1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 #define ICE_MBX_OVERFLOW_WATERMARK 64 1397 1398 /** 1399 * __ice_clean_ctrlq - helper function to clean controlq rings 1400 * @pf: ptr to struct ice_pf 1401 * @q_type: specific Control queue type 1402 */ 1403 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1404 { 1405 struct device *dev = ice_pf_to_dev(pf); 1406 struct ice_rq_event_info event; 1407 struct ice_hw *hw = &pf->hw; 1408 struct ice_ctl_q_info *cq; 1409 u16 pending, i = 0; 1410 const char *qtype; 1411 u32 oldval, val; 1412 1413 /* Do not clean control queue if/when PF reset fails */ 1414 if (test_bit(ICE_RESET_FAILED, pf->state)) 1415 return 0; 1416 1417 switch (q_type) { 1418 case ICE_CTL_Q_ADMIN: 1419 cq = &hw->adminq; 1420 qtype = "Admin"; 1421 break; 1422 case ICE_CTL_Q_SB: 1423 cq = &hw->sbq; 1424 qtype = "Sideband"; 1425 break; 1426 case ICE_CTL_Q_MAILBOX: 1427 cq = &hw->mailboxq; 1428 qtype = "Mailbox"; 1429 /* we are going to try to detect a malicious VF, so set the 1430 * state to begin detection 1431 */ 1432 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1433 break; 1434 default: 1435 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1436 return 0; 1437 } 1438 1439 /* check for error indications - PF_xx_AxQLEN register layout for 1440 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1441 */ 1442 val = rd32(hw, cq->rq.len); 1443 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1444 PF_FW_ARQLEN_ARQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ARQLEN_ARQVFE_M) 1447 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1450 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1454 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->rq.len, val); 1460 } 1461 1462 val = rd32(hw, cq->sq.len); 1463 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1464 PF_FW_ATQLEN_ATQCRIT_M)) { 1465 oldval = val; 1466 if (val & PF_FW_ATQLEN_ATQVFE_M) 1467 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1468 qtype); 1469 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1470 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1471 qtype); 1472 } 1473 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1474 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1475 qtype); 1476 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M); 1478 if (oldval != val) 1479 wr32(hw, cq->sq.len, val); 1480 } 1481 1482 event.buf_len = cq->rq_buf_size; 1483 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1484 if (!event.msg_buf) 1485 return 0; 1486 1487 do { 1488 struct ice_mbx_data data = {}; 1489 u16 opcode; 1490 int ret; 1491 1492 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1493 if (ret == -EALREADY) 1494 break; 1495 if (ret) { 1496 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1497 ret); 1498 break; 1499 } 1500 1501 opcode = le16_to_cpu(event.desc.opcode); 1502 1503 /* Notify any thread that might be waiting for this event */ 1504 ice_aq_check_events(pf, opcode, &event); 1505 1506 switch (opcode) { 1507 case ice_aqc_opc_get_link_status: 1508 if (ice_handle_link_event(pf, &event)) 1509 dev_err(dev, "Could not handle link event\n"); 1510 break; 1511 case ice_aqc_opc_event_lan_overflow: 1512 ice_vf_lan_overflow_event(pf, &event); 1513 break; 1514 case ice_mbx_opc_send_msg_to_pf: 1515 data.num_msg_proc = i; 1516 data.num_pending_arq = pending; 1517 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1518 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1519 1520 ice_vc_process_vf_msg(pf, &event, &data); 1521 break; 1522 case ice_aqc_opc_fw_logging: 1523 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1524 break; 1525 case ice_aqc_opc_lldp_set_mib_change: 1526 ice_dcb_process_lldp_set_mib_change(pf, &event); 1527 break; 1528 default: 1529 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1530 qtype, opcode); 1531 break; 1532 } 1533 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1534 1535 kfree(event.msg_buf); 1536 1537 return pending && (i == ICE_DFLT_IRQ_WORK); 1538 } 1539 1540 /** 1541 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1542 * @hw: pointer to hardware info 1543 * @cq: control queue information 1544 * 1545 * returns true if there are pending messages in a queue, false if there aren't 1546 */ 1547 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1548 { 1549 u16 ntu; 1550 1551 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1552 return cq->rq.next_to_clean != ntu; 1553 } 1554 1555 /** 1556 * ice_clean_adminq_subtask - clean the AdminQ rings 1557 * @pf: board private structure 1558 */ 1559 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1560 { 1561 struct ice_hw *hw = &pf->hw; 1562 1563 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1564 return; 1565 1566 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1567 return; 1568 1569 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1570 1571 /* There might be a situation where new messages arrive to a control 1572 * queue between processing the last message and clearing the 1573 * EVENT_PENDING bit. So before exiting, check queue head again (using 1574 * ice_ctrlq_pending) and process new messages if any. 1575 */ 1576 if (ice_ctrlq_pending(hw, &hw->adminq)) 1577 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1578 1579 ice_flush(hw); 1580 } 1581 1582 /** 1583 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1584 * @pf: board private structure 1585 */ 1586 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1587 { 1588 struct ice_hw *hw = &pf->hw; 1589 1590 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1591 return; 1592 1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1594 return; 1595 1596 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1597 1598 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1599 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1600 1601 ice_flush(hw); 1602 } 1603 1604 /** 1605 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 /* Nothing to do here if sideband queue is not supported */ 1613 if (!ice_is_sbq_supported(hw)) { 1614 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1615 return; 1616 } 1617 1618 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1619 return; 1620 1621 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1622 return; 1623 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 1626 if (ice_ctrlq_pending(hw, &hw->sbq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_service_task_schedule - schedule the service task to wake up 1634 * @pf: board private structure 1635 * 1636 * If not already scheduled, this puts the task into the work queue. 1637 */ 1638 void ice_service_task_schedule(struct ice_pf *pf) 1639 { 1640 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1641 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1642 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1643 queue_work(ice_wq, &pf->serv_task); 1644 } 1645 1646 /** 1647 * ice_service_task_complete - finish up the service task 1648 * @pf: board private structure 1649 */ 1650 static void ice_service_task_complete(struct ice_pf *pf) 1651 { 1652 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1653 1654 /* force memory (pf->state) to sync before next service task */ 1655 smp_mb__before_atomic(); 1656 clear_bit(ICE_SERVICE_SCHED, pf->state); 1657 } 1658 1659 /** 1660 * ice_service_task_stop - stop service task and cancel works 1661 * @pf: board private structure 1662 * 1663 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1664 * 1 otherwise. 1665 */ 1666 static int ice_service_task_stop(struct ice_pf *pf) 1667 { 1668 int ret; 1669 1670 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1671 1672 if (pf->serv_tmr.function) 1673 del_timer_sync(&pf->serv_tmr); 1674 if (pf->serv_task.func) 1675 cancel_work_sync(&pf->serv_task); 1676 1677 clear_bit(ICE_SERVICE_SCHED, pf->state); 1678 return ret; 1679 } 1680 1681 /** 1682 * ice_service_task_restart - restart service task and schedule works 1683 * @pf: board private structure 1684 * 1685 * This function is needed for suspend and resume works (e.g WoL scenario) 1686 */ 1687 static void ice_service_task_restart(struct ice_pf *pf) 1688 { 1689 clear_bit(ICE_SERVICE_DIS, pf->state); 1690 ice_service_task_schedule(pf); 1691 } 1692 1693 /** 1694 * ice_service_timer - timer callback to schedule service task 1695 * @t: pointer to timer_list 1696 */ 1697 static void ice_service_timer(struct timer_list *t) 1698 { 1699 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1700 1701 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_handle_mdd_event - handle malicious driver detect event 1707 * @pf: pointer to the PF structure 1708 * 1709 * Called from service task. OICR interrupt handler indicates MDD event. 1710 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1711 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1712 * disable the queue, the PF can be configured to reset the VF using ethtool 1713 * private flag mdd-auto-reset-vf. 1714 */ 1715 static void ice_handle_mdd_event(struct ice_pf *pf) 1716 { 1717 struct device *dev = ice_pf_to_dev(pf); 1718 struct ice_hw *hw = &pf->hw; 1719 struct ice_vf *vf; 1720 unsigned int bkt; 1721 u32 reg; 1722 1723 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1724 /* Since the VF MDD event logging is rate limited, check if 1725 * there are pending MDD events. 1726 */ 1727 ice_print_vfs_mdd_events(pf); 1728 return; 1729 } 1730 1731 /* find what triggered an MDD event */ 1732 reg = rd32(hw, GL_MDET_TX_PQM); 1733 if (reg & GL_MDET_TX_PQM_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1735 GL_MDET_TX_PQM_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1737 GL_MDET_TX_PQM_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1739 GL_MDET_TX_PQM_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1741 GL_MDET_TX_PQM_QNUM_S); 1742 1743 if (netif_msg_tx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1747 } 1748 1749 reg = rd32(hw, GL_MDET_TX_TCLAN); 1750 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1751 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1752 GL_MDET_TX_TCLAN_PF_NUM_S; 1753 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_VF_NUM_S; 1755 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1756 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1757 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1758 GL_MDET_TX_TCLAN_QNUM_S); 1759 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1762 event, queue, pf_num, vf_num); 1763 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1764 } 1765 1766 reg = rd32(hw, GL_MDET_RX); 1767 if (reg & GL_MDET_RX_VALID_M) { 1768 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1769 GL_MDET_RX_PF_NUM_S; 1770 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1771 GL_MDET_RX_VF_NUM_S; 1772 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1773 GL_MDET_RX_MAL_TYPE_S; 1774 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1775 GL_MDET_RX_QNUM_S); 1776 1777 if (netif_msg_rx_err(pf)) 1778 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1779 event, queue, pf_num, vf_num); 1780 wr32(hw, GL_MDET_RX, 0xffffffff); 1781 } 1782 1783 /* check to see if this PF caused an MDD event */ 1784 reg = rd32(hw, PF_MDET_TX_PQM); 1785 if (reg & PF_MDET_TX_PQM_VALID_M) { 1786 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_TX_TCLAN); 1792 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1793 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1796 } 1797 1798 reg = rd32(hw, PF_MDET_RX); 1799 if (reg & PF_MDET_RX_VALID_M) { 1800 wr32(hw, PF_MDET_RX, 0xFFFF); 1801 if (netif_msg_rx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1803 } 1804 1805 /* Check to see if one of the VFs caused an MDD event, and then 1806 * increment counters and set print pending 1807 */ 1808 mutex_lock(&pf->vfs.table_lock); 1809 ice_for_each_vf(pf, bkt, vf) { 1810 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1811 if (reg & VP_MDET_TX_PQM_VALID_M) { 1812 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1813 vf->mdd_tx_events.count++; 1814 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1817 vf->vf_id); 1818 } 1819 1820 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1821 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1822 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1841 if (reg & VP_MDET_RX_VALID_M) { 1842 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1843 vf->mdd_rx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1847 vf->vf_id); 1848 1849 /* Since the queue is disabled on VF Rx MDD events, the 1850 * PF can be configured to reset the VF through ethtool 1851 * private flag mdd-auto-reset-vf. 1852 */ 1853 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1854 /* VF MDD event counters will be cleared by 1855 * reset, so print the event prior to reset. 1856 */ 1857 ice_print_vf_rx_mdd_event(vf); 1858 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1859 } 1860 } 1861 } 1862 mutex_unlock(&pf->vfs.table_lock); 1863 1864 ice_print_vfs_mdd_events(pf); 1865 } 1866 1867 /** 1868 * ice_force_phys_link_state - Force the physical link state 1869 * @vsi: VSI to force the physical link state to up/down 1870 * @link_up: true/false indicates to set the physical link to up/down 1871 * 1872 * Force the physical link state by getting the current PHY capabilities from 1873 * hardware and setting the PHY config based on the determined capabilities. If 1874 * link changes a link event will be triggered because both the Enable Automatic 1875 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1876 * 1877 * Returns 0 on success, negative on failure 1878 */ 1879 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1880 { 1881 struct ice_aqc_get_phy_caps_data *pcaps; 1882 struct ice_aqc_set_phy_cfg_data *cfg; 1883 struct ice_port_info *pi; 1884 struct device *dev; 1885 int retcode; 1886 1887 if (!vsi || !vsi->port_info || !vsi->back) 1888 return -EINVAL; 1889 if (vsi->type != ICE_VSI_PF) 1890 return 0; 1891 1892 dev = ice_pf_to_dev(vsi->back); 1893 1894 pi = vsi->port_info; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1901 NULL); 1902 if (retcode) { 1903 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1904 vsi->vsi_num, retcode); 1905 retcode = -EIO; 1906 goto out; 1907 } 1908 1909 /* No change in link */ 1910 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1911 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1912 goto out; 1913 1914 /* Use the current user PHY configuration. The current user PHY 1915 * configuration is initialized during probe from PHY capabilities 1916 * software mode, and updated on set PHY configuration. 1917 */ 1918 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1919 if (!cfg) { 1920 retcode = -ENOMEM; 1921 goto out; 1922 } 1923 1924 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1925 if (link_up) 1926 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1927 else 1928 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1929 1930 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1931 if (retcode) { 1932 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1933 vsi->vsi_num, retcode); 1934 retcode = -EIO; 1935 } 1936 1937 kfree(cfg); 1938 out: 1939 kfree(pcaps); 1940 return retcode; 1941 } 1942 1943 /** 1944 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1945 * @pi: port info structure 1946 * 1947 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1948 */ 1949 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_pf *pf = pi->hw->back; 1953 int err; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1960 pcaps, NULL); 1961 1962 if (err) { 1963 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1964 goto out; 1965 } 1966 1967 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1968 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1969 1970 out: 1971 kfree(pcaps); 1972 return err; 1973 } 1974 1975 /** 1976 * ice_init_link_dflt_override - Initialize link default override 1977 * @pi: port info structure 1978 * 1979 * Initialize link default override and PHY total port shutdown during probe 1980 */ 1981 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1982 { 1983 struct ice_link_default_override_tlv *ldo; 1984 struct ice_pf *pf = pi->hw->back; 1985 1986 ldo = &pf->link_dflt_override; 1987 if (ice_get_link_default_override(ldo, pi)) 1988 return; 1989 1990 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1991 return; 1992 1993 /* Enable Total Port Shutdown (override/replace link-down-on-close 1994 * ethtool private flag) for ports with Port Disable bit set. 1995 */ 1996 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1997 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1998 } 1999 2000 /** 2001 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2002 * @pi: port info structure 2003 * 2004 * If default override is enabled, initialize the user PHY cfg speed and FEC 2005 * settings using the default override mask from the NVM. 2006 * 2007 * The PHY should only be configured with the default override settings the 2008 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2009 * is used to indicate that the user PHY cfg default override is initialized 2010 * and the PHY has not been configured with the default override settings. The 2011 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2012 * configured. 2013 * 2014 * This function should be called only if the FW doesn't support default 2015 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2016 */ 2017 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2018 { 2019 struct ice_link_default_override_tlv *ldo; 2020 struct ice_aqc_set_phy_cfg_data *cfg; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 2024 ldo = &pf->link_dflt_override; 2025 2026 /* If link default override is enabled, use to mask NVM PHY capabilities 2027 * for speed and FEC default configuration. 2028 */ 2029 cfg = &phy->curr_user_phy_cfg; 2030 2031 if (ldo->phy_type_low || ldo->phy_type_high) { 2032 cfg->phy_type_low = pf->nvm_phy_type_lo & 2033 cpu_to_le64(ldo->phy_type_low); 2034 cfg->phy_type_high = pf->nvm_phy_type_hi & 2035 cpu_to_le64(ldo->phy_type_high); 2036 } 2037 cfg->link_fec_opt = ldo->fec_options; 2038 phy->curr_user_fec_req = ICE_FEC_AUTO; 2039 2040 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2041 } 2042 2043 /** 2044 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2045 * @pi: port info structure 2046 * 2047 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2048 * mode to default. The PHY defaults are from get PHY capabilities topology 2049 * with media so call when media is first available. An error is returned if 2050 * called when media is not available. The PHY initialization completed state is 2051 * set here. 2052 * 2053 * These configurations are used when setting PHY 2054 * configuration. The user PHY configuration is updated on set PHY 2055 * configuration. Returns 0 on success, negative on failure 2056 */ 2057 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2058 { 2059 struct ice_aqc_get_phy_caps_data *pcaps; 2060 struct ice_phy_info *phy = &pi->phy; 2061 struct ice_pf *pf = pi->hw->back; 2062 int err; 2063 2064 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2065 return -EIO; 2066 2067 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2068 if (!pcaps) 2069 return -ENOMEM; 2070 2071 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2072 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2073 pcaps, NULL); 2074 else 2075 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2076 pcaps, NULL); 2077 if (err) { 2078 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2079 goto err_out; 2080 } 2081 2082 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2083 2084 /* check if lenient mode is supported and enabled */ 2085 if (ice_fw_supports_link_override(pi->hw) && 2086 !(pcaps->module_compliance_enforcement & 2087 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2088 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2089 2090 /* if the FW supports default PHY configuration mode, then the driver 2091 * does not have to apply link override settings. If not, 2092 * initialize user PHY configuration with link override values 2093 */ 2094 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2095 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2096 ice_init_phy_cfg_dflt_override(pi); 2097 goto out; 2098 } 2099 } 2100 2101 /* if link default override is not enabled, set user flow control and 2102 * FEC settings based on what get_phy_caps returned 2103 */ 2104 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2105 pcaps->link_fec_options); 2106 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2107 2108 out: 2109 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2110 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2111 err_out: 2112 kfree(pcaps); 2113 return err; 2114 } 2115 2116 /** 2117 * ice_configure_phy - configure PHY 2118 * @vsi: VSI of PHY 2119 * 2120 * Set the PHY configuration. If the current PHY configuration is the same as 2121 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2122 * configure the based get PHY capabilities for topology with media. 2123 */ 2124 static int ice_configure_phy(struct ice_vsi *vsi) 2125 { 2126 struct device *dev = ice_pf_to_dev(vsi->back); 2127 struct ice_port_info *pi = vsi->port_info; 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_aqc_set_phy_cfg_data *cfg; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = vsi->back; 2132 int err; 2133 2134 /* Ensure we have media as we cannot configure a medialess port */ 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EPERM; 2137 2138 ice_print_topo_conflict(vsi); 2139 2140 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2141 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2142 return -EPERM; 2143 2144 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2145 return ice_force_phys_link_state(vsi, true); 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 /* Get current PHY config */ 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2153 NULL); 2154 if (err) { 2155 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2156 vsi->vsi_num, err); 2157 goto done; 2158 } 2159 2160 /* If PHY enable link is configured and configuration has not changed, 2161 * there's nothing to do 2162 */ 2163 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2164 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2165 goto done; 2166 2167 /* Use PHY topology as baseline for configuration */ 2168 memset(pcaps, 0, sizeof(*pcaps)); 2169 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2170 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2171 pcaps, NULL); 2172 else 2173 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2174 pcaps, NULL); 2175 if (err) { 2176 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2177 vsi->vsi_num, err); 2178 goto done; 2179 } 2180 2181 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2182 if (!cfg) { 2183 err = -ENOMEM; 2184 goto done; 2185 } 2186 2187 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2188 2189 /* Speed - If default override pending, use curr_user_phy_cfg set in 2190 * ice_init_phy_user_cfg_ldo. 2191 */ 2192 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2193 vsi->back->state)) { 2194 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2195 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2196 } else { 2197 u64 phy_low = 0, phy_high = 0; 2198 2199 ice_update_phy_type(&phy_low, &phy_high, 2200 pi->phy.curr_user_speed_req); 2201 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2202 cfg->phy_type_high = pcaps->phy_type_high & 2203 cpu_to_le64(phy_high); 2204 } 2205 2206 /* Can't provide what was requested; use PHY capabilities */ 2207 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2208 cfg->phy_type_low = pcaps->phy_type_low; 2209 cfg->phy_type_high = pcaps->phy_type_high; 2210 } 2211 2212 /* FEC */ 2213 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2214 2215 /* Can't provide what was requested; use PHY capabilities */ 2216 if (cfg->link_fec_opt != 2217 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2218 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2219 cfg->link_fec_opt = pcaps->link_fec_options; 2220 } 2221 2222 /* Flow Control - always supported; no need to check against 2223 * capabilities 2224 */ 2225 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2226 2227 /* Enable link and link update */ 2228 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2229 2230 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2231 if (err) 2232 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 2235 kfree(cfg); 2236 done: 2237 kfree(pcaps); 2238 return err; 2239 } 2240 2241 /** 2242 * ice_check_media_subtask - Check for media 2243 * @pf: pointer to PF struct 2244 * 2245 * If media is available, then initialize PHY user configuration if it is not 2246 * been, and configure the PHY if the interface is up. 2247 */ 2248 static void ice_check_media_subtask(struct ice_pf *pf) 2249 { 2250 struct ice_port_info *pi; 2251 struct ice_vsi *vsi; 2252 int err; 2253 2254 /* No need to check for media if it's already present */ 2255 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2256 return; 2257 2258 vsi = ice_get_main_vsi(pf); 2259 if (!vsi) 2260 return; 2261 2262 /* Refresh link info and check if media is present */ 2263 pi = vsi->port_info; 2264 err = ice_update_link_info(pi); 2265 if (err) 2266 return; 2267 2268 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2269 2270 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2271 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2272 ice_init_phy_user_cfg(pi); 2273 2274 /* PHY settings are reset on media insertion, reconfigure 2275 * PHY to preserve settings. 2276 */ 2277 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2278 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2279 return; 2280 2281 err = ice_configure_phy(vsi); 2282 if (!err) 2283 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2284 2285 /* A Link Status Event will be generated; the event handler 2286 * will complete bringing the interface up 2287 */ 2288 } 2289 } 2290 2291 /** 2292 * ice_service_task - manage and run subtasks 2293 * @work: pointer to work_struct contained by the PF struct 2294 */ 2295 static void ice_service_task(struct work_struct *work) 2296 { 2297 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2298 unsigned long start_time = jiffies; 2299 2300 /* subtasks */ 2301 2302 /* process reset requests first */ 2303 ice_reset_subtask(pf); 2304 2305 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2306 if (ice_is_reset_in_progress(pf->state) || 2307 test_bit(ICE_SUSPENDED, pf->state) || 2308 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2309 ice_service_task_complete(pf); 2310 return; 2311 } 2312 2313 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2314 struct iidc_event *event; 2315 2316 event = kzalloc(sizeof(*event), GFP_KERNEL); 2317 if (event) { 2318 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2319 /* report the entire OICR value to AUX driver */ 2320 swap(event->reg, pf->oicr_err_reg); 2321 ice_send_event_to_aux(pf, event); 2322 kfree(event); 2323 } 2324 } 2325 2326 /* unplug aux dev per request, if an unplug request came in 2327 * while processing a plug request, this will handle it 2328 */ 2329 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2330 ice_unplug_aux_dev(pf); 2331 2332 /* Plug aux device per request */ 2333 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2334 ice_plug_aux_dev(pf); 2335 2336 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2337 struct iidc_event *event; 2338 2339 event = kzalloc(sizeof(*event), GFP_KERNEL); 2340 if (event) { 2341 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2342 ice_send_event_to_aux(pf, event); 2343 kfree(event); 2344 } 2345 } 2346 2347 ice_clean_adminq_subtask(pf); 2348 ice_check_media_subtask(pf); 2349 ice_check_for_hang_subtask(pf); 2350 ice_sync_fltr_subtask(pf); 2351 ice_handle_mdd_event(pf); 2352 ice_watchdog_subtask(pf); 2353 2354 if (ice_is_safe_mode(pf)) { 2355 ice_service_task_complete(pf); 2356 return; 2357 } 2358 2359 ice_process_vflr_event(pf); 2360 ice_clean_mailboxq_subtask(pf); 2361 ice_clean_sbq_subtask(pf); 2362 ice_sync_arfs_fltrs(pf); 2363 ice_flush_fdir_ctx(pf); 2364 2365 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2366 ice_service_task_complete(pf); 2367 2368 /* If the tasks have taken longer than one service timer period 2369 * or there is more work to be done, reset the service timer to 2370 * schedule the service task now. 2371 */ 2372 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2373 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2375 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2377 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2379 mod_timer(&pf->serv_tmr, jiffies); 2380 } 2381 2382 /** 2383 * ice_set_ctrlq_len - helper function to set controlq length 2384 * @hw: pointer to the HW instance 2385 */ 2386 static void ice_set_ctrlq_len(struct ice_hw *hw) 2387 { 2388 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2389 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2390 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2391 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2392 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2393 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2394 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2395 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2396 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2397 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2398 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2399 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2400 } 2401 2402 /** 2403 * ice_schedule_reset - schedule a reset 2404 * @pf: board private structure 2405 * @reset: reset being requested 2406 */ 2407 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2408 { 2409 struct device *dev = ice_pf_to_dev(pf); 2410 2411 /* bail out if earlier reset has failed */ 2412 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2413 dev_dbg(dev, "earlier reset has failed\n"); 2414 return -EIO; 2415 } 2416 /* bail if reset/recovery already in progress */ 2417 if (ice_is_reset_in_progress(pf->state)) { 2418 dev_dbg(dev, "Reset already in progress\n"); 2419 return -EBUSY; 2420 } 2421 2422 switch (reset) { 2423 case ICE_RESET_PFR: 2424 set_bit(ICE_PFR_REQ, pf->state); 2425 break; 2426 case ICE_RESET_CORER: 2427 set_bit(ICE_CORER_REQ, pf->state); 2428 break; 2429 case ICE_RESET_GLOBR: 2430 set_bit(ICE_GLOBR_REQ, pf->state); 2431 break; 2432 default: 2433 return -EINVAL; 2434 } 2435 2436 ice_service_task_schedule(pf); 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_irq_affinity_notify - Callback for affinity changes 2442 * @notify: context as to what irq was changed 2443 * @mask: the new affinity mask 2444 * 2445 * This is a callback function used by the irq_set_affinity_notifier function 2446 * so that we may register to receive changes to the irq affinity masks. 2447 */ 2448 static void 2449 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2450 const cpumask_t *mask) 2451 { 2452 struct ice_q_vector *q_vector = 2453 container_of(notify, struct ice_q_vector, affinity_notify); 2454 2455 cpumask_copy(&q_vector->affinity_mask, mask); 2456 } 2457 2458 /** 2459 * ice_irq_affinity_release - Callback for affinity notifier release 2460 * @ref: internal core kernel usage 2461 * 2462 * This is a callback function used by the irq_set_affinity_notifier function 2463 * to inform the current notification subscriber that they will no longer 2464 * receive notifications. 2465 */ 2466 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2467 2468 /** 2469 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2470 * @vsi: the VSI being configured 2471 */ 2472 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2473 { 2474 struct ice_hw *hw = &vsi->back->hw; 2475 int i; 2476 2477 ice_for_each_q_vector(vsi, i) 2478 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2479 2480 ice_flush(hw); 2481 return 0; 2482 } 2483 2484 /** 2485 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2486 * @vsi: the VSI being configured 2487 * @basename: name for the vector 2488 */ 2489 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2490 { 2491 int q_vectors = vsi->num_q_vectors; 2492 struct ice_pf *pf = vsi->back; 2493 int base = vsi->base_vector; 2494 struct device *dev; 2495 int rx_int_idx = 0; 2496 int tx_int_idx = 0; 2497 int vector, err; 2498 int irq_num; 2499 2500 dev = ice_pf_to_dev(pf); 2501 for (vector = 0; vector < q_vectors; vector++) { 2502 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2503 2504 irq_num = pf->msix_entries[base + vector].vector; 2505 2506 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2508 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2509 tx_int_idx++; 2510 } else if (q_vector->rx.rx_ring) { 2511 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2512 "%s-%s-%d", basename, "rx", rx_int_idx++); 2513 } else if (q_vector->tx.tx_ring) { 2514 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2515 "%s-%s-%d", basename, "tx", tx_int_idx++); 2516 } else { 2517 /* skip this unused q_vector */ 2518 continue; 2519 } 2520 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2522 IRQF_SHARED, q_vector->name, 2523 q_vector); 2524 else 2525 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2526 0, q_vector->name, q_vector); 2527 if (err) { 2528 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2529 err); 2530 goto free_q_irqs; 2531 } 2532 2533 /* register for affinity change notifications */ 2534 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2535 struct irq_affinity_notify *affinity_notify; 2536 2537 affinity_notify = &q_vector->affinity_notify; 2538 affinity_notify->notify = ice_irq_affinity_notify; 2539 affinity_notify->release = ice_irq_affinity_release; 2540 irq_set_affinity_notifier(irq_num, affinity_notify); 2541 } 2542 2543 /* assign the mask for this irq */ 2544 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2545 } 2546 2547 err = ice_set_cpu_rx_rmap(vsi); 2548 if (err) { 2549 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2550 vsi->vsi_num, ERR_PTR(err)); 2551 goto free_q_irqs; 2552 } 2553 2554 vsi->irqs_ready = true; 2555 return 0; 2556 2557 free_q_irqs: 2558 while (vector) { 2559 vector--; 2560 irq_num = pf->msix_entries[base + vector].vector; 2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2562 irq_set_affinity_notifier(irq_num, NULL); 2563 irq_set_affinity_hint(irq_num, NULL); 2564 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2565 } 2566 return err; 2567 } 2568 2569 /** 2570 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2571 * @vsi: VSI to setup Tx rings used by XDP 2572 * 2573 * Return 0 on success and negative value on error 2574 */ 2575 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2576 { 2577 struct device *dev = ice_pf_to_dev(vsi->back); 2578 struct ice_tx_desc *tx_desc; 2579 int i, j; 2580 2581 ice_for_each_xdp_txq(vsi, i) { 2582 u16 xdp_q_idx = vsi->alloc_txq + i; 2583 struct ice_ring_stats *ring_stats; 2584 struct ice_tx_ring *xdp_ring; 2585 2586 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2587 if (!xdp_ring) 2588 goto free_xdp_rings; 2589 2590 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2591 if (!ring_stats) { 2592 ice_free_tx_ring(xdp_ring); 2593 goto free_xdp_rings; 2594 } 2595 2596 xdp_ring->ring_stats = ring_stats; 2597 xdp_ring->q_index = xdp_q_idx; 2598 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2599 xdp_ring->vsi = vsi; 2600 xdp_ring->netdev = NULL; 2601 xdp_ring->dev = dev; 2602 xdp_ring->count = vsi->num_tx_desc; 2603 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2604 if (ice_setup_tx_ring(xdp_ring)) 2605 goto free_xdp_rings; 2606 ice_set_ring_xdp(xdp_ring); 2607 spin_lock_init(&xdp_ring->tx_lock); 2608 for (j = 0; j < xdp_ring->count; j++) { 2609 tx_desc = ICE_TX_DESC(xdp_ring, j); 2610 tx_desc->cmd_type_offset_bsz = 0; 2611 } 2612 } 2613 2614 return 0; 2615 2616 free_xdp_rings: 2617 for (; i >= 0; i--) { 2618 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2619 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2620 vsi->xdp_rings[i]->ring_stats = NULL; 2621 ice_free_tx_ring(vsi->xdp_rings[i]); 2622 } 2623 } 2624 return -ENOMEM; 2625 } 2626 2627 /** 2628 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2629 * @vsi: VSI to set the bpf prog on 2630 * @prog: the bpf prog pointer 2631 */ 2632 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2633 { 2634 struct bpf_prog *old_prog; 2635 int i; 2636 2637 old_prog = xchg(&vsi->xdp_prog, prog); 2638 if (old_prog) 2639 bpf_prog_put(old_prog); 2640 2641 ice_for_each_rxq(vsi, i) 2642 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2643 } 2644 2645 /** 2646 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2647 * @vsi: VSI to bring up Tx rings used by XDP 2648 * @prog: bpf program that will be assigned to VSI 2649 * 2650 * Return 0 on success and negative value on error 2651 */ 2652 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2653 { 2654 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2655 int xdp_rings_rem = vsi->num_xdp_txq; 2656 struct ice_pf *pf = vsi->back; 2657 struct ice_qs_cfg xdp_qs_cfg = { 2658 .qs_mutex = &pf->avail_q_mutex, 2659 .pf_map = pf->avail_txqs, 2660 .pf_map_size = pf->max_pf_txqs, 2661 .q_count = vsi->num_xdp_txq, 2662 .scatter_count = ICE_MAX_SCATTER_TXQS, 2663 .vsi_map = vsi->txq_map, 2664 .vsi_map_offset = vsi->alloc_txq, 2665 .mapping_mode = ICE_VSI_MAP_CONTIG 2666 }; 2667 struct device *dev; 2668 int i, v_idx; 2669 int status; 2670 2671 dev = ice_pf_to_dev(pf); 2672 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2673 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2674 if (!vsi->xdp_rings) 2675 return -ENOMEM; 2676 2677 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2678 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2679 goto err_map_xdp; 2680 2681 if (static_key_enabled(&ice_xdp_locking_key)) 2682 netdev_warn(vsi->netdev, 2683 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2684 2685 if (ice_xdp_alloc_setup_rings(vsi)) 2686 goto clear_xdp_rings; 2687 2688 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2689 ice_for_each_q_vector(vsi, v_idx) { 2690 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2691 int xdp_rings_per_v, q_id, q_base; 2692 2693 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2694 vsi->num_q_vectors - v_idx); 2695 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2696 2697 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2698 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2699 2700 xdp_ring->q_vector = q_vector; 2701 xdp_ring->next = q_vector->tx.tx_ring; 2702 q_vector->tx.tx_ring = xdp_ring; 2703 } 2704 xdp_rings_rem -= xdp_rings_per_v; 2705 } 2706 2707 ice_for_each_rxq(vsi, i) { 2708 if (static_key_enabled(&ice_xdp_locking_key)) { 2709 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2710 } else { 2711 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2712 struct ice_tx_ring *ring; 2713 2714 ice_for_each_tx_ring(ring, q_vector->tx) { 2715 if (ice_ring_is_xdp(ring)) { 2716 vsi->rx_rings[i]->xdp_ring = ring; 2717 break; 2718 } 2719 } 2720 } 2721 ice_tx_xsk_pool(vsi, i); 2722 } 2723 2724 /* omit the scheduler update if in reset path; XDP queues will be 2725 * taken into account at the end of ice_vsi_rebuild, where 2726 * ice_cfg_vsi_lan is being called 2727 */ 2728 if (ice_is_reset_in_progress(pf->state)) 2729 return 0; 2730 2731 /* tell the Tx scheduler that right now we have 2732 * additional queues 2733 */ 2734 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2735 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2736 2737 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2738 max_txqs); 2739 if (status) { 2740 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2741 status); 2742 goto clear_xdp_rings; 2743 } 2744 2745 /* assign the prog only when it's not already present on VSI; 2746 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2747 * VSI rebuild that happens under ethtool -L can expose us to 2748 * the bpf_prog refcount issues as we would be swapping same 2749 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2750 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2751 * this is not harmful as dev_xdp_install bumps the refcount 2752 * before calling the op exposed by the driver; 2753 */ 2754 if (!ice_is_xdp_ena_vsi(vsi)) 2755 ice_vsi_assign_bpf_prog(vsi, prog); 2756 2757 return 0; 2758 clear_xdp_rings: 2759 ice_for_each_xdp_txq(vsi, i) 2760 if (vsi->xdp_rings[i]) { 2761 kfree_rcu(vsi->xdp_rings[i], rcu); 2762 vsi->xdp_rings[i] = NULL; 2763 } 2764 2765 err_map_xdp: 2766 mutex_lock(&pf->avail_q_mutex); 2767 ice_for_each_xdp_txq(vsi, i) { 2768 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2769 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2770 } 2771 mutex_unlock(&pf->avail_q_mutex); 2772 2773 devm_kfree(dev, vsi->xdp_rings); 2774 return -ENOMEM; 2775 } 2776 2777 /** 2778 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2779 * @vsi: VSI to remove XDP rings 2780 * 2781 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2782 * resources 2783 */ 2784 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2785 { 2786 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2787 struct ice_pf *pf = vsi->back; 2788 int i, v_idx; 2789 2790 /* q_vectors are freed in reset path so there's no point in detaching 2791 * rings; in case of rebuild being triggered not from reset bits 2792 * in pf->state won't be set, so additionally check first q_vector 2793 * against NULL 2794 */ 2795 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2796 goto free_qmap; 2797 2798 ice_for_each_q_vector(vsi, v_idx) { 2799 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2800 struct ice_tx_ring *ring; 2801 2802 ice_for_each_tx_ring(ring, q_vector->tx) 2803 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2804 break; 2805 2806 /* restore the value of last node prior to XDP setup */ 2807 q_vector->tx.tx_ring = ring; 2808 } 2809 2810 free_qmap: 2811 mutex_lock(&pf->avail_q_mutex); 2812 ice_for_each_xdp_txq(vsi, i) { 2813 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2814 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2815 } 2816 mutex_unlock(&pf->avail_q_mutex); 2817 2818 ice_for_each_xdp_txq(vsi, i) 2819 if (vsi->xdp_rings[i]) { 2820 if (vsi->xdp_rings[i]->desc) { 2821 synchronize_rcu(); 2822 ice_free_tx_ring(vsi->xdp_rings[i]); 2823 } 2824 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2825 vsi->xdp_rings[i]->ring_stats = NULL; 2826 kfree_rcu(vsi->xdp_rings[i], rcu); 2827 vsi->xdp_rings[i] = NULL; 2828 } 2829 2830 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2831 vsi->xdp_rings = NULL; 2832 2833 if (static_key_enabled(&ice_xdp_locking_key)) 2834 static_branch_dec(&ice_xdp_locking_key); 2835 2836 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2837 return 0; 2838 2839 ice_vsi_assign_bpf_prog(vsi, NULL); 2840 2841 /* notify Tx scheduler that we destroyed XDP queues and bring 2842 * back the old number of child nodes 2843 */ 2844 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2845 max_txqs[i] = vsi->num_txq; 2846 2847 /* change number of XDP Tx queues to 0 */ 2848 vsi->num_xdp_txq = 0; 2849 2850 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2851 max_txqs); 2852 } 2853 2854 /** 2855 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2856 * @vsi: VSI to schedule napi on 2857 */ 2858 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2859 { 2860 int i; 2861 2862 ice_for_each_rxq(vsi, i) { 2863 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2864 2865 if (rx_ring->xsk_pool) 2866 napi_schedule(&rx_ring->q_vector->napi); 2867 } 2868 } 2869 2870 /** 2871 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2872 * @vsi: VSI to determine the count of XDP Tx qs 2873 * 2874 * returns 0 if Tx qs count is higher than at least half of CPU count, 2875 * -ENOMEM otherwise 2876 */ 2877 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2878 { 2879 u16 avail = ice_get_avail_txq_count(vsi->back); 2880 u16 cpus = num_possible_cpus(); 2881 2882 if (avail < cpus / 2) 2883 return -ENOMEM; 2884 2885 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2886 2887 if (vsi->num_xdp_txq < cpus) 2888 static_branch_inc(&ice_xdp_locking_key); 2889 2890 return 0; 2891 } 2892 2893 /** 2894 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2895 * @vsi: Pointer to VSI structure 2896 */ 2897 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2898 { 2899 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2900 return ICE_RXBUF_1664; 2901 else 2902 return ICE_RXBUF_3072; 2903 } 2904 2905 /** 2906 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2907 * @vsi: VSI to setup XDP for 2908 * @prog: XDP program 2909 * @extack: netlink extended ack 2910 */ 2911 static int 2912 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2913 struct netlink_ext_ack *extack) 2914 { 2915 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2916 bool if_running = netif_running(vsi->netdev); 2917 int ret = 0, xdp_ring_err = 0; 2918 2919 if (prog && !prog->aux->xdp_has_frags) { 2920 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2921 NL_SET_ERR_MSG_MOD(extack, 2922 "MTU is too large for linear frames and XDP prog does not support frags"); 2923 return -EOPNOTSUPP; 2924 } 2925 } 2926 2927 /* need to stop netdev while setting up the program for Rx rings */ 2928 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2929 ret = ice_down(vsi); 2930 if (ret) { 2931 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2932 return ret; 2933 } 2934 } 2935 2936 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2937 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2938 if (xdp_ring_err) { 2939 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2940 } else { 2941 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2942 if (xdp_ring_err) 2943 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2944 } 2945 xdp_features_set_redirect_target(vsi->netdev, true); 2946 /* reallocate Rx queues that are used for zero-copy */ 2947 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2948 if (xdp_ring_err) 2949 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2950 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2951 xdp_features_clear_redirect_target(vsi->netdev); 2952 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2953 if (xdp_ring_err) 2954 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2955 /* reallocate Rx queues that were used for zero-copy */ 2956 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2957 if (xdp_ring_err) 2958 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2959 } else { 2960 /* safe to call even when prog == vsi->xdp_prog as 2961 * dev_xdp_install in net/core/dev.c incremented prog's 2962 * refcount so corresponding bpf_prog_put won't cause 2963 * underflow 2964 */ 2965 ice_vsi_assign_bpf_prog(vsi, prog); 2966 } 2967 2968 if (if_running) 2969 ret = ice_up(vsi); 2970 2971 if (!ret && prog) 2972 ice_vsi_rx_napi_schedule(vsi); 2973 2974 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2975 } 2976 2977 /** 2978 * ice_xdp_safe_mode - XDP handler for safe mode 2979 * @dev: netdevice 2980 * @xdp: XDP command 2981 */ 2982 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2983 struct netdev_bpf *xdp) 2984 { 2985 NL_SET_ERR_MSG_MOD(xdp->extack, 2986 "Please provide working DDP firmware package in order to use XDP\n" 2987 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2988 return -EOPNOTSUPP; 2989 } 2990 2991 /** 2992 * ice_xdp - implements XDP handler 2993 * @dev: netdevice 2994 * @xdp: XDP command 2995 */ 2996 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2997 { 2998 struct ice_netdev_priv *np = netdev_priv(dev); 2999 struct ice_vsi *vsi = np->vsi; 3000 3001 if (vsi->type != ICE_VSI_PF) { 3002 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3003 return -EINVAL; 3004 } 3005 3006 switch (xdp->command) { 3007 case XDP_SETUP_PROG: 3008 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3009 case XDP_SETUP_XSK_POOL: 3010 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3011 xdp->xsk.queue_id); 3012 default: 3013 return -EINVAL; 3014 } 3015 } 3016 3017 /** 3018 * ice_ena_misc_vector - enable the non-queue interrupts 3019 * @pf: board private structure 3020 */ 3021 static void ice_ena_misc_vector(struct ice_pf *pf) 3022 { 3023 struct ice_hw *hw = &pf->hw; 3024 u32 val; 3025 3026 /* Disable anti-spoof detection interrupt to prevent spurious event 3027 * interrupts during a function reset. Anti-spoof functionally is 3028 * still supported. 3029 */ 3030 val = rd32(hw, GL_MDCK_TX_TDPU); 3031 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3032 wr32(hw, GL_MDCK_TX_TDPU, val); 3033 3034 /* clear things first */ 3035 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3036 rd32(hw, PFINT_OICR); /* read to clear */ 3037 3038 val = (PFINT_OICR_ECC_ERR_M | 3039 PFINT_OICR_MAL_DETECT_M | 3040 PFINT_OICR_GRST_M | 3041 PFINT_OICR_PCI_EXCEPTION_M | 3042 PFINT_OICR_VFLR_M | 3043 PFINT_OICR_HMC_ERR_M | 3044 PFINT_OICR_PE_PUSH_M | 3045 PFINT_OICR_PE_CRITERR_M); 3046 3047 wr32(hw, PFINT_OICR_ENA, val); 3048 3049 /* SW_ITR_IDX = 0, but don't change INTENA */ 3050 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3051 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3052 } 3053 3054 /** 3055 * ice_misc_intr - misc interrupt handler 3056 * @irq: interrupt number 3057 * @data: pointer to a q_vector 3058 */ 3059 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3060 { 3061 struct ice_pf *pf = (struct ice_pf *)data; 3062 struct ice_hw *hw = &pf->hw; 3063 irqreturn_t ret = IRQ_NONE; 3064 struct device *dev; 3065 u32 oicr, ena_mask; 3066 3067 dev = ice_pf_to_dev(pf); 3068 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3069 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3070 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3071 3072 oicr = rd32(hw, PFINT_OICR); 3073 ena_mask = rd32(hw, PFINT_OICR_ENA); 3074 3075 if (oicr & PFINT_OICR_SWINT_M) { 3076 ena_mask &= ~PFINT_OICR_SWINT_M; 3077 pf->sw_int_count++; 3078 } 3079 3080 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3081 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3082 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3083 } 3084 if (oicr & PFINT_OICR_VFLR_M) { 3085 /* disable any further VFLR event notifications */ 3086 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3087 u32 reg = rd32(hw, PFINT_OICR_ENA); 3088 3089 reg &= ~PFINT_OICR_VFLR_M; 3090 wr32(hw, PFINT_OICR_ENA, reg); 3091 } else { 3092 ena_mask &= ~PFINT_OICR_VFLR_M; 3093 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3094 } 3095 } 3096 3097 if (oicr & PFINT_OICR_GRST_M) { 3098 u32 reset; 3099 3100 /* we have a reset warning */ 3101 ena_mask &= ~PFINT_OICR_GRST_M; 3102 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3103 GLGEN_RSTAT_RESET_TYPE_S; 3104 3105 if (reset == ICE_RESET_CORER) 3106 pf->corer_count++; 3107 else if (reset == ICE_RESET_GLOBR) 3108 pf->globr_count++; 3109 else if (reset == ICE_RESET_EMPR) 3110 pf->empr_count++; 3111 else 3112 dev_dbg(dev, "Invalid reset type %d\n", reset); 3113 3114 /* If a reset cycle isn't already in progress, we set a bit in 3115 * pf->state so that the service task can start a reset/rebuild. 3116 */ 3117 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3118 if (reset == ICE_RESET_CORER) 3119 set_bit(ICE_CORER_RECV, pf->state); 3120 else if (reset == ICE_RESET_GLOBR) 3121 set_bit(ICE_GLOBR_RECV, pf->state); 3122 else 3123 set_bit(ICE_EMPR_RECV, pf->state); 3124 3125 /* There are couple of different bits at play here. 3126 * hw->reset_ongoing indicates whether the hardware is 3127 * in reset. This is set to true when a reset interrupt 3128 * is received and set back to false after the driver 3129 * has determined that the hardware is out of reset. 3130 * 3131 * ICE_RESET_OICR_RECV in pf->state indicates 3132 * that a post reset rebuild is required before the 3133 * driver is operational again. This is set above. 3134 * 3135 * As this is the start of the reset/rebuild cycle, set 3136 * both to indicate that. 3137 */ 3138 hw->reset_ongoing = true; 3139 } 3140 } 3141 3142 if (oicr & PFINT_OICR_TSYN_TX_M) { 3143 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3144 if (!hw->reset_ongoing) 3145 ret = IRQ_WAKE_THREAD; 3146 } 3147 3148 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3149 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3150 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3151 3152 /* Save EVENTs from GTSYN register */ 3153 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3154 GLTSYN_STAT_EVENT1_M | 3155 GLTSYN_STAT_EVENT2_M); 3156 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3157 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3158 } 3159 3160 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3161 if (oicr & ICE_AUX_CRIT_ERR) { 3162 pf->oicr_err_reg |= oicr; 3163 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3164 ena_mask &= ~ICE_AUX_CRIT_ERR; 3165 } 3166 3167 /* Report any remaining unexpected interrupts */ 3168 oicr &= ena_mask; 3169 if (oicr) { 3170 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3171 /* If a critical error is pending there is no choice but to 3172 * reset the device. 3173 */ 3174 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3175 PFINT_OICR_ECC_ERR_M)) { 3176 set_bit(ICE_PFR_REQ, pf->state); 3177 ice_service_task_schedule(pf); 3178 } 3179 } 3180 if (!ret) 3181 ret = IRQ_HANDLED; 3182 3183 ice_service_task_schedule(pf); 3184 ice_irq_dynamic_ena(hw, NULL, NULL); 3185 3186 return ret; 3187 } 3188 3189 /** 3190 * ice_misc_intr_thread_fn - misc interrupt thread function 3191 * @irq: interrupt number 3192 * @data: pointer to a q_vector 3193 */ 3194 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3195 { 3196 struct ice_pf *pf = data; 3197 3198 if (ice_is_reset_in_progress(pf->state)) 3199 return IRQ_HANDLED; 3200 3201 while (!ice_ptp_process_ts(pf)) 3202 usleep_range(50, 100); 3203 3204 return IRQ_HANDLED; 3205 } 3206 3207 /** 3208 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3209 * @hw: pointer to HW structure 3210 */ 3211 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3212 { 3213 /* disable Admin queue Interrupt causes */ 3214 wr32(hw, PFINT_FW_CTL, 3215 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3216 3217 /* disable Mailbox queue Interrupt causes */ 3218 wr32(hw, PFINT_MBX_CTL, 3219 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3220 3221 wr32(hw, PFINT_SB_CTL, 3222 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3223 3224 /* disable Control queue Interrupt causes */ 3225 wr32(hw, PFINT_OICR_CTL, 3226 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3227 3228 ice_flush(hw); 3229 } 3230 3231 /** 3232 * ice_free_irq_msix_misc - Unroll misc vector setup 3233 * @pf: board private structure 3234 */ 3235 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3236 { 3237 struct ice_hw *hw = &pf->hw; 3238 3239 ice_dis_ctrlq_interrupts(hw); 3240 3241 /* disable OICR interrupt */ 3242 wr32(hw, PFINT_OICR_ENA, 0); 3243 ice_flush(hw); 3244 3245 if (pf->msix_entries) { 3246 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3247 devm_free_irq(ice_pf_to_dev(pf), 3248 pf->msix_entries[pf->oicr_idx].vector, pf); 3249 } 3250 3251 pf->num_avail_sw_msix += 1; 3252 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3253 } 3254 3255 /** 3256 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3257 * @hw: pointer to HW structure 3258 * @reg_idx: HW vector index to associate the control queue interrupts with 3259 */ 3260 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3261 { 3262 u32 val; 3263 3264 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3265 PFINT_OICR_CTL_CAUSE_ENA_M); 3266 wr32(hw, PFINT_OICR_CTL, val); 3267 3268 /* enable Admin queue Interrupt causes */ 3269 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3270 PFINT_FW_CTL_CAUSE_ENA_M); 3271 wr32(hw, PFINT_FW_CTL, val); 3272 3273 /* enable Mailbox queue Interrupt causes */ 3274 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3275 PFINT_MBX_CTL_CAUSE_ENA_M); 3276 wr32(hw, PFINT_MBX_CTL, val); 3277 3278 /* This enables Sideband queue Interrupt causes */ 3279 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3280 PFINT_SB_CTL_CAUSE_ENA_M); 3281 wr32(hw, PFINT_SB_CTL, val); 3282 3283 ice_flush(hw); 3284 } 3285 3286 /** 3287 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3288 * @pf: board private structure 3289 * 3290 * This sets up the handler for MSIX 0, which is used to manage the 3291 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3292 * when in MSI or Legacy interrupt mode. 3293 */ 3294 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3295 { 3296 struct device *dev = ice_pf_to_dev(pf); 3297 struct ice_hw *hw = &pf->hw; 3298 int oicr_idx, err = 0; 3299 3300 if (!pf->int_name[0]) 3301 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3302 dev_driver_string(dev), dev_name(dev)); 3303 3304 /* Do not request IRQ but do enable OICR interrupt since settings are 3305 * lost during reset. Note that this function is called only during 3306 * rebuild path and not while reset is in progress. 3307 */ 3308 if (ice_is_reset_in_progress(pf->state)) 3309 goto skip_req_irq; 3310 3311 /* reserve one vector in irq_tracker for misc interrupts */ 3312 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3313 if (oicr_idx < 0) 3314 return oicr_idx; 3315 3316 pf->num_avail_sw_msix -= 1; 3317 pf->oicr_idx = (u16)oicr_idx; 3318 3319 err = devm_request_threaded_irq(dev, 3320 pf->msix_entries[pf->oicr_idx].vector, 3321 ice_misc_intr, ice_misc_intr_thread_fn, 3322 0, pf->int_name, pf); 3323 if (err) { 3324 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3325 pf->int_name, err); 3326 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3327 pf->num_avail_sw_msix += 1; 3328 return err; 3329 } 3330 3331 skip_req_irq: 3332 ice_ena_misc_vector(pf); 3333 3334 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3335 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3336 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3337 3338 ice_flush(hw); 3339 ice_irq_dynamic_ena(hw, NULL, NULL); 3340 3341 return 0; 3342 } 3343 3344 /** 3345 * ice_napi_add - register NAPI handler for the VSI 3346 * @vsi: VSI for which NAPI handler is to be registered 3347 * 3348 * This function is only called in the driver's load path. Registering the NAPI 3349 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3350 * reset/rebuild, etc.) 3351 */ 3352 static void ice_napi_add(struct ice_vsi *vsi) 3353 { 3354 int v_idx; 3355 3356 if (!vsi->netdev) 3357 return; 3358 3359 ice_for_each_q_vector(vsi, v_idx) 3360 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3361 ice_napi_poll); 3362 } 3363 3364 /** 3365 * ice_set_ops - set netdev and ethtools ops for the given netdev 3366 * @vsi: the VSI associated with the new netdev 3367 */ 3368 static void ice_set_ops(struct ice_vsi *vsi) 3369 { 3370 struct net_device *netdev = vsi->netdev; 3371 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3372 3373 if (ice_is_safe_mode(pf)) { 3374 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3375 ice_set_ethtool_safe_mode_ops(netdev); 3376 return; 3377 } 3378 3379 netdev->netdev_ops = &ice_netdev_ops; 3380 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3381 ice_set_ethtool_ops(netdev); 3382 3383 if (vsi->type != ICE_VSI_PF) 3384 return; 3385 3386 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3387 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3388 NETDEV_XDP_ACT_RX_SG; 3389 } 3390 3391 /** 3392 * ice_set_netdev_features - set features for the given netdev 3393 * @netdev: netdev instance 3394 */ 3395 static void ice_set_netdev_features(struct net_device *netdev) 3396 { 3397 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3398 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3399 netdev_features_t csumo_features; 3400 netdev_features_t vlano_features; 3401 netdev_features_t dflt_features; 3402 netdev_features_t tso_features; 3403 3404 if (ice_is_safe_mode(pf)) { 3405 /* safe mode */ 3406 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3407 netdev->hw_features = netdev->features; 3408 return; 3409 } 3410 3411 dflt_features = NETIF_F_SG | 3412 NETIF_F_HIGHDMA | 3413 NETIF_F_NTUPLE | 3414 NETIF_F_RXHASH; 3415 3416 csumo_features = NETIF_F_RXCSUM | 3417 NETIF_F_IP_CSUM | 3418 NETIF_F_SCTP_CRC | 3419 NETIF_F_IPV6_CSUM; 3420 3421 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3422 NETIF_F_HW_VLAN_CTAG_TX | 3423 NETIF_F_HW_VLAN_CTAG_RX; 3424 3425 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3426 if (is_dvm_ena) 3427 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3428 3429 tso_features = NETIF_F_TSO | 3430 NETIF_F_TSO_ECN | 3431 NETIF_F_TSO6 | 3432 NETIF_F_GSO_GRE | 3433 NETIF_F_GSO_UDP_TUNNEL | 3434 NETIF_F_GSO_GRE_CSUM | 3435 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3436 NETIF_F_GSO_PARTIAL | 3437 NETIF_F_GSO_IPXIP4 | 3438 NETIF_F_GSO_IPXIP6 | 3439 NETIF_F_GSO_UDP_L4; 3440 3441 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3442 NETIF_F_GSO_GRE_CSUM; 3443 /* set features that user can change */ 3444 netdev->hw_features = dflt_features | csumo_features | 3445 vlano_features | tso_features; 3446 3447 /* add support for HW_CSUM on packets with MPLS header */ 3448 netdev->mpls_features = NETIF_F_HW_CSUM | 3449 NETIF_F_TSO | 3450 NETIF_F_TSO6; 3451 3452 /* enable features */ 3453 netdev->features |= netdev->hw_features; 3454 3455 netdev->hw_features |= NETIF_F_HW_TC; 3456 netdev->hw_features |= NETIF_F_LOOPBACK; 3457 3458 /* encap and VLAN devices inherit default, csumo and tso features */ 3459 netdev->hw_enc_features |= dflt_features | csumo_features | 3460 tso_features; 3461 netdev->vlan_features |= dflt_features | csumo_features | 3462 tso_features; 3463 3464 /* advertise support but don't enable by default since only one type of 3465 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3466 * type turns on the other has to be turned off. This is enforced by the 3467 * ice_fix_features() ndo callback. 3468 */ 3469 if (is_dvm_ena) 3470 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3471 NETIF_F_HW_VLAN_STAG_TX; 3472 3473 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3474 * be changed at runtime 3475 */ 3476 netdev->hw_features |= NETIF_F_RXFCS; 3477 3478 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3479 } 3480 3481 /** 3482 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3483 * @lut: Lookup table 3484 * @rss_table_size: Lookup table size 3485 * @rss_size: Range of queue number for hashing 3486 */ 3487 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3488 { 3489 u16 i; 3490 3491 for (i = 0; i < rss_table_size; i++) 3492 lut[i] = i % rss_size; 3493 } 3494 3495 /** 3496 * ice_pf_vsi_setup - Set up a PF VSI 3497 * @pf: board private structure 3498 * @pi: pointer to the port_info instance 3499 * 3500 * Returns pointer to the successfully allocated VSI software struct 3501 * on success, otherwise returns NULL on failure. 3502 */ 3503 static struct ice_vsi * 3504 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3505 { 3506 struct ice_vsi_cfg_params params = {}; 3507 3508 params.type = ICE_VSI_PF; 3509 params.pi = pi; 3510 params.flags = ICE_VSI_FLAG_INIT; 3511 3512 return ice_vsi_setup(pf, ¶ms); 3513 } 3514 3515 static struct ice_vsi * 3516 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3517 struct ice_channel *ch) 3518 { 3519 struct ice_vsi_cfg_params params = {}; 3520 3521 params.type = ICE_VSI_CHNL; 3522 params.pi = pi; 3523 params.ch = ch; 3524 params.flags = ICE_VSI_FLAG_INIT; 3525 3526 return ice_vsi_setup(pf, ¶ms); 3527 } 3528 3529 /** 3530 * ice_ctrl_vsi_setup - Set up a control VSI 3531 * @pf: board private structure 3532 * @pi: pointer to the port_info instance 3533 * 3534 * Returns pointer to the successfully allocated VSI software struct 3535 * on success, otherwise returns NULL on failure. 3536 */ 3537 static struct ice_vsi * 3538 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3539 { 3540 struct ice_vsi_cfg_params params = {}; 3541 3542 params.type = ICE_VSI_CTRL; 3543 params.pi = pi; 3544 params.flags = ICE_VSI_FLAG_INIT; 3545 3546 return ice_vsi_setup(pf, ¶ms); 3547 } 3548 3549 /** 3550 * ice_lb_vsi_setup - Set up a loopback VSI 3551 * @pf: board private structure 3552 * @pi: pointer to the port_info instance 3553 * 3554 * Returns pointer to the successfully allocated VSI software struct 3555 * on success, otherwise returns NULL on failure. 3556 */ 3557 struct ice_vsi * 3558 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3559 { 3560 struct ice_vsi_cfg_params params = {}; 3561 3562 params.type = ICE_VSI_LB; 3563 params.pi = pi; 3564 params.flags = ICE_VSI_FLAG_INIT; 3565 3566 return ice_vsi_setup(pf, ¶ms); 3567 } 3568 3569 /** 3570 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3571 * @netdev: network interface to be adjusted 3572 * @proto: VLAN TPID 3573 * @vid: VLAN ID to be added 3574 * 3575 * net_device_ops implementation for adding VLAN IDs 3576 */ 3577 static int 3578 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3579 { 3580 struct ice_netdev_priv *np = netdev_priv(netdev); 3581 struct ice_vsi_vlan_ops *vlan_ops; 3582 struct ice_vsi *vsi = np->vsi; 3583 struct ice_vlan vlan; 3584 int ret; 3585 3586 /* VLAN 0 is added by default during load/reset */ 3587 if (!vid) 3588 return 0; 3589 3590 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3591 usleep_range(1000, 2000); 3592 3593 /* Add multicast promisc rule for the VLAN ID to be added if 3594 * all-multicast is currently enabled. 3595 */ 3596 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3597 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3598 ICE_MCAST_VLAN_PROMISC_BITS, 3599 vid); 3600 if (ret) 3601 goto finish; 3602 } 3603 3604 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3605 3606 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3607 * packets aren't pruned by the device's internal switch on Rx 3608 */ 3609 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3610 ret = vlan_ops->add_vlan(vsi, &vlan); 3611 if (ret) 3612 goto finish; 3613 3614 /* If all-multicast is currently enabled and this VLAN ID is only one 3615 * besides VLAN-0 we have to update look-up type of multicast promisc 3616 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3617 */ 3618 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3619 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3620 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3621 ICE_MCAST_PROMISC_BITS, 0); 3622 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3623 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3624 } 3625 3626 finish: 3627 clear_bit(ICE_CFG_BUSY, vsi->state); 3628 3629 return ret; 3630 } 3631 3632 /** 3633 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3634 * @netdev: network interface to be adjusted 3635 * @proto: VLAN TPID 3636 * @vid: VLAN ID to be removed 3637 * 3638 * net_device_ops implementation for removing VLAN IDs 3639 */ 3640 static int 3641 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3642 { 3643 struct ice_netdev_priv *np = netdev_priv(netdev); 3644 struct ice_vsi_vlan_ops *vlan_ops; 3645 struct ice_vsi *vsi = np->vsi; 3646 struct ice_vlan vlan; 3647 int ret; 3648 3649 /* don't allow removal of VLAN 0 */ 3650 if (!vid) 3651 return 0; 3652 3653 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3654 usleep_range(1000, 2000); 3655 3656 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3657 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3658 if (ret) { 3659 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3660 vsi->vsi_num); 3661 vsi->current_netdev_flags |= IFF_ALLMULTI; 3662 } 3663 3664 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3665 3666 /* Make sure VLAN delete is successful before updating VLAN 3667 * information 3668 */ 3669 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3670 ret = vlan_ops->del_vlan(vsi, &vlan); 3671 if (ret) 3672 goto finish; 3673 3674 /* Remove multicast promisc rule for the removed VLAN ID if 3675 * all-multicast is enabled. 3676 */ 3677 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3678 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3679 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3680 3681 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3682 /* Update look-up type of multicast promisc rule for VLAN 0 3683 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3684 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3685 */ 3686 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3687 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3688 ICE_MCAST_VLAN_PROMISC_BITS, 3689 0); 3690 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3691 ICE_MCAST_PROMISC_BITS, 0); 3692 } 3693 } 3694 3695 finish: 3696 clear_bit(ICE_CFG_BUSY, vsi->state); 3697 3698 return ret; 3699 } 3700 3701 /** 3702 * ice_rep_indr_tc_block_unbind 3703 * @cb_priv: indirection block private data 3704 */ 3705 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3706 { 3707 struct ice_indr_block_priv *indr_priv = cb_priv; 3708 3709 list_del(&indr_priv->list); 3710 kfree(indr_priv); 3711 } 3712 3713 /** 3714 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3715 * @vsi: VSI struct which has the netdev 3716 */ 3717 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3718 { 3719 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3720 3721 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3722 ice_rep_indr_tc_block_unbind); 3723 } 3724 3725 /** 3726 * ice_tc_indir_block_register - Register TC indirect block notifications 3727 * @vsi: VSI struct which has the netdev 3728 * 3729 * Returns 0 on success, negative value on failure 3730 */ 3731 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3732 { 3733 struct ice_netdev_priv *np; 3734 3735 if (!vsi || !vsi->netdev) 3736 return -EINVAL; 3737 3738 np = netdev_priv(vsi->netdev); 3739 3740 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3741 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3742 } 3743 3744 /** 3745 * ice_get_avail_q_count - Get count of queues in use 3746 * @pf_qmap: bitmap to get queue use count from 3747 * @lock: pointer to a mutex that protects access to pf_qmap 3748 * @size: size of the bitmap 3749 */ 3750 static u16 3751 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3752 { 3753 unsigned long bit; 3754 u16 count = 0; 3755 3756 mutex_lock(lock); 3757 for_each_clear_bit(bit, pf_qmap, size) 3758 count++; 3759 mutex_unlock(lock); 3760 3761 return count; 3762 } 3763 3764 /** 3765 * ice_get_avail_txq_count - Get count of Tx queues in use 3766 * @pf: pointer to an ice_pf instance 3767 */ 3768 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3769 { 3770 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3771 pf->max_pf_txqs); 3772 } 3773 3774 /** 3775 * ice_get_avail_rxq_count - Get count of Rx queues in use 3776 * @pf: pointer to an ice_pf instance 3777 */ 3778 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3779 { 3780 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3781 pf->max_pf_rxqs); 3782 } 3783 3784 /** 3785 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3786 * @pf: board private structure to initialize 3787 */ 3788 static void ice_deinit_pf(struct ice_pf *pf) 3789 { 3790 ice_service_task_stop(pf); 3791 mutex_destroy(&pf->adev_mutex); 3792 mutex_destroy(&pf->sw_mutex); 3793 mutex_destroy(&pf->tc_mutex); 3794 mutex_destroy(&pf->avail_q_mutex); 3795 mutex_destroy(&pf->vfs.table_lock); 3796 3797 if (pf->avail_txqs) { 3798 bitmap_free(pf->avail_txqs); 3799 pf->avail_txqs = NULL; 3800 } 3801 3802 if (pf->avail_rxqs) { 3803 bitmap_free(pf->avail_rxqs); 3804 pf->avail_rxqs = NULL; 3805 } 3806 3807 if (pf->ptp.clock) 3808 ptp_clock_unregister(pf->ptp.clock); 3809 } 3810 3811 /** 3812 * ice_set_pf_caps - set PFs capability flags 3813 * @pf: pointer to the PF instance 3814 */ 3815 static void ice_set_pf_caps(struct ice_pf *pf) 3816 { 3817 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3818 3819 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3820 if (func_caps->common_cap.rdma) 3821 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3822 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3823 if (func_caps->common_cap.dcb) 3824 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3825 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3826 if (func_caps->common_cap.sr_iov_1_1) { 3827 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3828 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3829 ICE_MAX_SRIOV_VFS); 3830 } 3831 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3832 if (func_caps->common_cap.rss_table_size) 3833 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3834 3835 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3836 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3837 u16 unused; 3838 3839 /* ctrl_vsi_idx will be set to a valid value when flow director 3840 * is setup by ice_init_fdir 3841 */ 3842 pf->ctrl_vsi_idx = ICE_NO_VSI; 3843 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3844 /* force guaranteed filter pool for PF */ 3845 ice_alloc_fd_guar_item(&pf->hw, &unused, 3846 func_caps->fd_fltr_guar); 3847 /* force shared filter pool for PF */ 3848 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3849 func_caps->fd_fltr_best_effort); 3850 } 3851 3852 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3853 if (func_caps->common_cap.ieee_1588) 3854 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3855 3856 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3857 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3858 } 3859 3860 /** 3861 * ice_init_pf - Initialize general software structures (struct ice_pf) 3862 * @pf: board private structure to initialize 3863 */ 3864 static int ice_init_pf(struct ice_pf *pf) 3865 { 3866 ice_set_pf_caps(pf); 3867 3868 mutex_init(&pf->sw_mutex); 3869 mutex_init(&pf->tc_mutex); 3870 mutex_init(&pf->adev_mutex); 3871 3872 INIT_HLIST_HEAD(&pf->aq_wait_list); 3873 spin_lock_init(&pf->aq_wait_lock); 3874 init_waitqueue_head(&pf->aq_wait_queue); 3875 3876 init_waitqueue_head(&pf->reset_wait_queue); 3877 3878 /* setup service timer and periodic service task */ 3879 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3880 pf->serv_tmr_period = HZ; 3881 INIT_WORK(&pf->serv_task, ice_service_task); 3882 clear_bit(ICE_SERVICE_SCHED, pf->state); 3883 3884 mutex_init(&pf->avail_q_mutex); 3885 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3886 if (!pf->avail_txqs) 3887 return -ENOMEM; 3888 3889 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3890 if (!pf->avail_rxqs) { 3891 bitmap_free(pf->avail_txqs); 3892 pf->avail_txqs = NULL; 3893 return -ENOMEM; 3894 } 3895 3896 mutex_init(&pf->vfs.table_lock); 3897 hash_init(pf->vfs.table); 3898 ice_mbx_init_snapshot(&pf->hw); 3899 3900 return 0; 3901 } 3902 3903 /** 3904 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3905 * @pf: board private structure 3906 * @v_remain: number of remaining MSI-X vectors to be distributed 3907 * 3908 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3909 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3910 * remaining vectors. 3911 */ 3912 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3913 { 3914 int v_rdma; 3915 3916 if (!ice_is_rdma_ena(pf)) { 3917 pf->num_lan_msix = v_remain; 3918 return; 3919 } 3920 3921 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3922 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3923 3924 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3925 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3926 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3927 3928 pf->num_rdma_msix = 0; 3929 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3930 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3931 (v_remain - v_rdma < v_rdma)) { 3932 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3933 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3934 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3935 } else { 3936 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3937 */ 3938 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3939 ICE_RDMA_NUM_AEQ_MSIX; 3940 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3941 } 3942 } 3943 3944 /** 3945 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3946 * @pf: board private structure 3947 * 3948 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3949 * device usage if there are not enough vectors. Return the number of vectors 3950 * reserved or negative on failure. 3951 */ 3952 static int ice_ena_msix_range(struct ice_pf *pf) 3953 { 3954 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3955 struct device *dev = ice_pf_to_dev(pf); 3956 int err, i; 3957 3958 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3959 num_cpus = num_online_cpus(); 3960 3961 /* LAN miscellaneous handler */ 3962 v_other = ICE_MIN_LAN_OICR_MSIX; 3963 3964 /* Flow Director */ 3965 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 3966 v_other += ICE_FDIR_MSIX; 3967 3968 /* switchdev */ 3969 v_other += ICE_ESWITCH_MSIX; 3970 3971 v_wanted = v_other; 3972 3973 /* LAN traffic */ 3974 pf->num_lan_msix = num_cpus; 3975 v_wanted += pf->num_lan_msix; 3976 3977 /* RDMA auxiliary driver */ 3978 if (ice_is_rdma_ena(pf)) { 3979 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3980 v_wanted += pf->num_rdma_msix; 3981 } 3982 3983 if (v_wanted > hw_num_msix) { 3984 int v_remain; 3985 3986 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 3987 v_wanted, hw_num_msix); 3988 3989 if (hw_num_msix < ICE_MIN_MSIX) { 3990 err = -ERANGE; 3991 goto exit_err; 3992 } 3993 3994 v_remain = hw_num_msix - v_other; 3995 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 3996 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 3997 v_remain = ICE_MIN_LAN_TXRX_MSIX; 3998 } 3999 4000 ice_reduce_msix_usage(pf, v_remain); 4001 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4002 4003 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4004 pf->num_lan_msix); 4005 if (ice_is_rdma_ena(pf)) 4006 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4007 pf->num_rdma_msix); 4008 } 4009 4010 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4011 sizeof(*pf->msix_entries), GFP_KERNEL); 4012 if (!pf->msix_entries) { 4013 err = -ENOMEM; 4014 goto exit_err; 4015 } 4016 4017 for (i = 0; i < v_wanted; i++) 4018 pf->msix_entries[i].entry = i; 4019 4020 /* actually reserve the vectors */ 4021 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4022 ICE_MIN_MSIX, v_wanted); 4023 if (v_actual < 0) { 4024 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4025 err = v_actual; 4026 goto msix_err; 4027 } 4028 4029 if (v_actual < v_wanted) { 4030 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4031 v_wanted, v_actual); 4032 4033 if (v_actual < ICE_MIN_MSIX) { 4034 /* error if we can't get minimum vectors */ 4035 pci_disable_msix(pf->pdev); 4036 err = -ERANGE; 4037 goto msix_err; 4038 } else { 4039 int v_remain = v_actual - v_other; 4040 4041 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4042 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4043 4044 ice_reduce_msix_usage(pf, v_remain); 4045 4046 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4047 pf->num_lan_msix); 4048 4049 if (ice_is_rdma_ena(pf)) 4050 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4051 pf->num_rdma_msix); 4052 } 4053 } 4054 4055 return v_actual; 4056 4057 msix_err: 4058 devm_kfree(dev, pf->msix_entries); 4059 4060 exit_err: 4061 pf->num_rdma_msix = 0; 4062 pf->num_lan_msix = 0; 4063 return err; 4064 } 4065 4066 /** 4067 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4068 * @pf: board private structure 4069 */ 4070 static void ice_dis_msix(struct ice_pf *pf) 4071 { 4072 pci_disable_msix(pf->pdev); 4073 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4074 pf->msix_entries = NULL; 4075 } 4076 4077 /** 4078 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4079 * @pf: board private structure 4080 */ 4081 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4082 { 4083 ice_dis_msix(pf); 4084 4085 if (pf->irq_tracker) { 4086 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4087 pf->irq_tracker = NULL; 4088 } 4089 } 4090 4091 /** 4092 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4093 * @pf: board private structure to initialize 4094 */ 4095 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4096 { 4097 int vectors; 4098 4099 vectors = ice_ena_msix_range(pf); 4100 4101 if (vectors < 0) 4102 return vectors; 4103 4104 /* set up vector assignment tracking */ 4105 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4106 struct_size(pf->irq_tracker, list, vectors), 4107 GFP_KERNEL); 4108 if (!pf->irq_tracker) { 4109 ice_dis_msix(pf); 4110 return -ENOMEM; 4111 } 4112 4113 /* populate SW interrupts pool with number of OS granted IRQs. */ 4114 pf->num_avail_sw_msix = (u16)vectors; 4115 pf->irq_tracker->num_entries = (u16)vectors; 4116 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4117 4118 return 0; 4119 } 4120 4121 /** 4122 * ice_is_wol_supported - check if WoL is supported 4123 * @hw: pointer to hardware info 4124 * 4125 * Check if WoL is supported based on the HW configuration. 4126 * Returns true if NVM supports and enables WoL for this port, false otherwise 4127 */ 4128 bool ice_is_wol_supported(struct ice_hw *hw) 4129 { 4130 u16 wol_ctrl; 4131 4132 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4133 * word) indicates WoL is not supported on the corresponding PF ID. 4134 */ 4135 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4136 return false; 4137 4138 return !(BIT(hw->port_info->lport) & wol_ctrl); 4139 } 4140 4141 /** 4142 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4143 * @vsi: VSI being changed 4144 * @new_rx: new number of Rx queues 4145 * @new_tx: new number of Tx queues 4146 * @locked: is adev device_lock held 4147 * 4148 * Only change the number of queues if new_tx, or new_rx is non-0. 4149 * 4150 * Returns 0 on success. 4151 */ 4152 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4153 { 4154 struct ice_pf *pf = vsi->back; 4155 int err = 0, timeout = 50; 4156 4157 if (!new_rx && !new_tx) 4158 return -EINVAL; 4159 4160 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4161 timeout--; 4162 if (!timeout) 4163 return -EBUSY; 4164 usleep_range(1000, 2000); 4165 } 4166 4167 if (new_tx) 4168 vsi->req_txq = (u16)new_tx; 4169 if (new_rx) 4170 vsi->req_rxq = (u16)new_rx; 4171 4172 /* set for the next time the netdev is started */ 4173 if (!netif_running(vsi->netdev)) { 4174 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4175 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4176 goto done; 4177 } 4178 4179 ice_vsi_close(vsi); 4180 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4181 ice_pf_dcb_recfg(pf, locked); 4182 ice_vsi_open(vsi); 4183 done: 4184 clear_bit(ICE_CFG_BUSY, pf->state); 4185 return err; 4186 } 4187 4188 /** 4189 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4190 * @pf: PF to configure 4191 * 4192 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4193 * VSI can still Tx/Rx VLAN tagged packets. 4194 */ 4195 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4196 { 4197 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4198 struct ice_vsi_ctx *ctxt; 4199 struct ice_hw *hw; 4200 int status; 4201 4202 if (!vsi) 4203 return; 4204 4205 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4206 if (!ctxt) 4207 return; 4208 4209 hw = &pf->hw; 4210 ctxt->info = vsi->info; 4211 4212 ctxt->info.valid_sections = 4213 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4214 ICE_AQ_VSI_PROP_SECURITY_VALID | 4215 ICE_AQ_VSI_PROP_SW_VALID); 4216 4217 /* disable VLAN anti-spoof */ 4218 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4219 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4220 4221 /* disable VLAN pruning and keep all other settings */ 4222 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4223 4224 /* allow all VLANs on Tx and don't strip on Rx */ 4225 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4226 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4227 4228 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4229 if (status) { 4230 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4231 status, ice_aq_str(hw->adminq.sq_last_status)); 4232 } else { 4233 vsi->info.sec_flags = ctxt->info.sec_flags; 4234 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4235 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4236 } 4237 4238 kfree(ctxt); 4239 } 4240 4241 /** 4242 * ice_log_pkg_init - log result of DDP package load 4243 * @hw: pointer to hardware info 4244 * @state: state of package load 4245 */ 4246 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4247 { 4248 struct ice_pf *pf = hw->back; 4249 struct device *dev; 4250 4251 dev = ice_pf_to_dev(pf); 4252 4253 switch (state) { 4254 case ICE_DDP_PKG_SUCCESS: 4255 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4256 hw->active_pkg_name, 4257 hw->active_pkg_ver.major, 4258 hw->active_pkg_ver.minor, 4259 hw->active_pkg_ver.update, 4260 hw->active_pkg_ver.draft); 4261 break; 4262 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4263 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4264 hw->active_pkg_name, 4265 hw->active_pkg_ver.major, 4266 hw->active_pkg_ver.minor, 4267 hw->active_pkg_ver.update, 4268 hw->active_pkg_ver.draft); 4269 break; 4270 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4271 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4272 hw->active_pkg_name, 4273 hw->active_pkg_ver.major, 4274 hw->active_pkg_ver.minor, 4275 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4276 break; 4277 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4278 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4279 hw->active_pkg_name, 4280 hw->active_pkg_ver.major, 4281 hw->active_pkg_ver.minor, 4282 hw->active_pkg_ver.update, 4283 hw->active_pkg_ver.draft, 4284 hw->pkg_name, 4285 hw->pkg_ver.major, 4286 hw->pkg_ver.minor, 4287 hw->pkg_ver.update, 4288 hw->pkg_ver.draft); 4289 break; 4290 case ICE_DDP_PKG_FW_MISMATCH: 4291 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_INVALID_FILE: 4294 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4297 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4300 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4301 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4302 break; 4303 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4304 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4305 break; 4306 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4307 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4308 break; 4309 case ICE_DDP_PKG_LOAD_ERROR: 4310 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4311 /* poll for reset to complete */ 4312 if (ice_check_reset(hw)) 4313 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4314 break; 4315 case ICE_DDP_PKG_ERR: 4316 default: 4317 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4318 break; 4319 } 4320 } 4321 4322 /** 4323 * ice_load_pkg - load/reload the DDP Package file 4324 * @firmware: firmware structure when firmware requested or NULL for reload 4325 * @pf: pointer to the PF instance 4326 * 4327 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4328 * initialize HW tables. 4329 */ 4330 static void 4331 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4332 { 4333 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4334 struct device *dev = ice_pf_to_dev(pf); 4335 struct ice_hw *hw = &pf->hw; 4336 4337 /* Load DDP Package */ 4338 if (firmware && !hw->pkg_copy) { 4339 state = ice_copy_and_init_pkg(hw, firmware->data, 4340 firmware->size); 4341 ice_log_pkg_init(hw, state); 4342 } else if (!firmware && hw->pkg_copy) { 4343 /* Reload package during rebuild after CORER/GLOBR reset */ 4344 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4345 ice_log_pkg_init(hw, state); 4346 } else { 4347 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4348 } 4349 4350 if (!ice_is_init_pkg_successful(state)) { 4351 /* Safe Mode */ 4352 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4353 return; 4354 } 4355 4356 /* Successful download package is the precondition for advanced 4357 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4358 */ 4359 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4360 } 4361 4362 /** 4363 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4364 * @pf: pointer to the PF structure 4365 * 4366 * There is no error returned here because the driver should be able to handle 4367 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4368 * specifically with Tx. 4369 */ 4370 static void ice_verify_cacheline_size(struct ice_pf *pf) 4371 { 4372 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4373 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4374 ICE_CACHE_LINE_BYTES); 4375 } 4376 4377 /** 4378 * ice_send_version - update firmware with driver version 4379 * @pf: PF struct 4380 * 4381 * Returns 0 on success, else error code 4382 */ 4383 static int ice_send_version(struct ice_pf *pf) 4384 { 4385 struct ice_driver_ver dv; 4386 4387 dv.major_ver = 0xff; 4388 dv.minor_ver = 0xff; 4389 dv.build_ver = 0xff; 4390 dv.subbuild_ver = 0; 4391 strscpy((char *)dv.driver_string, UTS_RELEASE, 4392 sizeof(dv.driver_string)); 4393 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4394 } 4395 4396 /** 4397 * ice_init_fdir - Initialize flow director VSI and configuration 4398 * @pf: pointer to the PF instance 4399 * 4400 * returns 0 on success, negative on error 4401 */ 4402 static int ice_init_fdir(struct ice_pf *pf) 4403 { 4404 struct device *dev = ice_pf_to_dev(pf); 4405 struct ice_vsi *ctrl_vsi; 4406 int err; 4407 4408 /* Side Band Flow Director needs to have a control VSI. 4409 * Allocate it and store it in the PF. 4410 */ 4411 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4412 if (!ctrl_vsi) { 4413 dev_dbg(dev, "could not create control VSI\n"); 4414 return -ENOMEM; 4415 } 4416 4417 err = ice_vsi_open_ctrl(ctrl_vsi); 4418 if (err) { 4419 dev_dbg(dev, "could not open control VSI\n"); 4420 goto err_vsi_open; 4421 } 4422 4423 mutex_init(&pf->hw.fdir_fltr_lock); 4424 4425 err = ice_fdir_create_dflt_rules(pf); 4426 if (err) 4427 goto err_fdir_rule; 4428 4429 return 0; 4430 4431 err_fdir_rule: 4432 ice_fdir_release_flows(&pf->hw); 4433 ice_vsi_close(ctrl_vsi); 4434 err_vsi_open: 4435 ice_vsi_release(ctrl_vsi); 4436 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4437 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4438 pf->ctrl_vsi_idx = ICE_NO_VSI; 4439 } 4440 return err; 4441 } 4442 4443 static void ice_deinit_fdir(struct ice_pf *pf) 4444 { 4445 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4446 4447 if (!vsi) 4448 return; 4449 4450 ice_vsi_manage_fdir(vsi, false); 4451 ice_vsi_release(vsi); 4452 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4453 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4454 pf->ctrl_vsi_idx = ICE_NO_VSI; 4455 } 4456 4457 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4458 } 4459 4460 /** 4461 * ice_get_opt_fw_name - return optional firmware file name or NULL 4462 * @pf: pointer to the PF instance 4463 */ 4464 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4465 { 4466 /* Optional firmware name same as default with additional dash 4467 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4468 */ 4469 struct pci_dev *pdev = pf->pdev; 4470 char *opt_fw_filename; 4471 u64 dsn; 4472 4473 /* Determine the name of the optional file using the DSN (two 4474 * dwords following the start of the DSN Capability). 4475 */ 4476 dsn = pci_get_dsn(pdev); 4477 if (!dsn) 4478 return NULL; 4479 4480 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4481 if (!opt_fw_filename) 4482 return NULL; 4483 4484 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4485 ICE_DDP_PKG_PATH, dsn); 4486 4487 return opt_fw_filename; 4488 } 4489 4490 /** 4491 * ice_request_fw - Device initialization routine 4492 * @pf: pointer to the PF instance 4493 */ 4494 static void ice_request_fw(struct ice_pf *pf) 4495 { 4496 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4497 const struct firmware *firmware = NULL; 4498 struct device *dev = ice_pf_to_dev(pf); 4499 int err = 0; 4500 4501 /* optional device-specific DDP (if present) overrides the default DDP 4502 * package file. kernel logs a debug message if the file doesn't exist, 4503 * and warning messages for other errors. 4504 */ 4505 if (opt_fw_filename) { 4506 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4507 if (err) { 4508 kfree(opt_fw_filename); 4509 goto dflt_pkg_load; 4510 } 4511 4512 /* request for firmware was successful. Download to device */ 4513 ice_load_pkg(firmware, pf); 4514 kfree(opt_fw_filename); 4515 release_firmware(firmware); 4516 return; 4517 } 4518 4519 dflt_pkg_load: 4520 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4521 if (err) { 4522 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4523 return; 4524 } 4525 4526 /* request for firmware was successful. Download to device */ 4527 ice_load_pkg(firmware, pf); 4528 release_firmware(firmware); 4529 } 4530 4531 /** 4532 * ice_print_wake_reason - show the wake up cause in the log 4533 * @pf: pointer to the PF struct 4534 */ 4535 static void ice_print_wake_reason(struct ice_pf *pf) 4536 { 4537 u32 wus = pf->wakeup_reason; 4538 const char *wake_str; 4539 4540 /* if no wake event, nothing to print */ 4541 if (!wus) 4542 return; 4543 4544 if (wus & PFPM_WUS_LNKC_M) 4545 wake_str = "Link\n"; 4546 else if (wus & PFPM_WUS_MAG_M) 4547 wake_str = "Magic Packet\n"; 4548 else if (wus & PFPM_WUS_MNG_M) 4549 wake_str = "Management\n"; 4550 else if (wus & PFPM_WUS_FW_RST_WK_M) 4551 wake_str = "Firmware Reset\n"; 4552 else 4553 wake_str = "Unknown\n"; 4554 4555 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4556 } 4557 4558 /** 4559 * ice_register_netdev - register netdev 4560 * @vsi: pointer to the VSI struct 4561 */ 4562 static int ice_register_netdev(struct ice_vsi *vsi) 4563 { 4564 int err; 4565 4566 if (!vsi || !vsi->netdev) 4567 return -EIO; 4568 4569 err = register_netdev(vsi->netdev); 4570 if (err) 4571 return err; 4572 4573 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4574 netif_carrier_off(vsi->netdev); 4575 netif_tx_stop_all_queues(vsi->netdev); 4576 4577 return 0; 4578 } 4579 4580 static void ice_unregister_netdev(struct ice_vsi *vsi) 4581 { 4582 if (!vsi || !vsi->netdev) 4583 return; 4584 4585 unregister_netdev(vsi->netdev); 4586 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4587 } 4588 4589 /** 4590 * ice_cfg_netdev - Allocate, configure and register a netdev 4591 * @vsi: the VSI associated with the new netdev 4592 * 4593 * Returns 0 on success, negative value on failure 4594 */ 4595 static int ice_cfg_netdev(struct ice_vsi *vsi) 4596 { 4597 struct ice_netdev_priv *np; 4598 struct net_device *netdev; 4599 u8 mac_addr[ETH_ALEN]; 4600 4601 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4602 vsi->alloc_rxq); 4603 if (!netdev) 4604 return -ENOMEM; 4605 4606 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4607 vsi->netdev = netdev; 4608 np = netdev_priv(netdev); 4609 np->vsi = vsi; 4610 4611 ice_set_netdev_features(netdev); 4612 ice_set_ops(vsi); 4613 4614 if (vsi->type == ICE_VSI_PF) { 4615 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4616 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4617 eth_hw_addr_set(netdev, mac_addr); 4618 } 4619 4620 netdev->priv_flags |= IFF_UNICAST_FLT; 4621 4622 /* Setup netdev TC information */ 4623 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4624 4625 netdev->max_mtu = ICE_MAX_MTU; 4626 4627 return 0; 4628 } 4629 4630 static void ice_decfg_netdev(struct ice_vsi *vsi) 4631 { 4632 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4633 free_netdev(vsi->netdev); 4634 vsi->netdev = NULL; 4635 } 4636 4637 static int ice_start_eth(struct ice_vsi *vsi) 4638 { 4639 int err; 4640 4641 err = ice_init_mac_fltr(vsi->back); 4642 if (err) 4643 return err; 4644 4645 rtnl_lock(); 4646 err = ice_vsi_open(vsi); 4647 rtnl_unlock(); 4648 4649 return err; 4650 } 4651 4652 static void ice_stop_eth(struct ice_vsi *vsi) 4653 { 4654 ice_fltr_remove_all(vsi); 4655 ice_vsi_close(vsi); 4656 } 4657 4658 static int ice_init_eth(struct ice_pf *pf) 4659 { 4660 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4661 int err; 4662 4663 if (!vsi) 4664 return -EINVAL; 4665 4666 /* init channel list */ 4667 INIT_LIST_HEAD(&vsi->ch_list); 4668 4669 err = ice_cfg_netdev(vsi); 4670 if (err) 4671 return err; 4672 /* Setup DCB netlink interface */ 4673 ice_dcbnl_setup(vsi); 4674 4675 err = ice_init_mac_fltr(pf); 4676 if (err) 4677 goto err_init_mac_fltr; 4678 4679 err = ice_devlink_create_pf_port(pf); 4680 if (err) 4681 goto err_devlink_create_pf_port; 4682 4683 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4684 4685 err = ice_register_netdev(vsi); 4686 if (err) 4687 goto err_register_netdev; 4688 4689 err = ice_tc_indir_block_register(vsi); 4690 if (err) 4691 goto err_tc_indir_block_register; 4692 4693 ice_napi_add(vsi); 4694 4695 return 0; 4696 4697 err_tc_indir_block_register: 4698 ice_unregister_netdev(vsi); 4699 err_register_netdev: 4700 ice_devlink_destroy_pf_port(pf); 4701 err_devlink_create_pf_port: 4702 err_init_mac_fltr: 4703 ice_decfg_netdev(vsi); 4704 return err; 4705 } 4706 4707 static void ice_deinit_eth(struct ice_pf *pf) 4708 { 4709 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4710 4711 if (!vsi) 4712 return; 4713 4714 ice_vsi_close(vsi); 4715 ice_unregister_netdev(vsi); 4716 ice_devlink_destroy_pf_port(pf); 4717 ice_tc_indir_block_unregister(vsi); 4718 ice_decfg_netdev(vsi); 4719 } 4720 4721 static int ice_init_dev(struct ice_pf *pf) 4722 { 4723 struct device *dev = ice_pf_to_dev(pf); 4724 struct ice_hw *hw = &pf->hw; 4725 int err; 4726 4727 err = ice_init_hw(hw); 4728 if (err) { 4729 dev_err(dev, "ice_init_hw failed: %d\n", err); 4730 return err; 4731 } 4732 4733 ice_init_feature_support(pf); 4734 4735 ice_request_fw(pf); 4736 4737 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4738 * set in pf->state, which will cause ice_is_safe_mode to return 4739 * true 4740 */ 4741 if (ice_is_safe_mode(pf)) { 4742 /* we already got function/device capabilities but these don't 4743 * reflect what the driver needs to do in safe mode. Instead of 4744 * adding conditional logic everywhere to ignore these 4745 * device/function capabilities, override them. 4746 */ 4747 ice_set_safe_mode_caps(hw); 4748 } 4749 4750 err = ice_init_pf(pf); 4751 if (err) { 4752 dev_err(dev, "ice_init_pf failed: %d\n", err); 4753 goto err_init_pf; 4754 } 4755 4756 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4757 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4758 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4759 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4760 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4761 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4762 pf->hw.tnl.valid_count[TNL_VXLAN]; 4763 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4764 UDP_TUNNEL_TYPE_VXLAN; 4765 } 4766 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4767 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4768 pf->hw.tnl.valid_count[TNL_GENEVE]; 4769 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4770 UDP_TUNNEL_TYPE_GENEVE; 4771 } 4772 4773 err = ice_init_interrupt_scheme(pf); 4774 if (err) { 4775 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4776 err = -EIO; 4777 goto err_init_interrupt_scheme; 4778 } 4779 4780 /* In case of MSIX we are going to setup the misc vector right here 4781 * to handle admin queue events etc. In case of legacy and MSI 4782 * the misc functionality and queue processing is combined in 4783 * the same vector and that gets setup at open. 4784 */ 4785 err = ice_req_irq_msix_misc(pf); 4786 if (err) { 4787 dev_err(dev, "setup of misc vector failed: %d\n", err); 4788 goto err_req_irq_msix_misc; 4789 } 4790 4791 return 0; 4792 4793 err_req_irq_msix_misc: 4794 ice_clear_interrupt_scheme(pf); 4795 err_init_interrupt_scheme: 4796 ice_deinit_pf(pf); 4797 err_init_pf: 4798 ice_deinit_hw(hw); 4799 return err; 4800 } 4801 4802 static void ice_deinit_dev(struct ice_pf *pf) 4803 { 4804 ice_free_irq_msix_misc(pf); 4805 ice_deinit_pf(pf); 4806 ice_deinit_hw(&pf->hw); 4807 4808 /* Service task is already stopped, so call reset directly. */ 4809 ice_reset(&pf->hw, ICE_RESET_PFR); 4810 pci_wait_for_pending_transaction(pf->pdev); 4811 ice_clear_interrupt_scheme(pf); 4812 } 4813 4814 static void ice_init_features(struct ice_pf *pf) 4815 { 4816 struct device *dev = ice_pf_to_dev(pf); 4817 4818 if (ice_is_safe_mode(pf)) 4819 return; 4820 4821 /* initialize DDP driven features */ 4822 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4823 ice_ptp_init(pf); 4824 4825 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4826 ice_gnss_init(pf); 4827 4828 /* Note: Flow director init failure is non-fatal to load */ 4829 if (ice_init_fdir(pf)) 4830 dev_err(dev, "could not initialize flow director\n"); 4831 4832 /* Note: DCB init failure is non-fatal to load */ 4833 if (ice_init_pf_dcb(pf, false)) { 4834 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4835 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4836 } else { 4837 ice_cfg_lldp_mib_change(&pf->hw, true); 4838 } 4839 4840 if (ice_init_lag(pf)) 4841 dev_warn(dev, "Failed to init link aggregation support\n"); 4842 } 4843 4844 static void ice_deinit_features(struct ice_pf *pf) 4845 { 4846 ice_deinit_lag(pf); 4847 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4848 ice_cfg_lldp_mib_change(&pf->hw, false); 4849 ice_deinit_fdir(pf); 4850 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4851 ice_gnss_exit(pf); 4852 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4853 ice_ptp_release(pf); 4854 } 4855 4856 static void ice_init_wakeup(struct ice_pf *pf) 4857 { 4858 /* Save wakeup reason register for later use */ 4859 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4860 4861 /* check for a power management event */ 4862 ice_print_wake_reason(pf); 4863 4864 /* clear wake status, all bits */ 4865 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4866 4867 /* Disable WoL at init, wait for user to enable */ 4868 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4869 } 4870 4871 static int ice_init_link(struct ice_pf *pf) 4872 { 4873 struct device *dev = ice_pf_to_dev(pf); 4874 int err; 4875 4876 err = ice_init_link_events(pf->hw.port_info); 4877 if (err) { 4878 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4879 return err; 4880 } 4881 4882 /* not a fatal error if this fails */ 4883 err = ice_init_nvm_phy_type(pf->hw.port_info); 4884 if (err) 4885 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4886 4887 /* not a fatal error if this fails */ 4888 err = ice_update_link_info(pf->hw.port_info); 4889 if (err) 4890 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4891 4892 ice_init_link_dflt_override(pf->hw.port_info); 4893 4894 ice_check_link_cfg_err(pf, 4895 pf->hw.port_info->phy.link_info.link_cfg_err); 4896 4897 /* if media available, initialize PHY settings */ 4898 if (pf->hw.port_info->phy.link_info.link_info & 4899 ICE_AQ_MEDIA_AVAILABLE) { 4900 /* not a fatal error if this fails */ 4901 err = ice_init_phy_user_cfg(pf->hw.port_info); 4902 if (err) 4903 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4904 4905 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4906 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4907 4908 if (vsi) 4909 ice_configure_phy(vsi); 4910 } 4911 } else { 4912 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4913 } 4914 4915 return err; 4916 } 4917 4918 static int ice_init_pf_sw(struct ice_pf *pf) 4919 { 4920 bool dvm = ice_is_dvm_ena(&pf->hw); 4921 struct ice_vsi *vsi; 4922 int err; 4923 4924 /* create switch struct for the switch element created by FW on boot */ 4925 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4926 if (!pf->first_sw) 4927 return -ENOMEM; 4928 4929 if (pf->hw.evb_veb) 4930 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4931 else 4932 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4933 4934 pf->first_sw->pf = pf; 4935 4936 /* record the sw_id available for later use */ 4937 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4938 4939 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4940 if (err) 4941 goto err_aq_set_port_params; 4942 4943 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4944 if (!vsi) { 4945 err = -ENOMEM; 4946 goto err_pf_vsi_setup; 4947 } 4948 4949 return 0; 4950 4951 err_pf_vsi_setup: 4952 err_aq_set_port_params: 4953 kfree(pf->first_sw); 4954 return err; 4955 } 4956 4957 static void ice_deinit_pf_sw(struct ice_pf *pf) 4958 { 4959 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4960 4961 if (!vsi) 4962 return; 4963 4964 ice_vsi_release(vsi); 4965 kfree(pf->first_sw); 4966 } 4967 4968 static int ice_alloc_vsis(struct ice_pf *pf) 4969 { 4970 struct device *dev = ice_pf_to_dev(pf); 4971 4972 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4973 if (!pf->num_alloc_vsi) 4974 return -EIO; 4975 4976 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4977 dev_warn(dev, 4978 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4979 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4980 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4981 } 4982 4983 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4984 GFP_KERNEL); 4985 if (!pf->vsi) 4986 return -ENOMEM; 4987 4988 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4989 sizeof(*pf->vsi_stats), GFP_KERNEL); 4990 if (!pf->vsi_stats) { 4991 devm_kfree(dev, pf->vsi); 4992 return -ENOMEM; 4993 } 4994 4995 return 0; 4996 } 4997 4998 static void ice_dealloc_vsis(struct ice_pf *pf) 4999 { 5000 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5001 pf->vsi_stats = NULL; 5002 5003 pf->num_alloc_vsi = 0; 5004 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5005 pf->vsi = NULL; 5006 } 5007 5008 static int ice_init_devlink(struct ice_pf *pf) 5009 { 5010 int err; 5011 5012 err = ice_devlink_register_params(pf); 5013 if (err) 5014 return err; 5015 5016 ice_devlink_init_regions(pf); 5017 ice_devlink_register(pf); 5018 5019 return 0; 5020 } 5021 5022 static void ice_deinit_devlink(struct ice_pf *pf) 5023 { 5024 ice_devlink_unregister(pf); 5025 ice_devlink_destroy_regions(pf); 5026 ice_devlink_unregister_params(pf); 5027 } 5028 5029 static int ice_init(struct ice_pf *pf) 5030 { 5031 int err; 5032 5033 err = ice_init_dev(pf); 5034 if (err) 5035 return err; 5036 5037 err = ice_alloc_vsis(pf); 5038 if (err) 5039 goto err_alloc_vsis; 5040 5041 err = ice_init_pf_sw(pf); 5042 if (err) 5043 goto err_init_pf_sw; 5044 5045 ice_init_wakeup(pf); 5046 5047 err = ice_init_link(pf); 5048 if (err) 5049 goto err_init_link; 5050 5051 err = ice_send_version(pf); 5052 if (err) 5053 goto err_init_link; 5054 5055 ice_verify_cacheline_size(pf); 5056 5057 if (ice_is_safe_mode(pf)) 5058 ice_set_safe_mode_vlan_cfg(pf); 5059 else 5060 /* print PCI link speed and width */ 5061 pcie_print_link_status(pf->pdev); 5062 5063 /* ready to go, so clear down state bit */ 5064 clear_bit(ICE_DOWN, pf->state); 5065 clear_bit(ICE_SERVICE_DIS, pf->state); 5066 5067 /* since everything is good, start the service timer */ 5068 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5069 5070 return 0; 5071 5072 err_init_link: 5073 ice_deinit_pf_sw(pf); 5074 err_init_pf_sw: 5075 ice_dealloc_vsis(pf); 5076 err_alloc_vsis: 5077 ice_deinit_dev(pf); 5078 return err; 5079 } 5080 5081 static void ice_deinit(struct ice_pf *pf) 5082 { 5083 set_bit(ICE_SERVICE_DIS, pf->state); 5084 set_bit(ICE_DOWN, pf->state); 5085 5086 ice_deinit_pf_sw(pf); 5087 ice_dealloc_vsis(pf); 5088 ice_deinit_dev(pf); 5089 } 5090 5091 /** 5092 * ice_load - load pf by init hw and starting VSI 5093 * @pf: pointer to the pf instance 5094 */ 5095 int ice_load(struct ice_pf *pf) 5096 { 5097 struct ice_vsi_cfg_params params = {}; 5098 struct ice_vsi *vsi; 5099 int err; 5100 5101 err = ice_init_dev(pf); 5102 if (err) 5103 return err; 5104 5105 vsi = ice_get_main_vsi(pf); 5106 5107 params = ice_vsi_to_params(vsi); 5108 params.flags = ICE_VSI_FLAG_INIT; 5109 5110 err = ice_vsi_cfg(vsi, ¶ms); 5111 if (err) 5112 goto err_vsi_cfg; 5113 5114 err = ice_start_eth(ice_get_main_vsi(pf)); 5115 if (err) 5116 goto err_start_eth; 5117 5118 err = ice_init_rdma(pf); 5119 if (err) 5120 goto err_init_rdma; 5121 5122 ice_init_features(pf); 5123 ice_service_task_restart(pf); 5124 5125 clear_bit(ICE_DOWN, pf->state); 5126 5127 return 0; 5128 5129 err_init_rdma: 5130 ice_vsi_close(ice_get_main_vsi(pf)); 5131 err_start_eth: 5132 ice_vsi_decfg(ice_get_main_vsi(pf)); 5133 err_vsi_cfg: 5134 ice_deinit_dev(pf); 5135 return err; 5136 } 5137 5138 /** 5139 * ice_unload - unload pf by stopping VSI and deinit hw 5140 * @pf: pointer to the pf instance 5141 */ 5142 void ice_unload(struct ice_pf *pf) 5143 { 5144 ice_deinit_features(pf); 5145 ice_deinit_rdma(pf); 5146 ice_stop_eth(ice_get_main_vsi(pf)); 5147 ice_vsi_decfg(ice_get_main_vsi(pf)); 5148 ice_deinit_dev(pf); 5149 } 5150 5151 /** 5152 * ice_probe - Device initialization routine 5153 * @pdev: PCI device information struct 5154 * @ent: entry in ice_pci_tbl 5155 * 5156 * Returns 0 on success, negative on failure 5157 */ 5158 static int 5159 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5160 { 5161 struct device *dev = &pdev->dev; 5162 struct ice_pf *pf; 5163 struct ice_hw *hw; 5164 int err; 5165 5166 if (pdev->is_virtfn) { 5167 dev_err(dev, "can't probe a virtual function\n"); 5168 return -EINVAL; 5169 } 5170 5171 /* this driver uses devres, see 5172 * Documentation/driver-api/driver-model/devres.rst 5173 */ 5174 err = pcim_enable_device(pdev); 5175 if (err) 5176 return err; 5177 5178 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5179 if (err) { 5180 dev_err(dev, "BAR0 I/O map error %d\n", err); 5181 return err; 5182 } 5183 5184 pf = ice_allocate_pf(dev); 5185 if (!pf) 5186 return -ENOMEM; 5187 5188 /* initialize Auxiliary index to invalid value */ 5189 pf->aux_idx = -1; 5190 5191 /* set up for high or low DMA */ 5192 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5193 if (err) { 5194 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5195 return err; 5196 } 5197 5198 pci_set_master(pdev); 5199 5200 pf->pdev = pdev; 5201 pci_set_drvdata(pdev, pf); 5202 set_bit(ICE_DOWN, pf->state); 5203 /* Disable service task until DOWN bit is cleared */ 5204 set_bit(ICE_SERVICE_DIS, pf->state); 5205 5206 hw = &pf->hw; 5207 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5208 pci_save_state(pdev); 5209 5210 hw->back = pf; 5211 hw->port_info = NULL; 5212 hw->vendor_id = pdev->vendor; 5213 hw->device_id = pdev->device; 5214 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5215 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5216 hw->subsystem_device_id = pdev->subsystem_device; 5217 hw->bus.device = PCI_SLOT(pdev->devfn); 5218 hw->bus.func = PCI_FUNC(pdev->devfn); 5219 ice_set_ctrlq_len(hw); 5220 5221 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5222 5223 #ifndef CONFIG_DYNAMIC_DEBUG 5224 if (debug < -1) 5225 hw->debug_mask = debug; 5226 #endif 5227 5228 err = ice_init(pf); 5229 if (err) 5230 goto err_init; 5231 5232 err = ice_init_eth(pf); 5233 if (err) 5234 goto err_init_eth; 5235 5236 err = ice_init_rdma(pf); 5237 if (err) 5238 goto err_init_rdma; 5239 5240 err = ice_init_devlink(pf); 5241 if (err) 5242 goto err_init_devlink; 5243 5244 ice_init_features(pf); 5245 5246 return 0; 5247 5248 err_init_devlink: 5249 ice_deinit_rdma(pf); 5250 err_init_rdma: 5251 ice_deinit_eth(pf); 5252 err_init_eth: 5253 ice_deinit(pf); 5254 err_init: 5255 pci_disable_device(pdev); 5256 return err; 5257 } 5258 5259 /** 5260 * ice_set_wake - enable or disable Wake on LAN 5261 * @pf: pointer to the PF struct 5262 * 5263 * Simple helper for WoL control 5264 */ 5265 static void ice_set_wake(struct ice_pf *pf) 5266 { 5267 struct ice_hw *hw = &pf->hw; 5268 bool wol = pf->wol_ena; 5269 5270 /* clear wake state, otherwise new wake events won't fire */ 5271 wr32(hw, PFPM_WUS, U32_MAX); 5272 5273 /* enable / disable APM wake up, no RMW needed */ 5274 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5275 5276 /* set magic packet filter enabled */ 5277 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5278 } 5279 5280 /** 5281 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5282 * @pf: pointer to the PF struct 5283 * 5284 * Issue firmware command to enable multicast magic wake, making 5285 * sure that any locally administered address (LAA) is used for 5286 * wake, and that PF reset doesn't undo the LAA. 5287 */ 5288 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5289 { 5290 struct device *dev = ice_pf_to_dev(pf); 5291 struct ice_hw *hw = &pf->hw; 5292 u8 mac_addr[ETH_ALEN]; 5293 struct ice_vsi *vsi; 5294 int status; 5295 u8 flags; 5296 5297 if (!pf->wol_ena) 5298 return; 5299 5300 vsi = ice_get_main_vsi(pf); 5301 if (!vsi) 5302 return; 5303 5304 /* Get current MAC address in case it's an LAA */ 5305 if (vsi->netdev) 5306 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5307 else 5308 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5309 5310 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5311 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5312 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5313 5314 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5315 if (status) 5316 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5317 status, ice_aq_str(hw->adminq.sq_last_status)); 5318 } 5319 5320 /** 5321 * ice_remove - Device removal routine 5322 * @pdev: PCI device information struct 5323 */ 5324 static void ice_remove(struct pci_dev *pdev) 5325 { 5326 struct ice_pf *pf = pci_get_drvdata(pdev); 5327 int i; 5328 5329 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5330 if (!ice_is_reset_in_progress(pf->state)) 5331 break; 5332 msleep(100); 5333 } 5334 5335 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5336 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5337 ice_free_vfs(pf); 5338 } 5339 5340 ice_service_task_stop(pf); 5341 ice_aq_cancel_waiting_tasks(pf); 5342 set_bit(ICE_DOWN, pf->state); 5343 5344 if (!ice_is_safe_mode(pf)) 5345 ice_remove_arfs(pf); 5346 ice_deinit_features(pf); 5347 ice_deinit_devlink(pf); 5348 ice_deinit_rdma(pf); 5349 ice_deinit_eth(pf); 5350 ice_deinit(pf); 5351 5352 ice_vsi_release_all(pf); 5353 5354 ice_setup_mc_magic_wake(pf); 5355 ice_set_wake(pf); 5356 5357 pci_disable_device(pdev); 5358 } 5359 5360 /** 5361 * ice_shutdown - PCI callback for shutting down device 5362 * @pdev: PCI device information struct 5363 */ 5364 static void ice_shutdown(struct pci_dev *pdev) 5365 { 5366 struct ice_pf *pf = pci_get_drvdata(pdev); 5367 5368 ice_remove(pdev); 5369 5370 if (system_state == SYSTEM_POWER_OFF) { 5371 pci_wake_from_d3(pdev, pf->wol_ena); 5372 pci_set_power_state(pdev, PCI_D3hot); 5373 } 5374 } 5375 5376 #ifdef CONFIG_PM 5377 /** 5378 * ice_prepare_for_shutdown - prep for PCI shutdown 5379 * @pf: board private structure 5380 * 5381 * Inform or close all dependent features in prep for PCI device shutdown 5382 */ 5383 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5384 { 5385 struct ice_hw *hw = &pf->hw; 5386 u32 v; 5387 5388 /* Notify VFs of impending reset */ 5389 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5390 ice_vc_notify_reset(pf); 5391 5392 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5393 5394 /* disable the VSIs and their queues that are not already DOWN */ 5395 ice_pf_dis_all_vsi(pf, false); 5396 5397 ice_for_each_vsi(pf, v) 5398 if (pf->vsi[v]) 5399 pf->vsi[v]->vsi_num = 0; 5400 5401 ice_shutdown_all_ctrlq(hw); 5402 } 5403 5404 /** 5405 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5406 * @pf: board private structure to reinitialize 5407 * 5408 * This routine reinitialize interrupt scheme that was cleared during 5409 * power management suspend callback. 5410 * 5411 * This should be called during resume routine to re-allocate the q_vectors 5412 * and reacquire interrupts. 5413 */ 5414 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5415 { 5416 struct device *dev = ice_pf_to_dev(pf); 5417 int ret, v; 5418 5419 /* Since we clear MSIX flag during suspend, we need to 5420 * set it back during resume... 5421 */ 5422 5423 ret = ice_init_interrupt_scheme(pf); 5424 if (ret) { 5425 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5426 return ret; 5427 } 5428 5429 /* Remap vectors and rings, after successful re-init interrupts */ 5430 ice_for_each_vsi(pf, v) { 5431 if (!pf->vsi[v]) 5432 continue; 5433 5434 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5435 if (ret) 5436 goto err_reinit; 5437 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5438 } 5439 5440 ret = ice_req_irq_msix_misc(pf); 5441 if (ret) { 5442 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5443 ret); 5444 goto err_reinit; 5445 } 5446 5447 return 0; 5448 5449 err_reinit: 5450 while (v--) 5451 if (pf->vsi[v]) 5452 ice_vsi_free_q_vectors(pf->vsi[v]); 5453 5454 return ret; 5455 } 5456 5457 /** 5458 * ice_suspend 5459 * @dev: generic device information structure 5460 * 5461 * Power Management callback to quiesce the device and prepare 5462 * for D3 transition. 5463 */ 5464 static int __maybe_unused ice_suspend(struct device *dev) 5465 { 5466 struct pci_dev *pdev = to_pci_dev(dev); 5467 struct ice_pf *pf; 5468 int disabled, v; 5469 5470 pf = pci_get_drvdata(pdev); 5471 5472 if (!ice_pf_state_is_nominal(pf)) { 5473 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5474 return -EBUSY; 5475 } 5476 5477 /* Stop watchdog tasks until resume completion. 5478 * Even though it is most likely that the service task is 5479 * disabled if the device is suspended or down, the service task's 5480 * state is controlled by a different state bit, and we should 5481 * store and honor whatever state that bit is in at this point. 5482 */ 5483 disabled = ice_service_task_stop(pf); 5484 5485 ice_unplug_aux_dev(pf); 5486 5487 /* Already suspended?, then there is nothing to do */ 5488 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5489 if (!disabled) 5490 ice_service_task_restart(pf); 5491 return 0; 5492 } 5493 5494 if (test_bit(ICE_DOWN, pf->state) || 5495 ice_is_reset_in_progress(pf->state)) { 5496 dev_err(dev, "can't suspend device in reset or already down\n"); 5497 if (!disabled) 5498 ice_service_task_restart(pf); 5499 return 0; 5500 } 5501 5502 ice_setup_mc_magic_wake(pf); 5503 5504 ice_prepare_for_shutdown(pf); 5505 5506 ice_set_wake(pf); 5507 5508 /* Free vectors, clear the interrupt scheme and release IRQs 5509 * for proper hibernation, especially with large number of CPUs. 5510 * Otherwise hibernation might fail when mapping all the vectors back 5511 * to CPU0. 5512 */ 5513 ice_free_irq_msix_misc(pf); 5514 ice_for_each_vsi(pf, v) { 5515 if (!pf->vsi[v]) 5516 continue; 5517 ice_vsi_free_q_vectors(pf->vsi[v]); 5518 } 5519 ice_clear_interrupt_scheme(pf); 5520 5521 pci_save_state(pdev); 5522 pci_wake_from_d3(pdev, pf->wol_ena); 5523 pci_set_power_state(pdev, PCI_D3hot); 5524 return 0; 5525 } 5526 5527 /** 5528 * ice_resume - PM callback for waking up from D3 5529 * @dev: generic device information structure 5530 */ 5531 static int __maybe_unused ice_resume(struct device *dev) 5532 { 5533 struct pci_dev *pdev = to_pci_dev(dev); 5534 enum ice_reset_req reset_type; 5535 struct ice_pf *pf; 5536 struct ice_hw *hw; 5537 int ret; 5538 5539 pci_set_power_state(pdev, PCI_D0); 5540 pci_restore_state(pdev); 5541 pci_save_state(pdev); 5542 5543 if (!pci_device_is_present(pdev)) 5544 return -ENODEV; 5545 5546 ret = pci_enable_device_mem(pdev); 5547 if (ret) { 5548 dev_err(dev, "Cannot enable device after suspend\n"); 5549 return ret; 5550 } 5551 5552 pf = pci_get_drvdata(pdev); 5553 hw = &pf->hw; 5554 5555 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5556 ice_print_wake_reason(pf); 5557 5558 /* We cleared the interrupt scheme when we suspended, so we need to 5559 * restore it now to resume device functionality. 5560 */ 5561 ret = ice_reinit_interrupt_scheme(pf); 5562 if (ret) 5563 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5564 5565 clear_bit(ICE_DOWN, pf->state); 5566 /* Now perform PF reset and rebuild */ 5567 reset_type = ICE_RESET_PFR; 5568 /* re-enable service task for reset, but allow reset to schedule it */ 5569 clear_bit(ICE_SERVICE_DIS, pf->state); 5570 5571 if (ice_schedule_reset(pf, reset_type)) 5572 dev_err(dev, "Reset during resume failed.\n"); 5573 5574 clear_bit(ICE_SUSPENDED, pf->state); 5575 ice_service_task_restart(pf); 5576 5577 /* Restart the service task */ 5578 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5579 5580 return 0; 5581 } 5582 #endif /* CONFIG_PM */ 5583 5584 /** 5585 * ice_pci_err_detected - warning that PCI error has been detected 5586 * @pdev: PCI device information struct 5587 * @err: the type of PCI error 5588 * 5589 * Called to warn that something happened on the PCI bus and the error handling 5590 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5591 */ 5592 static pci_ers_result_t 5593 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5594 { 5595 struct ice_pf *pf = pci_get_drvdata(pdev); 5596 5597 if (!pf) { 5598 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5599 __func__, err); 5600 return PCI_ERS_RESULT_DISCONNECT; 5601 } 5602 5603 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5604 ice_service_task_stop(pf); 5605 5606 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5607 set_bit(ICE_PFR_REQ, pf->state); 5608 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5609 } 5610 } 5611 5612 return PCI_ERS_RESULT_NEED_RESET; 5613 } 5614 5615 /** 5616 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5617 * @pdev: PCI device information struct 5618 * 5619 * Called to determine if the driver can recover from the PCI slot reset by 5620 * using a register read to determine if the device is recoverable. 5621 */ 5622 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5623 { 5624 struct ice_pf *pf = pci_get_drvdata(pdev); 5625 pci_ers_result_t result; 5626 int err; 5627 u32 reg; 5628 5629 err = pci_enable_device_mem(pdev); 5630 if (err) { 5631 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5632 err); 5633 result = PCI_ERS_RESULT_DISCONNECT; 5634 } else { 5635 pci_set_master(pdev); 5636 pci_restore_state(pdev); 5637 pci_save_state(pdev); 5638 pci_wake_from_d3(pdev, false); 5639 5640 /* Check for life */ 5641 reg = rd32(&pf->hw, GLGEN_RTRIG); 5642 if (!reg) 5643 result = PCI_ERS_RESULT_RECOVERED; 5644 else 5645 result = PCI_ERS_RESULT_DISCONNECT; 5646 } 5647 5648 return result; 5649 } 5650 5651 /** 5652 * ice_pci_err_resume - restart operations after PCI error recovery 5653 * @pdev: PCI device information struct 5654 * 5655 * Called to allow the driver to bring things back up after PCI error and/or 5656 * reset recovery have finished 5657 */ 5658 static void ice_pci_err_resume(struct pci_dev *pdev) 5659 { 5660 struct ice_pf *pf = pci_get_drvdata(pdev); 5661 5662 if (!pf) { 5663 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5664 __func__); 5665 return; 5666 } 5667 5668 if (test_bit(ICE_SUSPENDED, pf->state)) { 5669 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5670 __func__); 5671 return; 5672 } 5673 5674 ice_restore_all_vfs_msi_state(pdev); 5675 5676 ice_do_reset(pf, ICE_RESET_PFR); 5677 ice_service_task_restart(pf); 5678 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5679 } 5680 5681 /** 5682 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5683 * @pdev: PCI device information struct 5684 */ 5685 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5686 { 5687 struct ice_pf *pf = pci_get_drvdata(pdev); 5688 5689 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5690 ice_service_task_stop(pf); 5691 5692 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5693 set_bit(ICE_PFR_REQ, pf->state); 5694 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5695 } 5696 } 5697 } 5698 5699 /** 5700 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5701 * @pdev: PCI device information struct 5702 */ 5703 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5704 { 5705 ice_pci_err_resume(pdev); 5706 } 5707 5708 /* ice_pci_tbl - PCI Device ID Table 5709 * 5710 * Wildcard entries (PCI_ANY_ID) should come last 5711 * Last entry must be all 0s 5712 * 5713 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5714 * Class, Class Mask, private data (not used) } 5715 */ 5716 static const struct pci_device_id ice_pci_tbl[] = { 5717 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5718 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5719 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5743 /* required last entry */ 5744 { 0, } 5745 }; 5746 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5747 5748 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5749 5750 static const struct pci_error_handlers ice_pci_err_handler = { 5751 .error_detected = ice_pci_err_detected, 5752 .slot_reset = ice_pci_err_slot_reset, 5753 .reset_prepare = ice_pci_err_reset_prepare, 5754 .reset_done = ice_pci_err_reset_done, 5755 .resume = ice_pci_err_resume 5756 }; 5757 5758 static struct pci_driver ice_driver = { 5759 .name = KBUILD_MODNAME, 5760 .id_table = ice_pci_tbl, 5761 .probe = ice_probe, 5762 .remove = ice_remove, 5763 #ifdef CONFIG_PM 5764 .driver.pm = &ice_pm_ops, 5765 #endif /* CONFIG_PM */ 5766 .shutdown = ice_shutdown, 5767 .sriov_configure = ice_sriov_configure, 5768 .err_handler = &ice_pci_err_handler 5769 }; 5770 5771 /** 5772 * ice_module_init - Driver registration routine 5773 * 5774 * ice_module_init is the first routine called when the driver is 5775 * loaded. All it does is register with the PCI subsystem. 5776 */ 5777 static int __init ice_module_init(void) 5778 { 5779 int status; 5780 5781 pr_info("%s\n", ice_driver_string); 5782 pr_info("%s\n", ice_copyright); 5783 5784 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5785 if (!ice_wq) { 5786 pr_err("Failed to create workqueue\n"); 5787 return -ENOMEM; 5788 } 5789 5790 status = pci_register_driver(&ice_driver); 5791 if (status) { 5792 pr_err("failed to register PCI driver, err %d\n", status); 5793 destroy_workqueue(ice_wq); 5794 } 5795 5796 return status; 5797 } 5798 module_init(ice_module_init); 5799 5800 /** 5801 * ice_module_exit - Driver exit cleanup routine 5802 * 5803 * ice_module_exit is called just before the driver is removed 5804 * from memory. 5805 */ 5806 static void __exit ice_module_exit(void) 5807 { 5808 pci_unregister_driver(&ice_driver); 5809 destroy_workqueue(ice_wq); 5810 pr_info("module unloaded\n"); 5811 } 5812 module_exit(ice_module_exit); 5813 5814 /** 5815 * ice_set_mac_address - NDO callback to set MAC address 5816 * @netdev: network interface device structure 5817 * @pi: pointer to an address structure 5818 * 5819 * Returns 0 on success, negative on failure 5820 */ 5821 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5822 { 5823 struct ice_netdev_priv *np = netdev_priv(netdev); 5824 struct ice_vsi *vsi = np->vsi; 5825 struct ice_pf *pf = vsi->back; 5826 struct ice_hw *hw = &pf->hw; 5827 struct sockaddr *addr = pi; 5828 u8 old_mac[ETH_ALEN]; 5829 u8 flags = 0; 5830 u8 *mac; 5831 int err; 5832 5833 mac = (u8 *)addr->sa_data; 5834 5835 if (!is_valid_ether_addr(mac)) 5836 return -EADDRNOTAVAIL; 5837 5838 if (ether_addr_equal(netdev->dev_addr, mac)) { 5839 netdev_dbg(netdev, "already using mac %pM\n", mac); 5840 return 0; 5841 } 5842 5843 if (test_bit(ICE_DOWN, pf->state) || 5844 ice_is_reset_in_progress(pf->state)) { 5845 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5846 mac); 5847 return -EBUSY; 5848 } 5849 5850 if (ice_chnl_dmac_fltr_cnt(pf)) { 5851 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5852 mac); 5853 return -EAGAIN; 5854 } 5855 5856 netif_addr_lock_bh(netdev); 5857 ether_addr_copy(old_mac, netdev->dev_addr); 5858 /* change the netdev's MAC address */ 5859 eth_hw_addr_set(netdev, mac); 5860 netif_addr_unlock_bh(netdev); 5861 5862 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5863 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5864 if (err && err != -ENOENT) { 5865 err = -EADDRNOTAVAIL; 5866 goto err_update_filters; 5867 } 5868 5869 /* Add filter for new MAC. If filter exists, return success */ 5870 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5871 if (err == -EEXIST) { 5872 /* Although this MAC filter is already present in hardware it's 5873 * possible in some cases (e.g. bonding) that dev_addr was 5874 * modified outside of the driver and needs to be restored back 5875 * to this value. 5876 */ 5877 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5878 5879 return 0; 5880 } else if (err) { 5881 /* error if the new filter addition failed */ 5882 err = -EADDRNOTAVAIL; 5883 } 5884 5885 err_update_filters: 5886 if (err) { 5887 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5888 mac); 5889 netif_addr_lock_bh(netdev); 5890 eth_hw_addr_set(netdev, old_mac); 5891 netif_addr_unlock_bh(netdev); 5892 return err; 5893 } 5894 5895 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5896 netdev->dev_addr); 5897 5898 /* write new MAC address to the firmware */ 5899 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5900 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5901 if (err) { 5902 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5903 mac, err); 5904 } 5905 return 0; 5906 } 5907 5908 /** 5909 * ice_set_rx_mode - NDO callback to set the netdev filters 5910 * @netdev: network interface device structure 5911 */ 5912 static void ice_set_rx_mode(struct net_device *netdev) 5913 { 5914 struct ice_netdev_priv *np = netdev_priv(netdev); 5915 struct ice_vsi *vsi = np->vsi; 5916 5917 if (!vsi) 5918 return; 5919 5920 /* Set the flags to synchronize filters 5921 * ndo_set_rx_mode may be triggered even without a change in netdev 5922 * flags 5923 */ 5924 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5925 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5926 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5927 5928 /* schedule our worker thread which will take care of 5929 * applying the new filter changes 5930 */ 5931 ice_service_task_schedule(vsi->back); 5932 } 5933 5934 /** 5935 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5936 * @netdev: network interface device structure 5937 * @queue_index: Queue ID 5938 * @maxrate: maximum bandwidth in Mbps 5939 */ 5940 static int 5941 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5942 { 5943 struct ice_netdev_priv *np = netdev_priv(netdev); 5944 struct ice_vsi *vsi = np->vsi; 5945 u16 q_handle; 5946 int status; 5947 u8 tc; 5948 5949 /* Validate maxrate requested is within permitted range */ 5950 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5951 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5952 maxrate, queue_index); 5953 return -EINVAL; 5954 } 5955 5956 q_handle = vsi->tx_rings[queue_index]->q_handle; 5957 tc = ice_dcb_get_tc(vsi, queue_index); 5958 5959 /* Set BW back to default, when user set maxrate to 0 */ 5960 if (!maxrate) 5961 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5962 q_handle, ICE_MAX_BW); 5963 else 5964 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5965 q_handle, ICE_MAX_BW, maxrate * 1000); 5966 if (status) 5967 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5968 status); 5969 5970 return status; 5971 } 5972 5973 /** 5974 * ice_fdb_add - add an entry to the hardware database 5975 * @ndm: the input from the stack 5976 * @tb: pointer to array of nladdr (unused) 5977 * @dev: the net device pointer 5978 * @addr: the MAC address entry being added 5979 * @vid: VLAN ID 5980 * @flags: instructions from stack about fdb operation 5981 * @extack: netlink extended ack 5982 */ 5983 static int 5984 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5985 struct net_device *dev, const unsigned char *addr, u16 vid, 5986 u16 flags, struct netlink_ext_ack __always_unused *extack) 5987 { 5988 int err; 5989 5990 if (vid) { 5991 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5992 return -EINVAL; 5993 } 5994 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5995 netdev_err(dev, "FDB only supports static addresses\n"); 5996 return -EINVAL; 5997 } 5998 5999 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6000 err = dev_uc_add_excl(dev, addr); 6001 else if (is_multicast_ether_addr(addr)) 6002 err = dev_mc_add_excl(dev, addr); 6003 else 6004 err = -EINVAL; 6005 6006 /* Only return duplicate errors if NLM_F_EXCL is set */ 6007 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6008 err = 0; 6009 6010 return err; 6011 } 6012 6013 /** 6014 * ice_fdb_del - delete an entry from the hardware database 6015 * @ndm: the input from the stack 6016 * @tb: pointer to array of nladdr (unused) 6017 * @dev: the net device pointer 6018 * @addr: the MAC address entry being added 6019 * @vid: VLAN ID 6020 * @extack: netlink extended ack 6021 */ 6022 static int 6023 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6024 struct net_device *dev, const unsigned char *addr, 6025 __always_unused u16 vid, struct netlink_ext_ack *extack) 6026 { 6027 int err; 6028 6029 if (ndm->ndm_state & NUD_PERMANENT) { 6030 netdev_err(dev, "FDB only supports static addresses\n"); 6031 return -EINVAL; 6032 } 6033 6034 if (is_unicast_ether_addr(addr)) 6035 err = dev_uc_del(dev, addr); 6036 else if (is_multicast_ether_addr(addr)) 6037 err = dev_mc_del(dev, addr); 6038 else 6039 err = -EINVAL; 6040 6041 return err; 6042 } 6043 6044 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6045 NETIF_F_HW_VLAN_CTAG_TX | \ 6046 NETIF_F_HW_VLAN_STAG_RX | \ 6047 NETIF_F_HW_VLAN_STAG_TX) 6048 6049 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6050 NETIF_F_HW_VLAN_STAG_RX) 6051 6052 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6053 NETIF_F_HW_VLAN_STAG_FILTER) 6054 6055 /** 6056 * ice_fix_features - fix the netdev features flags based on device limitations 6057 * @netdev: ptr to the netdev that flags are being fixed on 6058 * @features: features that need to be checked and possibly fixed 6059 * 6060 * Make sure any fixups are made to features in this callback. This enables the 6061 * driver to not have to check unsupported configurations throughout the driver 6062 * because that's the responsiblity of this callback. 6063 * 6064 * Single VLAN Mode (SVM) Supported Features: 6065 * NETIF_F_HW_VLAN_CTAG_FILTER 6066 * NETIF_F_HW_VLAN_CTAG_RX 6067 * NETIF_F_HW_VLAN_CTAG_TX 6068 * 6069 * Double VLAN Mode (DVM) Supported Features: 6070 * NETIF_F_HW_VLAN_CTAG_FILTER 6071 * NETIF_F_HW_VLAN_CTAG_RX 6072 * NETIF_F_HW_VLAN_CTAG_TX 6073 * 6074 * NETIF_F_HW_VLAN_STAG_FILTER 6075 * NETIF_HW_VLAN_STAG_RX 6076 * NETIF_HW_VLAN_STAG_TX 6077 * 6078 * Features that need fixing: 6079 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6080 * These are mutually exlusive as the VSI context cannot support multiple 6081 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6082 * is not done, then default to clearing the requested STAG offload 6083 * settings. 6084 * 6085 * All supported filtering has to be enabled or disabled together. For 6086 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6087 * together. If this is not done, then default to VLAN filtering disabled. 6088 * These are mutually exclusive as there is currently no way to 6089 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6090 * prune rules. 6091 */ 6092 static netdev_features_t 6093 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6094 { 6095 struct ice_netdev_priv *np = netdev_priv(netdev); 6096 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6097 bool cur_ctag, cur_stag, req_ctag, req_stag; 6098 6099 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6100 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6101 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6102 6103 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6104 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6105 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6106 6107 if (req_vlan_fltr != cur_vlan_fltr) { 6108 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6109 if (req_ctag && req_stag) { 6110 features |= NETIF_VLAN_FILTERING_FEATURES; 6111 } else if (!req_ctag && !req_stag) { 6112 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6113 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6114 (!cur_stag && req_stag && !cur_ctag)) { 6115 features |= NETIF_VLAN_FILTERING_FEATURES; 6116 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6117 } else if ((cur_ctag && !req_ctag && cur_stag) || 6118 (cur_stag && !req_stag && cur_ctag)) { 6119 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6120 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6121 } 6122 } else { 6123 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6124 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6125 6126 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6127 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6128 } 6129 } 6130 6131 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6132 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6133 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6134 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6135 NETIF_F_HW_VLAN_STAG_TX); 6136 } 6137 6138 if (!(netdev->features & NETIF_F_RXFCS) && 6139 (features & NETIF_F_RXFCS) && 6140 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6141 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6142 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6143 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6144 } 6145 6146 return features; 6147 } 6148 6149 /** 6150 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6151 * @vsi: PF's VSI 6152 * @features: features used to determine VLAN offload settings 6153 * 6154 * First, determine the vlan_ethertype based on the VLAN offload bits in 6155 * features. Then determine if stripping and insertion should be enabled or 6156 * disabled. Finally enable or disable VLAN stripping and insertion. 6157 */ 6158 static int 6159 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6160 { 6161 bool enable_stripping = true, enable_insertion = true; 6162 struct ice_vsi_vlan_ops *vlan_ops; 6163 int strip_err = 0, insert_err = 0; 6164 u16 vlan_ethertype = 0; 6165 6166 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6167 6168 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6169 vlan_ethertype = ETH_P_8021AD; 6170 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6171 vlan_ethertype = ETH_P_8021Q; 6172 6173 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6174 enable_stripping = false; 6175 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6176 enable_insertion = false; 6177 6178 if (enable_stripping) 6179 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6180 else 6181 strip_err = vlan_ops->dis_stripping(vsi); 6182 6183 if (enable_insertion) 6184 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6185 else 6186 insert_err = vlan_ops->dis_insertion(vsi); 6187 6188 if (strip_err || insert_err) 6189 return -EIO; 6190 6191 return 0; 6192 } 6193 6194 /** 6195 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6196 * @vsi: PF's VSI 6197 * @features: features used to determine VLAN filtering settings 6198 * 6199 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6200 * features. 6201 */ 6202 static int 6203 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6204 { 6205 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6206 int err = 0; 6207 6208 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6209 * if either bit is set 6210 */ 6211 if (features & 6212 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6213 err = vlan_ops->ena_rx_filtering(vsi); 6214 else 6215 err = vlan_ops->dis_rx_filtering(vsi); 6216 6217 return err; 6218 } 6219 6220 /** 6221 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6222 * @netdev: ptr to the netdev being adjusted 6223 * @features: the feature set that the stack is suggesting 6224 * 6225 * Only update VLAN settings if the requested_vlan_features are different than 6226 * the current_vlan_features. 6227 */ 6228 static int 6229 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6230 { 6231 netdev_features_t current_vlan_features, requested_vlan_features; 6232 struct ice_netdev_priv *np = netdev_priv(netdev); 6233 struct ice_vsi *vsi = np->vsi; 6234 int err; 6235 6236 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6237 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6238 if (current_vlan_features ^ requested_vlan_features) { 6239 if ((features & NETIF_F_RXFCS) && 6240 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6241 dev_err(ice_pf_to_dev(vsi->back), 6242 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6243 return -EIO; 6244 } 6245 6246 err = ice_set_vlan_offload_features(vsi, features); 6247 if (err) 6248 return err; 6249 } 6250 6251 current_vlan_features = netdev->features & 6252 NETIF_VLAN_FILTERING_FEATURES; 6253 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6254 if (current_vlan_features ^ requested_vlan_features) { 6255 err = ice_set_vlan_filtering_features(vsi, features); 6256 if (err) 6257 return err; 6258 } 6259 6260 return 0; 6261 } 6262 6263 /** 6264 * ice_set_loopback - turn on/off loopback mode on underlying PF 6265 * @vsi: ptr to VSI 6266 * @ena: flag to indicate the on/off setting 6267 */ 6268 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6269 { 6270 bool if_running = netif_running(vsi->netdev); 6271 int ret; 6272 6273 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6274 ret = ice_down(vsi); 6275 if (ret) { 6276 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6277 return ret; 6278 } 6279 } 6280 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6281 if (ret) 6282 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6283 if (if_running) 6284 ret = ice_up(vsi); 6285 6286 return ret; 6287 } 6288 6289 /** 6290 * ice_set_features - set the netdev feature flags 6291 * @netdev: ptr to the netdev being adjusted 6292 * @features: the feature set that the stack is suggesting 6293 */ 6294 static int 6295 ice_set_features(struct net_device *netdev, netdev_features_t features) 6296 { 6297 netdev_features_t changed = netdev->features ^ features; 6298 struct ice_netdev_priv *np = netdev_priv(netdev); 6299 struct ice_vsi *vsi = np->vsi; 6300 struct ice_pf *pf = vsi->back; 6301 int ret = 0; 6302 6303 /* Don't set any netdev advanced features with device in Safe Mode */ 6304 if (ice_is_safe_mode(pf)) { 6305 dev_err(ice_pf_to_dev(pf), 6306 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6307 return ret; 6308 } 6309 6310 /* Do not change setting during reset */ 6311 if (ice_is_reset_in_progress(pf->state)) { 6312 dev_err(ice_pf_to_dev(pf), 6313 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6314 return -EBUSY; 6315 } 6316 6317 /* Multiple features can be changed in one call so keep features in 6318 * separate if/else statements to guarantee each feature is checked 6319 */ 6320 if (changed & NETIF_F_RXHASH) 6321 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6322 6323 ret = ice_set_vlan_features(netdev, features); 6324 if (ret) 6325 return ret; 6326 6327 /* Turn on receive of FCS aka CRC, and after setting this 6328 * flag the packet data will have the 4 byte CRC appended 6329 */ 6330 if (changed & NETIF_F_RXFCS) { 6331 if ((features & NETIF_F_RXFCS) && 6332 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6333 dev_err(ice_pf_to_dev(vsi->back), 6334 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6335 return -EIO; 6336 } 6337 6338 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6339 ret = ice_down_up(vsi); 6340 if (ret) 6341 return ret; 6342 } 6343 6344 if (changed & NETIF_F_NTUPLE) { 6345 bool ena = !!(features & NETIF_F_NTUPLE); 6346 6347 ice_vsi_manage_fdir(vsi, ena); 6348 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6349 } 6350 6351 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6352 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6353 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6354 return -EACCES; 6355 } 6356 6357 if (changed & NETIF_F_HW_TC) { 6358 bool ena = !!(features & NETIF_F_HW_TC); 6359 6360 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6361 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6362 } 6363 6364 if (changed & NETIF_F_LOOPBACK) 6365 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6366 6367 return ret; 6368 } 6369 6370 /** 6371 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6372 * @vsi: VSI to setup VLAN properties for 6373 */ 6374 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6375 { 6376 int err; 6377 6378 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6379 if (err) 6380 return err; 6381 6382 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6383 if (err) 6384 return err; 6385 6386 return ice_vsi_add_vlan_zero(vsi); 6387 } 6388 6389 /** 6390 * ice_vsi_cfg_lan - Setup the VSI lan related config 6391 * @vsi: the VSI being configured 6392 * 6393 * Return 0 on success and negative value on error 6394 */ 6395 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6396 { 6397 int err; 6398 6399 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6400 ice_set_rx_mode(vsi->netdev); 6401 6402 err = ice_vsi_vlan_setup(vsi); 6403 if (err) 6404 return err; 6405 } 6406 ice_vsi_cfg_dcb_rings(vsi); 6407 6408 err = ice_vsi_cfg_lan_txqs(vsi); 6409 if (!err && ice_is_xdp_ena_vsi(vsi)) 6410 err = ice_vsi_cfg_xdp_txqs(vsi); 6411 if (!err) 6412 err = ice_vsi_cfg_rxqs(vsi); 6413 6414 return err; 6415 } 6416 6417 /* THEORY OF MODERATION: 6418 * The ice driver hardware works differently than the hardware that DIMLIB was 6419 * originally made for. ice hardware doesn't have packet count limits that 6420 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6421 * which is hard-coded to a limit of 250,000 ints/second. 6422 * If not using dynamic moderation, the INTRL value can be modified 6423 * by ethtool rx-usecs-high. 6424 */ 6425 struct ice_dim { 6426 /* the throttle rate for interrupts, basically worst case delay before 6427 * an initial interrupt fires, value is stored in microseconds. 6428 */ 6429 u16 itr; 6430 }; 6431 6432 /* Make a different profile for Rx that doesn't allow quite so aggressive 6433 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6434 * second. 6435 */ 6436 static const struct ice_dim rx_profile[] = { 6437 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6438 {8}, /* 125,000 ints/s */ 6439 {16}, /* 62,500 ints/s */ 6440 {62}, /* 16,129 ints/s */ 6441 {126} /* 7,936 ints/s */ 6442 }; 6443 6444 /* The transmit profile, which has the same sorts of values 6445 * as the previous struct 6446 */ 6447 static const struct ice_dim tx_profile[] = { 6448 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6449 {8}, /* 125,000 ints/s */ 6450 {40}, /* 16,125 ints/s */ 6451 {128}, /* 7,812 ints/s */ 6452 {256} /* 3,906 ints/s */ 6453 }; 6454 6455 static void ice_tx_dim_work(struct work_struct *work) 6456 { 6457 struct ice_ring_container *rc; 6458 struct dim *dim; 6459 u16 itr; 6460 6461 dim = container_of(work, struct dim, work); 6462 rc = (struct ice_ring_container *)dim->priv; 6463 6464 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6465 6466 /* look up the values in our local table */ 6467 itr = tx_profile[dim->profile_ix].itr; 6468 6469 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6470 ice_write_itr(rc, itr); 6471 6472 dim->state = DIM_START_MEASURE; 6473 } 6474 6475 static void ice_rx_dim_work(struct work_struct *work) 6476 { 6477 struct ice_ring_container *rc; 6478 struct dim *dim; 6479 u16 itr; 6480 6481 dim = container_of(work, struct dim, work); 6482 rc = (struct ice_ring_container *)dim->priv; 6483 6484 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6485 6486 /* look up the values in our local table */ 6487 itr = rx_profile[dim->profile_ix].itr; 6488 6489 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6490 ice_write_itr(rc, itr); 6491 6492 dim->state = DIM_START_MEASURE; 6493 } 6494 6495 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6496 6497 /** 6498 * ice_init_moderation - set up interrupt moderation 6499 * @q_vector: the vector containing rings to be configured 6500 * 6501 * Set up interrupt moderation registers, with the intent to do the right thing 6502 * when called from reset or from probe, and whether or not dynamic moderation 6503 * is enabled or not. Take special care to write all the registers in both 6504 * dynamic moderation mode or not in order to make sure hardware is in a known 6505 * state. 6506 */ 6507 static void ice_init_moderation(struct ice_q_vector *q_vector) 6508 { 6509 struct ice_ring_container *rc; 6510 bool tx_dynamic, rx_dynamic; 6511 6512 rc = &q_vector->tx; 6513 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6514 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6515 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6516 rc->dim.priv = rc; 6517 tx_dynamic = ITR_IS_DYNAMIC(rc); 6518 6519 /* set the initial TX ITR to match the above */ 6520 ice_write_itr(rc, tx_dynamic ? 6521 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6522 6523 rc = &q_vector->rx; 6524 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6525 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6526 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6527 rc->dim.priv = rc; 6528 rx_dynamic = ITR_IS_DYNAMIC(rc); 6529 6530 /* set the initial RX ITR to match the above */ 6531 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6532 rc->itr_setting); 6533 6534 ice_set_q_vector_intrl(q_vector); 6535 } 6536 6537 /** 6538 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6539 * @vsi: the VSI being configured 6540 */ 6541 static void ice_napi_enable_all(struct ice_vsi *vsi) 6542 { 6543 int q_idx; 6544 6545 if (!vsi->netdev) 6546 return; 6547 6548 ice_for_each_q_vector(vsi, q_idx) { 6549 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6550 6551 ice_init_moderation(q_vector); 6552 6553 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6554 napi_enable(&q_vector->napi); 6555 } 6556 } 6557 6558 /** 6559 * ice_up_complete - Finish the last steps of bringing up a connection 6560 * @vsi: The VSI being configured 6561 * 6562 * Return 0 on success and negative value on error 6563 */ 6564 static int ice_up_complete(struct ice_vsi *vsi) 6565 { 6566 struct ice_pf *pf = vsi->back; 6567 int err; 6568 6569 ice_vsi_cfg_msix(vsi); 6570 6571 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6572 * Tx queue group list was configured and the context bits were 6573 * programmed using ice_vsi_cfg_txqs 6574 */ 6575 err = ice_vsi_start_all_rx_rings(vsi); 6576 if (err) 6577 return err; 6578 6579 clear_bit(ICE_VSI_DOWN, vsi->state); 6580 ice_napi_enable_all(vsi); 6581 ice_vsi_ena_irq(vsi); 6582 6583 if (vsi->port_info && 6584 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6585 vsi->netdev && vsi->type == ICE_VSI_PF) { 6586 ice_print_link_msg(vsi, true); 6587 netif_tx_start_all_queues(vsi->netdev); 6588 netif_carrier_on(vsi->netdev); 6589 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6590 } 6591 6592 /* Perform an initial read of the statistics registers now to 6593 * set the baseline so counters are ready when interface is up 6594 */ 6595 ice_update_eth_stats(vsi); 6596 6597 if (vsi->type == ICE_VSI_PF) 6598 ice_service_task_schedule(pf); 6599 6600 return 0; 6601 } 6602 6603 /** 6604 * ice_up - Bring the connection back up after being down 6605 * @vsi: VSI being configured 6606 */ 6607 int ice_up(struct ice_vsi *vsi) 6608 { 6609 int err; 6610 6611 err = ice_vsi_cfg_lan(vsi); 6612 if (!err) 6613 err = ice_up_complete(vsi); 6614 6615 return err; 6616 } 6617 6618 /** 6619 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6620 * @syncp: pointer to u64_stats_sync 6621 * @stats: stats that pkts and bytes count will be taken from 6622 * @pkts: packets stats counter 6623 * @bytes: bytes stats counter 6624 * 6625 * This function fetches stats from the ring considering the atomic operations 6626 * that needs to be performed to read u64 values in 32 bit machine. 6627 */ 6628 void 6629 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6630 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6631 { 6632 unsigned int start; 6633 6634 do { 6635 start = u64_stats_fetch_begin(syncp); 6636 *pkts = stats.pkts; 6637 *bytes = stats.bytes; 6638 } while (u64_stats_fetch_retry(syncp, start)); 6639 } 6640 6641 /** 6642 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6643 * @vsi: the VSI to be updated 6644 * @vsi_stats: the stats struct to be updated 6645 * @rings: rings to work on 6646 * @count: number of rings 6647 */ 6648 static void 6649 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6650 struct rtnl_link_stats64 *vsi_stats, 6651 struct ice_tx_ring **rings, u16 count) 6652 { 6653 u16 i; 6654 6655 for (i = 0; i < count; i++) { 6656 struct ice_tx_ring *ring; 6657 u64 pkts = 0, bytes = 0; 6658 6659 ring = READ_ONCE(rings[i]); 6660 if (!ring || !ring->ring_stats) 6661 continue; 6662 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6663 ring->ring_stats->stats, &pkts, 6664 &bytes); 6665 vsi_stats->tx_packets += pkts; 6666 vsi_stats->tx_bytes += bytes; 6667 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6668 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6669 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6670 } 6671 } 6672 6673 /** 6674 * ice_update_vsi_ring_stats - Update VSI stats counters 6675 * @vsi: the VSI to be updated 6676 */ 6677 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6678 { 6679 struct rtnl_link_stats64 *net_stats, *stats_prev; 6680 struct rtnl_link_stats64 *vsi_stats; 6681 u64 pkts, bytes; 6682 int i; 6683 6684 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6685 if (!vsi_stats) 6686 return; 6687 6688 /* reset non-netdev (extended) stats */ 6689 vsi->tx_restart = 0; 6690 vsi->tx_busy = 0; 6691 vsi->tx_linearize = 0; 6692 vsi->rx_buf_failed = 0; 6693 vsi->rx_page_failed = 0; 6694 6695 rcu_read_lock(); 6696 6697 /* update Tx rings counters */ 6698 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6699 vsi->num_txq); 6700 6701 /* update Rx rings counters */ 6702 ice_for_each_rxq(vsi, i) { 6703 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6704 struct ice_ring_stats *ring_stats; 6705 6706 ring_stats = ring->ring_stats; 6707 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6708 ring_stats->stats, &pkts, 6709 &bytes); 6710 vsi_stats->rx_packets += pkts; 6711 vsi_stats->rx_bytes += bytes; 6712 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6713 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6714 } 6715 6716 /* update XDP Tx rings counters */ 6717 if (ice_is_xdp_ena_vsi(vsi)) 6718 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6719 vsi->num_xdp_txq); 6720 6721 rcu_read_unlock(); 6722 6723 net_stats = &vsi->net_stats; 6724 stats_prev = &vsi->net_stats_prev; 6725 6726 /* clear prev counters after reset */ 6727 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6728 vsi_stats->rx_packets < stats_prev->rx_packets) { 6729 stats_prev->tx_packets = 0; 6730 stats_prev->tx_bytes = 0; 6731 stats_prev->rx_packets = 0; 6732 stats_prev->rx_bytes = 0; 6733 } 6734 6735 /* update netdev counters */ 6736 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6737 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6738 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6739 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6740 6741 stats_prev->tx_packets = vsi_stats->tx_packets; 6742 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6743 stats_prev->rx_packets = vsi_stats->rx_packets; 6744 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6745 6746 kfree(vsi_stats); 6747 } 6748 6749 /** 6750 * ice_update_vsi_stats - Update VSI stats counters 6751 * @vsi: the VSI to be updated 6752 */ 6753 void ice_update_vsi_stats(struct ice_vsi *vsi) 6754 { 6755 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6756 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6757 struct ice_pf *pf = vsi->back; 6758 6759 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6760 test_bit(ICE_CFG_BUSY, pf->state)) 6761 return; 6762 6763 /* get stats as recorded by Tx/Rx rings */ 6764 ice_update_vsi_ring_stats(vsi); 6765 6766 /* get VSI stats as recorded by the hardware */ 6767 ice_update_eth_stats(vsi); 6768 6769 cur_ns->tx_errors = cur_es->tx_errors; 6770 cur_ns->rx_dropped = cur_es->rx_discards; 6771 cur_ns->tx_dropped = cur_es->tx_discards; 6772 cur_ns->multicast = cur_es->rx_multicast; 6773 6774 /* update some more netdev stats if this is main VSI */ 6775 if (vsi->type == ICE_VSI_PF) { 6776 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6777 cur_ns->rx_errors = pf->stats.crc_errors + 6778 pf->stats.illegal_bytes + 6779 pf->stats.rx_len_errors + 6780 pf->stats.rx_undersize + 6781 pf->hw_csum_rx_error + 6782 pf->stats.rx_jabber + 6783 pf->stats.rx_fragments + 6784 pf->stats.rx_oversize; 6785 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6786 /* record drops from the port level */ 6787 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6788 } 6789 } 6790 6791 /** 6792 * ice_update_pf_stats - Update PF port stats counters 6793 * @pf: PF whose stats needs to be updated 6794 */ 6795 void ice_update_pf_stats(struct ice_pf *pf) 6796 { 6797 struct ice_hw_port_stats *prev_ps, *cur_ps; 6798 struct ice_hw *hw = &pf->hw; 6799 u16 fd_ctr_base; 6800 u8 port; 6801 6802 port = hw->port_info->lport; 6803 prev_ps = &pf->stats_prev; 6804 cur_ps = &pf->stats; 6805 6806 if (ice_is_reset_in_progress(pf->state)) 6807 pf->stat_prev_loaded = false; 6808 6809 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6810 &prev_ps->eth.rx_bytes, 6811 &cur_ps->eth.rx_bytes); 6812 6813 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6814 &prev_ps->eth.rx_unicast, 6815 &cur_ps->eth.rx_unicast); 6816 6817 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6818 &prev_ps->eth.rx_multicast, 6819 &cur_ps->eth.rx_multicast); 6820 6821 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6822 &prev_ps->eth.rx_broadcast, 6823 &cur_ps->eth.rx_broadcast); 6824 6825 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6826 &prev_ps->eth.rx_discards, 6827 &cur_ps->eth.rx_discards); 6828 6829 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6830 &prev_ps->eth.tx_bytes, 6831 &cur_ps->eth.tx_bytes); 6832 6833 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6834 &prev_ps->eth.tx_unicast, 6835 &cur_ps->eth.tx_unicast); 6836 6837 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6838 &prev_ps->eth.tx_multicast, 6839 &cur_ps->eth.tx_multicast); 6840 6841 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6842 &prev_ps->eth.tx_broadcast, 6843 &cur_ps->eth.tx_broadcast); 6844 6845 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6846 &prev_ps->tx_dropped_link_down, 6847 &cur_ps->tx_dropped_link_down); 6848 6849 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6850 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6851 6852 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6853 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6854 6855 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6856 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6857 6858 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6859 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6860 6861 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6862 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6863 6864 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6865 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6866 6867 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6868 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6869 6870 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6871 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6872 6873 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6874 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6875 6876 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6877 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6878 6879 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6880 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6881 6882 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6883 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6884 6885 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6886 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6887 6888 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6889 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6890 6891 fd_ctr_base = hw->fd_ctr_base; 6892 6893 ice_stat_update40(hw, 6894 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6895 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6896 &cur_ps->fd_sb_match); 6897 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6898 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6899 6900 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6901 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6902 6903 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6904 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6905 6906 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6907 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6908 6909 ice_update_dcb_stats(pf); 6910 6911 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6912 &prev_ps->crc_errors, &cur_ps->crc_errors); 6913 6914 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6915 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6916 6917 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6918 &prev_ps->mac_local_faults, 6919 &cur_ps->mac_local_faults); 6920 6921 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6922 &prev_ps->mac_remote_faults, 6923 &cur_ps->mac_remote_faults); 6924 6925 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6926 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6927 6928 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6929 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6930 6931 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6932 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6933 6934 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6935 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6936 6937 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6938 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6939 6940 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6941 6942 pf->stat_prev_loaded = true; 6943 } 6944 6945 /** 6946 * ice_get_stats64 - get statistics for network device structure 6947 * @netdev: network interface device structure 6948 * @stats: main device statistics structure 6949 */ 6950 static 6951 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6952 { 6953 struct ice_netdev_priv *np = netdev_priv(netdev); 6954 struct rtnl_link_stats64 *vsi_stats; 6955 struct ice_vsi *vsi = np->vsi; 6956 6957 vsi_stats = &vsi->net_stats; 6958 6959 if (!vsi->num_txq || !vsi->num_rxq) 6960 return; 6961 6962 /* netdev packet/byte stats come from ring counter. These are obtained 6963 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6964 * But, only call the update routine and read the registers if VSI is 6965 * not down. 6966 */ 6967 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6968 ice_update_vsi_ring_stats(vsi); 6969 stats->tx_packets = vsi_stats->tx_packets; 6970 stats->tx_bytes = vsi_stats->tx_bytes; 6971 stats->rx_packets = vsi_stats->rx_packets; 6972 stats->rx_bytes = vsi_stats->rx_bytes; 6973 6974 /* The rest of the stats can be read from the hardware but instead we 6975 * just return values that the watchdog task has already obtained from 6976 * the hardware. 6977 */ 6978 stats->multicast = vsi_stats->multicast; 6979 stats->tx_errors = vsi_stats->tx_errors; 6980 stats->tx_dropped = vsi_stats->tx_dropped; 6981 stats->rx_errors = vsi_stats->rx_errors; 6982 stats->rx_dropped = vsi_stats->rx_dropped; 6983 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6984 stats->rx_length_errors = vsi_stats->rx_length_errors; 6985 } 6986 6987 /** 6988 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6989 * @vsi: VSI having NAPI disabled 6990 */ 6991 static void ice_napi_disable_all(struct ice_vsi *vsi) 6992 { 6993 int q_idx; 6994 6995 if (!vsi->netdev) 6996 return; 6997 6998 ice_for_each_q_vector(vsi, q_idx) { 6999 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7000 7001 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7002 napi_disable(&q_vector->napi); 7003 7004 cancel_work_sync(&q_vector->tx.dim.work); 7005 cancel_work_sync(&q_vector->rx.dim.work); 7006 } 7007 } 7008 7009 /** 7010 * ice_down - Shutdown the connection 7011 * @vsi: The VSI being stopped 7012 * 7013 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7014 */ 7015 int ice_down(struct ice_vsi *vsi) 7016 { 7017 int i, tx_err, rx_err, vlan_err = 0; 7018 7019 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7020 7021 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 7022 vlan_err = ice_vsi_del_vlan_zero(vsi); 7023 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7024 netif_carrier_off(vsi->netdev); 7025 netif_tx_disable(vsi->netdev); 7026 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 7027 ice_eswitch_stop_all_tx_queues(vsi->back); 7028 } 7029 7030 ice_vsi_dis_irq(vsi); 7031 7032 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7033 if (tx_err) 7034 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7035 vsi->vsi_num, tx_err); 7036 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7037 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7038 if (tx_err) 7039 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7040 vsi->vsi_num, tx_err); 7041 } 7042 7043 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7044 if (rx_err) 7045 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7046 vsi->vsi_num, rx_err); 7047 7048 ice_napi_disable_all(vsi); 7049 7050 ice_for_each_txq(vsi, i) 7051 ice_clean_tx_ring(vsi->tx_rings[i]); 7052 7053 if (ice_is_xdp_ena_vsi(vsi)) 7054 ice_for_each_xdp_txq(vsi, i) 7055 ice_clean_tx_ring(vsi->xdp_rings[i]); 7056 7057 ice_for_each_rxq(vsi, i) 7058 ice_clean_rx_ring(vsi->rx_rings[i]); 7059 7060 if (tx_err || rx_err || vlan_err) { 7061 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7062 vsi->vsi_num, vsi->vsw->sw_id); 7063 return -EIO; 7064 } 7065 7066 return 0; 7067 } 7068 7069 /** 7070 * ice_down_up - shutdown the VSI connection and bring it up 7071 * @vsi: the VSI to be reconnected 7072 */ 7073 int ice_down_up(struct ice_vsi *vsi) 7074 { 7075 int ret; 7076 7077 /* if DOWN already set, nothing to do */ 7078 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7079 return 0; 7080 7081 ret = ice_down(vsi); 7082 if (ret) 7083 return ret; 7084 7085 ret = ice_up(vsi); 7086 if (ret) { 7087 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7088 return ret; 7089 } 7090 7091 return 0; 7092 } 7093 7094 /** 7095 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7096 * @vsi: VSI having resources allocated 7097 * 7098 * Return 0 on success, negative on failure 7099 */ 7100 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7101 { 7102 int i, err = 0; 7103 7104 if (!vsi->num_txq) { 7105 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7106 vsi->vsi_num); 7107 return -EINVAL; 7108 } 7109 7110 ice_for_each_txq(vsi, i) { 7111 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7112 7113 if (!ring) 7114 return -EINVAL; 7115 7116 if (vsi->netdev) 7117 ring->netdev = vsi->netdev; 7118 err = ice_setup_tx_ring(ring); 7119 if (err) 7120 break; 7121 } 7122 7123 return err; 7124 } 7125 7126 /** 7127 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7128 * @vsi: VSI having resources allocated 7129 * 7130 * Return 0 on success, negative on failure 7131 */ 7132 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7133 { 7134 int i, err = 0; 7135 7136 if (!vsi->num_rxq) { 7137 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7138 vsi->vsi_num); 7139 return -EINVAL; 7140 } 7141 7142 ice_for_each_rxq(vsi, i) { 7143 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7144 7145 if (!ring) 7146 return -EINVAL; 7147 7148 if (vsi->netdev) 7149 ring->netdev = vsi->netdev; 7150 err = ice_setup_rx_ring(ring); 7151 if (err) 7152 break; 7153 } 7154 7155 return err; 7156 } 7157 7158 /** 7159 * ice_vsi_open_ctrl - open control VSI for use 7160 * @vsi: the VSI to open 7161 * 7162 * Initialization of the Control VSI 7163 * 7164 * Returns 0 on success, negative value on error 7165 */ 7166 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7167 { 7168 char int_name[ICE_INT_NAME_STR_LEN]; 7169 struct ice_pf *pf = vsi->back; 7170 struct device *dev; 7171 int err; 7172 7173 dev = ice_pf_to_dev(pf); 7174 /* allocate descriptors */ 7175 err = ice_vsi_setup_tx_rings(vsi); 7176 if (err) 7177 goto err_setup_tx; 7178 7179 err = ice_vsi_setup_rx_rings(vsi); 7180 if (err) 7181 goto err_setup_rx; 7182 7183 err = ice_vsi_cfg_lan(vsi); 7184 if (err) 7185 goto err_setup_rx; 7186 7187 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7188 dev_driver_string(dev), dev_name(dev)); 7189 err = ice_vsi_req_irq_msix(vsi, int_name); 7190 if (err) 7191 goto err_setup_rx; 7192 7193 ice_vsi_cfg_msix(vsi); 7194 7195 err = ice_vsi_start_all_rx_rings(vsi); 7196 if (err) 7197 goto err_up_complete; 7198 7199 clear_bit(ICE_VSI_DOWN, vsi->state); 7200 ice_vsi_ena_irq(vsi); 7201 7202 return 0; 7203 7204 err_up_complete: 7205 ice_down(vsi); 7206 err_setup_rx: 7207 ice_vsi_free_rx_rings(vsi); 7208 err_setup_tx: 7209 ice_vsi_free_tx_rings(vsi); 7210 7211 return err; 7212 } 7213 7214 /** 7215 * ice_vsi_open - Called when a network interface is made active 7216 * @vsi: the VSI to open 7217 * 7218 * Initialization of the VSI 7219 * 7220 * Returns 0 on success, negative value on error 7221 */ 7222 int ice_vsi_open(struct ice_vsi *vsi) 7223 { 7224 char int_name[ICE_INT_NAME_STR_LEN]; 7225 struct ice_pf *pf = vsi->back; 7226 int err; 7227 7228 /* allocate descriptors */ 7229 err = ice_vsi_setup_tx_rings(vsi); 7230 if (err) 7231 goto err_setup_tx; 7232 7233 err = ice_vsi_setup_rx_rings(vsi); 7234 if (err) 7235 goto err_setup_rx; 7236 7237 err = ice_vsi_cfg_lan(vsi); 7238 if (err) 7239 goto err_setup_rx; 7240 7241 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7242 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7243 err = ice_vsi_req_irq_msix(vsi, int_name); 7244 if (err) 7245 goto err_setup_rx; 7246 7247 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7248 7249 if (vsi->type == ICE_VSI_PF) { 7250 /* Notify the stack of the actual queue counts. */ 7251 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7252 if (err) 7253 goto err_set_qs; 7254 7255 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7256 if (err) 7257 goto err_set_qs; 7258 } 7259 7260 err = ice_up_complete(vsi); 7261 if (err) 7262 goto err_up_complete; 7263 7264 return 0; 7265 7266 err_up_complete: 7267 ice_down(vsi); 7268 err_set_qs: 7269 ice_vsi_free_irq(vsi); 7270 err_setup_rx: 7271 ice_vsi_free_rx_rings(vsi); 7272 err_setup_tx: 7273 ice_vsi_free_tx_rings(vsi); 7274 7275 return err; 7276 } 7277 7278 /** 7279 * ice_vsi_release_all - Delete all VSIs 7280 * @pf: PF from which all VSIs are being removed 7281 */ 7282 static void ice_vsi_release_all(struct ice_pf *pf) 7283 { 7284 int err, i; 7285 7286 if (!pf->vsi) 7287 return; 7288 7289 ice_for_each_vsi(pf, i) { 7290 if (!pf->vsi[i]) 7291 continue; 7292 7293 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7294 continue; 7295 7296 err = ice_vsi_release(pf->vsi[i]); 7297 if (err) 7298 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7299 i, err, pf->vsi[i]->vsi_num); 7300 } 7301 } 7302 7303 /** 7304 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7305 * @pf: pointer to the PF instance 7306 * @type: VSI type to rebuild 7307 * 7308 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7309 */ 7310 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7311 { 7312 struct device *dev = ice_pf_to_dev(pf); 7313 int i, err; 7314 7315 ice_for_each_vsi(pf, i) { 7316 struct ice_vsi *vsi = pf->vsi[i]; 7317 7318 if (!vsi || vsi->type != type) 7319 continue; 7320 7321 /* rebuild the VSI */ 7322 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7323 if (err) { 7324 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7325 err, vsi->idx, ice_vsi_type_str(type)); 7326 return err; 7327 } 7328 7329 /* replay filters for the VSI */ 7330 err = ice_replay_vsi(&pf->hw, vsi->idx); 7331 if (err) { 7332 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7333 err, vsi->idx, ice_vsi_type_str(type)); 7334 return err; 7335 } 7336 7337 /* Re-map HW VSI number, using VSI handle that has been 7338 * previously validated in ice_replay_vsi() call above 7339 */ 7340 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7341 7342 /* enable the VSI */ 7343 err = ice_ena_vsi(vsi, false); 7344 if (err) { 7345 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7346 err, vsi->idx, ice_vsi_type_str(type)); 7347 return err; 7348 } 7349 7350 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7351 ice_vsi_type_str(type)); 7352 } 7353 7354 return 0; 7355 } 7356 7357 /** 7358 * ice_update_pf_netdev_link - Update PF netdev link status 7359 * @pf: pointer to the PF instance 7360 */ 7361 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7362 { 7363 bool link_up; 7364 int i; 7365 7366 ice_for_each_vsi(pf, i) { 7367 struct ice_vsi *vsi = pf->vsi[i]; 7368 7369 if (!vsi || vsi->type != ICE_VSI_PF) 7370 return; 7371 7372 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7373 if (link_up) { 7374 netif_carrier_on(pf->vsi[i]->netdev); 7375 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7376 } else { 7377 netif_carrier_off(pf->vsi[i]->netdev); 7378 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7379 } 7380 } 7381 } 7382 7383 /** 7384 * ice_rebuild - rebuild after reset 7385 * @pf: PF to rebuild 7386 * @reset_type: type of reset 7387 * 7388 * Do not rebuild VF VSI in this flow because that is already handled via 7389 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7390 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7391 * to reset/rebuild all the VF VSI twice. 7392 */ 7393 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7394 { 7395 struct device *dev = ice_pf_to_dev(pf); 7396 struct ice_hw *hw = &pf->hw; 7397 bool dvm; 7398 int err; 7399 7400 if (test_bit(ICE_DOWN, pf->state)) 7401 goto clear_recovery; 7402 7403 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7404 7405 #define ICE_EMP_RESET_SLEEP_MS 5000 7406 if (reset_type == ICE_RESET_EMPR) { 7407 /* If an EMP reset has occurred, any previously pending flash 7408 * update will have completed. We no longer know whether or 7409 * not the NVM update EMP reset is restricted. 7410 */ 7411 pf->fw_emp_reset_disabled = false; 7412 7413 msleep(ICE_EMP_RESET_SLEEP_MS); 7414 } 7415 7416 err = ice_init_all_ctrlq(hw); 7417 if (err) { 7418 dev_err(dev, "control queues init failed %d\n", err); 7419 goto err_init_ctrlq; 7420 } 7421 7422 /* if DDP was previously loaded successfully */ 7423 if (!ice_is_safe_mode(pf)) { 7424 /* reload the SW DB of filter tables */ 7425 if (reset_type == ICE_RESET_PFR) 7426 ice_fill_blk_tbls(hw); 7427 else 7428 /* Reload DDP Package after CORER/GLOBR reset */ 7429 ice_load_pkg(NULL, pf); 7430 } 7431 7432 err = ice_clear_pf_cfg(hw); 7433 if (err) { 7434 dev_err(dev, "clear PF configuration failed %d\n", err); 7435 goto err_init_ctrlq; 7436 } 7437 7438 ice_clear_pxe_mode(hw); 7439 7440 err = ice_init_nvm(hw); 7441 if (err) { 7442 dev_err(dev, "ice_init_nvm failed %d\n", err); 7443 goto err_init_ctrlq; 7444 } 7445 7446 err = ice_get_caps(hw); 7447 if (err) { 7448 dev_err(dev, "ice_get_caps failed %d\n", err); 7449 goto err_init_ctrlq; 7450 } 7451 7452 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7453 if (err) { 7454 dev_err(dev, "set_mac_cfg failed %d\n", err); 7455 goto err_init_ctrlq; 7456 } 7457 7458 dvm = ice_is_dvm_ena(hw); 7459 7460 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7461 if (err) 7462 goto err_init_ctrlq; 7463 7464 err = ice_sched_init_port(hw->port_info); 7465 if (err) 7466 goto err_sched_init_port; 7467 7468 /* start misc vector */ 7469 err = ice_req_irq_msix_misc(pf); 7470 if (err) { 7471 dev_err(dev, "misc vector setup failed: %d\n", err); 7472 goto err_sched_init_port; 7473 } 7474 7475 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7476 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7477 if (!rd32(hw, PFQF_FD_SIZE)) { 7478 u16 unused, guar, b_effort; 7479 7480 guar = hw->func_caps.fd_fltr_guar; 7481 b_effort = hw->func_caps.fd_fltr_best_effort; 7482 7483 /* force guaranteed filter pool for PF */ 7484 ice_alloc_fd_guar_item(hw, &unused, guar); 7485 /* force shared filter pool for PF */ 7486 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7487 } 7488 } 7489 7490 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7491 ice_dcb_rebuild(pf); 7492 7493 /* If the PF previously had enabled PTP, PTP init needs to happen before 7494 * the VSI rebuild. If not, this causes the PTP link status events to 7495 * fail. 7496 */ 7497 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7498 ice_ptp_reset(pf); 7499 7500 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7501 ice_gnss_init(pf); 7502 7503 /* rebuild PF VSI */ 7504 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7505 if (err) { 7506 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7507 goto err_vsi_rebuild; 7508 } 7509 7510 /* configure PTP timestamping after VSI rebuild */ 7511 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7512 ice_ptp_cfg_timestamp(pf, false); 7513 7514 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7515 if (err) { 7516 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7517 goto err_vsi_rebuild; 7518 } 7519 7520 if (reset_type == ICE_RESET_PFR) { 7521 err = ice_rebuild_channels(pf); 7522 if (err) { 7523 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7524 err); 7525 goto err_vsi_rebuild; 7526 } 7527 } 7528 7529 /* If Flow Director is active */ 7530 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7531 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7532 if (err) { 7533 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7534 goto err_vsi_rebuild; 7535 } 7536 7537 /* replay HW Flow Director recipes */ 7538 if (hw->fdir_prof) 7539 ice_fdir_replay_flows(hw); 7540 7541 /* replay Flow Director filters */ 7542 ice_fdir_replay_fltrs(pf); 7543 7544 ice_rebuild_arfs(pf); 7545 } 7546 7547 ice_update_pf_netdev_link(pf); 7548 7549 /* tell the firmware we are up */ 7550 err = ice_send_version(pf); 7551 if (err) { 7552 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7553 err); 7554 goto err_vsi_rebuild; 7555 } 7556 7557 ice_replay_post(hw); 7558 7559 /* if we get here, reset flow is successful */ 7560 clear_bit(ICE_RESET_FAILED, pf->state); 7561 7562 ice_plug_aux_dev(pf); 7563 return; 7564 7565 err_vsi_rebuild: 7566 err_sched_init_port: 7567 ice_sched_cleanup_all(hw); 7568 err_init_ctrlq: 7569 ice_shutdown_all_ctrlq(hw); 7570 set_bit(ICE_RESET_FAILED, pf->state); 7571 clear_recovery: 7572 /* set this bit in PF state to control service task scheduling */ 7573 set_bit(ICE_NEEDS_RESTART, pf->state); 7574 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7575 } 7576 7577 /** 7578 * ice_change_mtu - NDO callback to change the MTU 7579 * @netdev: network interface device structure 7580 * @new_mtu: new value for maximum frame size 7581 * 7582 * Returns 0 on success, negative on failure 7583 */ 7584 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7585 { 7586 struct ice_netdev_priv *np = netdev_priv(netdev); 7587 struct ice_vsi *vsi = np->vsi; 7588 struct ice_pf *pf = vsi->back; 7589 struct bpf_prog *prog; 7590 u8 count = 0; 7591 int err = 0; 7592 7593 if (new_mtu == (int)netdev->mtu) { 7594 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7595 return 0; 7596 } 7597 7598 prog = vsi->xdp_prog; 7599 if (prog && !prog->aux->xdp_has_frags) { 7600 int frame_size = ice_max_xdp_frame_size(vsi); 7601 7602 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7603 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7604 frame_size - ICE_ETH_PKT_HDR_PAD); 7605 return -EINVAL; 7606 } 7607 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7608 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7609 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7610 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7611 return -EINVAL; 7612 } 7613 } 7614 7615 /* if a reset is in progress, wait for some time for it to complete */ 7616 do { 7617 if (ice_is_reset_in_progress(pf->state)) { 7618 count++; 7619 usleep_range(1000, 2000); 7620 } else { 7621 break; 7622 } 7623 7624 } while (count < 100); 7625 7626 if (count == 100) { 7627 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7628 return -EBUSY; 7629 } 7630 7631 netdev->mtu = (unsigned int)new_mtu; 7632 7633 /* if VSI is up, bring it down and then back up */ 7634 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7635 err = ice_down(vsi); 7636 if (err) { 7637 netdev_err(netdev, "change MTU if_down err %d\n", err); 7638 return err; 7639 } 7640 7641 err = ice_up(vsi); 7642 if (err) { 7643 netdev_err(netdev, "change MTU if_up err %d\n", err); 7644 return err; 7645 } 7646 } 7647 7648 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7649 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7650 7651 return err; 7652 } 7653 7654 /** 7655 * ice_eth_ioctl - Access the hwtstamp interface 7656 * @netdev: network interface device structure 7657 * @ifr: interface request data 7658 * @cmd: ioctl command 7659 */ 7660 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7661 { 7662 struct ice_netdev_priv *np = netdev_priv(netdev); 7663 struct ice_pf *pf = np->vsi->back; 7664 7665 switch (cmd) { 7666 case SIOCGHWTSTAMP: 7667 return ice_ptp_get_ts_config(pf, ifr); 7668 case SIOCSHWTSTAMP: 7669 return ice_ptp_set_ts_config(pf, ifr); 7670 default: 7671 return -EOPNOTSUPP; 7672 } 7673 } 7674 7675 /** 7676 * ice_aq_str - convert AQ err code to a string 7677 * @aq_err: the AQ error code to convert 7678 */ 7679 const char *ice_aq_str(enum ice_aq_err aq_err) 7680 { 7681 switch (aq_err) { 7682 case ICE_AQ_RC_OK: 7683 return "OK"; 7684 case ICE_AQ_RC_EPERM: 7685 return "ICE_AQ_RC_EPERM"; 7686 case ICE_AQ_RC_ENOENT: 7687 return "ICE_AQ_RC_ENOENT"; 7688 case ICE_AQ_RC_ENOMEM: 7689 return "ICE_AQ_RC_ENOMEM"; 7690 case ICE_AQ_RC_EBUSY: 7691 return "ICE_AQ_RC_EBUSY"; 7692 case ICE_AQ_RC_EEXIST: 7693 return "ICE_AQ_RC_EEXIST"; 7694 case ICE_AQ_RC_EINVAL: 7695 return "ICE_AQ_RC_EINVAL"; 7696 case ICE_AQ_RC_ENOSPC: 7697 return "ICE_AQ_RC_ENOSPC"; 7698 case ICE_AQ_RC_ENOSYS: 7699 return "ICE_AQ_RC_ENOSYS"; 7700 case ICE_AQ_RC_EMODE: 7701 return "ICE_AQ_RC_EMODE"; 7702 case ICE_AQ_RC_ENOSEC: 7703 return "ICE_AQ_RC_ENOSEC"; 7704 case ICE_AQ_RC_EBADSIG: 7705 return "ICE_AQ_RC_EBADSIG"; 7706 case ICE_AQ_RC_ESVN: 7707 return "ICE_AQ_RC_ESVN"; 7708 case ICE_AQ_RC_EBADMAN: 7709 return "ICE_AQ_RC_EBADMAN"; 7710 case ICE_AQ_RC_EBADBUF: 7711 return "ICE_AQ_RC_EBADBUF"; 7712 } 7713 7714 return "ICE_AQ_RC_UNKNOWN"; 7715 } 7716 7717 /** 7718 * ice_set_rss_lut - Set RSS LUT 7719 * @vsi: Pointer to VSI structure 7720 * @lut: Lookup table 7721 * @lut_size: Lookup table size 7722 * 7723 * Returns 0 on success, negative on failure 7724 */ 7725 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7726 { 7727 struct ice_aq_get_set_rss_lut_params params = {}; 7728 struct ice_hw *hw = &vsi->back->hw; 7729 int status; 7730 7731 if (!lut) 7732 return -EINVAL; 7733 7734 params.vsi_handle = vsi->idx; 7735 params.lut_size = lut_size; 7736 params.lut_type = vsi->rss_lut_type; 7737 params.lut = lut; 7738 7739 status = ice_aq_set_rss_lut(hw, ¶ms); 7740 if (status) 7741 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7742 status, ice_aq_str(hw->adminq.sq_last_status)); 7743 7744 return status; 7745 } 7746 7747 /** 7748 * ice_set_rss_key - Set RSS key 7749 * @vsi: Pointer to the VSI structure 7750 * @seed: RSS hash seed 7751 * 7752 * Returns 0 on success, negative on failure 7753 */ 7754 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7755 { 7756 struct ice_hw *hw = &vsi->back->hw; 7757 int status; 7758 7759 if (!seed) 7760 return -EINVAL; 7761 7762 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7763 if (status) 7764 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7765 status, ice_aq_str(hw->adminq.sq_last_status)); 7766 7767 return status; 7768 } 7769 7770 /** 7771 * ice_get_rss_lut - Get RSS LUT 7772 * @vsi: Pointer to VSI structure 7773 * @lut: Buffer to store the lookup table entries 7774 * @lut_size: Size of buffer to store the lookup table entries 7775 * 7776 * Returns 0 on success, negative on failure 7777 */ 7778 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7779 { 7780 struct ice_aq_get_set_rss_lut_params params = {}; 7781 struct ice_hw *hw = &vsi->back->hw; 7782 int status; 7783 7784 if (!lut) 7785 return -EINVAL; 7786 7787 params.vsi_handle = vsi->idx; 7788 params.lut_size = lut_size; 7789 params.lut_type = vsi->rss_lut_type; 7790 params.lut = lut; 7791 7792 status = ice_aq_get_rss_lut(hw, ¶ms); 7793 if (status) 7794 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7795 status, ice_aq_str(hw->adminq.sq_last_status)); 7796 7797 return status; 7798 } 7799 7800 /** 7801 * ice_get_rss_key - Get RSS key 7802 * @vsi: Pointer to VSI structure 7803 * @seed: Buffer to store the key in 7804 * 7805 * Returns 0 on success, negative on failure 7806 */ 7807 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7808 { 7809 struct ice_hw *hw = &vsi->back->hw; 7810 int status; 7811 7812 if (!seed) 7813 return -EINVAL; 7814 7815 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7816 if (status) 7817 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7818 status, ice_aq_str(hw->adminq.sq_last_status)); 7819 7820 return status; 7821 } 7822 7823 /** 7824 * ice_bridge_getlink - Get the hardware bridge mode 7825 * @skb: skb buff 7826 * @pid: process ID 7827 * @seq: RTNL message seq 7828 * @dev: the netdev being configured 7829 * @filter_mask: filter mask passed in 7830 * @nlflags: netlink flags passed in 7831 * 7832 * Return the bridge mode (VEB/VEPA) 7833 */ 7834 static int 7835 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7836 struct net_device *dev, u32 filter_mask, int nlflags) 7837 { 7838 struct ice_netdev_priv *np = netdev_priv(dev); 7839 struct ice_vsi *vsi = np->vsi; 7840 struct ice_pf *pf = vsi->back; 7841 u16 bmode; 7842 7843 bmode = pf->first_sw->bridge_mode; 7844 7845 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7846 filter_mask, NULL); 7847 } 7848 7849 /** 7850 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7851 * @vsi: Pointer to VSI structure 7852 * @bmode: Hardware bridge mode (VEB/VEPA) 7853 * 7854 * Returns 0 on success, negative on failure 7855 */ 7856 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7857 { 7858 struct ice_aqc_vsi_props *vsi_props; 7859 struct ice_hw *hw = &vsi->back->hw; 7860 struct ice_vsi_ctx *ctxt; 7861 int ret; 7862 7863 vsi_props = &vsi->info; 7864 7865 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7866 if (!ctxt) 7867 return -ENOMEM; 7868 7869 ctxt->info = vsi->info; 7870 7871 if (bmode == BRIDGE_MODE_VEB) 7872 /* change from VEPA to VEB mode */ 7873 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7874 else 7875 /* change from VEB to VEPA mode */ 7876 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7877 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7878 7879 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7880 if (ret) { 7881 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7882 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7883 goto out; 7884 } 7885 /* Update sw flags for book keeping */ 7886 vsi_props->sw_flags = ctxt->info.sw_flags; 7887 7888 out: 7889 kfree(ctxt); 7890 return ret; 7891 } 7892 7893 /** 7894 * ice_bridge_setlink - Set the hardware bridge mode 7895 * @dev: the netdev being configured 7896 * @nlh: RTNL message 7897 * @flags: bridge setlink flags 7898 * @extack: netlink extended ack 7899 * 7900 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7901 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7902 * not already set for all VSIs connected to this switch. And also update the 7903 * unicast switch filter rules for the corresponding switch of the netdev. 7904 */ 7905 static int 7906 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7907 u16 __always_unused flags, 7908 struct netlink_ext_ack __always_unused *extack) 7909 { 7910 struct ice_netdev_priv *np = netdev_priv(dev); 7911 struct ice_pf *pf = np->vsi->back; 7912 struct nlattr *attr, *br_spec; 7913 struct ice_hw *hw = &pf->hw; 7914 struct ice_sw *pf_sw; 7915 int rem, v, err = 0; 7916 7917 pf_sw = pf->first_sw; 7918 /* find the attribute in the netlink message */ 7919 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7920 7921 nla_for_each_nested(attr, br_spec, rem) { 7922 __u16 mode; 7923 7924 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7925 continue; 7926 mode = nla_get_u16(attr); 7927 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7928 return -EINVAL; 7929 /* Continue if bridge mode is not being flipped */ 7930 if (mode == pf_sw->bridge_mode) 7931 continue; 7932 /* Iterates through the PF VSI list and update the loopback 7933 * mode of the VSI 7934 */ 7935 ice_for_each_vsi(pf, v) { 7936 if (!pf->vsi[v]) 7937 continue; 7938 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7939 if (err) 7940 return err; 7941 } 7942 7943 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7944 /* Update the unicast switch filter rules for the corresponding 7945 * switch of the netdev 7946 */ 7947 err = ice_update_sw_rule_bridge_mode(hw); 7948 if (err) { 7949 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7950 mode, err, 7951 ice_aq_str(hw->adminq.sq_last_status)); 7952 /* revert hw->evb_veb */ 7953 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7954 return err; 7955 } 7956 7957 pf_sw->bridge_mode = mode; 7958 } 7959 7960 return 0; 7961 } 7962 7963 /** 7964 * ice_tx_timeout - Respond to a Tx Hang 7965 * @netdev: network interface device structure 7966 * @txqueue: Tx queue 7967 */ 7968 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7969 { 7970 struct ice_netdev_priv *np = netdev_priv(netdev); 7971 struct ice_tx_ring *tx_ring = NULL; 7972 struct ice_vsi *vsi = np->vsi; 7973 struct ice_pf *pf = vsi->back; 7974 u32 i; 7975 7976 pf->tx_timeout_count++; 7977 7978 /* Check if PFC is enabled for the TC to which the queue belongs 7979 * to. If yes then Tx timeout is not caused by a hung queue, no 7980 * need to reset and rebuild 7981 */ 7982 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7983 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7984 txqueue); 7985 return; 7986 } 7987 7988 /* now that we have an index, find the tx_ring struct */ 7989 ice_for_each_txq(vsi, i) 7990 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7991 if (txqueue == vsi->tx_rings[i]->q_index) { 7992 tx_ring = vsi->tx_rings[i]; 7993 break; 7994 } 7995 7996 /* Reset recovery level if enough time has elapsed after last timeout. 7997 * Also ensure no new reset action happens before next timeout period. 7998 */ 7999 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8000 pf->tx_timeout_recovery_level = 1; 8001 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8002 netdev->watchdog_timeo))) 8003 return; 8004 8005 if (tx_ring) { 8006 struct ice_hw *hw = &pf->hw; 8007 u32 head, val = 0; 8008 8009 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 8010 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 8011 /* Read interrupt register */ 8012 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8013 8014 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8015 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8016 head, tx_ring->next_to_use, val); 8017 } 8018 8019 pf->tx_timeout_last_recovery = jiffies; 8020 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8021 pf->tx_timeout_recovery_level, txqueue); 8022 8023 switch (pf->tx_timeout_recovery_level) { 8024 case 1: 8025 set_bit(ICE_PFR_REQ, pf->state); 8026 break; 8027 case 2: 8028 set_bit(ICE_CORER_REQ, pf->state); 8029 break; 8030 case 3: 8031 set_bit(ICE_GLOBR_REQ, pf->state); 8032 break; 8033 default: 8034 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8035 set_bit(ICE_DOWN, pf->state); 8036 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8037 set_bit(ICE_SERVICE_DIS, pf->state); 8038 break; 8039 } 8040 8041 ice_service_task_schedule(pf); 8042 pf->tx_timeout_recovery_level++; 8043 } 8044 8045 /** 8046 * ice_setup_tc_cls_flower - flower classifier offloads 8047 * @np: net device to configure 8048 * @filter_dev: device on which filter is added 8049 * @cls_flower: offload data 8050 */ 8051 static int 8052 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8053 struct net_device *filter_dev, 8054 struct flow_cls_offload *cls_flower) 8055 { 8056 struct ice_vsi *vsi = np->vsi; 8057 8058 if (cls_flower->common.chain_index) 8059 return -EOPNOTSUPP; 8060 8061 switch (cls_flower->command) { 8062 case FLOW_CLS_REPLACE: 8063 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8064 case FLOW_CLS_DESTROY: 8065 return ice_del_cls_flower(vsi, cls_flower); 8066 default: 8067 return -EINVAL; 8068 } 8069 } 8070 8071 /** 8072 * ice_setup_tc_block_cb - callback handler registered for TC block 8073 * @type: TC SETUP type 8074 * @type_data: TC flower offload data that contains user input 8075 * @cb_priv: netdev private data 8076 */ 8077 static int 8078 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8079 { 8080 struct ice_netdev_priv *np = cb_priv; 8081 8082 switch (type) { 8083 case TC_SETUP_CLSFLOWER: 8084 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8085 type_data); 8086 default: 8087 return -EOPNOTSUPP; 8088 } 8089 } 8090 8091 /** 8092 * ice_validate_mqprio_qopt - Validate TCF input parameters 8093 * @vsi: Pointer to VSI 8094 * @mqprio_qopt: input parameters for mqprio queue configuration 8095 * 8096 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8097 * needed), and make sure user doesn't specify qcount and BW rate limit 8098 * for TCs, which are more than "num_tc" 8099 */ 8100 static int 8101 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8102 struct tc_mqprio_qopt_offload *mqprio_qopt) 8103 { 8104 u64 sum_max_rate = 0, sum_min_rate = 0; 8105 int non_power_of_2_qcount = 0; 8106 struct ice_pf *pf = vsi->back; 8107 int max_rss_q_cnt = 0; 8108 struct device *dev; 8109 int i, speed; 8110 u8 num_tc; 8111 8112 if (vsi->type != ICE_VSI_PF) 8113 return -EINVAL; 8114 8115 if (mqprio_qopt->qopt.offset[0] != 0 || 8116 mqprio_qopt->qopt.num_tc < 1 || 8117 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8118 return -EINVAL; 8119 8120 dev = ice_pf_to_dev(pf); 8121 vsi->ch_rss_size = 0; 8122 num_tc = mqprio_qopt->qopt.num_tc; 8123 8124 for (i = 0; num_tc; i++) { 8125 int qcount = mqprio_qopt->qopt.count[i]; 8126 u64 max_rate, min_rate, rem; 8127 8128 if (!qcount) 8129 return -EINVAL; 8130 8131 if (is_power_of_2(qcount)) { 8132 if (non_power_of_2_qcount && 8133 qcount > non_power_of_2_qcount) { 8134 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8135 qcount, non_power_of_2_qcount); 8136 return -EINVAL; 8137 } 8138 if (qcount > max_rss_q_cnt) 8139 max_rss_q_cnt = qcount; 8140 } else { 8141 if (non_power_of_2_qcount && 8142 qcount != non_power_of_2_qcount) { 8143 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8144 qcount, non_power_of_2_qcount); 8145 return -EINVAL; 8146 } 8147 if (qcount < max_rss_q_cnt) { 8148 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8149 qcount, max_rss_q_cnt); 8150 return -EINVAL; 8151 } 8152 max_rss_q_cnt = qcount; 8153 non_power_of_2_qcount = qcount; 8154 } 8155 8156 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8157 * converts the bandwidth rate limit into Bytes/s when 8158 * passing it down to the driver. So convert input bandwidth 8159 * from Bytes/s to Kbps 8160 */ 8161 max_rate = mqprio_qopt->max_rate[i]; 8162 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8163 sum_max_rate += max_rate; 8164 8165 /* min_rate is minimum guaranteed rate and it can't be zero */ 8166 min_rate = mqprio_qopt->min_rate[i]; 8167 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8168 sum_min_rate += min_rate; 8169 8170 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8171 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8172 min_rate, ICE_MIN_BW_LIMIT); 8173 return -EINVAL; 8174 } 8175 8176 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8177 if (rem) { 8178 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8179 i, ICE_MIN_BW_LIMIT); 8180 return -EINVAL; 8181 } 8182 8183 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8184 if (rem) { 8185 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8186 i, ICE_MIN_BW_LIMIT); 8187 return -EINVAL; 8188 } 8189 8190 /* min_rate can't be more than max_rate, except when max_rate 8191 * is zero (implies max_rate sought is max line rate). In such 8192 * a case min_rate can be more than max. 8193 */ 8194 if (max_rate && min_rate > max_rate) { 8195 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8196 min_rate, max_rate); 8197 return -EINVAL; 8198 } 8199 8200 if (i >= mqprio_qopt->qopt.num_tc - 1) 8201 break; 8202 if (mqprio_qopt->qopt.offset[i + 1] != 8203 (mqprio_qopt->qopt.offset[i] + qcount)) 8204 return -EINVAL; 8205 } 8206 if (vsi->num_rxq < 8207 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8208 return -EINVAL; 8209 if (vsi->num_txq < 8210 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8211 return -EINVAL; 8212 8213 speed = ice_get_link_speed_kbps(vsi); 8214 if (sum_max_rate && sum_max_rate > (u64)speed) { 8215 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8216 sum_max_rate, speed); 8217 return -EINVAL; 8218 } 8219 if (sum_min_rate && sum_min_rate > (u64)speed) { 8220 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8221 sum_min_rate, speed); 8222 return -EINVAL; 8223 } 8224 8225 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8226 vsi->ch_rss_size = max_rss_q_cnt; 8227 8228 return 0; 8229 } 8230 8231 /** 8232 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8233 * @pf: ptr to PF device 8234 * @vsi: ptr to VSI 8235 */ 8236 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8237 { 8238 struct device *dev = ice_pf_to_dev(pf); 8239 bool added = false; 8240 struct ice_hw *hw; 8241 int flow; 8242 8243 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8244 return -EINVAL; 8245 8246 hw = &pf->hw; 8247 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8248 struct ice_fd_hw_prof *prof; 8249 int tun, status; 8250 u64 entry_h; 8251 8252 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8253 hw->fdir_prof[flow]->cnt)) 8254 continue; 8255 8256 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8257 enum ice_flow_priority prio; 8258 u64 prof_id; 8259 8260 /* add this VSI to FDir profile for this flow */ 8261 prio = ICE_FLOW_PRIO_NORMAL; 8262 prof = hw->fdir_prof[flow]; 8263 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8264 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8265 prof->vsi_h[0], vsi->idx, 8266 prio, prof->fdir_seg[tun], 8267 &entry_h); 8268 if (status) { 8269 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8270 vsi->idx, flow); 8271 continue; 8272 } 8273 8274 prof->entry_h[prof->cnt][tun] = entry_h; 8275 } 8276 8277 /* store VSI for filter replay and delete */ 8278 prof->vsi_h[prof->cnt] = vsi->idx; 8279 prof->cnt++; 8280 8281 added = true; 8282 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8283 flow); 8284 } 8285 8286 if (!added) 8287 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8288 8289 return 0; 8290 } 8291 8292 /** 8293 * ice_add_channel - add a channel by adding VSI 8294 * @pf: ptr to PF device 8295 * @sw_id: underlying HW switching element ID 8296 * @ch: ptr to channel structure 8297 * 8298 * Add a channel (VSI) using add_vsi and queue_map 8299 */ 8300 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8301 { 8302 struct device *dev = ice_pf_to_dev(pf); 8303 struct ice_vsi *vsi; 8304 8305 if (ch->type != ICE_VSI_CHNL) { 8306 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8307 return -EINVAL; 8308 } 8309 8310 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8311 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8312 dev_err(dev, "create chnl VSI failure\n"); 8313 return -EINVAL; 8314 } 8315 8316 ice_add_vsi_to_fdir(pf, vsi); 8317 8318 ch->sw_id = sw_id; 8319 ch->vsi_num = vsi->vsi_num; 8320 ch->info.mapping_flags = vsi->info.mapping_flags; 8321 ch->ch_vsi = vsi; 8322 /* set the back pointer of channel for newly created VSI */ 8323 vsi->ch = ch; 8324 8325 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8326 sizeof(vsi->info.q_mapping)); 8327 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8328 sizeof(vsi->info.tc_mapping)); 8329 8330 return 0; 8331 } 8332 8333 /** 8334 * ice_chnl_cfg_res 8335 * @vsi: the VSI being setup 8336 * @ch: ptr to channel structure 8337 * 8338 * Configure channel specific resources such as rings, vector. 8339 */ 8340 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8341 { 8342 int i; 8343 8344 for (i = 0; i < ch->num_txq; i++) { 8345 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8346 struct ice_ring_container *rc; 8347 struct ice_tx_ring *tx_ring; 8348 struct ice_rx_ring *rx_ring; 8349 8350 tx_ring = vsi->tx_rings[ch->base_q + i]; 8351 rx_ring = vsi->rx_rings[ch->base_q + i]; 8352 if (!tx_ring || !rx_ring) 8353 continue; 8354 8355 /* setup ring being channel enabled */ 8356 tx_ring->ch = ch; 8357 rx_ring->ch = ch; 8358 8359 /* following code block sets up vector specific attributes */ 8360 tx_q_vector = tx_ring->q_vector; 8361 rx_q_vector = rx_ring->q_vector; 8362 if (!tx_q_vector && !rx_q_vector) 8363 continue; 8364 8365 if (tx_q_vector) { 8366 tx_q_vector->ch = ch; 8367 /* setup Tx and Rx ITR setting if DIM is off */ 8368 rc = &tx_q_vector->tx; 8369 if (!ITR_IS_DYNAMIC(rc)) 8370 ice_write_itr(rc, rc->itr_setting); 8371 } 8372 if (rx_q_vector) { 8373 rx_q_vector->ch = ch; 8374 /* setup Tx and Rx ITR setting if DIM is off */ 8375 rc = &rx_q_vector->rx; 8376 if (!ITR_IS_DYNAMIC(rc)) 8377 ice_write_itr(rc, rc->itr_setting); 8378 } 8379 } 8380 8381 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8382 * GLINT_ITR register would have written to perform in-context 8383 * update, hence perform flush 8384 */ 8385 if (ch->num_txq || ch->num_rxq) 8386 ice_flush(&vsi->back->hw); 8387 } 8388 8389 /** 8390 * ice_cfg_chnl_all_res - configure channel resources 8391 * @vsi: pte to main_vsi 8392 * @ch: ptr to channel structure 8393 * 8394 * This function configures channel specific resources such as flow-director 8395 * counter index, and other resources such as queues, vectors, ITR settings 8396 */ 8397 static void 8398 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8399 { 8400 /* configure channel (aka ADQ) resources such as queues, vectors, 8401 * ITR settings for channel specific vectors and anything else 8402 */ 8403 ice_chnl_cfg_res(vsi, ch); 8404 } 8405 8406 /** 8407 * ice_setup_hw_channel - setup new channel 8408 * @pf: ptr to PF device 8409 * @vsi: the VSI being setup 8410 * @ch: ptr to channel structure 8411 * @sw_id: underlying HW switching element ID 8412 * @type: type of channel to be created (VMDq2/VF) 8413 * 8414 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8415 * and configures Tx rings accordingly 8416 */ 8417 static int 8418 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8419 struct ice_channel *ch, u16 sw_id, u8 type) 8420 { 8421 struct device *dev = ice_pf_to_dev(pf); 8422 int ret; 8423 8424 ch->base_q = vsi->next_base_q; 8425 ch->type = type; 8426 8427 ret = ice_add_channel(pf, sw_id, ch); 8428 if (ret) { 8429 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8430 return ret; 8431 } 8432 8433 /* configure/setup ADQ specific resources */ 8434 ice_cfg_chnl_all_res(vsi, ch); 8435 8436 /* make sure to update the next_base_q so that subsequent channel's 8437 * (aka ADQ) VSI queue map is correct 8438 */ 8439 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8440 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8441 ch->num_rxq); 8442 8443 return 0; 8444 } 8445 8446 /** 8447 * ice_setup_channel - setup new channel using uplink element 8448 * @pf: ptr to PF device 8449 * @vsi: the VSI being setup 8450 * @ch: ptr to channel structure 8451 * 8452 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8453 * and uplink switching element 8454 */ 8455 static bool 8456 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8457 struct ice_channel *ch) 8458 { 8459 struct device *dev = ice_pf_to_dev(pf); 8460 u16 sw_id; 8461 int ret; 8462 8463 if (vsi->type != ICE_VSI_PF) { 8464 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8465 return false; 8466 } 8467 8468 sw_id = pf->first_sw->sw_id; 8469 8470 /* create channel (VSI) */ 8471 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8472 if (ret) { 8473 dev_err(dev, "failed to setup hw_channel\n"); 8474 return false; 8475 } 8476 dev_dbg(dev, "successfully created channel()\n"); 8477 8478 return ch->ch_vsi ? true : false; 8479 } 8480 8481 /** 8482 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8483 * @vsi: VSI to be configured 8484 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8485 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8486 */ 8487 static int 8488 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8489 { 8490 int err; 8491 8492 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8493 if (err) 8494 return err; 8495 8496 return ice_set_max_bw_limit(vsi, max_tx_rate); 8497 } 8498 8499 /** 8500 * ice_create_q_channel - function to create channel 8501 * @vsi: VSI to be configured 8502 * @ch: ptr to channel (it contains channel specific params) 8503 * 8504 * This function creates channel (VSI) using num_queues specified by user, 8505 * reconfigs RSS if needed. 8506 */ 8507 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8508 { 8509 struct ice_pf *pf = vsi->back; 8510 struct device *dev; 8511 8512 if (!ch) 8513 return -EINVAL; 8514 8515 dev = ice_pf_to_dev(pf); 8516 if (!ch->num_txq || !ch->num_rxq) { 8517 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8518 return -EINVAL; 8519 } 8520 8521 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8522 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8523 vsi->cnt_q_avail, ch->num_txq); 8524 return -EINVAL; 8525 } 8526 8527 if (!ice_setup_channel(pf, vsi, ch)) { 8528 dev_info(dev, "Failed to setup channel\n"); 8529 return -EINVAL; 8530 } 8531 /* configure BW rate limit */ 8532 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8533 int ret; 8534 8535 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8536 ch->min_tx_rate); 8537 if (ret) 8538 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8539 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8540 else 8541 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8542 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8543 } 8544 8545 vsi->cnt_q_avail -= ch->num_txq; 8546 8547 return 0; 8548 } 8549 8550 /** 8551 * ice_rem_all_chnl_fltrs - removes all channel filters 8552 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8553 * 8554 * Remove all advanced switch filters only if they are channel specific 8555 * tc-flower based filter 8556 */ 8557 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8558 { 8559 struct ice_tc_flower_fltr *fltr; 8560 struct hlist_node *node; 8561 8562 /* to remove all channel filters, iterate an ordered list of filters */ 8563 hlist_for_each_entry_safe(fltr, node, 8564 &pf->tc_flower_fltr_list, 8565 tc_flower_node) { 8566 struct ice_rule_query_data rule; 8567 int status; 8568 8569 /* for now process only channel specific filters */ 8570 if (!ice_is_chnl_fltr(fltr)) 8571 continue; 8572 8573 rule.rid = fltr->rid; 8574 rule.rule_id = fltr->rule_id; 8575 rule.vsi_handle = fltr->dest_vsi_handle; 8576 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8577 if (status) { 8578 if (status == -ENOENT) 8579 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8580 rule.rule_id); 8581 else 8582 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8583 status); 8584 } else if (fltr->dest_vsi) { 8585 /* update advanced switch filter count */ 8586 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8587 u32 flags = fltr->flags; 8588 8589 fltr->dest_vsi->num_chnl_fltr--; 8590 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8591 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8592 pf->num_dmac_chnl_fltrs--; 8593 } 8594 } 8595 8596 hlist_del(&fltr->tc_flower_node); 8597 kfree(fltr); 8598 } 8599 } 8600 8601 /** 8602 * ice_remove_q_channels - Remove queue channels for the TCs 8603 * @vsi: VSI to be configured 8604 * @rem_fltr: delete advanced switch filter or not 8605 * 8606 * Remove queue channels for the TCs 8607 */ 8608 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8609 { 8610 struct ice_channel *ch, *ch_tmp; 8611 struct ice_pf *pf = vsi->back; 8612 int i; 8613 8614 /* remove all tc-flower based filter if they are channel filters only */ 8615 if (rem_fltr) 8616 ice_rem_all_chnl_fltrs(pf); 8617 8618 /* remove ntuple filters since queue configuration is being changed */ 8619 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8620 struct ice_hw *hw = &pf->hw; 8621 8622 mutex_lock(&hw->fdir_fltr_lock); 8623 ice_fdir_del_all_fltrs(vsi); 8624 mutex_unlock(&hw->fdir_fltr_lock); 8625 } 8626 8627 /* perform cleanup for channels if they exist */ 8628 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8629 struct ice_vsi *ch_vsi; 8630 8631 list_del(&ch->list); 8632 ch_vsi = ch->ch_vsi; 8633 if (!ch_vsi) { 8634 kfree(ch); 8635 continue; 8636 } 8637 8638 /* Reset queue contexts */ 8639 for (i = 0; i < ch->num_rxq; i++) { 8640 struct ice_tx_ring *tx_ring; 8641 struct ice_rx_ring *rx_ring; 8642 8643 tx_ring = vsi->tx_rings[ch->base_q + i]; 8644 rx_ring = vsi->rx_rings[ch->base_q + i]; 8645 if (tx_ring) { 8646 tx_ring->ch = NULL; 8647 if (tx_ring->q_vector) 8648 tx_ring->q_vector->ch = NULL; 8649 } 8650 if (rx_ring) { 8651 rx_ring->ch = NULL; 8652 if (rx_ring->q_vector) 8653 rx_ring->q_vector->ch = NULL; 8654 } 8655 } 8656 8657 /* Release FD resources for the channel VSI */ 8658 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8659 8660 /* clear the VSI from scheduler tree */ 8661 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8662 8663 /* Delete VSI from FW, PF and HW VSI arrays */ 8664 ice_vsi_delete(ch->ch_vsi); 8665 8666 /* free the channel */ 8667 kfree(ch); 8668 } 8669 8670 /* clear the channel VSI map which is stored in main VSI */ 8671 ice_for_each_chnl_tc(i) 8672 vsi->tc_map_vsi[i] = NULL; 8673 8674 /* reset main VSI's all TC information */ 8675 vsi->all_enatc = 0; 8676 vsi->all_numtc = 0; 8677 } 8678 8679 /** 8680 * ice_rebuild_channels - rebuild channel 8681 * @pf: ptr to PF 8682 * 8683 * Recreate channel VSIs and replay filters 8684 */ 8685 static int ice_rebuild_channels(struct ice_pf *pf) 8686 { 8687 struct device *dev = ice_pf_to_dev(pf); 8688 struct ice_vsi *main_vsi; 8689 bool rem_adv_fltr = true; 8690 struct ice_channel *ch; 8691 struct ice_vsi *vsi; 8692 int tc_idx = 1; 8693 int i, err; 8694 8695 main_vsi = ice_get_main_vsi(pf); 8696 if (!main_vsi) 8697 return 0; 8698 8699 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8700 main_vsi->old_numtc == 1) 8701 return 0; /* nothing to be done */ 8702 8703 /* reconfigure main VSI based on old value of TC and cached values 8704 * for MQPRIO opts 8705 */ 8706 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8707 if (err) { 8708 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8709 main_vsi->old_ena_tc, main_vsi->vsi_num); 8710 return err; 8711 } 8712 8713 /* rebuild ADQ VSIs */ 8714 ice_for_each_vsi(pf, i) { 8715 enum ice_vsi_type type; 8716 8717 vsi = pf->vsi[i]; 8718 if (!vsi || vsi->type != ICE_VSI_CHNL) 8719 continue; 8720 8721 type = vsi->type; 8722 8723 /* rebuild ADQ VSI */ 8724 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8725 if (err) { 8726 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8727 ice_vsi_type_str(type), vsi->idx, err); 8728 goto cleanup; 8729 } 8730 8731 /* Re-map HW VSI number, using VSI handle that has been 8732 * previously validated in ice_replay_vsi() call above 8733 */ 8734 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8735 8736 /* replay filters for the VSI */ 8737 err = ice_replay_vsi(&pf->hw, vsi->idx); 8738 if (err) { 8739 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8740 ice_vsi_type_str(type), err, vsi->idx); 8741 rem_adv_fltr = false; 8742 goto cleanup; 8743 } 8744 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8745 ice_vsi_type_str(type), vsi->idx); 8746 8747 /* store ADQ VSI at correct TC index in main VSI's 8748 * map of TC to VSI 8749 */ 8750 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8751 } 8752 8753 /* ADQ VSI(s) has been rebuilt successfully, so setup 8754 * channel for main VSI's Tx and Rx rings 8755 */ 8756 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8757 struct ice_vsi *ch_vsi; 8758 8759 ch_vsi = ch->ch_vsi; 8760 if (!ch_vsi) 8761 continue; 8762 8763 /* reconfig channel resources */ 8764 ice_cfg_chnl_all_res(main_vsi, ch); 8765 8766 /* replay BW rate limit if it is non-zero */ 8767 if (!ch->max_tx_rate && !ch->min_tx_rate) 8768 continue; 8769 8770 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8771 ch->min_tx_rate); 8772 if (err) 8773 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8774 err, ch->max_tx_rate, ch->min_tx_rate, 8775 ch_vsi->vsi_num); 8776 else 8777 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8778 ch->max_tx_rate, ch->min_tx_rate, 8779 ch_vsi->vsi_num); 8780 } 8781 8782 /* reconfig RSS for main VSI */ 8783 if (main_vsi->ch_rss_size) 8784 ice_vsi_cfg_rss_lut_key(main_vsi); 8785 8786 return 0; 8787 8788 cleanup: 8789 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8790 return err; 8791 } 8792 8793 /** 8794 * ice_create_q_channels - Add queue channel for the given TCs 8795 * @vsi: VSI to be configured 8796 * 8797 * Configures queue channel mapping to the given TCs 8798 */ 8799 static int ice_create_q_channels(struct ice_vsi *vsi) 8800 { 8801 struct ice_pf *pf = vsi->back; 8802 struct ice_channel *ch; 8803 int ret = 0, i; 8804 8805 ice_for_each_chnl_tc(i) { 8806 if (!(vsi->all_enatc & BIT(i))) 8807 continue; 8808 8809 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8810 if (!ch) { 8811 ret = -ENOMEM; 8812 goto err_free; 8813 } 8814 INIT_LIST_HEAD(&ch->list); 8815 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8816 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8817 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8818 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8819 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8820 8821 /* convert to Kbits/s */ 8822 if (ch->max_tx_rate) 8823 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8824 ICE_BW_KBPS_DIVISOR); 8825 if (ch->min_tx_rate) 8826 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8827 ICE_BW_KBPS_DIVISOR); 8828 8829 ret = ice_create_q_channel(vsi, ch); 8830 if (ret) { 8831 dev_err(ice_pf_to_dev(pf), 8832 "failed creating channel TC:%d\n", i); 8833 kfree(ch); 8834 goto err_free; 8835 } 8836 list_add_tail(&ch->list, &vsi->ch_list); 8837 vsi->tc_map_vsi[i] = ch->ch_vsi; 8838 dev_dbg(ice_pf_to_dev(pf), 8839 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8840 } 8841 return 0; 8842 8843 err_free: 8844 ice_remove_q_channels(vsi, false); 8845 8846 return ret; 8847 } 8848 8849 /** 8850 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8851 * @netdev: net device to configure 8852 * @type_data: TC offload data 8853 */ 8854 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8855 { 8856 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8857 struct ice_netdev_priv *np = netdev_priv(netdev); 8858 struct ice_vsi *vsi = np->vsi; 8859 struct ice_pf *pf = vsi->back; 8860 u16 mode, ena_tc_qdisc = 0; 8861 int cur_txq, cur_rxq; 8862 u8 hw = 0, num_tcf; 8863 struct device *dev; 8864 int ret, i; 8865 8866 dev = ice_pf_to_dev(pf); 8867 num_tcf = mqprio_qopt->qopt.num_tc; 8868 hw = mqprio_qopt->qopt.hw; 8869 mode = mqprio_qopt->mode; 8870 if (!hw) { 8871 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8872 vsi->ch_rss_size = 0; 8873 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8874 goto config_tcf; 8875 } 8876 8877 /* Generate queue region map for number of TCF requested */ 8878 for (i = 0; i < num_tcf; i++) 8879 ena_tc_qdisc |= BIT(i); 8880 8881 switch (mode) { 8882 case TC_MQPRIO_MODE_CHANNEL: 8883 8884 if (pf->hw.port_info->is_custom_tx_enabled) { 8885 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8886 return -EBUSY; 8887 } 8888 ice_tear_down_devlink_rate_tree(pf); 8889 8890 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8891 if (ret) { 8892 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8893 ret); 8894 return ret; 8895 } 8896 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8897 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8898 /* don't assume state of hw_tc_offload during driver load 8899 * and set the flag for TC flower filter if hw_tc_offload 8900 * already ON 8901 */ 8902 if (vsi->netdev->features & NETIF_F_HW_TC) 8903 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8904 break; 8905 default: 8906 return -EINVAL; 8907 } 8908 8909 config_tcf: 8910 8911 /* Requesting same TCF configuration as already enabled */ 8912 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8913 mode != TC_MQPRIO_MODE_CHANNEL) 8914 return 0; 8915 8916 /* Pause VSI queues */ 8917 ice_dis_vsi(vsi, true); 8918 8919 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8920 ice_remove_q_channels(vsi, true); 8921 8922 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8923 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8924 num_online_cpus()); 8925 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8926 num_online_cpus()); 8927 } else { 8928 /* logic to rebuild VSI, same like ethtool -L */ 8929 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8930 8931 for (i = 0; i < num_tcf; i++) { 8932 if (!(ena_tc_qdisc & BIT(i))) 8933 continue; 8934 8935 offset = vsi->mqprio_qopt.qopt.offset[i]; 8936 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8937 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8938 } 8939 vsi->req_txq = offset + qcount_tx; 8940 vsi->req_rxq = offset + qcount_rx; 8941 8942 /* store away original rss_size info, so that it gets reused 8943 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8944 * determine, what should be the rss_sizefor main VSI 8945 */ 8946 vsi->orig_rss_size = vsi->rss_size; 8947 } 8948 8949 /* save current values of Tx and Rx queues before calling VSI rebuild 8950 * for fallback option 8951 */ 8952 cur_txq = vsi->num_txq; 8953 cur_rxq = vsi->num_rxq; 8954 8955 /* proceed with rebuild main VSI using correct number of queues */ 8956 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8957 if (ret) { 8958 /* fallback to current number of queues */ 8959 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8960 vsi->req_txq = cur_txq; 8961 vsi->req_rxq = cur_rxq; 8962 clear_bit(ICE_RESET_FAILED, pf->state); 8963 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8964 dev_err(dev, "Rebuild of main VSI failed again\n"); 8965 return ret; 8966 } 8967 } 8968 8969 vsi->all_numtc = num_tcf; 8970 vsi->all_enatc = ena_tc_qdisc; 8971 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8972 if (ret) { 8973 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8974 vsi->vsi_num); 8975 goto exit; 8976 } 8977 8978 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8979 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8980 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8981 8982 /* set TC0 rate limit if specified */ 8983 if (max_tx_rate || min_tx_rate) { 8984 /* convert to Kbits/s */ 8985 if (max_tx_rate) 8986 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8987 if (min_tx_rate) 8988 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8989 8990 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8991 if (!ret) { 8992 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8993 max_tx_rate, min_tx_rate, vsi->vsi_num); 8994 } else { 8995 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8996 max_tx_rate, min_tx_rate, vsi->vsi_num); 8997 goto exit; 8998 } 8999 } 9000 ret = ice_create_q_channels(vsi); 9001 if (ret) { 9002 netdev_err(netdev, "failed configuring queue channels\n"); 9003 goto exit; 9004 } else { 9005 netdev_dbg(netdev, "successfully configured channels\n"); 9006 } 9007 } 9008 9009 if (vsi->ch_rss_size) 9010 ice_vsi_cfg_rss_lut_key(vsi); 9011 9012 exit: 9013 /* if error, reset the all_numtc and all_enatc */ 9014 if (ret) { 9015 vsi->all_numtc = 0; 9016 vsi->all_enatc = 0; 9017 } 9018 /* resume VSI */ 9019 ice_ena_vsi(vsi, true); 9020 9021 return ret; 9022 } 9023 9024 static LIST_HEAD(ice_block_cb_list); 9025 9026 static int 9027 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9028 void *type_data) 9029 { 9030 struct ice_netdev_priv *np = netdev_priv(netdev); 9031 struct ice_pf *pf = np->vsi->back; 9032 int err; 9033 9034 switch (type) { 9035 case TC_SETUP_BLOCK: 9036 return flow_block_cb_setup_simple(type_data, 9037 &ice_block_cb_list, 9038 ice_setup_tc_block_cb, 9039 np, np, true); 9040 case TC_SETUP_QDISC_MQPRIO: 9041 /* setup traffic classifier for receive side */ 9042 mutex_lock(&pf->tc_mutex); 9043 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9044 mutex_unlock(&pf->tc_mutex); 9045 return err; 9046 default: 9047 return -EOPNOTSUPP; 9048 } 9049 return -EOPNOTSUPP; 9050 } 9051 9052 static struct ice_indr_block_priv * 9053 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9054 struct net_device *netdev) 9055 { 9056 struct ice_indr_block_priv *cb_priv; 9057 9058 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9059 if (!cb_priv->netdev) 9060 return NULL; 9061 if (cb_priv->netdev == netdev) 9062 return cb_priv; 9063 } 9064 return NULL; 9065 } 9066 9067 static int 9068 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9069 void *indr_priv) 9070 { 9071 struct ice_indr_block_priv *priv = indr_priv; 9072 struct ice_netdev_priv *np = priv->np; 9073 9074 switch (type) { 9075 case TC_SETUP_CLSFLOWER: 9076 return ice_setup_tc_cls_flower(np, priv->netdev, 9077 (struct flow_cls_offload *) 9078 type_data); 9079 default: 9080 return -EOPNOTSUPP; 9081 } 9082 } 9083 9084 static int 9085 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9086 struct ice_netdev_priv *np, 9087 struct flow_block_offload *f, void *data, 9088 void (*cleanup)(struct flow_block_cb *block_cb)) 9089 { 9090 struct ice_indr_block_priv *indr_priv; 9091 struct flow_block_cb *block_cb; 9092 9093 if (!ice_is_tunnel_supported(netdev) && 9094 !(is_vlan_dev(netdev) && 9095 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9096 return -EOPNOTSUPP; 9097 9098 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9099 return -EOPNOTSUPP; 9100 9101 switch (f->command) { 9102 case FLOW_BLOCK_BIND: 9103 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9104 if (indr_priv) 9105 return -EEXIST; 9106 9107 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9108 if (!indr_priv) 9109 return -ENOMEM; 9110 9111 indr_priv->netdev = netdev; 9112 indr_priv->np = np; 9113 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9114 9115 block_cb = 9116 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9117 indr_priv, indr_priv, 9118 ice_rep_indr_tc_block_unbind, 9119 f, netdev, sch, data, np, 9120 cleanup); 9121 9122 if (IS_ERR(block_cb)) { 9123 list_del(&indr_priv->list); 9124 kfree(indr_priv); 9125 return PTR_ERR(block_cb); 9126 } 9127 flow_block_cb_add(block_cb, f); 9128 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9129 break; 9130 case FLOW_BLOCK_UNBIND: 9131 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9132 if (!indr_priv) 9133 return -ENOENT; 9134 9135 block_cb = flow_block_cb_lookup(f->block, 9136 ice_indr_setup_block_cb, 9137 indr_priv); 9138 if (!block_cb) 9139 return -ENOENT; 9140 9141 flow_indr_block_cb_remove(block_cb, f); 9142 9143 list_del(&block_cb->driver_list); 9144 break; 9145 default: 9146 return -EOPNOTSUPP; 9147 } 9148 return 0; 9149 } 9150 9151 static int 9152 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9153 void *cb_priv, enum tc_setup_type type, void *type_data, 9154 void *data, 9155 void (*cleanup)(struct flow_block_cb *block_cb)) 9156 { 9157 switch (type) { 9158 case TC_SETUP_BLOCK: 9159 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9160 data, cleanup); 9161 9162 default: 9163 return -EOPNOTSUPP; 9164 } 9165 } 9166 9167 /** 9168 * ice_open - Called when a network interface becomes active 9169 * @netdev: network interface device structure 9170 * 9171 * The open entry point is called when a network interface is made 9172 * active by the system (IFF_UP). At this point all resources needed 9173 * for transmit and receive operations are allocated, the interrupt 9174 * handler is registered with the OS, the netdev watchdog is enabled, 9175 * and the stack is notified that the interface is ready. 9176 * 9177 * Returns 0 on success, negative value on failure 9178 */ 9179 int ice_open(struct net_device *netdev) 9180 { 9181 struct ice_netdev_priv *np = netdev_priv(netdev); 9182 struct ice_pf *pf = np->vsi->back; 9183 9184 if (ice_is_reset_in_progress(pf->state)) { 9185 netdev_err(netdev, "can't open net device while reset is in progress"); 9186 return -EBUSY; 9187 } 9188 9189 return ice_open_internal(netdev); 9190 } 9191 9192 /** 9193 * ice_open_internal - Called when a network interface becomes active 9194 * @netdev: network interface device structure 9195 * 9196 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9197 * handling routine 9198 * 9199 * Returns 0 on success, negative value on failure 9200 */ 9201 int ice_open_internal(struct net_device *netdev) 9202 { 9203 struct ice_netdev_priv *np = netdev_priv(netdev); 9204 struct ice_vsi *vsi = np->vsi; 9205 struct ice_pf *pf = vsi->back; 9206 struct ice_port_info *pi; 9207 int err; 9208 9209 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9210 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9211 return -EIO; 9212 } 9213 9214 netif_carrier_off(netdev); 9215 9216 pi = vsi->port_info; 9217 err = ice_update_link_info(pi); 9218 if (err) { 9219 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9220 return err; 9221 } 9222 9223 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9224 9225 /* Set PHY if there is media, otherwise, turn off PHY */ 9226 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9227 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9228 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9229 err = ice_init_phy_user_cfg(pi); 9230 if (err) { 9231 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9232 err); 9233 return err; 9234 } 9235 } 9236 9237 err = ice_configure_phy(vsi); 9238 if (err) { 9239 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9240 err); 9241 return err; 9242 } 9243 } else { 9244 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9245 ice_set_link(vsi, false); 9246 } 9247 9248 err = ice_vsi_open(vsi); 9249 if (err) 9250 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9251 vsi->vsi_num, vsi->vsw->sw_id); 9252 9253 /* Update existing tunnels information */ 9254 udp_tunnel_get_rx_info(netdev); 9255 9256 return err; 9257 } 9258 9259 /** 9260 * ice_stop - Disables a network interface 9261 * @netdev: network interface device structure 9262 * 9263 * The stop entry point is called when an interface is de-activated by the OS, 9264 * and the netdevice enters the DOWN state. The hardware is still under the 9265 * driver's control, but the netdev interface is disabled. 9266 * 9267 * Returns success only - not allowed to fail 9268 */ 9269 int ice_stop(struct net_device *netdev) 9270 { 9271 struct ice_netdev_priv *np = netdev_priv(netdev); 9272 struct ice_vsi *vsi = np->vsi; 9273 struct ice_pf *pf = vsi->back; 9274 9275 if (ice_is_reset_in_progress(pf->state)) { 9276 netdev_err(netdev, "can't stop net device while reset is in progress"); 9277 return -EBUSY; 9278 } 9279 9280 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9281 int link_err = ice_force_phys_link_state(vsi, false); 9282 9283 if (link_err) { 9284 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9285 vsi->vsi_num, link_err); 9286 return -EIO; 9287 } 9288 } 9289 9290 ice_vsi_close(vsi); 9291 9292 return 0; 9293 } 9294 9295 /** 9296 * ice_features_check - Validate encapsulated packet conforms to limits 9297 * @skb: skb buffer 9298 * @netdev: This port's netdev 9299 * @features: Offload features that the stack believes apply 9300 */ 9301 static netdev_features_t 9302 ice_features_check(struct sk_buff *skb, 9303 struct net_device __always_unused *netdev, 9304 netdev_features_t features) 9305 { 9306 bool gso = skb_is_gso(skb); 9307 size_t len; 9308 9309 /* No point in doing any of this if neither checksum nor GSO are 9310 * being requested for this frame. We can rule out both by just 9311 * checking for CHECKSUM_PARTIAL 9312 */ 9313 if (skb->ip_summed != CHECKSUM_PARTIAL) 9314 return features; 9315 9316 /* We cannot support GSO if the MSS is going to be less than 9317 * 64 bytes. If it is then we need to drop support for GSO. 9318 */ 9319 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9320 features &= ~NETIF_F_GSO_MASK; 9321 9322 len = skb_network_offset(skb); 9323 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9324 goto out_rm_features; 9325 9326 len = skb_network_header_len(skb); 9327 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9328 goto out_rm_features; 9329 9330 if (skb->encapsulation) { 9331 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9332 * the case of IPIP frames, the transport header pointer is 9333 * after the inner header! So check to make sure that this 9334 * is a GRE or UDP_TUNNEL frame before doing that math. 9335 */ 9336 if (gso && (skb_shinfo(skb)->gso_type & 9337 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9338 len = skb_inner_network_header(skb) - 9339 skb_transport_header(skb); 9340 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9341 goto out_rm_features; 9342 } 9343 9344 len = skb_inner_network_header_len(skb); 9345 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9346 goto out_rm_features; 9347 } 9348 9349 return features; 9350 out_rm_features: 9351 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9352 } 9353 9354 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9355 .ndo_open = ice_open, 9356 .ndo_stop = ice_stop, 9357 .ndo_start_xmit = ice_start_xmit, 9358 .ndo_set_mac_address = ice_set_mac_address, 9359 .ndo_validate_addr = eth_validate_addr, 9360 .ndo_change_mtu = ice_change_mtu, 9361 .ndo_get_stats64 = ice_get_stats64, 9362 .ndo_tx_timeout = ice_tx_timeout, 9363 .ndo_bpf = ice_xdp_safe_mode, 9364 }; 9365 9366 static const struct net_device_ops ice_netdev_ops = { 9367 .ndo_open = ice_open, 9368 .ndo_stop = ice_stop, 9369 .ndo_start_xmit = ice_start_xmit, 9370 .ndo_select_queue = ice_select_queue, 9371 .ndo_features_check = ice_features_check, 9372 .ndo_fix_features = ice_fix_features, 9373 .ndo_set_rx_mode = ice_set_rx_mode, 9374 .ndo_set_mac_address = ice_set_mac_address, 9375 .ndo_validate_addr = eth_validate_addr, 9376 .ndo_change_mtu = ice_change_mtu, 9377 .ndo_get_stats64 = ice_get_stats64, 9378 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9379 .ndo_eth_ioctl = ice_eth_ioctl, 9380 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9381 .ndo_set_vf_mac = ice_set_vf_mac, 9382 .ndo_get_vf_config = ice_get_vf_cfg, 9383 .ndo_set_vf_trust = ice_set_vf_trust, 9384 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9385 .ndo_set_vf_link_state = ice_set_vf_link_state, 9386 .ndo_get_vf_stats = ice_get_vf_stats, 9387 .ndo_set_vf_rate = ice_set_vf_bw, 9388 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9389 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9390 .ndo_setup_tc = ice_setup_tc, 9391 .ndo_set_features = ice_set_features, 9392 .ndo_bridge_getlink = ice_bridge_getlink, 9393 .ndo_bridge_setlink = ice_bridge_setlink, 9394 .ndo_fdb_add = ice_fdb_add, 9395 .ndo_fdb_del = ice_fdb_del, 9396 #ifdef CONFIG_RFS_ACCEL 9397 .ndo_rx_flow_steer = ice_rx_flow_steer, 9398 #endif 9399 .ndo_tx_timeout = ice_tx_timeout, 9400 .ndo_bpf = ice_xdp, 9401 .ndo_xdp_xmit = ice_xdp_xmit, 9402 .ndo_xsk_wakeup = ice_xsk_wakeup, 9403 }; 9404