1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 18 * ice tracepoint functions. This must be done exactly once across the 19 * ice driver. 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "ice_trace.h" 23 #include "ice_eswitch.h" 24 #include "ice_tc_lib.h" 25 #include "ice_vsi_vlan_ops.h" 26 #include <net/xdp_sock_drv.h> 27 28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 29 static const char ice_driver_string[] = DRV_SUMMARY; 30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 31 32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 35 36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 37 MODULE_DESCRIPTION(DRV_SUMMARY); 38 MODULE_LICENSE("GPL v2"); 39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 40 41 static int debug = -1; 42 module_param(debug, int, 0644); 43 #ifndef CONFIG_DYNAMIC_DEBUG 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 45 #else 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 47 #endif /* !CONFIG_DYNAMIC_DEBUG */ 48 49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 50 EXPORT_SYMBOL(ice_xdp_locking_key); 51 52 /** 53 * ice_hw_to_dev - Get device pointer from the hardware structure 54 * @hw: pointer to the device HW structure 55 * 56 * Used to access the device pointer from compilation units which can't easily 57 * include the definition of struct ice_pf without leading to circular header 58 * dependencies. 59 */ 60 struct device *ice_hw_to_dev(struct ice_hw *hw) 61 { 62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 63 64 return &pf->pdev->dev; 65 } 66 67 static struct workqueue_struct *ice_wq; 68 struct workqueue_struct *ice_lag_wq; 69 static const struct net_device_ops ice_netdev_safe_mode_ops; 70 static const struct net_device_ops ice_netdev_ops; 71 72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 73 74 static void ice_vsi_release_all(struct ice_pf *pf); 75 76 static int ice_rebuild_channels(struct ice_pf *pf); 77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 78 79 static int 80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 81 void *cb_priv, enum tc_setup_type type, void *type_data, 82 void *data, 83 void (*cleanup)(struct flow_block_cb *block_cb)); 84 85 bool netif_is_ice(const struct net_device *dev) 86 { 87 return dev && (dev->netdev_ops == &ice_netdev_ops); 88 } 89 90 /** 91 * ice_get_tx_pending - returns number of Tx descriptors not processed 92 * @ring: the ring of descriptors 93 */ 94 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 95 { 96 u16 head, tail; 97 98 head = ring->next_to_clean; 99 tail = ring->next_to_use; 100 101 if (head != tail) 102 return (head < tail) ? 103 tail - head : (tail + ring->count - head); 104 return 0; 105 } 106 107 /** 108 * ice_check_for_hang_subtask - check for and recover hung queues 109 * @pf: pointer to PF struct 110 */ 111 static void ice_check_for_hang_subtask(struct ice_pf *pf) 112 { 113 struct ice_vsi *vsi = NULL; 114 struct ice_hw *hw; 115 unsigned int i; 116 int packets; 117 u32 v; 118 119 ice_for_each_vsi(pf, v) 120 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 121 vsi = pf->vsi[v]; 122 break; 123 } 124 125 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 126 return; 127 128 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 129 return; 130 131 hw = &vsi->back->hw; 132 133 ice_for_each_txq(vsi, i) { 134 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 135 struct ice_ring_stats *ring_stats; 136 137 if (!tx_ring) 138 continue; 139 if (ice_ring_ch_enabled(tx_ring)) 140 continue; 141 142 ring_stats = tx_ring->ring_stats; 143 if (!ring_stats) 144 continue; 145 146 if (tx_ring->desc) { 147 /* If packet counter has not changed the queue is 148 * likely stalled, so force an interrupt for this 149 * queue. 150 * 151 * prev_pkt would be negative if there was no 152 * pending work. 153 */ 154 packets = ring_stats->stats.pkts & INT_MAX; 155 if (ring_stats->tx_stats.prev_pkt == packets) { 156 /* Trigger sw interrupt to revive the queue */ 157 ice_trigger_sw_intr(hw, tx_ring->q_vector); 158 continue; 159 } 160 161 /* Memory barrier between read of packet count and call 162 * to ice_get_tx_pending() 163 */ 164 smp_rmb(); 165 ring_stats->tx_stats.prev_pkt = 166 ice_get_tx_pending(tx_ring) ? packets : -1; 167 } 168 } 169 } 170 171 /** 172 * ice_init_mac_fltr - Set initial MAC filters 173 * @pf: board private structure 174 * 175 * Set initial set of MAC filters for PF VSI; configure filters for permanent 176 * address and broadcast address. If an error is encountered, netdevice will be 177 * unregistered. 178 */ 179 static int ice_init_mac_fltr(struct ice_pf *pf) 180 { 181 struct ice_vsi *vsi; 182 u8 *perm_addr; 183 184 vsi = ice_get_main_vsi(pf); 185 if (!vsi) 186 return -EINVAL; 187 188 perm_addr = vsi->port_info->mac.perm_addr; 189 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 190 } 191 192 /** 193 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 194 * @netdev: the net device on which the sync is happening 195 * @addr: MAC address to sync 196 * 197 * This is a callback function which is called by the in kernel device sync 198 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 199 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 200 * MAC filters from the hardware. 201 */ 202 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 203 { 204 struct ice_netdev_priv *np = netdev_priv(netdev); 205 struct ice_vsi *vsi = np->vsi; 206 207 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 208 ICE_FWD_TO_VSI)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 /** 215 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 216 * @netdev: the net device on which the unsync is happening 217 * @addr: MAC address to unsync 218 * 219 * This is a callback function which is called by the in kernel device unsync 220 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 221 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 222 * delete the MAC filters from the hardware. 223 */ 224 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 225 { 226 struct ice_netdev_priv *np = netdev_priv(netdev); 227 struct ice_vsi *vsi = np->vsi; 228 229 /* Under some circumstances, we might receive a request to delete our 230 * own device address from our uc list. Because we store the device 231 * address in the VSI's MAC filter list, we need to ignore such 232 * requests and not delete our device address from this list. 233 */ 234 if (ether_addr_equal(addr, netdev->dev_addr)) 235 return 0; 236 237 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 238 ICE_FWD_TO_VSI)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * ice_vsi_fltr_changed - check if filter state changed 246 * @vsi: VSI to be checked 247 * 248 * returns true if filter state has changed, false otherwise. 249 */ 250 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 251 { 252 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 253 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 254 } 255 256 /** 257 * ice_set_promisc - Enable promiscuous mode for a given PF 258 * @vsi: the VSI being configured 259 * @promisc_m: mask of promiscuous config bits 260 * 261 */ 262 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 263 { 264 int status; 265 266 if (vsi->type != ICE_VSI_PF) 267 return 0; 268 269 if (ice_vsi_has_non_zero_vlans(vsi)) { 270 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 271 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 272 promisc_m); 273 } else { 274 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 275 promisc_m, 0); 276 } 277 if (status && status != -EEXIST) 278 return status; 279 280 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 281 vsi->vsi_num, promisc_m); 282 return 0; 283 } 284 285 /** 286 * ice_clear_promisc - Disable promiscuous mode for a given PF 287 * @vsi: the VSI being configured 288 * @promisc_m: mask of promiscuous config bits 289 * 290 */ 291 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 292 { 293 int status; 294 295 if (vsi->type != ICE_VSI_PF) 296 return 0; 297 298 if (ice_vsi_has_non_zero_vlans(vsi)) { 299 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 300 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 301 promisc_m); 302 } else { 303 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 304 promisc_m, 0); 305 } 306 307 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 308 vsi->vsi_num, promisc_m); 309 return status; 310 } 311 312 /** 313 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 314 * @vsi: ptr to the VSI 315 * 316 * Push any outstanding VSI filter changes through the AdminQ. 317 */ 318 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 319 { 320 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 321 struct device *dev = ice_pf_to_dev(vsi->back); 322 struct net_device *netdev = vsi->netdev; 323 bool promisc_forced_on = false; 324 struct ice_pf *pf = vsi->back; 325 struct ice_hw *hw = &pf->hw; 326 u32 changed_flags = 0; 327 int err; 328 329 if (!vsi->netdev) 330 return -EINVAL; 331 332 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 333 usleep_range(1000, 2000); 334 335 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 336 vsi->current_netdev_flags = vsi->netdev->flags; 337 338 INIT_LIST_HEAD(&vsi->tmp_sync_list); 339 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 340 341 if (ice_vsi_fltr_changed(vsi)) { 342 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 343 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 344 345 /* grab the netdev's addr_list_lock */ 346 netif_addr_lock_bh(netdev); 347 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 /* our temp lists are populated. release lock */ 352 netif_addr_unlock_bh(netdev); 353 } 354 355 /* Remove MAC addresses in the unsync list */ 356 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 357 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 358 if (err) { 359 netdev_err(netdev, "Failed to delete MAC filters\n"); 360 /* if we failed because of alloc failures, just bail */ 361 if (err == -ENOMEM) 362 goto out; 363 } 364 365 /* Add MAC addresses in the sync list */ 366 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 367 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 368 /* If filter is added successfully or already exists, do not go into 369 * 'if' condition and report it as error. Instead continue processing 370 * rest of the function. 371 */ 372 if (err && err != -EEXIST) { 373 netdev_err(netdev, "Failed to add MAC filters\n"); 374 /* If there is no more space for new umac filters, VSI 375 * should go into promiscuous mode. There should be some 376 * space reserved for promiscuous filters. 377 */ 378 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 379 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 380 vsi->state)) { 381 promisc_forced_on = true; 382 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 383 vsi->vsi_num); 384 } else { 385 goto out; 386 } 387 } 388 err = 0; 389 /* check for changes in promiscuous modes */ 390 if (changed_flags & IFF_ALLMULTI) { 391 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 392 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 393 if (err) { 394 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 395 goto out_promisc; 396 } 397 } else { 398 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 399 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 400 if (err) { 401 vsi->current_netdev_flags |= IFF_ALLMULTI; 402 goto out_promisc; 403 } 404 } 405 } 406 407 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 408 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 409 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 410 if (vsi->current_netdev_flags & IFF_PROMISC) { 411 /* Apply Rx filter rule to get traffic from wire */ 412 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 413 err = ice_set_dflt_vsi(vsi); 414 if (err && err != -EEXIST) { 415 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 416 err, vsi->vsi_num); 417 vsi->current_netdev_flags &= 418 ~IFF_PROMISC; 419 goto out_promisc; 420 } 421 err = 0; 422 vlan_ops->dis_rx_filtering(vsi); 423 424 /* promiscuous mode implies allmulticast so 425 * that VSIs that are in promiscuous mode are 426 * subscribed to multicast packets coming to 427 * the port 428 */ 429 err = ice_set_promisc(vsi, 430 ICE_MCAST_PROMISC_BITS); 431 if (err) 432 goto out_promisc; 433 } 434 } else { 435 /* Clear Rx filter to remove traffic from wire */ 436 if (ice_is_vsi_dflt_vsi(vsi)) { 437 err = ice_clear_dflt_vsi(vsi); 438 if (err) { 439 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 440 err, vsi->vsi_num); 441 vsi->current_netdev_flags |= 442 IFF_PROMISC; 443 goto out_promisc; 444 } 445 if (vsi->netdev->features & 446 NETIF_F_HW_VLAN_CTAG_FILTER) 447 vlan_ops->ena_rx_filtering(vsi); 448 } 449 450 /* disable allmulti here, but only if allmulti is not 451 * still enabled for the netdev 452 */ 453 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 454 err = ice_clear_promisc(vsi, 455 ICE_MCAST_PROMISC_BITS); 456 if (err) { 457 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 458 err, vsi->vsi_num); 459 } 460 } 461 } 462 } 463 goto exit; 464 465 out_promisc: 466 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 467 goto exit; 468 out: 469 /* if something went wrong then set the changed flag so we try again */ 470 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 471 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 472 exit: 473 clear_bit(ICE_CFG_BUSY, vsi->state); 474 return err; 475 } 476 477 /** 478 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 479 * @pf: board private structure 480 */ 481 static void ice_sync_fltr_subtask(struct ice_pf *pf) 482 { 483 int v; 484 485 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 486 return; 487 488 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 492 ice_vsi_sync_fltr(pf->vsi[v])) { 493 /* come back and try again later */ 494 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 495 break; 496 } 497 } 498 499 /** 500 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 501 * @pf: the PF 502 * @locked: is the rtnl_lock already held 503 */ 504 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 505 { 506 int node; 507 int v; 508 509 ice_for_each_vsi(pf, v) 510 if (pf->vsi[v]) 511 ice_dis_vsi(pf->vsi[v], locked); 512 513 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 514 pf->pf_agg_node[node].num_vsis = 0; 515 516 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 517 pf->vf_agg_node[node].num_vsis = 0; 518 } 519 520 /** 521 * ice_clear_sw_switch_recipes - clear switch recipes 522 * @pf: board private structure 523 * 524 * Mark switch recipes as not created in sw structures. There are cases where 525 * rules (especially advanced rules) need to be restored, either re-read from 526 * hardware or added again. For example after the reset. 'recp_created' flag 527 * prevents from doing that and need to be cleared upfront. 528 */ 529 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 530 { 531 struct ice_sw_recipe *recp; 532 u8 i; 533 534 recp = pf->hw.switch_info->recp_list; 535 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 536 recp[i].recp_created = false; 537 } 538 539 /** 540 * ice_prepare_for_reset - prep for reset 541 * @pf: board private structure 542 * @reset_type: reset type requested 543 * 544 * Inform or close all dependent features in prep for reset. 545 */ 546 static void 547 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 548 { 549 struct ice_hw *hw = &pf->hw; 550 struct ice_vsi *vsi; 551 struct ice_vf *vf; 552 unsigned int bkt; 553 554 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 555 556 /* already prepared for reset */ 557 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 558 return; 559 560 synchronize_irq(pf->oicr_irq.virq); 561 562 ice_unplug_aux_dev(pf); 563 564 /* Notify VFs of impending reset */ 565 if (ice_check_sq_alive(hw, &hw->mailboxq)) 566 ice_vc_notify_reset(pf); 567 568 /* Disable VFs until reset is completed */ 569 mutex_lock(&pf->vfs.table_lock); 570 ice_for_each_vf(pf, bkt, vf) 571 ice_set_vf_state_dis(vf); 572 mutex_unlock(&pf->vfs.table_lock); 573 574 if (ice_is_eswitch_mode_switchdev(pf)) { 575 if (reset_type != ICE_RESET_PFR) 576 ice_clear_sw_switch_recipes(pf); 577 } 578 579 /* release ADQ specific HW and SW resources */ 580 vsi = ice_get_main_vsi(pf); 581 if (!vsi) 582 goto skip; 583 584 /* to be on safe side, reset orig_rss_size so that normal flow 585 * of deciding rss_size can take precedence 586 */ 587 vsi->orig_rss_size = 0; 588 589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 590 if (reset_type == ICE_RESET_PFR) { 591 vsi->old_ena_tc = vsi->all_enatc; 592 vsi->old_numtc = vsi->all_numtc; 593 } else { 594 ice_remove_q_channels(vsi, true); 595 596 /* for other reset type, do not support channel rebuild 597 * hence reset needed info 598 */ 599 vsi->old_ena_tc = 0; 600 vsi->all_enatc = 0; 601 vsi->old_numtc = 0; 602 vsi->all_numtc = 0; 603 vsi->req_txq = 0; 604 vsi->req_rxq = 0; 605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 607 } 608 } 609 610 if (vsi->netdev) 611 netif_device_detach(vsi->netdev); 612 skip: 613 614 /* clear SW filtering DB */ 615 ice_clear_hw_tbls(hw); 616 /* disable the VSIs and their queues that are not already DOWN */ 617 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 618 ice_pf_dis_all_vsi(pf, false); 619 620 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 621 ice_ptp_prepare_for_reset(pf); 622 623 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 624 ice_gnss_exit(pf); 625 626 if (hw->port_info) 627 ice_sched_clear_port(hw->port_info); 628 629 ice_shutdown_all_ctrlq(hw); 630 631 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 632 } 633 634 /** 635 * ice_do_reset - Initiate one of many types of resets 636 * @pf: board private structure 637 * @reset_type: reset type requested before this function was called. 638 */ 639 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 640 { 641 struct device *dev = ice_pf_to_dev(pf); 642 struct ice_hw *hw = &pf->hw; 643 644 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 645 646 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 647 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 648 reset_type = ICE_RESET_CORER; 649 } 650 651 ice_prepare_for_reset(pf, reset_type); 652 653 /* trigger the reset */ 654 if (ice_reset(hw, reset_type)) { 655 dev_err(dev, "reset %d failed\n", reset_type); 656 set_bit(ICE_RESET_FAILED, pf->state); 657 clear_bit(ICE_RESET_OICR_RECV, pf->state); 658 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 659 clear_bit(ICE_PFR_REQ, pf->state); 660 clear_bit(ICE_CORER_REQ, pf->state); 661 clear_bit(ICE_GLOBR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 return; 664 } 665 666 /* PFR is a bit of a special case because it doesn't result in an OICR 667 * interrupt. So for PFR, rebuild after the reset and clear the reset- 668 * associated state bits. 669 */ 670 if (reset_type == ICE_RESET_PFR) { 671 pf->pfr_count++; 672 ice_rebuild(pf, reset_type); 673 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 674 clear_bit(ICE_PFR_REQ, pf->state); 675 wake_up(&pf->reset_wait_queue); 676 ice_reset_all_vfs(pf); 677 } 678 } 679 680 /** 681 * ice_reset_subtask - Set up for resetting the device and driver 682 * @pf: board private structure 683 */ 684 static void ice_reset_subtask(struct ice_pf *pf) 685 { 686 enum ice_reset_req reset_type = ICE_RESET_INVAL; 687 688 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 689 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 690 * of reset is pending and sets bits in pf->state indicating the reset 691 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 692 * prepare for pending reset if not already (for PF software-initiated 693 * global resets the software should already be prepared for it as 694 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 695 * by firmware or software on other PFs, that bit is not set so prepare 696 * for the reset now), poll for reset done, rebuild and return. 697 */ 698 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 699 /* Perform the largest reset requested */ 700 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 701 reset_type = ICE_RESET_CORER; 702 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 703 reset_type = ICE_RESET_GLOBR; 704 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 705 reset_type = ICE_RESET_EMPR; 706 /* return if no valid reset type requested */ 707 if (reset_type == ICE_RESET_INVAL) 708 return; 709 ice_prepare_for_reset(pf, reset_type); 710 711 /* make sure we are ready to rebuild */ 712 if (ice_check_reset(&pf->hw)) { 713 set_bit(ICE_RESET_FAILED, pf->state); 714 } else { 715 /* done with reset. start rebuild */ 716 pf->hw.reset_ongoing = false; 717 ice_rebuild(pf, reset_type); 718 /* clear bit to resume normal operations, but 719 * ICE_NEEDS_RESTART bit is set in case rebuild failed 720 */ 721 clear_bit(ICE_RESET_OICR_RECV, pf->state); 722 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 723 clear_bit(ICE_PFR_REQ, pf->state); 724 clear_bit(ICE_CORER_REQ, pf->state); 725 clear_bit(ICE_GLOBR_REQ, pf->state); 726 wake_up(&pf->reset_wait_queue); 727 ice_reset_all_vfs(pf); 728 } 729 730 return; 731 } 732 733 /* No pending resets to finish processing. Check for new resets */ 734 if (test_bit(ICE_PFR_REQ, pf->state)) { 735 reset_type = ICE_RESET_PFR; 736 if (pf->lag && pf->lag->bonded) { 737 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 738 reset_type = ICE_RESET_CORER; 739 } 740 } 741 if (test_bit(ICE_CORER_REQ, pf->state)) 742 reset_type = ICE_RESET_CORER; 743 if (test_bit(ICE_GLOBR_REQ, pf->state)) 744 reset_type = ICE_RESET_GLOBR; 745 /* If no valid reset type requested just return */ 746 if (reset_type == ICE_RESET_INVAL) 747 return; 748 749 /* reset if not already down or busy */ 750 if (!test_bit(ICE_DOWN, pf->state) && 751 !test_bit(ICE_CFG_BUSY, pf->state)) { 752 ice_do_reset(pf, reset_type); 753 } 754 } 755 756 /** 757 * ice_print_topo_conflict - print topology conflict message 758 * @vsi: the VSI whose topology status is being checked 759 */ 760 static void ice_print_topo_conflict(struct ice_vsi *vsi) 761 { 762 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 763 case ICE_AQ_LINK_TOPO_CONFLICT: 764 case ICE_AQ_LINK_MEDIA_CONFLICT: 765 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 766 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 767 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 768 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 769 break; 770 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 771 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 772 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 773 else 774 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 775 break; 776 default: 777 break; 778 } 779 } 780 781 /** 782 * ice_print_link_msg - print link up or down message 783 * @vsi: the VSI whose link status is being queried 784 * @isup: boolean for if the link is now up or down 785 */ 786 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 787 { 788 struct ice_aqc_get_phy_caps_data *caps; 789 const char *an_advertised; 790 const char *fec_req; 791 const char *speed; 792 const char *fec; 793 const char *fc; 794 const char *an; 795 int status; 796 797 if (!vsi) 798 return; 799 800 if (vsi->current_isup == isup) 801 return; 802 803 vsi->current_isup = isup; 804 805 if (!isup) { 806 netdev_info(vsi->netdev, "NIC Link is Down\n"); 807 return; 808 } 809 810 switch (vsi->port_info->phy.link_info.link_speed) { 811 case ICE_AQ_LINK_SPEED_100GB: 812 speed = "100 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_50GB: 815 speed = "50 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_40GB: 818 speed = "40 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_25GB: 821 speed = "25 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_20GB: 824 speed = "20 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_10GB: 827 speed = "10 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_5GB: 830 speed = "5 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_2500MB: 833 speed = "2.5 G"; 834 break; 835 case ICE_AQ_LINK_SPEED_1000MB: 836 speed = "1 G"; 837 break; 838 case ICE_AQ_LINK_SPEED_100MB: 839 speed = "100 M"; 840 break; 841 default: 842 speed = "Unknown "; 843 break; 844 } 845 846 switch (vsi->port_info->fc.current_mode) { 847 case ICE_FC_FULL: 848 fc = "Rx/Tx"; 849 break; 850 case ICE_FC_TX_PAUSE: 851 fc = "Tx"; 852 break; 853 case ICE_FC_RX_PAUSE: 854 fc = "Rx"; 855 break; 856 case ICE_FC_NONE: 857 fc = "None"; 858 break; 859 default: 860 fc = "Unknown"; 861 break; 862 } 863 864 /* Get FEC mode based on negotiated link info */ 865 switch (vsi->port_info->phy.link_info.fec_info) { 866 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 867 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 868 fec = "RS-FEC"; 869 break; 870 case ICE_AQ_LINK_25G_KR_FEC_EN: 871 fec = "FC-FEC/BASE-R"; 872 break; 873 default: 874 fec = "NONE"; 875 break; 876 } 877 878 /* check if autoneg completed, might be false due to not supported */ 879 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 880 an = "True"; 881 else 882 an = "False"; 883 884 /* Get FEC mode requested based on PHY caps last SW configuration */ 885 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 886 if (!caps) { 887 fec_req = "Unknown"; 888 an_advertised = "Unknown"; 889 goto done; 890 } 891 892 status = ice_aq_get_phy_caps(vsi->port_info, false, 893 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 894 if (status) 895 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 896 897 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 898 899 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 900 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 901 fec_req = "RS-FEC"; 902 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 903 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 904 fec_req = "FC-FEC/BASE-R"; 905 else 906 fec_req = "NONE"; 907 908 kfree(caps); 909 910 done: 911 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 912 speed, fec_req, fec, an_advertised, an, fc); 913 ice_print_topo_conflict(vsi); 914 } 915 916 /** 917 * ice_vsi_link_event - update the VSI's netdev 918 * @vsi: the VSI on which the link event occurred 919 * @link_up: whether or not the VSI needs to be set up or down 920 */ 921 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 922 { 923 if (!vsi) 924 return; 925 926 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 927 return; 928 929 if (vsi->type == ICE_VSI_PF) { 930 if (link_up == netif_carrier_ok(vsi->netdev)) 931 return; 932 933 if (link_up) { 934 netif_carrier_on(vsi->netdev); 935 netif_tx_wake_all_queues(vsi->netdev); 936 } else { 937 netif_carrier_off(vsi->netdev); 938 netif_tx_stop_all_queues(vsi->netdev); 939 } 940 } 941 } 942 943 /** 944 * ice_set_dflt_mib - send a default config MIB to the FW 945 * @pf: private PF struct 946 * 947 * This function sends a default configuration MIB to the FW. 948 * 949 * If this function errors out at any point, the driver is still able to 950 * function. The main impact is that LFC may not operate as expected. 951 * Therefore an error state in this function should be treated with a DBG 952 * message and continue on with driver rebuild/reenable. 953 */ 954 static void ice_set_dflt_mib(struct ice_pf *pf) 955 { 956 struct device *dev = ice_pf_to_dev(pf); 957 u8 mib_type, *buf, *lldpmib = NULL; 958 u16 len, typelen, offset = 0; 959 struct ice_lldp_org_tlv *tlv; 960 struct ice_hw *hw = &pf->hw; 961 u32 ouisubtype; 962 963 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 964 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 965 if (!lldpmib) { 966 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 967 __func__); 968 return; 969 } 970 971 /* Add ETS CFG TLV */ 972 tlv = (struct ice_lldp_org_tlv *)lldpmib; 973 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 974 ICE_IEEE_ETS_TLV_LEN); 975 tlv->typelen = htons(typelen); 976 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 977 ICE_IEEE_SUBTYPE_ETS_CFG); 978 tlv->ouisubtype = htonl(ouisubtype); 979 980 buf = tlv->tlvinfo; 981 buf[0] = 0; 982 983 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 984 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 985 * Octets 13 - 20 are TSA values - leave as zeros 986 */ 987 buf[5] = 0x64; 988 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add ETS REC TLV */ 994 buf = tlv->tlvinfo; 995 tlv->typelen = htons(typelen); 996 997 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 998 ICE_IEEE_SUBTYPE_ETS_REC); 999 tlv->ouisubtype = htonl(ouisubtype); 1000 1001 /* First octet of buf is reserved 1002 * Octets 1 - 4 map UP to TC - all UPs map to zero 1003 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1004 * Octets 13 - 20 are TSA value - leave as zeros 1005 */ 1006 buf[5] = 0x64; 1007 offset += len + 2; 1008 tlv = (struct ice_lldp_org_tlv *) 1009 ((char *)tlv + sizeof(tlv->typelen) + len); 1010 1011 /* Add PFC CFG TLV */ 1012 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1013 ICE_IEEE_PFC_TLV_LEN); 1014 tlv->typelen = htons(typelen); 1015 1016 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1017 ICE_IEEE_SUBTYPE_PFC_CFG); 1018 tlv->ouisubtype = htonl(ouisubtype); 1019 1020 /* Octet 1 left as all zeros - PFC disabled */ 1021 buf[0] = 0x08; 1022 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1023 offset += len + 2; 1024 1025 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1026 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1027 1028 kfree(lldpmib); 1029 } 1030 1031 /** 1032 * ice_check_phy_fw_load - check if PHY FW load failed 1033 * @pf: pointer to PF struct 1034 * @link_cfg_err: bitmap from the link info structure 1035 * 1036 * check if external PHY FW load failed and print an error message if it did 1037 */ 1038 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1039 { 1040 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1041 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1042 return; 1043 } 1044 1045 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1046 return; 1047 1048 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1049 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1050 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1051 } 1052 } 1053 1054 /** 1055 * ice_check_module_power 1056 * @pf: pointer to PF struct 1057 * @link_cfg_err: bitmap from the link info structure 1058 * 1059 * check module power level returned by a previous call to aq_get_link_info 1060 * and print error messages if module power level is not supported 1061 */ 1062 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1063 { 1064 /* if module power level is supported, clear the flag */ 1065 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1066 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1067 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1068 return; 1069 } 1070 1071 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1072 * above block didn't clear this bit, there's nothing to do 1073 */ 1074 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1075 return; 1076 1077 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1078 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1079 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1080 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1081 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1082 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1083 } 1084 } 1085 1086 /** 1087 * ice_check_link_cfg_err - check if link configuration failed 1088 * @pf: pointer to the PF struct 1089 * @link_cfg_err: bitmap from the link info structure 1090 * 1091 * print if any link configuration failure happens due to the value in the 1092 * link_cfg_err parameter in the link info structure 1093 */ 1094 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1095 { 1096 ice_check_module_power(pf, link_cfg_err); 1097 ice_check_phy_fw_load(pf, link_cfg_err); 1098 } 1099 1100 /** 1101 * ice_link_event - process the link event 1102 * @pf: PF that the link event is associated with 1103 * @pi: port_info for the port that the link event is associated with 1104 * @link_up: true if the physical link is up and false if it is down 1105 * @link_speed: current link speed received from the link event 1106 * 1107 * Returns 0 on success and negative on failure 1108 */ 1109 static int 1110 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1111 u16 link_speed) 1112 { 1113 struct device *dev = ice_pf_to_dev(pf); 1114 struct ice_phy_info *phy_info; 1115 struct ice_vsi *vsi; 1116 u16 old_link_speed; 1117 bool old_link; 1118 int status; 1119 1120 phy_info = &pi->phy; 1121 phy_info->link_info_old = phy_info->link_info; 1122 1123 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1124 old_link_speed = phy_info->link_info_old.link_speed; 1125 1126 /* update the link info structures and re-enable link events, 1127 * don't bail on failure due to other book keeping needed 1128 */ 1129 status = ice_update_link_info(pi); 1130 if (status) 1131 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1132 pi->lport, status, 1133 ice_aq_str(pi->hw->adminq.sq_last_status)); 1134 1135 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1136 1137 /* Check if the link state is up after updating link info, and treat 1138 * this event as an UP event since the link is actually UP now. 1139 */ 1140 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1141 link_up = true; 1142 1143 vsi = ice_get_main_vsi(pf); 1144 if (!vsi || !vsi->port_info) 1145 return -EINVAL; 1146 1147 /* turn off PHY if media was removed */ 1148 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1149 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1150 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1151 ice_set_link(vsi, false); 1152 } 1153 1154 /* if the old link up/down and speed is the same as the new */ 1155 if (link_up == old_link && link_speed == old_link_speed) 1156 return 0; 1157 1158 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1159 1160 if (ice_is_dcb_active(pf)) { 1161 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1162 ice_dcb_rebuild(pf); 1163 } else { 1164 if (link_up) 1165 ice_set_dflt_mib(pf); 1166 } 1167 ice_vsi_link_event(vsi, link_up); 1168 ice_print_link_msg(vsi, link_up); 1169 1170 ice_vc_notify_link_state(pf); 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1177 * @pf: board private structure 1178 */ 1179 static void ice_watchdog_subtask(struct ice_pf *pf) 1180 { 1181 int i; 1182 1183 /* if interface is down do nothing */ 1184 if (test_bit(ICE_DOWN, pf->state) || 1185 test_bit(ICE_CFG_BUSY, pf->state)) 1186 return; 1187 1188 /* make sure we don't do these things too often */ 1189 if (time_before(jiffies, 1190 pf->serv_tmr_prev + pf->serv_tmr_period)) 1191 return; 1192 1193 pf->serv_tmr_prev = jiffies; 1194 1195 /* Update the stats for active netdevs so the network stack 1196 * can look at updated numbers whenever it cares to 1197 */ 1198 ice_update_pf_stats(pf); 1199 ice_for_each_vsi(pf, i) 1200 if (pf->vsi[i] && pf->vsi[i]->netdev) 1201 ice_update_vsi_stats(pf->vsi[i]); 1202 } 1203 1204 /** 1205 * ice_init_link_events - enable/initialize link events 1206 * @pi: pointer to the port_info instance 1207 * 1208 * Returns -EIO on failure, 0 on success 1209 */ 1210 static int ice_init_link_events(struct ice_port_info *pi) 1211 { 1212 u16 mask; 1213 1214 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1215 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1216 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1217 1218 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1220 pi->lport); 1221 return -EIO; 1222 } 1223 1224 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1225 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1226 pi->lport); 1227 return -EIO; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * ice_handle_link_event - handle link event via ARQ 1235 * @pf: PF that the link event is associated with 1236 * @event: event structure containing link status info 1237 */ 1238 static int 1239 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1240 { 1241 struct ice_aqc_get_link_status_data *link_data; 1242 struct ice_port_info *port_info; 1243 int status; 1244 1245 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1246 port_info = pf->hw.port_info; 1247 if (!port_info) 1248 return -EINVAL; 1249 1250 status = ice_link_event(pf, port_info, 1251 !!(link_data->link_info & ICE_AQ_LINK_UP), 1252 le16_to_cpu(link_data->link_speed)); 1253 if (status) 1254 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1255 status); 1256 1257 return status; 1258 } 1259 1260 /** 1261 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1262 * @pf: pointer to the PF private structure 1263 * @task: intermediate helper storage and identifier for waiting 1264 * @opcode: the opcode to wait for 1265 * 1266 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1267 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1268 * 1269 * Calls are separated to allow caller registering for event before sending 1270 * the command, which mitigates a race between registering and FW responding. 1271 * 1272 * To obtain only the descriptor contents, pass an task->event with null 1273 * msg_buf. If the complete data buffer is desired, allocate the 1274 * task->event.msg_buf with enough space ahead of time. 1275 */ 1276 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1277 u16 opcode) 1278 { 1279 INIT_HLIST_NODE(&task->entry); 1280 task->opcode = opcode; 1281 task->state = ICE_AQ_TASK_WAITING; 1282 1283 spin_lock_bh(&pf->aq_wait_lock); 1284 hlist_add_head(&task->entry, &pf->aq_wait_list); 1285 spin_unlock_bh(&pf->aq_wait_lock); 1286 } 1287 1288 /** 1289 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1290 * @pf: pointer to the PF private structure 1291 * @task: ptr prepared by ice_aq_prep_for_event() 1292 * @timeout: how long to wait, in jiffies 1293 * 1294 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1295 * current thread will be put to sleep until the specified event occurs or 1296 * until the given timeout is reached. 1297 * 1298 * Returns: zero on success, or a negative error code on failure. 1299 */ 1300 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1301 unsigned long timeout) 1302 { 1303 enum ice_aq_task_state *state = &task->state; 1304 struct device *dev = ice_pf_to_dev(pf); 1305 unsigned long start = jiffies; 1306 long ret; 1307 int err; 1308 1309 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1310 *state != ICE_AQ_TASK_WAITING, 1311 timeout); 1312 switch (*state) { 1313 case ICE_AQ_TASK_NOT_PREPARED: 1314 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1315 err = -EINVAL; 1316 break; 1317 case ICE_AQ_TASK_WAITING: 1318 err = ret < 0 ? ret : -ETIMEDOUT; 1319 break; 1320 case ICE_AQ_TASK_CANCELED: 1321 err = ret < 0 ? ret : -ECANCELED; 1322 break; 1323 case ICE_AQ_TASK_COMPLETE: 1324 err = ret < 0 ? ret : 0; 1325 break; 1326 default: 1327 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1328 err = -EINVAL; 1329 break; 1330 } 1331 1332 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1333 jiffies_to_msecs(jiffies - start), 1334 jiffies_to_msecs(timeout), 1335 task->opcode); 1336 1337 spin_lock_bh(&pf->aq_wait_lock); 1338 hlist_del(&task->entry); 1339 spin_unlock_bh(&pf->aq_wait_lock); 1340 1341 return err; 1342 } 1343 1344 /** 1345 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1346 * @pf: pointer to the PF private structure 1347 * @opcode: the opcode of the event 1348 * @event: the event to check 1349 * 1350 * Loops over the current list of pending threads waiting for an AdminQ event. 1351 * For each matching task, copy the contents of the event into the task 1352 * structure and wake up the thread. 1353 * 1354 * If multiple threads wait for the same opcode, they will all be woken up. 1355 * 1356 * Note that event->msg_buf will only be duplicated if the event has a buffer 1357 * with enough space already allocated. Otherwise, only the descriptor and 1358 * message length will be copied. 1359 * 1360 * Returns: true if an event was found, false otherwise 1361 */ 1362 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1363 struct ice_rq_event_info *event) 1364 { 1365 struct ice_rq_event_info *task_ev; 1366 struct ice_aq_task *task; 1367 bool found = false; 1368 1369 spin_lock_bh(&pf->aq_wait_lock); 1370 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1371 if (task->state != ICE_AQ_TASK_WAITING) 1372 continue; 1373 if (task->opcode != opcode) 1374 continue; 1375 1376 task_ev = &task->event; 1377 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1378 task_ev->msg_len = event->msg_len; 1379 1380 /* Only copy the data buffer if a destination was set */ 1381 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1382 memcpy(task_ev->msg_buf, event->msg_buf, 1383 event->buf_len); 1384 task_ev->buf_len = event->buf_len; 1385 } 1386 1387 task->state = ICE_AQ_TASK_COMPLETE; 1388 found = true; 1389 } 1390 spin_unlock_bh(&pf->aq_wait_lock); 1391 1392 if (found) 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 /** 1397 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1398 * @pf: the PF private structure 1399 * 1400 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1401 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1402 */ 1403 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1404 { 1405 struct ice_aq_task *task; 1406 1407 spin_lock_bh(&pf->aq_wait_lock); 1408 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1409 task->state = ICE_AQ_TASK_CANCELED; 1410 spin_unlock_bh(&pf->aq_wait_lock); 1411 1412 wake_up(&pf->aq_wait_queue); 1413 } 1414 1415 #define ICE_MBX_OVERFLOW_WATERMARK 64 1416 1417 /** 1418 * __ice_clean_ctrlq - helper function to clean controlq rings 1419 * @pf: ptr to struct ice_pf 1420 * @q_type: specific Control queue type 1421 */ 1422 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1423 { 1424 struct device *dev = ice_pf_to_dev(pf); 1425 struct ice_rq_event_info event; 1426 struct ice_hw *hw = &pf->hw; 1427 struct ice_ctl_q_info *cq; 1428 u16 pending, i = 0; 1429 const char *qtype; 1430 u32 oldval, val; 1431 1432 /* Do not clean control queue if/when PF reset fails */ 1433 if (test_bit(ICE_RESET_FAILED, pf->state)) 1434 return 0; 1435 1436 switch (q_type) { 1437 case ICE_CTL_Q_ADMIN: 1438 cq = &hw->adminq; 1439 qtype = "Admin"; 1440 break; 1441 case ICE_CTL_Q_SB: 1442 cq = &hw->sbq; 1443 qtype = "Sideband"; 1444 break; 1445 case ICE_CTL_Q_MAILBOX: 1446 cq = &hw->mailboxq; 1447 qtype = "Mailbox"; 1448 /* we are going to try to detect a malicious VF, so set the 1449 * state to begin detection 1450 */ 1451 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1452 break; 1453 default: 1454 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1455 return 0; 1456 } 1457 1458 /* check for error indications - PF_xx_AxQLEN register layout for 1459 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1460 */ 1461 val = rd32(hw, cq->rq.len); 1462 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1463 PF_FW_ARQLEN_ARQCRIT_M)) { 1464 oldval = val; 1465 if (val & PF_FW_ARQLEN_ARQVFE_M) 1466 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1467 qtype); 1468 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1469 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1470 qtype); 1471 } 1472 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1473 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1474 qtype); 1475 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1476 PF_FW_ARQLEN_ARQCRIT_M); 1477 if (oldval != val) 1478 wr32(hw, cq->rq.len, val); 1479 } 1480 1481 val = rd32(hw, cq->sq.len); 1482 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1483 PF_FW_ATQLEN_ATQCRIT_M)) { 1484 oldval = val; 1485 if (val & PF_FW_ATQLEN_ATQVFE_M) 1486 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1487 qtype); 1488 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1489 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1490 qtype); 1491 } 1492 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1493 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1494 qtype); 1495 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1496 PF_FW_ATQLEN_ATQCRIT_M); 1497 if (oldval != val) 1498 wr32(hw, cq->sq.len, val); 1499 } 1500 1501 event.buf_len = cq->rq_buf_size; 1502 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1503 if (!event.msg_buf) 1504 return 0; 1505 1506 do { 1507 struct ice_mbx_data data = {}; 1508 u16 opcode; 1509 int ret; 1510 1511 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1512 if (ret == -EALREADY) 1513 break; 1514 if (ret) { 1515 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1516 ret); 1517 break; 1518 } 1519 1520 opcode = le16_to_cpu(event.desc.opcode); 1521 1522 /* Notify any thread that might be waiting for this event */ 1523 ice_aq_check_events(pf, opcode, &event); 1524 1525 switch (opcode) { 1526 case ice_aqc_opc_get_link_status: 1527 if (ice_handle_link_event(pf, &event)) 1528 dev_err(dev, "Could not handle link event\n"); 1529 break; 1530 case ice_aqc_opc_event_lan_overflow: 1531 ice_vf_lan_overflow_event(pf, &event); 1532 break; 1533 case ice_mbx_opc_send_msg_to_pf: 1534 data.num_msg_proc = i; 1535 data.num_pending_arq = pending; 1536 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1537 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1538 1539 ice_vc_process_vf_msg(pf, &event, &data); 1540 break; 1541 case ice_aqc_opc_fw_logging: 1542 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1543 break; 1544 case ice_aqc_opc_lldp_set_mib_change: 1545 ice_dcb_process_lldp_set_mib_change(pf, &event); 1546 break; 1547 default: 1548 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1549 qtype, opcode); 1550 break; 1551 } 1552 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1553 1554 kfree(event.msg_buf); 1555 1556 return pending && (i == ICE_DFLT_IRQ_WORK); 1557 } 1558 1559 /** 1560 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1561 * @hw: pointer to hardware info 1562 * @cq: control queue information 1563 * 1564 * returns true if there are pending messages in a queue, false if there aren't 1565 */ 1566 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1567 { 1568 u16 ntu; 1569 1570 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1571 return cq->rq.next_to_clean != ntu; 1572 } 1573 1574 /** 1575 * ice_clean_adminq_subtask - clean the AdminQ rings 1576 * @pf: board private structure 1577 */ 1578 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1579 { 1580 struct ice_hw *hw = &pf->hw; 1581 1582 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1583 return; 1584 1585 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1586 return; 1587 1588 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1589 1590 /* There might be a situation where new messages arrive to a control 1591 * queue between processing the last message and clearing the 1592 * EVENT_PENDING bit. So before exiting, check queue head again (using 1593 * ice_ctrlq_pending) and process new messages if any. 1594 */ 1595 if (ice_ctrlq_pending(hw, &hw->adminq)) 1596 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1597 1598 ice_flush(hw); 1599 } 1600 1601 /** 1602 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1603 * @pf: board private structure 1604 */ 1605 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1606 { 1607 struct ice_hw *hw = &pf->hw; 1608 1609 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1610 return; 1611 1612 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1613 return; 1614 1615 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1616 1617 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1618 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1619 1620 ice_flush(hw); 1621 } 1622 1623 /** 1624 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1625 * @pf: board private structure 1626 */ 1627 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1628 { 1629 struct ice_hw *hw = &pf->hw; 1630 1631 /* Nothing to do here if sideband queue is not supported */ 1632 if (!ice_is_sbq_supported(hw)) { 1633 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1634 return; 1635 } 1636 1637 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1638 return; 1639 1640 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1641 return; 1642 1643 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1644 1645 if (ice_ctrlq_pending(hw, &hw->sbq)) 1646 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1647 1648 ice_flush(hw); 1649 } 1650 1651 /** 1652 * ice_service_task_schedule - schedule the service task to wake up 1653 * @pf: board private structure 1654 * 1655 * If not already scheduled, this puts the task into the work queue. 1656 */ 1657 void ice_service_task_schedule(struct ice_pf *pf) 1658 { 1659 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1660 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1661 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1662 queue_work(ice_wq, &pf->serv_task); 1663 } 1664 1665 /** 1666 * ice_service_task_complete - finish up the service task 1667 * @pf: board private structure 1668 */ 1669 static void ice_service_task_complete(struct ice_pf *pf) 1670 { 1671 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1672 1673 /* force memory (pf->state) to sync before next service task */ 1674 smp_mb__before_atomic(); 1675 clear_bit(ICE_SERVICE_SCHED, pf->state); 1676 } 1677 1678 /** 1679 * ice_service_task_stop - stop service task and cancel works 1680 * @pf: board private structure 1681 * 1682 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1683 * 1 otherwise. 1684 */ 1685 static int ice_service_task_stop(struct ice_pf *pf) 1686 { 1687 int ret; 1688 1689 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1690 1691 if (pf->serv_tmr.function) 1692 del_timer_sync(&pf->serv_tmr); 1693 if (pf->serv_task.func) 1694 cancel_work_sync(&pf->serv_task); 1695 1696 clear_bit(ICE_SERVICE_SCHED, pf->state); 1697 return ret; 1698 } 1699 1700 /** 1701 * ice_service_task_restart - restart service task and schedule works 1702 * @pf: board private structure 1703 * 1704 * This function is needed for suspend and resume works (e.g WoL scenario) 1705 */ 1706 static void ice_service_task_restart(struct ice_pf *pf) 1707 { 1708 clear_bit(ICE_SERVICE_DIS, pf->state); 1709 ice_service_task_schedule(pf); 1710 } 1711 1712 /** 1713 * ice_service_timer - timer callback to schedule service task 1714 * @t: pointer to timer_list 1715 */ 1716 static void ice_service_timer(struct timer_list *t) 1717 { 1718 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1719 1720 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1721 ice_service_task_schedule(pf); 1722 } 1723 1724 /** 1725 * ice_handle_mdd_event - handle malicious driver detect event 1726 * @pf: pointer to the PF structure 1727 * 1728 * Called from service task. OICR interrupt handler indicates MDD event. 1729 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1730 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1731 * disable the queue, the PF can be configured to reset the VF using ethtool 1732 * private flag mdd-auto-reset-vf. 1733 */ 1734 static void ice_handle_mdd_event(struct ice_pf *pf) 1735 { 1736 struct device *dev = ice_pf_to_dev(pf); 1737 struct ice_hw *hw = &pf->hw; 1738 struct ice_vf *vf; 1739 unsigned int bkt; 1740 u32 reg; 1741 1742 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1743 /* Since the VF MDD event logging is rate limited, check if 1744 * there are pending MDD events. 1745 */ 1746 ice_print_vfs_mdd_events(pf); 1747 return; 1748 } 1749 1750 /* find what triggered an MDD event */ 1751 reg = rd32(hw, GL_MDET_TX_PQM); 1752 if (reg & GL_MDET_TX_PQM_VALID_M) { 1753 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1754 GL_MDET_TX_PQM_PF_NUM_S; 1755 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1756 GL_MDET_TX_PQM_VF_NUM_S; 1757 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1758 GL_MDET_TX_PQM_MAL_TYPE_S; 1759 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1760 GL_MDET_TX_PQM_QNUM_S); 1761 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1764 event, queue, pf_num, vf_num); 1765 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1766 } 1767 1768 reg = rd32(hw, GL_MDET_TX_TCLAN); 1769 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1770 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1771 GL_MDET_TX_TCLAN_PF_NUM_S; 1772 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1773 GL_MDET_TX_TCLAN_VF_NUM_S; 1774 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1775 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1776 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1777 GL_MDET_TX_TCLAN_QNUM_S); 1778 1779 if (netif_msg_tx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1781 event, queue, pf_num, vf_num); 1782 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1783 } 1784 1785 reg = rd32(hw, GL_MDET_RX); 1786 if (reg & GL_MDET_RX_VALID_M) { 1787 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1788 GL_MDET_RX_PF_NUM_S; 1789 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1790 GL_MDET_RX_VF_NUM_S; 1791 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1792 GL_MDET_RX_MAL_TYPE_S; 1793 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1794 GL_MDET_RX_QNUM_S); 1795 1796 if (netif_msg_rx_err(pf)) 1797 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1798 event, queue, pf_num, vf_num); 1799 wr32(hw, GL_MDET_RX, 0xffffffff); 1800 } 1801 1802 /* check to see if this PF caused an MDD event */ 1803 reg = rd32(hw, PF_MDET_TX_PQM); 1804 if (reg & PF_MDET_TX_PQM_VALID_M) { 1805 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1806 if (netif_msg_tx_err(pf)) 1807 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1808 } 1809 1810 reg = rd32(hw, PF_MDET_TX_TCLAN); 1811 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1812 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1813 if (netif_msg_tx_err(pf)) 1814 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1815 } 1816 1817 reg = rd32(hw, PF_MDET_RX); 1818 if (reg & PF_MDET_RX_VALID_M) { 1819 wr32(hw, PF_MDET_RX, 0xFFFF); 1820 if (netif_msg_rx_err(pf)) 1821 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1822 } 1823 1824 /* Check to see if one of the VFs caused an MDD event, and then 1825 * increment counters and set print pending 1826 */ 1827 mutex_lock(&pf->vfs.table_lock); 1828 ice_for_each_vf(pf, bkt, vf) { 1829 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1830 if (reg & VP_MDET_TX_PQM_VALID_M) { 1831 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1832 vf->mdd_tx_events.count++; 1833 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1834 if (netif_msg_tx_err(pf)) 1835 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1836 vf->vf_id); 1837 } 1838 1839 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1840 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1841 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1842 vf->mdd_tx_events.count++; 1843 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1844 if (netif_msg_tx_err(pf)) 1845 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1846 vf->vf_id); 1847 } 1848 1849 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1850 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1851 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1852 vf->mdd_tx_events.count++; 1853 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1854 if (netif_msg_tx_err(pf)) 1855 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1856 vf->vf_id); 1857 } 1858 1859 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1860 if (reg & VP_MDET_RX_VALID_M) { 1861 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1862 vf->mdd_rx_events.count++; 1863 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1864 if (netif_msg_rx_err(pf)) 1865 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1866 vf->vf_id); 1867 1868 /* Since the queue is disabled on VF Rx MDD events, the 1869 * PF can be configured to reset the VF through ethtool 1870 * private flag mdd-auto-reset-vf. 1871 */ 1872 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1873 /* VF MDD event counters will be cleared by 1874 * reset, so print the event prior to reset. 1875 */ 1876 ice_print_vf_rx_mdd_event(vf); 1877 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1878 } 1879 } 1880 } 1881 mutex_unlock(&pf->vfs.table_lock); 1882 1883 ice_print_vfs_mdd_events(pf); 1884 } 1885 1886 /** 1887 * ice_force_phys_link_state - Force the physical link state 1888 * @vsi: VSI to force the physical link state to up/down 1889 * @link_up: true/false indicates to set the physical link to up/down 1890 * 1891 * Force the physical link state by getting the current PHY capabilities from 1892 * hardware and setting the PHY config based on the determined capabilities. If 1893 * link changes a link event will be triggered because both the Enable Automatic 1894 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1895 * 1896 * Returns 0 on success, negative on failure 1897 */ 1898 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1899 { 1900 struct ice_aqc_get_phy_caps_data *pcaps; 1901 struct ice_aqc_set_phy_cfg_data *cfg; 1902 struct ice_port_info *pi; 1903 struct device *dev; 1904 int retcode; 1905 1906 if (!vsi || !vsi->port_info || !vsi->back) 1907 return -EINVAL; 1908 if (vsi->type != ICE_VSI_PF) 1909 return 0; 1910 1911 dev = ice_pf_to_dev(vsi->back); 1912 1913 pi = vsi->port_info; 1914 1915 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1916 if (!pcaps) 1917 return -ENOMEM; 1918 1919 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1920 NULL); 1921 if (retcode) { 1922 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1923 vsi->vsi_num, retcode); 1924 retcode = -EIO; 1925 goto out; 1926 } 1927 1928 /* No change in link */ 1929 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1930 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1931 goto out; 1932 1933 /* Use the current user PHY configuration. The current user PHY 1934 * configuration is initialized during probe from PHY capabilities 1935 * software mode, and updated on set PHY configuration. 1936 */ 1937 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1938 if (!cfg) { 1939 retcode = -ENOMEM; 1940 goto out; 1941 } 1942 1943 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1944 if (link_up) 1945 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1946 else 1947 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1948 1949 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1950 if (retcode) { 1951 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1952 vsi->vsi_num, retcode); 1953 retcode = -EIO; 1954 } 1955 1956 kfree(cfg); 1957 out: 1958 kfree(pcaps); 1959 return retcode; 1960 } 1961 1962 /** 1963 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1964 * @pi: port info structure 1965 * 1966 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1967 */ 1968 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1969 { 1970 struct ice_aqc_get_phy_caps_data *pcaps; 1971 struct ice_pf *pf = pi->hw->back; 1972 int err; 1973 1974 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1975 if (!pcaps) 1976 return -ENOMEM; 1977 1978 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1979 pcaps, NULL); 1980 1981 if (err) { 1982 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1983 goto out; 1984 } 1985 1986 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1987 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1988 1989 out: 1990 kfree(pcaps); 1991 return err; 1992 } 1993 1994 /** 1995 * ice_init_link_dflt_override - Initialize link default override 1996 * @pi: port info structure 1997 * 1998 * Initialize link default override and PHY total port shutdown during probe 1999 */ 2000 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2001 { 2002 struct ice_link_default_override_tlv *ldo; 2003 struct ice_pf *pf = pi->hw->back; 2004 2005 ldo = &pf->link_dflt_override; 2006 if (ice_get_link_default_override(ldo, pi)) 2007 return; 2008 2009 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2010 return; 2011 2012 /* Enable Total Port Shutdown (override/replace link-down-on-close 2013 * ethtool private flag) for ports with Port Disable bit set. 2014 */ 2015 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2016 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2017 } 2018 2019 /** 2020 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2021 * @pi: port info structure 2022 * 2023 * If default override is enabled, initialize the user PHY cfg speed and FEC 2024 * settings using the default override mask from the NVM. 2025 * 2026 * The PHY should only be configured with the default override settings the 2027 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2028 * is used to indicate that the user PHY cfg default override is initialized 2029 * and the PHY has not been configured with the default override settings. The 2030 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2031 * configured. 2032 * 2033 * This function should be called only if the FW doesn't support default 2034 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2035 */ 2036 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2037 { 2038 struct ice_link_default_override_tlv *ldo; 2039 struct ice_aqc_set_phy_cfg_data *cfg; 2040 struct ice_phy_info *phy = &pi->phy; 2041 struct ice_pf *pf = pi->hw->back; 2042 2043 ldo = &pf->link_dflt_override; 2044 2045 /* If link default override is enabled, use to mask NVM PHY capabilities 2046 * for speed and FEC default configuration. 2047 */ 2048 cfg = &phy->curr_user_phy_cfg; 2049 2050 if (ldo->phy_type_low || ldo->phy_type_high) { 2051 cfg->phy_type_low = pf->nvm_phy_type_lo & 2052 cpu_to_le64(ldo->phy_type_low); 2053 cfg->phy_type_high = pf->nvm_phy_type_hi & 2054 cpu_to_le64(ldo->phy_type_high); 2055 } 2056 cfg->link_fec_opt = ldo->fec_options; 2057 phy->curr_user_fec_req = ICE_FEC_AUTO; 2058 2059 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2060 } 2061 2062 /** 2063 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2064 * @pi: port info structure 2065 * 2066 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2067 * mode to default. The PHY defaults are from get PHY capabilities topology 2068 * with media so call when media is first available. An error is returned if 2069 * called when media is not available. The PHY initialization completed state is 2070 * set here. 2071 * 2072 * These configurations are used when setting PHY 2073 * configuration. The user PHY configuration is updated on set PHY 2074 * configuration. Returns 0 on success, negative on failure 2075 */ 2076 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2077 { 2078 struct ice_aqc_get_phy_caps_data *pcaps; 2079 struct ice_phy_info *phy = &pi->phy; 2080 struct ice_pf *pf = pi->hw->back; 2081 int err; 2082 2083 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2084 return -EIO; 2085 2086 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2087 if (!pcaps) 2088 return -ENOMEM; 2089 2090 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2091 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2092 pcaps, NULL); 2093 else 2094 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2095 pcaps, NULL); 2096 if (err) { 2097 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2098 goto err_out; 2099 } 2100 2101 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2102 2103 /* check if lenient mode is supported and enabled */ 2104 if (ice_fw_supports_link_override(pi->hw) && 2105 !(pcaps->module_compliance_enforcement & 2106 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2107 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2108 2109 /* if the FW supports default PHY configuration mode, then the driver 2110 * does not have to apply link override settings. If not, 2111 * initialize user PHY configuration with link override values 2112 */ 2113 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2114 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2115 ice_init_phy_cfg_dflt_override(pi); 2116 goto out; 2117 } 2118 } 2119 2120 /* if link default override is not enabled, set user flow control and 2121 * FEC settings based on what get_phy_caps returned 2122 */ 2123 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2124 pcaps->link_fec_options); 2125 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2126 2127 out: 2128 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2129 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2130 err_out: 2131 kfree(pcaps); 2132 return err; 2133 } 2134 2135 /** 2136 * ice_configure_phy - configure PHY 2137 * @vsi: VSI of PHY 2138 * 2139 * Set the PHY configuration. If the current PHY configuration is the same as 2140 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2141 * configure the based get PHY capabilities for topology with media. 2142 */ 2143 static int ice_configure_phy(struct ice_vsi *vsi) 2144 { 2145 struct device *dev = ice_pf_to_dev(vsi->back); 2146 struct ice_port_info *pi = vsi->port_info; 2147 struct ice_aqc_get_phy_caps_data *pcaps; 2148 struct ice_aqc_set_phy_cfg_data *cfg; 2149 struct ice_phy_info *phy = &pi->phy; 2150 struct ice_pf *pf = vsi->back; 2151 int err; 2152 2153 /* Ensure we have media as we cannot configure a medialess port */ 2154 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2155 return -ENOMEDIUM; 2156 2157 ice_print_topo_conflict(vsi); 2158 2159 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2160 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2161 return -EPERM; 2162 2163 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2164 return ice_force_phys_link_state(vsi, true); 2165 2166 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2167 if (!pcaps) 2168 return -ENOMEM; 2169 2170 /* Get current PHY config */ 2171 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2172 NULL); 2173 if (err) { 2174 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2175 vsi->vsi_num, err); 2176 goto done; 2177 } 2178 2179 /* If PHY enable link is configured and configuration has not changed, 2180 * there's nothing to do 2181 */ 2182 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2183 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2184 goto done; 2185 2186 /* Use PHY topology as baseline for configuration */ 2187 memset(pcaps, 0, sizeof(*pcaps)); 2188 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2189 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2190 pcaps, NULL); 2191 else 2192 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2193 pcaps, NULL); 2194 if (err) { 2195 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2196 vsi->vsi_num, err); 2197 goto done; 2198 } 2199 2200 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2201 if (!cfg) { 2202 err = -ENOMEM; 2203 goto done; 2204 } 2205 2206 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2207 2208 /* Speed - If default override pending, use curr_user_phy_cfg set in 2209 * ice_init_phy_user_cfg_ldo. 2210 */ 2211 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2212 vsi->back->state)) { 2213 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2214 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2215 } else { 2216 u64 phy_low = 0, phy_high = 0; 2217 2218 ice_update_phy_type(&phy_low, &phy_high, 2219 pi->phy.curr_user_speed_req); 2220 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2221 cfg->phy_type_high = pcaps->phy_type_high & 2222 cpu_to_le64(phy_high); 2223 } 2224 2225 /* Can't provide what was requested; use PHY capabilities */ 2226 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2227 cfg->phy_type_low = pcaps->phy_type_low; 2228 cfg->phy_type_high = pcaps->phy_type_high; 2229 } 2230 2231 /* FEC */ 2232 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2233 2234 /* Can't provide what was requested; use PHY capabilities */ 2235 if (cfg->link_fec_opt != 2236 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2237 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2238 cfg->link_fec_opt = pcaps->link_fec_options; 2239 } 2240 2241 /* Flow Control - always supported; no need to check against 2242 * capabilities 2243 */ 2244 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2245 2246 /* Enable link and link update */ 2247 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2248 2249 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2250 if (err) 2251 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2252 vsi->vsi_num, err); 2253 2254 kfree(cfg); 2255 done: 2256 kfree(pcaps); 2257 return err; 2258 } 2259 2260 /** 2261 * ice_check_media_subtask - Check for media 2262 * @pf: pointer to PF struct 2263 * 2264 * If media is available, then initialize PHY user configuration if it is not 2265 * been, and configure the PHY if the interface is up. 2266 */ 2267 static void ice_check_media_subtask(struct ice_pf *pf) 2268 { 2269 struct ice_port_info *pi; 2270 struct ice_vsi *vsi; 2271 int err; 2272 2273 /* No need to check for media if it's already present */ 2274 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2275 return; 2276 2277 vsi = ice_get_main_vsi(pf); 2278 if (!vsi) 2279 return; 2280 2281 /* Refresh link info and check if media is present */ 2282 pi = vsi->port_info; 2283 err = ice_update_link_info(pi); 2284 if (err) 2285 return; 2286 2287 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2288 2289 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2290 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2291 ice_init_phy_user_cfg(pi); 2292 2293 /* PHY settings are reset on media insertion, reconfigure 2294 * PHY to preserve settings. 2295 */ 2296 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2297 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2298 return; 2299 2300 err = ice_configure_phy(vsi); 2301 if (!err) 2302 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2303 2304 /* A Link Status Event will be generated; the event handler 2305 * will complete bringing the interface up 2306 */ 2307 } 2308 } 2309 2310 /** 2311 * ice_service_task - manage and run subtasks 2312 * @work: pointer to work_struct contained by the PF struct 2313 */ 2314 static void ice_service_task(struct work_struct *work) 2315 { 2316 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2317 unsigned long start_time = jiffies; 2318 2319 /* subtasks */ 2320 2321 /* process reset requests first */ 2322 ice_reset_subtask(pf); 2323 2324 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2325 if (ice_is_reset_in_progress(pf->state) || 2326 test_bit(ICE_SUSPENDED, pf->state) || 2327 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2328 ice_service_task_complete(pf); 2329 return; 2330 } 2331 2332 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2333 struct iidc_event *event; 2334 2335 event = kzalloc(sizeof(*event), GFP_KERNEL); 2336 if (event) { 2337 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2338 /* report the entire OICR value to AUX driver */ 2339 swap(event->reg, pf->oicr_err_reg); 2340 ice_send_event_to_aux(pf, event); 2341 kfree(event); 2342 } 2343 } 2344 2345 /* unplug aux dev per request, if an unplug request came in 2346 * while processing a plug request, this will handle it 2347 */ 2348 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2349 ice_unplug_aux_dev(pf); 2350 2351 /* Plug aux device per request */ 2352 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2353 ice_plug_aux_dev(pf); 2354 2355 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2356 struct iidc_event *event; 2357 2358 event = kzalloc(sizeof(*event), GFP_KERNEL); 2359 if (event) { 2360 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2361 ice_send_event_to_aux(pf, event); 2362 kfree(event); 2363 } 2364 } 2365 2366 ice_clean_adminq_subtask(pf); 2367 ice_check_media_subtask(pf); 2368 ice_check_for_hang_subtask(pf); 2369 ice_sync_fltr_subtask(pf); 2370 ice_handle_mdd_event(pf); 2371 ice_watchdog_subtask(pf); 2372 2373 if (ice_is_safe_mode(pf)) { 2374 ice_service_task_complete(pf); 2375 return; 2376 } 2377 2378 ice_process_vflr_event(pf); 2379 ice_clean_mailboxq_subtask(pf); 2380 ice_clean_sbq_subtask(pf); 2381 ice_sync_arfs_fltrs(pf); 2382 ice_flush_fdir_ctx(pf); 2383 2384 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2385 ice_service_task_complete(pf); 2386 2387 /* If the tasks have taken longer than one service timer period 2388 * or there is more work to be done, reset the service timer to 2389 * schedule the service task now. 2390 */ 2391 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2392 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2393 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2394 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2395 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2396 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2397 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2398 mod_timer(&pf->serv_tmr, jiffies); 2399 } 2400 2401 /** 2402 * ice_set_ctrlq_len - helper function to set controlq length 2403 * @hw: pointer to the HW instance 2404 */ 2405 static void ice_set_ctrlq_len(struct ice_hw *hw) 2406 { 2407 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2408 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2409 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2410 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2411 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2412 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2413 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2414 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2415 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2416 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2417 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2418 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2419 } 2420 2421 /** 2422 * ice_schedule_reset - schedule a reset 2423 * @pf: board private structure 2424 * @reset: reset being requested 2425 */ 2426 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2427 { 2428 struct device *dev = ice_pf_to_dev(pf); 2429 2430 /* bail out if earlier reset has failed */ 2431 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2432 dev_dbg(dev, "earlier reset has failed\n"); 2433 return -EIO; 2434 } 2435 /* bail if reset/recovery already in progress */ 2436 if (ice_is_reset_in_progress(pf->state)) { 2437 dev_dbg(dev, "Reset already in progress\n"); 2438 return -EBUSY; 2439 } 2440 2441 switch (reset) { 2442 case ICE_RESET_PFR: 2443 set_bit(ICE_PFR_REQ, pf->state); 2444 break; 2445 case ICE_RESET_CORER: 2446 set_bit(ICE_CORER_REQ, pf->state); 2447 break; 2448 case ICE_RESET_GLOBR: 2449 set_bit(ICE_GLOBR_REQ, pf->state); 2450 break; 2451 default: 2452 return -EINVAL; 2453 } 2454 2455 ice_service_task_schedule(pf); 2456 return 0; 2457 } 2458 2459 /** 2460 * ice_irq_affinity_notify - Callback for affinity changes 2461 * @notify: context as to what irq was changed 2462 * @mask: the new affinity mask 2463 * 2464 * This is a callback function used by the irq_set_affinity_notifier function 2465 * so that we may register to receive changes to the irq affinity masks. 2466 */ 2467 static void 2468 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2469 const cpumask_t *mask) 2470 { 2471 struct ice_q_vector *q_vector = 2472 container_of(notify, struct ice_q_vector, affinity_notify); 2473 2474 cpumask_copy(&q_vector->affinity_mask, mask); 2475 } 2476 2477 /** 2478 * ice_irq_affinity_release - Callback for affinity notifier release 2479 * @ref: internal core kernel usage 2480 * 2481 * This is a callback function used by the irq_set_affinity_notifier function 2482 * to inform the current notification subscriber that they will no longer 2483 * receive notifications. 2484 */ 2485 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2486 2487 /** 2488 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2489 * @vsi: the VSI being configured 2490 */ 2491 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2492 { 2493 struct ice_hw *hw = &vsi->back->hw; 2494 int i; 2495 2496 ice_for_each_q_vector(vsi, i) 2497 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2498 2499 ice_flush(hw); 2500 return 0; 2501 } 2502 2503 /** 2504 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2505 * @vsi: the VSI being configured 2506 * @basename: name for the vector 2507 */ 2508 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2509 { 2510 int q_vectors = vsi->num_q_vectors; 2511 struct ice_pf *pf = vsi->back; 2512 struct device *dev; 2513 int rx_int_idx = 0; 2514 int tx_int_idx = 0; 2515 int vector, err; 2516 int irq_num; 2517 2518 dev = ice_pf_to_dev(pf); 2519 for (vector = 0; vector < q_vectors; vector++) { 2520 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2521 2522 irq_num = q_vector->irq.virq; 2523 2524 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2525 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2526 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2527 tx_int_idx++; 2528 } else if (q_vector->rx.rx_ring) { 2529 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2530 "%s-%s-%d", basename, "rx", rx_int_idx++); 2531 } else if (q_vector->tx.tx_ring) { 2532 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2533 "%s-%s-%d", basename, "tx", tx_int_idx++); 2534 } else { 2535 /* skip this unused q_vector */ 2536 continue; 2537 } 2538 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2539 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2540 IRQF_SHARED, q_vector->name, 2541 q_vector); 2542 else 2543 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2544 0, q_vector->name, q_vector); 2545 if (err) { 2546 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2547 err); 2548 goto free_q_irqs; 2549 } 2550 2551 /* register for affinity change notifications */ 2552 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2553 struct irq_affinity_notify *affinity_notify; 2554 2555 affinity_notify = &q_vector->affinity_notify; 2556 affinity_notify->notify = ice_irq_affinity_notify; 2557 affinity_notify->release = ice_irq_affinity_release; 2558 irq_set_affinity_notifier(irq_num, affinity_notify); 2559 } 2560 2561 /* assign the mask for this irq */ 2562 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2563 } 2564 2565 err = ice_set_cpu_rx_rmap(vsi); 2566 if (err) { 2567 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2568 vsi->vsi_num, ERR_PTR(err)); 2569 goto free_q_irqs; 2570 } 2571 2572 vsi->irqs_ready = true; 2573 return 0; 2574 2575 free_q_irqs: 2576 while (vector--) { 2577 irq_num = vsi->q_vectors[vector]->irq.virq; 2578 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2579 irq_set_affinity_notifier(irq_num, NULL); 2580 irq_set_affinity_hint(irq_num, NULL); 2581 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2582 } 2583 return err; 2584 } 2585 2586 /** 2587 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2588 * @vsi: VSI to setup Tx rings used by XDP 2589 * 2590 * Return 0 on success and negative value on error 2591 */ 2592 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2593 { 2594 struct device *dev = ice_pf_to_dev(vsi->back); 2595 struct ice_tx_desc *tx_desc; 2596 int i, j; 2597 2598 ice_for_each_xdp_txq(vsi, i) { 2599 u16 xdp_q_idx = vsi->alloc_txq + i; 2600 struct ice_ring_stats *ring_stats; 2601 struct ice_tx_ring *xdp_ring; 2602 2603 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2604 if (!xdp_ring) 2605 goto free_xdp_rings; 2606 2607 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2608 if (!ring_stats) { 2609 ice_free_tx_ring(xdp_ring); 2610 goto free_xdp_rings; 2611 } 2612 2613 xdp_ring->ring_stats = ring_stats; 2614 xdp_ring->q_index = xdp_q_idx; 2615 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2616 xdp_ring->vsi = vsi; 2617 xdp_ring->netdev = NULL; 2618 xdp_ring->dev = dev; 2619 xdp_ring->count = vsi->num_tx_desc; 2620 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2621 if (ice_setup_tx_ring(xdp_ring)) 2622 goto free_xdp_rings; 2623 ice_set_ring_xdp(xdp_ring); 2624 spin_lock_init(&xdp_ring->tx_lock); 2625 for (j = 0; j < xdp_ring->count; j++) { 2626 tx_desc = ICE_TX_DESC(xdp_ring, j); 2627 tx_desc->cmd_type_offset_bsz = 0; 2628 } 2629 } 2630 2631 return 0; 2632 2633 free_xdp_rings: 2634 for (; i >= 0; i--) { 2635 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2636 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2637 vsi->xdp_rings[i]->ring_stats = NULL; 2638 ice_free_tx_ring(vsi->xdp_rings[i]); 2639 } 2640 } 2641 return -ENOMEM; 2642 } 2643 2644 /** 2645 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2646 * @vsi: VSI to set the bpf prog on 2647 * @prog: the bpf prog pointer 2648 */ 2649 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2650 { 2651 struct bpf_prog *old_prog; 2652 int i; 2653 2654 old_prog = xchg(&vsi->xdp_prog, prog); 2655 ice_for_each_rxq(vsi, i) 2656 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2657 2658 if (old_prog) 2659 bpf_prog_put(old_prog); 2660 } 2661 2662 /** 2663 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2664 * @vsi: VSI to bring up Tx rings used by XDP 2665 * @prog: bpf program that will be assigned to VSI 2666 * @cfg_type: create from scratch or restore the existing configuration 2667 * 2668 * Return 0 on success and negative value on error 2669 */ 2670 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2671 enum ice_xdp_cfg cfg_type) 2672 { 2673 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2674 int xdp_rings_rem = vsi->num_xdp_txq; 2675 struct ice_pf *pf = vsi->back; 2676 struct ice_qs_cfg xdp_qs_cfg = { 2677 .qs_mutex = &pf->avail_q_mutex, 2678 .pf_map = pf->avail_txqs, 2679 .pf_map_size = pf->max_pf_txqs, 2680 .q_count = vsi->num_xdp_txq, 2681 .scatter_count = ICE_MAX_SCATTER_TXQS, 2682 .vsi_map = vsi->txq_map, 2683 .vsi_map_offset = vsi->alloc_txq, 2684 .mapping_mode = ICE_VSI_MAP_CONTIG 2685 }; 2686 struct device *dev; 2687 int i, v_idx; 2688 int status; 2689 2690 dev = ice_pf_to_dev(pf); 2691 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2692 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2693 if (!vsi->xdp_rings) 2694 return -ENOMEM; 2695 2696 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2697 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2698 goto err_map_xdp; 2699 2700 if (static_key_enabled(&ice_xdp_locking_key)) 2701 netdev_warn(vsi->netdev, 2702 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2703 2704 if (ice_xdp_alloc_setup_rings(vsi)) 2705 goto clear_xdp_rings; 2706 2707 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2708 ice_for_each_q_vector(vsi, v_idx) { 2709 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2710 int xdp_rings_per_v, q_id, q_base; 2711 2712 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2713 vsi->num_q_vectors - v_idx); 2714 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2715 2716 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2717 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2718 2719 xdp_ring->q_vector = q_vector; 2720 xdp_ring->next = q_vector->tx.tx_ring; 2721 q_vector->tx.tx_ring = xdp_ring; 2722 } 2723 xdp_rings_rem -= xdp_rings_per_v; 2724 } 2725 2726 ice_for_each_rxq(vsi, i) { 2727 if (static_key_enabled(&ice_xdp_locking_key)) { 2728 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2729 } else { 2730 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2731 struct ice_tx_ring *ring; 2732 2733 ice_for_each_tx_ring(ring, q_vector->tx) { 2734 if (ice_ring_is_xdp(ring)) { 2735 vsi->rx_rings[i]->xdp_ring = ring; 2736 break; 2737 } 2738 } 2739 } 2740 ice_tx_xsk_pool(vsi, i); 2741 } 2742 2743 /* omit the scheduler update if in reset path; XDP queues will be 2744 * taken into account at the end of ice_vsi_rebuild, where 2745 * ice_cfg_vsi_lan is being called 2746 */ 2747 if (cfg_type == ICE_XDP_CFG_PART) 2748 return 0; 2749 2750 /* tell the Tx scheduler that right now we have 2751 * additional queues 2752 */ 2753 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2754 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2755 2756 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2757 max_txqs); 2758 if (status) { 2759 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2760 status); 2761 goto clear_xdp_rings; 2762 } 2763 2764 /* assign the prog only when it's not already present on VSI; 2765 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2766 * VSI rebuild that happens under ethtool -L can expose us to 2767 * the bpf_prog refcount issues as we would be swapping same 2768 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2769 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2770 * this is not harmful as dev_xdp_install bumps the refcount 2771 * before calling the op exposed by the driver; 2772 */ 2773 if (!ice_is_xdp_ena_vsi(vsi)) 2774 ice_vsi_assign_bpf_prog(vsi, prog); 2775 2776 return 0; 2777 clear_xdp_rings: 2778 ice_for_each_xdp_txq(vsi, i) 2779 if (vsi->xdp_rings[i]) { 2780 kfree_rcu(vsi->xdp_rings[i], rcu); 2781 vsi->xdp_rings[i] = NULL; 2782 } 2783 2784 err_map_xdp: 2785 mutex_lock(&pf->avail_q_mutex); 2786 ice_for_each_xdp_txq(vsi, i) { 2787 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2788 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2789 } 2790 mutex_unlock(&pf->avail_q_mutex); 2791 2792 devm_kfree(dev, vsi->xdp_rings); 2793 return -ENOMEM; 2794 } 2795 2796 /** 2797 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2798 * @vsi: VSI to remove XDP rings 2799 * @cfg_type: disable XDP permanently or allow it to be restored later 2800 * 2801 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2802 * resources 2803 */ 2804 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2805 { 2806 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2807 struct ice_pf *pf = vsi->back; 2808 int i, v_idx; 2809 2810 /* q_vectors are freed in reset path so there's no point in detaching 2811 * rings 2812 */ 2813 if (cfg_type == ICE_XDP_CFG_PART) 2814 goto free_qmap; 2815 2816 ice_for_each_q_vector(vsi, v_idx) { 2817 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2818 struct ice_tx_ring *ring; 2819 2820 ice_for_each_tx_ring(ring, q_vector->tx) 2821 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2822 break; 2823 2824 /* restore the value of last node prior to XDP setup */ 2825 q_vector->tx.tx_ring = ring; 2826 } 2827 2828 free_qmap: 2829 mutex_lock(&pf->avail_q_mutex); 2830 ice_for_each_xdp_txq(vsi, i) { 2831 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2832 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2833 } 2834 mutex_unlock(&pf->avail_q_mutex); 2835 2836 ice_for_each_xdp_txq(vsi, i) 2837 if (vsi->xdp_rings[i]) { 2838 if (vsi->xdp_rings[i]->desc) { 2839 synchronize_rcu(); 2840 ice_free_tx_ring(vsi->xdp_rings[i]); 2841 } 2842 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2843 vsi->xdp_rings[i]->ring_stats = NULL; 2844 kfree_rcu(vsi->xdp_rings[i], rcu); 2845 vsi->xdp_rings[i] = NULL; 2846 } 2847 2848 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2849 vsi->xdp_rings = NULL; 2850 2851 if (static_key_enabled(&ice_xdp_locking_key)) 2852 static_branch_dec(&ice_xdp_locking_key); 2853 2854 if (cfg_type == ICE_XDP_CFG_PART) 2855 return 0; 2856 2857 ice_vsi_assign_bpf_prog(vsi, NULL); 2858 2859 /* notify Tx scheduler that we destroyed XDP queues and bring 2860 * back the old number of child nodes 2861 */ 2862 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2863 max_txqs[i] = vsi->num_txq; 2864 2865 /* change number of XDP Tx queues to 0 */ 2866 vsi->num_xdp_txq = 0; 2867 2868 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2869 max_txqs); 2870 } 2871 2872 /** 2873 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2874 * @vsi: VSI to schedule napi on 2875 */ 2876 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2877 { 2878 int i; 2879 2880 ice_for_each_rxq(vsi, i) { 2881 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2882 2883 if (rx_ring->xsk_pool) 2884 napi_schedule(&rx_ring->q_vector->napi); 2885 } 2886 } 2887 2888 /** 2889 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2890 * @vsi: VSI to determine the count of XDP Tx qs 2891 * 2892 * returns 0 if Tx qs count is higher than at least half of CPU count, 2893 * -ENOMEM otherwise 2894 */ 2895 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2896 { 2897 u16 avail = ice_get_avail_txq_count(vsi->back); 2898 u16 cpus = num_possible_cpus(); 2899 2900 if (avail < cpus / 2) 2901 return -ENOMEM; 2902 2903 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2904 2905 if (vsi->num_xdp_txq < cpus) 2906 static_branch_inc(&ice_xdp_locking_key); 2907 2908 return 0; 2909 } 2910 2911 /** 2912 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2913 * @vsi: Pointer to VSI structure 2914 */ 2915 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2916 { 2917 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2918 return ICE_RXBUF_1664; 2919 else 2920 return ICE_RXBUF_3072; 2921 } 2922 2923 /** 2924 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2925 * @vsi: VSI to setup XDP for 2926 * @prog: XDP program 2927 * @extack: netlink extended ack 2928 */ 2929 static int 2930 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2931 struct netlink_ext_ack *extack) 2932 { 2933 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2934 int ret = 0, xdp_ring_err = 0; 2935 bool if_running; 2936 2937 if (prog && !prog->aux->xdp_has_frags) { 2938 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2939 NL_SET_ERR_MSG_MOD(extack, 2940 "MTU is too large for linear frames and XDP prog does not support frags"); 2941 return -EOPNOTSUPP; 2942 } 2943 } 2944 2945 /* hot swap progs and avoid toggling link */ 2946 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 2947 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 2948 ice_vsi_assign_bpf_prog(vsi, prog); 2949 return 0; 2950 } 2951 2952 if_running = netif_running(vsi->netdev) && 2953 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 2954 2955 /* need to stop netdev while setting up the program for Rx rings */ 2956 if (if_running) { 2957 ret = ice_down(vsi); 2958 if (ret) { 2959 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2960 return ret; 2961 } 2962 } 2963 2964 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2965 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2966 if (xdp_ring_err) { 2967 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2968 } else { 2969 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 2970 ICE_XDP_CFG_FULL); 2971 if (xdp_ring_err) 2972 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2973 } 2974 xdp_features_set_redirect_target(vsi->netdev, true); 2975 /* reallocate Rx queues that are used for zero-copy */ 2976 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2977 if (xdp_ring_err) 2978 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2979 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2980 xdp_features_clear_redirect_target(vsi->netdev); 2981 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 2982 if (xdp_ring_err) 2983 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2984 /* reallocate Rx queues that were used for zero-copy */ 2985 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2986 if (xdp_ring_err) 2987 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2988 } 2989 2990 if (if_running) 2991 ret = ice_up(vsi); 2992 2993 if (!ret && prog) 2994 ice_vsi_rx_napi_schedule(vsi); 2995 2996 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2997 } 2998 2999 /** 3000 * ice_xdp_safe_mode - XDP handler for safe mode 3001 * @dev: netdevice 3002 * @xdp: XDP command 3003 */ 3004 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3005 struct netdev_bpf *xdp) 3006 { 3007 NL_SET_ERR_MSG_MOD(xdp->extack, 3008 "Please provide working DDP firmware package in order to use XDP\n" 3009 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3010 return -EOPNOTSUPP; 3011 } 3012 3013 /** 3014 * ice_xdp - implements XDP handler 3015 * @dev: netdevice 3016 * @xdp: XDP command 3017 */ 3018 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3019 { 3020 struct ice_netdev_priv *np = netdev_priv(dev); 3021 struct ice_vsi *vsi = np->vsi; 3022 int ret; 3023 3024 if (vsi->type != ICE_VSI_PF) { 3025 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3026 return -EINVAL; 3027 } 3028 3029 mutex_lock(&vsi->xdp_state_lock); 3030 3031 switch (xdp->command) { 3032 case XDP_SETUP_PROG: 3033 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3034 break; 3035 case XDP_SETUP_XSK_POOL: 3036 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3037 break; 3038 default: 3039 ret = -EINVAL; 3040 } 3041 3042 mutex_unlock(&vsi->xdp_state_lock); 3043 return ret; 3044 } 3045 3046 /** 3047 * ice_ena_misc_vector - enable the non-queue interrupts 3048 * @pf: board private structure 3049 */ 3050 static void ice_ena_misc_vector(struct ice_pf *pf) 3051 { 3052 struct ice_hw *hw = &pf->hw; 3053 u32 val; 3054 3055 /* Disable anti-spoof detection interrupt to prevent spurious event 3056 * interrupts during a function reset. Anti-spoof functionally is 3057 * still supported. 3058 */ 3059 val = rd32(hw, GL_MDCK_TX_TDPU); 3060 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3061 wr32(hw, GL_MDCK_TX_TDPU, val); 3062 3063 /* clear things first */ 3064 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3065 rd32(hw, PFINT_OICR); /* read to clear */ 3066 3067 val = (PFINT_OICR_ECC_ERR_M | 3068 PFINT_OICR_MAL_DETECT_M | 3069 PFINT_OICR_GRST_M | 3070 PFINT_OICR_PCI_EXCEPTION_M | 3071 PFINT_OICR_VFLR_M | 3072 PFINT_OICR_HMC_ERR_M | 3073 PFINT_OICR_PE_PUSH_M | 3074 PFINT_OICR_PE_CRITERR_M); 3075 3076 wr32(hw, PFINT_OICR_ENA, val); 3077 3078 /* SW_ITR_IDX = 0, but don't change INTENA */ 3079 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3080 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3081 } 3082 3083 /** 3084 * ice_misc_intr - misc interrupt handler 3085 * @irq: interrupt number 3086 * @data: pointer to a q_vector 3087 */ 3088 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3089 { 3090 struct ice_pf *pf = (struct ice_pf *)data; 3091 struct ice_hw *hw = &pf->hw; 3092 struct device *dev; 3093 u32 oicr, ena_mask; 3094 3095 dev = ice_pf_to_dev(pf); 3096 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3097 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3098 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3099 3100 oicr = rd32(hw, PFINT_OICR); 3101 ena_mask = rd32(hw, PFINT_OICR_ENA); 3102 3103 if (oicr & PFINT_OICR_SWINT_M) { 3104 ena_mask &= ~PFINT_OICR_SWINT_M; 3105 pf->sw_int_count++; 3106 } 3107 3108 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3109 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3110 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3111 } 3112 if (oicr & PFINT_OICR_VFLR_M) { 3113 /* disable any further VFLR event notifications */ 3114 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3115 u32 reg = rd32(hw, PFINT_OICR_ENA); 3116 3117 reg &= ~PFINT_OICR_VFLR_M; 3118 wr32(hw, PFINT_OICR_ENA, reg); 3119 } else { 3120 ena_mask &= ~PFINT_OICR_VFLR_M; 3121 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3122 } 3123 } 3124 3125 if (oicr & PFINT_OICR_GRST_M) { 3126 u32 reset; 3127 3128 /* we have a reset warning */ 3129 ena_mask &= ~PFINT_OICR_GRST_M; 3130 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3131 GLGEN_RSTAT_RESET_TYPE_S; 3132 3133 if (reset == ICE_RESET_CORER) 3134 pf->corer_count++; 3135 else if (reset == ICE_RESET_GLOBR) 3136 pf->globr_count++; 3137 else if (reset == ICE_RESET_EMPR) 3138 pf->empr_count++; 3139 else 3140 dev_dbg(dev, "Invalid reset type %d\n", reset); 3141 3142 /* If a reset cycle isn't already in progress, we set a bit in 3143 * pf->state so that the service task can start a reset/rebuild. 3144 */ 3145 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3146 if (reset == ICE_RESET_CORER) 3147 set_bit(ICE_CORER_RECV, pf->state); 3148 else if (reset == ICE_RESET_GLOBR) 3149 set_bit(ICE_GLOBR_RECV, pf->state); 3150 else 3151 set_bit(ICE_EMPR_RECV, pf->state); 3152 3153 /* There are couple of different bits at play here. 3154 * hw->reset_ongoing indicates whether the hardware is 3155 * in reset. This is set to true when a reset interrupt 3156 * is received and set back to false after the driver 3157 * has determined that the hardware is out of reset. 3158 * 3159 * ICE_RESET_OICR_RECV in pf->state indicates 3160 * that a post reset rebuild is required before the 3161 * driver is operational again. This is set above. 3162 * 3163 * As this is the start of the reset/rebuild cycle, set 3164 * both to indicate that. 3165 */ 3166 hw->reset_ongoing = true; 3167 } 3168 } 3169 3170 if (oicr & PFINT_OICR_TSYN_TX_M) { 3171 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3172 if (!hw->reset_ongoing) 3173 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3174 } 3175 3176 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3177 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3178 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3179 3180 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3181 3182 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3183 /* Save EVENTs from GLTSYN register */ 3184 pf->ptp.ext_ts_irq |= gltsyn_stat & 3185 (GLTSYN_STAT_EVENT0_M | 3186 GLTSYN_STAT_EVENT1_M | 3187 GLTSYN_STAT_EVENT2_M); 3188 3189 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3190 } 3191 } 3192 3193 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3194 if (oicr & ICE_AUX_CRIT_ERR) { 3195 pf->oicr_err_reg |= oicr; 3196 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3197 ena_mask &= ~ICE_AUX_CRIT_ERR; 3198 } 3199 3200 /* Report any remaining unexpected interrupts */ 3201 oicr &= ena_mask; 3202 if (oicr) { 3203 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3204 /* If a critical error is pending there is no choice but to 3205 * reset the device. 3206 */ 3207 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3208 PFINT_OICR_ECC_ERR_M)) { 3209 set_bit(ICE_PFR_REQ, pf->state); 3210 } 3211 } 3212 3213 return IRQ_WAKE_THREAD; 3214 } 3215 3216 /** 3217 * ice_misc_intr_thread_fn - misc interrupt thread function 3218 * @irq: interrupt number 3219 * @data: pointer to a q_vector 3220 */ 3221 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3222 { 3223 struct ice_pf *pf = data; 3224 struct ice_hw *hw; 3225 3226 hw = &pf->hw; 3227 3228 if (ice_is_reset_in_progress(pf->state)) 3229 return IRQ_HANDLED; 3230 3231 ice_service_task_schedule(pf); 3232 3233 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3234 ice_ptp_extts_event(pf); 3235 3236 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3237 /* Process outstanding Tx timestamps. If there is more work, 3238 * re-arm the interrupt to trigger again. 3239 */ 3240 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3241 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3242 ice_flush(hw); 3243 } 3244 } 3245 3246 ice_irq_dynamic_ena(hw, NULL, NULL); 3247 3248 return IRQ_HANDLED; 3249 } 3250 3251 /** 3252 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3253 * @hw: pointer to HW structure 3254 */ 3255 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3256 { 3257 /* disable Admin queue Interrupt causes */ 3258 wr32(hw, PFINT_FW_CTL, 3259 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3260 3261 /* disable Mailbox queue Interrupt causes */ 3262 wr32(hw, PFINT_MBX_CTL, 3263 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3264 3265 wr32(hw, PFINT_SB_CTL, 3266 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3267 3268 /* disable Control queue Interrupt causes */ 3269 wr32(hw, PFINT_OICR_CTL, 3270 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3271 3272 ice_flush(hw); 3273 } 3274 3275 /** 3276 * ice_free_irq_msix_misc - Unroll misc vector setup 3277 * @pf: board private structure 3278 */ 3279 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3280 { 3281 int misc_irq_num = pf->oicr_irq.virq; 3282 struct ice_hw *hw = &pf->hw; 3283 3284 ice_dis_ctrlq_interrupts(hw); 3285 3286 /* disable OICR interrupt */ 3287 wr32(hw, PFINT_OICR_ENA, 0); 3288 ice_flush(hw); 3289 3290 synchronize_irq(misc_irq_num); 3291 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3292 3293 ice_free_irq(pf, pf->oicr_irq); 3294 } 3295 3296 /** 3297 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3298 * @hw: pointer to HW structure 3299 * @reg_idx: HW vector index to associate the control queue interrupts with 3300 */ 3301 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3302 { 3303 u32 val; 3304 3305 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3306 PFINT_OICR_CTL_CAUSE_ENA_M); 3307 wr32(hw, PFINT_OICR_CTL, val); 3308 3309 /* enable Admin queue Interrupt causes */ 3310 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3311 PFINT_FW_CTL_CAUSE_ENA_M); 3312 wr32(hw, PFINT_FW_CTL, val); 3313 3314 /* enable Mailbox queue Interrupt causes */ 3315 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3316 PFINT_MBX_CTL_CAUSE_ENA_M); 3317 wr32(hw, PFINT_MBX_CTL, val); 3318 3319 /* This enables Sideband queue Interrupt causes */ 3320 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3321 PFINT_SB_CTL_CAUSE_ENA_M); 3322 wr32(hw, PFINT_SB_CTL, val); 3323 3324 ice_flush(hw); 3325 } 3326 3327 /** 3328 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3329 * @pf: board private structure 3330 * 3331 * This sets up the handler for MSIX 0, which is used to manage the 3332 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3333 * when in MSI or Legacy interrupt mode. 3334 */ 3335 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3336 { 3337 struct device *dev = ice_pf_to_dev(pf); 3338 struct ice_hw *hw = &pf->hw; 3339 struct msi_map oicr_irq; 3340 int err = 0; 3341 3342 if (!pf->int_name[0]) 3343 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3344 dev_driver_string(dev), dev_name(dev)); 3345 3346 /* Do not request IRQ but do enable OICR interrupt since settings are 3347 * lost during reset. Note that this function is called only during 3348 * rebuild path and not while reset is in progress. 3349 */ 3350 if (ice_is_reset_in_progress(pf->state)) 3351 goto skip_req_irq; 3352 3353 /* reserve one vector in irq_tracker for misc interrupts */ 3354 oicr_irq = ice_alloc_irq(pf, false); 3355 if (oicr_irq.index < 0) 3356 return oicr_irq.index; 3357 3358 pf->oicr_irq = oicr_irq; 3359 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3360 ice_misc_intr_thread_fn, 0, 3361 pf->int_name, pf); 3362 if (err) { 3363 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3364 pf->int_name, err); 3365 ice_free_irq(pf, pf->oicr_irq); 3366 return err; 3367 } 3368 3369 skip_req_irq: 3370 ice_ena_misc_vector(pf); 3371 3372 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3373 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3374 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3375 3376 ice_flush(hw); 3377 ice_irq_dynamic_ena(hw, NULL, NULL); 3378 3379 return 0; 3380 } 3381 3382 /** 3383 * ice_napi_add - register NAPI handler for the VSI 3384 * @vsi: VSI for which NAPI handler is to be registered 3385 * 3386 * This function is only called in the driver's load path. Registering the NAPI 3387 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3388 * reset/rebuild, etc.) 3389 */ 3390 static void ice_napi_add(struct ice_vsi *vsi) 3391 { 3392 int v_idx; 3393 3394 if (!vsi->netdev) 3395 return; 3396 3397 ice_for_each_q_vector(vsi, v_idx) 3398 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3399 ice_napi_poll); 3400 } 3401 3402 /** 3403 * ice_set_ops - set netdev and ethtools ops for the given netdev 3404 * @vsi: the VSI associated with the new netdev 3405 */ 3406 static void ice_set_ops(struct ice_vsi *vsi) 3407 { 3408 struct net_device *netdev = vsi->netdev; 3409 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3410 3411 if (ice_is_safe_mode(pf)) { 3412 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3413 ice_set_ethtool_safe_mode_ops(netdev); 3414 return; 3415 } 3416 3417 netdev->netdev_ops = &ice_netdev_ops; 3418 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3419 ice_set_ethtool_ops(netdev); 3420 3421 if (vsi->type != ICE_VSI_PF) 3422 return; 3423 3424 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3425 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3426 NETDEV_XDP_ACT_RX_SG; 3427 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3428 } 3429 3430 /** 3431 * ice_set_netdev_features - set features for the given netdev 3432 * @netdev: netdev instance 3433 */ 3434 static void ice_set_netdev_features(struct net_device *netdev) 3435 { 3436 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3437 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3438 netdev_features_t csumo_features; 3439 netdev_features_t vlano_features; 3440 netdev_features_t dflt_features; 3441 netdev_features_t tso_features; 3442 3443 if (ice_is_safe_mode(pf)) { 3444 /* safe mode */ 3445 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3446 netdev->hw_features = netdev->features; 3447 return; 3448 } 3449 3450 dflt_features = NETIF_F_SG | 3451 NETIF_F_HIGHDMA | 3452 NETIF_F_NTUPLE | 3453 NETIF_F_RXHASH; 3454 3455 csumo_features = NETIF_F_RXCSUM | 3456 NETIF_F_IP_CSUM | 3457 NETIF_F_SCTP_CRC | 3458 NETIF_F_IPV6_CSUM; 3459 3460 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3461 NETIF_F_HW_VLAN_CTAG_TX | 3462 NETIF_F_HW_VLAN_CTAG_RX; 3463 3464 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3465 if (is_dvm_ena) 3466 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3467 3468 tso_features = NETIF_F_TSO | 3469 NETIF_F_TSO_ECN | 3470 NETIF_F_TSO6 | 3471 NETIF_F_GSO_GRE | 3472 NETIF_F_GSO_UDP_TUNNEL | 3473 NETIF_F_GSO_GRE_CSUM | 3474 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3475 NETIF_F_GSO_PARTIAL | 3476 NETIF_F_GSO_IPXIP4 | 3477 NETIF_F_GSO_IPXIP6 | 3478 NETIF_F_GSO_UDP_L4; 3479 3480 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3481 NETIF_F_GSO_GRE_CSUM; 3482 /* set features that user can change */ 3483 netdev->hw_features = dflt_features | csumo_features | 3484 vlano_features | tso_features; 3485 3486 /* add support for HW_CSUM on packets with MPLS header */ 3487 netdev->mpls_features = NETIF_F_HW_CSUM | 3488 NETIF_F_TSO | 3489 NETIF_F_TSO6; 3490 3491 /* enable features */ 3492 netdev->features |= netdev->hw_features; 3493 3494 netdev->hw_features |= NETIF_F_HW_TC; 3495 netdev->hw_features |= NETIF_F_LOOPBACK; 3496 3497 /* encap and VLAN devices inherit default, csumo and tso features */ 3498 netdev->hw_enc_features |= dflt_features | csumo_features | 3499 tso_features; 3500 netdev->vlan_features |= dflt_features | csumo_features | 3501 tso_features; 3502 3503 /* advertise support but don't enable by default since only one type of 3504 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3505 * type turns on the other has to be turned off. This is enforced by the 3506 * ice_fix_features() ndo callback. 3507 */ 3508 if (is_dvm_ena) 3509 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3510 NETIF_F_HW_VLAN_STAG_TX; 3511 3512 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3513 * be changed at runtime 3514 */ 3515 netdev->hw_features |= NETIF_F_RXFCS; 3516 3517 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3518 } 3519 3520 /** 3521 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3522 * @lut: Lookup table 3523 * @rss_table_size: Lookup table size 3524 * @rss_size: Range of queue number for hashing 3525 */ 3526 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3527 { 3528 u16 i; 3529 3530 for (i = 0; i < rss_table_size; i++) 3531 lut[i] = i % rss_size; 3532 } 3533 3534 /** 3535 * ice_pf_vsi_setup - Set up a PF VSI 3536 * @pf: board private structure 3537 * @pi: pointer to the port_info instance 3538 * 3539 * Returns pointer to the successfully allocated VSI software struct 3540 * on success, otherwise returns NULL on failure. 3541 */ 3542 static struct ice_vsi * 3543 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3544 { 3545 struct ice_vsi_cfg_params params = {}; 3546 3547 params.type = ICE_VSI_PF; 3548 params.pi = pi; 3549 params.flags = ICE_VSI_FLAG_INIT; 3550 3551 return ice_vsi_setup(pf, ¶ms); 3552 } 3553 3554 static struct ice_vsi * 3555 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3556 struct ice_channel *ch) 3557 { 3558 struct ice_vsi_cfg_params params = {}; 3559 3560 params.type = ICE_VSI_CHNL; 3561 params.pi = pi; 3562 params.ch = ch; 3563 params.flags = ICE_VSI_FLAG_INIT; 3564 3565 return ice_vsi_setup(pf, ¶ms); 3566 } 3567 3568 /** 3569 * ice_ctrl_vsi_setup - Set up a control VSI 3570 * @pf: board private structure 3571 * @pi: pointer to the port_info instance 3572 * 3573 * Returns pointer to the successfully allocated VSI software struct 3574 * on success, otherwise returns NULL on failure. 3575 */ 3576 static struct ice_vsi * 3577 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3578 { 3579 struct ice_vsi_cfg_params params = {}; 3580 3581 params.type = ICE_VSI_CTRL; 3582 params.pi = pi; 3583 params.flags = ICE_VSI_FLAG_INIT; 3584 3585 return ice_vsi_setup(pf, ¶ms); 3586 } 3587 3588 /** 3589 * ice_lb_vsi_setup - Set up a loopback VSI 3590 * @pf: board private structure 3591 * @pi: pointer to the port_info instance 3592 * 3593 * Returns pointer to the successfully allocated VSI software struct 3594 * on success, otherwise returns NULL on failure. 3595 */ 3596 struct ice_vsi * 3597 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3598 { 3599 struct ice_vsi_cfg_params params = {}; 3600 3601 params.type = ICE_VSI_LB; 3602 params.pi = pi; 3603 params.flags = ICE_VSI_FLAG_INIT; 3604 3605 return ice_vsi_setup(pf, ¶ms); 3606 } 3607 3608 /** 3609 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3610 * @netdev: network interface to be adjusted 3611 * @proto: VLAN TPID 3612 * @vid: VLAN ID to be added 3613 * 3614 * net_device_ops implementation for adding VLAN IDs 3615 */ 3616 static int 3617 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3618 { 3619 struct ice_netdev_priv *np = netdev_priv(netdev); 3620 struct ice_vsi_vlan_ops *vlan_ops; 3621 struct ice_vsi *vsi = np->vsi; 3622 struct ice_vlan vlan; 3623 int ret; 3624 3625 /* VLAN 0 is added by default during load/reset */ 3626 if (!vid) 3627 return 0; 3628 3629 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3630 usleep_range(1000, 2000); 3631 3632 /* Add multicast promisc rule for the VLAN ID to be added if 3633 * all-multicast is currently enabled. 3634 */ 3635 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3636 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3637 ICE_MCAST_VLAN_PROMISC_BITS, 3638 vid); 3639 if (ret) 3640 goto finish; 3641 } 3642 3643 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3644 3645 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3646 * packets aren't pruned by the device's internal switch on Rx 3647 */ 3648 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3649 ret = vlan_ops->add_vlan(vsi, &vlan); 3650 if (ret) 3651 goto finish; 3652 3653 /* If all-multicast is currently enabled and this VLAN ID is only one 3654 * besides VLAN-0 we have to update look-up type of multicast promisc 3655 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3656 */ 3657 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3658 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3659 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3660 ICE_MCAST_PROMISC_BITS, 0); 3661 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3662 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3663 } 3664 3665 finish: 3666 clear_bit(ICE_CFG_BUSY, vsi->state); 3667 3668 return ret; 3669 } 3670 3671 /** 3672 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3673 * @netdev: network interface to be adjusted 3674 * @proto: VLAN TPID 3675 * @vid: VLAN ID to be removed 3676 * 3677 * net_device_ops implementation for removing VLAN IDs 3678 */ 3679 static int 3680 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3681 { 3682 struct ice_netdev_priv *np = netdev_priv(netdev); 3683 struct ice_vsi_vlan_ops *vlan_ops; 3684 struct ice_vsi *vsi = np->vsi; 3685 struct ice_vlan vlan; 3686 int ret; 3687 3688 /* don't allow removal of VLAN 0 */ 3689 if (!vid) 3690 return 0; 3691 3692 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3693 usleep_range(1000, 2000); 3694 3695 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3696 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3697 if (ret) { 3698 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3699 vsi->vsi_num); 3700 vsi->current_netdev_flags |= IFF_ALLMULTI; 3701 } 3702 3703 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3704 3705 /* Make sure VLAN delete is successful before updating VLAN 3706 * information 3707 */ 3708 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3709 ret = vlan_ops->del_vlan(vsi, &vlan); 3710 if (ret) 3711 goto finish; 3712 3713 /* Remove multicast promisc rule for the removed VLAN ID if 3714 * all-multicast is enabled. 3715 */ 3716 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3717 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3718 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3719 3720 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3721 /* Update look-up type of multicast promisc rule for VLAN 0 3722 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3723 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3724 */ 3725 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3726 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3727 ICE_MCAST_VLAN_PROMISC_BITS, 3728 0); 3729 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3730 ICE_MCAST_PROMISC_BITS, 0); 3731 } 3732 } 3733 3734 finish: 3735 clear_bit(ICE_CFG_BUSY, vsi->state); 3736 3737 return ret; 3738 } 3739 3740 /** 3741 * ice_rep_indr_tc_block_unbind 3742 * @cb_priv: indirection block private data 3743 */ 3744 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3745 { 3746 struct ice_indr_block_priv *indr_priv = cb_priv; 3747 3748 list_del(&indr_priv->list); 3749 kfree(indr_priv); 3750 } 3751 3752 /** 3753 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3754 * @vsi: VSI struct which has the netdev 3755 */ 3756 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3757 { 3758 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3759 3760 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3761 ice_rep_indr_tc_block_unbind); 3762 } 3763 3764 /** 3765 * ice_tc_indir_block_register - Register TC indirect block notifications 3766 * @vsi: VSI struct which has the netdev 3767 * 3768 * Returns 0 on success, negative value on failure 3769 */ 3770 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3771 { 3772 struct ice_netdev_priv *np; 3773 3774 if (!vsi || !vsi->netdev) 3775 return -EINVAL; 3776 3777 np = netdev_priv(vsi->netdev); 3778 3779 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3780 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3781 } 3782 3783 /** 3784 * ice_get_avail_q_count - Get count of queues in use 3785 * @pf_qmap: bitmap to get queue use count from 3786 * @lock: pointer to a mutex that protects access to pf_qmap 3787 * @size: size of the bitmap 3788 */ 3789 static u16 3790 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3791 { 3792 unsigned long bit; 3793 u16 count = 0; 3794 3795 mutex_lock(lock); 3796 for_each_clear_bit(bit, pf_qmap, size) 3797 count++; 3798 mutex_unlock(lock); 3799 3800 return count; 3801 } 3802 3803 /** 3804 * ice_get_avail_txq_count - Get count of Tx queues in use 3805 * @pf: pointer to an ice_pf instance 3806 */ 3807 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3808 { 3809 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3810 pf->max_pf_txqs); 3811 } 3812 3813 /** 3814 * ice_get_avail_rxq_count - Get count of Rx queues in use 3815 * @pf: pointer to an ice_pf instance 3816 */ 3817 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3818 { 3819 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3820 pf->max_pf_rxqs); 3821 } 3822 3823 /** 3824 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3825 * @pf: board private structure to initialize 3826 */ 3827 static void ice_deinit_pf(struct ice_pf *pf) 3828 { 3829 ice_service_task_stop(pf); 3830 mutex_destroy(&pf->lag_mutex); 3831 mutex_destroy(&pf->adev_mutex); 3832 mutex_destroy(&pf->sw_mutex); 3833 mutex_destroy(&pf->tc_mutex); 3834 mutex_destroy(&pf->avail_q_mutex); 3835 mutex_destroy(&pf->vfs.table_lock); 3836 3837 if (pf->avail_txqs) { 3838 bitmap_free(pf->avail_txqs); 3839 pf->avail_txqs = NULL; 3840 } 3841 3842 if (pf->avail_rxqs) { 3843 bitmap_free(pf->avail_rxqs); 3844 pf->avail_rxqs = NULL; 3845 } 3846 3847 if (pf->ptp.clock) 3848 ptp_clock_unregister(pf->ptp.clock); 3849 } 3850 3851 /** 3852 * ice_set_pf_caps - set PFs capability flags 3853 * @pf: pointer to the PF instance 3854 */ 3855 static void ice_set_pf_caps(struct ice_pf *pf) 3856 { 3857 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3858 3859 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3860 if (func_caps->common_cap.rdma) 3861 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3862 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3863 if (func_caps->common_cap.dcb) 3864 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3865 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3866 if (func_caps->common_cap.sr_iov_1_1) { 3867 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3868 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3869 ICE_MAX_SRIOV_VFS); 3870 } 3871 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3872 if (func_caps->common_cap.rss_table_size) 3873 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3874 3875 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3876 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3877 u16 unused; 3878 3879 /* ctrl_vsi_idx will be set to a valid value when flow director 3880 * is setup by ice_init_fdir 3881 */ 3882 pf->ctrl_vsi_idx = ICE_NO_VSI; 3883 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3884 /* force guaranteed filter pool for PF */ 3885 ice_alloc_fd_guar_item(&pf->hw, &unused, 3886 func_caps->fd_fltr_guar); 3887 /* force shared filter pool for PF */ 3888 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3889 func_caps->fd_fltr_best_effort); 3890 } 3891 3892 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3893 if (func_caps->common_cap.ieee_1588) 3894 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3895 3896 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3897 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3898 } 3899 3900 /** 3901 * ice_init_pf - Initialize general software structures (struct ice_pf) 3902 * @pf: board private structure to initialize 3903 */ 3904 static int ice_init_pf(struct ice_pf *pf) 3905 { 3906 ice_set_pf_caps(pf); 3907 3908 mutex_init(&pf->sw_mutex); 3909 mutex_init(&pf->tc_mutex); 3910 mutex_init(&pf->adev_mutex); 3911 mutex_init(&pf->lag_mutex); 3912 3913 INIT_HLIST_HEAD(&pf->aq_wait_list); 3914 spin_lock_init(&pf->aq_wait_lock); 3915 init_waitqueue_head(&pf->aq_wait_queue); 3916 3917 init_waitqueue_head(&pf->reset_wait_queue); 3918 3919 /* setup service timer and periodic service task */ 3920 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3921 pf->serv_tmr_period = HZ; 3922 INIT_WORK(&pf->serv_task, ice_service_task); 3923 clear_bit(ICE_SERVICE_SCHED, pf->state); 3924 3925 mutex_init(&pf->avail_q_mutex); 3926 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3927 if (!pf->avail_txqs) 3928 return -ENOMEM; 3929 3930 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3931 if (!pf->avail_rxqs) { 3932 bitmap_free(pf->avail_txqs); 3933 pf->avail_txqs = NULL; 3934 return -ENOMEM; 3935 } 3936 3937 mutex_init(&pf->vfs.table_lock); 3938 hash_init(pf->vfs.table); 3939 ice_mbx_init_snapshot(&pf->hw); 3940 3941 return 0; 3942 } 3943 3944 /** 3945 * ice_is_wol_supported - check if WoL is supported 3946 * @hw: pointer to hardware info 3947 * 3948 * Check if WoL is supported based on the HW configuration. 3949 * Returns true if NVM supports and enables WoL for this port, false otherwise 3950 */ 3951 bool ice_is_wol_supported(struct ice_hw *hw) 3952 { 3953 u16 wol_ctrl; 3954 3955 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3956 * word) indicates WoL is not supported on the corresponding PF ID. 3957 */ 3958 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3959 return false; 3960 3961 return !(BIT(hw->port_info->lport) & wol_ctrl); 3962 } 3963 3964 /** 3965 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3966 * @vsi: VSI being changed 3967 * @new_rx: new number of Rx queues 3968 * @new_tx: new number of Tx queues 3969 * @locked: is adev device_lock held 3970 * 3971 * Only change the number of queues if new_tx, or new_rx is non-0. 3972 * 3973 * Returns 0 on success. 3974 */ 3975 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3976 { 3977 struct ice_pf *pf = vsi->back; 3978 int i, err = 0, timeout = 50; 3979 3980 if (!new_rx && !new_tx) 3981 return -EINVAL; 3982 3983 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3984 timeout--; 3985 if (!timeout) 3986 return -EBUSY; 3987 usleep_range(1000, 2000); 3988 } 3989 3990 if (new_tx) 3991 vsi->req_txq = (u16)new_tx; 3992 if (new_rx) 3993 vsi->req_rxq = (u16)new_rx; 3994 3995 /* set for the next time the netdev is started */ 3996 if (!netif_running(vsi->netdev)) { 3997 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3998 if (err) 3999 goto rebuild_err; 4000 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4001 goto done; 4002 } 4003 4004 ice_vsi_close(vsi); 4005 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4006 if (err) 4007 goto rebuild_err; 4008 4009 ice_for_each_traffic_class(i) { 4010 if (vsi->tc_cfg.ena_tc & BIT(i)) 4011 netdev_set_tc_queue(vsi->netdev, 4012 vsi->tc_cfg.tc_info[i].netdev_tc, 4013 vsi->tc_cfg.tc_info[i].qcount_tx, 4014 vsi->tc_cfg.tc_info[i].qoffset); 4015 } 4016 ice_pf_dcb_recfg(pf, locked); 4017 ice_vsi_open(vsi); 4018 goto done; 4019 4020 rebuild_err: 4021 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4022 err); 4023 done: 4024 clear_bit(ICE_CFG_BUSY, pf->state); 4025 return err; 4026 } 4027 4028 /** 4029 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4030 * @pf: PF to configure 4031 * 4032 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4033 * VSI can still Tx/Rx VLAN tagged packets. 4034 */ 4035 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4036 { 4037 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4038 struct ice_vsi_ctx *ctxt; 4039 struct ice_hw *hw; 4040 int status; 4041 4042 if (!vsi) 4043 return; 4044 4045 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4046 if (!ctxt) 4047 return; 4048 4049 hw = &pf->hw; 4050 ctxt->info = vsi->info; 4051 4052 ctxt->info.valid_sections = 4053 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4054 ICE_AQ_VSI_PROP_SECURITY_VALID | 4055 ICE_AQ_VSI_PROP_SW_VALID); 4056 4057 /* disable VLAN anti-spoof */ 4058 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4059 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4060 4061 /* disable VLAN pruning and keep all other settings */ 4062 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4063 4064 /* allow all VLANs on Tx and don't strip on Rx */ 4065 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4066 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4067 4068 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4069 if (status) { 4070 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4071 status, ice_aq_str(hw->adminq.sq_last_status)); 4072 } else { 4073 vsi->info.sec_flags = ctxt->info.sec_flags; 4074 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4075 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4076 } 4077 4078 kfree(ctxt); 4079 } 4080 4081 /** 4082 * ice_log_pkg_init - log result of DDP package load 4083 * @hw: pointer to hardware info 4084 * @state: state of package load 4085 */ 4086 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4087 { 4088 struct ice_pf *pf = hw->back; 4089 struct device *dev; 4090 4091 dev = ice_pf_to_dev(pf); 4092 4093 switch (state) { 4094 case ICE_DDP_PKG_SUCCESS: 4095 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4096 hw->active_pkg_name, 4097 hw->active_pkg_ver.major, 4098 hw->active_pkg_ver.minor, 4099 hw->active_pkg_ver.update, 4100 hw->active_pkg_ver.draft); 4101 break; 4102 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4103 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4104 hw->active_pkg_name, 4105 hw->active_pkg_ver.major, 4106 hw->active_pkg_ver.minor, 4107 hw->active_pkg_ver.update, 4108 hw->active_pkg_ver.draft); 4109 break; 4110 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4111 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4112 hw->active_pkg_name, 4113 hw->active_pkg_ver.major, 4114 hw->active_pkg_ver.minor, 4115 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4116 break; 4117 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4118 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4119 hw->active_pkg_name, 4120 hw->active_pkg_ver.major, 4121 hw->active_pkg_ver.minor, 4122 hw->active_pkg_ver.update, 4123 hw->active_pkg_ver.draft, 4124 hw->pkg_name, 4125 hw->pkg_ver.major, 4126 hw->pkg_ver.minor, 4127 hw->pkg_ver.update, 4128 hw->pkg_ver.draft); 4129 break; 4130 case ICE_DDP_PKG_FW_MISMATCH: 4131 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4132 break; 4133 case ICE_DDP_PKG_INVALID_FILE: 4134 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4135 break; 4136 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4137 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4138 break; 4139 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4140 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4141 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4142 break; 4143 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4144 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4145 break; 4146 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4147 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4148 break; 4149 case ICE_DDP_PKG_LOAD_ERROR: 4150 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4151 /* poll for reset to complete */ 4152 if (ice_check_reset(hw)) 4153 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4154 break; 4155 case ICE_DDP_PKG_ERR: 4156 default: 4157 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4158 break; 4159 } 4160 } 4161 4162 /** 4163 * ice_load_pkg - load/reload the DDP Package file 4164 * @firmware: firmware structure when firmware requested or NULL for reload 4165 * @pf: pointer to the PF instance 4166 * 4167 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4168 * initialize HW tables. 4169 */ 4170 static void 4171 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4172 { 4173 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4174 struct device *dev = ice_pf_to_dev(pf); 4175 struct ice_hw *hw = &pf->hw; 4176 4177 /* Load DDP Package */ 4178 if (firmware && !hw->pkg_copy) { 4179 state = ice_copy_and_init_pkg(hw, firmware->data, 4180 firmware->size); 4181 ice_log_pkg_init(hw, state); 4182 } else if (!firmware && hw->pkg_copy) { 4183 /* Reload package during rebuild after CORER/GLOBR reset */ 4184 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4185 ice_log_pkg_init(hw, state); 4186 } else { 4187 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4188 } 4189 4190 if (!ice_is_init_pkg_successful(state)) { 4191 /* Safe Mode */ 4192 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4193 return; 4194 } 4195 4196 /* Successful download package is the precondition for advanced 4197 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4198 */ 4199 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4200 } 4201 4202 /** 4203 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4204 * @pf: pointer to the PF structure 4205 * 4206 * There is no error returned here because the driver should be able to handle 4207 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4208 * specifically with Tx. 4209 */ 4210 static void ice_verify_cacheline_size(struct ice_pf *pf) 4211 { 4212 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4213 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4214 ICE_CACHE_LINE_BYTES); 4215 } 4216 4217 /** 4218 * ice_send_version - update firmware with driver version 4219 * @pf: PF struct 4220 * 4221 * Returns 0 on success, else error code 4222 */ 4223 static int ice_send_version(struct ice_pf *pf) 4224 { 4225 struct ice_driver_ver dv; 4226 4227 dv.major_ver = 0xff; 4228 dv.minor_ver = 0xff; 4229 dv.build_ver = 0xff; 4230 dv.subbuild_ver = 0; 4231 strscpy((char *)dv.driver_string, UTS_RELEASE, 4232 sizeof(dv.driver_string)); 4233 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4234 } 4235 4236 /** 4237 * ice_init_fdir - Initialize flow director VSI and configuration 4238 * @pf: pointer to the PF instance 4239 * 4240 * returns 0 on success, negative on error 4241 */ 4242 static int ice_init_fdir(struct ice_pf *pf) 4243 { 4244 struct device *dev = ice_pf_to_dev(pf); 4245 struct ice_vsi *ctrl_vsi; 4246 int err; 4247 4248 /* Side Band Flow Director needs to have a control VSI. 4249 * Allocate it and store it in the PF. 4250 */ 4251 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4252 if (!ctrl_vsi) { 4253 dev_dbg(dev, "could not create control VSI\n"); 4254 return -ENOMEM; 4255 } 4256 4257 err = ice_vsi_open_ctrl(ctrl_vsi); 4258 if (err) { 4259 dev_dbg(dev, "could not open control VSI\n"); 4260 goto err_vsi_open; 4261 } 4262 4263 mutex_init(&pf->hw.fdir_fltr_lock); 4264 4265 err = ice_fdir_create_dflt_rules(pf); 4266 if (err) 4267 goto err_fdir_rule; 4268 4269 return 0; 4270 4271 err_fdir_rule: 4272 ice_fdir_release_flows(&pf->hw); 4273 ice_vsi_close(ctrl_vsi); 4274 err_vsi_open: 4275 ice_vsi_release(ctrl_vsi); 4276 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4277 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4278 pf->ctrl_vsi_idx = ICE_NO_VSI; 4279 } 4280 return err; 4281 } 4282 4283 static void ice_deinit_fdir(struct ice_pf *pf) 4284 { 4285 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4286 4287 if (!vsi) 4288 return; 4289 4290 ice_vsi_manage_fdir(vsi, false); 4291 ice_vsi_release(vsi); 4292 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4293 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4294 pf->ctrl_vsi_idx = ICE_NO_VSI; 4295 } 4296 4297 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4298 } 4299 4300 /** 4301 * ice_get_opt_fw_name - return optional firmware file name or NULL 4302 * @pf: pointer to the PF instance 4303 */ 4304 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4305 { 4306 /* Optional firmware name same as default with additional dash 4307 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4308 */ 4309 struct pci_dev *pdev = pf->pdev; 4310 char *opt_fw_filename; 4311 u64 dsn; 4312 4313 /* Determine the name of the optional file using the DSN (two 4314 * dwords following the start of the DSN Capability). 4315 */ 4316 dsn = pci_get_dsn(pdev); 4317 if (!dsn) 4318 return NULL; 4319 4320 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4321 if (!opt_fw_filename) 4322 return NULL; 4323 4324 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4325 ICE_DDP_PKG_PATH, dsn); 4326 4327 return opt_fw_filename; 4328 } 4329 4330 /** 4331 * ice_request_fw - Device initialization routine 4332 * @pf: pointer to the PF instance 4333 */ 4334 static void ice_request_fw(struct ice_pf *pf) 4335 { 4336 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4337 const struct firmware *firmware = NULL; 4338 struct device *dev = ice_pf_to_dev(pf); 4339 int err = 0; 4340 4341 /* optional device-specific DDP (if present) overrides the default DDP 4342 * package file. kernel logs a debug message if the file doesn't exist, 4343 * and warning messages for other errors. 4344 */ 4345 if (opt_fw_filename) { 4346 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4347 if (err) { 4348 kfree(opt_fw_filename); 4349 goto dflt_pkg_load; 4350 } 4351 4352 /* request for firmware was successful. Download to device */ 4353 ice_load_pkg(firmware, pf); 4354 kfree(opt_fw_filename); 4355 release_firmware(firmware); 4356 return; 4357 } 4358 4359 dflt_pkg_load: 4360 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4361 if (err) { 4362 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4363 return; 4364 } 4365 4366 /* request for firmware was successful. Download to device */ 4367 ice_load_pkg(firmware, pf); 4368 release_firmware(firmware); 4369 } 4370 4371 /** 4372 * ice_print_wake_reason - show the wake up cause in the log 4373 * @pf: pointer to the PF struct 4374 */ 4375 static void ice_print_wake_reason(struct ice_pf *pf) 4376 { 4377 u32 wus = pf->wakeup_reason; 4378 const char *wake_str; 4379 4380 /* if no wake event, nothing to print */ 4381 if (!wus) 4382 return; 4383 4384 if (wus & PFPM_WUS_LNKC_M) 4385 wake_str = "Link\n"; 4386 else if (wus & PFPM_WUS_MAG_M) 4387 wake_str = "Magic Packet\n"; 4388 else if (wus & PFPM_WUS_MNG_M) 4389 wake_str = "Management\n"; 4390 else if (wus & PFPM_WUS_FW_RST_WK_M) 4391 wake_str = "Firmware Reset\n"; 4392 else 4393 wake_str = "Unknown\n"; 4394 4395 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4396 } 4397 4398 /** 4399 * ice_register_netdev - register netdev 4400 * @vsi: pointer to the VSI struct 4401 */ 4402 static int ice_register_netdev(struct ice_vsi *vsi) 4403 { 4404 int err; 4405 4406 if (!vsi || !vsi->netdev) 4407 return -EIO; 4408 4409 err = register_netdev(vsi->netdev); 4410 if (err) 4411 return err; 4412 4413 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4414 netif_carrier_off(vsi->netdev); 4415 netif_tx_stop_all_queues(vsi->netdev); 4416 4417 return 0; 4418 } 4419 4420 static void ice_unregister_netdev(struct ice_vsi *vsi) 4421 { 4422 if (!vsi || !vsi->netdev) 4423 return; 4424 4425 unregister_netdev(vsi->netdev); 4426 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4427 } 4428 4429 /** 4430 * ice_cfg_netdev - Allocate, configure and register a netdev 4431 * @vsi: the VSI associated with the new netdev 4432 * 4433 * Returns 0 on success, negative value on failure 4434 */ 4435 static int ice_cfg_netdev(struct ice_vsi *vsi) 4436 { 4437 struct ice_netdev_priv *np; 4438 struct net_device *netdev; 4439 u8 mac_addr[ETH_ALEN]; 4440 4441 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4442 vsi->alloc_rxq); 4443 if (!netdev) 4444 return -ENOMEM; 4445 4446 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4447 vsi->netdev = netdev; 4448 np = netdev_priv(netdev); 4449 np->vsi = vsi; 4450 4451 ice_set_netdev_features(netdev); 4452 ice_set_ops(vsi); 4453 4454 if (vsi->type == ICE_VSI_PF) { 4455 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4456 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4457 eth_hw_addr_set(netdev, mac_addr); 4458 } 4459 4460 netdev->priv_flags |= IFF_UNICAST_FLT; 4461 4462 /* Setup netdev TC information */ 4463 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4464 4465 netdev->max_mtu = ICE_MAX_MTU; 4466 4467 return 0; 4468 } 4469 4470 static void ice_decfg_netdev(struct ice_vsi *vsi) 4471 { 4472 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4473 free_netdev(vsi->netdev); 4474 vsi->netdev = NULL; 4475 } 4476 4477 static int ice_start_eth(struct ice_vsi *vsi) 4478 { 4479 int err; 4480 4481 err = ice_init_mac_fltr(vsi->back); 4482 if (err) 4483 return err; 4484 4485 err = ice_vsi_open(vsi); 4486 if (err) 4487 ice_fltr_remove_all(vsi); 4488 4489 return err; 4490 } 4491 4492 static void ice_stop_eth(struct ice_vsi *vsi) 4493 { 4494 ice_fltr_remove_all(vsi); 4495 ice_vsi_close(vsi); 4496 } 4497 4498 static int ice_init_eth(struct ice_pf *pf) 4499 { 4500 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4501 int err; 4502 4503 if (!vsi) 4504 return -EINVAL; 4505 4506 /* init channel list */ 4507 INIT_LIST_HEAD(&vsi->ch_list); 4508 4509 err = ice_cfg_netdev(vsi); 4510 if (err) 4511 return err; 4512 /* Setup DCB netlink interface */ 4513 ice_dcbnl_setup(vsi); 4514 4515 err = ice_init_mac_fltr(pf); 4516 if (err) 4517 goto err_init_mac_fltr; 4518 4519 err = ice_devlink_create_pf_port(pf); 4520 if (err) 4521 goto err_devlink_create_pf_port; 4522 4523 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4524 4525 err = ice_register_netdev(vsi); 4526 if (err) 4527 goto err_register_netdev; 4528 4529 err = ice_tc_indir_block_register(vsi); 4530 if (err) 4531 goto err_tc_indir_block_register; 4532 4533 ice_napi_add(vsi); 4534 4535 return 0; 4536 4537 err_tc_indir_block_register: 4538 ice_unregister_netdev(vsi); 4539 err_register_netdev: 4540 ice_devlink_destroy_pf_port(pf); 4541 err_devlink_create_pf_port: 4542 err_init_mac_fltr: 4543 ice_decfg_netdev(vsi); 4544 return err; 4545 } 4546 4547 static void ice_deinit_eth(struct ice_pf *pf) 4548 { 4549 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4550 4551 if (!vsi) 4552 return; 4553 4554 ice_vsi_close(vsi); 4555 ice_unregister_netdev(vsi); 4556 ice_devlink_destroy_pf_port(pf); 4557 ice_tc_indir_block_unregister(vsi); 4558 ice_decfg_netdev(vsi); 4559 } 4560 4561 /** 4562 * ice_wait_for_fw - wait for full FW readiness 4563 * @hw: pointer to the hardware structure 4564 * @timeout: milliseconds that can elapse before timing out 4565 */ 4566 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4567 { 4568 int fw_loading; 4569 u32 elapsed = 0; 4570 4571 while (elapsed <= timeout) { 4572 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4573 4574 /* firmware was not yet loaded, we have to wait more */ 4575 if (fw_loading) { 4576 elapsed += 100; 4577 msleep(100); 4578 continue; 4579 } 4580 return 0; 4581 } 4582 4583 return -ETIMEDOUT; 4584 } 4585 4586 static int ice_init_dev(struct ice_pf *pf) 4587 { 4588 struct device *dev = ice_pf_to_dev(pf); 4589 struct ice_hw *hw = &pf->hw; 4590 int err; 4591 4592 err = ice_init_hw(hw); 4593 if (err) { 4594 dev_err(dev, "ice_init_hw failed: %d\n", err); 4595 return err; 4596 } 4597 4598 /* Some cards require longer initialization times 4599 * due to necessity of loading FW from an external source. 4600 * This can take even half a minute. 4601 */ 4602 if (ice_is_pf_c827(hw)) { 4603 err = ice_wait_for_fw(hw, 30000); 4604 if (err) { 4605 dev_err(dev, "ice_wait_for_fw timed out"); 4606 return err; 4607 } 4608 } 4609 4610 ice_init_feature_support(pf); 4611 4612 ice_request_fw(pf); 4613 4614 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4615 * set in pf->state, which will cause ice_is_safe_mode to return 4616 * true 4617 */ 4618 if (ice_is_safe_mode(pf)) { 4619 /* we already got function/device capabilities but these don't 4620 * reflect what the driver needs to do in safe mode. Instead of 4621 * adding conditional logic everywhere to ignore these 4622 * device/function capabilities, override them. 4623 */ 4624 ice_set_safe_mode_caps(hw); 4625 } 4626 4627 err = ice_init_pf(pf); 4628 if (err) { 4629 dev_err(dev, "ice_init_pf failed: %d\n", err); 4630 goto err_init_pf; 4631 } 4632 4633 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4634 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4635 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4636 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4637 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4638 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4639 pf->hw.tnl.valid_count[TNL_VXLAN]; 4640 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4641 UDP_TUNNEL_TYPE_VXLAN; 4642 } 4643 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4644 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4645 pf->hw.tnl.valid_count[TNL_GENEVE]; 4646 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4647 UDP_TUNNEL_TYPE_GENEVE; 4648 } 4649 4650 err = ice_init_interrupt_scheme(pf); 4651 if (err) { 4652 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4653 err = -EIO; 4654 goto err_init_interrupt_scheme; 4655 } 4656 4657 /* In case of MSIX we are going to setup the misc vector right here 4658 * to handle admin queue events etc. In case of legacy and MSI 4659 * the misc functionality and queue processing is combined in 4660 * the same vector and that gets setup at open. 4661 */ 4662 err = ice_req_irq_msix_misc(pf); 4663 if (err) { 4664 dev_err(dev, "setup of misc vector failed: %d\n", err); 4665 goto err_req_irq_msix_misc; 4666 } 4667 4668 return 0; 4669 4670 err_req_irq_msix_misc: 4671 ice_clear_interrupt_scheme(pf); 4672 err_init_interrupt_scheme: 4673 ice_deinit_pf(pf); 4674 err_init_pf: 4675 ice_deinit_hw(hw); 4676 return err; 4677 } 4678 4679 static void ice_deinit_dev(struct ice_pf *pf) 4680 { 4681 ice_free_irq_msix_misc(pf); 4682 ice_deinit_pf(pf); 4683 ice_deinit_hw(&pf->hw); 4684 4685 /* Service task is already stopped, so call reset directly. */ 4686 ice_reset(&pf->hw, ICE_RESET_PFR); 4687 pci_wait_for_pending_transaction(pf->pdev); 4688 ice_clear_interrupt_scheme(pf); 4689 } 4690 4691 static void ice_init_features(struct ice_pf *pf) 4692 { 4693 struct device *dev = ice_pf_to_dev(pf); 4694 4695 if (ice_is_safe_mode(pf)) 4696 return; 4697 4698 /* initialize DDP driven features */ 4699 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4700 ice_ptp_init(pf); 4701 4702 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4703 ice_gnss_init(pf); 4704 4705 /* Note: Flow director init failure is non-fatal to load */ 4706 if (ice_init_fdir(pf)) 4707 dev_err(dev, "could not initialize flow director\n"); 4708 4709 /* Note: DCB init failure is non-fatal to load */ 4710 if (ice_init_pf_dcb(pf, false)) { 4711 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4712 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4713 } else { 4714 ice_cfg_lldp_mib_change(&pf->hw, true); 4715 } 4716 4717 if (ice_init_lag(pf)) 4718 dev_warn(dev, "Failed to init link aggregation support\n"); 4719 } 4720 4721 static void ice_deinit_features(struct ice_pf *pf) 4722 { 4723 if (ice_is_safe_mode(pf)) 4724 return; 4725 4726 ice_deinit_lag(pf); 4727 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4728 ice_cfg_lldp_mib_change(&pf->hw, false); 4729 ice_deinit_fdir(pf); 4730 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4731 ice_gnss_exit(pf); 4732 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4733 ice_ptp_release(pf); 4734 } 4735 4736 static void ice_init_wakeup(struct ice_pf *pf) 4737 { 4738 /* Save wakeup reason register for later use */ 4739 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4740 4741 /* check for a power management event */ 4742 ice_print_wake_reason(pf); 4743 4744 /* clear wake status, all bits */ 4745 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4746 4747 /* Disable WoL at init, wait for user to enable */ 4748 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4749 } 4750 4751 static int ice_init_link(struct ice_pf *pf) 4752 { 4753 struct device *dev = ice_pf_to_dev(pf); 4754 int err; 4755 4756 err = ice_init_link_events(pf->hw.port_info); 4757 if (err) { 4758 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4759 return err; 4760 } 4761 4762 /* not a fatal error if this fails */ 4763 err = ice_init_nvm_phy_type(pf->hw.port_info); 4764 if (err) 4765 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4766 4767 /* not a fatal error if this fails */ 4768 err = ice_update_link_info(pf->hw.port_info); 4769 if (err) 4770 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4771 4772 ice_init_link_dflt_override(pf->hw.port_info); 4773 4774 ice_check_link_cfg_err(pf, 4775 pf->hw.port_info->phy.link_info.link_cfg_err); 4776 4777 /* if media available, initialize PHY settings */ 4778 if (pf->hw.port_info->phy.link_info.link_info & 4779 ICE_AQ_MEDIA_AVAILABLE) { 4780 /* not a fatal error if this fails */ 4781 err = ice_init_phy_user_cfg(pf->hw.port_info); 4782 if (err) 4783 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4784 4785 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4786 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4787 4788 if (vsi) 4789 ice_configure_phy(vsi); 4790 } 4791 } else { 4792 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4793 } 4794 4795 return err; 4796 } 4797 4798 static int ice_init_pf_sw(struct ice_pf *pf) 4799 { 4800 bool dvm = ice_is_dvm_ena(&pf->hw); 4801 struct ice_vsi *vsi; 4802 int err; 4803 4804 /* create switch struct for the switch element created by FW on boot */ 4805 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4806 if (!pf->first_sw) 4807 return -ENOMEM; 4808 4809 if (pf->hw.evb_veb) 4810 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4811 else 4812 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4813 4814 pf->first_sw->pf = pf; 4815 4816 /* record the sw_id available for later use */ 4817 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4818 4819 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4820 if (err) 4821 goto err_aq_set_port_params; 4822 4823 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4824 if (!vsi) { 4825 err = -ENOMEM; 4826 goto err_pf_vsi_setup; 4827 } 4828 4829 return 0; 4830 4831 err_pf_vsi_setup: 4832 err_aq_set_port_params: 4833 kfree(pf->first_sw); 4834 return err; 4835 } 4836 4837 static void ice_deinit_pf_sw(struct ice_pf *pf) 4838 { 4839 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4840 4841 if (!vsi) 4842 return; 4843 4844 ice_vsi_release(vsi); 4845 kfree(pf->first_sw); 4846 } 4847 4848 static int ice_alloc_vsis(struct ice_pf *pf) 4849 { 4850 struct device *dev = ice_pf_to_dev(pf); 4851 4852 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4853 if (!pf->num_alloc_vsi) 4854 return -EIO; 4855 4856 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4857 dev_warn(dev, 4858 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4859 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4860 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4861 } 4862 4863 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4864 GFP_KERNEL); 4865 if (!pf->vsi) 4866 return -ENOMEM; 4867 4868 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4869 sizeof(*pf->vsi_stats), GFP_KERNEL); 4870 if (!pf->vsi_stats) { 4871 devm_kfree(dev, pf->vsi); 4872 return -ENOMEM; 4873 } 4874 4875 return 0; 4876 } 4877 4878 static void ice_dealloc_vsis(struct ice_pf *pf) 4879 { 4880 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4881 pf->vsi_stats = NULL; 4882 4883 pf->num_alloc_vsi = 0; 4884 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4885 pf->vsi = NULL; 4886 } 4887 4888 static int ice_init_devlink(struct ice_pf *pf) 4889 { 4890 int err; 4891 4892 err = ice_devlink_register_params(pf); 4893 if (err) 4894 return err; 4895 4896 ice_devlink_init_regions(pf); 4897 ice_devlink_register(pf); 4898 4899 return 0; 4900 } 4901 4902 static void ice_deinit_devlink(struct ice_pf *pf) 4903 { 4904 ice_devlink_unregister(pf); 4905 ice_devlink_destroy_regions(pf); 4906 ice_devlink_unregister_params(pf); 4907 } 4908 4909 static int ice_init(struct ice_pf *pf) 4910 { 4911 int err; 4912 4913 err = ice_init_dev(pf); 4914 if (err) 4915 return err; 4916 4917 err = ice_alloc_vsis(pf); 4918 if (err) 4919 goto err_alloc_vsis; 4920 4921 err = ice_init_pf_sw(pf); 4922 if (err) 4923 goto err_init_pf_sw; 4924 4925 ice_init_wakeup(pf); 4926 4927 err = ice_init_link(pf); 4928 if (err) 4929 goto err_init_link; 4930 4931 err = ice_send_version(pf); 4932 if (err) 4933 goto err_init_link; 4934 4935 ice_verify_cacheline_size(pf); 4936 4937 if (ice_is_safe_mode(pf)) 4938 ice_set_safe_mode_vlan_cfg(pf); 4939 else 4940 /* print PCI link speed and width */ 4941 pcie_print_link_status(pf->pdev); 4942 4943 /* ready to go, so clear down state bit */ 4944 clear_bit(ICE_DOWN, pf->state); 4945 clear_bit(ICE_SERVICE_DIS, pf->state); 4946 4947 /* since everything is good, start the service timer */ 4948 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4949 4950 return 0; 4951 4952 err_init_link: 4953 ice_deinit_pf_sw(pf); 4954 err_init_pf_sw: 4955 ice_dealloc_vsis(pf); 4956 err_alloc_vsis: 4957 ice_deinit_dev(pf); 4958 return err; 4959 } 4960 4961 static void ice_deinit(struct ice_pf *pf) 4962 { 4963 set_bit(ICE_SERVICE_DIS, pf->state); 4964 set_bit(ICE_DOWN, pf->state); 4965 4966 ice_deinit_pf_sw(pf); 4967 ice_dealloc_vsis(pf); 4968 ice_deinit_dev(pf); 4969 } 4970 4971 /** 4972 * ice_load - load pf by init hw and starting VSI 4973 * @pf: pointer to the pf instance 4974 */ 4975 int ice_load(struct ice_pf *pf) 4976 { 4977 struct ice_vsi_cfg_params params = {}; 4978 struct ice_vsi *vsi; 4979 int err; 4980 4981 err = ice_init_dev(pf); 4982 if (err) 4983 return err; 4984 4985 vsi = ice_get_main_vsi(pf); 4986 4987 params = ice_vsi_to_params(vsi); 4988 params.flags = ICE_VSI_FLAG_INIT; 4989 4990 rtnl_lock(); 4991 err = ice_vsi_cfg(vsi, ¶ms); 4992 if (err) 4993 goto err_vsi_cfg; 4994 4995 err = ice_start_eth(ice_get_main_vsi(pf)); 4996 if (err) 4997 goto err_start_eth; 4998 rtnl_unlock(); 4999 5000 err = ice_init_rdma(pf); 5001 if (err) 5002 goto err_init_rdma; 5003 5004 ice_init_features(pf); 5005 ice_service_task_restart(pf); 5006 5007 clear_bit(ICE_DOWN, pf->state); 5008 5009 return 0; 5010 5011 err_init_rdma: 5012 ice_vsi_close(ice_get_main_vsi(pf)); 5013 rtnl_lock(); 5014 err_start_eth: 5015 ice_vsi_decfg(ice_get_main_vsi(pf)); 5016 err_vsi_cfg: 5017 rtnl_unlock(); 5018 ice_deinit_dev(pf); 5019 return err; 5020 } 5021 5022 /** 5023 * ice_unload - unload pf by stopping VSI and deinit hw 5024 * @pf: pointer to the pf instance 5025 */ 5026 void ice_unload(struct ice_pf *pf) 5027 { 5028 ice_deinit_features(pf); 5029 ice_deinit_rdma(pf); 5030 rtnl_lock(); 5031 ice_stop_eth(ice_get_main_vsi(pf)); 5032 ice_vsi_decfg(ice_get_main_vsi(pf)); 5033 rtnl_unlock(); 5034 ice_deinit_dev(pf); 5035 } 5036 5037 /** 5038 * ice_probe - Device initialization routine 5039 * @pdev: PCI device information struct 5040 * @ent: entry in ice_pci_tbl 5041 * 5042 * Returns 0 on success, negative on failure 5043 */ 5044 static int 5045 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5046 { 5047 struct device *dev = &pdev->dev; 5048 struct ice_pf *pf; 5049 struct ice_hw *hw; 5050 int err; 5051 5052 if (pdev->is_virtfn) { 5053 dev_err(dev, "can't probe a virtual function\n"); 5054 return -EINVAL; 5055 } 5056 5057 /* when under a kdump kernel initiate a reset before enabling the 5058 * device in order to clear out any pending DMA transactions. These 5059 * transactions can cause some systems to machine check when doing 5060 * the pcim_enable_device() below. 5061 */ 5062 if (is_kdump_kernel()) { 5063 pci_save_state(pdev); 5064 pci_clear_master(pdev); 5065 err = pcie_flr(pdev); 5066 if (err) 5067 return err; 5068 pci_restore_state(pdev); 5069 } 5070 5071 /* this driver uses devres, see 5072 * Documentation/driver-api/driver-model/devres.rst 5073 */ 5074 err = pcim_enable_device(pdev); 5075 if (err) 5076 return err; 5077 5078 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5079 if (err) { 5080 dev_err(dev, "BAR0 I/O map error %d\n", err); 5081 return err; 5082 } 5083 5084 pf = ice_allocate_pf(dev); 5085 if (!pf) 5086 return -ENOMEM; 5087 5088 /* initialize Auxiliary index to invalid value */ 5089 pf->aux_idx = -1; 5090 5091 /* set up for high or low DMA */ 5092 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5093 if (err) { 5094 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5095 return err; 5096 } 5097 5098 pci_set_master(pdev); 5099 5100 pf->pdev = pdev; 5101 pci_set_drvdata(pdev, pf); 5102 set_bit(ICE_DOWN, pf->state); 5103 /* Disable service task until DOWN bit is cleared */ 5104 set_bit(ICE_SERVICE_DIS, pf->state); 5105 5106 hw = &pf->hw; 5107 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5108 pci_save_state(pdev); 5109 5110 hw->back = pf; 5111 hw->port_info = NULL; 5112 hw->vendor_id = pdev->vendor; 5113 hw->device_id = pdev->device; 5114 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5115 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5116 hw->subsystem_device_id = pdev->subsystem_device; 5117 hw->bus.device = PCI_SLOT(pdev->devfn); 5118 hw->bus.func = PCI_FUNC(pdev->devfn); 5119 ice_set_ctrlq_len(hw); 5120 5121 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5122 5123 #ifndef CONFIG_DYNAMIC_DEBUG 5124 if (debug < -1) 5125 hw->debug_mask = debug; 5126 #endif 5127 5128 err = ice_init(pf); 5129 if (err) 5130 goto err_init; 5131 5132 err = ice_init_eth(pf); 5133 if (err) 5134 goto err_init_eth; 5135 5136 err = ice_init_rdma(pf); 5137 if (err) 5138 goto err_init_rdma; 5139 5140 err = ice_init_devlink(pf); 5141 if (err) 5142 goto err_init_devlink; 5143 5144 ice_init_features(pf); 5145 5146 return 0; 5147 5148 err_init_devlink: 5149 ice_deinit_rdma(pf); 5150 err_init_rdma: 5151 ice_deinit_eth(pf); 5152 err_init_eth: 5153 ice_deinit(pf); 5154 err_init: 5155 pci_disable_device(pdev); 5156 return err; 5157 } 5158 5159 /** 5160 * ice_set_wake - enable or disable Wake on LAN 5161 * @pf: pointer to the PF struct 5162 * 5163 * Simple helper for WoL control 5164 */ 5165 static void ice_set_wake(struct ice_pf *pf) 5166 { 5167 struct ice_hw *hw = &pf->hw; 5168 bool wol = pf->wol_ena; 5169 5170 /* clear wake state, otherwise new wake events won't fire */ 5171 wr32(hw, PFPM_WUS, U32_MAX); 5172 5173 /* enable / disable APM wake up, no RMW needed */ 5174 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5175 5176 /* set magic packet filter enabled */ 5177 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5178 } 5179 5180 /** 5181 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5182 * @pf: pointer to the PF struct 5183 * 5184 * Issue firmware command to enable multicast magic wake, making 5185 * sure that any locally administered address (LAA) is used for 5186 * wake, and that PF reset doesn't undo the LAA. 5187 */ 5188 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5189 { 5190 struct device *dev = ice_pf_to_dev(pf); 5191 struct ice_hw *hw = &pf->hw; 5192 u8 mac_addr[ETH_ALEN]; 5193 struct ice_vsi *vsi; 5194 int status; 5195 u8 flags; 5196 5197 if (!pf->wol_ena) 5198 return; 5199 5200 vsi = ice_get_main_vsi(pf); 5201 if (!vsi) 5202 return; 5203 5204 /* Get current MAC address in case it's an LAA */ 5205 if (vsi->netdev) 5206 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5207 else 5208 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5209 5210 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5211 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5212 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5213 5214 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5215 if (status) 5216 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5217 status, ice_aq_str(hw->adminq.sq_last_status)); 5218 } 5219 5220 /** 5221 * ice_remove - Device removal routine 5222 * @pdev: PCI device information struct 5223 */ 5224 static void ice_remove(struct pci_dev *pdev) 5225 { 5226 struct ice_pf *pf = pci_get_drvdata(pdev); 5227 int i; 5228 5229 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5230 if (!ice_is_reset_in_progress(pf->state)) 5231 break; 5232 msleep(100); 5233 } 5234 5235 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5236 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5237 ice_free_vfs(pf); 5238 } 5239 5240 ice_service_task_stop(pf); 5241 ice_aq_cancel_waiting_tasks(pf); 5242 set_bit(ICE_DOWN, pf->state); 5243 5244 if (!ice_is_safe_mode(pf)) 5245 ice_remove_arfs(pf); 5246 ice_deinit_features(pf); 5247 ice_deinit_devlink(pf); 5248 ice_deinit_rdma(pf); 5249 ice_deinit_eth(pf); 5250 ice_deinit(pf); 5251 5252 ice_vsi_release_all(pf); 5253 5254 ice_setup_mc_magic_wake(pf); 5255 ice_set_wake(pf); 5256 5257 pci_disable_device(pdev); 5258 } 5259 5260 /** 5261 * ice_shutdown - PCI callback for shutting down device 5262 * @pdev: PCI device information struct 5263 */ 5264 static void ice_shutdown(struct pci_dev *pdev) 5265 { 5266 struct ice_pf *pf = pci_get_drvdata(pdev); 5267 5268 ice_remove(pdev); 5269 5270 if (system_state == SYSTEM_POWER_OFF) { 5271 pci_wake_from_d3(pdev, pf->wol_ena); 5272 pci_set_power_state(pdev, PCI_D3hot); 5273 } 5274 } 5275 5276 #ifdef CONFIG_PM 5277 /** 5278 * ice_prepare_for_shutdown - prep for PCI shutdown 5279 * @pf: board private structure 5280 * 5281 * Inform or close all dependent features in prep for PCI device shutdown 5282 */ 5283 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5284 { 5285 struct ice_hw *hw = &pf->hw; 5286 u32 v; 5287 5288 /* Notify VFs of impending reset */ 5289 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5290 ice_vc_notify_reset(pf); 5291 5292 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5293 5294 /* disable the VSIs and their queues that are not already DOWN */ 5295 ice_pf_dis_all_vsi(pf, false); 5296 5297 ice_for_each_vsi(pf, v) 5298 if (pf->vsi[v]) 5299 pf->vsi[v]->vsi_num = 0; 5300 5301 ice_shutdown_all_ctrlq(hw); 5302 } 5303 5304 /** 5305 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5306 * @pf: board private structure to reinitialize 5307 * 5308 * This routine reinitialize interrupt scheme that was cleared during 5309 * power management suspend callback. 5310 * 5311 * This should be called during resume routine to re-allocate the q_vectors 5312 * and reacquire interrupts. 5313 */ 5314 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5315 { 5316 struct device *dev = ice_pf_to_dev(pf); 5317 int ret, v; 5318 5319 /* Since we clear MSIX flag during suspend, we need to 5320 * set it back during resume... 5321 */ 5322 5323 ret = ice_init_interrupt_scheme(pf); 5324 if (ret) { 5325 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5326 return ret; 5327 } 5328 5329 /* Remap vectors and rings, after successful re-init interrupts */ 5330 ice_for_each_vsi(pf, v) { 5331 if (!pf->vsi[v]) 5332 continue; 5333 5334 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5335 if (ret) 5336 goto err_reinit; 5337 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5338 } 5339 5340 ret = ice_req_irq_msix_misc(pf); 5341 if (ret) { 5342 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5343 ret); 5344 goto err_reinit; 5345 } 5346 5347 return 0; 5348 5349 err_reinit: 5350 while (v--) 5351 if (pf->vsi[v]) 5352 ice_vsi_free_q_vectors(pf->vsi[v]); 5353 5354 return ret; 5355 } 5356 5357 /** 5358 * ice_suspend 5359 * @dev: generic device information structure 5360 * 5361 * Power Management callback to quiesce the device and prepare 5362 * for D3 transition. 5363 */ 5364 static int __maybe_unused ice_suspend(struct device *dev) 5365 { 5366 struct pci_dev *pdev = to_pci_dev(dev); 5367 struct ice_pf *pf; 5368 int disabled, v; 5369 5370 pf = pci_get_drvdata(pdev); 5371 5372 if (!ice_pf_state_is_nominal(pf)) { 5373 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5374 return -EBUSY; 5375 } 5376 5377 /* Stop watchdog tasks until resume completion. 5378 * Even though it is most likely that the service task is 5379 * disabled if the device is suspended or down, the service task's 5380 * state is controlled by a different state bit, and we should 5381 * store and honor whatever state that bit is in at this point. 5382 */ 5383 disabled = ice_service_task_stop(pf); 5384 5385 ice_deinit_rdma(pf); 5386 5387 /* Already suspended?, then there is nothing to do */ 5388 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5389 if (!disabled) 5390 ice_service_task_restart(pf); 5391 return 0; 5392 } 5393 5394 if (test_bit(ICE_DOWN, pf->state) || 5395 ice_is_reset_in_progress(pf->state)) { 5396 dev_err(dev, "can't suspend device in reset or already down\n"); 5397 if (!disabled) 5398 ice_service_task_restart(pf); 5399 return 0; 5400 } 5401 5402 ice_setup_mc_magic_wake(pf); 5403 5404 ice_prepare_for_shutdown(pf); 5405 5406 ice_set_wake(pf); 5407 5408 /* Free vectors, clear the interrupt scheme and release IRQs 5409 * for proper hibernation, especially with large number of CPUs. 5410 * Otherwise hibernation might fail when mapping all the vectors back 5411 * to CPU0. 5412 */ 5413 ice_free_irq_msix_misc(pf); 5414 ice_for_each_vsi(pf, v) { 5415 if (!pf->vsi[v]) 5416 continue; 5417 ice_vsi_free_q_vectors(pf->vsi[v]); 5418 } 5419 ice_clear_interrupt_scheme(pf); 5420 5421 pci_save_state(pdev); 5422 pci_wake_from_d3(pdev, pf->wol_ena); 5423 pci_set_power_state(pdev, PCI_D3hot); 5424 return 0; 5425 } 5426 5427 /** 5428 * ice_resume - PM callback for waking up from D3 5429 * @dev: generic device information structure 5430 */ 5431 static int __maybe_unused ice_resume(struct device *dev) 5432 { 5433 struct pci_dev *pdev = to_pci_dev(dev); 5434 enum ice_reset_req reset_type; 5435 struct ice_pf *pf; 5436 struct ice_hw *hw; 5437 int ret; 5438 5439 pci_set_power_state(pdev, PCI_D0); 5440 pci_restore_state(pdev); 5441 pci_save_state(pdev); 5442 5443 if (!pci_device_is_present(pdev)) 5444 return -ENODEV; 5445 5446 ret = pci_enable_device_mem(pdev); 5447 if (ret) { 5448 dev_err(dev, "Cannot enable device after suspend\n"); 5449 return ret; 5450 } 5451 5452 pf = pci_get_drvdata(pdev); 5453 hw = &pf->hw; 5454 5455 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5456 ice_print_wake_reason(pf); 5457 5458 /* We cleared the interrupt scheme when we suspended, so we need to 5459 * restore it now to resume device functionality. 5460 */ 5461 ret = ice_reinit_interrupt_scheme(pf); 5462 if (ret) 5463 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5464 5465 ret = ice_init_rdma(pf); 5466 if (ret) 5467 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5468 ret); 5469 5470 clear_bit(ICE_DOWN, pf->state); 5471 /* Now perform PF reset and rebuild */ 5472 reset_type = ICE_RESET_PFR; 5473 /* re-enable service task for reset, but allow reset to schedule it */ 5474 clear_bit(ICE_SERVICE_DIS, pf->state); 5475 5476 if (ice_schedule_reset(pf, reset_type)) 5477 dev_err(dev, "Reset during resume failed.\n"); 5478 5479 clear_bit(ICE_SUSPENDED, pf->state); 5480 ice_service_task_restart(pf); 5481 5482 /* Restart the service task */ 5483 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5484 5485 return 0; 5486 } 5487 #endif /* CONFIG_PM */ 5488 5489 /** 5490 * ice_pci_err_detected - warning that PCI error has been detected 5491 * @pdev: PCI device information struct 5492 * @err: the type of PCI error 5493 * 5494 * Called to warn that something happened on the PCI bus and the error handling 5495 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5496 */ 5497 static pci_ers_result_t 5498 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5499 { 5500 struct ice_pf *pf = pci_get_drvdata(pdev); 5501 5502 if (!pf) { 5503 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5504 __func__, err); 5505 return PCI_ERS_RESULT_DISCONNECT; 5506 } 5507 5508 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5509 ice_service_task_stop(pf); 5510 5511 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5512 set_bit(ICE_PFR_REQ, pf->state); 5513 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5514 } 5515 } 5516 5517 return PCI_ERS_RESULT_NEED_RESET; 5518 } 5519 5520 /** 5521 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5522 * @pdev: PCI device information struct 5523 * 5524 * Called to determine if the driver can recover from the PCI slot reset by 5525 * using a register read to determine if the device is recoverable. 5526 */ 5527 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5528 { 5529 struct ice_pf *pf = pci_get_drvdata(pdev); 5530 pci_ers_result_t result; 5531 int err; 5532 u32 reg; 5533 5534 err = pci_enable_device_mem(pdev); 5535 if (err) { 5536 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5537 err); 5538 result = PCI_ERS_RESULT_DISCONNECT; 5539 } else { 5540 pci_set_master(pdev); 5541 pci_restore_state(pdev); 5542 pci_save_state(pdev); 5543 pci_wake_from_d3(pdev, false); 5544 5545 /* Check for life */ 5546 reg = rd32(&pf->hw, GLGEN_RTRIG); 5547 if (!reg) 5548 result = PCI_ERS_RESULT_RECOVERED; 5549 else 5550 result = PCI_ERS_RESULT_DISCONNECT; 5551 } 5552 5553 return result; 5554 } 5555 5556 /** 5557 * ice_pci_err_resume - restart operations after PCI error recovery 5558 * @pdev: PCI device information struct 5559 * 5560 * Called to allow the driver to bring things back up after PCI error and/or 5561 * reset recovery have finished 5562 */ 5563 static void ice_pci_err_resume(struct pci_dev *pdev) 5564 { 5565 struct ice_pf *pf = pci_get_drvdata(pdev); 5566 5567 if (!pf) { 5568 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5569 __func__); 5570 return; 5571 } 5572 5573 if (test_bit(ICE_SUSPENDED, pf->state)) { 5574 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5575 __func__); 5576 return; 5577 } 5578 5579 ice_restore_all_vfs_msi_state(pdev); 5580 5581 ice_do_reset(pf, ICE_RESET_PFR); 5582 ice_service_task_restart(pf); 5583 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5584 } 5585 5586 /** 5587 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5588 * @pdev: PCI device information struct 5589 */ 5590 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5591 { 5592 struct ice_pf *pf = pci_get_drvdata(pdev); 5593 5594 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5595 ice_service_task_stop(pf); 5596 5597 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5598 set_bit(ICE_PFR_REQ, pf->state); 5599 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5600 } 5601 } 5602 } 5603 5604 /** 5605 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5606 * @pdev: PCI device information struct 5607 */ 5608 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5609 { 5610 ice_pci_err_resume(pdev); 5611 } 5612 5613 /* ice_pci_tbl - PCI Device ID Table 5614 * 5615 * Wildcard entries (PCI_ANY_ID) should come last 5616 * Last entry must be all 0s 5617 * 5618 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5619 * Class, Class Mask, private data (not used) } 5620 */ 5621 static const struct pci_device_id ice_pci_tbl[] = { 5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5624 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5625 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5626 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5627 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5628 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5629 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5630 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5631 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5632 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5633 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5634 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5635 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5636 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5637 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5638 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5639 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5640 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5641 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5642 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5643 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5644 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5645 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5646 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5647 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5648 /* required last entry */ 5649 { 0, } 5650 }; 5651 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5652 5653 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5654 5655 static const struct pci_error_handlers ice_pci_err_handler = { 5656 .error_detected = ice_pci_err_detected, 5657 .slot_reset = ice_pci_err_slot_reset, 5658 .reset_prepare = ice_pci_err_reset_prepare, 5659 .reset_done = ice_pci_err_reset_done, 5660 .resume = ice_pci_err_resume 5661 }; 5662 5663 static struct pci_driver ice_driver = { 5664 .name = KBUILD_MODNAME, 5665 .id_table = ice_pci_tbl, 5666 .probe = ice_probe, 5667 .remove = ice_remove, 5668 #ifdef CONFIG_PM 5669 .driver.pm = &ice_pm_ops, 5670 #endif /* CONFIG_PM */ 5671 .shutdown = ice_shutdown, 5672 .sriov_configure = ice_sriov_configure, 5673 .err_handler = &ice_pci_err_handler 5674 }; 5675 5676 /** 5677 * ice_module_init - Driver registration routine 5678 * 5679 * ice_module_init is the first routine called when the driver is 5680 * loaded. All it does is register with the PCI subsystem. 5681 */ 5682 static int __init ice_module_init(void) 5683 { 5684 int status = -ENOMEM; 5685 5686 pr_info("%s\n", ice_driver_string); 5687 pr_info("%s\n", ice_copyright); 5688 5689 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5690 if (!ice_wq) { 5691 pr_err("Failed to create workqueue\n"); 5692 return status; 5693 } 5694 5695 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5696 if (!ice_lag_wq) { 5697 pr_err("Failed to create LAG workqueue\n"); 5698 goto err_dest_wq; 5699 } 5700 5701 status = pci_register_driver(&ice_driver); 5702 if (status) { 5703 pr_err("failed to register PCI driver, err %d\n", status); 5704 goto err_dest_lag_wq; 5705 } 5706 5707 return 0; 5708 5709 err_dest_lag_wq: 5710 destroy_workqueue(ice_lag_wq); 5711 err_dest_wq: 5712 destroy_workqueue(ice_wq); 5713 return status; 5714 } 5715 module_init(ice_module_init); 5716 5717 /** 5718 * ice_module_exit - Driver exit cleanup routine 5719 * 5720 * ice_module_exit is called just before the driver is removed 5721 * from memory. 5722 */ 5723 static void __exit ice_module_exit(void) 5724 { 5725 pci_unregister_driver(&ice_driver); 5726 destroy_workqueue(ice_wq); 5727 destroy_workqueue(ice_lag_wq); 5728 pr_info("module unloaded\n"); 5729 } 5730 module_exit(ice_module_exit); 5731 5732 /** 5733 * ice_set_mac_address - NDO callback to set MAC address 5734 * @netdev: network interface device structure 5735 * @pi: pointer to an address structure 5736 * 5737 * Returns 0 on success, negative on failure 5738 */ 5739 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5740 { 5741 struct ice_netdev_priv *np = netdev_priv(netdev); 5742 struct ice_vsi *vsi = np->vsi; 5743 struct ice_pf *pf = vsi->back; 5744 struct ice_hw *hw = &pf->hw; 5745 struct sockaddr *addr = pi; 5746 u8 old_mac[ETH_ALEN]; 5747 u8 flags = 0; 5748 u8 *mac; 5749 int err; 5750 5751 mac = (u8 *)addr->sa_data; 5752 5753 if (!is_valid_ether_addr(mac)) 5754 return -EADDRNOTAVAIL; 5755 5756 if (test_bit(ICE_DOWN, pf->state) || 5757 ice_is_reset_in_progress(pf->state)) { 5758 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5759 mac); 5760 return -EBUSY; 5761 } 5762 5763 if (ice_chnl_dmac_fltr_cnt(pf)) { 5764 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5765 mac); 5766 return -EAGAIN; 5767 } 5768 5769 netif_addr_lock_bh(netdev); 5770 ether_addr_copy(old_mac, netdev->dev_addr); 5771 /* change the netdev's MAC address */ 5772 eth_hw_addr_set(netdev, mac); 5773 netif_addr_unlock_bh(netdev); 5774 5775 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5776 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5777 if (err && err != -ENOENT) { 5778 err = -EADDRNOTAVAIL; 5779 goto err_update_filters; 5780 } 5781 5782 /* Add filter for new MAC. If filter exists, return success */ 5783 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5784 if (err == -EEXIST) { 5785 /* Although this MAC filter is already present in hardware it's 5786 * possible in some cases (e.g. bonding) that dev_addr was 5787 * modified outside of the driver and needs to be restored back 5788 * to this value. 5789 */ 5790 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5791 5792 return 0; 5793 } else if (err) { 5794 /* error if the new filter addition failed */ 5795 err = -EADDRNOTAVAIL; 5796 } 5797 5798 err_update_filters: 5799 if (err) { 5800 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5801 mac); 5802 netif_addr_lock_bh(netdev); 5803 eth_hw_addr_set(netdev, old_mac); 5804 netif_addr_unlock_bh(netdev); 5805 return err; 5806 } 5807 5808 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5809 netdev->dev_addr); 5810 5811 /* write new MAC address to the firmware */ 5812 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5813 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5814 if (err) { 5815 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5816 mac, err); 5817 } 5818 return 0; 5819 } 5820 5821 /** 5822 * ice_set_rx_mode - NDO callback to set the netdev filters 5823 * @netdev: network interface device structure 5824 */ 5825 static void ice_set_rx_mode(struct net_device *netdev) 5826 { 5827 struct ice_netdev_priv *np = netdev_priv(netdev); 5828 struct ice_vsi *vsi = np->vsi; 5829 5830 if (!vsi || ice_is_switchdev_running(vsi->back)) 5831 return; 5832 5833 /* Set the flags to synchronize filters 5834 * ndo_set_rx_mode may be triggered even without a change in netdev 5835 * flags 5836 */ 5837 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5838 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5839 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5840 5841 /* schedule our worker thread which will take care of 5842 * applying the new filter changes 5843 */ 5844 ice_service_task_schedule(vsi->back); 5845 } 5846 5847 /** 5848 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5849 * @netdev: network interface device structure 5850 * @queue_index: Queue ID 5851 * @maxrate: maximum bandwidth in Mbps 5852 */ 5853 static int 5854 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5855 { 5856 struct ice_netdev_priv *np = netdev_priv(netdev); 5857 struct ice_vsi *vsi = np->vsi; 5858 u16 q_handle; 5859 int status; 5860 u8 tc; 5861 5862 /* Validate maxrate requested is within permitted range */ 5863 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5864 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5865 maxrate, queue_index); 5866 return -EINVAL; 5867 } 5868 5869 q_handle = vsi->tx_rings[queue_index]->q_handle; 5870 tc = ice_dcb_get_tc(vsi, queue_index); 5871 5872 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5873 if (!vsi) { 5874 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5875 queue_index); 5876 return -EINVAL; 5877 } 5878 5879 /* Set BW back to default, when user set maxrate to 0 */ 5880 if (!maxrate) 5881 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5882 q_handle, ICE_MAX_BW); 5883 else 5884 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5885 q_handle, ICE_MAX_BW, maxrate * 1000); 5886 if (status) 5887 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5888 status); 5889 5890 return status; 5891 } 5892 5893 /** 5894 * ice_fdb_add - add an entry to the hardware database 5895 * @ndm: the input from the stack 5896 * @tb: pointer to array of nladdr (unused) 5897 * @dev: the net device pointer 5898 * @addr: the MAC address entry being added 5899 * @vid: VLAN ID 5900 * @flags: instructions from stack about fdb operation 5901 * @extack: netlink extended ack 5902 */ 5903 static int 5904 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5905 struct net_device *dev, const unsigned char *addr, u16 vid, 5906 u16 flags, struct netlink_ext_ack __always_unused *extack) 5907 { 5908 int err; 5909 5910 if (vid) { 5911 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5912 return -EINVAL; 5913 } 5914 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5915 netdev_err(dev, "FDB only supports static addresses\n"); 5916 return -EINVAL; 5917 } 5918 5919 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5920 err = dev_uc_add_excl(dev, addr); 5921 else if (is_multicast_ether_addr(addr)) 5922 err = dev_mc_add_excl(dev, addr); 5923 else 5924 err = -EINVAL; 5925 5926 /* Only return duplicate errors if NLM_F_EXCL is set */ 5927 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5928 err = 0; 5929 5930 return err; 5931 } 5932 5933 /** 5934 * ice_fdb_del - delete an entry from the hardware database 5935 * @ndm: the input from the stack 5936 * @tb: pointer to array of nladdr (unused) 5937 * @dev: the net device pointer 5938 * @addr: the MAC address entry being added 5939 * @vid: VLAN ID 5940 * @extack: netlink extended ack 5941 */ 5942 static int 5943 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5944 struct net_device *dev, const unsigned char *addr, 5945 __always_unused u16 vid, struct netlink_ext_ack *extack) 5946 { 5947 int err; 5948 5949 if (ndm->ndm_state & NUD_PERMANENT) { 5950 netdev_err(dev, "FDB only supports static addresses\n"); 5951 return -EINVAL; 5952 } 5953 5954 if (is_unicast_ether_addr(addr)) 5955 err = dev_uc_del(dev, addr); 5956 else if (is_multicast_ether_addr(addr)) 5957 err = dev_mc_del(dev, addr); 5958 else 5959 err = -EINVAL; 5960 5961 return err; 5962 } 5963 5964 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5965 NETIF_F_HW_VLAN_CTAG_TX | \ 5966 NETIF_F_HW_VLAN_STAG_RX | \ 5967 NETIF_F_HW_VLAN_STAG_TX) 5968 5969 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5970 NETIF_F_HW_VLAN_STAG_RX) 5971 5972 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5973 NETIF_F_HW_VLAN_STAG_FILTER) 5974 5975 /** 5976 * ice_fix_features - fix the netdev features flags based on device limitations 5977 * @netdev: ptr to the netdev that flags are being fixed on 5978 * @features: features that need to be checked and possibly fixed 5979 * 5980 * Make sure any fixups are made to features in this callback. This enables the 5981 * driver to not have to check unsupported configurations throughout the driver 5982 * because that's the responsiblity of this callback. 5983 * 5984 * Single VLAN Mode (SVM) Supported Features: 5985 * NETIF_F_HW_VLAN_CTAG_FILTER 5986 * NETIF_F_HW_VLAN_CTAG_RX 5987 * NETIF_F_HW_VLAN_CTAG_TX 5988 * 5989 * Double VLAN Mode (DVM) Supported Features: 5990 * NETIF_F_HW_VLAN_CTAG_FILTER 5991 * NETIF_F_HW_VLAN_CTAG_RX 5992 * NETIF_F_HW_VLAN_CTAG_TX 5993 * 5994 * NETIF_F_HW_VLAN_STAG_FILTER 5995 * NETIF_HW_VLAN_STAG_RX 5996 * NETIF_HW_VLAN_STAG_TX 5997 * 5998 * Features that need fixing: 5999 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6000 * These are mutually exlusive as the VSI context cannot support multiple 6001 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6002 * is not done, then default to clearing the requested STAG offload 6003 * settings. 6004 * 6005 * All supported filtering has to be enabled or disabled together. For 6006 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6007 * together. If this is not done, then default to VLAN filtering disabled. 6008 * These are mutually exclusive as there is currently no way to 6009 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6010 * prune rules. 6011 */ 6012 static netdev_features_t 6013 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6014 { 6015 struct ice_netdev_priv *np = netdev_priv(netdev); 6016 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6017 bool cur_ctag, cur_stag, req_ctag, req_stag; 6018 6019 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6020 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6021 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6022 6023 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6024 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6025 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6026 6027 if (req_vlan_fltr != cur_vlan_fltr) { 6028 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6029 if (req_ctag && req_stag) { 6030 features |= NETIF_VLAN_FILTERING_FEATURES; 6031 } else if (!req_ctag && !req_stag) { 6032 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6033 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6034 (!cur_stag && req_stag && !cur_ctag)) { 6035 features |= NETIF_VLAN_FILTERING_FEATURES; 6036 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6037 } else if ((cur_ctag && !req_ctag && cur_stag) || 6038 (cur_stag && !req_stag && cur_ctag)) { 6039 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6040 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6041 } 6042 } else { 6043 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6044 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6045 6046 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6047 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6048 } 6049 } 6050 6051 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6052 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6053 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6054 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6055 NETIF_F_HW_VLAN_STAG_TX); 6056 } 6057 6058 if (!(netdev->features & NETIF_F_RXFCS) && 6059 (features & NETIF_F_RXFCS) && 6060 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6061 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6062 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6063 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6064 } 6065 6066 return features; 6067 } 6068 6069 /** 6070 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6071 * @vsi: PF's VSI 6072 * @features: features used to determine VLAN offload settings 6073 * 6074 * First, determine the vlan_ethertype based on the VLAN offload bits in 6075 * features. Then determine if stripping and insertion should be enabled or 6076 * disabled. Finally enable or disable VLAN stripping and insertion. 6077 */ 6078 static int 6079 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6080 { 6081 bool enable_stripping = true, enable_insertion = true; 6082 struct ice_vsi_vlan_ops *vlan_ops; 6083 int strip_err = 0, insert_err = 0; 6084 u16 vlan_ethertype = 0; 6085 6086 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6087 6088 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6089 vlan_ethertype = ETH_P_8021AD; 6090 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6091 vlan_ethertype = ETH_P_8021Q; 6092 6093 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6094 enable_stripping = false; 6095 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6096 enable_insertion = false; 6097 6098 if (enable_stripping) 6099 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6100 else 6101 strip_err = vlan_ops->dis_stripping(vsi); 6102 6103 if (enable_insertion) 6104 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6105 else 6106 insert_err = vlan_ops->dis_insertion(vsi); 6107 6108 if (strip_err || insert_err) 6109 return -EIO; 6110 6111 return 0; 6112 } 6113 6114 /** 6115 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6116 * @vsi: PF's VSI 6117 * @features: features used to determine VLAN filtering settings 6118 * 6119 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6120 * features. 6121 */ 6122 static int 6123 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6124 { 6125 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6126 int err = 0; 6127 6128 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6129 * if either bit is set 6130 */ 6131 if (features & 6132 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6133 err = vlan_ops->ena_rx_filtering(vsi); 6134 else 6135 err = vlan_ops->dis_rx_filtering(vsi); 6136 6137 return err; 6138 } 6139 6140 /** 6141 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6142 * @netdev: ptr to the netdev being adjusted 6143 * @features: the feature set that the stack is suggesting 6144 * 6145 * Only update VLAN settings if the requested_vlan_features are different than 6146 * the current_vlan_features. 6147 */ 6148 static int 6149 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6150 { 6151 netdev_features_t current_vlan_features, requested_vlan_features; 6152 struct ice_netdev_priv *np = netdev_priv(netdev); 6153 struct ice_vsi *vsi = np->vsi; 6154 int err; 6155 6156 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6157 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6158 if (current_vlan_features ^ requested_vlan_features) { 6159 if ((features & NETIF_F_RXFCS) && 6160 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6161 dev_err(ice_pf_to_dev(vsi->back), 6162 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6163 return -EIO; 6164 } 6165 6166 err = ice_set_vlan_offload_features(vsi, features); 6167 if (err) 6168 return err; 6169 } 6170 6171 current_vlan_features = netdev->features & 6172 NETIF_VLAN_FILTERING_FEATURES; 6173 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6174 if (current_vlan_features ^ requested_vlan_features) { 6175 err = ice_set_vlan_filtering_features(vsi, features); 6176 if (err) 6177 return err; 6178 } 6179 6180 return 0; 6181 } 6182 6183 /** 6184 * ice_set_loopback - turn on/off loopback mode on underlying PF 6185 * @vsi: ptr to VSI 6186 * @ena: flag to indicate the on/off setting 6187 */ 6188 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6189 { 6190 bool if_running = netif_running(vsi->netdev); 6191 int ret; 6192 6193 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6194 ret = ice_down(vsi); 6195 if (ret) { 6196 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6197 return ret; 6198 } 6199 } 6200 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6201 if (ret) 6202 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6203 if (if_running) 6204 ret = ice_up(vsi); 6205 6206 return ret; 6207 } 6208 6209 /** 6210 * ice_set_features - set the netdev feature flags 6211 * @netdev: ptr to the netdev being adjusted 6212 * @features: the feature set that the stack is suggesting 6213 */ 6214 static int 6215 ice_set_features(struct net_device *netdev, netdev_features_t features) 6216 { 6217 netdev_features_t changed = netdev->features ^ features; 6218 struct ice_netdev_priv *np = netdev_priv(netdev); 6219 struct ice_vsi *vsi = np->vsi; 6220 struct ice_pf *pf = vsi->back; 6221 int ret = 0; 6222 6223 /* Don't set any netdev advanced features with device in Safe Mode */ 6224 if (ice_is_safe_mode(pf)) { 6225 dev_err(ice_pf_to_dev(pf), 6226 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6227 return ret; 6228 } 6229 6230 /* Do not change setting during reset */ 6231 if (ice_is_reset_in_progress(pf->state)) { 6232 dev_err(ice_pf_to_dev(pf), 6233 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6234 return -EBUSY; 6235 } 6236 6237 /* Multiple features can be changed in one call so keep features in 6238 * separate if/else statements to guarantee each feature is checked 6239 */ 6240 if (changed & NETIF_F_RXHASH) 6241 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6242 6243 ret = ice_set_vlan_features(netdev, features); 6244 if (ret) 6245 return ret; 6246 6247 /* Turn on receive of FCS aka CRC, and after setting this 6248 * flag the packet data will have the 4 byte CRC appended 6249 */ 6250 if (changed & NETIF_F_RXFCS) { 6251 if ((features & NETIF_F_RXFCS) && 6252 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6253 dev_err(ice_pf_to_dev(vsi->back), 6254 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6255 return -EIO; 6256 } 6257 6258 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6259 ret = ice_down_up(vsi); 6260 if (ret) 6261 return ret; 6262 } 6263 6264 if (changed & NETIF_F_NTUPLE) { 6265 bool ena = !!(features & NETIF_F_NTUPLE); 6266 6267 ice_vsi_manage_fdir(vsi, ena); 6268 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6269 } 6270 6271 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6272 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6273 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6274 return -EACCES; 6275 } 6276 6277 if (changed & NETIF_F_HW_TC) { 6278 bool ena = !!(features & NETIF_F_HW_TC); 6279 6280 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6281 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6282 } 6283 6284 if (changed & NETIF_F_LOOPBACK) 6285 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6286 6287 return ret; 6288 } 6289 6290 /** 6291 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6292 * @vsi: VSI to setup VLAN properties for 6293 */ 6294 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6295 { 6296 int err; 6297 6298 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6299 if (err) 6300 return err; 6301 6302 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6303 if (err) 6304 return err; 6305 6306 return ice_vsi_add_vlan_zero(vsi); 6307 } 6308 6309 /** 6310 * ice_vsi_cfg_lan - Setup the VSI lan related config 6311 * @vsi: the VSI being configured 6312 * 6313 * Return 0 on success and negative value on error 6314 */ 6315 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6316 { 6317 int err; 6318 6319 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6320 ice_set_rx_mode(vsi->netdev); 6321 6322 err = ice_vsi_vlan_setup(vsi); 6323 if (err) 6324 return err; 6325 } 6326 ice_vsi_cfg_dcb_rings(vsi); 6327 6328 err = ice_vsi_cfg_lan_txqs(vsi); 6329 if (!err && ice_is_xdp_ena_vsi(vsi)) 6330 err = ice_vsi_cfg_xdp_txqs(vsi); 6331 if (!err) 6332 err = ice_vsi_cfg_rxqs(vsi); 6333 6334 return err; 6335 } 6336 6337 /* THEORY OF MODERATION: 6338 * The ice driver hardware works differently than the hardware that DIMLIB was 6339 * originally made for. ice hardware doesn't have packet count limits that 6340 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6341 * which is hard-coded to a limit of 250,000 ints/second. 6342 * If not using dynamic moderation, the INTRL value can be modified 6343 * by ethtool rx-usecs-high. 6344 */ 6345 struct ice_dim { 6346 /* the throttle rate for interrupts, basically worst case delay before 6347 * an initial interrupt fires, value is stored in microseconds. 6348 */ 6349 u16 itr; 6350 }; 6351 6352 /* Make a different profile for Rx that doesn't allow quite so aggressive 6353 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6354 * second. 6355 */ 6356 static const struct ice_dim rx_profile[] = { 6357 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6358 {8}, /* 125,000 ints/s */ 6359 {16}, /* 62,500 ints/s */ 6360 {62}, /* 16,129 ints/s */ 6361 {126} /* 7,936 ints/s */ 6362 }; 6363 6364 /* The transmit profile, which has the same sorts of values 6365 * as the previous struct 6366 */ 6367 static const struct ice_dim tx_profile[] = { 6368 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6369 {8}, /* 125,000 ints/s */ 6370 {40}, /* 16,125 ints/s */ 6371 {128}, /* 7,812 ints/s */ 6372 {256} /* 3,906 ints/s */ 6373 }; 6374 6375 static void ice_tx_dim_work(struct work_struct *work) 6376 { 6377 struct ice_ring_container *rc; 6378 struct dim *dim; 6379 u16 itr; 6380 6381 dim = container_of(work, struct dim, work); 6382 rc = dim->priv; 6383 6384 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6385 6386 /* look up the values in our local table */ 6387 itr = tx_profile[dim->profile_ix].itr; 6388 6389 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6390 ice_write_itr(rc, itr); 6391 6392 dim->state = DIM_START_MEASURE; 6393 } 6394 6395 static void ice_rx_dim_work(struct work_struct *work) 6396 { 6397 struct ice_ring_container *rc; 6398 struct dim *dim; 6399 u16 itr; 6400 6401 dim = container_of(work, struct dim, work); 6402 rc = dim->priv; 6403 6404 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6405 6406 /* look up the values in our local table */ 6407 itr = rx_profile[dim->profile_ix].itr; 6408 6409 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6410 ice_write_itr(rc, itr); 6411 6412 dim->state = DIM_START_MEASURE; 6413 } 6414 6415 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6416 6417 /** 6418 * ice_init_moderation - set up interrupt moderation 6419 * @q_vector: the vector containing rings to be configured 6420 * 6421 * Set up interrupt moderation registers, with the intent to do the right thing 6422 * when called from reset or from probe, and whether or not dynamic moderation 6423 * is enabled or not. Take special care to write all the registers in both 6424 * dynamic moderation mode or not in order to make sure hardware is in a known 6425 * state. 6426 */ 6427 static void ice_init_moderation(struct ice_q_vector *q_vector) 6428 { 6429 struct ice_ring_container *rc; 6430 bool tx_dynamic, rx_dynamic; 6431 6432 rc = &q_vector->tx; 6433 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6434 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6435 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6436 rc->dim.priv = rc; 6437 tx_dynamic = ITR_IS_DYNAMIC(rc); 6438 6439 /* set the initial TX ITR to match the above */ 6440 ice_write_itr(rc, tx_dynamic ? 6441 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6442 6443 rc = &q_vector->rx; 6444 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6445 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6446 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6447 rc->dim.priv = rc; 6448 rx_dynamic = ITR_IS_DYNAMIC(rc); 6449 6450 /* set the initial RX ITR to match the above */ 6451 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6452 rc->itr_setting); 6453 6454 ice_set_q_vector_intrl(q_vector); 6455 } 6456 6457 /** 6458 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6459 * @vsi: the VSI being configured 6460 */ 6461 static void ice_napi_enable_all(struct ice_vsi *vsi) 6462 { 6463 int q_idx; 6464 6465 if (!vsi->netdev) 6466 return; 6467 6468 ice_for_each_q_vector(vsi, q_idx) { 6469 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6470 6471 ice_init_moderation(q_vector); 6472 6473 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6474 napi_enable(&q_vector->napi); 6475 } 6476 } 6477 6478 /** 6479 * ice_up_complete - Finish the last steps of bringing up a connection 6480 * @vsi: The VSI being configured 6481 * 6482 * Return 0 on success and negative value on error 6483 */ 6484 static int ice_up_complete(struct ice_vsi *vsi) 6485 { 6486 struct ice_pf *pf = vsi->back; 6487 int err; 6488 6489 ice_vsi_cfg_msix(vsi); 6490 6491 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6492 * Tx queue group list was configured and the context bits were 6493 * programmed using ice_vsi_cfg_txqs 6494 */ 6495 err = ice_vsi_start_all_rx_rings(vsi); 6496 if (err) 6497 return err; 6498 6499 clear_bit(ICE_VSI_DOWN, vsi->state); 6500 ice_napi_enable_all(vsi); 6501 ice_vsi_ena_irq(vsi); 6502 6503 if (vsi->port_info && 6504 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6505 vsi->netdev && vsi->type == ICE_VSI_PF) { 6506 ice_print_link_msg(vsi, true); 6507 netif_tx_start_all_queues(vsi->netdev); 6508 netif_carrier_on(vsi->netdev); 6509 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6510 } 6511 6512 /* Perform an initial read of the statistics registers now to 6513 * set the baseline so counters are ready when interface is up 6514 */ 6515 ice_update_eth_stats(vsi); 6516 6517 if (vsi->type == ICE_VSI_PF) 6518 ice_service_task_schedule(pf); 6519 6520 return 0; 6521 } 6522 6523 /** 6524 * ice_up - Bring the connection back up after being down 6525 * @vsi: VSI being configured 6526 */ 6527 int ice_up(struct ice_vsi *vsi) 6528 { 6529 int err; 6530 6531 err = ice_vsi_cfg_lan(vsi); 6532 if (!err) 6533 err = ice_up_complete(vsi); 6534 6535 return err; 6536 } 6537 6538 /** 6539 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6540 * @syncp: pointer to u64_stats_sync 6541 * @stats: stats that pkts and bytes count will be taken from 6542 * @pkts: packets stats counter 6543 * @bytes: bytes stats counter 6544 * 6545 * This function fetches stats from the ring considering the atomic operations 6546 * that needs to be performed to read u64 values in 32 bit machine. 6547 */ 6548 void 6549 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6550 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6551 { 6552 unsigned int start; 6553 6554 do { 6555 start = u64_stats_fetch_begin(syncp); 6556 *pkts = stats.pkts; 6557 *bytes = stats.bytes; 6558 } while (u64_stats_fetch_retry(syncp, start)); 6559 } 6560 6561 /** 6562 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6563 * @vsi: the VSI to be updated 6564 * @vsi_stats: the stats struct to be updated 6565 * @rings: rings to work on 6566 * @count: number of rings 6567 */ 6568 static void 6569 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6570 struct rtnl_link_stats64 *vsi_stats, 6571 struct ice_tx_ring **rings, u16 count) 6572 { 6573 u16 i; 6574 6575 for (i = 0; i < count; i++) { 6576 struct ice_tx_ring *ring; 6577 u64 pkts = 0, bytes = 0; 6578 6579 ring = READ_ONCE(rings[i]); 6580 if (!ring || !ring->ring_stats) 6581 continue; 6582 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6583 ring->ring_stats->stats, &pkts, 6584 &bytes); 6585 vsi_stats->tx_packets += pkts; 6586 vsi_stats->tx_bytes += bytes; 6587 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6588 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6589 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6590 } 6591 } 6592 6593 /** 6594 * ice_update_vsi_ring_stats - Update VSI stats counters 6595 * @vsi: the VSI to be updated 6596 */ 6597 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6598 { 6599 struct rtnl_link_stats64 *net_stats, *stats_prev; 6600 struct rtnl_link_stats64 *vsi_stats; 6601 struct ice_pf *pf = vsi->back; 6602 u64 pkts, bytes; 6603 int i; 6604 6605 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6606 if (!vsi_stats) 6607 return; 6608 6609 /* reset non-netdev (extended) stats */ 6610 vsi->tx_restart = 0; 6611 vsi->tx_busy = 0; 6612 vsi->tx_linearize = 0; 6613 vsi->rx_buf_failed = 0; 6614 vsi->rx_page_failed = 0; 6615 6616 rcu_read_lock(); 6617 6618 /* update Tx rings counters */ 6619 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6620 vsi->num_txq); 6621 6622 /* update Rx rings counters */ 6623 ice_for_each_rxq(vsi, i) { 6624 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6625 struct ice_ring_stats *ring_stats; 6626 6627 ring_stats = ring->ring_stats; 6628 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6629 ring_stats->stats, &pkts, 6630 &bytes); 6631 vsi_stats->rx_packets += pkts; 6632 vsi_stats->rx_bytes += bytes; 6633 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6634 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6635 } 6636 6637 /* update XDP Tx rings counters */ 6638 if (ice_is_xdp_ena_vsi(vsi)) 6639 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6640 vsi->num_xdp_txq); 6641 6642 rcu_read_unlock(); 6643 6644 net_stats = &vsi->net_stats; 6645 stats_prev = &vsi->net_stats_prev; 6646 6647 /* Update netdev counters, but keep in mind that values could start at 6648 * random value after PF reset. And as we increase the reported stat by 6649 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6650 * let's skip this round. 6651 */ 6652 if (likely(pf->stat_prev_loaded)) { 6653 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6654 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6655 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6656 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6657 } 6658 6659 stats_prev->tx_packets = vsi_stats->tx_packets; 6660 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6661 stats_prev->rx_packets = vsi_stats->rx_packets; 6662 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6663 6664 kfree(vsi_stats); 6665 } 6666 6667 /** 6668 * ice_update_vsi_stats - Update VSI stats counters 6669 * @vsi: the VSI to be updated 6670 */ 6671 void ice_update_vsi_stats(struct ice_vsi *vsi) 6672 { 6673 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6674 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6675 struct ice_pf *pf = vsi->back; 6676 6677 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6678 test_bit(ICE_CFG_BUSY, pf->state)) 6679 return; 6680 6681 /* get stats as recorded by Tx/Rx rings */ 6682 ice_update_vsi_ring_stats(vsi); 6683 6684 /* get VSI stats as recorded by the hardware */ 6685 ice_update_eth_stats(vsi); 6686 6687 cur_ns->tx_errors = cur_es->tx_errors; 6688 cur_ns->rx_dropped = cur_es->rx_discards; 6689 cur_ns->tx_dropped = cur_es->tx_discards; 6690 cur_ns->multicast = cur_es->rx_multicast; 6691 6692 /* update some more netdev stats if this is main VSI */ 6693 if (vsi->type == ICE_VSI_PF) { 6694 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6695 cur_ns->rx_errors = pf->stats.crc_errors + 6696 pf->stats.illegal_bytes + 6697 pf->stats.rx_len_errors + 6698 pf->stats.rx_undersize + 6699 pf->hw_csum_rx_error + 6700 pf->stats.rx_jabber + 6701 pf->stats.rx_fragments + 6702 pf->stats.rx_oversize; 6703 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6704 /* record drops from the port level */ 6705 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6706 } 6707 } 6708 6709 /** 6710 * ice_update_pf_stats - Update PF port stats counters 6711 * @pf: PF whose stats needs to be updated 6712 */ 6713 void ice_update_pf_stats(struct ice_pf *pf) 6714 { 6715 struct ice_hw_port_stats *prev_ps, *cur_ps; 6716 struct ice_hw *hw = &pf->hw; 6717 u16 fd_ctr_base; 6718 u8 port; 6719 6720 port = hw->port_info->lport; 6721 prev_ps = &pf->stats_prev; 6722 cur_ps = &pf->stats; 6723 6724 if (ice_is_reset_in_progress(pf->state)) 6725 pf->stat_prev_loaded = false; 6726 6727 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6728 &prev_ps->eth.rx_bytes, 6729 &cur_ps->eth.rx_bytes); 6730 6731 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6732 &prev_ps->eth.rx_unicast, 6733 &cur_ps->eth.rx_unicast); 6734 6735 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6736 &prev_ps->eth.rx_multicast, 6737 &cur_ps->eth.rx_multicast); 6738 6739 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6740 &prev_ps->eth.rx_broadcast, 6741 &cur_ps->eth.rx_broadcast); 6742 6743 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6744 &prev_ps->eth.rx_discards, 6745 &cur_ps->eth.rx_discards); 6746 6747 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6748 &prev_ps->eth.tx_bytes, 6749 &cur_ps->eth.tx_bytes); 6750 6751 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6752 &prev_ps->eth.tx_unicast, 6753 &cur_ps->eth.tx_unicast); 6754 6755 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6756 &prev_ps->eth.tx_multicast, 6757 &cur_ps->eth.tx_multicast); 6758 6759 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6760 &prev_ps->eth.tx_broadcast, 6761 &cur_ps->eth.tx_broadcast); 6762 6763 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6764 &prev_ps->tx_dropped_link_down, 6765 &cur_ps->tx_dropped_link_down); 6766 6767 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6768 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6769 6770 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6771 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6772 6773 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6774 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6775 6776 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6777 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6778 6779 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6780 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6781 6782 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6783 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6784 6785 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6786 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6787 6788 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6789 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6790 6791 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6792 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6793 6794 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6795 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6796 6797 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6798 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6799 6800 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6801 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6802 6803 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6804 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6805 6806 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6807 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6808 6809 fd_ctr_base = hw->fd_ctr_base; 6810 6811 ice_stat_update40(hw, 6812 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6813 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6814 &cur_ps->fd_sb_match); 6815 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6816 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6817 6818 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6819 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6820 6821 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6822 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6823 6824 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6825 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6826 6827 ice_update_dcb_stats(pf); 6828 6829 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6830 &prev_ps->crc_errors, &cur_ps->crc_errors); 6831 6832 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6833 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6834 6835 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6836 &prev_ps->mac_local_faults, 6837 &cur_ps->mac_local_faults); 6838 6839 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6840 &prev_ps->mac_remote_faults, 6841 &cur_ps->mac_remote_faults); 6842 6843 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6844 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6845 6846 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6847 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6848 6849 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6850 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6851 6852 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6853 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6854 6855 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6856 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6857 6858 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6859 6860 pf->stat_prev_loaded = true; 6861 } 6862 6863 /** 6864 * ice_get_stats64 - get statistics for network device structure 6865 * @netdev: network interface device structure 6866 * @stats: main device statistics structure 6867 */ 6868 static 6869 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6870 { 6871 struct ice_netdev_priv *np = netdev_priv(netdev); 6872 struct rtnl_link_stats64 *vsi_stats; 6873 struct ice_vsi *vsi = np->vsi; 6874 6875 vsi_stats = &vsi->net_stats; 6876 6877 if (!vsi->num_txq || !vsi->num_rxq) 6878 return; 6879 6880 /* netdev packet/byte stats come from ring counter. These are obtained 6881 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6882 * But, only call the update routine and read the registers if VSI is 6883 * not down. 6884 */ 6885 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6886 ice_update_vsi_ring_stats(vsi); 6887 stats->tx_packets = vsi_stats->tx_packets; 6888 stats->tx_bytes = vsi_stats->tx_bytes; 6889 stats->rx_packets = vsi_stats->rx_packets; 6890 stats->rx_bytes = vsi_stats->rx_bytes; 6891 6892 /* The rest of the stats can be read from the hardware but instead we 6893 * just return values that the watchdog task has already obtained from 6894 * the hardware. 6895 */ 6896 stats->multicast = vsi_stats->multicast; 6897 stats->tx_errors = vsi_stats->tx_errors; 6898 stats->tx_dropped = vsi_stats->tx_dropped; 6899 stats->rx_errors = vsi_stats->rx_errors; 6900 stats->rx_dropped = vsi_stats->rx_dropped; 6901 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6902 stats->rx_length_errors = vsi_stats->rx_length_errors; 6903 } 6904 6905 /** 6906 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6907 * @vsi: VSI having NAPI disabled 6908 */ 6909 static void ice_napi_disable_all(struct ice_vsi *vsi) 6910 { 6911 int q_idx; 6912 6913 if (!vsi->netdev) 6914 return; 6915 6916 ice_for_each_q_vector(vsi, q_idx) { 6917 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6918 6919 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6920 napi_disable(&q_vector->napi); 6921 6922 cancel_work_sync(&q_vector->tx.dim.work); 6923 cancel_work_sync(&q_vector->rx.dim.work); 6924 } 6925 } 6926 6927 /** 6928 * ice_down - Shutdown the connection 6929 * @vsi: The VSI being stopped 6930 * 6931 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6932 */ 6933 int ice_down(struct ice_vsi *vsi) 6934 { 6935 int i, tx_err, rx_err, vlan_err = 0; 6936 6937 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6938 6939 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6940 vlan_err = ice_vsi_del_vlan_zero(vsi); 6941 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6942 netif_carrier_off(vsi->netdev); 6943 netif_tx_disable(vsi->netdev); 6944 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6945 ice_eswitch_stop_all_tx_queues(vsi->back); 6946 } 6947 6948 ice_vsi_dis_irq(vsi); 6949 6950 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6951 if (tx_err) 6952 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6953 vsi->vsi_num, tx_err); 6954 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6955 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6956 if (tx_err) 6957 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6958 vsi->vsi_num, tx_err); 6959 } 6960 6961 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6962 if (rx_err) 6963 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6964 vsi->vsi_num, rx_err); 6965 6966 ice_napi_disable_all(vsi); 6967 6968 ice_for_each_txq(vsi, i) 6969 ice_clean_tx_ring(vsi->tx_rings[i]); 6970 6971 if (ice_is_xdp_ena_vsi(vsi)) 6972 ice_for_each_xdp_txq(vsi, i) 6973 ice_clean_tx_ring(vsi->xdp_rings[i]); 6974 6975 ice_for_each_rxq(vsi, i) 6976 ice_clean_rx_ring(vsi->rx_rings[i]); 6977 6978 if (tx_err || rx_err || vlan_err) { 6979 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6980 vsi->vsi_num, vsi->vsw->sw_id); 6981 return -EIO; 6982 } 6983 6984 return 0; 6985 } 6986 6987 /** 6988 * ice_down_up - shutdown the VSI connection and bring it up 6989 * @vsi: the VSI to be reconnected 6990 */ 6991 int ice_down_up(struct ice_vsi *vsi) 6992 { 6993 int ret; 6994 6995 /* if DOWN already set, nothing to do */ 6996 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6997 return 0; 6998 6999 ret = ice_down(vsi); 7000 if (ret) 7001 return ret; 7002 7003 ret = ice_up(vsi); 7004 if (ret) { 7005 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7006 return ret; 7007 } 7008 7009 return 0; 7010 } 7011 7012 /** 7013 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7014 * @vsi: VSI having resources allocated 7015 * 7016 * Return 0 on success, negative on failure 7017 */ 7018 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7019 { 7020 int i, err = 0; 7021 7022 if (!vsi->num_txq) { 7023 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7024 vsi->vsi_num); 7025 return -EINVAL; 7026 } 7027 7028 ice_for_each_txq(vsi, i) { 7029 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7030 7031 if (!ring) 7032 return -EINVAL; 7033 7034 if (vsi->netdev) 7035 ring->netdev = vsi->netdev; 7036 err = ice_setup_tx_ring(ring); 7037 if (err) 7038 break; 7039 } 7040 7041 return err; 7042 } 7043 7044 /** 7045 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7046 * @vsi: VSI having resources allocated 7047 * 7048 * Return 0 on success, negative on failure 7049 */ 7050 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7051 { 7052 int i, err = 0; 7053 7054 if (!vsi->num_rxq) { 7055 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7056 vsi->vsi_num); 7057 return -EINVAL; 7058 } 7059 7060 ice_for_each_rxq(vsi, i) { 7061 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7062 7063 if (!ring) 7064 return -EINVAL; 7065 7066 if (vsi->netdev) 7067 ring->netdev = vsi->netdev; 7068 err = ice_setup_rx_ring(ring); 7069 if (err) 7070 break; 7071 } 7072 7073 return err; 7074 } 7075 7076 /** 7077 * ice_vsi_open_ctrl - open control VSI for use 7078 * @vsi: the VSI to open 7079 * 7080 * Initialization of the Control VSI 7081 * 7082 * Returns 0 on success, negative value on error 7083 */ 7084 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7085 { 7086 char int_name[ICE_INT_NAME_STR_LEN]; 7087 struct ice_pf *pf = vsi->back; 7088 struct device *dev; 7089 int err; 7090 7091 dev = ice_pf_to_dev(pf); 7092 /* allocate descriptors */ 7093 err = ice_vsi_setup_tx_rings(vsi); 7094 if (err) 7095 goto err_setup_tx; 7096 7097 err = ice_vsi_setup_rx_rings(vsi); 7098 if (err) 7099 goto err_setup_rx; 7100 7101 err = ice_vsi_cfg_lan(vsi); 7102 if (err) 7103 goto err_setup_rx; 7104 7105 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7106 dev_driver_string(dev), dev_name(dev)); 7107 err = ice_vsi_req_irq_msix(vsi, int_name); 7108 if (err) 7109 goto err_setup_rx; 7110 7111 ice_vsi_cfg_msix(vsi); 7112 7113 err = ice_vsi_start_all_rx_rings(vsi); 7114 if (err) 7115 goto err_up_complete; 7116 7117 clear_bit(ICE_VSI_DOWN, vsi->state); 7118 ice_vsi_ena_irq(vsi); 7119 7120 return 0; 7121 7122 err_up_complete: 7123 ice_down(vsi); 7124 err_setup_rx: 7125 ice_vsi_free_rx_rings(vsi); 7126 err_setup_tx: 7127 ice_vsi_free_tx_rings(vsi); 7128 7129 return err; 7130 } 7131 7132 /** 7133 * ice_vsi_open - Called when a network interface is made active 7134 * @vsi: the VSI to open 7135 * 7136 * Initialization of the VSI 7137 * 7138 * Returns 0 on success, negative value on error 7139 */ 7140 int ice_vsi_open(struct ice_vsi *vsi) 7141 { 7142 char int_name[ICE_INT_NAME_STR_LEN]; 7143 struct ice_pf *pf = vsi->back; 7144 int err; 7145 7146 /* allocate descriptors */ 7147 err = ice_vsi_setup_tx_rings(vsi); 7148 if (err) 7149 goto err_setup_tx; 7150 7151 err = ice_vsi_setup_rx_rings(vsi); 7152 if (err) 7153 goto err_setup_rx; 7154 7155 err = ice_vsi_cfg_lan(vsi); 7156 if (err) 7157 goto err_setup_rx; 7158 7159 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7160 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7161 err = ice_vsi_req_irq_msix(vsi, int_name); 7162 if (err) 7163 goto err_setup_rx; 7164 7165 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7166 7167 if (vsi->type == ICE_VSI_PF) { 7168 /* Notify the stack of the actual queue counts. */ 7169 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7170 if (err) 7171 goto err_set_qs; 7172 7173 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7174 if (err) 7175 goto err_set_qs; 7176 } 7177 7178 err = ice_up_complete(vsi); 7179 if (err) 7180 goto err_up_complete; 7181 7182 return 0; 7183 7184 err_up_complete: 7185 ice_down(vsi); 7186 err_set_qs: 7187 ice_vsi_free_irq(vsi); 7188 err_setup_rx: 7189 ice_vsi_free_rx_rings(vsi); 7190 err_setup_tx: 7191 ice_vsi_free_tx_rings(vsi); 7192 7193 return err; 7194 } 7195 7196 /** 7197 * ice_vsi_release_all - Delete all VSIs 7198 * @pf: PF from which all VSIs are being removed 7199 */ 7200 static void ice_vsi_release_all(struct ice_pf *pf) 7201 { 7202 int err, i; 7203 7204 if (!pf->vsi) 7205 return; 7206 7207 ice_for_each_vsi(pf, i) { 7208 if (!pf->vsi[i]) 7209 continue; 7210 7211 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7212 continue; 7213 7214 err = ice_vsi_release(pf->vsi[i]); 7215 if (err) 7216 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7217 i, err, pf->vsi[i]->vsi_num); 7218 } 7219 } 7220 7221 /** 7222 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7223 * @pf: pointer to the PF instance 7224 * @type: VSI type to rebuild 7225 * 7226 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7227 */ 7228 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7229 { 7230 struct device *dev = ice_pf_to_dev(pf); 7231 int i, err; 7232 7233 ice_for_each_vsi(pf, i) { 7234 struct ice_vsi *vsi = pf->vsi[i]; 7235 7236 if (!vsi || vsi->type != type) 7237 continue; 7238 7239 /* rebuild the VSI */ 7240 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7241 if (err) { 7242 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7243 err, vsi->idx, ice_vsi_type_str(type)); 7244 return err; 7245 } 7246 7247 /* replay filters for the VSI */ 7248 err = ice_replay_vsi(&pf->hw, vsi->idx); 7249 if (err) { 7250 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7251 err, vsi->idx, ice_vsi_type_str(type)); 7252 return err; 7253 } 7254 7255 /* Re-map HW VSI number, using VSI handle that has been 7256 * previously validated in ice_replay_vsi() call above 7257 */ 7258 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7259 7260 /* enable the VSI */ 7261 err = ice_ena_vsi(vsi, false); 7262 if (err) { 7263 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7264 err, vsi->idx, ice_vsi_type_str(type)); 7265 return err; 7266 } 7267 7268 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7269 ice_vsi_type_str(type)); 7270 } 7271 7272 return 0; 7273 } 7274 7275 /** 7276 * ice_update_pf_netdev_link - Update PF netdev link status 7277 * @pf: pointer to the PF instance 7278 */ 7279 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7280 { 7281 bool link_up; 7282 int i; 7283 7284 ice_for_each_vsi(pf, i) { 7285 struct ice_vsi *vsi = pf->vsi[i]; 7286 7287 if (!vsi || vsi->type != ICE_VSI_PF) 7288 return; 7289 7290 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7291 if (link_up) { 7292 netif_carrier_on(pf->vsi[i]->netdev); 7293 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7294 } else { 7295 netif_carrier_off(pf->vsi[i]->netdev); 7296 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7297 } 7298 } 7299 } 7300 7301 /** 7302 * ice_rebuild - rebuild after reset 7303 * @pf: PF to rebuild 7304 * @reset_type: type of reset 7305 * 7306 * Do not rebuild VF VSI in this flow because that is already handled via 7307 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7308 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7309 * to reset/rebuild all the VF VSI twice. 7310 */ 7311 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7312 { 7313 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7314 struct device *dev = ice_pf_to_dev(pf); 7315 struct ice_hw *hw = &pf->hw; 7316 bool dvm; 7317 int err; 7318 7319 if (test_bit(ICE_DOWN, pf->state)) 7320 goto clear_recovery; 7321 7322 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7323 7324 #define ICE_EMP_RESET_SLEEP_MS 5000 7325 if (reset_type == ICE_RESET_EMPR) { 7326 /* If an EMP reset has occurred, any previously pending flash 7327 * update will have completed. We no longer know whether or 7328 * not the NVM update EMP reset is restricted. 7329 */ 7330 pf->fw_emp_reset_disabled = false; 7331 7332 msleep(ICE_EMP_RESET_SLEEP_MS); 7333 } 7334 7335 err = ice_init_all_ctrlq(hw); 7336 if (err) { 7337 dev_err(dev, "control queues init failed %d\n", err); 7338 goto err_init_ctrlq; 7339 } 7340 7341 /* if DDP was previously loaded successfully */ 7342 if (!ice_is_safe_mode(pf)) { 7343 /* reload the SW DB of filter tables */ 7344 if (reset_type == ICE_RESET_PFR) 7345 ice_fill_blk_tbls(hw); 7346 else 7347 /* Reload DDP Package after CORER/GLOBR reset */ 7348 ice_load_pkg(NULL, pf); 7349 } 7350 7351 err = ice_clear_pf_cfg(hw); 7352 if (err) { 7353 dev_err(dev, "clear PF configuration failed %d\n", err); 7354 goto err_init_ctrlq; 7355 } 7356 7357 ice_clear_pxe_mode(hw); 7358 7359 err = ice_init_nvm(hw); 7360 if (err) { 7361 dev_err(dev, "ice_init_nvm failed %d\n", err); 7362 goto err_init_ctrlq; 7363 } 7364 7365 err = ice_get_caps(hw); 7366 if (err) { 7367 dev_err(dev, "ice_get_caps failed %d\n", err); 7368 goto err_init_ctrlq; 7369 } 7370 7371 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7372 if (err) { 7373 dev_err(dev, "set_mac_cfg failed %d\n", err); 7374 goto err_init_ctrlq; 7375 } 7376 7377 dvm = ice_is_dvm_ena(hw); 7378 7379 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7380 if (err) 7381 goto err_init_ctrlq; 7382 7383 err = ice_sched_init_port(hw->port_info); 7384 if (err) 7385 goto err_sched_init_port; 7386 7387 /* start misc vector */ 7388 err = ice_req_irq_msix_misc(pf); 7389 if (err) { 7390 dev_err(dev, "misc vector setup failed: %d\n", err); 7391 goto err_sched_init_port; 7392 } 7393 7394 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7395 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7396 if (!rd32(hw, PFQF_FD_SIZE)) { 7397 u16 unused, guar, b_effort; 7398 7399 guar = hw->func_caps.fd_fltr_guar; 7400 b_effort = hw->func_caps.fd_fltr_best_effort; 7401 7402 /* force guaranteed filter pool for PF */ 7403 ice_alloc_fd_guar_item(hw, &unused, guar); 7404 /* force shared filter pool for PF */ 7405 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7406 } 7407 } 7408 7409 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7410 ice_dcb_rebuild(pf); 7411 7412 /* If the PF previously had enabled PTP, PTP init needs to happen before 7413 * the VSI rebuild. If not, this causes the PTP link status events to 7414 * fail. 7415 */ 7416 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7417 ice_ptp_reset(pf); 7418 7419 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7420 ice_gnss_init(pf); 7421 7422 /* rebuild PF VSI */ 7423 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7424 if (err) { 7425 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7426 goto err_vsi_rebuild; 7427 } 7428 7429 /* configure PTP timestamping after VSI rebuild */ 7430 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7431 ice_ptp_cfg_timestamp(pf, false); 7432 7433 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7434 if (err) { 7435 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7436 goto err_vsi_rebuild; 7437 } 7438 7439 if (reset_type == ICE_RESET_PFR) { 7440 err = ice_rebuild_channels(pf); 7441 if (err) { 7442 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7443 err); 7444 goto err_vsi_rebuild; 7445 } 7446 } 7447 7448 /* If Flow Director is active */ 7449 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7450 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7451 if (err) { 7452 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7453 goto err_vsi_rebuild; 7454 } 7455 7456 /* replay HW Flow Director recipes */ 7457 if (hw->fdir_prof) 7458 ice_fdir_replay_flows(hw); 7459 7460 /* replay Flow Director filters */ 7461 ice_fdir_replay_fltrs(pf); 7462 7463 ice_rebuild_arfs(pf); 7464 } 7465 7466 if (vsi && vsi->netdev) 7467 netif_device_attach(vsi->netdev); 7468 7469 ice_update_pf_netdev_link(pf); 7470 7471 /* tell the firmware we are up */ 7472 err = ice_send_version(pf); 7473 if (err) { 7474 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7475 err); 7476 goto err_vsi_rebuild; 7477 } 7478 7479 ice_replay_post(hw); 7480 7481 /* if we get here, reset flow is successful */ 7482 clear_bit(ICE_RESET_FAILED, pf->state); 7483 7484 ice_plug_aux_dev(pf); 7485 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7486 ice_lag_rebuild(pf); 7487 return; 7488 7489 err_vsi_rebuild: 7490 err_sched_init_port: 7491 ice_sched_cleanup_all(hw); 7492 err_init_ctrlq: 7493 ice_shutdown_all_ctrlq(hw); 7494 set_bit(ICE_RESET_FAILED, pf->state); 7495 clear_recovery: 7496 /* set this bit in PF state to control service task scheduling */ 7497 set_bit(ICE_NEEDS_RESTART, pf->state); 7498 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7499 } 7500 7501 /** 7502 * ice_change_mtu - NDO callback to change the MTU 7503 * @netdev: network interface device structure 7504 * @new_mtu: new value for maximum frame size 7505 * 7506 * Returns 0 on success, negative on failure 7507 */ 7508 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7509 { 7510 struct ice_netdev_priv *np = netdev_priv(netdev); 7511 struct ice_vsi *vsi = np->vsi; 7512 struct ice_pf *pf = vsi->back; 7513 struct bpf_prog *prog; 7514 u8 count = 0; 7515 int err = 0; 7516 7517 if (new_mtu == (int)netdev->mtu) { 7518 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7519 return 0; 7520 } 7521 7522 prog = vsi->xdp_prog; 7523 if (prog && !prog->aux->xdp_has_frags) { 7524 int frame_size = ice_max_xdp_frame_size(vsi); 7525 7526 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7527 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7528 frame_size - ICE_ETH_PKT_HDR_PAD); 7529 return -EINVAL; 7530 } 7531 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7532 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7533 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7534 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7535 return -EINVAL; 7536 } 7537 } 7538 7539 /* if a reset is in progress, wait for some time for it to complete */ 7540 do { 7541 if (ice_is_reset_in_progress(pf->state)) { 7542 count++; 7543 usleep_range(1000, 2000); 7544 } else { 7545 break; 7546 } 7547 7548 } while (count < 100); 7549 7550 if (count == 100) { 7551 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7552 return -EBUSY; 7553 } 7554 7555 netdev->mtu = (unsigned int)new_mtu; 7556 err = ice_down_up(vsi); 7557 if (err) 7558 return err; 7559 7560 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7561 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7562 7563 return err; 7564 } 7565 7566 /** 7567 * ice_eth_ioctl - Access the hwtstamp interface 7568 * @netdev: network interface device structure 7569 * @ifr: interface request data 7570 * @cmd: ioctl command 7571 */ 7572 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7573 { 7574 struct ice_netdev_priv *np = netdev_priv(netdev); 7575 struct ice_pf *pf = np->vsi->back; 7576 7577 switch (cmd) { 7578 case SIOCGHWTSTAMP: 7579 return ice_ptp_get_ts_config(pf, ifr); 7580 case SIOCSHWTSTAMP: 7581 return ice_ptp_set_ts_config(pf, ifr); 7582 default: 7583 return -EOPNOTSUPP; 7584 } 7585 } 7586 7587 /** 7588 * ice_aq_str - convert AQ err code to a string 7589 * @aq_err: the AQ error code to convert 7590 */ 7591 const char *ice_aq_str(enum ice_aq_err aq_err) 7592 { 7593 switch (aq_err) { 7594 case ICE_AQ_RC_OK: 7595 return "OK"; 7596 case ICE_AQ_RC_EPERM: 7597 return "ICE_AQ_RC_EPERM"; 7598 case ICE_AQ_RC_ENOENT: 7599 return "ICE_AQ_RC_ENOENT"; 7600 case ICE_AQ_RC_ENOMEM: 7601 return "ICE_AQ_RC_ENOMEM"; 7602 case ICE_AQ_RC_EBUSY: 7603 return "ICE_AQ_RC_EBUSY"; 7604 case ICE_AQ_RC_EEXIST: 7605 return "ICE_AQ_RC_EEXIST"; 7606 case ICE_AQ_RC_EINVAL: 7607 return "ICE_AQ_RC_EINVAL"; 7608 case ICE_AQ_RC_ENOSPC: 7609 return "ICE_AQ_RC_ENOSPC"; 7610 case ICE_AQ_RC_ENOSYS: 7611 return "ICE_AQ_RC_ENOSYS"; 7612 case ICE_AQ_RC_EMODE: 7613 return "ICE_AQ_RC_EMODE"; 7614 case ICE_AQ_RC_ENOSEC: 7615 return "ICE_AQ_RC_ENOSEC"; 7616 case ICE_AQ_RC_EBADSIG: 7617 return "ICE_AQ_RC_EBADSIG"; 7618 case ICE_AQ_RC_ESVN: 7619 return "ICE_AQ_RC_ESVN"; 7620 case ICE_AQ_RC_EBADMAN: 7621 return "ICE_AQ_RC_EBADMAN"; 7622 case ICE_AQ_RC_EBADBUF: 7623 return "ICE_AQ_RC_EBADBUF"; 7624 } 7625 7626 return "ICE_AQ_RC_UNKNOWN"; 7627 } 7628 7629 /** 7630 * ice_set_rss_lut - Set RSS LUT 7631 * @vsi: Pointer to VSI structure 7632 * @lut: Lookup table 7633 * @lut_size: Lookup table size 7634 * 7635 * Returns 0 on success, negative on failure 7636 */ 7637 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7638 { 7639 struct ice_aq_get_set_rss_lut_params params = {}; 7640 struct ice_hw *hw = &vsi->back->hw; 7641 int status; 7642 7643 if (!lut) 7644 return -EINVAL; 7645 7646 params.vsi_handle = vsi->idx; 7647 params.lut_size = lut_size; 7648 params.lut_type = vsi->rss_lut_type; 7649 params.lut = lut; 7650 7651 status = ice_aq_set_rss_lut(hw, ¶ms); 7652 if (status) 7653 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7654 status, ice_aq_str(hw->adminq.sq_last_status)); 7655 7656 return status; 7657 } 7658 7659 /** 7660 * ice_set_rss_key - Set RSS key 7661 * @vsi: Pointer to the VSI structure 7662 * @seed: RSS hash seed 7663 * 7664 * Returns 0 on success, negative on failure 7665 */ 7666 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7667 { 7668 struct ice_hw *hw = &vsi->back->hw; 7669 int status; 7670 7671 if (!seed) 7672 return -EINVAL; 7673 7674 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7675 if (status) 7676 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7677 status, ice_aq_str(hw->adminq.sq_last_status)); 7678 7679 return status; 7680 } 7681 7682 /** 7683 * ice_get_rss_lut - Get RSS LUT 7684 * @vsi: Pointer to VSI structure 7685 * @lut: Buffer to store the lookup table entries 7686 * @lut_size: Size of buffer to store the lookup table entries 7687 * 7688 * Returns 0 on success, negative on failure 7689 */ 7690 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7691 { 7692 struct ice_aq_get_set_rss_lut_params params = {}; 7693 struct ice_hw *hw = &vsi->back->hw; 7694 int status; 7695 7696 if (!lut) 7697 return -EINVAL; 7698 7699 params.vsi_handle = vsi->idx; 7700 params.lut_size = lut_size; 7701 params.lut_type = vsi->rss_lut_type; 7702 params.lut = lut; 7703 7704 status = ice_aq_get_rss_lut(hw, ¶ms); 7705 if (status) 7706 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7707 status, ice_aq_str(hw->adminq.sq_last_status)); 7708 7709 return status; 7710 } 7711 7712 /** 7713 * ice_get_rss_key - Get RSS key 7714 * @vsi: Pointer to VSI structure 7715 * @seed: Buffer to store the key in 7716 * 7717 * Returns 0 on success, negative on failure 7718 */ 7719 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7720 { 7721 struct ice_hw *hw = &vsi->back->hw; 7722 int status; 7723 7724 if (!seed) 7725 return -EINVAL; 7726 7727 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7728 if (status) 7729 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7730 status, ice_aq_str(hw->adminq.sq_last_status)); 7731 7732 return status; 7733 } 7734 7735 /** 7736 * ice_bridge_getlink - Get the hardware bridge mode 7737 * @skb: skb buff 7738 * @pid: process ID 7739 * @seq: RTNL message seq 7740 * @dev: the netdev being configured 7741 * @filter_mask: filter mask passed in 7742 * @nlflags: netlink flags passed in 7743 * 7744 * Return the bridge mode (VEB/VEPA) 7745 */ 7746 static int 7747 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7748 struct net_device *dev, u32 filter_mask, int nlflags) 7749 { 7750 struct ice_netdev_priv *np = netdev_priv(dev); 7751 struct ice_vsi *vsi = np->vsi; 7752 struct ice_pf *pf = vsi->back; 7753 u16 bmode; 7754 7755 bmode = pf->first_sw->bridge_mode; 7756 7757 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7758 filter_mask, NULL); 7759 } 7760 7761 /** 7762 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7763 * @vsi: Pointer to VSI structure 7764 * @bmode: Hardware bridge mode (VEB/VEPA) 7765 * 7766 * Returns 0 on success, negative on failure 7767 */ 7768 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7769 { 7770 struct ice_aqc_vsi_props *vsi_props; 7771 struct ice_hw *hw = &vsi->back->hw; 7772 struct ice_vsi_ctx *ctxt; 7773 int ret; 7774 7775 vsi_props = &vsi->info; 7776 7777 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7778 if (!ctxt) 7779 return -ENOMEM; 7780 7781 ctxt->info = vsi->info; 7782 7783 if (bmode == BRIDGE_MODE_VEB) 7784 /* change from VEPA to VEB mode */ 7785 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7786 else 7787 /* change from VEB to VEPA mode */ 7788 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7789 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7790 7791 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7792 if (ret) { 7793 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7794 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7795 goto out; 7796 } 7797 /* Update sw flags for book keeping */ 7798 vsi_props->sw_flags = ctxt->info.sw_flags; 7799 7800 out: 7801 kfree(ctxt); 7802 return ret; 7803 } 7804 7805 /** 7806 * ice_bridge_setlink - Set the hardware bridge mode 7807 * @dev: the netdev being configured 7808 * @nlh: RTNL message 7809 * @flags: bridge setlink flags 7810 * @extack: netlink extended ack 7811 * 7812 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7813 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7814 * not already set for all VSIs connected to this switch. And also update the 7815 * unicast switch filter rules for the corresponding switch of the netdev. 7816 */ 7817 static int 7818 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7819 u16 __always_unused flags, 7820 struct netlink_ext_ack __always_unused *extack) 7821 { 7822 struct ice_netdev_priv *np = netdev_priv(dev); 7823 struct ice_pf *pf = np->vsi->back; 7824 struct nlattr *attr, *br_spec; 7825 struct ice_hw *hw = &pf->hw; 7826 struct ice_sw *pf_sw; 7827 int rem, v, err = 0; 7828 7829 pf_sw = pf->first_sw; 7830 /* find the attribute in the netlink message */ 7831 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7832 if (!br_spec) 7833 return -EINVAL; 7834 7835 nla_for_each_nested(attr, br_spec, rem) { 7836 __u16 mode; 7837 7838 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7839 continue; 7840 mode = nla_get_u16(attr); 7841 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7842 return -EINVAL; 7843 /* Continue if bridge mode is not being flipped */ 7844 if (mode == pf_sw->bridge_mode) 7845 continue; 7846 /* Iterates through the PF VSI list and update the loopback 7847 * mode of the VSI 7848 */ 7849 ice_for_each_vsi(pf, v) { 7850 if (!pf->vsi[v]) 7851 continue; 7852 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7853 if (err) 7854 return err; 7855 } 7856 7857 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7858 /* Update the unicast switch filter rules for the corresponding 7859 * switch of the netdev 7860 */ 7861 err = ice_update_sw_rule_bridge_mode(hw); 7862 if (err) { 7863 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7864 mode, err, 7865 ice_aq_str(hw->adminq.sq_last_status)); 7866 /* revert hw->evb_veb */ 7867 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7868 return err; 7869 } 7870 7871 pf_sw->bridge_mode = mode; 7872 } 7873 7874 return 0; 7875 } 7876 7877 /** 7878 * ice_tx_timeout - Respond to a Tx Hang 7879 * @netdev: network interface device structure 7880 * @txqueue: Tx queue 7881 */ 7882 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7883 { 7884 struct ice_netdev_priv *np = netdev_priv(netdev); 7885 struct ice_tx_ring *tx_ring = NULL; 7886 struct ice_vsi *vsi = np->vsi; 7887 struct ice_pf *pf = vsi->back; 7888 u32 i; 7889 7890 pf->tx_timeout_count++; 7891 7892 /* Check if PFC is enabled for the TC to which the queue belongs 7893 * to. If yes then Tx timeout is not caused by a hung queue, no 7894 * need to reset and rebuild 7895 */ 7896 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7897 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7898 txqueue); 7899 return; 7900 } 7901 7902 /* now that we have an index, find the tx_ring struct */ 7903 ice_for_each_txq(vsi, i) 7904 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7905 if (txqueue == vsi->tx_rings[i]->q_index) { 7906 tx_ring = vsi->tx_rings[i]; 7907 break; 7908 } 7909 7910 /* Reset recovery level if enough time has elapsed after last timeout. 7911 * Also ensure no new reset action happens before next timeout period. 7912 */ 7913 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7914 pf->tx_timeout_recovery_level = 1; 7915 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7916 netdev->watchdog_timeo))) 7917 return; 7918 7919 if (tx_ring) { 7920 struct ice_hw *hw = &pf->hw; 7921 u32 head, val = 0; 7922 7923 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7924 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7925 /* Read interrupt register */ 7926 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7927 7928 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7929 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7930 head, tx_ring->next_to_use, val); 7931 } 7932 7933 pf->tx_timeout_last_recovery = jiffies; 7934 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7935 pf->tx_timeout_recovery_level, txqueue); 7936 7937 switch (pf->tx_timeout_recovery_level) { 7938 case 1: 7939 set_bit(ICE_PFR_REQ, pf->state); 7940 break; 7941 case 2: 7942 set_bit(ICE_CORER_REQ, pf->state); 7943 break; 7944 case 3: 7945 set_bit(ICE_GLOBR_REQ, pf->state); 7946 break; 7947 default: 7948 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7949 set_bit(ICE_DOWN, pf->state); 7950 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7951 set_bit(ICE_SERVICE_DIS, pf->state); 7952 break; 7953 } 7954 7955 ice_service_task_schedule(pf); 7956 pf->tx_timeout_recovery_level++; 7957 } 7958 7959 /** 7960 * ice_setup_tc_cls_flower - flower classifier offloads 7961 * @np: net device to configure 7962 * @filter_dev: device on which filter is added 7963 * @cls_flower: offload data 7964 */ 7965 static int 7966 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7967 struct net_device *filter_dev, 7968 struct flow_cls_offload *cls_flower) 7969 { 7970 struct ice_vsi *vsi = np->vsi; 7971 7972 if (cls_flower->common.chain_index) 7973 return -EOPNOTSUPP; 7974 7975 switch (cls_flower->command) { 7976 case FLOW_CLS_REPLACE: 7977 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7978 case FLOW_CLS_DESTROY: 7979 return ice_del_cls_flower(vsi, cls_flower); 7980 default: 7981 return -EINVAL; 7982 } 7983 } 7984 7985 /** 7986 * ice_setup_tc_block_cb - callback handler registered for TC block 7987 * @type: TC SETUP type 7988 * @type_data: TC flower offload data that contains user input 7989 * @cb_priv: netdev private data 7990 */ 7991 static int 7992 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7993 { 7994 struct ice_netdev_priv *np = cb_priv; 7995 7996 switch (type) { 7997 case TC_SETUP_CLSFLOWER: 7998 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7999 type_data); 8000 default: 8001 return -EOPNOTSUPP; 8002 } 8003 } 8004 8005 /** 8006 * ice_validate_mqprio_qopt - Validate TCF input parameters 8007 * @vsi: Pointer to VSI 8008 * @mqprio_qopt: input parameters for mqprio queue configuration 8009 * 8010 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8011 * needed), and make sure user doesn't specify qcount and BW rate limit 8012 * for TCs, which are more than "num_tc" 8013 */ 8014 static int 8015 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8016 struct tc_mqprio_qopt_offload *mqprio_qopt) 8017 { 8018 int non_power_of_2_qcount = 0; 8019 struct ice_pf *pf = vsi->back; 8020 int max_rss_q_cnt = 0; 8021 u64 sum_min_rate = 0; 8022 struct device *dev; 8023 int i, speed; 8024 u8 num_tc; 8025 8026 if (vsi->type != ICE_VSI_PF) 8027 return -EINVAL; 8028 8029 if (mqprio_qopt->qopt.offset[0] != 0 || 8030 mqprio_qopt->qopt.num_tc < 1 || 8031 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8032 return -EINVAL; 8033 8034 dev = ice_pf_to_dev(pf); 8035 vsi->ch_rss_size = 0; 8036 num_tc = mqprio_qopt->qopt.num_tc; 8037 speed = ice_get_link_speed_kbps(vsi); 8038 8039 for (i = 0; num_tc; i++) { 8040 int qcount = mqprio_qopt->qopt.count[i]; 8041 u64 max_rate, min_rate, rem; 8042 8043 if (!qcount) 8044 return -EINVAL; 8045 8046 if (is_power_of_2(qcount)) { 8047 if (non_power_of_2_qcount && 8048 qcount > non_power_of_2_qcount) { 8049 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8050 qcount, non_power_of_2_qcount); 8051 return -EINVAL; 8052 } 8053 if (qcount > max_rss_q_cnt) 8054 max_rss_q_cnt = qcount; 8055 } else { 8056 if (non_power_of_2_qcount && 8057 qcount != non_power_of_2_qcount) { 8058 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8059 qcount, non_power_of_2_qcount); 8060 return -EINVAL; 8061 } 8062 if (qcount < max_rss_q_cnt) { 8063 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8064 qcount, max_rss_q_cnt); 8065 return -EINVAL; 8066 } 8067 max_rss_q_cnt = qcount; 8068 non_power_of_2_qcount = qcount; 8069 } 8070 8071 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8072 * converts the bandwidth rate limit into Bytes/s when 8073 * passing it down to the driver. So convert input bandwidth 8074 * from Bytes/s to Kbps 8075 */ 8076 max_rate = mqprio_qopt->max_rate[i]; 8077 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8078 8079 /* min_rate is minimum guaranteed rate and it can't be zero */ 8080 min_rate = mqprio_qopt->min_rate[i]; 8081 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8082 sum_min_rate += min_rate; 8083 8084 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8085 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8086 min_rate, ICE_MIN_BW_LIMIT); 8087 return -EINVAL; 8088 } 8089 8090 if (max_rate && max_rate > speed) { 8091 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8092 i, max_rate, speed); 8093 return -EINVAL; 8094 } 8095 8096 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8097 if (rem) { 8098 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8099 i, ICE_MIN_BW_LIMIT); 8100 return -EINVAL; 8101 } 8102 8103 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8104 if (rem) { 8105 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8106 i, ICE_MIN_BW_LIMIT); 8107 return -EINVAL; 8108 } 8109 8110 /* min_rate can't be more than max_rate, except when max_rate 8111 * is zero (implies max_rate sought is max line rate). In such 8112 * a case min_rate can be more than max. 8113 */ 8114 if (max_rate && min_rate > max_rate) { 8115 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8116 min_rate, max_rate); 8117 return -EINVAL; 8118 } 8119 8120 if (i >= mqprio_qopt->qopt.num_tc - 1) 8121 break; 8122 if (mqprio_qopt->qopt.offset[i + 1] != 8123 (mqprio_qopt->qopt.offset[i] + qcount)) 8124 return -EINVAL; 8125 } 8126 if (vsi->num_rxq < 8127 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8128 return -EINVAL; 8129 if (vsi->num_txq < 8130 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8131 return -EINVAL; 8132 8133 if (sum_min_rate && sum_min_rate > (u64)speed) { 8134 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8135 sum_min_rate, speed); 8136 return -EINVAL; 8137 } 8138 8139 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8140 vsi->ch_rss_size = max_rss_q_cnt; 8141 8142 return 0; 8143 } 8144 8145 /** 8146 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8147 * @pf: ptr to PF device 8148 * @vsi: ptr to VSI 8149 */ 8150 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8151 { 8152 struct device *dev = ice_pf_to_dev(pf); 8153 bool added = false; 8154 struct ice_hw *hw; 8155 int flow; 8156 8157 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8158 return -EINVAL; 8159 8160 hw = &pf->hw; 8161 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8162 struct ice_fd_hw_prof *prof; 8163 int tun, status; 8164 u64 entry_h; 8165 8166 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8167 hw->fdir_prof[flow]->cnt)) 8168 continue; 8169 8170 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8171 enum ice_flow_priority prio; 8172 u64 prof_id; 8173 8174 /* add this VSI to FDir profile for this flow */ 8175 prio = ICE_FLOW_PRIO_NORMAL; 8176 prof = hw->fdir_prof[flow]; 8177 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8178 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8179 prof->vsi_h[0], vsi->idx, 8180 prio, prof->fdir_seg[tun], 8181 &entry_h); 8182 if (status) { 8183 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8184 vsi->idx, flow); 8185 continue; 8186 } 8187 8188 prof->entry_h[prof->cnt][tun] = entry_h; 8189 } 8190 8191 /* store VSI for filter replay and delete */ 8192 prof->vsi_h[prof->cnt] = vsi->idx; 8193 prof->cnt++; 8194 8195 added = true; 8196 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8197 flow); 8198 } 8199 8200 if (!added) 8201 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8202 8203 return 0; 8204 } 8205 8206 /** 8207 * ice_add_channel - add a channel by adding VSI 8208 * @pf: ptr to PF device 8209 * @sw_id: underlying HW switching element ID 8210 * @ch: ptr to channel structure 8211 * 8212 * Add a channel (VSI) using add_vsi and queue_map 8213 */ 8214 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8215 { 8216 struct device *dev = ice_pf_to_dev(pf); 8217 struct ice_vsi *vsi; 8218 8219 if (ch->type != ICE_VSI_CHNL) { 8220 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8221 return -EINVAL; 8222 } 8223 8224 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8225 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8226 dev_err(dev, "create chnl VSI failure\n"); 8227 return -EINVAL; 8228 } 8229 8230 ice_add_vsi_to_fdir(pf, vsi); 8231 8232 ch->sw_id = sw_id; 8233 ch->vsi_num = vsi->vsi_num; 8234 ch->info.mapping_flags = vsi->info.mapping_flags; 8235 ch->ch_vsi = vsi; 8236 /* set the back pointer of channel for newly created VSI */ 8237 vsi->ch = ch; 8238 8239 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8240 sizeof(vsi->info.q_mapping)); 8241 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8242 sizeof(vsi->info.tc_mapping)); 8243 8244 return 0; 8245 } 8246 8247 /** 8248 * ice_chnl_cfg_res 8249 * @vsi: the VSI being setup 8250 * @ch: ptr to channel structure 8251 * 8252 * Configure channel specific resources such as rings, vector. 8253 */ 8254 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8255 { 8256 int i; 8257 8258 for (i = 0; i < ch->num_txq; i++) { 8259 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8260 struct ice_ring_container *rc; 8261 struct ice_tx_ring *tx_ring; 8262 struct ice_rx_ring *rx_ring; 8263 8264 tx_ring = vsi->tx_rings[ch->base_q + i]; 8265 rx_ring = vsi->rx_rings[ch->base_q + i]; 8266 if (!tx_ring || !rx_ring) 8267 continue; 8268 8269 /* setup ring being channel enabled */ 8270 tx_ring->ch = ch; 8271 rx_ring->ch = ch; 8272 8273 /* following code block sets up vector specific attributes */ 8274 tx_q_vector = tx_ring->q_vector; 8275 rx_q_vector = rx_ring->q_vector; 8276 if (!tx_q_vector && !rx_q_vector) 8277 continue; 8278 8279 if (tx_q_vector) { 8280 tx_q_vector->ch = ch; 8281 /* setup Tx and Rx ITR setting if DIM is off */ 8282 rc = &tx_q_vector->tx; 8283 if (!ITR_IS_DYNAMIC(rc)) 8284 ice_write_itr(rc, rc->itr_setting); 8285 } 8286 if (rx_q_vector) { 8287 rx_q_vector->ch = ch; 8288 /* setup Tx and Rx ITR setting if DIM is off */ 8289 rc = &rx_q_vector->rx; 8290 if (!ITR_IS_DYNAMIC(rc)) 8291 ice_write_itr(rc, rc->itr_setting); 8292 } 8293 } 8294 8295 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8296 * GLINT_ITR register would have written to perform in-context 8297 * update, hence perform flush 8298 */ 8299 if (ch->num_txq || ch->num_rxq) 8300 ice_flush(&vsi->back->hw); 8301 } 8302 8303 /** 8304 * ice_cfg_chnl_all_res - configure channel resources 8305 * @vsi: pte to main_vsi 8306 * @ch: ptr to channel structure 8307 * 8308 * This function configures channel specific resources such as flow-director 8309 * counter index, and other resources such as queues, vectors, ITR settings 8310 */ 8311 static void 8312 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8313 { 8314 /* configure channel (aka ADQ) resources such as queues, vectors, 8315 * ITR settings for channel specific vectors and anything else 8316 */ 8317 ice_chnl_cfg_res(vsi, ch); 8318 } 8319 8320 /** 8321 * ice_setup_hw_channel - setup new channel 8322 * @pf: ptr to PF device 8323 * @vsi: the VSI being setup 8324 * @ch: ptr to channel structure 8325 * @sw_id: underlying HW switching element ID 8326 * @type: type of channel to be created (VMDq2/VF) 8327 * 8328 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8329 * and configures Tx rings accordingly 8330 */ 8331 static int 8332 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8333 struct ice_channel *ch, u16 sw_id, u8 type) 8334 { 8335 struct device *dev = ice_pf_to_dev(pf); 8336 int ret; 8337 8338 ch->base_q = vsi->next_base_q; 8339 ch->type = type; 8340 8341 ret = ice_add_channel(pf, sw_id, ch); 8342 if (ret) { 8343 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8344 return ret; 8345 } 8346 8347 /* configure/setup ADQ specific resources */ 8348 ice_cfg_chnl_all_res(vsi, ch); 8349 8350 /* make sure to update the next_base_q so that subsequent channel's 8351 * (aka ADQ) VSI queue map is correct 8352 */ 8353 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8354 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8355 ch->num_rxq); 8356 8357 return 0; 8358 } 8359 8360 /** 8361 * ice_setup_channel - setup new channel using uplink element 8362 * @pf: ptr to PF device 8363 * @vsi: the VSI being setup 8364 * @ch: ptr to channel structure 8365 * 8366 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8367 * and uplink switching element 8368 */ 8369 static bool 8370 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8371 struct ice_channel *ch) 8372 { 8373 struct device *dev = ice_pf_to_dev(pf); 8374 u16 sw_id; 8375 int ret; 8376 8377 if (vsi->type != ICE_VSI_PF) { 8378 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8379 return false; 8380 } 8381 8382 sw_id = pf->first_sw->sw_id; 8383 8384 /* create channel (VSI) */ 8385 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8386 if (ret) { 8387 dev_err(dev, "failed to setup hw_channel\n"); 8388 return false; 8389 } 8390 dev_dbg(dev, "successfully created channel()\n"); 8391 8392 return ch->ch_vsi ? true : false; 8393 } 8394 8395 /** 8396 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8397 * @vsi: VSI to be configured 8398 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8399 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8400 */ 8401 static int 8402 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8403 { 8404 int err; 8405 8406 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8407 if (err) 8408 return err; 8409 8410 return ice_set_max_bw_limit(vsi, max_tx_rate); 8411 } 8412 8413 /** 8414 * ice_create_q_channel - function to create channel 8415 * @vsi: VSI to be configured 8416 * @ch: ptr to channel (it contains channel specific params) 8417 * 8418 * This function creates channel (VSI) using num_queues specified by user, 8419 * reconfigs RSS if needed. 8420 */ 8421 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8422 { 8423 struct ice_pf *pf = vsi->back; 8424 struct device *dev; 8425 8426 if (!ch) 8427 return -EINVAL; 8428 8429 dev = ice_pf_to_dev(pf); 8430 if (!ch->num_txq || !ch->num_rxq) { 8431 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8432 return -EINVAL; 8433 } 8434 8435 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8436 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8437 vsi->cnt_q_avail, ch->num_txq); 8438 return -EINVAL; 8439 } 8440 8441 if (!ice_setup_channel(pf, vsi, ch)) { 8442 dev_info(dev, "Failed to setup channel\n"); 8443 return -EINVAL; 8444 } 8445 /* configure BW rate limit */ 8446 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8447 int ret; 8448 8449 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8450 ch->min_tx_rate); 8451 if (ret) 8452 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8453 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8454 else 8455 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8456 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8457 } 8458 8459 vsi->cnt_q_avail -= ch->num_txq; 8460 8461 return 0; 8462 } 8463 8464 /** 8465 * ice_rem_all_chnl_fltrs - removes all channel filters 8466 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8467 * 8468 * Remove all advanced switch filters only if they are channel specific 8469 * tc-flower based filter 8470 */ 8471 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8472 { 8473 struct ice_tc_flower_fltr *fltr; 8474 struct hlist_node *node; 8475 8476 /* to remove all channel filters, iterate an ordered list of filters */ 8477 hlist_for_each_entry_safe(fltr, node, 8478 &pf->tc_flower_fltr_list, 8479 tc_flower_node) { 8480 struct ice_rule_query_data rule; 8481 int status; 8482 8483 /* for now process only channel specific filters */ 8484 if (!ice_is_chnl_fltr(fltr)) 8485 continue; 8486 8487 rule.rid = fltr->rid; 8488 rule.rule_id = fltr->rule_id; 8489 rule.vsi_handle = fltr->dest_vsi_handle; 8490 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8491 if (status) { 8492 if (status == -ENOENT) 8493 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8494 rule.rule_id); 8495 else 8496 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8497 status); 8498 } else if (fltr->dest_vsi) { 8499 /* update advanced switch filter count */ 8500 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8501 u32 flags = fltr->flags; 8502 8503 fltr->dest_vsi->num_chnl_fltr--; 8504 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8505 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8506 pf->num_dmac_chnl_fltrs--; 8507 } 8508 } 8509 8510 hlist_del(&fltr->tc_flower_node); 8511 kfree(fltr); 8512 } 8513 } 8514 8515 /** 8516 * ice_remove_q_channels - Remove queue channels for the TCs 8517 * @vsi: VSI to be configured 8518 * @rem_fltr: delete advanced switch filter or not 8519 * 8520 * Remove queue channels for the TCs 8521 */ 8522 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8523 { 8524 struct ice_channel *ch, *ch_tmp; 8525 struct ice_pf *pf = vsi->back; 8526 int i; 8527 8528 /* remove all tc-flower based filter if they are channel filters only */ 8529 if (rem_fltr) 8530 ice_rem_all_chnl_fltrs(pf); 8531 8532 /* remove ntuple filters since queue configuration is being changed */ 8533 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8534 struct ice_hw *hw = &pf->hw; 8535 8536 mutex_lock(&hw->fdir_fltr_lock); 8537 ice_fdir_del_all_fltrs(vsi); 8538 mutex_unlock(&hw->fdir_fltr_lock); 8539 } 8540 8541 /* perform cleanup for channels if they exist */ 8542 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8543 struct ice_vsi *ch_vsi; 8544 8545 list_del(&ch->list); 8546 ch_vsi = ch->ch_vsi; 8547 if (!ch_vsi) { 8548 kfree(ch); 8549 continue; 8550 } 8551 8552 /* Reset queue contexts */ 8553 for (i = 0; i < ch->num_rxq; i++) { 8554 struct ice_tx_ring *tx_ring; 8555 struct ice_rx_ring *rx_ring; 8556 8557 tx_ring = vsi->tx_rings[ch->base_q + i]; 8558 rx_ring = vsi->rx_rings[ch->base_q + i]; 8559 if (tx_ring) { 8560 tx_ring->ch = NULL; 8561 if (tx_ring->q_vector) 8562 tx_ring->q_vector->ch = NULL; 8563 } 8564 if (rx_ring) { 8565 rx_ring->ch = NULL; 8566 if (rx_ring->q_vector) 8567 rx_ring->q_vector->ch = NULL; 8568 } 8569 } 8570 8571 /* Release FD resources for the channel VSI */ 8572 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8573 8574 /* clear the VSI from scheduler tree */ 8575 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8576 8577 /* Delete VSI from FW, PF and HW VSI arrays */ 8578 ice_vsi_delete(ch->ch_vsi); 8579 8580 /* free the channel */ 8581 kfree(ch); 8582 } 8583 8584 /* clear the channel VSI map which is stored in main VSI */ 8585 ice_for_each_chnl_tc(i) 8586 vsi->tc_map_vsi[i] = NULL; 8587 8588 /* reset main VSI's all TC information */ 8589 vsi->all_enatc = 0; 8590 vsi->all_numtc = 0; 8591 } 8592 8593 /** 8594 * ice_rebuild_channels - rebuild channel 8595 * @pf: ptr to PF 8596 * 8597 * Recreate channel VSIs and replay filters 8598 */ 8599 static int ice_rebuild_channels(struct ice_pf *pf) 8600 { 8601 struct device *dev = ice_pf_to_dev(pf); 8602 struct ice_vsi *main_vsi; 8603 bool rem_adv_fltr = true; 8604 struct ice_channel *ch; 8605 struct ice_vsi *vsi; 8606 int tc_idx = 1; 8607 int i, err; 8608 8609 main_vsi = ice_get_main_vsi(pf); 8610 if (!main_vsi) 8611 return 0; 8612 8613 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8614 main_vsi->old_numtc == 1) 8615 return 0; /* nothing to be done */ 8616 8617 /* reconfigure main VSI based on old value of TC and cached values 8618 * for MQPRIO opts 8619 */ 8620 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8621 if (err) { 8622 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8623 main_vsi->old_ena_tc, main_vsi->vsi_num); 8624 return err; 8625 } 8626 8627 /* rebuild ADQ VSIs */ 8628 ice_for_each_vsi(pf, i) { 8629 enum ice_vsi_type type; 8630 8631 vsi = pf->vsi[i]; 8632 if (!vsi || vsi->type != ICE_VSI_CHNL) 8633 continue; 8634 8635 type = vsi->type; 8636 8637 /* rebuild ADQ VSI */ 8638 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8639 if (err) { 8640 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8641 ice_vsi_type_str(type), vsi->idx, err); 8642 goto cleanup; 8643 } 8644 8645 /* Re-map HW VSI number, using VSI handle that has been 8646 * previously validated in ice_replay_vsi() call above 8647 */ 8648 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8649 8650 /* replay filters for the VSI */ 8651 err = ice_replay_vsi(&pf->hw, vsi->idx); 8652 if (err) { 8653 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8654 ice_vsi_type_str(type), err, vsi->idx); 8655 rem_adv_fltr = false; 8656 goto cleanup; 8657 } 8658 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8659 ice_vsi_type_str(type), vsi->idx); 8660 8661 /* store ADQ VSI at correct TC index in main VSI's 8662 * map of TC to VSI 8663 */ 8664 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8665 } 8666 8667 /* ADQ VSI(s) has been rebuilt successfully, so setup 8668 * channel for main VSI's Tx and Rx rings 8669 */ 8670 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8671 struct ice_vsi *ch_vsi; 8672 8673 ch_vsi = ch->ch_vsi; 8674 if (!ch_vsi) 8675 continue; 8676 8677 /* reconfig channel resources */ 8678 ice_cfg_chnl_all_res(main_vsi, ch); 8679 8680 /* replay BW rate limit if it is non-zero */ 8681 if (!ch->max_tx_rate && !ch->min_tx_rate) 8682 continue; 8683 8684 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8685 ch->min_tx_rate); 8686 if (err) 8687 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8688 err, ch->max_tx_rate, ch->min_tx_rate, 8689 ch_vsi->vsi_num); 8690 else 8691 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8692 ch->max_tx_rate, ch->min_tx_rate, 8693 ch_vsi->vsi_num); 8694 } 8695 8696 /* reconfig RSS for main VSI */ 8697 if (main_vsi->ch_rss_size) 8698 ice_vsi_cfg_rss_lut_key(main_vsi); 8699 8700 return 0; 8701 8702 cleanup: 8703 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8704 return err; 8705 } 8706 8707 /** 8708 * ice_create_q_channels - Add queue channel for the given TCs 8709 * @vsi: VSI to be configured 8710 * 8711 * Configures queue channel mapping to the given TCs 8712 */ 8713 static int ice_create_q_channels(struct ice_vsi *vsi) 8714 { 8715 struct ice_pf *pf = vsi->back; 8716 struct ice_channel *ch; 8717 int ret = 0, i; 8718 8719 ice_for_each_chnl_tc(i) { 8720 if (!(vsi->all_enatc & BIT(i))) 8721 continue; 8722 8723 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8724 if (!ch) { 8725 ret = -ENOMEM; 8726 goto err_free; 8727 } 8728 INIT_LIST_HEAD(&ch->list); 8729 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8730 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8731 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8732 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8733 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8734 8735 /* convert to Kbits/s */ 8736 if (ch->max_tx_rate) 8737 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8738 ICE_BW_KBPS_DIVISOR); 8739 if (ch->min_tx_rate) 8740 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8741 ICE_BW_KBPS_DIVISOR); 8742 8743 ret = ice_create_q_channel(vsi, ch); 8744 if (ret) { 8745 dev_err(ice_pf_to_dev(pf), 8746 "failed creating channel TC:%d\n", i); 8747 kfree(ch); 8748 goto err_free; 8749 } 8750 list_add_tail(&ch->list, &vsi->ch_list); 8751 vsi->tc_map_vsi[i] = ch->ch_vsi; 8752 dev_dbg(ice_pf_to_dev(pf), 8753 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8754 } 8755 return 0; 8756 8757 err_free: 8758 ice_remove_q_channels(vsi, false); 8759 8760 return ret; 8761 } 8762 8763 /** 8764 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8765 * @netdev: net device to configure 8766 * @type_data: TC offload data 8767 */ 8768 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8769 { 8770 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8771 struct ice_netdev_priv *np = netdev_priv(netdev); 8772 struct ice_vsi *vsi = np->vsi; 8773 struct ice_pf *pf = vsi->back; 8774 u16 mode, ena_tc_qdisc = 0; 8775 int cur_txq, cur_rxq; 8776 u8 hw = 0, num_tcf; 8777 struct device *dev; 8778 int ret, i; 8779 8780 dev = ice_pf_to_dev(pf); 8781 num_tcf = mqprio_qopt->qopt.num_tc; 8782 hw = mqprio_qopt->qopt.hw; 8783 mode = mqprio_qopt->mode; 8784 if (!hw) { 8785 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8786 vsi->ch_rss_size = 0; 8787 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8788 goto config_tcf; 8789 } 8790 8791 /* Generate queue region map for number of TCF requested */ 8792 for (i = 0; i < num_tcf; i++) 8793 ena_tc_qdisc |= BIT(i); 8794 8795 switch (mode) { 8796 case TC_MQPRIO_MODE_CHANNEL: 8797 8798 if (pf->hw.port_info->is_custom_tx_enabled) { 8799 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8800 return -EBUSY; 8801 } 8802 ice_tear_down_devlink_rate_tree(pf); 8803 8804 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8805 if (ret) { 8806 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8807 ret); 8808 return ret; 8809 } 8810 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8811 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8812 /* don't assume state of hw_tc_offload during driver load 8813 * and set the flag for TC flower filter if hw_tc_offload 8814 * already ON 8815 */ 8816 if (vsi->netdev->features & NETIF_F_HW_TC) 8817 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8818 break; 8819 default: 8820 return -EINVAL; 8821 } 8822 8823 config_tcf: 8824 8825 /* Requesting same TCF configuration as already enabled */ 8826 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8827 mode != TC_MQPRIO_MODE_CHANNEL) 8828 return 0; 8829 8830 /* Pause VSI queues */ 8831 ice_dis_vsi(vsi, true); 8832 8833 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8834 ice_remove_q_channels(vsi, true); 8835 8836 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8837 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8838 num_online_cpus()); 8839 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8840 num_online_cpus()); 8841 } else { 8842 /* logic to rebuild VSI, same like ethtool -L */ 8843 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8844 8845 for (i = 0; i < num_tcf; i++) { 8846 if (!(ena_tc_qdisc & BIT(i))) 8847 continue; 8848 8849 offset = vsi->mqprio_qopt.qopt.offset[i]; 8850 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8851 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8852 } 8853 vsi->req_txq = offset + qcount_tx; 8854 vsi->req_rxq = offset + qcount_rx; 8855 8856 /* store away original rss_size info, so that it gets reused 8857 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8858 * determine, what should be the rss_sizefor main VSI 8859 */ 8860 vsi->orig_rss_size = vsi->rss_size; 8861 } 8862 8863 /* save current values of Tx and Rx queues before calling VSI rebuild 8864 * for fallback option 8865 */ 8866 cur_txq = vsi->num_txq; 8867 cur_rxq = vsi->num_rxq; 8868 8869 /* proceed with rebuild main VSI using correct number of queues */ 8870 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8871 if (ret) { 8872 /* fallback to current number of queues */ 8873 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8874 vsi->req_txq = cur_txq; 8875 vsi->req_rxq = cur_rxq; 8876 clear_bit(ICE_RESET_FAILED, pf->state); 8877 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8878 dev_err(dev, "Rebuild of main VSI failed again\n"); 8879 return ret; 8880 } 8881 } 8882 8883 vsi->all_numtc = num_tcf; 8884 vsi->all_enatc = ena_tc_qdisc; 8885 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8886 if (ret) { 8887 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8888 vsi->vsi_num); 8889 goto exit; 8890 } 8891 8892 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8893 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8894 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8895 8896 /* set TC0 rate limit if specified */ 8897 if (max_tx_rate || min_tx_rate) { 8898 /* convert to Kbits/s */ 8899 if (max_tx_rate) 8900 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8901 if (min_tx_rate) 8902 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8903 8904 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8905 if (!ret) { 8906 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8907 max_tx_rate, min_tx_rate, vsi->vsi_num); 8908 } else { 8909 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8910 max_tx_rate, min_tx_rate, vsi->vsi_num); 8911 goto exit; 8912 } 8913 } 8914 ret = ice_create_q_channels(vsi); 8915 if (ret) { 8916 netdev_err(netdev, "failed configuring queue channels\n"); 8917 goto exit; 8918 } else { 8919 netdev_dbg(netdev, "successfully configured channels\n"); 8920 } 8921 } 8922 8923 if (vsi->ch_rss_size) 8924 ice_vsi_cfg_rss_lut_key(vsi); 8925 8926 exit: 8927 /* if error, reset the all_numtc and all_enatc */ 8928 if (ret) { 8929 vsi->all_numtc = 0; 8930 vsi->all_enatc = 0; 8931 } 8932 /* resume VSI */ 8933 ice_ena_vsi(vsi, true); 8934 8935 return ret; 8936 } 8937 8938 static LIST_HEAD(ice_block_cb_list); 8939 8940 static int 8941 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8942 void *type_data) 8943 { 8944 struct ice_netdev_priv *np = netdev_priv(netdev); 8945 struct ice_pf *pf = np->vsi->back; 8946 bool locked = false; 8947 int err; 8948 8949 switch (type) { 8950 case TC_SETUP_BLOCK: 8951 return flow_block_cb_setup_simple(type_data, 8952 &ice_block_cb_list, 8953 ice_setup_tc_block_cb, 8954 np, np, true); 8955 case TC_SETUP_QDISC_MQPRIO: 8956 if (ice_is_eswitch_mode_switchdev(pf)) { 8957 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8958 return -EOPNOTSUPP; 8959 } 8960 8961 if (pf->adev) { 8962 mutex_lock(&pf->adev_mutex); 8963 device_lock(&pf->adev->dev); 8964 locked = true; 8965 if (pf->adev->dev.driver) { 8966 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8967 err = -EBUSY; 8968 goto adev_unlock; 8969 } 8970 } 8971 8972 /* setup traffic classifier for receive side */ 8973 mutex_lock(&pf->tc_mutex); 8974 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8975 mutex_unlock(&pf->tc_mutex); 8976 8977 adev_unlock: 8978 if (locked) { 8979 device_unlock(&pf->adev->dev); 8980 mutex_unlock(&pf->adev_mutex); 8981 } 8982 return err; 8983 default: 8984 return -EOPNOTSUPP; 8985 } 8986 return -EOPNOTSUPP; 8987 } 8988 8989 static struct ice_indr_block_priv * 8990 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8991 struct net_device *netdev) 8992 { 8993 struct ice_indr_block_priv *cb_priv; 8994 8995 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8996 if (!cb_priv->netdev) 8997 return NULL; 8998 if (cb_priv->netdev == netdev) 8999 return cb_priv; 9000 } 9001 return NULL; 9002 } 9003 9004 static int 9005 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9006 void *indr_priv) 9007 { 9008 struct ice_indr_block_priv *priv = indr_priv; 9009 struct ice_netdev_priv *np = priv->np; 9010 9011 switch (type) { 9012 case TC_SETUP_CLSFLOWER: 9013 return ice_setup_tc_cls_flower(np, priv->netdev, 9014 (struct flow_cls_offload *) 9015 type_data); 9016 default: 9017 return -EOPNOTSUPP; 9018 } 9019 } 9020 9021 static int 9022 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9023 struct ice_netdev_priv *np, 9024 struct flow_block_offload *f, void *data, 9025 void (*cleanup)(struct flow_block_cb *block_cb)) 9026 { 9027 struct ice_indr_block_priv *indr_priv; 9028 struct flow_block_cb *block_cb; 9029 9030 if (!ice_is_tunnel_supported(netdev) && 9031 !(is_vlan_dev(netdev) && 9032 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9033 return -EOPNOTSUPP; 9034 9035 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9036 return -EOPNOTSUPP; 9037 9038 switch (f->command) { 9039 case FLOW_BLOCK_BIND: 9040 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9041 if (indr_priv) 9042 return -EEXIST; 9043 9044 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9045 if (!indr_priv) 9046 return -ENOMEM; 9047 9048 indr_priv->netdev = netdev; 9049 indr_priv->np = np; 9050 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9051 9052 block_cb = 9053 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9054 indr_priv, indr_priv, 9055 ice_rep_indr_tc_block_unbind, 9056 f, netdev, sch, data, np, 9057 cleanup); 9058 9059 if (IS_ERR(block_cb)) { 9060 list_del(&indr_priv->list); 9061 kfree(indr_priv); 9062 return PTR_ERR(block_cb); 9063 } 9064 flow_block_cb_add(block_cb, f); 9065 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9066 break; 9067 case FLOW_BLOCK_UNBIND: 9068 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9069 if (!indr_priv) 9070 return -ENOENT; 9071 9072 block_cb = flow_block_cb_lookup(f->block, 9073 ice_indr_setup_block_cb, 9074 indr_priv); 9075 if (!block_cb) 9076 return -ENOENT; 9077 9078 flow_indr_block_cb_remove(block_cb, f); 9079 9080 list_del(&block_cb->driver_list); 9081 break; 9082 default: 9083 return -EOPNOTSUPP; 9084 } 9085 return 0; 9086 } 9087 9088 static int 9089 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9090 void *cb_priv, enum tc_setup_type type, void *type_data, 9091 void *data, 9092 void (*cleanup)(struct flow_block_cb *block_cb)) 9093 { 9094 switch (type) { 9095 case TC_SETUP_BLOCK: 9096 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9097 data, cleanup); 9098 9099 default: 9100 return -EOPNOTSUPP; 9101 } 9102 } 9103 9104 /** 9105 * ice_open - Called when a network interface becomes active 9106 * @netdev: network interface device structure 9107 * 9108 * The open entry point is called when a network interface is made 9109 * active by the system (IFF_UP). At this point all resources needed 9110 * for transmit and receive operations are allocated, the interrupt 9111 * handler is registered with the OS, the netdev watchdog is enabled, 9112 * and the stack is notified that the interface is ready. 9113 * 9114 * Returns 0 on success, negative value on failure 9115 */ 9116 int ice_open(struct net_device *netdev) 9117 { 9118 struct ice_netdev_priv *np = netdev_priv(netdev); 9119 struct ice_pf *pf = np->vsi->back; 9120 9121 if (ice_is_reset_in_progress(pf->state)) { 9122 netdev_err(netdev, "can't open net device while reset is in progress"); 9123 return -EBUSY; 9124 } 9125 9126 return ice_open_internal(netdev); 9127 } 9128 9129 /** 9130 * ice_open_internal - Called when a network interface becomes active 9131 * @netdev: network interface device structure 9132 * 9133 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9134 * handling routine 9135 * 9136 * Returns 0 on success, negative value on failure 9137 */ 9138 int ice_open_internal(struct net_device *netdev) 9139 { 9140 struct ice_netdev_priv *np = netdev_priv(netdev); 9141 struct ice_vsi *vsi = np->vsi; 9142 struct ice_pf *pf = vsi->back; 9143 struct ice_port_info *pi; 9144 int err; 9145 9146 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9147 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9148 return -EIO; 9149 } 9150 9151 netif_carrier_off(netdev); 9152 9153 pi = vsi->port_info; 9154 err = ice_update_link_info(pi); 9155 if (err) { 9156 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9157 return err; 9158 } 9159 9160 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9161 9162 /* Set PHY if there is media, otherwise, turn off PHY */ 9163 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9164 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9165 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9166 err = ice_init_phy_user_cfg(pi); 9167 if (err) { 9168 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9169 err); 9170 return err; 9171 } 9172 } 9173 9174 err = ice_configure_phy(vsi); 9175 if (err) { 9176 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9177 err); 9178 return err; 9179 } 9180 } else { 9181 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9182 ice_set_link(vsi, false); 9183 } 9184 9185 err = ice_vsi_open(vsi); 9186 if (err) 9187 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9188 vsi->vsi_num, vsi->vsw->sw_id); 9189 9190 /* Update existing tunnels information */ 9191 udp_tunnel_get_rx_info(netdev); 9192 9193 return err; 9194 } 9195 9196 /** 9197 * ice_stop - Disables a network interface 9198 * @netdev: network interface device structure 9199 * 9200 * The stop entry point is called when an interface is de-activated by the OS, 9201 * and the netdevice enters the DOWN state. The hardware is still under the 9202 * driver's control, but the netdev interface is disabled. 9203 * 9204 * Returns success only - not allowed to fail 9205 */ 9206 int ice_stop(struct net_device *netdev) 9207 { 9208 struct ice_netdev_priv *np = netdev_priv(netdev); 9209 struct ice_vsi *vsi = np->vsi; 9210 struct ice_pf *pf = vsi->back; 9211 9212 if (ice_is_reset_in_progress(pf->state)) { 9213 netdev_err(netdev, "can't stop net device while reset is in progress"); 9214 return -EBUSY; 9215 } 9216 9217 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9218 int link_err = ice_force_phys_link_state(vsi, false); 9219 9220 if (link_err) { 9221 if (link_err == -ENOMEDIUM) 9222 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9223 vsi->vsi_num); 9224 else 9225 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9226 vsi->vsi_num, link_err); 9227 9228 ice_vsi_close(vsi); 9229 return -EIO; 9230 } 9231 } 9232 9233 ice_vsi_close(vsi); 9234 9235 return 0; 9236 } 9237 9238 /** 9239 * ice_features_check - Validate encapsulated packet conforms to limits 9240 * @skb: skb buffer 9241 * @netdev: This port's netdev 9242 * @features: Offload features that the stack believes apply 9243 */ 9244 static netdev_features_t 9245 ice_features_check(struct sk_buff *skb, 9246 struct net_device __always_unused *netdev, 9247 netdev_features_t features) 9248 { 9249 bool gso = skb_is_gso(skb); 9250 size_t len; 9251 9252 /* No point in doing any of this if neither checksum nor GSO are 9253 * being requested for this frame. We can rule out both by just 9254 * checking for CHECKSUM_PARTIAL 9255 */ 9256 if (skb->ip_summed != CHECKSUM_PARTIAL) 9257 return features; 9258 9259 /* We cannot support GSO if the MSS is going to be less than 9260 * 64 bytes. If it is then we need to drop support for GSO. 9261 */ 9262 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9263 features &= ~NETIF_F_GSO_MASK; 9264 9265 len = skb_network_offset(skb); 9266 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9267 goto out_rm_features; 9268 9269 len = skb_network_header_len(skb); 9270 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9271 goto out_rm_features; 9272 9273 if (skb->encapsulation) { 9274 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9275 * the case of IPIP frames, the transport header pointer is 9276 * after the inner header! So check to make sure that this 9277 * is a GRE or UDP_TUNNEL frame before doing that math. 9278 */ 9279 if (gso && (skb_shinfo(skb)->gso_type & 9280 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9281 len = skb_inner_network_header(skb) - 9282 skb_transport_header(skb); 9283 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9284 goto out_rm_features; 9285 } 9286 9287 len = skb_inner_network_header_len(skb); 9288 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9289 goto out_rm_features; 9290 } 9291 9292 return features; 9293 out_rm_features: 9294 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9295 } 9296 9297 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9298 .ndo_open = ice_open, 9299 .ndo_stop = ice_stop, 9300 .ndo_start_xmit = ice_start_xmit, 9301 .ndo_set_mac_address = ice_set_mac_address, 9302 .ndo_validate_addr = eth_validate_addr, 9303 .ndo_change_mtu = ice_change_mtu, 9304 .ndo_get_stats64 = ice_get_stats64, 9305 .ndo_tx_timeout = ice_tx_timeout, 9306 .ndo_bpf = ice_xdp_safe_mode, 9307 }; 9308 9309 static const struct net_device_ops ice_netdev_ops = { 9310 .ndo_open = ice_open, 9311 .ndo_stop = ice_stop, 9312 .ndo_start_xmit = ice_start_xmit, 9313 .ndo_select_queue = ice_select_queue, 9314 .ndo_features_check = ice_features_check, 9315 .ndo_fix_features = ice_fix_features, 9316 .ndo_set_rx_mode = ice_set_rx_mode, 9317 .ndo_set_mac_address = ice_set_mac_address, 9318 .ndo_validate_addr = eth_validate_addr, 9319 .ndo_change_mtu = ice_change_mtu, 9320 .ndo_get_stats64 = ice_get_stats64, 9321 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9322 .ndo_eth_ioctl = ice_eth_ioctl, 9323 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9324 .ndo_set_vf_mac = ice_set_vf_mac, 9325 .ndo_get_vf_config = ice_get_vf_cfg, 9326 .ndo_set_vf_trust = ice_set_vf_trust, 9327 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9328 .ndo_set_vf_link_state = ice_set_vf_link_state, 9329 .ndo_get_vf_stats = ice_get_vf_stats, 9330 .ndo_set_vf_rate = ice_set_vf_bw, 9331 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9332 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9333 .ndo_setup_tc = ice_setup_tc, 9334 .ndo_set_features = ice_set_features, 9335 .ndo_bridge_getlink = ice_bridge_getlink, 9336 .ndo_bridge_setlink = ice_bridge_setlink, 9337 .ndo_fdb_add = ice_fdb_add, 9338 .ndo_fdb_del = ice_fdb_del, 9339 #ifdef CONFIG_RFS_ACCEL 9340 .ndo_rx_flow_steer = ice_rx_flow_steer, 9341 #endif 9342 .ndo_tx_timeout = ice_tx_timeout, 9343 .ndo_bpf = ice_xdp, 9344 .ndo_xdp_xmit = ice_xdp_xmit, 9345 .ndo_xsk_wakeup = ice_xsk_wakeup, 9346 }; 9347