsi->old_numtc = vsi->all_numtc; 558 } else { 559 ice_remove_q_channels(vsi, true); 560 561 /* for other reset type, do not support channel rebuild 562 * hence reset needed info 563 */ 564 vsi->old_ena_tc = 0; 565 vsi->all_enatc = 0; 566 vsi->old_numtc = 0; 567 vsi->all_numtc = 0; 568 vsi->req_txq = 0; 569 vsi->req_rxq = 0; 570 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 571 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 572 } 573 } 574 skip: 575 576 /* clear SW filtering DB */ 577 ice_clear_hw_tbls(hw); 578 /* disable the VSIs and their queues that are not already DOWN */ 579 ice_pf_dis_all_vsi(pf, false); 580 581 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 582 ice_ptp_prepare_for_reset(pf); 583 584 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 585 ice_gnss_exit(pf); 586 587 if (hw->port_info) 588 ice_sched_clear_port(hw->port_info); 589 590 ice_shutdown_all_ctrlq(hw); 591 592 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 593 } 594 595 /** 596 * ice_do_reset - Initiate one of many types of resets 597 * @pf: board private structure 598 * @reset_type: reset type requested before this function was called. 599 */ 600 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 601 { 602 struct device *dev = ice_pf_to_dev(pf); 603 struct ice_hw *hw = &pf->hw; 604 605 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 606 607 ice_prepare_for_reset(pf, reset_type); 608 609 /* trigger the reset */ 610 if (ice_reset(hw, reset_type)) { 611 dev_err(dev, "reset %d failed\n", reset_type); 612 set_bit(ICE_RESET_FAILED, pf->state); 613 clear_bit(ICE_RESET_OICR_RECV, pf->state); 614 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 615 clear_bit(ICE_PFR_REQ, pf->state); 616 clear_bit(ICE_CORER_REQ, pf->state); 617 clear_bit(ICE_GLOBR_REQ, pf->state); 618 wake_up(&pf->reset_wait_queue); 619 return; 620 } 621 622 /* PFR is a bit of a special case because it doesn't result in an OICR 623 * interrupt. So for PFR, rebuild after the reset and clear the reset- 624 * associated state bits. 625 */ 626 if (reset_type == ICE_RESET_PFR) { 627 pf->pfr_count++; 628 ice_rebuild(pf, reset_type); 629 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 630 clear_bit(ICE_PFR_REQ, pf->state); 631 wake_up(&pf->reset_wait_queue); 632 ice_reset_all_vfs(pf); 633 } 634 } 635 636 /** 637 * ice_reset_subtask - Set up for resetting the device and driver 638 * @pf: board private structure 639 */ 640 static void ice_reset_subtask(struct ice_pf *pf) 641 { 642 enum ice_reset_req reset_type = ICE_RESET_INVAL; 643 644 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 645 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 646 * of reset is pending and sets bits in pf->state indicating the reset 647 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 648 * prepare for pending reset if not already (for PF software-initiated 649 * global resets the software should already be prepared for it as 650 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 651 * by firmware or software on other PFs, that bit is not set so prepare 652 * for the reset now), poll for reset done, rebuild and return. 653 */ 654 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 655 /* Perform the largest reset requested */ 656 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 657 reset_type = ICE_RESET_CORER; 658 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 659 reset_type = ICE_RESET_GLOBR; 660 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 661 reset_type = ICE_RESET_EMPR; 662 /* return if no valid reset type requested */ 663 if (reset_type == ICE_RESET_INVAL) 664 return; 665 ice_prepare_for_reset(pf, reset_type); 666 667 /* make sure we are ready to rebuild */ 668 if (ice_check_reset(&pf->hw)) { 669 set_bit(ICE_RESET_FAILED, pf->state); 670 } else { 671 /* done with reset. start rebuild */ 672 pf->hw.reset_ongoing = false; 673 ice_rebuild(pf, reset_type); 674 /* clear bit to resume normal operations, but 675 * ICE_NEEDS_RESTART bit is set in case rebuild failed 676 */ 677 clear_bit(ICE_RESET_OICR_RECV, pf->state); 678 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 679 clear_bit(ICE_PFR_REQ, pf->state); 680 clear_bit(ICE_CORER_REQ, pf->state); 681 clear_bit(ICE_GLOBR_REQ, pf->state); 682 wake_up(&pf->reset_wait_queue); 683 ice_reset_all_vfs(pf); 684 } 685 686 return; 687 } 688 689 /* No pending resets to finish processing. Check for new resets */ 690 if (test_bit(ICE_PFR_REQ, pf->state)) 691 reset_type = ICE_RESET_PFR; 692 if (test_bit(ICE_CORER_REQ, pf->state)) 693 reset_type = ICE_RESET_CORER; 694 if (test_bit(ICE_GLOBR_REQ, pf->state)) 695 reset_type = ICE_RESET_GLOBR; 696 /* If no valid reset type requested just return */ 697 if (reset_type == ICE_RESET_INVAL) 698 return; 699 700 /* reset if not already down or busy */ 701 if (!test_bit(ICE_DOWN, pf->state) && 702 !test_bit(ICE_CFG_BUSY, pf->state)) { 703 ice_do_reset(pf, reset_type); 704 } 705 } 706 707 /** 708 * ice_print_topo_conflict - print topology conflict message 709 * @vsi: the VSI whose topology status is being checked 710 */ 711 static void ice_print_topo_conflict(struct ice_vsi *vsi) 712 { 713 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 714 case ICE_AQ_LINK_TOPO_CONFLICT: 715 case ICE_AQ_LINK_MEDIA_CONFLICT: 716 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 717 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 718 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 719 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 720 break; 721 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 722 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 723 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 724 else 725 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 726 break; 727 default: 728 break; 729 } 730 } 731 732 /** 733 * ice_print_link_msg - print link up or down message 734 * @vsi: the VSI whose link status is being queried 735 * @isup: boolean for if the link is now up or down 736 */ 737 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 738 { 739 struct ice_aqc_get_phy_caps_data *caps; 740 const char *an_advertised; 741 const char *fec_req; 742 const char *speed; 743 const char *fec; 744 const char *fc; 745 const char *an; 746 int status; 747 748 if (!vsi) 749 return; 750 751 if (vsi->current_isup == isup) 752 return; 753 754 vsi->current_isup = isup; 755 756 if (!isup) { 757 netdev_info(vsi->netdev, "NIC Link is Down\n"); 758 return; 759 } 760 761 switch (vsi->port_info->phy.link_info.link_speed) { 762 case ICE_AQ_LINK_SPEED_100GB: 763 speed = "100 G"; 764 break; 765 case ICE_AQ_LINK_SPEED_50GB: 766 speed = "50 G"; 767 break; 768 case ICE_AQ_LINK_SPEED_40GB: 769 speed = "40 G"; 770 break; 771 case ICE_AQ_LINK_SPEED_25GB: 772 speed = "25 G"; 773 break; 774 case ICE_AQ_LINK_SPEED_20GB: 775 speed = "20 G"; 776 break; 777 case ICE_AQ_LINK_SPEED_10GB: 778 speed = "10 G"; 779 break; 780 case ICE_AQ_LINK_SPEED_5GB: 781 speed = "5 G"; 782 break; 783 case ICE_AQ_LINK_SPEED_2500MB: 784 speed = "2.5 G"; 785 break; 786 case ICE_AQ_LINK_SPEED_1000MB: 787 speed = "1 G"; 788 break; 789 case ICE_AQ_LINK_SPEED_100MB: 790 speed = "100 M"; 791 break; 792 default: 793 speed = "Unknown "; 794 break; 795 } 796 797 switch (vsi->port_info->fc.current_mode) { 798 case ICE_FC_FULL: 799 fc = "Rx/Tx"; 800 break; 801 case ICE_FC_TX_PAUSE: 802 fc = "Tx"; 803 break; 804 case ICE_FC_RX_PAUSE: 805 fc = "Rx"; 806 break; 807 case ICE_FC_NONE: 808 fc = "None"; 809 break; 810 default: 811 fc = "Unknown"; 812 break; 813 } 814 815 /* Get FEC mode based on negotiated link info */ 816 switch (vsi->port_info->phy.link_info.fec_info) { 817 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 818 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 819 fec = "RS-FEC"; 820 break; 821 case ICE_AQ_LINK_25G_KR_FEC_EN: 822 fec = "FC-FEC/BASE-R"; 823 break; 824 default: 825 fec = "NONE"; 826 break; 827 } 828 829 /* check if autoneg completed, might be false due to not supported */ 830 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 831 an = "True"; 832 else 833 an = "False"; 834 835 /* Get FEC mode requested based on PHY caps last SW configuration */ 836 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 837 if (!caps) { 838 fec_req = "Unknown"; 839 an_advertised = "Unknown"; 840 goto done; 841 } 842 843 status = ice_aq_get_phy_caps(vsi->port_info, false, 844 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 845 if (status) 846 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 847 848 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 849 850 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 851 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 852 fec_req = "RS-FEC"; 853 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 854 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 855 fec_req = "FC-FEC/BASE-R"; 856 else 857 fec_req = "NONE"; 858 859 kfree(caps); 860 861 done: 862 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 863 speed, fec_req, fec, an_advertised, an, fc); 864 ice_print_topo_conflict(vsi); 865 } 866 867 /** 868 * ice_vsi_link_event - update the VSI's netdev 869 * @vsi: the VSI on which the link event occurred 870 * @link_up: whether or not the VSI needs to be set up or down 871 */ 872 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 873 { 874 if (!vsi) 875 return; 876 877 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 878 return; 879 880 if (vsi->type == ICE_VSI_PF) { 881 if (link_up == netif_carrier_ok(vsi->netdev)) 882 return; 883 884 if (link_up) { 885 netif_carrier_on(vsi->netdev); 886 netif_tx_wake_all_queues(vsi->netdev); 887 } else { 888 netif_carrier_off(vsi->netdev); 889 netif_tx_stop_all_queues(vsi->netdev); 890 } 891 } 892 } 893 894 /** 895 * ice_set_dflt_mib - send a default config MIB to the FW 896 * @pf: private PF struct 897 * 898 * This function sends a default configuration MIB to the FW. 899 * 900 * If this function errors out at any point, the driver is still able to 901 * function. The main impact is that LFC may not operate as expected. 902 * Therefore an error state in this function should be treated with a DBG 903 * message and continue on with driver rebuild/reenable. 904 */ 905 static void ice_set_dflt_mib(struct ice_pf *pf) 906 { 907 struct device *dev = ice_pf_to_dev(pf); 908 u8 mib_type, *buf, *lldpmib = NULL; 909 u16 len, typelen, offset = 0; 910 struct ice_lldp_org_tlv *tlv; 911 struct ice_hw *hw = &pf->hw; 912 u32 ouisubtype; 913 914 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 915 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 916 if (!lldpmib) { 917 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 918 __func__); 919 return; 920 } 921 922 /* Add ETS CFG TLV */ 923 tlv = (struct ice_lldp_org_tlv *)lldpmib; 924 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 925 ICE_IEEE_ETS_TLV_LEN); 926 tlv->typelen = htons(typelen); 927 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 928 ICE_IEEE_SUBTYPE_ETS_CFG); 929 tlv->ouisubtype = htonl(ouisubtype); 930 931 buf = tlv->tlvinfo; 932 buf[0] = 0; 933 934 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 935 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 936 * Octets 13 - 20 are TSA values - leave as zeros 937 */ 938 buf[5] = 0x64; 939 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 940 offset += len + 2; 941 tlv = (struct ice_lldp_org_tlv *) 942 ((char *)tlv + sizeof(tlv->typelen) + len); 943 944 /* Add ETS REC TLV */ 945 buf = tlv->tlvinfo; 946 tlv->typelen = htons(typelen); 947 948 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 949 ICE_IEEE_SUBTYPE_ETS_REC); 950 tlv->ouisubtype = htonl(ouisubtype); 951 952 /* First octet of buf is reserved 953 * Octets 1 - 4 map UP to TC - all UPs map to zero 954 * Octets 5 - 12 are BW values - set TC 0 to 100%. 955 * Octets 13 - 20 are TSA value - leave as zeros 956 */ 957 buf[5] = 0x64; 958 offset += len + 2; 959 tlv = (struct ice_lldp_org_tlv *) 960 ((char *)tlv + sizeof(tlv->typelen) + len); 961 962 /* Add PFC CFG TLV */ 963 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 964 ICE_IEEE_PFC_TLV_LEN); 965 tlv->typelen = htons(typelen); 966 967 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 968 ICE_IEEE_SUBTYPE_PFC_CFG); 969 tlv->ouisubtype = htonl(ouisubtype); 970 971 /* Octet 1 left as all zeros - PFC disabled */ 972 buf[0] = 0x08; 973 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 974 offset += len + 2; 975 976 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 977 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 978 979 kfree(lldpmib); 980 } 981 982 /** 983 * ice_check_phy_fw_load - check if PHY FW load failed 984 * @pf: pointer to PF struct 985 * @link_cfg_err: bitmap from the link info structure 986 * 987 * check if external PHY FW load failed and print an error message if it did 988 */ 989 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 990 { 991 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 992 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 993 return; 994 } 995 996 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 997 return; 998 999 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1000 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1001 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1002 } 1003 } 1004 1005 /** 1006 * ice_check_module_power 1007 * @pf: pointer to PF struct 1008 * @link_cfg_err: bitmap from the link info structure 1009 * 1010 * check module power level returned by a previous call to aq_get_link_info 1011 * and print error messages if module power level is not supported 1012 */ 1013 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1014 { 1015 /* if module power level is supported, clear the flag */ 1016 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1017 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1018 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1019 return; 1020 } 1021 1022 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1023 * above block didn't clear this bit, there's nothing to do 1024 */ 1025 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1026 return; 1027 1028 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1029 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1030 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1031 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1032 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1033 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1034 } 1035 } 1036 1037 /** 1038 * ice_check_link_cfg_err - check if link configuration failed 1039 * @pf: pointer to the PF struct 1040 * @link_cfg_err: bitmap from the link info structure 1041 * 1042 * print if any link configuration failure happens due to the value in the 1043 * link_cfg_err parameter in the link info structure 1044 */ 1045 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1046 { 1047 ice_check_module_power(pf, link_cfg_err); 1048 ice_check_phy_fw_load(pf, link_cfg_err); 1049 } 1050 1051 /** 1052 * ice_link_event - process the link event 1053 * @pf: PF that the link event is associated with 1054 * @pi: port_info for the port that the link event is associated with 1055 * @link_up: true if the physical link is up and false if it is down 1056 * @link_speed: current link speed received from the link event 1057 * 1058 * Returns 0 on success and negative on failure 1059 */ 1060 static int 1061 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1062 u16 link_speed) 1063 { 1064 struct device *dev = ice_pf_to_dev(pf); 1065 struct ice_phy_info *phy_info; 1066 struct ice_vsi *vsi; 1067 u16 old_link_speed; 1068 bool old_link; 1069 int status; 1070 1071 phy_info = &pi->phy; 1072 phy_info->link_info_old = phy_info->link_info; 1073 1074 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1075 old_link_speed = phy_info->link_info_old.link_speed; 1076 1077 /* update the link info structures and re-enable link events, 1078 * don't bail on failure due to other book keeping needed 1079 */ 1080 status = ice_update_link_info(pi); 1081 if (status) 1082 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1083 pi->lport, status, 1084 ice_aq_str(pi->hw->adminq.sq_last_status)); 1085 1086 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1087 1088 /* Check if the link state is up after updating link info, and treat 1089 * this event as an UP event since the link is actually UP now. 1090 */ 1091 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1092 link_up = true; 1093 1094 vsi = ice_get_main_vsi(pf); 1095 if (!vsi || !vsi->port_info) 1096 return -EINVAL; 1097 1098 /* turn off PHY if media was removed */ 1099 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1100 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1101 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1102 ice_set_link(vsi, false); 1103 } 1104 1105 /* if the old link up/down and speed is the same as the new */ 1106 if (link_up == old_link && link_speed == old_link_speed) 1107 return 0; 1108 1109 if (!ice_is_e810(&pf->hw)) 1110 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1111 1112 if (ice_is_dcb_active(pf)) { 1113 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1114 ice_dcb_rebuild(pf); 1115 } else { 1116 if (link_up) 1117 ice_set_dflt_mib(pf); 1118 } 1119 ice_vsi_link_event(vsi, link_up); 1120 ice_print_link_msg(vsi, link_up); 1121 1122 ice_vc_notify_link_state(pf); 1123 1124 return 0; 1125 } 1126 1127 /** 1128 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1129 * @pf: board private structure 1130 */ 1131 static void ice_watchdog_subtask(struct ice_pf *pf) 1132 { 1133 int i; 1134 1135 /* if interface is down do nothing */ 1136 if (test_bit(ICE_DOWN, pf->state) || 1137 test_bit(ICE_CFG_BUSY, pf->state)) 1138 return; 1139 1140 /* make sure we don't do these things too often */ 1141 if (time_before(jiffies, 1142 pf->serv_tmr_prev + pf->serv_tmr_period)) 1143 return; 1144 1145 pf->serv_tmr_prev = jiffies; 1146 1147 /* Update the stats for active netdevs so the network stack 1148 * can look at updated numbers whenever it cares to 1149 */ 1150 ice_update_pf_stats(pf); 1151 ice_for_each_vsi(pf, i) 1152 if (pf->vsi[i] && pf->vsi[i]->netdev) 1153 ice_update_vsi_stats(pf->vsi[i]); 1154 } 1155 1156 /** 1157 * ice_init_link_events - enable/initialize link events 1158 * @pi: pointer to the port_info instance 1159 * 1160 * Returns -EIO on failure, 0 on success 1161 */ 1162 static int ice_init_link_events(struct ice_port_info *pi) 1163 { 1164 u16 mask; 1165 1166 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1167 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1168 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1169 1170 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1171 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1172 pi->lport); 1173 return -EIO; 1174 } 1175 1176 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1177 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1178 pi->lport); 1179 return -EIO; 1180 } 1181 1182 return 0; 1183 } 1184 1185 /** 1186 * ice_handle_link_event - handle link event via ARQ 1187 * @pf: PF that the link event is associated with 1188 * @event: event structure containing link status info 1189 */ 1190 static int 1191 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1192 { 1193 struct ice_aqc_get_link_status_data *link_data; 1194 struct ice_port_info *port_info; 1195 int status; 1196 1197 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1198 port_info = pf->hw.port_info; 1199 if (!port_info) 1200 return -EINVAL; 1201 1202 status = ice_link_event(pf, port_info, 1203 !!(link_data->link_info & ICE_AQ_LINK_UP), 1204 le16_to_cpu(link_data->link_speed)); 1205 if (status) 1206 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1207 status); 1208 1209 return status; 1210 } 1211 1212 enum ice_aq_task_state { 1213 ICE_AQ_TASK_WAITING = 0, 1214 ICE_AQ_TASK_COMPLETE, 1215 ICE_AQ_TASK_CANCELED, 1216 }; 1217 1218 struct ice_aq_task { 1219 struct hlist_node entry; 1220 1221 u16 opcode; 1222 struct ice_rq_event_info *event; 1223 enum ice_aq_task_state state; 1224 }; 1225 1226 /** 1227 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1228 * @pf: pointer to the PF private structure 1229 * @opcode: the opcode to wait for 1230 * @timeout: how long to wait, in jiffies 1231 * @event: storage for the event info 1232 * 1233 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1234 * current thread will be put to sleep until the specified event occurs or 1235 * until the given timeout is reached. 1236 * 1237 * To obtain only the descriptor contents, pass an event without an allocated 1238 * msg_buf. If the complete data buffer is desired, allocate the 1239 * event->msg_buf with enough space ahead of time. 1240 * 1241 * Returns: zero on success, or a negative error code on failure. 1242 */ 1243 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1244 struct ice_rq_event_info *event) 1245 { 1246 struct device *dev = ice_pf_to_dev(pf); 1247 struct ice_aq_task *task; 1248 unsigned long start; 1249 long ret; 1250 int err; 1251 1252 task = kzalloc(sizeof(*task), GFP_KERNEL); 1253 if (!task) 1254 return -ENOMEM; 1255 1256 INIT_HLIST_NODE(&task->entry); 1257 task->opcode = opcode; 1258 task->event = event; 1259 task->state = ICE_AQ_TASK_WAITING; 1260 1261 spin_lock_bh(&pf->aq_wait_lock); 1262 hlist_add_head(&task->entry, &pf->aq_wait_list); 1263 spin_unlock_bh(&pf->aq_wait_lock); 1264 1265 start = jiffies; 1266 1267 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1268 timeout); 1269 switch (task->state) { 1270 case ICE_AQ_TASK_WAITING: 1271 err = ret < 0 ? ret : -ETIMEDOUT; 1272 break; 1273 case ICE_AQ_TASK_CANCELED: 1274 err = ret < 0 ? ret : -ECANCELED; 1275 break; 1276 case ICE_AQ_TASK_COMPLETE: 1277 err = ret < 0 ? ret : 0; 1278 break; 1279 default: 1280 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1281 err = -EINVAL; 1282 break; 1283 } 1284 1285 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1286 jiffies_to_msecs(jiffies - start), 1287 jiffies_to_msecs(timeout), 1288 opcode); 1289 1290 spin_lock_bh(&pf->aq_wait_lock); 1291 hlist_del(&task->entry); 1292 spin_unlock_bh(&pf->aq_wait_lock); 1293 kfree(task); 1294 1295 return err; 1296 } 1297 1298 /** 1299 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1300 * @pf: pointer to the PF private structure 1301 * @opcode: the opcode of the event 1302 * @event: the event to check 1303 * 1304 * Loops over the current list of pending threads waiting for an AdminQ event. 1305 * For each matching task, copy the contents of the event into the task 1306 * structure and wake up the thread. 1307 * 1308 * If multiple threads wait for the same opcode, they will all be woken up. 1309 * 1310 * Note that event->msg_buf will only be duplicated if the event has a buffer 1311 * with enough space already allocated. Otherwise, only the descriptor and 1312 * message length will be copied. 1313 * 1314 * Returns: true if an event was found, false otherwise 1315 */ 1316 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1317 struct ice_rq_event_info *event) 1318 { 1319 struct ice_aq_task *task; 1320 bool found = false; 1321 1322 spin_lock_bh(&pf->aq_wait_lock); 1323 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1324 if (task->state || task->opcode != opcode) 1325 continue; 1326 1327 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1328 task->event->msg_len = event->msg_len; 1329 1330 /* Only copy the data buffer if a destination was set */ 1331 if (task->event->msg_buf && 1332 task->event->buf_len > event->buf_len) { 1333 memcpy(task->event->msg_buf, event->msg_buf, 1334 event->buf_len); 1335 task->event->buf_len = event->buf_len; 1336 } 1337 1338 task->state = ICE_AQ_TASK_COMPLETE; 1339 found = true; 1340 } 1341 spin_unlock_bh(&pf->aq_wait_lock); 1342 1343 if (found) 1344 wake_up(&pf->aq_wait_queue); 1345 } 1346 1347 /** 1348 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1349 * @pf: the PF private structure 1350 * 1351 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1352 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1353 */ 1354 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1355 { 1356 struct ice_aq_task *task; 1357 1358 spin_lock_bh(&pf->aq_wait_lock); 1359 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1360 task->state = ICE_AQ_TASK_CANCELED; 1361 spin_unlock_bh(&pf->aq_wait_lock); 1362 1363 wake_up(&pf->aq_wait_queue); 1364 } 1365 1366 /** 1367 * __ice_clean_ctrlq - helper function to clean controlq rings 1368 * @pf: ptr to struct ice_pf 1369 * @q_type: specific Control queue type 1370 */ 1371 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1372 { 1373 struct device *dev = ice_pf_to_dev(pf); 1374 struct ice_rq_event_info event; 1375 struct ice_hw *hw = &pf->hw; 1376 struct ice_ctl_q_info *cq; 1377 u16 pending, i = 0; 1378 const char *qtype; 1379 u32 oldval, val; 1380 1381 /* Do not clean control queue if/when PF reset fails */ 1382 if (test_bit(ICE_RESET_FAILED, pf->state)) 1383 return 0; 1384 1385 switch (q_type) { 1386 case ICE_CTL_Q_ADMIN: 1387 cq = &hw->adminq; 1388 qtype = "Admin"; 1389 break; 1390 case ICE_CTL_Q_SB: 1391 cq = &hw->sbq; 1392 qtype = "Sideband"; 1393 break; 1394 case ICE_CTL_Q_MAILBOX: 1395 cq = &hw->mailboxq; 1396 qtype = "Mailbox"; 1397 /* we are going to try to detect a malicious VF, so set the 1398 * state to begin detection 1399 */ 1400 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1401 break; 1402 default: 1403 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1404 return 0; 1405 } 1406 1407 /* check for error indications - PF_xx_AxQLEN register layout for 1408 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1409 */ 1410 val = rd32(hw, cq->rq.len); 1411 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1412 PF_FW_ARQLEN_ARQCRIT_M)) { 1413 oldval = val; 1414 if (val & PF_FW_ARQLEN_ARQVFE_M) 1415 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1416 qtype); 1417 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1418 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1419 qtype); 1420 } 1421 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1422 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1423 qtype); 1424 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1425 PF_FW_ARQLEN_ARQCRIT_M); 1426 if (oldval != val) 1427 wr32(hw, cq->rq.len, val); 1428 } 1429 1430 val = rd32(hw, cq->sq.len); 1431 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1432 PF_FW_ATQLEN_ATQCRIT_M)) { 1433 oldval = val; 1434 if (val & PF_FW_ATQLEN_ATQVFE_M) 1435 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1436 qtype); 1437 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1438 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1439 qtype); 1440 } 1441 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1442 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1443 qtype); 1444 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1445 PF_FW_ATQLEN_ATQCRIT_M); 1446 if (oldval != val) 1447 wr32(hw, cq->sq.len, val); 1448 } 1449 1450 event.buf_len = cq->rq_buf_size; 1451 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1452 if (!event.msg_buf) 1453 return 0; 1454 1455 do { 1456 u16 opcode; 1457 int ret; 1458 1459 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1460 if (ret == -EALREADY) 1461 break; 1462 if (ret) { 1463 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1464 ret); 1465 break; 1466 } 1467 1468 opcode = le16_to_cpu(event.desc.opcode); 1469 1470 /* Notify any thread that might be waiting for this event */ 1471 ice_aq_check_events(pf, opcode, &event); 1472 1473 switch (opcode) { 1474 case ice_aqc_opc_get_link_status: 1475 if (ice_handle_link_event(pf, &event)) 1476 dev_err(dev, "Could not handle link event\n"); 1477 break; 1478 case ice_aqc_opc_event_lan_overflow: 1479 ice_vf_lan_overflow_event(pf, &event); 1480 break; 1481 case ice_mbx_opc_send_msg_to_pf: 1482 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1483 ice_vc_process_vf_msg(pf, &event); 1484 break; 1485 case ice_aqc_opc_fw_logging: 1486 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1487 break; 1488 case ice_aqc_opc_lldp_set_mib_change: 1489 ice_dcb_process_lldp_set_mib_change(pf, &event); 1490 break; 1491 default: 1492 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1493 qtype, opcode); 1494 break; 1495 } 1496 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1497 1498 kfree(event.msg_buf); 1499 1500 return pending && (i == ICE_DFLT_IRQ_WORK); 1501 } 1502 1503 /** 1504 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1505 * @hw: pointer to hardware info 1506 * @cq: control queue information 1507 * 1508 * returns true if there are pending messages in a queue, false if there aren't 1509 */ 1510 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1511 { 1512 u16 ntu; 1513 1514 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1515 return cq->rq.next_to_clean != ntu; 1516 } 1517 1518 /** 1519 * ice_clean_adminq_subtask - clean the AdminQ rings 1520 * @pf: board private structure 1521 */ 1522 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1523 { 1524 struct ice_hw *hw = &pf->hw; 1525 1526 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1527 return; 1528 1529 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1530 return; 1531 1532 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1533 1534 /* There might be a situation where new messages arrive to a control 1535 * queue between processing the last message and clearing the 1536 * EVENT_PENDING bit. So before exiting, check queue head again (using 1537 * ice_ctrlq_pending) and process new messages if any. 1538 */ 1539 if (ice_ctrlq_pending(hw, &hw->adminq)) 1540 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1541 1542 ice_flush(hw); 1543 } 1544 1545 /** 1546 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1547 * @pf: board private structure 1548 */ 1549 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1550 { 1551 struct ice_hw *hw = &pf->hw; 1552 1553 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1554 return; 1555 1556 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1557 return; 1558 1559 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1560 1561 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1562 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1563 1564 ice_flush(hw); 1565 } 1566 1567 /** 1568 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1569 * @pf: board private structure 1570 */ 1571 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1572 { 1573 struct ice_hw *hw = &pf->hw; 1574 1575 /* Nothing to do here if sideband queue is not supported */ 1576 if (!ice_is_sbq_supported(hw)) { 1577 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1578 return; 1579 } 1580 1581 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1582 return; 1583 1584 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1585 return; 1586 1587 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1588 1589 if (ice_ctrlq_pending(hw, &hw->sbq)) 1590 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1591 1592 ice_flush(hw); 1593 } 1594 1595 /** 1596 * ice_service_task_schedule - schedule the service task to wake up 1597 * @pf: board private structure 1598 * 1599 * If not already scheduled, this puts the task into the work queue. 1600 */ 1601 void ice_service_task_schedule(struct ice_pf *pf) 1602 { 1603 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1604 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1605 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1606 queue_work(ice_wq, &pf->serv_task); 1607 } 1608 1609 /** 1610 * ice_service_task_complete - finish up the service task 1611 * @pf: board private structure 1612 */ 1613 static void ice_service_task_complete(struct ice_pf *pf) 1614 { 1615 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1616 1617 /* force memory (pf->state) to sync before next service task */ 1618 smp_mb__before_atomic(); 1619 clear_bit(ICE_SERVICE_SCHED, pf->state); 1620 } 1621 1622 /** 1623 * ice_service_task_stop - stop service task and cancel works 1624 * @pf: board private structure 1625 * 1626 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1627 * 1 otherwise. 1628 */ 1629 static int ice_service_task_stop(struct ice_pf *pf) 1630 { 1631 int ret; 1632 1633 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1634 1635 if (pf->serv_tmr.function) 1636 del_timer_sync(&pf->serv_tmr); 1637 if (pf->serv_task.func) 1638 cancel_work_sync(&pf->serv_task); 1639 1640 clear_bit(ICE_SERVICE_SCHED, pf->state); 1641 return ret; 1642 } 1643 1644 /** 1645 * ice_service_task_restart - restart service task and schedule works 1646 * @pf: board private structure 1647 * 1648 * This function is needed for suspend and resume works (e.g WoL scenario) 1649 */ 1650 static void ice_service_task_restart(struct ice_pf *pf) 1651 { 1652 clear_bit(ICE_SERVICE_DIS, pf->state); 1653 ice_service_task_schedule(pf); 1654 } 1655 1656 /** 1657 * ice_service_timer - timer callback to schedule service task 1658 * @t: pointer to timer_list 1659 */ 1660 static void ice_service_timer(struct timer_list *t) 1661 { 1662 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1663 1664 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1665 ice_service_task_schedule(pf); 1666 } 1667 1668 /** 1669 * ice_handle_mdd_event - handle malicious driver detect event 1670 * @pf: pointer to the PF structure 1671 * 1672 * Called from service task. OICR interrupt handler indicates MDD event. 1673 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1674 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1675 * disable the queue, the PF can be configured to reset the VF using ethtool 1676 * private flag mdd-auto-reset-vf. 1677 */ 1678 static void ice_handle_mdd_event(struct ice_pf *pf) 1679 { 1680 struct device *dev = ice_pf_to_dev(pf); 1681 struct ice_hw *hw = &pf->hw; 1682 struct ice_vf *vf; 1683 unsigned int bkt; 1684 u32 reg; 1685 1686 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1687 /* Since the VF MDD event logging is rate limited, check if 1688 * there are pending MDD events. 1689 */ 1690 ice_print_vfs_mdd_events(pf); 1691 return; 1692 } 1693 1694 /* find what triggered an MDD event */ 1695 reg = rd32(hw, GL_MDET_TX_PQM); 1696 if (reg & GL_MDET_TX_PQM_VALID_M) { 1697 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1698 GL_MDET_TX_PQM_PF_NUM_S; 1699 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1700 GL_MDET_TX_PQM_VF_NUM_S; 1701 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1702 GL_MDET_TX_PQM_MAL_TYPE_S; 1703 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1704 GL_MDET_TX_PQM_QNUM_S); 1705 1706 if (netif_msg_tx_err(pf)) 1707 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1708 event, queue, pf_num, vf_num); 1709 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1710 } 1711 1712 reg = rd32(hw, GL_MDET_TX_TCLAN); 1713 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1714 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1715 GL_MDET_TX_TCLAN_PF_NUM_S; 1716 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1717 GL_MDET_TX_TCLAN_VF_NUM_S; 1718 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1719 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1720 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1721 GL_MDET_TX_TCLAN_QNUM_S); 1722 1723 if (netif_msg_tx_err(pf)) 1724 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1725 event, queue, pf_num, vf_num); 1726 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1727 } 1728 1729 reg = rd32(hw, GL_MDET_RX); 1730 if (reg & GL_MDET_RX_VALID_M) { 1731 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1732 GL_MDET_RX_PF_NUM_S; 1733 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1734 GL_MDET_RX_VF_NUM_S; 1735 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1736 GL_MDET_RX_MAL_TYPE_S; 1737 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1738 GL_MDET_RX_QNUM_S); 1739 1740 if (netif_msg_rx_err(pf)) 1741 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1742 event, queue, pf_num, vf_num); 1743 wr32(hw, GL_MDET_RX, 0xffffffff); 1744 } 1745 1746 /* check to see if this PF caused an MDD event */ 1747 reg = rd32(hw, PF_MDET_TX_PQM); 1748 if (reg & PF_MDET_TX_PQM_VALID_M) { 1749 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1750 if (netif_msg_tx_err(pf)) 1751 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1752 } 1753 1754 reg = rd32(hw, PF_MDET_TX_TCLAN); 1755 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1756 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1757 if (netif_msg_tx_err(pf)) 1758 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1759 } 1760 1761 reg = rd32(hw, PF_MDET_RX); 1762 if (reg & PF_MDET_RX_VALID_M) { 1763 wr32(hw, PF_MDET_RX, 0xFFFF); 1764 if (netif_msg_rx_err(pf)) 1765 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1766 } 1767 1768 /* Check to see if one of the VFs caused an MDD event, and then 1769 * increment counters and set print pending 1770 */ 1771 mutex_lock(&pf->vfs.table_lock); 1772 ice_for_each_vf(pf, bkt, vf) { 1773 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1774 if (reg & VP_MDET_TX_PQM_VALID_M) { 1775 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1776 vf->mdd_tx_events.count++; 1777 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1778 if (netif_msg_tx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1780 vf->vf_id); 1781 } 1782 1783 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1784 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1785 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1786 vf->mdd_tx_events.count++; 1787 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1788 if (netif_msg_tx_err(pf)) 1789 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1790 vf->vf_id); 1791 } 1792 1793 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1794 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1795 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1796 vf->mdd_tx_events.count++; 1797 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1798 if (netif_msg_tx_err(pf)) 1799 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1800 vf->vf_id); 1801 } 1802 1803 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1804 if (reg & VP_MDET_RX_VALID_M) { 1805 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1806 vf->mdd_rx_events.count++; 1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1808 if (netif_msg_rx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1810 vf->vf_id); 1811 1812 /* Since the queue is disabled on VF Rx MDD events, the 1813 * PF can be configured to reset the VF through ethtool 1814 * private flag mdd-auto-reset-vf. 1815 */ 1816 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1817 /* VF MDD event counters will be cleared by 1818 * reset, so print the event prior to reset. 1819 */ 1820 ice_print_vf_rx_mdd_event(vf); 1821 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1822 } 1823 } 1824 } 1825 mutex_unlock(&pf->vfs.table_lock); 1826 1827 ice_print_vfs_mdd_events(pf); 1828 } 1829 1830 /** 1831 * ice_force_phys_link_state - Force the physical link state 1832 * @vsi: VSI to force the physical link state to up/down 1833 * @link_up: true/false indicates to set the physical link to up/down 1834 * 1835 * Force the physical link state by getting the current PHY capabilities from 1836 * hardware and setting the PHY config based on the determined capabilities. If 1837 * link changes a link event will be triggered because both the Enable Automatic 1838 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1839 * 1840 * Returns 0 on success, negative on failure 1841 */ 1842 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1843 { 1844 struct ice_aqc_get_phy_caps_data *pcaps; 1845 struct ice_aqc_set_phy_cfg_data *cfg; 1846 struct ice_port_info *pi; 1847 struct device *dev; 1848 int retcode; 1849 1850 if (!vsi || !vsi->port_info || !vsi->back) 1851 return -EINVAL; 1852 if (vsi->type != ICE_VSI_PF) 1853 return 0; 1854 1855 dev = ice_pf_to_dev(vsi->back); 1856 1857 pi = vsi->port_info; 1858 1859 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1860 if (!pcaps) 1861 return -ENOMEM; 1862 1863 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1864 NULL); 1865 if (retcode) { 1866 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1867 vsi->vsi_num, retcode); 1868 retcode = -EIO; 1869 goto out; 1870 } 1871 1872 /* No change in link */ 1873 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1874 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1875 goto out; 1876 1877 /* Use the current user PHY configuration. The current user PHY 1878 * configuration is initialized during probe from PHY capabilities 1879 * software mode, and updated on set PHY configuration. 1880 */ 1881 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1882 if (!cfg) { 1883 retcode = -ENOMEM; 1884 goto out; 1885 } 1886 1887 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1888 if (link_up) 1889 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1890 else 1891 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1892 1893 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1894 if (retcode) { 1895 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1896 vsi->vsi_num, retcode); 1897 retcode = -EIO; 1898 } 1899 1900 kfree(cfg); 1901 out: 1902 kfree(pcaps); 1903 return retcode; 1904 } 1905 1906 /** 1907 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1908 * @pi: port info structure 1909 * 1910 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1911 */ 1912 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1913 { 1914 struct ice_aqc_get_phy_caps_data *pcaps; 1915 struct ice_pf *pf = pi->hw->back; 1916 int err; 1917 1918 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1919 if (!pcaps) 1920 return -ENOMEM; 1921 1922 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1923 pcaps, NULL); 1924 1925 if (err) { 1926 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1927 goto out; 1928 } 1929 1930 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1931 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1932 1933 out: 1934 kfree(pcaps); 1935 return err; 1936 } 1937 1938 /** 1939 * ice_init_link_dflt_override - Initialize link default override 1940 * @pi: port info structure 1941 * 1942 * Initialize link default override and PHY total port shutdown during probe 1943 */ 1944 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1945 { 1946 struct ice_link_default_override_tlv *ldo; 1947 struct ice_pf *pf = pi->hw->back; 1948 1949 ldo = &pf->link_dflt_override; 1950 if (ice_get_link_default_override(ldo, pi)) 1951 return; 1952 1953 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1954 return; 1955 1956 /* Enable Total Port Shutdown (override/replace link-down-on-close 1957 * ethtool private flag) for ports with Port Disable bit set. 1958 */ 1959 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1960 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1961 } 1962 1963 /** 1964 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1965 * @pi: port info structure 1966 * 1967 * If default override is enabled, initialize the user PHY cfg speed and FEC 1968 * settings using the default override mask from the NVM. 1969 * 1970 * The PHY should only be configured with the default override settings the 1971 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1972 * is used to indicate that the user PHY cfg default override is initialized 1973 * and the PHY has not been configured with the default override settings. The 1974 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1975 * configured. 1976 * 1977 * This function should be called only if the FW doesn't support default 1978 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1979 */ 1980 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1981 { 1982 struct ice_link_default_override_tlv *ldo; 1983 struct ice_aqc_set_phy_cfg_data *cfg; 1984 struct ice_phy_info *phy = &pi->phy; 1985 struct ice_pf *pf = pi->hw->back; 1986 1987 ldo = &pf->link_dflt_override; 1988 1989 /* If link default override is enabled, use to mask NVM PHY capabilities 1990 * for speed and FEC default configuration. 1991 */ 1992 cfg = &phy->curr_user_phy_cfg; 1993 1994 if (ldo->phy_type_low || ldo->phy_type_high) { 1995 cfg->phy_type_low = pf->nvm_phy_type_lo & 1996 cpu_to_le64(ldo->phy_type_low); 1997 cfg->phy_type_high = pf->nvm_phy_type_hi & 1998 cpu_to_le64(ldo->phy_type_high); 1999 } 2000 cfg->link_fec_opt = ldo->fec_options; 2001 phy->curr_user_fec_req = ICE_FEC_AUTO; 2002 2003 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2004 } 2005 2006 /** 2007 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2008 * @pi: port info structure 2009 * 2010 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2011 * mode to default. The PHY defaults are from get PHY capabilities topology 2012 * with media so call when media is first available. An error is returned if 2013 * called when media is not available. The PHY initialization completed state is 2014 * set here. 2015 * 2016 * These configurations are used when setting PHY 2017 * configuration. The user PHY configuration is updated on set PHY 2018 * configuration. Returns 0 on success, negative on failure 2019 */ 2020 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2021 { 2022 struct ice_aqc_get_phy_caps_data *pcaps; 2023 struct ice_phy_info *phy = &pi->phy; 2024 struct ice_pf *pf = pi->hw->back; 2025 int err; 2026 2027 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2028 return -EIO; 2029 2030 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2031 if (!pcaps) 2032 return -ENOMEM; 2033 2034 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2036 pcaps, NULL); 2037 else 2038 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2039 pcaps, NULL); 2040 if (err) { 2041 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2042 goto err_out; 2043 } 2044 2045 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2046 2047 /* check if lenient mode is supported and enabled */ 2048 if (ice_fw_supports_link_override(pi->hw) && 2049 !(pcaps->module_compliance_enforcement & 2050 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2051 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2052 2053 /* if the FW supports default PHY configuration mode, then the driver 2054 * does not have to apply link override settings. If not, 2055 * initialize user PHY configuration with link override values 2056 */ 2057 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2058 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2059 ice_init_phy_cfg_dflt_override(pi); 2060 goto out; 2061 } 2062 } 2063 2064 /* if link default override is not enabled, set user flow control and 2065 * FEC settings based on what get_phy_caps returned 2066 */ 2067 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2068 pcaps->link_fec_options); 2069 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2070 2071 out: 2072 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2073 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2074 err_out: 2075 kfree(pcaps); 2076 return err; 2077 } 2078 2079 /** 2080 * ice_configure_phy - configure PHY 2081 * @vsi: VSI of PHY 2082 * 2083 * Set the PHY configuration. If the current PHY configuration is the same as 2084 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2085 * configure the based get PHY capabilities for topology with media. 2086 */ 2087 static int ice_configure_phy(struct ice_vsi *vsi) 2088 { 2089 struct device *dev = ice_pf_to_dev(vsi->back); 2090 struct ice_port_info *pi = vsi->port_info; 2091 struct ice_aqc_get_phy_caps_data *pcaps; 2092 struct ice_aqc_set_phy_cfg_data *cfg; 2093 struct ice_phy_info *phy = &pi->phy; 2094 struct ice_pf *pf = vsi->back; 2095 int err; 2096 2097 /* Ensure we have media as we cannot configure a medialess port */ 2098 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2099 return -EPERM; 2100 2101 ice_print_topo_conflict(vsi); 2102 2103 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2104 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2105 return -EPERM; 2106 2107 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2108 return ice_force_phys_link_state(vsi, true); 2109 2110 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2111 if (!pcaps) 2112 return -ENOMEM; 2113 2114 /* Get current PHY config */ 2115 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2116 NULL); 2117 if (err) { 2118 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2119 vsi->vsi_num, err); 2120 goto done; 2121 } 2122 2123 /* If PHY enable link is configured and configuration has not changed, 2124 * there's nothing to do 2125 */ 2126 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2127 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2128 goto done; 2129 2130 /* Use PHY topology as baseline for configuration */ 2131 memset(pcaps, 0, sizeof(*pcaps)); 2132 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2133 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2134 pcaps, NULL); 2135 else 2136 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2137 pcaps, NULL); 2138 if (err) { 2139 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2140 vsi->vsi_num, err); 2141 goto done; 2142 } 2143 2144 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2145 if (!cfg) { 2146 err = -ENOMEM; 2147 goto done; 2148 } 2149 2150 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2151 2152 /* Speed - If default override pending, use curr_user_phy_cfg set in 2153 * ice_init_phy_user_cfg_ldo. 2154 */ 2155 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2156 vsi->back->state)) { 2157 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2158 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2159 } else { 2160 u64 phy_low = 0, phy_high = 0; 2161 2162 ice_update_phy_type(&phy_low, &phy_high, 2163 pi->phy.curr_user_speed_req); 2164 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2165 cfg->phy_type_high = pcaps->phy_type_high & 2166 cpu_to_le64(phy_high); 2167 } 2168 2169 /* Can't provide what was requested; use PHY capabilities */ 2170 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2171 cfg->phy_type_low = pcaps->phy_type_low; 2172 cfg->phy_type_high = pcaps->phy_type_high; 2173 } 2174 2175 /* FEC */ 2176 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2177 2178 /* Can't provide what was requested; use PHY capabilities */ 2179 if (cfg->link_fec_opt != 2180 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2181 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2182 cfg->link_fec_opt = pcaps->link_fec_options; 2183 } 2184 2185 /* Flow Control - always supported; no need to check against 2186 * capabilities 2187 */ 2188 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2189 2190 /* Enable link and link update */ 2191 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2192 2193 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2194 if (err) 2195 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2196 vsi->vsi_num, err); 2197 2198 kfree(cfg); 2199 done: 2200 kfree(pcaps); 2201 return err; 2202 } 2203 2204 /** 2205 * ice_check_media_subtask - Check for media 2206 * @pf: pointer to PF struct 2207 * 2208 * If media is available, then initialize PHY user configuration if it is not 2209 * been, and configure the PHY if the interface is up. 2210 */ 2211 static void ice_check_media_subtask(struct ice_pf *pf) 2212 { 2213 struct ice_port_info *pi; 2214 struct ice_vsi *vsi; 2215 int err; 2216 2217 /* No need to check for media if it's already present */ 2218 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2219 return; 2220 2221 vsi = ice_get_main_vsi(pf); 2222 if (!vsi) 2223 return; 2224 2225 /* Refresh link info and check if media is present */ 2226 pi = vsi->port_info; 2227 err = ice_update_link_info(pi); 2228 if (err) 2229 return; 2230 2231 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2232 2233 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2234 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2235 ice_init_phy_user_cfg(pi); 2236 2237 /* PHY settings are reset on media insertion, reconfigure 2238 * PHY to preserve settings. 2239 */ 2240 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2241 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2242 return; 2243 2244 err = ice_configure_phy(vsi); 2245 if (!err) 2246 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2247 2248 /* A Link Status Event will be generated; the event handler 2249 * will complete bringing the interface up 2250 */ 2251 } 2252 } 2253 2254 /** 2255 * ice_service_task - manage and run subtasks 2256 * @work: pointer to work_struct contained by the PF struct 2257 */ 2258 static void ice_service_task(struct work_struct *work) 2259 { 2260 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2261 unsigned long start_time = jiffies; 2262 2263 /* subtasks */ 2264 2265 /* process reset requests first */ 2266 ice_reset_subtask(pf); 2267 2268 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2269 if (ice_is_reset_in_progress(pf->state) || 2270 test_bit(ICE_SUSPENDED, pf->state) || 2271 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2272 ice_service_task_complete(pf); 2273 return; 2274 } 2275 2276 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2277 struct iidc_event *event; 2278 2279 event = kzalloc(sizeof(*event), GFP_KERNEL); 2280 if (event) { 2281 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2282 /* report the entire OICR value to AUX driver */ 2283 swap(event->reg, pf->oicr_err_reg); 2284 ice_send_event_to_aux(pf, event); 2285 kfree(event); 2286 } 2287 } 2288 2289 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2290 /* Plug aux device per request */ 2291 ice_plug_aux_dev(pf); 2292 2293 /* Mark plugging as done but check whether unplug was 2294 * requested during ice_plug_aux_dev() call 2295 * (e.g. from ice_clear_rdma_cap()) and if so then 2296 * plug aux device. 2297 */ 2298 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2299 ice_unplug_aux_dev(pf); 2300 } 2301 2302 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2303 struct iidc_event *event; 2304 2305 event = kzalloc(sizeof(*event), GFP_KERNEL); 2306 if (event) { 2307 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2308 ice_send_event_to_aux(pf, event); 2309 kfree(event); 2310 } 2311 } 2312 2313 ice_clean_adminq_subtask(pf); 2314 ice_check_media_subtask(pf); 2315 ice_check_for_hang_subtask(pf); 2316 ice_sync_fltr_subtask(pf); 2317 ice_handle_mdd_event(pf); 2318 ice_watchdog_subtask(pf); 2319 2320 if (ice_is_safe_mode(pf)) { 2321 ice_service_task_complete(pf); 2322 return; 2323 } 2324 2325 ice_process_vflr_event(pf); 2326 ice_clean_mailboxq_subtask(pf); 2327 ice_clean_sbq_subtask(pf); 2328 ice_sync_arfs_fltrs(pf); 2329 ice_flush_fdir_ctx(pf); 2330 2331 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2332 ice_service_task_complete(pf); 2333 2334 /* If the tasks have taken longer than one service timer period 2335 * or there is more work to be done, reset the service timer to 2336 * schedule the service task now. 2337 */ 2338 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2339 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2340 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2341 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2342 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2343 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2344 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2345 mod_timer(&pf->serv_tmr, jiffies); 2346 } 2347 2348 /** 2349 * ice_set_ctrlq_len - helper function to set controlq length 2350 * @hw: pointer to the HW instance 2351 */ 2352 static void ice_set_ctrlq_len(struct ice_hw *hw) 2353 { 2354 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2355 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2356 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2357 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2358 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2359 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2360 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2361 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2362 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2363 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2364 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2365 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2366 } 2367 2368 /** 2369 * ice_schedule_reset - schedule a reset 2370 * @pf: board private structure 2371 * @reset: reset being requested 2372 */ 2373 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2374 { 2375 struct device *dev = ice_pf_to_dev(pf); 2376 2377 /* bail out if earlier reset has failed */ 2378 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2379 dev_dbg(dev, "earlier reset has failed\n"); 2380 return -EIO; 2381 } 2382 /* bail if reset/recovery already in progress */ 2383 if (ice_is_reset_in_progress(pf->state)) { 2384 dev_dbg(dev, "Reset already in progress\n"); 2385 return -EBUSY; 2386 } 2387 2388 switch (reset) { 2389 case ICE_RESET_PFR: 2390 set_bit(ICE_PFR_REQ, pf->state); 2391 break; 2392 case ICE_RESET_CORER: 2393 set_bit(ICE_CORER_REQ, pf->state); 2394 break; 2395 case ICE_RESET_GLOBR: 2396 set_bit(ICE_GLOBR_REQ, pf->state); 2397 break; 2398 default: 2399 return -EINVAL; 2400 } 2401 2402 ice_service_task_schedule(pf); 2403 return 0; 2404 } 2405 2406 /** 2407 * ice_irq_affinity_notify - Callback for affinity changes 2408 * @notify: context as to what irq was changed 2409 * @mask: the new affinity mask 2410 * 2411 * This is a callback function used by the irq_set_affinity_notifier function 2412 * so that we may register to receive changes to the irq affinity masks. 2413 */ 2414 static void 2415 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2416 const cpumask_t *mask) 2417 { 2418 struct ice_q_vector *q_vector = 2419 container_of(notify, struct ice_q_vector, affinity_notify); 2420 2421 cpumask_copy(&q_vector->affinity_mask, mask); 2422 } 2423 2424 /** 2425 * ice_irq_affinity_release - Callback for affinity notifier release 2426 * @ref: internal core kernel usage 2427 * 2428 * This is a callback function used by the irq_set_affinity_notifier function 2429 * to inform the current notification subscriber that they will no longer 2430 * receive notifications. 2431 */ 2432 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2433 2434 /** 2435 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2436 * @vsi: the VSI being configured 2437 */ 2438 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2439 { 2440 struct ice_hw *hw = &vsi->back->hw; 2441 int i; 2442 2443 ice_for_each_q_vector(vsi, i) 2444 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2445 2446 ice_flush(hw); 2447 return 0; 2448 } 2449 2450 /** 2451 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2452 * @vsi: the VSI being configured 2453 * @basename: name for the vector 2454 */ 2455 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2456 { 2457 int q_vectors = vsi->num_q_vectors; 2458 struct ice_pf *pf = vsi->back; 2459 int base = vsi->base_vector; 2460 struct device *dev; 2461 int rx_int_idx = 0; 2462 int tx_int_idx = 0; 2463 int vector, err; 2464 int irq_num; 2465 2466 dev = ice_pf_to_dev(pf); 2467 for (vector = 0; vector < q_vectors; vector++) { 2468 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2469 2470 irq_num = pf->msix_entries[base + vector].vector; 2471 2472 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2473 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2474 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2475 tx_int_idx++; 2476 } else if (q_vector->rx.rx_ring) { 2477 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2478 "%s-%s-%d", basename, "rx", rx_int_idx++); 2479 } else if (q_vector->tx.tx_ring) { 2480 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2481 "%s-%s-%d", basename, "tx", tx_int_idx++); 2482 } else { 2483 /* skip this unused q_vector */ 2484 continue; 2485 } 2486 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2487 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2488 IRQF_SHARED, q_vector->name, 2489 q_vector); 2490 else 2491 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2492 0, q_vector->name, q_vector); 2493 if (err) { 2494 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2495 err); 2496 goto free_q_irqs; 2497 } 2498 2499 /* register for affinity change notifications */ 2500 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2501 struct irq_affinity_notify *affinity_notify; 2502 2503 affinity_notify = &q_vector->affinity_notify; 2504 affinity_notify->notify = ice_irq_affinity_notify; 2505 affinity_notify->release = ice_irq_affinity_release; 2506 irq_set_affinity_notifier(irq_num, affinity_notify); 2507 } 2508 2509 /* assign the mask for this irq */ 2510 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2511 } 2512 2513 err = ice_set_cpu_rx_rmap(vsi); 2514 if (err) { 2515 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2516 vsi->vsi_num, ERR_PTR(err)); 2517 goto free_q_irqs; 2518 } 2519 2520 vsi->irqs_ready = true; 2521 return 0; 2522 2523 free_q_irqs: 2524 while (vector) { 2525 vector--; 2526 irq_num = pf->msix_entries[base + vector].vector; 2527 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2528 irq_set_affinity_notifier(irq_num, NULL); 2529 irq_set_affinity_hint(irq_num, NULL); 2530 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2531 } 2532 return err; 2533 } 2534 2535 /** 2536 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2537 * @vsi: VSI to setup Tx rings used by XDP 2538 * 2539 * Return 0 on success and negative value on error 2540 */ 2541 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2542 { 2543 struct device *dev = ice_pf_to_dev(vsi->back); 2544 struct ice_tx_desc *tx_desc; 2545 int i, j; 2546 2547 ice_for_each_xdp_txq(vsi, i) { 2548 u16 xdp_q_idx = vsi->alloc_txq + i; 2549 struct ice_tx_ring *xdp_ring; 2550 2551 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2552 2553 if (!xdp_ring) 2554 goto free_xdp_rings; 2555 2556 xdp_ring->q_index = xdp_q_idx; 2557 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2558 xdp_ring->vsi = vsi; 2559 xdp_ring->netdev = NULL; 2560 xdp_ring->dev = dev; 2561 xdp_ring->count = vsi->num_tx_desc; 2562 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2563 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2564 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2565 if (ice_setup_tx_ring(xdp_ring)) 2566 goto free_xdp_rings; 2567 ice_set_ring_xdp(xdp_ring); 2568 spin_lock_init(&xdp_ring->tx_lock); 2569 for (j = 0; j < xdp_ring->count; j++) { 2570 tx_desc = ICE_TX_DESC(xdp_ring, j); 2571 tx_desc->cmd_type_offset_bsz = 0; 2572 } 2573 } 2574 2575 return 0; 2576 2577 free_xdp_rings: 2578 for (; i >= 0; i--) 2579 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2580 ice_free_tx_ring(vsi->xdp_rings[i]); 2581 return -ENOMEM; 2582 } 2583 2584 /** 2585 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2586 * @vsi: VSI to set the bpf prog on 2587 * @prog: the bpf prog pointer 2588 */ 2589 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2590 { 2591 struct bpf_prog *old_prog; 2592 int i; 2593 2594 old_prog = xchg(&vsi->xdp_prog, prog); 2595 if (old_prog) 2596 bpf_prog_put(old_prog); 2597 2598 ice_for_each_rxq(vsi, i) 2599 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2600 } 2601 2602 /** 2603 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2604 * @vsi: VSI to bring up Tx rings used by XDP 2605 * @prog: bpf program that will be assigned to VSI 2606 * 2607 * Return 0 on success and negative value on error 2608 */ 2609 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2610 { 2611 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2612 int xdp_rings_rem = vsi->num_xdp_txq; 2613 struct ice_pf *pf = vsi->back; 2614 struct ice_qs_cfg xdp_qs_cfg = { 2615 .qs_mutex = &pf->avail_q_mutex, 2616 .pf_map = pf->avail_txqs, 2617 .pf_map_size = pf->max_pf_txqs, 2618 .q_count = vsi->num_xdp_txq, 2619 .scatter_count = ICE_MAX_SCATTER_TXQS, 2620 .vsi_map = vsi->txq_map, 2621 .vsi_map_offset = vsi->alloc_txq, 2622 .mapping_mode = ICE_VSI_MAP_CONTIG 2623 }; 2624 struct device *dev; 2625 int i, v_idx; 2626 int status; 2627 2628 dev = ice_pf_to_dev(pf); 2629 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2630 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2631 if (!vsi->xdp_rings) 2632 return -ENOMEM; 2633 2634 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2635 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2636 goto err_map_xdp; 2637 2638 if (static_key_enabled(&ice_xdp_locking_key)) 2639 netdev_warn(vsi->netdev, 2640 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2641 2642 if (ice_xdp_alloc_setup_rings(vsi)) 2643 goto clear_xdp_rings; 2644 2645 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2646 ice_for_each_q_vector(vsi, v_idx) { 2647 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2648 int xdp_rings_per_v, q_id, q_base; 2649 2650 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2651 vsi->num_q_vectors - v_idx); 2652 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2653 2654 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2655 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2656 2657 xdp_ring->q_vector = q_vector; 2658 xdp_ring->next = q_vector->tx.tx_ring; 2659 q_vector->tx.tx_ring = xdp_ring; 2660 } 2661 xdp_rings_rem -= xdp_rings_per_v; 2662 } 2663 2664 ice_for_each_rxq(vsi, i) { 2665 if (static_key_enabled(&ice_xdp_locking_key)) { 2666 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2667 } else { 2668 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2669 struct ice_tx_ring *ring; 2670 2671 ice_for_each_tx_ring(ring, q_vector->tx) { 2672 if (ice_ring_is_xdp(ring)) { 2673 vsi->rx_rings[i]->xdp_ring = ring; 2674 break; 2675 } 2676 } 2677 } 2678 ice_tx_xsk_pool(vsi, i); 2679 } 2680 2681 /* omit the scheduler update if in reset path; XDP queues will be 2682 * taken into account at the end of ice_vsi_rebuild, where 2683 * ice_cfg_vsi_lan is being called 2684 */ 2685 if (ice_is_reset_in_progress(pf->state)) 2686 return 0; 2687 2688 /* tell the Tx scheduler that right now we have 2689 * additional queues 2690 */ 2691 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2692 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2693 2694 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2695 max_txqs); 2696 if (status) { 2697 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2698 status); 2699 goto clear_xdp_rings; 2700 } 2701 2702 /* assign the prog only when it's not already present on VSI; 2703 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2704 * VSI rebuild that happens under ethtool -L can expose us to 2705 * the bpf_prog refcount issues as we would be swapping same 2706 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2707 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2708 * this is not harmful as dev_xdp_install bumps the refcount 2709 * before calling the op exposed by the driver; 2710 */ 2711 if (!ice_is_xdp_ena_vsi(vsi)) 2712 ice_vsi_assign_bpf_prog(vsi, prog); 2713 2714 return 0; 2715 clear_xdp_rings: 2716 ice_for_each_xdp_txq(vsi, i) 2717 if (vsi->xdp_rings[i]) { 2718 kfree_rcu(vsi->xdp_rings[i], rcu); 2719 vsi->xdp_rings[i] = NULL; 2720 } 2721 2722 err_map_xdp: 2723 mutex_lock(&pf->avail_q_mutex); 2724 ice_for_each_xdp_txq(vsi, i) { 2725 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2726 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2727 } 2728 mutex_unlock(&pf->avail_q_mutex); 2729 2730 devm_kfree(dev, vsi->xdp_rings); 2731 return -ENOMEM; 2732 } 2733 2734 /** 2735 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2736 * @vsi: VSI to remove XDP rings 2737 * 2738 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2739 * resources 2740 */ 2741 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2742 { 2743 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2744 struct ice_pf *pf = vsi->back; 2745 int i, v_idx; 2746 2747 /* q_vectors are freed in reset path so there's no point in detaching 2748 * rings; in case of rebuild being triggered not from reset bits 2749 * in pf->state won't be set, so additionally check first q_vector 2750 * against NULL 2751 */ 2752 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2753 goto free_qmap; 2754 2755 ice_for_each_q_vector(vsi, v_idx) { 2756 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2757 struct ice_tx_ring *ring; 2758 2759 ice_for_each_tx_ring(ring, q_vector->tx) 2760 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2761 break; 2762 2763 /* restore the value of last node prior to XDP setup */ 2764 q_vector->tx.tx_ring = ring; 2765 } 2766 2767 free_qmap: 2768 mutex_lock(&pf->avail_q_mutex); 2769 ice_for_each_xdp_txq(vsi, i) { 2770 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2771 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2772 } 2773 mutex_unlock(&pf->avail_q_mutex); 2774 2775 ice_for_each_xdp_txq(vsi, i) 2776 if (vsi->xdp_rings[i]) { 2777 if (vsi->xdp_rings[i]->desc) { 2778 synchronize_rcu(); 2779 ice_free_tx_ring(vsi->xdp_rings[i]); 2780 } 2781 kfree_rcu(vsi->xdp_rings[i], rcu); 2782 vsi->xdp_rings[i] = NULL; 2783 } 2784 2785 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2786 vsi->xdp_rings = NULL; 2787 2788 if (static_key_enabled(&ice_xdp_locking_key)) 2789 static_branch_dec(&ice_xdp_locking_key); 2790 2791 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2792 return 0; 2793 2794 ice_vsi_assign_bpf_prog(vsi, NULL); 2795 2796 /* notify Tx scheduler that we destroyed XDP queues and bring 2797 * back the old number of child nodes 2798 */ 2799 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2800 max_txqs[i] = vsi->num_txq; 2801 2802 /* change number of XDP Tx queues to 0 */ 2803 vsi->num_xdp_txq = 0; 2804 2805 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2806 max_txqs); 2807 } 2808 2809 /** 2810 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2811 * @vsi: VSI to schedule napi on 2812 */ 2813 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2814 { 2815 int i; 2816 2817 ice_for_each_rxq(vsi, i) { 2818 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2819 2820 if (rx_ring->xsk_pool) 2821 napi_schedule(&rx_ring->q_vector->napi); 2822 } 2823 } 2824 2825 /** 2826 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2827 * @vsi: VSI to determine the count of XDP Tx qs 2828 * 2829 * returns 0 if Tx qs count is higher than at least half of CPU count, 2830 * -ENOMEM otherwise 2831 */ 2832 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2833 { 2834 u16 avail = ice_get_avail_txq_count(vsi->back); 2835 u16 cpus = num_possible_cpus(); 2836 2837 if (avail < cpus / 2) 2838 return -ENOMEM; 2839 2840 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2841 2842 if (vsi->num_xdp_txq < cpus) 2843 static_branch_inc(&ice_xdp_locking_key); 2844 2845 return 0; 2846 } 2847 2848 /** 2849 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2850 * @vsi: VSI to setup XDP for 2851 * @prog: XDP program 2852 * @extack: netlink extended ack 2853 */ 2854 static int 2855 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2856 struct netlink_ext_ack *extack) 2857 { 2858 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2859 bool if_running = netif_running(vsi->netdev); 2860 int ret = 0, xdp_ring_err = 0; 2861 2862 if (frame_size > vsi->rx_buf_len) { 2863 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2864 return -EOPNOTSUPP; 2865 } 2866 2867 /* need to stop netdev while setting up the program for Rx rings */ 2868 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2869 ret = ice_down(vsi); 2870 if (ret) { 2871 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2872 return ret; 2873 } 2874 } 2875 2876 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2877 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2878 if (xdp_ring_err) { 2879 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2880 } else { 2881 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2882 if (xdp_ring_err) 2883 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2884 } 2885 /* reallocate Rx queues that are used for zero-copy */ 2886 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2887 if (xdp_ring_err) 2888 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2889 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2890 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2891 if (xdp_ring_err) 2892 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2893 /* reallocate Rx queues that were used for zero-copy */ 2894 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2895 if (xdp_ring_err) 2896 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2897 } else { 2898 /* safe to call even when prog == vsi->xdp_prog as 2899 * dev_xdp_install in net/core/dev.c incremented prog's 2900 * refcount so corresponding bpf_prog_put won't cause 2901 * underflow 2902 */ 2903 ice_vsi_assign_bpf_prog(vsi, prog); 2904 } 2905 2906 if (if_running) 2907 ret = ice_up(vsi); 2908 2909 if (!ret && prog) 2910 ice_vsi_rx_napi_schedule(vsi); 2911 2912 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2913 } 2914 2915 /** 2916 * ice_xdp_safe_mode - XDP handler for safe mode 2917 * @dev: netdevice 2918 * @xdp: XDP command 2919 */ 2920 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2921 struct netdev_bpf *xdp) 2922 { 2923 NL_SET_ERR_MSG_MOD(xdp->extack, 2924 "Please provide working DDP firmware package in order to use XDP\n" 2925 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2926 return -EOPNOTSUPP; 2927 } 2928 2929 /** 2930 * ice_xdp - implements XDP handler 2931 * @dev: netdevice 2932 * @xdp: XDP command 2933 */ 2934 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2935 { 2936 struct ice_netdev_priv *np = netdev_priv(dev); 2937 struct ice_vsi *vsi = np->vsi; 2938 2939 if (vsi->type != ICE_VSI_PF) { 2940 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2941 return -EINVAL; 2942 } 2943 2944 switch (xdp->command) { 2945 case XDP_SETUP_PROG: 2946 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2947 case XDP_SETUP_XSK_POOL: 2948 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2949 xdp->xsk.queue_id); 2950 default: 2951 return -EINVAL; 2952 } 2953 } 2954 2955 /** 2956 * ice_ena_misc_vector - enable the non-queue interrupts 2957 * @pf: board private structure 2958 */ 2959 static void ice_ena_misc_vector(struct ice_pf *pf) 2960 { 2961 struct ice_hw *hw = &pf->hw; 2962 u32 val; 2963 2964 /* Disable anti-spoof detection interrupt to prevent spurious event 2965 * interrupts during a function reset. Anti-spoof functionally is 2966 * still supported. 2967 */ 2968 val = rd32(hw, GL_MDCK_TX_TDPU); 2969 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2970 wr32(hw, GL_MDCK_TX_TDPU, val); 2971 2972 /* clear things first */ 2973 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2974 rd32(hw, PFINT_OICR); /* read to clear */ 2975 2976 val = (PFINT_OICR_ECC_ERR_M | 2977 PFINT_OICR_MAL_DETECT_M | 2978 PFINT_OICR_GRST_M | 2979 PFINT_OICR_PCI_EXCEPTION_M | 2980 PFINT_OICR_VFLR_M | 2981 PFINT_OICR_HMC_ERR_M | 2982 PFINT_OICR_PE_PUSH_M | 2983 PFINT_OICR_PE_CRITERR_M); 2984 2985 wr32(hw, PFINT_OICR_ENA, val); 2986 2987 /* SW_ITR_IDX = 0, but don't change INTENA */ 2988 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2989 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2990 } 2991 2992 /** 2993 * ice_misc_intr - misc interrupt handler 2994 * @irq: interrupt number 2995 * @data: pointer to a q_vector 2996 */ 2997 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2998 { 2999 struct ice_pf *pf = (struct ice_pf *)data; 3000 struct ice_hw *hw = &pf->hw; 3001 irqreturn_t ret = IRQ_NONE; 3002 struct device *dev; 3003 u32 oicr, ena_mask; 3004 3005 dev = ice_pf_to_dev(pf); 3006 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3007 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3008 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3009 3010 oicr = rd32(hw, PFINT_OICR); 3011 ena_mask = rd32(hw, PFINT_OICR_ENA); 3012 3013 if (oicr & PFINT_OICR_SWINT_M) { 3014 ena_mask &= ~PFINT_OICR_SWINT_M; 3015 pf->sw_int_count++; 3016 } 3017 3018 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3019 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3020 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3021 } 3022 if (oicr & PFINT_OICR_VFLR_M) { 3023 /* disable any further VFLR event notifications */ 3024 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3025 u32 reg = rd32(hw, PFINT_OICR_ENA); 3026 3027 reg &= ~PFINT_OICR_VFLR_M; 3028 wr32(hw, PFINT_OICR_ENA, reg); 3029 } else { 3030 ena_mask &= ~PFINT_OICR_VFLR_M; 3031 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3032 } 3033 } 3034 3035 if (oicr & PFINT_OICR_GRST_M) { 3036 u32 reset; 3037 3038 /* we have a reset warning */ 3039 ena_mask &= ~PFINT_OICR_GRST_M; 3040 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3041 GLGEN_RSTAT_RESET_TYPE_S; 3042 3043 if (reset == ICE_RESET_CORER) 3044 pf->corer_count++; 3045 else if (reset == ICE_RESET_GLOBR) 3046 pf->globr_count++; 3047 else if (reset == ICE_RESET_EMPR) 3048 pf->empr_count++; 3049 else 3050 dev_dbg(dev, "Invalid reset type %d\n", reset); 3051 3052 /* If a reset cycle isn't already in progress, we set a bit in 3053 * pf->state so that the service task can start a reset/rebuild. 3054 */ 3055 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3056 if (reset == ICE_RESET_CORER) 3057 set_bit(ICE_CORER_RECV, pf->state); 3058 else if (reset == ICE_RESET_GLOBR) 3059 set_bit(ICE_GLOBR_RECV, pf->state); 3060 else 3061 set_bit(ICE_EMPR_RECV, pf->state); 3062 3063 /* There are couple of different bits at play here. 3064 * hw->reset_ongoing indicates whether the hardware is 3065 * in reset. This is set to true when a reset interrupt 3066 * is received and set back to false after the driver 3067 * has determined that the hardware is out of reset. 3068 * 3069 * ICE_RESET_OICR_RECV in pf->state indicates 3070 * that a post reset rebuild is required before the 3071 * driver is operational again. This is set above. 3072 * 3073 * As this is the start of the reset/rebuild cycle, set 3074 * both to indicate that. 3075 */ 3076 hw->reset_ongoing = true; 3077 } 3078 } 3079 3080 if (oicr & PFINT_OICR_TSYN_TX_M) { 3081 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3082 if (!hw->reset_ongoing) 3083 ret = IRQ_WAKE_THREAD; 3084 } 3085 3086 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3087 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3088 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3089 3090 /* Save EVENTs from GTSYN register */ 3091 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3092 GLTSYN_STAT_EVENT1_M | 3093 GLTSYN_STAT_EVENT2_M); 3094 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3095 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3096 } 3097 3098 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3099 if (oicr & ICE_AUX_CRIT_ERR) { 3100 pf->oicr_err_reg |= oicr; 3101 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3102 ena_mask &= ~ICE_AUX_CRIT_ERR; 3103 } 3104 3105 /* Report any remaining unexpected interrupts */ 3106 oicr &= ena_mask; 3107 if (oicr) { 3108 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3109 /* If a critical error is pending there is no choice but to 3110 * reset the device. 3111 */ 3112 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3113 PFINT_OICR_ECC_ERR_M)) { 3114 set_bit(ICE_PFR_REQ, pf->state); 3115 ice_service_task_schedule(pf); 3116 } 3117 } 3118 if (!ret) 3119 ret = IRQ_HANDLED; 3120 3121 ice_service_task_schedule(pf); 3122 ice_irq_dynamic_ena(hw, NULL, NULL); 3123 3124 return ret; 3125 } 3126 3127 /** 3128 * ice_misc_intr_thread_fn - misc interrupt thread function 3129 * @irq: interrupt number 3130 * @data: pointer to a q_vector 3131 */ 3132 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3133 { 3134 irqreturn_t ret = IRQ_HANDLED; 3135 struct ice_pf *pf = data; 3136 bool irq_handled; 3137 3138 irq_handled = ice_ptp_process_ts(pf); 3139 if (!irq_handled) 3140 ret = IRQ_WAKE_THREAD; 3141 3142 return ret; 3143 } 3144 3145 /** 3146 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3147 * @hw: pointer to HW structure 3148 */ 3149 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3150 { 3151 /* disable Admin queue Interrupt causes */ 3152 wr32(hw, PFINT_FW_CTL, 3153 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3154 3155 /* disable Mailbox queue Interrupt causes */ 3156 wr32(hw, PFINT_MBX_CTL, 3157 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3158 3159 wr32(hw, PFINT_SB_CTL, 3160 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3161 3162 /* disable Control queue Interrupt causes */ 3163 wr32(hw, PFINT_OICR_CTL, 3164 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3165 3166 ice_flush(hw); 3167 } 3168 3169 /** 3170 * ice_free_irq_msix_misc - Unroll misc vector setup 3171 * @pf: board private structure 3172 */ 3173 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3174 { 3175 struct ice_hw *hw = &pf->hw; 3176 3177 ice_dis_ctrlq_interrupts(hw); 3178 3179 /* disable OICR interrupt */ 3180 wr32(hw, PFINT_OICR_ENA, 0); 3181 ice_flush(hw); 3182 3183 if (pf->msix_entries) { 3184 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3185 devm_free_irq(ice_pf_to_dev(pf), 3186 pf->msix_entries[pf->oicr_idx].vector, pf); 3187 } 3188 3189 pf->num_avail_sw_msix += 1; 3190 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3191 } 3192 3193 /** 3194 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3195 * @hw: pointer to HW structure 3196 * @reg_idx: HW vector index to associate the control queue interrupts with 3197 */ 3198 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3199 { 3200 u32 val; 3201 3202 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3203 PFINT_OICR_CTL_CAUSE_ENA_M); 3204 wr32(hw, PFINT_OICR_CTL, val); 3205 3206 /* enable Admin queue Interrupt causes */ 3207 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3208 PFINT_FW_CTL_CAUSE_ENA_M); 3209 wr32(hw, PFINT_FW_CTL, val); 3210 3211 /* enable Mailbox queue Interrupt causes */ 3212 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3213 PFINT_MBX_CTL_CAUSE_ENA_M); 3214 wr32(hw, PFINT_MBX_CTL, val); 3215 3216 /* This enables Sideband queue Interrupt causes */ 3217 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3218 PFINT_SB_CTL_CAUSE_ENA_M); 3219 wr32(hw, PFINT_SB_CTL, val); 3220 3221 ice_flush(hw); 3222 } 3223 3224 /** 3225 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3226 * @pf: board private structure 3227 * 3228 * This sets up the handler for MSIX 0, which is used to manage the 3229 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3230 * when in MSI or Legacy interrupt mode. 3231 */ 3232 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3233 { 3234 struct device *dev = ice_pf_to_dev(pf); 3235 struct ice_hw *hw = &pf->hw; 3236 int oicr_idx, err = 0; 3237 3238 if (!pf->int_name[0]) 3239 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3240 dev_driver_string(dev), dev_name(dev)); 3241 3242 /* Do not request IRQ but do enable OICR interrupt since settings are 3243 * lost during reset. Note that this function is called only during 3244 * rebuild path and not while reset is in progress. 3245 */ 3246 if (ice_is_reset_in_progress(pf->state)) 3247 goto skip_req_irq; 3248 3249 /* reserve one vector in irq_tracker for misc interrupts */ 3250 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3251 if (oicr_idx < 0) 3252 return oicr_idx; 3253 3254 pf->num_avail_sw_msix -= 1; 3255 pf->oicr_idx = (u16)oicr_idx; 3256 3257 err = devm_request_threaded_irq(dev, 3258 pf->msix_entries[pf->oicr_idx].vector, 3259 ice_misc_intr, ice_misc_intr_thread_fn, 3260 0, pf->int_name, pf); 3261 if (err) { 3262 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3263 pf->int_name, err); 3264 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3265 pf->num_avail_sw_msix += 1; 3266 return err; 3267 } 3268 3269 skip_req_irq: 3270 ice_ena_misc_vector(pf); 3271 3272 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3273 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3274 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3275 3276 ice_flush(hw); 3277 ice_irq_dynamic_ena(hw, NULL, NULL); 3278 3279 return 0; 3280 } 3281 3282 /** 3283 * ice_napi_add - register NAPI handler for the VSI 3284 * @vsi: VSI for which NAPI handler is to be registered 3285 * 3286 * This function is only called in the driver's load path. Registering the NAPI 3287 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3288 * reset/rebuild, etc.) 3289 */ 3290 static void ice_napi_add(struct ice_vsi *vsi) 3291 { 3292 int v_idx; 3293 3294 if (!vsi->netdev) 3295 return; 3296 3297 ice_for_each_q_vector(vsi, v_idx) 3298 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3299 ice_napi_poll); 3300 } 3301 3302 /** 3303 * ice_set_ops - set netdev and ethtools ops for the given netdev 3304 * @netdev: netdev instance 3305 */ 3306 static void ice_set_ops(struct net_device *netdev) 3307 { 3308 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3309 3310 if (ice_is_safe_mode(pf)) { 3311 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3312 ice_set_ethtool_safe_mode_ops(netdev); 3313 return; 3314 } 3315 3316 netdev->netdev_ops = &ice_netdev_ops; 3317 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3318 ice_set_ethtool_ops(netdev); 3319 } 3320 3321 /** 3322 * ice_set_netdev_features - set features for the given netdev 3323 * @netdev: netdev instance 3324 */ 3325 static void ice_set_netdev_features(struct net_device *netdev) 3326 { 3327 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3328 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3329 netdev_features_t csumo_features; 3330 netdev_features_t vlano_features; 3331 netdev_features_t dflt_features; 3332 netdev_features_t tso_features; 3333 3334 if (ice_is_safe_mode(pf)) { 3335 /* safe mode */ 3336 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3337 netdev->hw_features = netdev->features; 3338 return; 3339 } 3340 3341 dflt_features = NETIF_F_SG | 3342 NETIF_F_HIGHDMA | 3343 NETIF_F_NTUPLE | 3344 NETIF_F_RXHASH; 3345 3346 csumo_features = NETIF_F_RXCSUM | 3347 NETIF_F_IP_CSUM | 3348 NETIF_F_SCTP_CRC | 3349 NETIF_F_IPV6_CSUM; 3350 3351 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3352 NETIF_F_HW_VLAN_CTAG_TX | 3353 NETIF_F_HW_VLAN_CTAG_RX; 3354 3355 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3356 if (is_dvm_ena) 3357 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3358 3359 tso_features = NETIF_F_TSO | 3360 NETIF_F_TSO_ECN | 3361 NETIF_F_TSO6 | 3362 NETIF_F_GSO_GRE | 3363 NETIF_F_GSO_UDP_TUNNEL | 3364 NETIF_F_GSO_GRE_CSUM | 3365 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3366 NETIF_F_GSO_PARTIAL | 3367 NETIF_F_GSO_IPXIP4 | 3368 NETIF_F_GSO_IPXIP6 | 3369 NETIF_F_GSO_UDP_L4; 3370 3371 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3372 NETIF_F_GSO_GRE_CSUM; 3373 /* set features that user can change */ 3374 netdev->hw_features = dflt_features | csumo_features | 3375 vlano_features | tso_features; 3376 3377 /* add support for HW_CSUM on packets with MPLS header */ 3378 netdev->mpls_features = NETIF_F_HW_CSUM | 3379 NETIF_F_TSO | 3380 NETIF_F_TSO6; 3381 3382 /* enable features */ 3383 netdev->features |= netdev->hw_features; 3384 3385 netdev->hw_features |= NETIF_F_HW_TC; 3386 netdev->hw_features |= NETIF_F_LOOPBACK; 3387 3388 /* encap and VLAN devices inherit default, csumo and tso features */ 3389 netdev->hw_enc_features |= dflt_features | csumo_features | 3390 tso_features; 3391 netdev->vlan_features |= dflt_features | csumo_features | 3392 tso_features; 3393 3394 /* advertise support but don't enable by default since only one type of 3395 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3396 * type turns on the other has to be turned off. This is enforced by the 3397 * ice_fix_features() ndo callback. 3398 */ 3399 if (is_dvm_ena) 3400 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3401 NETIF_F_HW_VLAN_STAG_TX; 3402 3403 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3404 * be changed at runtime 3405 */ 3406 netdev->hw_features |= NETIF_F_RXFCS; 3407 } 3408 3409 /** 3410 * ice_cfg_netdev - Allocate, configure and register a netdev 3411 * @vsi: the VSI associated with the new netdev 3412 * 3413 * Returns 0 on success, negative value on failure 3414 */ 3415 static int ice_cfg_netdev(struct ice_vsi *vsi) 3416 { 3417 struct ice_netdev_priv *np; 3418 struct net_device *netdev; 3419 u8 mac_addr[ETH_ALEN]; 3420 3421 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3422 vsi->alloc_rxq); 3423 if (!netdev) 3424 return -ENOMEM; 3425 3426 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3427 vsi->netdev = netdev; 3428 np = netdev_priv(netdev); 3429 np->vsi = vsi; 3430 3431 ice_set_netdev_features(netdev); 3432 3433 ice_set_ops(netdev); 3434 3435 if (vsi->type == ICE_VSI_PF) { 3436 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3437 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3438 eth_hw_addr_set(netdev, mac_addr); 3439 ether_addr_copy(netdev->perm_addr, mac_addr); 3440 } 3441 3442 netdev->priv_flags |= IFF_UNICAST_FLT; 3443 3444 /* Setup netdev TC information */ 3445 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3446 3447 /* setup watchdog timeout value to be 5 second */ 3448 netdev->watchdog_timeo = 5 * HZ; 3449 3450 netdev->min_mtu = ETH_MIN_MTU; 3451 netdev->max_mtu = ICE_MAX_MTU; 3452 3453 return 0; 3454 } 3455 3456 /** 3457 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3458 * @lut: Lookup table 3459 * @rss_table_size: Lookup table size 3460 * @rss_size: Range of queue number for hashing 3461 */ 3462 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3463 { 3464 u16 i; 3465 3466 for (i = 0; i < rss_table_size; i++) 3467 lut[i] = i % rss_size; 3468 } 3469 3470 /** 3471 * ice_pf_vsi_setup - Set up a PF VSI 3472 * @pf: board private structure 3473 * @pi: pointer to the port_info instance 3474 * 3475 * Returns pointer to the successfully allocated VSI software struct 3476 * on success, otherwise returns NULL on failure. 3477 */ 3478 static struct ice_vsi * 3479 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3480 { 3481 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3482 } 3483 3484 static struct ice_vsi * 3485 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3486 struct ice_channel *ch) 3487 { 3488 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3489 } 3490 3491 /** 3492 * ice_ctrl_vsi_setup - Set up a control VSI 3493 * @pf: board private structure 3494 * @pi: pointer to the port_info instance 3495 * 3496 * Returns pointer to the successfully allocated VSI software struct 3497 * on success, otherwise returns NULL on failure. 3498 */ 3499 static struct ice_vsi * 3500 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3501 { 3502 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3503 } 3504 3505 /** 3506 * ice_lb_vsi_setup - Set up a loopback VSI 3507 * @pf: board private structure 3508 * @pi: pointer to the port_info instance 3509 * 3510 * Returns pointer to the successfully allocated VSI software struct 3511 * on success, otherwise returns NULL on failure. 3512 */ 3513 struct ice_vsi * 3514 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3515 { 3516 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3517 } 3518 3519 /** 3520 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3521 * @netdev: network interface to be adjusted 3522 * @proto: VLAN TPID 3523 * @vid: VLAN ID to be added 3524 * 3525 * net_device_ops implementation for adding VLAN IDs 3526 */ 3527 static int 3528 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3529 { 3530 struct ice_netdev_priv *np = netdev_priv(netdev); 3531 struct ice_vsi_vlan_ops *vlan_ops; 3532 struct ice_vsi *vsi = np->vsi; 3533 struct ice_vlan vlan; 3534 int ret; 3535 3536 /* VLAN 0 is added by default during load/reset */ 3537 if (!vid) 3538 return 0; 3539 3540 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3541 usleep_range(1000, 2000); 3542 3543 /* Add multicast promisc rule for the VLAN ID to be added if 3544 * all-multicast is currently enabled. 3545 */ 3546 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3547 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3548 ICE_MCAST_VLAN_PROMISC_BITS, 3549 vid); 3550 if (ret) 3551 goto finish; 3552 } 3553 3554 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3555 3556 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3557 * packets aren't pruned by the device's internal switch on Rx 3558 */ 3559 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3560 ret = vlan_ops->add_vlan(vsi, &vlan); 3561 if (ret) 3562 goto finish; 3563 3564 /* If all-multicast is currently enabled and this VLAN ID is only one 3565 * besides VLAN-0 we have to update look-up type of multicast promisc 3566 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3567 */ 3568 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3569 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3570 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3571 ICE_MCAST_PROMISC_BITS, 0); 3572 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3573 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3574 } 3575 3576 finish: 3577 clear_bit(ICE_CFG_BUSY, vsi->state); 3578 3579 return ret; 3580 } 3581 3582 /** 3583 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3584 * @netdev: network interface to be adjusted 3585 * @proto: VLAN TPID 3586 * @vid: VLAN ID to be removed 3587 * 3588 * net_device_ops implementation for removing VLAN IDs 3589 */ 3590 static int 3591 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3592 { 3593 struct ice_netdev_priv *np = netdev_priv(netdev); 3594 struct ice_vsi_vlan_ops *vlan_ops; 3595 struct ice_vsi *vsi = np->vsi; 3596 struct ice_vlan vlan; 3597 int ret; 3598 3599 /* don't allow removal of VLAN 0 */ 3600 if (!vid) 3601 return 0; 3602 3603 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3604 usleep_range(1000, 2000); 3605 3606 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3607 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3608 if (ret) { 3609 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3610 vsi->vsi_num); 3611 vsi->current_netdev_flags |= IFF_ALLMULTI; 3612 } 3613 3614 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3615 3616 /* Make sure VLAN delete is successful before updating VLAN 3617 * information 3618 */ 3619 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3620 ret = vlan_ops->del_vlan(vsi, &vlan); 3621 if (ret) 3622 goto finish; 3623 3624 /* Remove multicast promisc rule for the removed VLAN ID if 3625 * all-multicast is enabled. 3626 */ 3627 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3628 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3629 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3630 3631 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3632 /* Update look-up type of multicast promisc rule for VLAN 0 3633 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3634 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3635 */ 3636 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3637 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3638 ICE_MCAST_VLAN_PROMISC_BITS, 3639 0); 3640 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3641 ICE_MCAST_PROMISC_BITS, 0); 3642 } 3643 } 3644 3645 finish: 3646 clear_bit(ICE_CFG_BUSY, vsi->state); 3647 3648 return ret; 3649 } 3650 3651 /** 3652 * ice_rep_indr_tc_block_unbind 3653 * @cb_priv: indirection block private data 3654 */ 3655 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3656 { 3657 struct ice_indr_block_priv *indr_priv = cb_priv; 3658 3659 list_del(&indr_priv->list); 3660 kfree(indr_priv); 3661 } 3662 3663 /** 3664 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3665 * @vsi: VSI struct which has the netdev 3666 */ 3667 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3668 { 3669 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3670 3671 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3672 ice_rep_indr_tc_block_unbind); 3673 } 3674 3675 /** 3676 * ice_tc_indir_block_remove - clean indirect TC block notifications 3677 * @pf: PF structure 3678 */ 3679 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3680 { 3681 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3682 3683 if (!pf_vsi) 3684 return; 3685 3686 ice_tc_indir_block_unregister(pf_vsi); 3687 } 3688 3689 /** 3690 * ice_tc_indir_block_register - Register TC indirect block notifications 3691 * @vsi: VSI struct which has the netdev 3692 * 3693 * Returns 0 on success, negative value on failure 3694 */ 3695 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3696 { 3697 struct ice_netdev_priv *np; 3698 3699 if (!vsi || !vsi->netdev) 3700 return -EINVAL; 3701 3702 np = netdev_priv(vsi->netdev); 3703 3704 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3705 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3706 } 3707 3708 /** 3709 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3710 * @pf: board private structure 3711 * 3712 * Returns 0 on success, negative value on failure 3713 */ 3714 static int ice_setup_pf_sw(struct ice_pf *pf) 3715 { 3716 struct device *dev = ice_pf_to_dev(pf); 3717 bool dvm = ice_is_dvm_ena(&pf->hw); 3718 struct ice_vsi *vsi; 3719 int status; 3720 3721 if (ice_is_reset_in_progress(pf->state)) 3722 return -EBUSY; 3723 3724 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3725 if (status) 3726 return -EIO; 3727 3728 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3729 if (!vsi) 3730 return -ENOMEM; 3731 3732 /* init channel list */ 3733 INIT_LIST_HEAD(&vsi->ch_list); 3734 3735 status = ice_cfg_netdev(vsi); 3736 if (status) 3737 goto unroll_vsi_setup; 3738 /* netdev has to be configured before setting frame size */ 3739 ice_vsi_cfg_frame_size(vsi); 3740 3741 /* init indirect block notifications */ 3742 status = ice_tc_indir_block_register(vsi); 3743 if (status) { 3744 dev_err(dev, "Failed to register netdev notifier\n"); 3745 goto unroll_cfg_netdev; 3746 } 3747 3748 /* Setup DCB netlink interface */ 3749 ice_dcbnl_setup(vsi); 3750 3751 /* registering the NAPI handler requires both the queues and 3752 * netdev to be created, which are done in ice_pf_vsi_setup() 3753 * and ice_cfg_netdev() respectively 3754 */ 3755 ice_napi_add(vsi); 3756 3757 status = ice_init_mac_fltr(pf); 3758 if (status) 3759 goto unroll_napi_add; 3760 3761 return 0; 3762 3763 unroll_napi_add: 3764 ice_tc_indir_block_unregister(vsi); 3765 unroll_cfg_netdev: 3766 if (vsi) { 3767 ice_napi_del(vsi); 3768 if (vsi->netdev) { 3769 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3770 free_netdev(vsi->netdev); 3771 vsi->netdev = NULL; 3772 } 3773 } 3774 3775 unroll_vsi_setup: 3776 ice_vsi_release(vsi); 3777 return status; 3778 } 3779 3780 /** 3781 * ice_get_avail_q_count - Get count of queues in use 3782 * @pf_qmap: bitmap to get queue use count from 3783 * @lock: pointer to a mutex that protects access to pf_qmap 3784 * @size: size of the bitmap 3785 */ 3786 static u16 3787 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3788 { 3789 unsigned long bit; 3790 u16 count = 0; 3791 3792 mutex_lock(lock); 3793 for_each_clear_bit(bit, pf_qmap, size) 3794 count++; 3795 mutex_unlock(lock); 3796 3797 return count; 3798 } 3799 3800 /** 3801 * ice_get_avail_txq_count - Get count of Tx queues in use 3802 * @pf: pointer to an ice_pf instance 3803 */ 3804 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3805 { 3806 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3807 pf->max_pf_txqs); 3808 } 3809 3810 /** 3811 * ice_get_avail_rxq_count - Get count of Rx queues in use 3812 * @pf: pointer to an ice_pf instance 3813 */ 3814 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3815 { 3816 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3817 pf->max_pf_rxqs); 3818 } 3819 3820 /** 3821 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3822 * @pf: board private structure to initialize 3823 */ 3824 static void ice_deinit_pf(struct ice_pf *pf) 3825 { 3826 ice_service_task_stop(pf); 3827 mutex_destroy(&pf->adev_mutex); 3828 mutex_destroy(&pf->sw_mutex); 3829 mutex_destroy(&pf->tc_mutex); 3830 mutex_destroy(&pf->avail_q_mutex); 3831 mutex_destroy(&pf->vfs.table_lock); 3832 3833 if (pf->avail_txqs) { 3834 bitmap_free(pf->avail_txqs); 3835 pf->avail_txqs = NULL; 3836 } 3837 3838 if (pf->avail_rxqs) { 3839 bitmap_free(pf->avail_rxqs); 3840 pf->avail_rxqs = NULL; 3841 } 3842 3843 if (pf->ptp.clock) 3844 ptp_clock_unregister(pf->ptp.clock); 3845 } 3846 3847 /** 3848 * ice_set_pf_caps - set PFs capability flags 3849 * @pf: pointer to the PF instance 3850 */ 3851 static void ice_set_pf_caps(struct ice_pf *pf) 3852 { 3853 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3854 3855 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3856 if (func_caps->common_cap.rdma) 3857 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3858 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3859 if (func_caps->common_cap.dcb) 3860 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3861 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3862 if (func_caps->common_cap.sr_iov_1_1) { 3863 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3864 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3865 ICE_MAX_SRIOV_VFS); 3866 } 3867 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3868 if (func_caps->common_cap.rss_table_size) 3869 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3870 3871 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3872 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3873 u16 unused; 3874 3875 /* ctrl_vsi_idx will be set to a valid value when flow director 3876 * is setup by ice_init_fdir 3877 */ 3878 pf->ctrl_vsi_idx = ICE_NO_VSI; 3879 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3880 /* force guaranteed filter pool for PF */ 3881 ice_alloc_fd_guar_item(&pf->hw, &unused, 3882 func_caps->fd_fltr_guar); 3883 /* force shared filter pool for PF */ 3884 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3885 func_caps->fd_fltr_best_effort); 3886 } 3887 3888 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3889 if (func_caps->common_cap.ieee_1588) 3890 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3891 3892 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3893 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3894 } 3895 3896 /** 3897 * ice_init_pf - Initialize general software structures (struct ice_pf) 3898 * @pf: board private structure to initialize 3899 */ 3900 static int ice_init_pf(struct ice_pf *pf) 3901 { 3902 ice_set_pf_caps(pf); 3903 3904 mutex_init(&pf->sw_mutex); 3905 mutex_init(&pf->tc_mutex); 3906 mutex_init(&pf->adev_mutex); 3907 3908 INIT_HLIST_HEAD(&pf->aq_wait_list); 3909 spin_lock_init(&pf->aq_wait_lock); 3910 init_waitqueue_head(&pf->aq_wait_queue); 3911 3912 init_waitqueue_head(&pf->reset_wait_queue); 3913 3914 /* setup service timer and periodic service task */ 3915 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3916 pf->serv_tmr_period = HZ; 3917 INIT_WORK(&pf->serv_task, ice_service_task); 3918 clear_bit(ICE_SERVICE_SCHED, pf->state); 3919 3920 mutex_init(&pf->avail_q_mutex); 3921 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3922 if (!pf->avail_txqs) 3923 return -ENOMEM; 3924 3925 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3926 if (!pf->avail_rxqs) { 3927 bitmap_free(pf->avail_txqs); 3928 pf->avail_txqs = NULL; 3929 return -ENOMEM; 3930 } 3931 3932 mutex_init(&pf->vfs.table_lock); 3933 hash_init(pf->vfs.table); 3934 3935 return 0; 3936 } 3937 3938 /** 3939 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3940 * @pf: board private structure 3941 * @v_remain: number of remaining MSI-X vectors to be distributed 3942 * 3943 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3944 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3945 * remaining vectors. 3946 */ 3947 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3948 { 3949 int v_rdma; 3950 3951 if (!ice_is_rdma_ena(pf)) { 3952 pf->num_lan_msix = v_remain; 3953 return; 3954 } 3955 3956 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3957 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3958 3959 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3960 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3961 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3962 3963 pf->num_rdma_msix = 0; 3964 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3965 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3966 (v_remain - v_rdma < v_rdma)) { 3967 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3968 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3969 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3970 } else { 3971 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3972 */ 3973 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3974 ICE_RDMA_NUM_AEQ_MSIX; 3975 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3976 } 3977 } 3978 3979 /** 3980 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3981 * @pf: board private structure 3982 * 3983 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3984 * device usage if there are not enough vectors. Return the number of vectors 3985 * reserved or negative on failure. 3986 */ 3987 static int ice_ena_msix_range(struct ice_pf *pf) 3988 { 3989 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3990 struct device *dev = ice_pf_to_dev(pf); 3991 int err, i; 3992 3993 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3994 num_cpus = num_online_cpus(); 3995 3996 /* LAN miscellaneous handler */ 3997 v_other = ICE_MIN_LAN_OICR_MSIX; 3998 3999 /* Flow Director */ 4000 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 4001 v_other += ICE_FDIR_MSIX; 4002 4003 /* switchdev */ 4004 v_other += ICE_ESWITCH_MSIX; 4005 4006 v_wanted = v_other; 4007 4008 /* LAN traffic */ 4009 pf->num_lan_msix = num_cpus; 4010 v_wanted += pf->num_lan_msix; 4011 4012 /* RDMA auxiliary driver */ 4013 if (ice_is_rdma_ena(pf)) { 4014 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 4015 v_wanted += pf->num_rdma_msix; 4016 } 4017 4018 if (v_wanted > hw_num_msix) { 4019 int v_remain; 4020 4021 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 4022 v_wanted, hw_num_msix); 4023 4024 if (hw_num_msix < ICE_MIN_MSIX) { 4025 err = -ERANGE; 4026 goto exit_err; 4027 } 4028 4029 v_remain = hw_num_msix - v_other; 4030 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 4031 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 4032 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4033 } 4034 4035 ice_reduce_msix_usage(pf, v_remain); 4036 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4037 4038 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4039 pf->num_lan_msix); 4040 if (ice_is_rdma_ena(pf)) 4041 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4042 pf->num_rdma_msix); 4043 } 4044 4045 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4046 sizeof(*pf->msix_entries), GFP_KERNEL); 4047 if (!pf->msix_entries) { 4048 err = -ENOMEM; 4049 goto exit_err; 4050 } 4051 4052 for (i = 0; i < v_wanted; i++) 4053 pf->msix_entries[i].entry = i; 4054 4055 /* actually reserve the vectors */ 4056 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4057 ICE_MIN_MSIX, v_wanted); 4058 if (v_actual < 0) { 4059 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4060 err = v_actual; 4061 goto msix_err; 4062 } 4063 4064 if (v_actual < v_wanted) { 4065 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4066 v_wanted, v_actual); 4067 4068 if (v_actual < ICE_MIN_MSIX) { 4069 /* error if we can't get minimum vectors */ 4070 pci_disable_msix(pf->pdev); 4071 err = -ERANGE; 4072 goto msix_err; 4073 } else { 4074 int v_remain = v_actual - v_other; 4075 4076 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4077 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4078 4079 ice_reduce_msix_usage(pf, v_remain); 4080 4081 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4082 pf->num_lan_msix); 4083 4084 if (ice_is_rdma_ena(pf)) 4085 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4086 pf->num_rdma_msix); 4087 } 4088 } 4089 4090 return v_actual; 4091 4092 msix_err: 4093 devm_kfree(dev, pf->msix_entries); 4094 4095 exit_err: 4096 pf->num_rdma_msix = 0; 4097 pf->num_lan_msix = 0; 4098 return err; 4099 } 4100 4101 /** 4102 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4103 * @pf: board private structure 4104 */ 4105 static void ice_dis_msix(struct ice_pf *pf) 4106 { 4107 pci_disable_msix(pf->pdev); 4108 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4109 pf->msix_entries = NULL; 4110 } 4111 4112 /** 4113 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4114 * @pf: board private structure 4115 */ 4116 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4117 { 4118 ice_dis_msix(pf); 4119 4120 if (pf->irq_tracker) { 4121 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4122 pf->irq_tracker = NULL; 4123 } 4124 } 4125 4126 /** 4127 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4128 * @pf: board private structure to initialize 4129 */ 4130 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4131 { 4132 int vectors; 4133 4134 vectors = ice_ena_msix_range(pf); 4135 4136 if (vectors < 0) 4137 return vectors; 4138 4139 /* set up vector assignment tracking */ 4140 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4141 struct_size(pf->irq_tracker, list, vectors), 4142 GFP_KERNEL); 4143 if (!pf->irq_tracker) { 4144 ice_dis_msix(pf); 4145 return -ENOMEM; 4146 } 4147 4148 /* populate SW interrupts pool with number of OS granted IRQs. */ 4149 pf->num_avail_sw_msix = (u16)vectors; 4150 pf->irq_tracker->num_entries = (u16)vectors; 4151 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4152 4153 return 0; 4154 } 4155 4156 /** 4157 * ice_is_wol_supported - check if WoL is supported 4158 * @hw: pointer to hardware info 4159 * 4160 * Check if WoL is supported based on the HW configuration. 4161 * Returns true if NVM supports and enables WoL for this port, false otherwise 4162 */ 4163 bool ice_is_wol_supported(struct ice_hw *hw) 4164 { 4165 u16 wol_ctrl; 4166 4167 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4168 * word) indicates WoL is not supported on the corresponding PF ID. 4169 */ 4170 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4171 return false; 4172 4173 return !(BIT(hw->port_info->lport) & wol_ctrl); 4174 } 4175 4176 /** 4177 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4178 * @vsi: VSI being changed 4179 * @new_rx: new number of Rx queues 4180 * @new_tx: new number of Tx queues 4181 * 4182 * Only change the number of queues if new_tx, or new_rx is non-0. 4183 * 4184 * Returns 0 on success. 4185 */ 4186 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4187 { 4188 struct ice_pf *pf = vsi->back; 4189 int err = 0, timeout = 50; 4190 4191 if (!new_rx && !new_tx) 4192 return -EINVAL; 4193 4194 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4195 timeout--; 4196 if (!timeout) 4197 return -EBUSY; 4198 usleep_range(1000, 2000); 4199 } 4200 4201 if (new_tx) 4202 vsi->req_txq = (u16)new_tx; 4203 if (new_rx) 4204 vsi->req_rxq = (u16)new_rx; 4205 4206 /* set for the next time the netdev is started */ 4207 if (!netif_running(vsi->netdev)) { 4208 ice_vsi_rebuild(vsi, false); 4209 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4210 goto done; 4211 } 4212 4213 ice_vsi_close(vsi); 4214 ice_vsi_rebuild(vsi, false); 4215 ice_pf_dcb_recfg(pf); 4216 ice_vsi_open(vsi); 4217 done: 4218 clear_bit(ICE_CFG_BUSY, pf->state); 4219 return err; 4220 } 4221 4222 /** 4223 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4224 * @pf: PF to configure 4225 * 4226 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4227 * VSI can still Tx/Rx VLAN tagged packets. 4228 */ 4229 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4230 { 4231 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4232 struct ice_vsi_ctx *ctxt; 4233 struct ice_hw *hw; 4234 int status; 4235 4236 if (!vsi) 4237 return; 4238 4239 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4240 if (!ctxt) 4241 return; 4242 4243 hw = &pf->hw; 4244 ctxt->info = vsi->info; 4245 4246 ctxt->info.valid_sections = 4247 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4248 ICE_AQ_VSI_PROP_SECURITY_VALID | 4249 ICE_AQ_VSI_PROP_SW_VALID); 4250 4251 /* disable VLAN anti-spoof */ 4252 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4253 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4254 4255 /* disable VLAN pruning and keep all other settings */ 4256 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4257 4258 /* allow all VLANs on Tx and don't strip on Rx */ 4259 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4260 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4261 4262 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4263 if (status) { 4264 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4265 status, ice_aq_str(hw->adminq.sq_last_status)); 4266 } else { 4267 vsi->info.sec_flags = ctxt->info.sec_flags; 4268 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4269 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4270 } 4271 4272 kfree(ctxt); 4273 } 4274 4275 /** 4276 * ice_log_pkg_init - log result of DDP package load 4277 * @hw: pointer to hardware info 4278 * @state: state of package load 4279 */ 4280 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4281 { 4282 struct ice_pf *pf = hw->back; 4283 struct device *dev; 4284 4285 dev = ice_pf_to_dev(pf); 4286 4287 switch (state) { 4288 case ICE_DDP_PKG_SUCCESS: 4289 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4290 hw->active_pkg_name, 4291 hw->active_pkg_ver.major, 4292 hw->active_pkg_ver.minor, 4293 hw->active_pkg_ver.update, 4294 hw->active_pkg_ver.draft); 4295 break; 4296 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4297 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4298 hw->active_pkg_name, 4299 hw->active_pkg_ver.major, 4300 hw->active_pkg_ver.minor, 4301 hw->active_pkg_ver.update, 4302 hw->active_pkg_ver.draft); 4303 break; 4304 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4305 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4306 hw->active_pkg_name, 4307 hw->active_pkg_ver.major, 4308 hw->active_pkg_ver.minor, 4309 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4310 break; 4311 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4312 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4313 hw->active_pkg_name, 4314 hw->active_pkg_ver.major, 4315 hw->active_pkg_ver.minor, 4316 hw->active_pkg_ver.update, 4317 hw->active_pkg_ver.draft, 4318 hw->pkg_name, 4319 hw->pkg_ver.major, 4320 hw->pkg_ver.minor, 4321 hw->pkg_ver.update, 4322 hw->pkg_ver.draft); 4323 break; 4324 case ICE_DDP_PKG_FW_MISMATCH: 4325 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4326 break; 4327 case ICE_DDP_PKG_INVALID_FILE: 4328 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4329 break; 4330 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4331 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4332 break; 4333 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4334 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4335 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4336 break; 4337 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4338 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4339 break; 4340 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4341 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4342 break; 4343 case ICE_DDP_PKG_LOAD_ERROR: 4344 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4345 /* poll for reset to complete */ 4346 if (ice_check_reset(hw)) 4347 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4348 break; 4349 case ICE_DDP_PKG_ERR: 4350 default: 4351 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4352 break; 4353 } 4354 } 4355 4356 /** 4357 * ice_load_pkg - load/reload the DDP Package file 4358 * @firmware: firmware structure when firmware requested or NULL for reload 4359 * @pf: pointer to the PF instance 4360 * 4361 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4362 * initialize HW tables. 4363 */ 4364 static void 4365 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4366 { 4367 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4368 struct device *dev = ice_pf_to_dev(pf); 4369 struct ice_hw *hw = &pf->hw; 4370 4371 /* Load DDP Package */ 4372 if (firmware && !hw->pkg_copy) { 4373 state = ice_copy_and_init_pkg(hw, firmware->data, 4374 firmware->size); 4375 ice_log_pkg_init(hw, state); 4376 } else if (!firmware && hw->pkg_copy) { 4377 /* Reload package during rebuild after CORER/GLOBR reset */ 4378 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4379 ice_log_pkg_init(hw, state); 4380 } else { 4381 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4382 } 4383 4384 if (!ice_is_init_pkg_successful(state)) { 4385 /* Safe Mode */ 4386 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4387 return; 4388 } 4389 4390 /* Successful download package is the precondition for advanced 4391 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4392 */ 4393 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4394 } 4395 4396 /** 4397 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4398 * @pf: pointer to the PF structure 4399 * 4400 * There is no error returned here because the driver should be able to handle 4401 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4402 * specifically with Tx. 4403 */ 4404 static void ice_verify_cacheline_size(struct ice_pf *pf) 4405 { 4406 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4407 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4408 ICE_CACHE_LINE_BYTES); 4409 } 4410 4411 /** 4412 * ice_send_version - update firmware with driver version 4413 * @pf: PF struct 4414 * 4415 * Returns 0 on success, else error code 4416 */ 4417 static int ice_send_version(struct ice_pf *pf) 4418 { 4419 struct ice_driver_ver dv; 4420 4421 dv.major_ver = 0xff; 4422 dv.minor_ver = 0xff; 4423 dv.build_ver = 0xff; 4424 dv.subbuild_ver = 0; 4425 strscpy((char *)dv.driver_string, UTS_RELEASE, 4426 sizeof(dv.driver_string)); 4427 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4428 } 4429 4430 /** 4431 * ice_init_fdir - Initialize flow director VSI and configuration 4432 * @pf: pointer to the PF instance 4433 * 4434 * returns 0 on success, negative on error 4435 */ 4436 static int ice_init_fdir(struct ice_pf *pf) 4437 { 4438 struct device *dev = ice_pf_to_dev(pf); 4439 struct ice_vsi *ctrl_vsi; 4440 int err; 4441 4442 /* Side Band Flow Director needs to have a control VSI. 4443 * Allocate it and store it in the PF. 4444 */ 4445 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4446 if (!ctrl_vsi) { 4447 dev_dbg(dev, "could not create control VSI\n"); 4448 return -ENOMEM; 4449 } 4450 4451 err = ice_vsi_open_ctrl(ctrl_vsi); 4452 if (err) { 4453 dev_dbg(dev, "could not open control VSI\n"); 4454 goto err_vsi_open; 4455 } 4456 4457 mutex_init(&pf->hw.fdir_fltr_lock); 4458 4459 err = ice_fdir_create_dflt_rules(pf); 4460 if (err) 4461 goto err_fdir_rule; 4462 4463 return 0; 4464 4465 err_fdir_rule: 4466 ice_fdir_release_flows(&pf->hw); 4467 ice_vsi_close(ctrl_vsi); 4468 err_vsi_open: 4469 ice_vsi_release(ctrl_vsi); 4470 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4471 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4472 pf->ctrl_vsi_idx = ICE_NO_VSI; 4473 } 4474 return err; 4475 } 4476 4477 /** 4478 * ice_get_opt_fw_name - return optional firmware file name or NULL 4479 * @pf: pointer to the PF instance 4480 */ 4481 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4482 { 4483 /* Optional firmware name same as default with additional dash 4484 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4485 */ 4486 struct pci_dev *pdev = pf->pdev; 4487 char *opt_fw_filename; 4488 u64 dsn; 4489 4490 /* Determine the name of the optional file using the DSN (two 4491 * dwords following the start of the DSN Capability). 4492 */ 4493 dsn = pci_get_dsn(pdev); 4494 if (!dsn) 4495 return NULL; 4496 4497 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4498 if (!opt_fw_filename) 4499 return NULL; 4500 4501 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4502 ICE_DDP_PKG_PATH, dsn); 4503 4504 return opt_fw_filename; 4505 } 4506 4507 /** 4508 * ice_request_fw - Device initialization routine 4509 * @pf: pointer to the PF instance 4510 */ 4511 static void ice_request_fw(struct ice_pf *pf) 4512 { 4513 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4514 const struct firmware *firmware = NULL; 4515 struct device *dev = ice_pf_to_dev(pf); 4516 int err = 0; 4517 4518 /* optional device-specific DDP (if present) overrides the default DDP 4519 * package file. kernel logs a debug message if the file doesn't exist, 4520 * and warning messages for other errors. 4521 */ 4522 if (opt_fw_filename) { 4523 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4524 if (err) { 4525 kfree(opt_fw_filename); 4526 goto dflt_pkg_load; 4527 } 4528 4529 /* request for firmware was successful. Download to device */ 4530 ice_load_pkg(firmware, pf); 4531 kfree(opt_fw_filename); 4532 release_firmware(firmware); 4533 return; 4534 } 4535 4536 dflt_pkg_load: 4537 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4538 if (err) { 4539 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4540 return; 4541 } 4542 4543 /* request for firmware was successful. Download to device */ 4544 ice_load_pkg(firmware, pf); 4545 release_firmware(firmware); 4546 } 4547 4548 /** 4549 * ice_print_wake_reason - show the wake up cause in the log 4550 * @pf: pointer to the PF struct 4551 */ 4552 static void ice_print_wake_reason(struct ice_pf *pf) 4553 { 4554 u32 wus = pf->wakeup_reason; 4555 const char *wake_str; 4556 4557 /* if no wake event, nothing to print */ 4558 if (!wus) 4559 return; 4560 4561 if (wus & PFPM_WUS_LNKC_M) 4562 wake_str = "Link\n"; 4563 else if (wus & PFPM_WUS_MAG_M) 4564 wake_str = "Magic Packet\n"; 4565 else if (wus & PFPM_WUS_MNG_M) 4566 wake_str = "Management\n"; 4567 else if (wus & PFPM_WUS_FW_RST_WK_M) 4568 wake_str = "Firmware Reset\n"; 4569 else 4570 wake_str = "Unknown\n"; 4571 4572 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4573 } 4574 4575 /** 4576 * ice_register_netdev - register netdev and devlink port 4577 * @pf: pointer to the PF struct 4578 */ 4579 static int ice_register_netdev(struct ice_pf *pf) 4580 { 4581 struct ice_vsi *vsi; 4582 int err = 0; 4583 4584 vsi = ice_get_main_vsi(pf); 4585 if (!vsi || !vsi->netdev) 4586 return -EIO; 4587 4588 err = ice_devlink_create_pf_port(pf); 4589 if (err) 4590 goto err_devlink_create; 4591 4592 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4593 err = register_netdev(vsi->netdev); 4594 if (err) 4595 goto err_register_netdev; 4596 4597 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4598 netif_carrier_off(vsi->netdev); 4599 netif_tx_stop_all_queues(vsi->netdev); 4600 4601 return 0; 4602 err_register_netdev: 4603 ice_devlink_destroy_pf_port(pf); 4604 err_devlink_create: 4605 free_netdev(vsi->netdev); 4606 vsi->netdev = NULL; 4607 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4608 return err; 4609 } 4610 4611 /** 4612 * ice_probe - Device initialization routine 4613 * @pdev: PCI device information struct 4614 * @ent: entry in ice_pci_tbl 4615 * 4616 * Returns 0 on success, negative on failure 4617 */ 4618 static int 4619 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4620 { 4621 struct device *dev = &pdev->dev; 4622 struct ice_pf *pf; 4623 struct ice_hw *hw; 4624 int i, err; 4625 4626 if (pdev->is_virtfn) { 4627 dev_err(dev, "can't probe a virtual function\n"); 4628 return -EINVAL; 4629 } 4630 4631 /* this driver uses devres, see 4632 * Documentation/driver-api/driver-model/devres.rst 4633 */ 4634 err = pcim_enable_device(pdev); 4635 if (err) 4636 return err; 4637 4638 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4639 if (err) { 4640 dev_err(dev, "BAR0 I/O map error %d\n", err); 4641 return err; 4642 } 4643 4644 pf = ice_allocate_pf(dev); 4645 if (!pf) 4646 return -ENOMEM; 4647 4648 /* initialize Auxiliary index to invalid value */ 4649 pf->aux_idx = -1; 4650 4651 /* set up for high or low DMA */ 4652 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4653 if (err) { 4654 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4655 return err; 4656 } 4657 4658 pci_enable_pcie_error_reporting(pdev); 4659 pci_set_master(pdev); 4660 4661 pf->pdev = pdev; 4662 pci_set_drvdata(pdev, pf); 4663 set_bit(ICE_DOWN, pf->state); 4664 /* Disable service task until DOWN bit is cleared */ 4665 set_bit(ICE_SERVICE_DIS, pf->state); 4666 4667 hw = &pf->hw; 4668 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4669 pci_save_state(pdev); 4670 4671 hw->back = pf; 4672 hw->vendor_id = pdev->vendor; 4673 hw->device_id = pdev->device; 4674 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4675 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4676 hw->subsystem_device_id = pdev->subsystem_device; 4677 hw->bus.device = PCI_SLOT(pdev->devfn); 4678 hw->bus.func = PCI_FUNC(pdev->devfn); 4679 ice_set_ctrlq_len(hw); 4680 4681 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4682 4683 #ifndef CONFIG_DYNAMIC_DEBUG 4684 if (debug < -1) 4685 hw->debug_mask = debug; 4686 #endif 4687 4688 err = ice_init_hw(hw); 4689 if (err) { 4690 dev_err(dev, "ice_init_hw failed: %d\n", err); 4691 err = -EIO; 4692 goto err_exit_unroll; 4693 } 4694 4695 ice_init_feature_support(pf); 4696 4697 ice_request_fw(pf); 4698 4699 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4700 * set in pf->state, which will cause ice_is_safe_mode to return 4701 * true 4702 */ 4703 if (ice_is_safe_mode(pf)) { 4704 /* we already got function/device capabilities but these don't 4705 * reflect what the driver needs to do in safe mode. Instead of 4706 * adding conditional logic everywhere to ignore these 4707 * device/function capabilities, override them. 4708 */ 4709 ice_set_safe_mode_caps(hw); 4710 } 4711 4712 err = ice_init_pf(pf); 4713 if (err) { 4714 dev_err(dev, "ice_init_pf failed: %d\n", err); 4715 goto err_init_pf_unroll; 4716 } 4717 4718 ice_devlink_init_regions(pf); 4719 4720 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4721 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4722 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4723 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4724 i = 0; 4725 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4726 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4727 pf->hw.tnl.valid_count[TNL_VXLAN]; 4728 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4729 UDP_TUNNEL_TYPE_VXLAN; 4730 i++; 4731 } 4732 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4733 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4734 pf->hw.tnl.valid_count[TNL_GENEVE]; 4735 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4736 UDP_TUNNEL_TYPE_GENEVE; 4737 i++; 4738 } 4739 4740 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4741 if (!pf->num_alloc_vsi) { 4742 err = -EIO; 4743 goto err_init_pf_unroll; 4744 } 4745 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4746 dev_warn(&pf->pdev->dev, 4747 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4748 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4749 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4750 } 4751 4752 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4753 GFP_KERNEL); 4754 if (!pf->vsi) { 4755 err = -ENOMEM; 4756 goto err_init_pf_unroll; 4757 } 4758 4759 err = ice_init_interrupt_scheme(pf); 4760 if (err) { 4761 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4762 err = -EIO; 4763 goto err_init_vsi_unroll; 4764 } 4765 4766 /* In case of MSIX we are going to setup the misc vector right here 4767 * to handle admin queue events etc. In case of legacy and MSI 4768 * the misc functionality and queue processing is combined in 4769 * the same vector and that gets setup at open. 4770 */ 4771 err = ice_req_irq_msix_misc(pf); 4772 if (err) { 4773 dev_err(dev, "setup of misc vector failed: %d\n", err); 4774 goto err_init_interrupt_unroll; 4775 } 4776 4777 /* create switch struct for the switch element created by FW on boot */ 4778 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4779 if (!pf->first_sw) { 4780 err = -ENOMEM; 4781 goto err_msix_misc_unroll; 4782 } 4783 4784 if (hw->evb_veb) 4785 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4786 else 4787 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4788 4789 pf->first_sw->pf = pf; 4790 4791 /* record the sw_id available for later use */ 4792 pf->first_sw->sw_id = hw->port_info->sw_id; 4793 4794 err = ice_setup_pf_sw(pf); 4795 if (err) { 4796 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4797 goto err_alloc_sw_unroll; 4798 } 4799 4800 clear_bit(ICE_SERVICE_DIS, pf->state); 4801 4802 /* tell the firmware we are up */ 4803 err = ice_send_version(pf); 4804 if (err) { 4805 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4806 UTS_RELEASE, err); 4807 goto err_send_version_unroll; 4808 } 4809 4810 /* since everything is good, start the service timer */ 4811 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4812 4813 err = ice_init_link_events(pf->hw.port_info); 4814 if (err) { 4815 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4816 goto err_send_version_unroll; 4817 } 4818 4819 /* not a fatal error if this fails */ 4820 err = ice_init_nvm_phy_type(pf->hw.port_info); 4821 if (err) 4822 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4823 4824 /* not a fatal error if this fails */ 4825 err = ice_update_link_info(pf->hw.port_info); 4826 if (err) 4827 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4828 4829 ice_init_link_dflt_override(pf->hw.port_info); 4830 4831 ice_check_link_cfg_err(pf, 4832 pf->hw.port_info->phy.link_info.link_cfg_err); 4833 4834 /* if media available, initialize PHY settings */ 4835 if (pf->hw.port_info->phy.link_info.link_info & 4836 ICE_AQ_MEDIA_AVAILABLE) { 4837 /* not a fatal error if this fails */ 4838 err = ice_init_phy_user_cfg(pf->hw.port_info); 4839 if (err) 4840 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4841 4842 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4843 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4844 4845 if (vsi) 4846 ice_configure_phy(vsi); 4847 } 4848 } else { 4849 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4850 } 4851 4852 ice_verify_cacheline_size(pf); 4853 4854 /* Save wakeup reason register for later use */ 4855 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4856 4857 /* check for a power management event */ 4858 ice_print_wake_reason(pf); 4859 4860 /* clear wake status, all bits */ 4861 wr32(hw, PFPM_WUS, U32_MAX); 4862 4863 /* Disable WoL at init, wait for user to enable */ 4864 device_set_wakeup_enable(dev, false); 4865 4866 if (ice_is_safe_mode(pf)) { 4867 ice_set_safe_mode_vlan_cfg(pf); 4868 goto probe_done; 4869 } 4870 4871 /* initialize DDP driven features */ 4872 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4873 ice_ptp_init(pf); 4874 4875 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4876 ice_gnss_init(pf); 4877 4878 /* Note: Flow director init failure is non-fatal to load */ 4879 if (ice_init_fdir(pf)) 4880 dev_err(dev, "could not initialize flow director\n"); 4881 4882 /* Note: DCB init failure is non-fatal to load */ 4883 if (ice_init_pf_dcb(pf, false)) { 4884 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4885 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4886 } else { 4887 ice_cfg_lldp_mib_change(&pf->hw, true); 4888 } 4889 4890 if (ice_init_lag(pf)) 4891 dev_warn(dev, "Failed to init link aggregation support\n"); 4892 4893 /* print PCI link speed and width */ 4894 pcie_print_link_status(pf->pdev); 4895 4896 probe_done: 4897 err = ice_register_netdev(pf); 4898 if (err) 4899 goto err_netdev_reg; 4900 4901 err = ice_devlink_register_params(pf); 4902 if (err) 4903 goto err_netdev_reg; 4904 4905 /* ready to go, so clear down state bit */ 4906 clear_bit(ICE_DOWN, pf->state); 4907 if (ice_is_rdma_ena(pf)) { 4908 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4909 if (pf->aux_idx < 0) { 4910 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4911 err = -ENOMEM; 4912 goto err_devlink_reg_param; 4913 } 4914 4915 err = ice_init_rdma(pf); 4916 if (err) { 4917 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4918 err = -EIO; 4919 goto err_init_aux_unroll; 4920 } 4921 } else { 4922 dev_warn(dev, "RDMA is not supported on this device\n"); 4923 } 4924 4925 ice_devlink_register(pf); 4926 return 0; 4927 4928 err_init_aux_unroll: 4929 pf->adev = NULL; 4930 ida_free(&ice_aux_ida, pf->aux_idx); 4931 err_devlink_reg_param: 4932 ice_devlink_unregister_params(pf); 4933 err_netdev_reg: 4934 err_send_version_unroll: 4935 ice_vsi_release_all(pf); 4936 err_alloc_sw_unroll: 4937 set_bit(ICE_SERVICE_DIS, pf->state); 4938 set_bit(ICE_DOWN, pf->state); 4939 devm_kfree(dev, pf->first_sw); 4940 err_msix_misc_unroll: 4941 ice_free_irq_msix_misc(pf); 4942 err_init_interrupt_unroll: 4943 ice_clear_interrupt_scheme(pf); 4944 err_init_vsi_unroll: 4945 devm_kfree(dev, pf->vsi); 4946 err_init_pf_unroll: 4947 ice_deinit_pf(pf); 4948 ice_devlink_destroy_regions(pf); 4949 ice_deinit_hw(hw); 4950 err_exit_unroll: 4951 pci_disable_pcie_error_reporting(pdev); 4952 pci_disable_device(pdev); 4953 return err; 4954 } 4955 4956 /** 4957 * ice_set_wake - enable or disable Wake on LAN 4958 * @pf: pointer to the PF struct 4959 * 4960 * Simple helper for WoL control 4961 */ 4962 static void ice_set_wake(struct ice_pf *pf) 4963 { 4964 struct ice_hw *hw = &pf->hw; 4965 bool wol = pf->wol_ena; 4966 4967 /* clear wake state, otherwise new wake events won't fire */ 4968 wr32(hw, PFPM_WUS, U32_MAX); 4969 4970 /* enable / disable APM wake up, no RMW needed */ 4971 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4972 4973 /* set magic packet filter enabled */ 4974 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4975 } 4976 4977 /** 4978 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4979 * @pf: pointer to the PF struct 4980 * 4981 * Issue firmware command to enable multicast magic wake, making 4982 * sure that any locally administered address (LAA) is used for 4983 * wake, and that PF reset doesn't undo the LAA. 4984 */ 4985 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4986 { 4987 struct device *dev = ice_pf_to_dev(pf); 4988 struct ice_hw *hw = &pf->hw; 4989 u8 mac_addr[ETH_ALEN]; 4990 struct ice_vsi *vsi; 4991 int status; 4992 u8 flags; 4993 4994 if (!pf->wol_ena) 4995 return; 4996 4997 vsi = ice_get_main_vsi(pf); 4998 if (!vsi) 4999 return; 5000 5001 /* Get current MAC address in case it's an LAA */ 5002 if (vsi->netdev) 5003 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5004 else 5005 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5006 5007 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5008 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5009 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5010 5011 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5012 if (status) 5013 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5014 status, ice_aq_str(hw->adminq.sq_last_status)); 5015 } 5016 5017 /** 5018 * ice_remove - Device removal routine 5019 * @pdev: PCI device information struct 5020 */ 5021 static void ice_remove(struct pci_dev *pdev) 5022 { 5023 struct ice_pf *pf = pci_get_drvdata(pdev); 5024 int i; 5025 5026 ice_devlink_unregister(pf); 5027 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5028 if (!ice_is_reset_in_progress(pf->state)) 5029 break; 5030 msleep(100); 5031 } 5032 5033 ice_tc_indir_block_remove(pf); 5034 5035 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5036 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5037 ice_free_vfs(pf); 5038 } 5039 5040 ice_service_task_stop(pf); 5041 5042 ice_aq_cancel_waiting_tasks(pf); 5043 ice_unplug_aux_dev(pf); 5044 if (pf->aux_idx >= 0) 5045 ida_free(&ice_aux_ida, pf->aux_idx); 5046 ice_devlink_unregister_params(pf); 5047 set_bit(ICE_DOWN, pf->state); 5048 5049 ice_deinit_lag(pf); 5050 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5051 ice_ptp_release(pf); 5052 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5053 ice_gnss_exit(pf); 5054 if (!ice_is_safe_mode(pf)) 5055 ice_remove_arfs(pf); 5056 ice_setup_mc_magic_wake(pf); 5057 ice_vsi_release_all(pf); 5058 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5059 ice_set_wake(pf); 5060 ice_free_irq_msix_misc(pf); 5061 ice_for_each_vsi(pf, i) { 5062 if (!pf->vsi[i]) 5063 continue; 5064 ice_vsi_free_q_vectors(pf->vsi[i]); 5065 } 5066 ice_deinit_pf(pf); 5067 ice_devlink_destroy_regions(pf); 5068 ice_deinit_hw(&pf->hw); 5069 5070 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5071 * do it via ice_schedule_reset() since there is no need to rebuild 5072 * and the service task is already stopped. 5073 */ 5074 ice_reset(&pf->hw, ICE_RESET_PFR); 5075 pci_wait_for_pending_transaction(pdev); 5076 ice_clear_interrupt_scheme(pf); 5077 pci_disable_pcie_error_reporting(pdev); 5078 pci_disable_device(pdev); 5079 } 5080 5081 /** 5082 * ice_shutdown - PCI callback for shutting down device 5083 * @pdev: PCI device information struct 5084 */ 5085 static void ice_shutdown(struct pci_dev *pdev) 5086 { 5087 struct ice_pf *pf = pci_get_drvdata(pdev); 5088 5089 ice_remove(pdev); 5090 5091 if (system_state == SYSTEM_POWER_OFF) { 5092 pci_wake_from_d3(pdev, pf->wol_ena); 5093 pci_set_power_state(pdev, PCI_D3hot); 5094 } 5095 } 5096 5097 #ifdef CONFIG_PM 5098 /** 5099 * ice_prepare_for_shutdown - prep for PCI shutdown 5100 * @pf: board private structure 5101 * 5102 * Inform or close all dependent features in prep for PCI device shutdown 5103 */ 5104 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5105 { 5106 struct ice_hw *hw = &pf->hw; 5107 u32 v; 5108 5109 /* Notify VFs of impending reset */ 5110 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5111 ice_vc_notify_reset(pf); 5112 5113 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5114 5115 /* disable the VSIs and their queues that are not already DOWN */ 5116 ice_pf_dis_all_vsi(pf, false); 5117 5118 ice_for_each_vsi(pf, v) 5119 if (pf->vsi[v]) 5120 pf->vsi[v]->vsi_num = 0; 5121 5122 ice_shutdown_all_ctrlq(hw); 5123 } 5124 5125 /** 5126 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5127 * @pf: board private structure to reinitialize 5128 * 5129 * This routine reinitialize interrupt scheme that was cleared during 5130 * power management suspend callback. 5131 * 5132 * This should be called during resume routine to re-allocate the q_vectors 5133 * and reacquire interrupts. 5134 */ 5135 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5136 { 5137 struct device *dev = ice_pf_to_dev(pf); 5138 int ret, v; 5139 5140 /* Since we clear MSIX flag during suspend, we need to 5141 * set it back during resume... 5142 */ 5143 5144 ret = ice_init_interrupt_scheme(pf); 5145 if (ret) { 5146 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5147 return ret; 5148 } 5149 5150 /* Remap vectors and rings, after successful re-init interrupts */ 5151 ice_for_each_vsi(pf, v) { 5152 if (!pf->vsi[v]) 5153 continue; 5154 5155 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5156 if (ret) 5157 goto err_reinit; 5158 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5159 } 5160 5161 ret = ice_req_irq_msix_misc(pf); 5162 if (ret) { 5163 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5164 ret); 5165 goto err_reinit; 5166 } 5167 5168 return 0; 5169 5170 err_reinit: 5171 while (v--) 5172 if (pf->vsi[v]) 5173 ice_vsi_free_q_vectors(pf->vsi[v]); 5174 5175 return ret; 5176 } 5177 5178 /** 5179 * ice_suspend 5180 * @dev: generic device information structure 5181 * 5182 * Power Management callback to quiesce the device and prepare 5183 * for D3 transition. 5184 */ 5185 static int __maybe_unused ice_suspend(struct device *dev) 5186 { 5187 struct pci_dev *pdev = to_pci_dev(dev); 5188 struct ice_pf *pf; 5189 int disabled, v; 5190 5191 pf = pci_get_drvdata(pdev); 5192 5193 if (!ice_pf_state_is_nominal(pf)) { 5194 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5195 return -EBUSY; 5196 } 5197 5198 /* Stop watchdog tasks until resume completion. 5199 * Even though it is most likely that the service task is 5200 * disabled if the device is suspended or down, the service task's 5201 * state is controlled by a different state bit, and we should 5202 * store and honor whatever state that bit is in at this point. 5203 */ 5204 disabled = ice_service_task_stop(pf); 5205 5206 ice_unplug_aux_dev(pf); 5207 5208 /* Already suspended?, then there is nothing to do */ 5209 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5210 if (!disabled) 5211 ice_service_task_restart(pf); 5212 return 0; 5213 } 5214 5215 if (test_bit(ICE_DOWN, pf->state) || 5216 ice_is_reset_in_progress(pf->state)) { 5217 dev_err(dev, "can't suspend device in reset or already down\n"); 5218 if (!disabled) 5219 ice_service_task_restart(pf); 5220 return 0; 5221 } 5222 5223 ice_setup_mc_magic_wake(pf); 5224 5225 ice_prepare_for_shutdown(pf); 5226 5227 ice_set_wake(pf); 5228 5229 /* Free vectors, clear the interrupt scheme and release IRQs 5230 * for proper hibernation, especially with large number of CPUs. 5231 * Otherwise hibernation might fail when mapping all the vectors back 5232 * to CPU0. 5233 */ 5234 ice_free_irq_msix_misc(pf); 5235 ice_for_each_vsi(pf, v) { 5236 if (!pf->vsi[v]) 5237 continue; 5238 ice_vsi_free_q_vectors(pf->vsi[v]); 5239 } 5240 ice_clear_interrupt_scheme(pf); 5241 5242 pci_save_state(pdev); 5243 pci_wake_from_d3(pdev, pf->wol_ena); 5244 pci_set_power_state(pdev, PCI_D3hot); 5245 return 0; 5246 } 5247 5248 /** 5249 * ice_resume - PM callback for waking up from D3 5250 * @dev: generic device information structure 5251 */ 5252 static int __maybe_unused ice_resume(struct device *dev) 5253 { 5254 struct pci_dev *pdev = to_pci_dev(dev); 5255 enum ice_reset_req reset_type; 5256 struct ice_pf *pf; 5257 struct ice_hw *hw; 5258 int ret; 5259 5260 pci_set_power_state(pdev, PCI_D0); 5261 pci_restore_state(pdev); 5262 pci_save_state(pdev); 5263 5264 if (!pci_device_is_present(pdev)) 5265 return -ENODEV; 5266 5267 ret = pci_enable_device_mem(pdev); 5268 if (ret) { 5269 dev_err(dev, "Cannot enable device after suspend\n"); 5270 return ret; 5271 } 5272 5273 pf = pci_get_drvdata(pdev); 5274 hw = &pf->hw; 5275 5276 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5277 ice_print_wake_reason(pf); 5278 5279 /* We cleared the interrupt scheme when we suspended, so we need to 5280 * restore it now to resume device functionality. 5281 */ 5282 ret = ice_reinit_interrupt_scheme(pf); 5283 if (ret) 5284 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5285 5286 clear_bit(ICE_DOWN, pf->state); 5287 /* Now perform PF reset and rebuild */ 5288 reset_type = ICE_RESET_PFR; 5289 /* re-enable service task for reset, but allow reset to schedule it */ 5290 clear_bit(ICE_SERVICE_DIS, pf->state); 5291 5292 if (ice_schedule_reset(pf, reset_type)) 5293 dev_err(dev, "Reset during resume failed.\n"); 5294 5295 clear_bit(ICE_SUSPENDED, pf->state); 5296 ice_service_task_restart(pf); 5297 5298 /* Restart the service task */ 5299 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5300 5301 return 0; 5302 } 5303 #endif /* CONFIG_PM */ 5304 5305 /** 5306 * ice_pci_err_detected - warning that PCI error has been detected 5307 * @pdev: PCI device information struct 5308 * @err: the type of PCI error 5309 * 5310 * Called to warn that something happened on the PCI bus and the error handling 5311 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5312 */ 5313 static pci_ers_result_t 5314 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5315 { 5316 struct ice_pf *pf = pci_get_drvdata(pdev); 5317 5318 if (!pf) { 5319 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5320 __func__, err); 5321 return PCI_ERS_RESULT_DISCONNECT; 5322 } 5323 5324 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5325 ice_service_task_stop(pf); 5326 5327 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5328 set_bit(ICE_PFR_REQ, pf->state); 5329 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5330 } 5331 } 5332 5333 return PCI_ERS_RESULT_NEED_RESET; 5334 } 5335 5336 /** 5337 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5338 * @pdev: PCI device information struct 5339 * 5340 * Called to determine if the driver can recover from the PCI slot reset by 5341 * using a register read to determine if the device is recoverable. 5342 */ 5343 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5344 { 5345 struct ice_pf *pf = pci_get_drvdata(pdev); 5346 pci_ers_result_t result; 5347 int err; 5348 u32 reg; 5349 5350 err = pci_enable_device_mem(pdev); 5351 if (err) { 5352 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5353 err); 5354 result = PCI_ERS_RESULT_DISCONNECT; 5355 } else { 5356 pci_set_master(pdev); 5357 pci_restore_state(pdev); 5358 pci_save_state(pdev); 5359 pci_wake_from_d3(pdev, false); 5360 5361 /* Check for life */ 5362 reg = rd32(&pf->hw, GLGEN_RTRIG); 5363 if (!reg) 5364 result = PCI_ERS_RESULT_RECOVERED; 5365 else 5366 result = PCI_ERS_RESULT_DISCONNECT; 5367 } 5368 5369 return result; 5370 } 5371 5372 /** 5373 * ice_pci_err_resume - restart operations after PCI error recovery 5374 * @pdev: PCI device information struct 5375 * 5376 * Called to allow the driver to bring things back up after PCI error and/or 5377 * reset recovery have finished 5378 */ 5379 static void ice_pci_err_resume(struct pci_dev *pdev) 5380 { 5381 struct ice_pf *pf = pci_get_drvdata(pdev); 5382 5383 if (!pf) { 5384 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5385 __func__); 5386 return; 5387 } 5388 5389 if (test_bit(ICE_SUSPENDED, pf->state)) { 5390 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5391 __func__); 5392 return; 5393 } 5394 5395 ice_restore_all_vfs_msi_state(pdev); 5396 5397 ice_do_reset(pf, ICE_RESET_PFR); 5398 ice_service_task_restart(pf); 5399 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5400 } 5401 5402 /** 5403 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5404 * @pdev: PCI device information struct 5405 */ 5406 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5407 { 5408 struct ice_pf *pf = pci_get_drvdata(pdev); 5409 5410 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5411 ice_service_task_stop(pf); 5412 5413 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5414 set_bit(ICE_PFR_REQ, pf->state); 5415 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5416 } 5417 } 5418 } 5419 5420 /** 5421 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5422 * @pdev: PCI device information struct 5423 */ 5424 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5425 { 5426 ice_pci_err_resume(pdev); 5427 } 5428 5429 /* ice_pci_tbl - PCI Device ID Table 5430 * 5431 * Wildcard entries (PCI_ANY_ID) should come last 5432 * Last entry must be all 0s 5433 * 5434 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5435 * Class, Class Mask, private data (not used) } 5436 */ 5437 static const struct pci_device_id ice_pci_tbl[] = { 5438 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5439 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5440 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5441 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5442 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5443 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5444 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5445 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5446 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5447 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5448 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5449 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5450 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5451 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5452 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5453 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5454 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5455 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5456 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5457 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5458 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5459 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5460 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5461 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5462 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5463 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5464 /* required last entry */ 5465 { 0, } 5466 }; 5467 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5468 5469 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5470 5471 static const struct pci_error_handlers ice_pci_err_handler = { 5472 .error_detected = ice_pci_err_detected, 5473 .slot_reset = ice_pci_err_slot_reset, 5474 .reset_prepare = ice_pci_err_reset_prepare, 5475 .reset_done = ice_pci_err_reset_done, 5476 .resume = ice_pci_err_resume 5477 }; 5478 5479 static struct pci_driver ice_driver = { 5480 .name = KBUILD_MODNAME, 5481 .id_table = ice_pci_tbl, 5482 .probe = ice_probe, 5483 .remove = ice_remove, 5484 #ifdef CONFIG_PM 5485 .driver.pm = &ice_pm_ops, 5486 #endif /* CONFIG_PM */ 5487 .shutdown = ice_shutdown, 5488 .sriov_configure = ice_sriov_configure, 5489 .err_handler = &ice_pci_err_handler 5490 }; 5491 5492 /** 5493 * ice_module_init - Driver registration routine 5494 * 5495 * ice_module_init is the first routine called when the driver is 5496 * loaded. All it does is register with the PCI subsystem. 5497 */ 5498 static int __init ice_module_init(void) 5499 { 5500 int status; 5501 5502 pr_info("%s\n", ice_driver_string); 5503 pr_info("%s\n", ice_copyright); 5504 5505 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5506 if (!ice_wq) { 5507 pr_err("Failed to create workqueue\n"); 5508 return -ENOMEM; 5509 } 5510 5511 status = pci_register_driver(&ice_driver); 5512 if (status) { 5513 pr_err("failed to register PCI driver, err %d\n", status); 5514 destroy_workqueue(ice_wq); 5515 } 5516 5517 return status; 5518 } 5519 module_init(ice_module_init); 5520 5521 /** 5522 * ice_module_exit - Driver exit cleanup routine 5523 * 5524 * ice_module_exit is called just before the driver is removed 5525 * from memory. 5526 */ 5527 static void __exit ice_module_exit(void) 5528 { 5529 pci_unregister_driver(&ice_driver); 5530 destroy_workqueue(ice_wq); 5531 pr_info("module unloaded\n"); 5532 } 5533 module_exit(ice_module_exit); 5534 5535 /** 5536 * ice_set_mac_address - NDO callback to set MAC address 5537 * @netdev: network interface device structure 5538 * @pi: pointer to an address structure 5539 * 5540 * Returns 0 on success, negative on failure 5541 */ 5542 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5543 { 5544 struct ice_netdev_priv *np = netdev_priv(netdev); 5545 struct ice_vsi *vsi = np->vsi; 5546 struct ice_pf *pf = vsi->back; 5547 struct ice_hw *hw = &pf->hw; 5548 struct sockaddr *addr = pi; 5549 u8 old_mac[ETH_ALEN]; 5550 u8 flags = 0; 5551 u8 *mac; 5552 int err; 5553 5554 mac = (u8 *)addr->sa_data; 5555 5556 if (!is_valid_ether_addr(mac)) 5557 return -EADDRNOTAVAIL; 5558 5559 if (ether_addr_equal(netdev->dev_addr, mac)) { 5560 netdev_dbg(netdev, "already using mac %pM\n", mac); 5561 return 0; 5562 } 5563 5564 if (test_bit(ICE_DOWN, pf->state) || 5565 ice_is_reset_in_progress(pf->state)) { 5566 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5567 mac); 5568 return -EBUSY; 5569 } 5570 5571 if (ice_chnl_dmac_fltr_cnt(pf)) { 5572 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5573 mac); 5574 return -EAGAIN; 5575 } 5576 5577 netif_addr_lock_bh(netdev); 5578 ether_addr_copy(old_mac, netdev->dev_addr); 5579 /* change the netdev's MAC address */ 5580 eth_hw_addr_set(netdev, mac); 5581 netif_addr_unlock_bh(netdev); 5582 5583 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5584 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5585 if (err && err != -ENOENT) { 5586 err = -EADDRNOTAVAIL; 5587 goto err_update_filters; 5588 } 5589 5590 /* Add filter for new MAC. If filter exists, return success */ 5591 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5592 if (err == -EEXIST) { 5593 /* Although this MAC filter is already present in hardware it's 5594 * possible in some cases (e.g. bonding) that dev_addr was 5595 * modified outside of the driver and needs to be restored back 5596 * to this value. 5597 */ 5598 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5599 5600 return 0; 5601 } else if (err) { 5602 /* error if the new filter addition failed */ 5603 err = -EADDRNOTAVAIL; 5604 } 5605 5606 err_update_filters: 5607 if (err) { 5608 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5609 mac); 5610 netif_addr_lock_bh(netdev); 5611 eth_hw_addr_set(netdev, old_mac); 5612 netif_addr_unlock_bh(netdev); 5613 return err; 5614 } 5615 5616 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5617 netdev->dev_addr); 5618 5619 /* write new MAC address to the firmware */ 5620 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5621 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5622 if (err) { 5623 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5624 mac, err); 5625 } 5626 return 0; 5627 } 5628 5629 /** 5630 * ice_set_rx_mode - NDO callback to set the netdev filters 5631 * @netdev: network interface device structure 5632 */ 5633 static void ice_set_rx_mode(struct net_device *netdev) 5634 { 5635 struct ice_netdev_priv *np = netdev_priv(netdev); 5636 struct ice_vsi *vsi = np->vsi; 5637 5638 if (!vsi) 5639 return; 5640 5641 /* Set the flags to synchronize filters 5642 * ndo_set_rx_mode may be triggered even without a change in netdev 5643 * flags 5644 */ 5645 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5646 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5647 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5648 5649 /* schedule our worker thread which will take care of 5650 * applying the new filter changes 5651 */ 5652 ice_service_task_schedule(vsi->back); 5653 } 5654 5655 /** 5656 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5657 * @netdev: network interface device structure 5658 * @queue_index: Queue ID 5659 * @maxrate: maximum bandwidth in Mbps 5660 */ 5661 static int 5662 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5663 { 5664 struct ice_netdev_priv *np = netdev_priv(netdev); 5665 struct ice_vsi *vsi = np->vsi; 5666 u16 q_handle; 5667 int status; 5668 u8 tc; 5669 5670 /* Validate maxrate requested is within permitted range */ 5671 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5672 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5673 maxrate, queue_index); 5674 return -EINVAL; 5675 } 5676 5677 q_handle = vsi->tx_rings[queue_index]->q_handle; 5678 tc = ice_dcb_get_tc(vsi, queue_index); 5679 5680 /* Set BW back to default, when user set maxrate to 0 */ 5681 if (!maxrate) 5682 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5683 q_handle, ICE_MAX_BW); 5684 else 5685 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5686 q_handle, ICE_MAX_BW, maxrate * 1000); 5687 if (status) 5688 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5689 status); 5690 5691 return status; 5692 } 5693 5694 /** 5695 * ice_fdb_add - add an entry to the hardware database 5696 * @ndm: the input from the stack 5697 * @tb: pointer to array of nladdr (unused) 5698 * @dev: the net device pointer 5699 * @addr: the MAC address entry being added 5700 * @vid: VLAN ID 5701 * @flags: instructions from stack about fdb operation 5702 * @extack: netlink extended ack 5703 */ 5704 static int 5705 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5706 struct net_device *dev, const unsigned char *addr, u16 vid, 5707 u16 flags, struct netlink_ext_ack __always_unused *extack) 5708 { 5709 int err; 5710 5711 if (vid) { 5712 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5713 return -EINVAL; 5714 } 5715 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5716 netdev_err(dev, "FDB only supports static addresses\n"); 5717 return -EINVAL; 5718 } 5719 5720 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5721 err = dev_uc_add_excl(dev, addr); 5722 else if (is_multicast_ether_addr(addr)) 5723 err = dev_mc_add_excl(dev, addr); 5724 else 5725 err = -EINVAL; 5726 5727 /* Only return duplicate errors if NLM_F_EXCL is set */ 5728 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5729 err = 0; 5730 5731 return err; 5732 } 5733 5734 /** 5735 * ice_fdb_del - delete an entry from the hardware database 5736 * @ndm: the input from the stack 5737 * @tb: pointer to array of nladdr (unused) 5738 * @dev: the net device pointer 5739 * @addr: the MAC address entry being added 5740 * @vid: VLAN ID 5741 * @extack: netlink extended ack 5742 */ 5743 static int 5744 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5745 struct net_device *dev, const unsigned char *addr, 5746 __always_unused u16 vid, struct netlink_ext_ack *extack) 5747 { 5748 int err; 5749 5750 if (ndm->ndm_state & NUD_PERMANENT) { 5751 netdev_err(dev, "FDB only supports static addresses\n"); 5752 return -EINVAL; 5753 } 5754 5755 if (is_unicast_ether_addr(addr)) 5756 err = dev_uc_del(dev, addr); 5757 else if (is_multicast_ether_addr(addr)) 5758 err = dev_mc_del(dev, addr); 5759 else 5760 err = -EINVAL; 5761 5762 return err; 5763 } 5764 5765 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5766 NETIF_F_HW_VLAN_CTAG_TX | \ 5767 NETIF_F_HW_VLAN_STAG_RX | \ 5768 NETIF_F_HW_VLAN_STAG_TX) 5769 5770 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5771 NETIF_F_HW_VLAN_STAG_RX) 5772 5773 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5774 NETIF_F_HW_VLAN_STAG_FILTER) 5775 5776 /** 5777 * ice_fix_features - fix the netdev features flags based on device limitations 5778 * @netdev: ptr to the netdev that flags are being fixed on 5779 * @features: features that need to be checked and possibly fixed 5780 * 5781 * Make sure any fixups are made to features in this callback. This enables the 5782 * driver to not have to check unsupported configurations throughout the driver 5783 * because that's the responsiblity of this callback. 5784 * 5785 * Single VLAN Mode (SVM) Supported Features: 5786 * NETIF_F_HW_VLAN_CTAG_FILTER 5787 * NETIF_F_HW_VLAN_CTAG_RX 5788 * NETIF_F_HW_VLAN_CTAG_TX 5789 * 5790 * Double VLAN Mode (DVM) Supported Features: 5791 * NETIF_F_HW_VLAN_CTAG_FILTER 5792 * NETIF_F_HW_VLAN_CTAG_RX 5793 * NETIF_F_HW_VLAN_CTAG_TX 5794 * 5795 * NETIF_F_HW_VLAN_STAG_FILTER 5796 * NETIF_HW_VLAN_STAG_RX 5797 * NETIF_HW_VLAN_STAG_TX 5798 * 5799 * Features that need fixing: 5800 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5801 * These are mutually exlusive as the VSI context cannot support multiple 5802 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5803 * is not done, then default to clearing the requested STAG offload 5804 * settings. 5805 * 5806 * All supported filtering has to be enabled or disabled together. For 5807 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5808 * together. If this is not done, then default to VLAN filtering disabled. 5809 * These are mutually exclusive as there is currently no way to 5810 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5811 * prune rules. 5812 */ 5813 static netdev_features_t 5814 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5815 { 5816 struct ice_netdev_priv *np = netdev_priv(netdev); 5817 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5818 bool cur_ctag, cur_stag, req_ctag, req_stag; 5819 5820 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5821 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5822 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5823 5824 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5825 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5826 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5827 5828 if (req_vlan_fltr != cur_vlan_fltr) { 5829 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5830 if (req_ctag && req_stag) { 5831 features |= NETIF_VLAN_FILTERING_FEATURES; 5832 } else if (!req_ctag && !req_stag) { 5833 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5834 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5835 (!cur_stag && req_stag && !cur_ctag)) { 5836 features |= NETIF_VLAN_FILTERING_FEATURES; 5837 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5838 } else if ((cur_ctag && !req_ctag && cur_stag) || 5839 (cur_stag && !req_stag && cur_ctag)) { 5840 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5841 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5842 } 5843 } else { 5844 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5845 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5846 5847 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5848 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5849 } 5850 } 5851 5852 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5853 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5854 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5855 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5856 NETIF_F_HW_VLAN_STAG_TX); 5857 } 5858 5859 if (!(netdev->features & NETIF_F_RXFCS) && 5860 (features & NETIF_F_RXFCS) && 5861 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5862 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5863 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5864 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5865 } 5866 5867 return features; 5868 } 5869 5870 /** 5871 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5872 * @vsi: PF's VSI 5873 * @features: features used to determine VLAN offload settings 5874 * 5875 * First, determine the vlan_ethertype based on the VLAN offload bits in 5876 * features. Then determine if stripping and insertion should be enabled or 5877 * disabled. Finally enable or disable VLAN stripping and insertion. 5878 */ 5879 static int 5880 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5881 { 5882 bool enable_stripping = true, enable_insertion = true; 5883 struct ice_vsi_vlan_ops *vlan_ops; 5884 int strip_err = 0, insert_err = 0; 5885 u16 vlan_ethertype = 0; 5886 5887 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5888 5889 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5890 vlan_ethertype = ETH_P_8021AD; 5891 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5892 vlan_ethertype = ETH_P_8021Q; 5893 5894 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5895 enable_stripping = false; 5896 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5897 enable_insertion = false; 5898 5899 if (enable_stripping) 5900 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5901 else 5902 strip_err = vlan_ops->dis_stripping(vsi); 5903 5904 if (enable_insertion) 5905 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5906 else 5907 insert_err = vlan_ops->dis_insertion(vsi); 5908 5909 if (strip_err || insert_err) 5910 return -EIO; 5911 5912 return 0; 5913 } 5914 5915 /** 5916 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5917 * @vsi: PF's VSI 5918 * @features: features used to determine VLAN filtering settings 5919 * 5920 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5921 * features. 5922 */ 5923 static int 5924 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5925 { 5926 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5927 int err = 0; 5928 5929 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5930 * if either bit is set 5931 */ 5932 if (features & 5933 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5934 err = vlan_ops->ena_rx_filtering(vsi); 5935 else 5936 err = vlan_ops->dis_rx_filtering(vsi); 5937 5938 return err; 5939 } 5940 5941 /** 5942 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5943 * @netdev: ptr to the netdev being adjusted 5944 * @features: the feature set that the stack is suggesting 5945 * 5946 * Only update VLAN settings if the requested_vlan_features are different than 5947 * the current_vlan_features. 5948 */ 5949 static int 5950 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5951 { 5952 netdev_features_t current_vlan_features, requested_vlan_features; 5953 struct ice_netdev_priv *np = netdev_priv(netdev); 5954 struct ice_vsi *vsi = np->vsi; 5955 int err; 5956 5957 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5958 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5959 if (current_vlan_features ^ requested_vlan_features) { 5960 if ((features & NETIF_F_RXFCS) && 5961 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 5962 dev_err(ice_pf_to_dev(vsi->back), 5963 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 5964 return -EIO; 5965 } 5966 5967 err = ice_set_vlan_offload_features(vsi, features); 5968 if (err) 5969 return err; 5970 } 5971 5972 current_vlan_features = netdev->features & 5973 NETIF_VLAN_FILTERING_FEATURES; 5974 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5975 if (current_vlan_features ^ requested_vlan_features) { 5976 err = ice_set_vlan_filtering_features(vsi, features); 5977 if (err) 5978 return err; 5979 } 5980 5981 return 0; 5982 } 5983 5984 /** 5985 * ice_set_loopback - turn on/off loopback mode on underlying PF 5986 * @vsi: ptr to VSI 5987 * @ena: flag to indicate the on/off setting 5988 */ 5989 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 5990 { 5991 bool if_running = netif_running(vsi->netdev); 5992 int ret; 5993 5994 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 5995 ret = ice_down(vsi); 5996 if (ret) { 5997 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 5998 return ret; 5999 } 6000 } 6001 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6002 if (ret) 6003 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6004 if (if_running) 6005 ret = ice_up(vsi); 6006 6007 return ret; 6008 } 6009 6010 /** 6011 * ice_set_features - set the netdev feature flags 6012 * @netdev: ptr to the netdev being adjusted 6013 * @features: the feature set that the stack is suggesting 6014 */ 6015 static int 6016 ice_set_features(struct net_device *netdev, netdev_features_t features) 6017 { 6018 netdev_features_t changed = netdev->features ^ features; 6019 struct ice_netdev_priv *np = netdev_priv(netdev); 6020 struct ice_vsi *vsi = np->vsi; 6021 struct ice_pf *pf = vsi->back; 6022 int ret = 0; 6023 6024 /* Don't set any netdev advanced features with device in Safe Mode */ 6025 if (ice_is_safe_mode(pf)) { 6026 dev_err(ice_pf_to_dev(pf), 6027 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6028 return ret; 6029 } 6030 6031 /* Do not change setting during reset */ 6032 if (ice_is_reset_in_progress(pf->state)) { 6033 dev_err(ice_pf_to_dev(pf), 6034 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6035 return -EBUSY; 6036 } 6037 6038 /* Multiple features can be changed in one call so keep features in 6039 * separate if/else statements to guarantee each feature is checked 6040 */ 6041 if (changed & NETIF_F_RXHASH) 6042 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6043 6044 ret = ice_set_vlan_features(netdev, features); 6045 if (ret) 6046 return ret; 6047 6048 /* Turn on receive of FCS aka CRC, and after setting this 6049 * flag the packet data will have the 4 byte CRC appended 6050 */ 6051 if (changed & NETIF_F_RXFCS) { 6052 if ((features & NETIF_F_RXFCS) && 6053 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6054 dev_err(ice_pf_to_dev(vsi->back), 6055 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6056 return -EIO; 6057 } 6058 6059 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6060 ret = ice_down_up(vsi); 6061 if (ret) 6062 return ret; 6063 } 6064 6065 if (changed & NETIF_F_NTUPLE) { 6066 bool ena = !!(features & NETIF_F_NTUPLE); 6067 6068 ice_vsi_manage_fdir(vsi, ena); 6069 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6070 } 6071 6072 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6073 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6074 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6075 return -EACCES; 6076 } 6077 6078 if (changed & NETIF_F_HW_TC) { 6079 bool ena = !!(features & NETIF_F_HW_TC); 6080 6081 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6082 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6083 } 6084 6085 if (changed & NETIF_F_LOOPBACK) 6086 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6087 6088 return ret; 6089 } 6090 6091 /** 6092 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6093 * @vsi: VSI to setup VLAN properties for 6094 */ 6095 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6096 { 6097 int err; 6098 6099 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6100 if (err) 6101 return err; 6102 6103 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6104 if (err) 6105 return err; 6106 6107 return ice_vsi_add_vlan_zero(vsi); 6108 } 6109 6110 /** 6111 * ice_vsi_cfg - Setup the VSI 6112 * @vsi: the VSI being configured 6113 * 6114 * Return 0 on success and negative value on error 6115 */ 6116 int ice_vsi_cfg(struct ice_vsi *vsi) 6117 { 6118 int err; 6119 6120 if (vsi->netdev) { 6121 ice_set_rx_mode(vsi->netdev); 6122 6123 if (vsi->type != ICE_VSI_LB) { 6124 err = ice_vsi_vlan_setup(vsi); 6125 6126 if (err) 6127 return err; 6128 } 6129 } 6130 ice_vsi_cfg_dcb_rings(vsi); 6131 6132 err = ice_vsi_cfg_lan_txqs(vsi); 6133 if (!err && ice_is_xdp_ena_vsi(vsi)) 6134 err = ice_vsi_cfg_xdp_txqs(vsi); 6135 if (!err) 6136 err = ice_vsi_cfg_rxqs(vsi); 6137 6138 return err; 6139 } 6140 6141 /* THEORY OF MODERATION: 6142 * The ice driver hardware works differently than the hardware that DIMLIB was 6143 * originally made for. ice hardware doesn't have packet count limits that 6144 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6145 * which is hard-coded to a limit of 250,000 ints/second. 6146 * If not using dynamic moderation, the INTRL value can be modified 6147 * by ethtool rx-usecs-high. 6148 */ 6149 struct ice_dim { 6150 /* the throttle rate for interrupts, basically worst case delay before 6151 * an initial interrupt fires, value is stored in microseconds. 6152 */ 6153 u16 itr; 6154 }; 6155 6156 /* Make a different profile for Rx that doesn't allow quite so aggressive 6157 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6158 * second. 6159 */ 6160 static const struct ice_dim rx_profile[] = { 6161 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6162 {8}, /* 125,000 ints/s */ 6163 {16}, /* 62,500 ints/s */ 6164 {62}, /* 16,129 ints/s */ 6165 {126} /* 7,936 ints/s */ 6166 }; 6167 6168 /* The transmit profile, which has the same sorts of values 6169 * as the previous struct 6170 */ 6171 static const struct ice_dim tx_profile[] = { 6172 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6173 {8}, /* 125,000 ints/s */ 6174 {40}, /* 16,125 ints/s */ 6175 {128}, /* 7,812 ints/s */ 6176 {256} /* 3,906 ints/s */ 6177 }; 6178 6179 static void ice_tx_dim_work(struct work_struct *work) 6180 { 6181 struct ice_ring_container *rc; 6182 struct dim *dim; 6183 u16 itr; 6184 6185 dim = container_of(work, struct dim, work); 6186 rc = (struct ice_ring_container *)dim->priv; 6187 6188 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6189 6190 /* look up the values in our local table */ 6191 itr = tx_profile[dim->profile_ix].itr; 6192 6193 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6194 ice_write_itr(rc, itr); 6195 6196 dim->state = DIM_START_MEASURE; 6197 } 6198 6199 static void ice_rx_dim_work(struct work_struct *work) 6200 { 6201 struct ice_ring_container *rc; 6202 struct dim *dim; 6203 u16 itr; 6204 6205 dim = container_of(work, struct dim, work); 6206 rc = (struct ice_ring_container *)dim->priv; 6207 6208 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6209 6210 /* look up the values in our local table */ 6211 itr = rx_profile[dim->profile_ix].itr; 6212 6213 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6214 ice_write_itr(rc, itr); 6215 6216 dim->state = DIM_START_MEASURE; 6217 } 6218 6219 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6220 6221 /** 6222 * ice_init_moderation - set up interrupt moderation 6223 * @q_vector: the vector containing rings to be configured 6224 * 6225 * Set up interrupt moderation registers, with the intent to do the right thing 6226 * when called from reset or from probe, and whether or not dynamic moderation 6227 * is enabled or not. Take special care to write all the registers in both 6228 * dynamic moderation mode or not in order to make sure hardware is in a known 6229 * state. 6230 */ 6231 static void ice_init_moderation(struct ice_q_vector *q_vector) 6232 { 6233 struct ice_ring_container *rc; 6234 bool tx_dynamic, rx_dynamic; 6235 6236 rc = &q_vector->tx; 6237 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6238 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6239 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6240 rc->dim.priv = rc; 6241 tx_dynamic = ITR_IS_DYNAMIC(rc); 6242 6243 /* set the initial TX ITR to match the above */ 6244 ice_write_itr(rc, tx_dynamic ? 6245 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6246 6247 rc = &q_vector->rx; 6248 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6249 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6250 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6251 rc->dim.priv = rc; 6252 rx_dynamic = ITR_IS_DYNAMIC(rc); 6253 6254 /* set the initial RX ITR to match the above */ 6255 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6256 rc->itr_setting); 6257 6258 ice_set_q_vector_intrl(q_vector); 6259 } 6260 6261 /** 6262 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6263 * @vsi: the VSI being configured 6264 */ 6265 static void ice_napi_enable_all(struct ice_vsi *vsi) 6266 { 6267 int q_idx; 6268 6269 if (!vsi->netdev) 6270 return; 6271 6272 ice_for_each_q_vector(vsi, q_idx) { 6273 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6274 6275 ice_init_moderation(q_vector); 6276 6277 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6278 napi_enable(&q_vector->napi); 6279 } 6280 } 6281 6282 /** 6283 * ice_up_complete - Finish the last steps of bringing up a connection 6284 * @vsi: The VSI being configured 6285 * 6286 * Return 0 on success and negative value on error 6287 */ 6288 static int ice_up_complete(struct ice_vsi *vsi) 6289 { 6290 struct ice_pf *pf = vsi->back; 6291 int err; 6292 6293 ice_vsi_cfg_msix(vsi); 6294 6295 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6296 * Tx queue group list was configured and the context bits were 6297 * programmed using ice_vsi_cfg_txqs 6298 */ 6299 err = ice_vsi_start_all_rx_rings(vsi); 6300 if (err) 6301 return err; 6302 6303 clear_bit(ICE_VSI_DOWN, vsi->state); 6304 ice_napi_enable_all(vsi); 6305 ice_vsi_ena_irq(vsi); 6306 6307 if (vsi->port_info && 6308 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6309 vsi->netdev) { 6310 ice_print_link_msg(vsi, true); 6311 netif_tx_start_all_queues(vsi->netdev); 6312 netif_carrier_on(vsi->netdev); 6313 if (!ice_is_e810(&pf->hw)) 6314 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6315 } 6316 6317 /* Perform an initial read of the statistics registers now to 6318 * set the baseline so counters are ready when interface is up 6319 */ 6320 ice_update_eth_stats(vsi); 6321 ice_service_task_schedule(pf); 6322 6323 return 0; 6324 } 6325 6326 /** 6327 * ice_up - Bring the connection back up after being down 6328 * @vsi: VSI being configured 6329 */ 6330 int ice_up(struct ice_vsi *vsi) 6331 { 6332 int err; 6333 6334 err = ice_vsi_cfg(vsi); 6335 if (!err) 6336 err = ice_up_complete(vsi); 6337 6338 return err; 6339 } 6340 6341 /** 6342 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6343 * @syncp: pointer to u64_stats_sync 6344 * @stats: stats that pkts and bytes count will be taken from 6345 * @pkts: packets stats counter 6346 * @bytes: bytes stats counter 6347 * 6348 * This function fetches stats from the ring considering the atomic operations 6349 * that needs to be performed to read u64 values in 32 bit machine. 6350 */ 6351 void 6352 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6353 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6354 { 6355 unsigned int start; 6356 6357 do { 6358 start = u64_stats_fetch_begin(syncp); 6359 *pkts = stats.pkts; 6360 *bytes = stats.bytes; 6361 } while (u64_stats_fetch_retry(syncp, start)); 6362 } 6363 6364 /** 6365 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6366 * @vsi: the VSI to be updated 6367 * @vsi_stats: the stats struct to be updated 6368 * @rings: rings to work on 6369 * @count: number of rings 6370 */ 6371 static void 6372 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6373 struct rtnl_link_stats64 *vsi_stats, 6374 struct ice_tx_ring **rings, u16 count) 6375 { 6376 u16 i; 6377 6378 for (i = 0; i < count; i++) { 6379 struct ice_tx_ring *ring; 6380 u64 pkts = 0, bytes = 0; 6381 6382 ring = READ_ONCE(rings[i]); 6383 if (!ring) 6384 continue; 6385 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6386 vsi_stats->tx_packets += pkts; 6387 vsi_stats->tx_bytes += bytes; 6388 vsi->tx_restart += ring->tx_stats.restart_q; 6389 vsi->tx_busy += ring->tx_stats.tx_busy; 6390 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6391 } 6392 } 6393 6394 /** 6395 * ice_update_vsi_ring_stats - Update VSI stats counters 6396 * @vsi: the VSI to be updated 6397 */ 6398 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6399 { 6400 struct rtnl_link_stats64 *vsi_stats; 6401 u64 pkts, bytes; 6402 int i; 6403 6404 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6405 if (!vsi_stats) 6406 return; 6407 6408 /* reset non-netdev (extended) stats */ 6409 vsi->tx_restart = 0; 6410 vsi->tx_busy = 0; 6411 vsi->tx_linearize = 0; 6412 vsi->rx_buf_failed = 0; 6413 vsi->rx_page_failed = 0; 6414 6415 rcu_read_lock(); 6416 6417 /* update Tx rings counters */ 6418 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6419 vsi->num_txq); 6420 6421 /* update Rx rings counters */ 6422 ice_for_each_rxq(vsi, i) { 6423 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6424 6425 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6426 vsi_stats->rx_packets += pkts; 6427 vsi_stats->rx_bytes += bytes; 6428 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6429 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6430 } 6431 6432 /* update XDP Tx rings counters */ 6433 if (ice_is_xdp_ena_vsi(vsi)) 6434 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6435 vsi->num_xdp_txq); 6436 6437 rcu_read_unlock(); 6438 6439 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6440 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6441 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6442 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6443 6444 kfree(vsi_stats); 6445 } 6446 6447 /** 6448 * ice_update_vsi_stats - Update VSI stats counters 6449 * @vsi: the VSI to be updated 6450 */ 6451 void ice_update_vsi_stats(struct ice_vsi *vsi) 6452 { 6453 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6454 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6455 struct ice_pf *pf = vsi->back; 6456 6457 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6458 test_bit(ICE_CFG_BUSY, pf->state)) 6459 return; 6460 6461 /* get stats as recorded by Tx/Rx rings */ 6462 ice_update_vsi_ring_stats(vsi); 6463 6464 /* get VSI stats as recorded by the hardware */ 6465 ice_update_eth_stats(vsi); 6466 6467 cur_ns->tx_errors = cur_es->tx_errors; 6468 cur_ns->rx_dropped = cur_es->rx_discards; 6469 cur_ns->tx_dropped = cur_es->tx_discards; 6470 cur_ns->multicast = cur_es->rx_multicast; 6471 6472 /* update some more netdev stats if this is main VSI */ 6473 if (vsi->type == ICE_VSI_PF) { 6474 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6475 cur_ns->rx_errors = pf->stats.crc_errors + 6476 pf->stats.illegal_bytes + 6477 pf->stats.rx_len_errors + 6478 pf->stats.rx_undersize + 6479 pf->hw_csum_rx_error + 6480 pf->stats.rx_jabber + 6481 pf->stats.rx_fragments + 6482 pf->stats.rx_oversize; 6483 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6484 /* record drops from the port level */ 6485 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6486 } 6487 } 6488 6489 /** 6490 * ice_update_pf_stats - Update PF port stats counters 6491 * @pf: PF whose stats needs to be updated 6492 */ 6493 void ice_update_pf_stats(struct ice_pf *pf) 6494 { 6495 struct ice_hw_port_stats *prev_ps, *cur_ps; 6496 struct ice_hw *hw = &pf->hw; 6497 u16 fd_ctr_base; 6498 u8 port; 6499 6500 port = hw->port_info->lport; 6501 prev_ps = &pf->stats_prev; 6502 cur_ps = &pf->stats; 6503 6504 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6505 &prev_ps->eth.rx_bytes, 6506 &cur_ps->eth.rx_bytes); 6507 6508 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6509 &prev_ps->eth.rx_unicast, 6510 &cur_ps->eth.rx_unicast); 6511 6512 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6513 &prev_ps->eth.rx_multicast, 6514 &cur_ps->eth.rx_multicast); 6515 6516 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6517 &prev_ps->eth.rx_broadcast, 6518 &cur_ps->eth.rx_broadcast); 6519 6520 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6521 &prev_ps->eth.rx_discards, 6522 &cur_ps->eth.rx_discards); 6523 6524 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6525 &prev_ps->eth.tx_bytes, 6526 &cur_ps->eth.tx_bytes); 6527 6528 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6529 &prev_ps->eth.tx_unicast, 6530 &cur_ps->eth.tx_unicast); 6531 6532 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6533 &prev_ps->eth.tx_multicast, 6534 &cur_ps->eth.tx_multicast); 6535 6536 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6537 &prev_ps->eth.tx_broadcast, 6538 &cur_ps->eth.tx_broadcast); 6539 6540 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6541 &prev_ps->tx_dropped_link_down, 6542 &cur_ps->tx_dropped_link_down); 6543 6544 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6545 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6546 6547 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6548 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6549 6550 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6551 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6552 6553 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6554 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6555 6556 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6557 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6558 6559 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6560 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6561 6562 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6563 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6564 6565 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6566 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6567 6568 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6569 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6570 6571 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6572 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6573 6574 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6575 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6576 6577 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6578 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6579 6580 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6581 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6582 6583 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6584 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6585 6586 fd_ctr_base = hw->fd_ctr_base; 6587 6588 ice_stat_update40(hw, 6589 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6590 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6591 &cur_ps->fd_sb_match); 6592 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6593 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6594 6595 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6596 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6597 6598 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6599 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6600 6601 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6602 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6603 6604 ice_update_dcb_stats(pf); 6605 6606 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6607 &prev_ps->crc_errors, &cur_ps->crc_errors); 6608 6609 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6610 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6611 6612 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6613 &prev_ps->mac_local_faults, 6614 &cur_ps->mac_local_faults); 6615 6616 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6617 &prev_ps->mac_remote_faults, 6618 &cur_ps->mac_remote_faults); 6619 6620 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6621 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6622 6623 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6624 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6625 6626 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6627 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6628 6629 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6630 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6631 6632 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6633 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6634 6635 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6636 6637 pf->stat_prev_loaded = true; 6638 } 6639 6640 /** 6641 * ice_get_stats64 - get statistics for network device structure 6642 * @netdev: network interface device structure 6643 * @stats: main device statistics structure 6644 */ 6645 static 6646 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6647 { 6648 struct ice_netdev_priv *np = netdev_priv(netdev); 6649 struct rtnl_link_stats64 *vsi_stats; 6650 struct ice_vsi *vsi = np->vsi; 6651 6652 vsi_stats = &vsi->net_stats; 6653 6654 if (!vsi->num_txq || !vsi->num_rxq) 6655 return; 6656 6657 /* netdev packet/byte stats come from ring counter. These are obtained 6658 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6659 * But, only call the update routine and read the registers if VSI is 6660 * not down. 6661 */ 6662 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6663 ice_update_vsi_ring_stats(vsi); 6664 stats->tx_packets = vsi_stats->tx_packets; 6665 stats->tx_bytes = vsi_stats->tx_bytes; 6666 stats->rx_packets = vsi_stats->rx_packets; 6667 stats->rx_bytes = vsi_stats->rx_bytes; 6668 6669 /* The rest of the stats can be read from the hardware but instead we 6670 * just return values that the watchdog task has already obtained from 6671 * the hardware. 6672 */ 6673 stats->multicast = vsi_stats->multicast; 6674 stats->tx_errors = vsi_stats->tx_errors; 6675 stats->tx_dropped = vsi_stats->tx_dropped; 6676 stats->rx_errors = vsi_stats->rx_errors; 6677 stats->rx_dropped = vsi_stats->rx_dropped; 6678 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6679 stats->rx_length_errors = vsi_stats->rx_length_errors; 6680 } 6681 6682 /** 6683 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6684 * @vsi: VSI having NAPI disabled 6685 */ 6686 static void ice_napi_disable_all(struct ice_vsi *vsi) 6687 { 6688 int q_idx; 6689 6690 if (!vsi->netdev) 6691 return; 6692 6693 ice_for_each_q_vector(vsi, q_idx) { 6694 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6695 6696 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6697 napi_disable(&q_vector->napi); 6698 6699 cancel_work_sync(&q_vector->tx.dim.work); 6700 cancel_work_sync(&q_vector->rx.dim.work); 6701 } 6702 } 6703 6704 /** 6705 * ice_down - Shutdown the connection 6706 * @vsi: The VSI being stopped 6707 * 6708 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6709 */ 6710 int ice_down(struct ice_vsi *vsi) 6711 { 6712 int i, tx_err, rx_err, vlan_err = 0; 6713 6714 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6715 6716 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6717 vlan_err = ice_vsi_del_vlan_zero(vsi); 6718 if (!ice_is_e810(&vsi->back->hw)) 6719 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6720 netif_carrier_off(vsi->netdev); 6721 netif_tx_disable(vsi->netdev); 6722 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6723 ice_eswitch_stop_all_tx_queues(vsi->back); 6724 } 6725 6726 ice_vsi_dis_irq(vsi); 6727 6728 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6729 if (tx_err) 6730 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6731 vsi->vsi_num, tx_err); 6732 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6733 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6734 if (tx_err) 6735 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6736 vsi->vsi_num, tx_err); 6737 } 6738 6739 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6740 if (rx_err) 6741 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6742 vsi->vsi_num, rx_err); 6743 6744 ice_napi_disable_all(vsi); 6745 6746 ice_for_each_txq(vsi, i) 6747 ice_clean_tx_ring(vsi->tx_rings[i]); 6748 6749 ice_for_each_rxq(vsi, i) 6750 ice_clean_rx_ring(vsi->rx_rings[i]); 6751 6752 if (tx_err || rx_err || vlan_err) { 6753 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6754 vsi->vsi_num, vsi->vsw->sw_id); 6755 return -EIO; 6756 } 6757 6758 return 0; 6759 } 6760 6761 /** 6762 * ice_down_up - shutdown the VSI connection and bring it up 6763 * @vsi: the VSI to be reconnected 6764 */ 6765 int ice_down_up(struct ice_vsi *vsi) 6766 { 6767 int ret; 6768 6769 /* if DOWN already set, nothing to do */ 6770 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6771 return 0; 6772 6773 ret = ice_down(vsi); 6774 if (ret) 6775 return ret; 6776 6777 ret = ice_up(vsi); 6778 if (ret) { 6779 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6780 return ret; 6781 } 6782 6783 return 0; 6784 } 6785 6786 /** 6787 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6788 * @vsi: VSI having resources allocated 6789 * 6790 * Return 0 on success, negative on failure 6791 */ 6792 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6793 { 6794 int i, err = 0; 6795 6796 if (!vsi->num_txq) { 6797 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6798 vsi->vsi_num); 6799 return -EINVAL; 6800 } 6801 6802 ice_for_each_txq(vsi, i) { 6803 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6804 6805 if (!ring) 6806 return -EINVAL; 6807 6808 if (vsi->netdev) 6809 ring->netdev = vsi->netdev; 6810 err = ice_setup_tx_ring(ring); 6811 if (err) 6812 break; 6813 } 6814 6815 return err; 6816 } 6817 6818 /** 6819 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6820 * @vsi: VSI having resources allocated 6821 * 6822 * Return 0 on success, negative on failure 6823 */ 6824 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6825 { 6826 int i, err = 0; 6827 6828 if (!vsi->num_rxq) { 6829 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6830 vsi->vsi_num); 6831 return -EINVAL; 6832 } 6833 6834 ice_for_each_rxq(vsi, i) { 6835 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6836 6837 if (!ring) 6838 return -EINVAL; 6839 6840 if (vsi->netdev) 6841 ring->netdev = vsi->netdev; 6842 err = ice_setup_rx_ring(ring); 6843 if (err) 6844 break; 6845 } 6846 6847 return err; 6848 } 6849 6850 /** 6851 * ice_vsi_open_ctrl - open control VSI for use 6852 * @vsi: the VSI to open 6853 * 6854 * Initialization of the Control VSI 6855 * 6856 * Returns 0 on success, negative value on error 6857 */ 6858 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6859 { 6860 char int_name[ICE_INT_NAME_STR_LEN]; 6861 struct ice_pf *pf = vsi->back; 6862 struct device *dev; 6863 int err; 6864 6865 dev = ice_pf_to_dev(pf); 6866 /* allocate descriptors */ 6867 err = ice_vsi_setup_tx_rings(vsi); 6868 if (err) 6869 goto err_setup_tx; 6870 6871 err = ice_vsi_setup_rx_rings(vsi); 6872 if (err) 6873 goto err_setup_rx; 6874 6875 err = ice_vsi_cfg(vsi); 6876 if (err) 6877 goto err_setup_rx; 6878 6879 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6880 dev_driver_string(dev), dev_name(dev)); 6881 err = ice_vsi_req_irq_msix(vsi, int_name); 6882 if (err) 6883 goto err_setup_rx; 6884 6885 ice_vsi_cfg_msix(vsi); 6886 6887 err = ice_vsi_start_all_rx_rings(vsi); 6888 if (err) 6889 goto err_up_complete; 6890 6891 clear_bit(ICE_VSI_DOWN, vsi->state); 6892 ice_vsi_ena_irq(vsi); 6893 6894 return 0; 6895 6896 err_up_complete: 6897 ice_down(vsi); 6898 err_setup_rx: 6899 ice_vsi_free_rx_rings(vsi); 6900 err_setup_tx: 6901 ice_vsi_free_tx_rings(vsi); 6902 6903 return err; 6904 } 6905 6906 /** 6907 * ice_vsi_open - Called when a network interface is made active 6908 * @vsi: the VSI to open 6909 * 6910 * Initialization of the VSI 6911 * 6912 * Returns 0 on success, negative value on error 6913 */ 6914 int ice_vsi_open(struct ice_vsi *vsi) 6915 { 6916 char int_name[ICE_INT_NAME_STR_LEN]; 6917 struct ice_pf *pf = vsi->back; 6918 int err; 6919 6920 /* allocate descriptors */ 6921 err = ice_vsi_setup_tx_rings(vsi); 6922 if (err) 6923 goto err_setup_tx; 6924 6925 err = ice_vsi_setup_rx_rings(vsi); 6926 if (err) 6927 goto err_setup_rx; 6928 6929 err = ice_vsi_cfg(vsi); 6930 if (err) 6931 goto err_setup_rx; 6932 6933 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6934 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6935 err = ice_vsi_req_irq_msix(vsi, int_name); 6936 if (err) 6937 goto err_setup_rx; 6938 6939 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 6940 6941 if (vsi->type == ICE_VSI_PF) { 6942 /* Notify the stack of the actual queue counts. */ 6943 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6944 if (err) 6945 goto err_set_qs; 6946 6947 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6948 if (err) 6949 goto err_set_qs; 6950 } 6951 6952 err = ice_up_complete(vsi); 6953 if (err) 6954 goto err_up_complete; 6955 6956 return 0; 6957 6958 err_up_complete: 6959 ice_down(vsi); 6960 err_set_qs: 6961 ice_vsi_free_irq(vsi); 6962 err_setup_rx: 6963 ice_vsi_free_rx_rings(vsi); 6964 err_setup_tx: 6965 ice_vsi_free_tx_rings(vsi); 6966 6967 return err; 6968 } 6969 6970 /** 6971 * ice_vsi_release_all - Delete all VSIs 6972 * @pf: PF from which all VSIs are being removed 6973 */ 6974 static void ice_vsi_release_all(struct ice_pf *pf) 6975 { 6976 int err, i; 6977 6978 if (!pf->vsi) 6979 return; 6980 6981 ice_for_each_vsi(pf, i) { 6982 if (!pf->vsi[i]) 6983 continue; 6984 6985 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6986 continue; 6987 6988 err = ice_vsi_release(pf->vsi[i]); 6989 if (err) 6990 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6991 i, err, pf->vsi[i]->vsi_num); 6992 } 6993 } 6994 6995 /** 6996 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6997 * @pf: pointer to the PF instance 6998 * @type: VSI type to rebuild 6999 * 7000 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7001 */ 7002 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7003 { 7004 struct device *dev = ice_pf_to_dev(pf); 7005 int i, err; 7006 7007 ice_for_each_vsi(pf, i) { 7008 struct ice_vsi *vsi = pf->vsi[i]; 7009 7010 if (!vsi || vsi->type != type) 7011 continue; 7012 7013 /* rebuild the VSI */ 7014 err = ice_vsi_rebuild(vsi, true); 7015 if (err) { 7016 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7017 err, vsi->idx, ice_vsi_type_str(type)); 7018 return err; 7019 } 7020 7021 /* replay filters for the VSI */ 7022 err = ice_replay_vsi(&pf->hw, vsi->idx); 7023 if (err) { 7024 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7025 err, vsi->idx, ice_vsi_type_str(type)); 7026 return err; 7027 } 7028 7029 /* Re-map HW VSI number, using VSI handle that has been 7030 * previously validated in ice_replay_vsi() call above 7031 */ 7032 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7033 7034 /* enable the VSI */ 7035 err = ice_ena_vsi(vsi, false); 7036 if (err) { 7037 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7038 err, vsi->idx, ice_vsi_type_str(type)); 7039 return err; 7040 } 7041 7042 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7043 ice_vsi_type_str(type)); 7044 } 7045 7046 return 0; 7047 } 7048 7049 /** 7050 * ice_update_pf_netdev_link - Update PF netdev link status 7051 * @pf: pointer to the PF instance 7052 */ 7053 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7054 { 7055 bool link_up; 7056 int i; 7057 7058 ice_for_each_vsi(pf, i) { 7059 struct ice_vsi *vsi = pf->vsi[i]; 7060 7061 if (!vsi || vsi->type != ICE_VSI_PF) 7062 return; 7063 7064 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7065 if (link_up) { 7066 netif_carrier_on(pf->vsi[i]->netdev); 7067 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7068 } else { 7069 netif_carrier_off(pf->vsi[i]->netdev); 7070 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7071 } 7072 } 7073 } 7074 7075 /** 7076 * ice_rebuild - rebuild after reset 7077 * @pf: PF to rebuild 7078 * @reset_type: type of reset 7079 * 7080 * Do not rebuild VF VSI in this flow because that is already handled via 7081 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7082 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7083 * to reset/rebuild all the VF VSI twice. 7084 */ 7085 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7086 { 7087 struct device *dev = ice_pf_to_dev(pf); 7088 struct ice_hw *hw = &pf->hw; 7089 bool dvm; 7090 int err; 7091 7092 if (test_bit(ICE_DOWN, pf->state)) 7093 goto clear_recovery; 7094 7095 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7096 7097 #define ICE_EMP_RESET_SLEEP_MS 5000 7098 if (reset_type == ICE_RESET_EMPR) { 7099 /* If an EMP reset has occurred, any previously pending flash 7100 * update will have completed. We no longer know whether or 7101 * not the NVM update EMP reset is restricted. 7102 */ 7103 pf->fw_emp_reset_disabled = false; 7104 7105 msleep(ICE_EMP_RESET_SLEEP_MS); 7106 } 7107 7108 err = ice_init_all_ctrlq(hw); 7109 if (err) { 7110 dev_err(dev, "control queues init failed %d\n", err); 7111 goto err_init_ctrlq; 7112 } 7113 7114 /* if DDP was previously loaded successfully */ 7115 if (!ice_is_safe_mode(pf)) { 7116 /* reload the SW DB of filter tables */ 7117 if (reset_type == ICE_RESET_PFR) 7118 ice_fill_blk_tbls(hw); 7119 else 7120 /* Reload DDP Package after CORER/GLOBR reset */ 7121 ice_load_pkg(NULL, pf); 7122 } 7123 7124 err = ice_clear_pf_cfg(hw); 7125 if (err) { 7126 dev_err(dev, "clear PF configuration failed %d\n", err); 7127 goto err_init_ctrlq; 7128 } 7129 7130 ice_clear_pxe_mode(hw); 7131 7132 err = ice_init_nvm(hw); 7133 if (err) { 7134 dev_err(dev, "ice_init_nvm failed %d\n", err); 7135 goto err_init_ctrlq; 7136 } 7137 7138 err = ice_get_caps(hw); 7139 if (err) { 7140 dev_err(dev, "ice_get_caps failed %d\n", err); 7141 goto err_init_ctrlq; 7142 } 7143 7144 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7145 if (err) { 7146 dev_err(dev, "set_mac_cfg failed %d\n", err); 7147 goto err_init_ctrlq; 7148 } 7149 7150 dvm = ice_is_dvm_ena(hw); 7151 7152 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7153 if (err) 7154 goto err_init_ctrlq; 7155 7156 err = ice_sched_init_port(hw->port_info); 7157 if (err) 7158 goto err_sched_init_port; 7159 7160 /* start misc vector */ 7161 err = ice_req_irq_msix_misc(pf); 7162 if (err) { 7163 dev_err(dev, "misc vector setup failed: %d\n", err); 7164 goto err_sched_init_port; 7165 } 7166 7167 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7168 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7169 if (!rd32(hw, PFQF_FD_SIZE)) { 7170 u16 unused, guar, b_effort; 7171 7172 guar = hw->func_caps.fd_fltr_guar; 7173 b_effort = hw->func_caps.fd_fltr_best_effort; 7174 7175 /* force guaranteed filter pool for PF */ 7176 ice_alloc_fd_guar_item(hw, &unused, guar); 7177 /* force shared filter pool for PF */ 7178 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7179 } 7180 } 7181 7182 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7183 ice_dcb_rebuild(pf); 7184 7185 /* If the PF previously had enabled PTP, PTP init needs to happen before 7186 * the VSI rebuild. If not, this causes the PTP link status events to 7187 * fail. 7188 */ 7189 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7190 ice_ptp_reset(pf); 7191 7192 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7193 ice_gnss_init(pf); 7194 7195 /* rebuild PF VSI */ 7196 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7197 if (err) { 7198 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7199 goto err_vsi_rebuild; 7200 } 7201 7202 /* configure PTP timestamping after VSI rebuild */ 7203 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7204 ice_ptp_cfg_timestamp(pf, false); 7205 7206 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7207 if (err) { 7208 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7209 goto err_vsi_rebuild; 7210 } 7211 7212 if (reset_type == ICE_RESET_PFR) { 7213 err = ice_rebuild_channels(pf); 7214 if (err) { 7215 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7216 err); 7217 goto err_vsi_rebuild; 7218 } 7219 } 7220 7221 /* If Flow Director is active */ 7222 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7223 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7224 if (err) { 7225 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7226 goto err_vsi_rebuild; 7227 } 7228 7229 /* replay HW Flow Director recipes */ 7230 if (hw->fdir_prof) 7231 ice_fdir_replay_flows(hw); 7232 7233 /* replay Flow Director filters */ 7234 ice_fdir_replay_fltrs(pf); 7235 7236 ice_rebuild_arfs(pf); 7237 } 7238 7239 ice_update_pf_netdev_link(pf); 7240 7241 /* tell the firmware we are up */ 7242 err = ice_send_version(pf); 7243 if (err) { 7244 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7245 err); 7246 goto err_vsi_rebuild; 7247 } 7248 7249 ice_replay_post(hw); 7250 7251 /* if we get here, reset flow is successful */ 7252 clear_bit(ICE_RESET_FAILED, pf->state); 7253 7254 ice_plug_aux_dev(pf); 7255 return; 7256 7257 err_vsi_rebuild: 7258 err_sched_init_port: 7259 ice_sched_cleanup_all(hw); 7260 err_init_ctrlq: 7261 ice_shutdown_all_ctrlq(hw); 7262 set_bit(ICE_RESET_FAILED, pf->state); 7263 clear_recovery: 7264 /* set this bit in PF state to control service task scheduling */ 7265 set_bit(ICE_NEEDS_RESTART, pf->state); 7266 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7267 } 7268 7269 /** 7270 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7271 * @vsi: Pointer to VSI structure 7272 */ 7273 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7274 { 7275 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7276 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7277 else 7278 return ICE_RXBUF_3072; 7279 } 7280 7281 /** 7282 * ice_change_mtu - NDO callback to change the MTU 7283 * @netdev: network interface device structure 7284 * @new_mtu: new value for maximum frame size 7285 * 7286 * Returns 0 on success, negative on failure 7287 */ 7288 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7289 { 7290 struct ice_netdev_priv *np = netdev_priv(netdev); 7291 struct ice_vsi *vsi = np->vsi; 7292 struct ice_pf *pf = vsi->back; 7293 u8 count = 0; 7294 int err = 0; 7295 7296 if (new_mtu == (int)netdev->mtu) { 7297 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7298 return 0; 7299 } 7300 7301 if (ice_is_xdp_ena_vsi(vsi)) { 7302 int frame_size = ice_max_xdp_frame_size(vsi); 7303 7304 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7305 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7306 frame_size - ICE_ETH_PKT_HDR_PAD); 7307 return -EINVAL; 7308 } 7309 } 7310 7311 /* if a reset is in progress, wait for some time for it to complete */ 7312 do { 7313 if (ice_is_reset_in_progress(pf->state)) { 7314 count++; 7315 usleep_range(1000, 2000); 7316 } else { 7317 break; 7318 } 7319 7320 } while (count < 100); 7321 7322 if (count == 100) { 7323 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7324 return -EBUSY; 7325 } 7326 7327 netdev->mtu = (unsigned int)new_mtu; 7328 7329 /* if VSI is up, bring it down and then back up */ 7330 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7331 err = ice_down(vsi); 7332 if (err) { 7333 netdev_err(netdev, "change MTU if_down err %d\n", err); 7334 return err; 7335 } 7336 7337 err = ice_up(vsi); 7338 if (err) { 7339 netdev_err(netdev, "change MTU if_up err %d\n", err); 7340 return err; 7341 } 7342 } 7343 7344 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7345 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7346 7347 return err; 7348 } 7349 7350 /** 7351 * ice_eth_ioctl - Access the hwtstamp interface 7352 * @netdev: network interface device structure 7353 * @ifr: interface request data 7354 * @cmd: ioctl command 7355 */ 7356 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7357 { 7358 struct ice_netdev_priv *np = netdev_priv(netdev); 7359 struct ice_pf *pf = np->vsi->back; 7360 7361 switch (cmd) { 7362 case SIOCGHWTSTAMP: 7363 return ice_ptp_get_ts_config(pf, ifr); 7364 case SIOCSHWTSTAMP: 7365 return ice_ptp_set_ts_config(pf, ifr); 7366 default: 7367 return -EOPNOTSUPP; 7368 } 7369 } 7370 7371 /** 7372 * ice_aq_str - convert AQ err code to a string 7373 * @aq_err: the AQ error code to convert 7374 */ 7375 const char *ice_aq_str(enum ice_aq_err aq_err) 7376 { 7377 switch (aq_err) { 7378 case ICE_AQ_RC_OK: 7379 return "OK"; 7380 case ICE_AQ_RC_EPERM: 7381 return "ICE_AQ_RC_EPERM"; 7382 case ICE_AQ_RC_ENOENT: 7383 return "ICE_AQ_RC_ENOENT"; 7384 case ICE_AQ_RC_ENOMEM: 7385 return "ICE_AQ_RC_ENOMEM"; 7386 case ICE_AQ_RC_EBUSY: 7387 return "ICE_AQ_RC_EBUSY"; 7388 case ICE_AQ_RC_EEXIST: 7389 return "ICE_AQ_RC_EEXIST"; 7390 case ICE_AQ_RC_EINVAL: 7391 return "ICE_AQ_RC_EINVAL"; 7392 case ICE_AQ_RC_ENOSPC: 7393 return "ICE_AQ_RC_ENOSPC"; 7394 case ICE_AQ_RC_ENOSYS: 7395 return "ICE_AQ_RC_ENOSYS"; 7396 case ICE_AQ_RC_EMODE: 7397 return "ICE_AQ_RC_EMODE"; 7398 case ICE_AQ_RC_ENOSEC: 7399 return "ICE_AQ_RC_ENOSEC"; 7400 case ICE_AQ_RC_EBADSIG: 7401 return "ICE_AQ_RC_EBADSIG"; 7402 case ICE_AQ_RC_ESVN: 7403 return "ICE_AQ_RC_ESVN"; 7404 case ICE_AQ_RC_EBADMAN: 7405 return "ICE_AQ_RC_EBADMAN"; 7406 case ICE_AQ_RC_EBADBUF: 7407 return "ICE_AQ_RC_EBADBUF"; 7408 } 7409 7410 return "ICE_AQ_RC_UNKNOWN"; 7411 } 7412 7413 /** 7414 * ice_set_rss_lut - Set RSS LUT 7415 * @vsi: Pointer to VSI structure 7416 * @lut: Lookup table 7417 * @lut_size: Lookup table size 7418 * 7419 * Returns 0 on success, negative on failure 7420 */ 7421 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7422 { 7423 struct ice_aq_get_set_rss_lut_params params = {}; 7424 struct ice_hw *hw = &vsi->back->hw; 7425 int status; 7426 7427 if (!lut) 7428 return -EINVAL; 7429 7430 params.vsi_handle = vsi->idx; 7431 params.lut_size = lut_size; 7432 params.lut_type = vsi->rss_lut_type; 7433 params.lut = lut; 7434 7435 status = ice_aq_set_rss_lut(hw, ¶ms); 7436 if (status) 7437 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7438 status, ice_aq_str(hw->adminq.sq_last_status)); 7439 7440 return status; 7441 } 7442 7443 /** 7444 * ice_set_rss_key - Set RSS key 7445 * @vsi: Pointer to the VSI structure 7446 * @seed: RSS hash seed 7447 * 7448 * Returns 0 on success, negative on failure 7449 */ 7450 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7451 { 7452 struct ice_hw *hw = &vsi->back->hw; 7453 int status; 7454 7455 if (!seed) 7456 return -EINVAL; 7457 7458 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7459 if (status) 7460 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7461 status, ice_aq_str(hw->adminq.sq_last_status)); 7462 7463 return status; 7464 } 7465 7466 /** 7467 * ice_get_rss_lut - Get RSS LUT 7468 * @vsi: Pointer to VSI structure 7469 * @lut: Buffer to store the lookup table entries 7470 * @lut_size: Size of buffer to store the lookup table entries 7471 * 7472 * Returns 0 on success, negative on failure 7473 */ 7474 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7475 { 7476 struct ice_aq_get_set_rss_lut_params params = {}; 7477 struct ice_hw *hw = &vsi->back->hw; 7478 int status; 7479 7480 if (!lut) 7481 return -EINVAL; 7482 7483 params.vsi_handle = vsi->idx; 7484 params.lut_size = lut_size; 7485 params.lut_type = vsi->rss_lut_type; 7486 params.lut = lut; 7487 7488 status = ice_aq_get_rss_lut(hw, ¶ms); 7489 if (status) 7490 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7491 status, ice_aq_str(hw->adminq.sq_last_status)); 7492 7493 return status; 7494 } 7495 7496 /** 7497 * ice_get_rss_key - Get RSS key 7498 * @vsi: Pointer to VSI structure 7499 * @seed: Buffer to store the key in 7500 * 7501 * Returns 0 on success, negative on failure 7502 */ 7503 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7504 { 7505 struct ice_hw *hw = &vsi->back->hw; 7506 int status; 7507 7508 if (!seed) 7509 return -EINVAL; 7510 7511 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7512 if (status) 7513 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7514 status, ice_aq_str(hw->adminq.sq_last_status)); 7515 7516 return status; 7517 } 7518 7519 /** 7520 * ice_bridge_getlink - Get the hardware bridge mode 7521 * @skb: skb buff 7522 * @pid: process ID 7523 * @seq: RTNL message seq 7524 * @dev: the netdev being configured 7525 * @filter_mask: filter mask passed in 7526 * @nlflags: netlink flags passed in 7527 * 7528 * Return the bridge mode (VEB/VEPA) 7529 */ 7530 static int 7531 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7532 struct net_device *dev, u32 filter_mask, int nlflags) 7533 { 7534 struct ice_netdev_priv *np = netdev_priv(dev); 7535 struct ice_vsi *vsi = np->vsi; 7536 struct ice_pf *pf = vsi->back; 7537 u16 bmode; 7538 7539 bmode = pf->first_sw->bridge_mode; 7540 7541 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7542 filter_mask, NULL); 7543 } 7544 7545 /** 7546 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7547 * @vsi: Pointer to VSI structure 7548 * @bmode: Hardware bridge mode (VEB/VEPA) 7549 * 7550 * Returns 0 on success, negative on failure 7551 */ 7552 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7553 { 7554 struct ice_aqc_vsi_props *vsi_props; 7555 struct ice_hw *hw = &vsi->back->hw; 7556 struct ice_vsi_ctx *ctxt; 7557 int ret; 7558 7559 vsi_props = &vsi->info; 7560 7561 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7562 if (!ctxt) 7563 return -ENOMEM; 7564 7565 ctxt->info = vsi->info; 7566 7567 if (bmode == BRIDGE_MODE_VEB) 7568 /* change from VEPA to VEB mode */ 7569 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7570 else 7571 /* change from VEB to VEPA mode */ 7572 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7573 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7574 7575 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7576 if (ret) { 7577 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7578 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7579 goto out; 7580 } 7581 /* Update sw flags for book keeping */ 7582 vsi_props->sw_flags = ctxt->info.sw_flags; 7583 7584 out: 7585 kfree(ctxt); 7586 return ret; 7587 } 7588 7589 /** 7590 * ice_bridge_setlink - Set the hardware bridge mode 7591 * @dev: the netdev being configured 7592 * @nlh: RTNL message 7593 * @flags: bridge setlink flags 7594 * @extack: netlink extended ack 7595 * 7596 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7597 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7598 * not already set for all VSIs connected to this switch. And also update the 7599 * unicast switch filter rules for the corresponding switch of the netdev. 7600 */ 7601 static int 7602 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7603 u16 __always_unused flags, 7604 struct netlink_ext_ack __always_unused *extack) 7605 { 7606 struct ice_netdev_priv *np = netdev_priv(dev); 7607 struct ice_pf *pf = np->vsi->back; 7608 struct nlattr *attr, *br_spec; 7609 struct ice_hw *hw = &pf->hw; 7610 struct ice_sw *pf_sw; 7611 int rem, v, err = 0; 7612 7613 pf_sw = pf->first_sw; 7614 /* find the attribute in the netlink message */ 7615 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7616 7617 nla_for_each_nested(attr, br_spec, rem) { 7618 __u16 mode; 7619 7620 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7621 continue; 7622 mode = nla_get_u16(attr); 7623 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7624 return -EINVAL; 7625 /* Continue if bridge mode is not being flipped */ 7626 if (mode == pf_sw->bridge_mode) 7627 continue; 7628 /* Iterates through the PF VSI list and update the loopback 7629 * mode of the VSI 7630 */ 7631 ice_for_each_vsi(pf, v) { 7632 if (!pf->vsi[v]) 7633 continue; 7634 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7635 if (err) 7636 return err; 7637 } 7638 7639 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7640 /* Update the unicast switch filter rules for the corresponding 7641 * switch of the netdev 7642 */ 7643 err = ice_update_sw_rule_bridge_mode(hw); 7644 if (err) { 7645 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7646 mode, err, 7647 ice_aq_str(hw->adminq.sq_last_status)); 7648 /* revert hw->evb_veb */ 7649 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7650 return err; 7651 } 7652 7653 pf_sw->bridge_mode = mode; 7654 } 7655 7656 return 0; 7657 } 7658 7659 /** 7660 * ice_tx_timeout - Respond to a Tx Hang 7661 * @netdev: network interface device structure 7662 * @txqueue: Tx queue 7663 */ 7664 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7665 { 7666 struct ice_netdev_priv *np = netdev_priv(netdev); 7667 struct ice_tx_ring *tx_ring = NULL; 7668 struct ice_vsi *vsi = np->vsi; 7669 struct ice_pf *pf = vsi->back; 7670 u32 i; 7671 7672 pf->tx_timeout_count++; 7673 7674 /* Check if PFC is enabled for the TC to which the queue belongs 7675 * to. If yes then Tx timeout is not caused by a hung queue, no 7676 * need to reset and rebuild 7677 */ 7678 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7679 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7680 txqueue); 7681 return; 7682 } 7683 7684 /* now that we have an index, find the tx_ring struct */ 7685 ice_for_each_txq(vsi, i) 7686 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7687 if (txqueue == vsi->tx_rings[i]->q_index) { 7688 tx_ring = vsi->tx_rings[i]; 7689 break; 7690 } 7691 7692 /* Reset recovery level if enough time has elapsed after last timeout. 7693 * Also ensure no new reset action happens before next timeout period. 7694 */ 7695 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7696 pf->tx_timeout_recovery_level = 1; 7697 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7698 netdev->watchdog_timeo))) 7699 return; 7700 7701 if (tx_ring) { 7702 struct ice_hw *hw = &pf->hw; 7703 u32 head, val = 0; 7704 7705 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7706 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7707 /* Read interrupt register */ 7708 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7709 7710 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7711 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7712 head, tx_ring->next_to_use, val); 7713 } 7714 7715 pf->tx_timeout_last_recovery = jiffies; 7716 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7717 pf->tx_timeout_recovery_level, txqueue); 7718 7719 switch (pf->tx_timeout_recovery_level) { 7720 case 1: 7721 set_bit(ICE_PFR_REQ, pf->state); 7722 break; 7723 case 2: 7724 set_bit(ICE_CORER_REQ, pf->state); 7725 break; 7726 case 3: 7727 set_bit(ICE_GLOBR_REQ, pf->state); 7728 break; 7729 default: 7730 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7731 set_bit(ICE_DOWN, pf->state); 7732 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7733 set_bit(ICE_SERVICE_DIS, pf->state); 7734 break; 7735 } 7736 7737 ice_service_task_schedule(pf); 7738 pf->tx_timeout_recovery_level++; 7739 } 7740 7741 /** 7742 * ice_setup_tc_cls_flower - flower classifier offloads 7743 * @np: net device to configure 7744 * @filter_dev: device on which filter is added 7745 * @cls_flower: offload data 7746 */ 7747 static int 7748 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7749 struct net_device *filter_dev, 7750 struct flow_cls_offload *cls_flower) 7751 { 7752 struct ice_vsi *vsi = np->vsi; 7753 7754 if (cls_flower->common.chain_index) 7755 return -EOPNOTSUPP; 7756 7757 switch (cls_flower->command) { 7758 case FLOW_CLS_REPLACE: 7759 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7760 case FLOW_CLS_DESTROY: 7761 return ice_del_cls_flower(vsi, cls_flower); 7762 default: 7763 return -EINVAL; 7764 } 7765 } 7766 7767 /** 7768 * ice_setup_tc_block_cb - callback handler registered for TC block 7769 * @type: TC SETUP type 7770 * @type_data: TC flower offload data that contains user input 7771 * @cb_priv: netdev private data 7772 */ 7773 static int 7774 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7775 { 7776 struct ice_netdev_priv *np = cb_priv; 7777 7778 switch (type) { 7779 case TC_SETUP_CLSFLOWER: 7780 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7781 type_data); 7782 default: 7783 return -EOPNOTSUPP; 7784 } 7785 } 7786 7787 /** 7788 * ice_validate_mqprio_qopt - Validate TCF input parameters 7789 * @vsi: Pointer to VSI 7790 * @mqprio_qopt: input parameters for mqprio queue configuration 7791 * 7792 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7793 * needed), and make sure user doesn't specify qcount and BW rate limit 7794 * for TCs, which are more than "num_tc" 7795 */ 7796 static int 7797 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7798 struct tc_mqprio_qopt_offload *mqprio_qopt) 7799 { 7800 u64 sum_max_rate = 0, sum_min_rate = 0; 7801 int non_power_of_2_qcount = 0; 7802 struct ice_pf *pf = vsi->back; 7803 int max_rss_q_cnt = 0; 7804 struct device *dev; 7805 int i, speed; 7806 u8 num_tc; 7807 7808 if (vsi->type != ICE_VSI_PF) 7809 return -EINVAL; 7810 7811 if (mqprio_qopt->qopt.offset[0] != 0 || 7812 mqprio_qopt->qopt.num_tc < 1 || 7813 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7814 return -EINVAL; 7815 7816 dev = ice_pf_to_dev(pf); 7817 vsi->ch_rss_size = 0; 7818 num_tc = mqprio_qopt->qopt.num_tc; 7819 7820 for (i = 0; num_tc; i++) { 7821 int qcount = mqprio_qopt->qopt.count[i]; 7822 u64 max_rate, min_rate, rem; 7823 7824 if (!qcount) 7825 return -EINVAL; 7826 7827 if (is_power_of_2(qcount)) { 7828 if (non_power_of_2_qcount && 7829 qcount > non_power_of_2_qcount) { 7830 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7831 qcount, non_power_of_2_qcount); 7832 return -EINVAL; 7833 } 7834 if (qcount > max_rss_q_cnt) 7835 max_rss_q_cnt = qcount; 7836 } else { 7837 if (non_power_of_2_qcount && 7838 qcount != non_power_of_2_qcount) { 7839 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7840 qcount, non_power_of_2_qcount); 7841 return -EINVAL; 7842 } 7843 if (qcount < max_rss_q_cnt) { 7844 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7845 qcount, max_rss_q_cnt); 7846 return -EINVAL; 7847 } 7848 max_rss_q_cnt = qcount; 7849 non_power_of_2_qcount = qcount; 7850 } 7851 7852 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7853 * converts the bandwidth rate limit into Bytes/s when 7854 * passing it down to the driver. So convert input bandwidth 7855 * from Bytes/s to Kbps 7856 */ 7857 max_rate = mqprio_qopt->max_rate[i]; 7858 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7859 sum_max_rate += max_rate; 7860 7861 /* min_rate is minimum guaranteed rate and it can't be zero */ 7862 min_rate = mqprio_qopt->min_rate[i]; 7863 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7864 sum_min_rate += min_rate; 7865 7866 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7867 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7868 min_rate, ICE_MIN_BW_LIMIT); 7869 return -EINVAL; 7870 } 7871 7872 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7873 if (rem) { 7874 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7875 i, ICE_MIN_BW_LIMIT); 7876 return -EINVAL; 7877 } 7878 7879 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7880 if (rem) { 7881 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7882 i, ICE_MIN_BW_LIMIT); 7883 return -EINVAL; 7884 } 7885 7886 /* min_rate can't be more than max_rate, except when max_rate 7887 * is zero (implies max_rate sought is max line rate). In such 7888 * a case min_rate can be more than max. 7889 */ 7890 if (max_rate && min_rate > max_rate) { 7891 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7892 min_rate, max_rate); 7893 return -EINVAL; 7894 } 7895 7896 if (i >= mqprio_qopt->qopt.num_tc - 1) 7897 break; 7898 if (mqprio_qopt->qopt.offset[i + 1] != 7899 (mqprio_qopt->qopt.offset[i] + qcount)) 7900 return -EINVAL; 7901 } 7902 if (vsi->num_rxq < 7903 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7904 return -EINVAL; 7905 if (vsi->num_txq < 7906 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7907 return -EINVAL; 7908 7909 speed = ice_get_link_speed_kbps(vsi); 7910 if (sum_max_rate && sum_max_rate > (u64)speed) { 7911 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7912 sum_max_rate, speed); 7913 return -EINVAL; 7914 } 7915 if (sum_min_rate && sum_min_rate > (u64)speed) { 7916 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7917 sum_min_rate, speed); 7918 return -EINVAL; 7919 } 7920 7921 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7922 vsi->ch_rss_size = max_rss_q_cnt; 7923 7924 return 0; 7925 } 7926 7927 /** 7928 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7929 * @pf: ptr to PF device 7930 * @vsi: ptr to VSI 7931 */ 7932 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7933 { 7934 struct device *dev = ice_pf_to_dev(pf); 7935 bool added = false; 7936 struct ice_hw *hw; 7937 int flow; 7938 7939 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7940 return -EINVAL; 7941 7942 hw = &pf->hw; 7943 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7944 struct ice_fd_hw_prof *prof; 7945 int tun, status; 7946 u64 entry_h; 7947 7948 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7949 hw->fdir_prof[flow]->cnt)) 7950 continue; 7951 7952 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7953 enum ice_flow_priority prio; 7954 u64 prof_id; 7955 7956 /* add this VSI to FDir profile for this flow */ 7957 prio = ICE_FLOW_PRIO_NORMAL; 7958 prof = hw->fdir_prof[flow]; 7959 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7960 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7961 prof->vsi_h[0], vsi->idx, 7962 prio, prof->fdir_seg[tun], 7963 &entry_h); 7964 if (status) { 7965 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7966 vsi->idx, flow); 7967 continue; 7968 } 7969 7970 prof->entry_h[prof->cnt][tun] = entry_h; 7971 } 7972 7973 /* store VSI for filter replay and delete */ 7974 prof->vsi_h[prof->cnt] = vsi->idx; 7975 prof->cnt++; 7976 7977 added = true; 7978 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7979 flow); 7980 } 7981 7982 if (!added) 7983 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7984 7985 return 0; 7986 } 7987 7988 /** 7989 * ice_add_channel - add a channel by adding VSI 7990 * @pf: ptr to PF device 7991 * @sw_id: underlying HW switching element ID 7992 * @ch: ptr to channel structure 7993 * 7994 * Add a channel (VSI) using add_vsi and queue_map 7995 */ 7996 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7997 { 7998 struct device *dev = ice_pf_to_dev(pf); 7999 struct ice_vsi *vsi; 8000 8001 if (ch->type != ICE_VSI_CHNL) { 8002 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8003 return -EINVAL; 8004 } 8005 8006 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8007 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8008 dev_err(dev, "create chnl VSI failure\n"); 8009 return -EINVAL; 8010 } 8011 8012 ice_add_vsi_to_fdir(pf, vsi); 8013 8014 ch->sw_id = sw_id; 8015 ch->vsi_num = vsi->vsi_num; 8016 ch->info.mapping_flags = vsi->info.mapping_flags; 8017 ch->ch_vsi = vsi; 8018 /* set the back pointer of channel for newly created VSI */ 8019 vsi->ch = ch; 8020 8021 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8022 sizeof(vsi->info.q_mapping)); 8023 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8024 sizeof(vsi->info.tc_mapping)); 8025 8026 return 0; 8027 } 8028 8029 /** 8030 * ice_chnl_cfg_res 8031 * @vsi: the VSI being setup 8032 * @ch: ptr to channel structure 8033 * 8034 * Configure channel specific resources such as rings, vector. 8035 */ 8036 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8037 { 8038 int i; 8039 8040 for (i = 0; i < ch->num_txq; i++) { 8041 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8042 struct ice_ring_container *rc; 8043 struct ice_tx_ring *tx_ring; 8044 struct ice_rx_ring *rx_ring; 8045 8046 tx_ring = vsi->tx_rings[ch->base_q + i]; 8047 rx_ring = vsi->rx_rings[ch->base_q + i]; 8048 if (!tx_ring || !rx_ring) 8049 continue; 8050 8051 /* setup ring being channel enabled */ 8052 tx_ring->ch = ch; 8053 rx_ring->ch = ch; 8054 8055 /* following code block sets up vector specific attributes */ 8056 tx_q_vector = tx_ring->q_vector; 8057 rx_q_vector = rx_ring->q_vector; 8058 if (!tx_q_vector && !rx_q_vector) 8059 continue; 8060 8061 if (tx_q_vector) { 8062 tx_q_vector->ch = ch; 8063 /* setup Tx and Rx ITR setting if DIM is off */ 8064 rc = &tx_q_vector->tx; 8065 if (!ITR_IS_DYNAMIC(rc)) 8066 ice_write_itr(rc, rc->itr_setting); 8067 } 8068 if (rx_q_vector) { 8069 rx_q_vector->ch = ch; 8070 /* setup Tx and Rx ITR setting if DIM is off */ 8071 rc = &rx_q_vector->rx; 8072 if (!ITR_IS_DYNAMIC(rc)) 8073 ice_write_itr(rc, rc->itr_setting); 8074 } 8075 } 8076 8077 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8078 * GLINT_ITR register would have written to perform in-context 8079 * update, hence perform flush 8080 */ 8081 if (ch->num_txq || ch->num_rxq) 8082 ice_flush(&vsi->back->hw); 8083 } 8084 8085 /** 8086 * ice_cfg_chnl_all_res - configure channel resources 8087 * @vsi: pte to main_vsi 8088 * @ch: ptr to channel structure 8089 * 8090 * This function configures channel specific resources such as flow-director 8091 * counter index, and other resources such as queues, vectors, ITR settings 8092 */ 8093 static void 8094 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8095 { 8096 /* configure channel (aka ADQ) resources such as queues, vectors, 8097 * ITR settings for channel specific vectors and anything else 8098 */ 8099 ice_chnl_cfg_res(vsi, ch); 8100 } 8101 8102 /** 8103 * ice_setup_hw_channel - setup new channel 8104 * @pf: ptr to PF device 8105 * @vsi: the VSI being setup 8106 * @ch: ptr to channel structure 8107 * @sw_id: underlying HW switching element ID 8108 * @type: type of channel to be created (VMDq2/VF) 8109 * 8110 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8111 * and configures Tx rings accordingly 8112 */ 8113 static int 8114 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8115 struct ice_channel *ch, u16 sw_id, u8 type) 8116 { 8117 struct device *dev = ice_pf_to_dev(pf); 8118 int ret; 8119 8120 ch->base_q = vsi->next_base_q; 8121 ch->type = type; 8122 8123 ret = ice_add_channel(pf, sw_id, ch); 8124 if (ret) { 8125 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8126 return ret; 8127 } 8128 8129 /* configure/setup ADQ specific resources */ 8130 ice_cfg_chnl_all_res(vsi, ch); 8131 8132 /* make sure to update the next_base_q so that subsequent channel's 8133 * (aka ADQ) VSI queue map is correct 8134 */ 8135 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8136 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8137 ch->num_rxq); 8138 8139 return 0; 8140 } 8141 8142 /** 8143 * ice_setup_channel - setup new channel using uplink element 8144 * @pf: ptr to PF device 8145 * @vsi: the VSI being setup 8146 * @ch: ptr to channel structure 8147 * 8148 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8149 * and uplink switching element 8150 */ 8151 static bool 8152 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8153 struct ice_channel *ch) 8154 { 8155 struct device *dev = ice_pf_to_dev(pf); 8156 u16 sw_id; 8157 int ret; 8158 8159 if (vsi->type != ICE_VSI_PF) { 8160 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8161 return false; 8162 } 8163 8164 sw_id = pf->first_sw->sw_id; 8165 8166 /* create channel (VSI) */ 8167 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8168 if (ret) { 8169 dev_err(dev, "failed to setup hw_channel\n"); 8170 return false; 8171 } 8172 dev_dbg(dev, "successfully created channel()\n"); 8173 8174 return ch->ch_vsi ? true : false; 8175 } 8176 8177 /** 8178 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8179 * @vsi: VSI to be configured 8180 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8181 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8182 */ 8183 static int 8184 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8185 { 8186 int err; 8187 8188 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8189 if (err) 8190 return err; 8191 8192 return ice_set_max_bw_limit(vsi, max_tx_rate); 8193 } 8194 8195 /** 8196 * ice_create_q_channel - function to create channel 8197 * @vsi: VSI to be configured 8198 * @ch: ptr to channel (it contains channel specific params) 8199 * 8200 * This function creates channel (VSI) using num_queues specified by user, 8201 * reconfigs RSS if needed. 8202 */ 8203 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8204 { 8205 struct ice_pf *pf = vsi->back; 8206 struct device *dev; 8207 8208 if (!ch) 8209 return -EINVAL; 8210 8211 dev = ice_pf_to_dev(pf); 8212 if (!ch->num_txq || !ch->num_rxq) { 8213 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8214 return -EINVAL; 8215 } 8216 8217 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8218 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8219 vsi->cnt_q_avail, ch->num_txq); 8220 return -EINVAL; 8221 } 8222 8223 if (!ice_setup_channel(pf, vsi, ch)) { 8224 dev_info(dev, "Failed to setup channel\n"); 8225 return -EINVAL; 8226 } 8227 /* configure BW rate limit */ 8228 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8229 int ret; 8230 8231 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8232 ch->min_tx_rate); 8233 if (ret) 8234 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8235 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8236 else 8237 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8238 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8239 } 8240 8241 vsi->cnt_q_avail -= ch->num_txq; 8242 8243 return 0; 8244 } 8245 8246 /** 8247 * ice_rem_all_chnl_fltrs - removes all channel filters 8248 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8249 * 8250 * Remove all advanced switch filters only if they are channel specific 8251 * tc-flower based filter 8252 */ 8253 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8254 { 8255 struct ice_tc_flower_fltr *fltr; 8256 struct hlist_node *node; 8257 8258 /* to remove all channel filters, iterate an ordered list of filters */ 8259 hlist_for_each_entry_safe(fltr, node, 8260 &pf->tc_flower_fltr_list, 8261 tc_flower_node) { 8262 struct ice_rule_query_data rule; 8263 int status; 8264 8265 /* for now process only channel specific filters */ 8266 if (!ice_is_chnl_fltr(fltr)) 8267 continue; 8268 8269 rule.rid = fltr->rid; 8270 rule.rule_id = fltr->rule_id; 8271 rule.vsi_handle = fltr->dest_vsi_handle; 8272 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8273 if (status) { 8274 if (status == -ENOENT) 8275 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8276 rule.rule_id); 8277 else 8278 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8279 status); 8280 } else if (fltr->dest_vsi) { 8281 /* update advanced switch filter count */ 8282 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8283 u32 flags = fltr->flags; 8284 8285 fltr->dest_vsi->num_chnl_fltr--; 8286 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8287 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8288 pf->num_dmac_chnl_fltrs--; 8289 } 8290 } 8291 8292 hlist_del(&fltr->tc_flower_node); 8293 kfree(fltr); 8294 } 8295 } 8296 8297 /** 8298 * ice_remove_q_channels - Remove queue channels for the TCs 8299 * @vsi: VSI to be configured 8300 * @rem_fltr: delete advanced switch filter or not 8301 * 8302 * Remove queue channels for the TCs 8303 */ 8304 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8305 { 8306 struct ice_channel *ch, *ch_tmp; 8307 struct ice_pf *pf = vsi->back; 8308 int i; 8309 8310 /* remove all tc-flower based filter if they are channel filters only */ 8311 if (rem_fltr) 8312 ice_rem_all_chnl_fltrs(pf); 8313 8314 /* remove ntuple filters since queue configuration is being changed */ 8315 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8316 struct ice_hw *hw = &pf->hw; 8317 8318 mutex_lock(&hw->fdir_fltr_lock); 8319 ice_fdir_del_all_fltrs(vsi); 8320 mutex_unlock(&hw->fdir_fltr_lock); 8321 } 8322 8323 /* perform cleanup for channels if they exist */ 8324 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8325 struct ice_vsi *ch_vsi; 8326 8327 list_del(&ch->list); 8328 ch_vsi = ch->ch_vsi; 8329 if (!ch_vsi) { 8330 kfree(ch); 8331 continue; 8332 } 8333 8334 /* Reset queue contexts */ 8335 for (i = 0; i < ch->num_rxq; i++) { 8336 struct ice_tx_ring *tx_ring; 8337 struct ice_rx_ring *rx_ring; 8338 8339 tx_ring = vsi->tx_rings[ch->base_q + i]; 8340 rx_ring = vsi->rx_rings[ch->base_q + i]; 8341 if (tx_ring) { 8342 tx_ring->ch = NULL; 8343 if (tx_ring->q_vector) 8344 tx_ring->q_vector->ch = NULL; 8345 } 8346 if (rx_ring) { 8347 rx_ring->ch = NULL; 8348 if (rx_ring->q_vector) 8349 rx_ring->q_vector->ch = NULL; 8350 } 8351 } 8352 8353 /* Release FD resources for the channel VSI */ 8354 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8355 8356 /* clear the VSI from scheduler tree */ 8357 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8358 8359 /* Delete VSI from FW */ 8360 ice_vsi_delete(ch->ch_vsi); 8361 8362 /* Delete VSI from PF and HW VSI arrays */ 8363 ice_vsi_clear(ch->ch_vsi); 8364 8365 /* free the channel */ 8366 kfree(ch); 8367 } 8368 8369 /* clear the channel VSI map which is stored in main VSI */ 8370 ice_for_each_chnl_tc(i) 8371 vsi->tc_map_vsi[i] = NULL; 8372 8373 /* reset main VSI's all TC information */ 8374 vsi->all_enatc = 0; 8375 vsi->all_numtc = 0; 8376 } 8377 8378 /** 8379 * ice_rebuild_channels - rebuild channel 8380 * @pf: ptr to PF 8381 * 8382 * Recreate channel VSIs and replay filters 8383 */ 8384 static int ice_rebuild_channels(struct ice_pf *pf) 8385 { 8386 struct device *dev = ice_pf_to_dev(pf); 8387 struct ice_vsi *main_vsi; 8388 bool rem_adv_fltr = true; 8389 struct ice_channel *ch; 8390 struct ice_vsi *vsi; 8391 int tc_idx = 1; 8392 int i, err; 8393 8394 main_vsi = ice_get_main_vsi(pf); 8395 if (!main_vsi) 8396 return 0; 8397 8398 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8399 main_vsi->old_numtc == 1) 8400 return 0; /* nothing to be done */ 8401 8402 /* reconfigure main VSI based on old value of TC and cached values 8403 * for MQPRIO opts 8404 */ 8405 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8406 if (err) { 8407 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8408 main_vsi->old_ena_tc, main_vsi->vsi_num); 8409 return err; 8410 } 8411 8412 /* rebuild ADQ VSIs */ 8413 ice_for_each_vsi(pf, i) { 8414 enum ice_vsi_type type; 8415 8416 vsi = pf->vsi[i]; 8417 if (!vsi || vsi->type != ICE_VSI_CHNL) 8418 continue; 8419 8420 type = vsi->type; 8421 8422 /* rebuild ADQ VSI */ 8423 err = ice_vsi_rebuild(vsi, true); 8424 if (err) { 8425 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8426 ice_vsi_type_str(type), vsi->idx, err); 8427 goto cleanup; 8428 } 8429 8430 /* Re-map HW VSI number, using VSI handle that has been 8431 * previously validated in ice_replay_vsi() call above 8432 */ 8433 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8434 8435 /* replay filters for the VSI */ 8436 err = ice_replay_vsi(&pf->hw, vsi->idx); 8437 if (err) { 8438 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8439 ice_vsi_type_str(type), err, vsi->idx); 8440 rem_adv_fltr = false; 8441 goto cleanup; 8442 } 8443 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8444 ice_vsi_type_str(type), vsi->idx); 8445 8446 /* store ADQ VSI at correct TC index in main VSI's 8447 * map of TC to VSI 8448 */ 8449 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8450 } 8451 8452 /* ADQ VSI(s) has been rebuilt successfully, so setup 8453 * channel for main VSI's Tx and Rx rings 8454 */ 8455 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8456 struct ice_vsi *ch_vsi; 8457 8458 ch_vsi = ch->ch_vsi; 8459 if (!ch_vsi) 8460 continue; 8461 8462 /* reconfig channel resources */ 8463 ice_cfg_chnl_all_res(main_vsi, ch); 8464 8465 /* replay BW rate limit if it is non-zero */ 8466 if (!ch->max_tx_rate && !ch->min_tx_rate) 8467 continue; 8468 8469 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8470 ch->min_tx_rate); 8471 if (err) 8472 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8473 err, ch->max_tx_rate, ch->min_tx_rate, 8474 ch_vsi->vsi_num); 8475 else 8476 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8477 ch->max_tx_rate, ch->min_tx_rate, 8478 ch_vsi->vsi_num); 8479 } 8480 8481 /* reconfig RSS for main VSI */ 8482 if (main_vsi->ch_rss_size) 8483 ice_vsi_cfg_rss_lut_key(main_vsi); 8484 8485 return 0; 8486 8487 cleanup: 8488 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8489 return err; 8490 } 8491 8492 /** 8493 * ice_create_q_channels - Add queue channel for the given TCs 8494 * @vsi: VSI to be configured 8495 * 8496 * Configures queue channel mapping to the given TCs 8497 */ 8498 static int ice_create_q_channels(struct ice_vsi *vsi) 8499 { 8500 struct ice_pf *pf = vsi->back; 8501 struct ice_channel *ch; 8502 int ret = 0, i; 8503 8504 ice_for_each_chnl_tc(i) { 8505 if (!(vsi->all_enatc & BIT(i))) 8506 continue; 8507 8508 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8509 if (!ch) { 8510 ret = -ENOMEM; 8511 goto err_free; 8512 } 8513 INIT_LIST_HEAD(&ch->list); 8514 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8515 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8516 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8517 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8518 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8519 8520 /* convert to Kbits/s */ 8521 if (ch->max_tx_rate) 8522 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8523 ICE_BW_KBPS_DIVISOR); 8524 if (ch->min_tx_rate) 8525 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8526 ICE_BW_KBPS_DIVISOR); 8527 8528 ret = ice_create_q_channel(vsi, ch); 8529 if (ret) { 8530 dev_err(ice_pf_to_dev(pf), 8531 "failed creating channel TC:%d\n", i); 8532 kfree(ch); 8533 goto err_free; 8534 } 8535 list_add_tail(&ch->list, &vsi->ch_list); 8536 vsi->tc_map_vsi[i] = ch->ch_vsi; 8537 dev_dbg(ice_pf_to_dev(pf), 8538 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8539 } 8540 return 0; 8541 8542 err_free: 8543 ice_remove_q_channels(vsi, false); 8544 8545 return ret; 8546 } 8547 8548 /** 8549 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8550 * @netdev: net device to configure 8551 * @type_data: TC offload data 8552 */ 8553 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8554 { 8555 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8556 struct ice_netdev_priv *np = netdev_priv(netdev); 8557 struct ice_vsi *vsi = np->vsi; 8558 struct ice_pf *pf = vsi->back; 8559 u16 mode, ena_tc_qdisc = 0; 8560 int cur_txq, cur_rxq; 8561 u8 hw = 0, num_tcf; 8562 struct device *dev; 8563 int ret, i; 8564 8565 dev = ice_pf_to_dev(pf); 8566 num_tcf = mqprio_qopt->qopt.num_tc; 8567 hw = mqprio_qopt->qopt.hw; 8568 mode = mqprio_qopt->mode; 8569 if (!hw) { 8570 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8571 vsi->ch_rss_size = 0; 8572 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8573 goto config_tcf; 8574 } 8575 8576 /* Generate queue region map for number of TCF requested */ 8577 for (i = 0; i < num_tcf; i++) 8578 ena_tc_qdisc |= BIT(i); 8579 8580 switch (mode) { 8581 case TC_MQPRIO_MODE_CHANNEL: 8582 8583 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8584 if (ret) { 8585 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8586 ret); 8587 return ret; 8588 } 8589 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8590 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8591 /* don't assume state of hw_tc_offload during driver load 8592 * and set the flag for TC flower filter if hw_tc_offload 8593 * already ON 8594 */ 8595 if (vsi->netdev->features & NETIF_F_HW_TC) 8596 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8597 break; 8598 default: 8599 return -EINVAL; 8600 } 8601 8602 config_tcf: 8603 8604 /* Requesting same TCF configuration as already enabled */ 8605 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8606 mode != TC_MQPRIO_MODE_CHANNEL) 8607 return 0; 8608 8609 /* Pause VSI queues */ 8610 ice_dis_vsi(vsi, true); 8611 8612 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8613 ice_remove_q_channels(vsi, true); 8614 8615 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8616 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8617 num_online_cpus()); 8618 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8619 num_online_cpus()); 8620 } else { 8621 /* logic to rebuild VSI, same like ethtool -L */ 8622 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8623 8624 for (i = 0; i < num_tcf; i++) { 8625 if (!(ena_tc_qdisc & BIT(i))) 8626 continue; 8627 8628 offset = vsi->mqprio_qopt.qopt.offset[i]; 8629 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8630 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8631 } 8632 vsi->req_txq = offset + qcount_tx; 8633 vsi->req_rxq = offset + qcount_rx; 8634 8635 /* store away original rss_size info, so that it gets reused 8636 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8637 * determine, what should be the rss_sizefor main VSI 8638 */ 8639 vsi->orig_rss_size = vsi->rss_size; 8640 } 8641 8642 /* save current values of Tx and Rx queues before calling VSI rebuild 8643 * for fallback option 8644 */ 8645 cur_txq = vsi->num_txq; 8646 cur_rxq = vsi->num_rxq; 8647 8648 /* proceed with rebuild main VSI using correct number of queues */ 8649 ret = ice_vsi_rebuild(vsi, false); 8650 if (ret) { 8651 /* fallback to current number of queues */ 8652 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8653 vsi->req_txq = cur_txq; 8654 vsi->req_rxq = cur_rxq; 8655 clear_bit(ICE_RESET_FAILED, pf->state); 8656 if (ice_vsi_rebuild(vsi, false)) { 8657 dev_err(dev, "Rebuild of main VSI failed again\n"); 8658 return ret; 8659 } 8660 } 8661 8662 vsi->all_numtc = num_tcf; 8663 vsi->all_enatc = ena_tc_qdisc; 8664 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8665 if (ret) { 8666 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8667 vsi->vsi_num); 8668 goto exit; 8669 } 8670 8671 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8672 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8673 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8674 8675 /* set TC0 rate limit if specified */ 8676 if (max_tx_rate || min_tx_rate) { 8677 /* convert to Kbits/s */ 8678 if (max_tx_rate) 8679 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8680 if (min_tx_rate) 8681 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8682 8683 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8684 if (!ret) { 8685 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8686 max_tx_rate, min_tx_rate, vsi->vsi_num); 8687 } else { 8688 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8689 max_tx_rate, min_tx_rate, vsi->vsi_num); 8690 goto exit; 8691 } 8692 } 8693 ret = ice_create_q_channels(vsi); 8694 if (ret) { 8695 netdev_err(netdev, "failed configuring queue channels\n"); 8696 goto exit; 8697 } else { 8698 netdev_dbg(netdev, "successfully configured channels\n"); 8699 } 8700 } 8701 8702 if (vsi->ch_rss_size) 8703 ice_vsi_cfg_rss_lut_key(vsi); 8704 8705 exit: 8706 /* if error, reset the all_numtc and all_enatc */ 8707 if (ret) { 8708 vsi->all_numtc = 0; 8709 vsi->all_enatc = 0; 8710 } 8711 /* resume VSI */ 8712 ice_ena_vsi(vsi, true); 8713 8714 return ret; 8715 } 8716 8717 static LIST_HEAD(ice_block_cb_list); 8718 8719 static int 8720 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8721 void *type_data) 8722 { 8723 struct ice_netdev_priv *np = netdev_priv(netdev); 8724 struct ice_pf *pf = np->vsi->back; 8725 int err; 8726 8727 switch (type) { 8728 case TC_SETUP_BLOCK: 8729 return flow_block_cb_setup_simple(type_data, 8730 &ice_block_cb_list, 8731 ice_setup_tc_block_cb, 8732 np, np, true); 8733 case TC_SETUP_QDISC_MQPRIO: 8734 /* setup traffic classifier for receive side */ 8735 mutex_lock(&pf->tc_mutex); 8736 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8737 mutex_unlock(&pf->tc_mutex); 8738 return err; 8739 default: 8740 return -EOPNOTSUPP; 8741 } 8742 return -EOPNOTSUPP; 8743 } 8744 8745 static struct ice_indr_block_priv * 8746 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8747 struct net_device *netdev) 8748 { 8749 struct ice_indr_block_priv *cb_priv; 8750 8751 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8752 if (!cb_priv->netdev) 8753 return NULL; 8754 if (cb_priv->netdev == netdev) 8755 return cb_priv; 8756 } 8757 return NULL; 8758 } 8759 8760 static int 8761 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8762 void *indr_priv) 8763 { 8764 struct ice_indr_block_priv *priv = indr_priv; 8765 struct ice_netdev_priv *np = priv->np; 8766 8767 switch (type) { 8768 case TC_SETUP_CLSFLOWER: 8769 return ice_setup_tc_cls_flower(np, priv->netdev, 8770 (struct flow_cls_offload *) 8771 type_data); 8772 default: 8773 return -EOPNOTSUPP; 8774 } 8775 } 8776 8777 static int 8778 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8779 struct ice_netdev_priv *np, 8780 struct flow_block_offload *f, void *data, 8781 void (*cleanup)(struct flow_block_cb *block_cb)) 8782 { 8783 struct ice_indr_block_priv *indr_priv; 8784 struct flow_block_cb *block_cb; 8785 8786 if (!ice_is_tunnel_supported(netdev) && 8787 !(is_vlan_dev(netdev) && 8788 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8789 return -EOPNOTSUPP; 8790 8791 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8792 return -EOPNOTSUPP; 8793 8794 switch (f->command) { 8795 case FLOW_BLOCK_BIND: 8796 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8797 if (indr_priv) 8798 return -EEXIST; 8799 8800 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8801 if (!indr_priv) 8802 return -ENOMEM; 8803 8804 indr_priv->netdev = netdev; 8805 indr_priv->np = np; 8806 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8807 8808 block_cb = 8809 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8810 indr_priv, indr_priv, 8811 ice_rep_indr_tc_block_unbind, 8812 f, netdev, sch, data, np, 8813 cleanup); 8814 8815 if (IS_ERR(block_cb)) { 8816 list_del(&indr_priv->list); 8817 kfree(indr_priv); 8818 return PTR_ERR(block_cb); 8819 } 8820 flow_block_cb_add(block_cb, f); 8821 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8822 break; 8823 case FLOW_BLOCK_UNBIND: 8824 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8825 if (!indr_priv) 8826 return -ENOENT; 8827 8828 block_cb = flow_block_cb_lookup(f->block, 8829 ice_indr_setup_block_cb, 8830 indr_priv); 8831 if (!block_cb) 8832 return -ENOENT; 8833 8834 flow_indr_block_cb_remove(block_cb, f); 8835 8836 list_del(&block_cb->driver_list); 8837 break; 8838 default: 8839 return -EOPNOTSUPP; 8840 } 8841 return 0; 8842 } 8843 8844 static int 8845 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8846 void *cb_priv, enum tc_setup_type type, void *type_data, 8847 void *data, 8848 void (*cleanup)(struct flow_block_cb *block_cb)) 8849 { 8850 switch (type) { 8851 case TC_SETUP_BLOCK: 8852 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8853 data, cleanup); 8854 8855 default: 8856 return -EOPNOTSUPP; 8857 } 8858 } 8859 8860 /** 8861 * ice_open - Called when a network interface becomes active 8862 * @netdev: network interface device structure 8863 * 8864 * The open entry point is called when a network interface is made 8865 * active by the system (IFF_UP). At this point all resources needed 8866 * for transmit and receive operations are allocated, the interrupt 8867 * handler is registered with the OS, the netdev watchdog is enabled, 8868 * and the stack is notified that the interface is ready. 8869 * 8870 * Returns 0 on success, negative value on failure 8871 */ 8872 int ice_open(struct net_device *netdev) 8873 { 8874 struct ice_netdev_priv *np = netdev_priv(netdev); 8875 struct ice_pf *pf = np->vsi->back; 8876 8877 if (ice_is_reset_in_progress(pf->state)) { 8878 netdev_err(netdev, "can't open net device while reset is in progress"); 8879 return -EBUSY; 8880 } 8881 8882 return ice_open_internal(netdev); 8883 } 8884 8885 /** 8886 * ice_open_internal - Called when a network interface becomes active 8887 * @netdev: network interface device structure 8888 * 8889 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8890 * handling routine 8891 * 8892 * Returns 0 on success, negative value on failure 8893 */ 8894 int ice_open_internal(struct net_device *netdev) 8895 { 8896 struct ice_netdev_priv *np = netdev_priv(netdev); 8897 struct ice_vsi *vsi = np->vsi; 8898 struct ice_pf *pf = vsi->back; 8899 struct ice_port_info *pi; 8900 int err; 8901 8902 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8903 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8904 return -EIO; 8905 } 8906 8907 netif_carrier_off(netdev); 8908 8909 pi = vsi->port_info; 8910 err = ice_update_link_info(pi); 8911 if (err) { 8912 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8913 return err; 8914 } 8915 8916 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8917 8918 /* Set PHY if there is media, otherwise, turn off PHY */ 8919 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8920 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8921 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8922 err = ice_init_phy_user_cfg(pi); 8923 if (err) { 8924 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8925 err); 8926 return err; 8927 } 8928 } 8929 8930 err = ice_configure_phy(vsi); 8931 if (err) { 8932 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8933 err); 8934 return err; 8935 } 8936 } else { 8937 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8938 ice_set_link(vsi, false); 8939 } 8940 8941 err = ice_vsi_open(vsi); 8942 if (err) 8943 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8944 vsi->vsi_num, vsi->vsw->sw_id); 8945 8946 /* Update existing tunnels information */ 8947 udp_tunnel_get_rx_info(netdev); 8948 8949 return err; 8950 } 8951 8952 /** 8953 * ice_stop - Disables a network interface 8954 * @netdev: network interface device structure 8955 * 8956 * The stop entry point is called when an interface is de-activated by the OS, 8957 * and the netdevice enters the DOWN state. The hardware is still under the 8958 * driver's control, but the netdev interface is disabled. 8959 * 8960 * Returns success only - not allowed to fail 8961 */ 8962 int ice_stop(struct net_device *netdev) 8963 { 8964 struct ice_netdev_priv *np = netdev_priv(netdev); 8965 struct ice_vsi *vsi = np->vsi; 8966 struct ice_pf *pf = vsi->back; 8967 8968 if (ice_is_reset_in_progress(pf->state)) { 8969 netdev_err(netdev, "can't stop net device while reset is in progress"); 8970 return -EBUSY; 8971 } 8972 8973 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 8974 int link_err = ice_force_phys_link_state(vsi, false); 8975 8976 if (link_err) { 8977 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 8978 vsi->vsi_num, link_err); 8979 return -EIO; 8980 } 8981 } 8982 8983 ice_vsi_close(vsi); 8984 8985 return 0; 8986 } 8987 8988 /** 8989 * ice_features_check - Validate encapsulated packet conforms to limits 8990 * @skb: skb buffer 8991 * @netdev: This port's netdev 8992 * @features: Offload features that the stack believes apply 8993 */ 8994 static netdev_features_t 8995 ice_features_check(struct sk_buff *skb, 8996 struct net_device __always_unused *netdev, 8997 netdev_features_t features) 8998 { 8999 bool gso = skb_is_gso(skb); 9000 size_t len; 9001 9002 /* No point in doing any of this if neither checksum nor GSO are 9003 * being requested for this frame. We can rule out both by just 9004 * checking for CHECKSUM_PARTIAL 9005 */ 9006 if (skb->ip_summed != CHECKSUM_PARTIAL) 9007 return features; 9008 9009 /* We cannot support GSO if the MSS is going to be less than 9010 * 64 bytes. If it is then we need to drop support for GSO. 9011 */ 9012 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9013 features &= ~NETIF_F_GSO_MASK; 9014 9015 len = skb_network_offset(skb); 9016 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9017 goto out_rm_features; 9018 9019 len = skb_network_header_len(skb); 9020 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9021 goto out_rm_features; 9022 9023 if (skb->encapsulation) { 9024 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9025 * the case of IPIP frames, the transport header pointer is 9026 * after the inner header! So check to make sure that this 9027 * is a GRE or UDP_TUNNEL frame before doing that math. 9028 */ 9029 if (gso && (skb_shinfo(skb)->gso_type & 9030 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9031 len = skb_inner_network_header(skb) - 9032 skb_transport_header(skb); 9033 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9034 goto out_rm_features; 9035 } 9036 9037 len = skb_inner_network_header_len(skb); 9038 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9039 goto out_rm_features; 9040 } 9041 9042 return features; 9043 out_rm_features: 9044 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9045 } 9046 9047 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9048 .ndo_open = ice_open, 9049 .ndo_stop = ice_stop, 9050 .ndo_start_xmit = ice_start_xmit, 9051 .ndo_set_mac_address = ice_set_mac_address, 9052 .ndo_validate_addr = eth_validate_addr, 9053 .ndo_change_mtu = ice_change_mtu, 9054 .ndo_get_stats64 = ice_get_stats64, 9055 .ndo_tx_timeout = ice_tx_timeout, 9056 .ndo_bpf = ice_xdp_safe_mode, 9057 }; 9058 9059 static const struct net_device_ops ice_netdev_ops = { 9060 .ndo_open = ice_open, 9061 .ndo_stop = ice_stop, 9062 .ndo_start_xmit = ice_start_xmit, 9063 .ndo_select_queue = ice_select_queue, 9064 .ndo_features_check = ice_features_check, 9065 .ndo_fix_features = ice_fix_features, 9066 .ndo_set_rx_mode = ice_set_rx_mode, 9067 .ndo_set_mac_address = ice_set_mac_address, 9068 .ndo_validate_addr = eth_validate_addr, 9069 .ndo_change_mtu = ice_change_mtu, 9070 .ndo_get_stats64 = ice_get_stats64, 9071 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9072 .ndo_eth_ioctl = ice_eth_ioctl, 9073 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9074 .ndo_set_vf_mac = ice_set_vf_mac, 9075 .ndo_get_vf_config = ice_get_vf_cfg, 9076 .ndo_set_vf_trust = ice_set_vf_trust, 9077 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9078 .ndo_set_vf_link_state = ice_set_vf_link_state, 9079 .ndo_get_vf_stats = ice_get_vf_stats, 9080 .ndo_set_vf_rate = ice_set_vf_bw, 9081 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9082 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9083 .ndo_setup_tc = ice_setup_tc, 9084 .ndo_set_features = ice_set_features, 9085 .ndo_bridge_getlink = ice_bridge_getlink, 9086 .ndo_bridge_setlink = ice_bridge_setlink, 9087 .ndo_fdb_add = ice_fdb_add, 9088 .ndo_fdb_del = ice_fdb_del, 9089 #ifdef CONFIG_RFS_ACCEL 9090 .ndo_rx_flow_steer = ice_rx_flow_steer, 9091 #endif 9092 .ndo_tx_timeout = ice_tx_timeout, 9093 .ndo_bpf = ice_xdp, 9094 .ndo_xdp_xmit = ice_xdp_xmit, 9095 .ndo_xsk_wakeup = ice_xsk_wakeup, 9096 }; 9097